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A B S T R A C T

While many digital technologies provide opportunities for creating business models that impact sustainability,
some technologies, especially blockchain applications, are often criticized for harming the environment, e.g.
due to high energy demand. In our study, we present a novel approach to identifying sustainability-focused
blockchain companies and relate their level of engagement to location factors and entrepreneurial ecosystem
embeddedness. For this, we use a large-scale web scraping approach to analyze the textual content and
hyperlink networks of all US companies from their websites. Our results show that blockchain remains a niche
technology, with its use communicated by about 0.6% of US companies. However, the proportion of blockchain
companies that are committed to sustainability is significantly higher than in the overall firm population.
Additionally, we find that such sustainability-engaged blockchain companies have, at least quantitatively, a
more intensive embedding in entrepreneurial ecosystems, while infrastructural and socio-economic location
factors hardly play a role.
1. Introduction

Understanding the sustainability potential of novel information
technology is crucial for assessing its long-term impact on society.
One of these emerging technologies gaining significant attention in
recent years is blockchain which is among the most controversial
digital technologies with regard to its environmental impact (Asongu,
Agboola, Alola, & Bekun, 2020; Jones, Goodkind, & Berrens, 2020;
Stoll, Klaaßen, & Gallersdörfer, 2019). In principle, blockchain can be
used both in environmentally harmful ways (e.g. high emissions due
to energy intensity) and in applications that reduce waste of natural
resources, increase efficiency in inputs or improve efficiency in the
distribution of products. In light of the debate on the (non-)sustainable
use of blockchain technology, it seems crucial to explore whether and
to what extent blockchain companies pursue sustainability goals and
which factors contribute to using blockchain technology in a more
sustainable context.

This study explores the use of blockchain technology by compa-
nies across the United States (US) in a sustainability context. Since
retrieving data on such a specific topic from traditional databases is

∗ Corresponding author at: Center for Geographic Analysis at Harvard University, 1737 Cambridge Street, Cambridge, MA 02138, USA.
E-mail address: jan.kinne@istari.ai (J. Kinne).

difficult (Kinne & Axenbeck, 2020), we relied on an innovative, web-
based methodology. We identified companies with blockchain-based
business models using web text mining and a deep learning approach.
While the possible benefits (Kushwaha, Kar, & Dwivedi, 2021; Nair,
Agrawal, Domnic, & Kumar, 2021; Patón-Romero, Baldassarre, Toval,
Rodríguez, & Piattini, 2022; Simmonds & Bhattacherjee, 2012) and
threats of information technology (Asongu et al., 2020; Jones et al.,
2020) to the environment have been discussed, there is still a lack
of large-scale studies on the adoption of information technology in
sustainable applications. Therefore, we further identified companies
employing sustainable blockchain applications such as in the areas of
energy management, supply chain management, resource use, waste
management, or the monitoring of natural disasters. To our knowledge,
this is the first paper to examine the relationship between blockchain
and sustainability for the entire US firm population.

While research on innovation ecosystems generally stresses the
importance of location factors for the invention and adoption of new
technologies and for the performance of companies using and diffusing
https://doi.org/10.1016/j.jjimei.2024.100287
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them (Asheim & Gertler, 2006; Williamson & Meyer, 2012), it remains
an open question whether local milieus still matter for digital tech-
nologies. To answer these questions, we related the use of sustainable
blockchain applications with the local business ecosystem and infras-
tructure. For this, we distinguished between (physical) infrastructure
and the local business ecosystem in their role in the sustainable use of
blockchain.

Our paper addresses the research gap regarding the unclear rela-
tionship between sustainability commitment and blockchain use in the
US, as well as which location factors influence this relationship. To
our knowledge, no studies have yet investigated this relation at the
company level. Within the framework of this paper, we address the
following research questions:

• RQ1: How many companies are using blockchain technologies in
the US?

• RQ2: How important is the topic of sustainability for these com-
panies?

• RQ3: What role do local location factors and the embedding
of blockchain companies in corporate networks play in their
sustainability alignment?

2. Theoretical background

In the following, we provide an overview over necessary theoret-
ical background information regarding blockchain technologies and
ecosystem embeddings.

2.1. Information systems and environmental sustainability

Technological progress is key for transforming business practices
and consumer behavior (Aghion, Antonin, & Bunel, 2021). In partic-
ular, information technologies provide the opportunity to support the
transition toward a more sustainable economy (Singh & Sahu, 2020;
Wang, Chen, & Benitez-Amado, 2015; Wang, Luo, et al., 2015). Green
IT, Artificial Intelligence (AI) and the Internet of Things (IoT), for
example, offer solutions for reducing negative environmental impact
through increasing resource-use efficiency (Kushwaha et al., 2021; Nair
et al., 2021; Patón-Romero et al., 2022; Simmonds & Bhattacherjee,
2012). For instance, big data analytics can contribute to precision
agriculture and the reduction of water waste or the use of fertilizers,
pesticides and other pollutants (Dwivedi et al., 2022). Applications may
also reduce fuel requirements and food waste during transportation.
AI alone or in combination with other technologies (e.g. blockchain)
has the potential to enhance business decisions and hence improve
practices from input choice (including water and energy use) to supply
chain management and waste reduction (Kshetri, 2018; Lin, Petway,
Lien, & Settele, 2018; Nishant, Kennedy, & Corbett, 2020).

However, some information technologies are also often discussed in
light of their potential negative environmental impact (Asongu et al.,
2020; Jones et al., 2020). The main concerns relate to the high levels
of energy consumption and related greenhouse gas emissions as well
as the use of toxic disposal of devices used for operation (Murugesan
& Benakanahally Lakshminarasaiah, 2022). Blockchain technology is
probably the most controversially discussed among the newer informa-
tion technologies (Asongu et al., 2020; Jones et al., 2020; Stoll et al.,
2019).

2.2. Blockchain

Blockchain is a relatively new data storage technology first in-
troduced to the public in 2008 (Nakamoto, 2008). This publication
also presents the first use case of blockchain technology with the
presentation of Bitcoin software, a peer-to-peer electronic cash system.
Blockchain technology has applications in various industries, such as

FinTech, public services, healthcare, and private sectors where it can
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radically change business models, organization managements, supply
chains, payment processes, security of data and even whole markets
(Abbas, Martinetti, Moerman, Hamberg, & van Dongen, 2020; Beck,
Müller-Bloch, & King, 2018; Du, Pan, Leidner, & Ying, 2019; Notheisen,
Cholewa, & Shanmugam, 2017; Rimba et al., 2020; Schinckus, 2020;
Schmidt & Wagner, 2019; Treiblmaier, 2018). In financial services, for
example, blockchain technology is being used to ensure secure, de-
centralized and transparent transactions and to enable cryptocurrency
exchanges (Chen & Bellavitis, 2020). By tracking and verifying the jour-
ney of goods, blockchain technology can also help provide transparency
and reduce fraud in supply chain management, which can be critical
in industries such as agriculture and healthcare (Engelhardt, 2017;
Kamble, Gunasekaran, & Sharma, 2020). Another application is in the
energy sector, where blockchain technology can manage renewable
energy certificates and facilitate peer-to-peer energy trading (Andoni
et al., 2019). Since the technology is organized in a decentralized peer-
to-peer network, all stakeholders share equal access to information,
such as records and transaction history, rather than relying solely
on a single authority, such as a government or bank, for validation
and recording (Ali, Ally, Clutterbuck, & Dwivedi, 2020; Karafiloski &
Mishev, 2017; Schinckus, 2020). After being validated by the entire
network, additional information (e.g. a new transaction of a good), is
added by complementing a new block to the unalterable blockchain
through a cryptographic process within a database that is public and
can therefore be accessed by any stakeholder (Schinckus, 2020). The
validation process is also open to any actor within the network. The
underlying validation procedure determines which actor in the network
gets permission to validate a new block. Proof-of-work (POW) and
proof-of-stake (POS) are two main validation approaches (Schinckus,
2020).

Because of its characteristics as a general purpose technology,
blockchain is often compared to the importance of the internet
(Schmidt & Wagner, 2019). Whereas the aim of the internet is to
connect people all over the world, the aim of blockchain is to diminish
risks and reduce inefficiencies, insecurity and uncertainty among firms
that exchange goods or services by providing transparency within
transactions (Beck et al., 2018; Beck, Stenum Czepluch, Lollike, &
Malone, 2016; Karafiloski & Mishev, 2017; Nærland, Müller-Bloch,
Beck, & Palmund, 2017; Notheisen et al., 2017; Schmidt & Wagner,
2019).

