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Preface

The dissertation consists of three distinct chapters, all related to experimental economics.
Each chapter incorporates artificial intelligence (AI) in a unique way: as a complementary
tool to ensure robustness (Chapter 1), as a novel methodological tool under investigation
(Chapter 2), or as the central concept around which research questions revolve (Chapter
3).

A primary motivation for my research is to challenge traditional methods and the
established academics who defend them. These researchers, comfortable with long-
established methodologies, are often skeptical of new approaches and tend to dismiss
them. They have dominated the field for decades, claimed the most intriguing questions,
accumulated extensive experience, and have relatively easy access to resources. Conse-
quently, competing with them on their terms is an uphill battle I cannot win.

Given the accumulated wisdom in the literature and the established protocols using
traditional methods, one approach to gaining a stake in the field is to gradually deviate
from traditional methodologies by incorporating new technologies. To surpass established
researchers, one must rewrite some of the rules or add new ones. AI offers this possibility,
introducing new research questions and novel methodological practices to experimental
economics.

Older individuals and those with high self-esteem are less inclined to adopt new tech-
nologies (Mahmud et al., 2022). Therefore, it is likely that established researchers will
continue to overlook the power of AI and its potential to revolutionize the field. Even if
they eventually recognize its significance, they may struggle to adapt and devise novel
research questions due to their day-to-day lack of experience with it. Even if they do not
struggle, I already have the first mover’s advantage in this game of accumulated knowl-
edge and experience.

By leveraging AI, I aim to open new research avenues, create a distinct niche that
builds upon yet transcends traditional methodologies, and gain a competitive advantage
against established researchers in the field.
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Chapter 1

Chatper 1 is based on joint work with Dr. Stefan Penczynski. This chapter investigates
strategic voting under the unanimity rule in jury settings, challenging the traditional view
that unanimity protects against wrongful convictions. Previous studies by Feddersen
and Pesendorfer (1998) theoretically demonstrated that strategic voting under unanim-
ity should increase as the jury size increases, which, in turn, can lead to higher error rates
(false conviction) in larger juries. Guarnaschelli et al. (2000) confirmed strategic voting
behavior experimentally but found no significant difference in the percentage of jurors
who vote strategically between jurors of difference sizes. To address these discrepancy
between the theory and empirical results, we propose a non-equilibrium level-k model to
explore the cognitive processes behind strategic voting. Our model suggests a cyclical pat-
tern where players at different levels alternate between informative and strategic voting.
Furthermore, unlike the traditional Bayesian Nash equilibrium predictions of Feddersen
and Pesendorfer (1998), our level-k model does not predict a change in the jurors’ likeli-
hood to vote strategically as the jury size increases. We tested our theory through a two
by two experimental design, varying jury sizes (3 and 6) and information signal sampling
methods (with and without replacement).

Our findings indicate that strategic complexity, influenced by these variations, affects
the distribution of strategic sophistication among jurors. Our results align with Guar-
naschelli et al. (2000), showing no significant difference in strategic voting frequency be-
tween jury sizes but highlighting an unexpected decrease in convicting the innocent and
an increase in acquitting the guilty. This is explained by the prevalence of less sophisti-
cated level-1 players in more complex settings. Sampling without replacement, perceived
as less complex, resulted in higher strategic sophistication. Our analysis suggests that
the level-k model effectively captures the dynamics of strategic voting in juries and can
predict performance across different settings. To ascertain subjects’ level of thinking,
we conduct the experiment with the intra-team communication protocol, introduced by
Burchardi and Penczynski (2014), that yields incentivized written accounts of subjects’
individual reasoning. The messages are classified independently by two research assis-
tants (RA). For each individual decision’s message, RAs classified the level of reasoning
that the message corresponds to most closely. We have additionally utilized GPT-4 to
check the robustness of the classification outcomes by RAs. The classifications by GPT-4
aligned with 91.3% of the RAs’ classifications.

Chapter 2

Chatper 2 is based on joint work with Dr. Stefan Penczynski. It investigates the classi-
fication capabilities of GPT models in processing text data from economic experiments,
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particularly focusing on promises and strategic thinking. This chapter seeks to answer
research questions regarding the performance of GPT models compared to human anno-
tators and traditional machine learning methods, the adaptability of human classification
instructions for large language model (LLM) prompts, and the efficacy of various prompt-
ing techniques. Specifically, we utilized GPT-3.5 and GPT-4 models to classify text tran-
scripts. We varied the prompts between 0-shot and few-shot techniques and experimented
with the use of the 0-shot chain-of-thought (CoT) prompting technique.

