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Abstract 

Process resilience represents a core competence for organizations in light of an increas‑
ing number of process disruptions, such as sudden increases in case arrivals 
or absences in the workforce. It reflects an organization’s ability to restore a process 
to its acceptable performance level after a disruption. In this regard, the first key step 
for organizations towards achieving resilience is to understand how resilient their 
processes actually are. Although recognized as important, few works focus on such 
resilience assessment in a data-driven manner, thus barring organizations from gain‑
ing the necessary insights into how much their processes are affected by disrup‑
tions and how long it takes them to recover. To address this problem, we propose 
an approach for automated resilience assessment, based on recorded event data. Our 
approach interprets relevant process characteristics, such as the average lead time 
or arrival rate, as time series, which capture the development of the process execution 
over time. Based on these time series, it uses statistical modeling, specifically a vector 
autoregressive model, to determine the inter-relations between those characteristics 
and assess how the process performance responds to a disruption, i.e., a significant 
and temporal change in one of the process characteristics. We validate our approach 
by comparing its accuracy with a what-if analysis using a simulation model and dem‑
onstrate its effectiveness by assessing the resilience of the same process to diverse 
disruptions across different organizations.

Keywords:  Business process resilience, Resilience assessment, Process mining, Vector 
autoregressive modeling, Impulse-response analysis

Introduction
Organizations operate in dynamic environments that are subject to frequent changes. 
This includes the occurrence of disruptions, such as peak in case arrivals, equipment 
failure, or absences in the workforce. Such disruptions can have a (temporary) nega-
tive impact on process performance. As shown in Fig. 1, a process disruption can cause 
performance to initially worsen, e.g., resulting in an increased lead time, before slowly 
returning to its pre-disruption level. Process resilience refers to the ability of an organi-
zational process to deal with such a disruption and recover from it  (Sheffi 2006). As a 
means to ensure consistent performance despite the occurrence of disruptions, being 
resilient is thus a core competence for organizations (Annarelli and Nonino 2016). In this 
regard, the first key step for organizations towards achieving resilience is to understand 
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how resilient their processes actually are (Müller et al. 2013), which involves assessing 
how they respond to different disruptions.

Despite the recognized importance of process resilience and its measurement  (Mül-
ler et al. 2013; Antunes and Mourão 2011; Annarelli and Nonino 2016), little research 
actually targets this measurement task, especially not in a data-driven manner. Existing 
works in this area either provide conceptual characterizations of process resilience (Dal-
ziell and McManus 2004; Zahoransky et  al. 2015) and resilient business process man-
agement (Antunes and Mourão 2011), or focus on achieving resilience in a design-time 
manner  (Marrella et  al. 2019). The one exception is a case study by Zahoransky et  al. 
(2014), where the authors describe how they assessed process resilience in a specific sce-
nario, based on event data and a known process model. However, they do not propose 
a generalizable approach that is applicable to other processes. In addition, they strongly 
depend on domain knowledge (such as having an accurate process model) and manual 
analysis (for the estimation of key probabilities), which makes their resilience assessment 
impractical. Hence, the problem of how to properly and conveniently measure the resil-
ience of organizational processes remains unaddressed.

The contribution of this paper is an approach that assesses process resilience in a data-
driven and automated manner, based on an event log and a resilience scenario of inter-
est. For a potential disruption, such as a sudden absence of a resource or a peak in cases, 
our approach quantifies the disruption’s impact on process performance according to 
four resilience measures, which jointly characterize the duration and severity of the 
disruption’s impact. To do this, we establish a statistical model that captures the inter-
relations between different process characteristics over time. We then use this model to 
measure the impact of a potential future disruption on process performance. We evalu-
ate our approach by assessing its accuracy through comparison with a what-if analysis by 
means of a simulation model. In addition, we demonstrate its effectiveness by assessing 
the resilience of the same process to diverse disruptions across different organizations.

In the remainder, the Background section provides relevant information on process 
resilience and its assessment. The Problem Statement defines the issue addressed in 
our paper. Our proposed solution is outlined in the Approach section and examined in 

Fig. 1  The impact of a disruption on process performance
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the Evaluation. The Discussion considers the solution’s advantages and limitations. The 
Related Work reviews existing research, and the paper ends with the Conclusion.

Background
In this section, we explore the concept of resilience. We begin by examining resilience 
in general, considering its definition across various disciplines and existing assessment 
methods. Next, we delve into the definitions and assessment methods specific to organi-
zational resilience. Finally, we focus on the resilience of business processes as a key layer 
of organizational resilience, highlighting the current lack of data-driven assessment 
methods and the need for their development.

Resilience as a concept. The concept of resilience has been discussed across various 
disciplines (Sanchis et al. 2020; Hosseini et al. 2016; Bhamra et al. 2011), ranging from 
psychology to seismology and to material science, as depicted in Table  1. However, a 
universal definition of resilience has not been established because different disciplines 
use specific terminology to address their unique needs and challenges. Despite these 
diverse perspectives, an overarching understanding of resilience can be summarized as 
the ability of a system to withstand a disruption within acceptable degradation and to 
recover within a suitable time and reasonable costs (Haimes 2009).

Resilience assessment methods can be grouped into two categories (Hosseini et al. 
2016), as visualized in Fig.  2. Qualitative approaches involve methods for assessing 
system resilience that do not rely on numerical calculations (cf. Ungar (2003); Sarre 
et  al. (2014)). These methods include conceptual frameworks that establish best 
practices, which are the primary qualitative approaches, along with semiquantita-
tive indices that offer expert assessments of different qualitative aspects of resilience. 

Table 1  Definitions of resilience in different disciplines (based on Sanchis et al. (2020); Hosseini et al. 
(2016); Bhamra et al. (2011))

Discipline Definition

Psychology The ability of individuals to recover from adversity. Positive ability of individuals to cope with 
stress and catastrophic events.

Seismology The ability of the system to reduce the chances of shock, to absorb a shock if it occurs, and to 
recover quickly after a shock (re-establish normal performance).

Ecology The magnitude of disturbance that a system can absorb before its structure is redefined by 
changing the variables and processes that control behavior.

Infrastructure Ability of infrastructure to reduce the probability of failure, the consequences of such failure, 
and the response and recovery time.

Material Science A material’s tendency to return to its original form after applying a force or stress that has 
produced elastic deformation.

Engineering The ability to sense, recognize, adapt, and absorb variations, changes, disturbances, disrup‑
tions, and surprises.

Tourism Ability of communities (ecosystems) to withstand the impacts of external forces while retain‑
ing their integrity and ability to continue functioning.

Networks The ability of a network to defend against and maintain an acceptable level of service in the 
presence of challenges.

Society Capability of a system to maintain its functions and structure in the face of internal and exter‑
nal change and to degrade gracefully when it must.

Economics Ability to reduce efficiently both the magnitude and duration of deviation from targeted 
system performance levels given the occurrence of a particular disruptive event.

Sociology Ability to recover from adversity and become stronger than before.
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Quantitative methods are categorized into two groups: general resilience approaches, 
which use deterministic or probabilistic measures to quantify resilience that are 
independent of specific domains; and structural-based modeling approaches, which 
employ optimization, simulation, or fuzzy logic models to analyze how a system’s 
structure affects its resilience in specific domains.

Organizational resilience. Over the past decade, research on organizational resil-
ience has gained popularity, leading to the development of numerous approaches, 
indicators, and methodologies  (Muhammedamin Hussen  saad and Omta 2021; 
Sanchis et  al. 2020; Conz and Magnani 2020). As shown in Table  2, the underlying 
conceptual definition generally considers a few key features that characterize an 
organization’s response to a disruption. In the context of an organization, a disruption 
is an incident that causes an unplanned, negative deviation from the expected deliv-
ery of products and services according to the organization’s objectives (International 
Organization for Standardization n.a.).

The importance of measuring organizational resilience is a key requirement to 
achieving resilience within an organization  (Dalziell and McManus 2004). Conse-
quently, various approaches have been proposed to measure organizational resilience, 
which can be categorized into six main groups (Erol et al. 2010a):

Fig. 2  Resilience assessment approaches (adopted from Hosseini et al. (2016))

Table 2  Definitions of organizational resilience (based on  Sanchis et  al. (2020); Muhammedamin 
Hussen saad and Omta (2021))

Features Definition

Absorption & Flexibility Enterprise capacity to absorb changes and ruptures through flexibility without 
affecting its profitability.

Absorption & Transformation The capacity to absorb shocks effectively, develop situation-specific responses to, 
and engage in transformative activities.

Anticipation & Adaptability Ability to anticipate and adapt to key events related to emerging trends and to 
recover quickly after disasters and crises.

Robustness & Flexibility Ability of an organization to strengthen the creation of robust and flexible pro‑
cesses in a proactive way.

Recovery & Avoidance Ability not only to recover from disruptions but to avoid them completely.

Resistance & Recovery Resistance to shocks, renewal, and recovery or bounce back from shocks.

Resistance & Adaptation The ability to resist systematic discontinuities and the capability to adapt to new 
risk environments.

Vulnerability & Adaptation The ability to manage vulnerabilities and adaptive response in a turbulent envi‑
ronment.

