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A B S T R A C T

AI-driven decision-making systems are becoming instrumental in the public sector, with applications spanning
areas like criminal justice, social welfare, financial fraud detection, and public health. While these systems offer
great potential benefits to institutional decision-making processes, such as improved efficiency and reliability,
these systems face the challenge of aligning machine learning (ML) models with the complex realities of public
sector decision-making. In this paper, we examine five key challenges where misalignment can occur, including
distribution shifts, label bias, the influence of past decision-making on the data side, as well as competing ob-
jectives and human-in-the-loop on the model output side. Our findings suggest that standard ML methods often
rely on assumptions that do not fully account for these complexities, potentially leading to unreliable and
harmful predictions. To address this, we propose a shift in modeling efforts from focusing solely on predictive
accuracy to improving decision-making outcomes. We offer guidance for selecting appropriate modeling
frameworks, including counterfactual prediction and policy learning, by considering how the model estimand
connects to the decision-maker’s utility. Additionally, we outline technical methods that address specific chal-
lenges within each modeling approach. Finally, we argue for the importance of external input from domain
experts and stakeholders to ensure that model assumptions and design choices align with real-world policy
objectives, taking a step towards harmonizing AI and public sector objectives.

1. Introduction

Automated decision-making (ADM) systems are increasingly being
adopted across the public sector (Chiusi, 2020; Mitchell, Potash, Baro-
cas, D’Amour, & Lum, 2021; Levy, Chasalow, & Riley, 2021), often
relying on AI models to address a wide array of problem domains,
including critical areas such as predictive policing (Lum & Isaac, 2016),
criminal justice (Angwin, Larson, Mattu, & Kirchner, 2016; McKay,
2020), fraud detection in government (Engstrom, Ho, Sharkey, &
Cuéllar, 2020), child abuse prevention (Chouldechova, Benavides-
Prado, Fialko, & Vaithianathan, 2018), tax audit selection (Black,
Elzayn, Chouldechova, Goldin, & Ho, 2022), early warning systems in
public schools (Perdomo, Britton, Hardt, & Abebe, 2023), credit scoring
(Kozodoi, Jacob, & Lessmann, 2022), profiling of job seekers (Bach,

Kern, Mautner, & Kreuter, 2023; Desiere & Struyven, 2021; Körtner &
Bonoli, 2023), development aid (Kuzmanovic, Frauen, Hatt, & Feuer-
riegel, 2024) and public health (Potash et al., 2015). Despite expecta-
tions of enhancing decision-making by improving reliability, objectivity,
efficiency and uncovering factors that traditional institutional processes
may overlook, ADM systems face considerable challenges (Barocas,
Hardt, & Narayanan, 2023; Coston, Kawakami, Zhu, Holstein, & Hei-
dari, 2023; Engstrom et al., 2020; Levy et al., 2021; Wang, Kapoor,
Barocas, & Narayanan, 2023). Real-world examples demonstrate
shortcomings, ranging from racial and gender bias to systems exhibiting
poor predictive accuracy leading to flawed decision-making (Allhutter,
Cech, Fischer, Grill,&Mager, 2020; Angwin, Larson, Mattu,& Kirchner,
2016; Dressel& Farid, 2018; Mayer, Strich,& Fiedler, 2020; Obermeyer,
Powers, Vogeli, & Mullainathan, 2019). Such unintended consequences
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are particularly concerning due to their significant impact on in-
dividuals’ lives and the potential reinforcement of systemic biases.
Recent legislation, such as the European Union’s AI Act, highlights these
concerns by establishing regulations for high-risk AI systems (Laux,
Wachter, & Mittelstadt, 2023).

A growing body of literature explores the challenges and potential
benefits of employing AI systems to enhance decision-making within the
public sector (Pencheva, Esteve, & Mikhaylov, 2020; Sun & Medaglia,
2019; Wirtz, Weyerer, & Geyer, 2019; Zuiderwijk, Chen, & Salem,
2021). Moreover, several reviews examine the adoption of AI in gov-
ernment (Levy et al., 2021), including US federal institutions (Engstrom
et al., 2020) and the EU public sector (van Noordt & Misuraca, 2022;
Matzat, 2019). These reviews cover a wide range of challenges, pri-
marily focusing on institutional, ethical and legal implications of using
ADM in the public sector.

In this article, we focus on challenges that arise from a misalignment
between the technical assumptions underlying machine learning (ML)
models and the realities of decision-making in complex public sector
environments. Specifically, we will discuss AI-driven decision-making
used for the allocation of scarce resources in the public sector, where
decisions involve determining whether individuals qualify to receive
specific interventions or services (Kuppler, Kern, Bach, & Kreuter,
2022). Our focus is on ADM systems that do not rely on manually
encoded rules, but rather use supervised ML models to learn patterns
from historical data to predict relevant outcomes that inform decision-
making. Although ML approaches can vary widely, ranging from sup-
port vector machines to neural networks, we aim to keep our discussion
relevant across different models by exploring the general limitations and
challenges of using supervised ML for public sector decision-making.
Throughout the text, we use terms like AI, ML and predictive algo-
rithm interchangeably to refer to the computational model underlying
the ADM system.

Decision-making in these environments often takes place in dynamic,
evolving social contexts, which can conflict with the explicit formal-
ization requirements demanded by ML models (Amarasinghe, Rodolfa,
Lamba, & Ghani, 2023; Levy et al., 2021; Mitchell et al., 2021; Passi &
Barocas, 2019). Technical choices made during model development
often rest on implicit assumptions, such as stable data distributions and a
straightforward link between prediction and decision-making, that may
not hold in these complex settings. For example, policy objectives are
often shaped by multiple stakeholders, political compromises and
competing goals (Coyle & Weller, 2020; Levy et al., 2021), making it
difficult to translate them into clearly defined objectives for ML systems.
When the assumptions behind the technical model construction do not
align with the deployment context, there is a risk of developing systems
that fail to capture the complexities of real-world decision-making,
potentially leading to adverse outcomes upon model deployment.

Consider, for example, a public employment service (PES) office that
aims to determine which job seekers should participate in job programs
to increase their re-integration chances. The PES wants to deploy ML to
learn the optimal assignment of support to job seekers based on data
collected as part of their daily operations. However, the PES now faces
two critical sets of interconnected complications: first, while their data
may include detailed records of labor market histories, they are oper-
ating in a complex and dynamic social environment which raises ques-
tions of distribution shift, feedback loops and the challenge of
accounting for the effect of competing (current) and previous job sup-
port programs. Second, the PES needs to ensure that the predictions can
effectively be integrated in their current decision-making practices. This
may require model guarantees to build caseworker trust in the pre-
dictions and ensuring that other relevant objectives and constraints are
sufficiently incorporated in the system. All these issues require careful
consideration in the model design choices. A misalignment between
technical assumptions and problem setting, such as building a model
under the implicit assumption that labor market characteristics remain
invariant, may result in unintended consequences, such as an allocation

mechanism that might become unreliable over time.
Efforts to analyze challenges from a technical perspective are

ongoing and focus on connecting methodological AI research with the
unique demands of high-stakes decision-making. These efforts explore
various subdimensions of this complex issue, including training data
quality (Shahbazi, Lin, Asudeh, & Jagadish, 2023), target variable bias
(Guerdan, Coston, Wu, & Holstein, 2023) and uncertainty (Gruber,
Schenk, Schierholz, Kreuter, & Kauermann, 2023; Kaiser, Kern, &
Rügamer, 2022). Furthermore, active research develops frameworks to
examine the conditions under which the usage of predictive algorithms
for high-stakes decision-making can be justified (Coston et al., 2023;
Wang et al., 2023).

In this work, we identify and analyze misalignments that commonly
occur between ML models and public sector decision-making. Guided by
the ‘ADM process model’ (Gerdon, Bach, Kern, & Kreuter, 2022), we
focus on how models connect with their wider real-world deployment
context by examining both the data assumptions (model input) and how
models are integrated into the decision-making process (model output).
Using the lens of misalignment developed here, we build on the recent
technical literature on ML and decision-making to isolate five specific
challenges that we consider to exemplify the type of issues that can
occur at these two interfaces: distribution shift, label bias and the in-
fluence of past decision-making on the input side, and competing ob-
jectives and constraints and human-in-the-loop interactions on the
output side. We analyze each of these challenges to better understand
how misaligned technical assumptions can lead to erroneous decision-
making and adverse outcomes for affected individuals in public sector
environments.

Through our analysis, we find that standard ML methods often rely
on assumptions that do not fully account for the complexities of public
sector decision-making. In response, we propose a shift in modeling
efforts from focusing solely on predictive accuracy to improving
decision-making outcomes. We argue that achieving this shift may, in
certain cases, require alternative modeling techniques that extend
purely predictive models, and more directly center on the goal of
decision-making. With this in mind, we highlight promising de-
velopments in causal machine learning, including counterfactual pre-
diction and policy learning. Within each modeling framework, we
summarize technical methods that provide (partial) solutions to the
identified challenges. To guide practitioners in selecting the right
approach, we clarify the assumptions underlying each framework, spe-
cifically addressing, how the model estimand connects to the utility of
the decision-maker and the data and assumptions required for reliable
estimation.

By examining these frameworks through the lens of public sector
decision-making, we want to encourage technical practitioners to
carefully consider the assumptions behind different modeling ap-
proaches and expand their toolbox to include methods that may be
better suited for complex, real-world decision-making. For policy-
makers, domain experts and other stakeholders, we outline which
external input is important to help model developers make the right
assumptions to inform model design.

While we do discuss several risks resulting from the assumptions
made during model development, zooming out to the institutional and
societal context raises more complex issues. For instance, institutional
and cultural biases embedded in historical data as well as data collection
methods and processing can significantly contribute to discriminatory
decision-making (Fountain, 2022; Janssen & Kuk, 2016). Algorithmic
systems may also reinforce existing structural inequalities by formal-
izing problematic decision-making practices (Kolkman, 2020) or
empowering institutions with unjust goals. The continued digitization of
bureaucratic processes, particularly when multiple institutions and
systems interact, can create new risks, such as making it harder to cor-
rect errors across systems or systematically excluding specific user
groups (Peeters & Widlak, 2018). However, we consider addressing
misalignments between assumptions made during model development
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and the deployment context to be essential for avoiding harmful model
design, making it a necessary (though not sufficient) condition for the
fair development of AI-driven decision making in the public sector.

This paper is structured as follows. We first explore central (mis)
alignment challenges that occur along the ML pipeline when developing
and deploying AI systems to support decision-making in the public
sector (Section 2). Second, we highlight recent methodological de-
velopments that exceed the classical supervised ML paradigm, showing
promise in addressing the challenges identified (Section 3). Third, we
discuss the selection of an appropriate modeling approach in a given
deployment context (Section 4). In the discussion, we address broader
issues related to ADM in the public sector, specifically highlighting the
importance of domain expertise and stakeholder input (Section 5).
Finally, Section 6 provides a concise summary of our findings.

2. Defining the gap: Central challenges in connecting ML and
decision-making

Predictive models for ADM systems are designed to inform decisions
in (interaction with) dynamic social contexts, which gives rise to a list of
fundamental challenges. This includes questions related to choosing
adequate model input, as the effectiveness of any ML model is funda-
mentally linked to the quality of its training data. Ensuring that this data
accurately represents the target population is key to avoid biased and
unreliable predictions (Gruber et al., 2023). Securing representative
data in the public sector, however, is a complex task. Public sector data
is incredibly diverse (Dwivedi et al., 2021; Janssen, van der Voort, &
Wahyudi, 2017), comes in a variety of formats, often lacks structure and
encompasses a wide array of data modalities (Dwivedi et al., 2021).
Despite the abundance of data in theory, high-quality data suitable for
ML is often not easily available in the public sector (Alexopoulos et al.,
2019; Sun & Medaglia, 2019). In many countries, the lack of robust
infrastructure to enable data sharing and integration of various data
sources can hinder the development of ML models (Sun & Medaglia,
2019; Wirtz et al., 2019), stemming from issues such as resource con-
straints, data protection, safety concerns and institutional pushback.
These issues are especially concerning for ADM systems, since building a
model that is capable of informing future decision-making places sig-
nificant demands on the training data (Coston et al., 2023; Hüllermeier,
2021).