Additionally, the chapter aims to serve as a primer for researchers interested in in-
tegrating LLMs into their work by providing a comprehensive review of the computer
science literature specific to prompt engineering and offers a critique of the current appli-
cation of LLMs in social sciences.

Results indicate that GPT-4 consistently outperforms GPT-3.5, achieving accuracy
levels near or above 90% for most tasks, and 73% for more complex tasks. Furthermore,
GPT-4 demonstrates notable gains with n-shot and 0-shot-CoT prompting, particularly
for relatively more complex tasks, while GPT-3.5 shows mixed results. Additionally, the
chapter highlights the cost-effectiveness and efficiency of using LLMs over human an-
notators. LLMs provide immediate, consistent results with detailed justifications and are
not susceptible to fatigue, making them a valuable tool for researchers working with text
data. Moreover, results showed that GPT-4’s performance is comparable to human anno-
tators and surpass traditional natural language processing methods. Overall, the chapter
underscores the potential of LLMs to revolutionize text data analysis in social sciences,
offering a scalable, cost-effective, and highly accurate alternative to traditional methods
and human annotation.

Chapter 3

Chapter 2 is based on joint work with researchers from Max Planck Institute for Intel-
ligent Systems.1 Chapter 3 investigates how offering algorithmic advice as an optional
tool influences its utilization compared to mandatory advice. It also examines the ef-
fect of additional accuracy information on advice utilization, considering subjects’ prior
expectations and experience with AI systems. The research employs facial image pair
classification tasks, where subjects determine whether pairs of facial images belong to the
same person and face recognition system (FRS) as its AI system.

Results show that subjects are more likely to use algorithmic advice when they ac-
tively solicit it. However, because advice is not solicited frequently enough, the over-
all utilization of algorithmic advice is lower when it is optional compared to when it is
mandatory. Additionally, the study finds that additional accuracy information generally

1See Chapter 3, section 3.8 for details.
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has a negative effect on algorithmic advice utilization. This negative effect occurs because
subjects with near-perfect performance expectations adjust their beliefs downward upon
seeing information indicating FRS performance below near-perfect levels. Furthermore,
the role of prior understanding and experience with FRS is found to be significant. Sub-
jects with higher levels of understanding and experience have more accurate performance
expectations and are less affected by additional accuracy information. Conversely, those
with less understanding and experience are more prone to the perfect automation bias and
adjust their beliefs downward, reducing advice utilization. Lastly, the chapter documents
that when advice is solicited, subjects tend to ignore additional accuracy information,
nullifying its debiasing effect. This behavior is consistent regardless of subjects’ FRS un-
derstanding or experience levels. The findings suggest that providing further autonomy to
human decision makers by making advice optional can lead to lower overall utilization of
algorithmic advice and the disregarding of important accuracy information. Consequently
an attempt to provide additional agency to the human decision maker by giving them the
choice to get algorithmic advice is not recommended for in Algorithm-in-the-loop sys-
tems.
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Chapter 1

Strategic thinking in jury decisions
Joint with Stefan P. Penczynski

1.1 Introduction

Predicated on the assumption that jurors vote non-strategically, the unanimity rule in ju-
ries has traditionally been seen as a safeguard against convicting the innocent. Building
upon the work of Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1998, FP)
challenged this perspective and showed that, under the a priori assumption that a defen-
dant is equally likely to be innocent or guilty, an equilibrium with the unanimity rule can
encompass strategic voting. In contrast to informative voting, strategic voting might not
simply reveal private information.

FP proved that the presence of strategic voting leads to higher error rates in convict-
ing the innocent and acquitting the guilty compared to juries under simple majority or
supermajority rules, where strategic voting is absent in equilibrium under the same initial
assumptions. Furthermore, they highlighted that the issue of an increased rate of convict-
ing the innocent under unanimity voting becomes notably exacerbated with larger jury
sizes.

Guarnaschelli et al. (2000, GMP) experimentally confirmed the presence of strategic
voting under unanimity voting, but also documented results that to some extent contradict
FP’s claims on error rates. They sought to reconcile this partial discrepancy between
theory and data by utilizing the Quantal Response Equilibrium (QRE) model’s statistical
nature (McKelvey and Palfrey, 1995).