Withstanding & Anticipation Reactive ability of the company to withstand an external event and active ability 
to anticipate events.

Withstanding & Adaptation The ability to withstand systematic discontinuities as well as the capability to 
adapt to new risky environments.
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•	 The systems view on measuring resilience emphasizes understanding organizations as 
complex and dynamic entities, advocating a holistic approach that considers inter-
connected components, such as stakeholders and environment, to accurately assess 
resilience.

•	 Resilience as an emergent feature of the system underscores the importance of identi-
fying inherent enterprise attributes that contribute to its resilience.

•	 Inherent and adaptive characteristics of resilience consider resilience under normal 
operating conditions and the deployment of resourcefulness and extra effort in crisis 
situations.

•	 Resilience as a continuous process views resilience as the outcome of continuous 
processes, including planning, responding to threats, and taking adaptive actions to 
recover.

•	 Measuring resilience against disruptions focuses on preventing and recovering from 
disruptive events.

•	 Measuring resilience using adaptive capacity and time dimension highlights the 
importance of the time taken for a system to respond and recover in understanding 
its resilience.

Next, we delve into existing research on the conceptualization and assessment of busi-
ness process resilience, a crucial layer of organizational resilience  (Zahoransky et  al. 
2015).

Business process resilience. In general, process resilience can be summarized as the 
ability of a process to withstand and recover from a disruption. Similar to organiza-
tional resilience, the resilience of a business process can be defined by various charac-
teristics outlined in Table 3, as enhancements in any of these characteristics ultimately 
strengthen the process’s resilience.

As highlighted in Table 4, there has been little research conducted to assess resilience 
at the process level. Furthermore, the existing solutions—discussed in more detail in 
the Process Resilience Assessment section—predominantly rely on conceptual (qualita-
tive) approaches, such as business continuity analysis (Winkler et al. 2012) or value tree 
frameworks  (Stolker et al. 2008). There are a few techniques that attempt to quantita-
tively assess process resilience with actual implementation and validation (Müller et al. 

Table 3  Process characteristics (based on Muhammedamin Hussen saad and Omta (2021); Erol et al. 
(2010b))

Characteristic Definition

Absorption The ability to dampen the impact of disruptive events.

Adaptability The capability to respond to and adapt to the changing environment.

Agility The ability to rapidly respond to changing conditions.

Flexibility The ability to change and to adapt to new or complex situations.

Redundancy The extra capacity to withstand potentially high-impact disruptions.

Robustness The capability to withstand a given level of stress without significant loss.

Recovery The ability to quickly resume operations at a desired performance level.

Resourcefulness The ability to diagnose problems and to initiate solutions.

Rapidity The ability to react fast to changes in its environment.
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2013), such as methods that assess the resilience of business process architectures (Zah-
oransky et al. 2014) or estimate various levels of process model resilience using a col-
laboration-oriented modeling language for processes (Plebani et al. 2017; Marrella et al. 
2019). However, these approaches are structured-based methods primarily utilized to 
assess process resilience at design-time, i.e., during the phase when a process is devel-
oped and planned before implementation. They do not evaluate the resilience of a pro-
cess at run-time, i.e., when it is actually being performed. Run-time resilience assessment 
is crucial because it evaluates how well a process can respond disruptions that may not 
have been anticipated during the design phase. Furthermore, to avoid the need to rely 
on expectations about how a process is executed, run-time resilience assessment should 
be performed in a data-driven manner, which is not done by existing works. Therefore, 
there is a need for data-driven resilience assessment approaches that evaluate process 
resilience at run-time using process behavior recorded in event logs.

In the next section, we operationalize the problem of data-driven assessment of pro-
cess resilience addressed in our work.

Problem statement
In this work, we propose an approach for the data-driven assessment of business process 
resilience. Our approach assesses such resilience in terms of the ability of a process to 
withstand and recover from disruptions. Specifically, it analyzes historic data about a 
process to estimate how its performance will be affected by future (previously unseen) 
disruptions. It thereby allows us to draw conclusions about the process’s overall resil-
ience based on an excerpt of its execution data, as captured in an event log. We opera-
tionalize the problem tackled by our approach as follows:

As input, our approach takes an event log, capturing data on a process of interest:

Definition 1  (Event log, trace) An event log L is a collection of events, where each 
event e ∈ L has a case ID, an activity, and a timestamp. A trace is a sequence of events 
from L with the same case ID, ordered by their timestamps.

An event log might contain additional information that can be relevant for assessing 
business process resilience, such as resource details for each event or trace attributes 
indicating different case types (such as regular or premium customers).

Our approach captures the state and progress of a process through process features. 
We define a process feature as follows:

Table 4  Overview of existing research on resilience assessment, highlighting the gap in 
quantitative approaches (general measures) for process resilience assessment
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Definition 2  (Process feature) A process feature is a characteristic of a business pro-
cess that is relevant for resilience assessment and measurable as a real-valued numerical 
metric over time, using information recorded in an event log L.

We distinguish between input or in-system features, such as the numbers of case arriv-
als or active resources during a specific period, and output features, such as the num-
ber of completed cases or average lead time during a period. These latter features also 
encompass Process Performance Indicators (PPIs), which are quantifiable metrics that 
capture a process’s effectiveness or efficiency (del Río-Ortega et al. 2013). They can relate 
to various dimensions, such as time, cost, and quality.

Our work assesses the resilience of a process by quantifying how a PPI will react to a 
process disruption, which we define as follows:

Definition 3  (Process disruption) A process disruption D is a change in the value of an 
input or in-system process feature that is significant, exceeding the range of feature val-
ues that are normally observed for that business process, and temporary, meaning that 
the feature values return to the normally observed range after a given period of time.

Examples of process disruptions are a drop in available resources or a rapid increase in 
case arrivals during a week.1

We quantify the impact of a disruption D on a PPI P in terms of four measures derived 
from established concepts  (Hosseini et  al. 2016), as visualized in Fig.  3, assuming an 
acceptable performance level P∗ ∈ R as the threshold that PPI P must not exceed: 

1.	 Time-to-impact ( TI[D,P] ) captures the time between a disruption D, occurring at 
time t0 , and the next moment t1 at which process performance P first goes beyond its 
acceptable performance level P∗.

2.	 Recovery time ( RT[D,P] ) captures the time it takes for PPI P to return to its acceptable 
performance level P∗ (at time t2 ) after the initial impact at t1.

Fig. 3  Four measures of process resilience

1  Although an increase in case arrivals can be positive from a business perspective, it may still have negative effects on 
performance, such as the lead time of a process.



Page 8 of 32Kraus et al. Process Science             (2024) 1:4 

3.	 Maximal performance deviation ( MPD[D,P] ) captures the largest (negative) deflection 
of PPI P from its acceptable performance level P∗ during the recovery period, i.e., 
between t1 and t2.

4.	 Cumulative performance loss ( CPL[D,P] ) aggregates the total performance loss of P 
incurred during the recovery period, i.e., between t1 and t2.

Together, these measures provide in-depth insights into process resilience. Time-
to-impact and maximal performance deviation quantify the ability of a process to 
withstand a disruption. Recovery time assesses the ability of a process to recover from 
a disruption. Finally, cumulative performance loss summarizes these two abilities by 
providing an aggregated value.

Given the above, we then define the resilience assessment problem that our work 
addresses as follows:

Definition 4  (Business Process Resilience Assessment Problem) Business process 
resilience assessment uses historic process data in an event log L to estimate the impact 
of a possible future disruption D on a PPI P under normal process operations, quanti-
fied in terms of the time-to-impact, recovery time, maximal performance deviation, and 
cumulative performance loss.

In the context of this problem, it is important to note that resilience assessment 
is not limited to past disruptions recorded in an event log, instead, it considers the 
impact of possible future process disruptions that can occur. In the next section, we 
present an approach that can assess process resilience for possible future process 
disruptions.

Approach
In this section, we provide a detailed description of our resilience assessment 
approach. As depicted in Fig. 4, our approach takes as input an event log and a user-
defined resilience scenario that specifies the PPIs, process disruptions, and further 
relevant process characteristics. Based on this scenario, our approach first generates 
process features as time series to capture the progression of each of the process char-
acteristics over time. Then, we use these time series to establish a VAR model, which 
captures the linear inter-relations between the different process characteristics. In the 
final step, we use the obtained VAR model to conduct impulse-response analysis to 
compute the four resilience measures depicted in Fig. 3.

In the remainder, we describe our approach’s input and three steps in detail.

Fig. 4  Overview of the main steps of our resilience assessment approach
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Resilience Scenario

Our approach takes as input a user-defined resilience scenario S. The resilience scenario 
captures the process features that are crucial for assessing process resilience from the 
user’s perspective. Such a scenario is defined in terms of three sets of process features, 
S := (FP , FD, FA):

•	 Performance measures (FP): This set contains the output features that are used 
as PPIs, such as the average lead time of completed cases or the number of rejected 
orders. FP must contain at least one PPI, though a user can also specify multiple ones, 
so that the resilience of a process is considered from the perspective of different per-
formance measures.