In addition, it is important to consider how the model output will be
integrated into the decision-making process. Rather than improving
model performance in isolation, the success of a system should be
evaluated based on whether it helps guide decision-making to achieve
the intended policy objectives (Mitchell et al., 2021). Choosing the
appropriate modeling setup, requires drawing a connection from broad,
often hard to formalize policy goals to the specific target outcomes
estimated by the prediction model (Levy et al., 2021).

ADM systems aim to identify individuals for targeted interventions,
typically with the goal of improving an objective defined as the aggre-
gate of the individual outcomes of interest. For instance, policy makers
may seek to improve healthcare in a hospital as a function of individual
treatment outcomes or maximize money recovered during tax audits
(Black et al., 2022). These overarching policy goals may be formalized
through an allocation principle that determines the optimal assignment
of interventions based on the estimated outcomes (Kuppler et al., 2022).
For example, we may choose to intervene when the effect of an inter-
vention is expected to be positive (Fernández-Loría & Provost, 2022a),
or apply an intervention only for the k top-ranked individuals based on
their (predicted) individual outcomes of interest (Amarasinghe et al.,
2023; Kuppler et al., 2022). The last approach reflects real-world
resource constraints typical in the public sector, for example a limited
number of staff and financial resources. However, the link between
intended goals of a system, allocation principle and prediction targets is
often more complicated than this setup suggests. Often additional goals
and information needs to be considered before a final decision is made,

such as the opinion of a human decision-maker.
In the following subsections, we discuss key challenges associated

with both data input and model output that are especially relevant for
high-stakes decision-making in the public sector (see Fig. 1). These
challenges include considering potential distribution shifts between the
model’s training and deployment context (Section 2.1), dealing with
proxy variables in complex policy settings (Section 2.2) and discerning
the impact of past decision-making on the data (Section 2.3). We will
also discuss the difficulty of handling multiple potentially conflicting
goals (Section 2.4), and the role of human decision-makers whose
judgment can potentially overrule the recommendations made by an
algorithm (Section 2.5).

2.1. Distribution shifts

A key challenge when usingMLmodels is to ensure that they perform
well in real-world situations. Often, the data used to train and evaluate
the model will not fully represent the actual population in the envi-
ronment where the model will be deployed (Gruber et al., 2023; Kouw&
Loog, 2018). This mismatch between the distribution of training and
deployment data is commonly referred to as distribution shift, and can
lead to a significant overestimation of a model’s performance (Gruber
et al., 2023; Kouw & Loog, 2018). In other words, the model may learn
patterns in the training data that do not generalize well to the deploy-
ment data, causing it to perform poorly in practice. Distribution shifts
are especially challenging in the public sector, where sourcing reliable
data can be particularly difficult. Models are often deployed in complex
and evolving social contexts, and limited resources, such as a shortage of
technical staff (Wirtz et al., 2019), make it difficult for public in-
stitutions to monitor model performance for unexpected distribution
shifts.

There are several types of shifts that can occur (Kouw & Loog, 2018;
Moreno-Torres, Raeder, Alaiz-Rodríguez, Chawla,&Herrera, 2012). For
example, the distribution of input covariates, such as age, income or
educational background, might vary if a model is trained in one
geographic region but deployed in another. An even harder type of shift
to address is when the relationship between input covariates and the
outcome changes, making the model’s predictions less applicable in the
new setting.

Distribution shifts often result from a biased selection of training
data (Moreno-Torres et al., 2012). For example, it may be more costly to
collect relevant data for hard to reach subgroups in the population
(Tourangeau, 2019), leading to them being underrepresented in the data
used for training. Selection bias may be introduced through a variety of
other mechanisms, for example if past decision policies have led to only
certain subgroups receiving an intervention, it will be difficult to assess
the interventions’ impact for other individuals.

Even a comprehensive selection of training data does not guarantee
long-term robustness. As changes in the deployment environment occur,
the initially accurate data may become increasingly outdated, likely
causing the performance of a model to degrade over time (Moreno-
Torres et al., 2012). For instance, labor market characteristics might
change over time, making a model trained on older data for predicting
unemployment less accurate. When a model is used to inform future
decision-making, its continued deployment may itself be a source of
distribution shift. For instance, individuals might strategically manipu-
late attributes that are not causally related to the true outcome but are
correlated to improve predictions in their favor, often worsening the
model’s accuracy in predicting the true outcome of interest (Hardt,
Megiddo, Papadimitriou, &Wootters, 2016). This is a known challenge
when making use of models to support enforcement decisions in gov-
ernment, such as financial fraud detection. In order to evade detection,
certain regulatory subjects will adapt to a given system, thereby
requiring continuous updates to maintain effectiveness (Engstrom et al.,
2020). The performance of a model may also be impacted by more
sudden changes in the deployment environment. The introduction of a
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new policy can influence how new training data is collected and labeled,
and unexpected events, such as the COVID-19 pandemic (Singh et al.,
2021), can reduce the prediction accuracy of a model.

One common strategy to keep a ML model up-to-date is to regularly
retrain it with new incoming data. However, caution is needed in sce-
narios where the model’s output strongly influences future training data
(Perdomo, Zrnic, Mendler-Dünner, & Hardt, 2020). Biased initial
training data can result in self-fulling prophecies, in which model-
informed interventions lead to new biased data that is fed back into
the model training. Predictive policing is a canonical example of such a
harmful feedback loop, where a higher police presence in neighbor-
hoods classified as high-risk by the model can lead to higher arrest rates
(i.e. the proxy variable) independent of the true crime rate (Ensign,
Friedler, Neville, Scheidegger, & Venkatasubramanian, 2018).

To effectively anticipate distribution shifts, the insight of domain
experts and stakeholders will often be key. For example, prior knowl-
edge of which causal relationships between predictors and the outcome
of interest are expected to remain invariant (Kerrigan, Hullman, &
Bertini, 2021) can facilitate the selection of a dedicated approach to
increase robustness under shifts. In general, prediction quality should be
continuously monitored to detect signs of worsening model perfor-
mance. This task goes beyond the technical challenges we will discuss,
and necessitates dedicated institutional resources and procedures, such
as requiring periodic re-approval of deployed systems (Levy et al.,
2021).

2.2. Label bias

Obtaining accurate ground truth data in real-world settings is rarely
simple, as the true quantity of interest is often not directly measurable
(Barocas et al., 2023; Coston et al., 2023; Guerdan, Coston, Wu, &
Holstein, 2023). While challenges in measuring outcomes are not unique
to the public sector, they are particularly pronounced in the public
sector, where projects often address complex social phenomena that are
difficult to quantify such as health, social welfare and education. In

contrast, the private sector typically evaluates outcomes using more
straightforward metrics like return on investment (Wirick, 2011). These
difficulties often encourage the use of proxy variables that are more
easily available, such as hospitalization records and arrest rates. Simi-
larly, it may take a considerable amount of time before the outcome of
interest can be observed; predicting the 10-year risk of cardiovascular
events takes at least a decade. Such lag may require the use of short-term
outcomes as proxies (Athey, Chetty, Imbens, & Kang, 2019).

Using proxy variables can introduce bias into a model. Proxy vari-
ables often capture institutional responses rather than the true under-
lying outcome of interest. For example, using ICU hospitalization as a
proxy for COVID-19 severity is an imperfect measure, as ICU admission
will depend on other factors like bed availability and other admission
criteria. This can be especially problematic if the relationship between
proxy and true target varies by protected attributes, such as race and
gender (Guerdan, Coston, Wu,&Holstein, 2023; Passi& Barocas, 2019).
Obermeyer et al. (2019) demonstrate that using expected healthcare
cost as a proxy for health needs in predictive algorithms can lead to
significantly underestimating the risk score of Black patients. This is
because Black patients with similar health needs generate fewer medical
expenditures compared to white patients. Similar examples can be found
in various application contexts, such as judicial bail prediction (Fogliato,
Chouldechova, & G’Sell, 2020) and lending algorithms (Mitchell et al.,
2021).

Mitigating such biases cannot be achieved by collecting more data; it
demands careful consideration of the relationship between the the true
label Y and the measured proxy label Ỹ (Gruber et al., 2023; Guerdan,
Coston, Wu, & Holstein, 2023). Validating the assumptions made about
the measurement process may require an evaluation of the proxy vari-
able using external data. For example, in the evaluation of the Allegheny
Family Screening Tool, an algorithm designed to aid in child maltreat-
ment hotline screening, researchers utilized data from a pediatric hos-
pital in form of hospitalization records to assess the relationship
between the model’s risk scores and the occurrence of injury encounters
as recorded in the hospital’s dataset (Cheng & Chouldechova, 2022;

Fig. 1. Overview of the Primary Technical Challenges at the Intersection of Public Sector Decision-Making and Machine Learning. The challenges (highlighted in red)
are positioned along the ML pipeline, with emphasis on data collection and model training (green) and model deployment to support decision-making (blue). For the
sake of clarity, some overlapping challenges and connections have been omitted, such as the possible influence of decision outcomes on future data. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Vaithianathan, Kulick, Putnam-Hornstein, & Benavides-Prado, 2019).

2.3. Past decision-making

When developing an ADM system, we often encounter scenarios in
which the available training data has been influenced by past decision-
making (Coston, Mishler, Kennedy, & Chouldechova, 2020). For
example, a model predicting the risk of job seekers becoming long-term
unemployed with the aim of allocating future support programs needs to
account for how such programs were distributed in the past. Otherwise
the model will likely underestimate the risk of unemployment for in-
dividuals that used to receive prioritized support after the decision-
making process is altered through the deployment of the model
(Lenert, Matheny, & Walsh, 2019). The predictions of such a model
would lead to misleading recommendations, since its predictions are
valid only under the assumption that the decision-making policies
remain unchanged or that the interventions were largely ineffective in
the past (Dickerman & Hernán, 2020).

In such scenarios, it may be required to explicitly model the effect of
interventions by predicting counterfactual outcomes, such as the ex-
pected outcome of a medical treatment for a specific individual. How-
ever, the estimation of counterfactual outcomes is difficult, as it relies on
untestable assumptions due to the limitation of only observing one
intervention outcome per individual. Causal modeling requires data on
past interventions, specifically which interventions each individual was
targeted with, whereas missing treatment data is common in real-world
scenarios (Kennedy, 2020; Kuzmanovic, Hatt, & Feuerriegel, 2023). A
central challenge in causal modeling are confounding variables, result-
ing in the group of individuals subjected to a specific intervention
exhibiting systematic differences in outcomes compared to the overall
population (Fernández-Loría & Provost, 2022a). Students from a more
privileged socioeconomic background may find it easier to enroll in a
free tutoring program, but may also tend to perform better on tests due
to stronger support networks. This leads to a risk of overestimating the
effectiveness of the program for students from the general population.

The canonical way of dealing with such bias are randomized
controlled trials (RCTs) (Caron, Baio, & Manolopoulou, 2022). Howev-
er, in many high-stakes public sector settings it will be impossible to
conduct a RCT due to resource constraints and ethical limitations (Caron
et al., 2022). When the efficacy of the interventions is well-established, a
randomized study may be hard to justify, as in the case of criminal
justice (Lakkaraju, Kleinberg, Leskovec, Ludwig, &Mullainathan, 2017)
or child abuse prevention (Vaithianathan, Benavides-Prado, Dalton,
Chouldechova, & Putnam-Hornstein, 2021).