We introduce an alternative non-equilibrium framework, using level-k modeling, to
address this discrepancy and offer a fresh perspective on jury voting under the unanimity
rule, both theoretically and experimentally. Despite a large literature on strategic thinking
and heterogeneous level-k reasoning that includes work on auctions, social learning and
other related settings (Crawford et al., 2013), to the best of our knowledge the precise
cognitive processes of strategic voting and their concrete influence on jury accuracy have
not yet been studied.
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We model the jury voting via iterative best responses. We begin with the assumption
that all level-0 players vote uninformatively. A level-1 player best-responds to level-0
players by voting her signal (informative voting); and a level-2 player best-responds to
level-1 players by voting “guilty” irrespective of her signal (strategic voting). The intu-
ition is that informative voting with imprecise signals will otherwise never lead to con-
victions under the unanimity rule. With strategic voting being inherently uninformative,
level-3 players revert to informative voting in response. This establishes a cyclical best-
response pattern: higher odd-level players respond to strategic voting with informative
voting and higher even-level players counteract informative voting with strategic voting.

We attained nuanced insights into individual reasoning beyond mere vote observa-
tion by employing an intra-team communication protocol that provides written accounts
of subjects’ decision justifications (Burchardi and Penczynski, 2014; Penczynski, 2017).
These accounts substantiated the existence of the modelled level-k reasoning types within
our sample and allowed us to differentiate among overlapping voting behaviors of various
level-k types, that arises due to our model’s cyclical best-response characteristic. Addi-
tionally, this approach enhanced the robustness of identifying strategic voters by screening
out level-0 players who might otherwise be misidentified as strategic voters if categoriza-
tions were exclusively based on observed votes.

In a 2×2 within-subject experimental design, we investigate strategic voting across
two jury sizes (n = 3, 6) and two sampling methods for the information signal (with and
without replacement). While our theoretical model predicts that specific level-k types
do not change their behaviour when jury sizes or signal sampling methods vary, both
variations are predicted to affect the Nash equilibrium (NE) behavior and are expected to
influence the complexity of the strategic task.

Given a specific level-classification, the observed voting behavior closely mirrors the
theorized behavior and remains largely unaffected by treatments. Yet, these treatments
influence the aggregate voting behavior by altering the distribution of strategic sophisti-
cation. This influence partly explains the discrepancies between observed jury accuracy
and the optimal accuracy predicted by NE. Crucially, the level distributions are primarily
affected by the strategic complexity introduced by the treatment variation, so that the ag-
gregate voting behavior not necessarily aligns with the expected changes under optimal
voting.

We find results in line with GMP, who found no significant difference in the frequency
of strategic voting between jury sizes of 3 and 6. Both studies rather find a significant
decrease in convicting an innocent, and an increase in acquitting a guilty, contrary to the
NE predictions. We can explain this with the informative votes of less sophisticated level-
1 types, which become more frequent in the more complex setting with n = 6 jurors.
We similarly find that the sampling without replacement seems less complex and leads to
higher strategic sophistication compared to sampling with replacement.

2



In light of these results, we propose that a model of heterogeneous types of voters such
as the level-k model is well-suited to understand and predict jury performances across a
number of different settings because it represents the underlying cognitive processes of
strategic voting. Furthermore, our results suggest that more research is needed to under-
stand how task complexity leads to changes in the distribution of sophistication.

Our results relate the setting of jury voting to other settings, in which the plurality
of types has been identified as important for a good overall outcome. For example, in
social learning, the heterogeneity of types improves upon the inefficiencies of fully ra-
tional behaviour – information cascades and herding – thanks to occasional and private-
information-revealing level-1 decisions (Penczynski, 2017). Furthermore, the fact that
the observed level distribution still leads to a good jury performance resembles the coor-
dination “magic” in market-entry games, in which heterogeneous beliefs seem to provide
a useful mechanism of sorting otherwise homogeneous players into market entrants and
non-entrants (Rapoport et al., 1998; Camerer et al., 2004).