Despite the increasing attention to and rapid development of
blockchain technology, especially since the 2008 global financial crisis
(Schinckus, 2020), there are also barriers to adoption and diffusion
such as high development costs and technological limitations (Babich &
Hilary, 2020; Schmidt & Wagner, 2019; Treiblmaier, 2018). In addition,
regulatory uncertainty plays an important role for the diffusion of
blockchain technologies. Public opinion and policy skepticism regard-
ing the potentially harmful environmental and societal impacts may
play a role in the speed of adoption and the development of novel
applications by private companies (Gökalp, Gökalp, & Çoban, 2022).
A central question is, therefore, to what extent blockchain technology
is used in applications that contribute to sustainable business and
consumer practices.

It is widely discussed whether blockchain technology consumes too
much energy to ever result in sustainable applications (Stoll et al.,
2019). In this context, there is a lot of criticism of the POW validation
approach in particular. Within the POW approach, every cryptographic
problem that needs to be solved for validation is sent to all actors within
the network to ensure a decentralized and safe structure. However, as
only one actor is allowed to validate a new block, all others working on
the problem consume energy for nothing. As the POW approach favors
very efficient and fast miners, many of them team up and form mining
pools, which can mainly be found in countries where energy costs are
lower (Schinckus, 2020). A negative consequence is that countries like
China, where 65% of such mining pools can be found, even increase

their consumption of non-environmentally friendly resources like coal.
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Researchers predict that just because of the trading of Bitcoin, the
global temperature might increase by 2 ◦C by 2034 (Mora et al.,
018). There is currently no alternative, including POS, that offers a
imilar or equal level of transparency and security as the POW approach
Schinckus, 2020). Yet, not all blockchain applications are as energy-
ntensive as mining Bitcoin. Use cases such as SolarCoin and VerdePay
ven have the potential to reduce carbon emissions (Howson, 2019).

On the other hand, blockchain technology has the potential to
adically alter the way contracts and financial transactions are con-
ucted, increasing efficiency as well as financial and operational per-
ormance. Furthermore, applications may also have a positive impact
n the environment by improving the sustainability of existing pro-
esses (Schinckus, 2020; Schmidt & Wagner, 2019). Some blockchain
echnology applications facilitate technology efficiencies which in total
esults in lower energy consumption (Sharma, Kumar, & Park, 2020).
n addition, smart contracts based on blockchain technology have been
hown to enable the trading of carbon credits, ultimately reducing
orporate emissions, as well as optimizing energy distribution and
onsumption by decentralizing energy markets (Aitzhan & Svetinovic,
016). Applications of blockchain technology also include use cases
uch as managing the energy-intensive tracking of product flows along
he supply chain, and verifying the origin of inputs (Howson, 2019).
his ensures that ethical and sustainable practices are followed along
he product journey (e.g. fair payment to producers), promotes respon-
ible sourcing, and limits fraud by reducing information asymmetry
Christidis & Devetsikiotis, 2016; Kshetri, 2017; Saberi, Kouhizadeh,
arkis, & Shen, 2019).

Furthermore, blockchain technology applications could make a ma-
or contribution to sustainability endeavors by impacting at least 14 out
f the 17 United Nations SDGs (Schinckus, 2020; UN, 2022). Among
any use cases, blockchain technology can empower communities

nd their networks through its creation of trust and transparency,
mprove food trust, facilitate more efficient water management, re-
uce electricity consumption and improve energy efficiency through
stablishing high credibility and reduce fraud through transparent and
nchangeable records (Blakstad & Allen, 2018; Friedman & Ormiston,
022; Hwang et al., 2017; Sanderson, 2018; Schinckus, 2020; Sikorski,
aughton, & Kraft, 2017; Treiblmaier & Beck, 2019). Table A.2 in the
ppendix provides a detailed overview of the 17 SDGs and includes
ebsites of blockchain technology companies found through our web
ining approach whose business models focus on a particular SDG.

.3. Ecosystems and infrastructure

Research shows that local characteristics such as the innovation
cosystem and infrastructure impact the regional innovation perfor-
ance by facilitating and contributing to the adoption and diffusion

f new technologies (Asheim & Gertler, 2006; Gschnaidtner, Dehghan,
ottenrott, & Schwierzy, 2024; Williamson & Meyer, 2012). Access to
mployees and financial resources as well as agglomeration benefits
rom the co-location with other companies or universities are among
he key elements of a local ecosystem conducive to innovation (Czar-
itzki & Hottenrott, 2009; Feldman, 1994). Therefore, companies tend
o locate in close proximity to similar companies in order to use the
stablished social and professional links (Stuart & Sorenson, 2003).
enefits from being located close to key suppliers and customers can
lso bring competitive advantages which contribute to the existence of
nnovation clusters (Berkes & Gaetani, 2019; Berliant, Reed III, & Wang,
006; Carlino, Chatterjee, & Hunt, 2007; Shearmur, 2012). Innovation
esearch, hence, has long stressed the impact of location factors for
acilitating collaboration between different actors and thereby allowing
ositive knowledge spillovers. Certain location factors therefore facili-
ate the generation of inventions, such as the presence of universities
nd the availability of a high-skilled labor pool. Other location factors,
uch as physical or financial infrastructure, drive the diffusion of new

echnology by providing a basis for knowledge flows and application
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opportunities (Feldman, 1994). In cases of nascent technologies such
as blockchain, local knowledge spillovers could play an important role.
On the other hand, digital and decentralized technology could also rely
less on location factors compared to technologies that rely more directly
on location factors.

Previous research has also stressed the role of transportation infras-
tructure in driving innovation as it facilitates the mobility of human
capital and the flow of goods across locations (Agrawal, Galasso, &
Oettl, 2017). Recent research indeed documents that the physical lay-
out of cities in the US affects innovation by influencing the organization
of knowledge exchange (Roche, 2020). Another study shows that up-
grades to infrastructure have an important impact on innovation, sug-
gesting that a new bridge between Malmö (Sweden) and Copenhagen
(Denmark) had a significant effect on the number of patents per capita
in Malmö through the attraction of highly qualified workers (Ejermo,
Hussinger, Kalash, & Schubert, 2022). It remains, however, an open
question whether such physical infrastructure plays a relevant role in
the adoption and diffusion of blockchain technology.

It could further be argued that none of these location factors work
in isolation but that their co-occurrence results in specific local ecosys-
tems. These are characterized by rather static factors such as population
structure and natural resources as well as by dynamic factors that stem
from networks and exchange between actors within the ecosystem.
Some prior research investigated the role of ecosystems in the con-
text of sustainable technologies. Studies based on individual cases of
selected regions (i.e., two regions in Finland), selected company types
(i.e., multinational enterprises), or theoretical considerations suggest
that business ecosystems also matter for a sustainable context (Nylund,
Brem, & Agarwal, 2021; Sotarauta & Suvinen, 2019; Yang, Chen, Du,
Lin, & Lu, 2021). Another study shows that local knowledge stocks
matter by illustrating that in German regions where the existing stock
of environmentally related patents is already high, the probability that
a company develops or adopts sustainable innovations is significantly
higher (Horbach, 2020). Geographic proximity to other innovators
has also been show to accelerate the time-of-adoption of sustainable
technologies (Losacker, Horbach, & Liefner, 2022).

Larger-scale systematic evidence is, however, still scarce and we
know very little about digital technologies such as blockchain. This
highlights a gap in our current understanding of the role of specific
individual location factors and local networks for digital technologies.
In particular, while the link between infrastructure, ecosystems, and
innovation, in general, is quite established, it is less clear whether and
how individual location factors and networks determine sustainable
blockchain adoption. On the one hand, in the case of blockchain tech-
nology diffusion, it could be argued that location factors should matter
less because of its digital and decentralized nature. In principle, its use
should, therefore, be less dependent on specific characteristics of the
location in which a blockchain-using company is located. On the other
hand, recognizing opportunities of blockchain applications may require
exposure to other users or even direct knowledge exchange between
current and potential users, i.e. knowledge spillover through connected-
ness. Because of its complex nature and the lack of established standard
applications, the ecosystem may play an even larger role for blockchain
than for other technologies. In the case of sustainable blockchain appli-
cations, it may be even more crucial that entrepreneurs are exposed to
sustainable business practices more generally, which makes the discov-
ery of sustainable applications of blockchain technology more likely.
While the results from earlier research suggest that local characteristics
may be decisive for new technologies and innovation more generally,
there is currently no evidence that this also applies to new digital
and decentralized technologies, such as blockchain. Therefore, the
following analysis aims to shed light on whether the local ecosystem,
as reflected in location factors and networks, matters for companies

adopting sustainable uses of blockchain technology.
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3. Materials and methods

In the following, we present our data and methodology. First, we
address our company database before we explain how our web-based
indicators were generated. Lastly, we describe additional data we used
to cover infrastructural and socio-economic variables.