Alternatively, causal outcomes may be estimated from observational
data. However, this requires the assumption that relevant confounding
variables have been observed, allowing for the disentanglement of past
intervention assignment and outcomes. However, some variables may
remain elusive (Lakkaraju et al., 2017; Rambachan, Coston, & Kennedy,
2022), such as the impressions gained by decision-makers from in-
person interactions. In situations in which it is difficult to guarantee
no unmeasured confounding variables, there still may be ways to esti-
mate the outcome of interest. For instance, Chen, Li, and Mao (2023)
and Lakkaraju et al. (2017) utilize data from multiple human decision-
makers who were randomly assigned to cases to enable estimation.

2.4. Competing objectives and constraints

Formalizing the intended policy objectives into a clearly defined
allocation principle is difficult, especially when dealing with multiple
stakeholder groups, each with their distinct and potentially competing
goals and constraints (Levy et al., 2021; Mitchell et al., 2021; Passi &
Barocas, 2019). For example, a welfare agency may seek cost-efficient
solutions, while ensuring fair decision-making. Similarly, when the
IRS decides whom to audit, various objectives come into play, such as
maximizing revenue, deterrence, and compliance with institutional and

monetary constraints (Black et al., 2022). Regardless of the specific
context, resource constraints are common in the public sector
(Amarasinghe et al., 2023). These constraints may result from limited
financial resources or be influenced by institutional factors, such as a
limited workforce, legal regulations or external political considerations.

Predictive systems, however, typically encourage a more limited
scope by estimating only one relevant factor (Mitchell et al., 2021). This
singular focus may introduce omitted-payoff bias, a situation where a
model target captures only a subset of critical objectives and constraints,
potentially reducing the real-world utility of the system (Kleinberg,
Lakkaraju, Leskovec, Ludwig, & Mullainathan, 2018). For example, the
IRS disproportionately audits low-income owners compared to their
high-income counterparts, despite higher misreporting of tax liability
among the latter group (Black et al., 2022). While auditing low-income
individuals is more cost-efficient, it can exacerbate social inequalities.
This problem of narrow focus becomes especially pronounced when
human decision-makers have fewer opportunities to incorporate addi-
tional considerations into the decision-making process and rely on the
model’s predictions too heavily.

Therefore, effort must be made to translate multiple policy goals and
constraints into explicitly defined objectives for the ADM system (Coyle
&Weller, 2020; Mitchell et al., 2021). The exact choice of the prediction
target often represents a policy choice because it can have profound
downstream impacts that should not solely be the responsibility of ML
developers (Levy et al., 2021; Passi & Barocas, 2019). For instance, in
the IRS example, shifting the prediction target from the probability of
misreporting to predicting misreported income leads to a significantly
more equitable distribution of audits, even without explicitly enforcing
fairness constraints (Black et al., 2022). Integrating multiple goals into a
system typically requires making explicit tradeoffs between different
objectives and constraints. A familiar example of competing objectives
during model development is that accuracy has to be sacrificed to
enforce fairness constraints (Black et al., 2022; Kozodoi et al., 2022) or
enhance model interpretability (Murdoch, Singh, Kumbier, Abbasi-Asl,
& Yu, 2019). In public policy, one common approach to assess
competing goals is performing a cost-benefit analyses, valuing different
impacts and objectives in monetary terms (Boardman, Greenberg, Vin-
ing, &Weimer, 2018). A similar approach in model design might permit
the combination of multiple objectives into a single loss function.
However, assigning a monetary value to different potentially incom-
mensurable impacts or goals is not always straightforward, resulting in
critiques of this utilitarian approach to decision-making (Hwang, 2016).

Clearly specifying the optimization targets of an ADM system is a
delicate process that carries the risk of distorting the originally intended
goals (Levy et al., 2021). This risk is especially pronounced when some
policy goals are easier to formalize than others, prompting the over-
simplification of complex issues through an algorithmic lens (Levy et al.,
2021). Stakeholders’ preference for cost-effective, straightforward so-
lutions and easily measurable prediction targets may exacerbate this
problem (Barocas et al., 2023). Nevertheless, decisions must be made,
and the growing use of ML in the public sector will likely require new
dialogues among stakeholders, while also providing an opportunity to
make the weighting and tradeoffs between policy objectives more
explicit and transparent than in the past (Coyle & Weller, 2020; Levy
et al., 2021).

2.5. Human-in-the-Loop

Automated systems alone often cannot meet all the criteria necessary
for real-world deployment, such as ensuring reliability under unex-
pected conditions, transparency and accountability. This makes inte-
grating human decision-makers with algorithmic systems a central
concern in the public sector, where systems inform high-stakes decisions
and need to comply with complex regulatory frameworks. Mitrou,
Janssen, and Loukis (2022) highlight the need for human discretion and
oversight when systems continuously learn on (biased) historical data,
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face competing objectives and values, or need to meet accountability
obligations. These concerns are often reflected in legal frameworks like
the EU’s proposal for AI regulation, which stresses the importance of
human oversight for high-risk systems in Article 14 (EU Commission,
2021). Thus, the goal is not to replace humans with ADM systems but to
assist public decision-makers in their tasks (Enarsson, Enqvist, &
Naarttijärvi, 2022).

In such scenarios, humans must maintain the final say, making it
important to consider how they interpret model outputs and integrate
them into their decision-making process. This shifts the focus from
simply building the most accurate prediction models to evaluating the
consequences of providing specific model recommendations to human
decision-makers (Fernández-Loría & Provost, 2022b; Vodrahalli, Ger-
stenberg, & Zou, 2022). This introduces new challenges for model de-
velopers, who need to ensure that the output of an ADM system can be
effectively used by a human decision-maker.

Studies have shown that users are often hesitant to follow recom-
mendations of a predictive model, a phenomenon known as algorithm
aversion (De-Arteaga, Fogliato, & Chouldechova, 2020; Dietvorst, Sim-
mons, & Massey, 2018, Dietvorst, Simmons, & Massey, 2015). This lies
in contrast with the opposing tendency of automation bias, when
humans excessively rely on a machine’s suggestion (De-Arteaga et al.,
2020; Goddard, Roudsari, & Wyatt, 2012). Ongoing research into how
humans interact with algorithmic decision-making systems (Chugunova
& Sele, 2023) highlights how these challenges differ based on applica-
tion contexts and user characteristics. For instance, Cheng and Choul-
dechova (2022) demonstrate how less experienced child welfare hotline
call workers tend to rely more on an algorithmic risk score than senior
workers. Such insights need to guide model development to ensure that
the technical design aligns with user requirements and preferences,
enabling human decision-makers to make optimal choices. This can
involve complex tradeoffs; for example, Chugunova and Sele (2023)
illustrate that allowing users to modify algorithmic recommendations
increases their willingness to adopt them, but tends to decrease decision
accuracy.

For the interaction between human decision-makers and ML models
to work, model predictions and its functioning must be comprehensible
for human users (Amarasinghe et al., 2023; Nourani, Kabir, Mohseni, &
Ragan, 2019; Yeomans, Shah, Mullainathan, & Kleinberg, 2019). For
instance, Lebovitz, Lifshitz-Assaf, and Levina (2022) show how opaque
ML models make it more difficult for medical professional to effectively
use them for diagnosis. Many methods have been proposed to make ML
models interpretable and explainable, with comprehensive overviews
available in Belle and Papantonis (2021); Molnar (2022); Doshi-Velez
and Kim (2017); Murdoch et al. (2019); Rudin et al. (2022). One of the
reasons why these approaches vary widely is because they have very
different conceptions of what constitutes an understandable explanation
of the output of a model. Amarasinghe et al. (2023) establish an initial
taxonomy linking public policy use cases with existing explainable ML
approaches. Moving forward, they stress the need to rigorously evaluate
explainable ML methods in real-world problem contexts to ensure their
effectiveness in achieving real policy goals and in aiding domain experts.
Research from fields such as psychology, cognitive sciences and phi-
losophy may help in the task of creating explanations that are helpful to
human users (Miller, 2019). This requires careful investigation of
various challenges, such as identifying situations where model expla-
nations may be harmful due to information overload (Poursabzi-Sang-
deh, Goldstein, Hofman, Wortman Vaughan,&Wallach, 2021), or when
users may take advantage of increased transparency to exploit a system
(Molnar, 2022). Similarly, misleading explanations can be used to
manipulate users and unjustifiably increase trust in a system (Lakkaraju
& Bastani, 2020).

Providing uncertainty estimates for individual predictions can be
critical for enhancing human decision-making based on algorithmic
recommendations (Bhatt et al., 2021). Uncertainty estimates allow
human decision-makers to assess the reliability of a prediction, and

when it is necessary to manually intervene (Gruber et al., 2023; Shalit,
2022). This is particularly relevant due to the human tendency to rapidly
lose trust in algorithmic systems upon observing errors, despite the al-
gorithm’s superior overall performance compared to human decision-
makers (Dietvorst et al., 2015). Transparently communicating uncer-
tainty to model users can therefore be a key element for building trust,
which also illustrates the need for research into effective communication
of probabilities to humans (Bhatt et al., 2021; Vodrahalli et al., 2022).

3. Expanding the ADM toolkit: Choosing the target estimand

In Section 2, we outlined several challenges that could threaten the
intended functioning of an ADM system using supervised ML models to
inform public sector decision-making. These challenges highlight
several limitations of solely relying on a traditional supervised ML
framework in model design (Wang et al., 2023). In response to these
limitations, there have been calls to move beyond purely predictive
modeling towards ML methodology that more directly centers around
the goal of decision-making (Hüllermeier, 2021). This involves a shift in
perspective from solely focusing on achieving accurate predictions to a
more holistic modus operandi centered on selecting a modeling
approach that can best inform the decision-making for a given policy
goal and application context.

To illustrate this shift, we will discuss three distinct modeling
frameworks, starting with standard risk prediction, which is commonly
used in ADM systems, and then move to explore two additional causal
modeling frameworks. Standard (risk) prediction (Section 3.1) focuses
on estimating outcomes based on historical data without explicitly
considering causality. Counterfactual modeling (Section 3.2) extends
this approach by estimating causal outcomes of different hypothetical
decisions, directly addressing issues such as the influence of past
decision-making on the available outcome data. Lastly, policy learning
(Section 3.3) aims to directly learn decision policies that maximize a
predefined overarching utility, offering a practical approach to optimize
a decision policy within the constraints of real-world scenarios (Section
2.4). Fig. 2 visually compares how well counterfactual prediction and
policy learning address the challenges we have discussed in the context
of standard prediction.

First, our goal is to examine the implicit and explicit assumptions
underlying each modeling framework. This involves addressing two
questions: 1) whether the target estimand in each approach is suffi-
ciently linked to the decision-making process, meaning it would genu-
inely aid in making informed decisions. Understanding these
connections is complex, as the guiding principles of an ADM system can
be ambiguous, even when specific goals are in place. For example, public
employment agencies often seek to allocate resources to job seekers at
higher risk of long-term unemployment. However, this objective might
stem from either a belief in the effectiveness of early interventions for
high-risk job seekers or the notion that high-risk job seekers inherently
deserve more support (Desiere & Struyven, 2021). Such ambiguity can
present difficulties, complicating the choice of the appropriate target
estimand, as a need-based distribution necessitates different modeling
considerations than an approach focused on the most efficient allocation
of interventions. 2) whether estimation is feasible, and what external
assumptions are necessary to ensure the accuracy of such estimates. We
will discuss these questions for each framework, allowing decision-
makers to assess the validity of each approach for their application
context.