Due to the observed influence of the treatment variations on the level-k distribution,
our work also relates to the idea of endogenous depth of reasoning (Agranov et al., 2012;
Alaoui and Penta, 2016). If the strategic sophistication is the result of a cost-benefit
analysis of additional steps of reasoning as modeled by Alaoui and Penta (2016), our
analysis suggests that a larger number of possible signal realizations within the jury, be it
due to a larger jury or to sampling without replacement, increases the complexity of the
game and the cost of deliberation and hence lowers the average observed sophistication.

Our results suggest that conditioning on being pivotal – casting a decisive vote that
determines the jury decision – in voting is much less inhibitive of strategic sophistica-
tion than conditioning on bidding highest in first-price auctions (Eyster and Rabin, 2005;
Crawford and Iriberri, 2007; Li, 2017). In auctions, an intra-team communication anal-
ysis suggests that “subjects may actually have problems to form even a basic belief” as
only 15% of subjects deliberate the other players’ decision and thus qualify for anything
other than level-0 (Koch and Penczynski, 2018, p. 79). In contrast, the level distribution
in voting is very similar to commonly found distributions in other settings.

Incorporating sampling without replacement in our experiment is inspired by Rabin
(2002), who models inference via a sampling process without replacement in order to
reflect the common belief in the law of small numbers (Tversky and Kahneman, 1974).
Similar to our motivation, the increased difficulty of dealing with independent signal and
the simplification of draws that are more “representative” of the urn composition have led
Grimm and Mengel (2020) to use sampling without replacement in their experiment. Our
results support the intuition that this sampling is easier to understand.

3



1.2 Theory

1.2.1 Model Setup

Consider a game with n jurors. Nature determines the state of the world to be red or
blue, S ∈ {R,B}, where each state is equally likely to occur. The realization of S is
not observable by the jury members. After S is determined, each juror receives a private
red or blue signal, s ∈ {r, b}. Signals are informative, as the colors for state and signal
coincide with p ∈ (1

2
, 1), and differ with probability 1− p.

Assume the state of the world is represented by the color of an urn and the jury mem-
bers’ signals are balls drawn from the urn. Given p > 1

2
, relatively more blue (red) balls

are in the blue (red) urn.
We distinguish between two types of sampling of the balls: without replacement (O)

and with replacement (W). In O, the private signal observed by the juror is dependent
on the private signals observed by the other n − 1 jury members. More specifically, p is
a realization of a hypergeometric random variable. In contrast, in W, the private signal
observed by the player is independent of the private signals observed by the other jury
members, and p is a realization of a Bernoulli random variable.

After each juror receives her private signal, she votes as a part of the jury to correctly
guess the true state of the world with vote v ∈ {R,B}. The votes of the n jurors are
aggregated into a jury decision v̂ ∈ {R,B} according to the unanimity voting rule: the
jury decides for the red urn if and only if all the jury members vote red, and decides for
the blue urn otherwise.

Given this notation, the probabilities of convicting an innocent defendant and ac-
quitting a guilty defendant are respectively represented as Pr(v̂ = R|S = B) and
Pr(v̂ = B|S = R). For the ease of notation, in the rest of the paper, we will refer to
these error rates as Pr(R|B) and Pr(B|R).

Every juror has the same payoff function U(v̂, S) and is assumed to receive π = 0 if
the jury correctly guesses the color of the urn; and bears a cost of q ∈ (0, 1) for wrongly
identifying a blue urn as red, and a cost of (1 − q) for wrongly identifying a red urn as
blue. In summary, we have:

U(R,R) = U(B,B) = π = 0

U(R,B) = −q

U(B,R) = −(1− q)

Given these payoffs, the parameter q defines a juror’s boundary for reasonable doubt. A
juror who believes the defendant to be guilty with probability higher than q will strictly
prefer to convict the defendant. A greater value of q indicates that the juror is more
tolerant of the risk of acquitting a guilty defendant compared to the potential harm of
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convicting an innocent.

1.2.2 Nash Equilibrium

Define σ(s) as the probability to vote red given signal s. FP show the existence of a
mixed strategy equilibrium in which every juror votes red with some positive probability,
σ(b), when her signal is blue; and always vote red, σ(r) = 1, when her signal is red. We
adapt their relevant findings – for sampling with replacement – to our terminology and
summarize them in the following proposition:

Proposition 1
Given the signals are independent from each other, the unique symmetric mixed strategy

equilibrium is defined as

σ(r) = 1, (1.1)

σ(b) =
Kp− (1− p)

p−K(1− p)
, (1.2)

where

K =

(
(1− q)(1− p)

qp

) 1
n−1

. (1.3)

Moreover, the probability of an incorrect jury decision to vote red when the true state is

blue, Pr(R|B), and the probability to vote blue when the true state is red, Pr(B|R), are

defined as

Pr(R|B) = (ρB)
n, (1.4)

Pr(B|R) = 1− (ρR)
n, (1.5)

where

ρR = pσ(r) + (1− p)σ(b) and (1.6)

ρB = (1− p)σ(r) + pσ(b) (1.7)

are the probabilities that a juror votes red for the respective states of the world, R and B.