3.1. Basedata

As base data for all of our analyses, we used the ORBIS company
database (as of February 2022). ORBIS is a proprietary database com-
piled by Bureau van Dijk, in which company data from various national
providers are harmonized to achieve an almost global coverage with
over 400 million included companies. For our analyses, we extracted all
companies that were incorporated in the US and also had their postal
address and web address (URL) included. Furthermore, we removed
all URL duplicates from our subsample so that each URL was unique.
After this filtering, approximately 5.76 million companies remained in
the dataset. The postal addresses of the companies were then used to
perform a house number-accurate geocoding via the OpenStreetMap
(OSM)-based service Nominatim.

As the dataset also included some economically inactive companies,
we were only able to retrieve the websites of 3.72 million companies
(64.5% of the URLs queried) using our web scraping approach (cf.
Section 3.2). This corresponded to a coverage of about 61% of all eco-
nomically active companies in the US according to United States Cen-
sus Bureau (2021). A study in Germany has shown that the coverage
there is 46%, although this can vary greatly depending on the industry,
size, age and region studied (Kinne & Axenbeck, 2020).

3.2. Webdata

Building on the URLs contained in our company base data, we used
the cloud-based web scraping tool webAI, developed by ISTARI.AI, to
retrieve company websites and download their textual content. We
followed a query logic in which the input URL of a corporate website
is retrieved first, and then subwebpages are queried using a simple
heuristic (Kinne & Axenbeck, 2020). First, all internal hyperlinks to
the subwebpages are identified on the landing page and then queried in
descending length (number of characters in URL) to download texts and
identify further internal hyperlinks. Prioritizing shorter URLs generally
leads to ’top-level’ information being downloaded first, i.e. ’/products’
s downloaded before ’/news/2022/january ’. Following this logic, up to

maximum of 25 subwebpages per company website were processed
nd their texts downloaded.

.2.1. Web-based blockchain indicator
To infer a company’s blockchain capacity from its website texts, we

rained an Natural Language Processing (NLP) model and represented
he output as a firm-level blockchain intensity score. This approach has
een implemented and tested by Gschnaidtner et al. (2024) in an
pplication of blockchain detection in Germany, Austria and Switzer-
and. We understand blockchain capacities in this context as products
nd services with integrated blockchain technology or personnel with
lockchain-related skills. Our indicator reflects how prominently the
opic of blockchain is communicated by the company on its own web-
ite and how it is portrayed as essential to its own business model. We
ssume that companies that serve blockchain-oriented business areas or
ffer related products and services generally communicate this on their
eb presence. The more central this topic is for the company, the more

ignificant it is for its external communication. For example, a startup
or integrating blockchain into supply chains communicates almost
xclusively on the topic of blockchain, while a company that offers
blockchain consulting’ among many other topics only communicates
bout this technology to a limited extent. Our NLP model was trained
o distinguish between communication that is related to offering its own
4 
products and services with integrated blockchain and pure information
dissemination. An example of the latter would be the website of a
regional newspaper reporting that a local incubator for blockchain
startups opened recently.

In a first step, the downloaded texts of each company were searched
for text paragraphs that deal with the topic of blockchain. For this, we
relied on a simple, but extensive keyword search (cf. Table A.1). In
addition to manual research, frequently occurring words were extracted
from an extensive corpus of academic discussion papers on blockchain.

Based on the millions of paragraphs found through the keyword
search, a random sample of 3500 paragraphs was drawn. Then, each
of these paragraphs was randomly assigned to three out of twelve
briefed annotators, who labeled the paragraph as either ‘information’
or ’know-how’. The labeled data was then used to train a NLP model,
based on state-of-the-art multilingual transformer models and a domain
adaptation training strategy. The trained model exhibited an accuracy
of 0.95 when tested only on examples where all three human annotators
unanimously assigned a category. In an extended test dataset, which
also included ‘‘disputed’’ paragraphs where there was disagreement
among the human annotators (2:1 decisions), the model still achieved
an accuracy of 0.72.

Using this model, we then classified all paragraphs that contained
at least one of our blockchain keywords. In doing so, the model
determined whether own blockchain know-how was reported or only
information on the topic of blockchain was communicated. In the next
step, we counted the number of paragraphs that the model evalu-
ated as ’know-how’ for each company website. We then related this
number to the total amount of text content on the website, thus,
determining a blockchain intensity for each company. This intensity
would be 0.0 for a company completely without any blockchain-related
text. For the consulting company example described above, on the
other hand, the value could be 0.25. The aforementioned startup could
have a blockchain intensity of 3.8. The regional newspaper, on the
other hand, would have an intensity of 0.0 because its website texts
only represent blockchain-related information and not its own know-
how. Companies with a very high blockchain intensity (e.g. above the
90th percentile) are those companies that have focused their busi-
ness model on blockchain and, accordingly, mainly communicate on
blockchain-related topics. Examples of such particularly committed
companies are those that offer seminars exclusively in the area of
blockchain (blockchaintrainingalliance.com), crypto mining companies
(corescientific.com), crypto trading platforms (nexo.com, stably.io) or
blockchain frameworks (stellar.org). Accordingly, very high blockchain
intensity values for such companies are a desirable phenomenon for us.

Unlike simpler, binary classifications (e.g., blockchain YES/NO),
this continuous score with no upper limit allowed us to distinguish
between companies where blockchain is only a marginal topic and
those for which it plays a central role. Similar models have already
been employed to study 3D printing diffusion (Schwierzy et al., 2022),
AI diffusion (Dahlke et al., 2024), the effect of the COVID-19 pandemic
on firms (Dörr, Kinne, Lenz, Licht, & Winker, 2022), and sustainability
in the US metal industry (Schmidt et al., 2022).

Since some of the blockchain companies were only identified be-
cause they have integrated cryptocurrency-based payment systems into
their online stores, we additionally used information on the tech stack
of the company websites. For this, we captured as a boolean variable
whether companies have integrated any of the over 300 ‘‘e-commerce’’
technologies (e.g. Woocommerce, Shopify) or crypto-based payment
systems (e.g. Bitcoin) into their website’s tech stack.

3.2.2. Web-based sustainability indicator
In order to identify companies that are engaged in sustainability,

we developed an NLP model in the same way as the blockchain model
described above. The resulting web-based sustainability indicator has
already been used in a study on greenwashing in the US metal industry,

https://blockchaintrainingalliance.com
https://corescientific.com
https://nexo.com
https://stably.io
https://stellar.org
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which also explains in more detail the concrete use of keywords, step-
by-step model development, and application to companies in the US
(Schmidt et al., 2022). Sustainability here refers only to the ecological
dimension, i.e., to concepts such as circular economy, the energy
transition, ecological agriculture, regenerative energy, efficient use of
resources, reduction of emissions, or recycling. As with blockchain
companies, we assumed that firms active in these or related areas
usually communicate this on their websites. The more central this topic
is for the company, the more significant it is for the company’s external
communication.

For this approach, we also first used a simple keyword search,
working with a list of potentially sustainability-related search terms
(e.g. ‘emission’, ‘organic’, ‘circular’). This list was developed together
with experts from the OECD and included around 1000 words from
more than 20 Indo-European languages. After a labeling and training
process, which was implemented in analogy to the blockchain model
described above, the trained model was used for the evaluation of
all paragraphs containing keywords related to sustainability. However,
in this case, no distinction was made between ’know-how’ and ‘in-
formation’, but whether or not the topics were actually related to
sustainability in the desired context. An example of this is the English
word ‘environment’, which would be a positive hit in the sense of a ’nat-
ural environment’, but not in the sense of an ’investment environment’
or ’working environment’.

The paragraphs assigned to the category ’environmental sustainabil-
ity’ were again counted at the company level and normalized over the
entire website text length into a sustainability intensity.

3.2.3. Location and web-based ecosystem mapping
In order to measure the embeddedness of the companies in ecosys-

tems, we used a location-based and a web-based approach. As argued
above, the local ecosystem may be an important driver of technology
adoption through knowledge spillovers. Such spillovers, however, are
often very local and require direct exchange between agents to facilitate
the transfer of tacit knowledge (Rammer, Kinne, & Blind, 2020). For
the location-based approach, we utilized the exact geocoding of the
companies in our base dataset and determined the number of neighbor-
ing companies (1 km radius around the company’s location) for each
blockchain company. Additionally, we distinguished these neighboring
companies according to their status as ’sustainability-engaged’ and ’not
sustainability-engaged’.

For the web-based approach, we built a hyperlink network for
all approximately 3.72 million corporate websites, where the edges
represented the linkage of one firm to its partners, to approximate their
interconnectedness. Another company became a partner of a blockchain
company if the other company had included a hyperlink to the investi-
gated blockchain company on its own website or vice versa. Hyperlinks
can be considered as the ‘‘basic structural element of the internet’’
(Park & Thelwall, 2003) and creating, maintaining, or removing a
hyperlink "may be viewed as acts of association, non-association or dis-
association, respectively’’ (Rogers, 2013). Several studies have shown
the significance of hyperlinks for uncovering firms’ network relations
(Axenbeck & Breithaupt, 2021; Heimeriks & Van den Besselaar, 2006;
Kinne & Axenbeck, 2020; Vaughan, Gao, & Kipp, 2006). Nevertheless,
this approach does not show all possible connections in a company
network, as companies do not necessarily mention all their partners on
their website.