We will then discuss how the (remaining) challenges outlined in
Section 2 can be addressed within each framework. We will present
methodological advancements specific to each modeling approach that
can help overcome the discussed challenges. While some challenges may
be common across all frameworks, others might be more pronounced in
specific modeling approaches. Specifically, we focus on distribution
shifts to ensure robustness across deployment environments, uncer-
tainty quantification as a key building block for generating trustworthy
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predictions for humans, and multi-objective optimization to manage
tradeoffs between competing objectives.

While we highlight three central modeling approaches, it is impor-
tant to note that we do not address modeling approaches for every po-
tential decision-making setting. Scenarios involving continuous
interventions, interventions across time, sequential data, or in-
terventions that simultaneously target multiple outcomes require other
specialized approaches, which are beyond the scope of this paper
(Acharki, Lugo, Bertoncello, & Garnier, 2023; Hüllermeier, 2021; Lin,
Sperrin, Jenkins, Martin, & Peek, 2021; Van Geloven et al., 2020).

3.1. Risk prediction

In practice, ADM systems commonly involve optimizing predictive
models for the estimation of individual outcomes used as decision-
criteria (Wang et al., 2023). While predictive ML models are relatively
straightforward to set up and train compared to causal models, relying
on predictions as proxies for causal outcomes in decision-making runs
the risk of generating misleading recommendations (Athey, 2017;
Coston et al., 2020; Van Geloven et al., 2020; Wang et al., 2023).
Nevertheless, in certain scenarios, risk predictions may still serve as a
useful proxy for decision-making (Kleinberg, Ludwig, Mullainathan, &
Obermeyer, 2015; Guerdan, Coston, Wu, & Holstein, 2023; Fernández-
Loría & Provost, 2022a). This is the case if the prediction target is still
helpful with regards to the chosen allocation principle. For example, if
the objective is to intervene only in the top-k of individuals, and the
ranking induced by the non-causal predictions aligns with that of the
causal outcomes, an accurate estimate of the intervention effects may
not be critical (Fernández-Loría & Provost, 2022a).

The validity of such an approach hinges on external assumptions
about the relationship between prediction proxies and causal effects. For
example, if the predicted outcome is unaffected by interventions, but
remains correlated with the causal effects, it can provide valuable in-
formation for the allocation strategy, even if it does not correspond
directly to the target quantity being optimized. For instance, Kleinberg
et al. (2015) discuss how predicting the mortality risk of patients during
the next 1–12 months can be a helpful proxy variable for deciding which
patients should not undergo hip and knee replacement surgeries. They
argue that patients at risk of death during the months after surgery

would not live long enough for the benefits of the surgery to outweigh its
costs. Additionally, they assume that the surgery will not significantly
impact the mortality risk after the first month, making it possible to
determine the optimal intervention — whether to exclude a patient from
the surgery or not — based on the predicted risk alone (Kleinberg et al.,
2015).

However, settings in which a practical proxy for the intervention
outcome exists may not be common in practice (Wang et al., 2023),
because the connection between predicted risk scores and causal effects
is rarely straightforward. For example, the predicted risk of death alone
would not be sufficient to decide which patients should be first
considered for surgery, because the benefits and potential complications
of the treatment will probably vary among patients with the same risk
score (Athey, 2017; Wang et al., 2023). Similarly, the Austrian Public
Employment Services used a predictive model to assess the risk of long-
term unemployment among job seekers with the goal of allocating in-
terventions on this basis (Allhutter et al., 2020). This model divided job
seekers into three risk groups. Medium risk individuals were prioritized
for support, while high and low-risk individuals were given limited ac-
cess to labor market programs. However, relying on risk scores to
determine an efficient intervention assignment is questionable, as the
effectiveness of labor market programs often varies among individuals
(Cockx, Lechner, & Bollens, 2023), even those with the same risk score.

Risk prediction is centered in standard supervised ML methodology,
aiming to estimate the statistical relationship between individual
covariates X and outcomes Y by learning a prediction function f : X →
Y from a set of observed training dataD = {(Xi,Yi)}ni=1. Even assuming
that these predictions provide useful information for the decision-
making process, several general threats to the validity of using such a
model, as discussed in the previous sections, remain. In the following
sections, we will explore methods relevant for describing and tackling
these challenges within the realm of risk prediction. This discussion will
also lay the groundwork for addressing these challenges in the contexts
of counterfactual prediction and policy learning.

3.1.1. Distribution Shifts, Selection Bias and Label Bias
Most supervised learning models assume that training and deploy-

ment data follow the same distribution. However, in many real-world
scenarios we may encounter a distribution shift between the training

Fig. 2. Comparing ML Frameworks for Public Sector Decision-Making. Green lines indicate where a causal ML framework is potentially better at addressing a
challenge, red lines highlight additional difficulties, and gray lines represent the baseline difficulty of using standard predictive modeling. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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and deployment environment, necessitating the development of reliable
models capable of handling and mitigating such differences (Duchi &
Namkoong, 2021). Training models that remain valid under distribution
shift often requires assumptions about the expected type of shift (David,
Lu, Luu, & Pal, 2010). As outlined in Section 2.1, we will predominantly
focus on covariate, label and concept shits (Moreno-Torres et al., 2012;
Quinonero-Candela, Sugiyama, Schwaighofer, & Lawrence, 2008).
Additionally, we will explore label bias as a type of distribution shift
introduced through the use of proxy variables, and consider shifts in
time caused by non-stationary environments. We outline central
research streams below – for more in-depth introductions to transfer
learning, domain adaptation and out-of-distribution generalization ap-
proaches, see Kouw and Loog (2018) and Zhou, Liu, Qiao, Xiang, and
Loy (2022).

The survey research literature is an invaluable resource for under-
standing and systematizing different error sources in the data collection
process that may surface as distribution shifts downstream. With their
inherent focus on valid population inference, concepts such as under-
coverage (relevant subpopulations cannot be reached with a data
collection schema) and non-response (potentially selective non-
participation of relevant subpopulations) extend beyond the tradi-
tional survey setting and can help to systematize deficits in the training
data in relation to the target population. Error frameworks such as the
Total Survey Error (Biemer, 2010; Groves & Lyberg, 2010) and its ex-
tensions (Sen, Flöck, Weller, Weiß, & Wagner, 2021) have been pro-
posed to systematically trace errors along the data collection and
processing pipeline that can accumulate in misrepresentation issues.
Related work proposes strategies for improving inference from data that
do not adequately represent the target population of interest (Cornesse
et al., 2020; Yang & Kim, 2020). In this context, pseudo-weighting ap-
proaches (Elliott & Valliant, 2017; Valliant & Dever, 2011) are
employed to match the potentially biased source data to some known
reference distribution, which resembles methodology from the domain
adaptation literature (see below) and similarly connects to concepts in
causal inference (Mercer, Kreuter, Keeter, & Stuart, 2017). As a recent
example of cross-disciplinary work in this context, Kim, Kern, Gold-
wasser, Kreuter, and Reingold (2022) draw on the multicalibration
framework from algorithmic fairness (Hebert-Johnson, Kim, Reingold,
& Rothblum, 2018) to learn prediction functions that are universally
adaptable to unknown deployment shifts.

Domain adaptation techniques in the ML literature aim to construct a
model that performs well in a setting different from but related to the
one it was trained on (Hedegaard, Sheikh-Omar,& Iosifidis, 2021; Kouw
& Loog, 2018). Unsupervised domain adaptationmethods only make use
of unlabeled target data to adjust the training data so it better aligns
with the deployment distribution (Shimodaira, 2000; Subbaswamy,
Chen,& Saria, 2022). For example, when a clinical risk prediction tool is
deployed in a new hospital, a complete dataset may not be available to
re-train the model for the new location. However, it might still be
possible to adjust for potential covariate or label shift using unlabeled
patient data, assuming that the underlying mechanisms between cova-
riates and outcomes remain invariant. For example, the relationship
between diseases and symptoms would not be expected to change be-
tween hospitals (Lipton, Wang, & Smola, 2018).

Given such data many domain adaptation methods involve
importance-weighting, which makes use of the density ratio w(X) =
pT (X)/pS (X) or class proportions w(Y) = pT (Y)/pS (Y) to adjust the
loss function (Kouw & Loog, 2018; Shimodaira, 2000). Estimating these
weights makes it possible to express the target risk relative to the source
distribution RT (L) = ET [L(X,Y)] = ES [w(X,Y)L(X,Y)] which then can
be minimized (Fang, Lu, Niu,& Sugiyama, 2020). Various strategies can
be used to estimate the importance weights, such as logistic regression
(Bickel, Brückner, & Scheffer, 2009), kernel density estimation (Yu &
Szepesvári, 2012), kernel mean matching (Quiñonero-Candela,
Sugiyama, Schwaighofer, & Lawrence, 2009) and KL-divergence mini-
mization (Sugiyama, Nakajima, Kashima, Buenau, & Kawanabe, 2007).

However, weighting methods struggle in settings with limited and
complex source data, frequently resulting in high variance estimates,
and depend on data being available from the target domain of interest
(Fang et al., 2020; Kouw & Loog, 2018; Liu & Ziebart, 2014). Dis-
tributionally robust methods offer an alternative approach by providing
worst-case guarantees. They often involve minimax estimation, which
seek to minimize the loss under the least favorable distribution shift
(Duchi & Namkoong, 2021; Kouw & Loog, 2018; Subbaswamy et al.,
2022; Wen, Yu, & Greiner, 2014).

In addition to the distribution shifts discussed so far, label bias and
label noise can present significant challenges, especially given the
prevalent use of proxy labels for decision-making. This bias arises when
a model is trained not on the true latent label Y of interest but on an
erroneous proxy label Ỹ. The label bias quantifies the difference between
the true distribution of interest pT(Y|X), and the distribution pS(Ỹ|X)
estimated from the proxy labels (Gruber et al., 2023). This shift can be
characterized by a label corruption process or measurement error
model, which describes the probability of a true label Y being recorded
as a proxy label Ỹ (Dai & Brown, 2020; Fang et al., 2020; Gruber et al.,
2023).

Various approaches have been devised to mitigate label noise and
measurement error. For instance, Natarajan, Dhillon, Ravikumar, and
Tewari (2013) propose an unbiased risk minimization strategy for
handling class-conditional p(Ỹ|Y) noise. While such a simplified model
of a proxy may be applicable in some settings, practitioners will likely
encounter more complex scenarios (Chen, Ye, Chen, Zhao, & Heng,
2021), such as the measurement error depending on sensitive covariates
(Obermeyer et al., 2019; Wang, Liu, & Levy, 2021). In some situations,
there may be the option to access multiple proxies of the true target of
interest. For example, Boeschoten, van Kesteren, Bagheri, & Oberski
(2021) utilize a structural equation model to characterize the relation-
ship between multiple proxies and the unobserved outcome to ensure
fair predictions. There has also been research into how label bias in-
teracts with other distribution shifts. For example, Dai and Brown
(2020) propose a joint framework for addressing label bias and label
shift, while Yu et al. (2020) investigate the interaction between class-
conditional noise and generalized target shifts.

Distribution shifts tend to occur gradually over time (Webb, Hyde,
Cao, Nguyen, & Petitjean, 2016), often triggered by the deployment of
the model itself. Addressing such feedback loops and ongoing distribu-
tion shifts poses a significant challenge, likely requiring future research
into the temporal dynamics of ML-informed decision-making (Pagan
et al., 2023). For example, Perdomo et al. (2020) introduce a modeling
framework that incorporates the potential impact of predictions on the
predicted outcome of interest. These predictions are referred to as
performative, effectively leading to distribution shifts by altering the
target distribution in the deployment environment over time. They
develop the notion of performative optimality, ensuring that a decision
rule minimizes the expected loss with regard to the future target dis-
tribution it induces. The specific choice of the loss function can align
with different objectives. For instance, one may opt to optimize for a
target distribution with mostly favorable outcomes instead of solely
focusing on accurate predictions (Kim & Perdomo, 2023).