Proof. See Feddersen and Pesendorfer (1998).1

1More specifically, see pages 24-26 and Appendix A in FP for the proposition and its proof. For a brief
overview of the explicit functional forms see pages 408-409 in GMP. For a brief discussion of the strategic
voting and pivotality see pages 376-377 and 386-387 in Coughlan (2000) and pages 35-39 in Austen-Smith
and Banks (1996).
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Proposition 1 defines an equilibrium solution for the case where the private signals are
drawn independently (W). We provide the mixed strategy equilibrium for the hypergeo-
metric case (O) in the following corollary.

Corollary 1.1 Given the signals are drawn from the hypergeometric distribution, the

unique symmetric mixed strategy equilibrium is defined as

σ(r) = 1, (1.8)

σ(b) =

(
qp

(1− p)(1− q)

) 1
n(1−2p)

. (1.9)

Moreover, the probability of an incorrect jury decision to vote red when the true state is

blue, Pr(R|B), and the probability to vote blue when the true state is red, Pr(B|R), are

defined as:

Pr(R|B) = (ρB)
n, (1.10)

Pr(B|R) = 1− (ρR)
n (1.11)

where

ρR = σ(r)pnσ(b)(1−p)n and (1.12)

ρB = σ(r)(1−p)nσ(b)pn. (1.13)

Proof. See Appendix 1.A.1.

1.2.3 Best responses

Define αs as the juror’s belief on being pivotal given the signal s and conditional on state
R, and define βs for this belief conditional on state B. In the following proposition, we
identify the conditions for informative and strategic voting under any beliefs αs and βs.

Proposition 2
For every juror i, define ui(·) as the utility given her vote. Then, we have:

E(ui(σi(r) = 1)) = ((1− q)αrp− qβr(1− p)) + E(ui(σi(r) = 0)) (1.14)

E(ui(σi(b) = 0)) = (qβbp− (1− q)αb(1− p)) + E(ui(σi(b) = 1)) (1.15)

Proof. See Appendix 1.A.2.
Using Proposition 2, we identify the conditions under which a juror votes informa-

tively or strategically in the following corollary.
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Corollary 2.1
Assume αs + βs > 0 for s ∈ {r, b}, and define w = 1−q

q
then a juror votes her signal

(informative voting) if and only if p > wαb

wαb+βb and p > βr

wαr+βr ; and a juror always votes

red (strategic voting) if and only if wαb

wαb+βb > p > βr

wαr+βr .

Proof. See Appendix 1.A.3.
The assumption αs + βs > 0 assures that a juror is pivotal in at least one state of the

world.
Notice that if we assume that either type of errors are equally costly as in our exper-

imental setup, then we have w = 1; and the boundary conditions for informative and
strategic voting become solely dependent on the pivotality probabilities. In the continu-
ation of the paper, for the ease of notation and to be in line with our experimental setup,
we will assume that U(R,B) = U(B,R) and hence set q to 1

2
.

Moreover notice that if we further assume that σ(r) ≥ σ(b), then since p > 1
2
, it

is trivial to show αs ≥ βs for s ∈ {r, b}. Given αs ≥ βs for s ∈ {r, b}, the inequality
βr

αr+βr ≤ 1
2
< p is always satisfied, and the inequality βr

αr+βr > p > 1
2

is never satisfied. As
a result, informative and strategic voting conditions respectively simplifies to αb

αb+βb > p

and αb

αb+βb < p.

1.2.4 Level-k Modeling

Consider a model of heterogeneous types of strategic reasoning, with types k ∈ N0, who
apply k iterated best responses to a level-0 belief (See Nagel, 1995; Stahl and Wilson,
1995; Crawford et al., 2013). The types are distributed in the population according to
the level-k distribution d(k), and each level-k juror believes all other jury members to be
level-(k − 1). Furthermore, each juror chooses strategy σk(s) and believes to be pivotal
with probabilities αs

k and βs
k for states R and B respectively.

