Bridging the gap: Towards an expanded toolkit for AI-driven decision-making in the public sector


Fischer-Abaigar, Unai ; Kern, Christoph ; Barda, Noam ; Kreuter, Frauke


[img] PDF
1-s2.0-S0740624X24000686-main.pdf - Published

Download (1MB)

DOI: https://doi.org/10.1016/j.giq.2024.101976
URL: https://www.sciencedirect.com/science/article/pii/...
URN: urn:nbn:de:bsz:180-madoc-679843
Document Type: Article
Year of publication: 2024
The title of a journal, publication series: Government Information Quarterly
Volume: 41
Issue number: 4, article 101976
Page range: 1-22
Place of publication: New York, NY ; Amsterdam
Publishing house: Elsevier Science
ISSN: 0740-624X
Publication language: English
Institution: Außerfakultäre Einrichtungen > Mannheim Centre for European Social Research - Research Department A
Pre-existing license: Creative Commons Attribution 4.0 International (CC BY 4.0)
Subject: 004 Computer science, internet
Individual keywords (German): Automated decision-making, Reliable artificial intelligence, Public policy, Causal machine learning
Abstract: AI-driven decision-making systems are becoming instrumental in the public sector, with applications spanning areas like criminal justice, social welfare, financial fraud detection, and public health. While these systems offer great potential benefits to institutional decision-making processes, such as improved efficiency and reliability, these systems face the challenge of aligning machine learning (ML) models with the complex realities of public sector decision-making. In this paper, we examine five key challenges where misalignment can occur, including distribution shifts, label bias, the influence of past decision-making on the data side, as well as competing objectives and human-in-the-loop on the model output side. Our findings suggest that standard ML methods often rely on assumptions that do not fully account for these complexities, potentially leading to unreliable and harmful predictions. To address this, we propose a shift in modeling efforts from focusing solely on predictive accuracy to improving decision-making outcomes. We offer guidance for selecting appropriate modeling frameworks, including counterfactual prediction and policy learning, by considering how the model estimand connects to the decision-maker's utility. Additionally, we outline technical methods that address specific challenges within each modeling approach. Finally, we argue for the importance of external input from domain experts and stakeholders to ensure that model assumptions and design choices align with real-world policy objectives, taking a step towards harmonizing AI and public sector objectives.




Dieser Eintrag ist Teil der Universitätsbibliographie.

Das Dokument wird vom Publikationsserver der Universitätsbibliothek Mannheim bereitgestellt.




Metadata export


Citation


+ Search Authors in

+ Download Statistics

Downloads per month over past year

View more statistics



You have found an error? Please let us know about your desired correction here: E-Mail


Actions (login required)

Show item Show item