3.1.2. Uncertainty Quantification
Accurate uncertainty estimates are key for enabling reliable

decision-making systems. For example, they make it possible to deter-
mine when a model should refrain from making a recommendation and
instead fully defer to a human user (Gruber et al., 2023). While we
highlight selected methods below, we refer the reader to (Bhatt et al.,
2021; Gruber et al., 2023; Hüllermeier & Waegeman, 2021; Sullivan,
2015) for comprehensive reviews of the emerging literature on uncer-
tainty estimation in machine learning.

In recent years, interest has grown in conformal prediction as a
distribution-free and model-agnostic approach to uncertainty
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quantification for ML models. These characteristics make conformal
prediction particularly appealing in many practical scenarios, as no
specific assumptions on the model are required, enabling easy imple-
mentation for any arbitrary ML model. Instead of providing a point
prediction, conformal prediction constructs a set of plausible predictions
with respect to a chosen significance level (Angelopoulos& Bates, 2022;
Papadopoulos, Proedrou, Vovk, & Gammerman, 2002a; Vovk, Gam-
merman, & Shafer, 2022). A larger conformal set indicates higher un-
certainty in the model’s predictions. Conformal prediction requires
splitting the data into a training set and an additional holdout dataset,
known as the calibration set. Alternatively, full conformal prediction
does not necessitate dividing the data but is usually computationally
more demanding (Angelopoulos & Bates, 2022). Conformal prediction
relies on exchangeable data, which can not be guaranteed in scenarios
involving distribution shifts. However, efforts have been made to extend
conformal prediction for such situations, such as making use of
weighting methods akin to those discussed in the context of unsuper-
vised domain adaptation (Barber, Candès, Ramdas, & Tibshirani, 2023;
Gibbs & Candes, 2021; Tibshirani, Foygel Barber, Candes, & Ramdas,
2019).

As mentioned, uncertainty estimates play a significant role in facil-
itating cooperative interaction between human users and models,
particularly for high-stakes decision-making prevalent in the public
sector. For example, Straitouri & Rodriguez (2024) propose a decision-
support framework that makes use of conformal prediction to improve
the cooperation between experts and the ML model. Their modeling
framework restricts domain experts to choose their prediction from a set
of plausible predictions generated by the model, resulting in better
performance than relying on the model or the human expert alone.

3.1.3. Multi-Objective Optimization
A central challenge for ADM systems is balancing multiple objectives

within a constrained outcome space. This often requires making trade-
offs between competing objectives, such as determining the appropriate
balance between an equitable distribution of resources and maximizing
cost-efficiency. Consequently, they require stakeholder input, further
complicating the task by necessitating systems that are sufficiently
accessible and interpretable for stakeholders to both make and evaluate
these tradeoffs effectively (Papalexopoulos et al., 2022).

In the context of risk prediction, predictive modeling and decision-
making are separated into two distinct steps (Elmachtoub & Grigas,
2022; Kuppler et al., 2022). Initially, a prediction is generated that
subsequently gets used to inform a downstream allocation problem. In
current ADM systems practice, multi-objective optimization is rarely
employed. Typically, problems are cast as single-objective constrained
optimization tasks, like finding the best allocation within budget con-
straints. When more complex constraints, different decision criteria and
multiple predictions come into play, a conventional approach for
formalizing the decision step involves the creation of a scalar utility
function that linearly combines different objectives into a weighted sum
(Keeney & Raiffa, 1993). For instance, stakeholders might construct a
unified risk score out of multiple criteria that is subsequently employed
to prioritize the allocation of resources. However, constructing a joint
utility function can be tricky (Das& Dennis, 1997), as stakeholders often
struggle to determine how to exactly weigh different objectives
(Boutilier, 2013; Hayes et al., 2022; Roijers, Vamplew, Whiteson, &
Dazeley, 2013). This difficulty is especially pronounced in risk predic-
tion, where the link between predictions and the expected utility is often
not entirely specified. A predicted risk score may only allow for a pri-
oritization of individuals while the exact size of the individual utilities
remains unknown. For example, in scenarios where intervention costs
vary significantly by individual it might be important to compare the
exact magnitude of the guiding utility for each individual intervention,
making it problematic if only a ranked list is available.

A common alternative to defining a utility function a priori is to seek
allocations that reside along the Pareto front, which constitutes the set

solutions where improving one objective necessarily entails the wors-
ening of another (Deb, 2011; Hayes et al., 2022). For example, Hert-
weck, Baumann, Loi, Viganò, and Heitz (2022) propose a framework to
visualize tradeoffs between the utility of the decision-maker and the
fairness demands of the decision subject. While approaches like this will
still leave stakeholders with difficult value choices, they might aid in
making tradeoffs more explicit by focusing the selection on a specific set
of allocation policies. Similarly, the notion of multi-target multiplicity
describes a scenario in which multiple prediction targets that are all
considered to be equally valid operationalizations of the outcome of
interest are available (Watson-Daniels, Barocas, Hofman, & Choulde-
chova, 2023). This makes it possible to explore arbitrary combinations
of these targets to arrive at an allocation that maximizes group-level
fairness.

On the other hand, secondary objectives and constraints such as
ensuring models are fair (Corbett-Davies, Pierson, Feller, Goel, & Huq,
2017; Hardt, Price, Price, & Srebro, 2016; Hort, Chen, Zhang, Harman
and Sarro, 2023; Zafar, Valera, Rogriguez, & Gummadi, 2017) and
interpretable (Molnar, 2022) might already come into play in the
modeling process. More efforts are being made to naturally integrate
such constraints into theML pipeline. For example, recent work inMulti-
Criteria Auto ML (Pfisterer, Coors, Thomas, & Bischl, 2019) proposes a
framework where users can iteratively specify tradeoffs between
different objectives, such as fairness, accuracy and robustness, to
explore subregions of the Pareto front. Automatized modeling proced-
ures of this kind might make it easier to interactively elicit stakeholder
preferences.

3.2. Counterfactual prediction

The primary goal of any ADM system is to guide decision-making by
recommending a particular course of action. Making such recommen-
dations effectively will often involve counterfactual modeling. While
non-causal risk predictions can be used as proxies for relevant coun-
terfactual outcomes, they risk being significantly biased, potentially
making a more principled approach involving explicit causal modeling
preferable. However, as outlined in Section 2.3, a common threat to the
validity of causal models is confounding, requiring external assumptions
and historical data on intervention assignment to address. This chal-
lenge requires careful case-by-case analysis by the model developer and
may limit the possibility to make use of counterfactual estimates for
decision-making in certain application contexts.

The potential outcomes framework (Rubin, 1974) is a prominent
approach for framing causal questions. In a binary intervention scenario
T = {0,1}, it denotes two potential outcomes (Yi(0) ,Yi(1) ) for an
individual i. These outcomes represent the two possible observable
outcomes: no intervention (Ti = 0) and an intervention (Ti = 1). The
individual treatment effect τi is then defined as the difference between
the potential outcomes τi = Yi(1) − Yi(0). Estimating potential out-
comes and treatment effects from observational data D =

{(Xi,Ti,Yi)}ni=1 is challenging, as it is usually only possible to observe
one outcome Yi = (1 − Ti)Yi(0) + TiYi(1) for each individual (Künzel,
Sekhon, Bickel,& Yu, 2019). Consequently, it is common to estimate the
expected potential outcomes μt(x) = E[Y(t) |X = x] and conditional
average treatment effect (CATE) τ(x) = E[Y(1) − Y(0) |X = x] for a given
covariate vector X = x (Künzel et al., 2019; Vegetabile, 2021). We refer
to Appendix B for an overview of relevant ML-based CATE estimation
methods.

To link the CATE with a statistical estimand, a set of untestable as-
sumptions is required (Caron et al., 2022; Johansson, Shalit, Kallus, &
Sontag, 2022; Künzel et al., 2019). Unconfoundedness (Y(0),Y(1))⊥T∣X,
requires that potential outcomes are conditionally independent of
treatment assignment. Positivity guarantees nonzero propensity scores
0 < P(T = 1|X = x) < 1 for all confounders x ∈ X , meaning that treat-
ment assignment is not fully deterministic. Finally, Stable Unit
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Treatment Value Assumption (SUTVA) assumes that the outcome of one
individual is not affected by the interventions others received, and that
there are no different versions of a specific treatment. Under these as-
sumptions it becomes in principle possible to infer μt(x) and τ(x) from
observational data (Caron et al., 2022). Ensuring these assumptions can
be difficult, with unmeasured confounding posing a significant risk
when aiming for valid counterfactual predictions.

While the individual treatment effect seems like a natural choice for
determining the optimal allocation, there exist various scenarios in
which estimating only one expected potential outcome μt(x) may be
sufficient to inform the decision-making process (Dickerman & Hernán,
2020). These outcomes could, for example, represent the likelihood of
abuse if a hotline call is not followed up (Coston et al., 2020) or the risk
of death of a patient if no heart transplant is performed (Dickerman &
Hernán, 2020; Van Geloven et al., 2020). Models that provide such risk
assessments align well with allocation principles informed by need-
based criteria by identifying individuals at high risk of adverse out-
comes. For example, when screening phone calls for potential child
maltreatment (Vaithianathan et al., 2019), there exists a moral and legal
obligation to investigate high risk cases, regardless of the investigation’s
likelihood of success (Chouldechova et al., 2018; Coston et al., 2020).
Additionally, in scenarios where one potential outcome is trivially
known, only one outcome needs to be estimated. For instance, in judicial
bail prediction, individuals for whom bail was denied cannot re-offend
before trial (Lakkaraju et al., 2017).

While assumptions for causal identification are still necessary to
correctly estimate expected potential outcomes, in many scenarios this
task may be more feasible than full treatment effect estimation. For
example, this might be the case when implementing an intervention that
has not been previously deployed, or when data on specific outcomes is
generally limited (Fernández-Loría & Provost, 2022a). Following the
discussion on proxies in risk prediction, explicitly modeling the treat-
ment effect might also not be necessary if the relationship between a
potential outcome and treatment effect is well-established (Fernández-
Loría& Provost, 2022a). For example, prior knowledge and experiments
may indicate that a particular treatment strategy is the most beneficial
approach for individuals in a specific risk group (Athey, Keleher, &
Spiess, 2023), allowing us to correctly prioritize individuals based on the
estimated baseline risk Y(0) alone (Fernández-Loría & Loría, 2023).

Compared to CATE estimation, this only requires the estimation of a
single outcome regression μt(x) = E[Y|X = x,T = t]. While this sim-
plifies some of the necessary considerations for CATE estimation,
caution may still be warranted in low-data settings due to differences in
the covariate distribution of the treatment group and overall population,
potentially necessitating dedicated approaches to correct this imbalance
during estimation (Johansson et al., 2022). A growing body of recent
research focuses on auditing and evaluating counterfactual prediction
models of this nature for algorithmic decision-making. For example,
Coston et al. (2020) discuss evaluation fairness metrics and evaluation
methods for counterfactual risk modeling. In the domain of clinical risk
prediction, a substantial body of literature explores methods for pre-
dicting outcomes under specific medical treatments (Lin et al., 2021;
Prosperi et al., 2020; Schulam & Saria, 2017; Van Geloven et al., 2020).

In the following, we will discuss approaches to address distribution
shifts, uncertainty quantification and multi-objective optimization for
CATE estimation. While many of the earlier considerations in the
context of risk prediction remain applicable, there are aspects unique to
this setting, requiring methods dedicated to tackling the challenges for
causal modeling.