We assume a level-0 juror to vote uninformatively and hence independently of her
signal, σ0(r) = σ0(b) > 0.2 With σ0(s) > 0 for s ∈ {r, b}, we avoid a trivial setup and
assure the level-1 juror to be pivotal with positive probability.

Given the uninformative level-0 voting, a level-1 juror’s pivotality is independent of
the state. Hence, a level-1 juror’s expected utility solely depends on her signal’s infor-
mativeness. Consequently, given the received signal has some degree of informativeness
(i.e. p > 1

2
), a level-1 juror votes the same color as her signal.3

2We can relax this assumption by introducing some degree of informativeness to level-0 voting, and main-
tain the same level-1 predictions (see Appendix 1.A.6 for details). In addition, notice that σ0(r) = σ0(b) >
0 entails the case for level-0 jurors to vote randomly, i.e. σ0(s) =

1
2 for s ∈ {r, b}.

3If we relax the assumption that the jury errors are equally costly and assume without loss of generality
that convicting the innocent is more costly for the juror than acquitting the guilty (q > 1

2 ), then the degree
of the received signal’s informativeness needs to be higher than the juror’s threshold of reasonable doubt,
p > q, in order for her to vote informatively.

7



A juror’s expected utility for either choice of vote depends both on her received sig-
nal’s strength, p, and her perceived pivotality for a given state, αs or βs. Given the asym-
metric nature of unanimous voting, a level-2 juror believes to be less pivotal if the true
state is B. Hence if her perceived pivotality under state R is relatively high enough to
offset her received blue signal’s strength (αb(1− p) > pβb), she will vote red upon a blue
signal.4

Because a level-2 juror votes strategically, i.e. always votes red, her action becomes
as uninformative as a level-0 juror. Hence, a level-3 juror best responds in the same way
a level-1 juror does and votes informatively.

Proposition 3
Consider the case where each juror receives an independent private signal. ∀n > 2, jury

members at levels {1, 3, ...} vote informatively; and jury members at levels {2, 4, ...} vote

strategically.

Proof. See Appendix 1.A.4.
For the case where the private signals are dependent (O), given n ≥ 2

1−p
,5 a level-2

juror never believes to be pivotal as she believes that there is always a level-1 juror in the
group that receives the blue signal and votes blue. Therefore, for n ≥ 2

1−p
, a level-2 juror

is indifferent between voting blue and red.
To eliminate this indifference, we introduce a small error term, ϵ, into the juror’s belief

about other players’ choices. Specifically, we assume that every juror believes with some
small probability ϵ > 0 that every other juror votes the color other than the color they are
expected to vote, i.e. makes a mistake.6 The introduced noise enables us to parallel the
predictions we made in Proposition 3, for O in the following proposition.

Proposition 4
Consider the case where each juror receives a hypergeometrically dependent private sig-

nal. Assume that each juror believes other jury members to make a mistake with some

probability ϵ such that:

ϵ <
1

1 +
(

p
1−p

) 1
(2p−1)n

4If we relax the assumption that the jury errors are equally costly, then strategic voting will also be de-
pendent on the relative costs of acquitting a guilty and convicting an innocent. For instance, if the jury
members are primarily concerned with not convicting an innocent, then the threshold of reasonable doubt
can be high enough to offset the relatively small probability of being pivotal under the blue state and a
“level-2” juror will not vote strategically. On the other hand, given the juror is not pivotal in the blue
state, βb = 0, (as can be the case under without replacement sampling), then even if she has a very high
threshold of reasonable doubt, she will still prefer to vote strategically.

5Given p = 2
3 , for n ≥ 6.

6Alternatively, it can be assumed that every juror believes with some small probability ϵ > 0 that every
other juror votes randomly. This has no effect on the predictions of our model, but changes the upper
bound for ϵ stated in Proposition 4.
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Then ∀n > 2, jury members at levels {1, 3, ...} vote informatively, and jury members at

levels {2, 4, ...} vote strategically.

Proof. See Appendix 1.A.5.
On the basis of Propositions 3 and 4, Table 1.1 spells out the level-k predictions for

level-0 to level-3 by sampling method, jury size and signal. Notably, each level-k type
behaves the same across these different aspects. Differences in σ(s) across treatments can
therefore only result from changes in the level-k distribution d(k).