•	 Disruption types (FD): This set defines process disruptions as input or in-system fea-
tures that increase or decrease to cause disruptions, such as an increase in the num-
ber of case arrivals or a decrease in the number of available resources. FD must con-
tain at least one disruption type, though multiple disruptions can be considered in 
isolation or simultaneously.

•	 Additional features (FA): Finally, a user can optionally define additional process fea-
tures that may help to capture the inter-relations between features in FD and FP (akin 
to mediating variables). For example, when determining the impact of deviations in 
the number of case arrivals (in FD ) on the average lead time (in FP ), FA might include 
the number of available resources as an additional factor.

As a running example in this section, we will use as input the 5th log from the BPI 
Challenge 2015 (van Dongen 2015) and a default resilience scenario Sd , with the aver-
age lead time as a PPI, i.e., FP = {l_t} , disruption types involving increases in the num-
bers of case arrivals, and active cases, and decreases in the available resources, i.e., 
FD = {↑arr_c,↑act_c,↓avl_r} , and FA = ∅ . However, we stress that our approach can 
work with any process features measurable for an event log. For instance, a resilience 
scenario can include log-specific features, such as the number of active cases by premium 
customers or the number of available specialists.

Time Series Generation

In the first step, we generate time series that represent the evolution of process features 
within a resilience scenario. Time series generation is commonly used in process mining 
to address problems such as concept drift detection and explanation (Adams et al. 2021), 
or to assess process complexity and its impact on performance (Vidgof et al. 2023). In 
the following, we detail the three steps of time series generation used in our approach: 
windowing, time series construction, and warm-up and cool-down phase detection.

Windowing. First, we split the period of an event log L using time-based tumbling 
windows of fixed length l (Van Der Aalst and Carmona 2022). This gives a series of non-
overlapping time windows Wl := �w1, . . . ,wn� of equal length, such that each event e ∈ L 
belongs to exactly one window wt for t ∈ {1, . . . , n} . The first window w1 starts at the 
earliest event in L, whereas the last event is in wn . Our approach can consider differ-
ent options for window lengths, e.g., l1, l2 , etc., resulting in a set of window sequences 
W := {Wl1 ,Wl2 , ...} . Based on the modeling results in the next step, our approach 
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automatically selects a window length l that best describes the evolution of the process 
features over time.

Time series construction. Following convention  (Brockwell and Davis 2009), we 
define a time series as a set of observations {yt | t ∈ {t0, . . . , tn}} , where each yt ∈ R rep-
resents an observation made at a time t ( {yt} in short). We particularly consider series 
over discrete, equally-spaced time intervals, which means that each yt captures an 
observation made for a specific period, e.g., a day or a week.

For all window sequences Wl ∈ W , we construct time series for each process fea-
ture fk ∈ F := FP ∪ FD ∪ FA , with k ∈ {1, ..., |F |} as an index. For this, we first calculate 
the feature value yk ,t ∈ R for the feature fk for each window wt ∈ Wl . Then, we com-
bine these sequential values into a time series {yk ,t} , which captures the evolution of fk 
over the windows in Wl . These two steps are repeated for each feature fk ∈ F  , result-
ing in a set Yl := {{yk ,t}} . Repeating this for each window sequence, we obtain a set 
Y := {Yl |Wl ∈ W} . Figure  5 shows the week-based time series Yweek for our running 
example.

Warm-up and cool-down detection. Finally, we check if the beginning and end of 
the time series should be truncated. This can be necessary because event logs are data 
snapshots, consisting of cases associated with a particular time frame. For instance, the 
running example’s log appears to contain all cases that were active between early 2011 
and March 2015. However, since some of these cases started much earlier than 2011, the 
event log has a lengthy warm-up phase, in which there are few active cases in the system, 
as shown in Fig. 5. Similarly, if a log consists of cases that started in a certain period, 
there will be a cool-down phase at the end, in which only a few to-be-completed cases 
remain in the log.

To detect warm-up and cool-down phases, we use the time series {yk ,t} that describes 
the evolution of the number of active cases over time ( act_c).2 We use the corresponding 
frequency distribution of the values yk ,t and a percentile δ to define a threshold. We then 
use this threshold to detect a sequence of windows wt at the beginning (warm-up) and 

Fig. 5  Process features derived for the running example with indicated warm-up and cool-down phases

2  We use this feature even if it is not part of the resilience scenario of interest.
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at the end (cool-down) of Wl , where the feature values yk ,t are all below this threshold. 
Finally, we remove feature values that belong to the detected windows from all features 
in the set Yl , resulting in truncated time series Y ∗

l  . Repeating this procedure for each 
window sequence Wl , we get Y ∗ := {Y ∗

l } . In Fig. 5, the detected warm-up and cool-down 
phases are highlighted in gray. For the 1st percentile, δ = 1 , we removed 48 windows at 
the beginning and two at the end.

Statistical Modeling

In the second step, our approach uses the obtained time series to build a collection of 
VAR models, from which an optimal model is then selected. In this section, we first 
introduce VAR models and then explain the model generation and selection steps.

Vector autoregressive models. VAR models are among the most successful and flex-
ible statistical modeling techniques for analyzing multivariate time series. Initially devel-
oped by Sims (Sims 1980), they have proven to be helpful in describing and forecasting 
process dynamics in many domains. VAR models relate current observations of a vari-
able to past observations of the same and other variables (called lags) via a linear combi-
nation (Kearney and Monadjemi 1990).

Model definition. Given a set of K features, we define a K-dimensional vector 
yt := (y1,t , . . . , yK ,t) ∈ R

K  , which captures the time series values of the features for a 
given window wt . Using this vector notation, the standard VAR model is defined as a 
system of K linear equations:

The vector d ∈ R
m×1 holds m deterministic parameters, which can be used to model, 

e.g., an intercept ( d = 1 ∈ R ) or a linear trend ( d = (1, t) ∈ R
2 ). The matrix A0 ∈ R

K×m 
holds the parameters used in d . The value p ∈ N is the model order, defining the number 
of lags that are considered by the model via the vectors yt−i , for i ∈ {1, . . . , p} . Matrices 
Ai ∈ R

K×K  hold model coefficients that show the per-lag impact of the features on one 
another. Finally, et := (e1,t , . . . , eK ,t) ∈ R

K  is a vector of error terms.
As an illustration, we consider a first-order VAR model ( p = 1 ) with three time series 

( K = 3 ): y1,t , y2,t , and y3,t , assuming that each model equation includes a linear trend, 
i.e., d = (1, t) ∈ R

2 . Then, Eq. 1 takes the following form:

Model assumptions. An adequate VAR model should fulfill two assumptions: 

1.	 A VAR model’s error terms et should be white noise, which is the case when the 
expectation of the error terms is zero, E[et ]=0 , the contemporaneous covariance 
matrix of error terms is nonsingular, E[eteTt ]=�e , the error terms are uncorrelated, 
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E[eteTs ]=0 for t �= s , and all fourth moments E[e4t ] exist and are bounded (large out-
liers are unlikely) (Lütkepohl 2005).

2.	 A VAR model should be stable, which holds when its reverse characteristic polyno-
mial has no roots in and on the complex unit circle (Lütkepohl 2005). Stability of a 
VAR model also implies stationarity (Lütkepohl 2005, p. 25), which is necessary for 
impulse-response analysis (see the Resilience Analysis section).

In general, VAR models typically assume that all time series are stationary, meaning 
their statistical properties such as mean and variance remain stable over time. However, 
this assumption can be overly constraining in practical scenarios, especially within busi-
ness process analysis. Unlike domains such as finance, where significant trends or abrupt 
changes are common, features capturing process characteristics often exhibit less varia-
tion. Nonetheless, business processes can still undergo subtle or seasonal drifts. In this 
scenario, concept drift detection could be regarded as an additional preprocessing step 
to identify different versions of the process and independently assess the resilience of 
each version before extracting the relevant time series. Alternatively, if seasonality is a 
permanent characteristic of a business process, standardized techniques for seasonality 
removal, such as seasonal-trend decomposition based on loess (Krake et al. 2024), can 
be applied after time series are extracted.

Model estimation. In  situations where these assumptions are fulfilled, the model 
parameters in Eq.  1 can be obtained using multivariate least squares (LS) estima-
tion (Lütkepohl 2005, p. 74). The resulting LS estimates then have two key asymptotic 
properties: consistency and normality, which are important to obtain reliable estimation 
for model parameters (Wasserman 2004).

Model generation and selection. Since the optimal configuration of a VAR model 
cannot be known a priori for a given event log, our approach first generates a collection 
of candidate VAR models using various parameter settings. Then, it checks the validity 
of these candidate models regarding the aforementioned model assumptions and, from 
the valid models, selects the one that has the best fit according to an established infor-
mation criterion.

Candidate-model generation. We first generate a set of candidate VAR models M , so 
that each model M ∈ M has a unique combination of four parameters: 

1.	 A window sequence Wl ∈ W.
2.	 A choice for the deterministic parameter d from a set of options, which commonly 

contains d = 0 (no trend or intercept), d = 1 ∈ R (an intercept), d = (1, t) ∈ R
2 (a 

linear trend).
3.	 A model order p ∈ {1, ..., pmax} , where pmax is the highest possible model order, 

which can be heuristically estimated3 by the total number of observations n = |Wl | 
as 12 4

√
n/100.