In addition, we calculated the number of sustainability-engaged
partners per blockchain company, i.e. partners with a sustainability
intensity greater than 0.0. We also calculated the mean value of the
sustainability intensities of all partners of the blockchain company

under investigation. o

5 
3.3. Infrastructure and socio-economic data

For the quantification of hard and soft location factors, we mainly
used two data sources: official statistical data and OSM. The latter is
a project founded in 2004 in the United Kingdom with the aim of
producing freely available, open, worldwide geodata. It is one of the
most important projects of Volunteered Geographic Information (VGI)
(Neis & Zielstra, 2014). OSM data always consists of a geometry (point,
linestring, polygon) and associated so-called tags. These are key–value
pairs that represent the properties of an object, e.g. amenity=restaurant.
For this study, we downloaded a dataset for the US from https://
download.geofabrik.de/ and transformed it with the help of osm2pgsql
into a PostgreSQL/PostGIS database, on the basis of which our subse-
quent calculations were carried out.

We obtained information on motorway links and airports from
OSM. For the variables ’distance_motorway’ and ’distance_airport,’ we
calculated the distance from each firm to the nearest respective feature
using the PostGIS function ST_Distance. Due to calculation constraints,

e set the maximum distance to 50 km (or 100 km in the case of
irports). If no suitable OSM feature was found within this radius,
he variable value was set to the respective maximum value of 50 or
00 km. Additionally, we aggregated several OSM features in order
o derive information about location factors for the following three
ategories: transport infrastructure, leisure, and culture. For this, we
efined a matching radius within which we searched for OSM features
n our database. We chose a radius of 1 km which has been found
mpirically as a significant threshold of walkability (Liao, van den Berg,
an Wesemael, & Arentze, 2020). We then counted all the OSM features
ith the corresponding tags within this radius. The respective OSM tags

or each variable can be found in Table A.3.
Most of the socio-economic variables for our analysis were derived

rom a dataset published by the Federal Communications Commission
FCC). It includes information on unemployment and internet avail-
bility, amongst many other variables. Additionally, rent data, i.e. the
illow Observed Rent Index (ZORI), was acquired from Zillow, which
s the self-proclaimed most important marketplace for real estate in
he US. All this data was then merged based on the FIPS code of the
espective counties. In a next step, each company was assigned the
espective values of the county in which it is located for each variable.
n overview of all the used variables can be found in Table 1.

Table 2 shows some descriptive statistics for the main variables
f interest. Table 3 shows the correlations between these variables.
verall, there were only modest correlations between the exploratory
ariables and stronger positive correlations between some location
actors and the sustainability intensity.

. Results

In the following, we present our main findings. First, we show
escriptive statistics and the geographical distribution of blockchain
ompanies. In the second step, we present the results of our regression
nalyses.

.1. Descriptive statistics

In total, we identified 22,847 blockchain companies, i.e. companies
ith a blockchain intensity greater than 0.0. This represented just
ver 0.6% of the approximately 3.72 million companies we examined.
ig. 1 shows the histogram of the blockchain intensity scores for
hese 22,847 companies. From the distribution, it can be seen that
ost blockchain companies had indeed a low intensity: The median

f blockchain intensity was 0.18 and the mean was 0.39 (standard
eviation 0.47). Only five companies had a value above 4.0, including
he official Ethereum blockchain website (ethereum.org).

We aggregated the blockchain companies at the county level in
rder to assess their spatial distribution in relation to the overall firm

https://download.geofabrik.de/
https://download.geofabrik.de/
https://download.geofabrik.de/
https://ethereum.org
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Table 1
Overview of variables used in analysis.

Variable name Description Source Measure

Sustainability intensity web-based intensity sustainability engagement

ISTARI.AI

≥ 0.0Blockchain intensity web-based intensity of blockchain engagement
Partners’ Sustainability Intensity mean sustainability intensity of linked partners

E-commerce e-commerce plugin on website BooleanCryptopay cryptocurrencies payment plugin on website

# Sustainable companies (1km) sustainable companies within 1 km count# Partners number of hyperlinked partners

Poverty (percent) population in poverty

FCC %

Unemployment (percent) population without employment
Food insecurity (percent) population without reliable source of food
Physical inactivity (percent) non-physical leisure activity adults
Adult obesity (percent) obese adults
Broadband access (percent) population with Broadband access

Distance motorway distance to nearest motorway link

OSM

kmDistance airport distance to nearest airport

Transport (count) weighted count of local public transport stops

countRecreational (count) recreational amenities within 1 km
Cultural (count) cultural amenities within 1 km
Leisure (count) leisure amenities within 1 km

Rent (2022) Zillow Observed Rent Index (ZORI) Zillow index
Table 2
Summary statistics.

mean standard deviation minimum maximum

Sustainability_intensity 0.201 0.499 0 5.185
Blockchain intensity 0.392 0.474 0.066 4.574
Partners’ Sustainability Intensity 0.148 0.217 0 3.520
E-commerce 0.2356 0.424 0 1
Cryptopay 0.0047 0.069 0 1
# Sustainability-engaged companies 2.840 1.731 0 7.749
# Partners 2.029 1.102 0 10.736
ln(Employees) 1.946 1.212 0 10.878
Poverty (percent) 14.406 4.890 3.200 38.500
Unemployment (percent) 7.125 1.702 0.900 27.700
Food insecurity (percent) 14.552 3.330 4.000 29.000
Physical inactivity (percent) 20.185 4.461 9.200 39.700
Adult obesity (percent) 24.340 4.882 12.000 43.700
Broadband access (percent) 95.555 8.796 0 100.000
Distance motorway 4.144 7.802 <0.001 50
Distance airport 9.334 5.882 0.060 56.769
Transport (count) 57.064 150.301 0 1,110.600
Recreational (count) 23.126 43.780 0 1,190.000
Cultural (count) 3.609 8.554 0 86
Leisure (count) 39.725 96.038 0 591.000
Rent (2022) 2,299.662 824.182 549.063 8,033.910

Observations 19,491
Table 3
Cross-correlation table.

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Sustainability_int. 1.000
Blockchain int. 0.017 1.000
Partners’ Sus. Int. 0.362 −0.025 1.000
# Sus. companies 0.063 0.013 0.057 1.000
# Partners 0.177 0.041 0.275 0.163 1.000
ln(Employees) 0.087 0.001 0.055 0.106 0.184 1.000
E-commerce −0.042 −0.009 −0.001 −0.067 −0.111 −0.027 1.000
Cryptopay 0.030 0.089 −0.005 −0.009 −0.019 −0.025 0.122 1.000
Poverty 0.009 0.002 0.002 0.140 0.014 0.006 0.037 0.016 1.000
Unemployment −0.006 −0.001 −0.005 0.035 −0.009 0.012 0.039 0.014 0.543 1.000
Food insecurity 0.005 0.016 0.005 0.148 0.023 0.002 0.023 0.017 0.805 0.424 1.000
Physical inactivity −0.027 −0.006 −0.049 −0.375 −0.092 −0.009 0.049 −0.004 0.305 0.203 0.219 1.000
Adult obesity −0.038 −0.010 −0.040 −0.535 −0.112 −0.033 0.056 −0.002 0.241 0.152 0.220 0.776 1.000
Broadband access 0.016 0.008 0.008 0.271 0.055 0.032 −0.031 −0.014 −0.107 −0.031 −0.038 −0.265 −0.299 1.000
Distance motorway −0.011 −0.006 −0.009 −0.311 −0.050 −0.039 0.041 0.016 0.004 0.018 −0.054 0.172 0.203 −0.430 1.000
Distance airport −0.010 0.004 0.011 −0.080 0.005 −0.029 −0.000 0.003 −0.151 −0.110 −0.060 −0.089 −0.075 0.011 0.018 1.000
Transport 0.048 0.013 0.043 0.678 0.131 0.086 −0.051 −0.010 0.173 0.053 0.152 −0.216 −0.426 0.141 −0.146 −0.142 1.000
Recreational 0.013 −0.003 0.021 0.461 0.088 0.024 −0.033 −0.004 0.126 0.074 0.096 −0.196 −0.310 0.137 −0.127 −0.101 0.486 1.000
Cultural 0.050 0.008 0.042 0.634 0.133 0.071 −0.036 −0.006 0.163 0.024 0.158 −0.207 −0.372 0.129 −0.129 −0.064 0.750 0.400 1.000
Leisure 0.052 0.014 0.049 0.723 0.146 0.078 −0.050 −0.005 0.152 0.020 0.146 −0.265 −0.460 0.150 −0.146 −0.114 0.884 0.463 0.844 1.000
Rent (2022) 0.023 0.008 0.029 0.496 0.096 0.046 −0.033 0.016 −0.157 0.027 −0.177 −0.539 −0.756 0.282 −0.179 −0.016 0.408 0.295 0.340 0.424 1.000
6 
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Fig. 1. Histogram of blockchain intensity for companies with blockchain intensity ≥ 0.00.
Fig. 2. Share of above-average (≥ 0.185) blockchain intensity firms in the overall firm population per county. Counties with less than 10 blockchain firms are excluded.
population in the US. Since many counties in the US are rather small
and therefore contain few companies, we do not show counties with
fewer than 10 blockchain companies in Fig. 2, which portrays the
share of blockchain firms in the local firm population per county. For
the remaining counties, we calculated the Global Moran’s I statistic to
check for spatial clustering in the geographic distribution.