3.2.1. Distribution Shifts, Selection Bias and Label Bias
The challenge of handling distribution shifts is strongly related to

causal estimation, as illustrated by Johansson, Shalit, and Sontag
(2016). For example, predicting counterfactual outcomes under no un-
measured confounding corresponds to unsupervised domain adaptation

under covariate shift (Johansson et al., 2022). This is because past
decision-making policies often lead to a difference in covariate distri-
bution between the treatment groups and the distribution of the overall
population. Several approaches for dealing with shifts when performing
CATE estimation have been proposed (Assaad et al., 2021; Johansson
et al., 2016; Shalit, Johansson, & Sontag, 2017). For example, Kuzma-
novic et al. (2023) study the problem of inferring CATE in settings in
which treatment information is missing for some individuals, a chal-
lenge they frame as a covariate shift problem.

In many practical settings, approaches geared towards guaranteeing
robustness to unknown distribution shifts (Jeong & Namkoong, 2020)
may be particularly relevant, as it can be difficult to anticipate the target
population and relevant subpopulations in all possible deployment en-
vironments. To tackle this challenge, Kern, Kim, and Zhou (2024)
introduce an approach for learning robust CATE estimates under un-
known external covariate shifts. They achieve this by employing a
boosting-style post-processing routine to generate a multi-accurate
predictor (Kim, Ghorbani, & Zou, 2019), enabling unbiased pre-
dictions in a new deployment setting.

In a recent study, Guerdan, Coston, Wu, and Holstein (2023)
examine the interaction of label bias and counterfactual prediction.
They propose a causal framework that describes potential biases intro-
duced by proxy labels, and survey strategies for evaluating the chosen
measurement model. There are not many approaches that explicitly deal
with measurement error in the context of employing counterfactual
models. Guerdan, Coston, Holstein, andWu (2023) develop a framework
that accounts for treatment-conditional errors based on the previously
discussed approach for correcting class-conditional noise (Natarajan
et al., 2013).

3.2.2. Uncertainty Quantification
Recently, conformal prediction has been extended to address indi-

vidual treatment effect estimation, with a central challenge being that
exchangeability of the data can not be guaranteed due the covariate shift
between treatment groups and the overall population (Alaa, Ahmad, &
van der Laan, 2023). Lei and Candès (2021) propose a solution that
makes use of weighted conformal prediction (Tibshirani et al., 2019) to
correct for this shift. They construct prediction intervals for potential
outcomes, which are then used to derive intervals for the individual
treatment effects. In contrast, conformal meta-learners, as introduced by
(Alaa et al., 2023), offer a framework for directly constructing predic-
tion intervals for pseudo-outcomes of two-stage meta-learners, allowing
for conformal prediction for a different class of CATE estimation
methods. As in the case of risk prediction, providing a conformal set has
the potential to facilitate human and model interaction by guiding a
decision-maker towards a set of likely solutions, while still leaving the
critical final decision to the human.

3.2.3. Multi-Objective Optimization
In principle, the challenge of handling multiple objectives and con-

straints remains similar when employing risk prediction and counter-
factual prediction. In both scenarios, multi-objective optimization
typically becomes relevant when determining the downstream alloca-
tion after a prediction is generated. However, counterfactual estimates
are usually easier to link with the intended guiding utility than non-
causal predictions, making it more straightforward to quantify trade-
offs with other objectives.

Efforts have been made to explicitly integrate CATE estimation and
prescriptive optimization within an unified framework, typically with a
focus on budget-constrained optimization problems (Ai et al., 2022; Tu
et al., 2021). Formulating such optimization problems is generally made
easier when the expected net benefit can be easily defined, such as
maximizing net revenue when allocating tax audits within a fixed
budget (Black et al., 2022). Similarly, McFowland III, Gangarapu,
Bapna, and Sun (2021) present a prescriptive analytics framework that
combines randomized experiments, CATE estimation and a subsequent
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constrained optimization problem to identify the profit-maximizing
allocation policy. Crucially, the expected cost of an intervention may
not necessarily be known, potentially requiring a separate estimation
process. Unlike in the case of generic prediction, only a few studies have
attempted to integrate constraints directly into the counterfactual esti-
mation process. Notable examples include Kim and Zubizarreta (2023)
for CATE estimation and Mishler et al. (2021) for counterfactual risk
prediction under fairness constraints.

3.3. Policy learning

The ADM approaches discussed so far entail a two-step process:
initially estimating individual outcomes, such as the CATE, and subse-
quently using these estimates to determine an optimal downstream
allocation considering external constraints. However, this means that
the target of estimation is only indirectly linked to the underlying policy
objective, as an improved prediction may not necessarily enhance the
utility of the resulting allocation policy (Perdomo, 2024). While perfect
predictions could in theory lead to optimal decision-making, in practice
it may sometimes more practical to estimate the allocation policy
directly (Elmachtoub & Grigas, 2022; Fernández-Loría & Provost,
2022a). A wide range of methods have been proposed to optimize the
aggregated utility, emphasizing that the primary goal of deploying a
statistical targeting system is not accurate prediction alone.

More specifically, the target of estimation becomes the allocation
policy π : X →{0, 1}, directly mapping individual covariates Xi to the
likelihood of intervening. Learning optimal assignment rules has been
studied across different disciplines, such as statistical decision theory,
economics and operations research (Elmachtoub & Grigas, 2022; Kita-
gawa& Tetenov, 2018; Manski, 2004). This paper specifically highlights
recent literature focusing on learning optimal policies from past obser-
vational data using ML methods (Athey & Wager, 2021; Hatamyar &
Kreif, 2023; Kallus, 2018; Luedtke & van der Laan, 2016). Here, we are
concerned with off-policy learning, given that on-policy learning may
not be suitable for high-stakes settings in the public sector where active
experimentation with different decision policies is not possible.

Off-Policy learning usually involves optimizing over a class of pol-
icies π ∈ Π by defining the aggregated utility of a proposed policy V(π) =
E[Y(π(x)) ] as the overall expected outcome if the policy were deployed
(Athey & Wager, 2021). Finding the optimal policy corresponds to
identifying the policy that maximizes the utility, i.e. π̂ =

argmaxπ∈Π V̂(π). When estimating the policy value from observational
data, we rely on the same assumptions as those used in CATE estimation
to ensure identification, such as unconfoundedness. We refer to Ap-
pendix C for an overview of off-policy learning methods.

Adopting a population-level perspective and directly optimizing for
the best allocation policy can come with several benefits. First, such an
approach may aid in the natural integration of downstream constraints,
for example by limiting the class of policies Π under consideration to
these that can feasibly be implemented. For instance, policy learning
enables the exclusion of decision policies that make use of specific
covariates (Athey & Wager, 2021; Kallus, 2021), such as sensitive at-
tributes like race and gender, or features susceptible to individual
manipulation potentially leading to distribution shifts after deployment.
While these variables may be required to address confounding during
estimation, we can ensure that the decision-making does not rely on
them by constraining the class of allowed policies. Second, estimating
and optimizing the policy value V(π) for a constrained set of policies is a
distinct and potentially easier estimation task compared to predicting
individual-level treatment effects (Kallus, 2021; Lechner, 2023). In
general, precise estimation of individual-level outcomes may not always
be a prerequisite for determining the optimal policy, as an erroneous
prediction may not necessarily lead to an erroneous decision
(Fernández-Loría & Provost, 2022a).

The feasibility of employing policy learning also depends on whether

the goal of the modeling process is a fully automated decision system or
providing recommendations to human decision-makers. As discussed in
Section 2.5, fully formalizing the connection between model output and
decision-making can be challenging due to the involvement of human
decision-makers who may want to integrate external information and
can overrule the model’s recommendation (Shalit, 2022). This compli-
cation adds nuance to the discussion about choosing the most appro-
priate target estimand and modeling framework. For example, a human
decision-maker might find a CATE estimate more trustworthy and more
suitable for individual decision-making, as opposed to a fully defined
allocation policy (Coston et al., 2020). Conversely, a well-defined policy
class could also be restricted to policies that can be easily interpreted by
users, such as decision trees (Athey & Wager, 2021).

In the next section, we will highlight relevant work extending policy
learning to tackle distribution shifts, uncertainty quantification and
multi-objective optimization. While policy learning shares many simi-
larities with CATE estimation, it still involves a distinct target estimand
and estimation strategies, requiring tailored approaches to this setting.
Research at the intersections of policy learning and the aforementioned
challenges is still in early stages, but there have been some promising
developments in the recent past.

3.3.1. Distribution Shift, Selection Bias and Label Bias
As described, a significant challenge in managing distribution shifts

for ADM systems lies in precisely specifying the anticipated changes
from the historical environment to the future deployment environment.
For example, the data-generating mechanismmay change over time, but
the exact nature of this shift is usually hard to predict. Addressing this
challenge, Si, Zhang, Zhou, & Blanchet (2020, 2023) propose an algo-
rithm for distributionally robust policy learning under unknown co-
variate and concept shift. Their approach involves maximizing the
worst-case policy value over all environments within a specific dis-
tance to the training environment. By choosing their preferred distance,
decision-makers can manage their risk aversion before deploying a
policy (Si et al., 2023). Building on this work, Kallus, Mao, Wang, and
Zhou (2022) incorporate doubly-robust methods, removing the need to
assume that the historical assignment policy is known, which is often
unavailable when relying on observational data. Instead of ensuring
robustness under arbitrary distribution shifts, it may also be helpful to
focus on specific types of shifts, potentially simplifying the integration of
domain knowledge. For example, Hatt, Tschernutter, and Feuerriegel
(2022) develop a framework for learning worst-case policies that
generalize under distributional shifts resulting from an unknown selec-
tion bias.

3.3.2. Uncertainty Quantification
After selecting a policy for deployment, especially in high-stakes

settings, reliable uncertainty estimates become important to guarantee
the policy’s reliability. Uncertainty quantification in off-policy learning
often involves estimating bounds for the expected aggregate utility of
the policy under hypothetical deployment (Taufiq, Ton, Cornish, Teh, &
Doucet, 2022), for example as seen in Wang, Agarwal, and Dudík
(2017). However, in many scenarios there may arise the need to quantify
the uncertainty of outcomes at the individual level. For instance, a policy
that appears to lead to a positive aggregate utility may still be deemed
unacceptable if the variability in outcomes for certain subgroups is
overly large. Recent works in off-policy evaluation have investigated the
application of conformal prediction to construct prediction intervals.
Similar to CATE estimation, a critical challenge for conformal off-policy
prediction lies in guaranteeing exchangeability of the data. Zhang, Shi,
and Luo (2023) and Taufiq et al. (2022) have proposed approaches that
make use of weighted conformal prediction to address the shift between
training data and deployment environment, allowing for the reliable
estimation of prediction sets.
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Table 1
Overview of different (causal) ML frameworks for Algorithmic Decision-Making. The validity of each approach is highly
context-dependent, and requires careful evaluation of the available data, decision-making processes and policy objec-
tives.
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3.3.3. Multi-Objective Optimization
To generalize the policy value for multiple objectives, one can

consider the weighted sum of utilities resulting from various individual
outcomes and external objectives. For example, in scenarios with indi-
vidually varying intervention costs, it may be possible to define a net-
monetary benefit, that is subsequently used as the target outcome in
the policy value (Xu et al., 2022). Alternatively, a decision-maker may
want to enforce an overarching constraint, such a limited budget, as part
of the policy optimization problem (Huang & Xu, 2020; Sun, 2021).
However, if the relevant constraint needs to be adjusted regularly, such
approaches may lead to significant computational costs (Sun, Munro,
Kalashnov, Du, & Wager, 2024). Sun et al. (2024) propose learning an
individual-level priority score that directly encodes the cost-benefit
ratio, which can subsequently easily be used to rank individuals for
intervention under varying resource constraints. Furthermore, off-policy
learning methods that optimize within a constrained class of policies
(Athey&Wager, 2021; Kallus, 2021) have the advantage that secondary
constraints can also be encoded through restricting the class of allowed
policies. For example, Frauen, Melnychuk,& Feuerriegel (2024) propose
a policy learning that restricts the policy class to those respecting fair-
ness constraints.