4.	 A set of features FM to be included in the model. FM contains all PPIs from FP and 
disruption types from FD , plus a (possibly empty) subset of additional features from 

3  This heuristic is applied by the Python library we employ in our implementation (Seabold and Perktold 2010).
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FA . By including different subsets of FA , we test whether including extra features 
leads to a better-fitting model.

Assumption checking. Next, for each of the candidate VAR models in M , we check if it 
meets the assumptions of noise whiteness and model stability. Given a candidate model 
M ∈ M of order p, we check whether the error terms fulfill the white noise assumption 
using the multivariate Ljung-Box portmanteau test (Ljung and Box 1978). The test’s null 
hypothesis is that there is no overall significance in the auto-correlations of the error 
terms. If we cannot reject the null hypothesis at the significance level α = 0.05 and for 
p+ 1 lags, then we conclude that there is no evidence to reject the white noise assump-
tion  (Lütkepohl 2005,  p.  169). We determine the stability of a model using the eigen-
values of its companion-form representation of order 1, which exists for any model M 
and provides a more compact form (Lütkepohl 2005). If all absolute eigenvalues of the 
companion-form matrix are less than one, the model M is stable (Lütkepohl 2005, p. 15). 
We add the models that meet both assumptions to a set of accepted models, Ma ⊆ M . 
If no models are found that fulfill the assumptions, we extend the search space and con-
sider models with any set of features FM that contains at least one performance measure 
and one disruption type.

Optimal model selection. Finally, we select the optimal model M∗
a as the model in Ma 

with the best (i.e., lowest) Akaike Information Criterion (AIC)  (Brockwell and Davis 
2009) score. AIC is a widely-employed metric that evaluates a statistical model’s ability 
to fit the data at hand, while accounting for the model’s complexity  (Lütkepohl 2005). 
Given the objective of the model to capture as much information as possible from vari-
ous factors to better describe dependencies during the impulse-response analysis, AIC is 
a better choice compared to other information criteria, such as the Bayesian Information 
Criterion (BIC) or the Hannan-Quinn Information Criterion (HQIC), which impose 
heavier penalties for model complexity. Moreover, AIC tends to perform well with lim-
ited data points, a common situation when working with time series data extracted from 
event logs.

In general, optimal model selection is a challenging task. However, the use of AIC pro-
vides a simplification that has proven useful and practical for the addressed problem. 
Nevertheless, the proposed model selection can be improved by incorporating addi-
tional measures or procedures, such as cross-validation (Bates et al. 2023), or more com-
plex techniques (Korobilis 2013; Brüggemann et al. 2002).

Resilience Analysis

In the third step, we assess process resilience using impulse-response analysis, which 
estimates the expected impact of disruptions on process performance. This corresponds 
to a form of what-if analysis, which can be derived directly from the obtained optimal 
VAR model. We first introduce its concept and then explain how we estimate the four 
resilience measures (time-to-impact, recovery time, maximal performance deviation, 
and cumulative performance loss) for a given disruption and the corresponding response 
in a PPI.

Impulse-response analysis. A VAR model’s properties are typically assessed through 
structural analysis such as Granger causality, impulse responses, and forecast error 
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variance decompositions, since examining individual model coefficients alone does not 
offer a comprehensive understanding of the interactions among the variables in a model. 
For the purpose of assessing business process resilience, impulse-response analysis 
serves as the right instrument.

Intuition. Impulse response analysis is a technique for interpreting VAR models. It 
is based on a impulse-response function that predicts how one variable responds to a 
sudden change in another variable (Lütkepohl 2005), given the identified inter-relations 
among model variables in Eq.  1. To ensure a clean assessment of the response in one 
variable to a change in another, the analysis is conducted after centering each variable 
around 0, by subtracting its expected value. Next, a one-unit change is introduced in 
one variable, and its impact on another variable is observed over subsequent periods, 
accounting for detected inter-dependencies between the model variables. A one-unit 
change can always be considered since all time series in a VAR model are numerical 
and real-valued. Given that the introduced impulse is a one-time change and the VAR 
model is stable (an assumption checked during the search for the optimal model), the 
model will return to its centered state after the initial impulse has propagated through 
the system. This way, impulse-response analysis facilitates a deeper understanding of the 
dynamic interactions among variables over time, proving valuable in assessing process 
resilience.

We illustrate the concept of impulse-response analysis using two exemplary impulse-
response functions, depicted in Fig.  6. The first impulse-response function (Fig.  6a) 
demonstrates the expected increase (black line) in the average lead time following a 
disruption in the total number of active cases during the periods h ∈ H := 1, 2, ..., hmax . 
The disruption occurs in period h = 0 and corresponds to a one-time, one-unit increase 
in the total number of active cases. The maximum expected deviation in the lead time 
is observed in the second period after the impulse, elevating the average lead time 
above its average value by about 0.06 units. The impulse-response analysis also pro-
vides confidence intervals (blue lines) indicating where the response in the lead time 
can be expected with a 95% probability. The second impulse-response function (Fig. 6b) 

Fig. 6  Two examples of impulse-response functions (incl. 95% confidence interval), showing the expected 
response in the average lead time (in weeks) to a one-unit increase in the impulse
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illustrates the anticipated change in the average lead time after a one-unit increase in the 
number of available resources. In this scenario, the expected lead time decreases since 
more resources are available, making it more likely for the lead time to decrease.

Mathematical derivation. For each feature combination fd ∈ FD and fp ∈ FP , we 
obtain the corresponding impulse-response function IRF[fd , fp](h) , showing the 
impact of a potential disruption in feature fd on performance indicator fp at the 
moment h after the disruption, by transforming the (stable) VAR model into its infi-
nite moving average representation  (Lütkepohl 2005). To illustrate this transforma-
tion, we consider a VAR model of order 1 since any VAR model of order p can be 
rewritten to that, using the following matrix form (Lütkepohl 2005):

This matrix form of any VAR model of order p can be simplified using Zt ,Ŵ0,Ŵ1,ϒt:

Using the initial notation used in Eq.  1 for p = 1 , we can further simplify the 
obtained equation:

with µ := A0d . Now, we can derive its infinite moving average representation by using 
recursive substitution (Lütkepohl 2005):

For a stable VAR process, the following results hold (Lütkepohl 2005):

Hence, Eq. 3 reduces to:

where ϕ := (I − A1)
−1µ . Now, by rewriting Bj := A

j
1 and B0 := I , we get:
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Finally, the obtained representation is used to track the impact of a distur-
bance in one variable on the other. This is done by initiating the impulse vector 
et := (0, . . . , 0, 1, 0, . . . 0) , where the 1 in et corresponds to the position of the feature 
fd in the VAR model. Afterward, the impact on any variable within the system for a 
given future time period t can be assessed by examining the outcome of the computa-
tions in Eq. 4, given by the right-hand side of the equation. The 95% confidence inter-
val for each period t and pair of impulse and response variables is derived using the 
associated covariance matrix of ϕ

∑∞
j=0 Bj , where j ends at t.

Resilience assessment. To assess process resilience, we consider the resilience sce-
nario S = (FP , FD, FA) and the selected optimal VAR model M∗

a . For each feature com-
bination fd ∈ FD and fp ∈ FP , we use the corresponding impulse-response function 
IRF[fd , fp](h) , which estimates the expected impact of a potential disruption in feature 
fd on performance indicator fp.

Resilience aspects. We account for the following aspects when using an impulse-
response function to assess business process resilience: 

1.	 Disruption size: By default, an impulse-response function considers the impact of 
one additional unit, which may be insufficient for modeling an actual disruption. 
However, as a VAR model is linear, the initial impulse can be rescaled by multiplica-
tion with a scalar of interest. A common choice is one, two, or three standard devia-
tions of the impulse variable. This rescaling is widely employed as it facilitates the 
comparison of disruptions’ impacts across variables with different scaling  (Lütke-
pohl 2005). Consequently, the values of the impulse-response function are rescaled 
as well, maintaining the same shape. Using the impulse-response function in Fig. 6a 
as an example, if the standard deviation of the number of active cases is 10, and the 
average lead time is 3 weeks, then a disruption, represented by 2 standard deviations, 
will increase the lead time by 10× 2× 0.06 = 1.2 weeks in the second period after 
the disruption. In other words, the maximum expected increase in the average lead 
time is approximately 40% (1.2 wks / 3 wks).

2.	 Disruption direction: Depending on the resilience scenario, we may be interested in 
disruptions that increase or decrease the impulse variable. For example, when assess-
ing resilience to disruptions in the number of active cases, we want to evaluate the 
impact of increases, while in the case of available resources, we want to observe 
the effect of decreases. To obtain the impact of a decreasing disruption, we multi-
ply the values of the impulse-response function by -1. In the context of the impulse-
response function in Fig. 6b, where we aim to observe the response to a decrease in 
the number of available resources, this action will mirror the obtained curves along 
the x-axis.