The Global Moran’s Index is a widely used indicator of spatial
association and spatial autocorrelation which results in values between
−1 and +1. The expected value of 0 indicates a random pattern.
Negative values indicate negative spatial autocorrelation (a dispersed
pattern), while positive values indicate positive spatial autocorrelation
(a clustered pattern) (Ord & Getis, 1995). Like all measure of spa-
tial autocorrelation, Moran’s I requires hypotheses about the spatial
relationships in the study area. The resulting spatial weights matrix
is a formal representation of hypothesized interactions among spatial
entities in the form of a weighting function. In the context of this study,
7 
the commonly used Queen contiguity method was used which only
takes directly adjacent observations, i.e. neighboring administrative
units, into account.

The I value of 0.38 (p-value: 0.001) indicated a significant and
positive spatial autocorrelation, suggesting spatial clustering. Regions
where blockchain seems to have higher relative importance were found
in California (especially around San Francisco), on the East Coast
(around Washington D.C., New York City and Boston) and in Florida
(Miami, Orlando). Table 4 shows the ten counties and federal states
that had the highest percentage of blockchain companies in the firm
population and were also home to at least fifty blockchain companies.
The two counties with the highest percentage were both located in
California, which was also the state with the highest average percent-
age (excluding D.C.). Seven of the top ten counties were located on
the East Coast, which was also reflected in the top ten states. The
table additionally lists the top ten counties with the highest shares
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Table 4
Top 10 list of counties and states with highest share of blockchain and sustainable companies in overall company population. Only counties
with more than 50 blockchain firms are included.

blockchain (state) [%] blockchain (county) [%] sustainability (county) [%]

1 District of Columbia 1.23 San Francisco, CA 1.70 District of Columbia, DC 19.56
2 California 0.61 Santa Clara, CA 1.40 Boulder, CO 18.43
3 New York 0.60 New York, NY 1.30 Multnomah, OR 17.35
4 Delaware 0.59 San Mateo, CA 1.28 Chester, PA 15.86
5 Nevada 0.57 District of Columbia, DC 1.23 Marin, CA 15.74
6 Wyoming 0.57 Arlington, VA 1.16 Suffolk, MA 15.69
7 Virginia 0.56 Fairfax, VA 1.07 Denver, CO 15.52
8 Massachusetts 0.50 Loudoun, VA 1.03 Arlington, VA 15.18
9 Colorado 0.48 Suffolk, MA 0.99 Middlesex, MA 15.18
10 New Jersey 0.47 Middlesex, NJ 0.82 Alameda, CA 14.95
Fig. 3. Histogram of sustainability intensity for blockchain companies with sustainability intensity ≥ 0.00.
of sustainability-engaged companies. Three counties appeared in both
categories (District of Columbia; Suffolk, MA; and Arlington, VA).

About 32.1% of the blockchain companies had a sustainability in-
tensity greater than 0 and thus communicated a commitment to sustain-
ability on their websites. Accordingly, this means that the proportion of
sustainability-engaged blockchain companies was significantly higher
than the 12.7% of sustainability-committed companies in the overall
US company population. Fig. 3 shows the sustainability intensity dis-
tribution of these sustainability-engaged blockchain companies. Similar
to the blockchain intensity, it can be seen that most companies had a
low sustainability intensity. For the entire distribution, the mean was
0.21 and the median was 0.00. For the companies with sustainability
intensity greater than 0 (7,351 companies), the mean was 0.65, the
median was 0.35, and the standard deviation was 0.73. The highest
score of 5.18 was achieved by a small company that describes itself as
‘‘the GREEN computer company’’.

Fig. 4 shows the scatterplots for sustainability intensity values of
blockchain companies and selected location and ecosystem variables.
Third-degree regression lines were also fitted to the data to illustrate
the statistical relationships. This shows that primarily the ecosystem
variables, especially the number of hyperlink partners (f) and their
mean sustainability intensity (d), exhibited a strong correlation with
the sustainability intensity of the blockchain companies. Likewise, the
local ecosystem variables (b and c) showed a correlation with the
sustainability intensity of the blockchain companies, albeit to a lesser
extent. The striking inverted U shape of (e) was due to the fact that
especially companies with only a single hyperlink partner showed a
100 % share of sustainable partners. Companies with such few partners
were usually not sustainable, as (f) clearly shows. The remaining infras-
tructural and socio-economic location factors (g–l) showed hardly any
8 
correlation with the sustainability intensity of blockchain companies. It
is important to keep in mind here, however, that we did not account for
differences in the industry affiliation, company size, and the location
of blockchain companies in these relationships. However, doing so was
the purpose of the subsequent regression analyses.

Fig. 5 adds the dimension of sustainability to the mapping of
blockchain firms. There were 18 counties (with more than ten blockchain
firms) in which more than half of the blockchain companies were
identified as sustainable, while only one county in Montana had 0%
sustainable blockchain firms. The counties with the highest ratios
were found in Vermont and Missouri. With 0.149, the Moran’s I of
sustainable blockchain firms was considerably lower than previously.
Still, most of the areas with a high proportion of sustainability-engaged
blockchain companies were identified on the East Coast.

Since we conducted our analyses at the company level, it was
possible for us to make microgeographical statements on the topic of
blockchain. We, therefore, want to illustrate the high granularity of
our data using the example of Suffolk County in Massachusetts, one
of the leading counties in both blockchain and sustainability. Fig. 6
shows the section of the county, where most blockchain companies
were identified. The area corresponds to the central districts of Boston,
particularly the Downtown and Back Bay areas. The companies were
grouped into four categories based on their sustainability score divided
into natural jenks.

Another important economic aspect in our analysis was the net-
working of companies. Fig. 7 shows a spatial representation of the
identified online relationships. For this figure, we calculated the graph
between a sample of blockchain firms and their sustainable partners.
29.8% (403,439) of the linked partners of the identified blockchain
companies were sustainability-engaged. The average sustainability in-
tensity of all blockchain company partners was 0.16. The map reveals



J. Kinne et al. International Journal of Information Management Data Insights 4 (2024) 100287 
Fig. 4. Scatter plots and fitted regression lines of third order for sustainability intensity of blockchain companies and selected location and ecosystem factors.
Fig. 5. Share of sustainable blockchain firms in overall firm population per county. Counties with less than 10 blockchain firms are excluded.
that there were strong connections across the entire US. In particular,
the major agglomerations stood out here, with many edges falling on
the Miami–Atlanta–Chicago, Washington D.C.–New York–Boston, and
San Francisco–Portland–Seattle axes. However, there were also strong
connections between West and East Coast, e.g. between Los Angeles and
New York. Strikingly, there were very few connections in the northern
border regions with Canada and in parts of the west central US.

4.2. Regression analysis and results

We estimated Ordinary Least Squares (OLS) models to identify the
multivariate links between regional factors and a blockchain firm’s
9 
sustainability intensity, while accounting for the sector, firm size and
blockchain intensity. The sustainability score was used as dependent
variable in each model. We also included state fixed effects in all
models to account for differences in state-level predictors, e.g. varying
environmental regulations across states. Due to missing values in the
industry affiliation information and the number of employees in the
ORBIS data base, the regression sample consisted of 19,491 unique
companies.

Specification (1) presented in Table 5 included the main predictors
capturing the local network links to sustainability-engaged companies,
the number of hyperlinked partners, and the overall number of part-
ners. Moreover, we included the indicators for whether a company
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Fig. 6. Exemplary zoom-in map of blockchain firm locations in Suffolk County, MA (i.e. Boston).
Fig. 7. Exemplary hyperlink network between a random sample of 1000 blockchain firms and their sustainable partner firms. Edge bundling technique has been applied in order
to show high (red) and low (blue) density aggregated connections.
is active in e-commerce or simply offers crypto-pay options on their
website. These predictors alone explained about 14% of the variance
in the sustainability score. In all models, we additionally controlled
for company size measured by the number of employees since larger
companies generally scored higher on sustainability. The local network
indicators were positive and statistically significant, indicating that
10 
being embedded in local ecosystems was related to a higher degree of
sustainability commitment for blockchain companies. The higher the
embeddedness of the company as measured by the number of partners,
the higher was the firm’s own sustainability intensity. One additional
partner was associated approximately with a 0.3 increase in the sustain-
ability score. Particularly the partners’ sustainability intensity appeared
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Table 5
Regression results for dependent variable: Blockchain companies’ sustainability intensity.