In practice, decision-makers frequently encounter scenarios with
multiple objectives that are not easily expressed as constraints or mon-
etary monetary costs. As described, identifying the set of Pareto-optimal
models may allow stakeholders to effectively explore tradeoffs between
objectives. Rehill and Biddle (2024) propose a multi-objective Bayesian
optimization approach for off-policy learning, utilizing proxy models to
efficiently construct the Pareto-Frontier, enabling a human user to better
evaluate the consequences of different weightings between objectives.

4. Towards a decision-centric ML toolkit in the public sector

Making productive use of ML for public sector decision-making is a
complicated task, requiring careful alignment of policy objectives and
model development. First, we set out to explore challenges faced when
deploying ML for public sector decision-making. Specifically, we
focused on challenges arising from a misalignment between policy ob-
jectives and technical design, such as when assumptions about the
training data do not match the intended application context. We iden-
tified and discussed five key challenges in Section 2, highlighting po-
tential limitations of solely relying on the standard supervised ML
paradigm (see Fig. 2). In response to these limitations, we examined
alternative modeling frameworks, specifically counterfactual prediction
and off-policy learning. Each framework comes with its own set of
distinct advantages and is potentially better suited to overcome some of
the challenges. To choose between these frameworks, a model developer
should consider two key questions. 1) How will the estimated quantity
be helpful in decision-making? 2) What is necessary to ensure unbiased
estimation?

We observe that targets that are easier to estimate, often require
more assumptions about their utility in the decision-making process.
Even with perfect knowledge of these targets, they might need to be
combined with domain knowledge to be informative for the decision-
maker. Conversely, estimating causal outcomes requires more assump-
tions for causal identification, but might offer more actionable insight
for decision-makers. We provide a distilled version of our presentation of
different modeling approaches and their links to policy objectives and
decision-making in Table 1, with the aim of providing guidance for
discussions on which modeling theme is most suitable in a given
scenario.

For example, traditional (risk) prediction methods, while requiring
fewer assumption during the estimation process, are not well-suited to
estimate counterfactual outcomes, which are often the true target of
interest for decision-makers. This limitation often requires additional
assumptions about how the predictions relate to the decision-maker’s
objective. Consider the previously discussed medical scenario as an

example for such an assumption: the decision-maker assumes that a
higher mortality risk in the coming years might make a knee replace-
ment less beneficial, while also assuming that the mortality risk is not
significantly impacted by the surgery itself. Counterfactual prediction
can potentially support a variety of decision-makers goals with fewer
explicit assumptions about how the goals of the decision-maker align
with the target of estimation. For example, consider a public employ-
ment service aiming to target support measures to job seekers with a
high risk of becoming long-term unemployed. Similarly, reliable esti-
mates of the heterogeneous causal effects of a support program would
aid a decision-maker in matching individual’s to the most effective
program. However, counterfactual estimation is more involved than
standard (risk) prediction, relying on external assumptions to ensure
causal identification. Policy learning is explicitly integrated into the
decision-making process by optimizing a predefined utility function to
directly estimate an allocation policy. Such an end-to-end approach al-
lows for a more straightforward integration of constraints and additional
objectives. However, it might struggle in scenarios in which human
decision-makers play a crucial role. In such settings, decision-makers
might prefer individual-level estimates as recommendations to guide
their own judgments. We present three examples inspired by real-world
use cases in Figs. A1, A2 and A3, each focusing on risk prediction,
counterfactual prediction and policy learning respectively. They sum-
marize some of the key questions practitioners need to address to ensure
that the selected approach fits the intended application context.

Certain challenges such as the influence of past decision-making are
inherently addressed by causal modeling frameworks. To tackle the
remaining challenges, we have compiled for each modeling approach a
selection of methods to address them, as detailed in the previous section
and summarized in Table A1 in the appendix. Our goal was to identify
methods that are applicable across various ML models within each
respective modeling framework, to keep most of our discussion model
agnostic and relevant across many application contexts. Unsurprisingly,
there is generally less research addressing specific challenges within
newer causal modeling frameworks. This gap presents a compelling di-
rection for future research to explore which mitigation strategies from
standard supervised ML could be extended to the causal setting.

In recent years, several studies have applied causal ML frameworks
to practical applications in the public sector. For example, these
modeling approaches have been used and evaluated for the optimal
allocation of development aid (Kuzmanovic et al., 2024), allocation of
medical preventive care (Kraus, Feuerriegel, & Saar-Tsechansky, 2024),
child welfare hotline screening (Coston et al., 2020), and assignment of
training programs to job seekers (Cockx et al., 2023).

5. Discussion

We analyzed challenges that result from a misalignment between the
(technical) assumptions made during model design and the intended
policy goals. Each challenge can lead to harmful unintended conse-
quences, impacting the individuals affected by the decisions and
potentially undermining the legitimacy of the system.

• Distribution Shifts occur when the data used to train the ML model
does not reflect real-world conditions, causing the performance of
the model to decline. Such shifts can lead to misclassifications of
individuals and create harmful feedback loops that reinforce erro-
neous predictions.

• Label Bias can happen when a ML model relies on proxy variables to
estimate hard to measure outcomes. If these proxies are biased and
primarily reflect institutional practices instead of of the true target,
they can systematically disadvantage certain groups, leading to un-
fair predictions and decision outcomes.

• Past Decision-Making often influences the available training data. If
we do not explicitly account for these past interventions, the pre-
dictions of the ADM system may become outdated once new
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decision-making practices are implemented. For example, a model
might underestimate the risk for individuals who previously received
support, potentially leading to harm if future allocations fail to
consider this.

• Competing Objectives and Constraints can complicate the formalization
of policy goals in an ADM system, as predictive systems often focus
on singular, clearly defined objectives. This narrow focus can intro-
duce omitted-payoff bias, such as when optimizing for cost-efficiency
disproportionately harms marginalized groups.

• Human-in-the-Loop is an important component of ADM systems,
because automated systems alone often do not meet all necessary
requirements for real-world deployment. However, interactions be-
tween models and human decision-maker can introduce complica-
tions and biases. For example, an accurate prediction may not be
helpful if case workers lack trust due to unclear communication of
model uncertainties.

In this work, we found that standard machine learning approaches
are not necessarily well-suited for the public sector context, requiring
model designers to expand their toolkit to effectively address these is-
sues. We discussed different technical solution strategies in detail and
provided guidance on choosing between alternative modeling frame-
works - including predictive and causal modeling - to tackle these
challenges. However, to do so effectively, the technical model design
needs to be guided in close collaboration with domain experts. Each
challenge we presented is embedded in complex, changing social con-
texts, where purely technical solutions often fall short. The right tech-
nical design choice often has no clear or definite answer and can not be
left to the model developer alone. For example, the implicit assumptions
a model developer makes about the data distribution, the causal struc-
ture of the problem, or how different objectives should be represented in
the system can greatly affect the validity of the resulting system. How-
ever, these assumptions often need to be informed domain-specific
knowledge, necessitating insights from policy makers, social scientists
and other stakeholders involved. In Table 2, we summarize technical
solution strategies for each challenge and highlight the points where
external input may be central to ensure that technical design choices
remain aligned with real-world policy objectives. However, engaging
and collaborating with stakeholders is often difficult in practice.
Participatory design of AI systems is often mentioned as an important
approach, but can be difficult to implement effectively. By specifying the

points along the ML pipeline where stakeholders collaboration is crucial
for supporting technical design decisions, we hope to guide these efforts
and make participatory approaches more actionable (Delgado, Yang,
Madaio, & Yang, 2023).

However, our focus does not cover all potential issues related to the
use of predictive algorithms in the public sector. While ensuring that a
system accurately reflects the goals of decision-makers is a prerequisite
for ethical and reliable use, this alone is not sufficient. We do not
explicitly discuss ethical, legal and broader societal challenges. Even if a
system functions perfectly according to its intended goals, it can still
lead to adverse outcomes. For example, this can happen if a decision-
maker does not prioritize fair treatment of sensitive subgroups as an
explicit design goal (Barocas et al., 2023).

The intention behind this paper was to clarify the assumptions
behind different (predictive) modeling approaches, and help practi-
tioners identify where common technical assumptions may not hold true
in the public sector context. We see this as a first step towards the
development of a robust methodological framework for constructing
and maintaining ADM systems in the public sector that includes both
best practices for practitioners and an up-to-date array of technical ap-
proaches. While we have made some inroads here by selecting and
consolidating relevant theoretical advancements, a critical need for
more research to connect these methods with real-world policy use cases
remains. As illustrated by the methods and challenges presented here,
achieving this goal will likely require bringing together researchers from
various disciplines to develop systems that genuinely improve decision-
making in tangible ways. It will require a shift in perspective away from
technical approaches purely centered around predictive optimization
and towards ones that explicitly incorporate decision-making and its
impact into the modeling framework.

Effectuating this shift will involve opening up the ML pipeline to
external input at significant points. On the one hand, this will require the
development of effective strategies for engaging stakeholders and har-
nessing their expertise, particularly in integrating domain knowledge
into the model-building process and eliciting values and objectives from
decision-makers. At the same time, more work will have to be done to
figure out how the development of ADM systems interacts with and can
be embedded into institutional processes and structures. The prospect of
this shift might seem daunting at first. It will involve establishing both
technical and institutional frameworks that enable the development of
successful ADM systems. However, this path also holds the potential to

Table 2
Overview of key challenges in ADM systems and technical solution strategies, focusing on the role of domain expertise in guiding technical design choices.

Challenge Technical Solution Strategies Stakeholder Input

Distribution Shifts • Apply domain adaptation methods using data from the deployment
environment
• Use distributionally robust optimization for worst-case guarantees
• Implement continuous monitoring of input data and model
performance

• Collaborate with domain experts and data providers to anticipate changes
in the deployment environment (e.g. changing regulations and user behavior)
• Engage stakeholders to determine acceptable risk tolerance
• Involve decision-makers to determine relevant evaluation metrics for
ongoing monitoring
• Identify vulnerable and hard-to-reach sub-populations

Label Bias • Construct measurement error models for selected proxy variables
• Validate chosen proxy variables using external data sources and
additional variables

• Collaborate with domain experts to understand how proxy variables map
to the true concepts of interest
• Identify societal biases that may impact the proxy-target relationship

Past Decision-Making • Identify suitable (causal) estimands and estimation strategies, such as
CATE estimation, counterfactual prediction or policy learning

• Ensure that the chosen (causal) estimand is able to inform the decision-
making process
• Make use of domain expertise to inform assumptions necessary for causal
identification, such as gathering knowledge on past decision-making criteria
and processes

Competing Objectives
and Constraints

• Integrate external constraints into model design and allocation
procedure (e.g. using model multiplicty and constrained optimization)
• Identify solutions along the Pareto frontier to enable decision-makers
to manage tradeoffs

• Elicit preferences from decision-makers to quantify tradeoffs between
different objectives and constraints
• Collaborate with stakeholders to identify objectives not fully captured by
the ADM system

Human-in-the-Loop • Use uncertainty quantification (e.g. conformal prediction) and
explainable ML methods to provide guarantees to decision-makers and
enhance transparency

• Understand how model outputs will be interpreted and used by decision-
makers, considering user background and workflows
• Regularly gather feedback from end-users to improve model integration

U. Fischer-Abaigar et al. Government Information Quarterly 41 (2024) 101976 

14 



transform our public policy processes in a positive way. It could lead to
the establishment of new standards of transparency and the explication
of previously implicit goals, as well as facilitating the development of
new structures to integrate domain knowledge and involve important
stakeholders. Thus, bridging the gap between explicit formalization and
nuanced policy requirements could not only unlock the potential of
successful ML applications in the public sector, but also lead to a public
sector that is more understandable, open to scrutiny and thus
accountable.