3.	 PPI’s negative deviation: When examining the response in a PPI, our focus lies on 
negative deviations, which we denote as IRF[fd , fp](h)− . Depending on the PPI, a 
negative impact can be linked to either an increase or decrease in the PPI (or both 
if the PPI needs to remain within a specified range). In the scenario of average lead 
time, an increase is deemed negative as it results in prolonged execution time, com-
monly viewed as an undesirable outcome. Moreover, deviations in a PPI are com-
monly tolerated up to a certain level. For this reason, we consider a specific tolerated 
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deviation, Ptol . This defines the accepted deviation of a PPI from its average (target) 
value, i.e., P∗ = f̄p + Ptol (or −Ptol for PPIs where higher is better). If the response to 
a disruption is less than Ptol , the disruption is not considered to impact the PPI.

4.	 PPI’s deviation confidence: When assessing the expected PPI deviation after a disrup-
tion, we aim to measure process resilience in terms of the worst-case scenario. In 
other words, we want to ensure that the performance deviation does not exceed a 
specific threshold, like 2 weeks for average lead time, with a 95% probability. For this, 
we are more interested in the deviations given by the upper and lower confidence 
bounds (blue lines) in Fig. 6 around the expected response given by the black curve. 
Depending on the resilience scenario, we denote IRF∗[fd , fp](h)− as the relevant neg-
ative extreme bound for the PPI’s deviation.

Next, we explain how we define resilience measures using the relevant impulse-response 
function.

Resilience measures. For a given resilience scenario S = (FP , FD, FA) and the tolerated 
deviation Ptol , we define the following four resilience measures:

•	 Time-to-impact: We define time-to-impact as the first period after a disruption 
where the PPI’s negative deviation exceeds Ptol : 

 If the deviation does not exceed Ptol , all remaining resilience measures are 0, since 
there is no impact on the PPI.

•	 Recovery time: The recovery time is given by the difference between the last time at 
which the predicted negative deviation is greater than the tolerated deviation and the 
time-to-impact value: 

 Both time-to-impact and Recovery time take integer between 0 and hmax.
•	 Maximal performance deviation: The maximal performance deviation is given as 

the greatest absolute negative deviation of the impulse-response function during the 
recovery period: 

•	 Cumulative performance loss: To quantify the cumulative performance loss, we sum 
up the gains and losses incurred between initial impact and recovery: 

 Both MPD[fd ,fp] and CPL[fd ,fp] takes a value in R+.
Example. To illustrate the output obtained in this manner, Fig.  7 depicts an impulse-
response function IRF∗[fd , fp](h) for the running example. It shows the response of 
the average lead time ( l_t , in weeks) to a disruption of two standard deviations in the 
number of active cases ( ↑act_c ), using a tolerated deviation Ptol of 1 percent (about 0.15 

TI[fd ,fp] := inf{h ∈ H : |IRF∗[fd , fp](h)−| > Ptol}.

RT[fd ,fp] := sup{h ∈ H : |IRF∗[fd , fp](h)−| > Ptol} − TI[fd ,fp].

MPD[fd ,fp] := sup{|IRF∗[fd , fp](h)−|, h ∈ {TI[fd ,fp], . . . ,TI[fd ,fp] + RT[fd ,fp]]}}.

CPL[fd ,fp] :=
∑

h

IRF
∗[fd , fp](h), h ∈ {TI[fd ,fp], . . . ,TI[fd ,fp] + RT[fd ,fp]}.
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week). With a probability of 95%, the actual increase in the lead time is not going to 
exceed the predicted response IRF∗[fd , fp](h) (black curve). As shown, the disruption 
impact occurs quickly (time-to-impact of just two weeks) and increases the average lead 
time from about 14 weeks to a maximum of 16.1 (an increase of 15%). After this initial 
spike, the process starts recovering gradually, though it takes a total of 40 weeks before 
it returns to its acceptable performance level. Overall, the cumulative performance loss 
is 15 weeks, which can be used when comparing the impact of this disruption to other 
types or when comparing the process’ resilience to other versions. We demonstrate this, 
among others, in the evaluation experiments performed next.

Evaluation
This section reports on two experiments conducted to evaluate our approach. In the first 
experiment, we assess the validity of our approach through a controlled process simula-
tion. In the second experiment, we evaluate the effectiveness of our approach by apply-
ing it to real-life event logs.

Our experiments can be replicated using our repository4, which contains a Python 
prototype of our approach, input data, relevant experimental details, and raw results. 
Our prototype employs functions from the PM4Py  (Berti et  al. 2019) and statsmod-
els (Seabold and Perktold 2010) libraries.

Experiment 1: Approach validity

In the first experiment, we demonstrate the validity of our approach by assessing the 
accuracy of estimated resilience measures. To accomplish this, we conduct multiple sim-
ulations of a business process under a predetermined resilience scenario and compare 
the actual resilience measures—from the simulation—against the estimations obtained 
using our approach.

Fig. 7  Process resilience in terms of the average lead time in response to a disruption in the number of active 
cases for the running example

4  Project repository: https://​gitlab.​uni-​mannh​eim.​de/​proce​ssana​lytics/​resil​ience

https://gitlab.uni-mannheim.de/processanalytics/resilience
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Setup

In the following, we discuss the relevant experiment settings, i.e., the simulation con-
figurations, resilience scenario, approach configurations, and evaluation metric.

Simulation scenario. As a basis for this experiment, we consider a process model and 
its simulation parameters that were used in prior work on business process resilience 
assessment (Zahoransky et al. 2014). The model captures an order-to-cash process of a 
medium-sized company, depicted in Fig. 8.

Control-flow, processing times, and resources. The process model consists of 15 activities 
and two decision points. Following the parameters of the original scenario (Zahoransky 
et al. 2014), each decision point has an equal branching probability when simulating the 
process. Furthermore, the execution times of the activities are given by the distributions 
shown in Table 5. Finally, each task is managed by one dedicated resource, operating 24/7.

Arrival process. The original paper does not specify how case arrivals were simulated, 
thus we utilize the Poisson distribution P(�) for the arrival process. We use an arrival 
rate of �n = 0.45 cases per hour, which leads to stable process utilization without causing 
queues to grow.

Fig. 8  Simulated order-to-cash process in Experiment 1 (adapted from Zahoransky et al. (2014))

Table 5  Simulation of execution durations (hours) in the process depicted in Fig.  8 (adopted 
from Zahoransky et al. (2014))

a No specifications were provided for “Obtain components”, we used the same as for “Assemble components”

Task Distribution Parameters

Incoming order Log-normal µ = 0.2 σ = 0.4

Print component plan Normal µ = 0.5 σ = 0.1

Print assembly plan Normal µ = 0.6 σ = 0.15

Create part list Gamma α = 0.9 β = 0.7

Acquire parts Gamma α = 0.8 β = 0.8

Fill out order Log-normal µ = 0.1 σ = 0.5

Send order Gamma α = 1.0 β = 0.5

Arrival and inspection Log-normal µ = 0.25 σ = 0.5

Obtain from warehouse Log-normal µ = 0.07 σ = 0.3

Stage from warehouse Gamma α = 0.8 β = 0.3

Assemble parts Log-normal µ = 1.3 σ = 0.4

Obtain componentsa Log-normal µ = 0.4 σ = 0.4

Assemble components Log-normal µ = 0.4 σ = 0.4

Final inspection Normal µ = 1.0 σ = 0.4

Invoicing and dispatch Normal µ = 0.8 σ = 0.3
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Process disruption. We perform simulation runs that last 10,000 (simulated) hours, 
with each run involving a disruption in the case arrival rate � after 70% of the time. This 
timing ensures the model stabilizes before the disruption, and allows sufficient time 
afterward to observe changes in the PPI. The increase in the arrival rate persists for 
exactly one window, returning then to its normal level of �n = 0.45 cases per hour.

We simulate disruptions by increasing the number of case arrivals by up to 20 standard 
deviations. This is achieved by multiplying the arrival rate by a factor ranging between 2 
and 4 times the normal arrival rate. For each tested increase in the arrival rate, we con-
duct 1000 simulations, resulting in 10000 simulation runs in total.

Implementation. To simulate the resilience scenario, we built a simulation model using 
the CIW library  (Palmer et  al. 2019), an open-source library for conducting discrete 
event simulations5. This library allows us to simulate the process as a network of queues, 
providing the functionality and simulation logic required to model the desired simula-
tion. The total computation time for his experiment took about 3 hours on 50 CPUs6.

Resilience scenario. We consider a resilience scenario S = (FP , FD, FA) , where the 
disruption type FD is given by an increase in the number of case arrivals. The perfor-
mance measure FP is given by the average lead time derived from the lead time of all 
cases that finished during the window. Finally, the additional feature FA is given by the 
number of active cases determined by the number of cases that were in progress during 
the window7.