Ordinary Least Squares Lewbel IV

(1) (2) (3) (4) (5) (6)

Partners’ Sustainability Intensity 0.783*** 0.785*** 0.758*** 0.797*** 0.796*** 2.365***
(0.037) (0.037) (0.036) (0.065) (0.064) (0.154)

Partners’ Sustainability Intensity2 −0.034 −0.033 −0.805***
(0.068) (0.068) (0.218)

# Sustainable companies (1km) 0.007*** 0.007*** 0.009*** 0.009*** 0.010*** 0.007
(0.002) (0.002) (0.002) (0.002) (0.003) (0.006)

# Partners 0.029*** 0.029*** 0.032*** 0.031*** 0.031*** −0.041***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.007)

ln(Employees) 0.005 0.005 0.006 0.006 0.006 −0.010
(0.009) (0.009) (0.009) (0.009) (0.009) (0.010)

ln(Employees)2 0.003* 0.003* 0.002* 0.002* 0.002* 0.005***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

E-commerce −0.042*** −0.041*** −0.047*** −0.048*** −0.048*** −0.078***
(0.008) (0.007) (0.008) (0.008) (0.008) (0.009)

Cryptopay 0.280*** 0.267*** 0.241*** 0.242*** 0.245*** 0.286***
(0.073) (0.073) (0.074) (0.074) (0.075) (0.082)

Blockchain intensity 0.020** 0.021** 0.021** 0.021** 0.035***
(0.009) (0.009) (0.009) (0.009) (0.009)

Poverty (percent) 0.001
(0.001)

Unemployment (percent) −0.004
(0.003)

Food insecurity (percent) −0.001
(0.002)

Physical inactivity (percent) 0.001
(0.002)

Adult obesity (percent) −0.004**
(0.002)

Broadband access (percent) 0.000
(0.000)

Distance motorway 0.000
(0.000)

Distance airport −0.001
(0.001)

Transport (count) 0.000
(0.000)

Recreational (count) −0.000***
(0.000)

Cultural (count) 0.001
(0.001)

Leisure (count) −0.000
(0.000)

Rent (2022) −0.000*
(0.000)

𝑅2 0.144 0.144 0.164 0.164 0.165 0.151
Industry Fixed Effects No No Yes Yes Yes Yes
State Fixed Effects No No Yes Yes Yes Yes

n = 19,491
All models contain a constant. Robust standard errors in parentheses.
* 𝑝 < 0.10.
** 𝑝 < 0.05.
*** 𝑝 < 0.01.
o matter while controlling for the number of partners. A one-unit
ncrease in the partner’s sustainability intensity was associated with a
.78 unit increase in the firm’s own sustainability intensity.

Adding the blockchain intensity to the model in specification (2),
e found a statistically significant correlation between a company’s
lockchain intensity and its sustainability score. Specification (3) was
11 
identical to the previous specification except that we now accounted
for the sector of activity and the state. This increased the 𝑅2 only
marginally to 16.4% indicating that the previously included factors
were of comparably higher importance or captured already much of
the sector and state variation. Specification (4) also contained the
second-order term of the average partner sustainability. Its coefficient
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turned out to be negative but statistically insignificant, indicating a
mainly positive link to the degree of sustainability. Specification (5)
further included the large set of county-level characteristics related to
knowledge, accessibility, poverty, health, and quality of life as shown
in Table 1. Adding these factors did, however, not increase the explana-
tory power of the model by much, since most factors were statistically
insignificant. Importantly, the insights for the sustainable ecosystem
measures remained unchanged through the inclusion of these addi-
tional regressors. It was striking that hardly any of the general location
characteristics explained blockchain use in our study. While this finding
may be less surprising for health, cultural, general economic, or leisure
characteristics, it was not evident that transport infrastructure or dig-
ital infrastructure did not seem to matter after controlling for direct
network factors. This could mean that the networks were driven by
those factors and have no additional role besides this. Alternatively,
these factors did indeed not matter in the specific case of sustainable
blockchain use. These findings also confirmed the descriptive patterns
shown in Fig. 4 and highlighted the role of network-related factors as
compared to more general location factors.

In order to go beyond the analysis of correlation, we further esti-
mated an instrumental variable (IV) model which allowed us to address
the potential endogeneity of a company’s partner’s sustainability in-
tensity. Moreover, some unobserved common drivers could explain
both the partner’s sustainability as well as the sustainability of the
company itself. The number of sustainability-engaged companies in
a company’s neighborhood and the overall number of partners could
also be endogenous. To address such endogeneity concerns, we would
need to instrument the Partners’ Sustainability Intensity (as well as
the second-order term), the number of sustainability-engaged compa-
nies, and the total number of partners with instrumental variables
that explained the endogenous measures, but not the sustainability
commitment itself. Since such variables are typically hard to find, we
employed a heteroscedasticity-based approach that generates suitable
variables from the data (Lewbel, 2012). The advantage of this method
is that it allows estimating causal coefficients for the main variables
of interest if no external instruments are available (Baum & Lewbel,
2019). The approach requires a few assumptions to hold: First, that the
model is linear, and second that there are indeed endogenous variables,
i.e. unobserved factors affect both the explanatory measures and the
primary dependent variables. We argue that this was indeed the case for
our study. Ultimately, we may also assess whether the third condition
is satisfied, which would indicate the presence of heteroscedasticity in
the data. Note that these assumptions are not necessary for validity
of the estimator but result in a higher confidence that the estimator
is consistent (Baum & Lewbel, 2019). The White/Koenker test of ho-
moscedasticity can be rejected for the Partners’ Sustainability Intensity
(𝜒2 = 18.8), the number of sustainability-engaged companies (𝜒2 =
56.6), as well as for the total number of partners (𝜒2 = 269.6).

We present the results from this Lewbel-IV model in column 6 of
Table 5 using the same variables as in specification (4). The F-test
(Cragg-Donald Wald F statistic) of excluded instruments was 19.96 and
hence exceeded the critical value for 5% maximal IV relative bias (Stock
& Yogo, 2005). This statistic shows that the excluded instruments were
indeed relevant (i.e. jointly significant) for explaining the first stage on
the IV model. The results from the IV model confirmed the positive
link between partner sustainability intensity and a company’s own
sustainability intensity. However, the squared term was now statisti-
cally significant, indicating a non-linear relationship saturated at higher
partner intensities. The coefficient for the number of sustainability-
engaged companies in the same location was still positive but no longer
statistically significant at the 10% level. For the number of partners, we
found a negative sign, stressing the role of partners with sustainability
expertise in the network rather than the pure size of the network. We
re-estimated the models with a binary dependent variable as a final
robustness test to address potential concerns regarding the uncertainty

in measuring the sustainability intensity. With this additional approach, t
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we addressed the concern that our sustainability score may not fully in-
dicate the companies’ degree of sustainability. However, the score may
still allow us to classify companies into ones with a score larger than
zero and others. Linear probability models (LPM) on binary outcomes
further reduced the likelihood that some high scores could drive the
results and that some companies may have low scores although they
were actually more sustainable than those with higher scores. Table 6
shows the results, which are in line with the ones for the continuous
score in terms of the main explanation factors. The main difference
was that the coefficient estimates of the IV model (specification 6) in
terms of size and significance were closer to the correlational models
(specifications 1–5).

5. Discussion

This study provides initial insights into the diffusion of blockchain
technologies in the US and the connection between blockchain and
sustainability commitment in companies’ external communication. For
the entire US firm population (RQ1 & RQ2), we found that blockchain
s still a niche technology. While most blockchain companies showed a
ustainability intensity score of zero and, accordingly, no demonstrated
ommitment to sustainability, about one in three blockchain companies
ould be classified as pursuing at least some sustainable activities. This
as a much higher number than in the overall firm population. Based
n a spatial analysis as well as a multivariate regression model at the
ompany level, we found that the ecosystem measures derived from
eighboring firms and hyperlink networks played a crucial role in the
ustainability activities of blockchain companies (RQ3). In line with re-
earch on (local) knowledge spillovers (Czarnitzki & Hottenrott, 2009;
eldman, 1994; Rammer et al., 2020; Roche, 2020), we found that both
eing connected to other sustainability-engaged companies and being
n close geographic proximity to a large number of other sustainability-
ngaged companies were key predictors of the sustainability degree of
lockchain companies. The more sustainable a blockchain company’s
etwork partners were, the higher was its own sustainability score.