6. Conclusion

In this paper, we analyzed misalignments between the assumptions
underlyingMLmodels and the realities of public sector decision-making.
We isolated and discussed five central challenges: distribution shifts,
label bias, the influence of past decision-making, competing objectives
and constraints and the integration of human decision-makers. We
demonstrated how misalignment can lead to unreliable and harmful
predictions, potentially causing systems to fail in achieving the intended
policy goals and undermining the legitimacy of the decision-making
process. Through our analysis, we concluded that many assumptions
commonly made in the implementation of ML models do not hold in
complex, evolving decision-making environments. In response, we
argue for a shift in modeling efforts from focusing solely on predictive
accuracy to improving decision-making outcomes. We presented alter-
native modeling approaches, including causal machine learning
methods including counterfactual prediction and policy learning, which
may be better suited to inform decision-making. We also provided
guidance on selecting the appropriate modeling strategy by clarifying
the assumptions underlying these approaches. Model developers should
carefully consider how the estimated quantities can guide decision-
making and whether unbiased estimation is possible given available
data and external assumptions. Additionally, we summarized technical

solutions to the discussed challenges, such as distributionally robust
optimization, uncertainty quantification and multi-objective optimiza-
tion within each modeling framework. Finally, we found that selecting
the right methods and frameworks requires external input from domain
experts and stakeholders to ensure that the implicit assumptions made
by model developers align with the specific problem setting.
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Appendix A. Methodological Approaches for ADM Systems in Public Sector Decision-Making

Table A1
Overview of Methodological Approaches to Address Key Challenges of ADM Systems in the Public Sector in Risk Prediction, Counterfactual Prediction, and Off-Policy
Learning.

Risk Prediction Counterfactual Prediction Off-Policy Learning

Distribution Shifts • Biases in Data Collection (Biemer, 2010; Cornesse
et al., 2020; Elliott & Valliant, 2017; Groves &
Lyberg, 2010; Kim et al., 2022; Yang & Kim, 2020)
• Domain Adaptation Using Data from Deployment
Environment (Kouw & Loog, 2018; Shimodaira,
2000; Fang et al., 2020)
• Worst-Case Guarantees (Duchi & Namkoong,
2021; Wen et al., 2014; Zhang et al., 2021)
• Shifts induced by Model Predictions (Kim &
Perdomo, 2023; Pagan et al., 2023; Perdomo et al.,
2020)

• Covariate Shift between Intervention Groups
(Assaad et al., 2021; Johansson et al., 2022; Shalit et al.,
2017)
• Worst-Case Guarantees (Jeong & Namkoong, 2020;
Kern et al., 2024)

• Worst-Case Guarantees (Hatt et al.,
2022, Kallus et al., 2022, Si et al., 2020,
Si et al., 2023)

Label Bias • Class-Conditional Label Noise (Natarajan et al.,
2013; Yu et al., 2020)
• Feature-Conditional Label Noise (Chen et al.,
2021; Wang et al., 2021)
• Multiple Proxy Variables
(Boeschoten et al., 2021)

• Counterfactual Prediction under Measurement Error
(Guerdan, Coston, Holstein, & Wu, 2023,Guerdan,
Coston, Wu, & Holstein, 2023)

No dedicated methods specific to policy
learning have been identified. Methods
from other frameworks may be
applicable.

Past Decision-
Making

Unbiased estimation not possible if the outcome was
influenced by interventions.

Requires causal identification. See Appendix B for an
overview of ML- based CATE estimation methods.

Requires causal identification. See
Appendix C for an overview of off-
policy learning methods.

Competing
Objectives &
Constraints

• Scalar Utility Functions (Boutilier, 2013; Keeney
& Raiffa, 1993)
• Solutions along the Pareto Frontier (Hertweck
et al., 2022; Pfisterer et al., 2019) and Model
Multiplicity (Watson-Daniels et al., 2023)
• Specific Model Constraints, such as Fairness

• Budget-Constrained Allocation (Ai et al., 2022;
McFowland III et al., 2021; Tu et al., 2021)
• Fairness Constraints (Kim & Zubizarreta, 2023;
Mishler et al., 2021)

• Budget-Constrained Allocation
(Huang& Xu, 2020; Sun, 2021; Xu et al.,
2022)
• Solutions along the Pareto Frontier
(Rehill & Biddle, 2024)
• Specific Model Constraints (Athey &

(continued on next page)
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Table A1 (continued )

Risk Prediction Counterfactual Prediction Off-Policy Learning

(Hardt, Price, et al., 2016; Hort, Chen, Zhang,
Harman and Sarro, 2023) and Inter- pretability
(Molnar, 2022)

Wager, 2021), such as Fairness (Frauen
et al., 2024)

Uncertainty
Estimation for
Human-in-the-Loop

• Model agnostic Uncertainty Estimation with
Conformal Prediction (Angelopoulos & Bates, 2022;
Papadopoulos, Proedrou, Vovk, & Gammerman,
2002b; Straitouri, Wang, Okati, & Rodriguez, 2023)

• Model agnostic Uncertainty Estimation for CATEs
with weighted Conformal Prediction (Lei & Candès,
2021; Tibshirani et al., 2019) and conformal meta-
learners (Alaa et al., 2023)

• Uncertainty in Policy Value (Wang
et al., 2017) and Conformal Off-Policy
Evaluation for Outcomes (Taufiq et al.,
2022)

Fig. A1. Key Questions for Policy Makers in Selecting Risk Prediction as the Modeling Approach. Example inspired by algorithmic predictions of acute gastroin-
testinal bleeding (Alur et al., 2023).

Fig. A2. Key Questions for Policy Makers in Selecting Counterfactual Prediction as the Modeling Approach. Example inspired by child abuse hotline screening in
Allegheny County (Chouldechova et al., 2018; Coston et al., 2020).
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Fig. A3. Key Questions for Policy Makers in Selecting Policy Learning as the Modeling Approach. Example inspired by geographical matching of refugees to improve
integration outcomes (Bansak et al., 2018).

Appendix B. CATE Estimation Methods

In recent years, several CATE estimation strategies have emerged, many of which employ nonparametric ML regression models to estimate the
relationship between covariates, outcome and intervention (Caron et al., 2022; Lechner, 2023). ML models are generally well-suited for inferring
complex non-linear relationships and handling a larger number of covariates, which can be vital for capturing heterogeneous effects. Model-agnostic
meta-algorithms for CATE estimation enable the use of an arbitrary ML model as a base learner, such as random forests and neural networks (Caron
et al., 2022; Curth & van der Schaar, 2021; Künzel et al., 2019).

One class of meta-learners initially aims to estimate both expected outcome functions μt(x), and computing the CATE as the difference between the
estimates of these functions (Curth& van der Schaar, 2021). For example, S-learners treat the treatment indicator as an additional feature and estimate
the potential outcomes with a single outcome regression μ(x, t) = E[Y|X = x,T = t]. T-learners use ML models to estimate μ0(x) = E[Y|X = x,T = 0]
and μ1(x) = E[Y|X = x,T = 1] separately. However, both approaches can introduce significant bias, particularly when dealing with imbalanced
treatment groups (Caron et al., 2022; Johansson et al., 2022; Künzel et al., 2019; Nie & Wager, 2020).

Alternative methods directly estimate the CATE function by first constructing pseudo-outcomes of the treatment effects (Caron et al., 2022; Curth
& van der Schaar, 2021; Künzel et al., 2019). One prominent variant is the X-learner (Künzel et al., 2019), an extension of the T-learner, which can also
be regarded as a special case of the RA-learner (Curth & van der Schaar, 2021). The Doubly-Robust learner (DR-learner) employs pseudo-outcomes
constructed from both the conditional outcomes μ̂t(x) and the propensity scores π̂(x) (Kennedy, 2023). DR estimators have a long history in causal
inference and missing data imputation (Bang& Robins, 2005; Funk et al., 2011; Kang& Schafer, 2007; Robins, Rotnitzky,& Zhao, 1994) and offer the
advantage of consistency as long as either the propensity score model or conditional outcome models are correctly specified. Finally, the R-learner
(Foster & Syrgkanis, 2023; Nie & Wager, 2020) involves the formulation a specific loss function after fitting several nuisance functions that can be
separately minimized and regularized to estimate the CATE, drawing inspiration from the Robinson decomposition (Robinson, 1988). There also exists
CATE estimation methods that adapt specific ML models (Jacob, 2021). For instance, causal forests, introduced by Athey, Tibshirani, and Wager
(2019); Wager and Athey (2018), resemble the R-learner (Caron et al., 2022; Oprescu, Syrgkanis, &Wu, 2019; Post, van den Heuvel, Petkovic, & van
den Heuvel, 2024).

A large body of literature analyzes the asymptotic and finite sample properties of different CATE learners (Caron et al., 2022; Curth & van der
Schaar, 2021; Kennedy, 2023; Künzel et al., 2019; Salditt, Eckes, & Nestler, 2023). However, providing clear guidelines for determining the most
suitable approach in real-world scenarios remains challenging. Which method will be most appropriate will generally depend on various factors, such
as the level of confounding, the presence of high-dimensional covariates, the expected complexity of the CATE function compared to the individual
outcomes and whether the treatment groups are strongly unbalanced. We recommend Curth and Van Der Schaar (2023) for a detailed discussion of the
advantages and disadvantages of different CATE estimation strategies.

Appendix C. Off-Policy Learning

Common approaches to construct an estimator for the policy value from observational data involve using weighting techniques, where propensity
scores are estimated to re-balance the data, making it resemble data generated under the target policy (Kallus, 2018; Swaminathan& Joachims, 2015).
For instance, Kitagawa and Tetenov (2018) develop an algorithm that makes use of inverse propensity score weighting (IPW) to estimate V(π) in a
binary deterministic decision setting. Alternatively, some methods opt for direct estimation of the optimal treatment policy by fitting the outcome
regression E[Y|X = x,T = t] and use the resulting estimates to optimize the policy value V̂ (Bennett & Kallus, 2020; Qian & Murphy, 2011). Doubly
Robust (DR) methods combine the IPW and direct approach by using an augmented IPW (AIPW) loss (Robins et al., 1994). This requires estimating
both the propensity scores and the outcome regression model (Athey&Wager, 2021; Dudík, Langford, & Li, 2011; Zhang, Tsiatis, Davidian, Zhang,&
Laber, 2012). Several approaches have been proposed to relax the assumptions for causal identification, for example methods that address learning
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policies under unmeasured confounding (Bennett & Kallus, 2019) or handle situations with limited overlap (Kallus, 2021).
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Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (2009).
Covariate shift by kernel mean matching. In Dataset shift in machine learning (pp.
131–160). MIT Press.

Rambachan, A., Coston, A., & Kennedy, E. (2022). Counterfactual risk assessments under
unmeasured confounding. arXiv preprint. arXiv:2212.09844.

Rehill, P., & Biddle, N. (2024). Policy learning for many outcomes of interest: Combining
optimal policy trees with multi-objective bayesian optimisation. Comput Econ.

Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). Estimation of regression coefficients
when some Regressors are not always observed. Journal of the American Statistical
Association, 89(427), 846–866.

Robinson, P. M. (1988). Root-N-consistent semiparametric regression. Econometrica, 56
(4), 931–954.

Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48,
67–113.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology, 66(5), 688–701.

Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., & Zhong, C. (2022). Interpretable
machine learning: Fundamental principles and 10 grand challenges. Statistics
Surveys, 16, 1–85. none.

Salditt, M., Eckes, T., & Nestler, S. (2023). A tutorial introduction to heterogeneous
treatment effect estimation with meta-learners. Administration and Policy in Mental
Health and Mental Health Services Research, 1–24.

Schulam, P., & Saria, S. (2017). Reliable decision support using counterfactual models. In
, 30. Advances in neural information processing systems. Curran Associates, Inc.
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