Approach configuration. We use the following settings when applying our approach. 
In Step 1, we use a fixed window length l of 70 hours (appr. 3 days). In this controlled 
experiment, this window size leads to a balanced representation of the process fea-
tures as time series over the total simulation duration. It is neither too large, ensur-
ing a sufficient length of the time series before the disruption to fit VAR models, nor 
too small, preventing any of the derived process features from having zero values. We 
test five percentiles for the warm-up and cool-down phase detection parameter δ , i.e., 
δ ∈ {1%, 5%, 10%, 15%, 20%} . In Step 2, we fit VAR models without an intercept, with an 
intercept, and with an intercept and a linear trend, i.e., d ∈ {0, 1, (1, t)} and use a sig-
nificance level α = 0.05 for the multivariate Ljung-Box portmanteau test. In Step 3, we 
consider a response horizon hmax of 10 windows after the disruption moment, which 
corresponds to about 10% of the simulated time before the disruption. This response 
horizon covers enough time to capture the response in the post-disruption PPI. We con-
sider a tolerated deviation Ptol of 30% of the standard deviation of the average lead time 
observed before the disruption.

Accuracy assessment. To evaluate our approach, we assess how often each resil-
ience measure falls within the interval estimated by our approach for each simula-
tion run. To derive the interval estimated by our approach, we apply our approach to 
the portion of the event log that occurs before the disruption. This way our approach 
does not observe the disruption in the data nor does it learn how the process reacts to 

5  Available online: https://​ciw.​readt​hedocs.​io/​en/​latest/​index.​html
6  Intel Xeon CPU E5-2698 v4 @ 2.20GHz.
7  In this simulated experiment, we do not consider the number of available resources. This is because each activity has 
its own dedicated resource, and all resources are consistently available to process tasks once they are completed with the 
current one.

https://ciw.readthedocs.io/en/latest/index.html
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it. Then, we derive lower Rest

l
 and upper Rest

u
 bounds using the impulse-response func-

tions that denote the corresponding 99% confidence interval, resulting in the interval 
I := [Rest

l ,Rest
u ] . To derive the actual resilience measure Ract from the simulation, we 

consider the response in the PPI following the disruption.
Given Ract and I for each resilience measure, we evaluate our approach by consider-

ing its accuracy, denoted Acc, as the proportion of simulations where the actual value 
Ract falls within an interval of interest I = [Rest

l ,Rest
u ] (correct detections) divided by 

the total number of conducted simulations N (all detections) for a given disruption 
size. It is defined as follows:

The accuracy ranges between 0 and 1. The higher the value, the more accurate our 
approach is.

Results

Table 6 shows the results of this experiment, depicting the accuracy of our approach 
obtained for different disruption sizes in the number of case arrivals.

Overall, our approach demonstrates a satisfactory level of accuracy in estimating 
resilience measures, achieving an average accuracy across all disruption sizes and 
resilience measures of 0.78. With respect to different disruption sizes, the average 
accuracy ranges from 0.74 to 0.80 (without a clear trend), indicating consistency in 
accuracy largely regardless of the disruption’s severity.

Concerning different resilience measures, the accuracy varies between 0.71 and 
0.88. Notably, the approach achieves its highest accuracy of 0.88 for recovery time 
estimation, maintaining consistency across various disruption sizes. While the accu-
racy for cumulative performance loss also demonstrates consistency, it is the lowest 
among the resilience measures with an average accuracy of 0.71. However, this aligns 
with expectations, as the accuracy of cumulative performance loss is influenced by the 
combined accuracy of other resilience measures. The accuracy for the time-to-impact 
measure spans from 0.68 to 0.83, without any notable trend relative to disruption size. 
Lastly, maximal performance deviation demonstrates good accuracy, surpassing 0.78 
for severe and extreme disruption sizes. However, it tends to slightly underestimate 
the severity of the impact in cases of severe disruption.

Acc :=
1

N

N∑

i=1

1Ii(R
act
i ), where 1Ii(R

act
i ) :=

{

1, if Ract
i ∈ Ii,

0, otherwise.

Table 6  Results of Experiment 1, showing the accuracy obtained for different disruption sizes

Disruption size Moderate (5-10 std.) Severe (10-15 std.) Extreme (15-20 std.) Average

Time-to-impact 0.75 0.83 0.68 0.76

Recovery time 0.86 0.88 0.89 0.88

Maximal deviation 0.65 0.78 0.88 0.77

Cumulative perf. loss 0.70 0.72 0.72 0.71

Average 0.74 0.80 0.79 0.78
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The results of this experiment thus show that our approach is able to accurately 
estimate the disruption size in a complex scenario. After this confirmation of the 
validity of our approach, we conduct the next experiment to show the effectiveness of 
our approach using real-life data.

Experiment 2: Approach effectiveness

After confirming the validity of our approach, we aim to showcase the effectiveness of 
our approach in evaluating business process resilience using the introduced four resil-
ience measures. Since we do not have access to the actual resilience ground truth of the 
processes recorded in an event log, our evaluation centers on real-life event logs describ-
ing the execution of the same process across various organizations. This allows us to 
compare findings about process resilience, providing relative insights into strengths and 
weaknesses across different organizations and demonstrating the utility of our analysis.

Setup

Next, we discuss the setup and obtained results of the conducted experiment.
Data collection. To perform the experiment, we used data from the BPI Challenge 

2015  (van Dongen 2015), which consists of five real-world event logs (M1-M5), each 
capturing a permit application process at a Dutch municipality. The nature of these logs 
makes them highly suitable for our work because they allow us to assess and compare 
the resilience of the same process across different organizations, accounting for dif-
ferences in its implementation. The event logs are comparable in terms of the covered 
period (about 5 years) and size, including numbers of events, event classes, and traces, as 
shown previously shown in Table 7. However, we also observe considerable differences 
in their lead times (averages ranging approximately from 9 to 23 weeks), which strongly 
fluctuate, as evidenced by the high standard deviation (from 14 to 24 weeks).

Approach configuration. We use the following settings when applying our approach. 
In Step 1, we use a fixed window length to achieve comparability of resilience insights 
between municipalities. We select semi-monthly time windows because they were found 
to be the overall best window size across the logs, given their length and fluctuations in 
the process features. We test the same five percentiles for the warm-up and cool-down 
phase detection parameter δ , as in the first experiment. In Step 2, we fit VAR models with 
the same configurations for trend options, keeping again the significance level α = 0.05 
for the multivariate Ljung-Box portmanteau test. In Step 3, we use a tolerated deviation 

Table 7  Properties of the considered real-life event logs

Event log Period (wks) N. of events Event classes N. of traces Trace variants Lead time 
Avg./SD 
(wks)

BPIC15 M1 252 52217 398 1199 1170 14/17

BPIC15 M2 244 44354 410 832 828 23/24

BPIC15 M3 270 59681 383 1409 1349 9/14

BPIC15 M4 276 47293 356 1053 1049 17/15

BPIC15 M5 275 59083 389 1156 1153 14/15
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Ptol of 10% of the standard deviation of the PPI and consider a response horizon hmax 
equal to 50% of the window sequence length. Finally, we let each disruption correspond 
to an increase or decrease of two standard deviations of the respective feature (using the 
standard deviation across the time-series values).

Using our implementation with the specified configuration, the total computation 
time for this experiment on an Intel i7-9750H CPU (2.60GHz) with 16 GB RAM took 
about 40 minutes.

Experiments. We conducted two experiments to assess process resilience8:
Experiment 2.1: Overall resilience We assess the overall resilience per municipal-

ity using the default resilience scenario described in the  Resilience Scenario  section. 
Specifically, we consider the average lead time as the PPI, i.e., FP = {l_t} , and dis-
ruptions in the numbers of case arrivals, active cases, and available resources, i.e., 
FD = {↑arr_c,↑act_c,↓avl_r} . We do not consider additional features, i.e., FA = ∅.

Experiment 2.2: Resilience per case type Given that the process under investigation cov-
ers a broad range of permit applications, we use this experiment to examine if the process 
is specifically prone to increases in certain case types. To do this, we consider a resilience 
scenario with disruptions in terms of the three most common case types per municipality 
(based on a case’s “parts” attribute), FD = {↑act_c_typex,↑act_c_typey,↑act_c_typez} , 
where x, y, and z differ per municipality, due to varying commonality of the case types. 
Other scenario options are left the same as in Experiment 2.1, i.e., FP = {lt} and FA = ∅.

Table 8  Statistics of the time series per each process feature from the default resilience scenario on 
a semi-monthly windowing

Event log Case arrival Active cases Avl. resources Lead time

Avg Std CV Avg Std CV Avg Std CV Avg Std CV

M1 11.3 5.6 49% 88.2 12.4 14% 7.4 1.7 22% 6.5 2.1 33%

M2 8.0 4.8 60% 94.9 21.0 22% 5.3 1.1 21% 9.7 3.4 35%

M3 13.2 4.9 37% 69.1 9.7 14% 6.7 0.8 12% 3.7 1.2 32%

M4 9.9 4.2 42% 91.4 25.3 28% 5.2 1.2 22% 7.4 2.3 31%

M5 10.9 4.7 43% 82.3 26.1 32% 8.1 1.3 16% 6.1 2.4 40%

Table 9  Results of Experiment 2.1, showing the resilience for the three disruption types (semi-
monthly windows)

Disruption Increase in case arrivals Increase in active cases Decrease in avl. resources

Municipality M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Time-to-impact 1 1 1 1 9 1 1 1 1 1 0 1 1 1 1

Recovery time 4 17 3 1 11 8 28 8 22 29 0 28 8 11 5

Max. deviation 0.5 0.6 0.7 0.4 0.2 0.3 2.5 0.4 1.2 0.9 0 0.9 0.4 0.8 0.5

Cum. perf. loss 1.4 5.7 1.3 0.4 2.6 2.2 25.8 2.3 15.9 16.4 0 13.5 2.2 5.6 1.8

8  In the second experiment with real-life data, we determine the average lead time by considering the lead time for each 
window of the last 3% of all cases completed before the end of that window to prevent situations where the lead time is 
inflated by a few lengthy cases completed within a specific window.
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Results

In this section, we report on the results obtained from our experiments.
Experiment 2.1: Overall resilience. To contextualize resilience insights, Table 8 pre-

sents the main characteristics of diverse time series in terms of the average values, stand-
ard deviations, and coefficients of variation, obtained through semi-monthly windows. 
Here, we find that the processes are rather stable in terms of the available resources 
(avg. coefficient of variation of 19%) and active cases (22%) but fluctuate in terms of case 
arrivals (46%). Per municipality, we see considerable differences, with, e.g., M3 having 
much less fluctuation in its active cases (just 14%) than others (up to 32%).