We also found that blockchain companies with a particularly strong
ocus on this technology tended to emphasize their commitment to
ustainability and present it as central to their business model. This
as possibly because such companies are more aware of the negative
nvironmental impact and, therefore, address these consequences at
east superficially with a high level of awareness. On the other hand,
t is also possible that there are many application areas for blockchain
echnology in the area of sustainability that are addressed by companies
ith a strong blockchain focus. However, further research is needed to

athom this.
We observed a statistically significant, negative relation between the

se of e-commerce plugins and the sustainability intensity, indicating
hat companies operating blockchain-based e-commerce were less fo-
used on sustainability. We introduced this control variable to account,
t least partially, for companies that use blockchain technology only as
means of payment in their online store. For the same reason, we also

ntroduced another control variable for the use of dedicated cryptopay
ebsite plugins. However, this variable showed a significant positive

mpact on the sustainability intensity of blockchain companies, which
s counter-intuitive at first. However, such plugins are still very rare,
eing used by less than 0.5% of all blockchain companies. Thus, this
pecific website technology could be more indicative of a particular
ype of blockchain company that is more concerned with sustainability
han the average.

With respect to RQ3, infrastructural and socio-economic location
actors seemed rather irrelevant for the sustainability engagement, but
ur results regarding the ecosystem embeddedness of blockchain com-
anies suggested interesting correlations. More sustainability-engaged
lockchain companies tended to be located in high-density areas in
erms of overall and sustainability-engaged firm counts. They also

ended to have more hyperlinked partners, which were more committed
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Table 6
LPM regression results for dependent variable: Blockchain companies’ sustainability probability (robustness test).

Ordinary Least Squares Lewbel IV

(1) (2) (3) (4) (5) (6)

Partners’ Sustainability Intensity 0.432*** 0.433*** 0.410*** 0.554*** 0.555*** 0.715***
(0.018) (0.018) (0.018) (0.030) (0.030) (0.070)

Partners’ Sustainability Intensity2 −0.127*** −0.127*** −0.207***
(0.023) (0.023) (0.037)

# Sustainability-engaged companies 0.010*** 0.010*** 0.011*** 0.011*** 0.010*** 0.015***
(0.002) (0.002) (0.002) (0.002) (0.003) (0.005)

# Partners 0.062*** 0.061*** 0.064*** 0.058*** 0.058*** 0.041***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.015)

ln(Employees) 0.002 0.002 0.006 0.005 0.005 −0.002
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

ln(Employees)2 0.003** 0.003** 0.002* 0.002* 0.002* 0.003***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

E-commerce −0.071*** −0.071*** −0.074*** −0.078*** −0.078*** −0.082***
(0.007) (0.007) (0.007) (0.007) (0.007) (0.008)

Cryptopay 0.308*** 0.306*** 0.283*** 0.286*** 0.287*** 0.303***
(0.051) (0.052) (0.051) (0.052) (0.052) (0.051)

Blockchain intensity 0.003 0.003 0.004 0.004 0.006
(0.007) (0.007) (0.007) (0.007) (0.007)

Poverty (percent) 0.001
(0.001)

Unemployment (percent) −0.004
(0.003)

Food insecurity (percent) 0.000
(0.002)

Physical inactivity (percent) −0.003
(0.002)

Adult obesity (percent) 0.001
(0.002)

Broadband access (percent) 0.001
(0.000)

Distance motorway −0.000
(0.000)

Distance airport 0.000
(0.001)

Transport (count) −0.000
(0.000)

Recreational (count) −0.000
(0.000)

Cultural (count) 0.000
(0.001)

Leisure (count) −0.000
(0.000)

Rent (2022) 0.000
(0.000)

𝑅2 0.098 0.098 0.116 0.117 0.118 0.104
Industry Fixed Effects No No Yes Yes Yes No
State Fixed Effects No No Yes Yes Yes Yes

n = 19,491.
All models contain a constant. Robust standard errors in parentheses.
* 𝑝 < 0.10.
** 𝑝 < 0.05.
*** 𝑝 < 0.01.
o sustainability on average. These findings could already be observed
n the descriptive statistics and were additionally confirmed by our
egression analyses. We also found a positive correlation between the
ustainability intensity of a blockchain company and its immediate
eographic neighborhood. Here, many neighbors, and especially many
ustainable neighbors, seemed to be related to the company’s own level
13 
of sustainability. This could potentially be related to latent or deliberate
spillovers. However, the topic of greenwashing, i.e. lip service about
sustainability engagement, should also be mentioned here, which we
were unable to address properly with our data basis. This distorted
portrayal of sustainability engagement may have had an influence on
all our analyses.
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Table A.1
List of blockchain-related keywords.

Keyword

aave decentralized applications pegged currency
altcoin decentralized autonomous applications permissioned ledger
altcoins decentralized autonomous organization proof of stake
atokens decentralized exchange proof-of-authority
binance decentralized exchanges proof-of-stake
bitcoin decentralized finance proof-of-work
blockchain devcon siacoin
byzantine fault dexes sidechain
cbdc distributed ledger technology smart contract
central bank digital currency dogecoin smart contracts
chainlink dyor smart legal contract
coinbase eclipse attack smart-contract
consensus algorithm eosio smart-contracts
consensus mechanism erc-20 stablecoin
crypto erc-721 stablecoins
cryptoassets erc20 tezos
cryptocurrencies ethereum tokenomics
cryptocurrency etherscan total-value-locked
cryptoeconomics genesis block transaction block
cryptojacking governance tokens uniswap
ctokens gwei unspent transaction output
dappradar hyperledger usd coin
dapps initial coin offering usdc
de-fi ipfs usdt
decentralised applications litecoin utility tokens
decentralised autonomous applications makerdao utreexo
decentralised autonomous organization mimblewimble utxo
decentralised exchange mining pool ytokens
decentralised exchanges multichain zero-knowledge-proof
decentralised finance non-fungible tokens zk-snarks
All these results and interpretations must, of course, be understood
s mere fact-finding, and correlations can, at most, be indications of
ausal relationships. However, a continuous update of our dataset will
nable econometric time series analyses in the future, which may also
e able to identify causal relationships. Such results would then be of
articular value for evidence-based policy decisions, so that the use of
high-potential technology such as blockchain could be steered in a

ong-term sustainable direction.
Despite achieving unprecedented coverage, our purely web data-

ased approach still has limitations, since it is dependent on the content
hat is written and communicated on corporate websites. Therefore,
elevant companies that do not communicate about sustainability or
lockchain on their website, or partners of companies that are not
entioned in the form of hyperlinks, cannot be identified by our
ethodology. This means that we were unable to intercept a correla-

ion concerning the entire US firm population, e.g. a general relation
etween sustainability commitment and company network character-
stics, in our analysis. However, similar limitations also exist with
raditional approaches such as surveys or patent analyses. Depending
n the industry and geography, patent data only has very limited
nformative value if little or no patenting takes place (or can take
lace) there. This applies to the entire software industry in Europe,
or example, where it is difficult or impossible to register patents on
oftware. Surveys, on the other hand, can usually only be carried out
n an extremely limited scale and results must then be extrapolated,
hich may produce correct (i.e. unbiased) results in the aggregate, but
re inadequate at the individual level and especially in the context of
icrogeographic analyses, where complete information must also be

vailable at the smallest spatial level.
In the best case, of course, data from several sources based on

ifferent data collection methods should be combined in order to

chieve robust results. However, there is currently no alternative data

14 
available on sustainability-engaged blockchain companies in the US,
so we inevitably had to focus on a purely web data-based approach
in this study. Previous studies have shown that purely web data-based
approaches can be used to achieve robust results: (Kinne & Lenz, 2021)
has shown that information from high-quality but limited surveys can
be extrapolated to the entire company population to generate valuable
microdata. Furthermore, Mirtsch, Kinne, and Blind (2021) has demon-
strated that information extracted from websites can be matched with
information from proprietary databases for the use of standards, but
can also provide additional information. Dörr, Kinne, Lenz, Licht, and
Winker (2022) has shown that a web data-based approach can provide
information on company performance that anticipates movements in
individual company creditworthiness for more than a year. Of particu-
lar relevance is the study by Kinne and Axenbeck (2020) that uncovers
that the (digital-savvy) companies examined in this study can be very
well covered by web data-based approaches.

As blockchain is a rather procedural technology, it is conceivable
that many companies use it but do not necessarily communicate it
as central to their business model. The low blockchain intensities we
found could also be influenced by this. Future research could combine
our data with other databases that use a different approach to analyze
companies to mitigate such biases (e.g. official corporate sustainability
reports). A textual analysis and subsequent quantitative evaluation of
such reports could further increase the informative value of this study.
However, the best methodological approach for comprehensive data
extraction from such reports still needs to be investigated.