Table 9 provides an overview of the overall resilience results. We observe that the pro-
cesses have the worst resilience to increases in the active cases, with the longest average 
recovery time across all municipalities and the greatest average maximum increase in 
the average lead time, causing a notable cumulative performance loss. Although resil-
ience to the other two disruptions is generally comparable in terms of maximal impact, 
the average recovery time after decreases in the number of available resources takes 40% 
longer compared to increases in the case arrival, which doubles the observed average 
cumulative performance loss.

When comparing the resilience among the municipalities, we also gain several inter-
esting insights. Municipality M1 exhibits the highest overall resilience. It demon-
strates strong resilience to disruptions in case arrivals and active cases. Furthermore, 
it is not anticipated to experience any performance drops from disruptions in available 
resources. In other words, the expected increase in the average lead time does not exceed 
the tolerated deviation Ptol . Municipality M3 also displays strong resilience; however, a 
potential disruption in available resources affects the lead time, compared to M1. In con-
trast, municipality M2 shows the worst resilience in all disruption scenarios, showing 
the highest cumulative performance loss across all municipalities. Finally, municipali-
ties M4 and M5 exhibit relatively low resilience to an increase in the number of active 
cases, remaining competitive with other municipalities in other disruptions. Based on 
such insights, municipality M2 could conduct further analyses to understand why their 
resilience on the same process is so different compared to M1 and M3, as a basis for 
future improvement.

Table 10  Results of Experiment 2.2, showing process resilience (semi-monthly windows) per 
municipality to disruptions in the three most common application types and the corresponding 
statistics, obtained based on the initial event logs

Case type descriptions: A: “Bouw”(“Construction”), B: “Kap” (“Felling (Cutting down trees)”), C: “Milieu (vergunning)” 
(“Environment (permit)”), D: “Bouw, Handelen in strijd met regels RO” (“Construction, Acting against spatial planning rules”), 
E: “Handelen in strijd met regels RO” (“Acting against spatial planning rules”)

Municipality M1 M2 M3 M4 M5

Increase in case type A B C A B C A B D A B E A B D

Case frequency (%) 50 8 5 39 11 7 39 19 6 44 15 9 50 6 10

Avg. lead time 5 5 19 9 4 20 4 2 6 8 6 7 5 6 7

Time-to-impact 1 1 2 2 1 5 3 3 1 1 4 1 1 1 1

Recovery time 8 12 14 36 31 45 10 4 26 52 49 52 50 50 50

Max. deviation 0.5 0.9 0.3 1.3 1.6 0.8 0.5 0.2 0.6 3.2 0.9 3.4 2.0 2.3 1.6

Cum. perf. loss 2 6 3 29 27 29 3 0.8 8 147 30 151 82 102 73
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Experiment 2.2: Resilience per case type. Table  10 shows the resilience insights 
obtained for disruptions in the three common application types per municipality. To 
contextualize the resilience insights, we include the corresponding frequency and 
average lead time for each case type. We observe that the three most common appli-
cation types account for 55 to 70 % of all cases. Interestingly, type A is most common 
for all municipalities, accounting for 40 to 50% of the total cases, and type B always is 
the second or third most common type. The lead times differ remarkably between case 
types and municipalities. For M1, for instance, type A takes about 11 weeks on average 
(5 semi-monthly windows), whereas cases of type C take 40 weeks (19 semi-monthly 
windows).

Based on the computed resilience measures, we observe several differences in resil-
ience to the three most common case types compared to the overall resilience. First of 
all, we see that municipalities M1 and M3 show the highest resilience to all frequent case 
types. This aligns with insights from an overall analysis of resilience to disruptions in the 
number of active cases, depicted in Table 6. The resilience measures for common case 
types at M2 are comparable to the overall resilience in terms of recovery time and cumu-
lative performance loss. However, municipalities M4 and M5 show remarkably lower 
resilience to increases in the three most common case types compared to the overall 
resilience. In both cases, the maximum impact doubles, and with a long recovery time 
reaching the maximum considered horizon, the cumulative loss is significant.

We also observe notable differences in resilience for the same case type across differ-
ent municipalities. For example, resilience to the most common case type A is high at 
M1 and M3 but worse at other municipalities, especially M4. A similar trend is observed 
for type B, with lower resilience at M5. Looking at type C at M1 and M2, there’s a nota-
ble difference in resilience despite the same case frequency and average lead time. A 
similar trend is noted for type D in municipalities M3 and M5.

Overall, when considering resilience per case type and municipality, we see the impor-
tance of examining resilience by case type. The resilience insights obtained from this 
experiment expand upon the findings from the overall resilience analysis and can guide 
further investigation into improving process resilience in municipalities. For instance, it 
is worth investigating why the resilience to the most common case types at M4 and M5 
differs significantly from their overall resilience or whether batching causes low resil-
ience at M4.

Discussion
In this section, we first discuss the advantages of our approach for business process resil-
ience assessment in comparison to the alternative solution. Then, we examine the limita-
tions of our approach, identifying potential areas for improvement.

Advantages of the proposed solution. The proposed approach for resilience assess-
ment offers several advantages that make it particularly well-suited for the task at hand. 
First, the VAR model estimates how process performance responds to disruptions using 
impulse-response analysis, which closely aligns with the idea of measuring resilience 
against disruptions (see the Background section). Moreover, the impulse-response anal-
ysis provides insights into the magnitude and duration of disruption impacts, enabling 
direct identification of all four resilience measures. Second, the VAR model assumes 



Page 26 of 32Kraus et al. Process Science             (2024) 1:4 

linear relationships between relevant process features, which have been proven to pro-
vide reliable and accurate estimates of the resilience of a business process under the 
short-term impact of disruptions (see the  Experiment 1: Approach validity  section), 
even when process disruptions have not been previously observed in the data. Finally, 
our approach is automated, requiring only an event log and a user-defined resilience sce-
nario as input, and can be used out-of-the-box.

Comparison with alternative solution. Our approach offers significant advantages 
over the alternative solution based on (auto-mined) process simulations. Concerning 
the latter, we note that constructing a simulation model that adequately replicates pro-
cess behavior is highly complex and time-consuming  (Dumas et  al. 2018; Oberle and 
van  der  Aa 2023). Simulation models discovered in an automated manner  (Camargo 
et al. 2023; López-Pintado et al. 2022; Abel 2011) lack the functionality needed to sim-
ulate disruption scenarios essential for resilience assessment, requiring additional cus-
tomization and hindering automated resilience assessment. In contrast, our approach 
eliminates the need to create simulation models from scratch or to modify automatically 
generated process simulations to include specific functionalities.

Limitations. The use of a VAR model to assess the resilience of a business process 
from event data also has limitations, which we aim to address in the future.

The linearity of the VAR model allows for robust estimation of the short-term impact 
of a disruption on process performance. However, it might lead to an underestimation of 
the impact if the disruption size is extremely large. This occurs because a process might 
behave non-linearly under extreme disruptions, making rescaling the detected response 
in process performance ineffective.

The first step in our approach generates process features as time series, which describe 
characteristics relevant for resilience assessment. Although these process features are 
typically stationary, maintaining a consistent mean and variance, they can exhibit signifi-
cant changes due to factors such as concept drift. In such cases, preprocessing steps are 
necessary. For instance, concept drift detection can be applied to an event log to identify 
these changes before assessing the resilience of the process version of interest. Further-
more, if a process is highly seasonal, the time series may need to be de-seasonalized to 
eliminate the impact of seasonality on the resilience assessment results.

Finally, our approach employs the Akaike information criterion for selecting opti-
mal model settings. Despite its acceptable results, this is a relatively simplistic strategy, 
whereas selecting (truly) optimal models is a complex task.

Related Work
Our work relates to resilience assessment approaches specific to business processes and 
some well-established problems in process mining. It also relates to broader research 
areas in other fields.

Process Resilience Assessment

In the following, we discuss the two main research directions in process resilience 
assessment and explore related problems within process mining.

Main research directions. The assessment of business process resilience diverges into 
two directions: resilience assessment at design-time and at run-time.
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Resilience assessment at design-time. Resilience assessment at design-time refers to 
the evaluation of a process’ resilience capabilities during the initial design phase. A 
recently proposed method introduces four levels of process model resilience based on 
a data-centric, collaboration-oriented modeling language for processes (Plebani et al. 
2017). Based on this method, a resilience-aware maturity model for modeling multi-
party business processes allows precise quantification of model compliance concern-
ing the different resilience levels (Marrella et al. 2019): no resilience awareness, failure 
awareness, data resilience, milestone resilience, and process resilience.

Resilience assessment at run-time. Resilience assessment at run-time involves evalu-
ating a process’s ability to withstand disruptions and maintain performance during 
its operational phase, with a focus on monitoring its response to unexpected events. 
Our paper focuses on data-driven resilience assessment at run-time, for which little 
research in business process management and process mining has been conducted 
so far. The only research that addresses this problem is the work by Zahoransky 
et  al., who have presented a decision support framework  (Zahoransky et  al. 2015). 
This framework collects and quantifies metrics and indicators for assessing the run-
time resilience of a process based on the ex-post analysis of event logs. They also 
conducted a case study  (Zahoransky et  al. 2014), investigating the temporal aspect 
of process resilience, done by applying process mining to create probability distri-
butions on the time behavior of business processes, using historic information in an 
event log. However, their approach is not generalizable because it depends on domain 
knowledge and manual intervention and requires a known process model for building 
a simulation model, making process-centered and data-driven resilience assessment 
impractical.

Connection to other problems in process mining. In the following discussion, we 
position the problem of assessing business process resilience alongside other well-
established problems in process mining, highlighting the unique aspects of resilience 
assessment.

Anomaly detection. Anomalies can be defined as deviations in process behavior from 
normal or expected behavior according to an established process model (Bezerra et al. 
2009). Numerous supervised and unsupervised techniques have been proposed to detect 
these deviations within event logs, as highlighted in recent surveys  (Ko and Comuzzi 
2023; Sarno et  al. 2020). However, anomaly detection cannot be used to address the 
problem of process resilience assessment due to its different scope and approach level. 
Specifically, process resilience assessment aims to estimate the potential impact of future 
process disruptions, which indicate changes characteristics of a process at the system 
level. In contrast, anomaly detection focuses on identifying past deviations recorded in 
an event log, either at the trace level or within segments of traces.

Concept drift detection. Concept drift in process mining occurs when a process 
changes while being analyzed (Bose et al. 2011). The objective of concept drift detec-
tion is to identify and describe these changes using data from an event log. A tempo-
rary disruption, such as a sudden increase in case arrivals, should not be mistaken for 
concept drift. Unlike concept drift, which indicates a shift to a new version of the pro-
cess model, disruptions are temporal and are more linked to anomalies. Furthermore, 
concept drift detection focuses on detecting changes in the recorded data rather 
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than predicting how a process might react to future disruptions. Therefore, resilience 
assessment presents a distinct challenge compared to concept drift detection.

Causal process mining. Causal process mining involves identifying and understanding 
the cause-and-effect relationships within different features of a business process. Causal 
analysis has been successfully used to automate the discovery of factors that impact pro-
cess performance (Hompes et al. 2017) or to mine process dependencies for control-flow 
decisions taken during the execution of process models (Leemans and Tax 2022).

The problem of resilience assessment can be viewed as a problem of causal analysis, 
where the disruption is the cause and the decline in process performance is the effect. 
However, in this context, identifying the cause and effect is redundant since they are 
already known, making the quantification of the impact the primary concern. Existing 
methods for causality detection, such as those based on Granger causality, can quantify 
the impact of a disruption on process performance. However, these methods do not con-
sider the evolution of this impact over time or its relation to other process features that 
are also affected and may contribute to the performance decline. In contrast, a vector 
autoregressive model can address these challenges more effectively. It can analyze the 
dependencies between relevant process features in a single run, considering all features 
and their inter-relations simultaneously. This allows for a comprehensive prediction of 
the response in process performance under various disruption scenarios, taking into 
account the complex interactions between different process features.

Resilience assessment in other research fields

The problem of resilience assessment is linked to various established research fields. In 
the following discussion, we consider these fields and discuss their differences in com-
parison to business process resilience assessment.

Risk assessment. Risk assessment is a mature discipline that has been developed in 
the past 40 years to help understand and control the risk of accident events (Zio 2018). 
Many principles and methods are developed for how to conceptualize, assess, and man-
age risk (Aven 2016), i.e., the potential occurrence of undesirable consequences for cer-
tain entities or situations.

Risk assessment and resilience assessment complement each other  (Zio 2018). Risk 
assessment focuses on identifying and managing potential risks, while resilience assess-
ment focuses on the ability to withstand and recover from disruptions. Together, they 
provide a comprehensive approach to understanding and mitigating threats, ensuring 
both the prevention of issues and the capability to recover when they occur. However, 
existing data-driven techniques for risk assessment cannot describe the ability of a pro-
cess to withstand and recover from possible disruptions, but process resilience assess-
ment can enhance awareness of potential risks in business process management.

Business continuity management. The continuity of a business process and process 
resilience are closely related concepts that complement each other, though they differ 
slightly in scope and focus. Business continuity is defined as the ability of an organi-
zation to continue delivering products or services at acceptable levels after a disrup-
tion (International Organization for Standardization n.a.). It primarily aims at ensuring 
immediate operational stability by developing specific, tactical plans and procedures to 
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prevent disruptive events from causing unexpected, unwanted interruptions in produc-
tion or service activities  (Zio 2018). Business continuity focuses on building processes 
and procedures to navigate a single disturbance by establishing alternative suppliers, 
maintaining backup inventory, and creating detailed plans for switching suppliers if the 
primary supplier is unavailable. In contrast, process resilience emphasizes the process 
itself, aiming for long-term strength and the ability to handle any number of disruptions, 
even unforeseen ones, by integrating flexible manufacturing practices that enable pro-
cess activities to be executed under various conditions.

Statistical quality control. Statistical quality control is a collection of tools and tech-
niques useful in achieving quality improvement by establishing process stability (Mont-
gomery 2019). The enhancement of process quality stems from the reduction of 
variability in its outcomes, implying that a decrease in variability in the critical charac-
teristics of a product results in an increase in product quality.

Process resilience assessment and statistical process control share some similarities 
but differ in scope. Statistical process control aims to maintain process performance 
within acceptable levels and alert management when deviations occur, typically utilizing 
control charts that display upper and lower bounds for a given performance indicator. 
In contrast, process resilience not only addresses deviations from desired levels but also 
seeks to predict the expected impact and recovery time in the event of disruptions.

Sensitivity analysis. Sensitivity analysis evaluates how variations in input parameters 
affect a model or system’s output  (Saltelli et al. 2004; Ferretti et al. 2016). It is used to 
identify critical factors influencing outcomes, quantify their influence, and inform deci-
sion-making by highlighting areas where improvements or interventions may be most 
effective.

Still, sensitivity analysis provides an incomplete view of the resilience assessment prob-
lem. Existing sensitivity analysis methods, e.g., Sobol sensitivity analysis  (Sobol 2001) 
and PRIM (Patient Rule Induction Method) analysis (Friedman and Fisher 1999), allow 
quantification of the impact of changes in one variable on another. In resilience assess-
ment, this can be used to assess the maximal expected impact on process performance 
based on the initial size of the disruption. However, they can only be used to estimate 
the anticipated maximum impact of a disruption, whereas they do not provide insights 
into the impact of a disruption over time, such as the time-to-impact or recovery time.

Conclusion
This paper presented an approach for assessing process resilience using event log data. 
We measure process resilience in terms of the expected deviation of the process per-
formance to disruptions in different process characteristics, such as arrival rate, active 
cases, and available resources. Our approach represents process characteristics as time 
series, constructs a vector autoregressive model that captures the statistical relationship 
between them, and conducts impulse-response analysis. Evaluation experiments dem-
onstrate the accuracy and effectiveness of our approach in quantifying overall process 
resilience and its weak and strong points concerning different disruption types. The 
obtained insights help to understand the resilience of business processes, which is the 
first critical step towards achieving better resilience.
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In future research, we plan to improve and further develop our work in several man-
ners. First, our employed VAR models assume a linear relationship between the process 
features, which is not always the case. In our evaluation, we saw that the linear mod-
els generally performed well. Nevertheless, future research should investigate other 
VAR models, for instance, with time-varying coefficients or nonlinearity. Second, our 
approach employs the Akaike information criterion for selecting optimal model settings. 
Despite its acceptable results, this is a relatively simplistic strategy, whereas selecting 
(truly) optimal models is a complex task. Therefore, in the future, we aim to investigate 
state-of-the-art selection strategies that best suit the objective of resilience assessment 
using event data. Third, we aim to improve the statistical properties of the generated 
time series by accounting for, e.g., trends with drifts and seasonal effects, which may 
yield more accurate models. Finally, we aim to study how countermeasures can mitigate 
the expected negative impact of a disruption on a PPI. We seek to determine the appro-
priate timing and amount of these countermeasures to keep the negative impact within 
defined boundaries.
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