Regarding our use of OSM data for operationalizing infrastructural
location factors, we have to keep in mind that OSM data quality can
vary greatly by region (Sehra, Singh, & Rai, 2014), which may impact
our results, particularly when comparing companies in rural and urban
areas. We also attempted to account for an array of soft location factors.

However, there are some that we could not cover purely through OSM
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Table A.2
Mapping of Sustainable Development Goals and exemplary use of blockchain technology.

SDG Main goal (UN, 2022) Related literature Exemplary website
(accessed June 2024)

Application

SDG 1 End poverty in all its forms
everywhere

Schinckus (2020),
Treiblmaier and
Beck (2019)

www.skuchain.com
www.stellar.org

Inventory tracking, provenance trail,
decentralized blockchain network
enabling low-cost payments

SDG 2 End hunger, achieve food security
and improved nutrition and promote
sustainable agriculture

Schinckus (2020) www.skuchain.com
www.damcogroup.com
www.nisum.com

Supply chain tracking, provenance
trail

SDG 3 Ensure healthy lives and promote
well-being for all at all ages

Schinckus (2020) www.damcogroup.com Run of clinical trials based on smart
contracts

SDG 4 Ensure inclusive and equitable
quality education and promote
lifelong learning opportunities for all

– www.stellar.org Public blockchain open for
developers

SDG 5 Achieve gender equality and
empower all women and girls

– www.stellar.org Public blockchain open for
developers, creating equitable access
to the global financial system

SDG 6 Ensure availability and sustainable
management of water and sanitation
for all

Treiblmaier and
Beck (2019)

www.waste2wear.com Supply chain tracking, provenance
trail tracking water usage in textile
production process

SDG 7 Ensure access to affordable, reliable,
sustainable and modern energy for
all

Blakstad and
Allen (2018),
Hwang et al.
(2017), Sanderson
(2018), Schinckus
(2020), Sikorski
et al. (2017)

www.waste2wear.com
www.kleangas.com

Supply chain tracking, provenance
trail tracking water usage in textile
production process

SDG 8 Promote sustained, inclusive and
sustainable economic growth, full
and productive employment and
decent work for all

Blakstad and
Allen (2018),
Treiblmaier and
Beck (2019)

www.10pearls.com
www.stellar.org

Enable growth in emerging countries
through services such as blockchain
consulting

SDG 9 Build resilient infrastructure,
promote inclusive and sustainable
industrialization and foster
innovation

Schinckus (2020) www.stellar.org Build resilient infrastructure through
open-source blockchain network

SDG 10 Reduce inequality within and among
countries

Blakstad and
Allen (2018),
Schinckus (2020),
Treiblmaier and
Beck (2019)

www.10pearls.com Support emerging countries by
offering jobs in blockchain
consulting

SDG 11 Make cities and human settlements
inclusive, safe, resilient and
sustainable

Schinckus (2020),
Treiblmaier and
Beck (2019)

www.waste2wear.com Supply chain tracking, provenance
trail, realtime industry data

SDG 12 Ensure sustainable consumption and
production patterns

Schinckus (2020) www.waste2wear.com
www.kleangas.com

Supply chain tracking and
provenance trail tracking used to
recycle plastic

SDG 13 Take urgent action to combat
climate change and its impacts

Blakstad and
Allen (2018),
Hwang et al.
(2017), Sanderson
(2018), Schinckus
(2020), Sikorski
et al. (2017)

www.skuchain.com
www.waste2wear.com
www.energyweb.org
www.nori.com
www.kleangas.com

Inventory control, real-time industry
data, supply chain tracking

SDG 14 Conserve and sustainably use the
oceans, seas and marine resources
for sustainable development

Schinckus (2020) www.waste2wear.com Supply chain tracking and
provenance trail tracking used to
recycle plastic

SDG 15 Protect, restore and promote
sustainable use of terrestrial
ecosystems, sustainably manage
forests, combat desertification, and
halt and reverse land degradation
and halt biodiversity loss

Schinckus (2020) www.waste2wear.com
www.nori.com
www.kleangas.com

Marketplace transparency
facilitating carbon removals

(continued on next page)
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Table A.2 (continued).

SDG Main goal (UN, 2022) Related literature Exemplary website
(accessed June 2024)

Application

SDG 16 Promote peaceful and inclusive
societies for sustainable
development, provide access to
justice for all and build effective,
accountable and inclusive
institutions at all levels

– www.skuchain.com
www.stellar.org
www.damcogroup.com

Public blockchain open for
developers and blockchain
development services

SDG 17 Strengthen the means of
implementation and revitalize the
Global Partnership for Sustainable
Development

Blakstad and
Allen (2018),
Hwang et al.
(2017), Sanderson
(2018), Schinckus
(2020), Sikorski
et al. (2017)

www.waste2wear.com
www.nori.com

Enhance partnerships through
blockchain facilitated market places
and more transparency in the supply
chain
Table A.3
List of OSM tags used to extract relevant features for location factor operationalization.

Location factor OSM tag Location factor OSM tag

transport count highway=bus_stop
amenity=bus_station
railway=tram_stop
railway=stop
railway=station

leisure count amenity=bar
amenity=cafe
amenity=fast_food
amenity=pub
amenity=restaurant
amenity=nightclub

cultural count amenity=cinema
tourism=museum
tourism=gallery
amenity=theatre
amenity=arts_centre
building=church
building=mosque
building=synagogue
building=temple

recreational count leisure=park
leisure=garden
leisure=nature_reserve
leisure=playground
leisure=pitch
leisure=stadium
leisure=fitness_centre
leisure=sports_centre
leisure=swimming_pool
leisure=golf_course

airport aeroway=aerodrome highway highway=motorway_link

university amenity=university
data, e.g the perception of a location in terms of safety, which could
also be a key location factor. To evaluate this would be possible,
for example, by taking social media data into account (Santos, Silva,
Ferreira Loureiro, & Villas, 2018). We obtained other soft location
factors from official statistics data, most of which do not have the same
high spatial resolution as our other location factors and could therefore
also lead to distortions in our results.

Moreover, advances in machine learning and AI could be used to
further increase model quality, including specific question answering
based on RAG (Retrieval-augmented Generation) to identify, classify,
and describe e.g. blockchain-related products from companies.

The results of this study could be seen as a starting point for poten-
tial policy implications. The encouragement of business collaboration
stands out as particularly important for the promotion of sustainabil-
ity and blockchain utilization. Consequently, it may be beneficial for
policymakers to consider the development of initiatives that foster
stronger networks and partnerships among blockchain companies, with
a particular focus on those with a sustainability-engaged approach. This
could entail the establishment of regional innovation and acceleration
hubs, the investment of resources in local infrastructure, the provision
of (financial) incentives for companies to establish or expand their
operations in areas with high entrepreneurial density, and the sup-
port of platforms that facilitate knowledge sharing and collaboration.
These platforms could bring stakeholders such as academic institutions,
investors, companies, and non-governmental organizations together.
Hence, policy interventions may be more impactful if they prioritize
network-building over purely geographical considerations.
16 
6. Conclusion

In this study, we presented a novel approach to identify
sustainability-engaged blockchain companies. Furthermore, we corre-
lated their sustainability commitment levels with location factors and
their ecosystem embeddedness. For this, we used a large-scale web
scraping approach to analyze the websites of all US companies via NLP
and deep learning and also captured the hyperlink network between
these websites. Our results showed that blockchain remains a niche
technology (RQ1), with its use communicated by 22,847 companies
(0.6% of all US companies). Of these blockchain companies, 32.1%
were classified by our language models as having a commitment to
sustainability (RQ2), which was much higher than in the overall
firm population, suggesting that sustainability plays a more important
role for blockchain companies. We were also able to identify regions
where there are particularly many blockchain companies, especially in
California and on the East Coast.

Our regression models showed that blockchain companies with
an intensified focus on sustainability had, at least quantitatively, a
more intensive embedding in entrepreneurial ecosystems, while in-
frastructural and socio-economic location factors hardly played a role
(RQ3). Thus, these companies had more direct hyperlink partners
which were more focused on sustainability themselves. In addition,
more sustainability-engaged blockchain companies were located in re-
gions with a high density of companies and within one kilometer of
many other sustainability-engaged companies.

http://www.skuchain.com
http://www.stellar.org
http://www.damcogroup.com
http://www.waste2wear.com
http://www.nori.com
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We interpreted these results as indicative of the high relevance
of entrepreneurial ecosystem embedding for the sustainable adoption
of the novel blockchain technology. We discussed local (knowledge)
spillovers as possible drivers, but also learning, inspiration and imita-
tion in the wider partner network. However, we also pointed out that
our results might only be indications of causal relationships that need
to be explored in future studies using our data in the form of time series
analyses.
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