O W
n = 3 n = 6 n = 3 n = 6

d(k) σ(b) σ(r) σ(b) σ(r) σ(b) σ(r) σ(b) σ(r)

k = 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
k = 1 0 1 0 1 0 1 0 1
k = 2 1 1 1 1 1 1 1 1
k = 3 0 1 0 1 0 1 0 1

Table 1.1: Level-k predictions for σk(s).

Given the importance of d(k), asking for an ideal level-k distribution becomes insight-
ful. Specifically, which ideal distribution d∗(k) minimizes the aggregate probability of a
jury’s errors, Pr(R|B)+Pr(B|R)? We answer this question in an optimization problem
that features three distinct types, level-0, level-1, and level-2. Higher levels shall be re-
flected by level-1 or level-2 because odd-level and even-level behaviors coincide. Table
1.2 indicates d∗(k) by sampling method and jury size. Notably, the uninformative behav-
ior of level-0 is not useful in minimizing errors and therefore d∗(0) = 0. Furthermore, the
average level µ∗

d is relatively high, especially for n = 6, and translates in a relatively high
ideal share of level-2.

O W
d∗(k) n = 3 n = 6 n = 3 n = 6

k = 0 .00 .00 .00 .00
k = 1 .50 .29 .68 .34
k = 2 .50 .71 .32 .66
µ∗
d 1.50 1.71 1.32 1.66

Table 1.2: Optimal Level-k distribution d∗(k) by treatment.

Table 1.3 shows the aggregate predictions σ(s) following d∗(k). For both O and W,
levels of σ(b) increase with jury size. Interestingly, these predictions coincide with the
NE predictions, which also minimize the probability of jury error.7 Intuitively, only level-

7Our W treatment predictions slightly differ from the W predictions of GMP who implement p = 7
10 and

not p = 2
3 . They have not considered the case without replacement.
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2 jurors vote strategically red after a blue signal, which is required with some probability
in order to correctly decide for the true state S under the unanimity rule. Table 1.4 gives
the minimized probabilities of jury errors.

O W
σ(r) σ(b) σ(r) σ(b)

n = 3 1 .50 1 .32
n = 6 1 .71 1 .66

Table 1.3: Nash equilibrium and d∗ predictions for σ(s) by treatment.

Another prediction relates to the jury’s accuracy to predict the true state of the world.
The two types of errors are quantified in Table 1.4. Under Nash and d∗(k) behaviour,
these do not change with the jury size in O.

O W
Pr(R|B) Pr(B|R) Pr(R|B) Pr(B|R)

n = 3 .25 .50 .16 .54
n = 6 .25 .50 .21 .52

Table 1.4: Probabilities of incorrect jury decisions in Nash equilibrium and under d∗(k).

1.3 Experimental design

In this study, we employ a 2 × 2 within-subject experimental design, varying the size of
the jury, n ∈ {3, 6}, in one dimension and the sampling of the signal, without (O) or with
replacement (W), in the other. This implies four treatments, 3O, 6O, 3W, 6W. Signals are
balls drawn from a red or blue urn, S ∈ {R,B}, each of which is set to be equally likely
to occur. Moreover, we assume the cost of either type of error to be equal (q = 1

2
) and the

probability of drawing a ball of the same color as the urn to be twice more likely (p = 2
3
).

1.3.1 Team Communication

To ascertain subjects’ level of thinking, we conduct the experiment with an intra-team
communication protocol that yields incentivized written accounts of their individual rea-
soning (Burchardi and Penczynski, 2014).8

The communication protocol incentivizes the subjects’ messages within their respec-
tive teams as follows. Subjects are randomly assigned into teams of two players. The two

8The experimental instructions are reprinted in section 1.B of the online appendix. The experiments were
programmed and conducted with the software z-Tree (Fischbacher, 2007).
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members are connected through the modified chat module of the experiment software.
Once subjects know the decision problem, each team member can state a so-called “sug-
gested decision” and justify it in a written message. After the suggested decision is made,
the suggestions and messages get exchanged simultaneously. In a next step, both team
members individually state their “final decision”. For each decision, one of the two team
members’ final decisions is chosen randomly by the computer to count as the “team’s
action”. This construction provides incentives to state the full reasoning underlying the
suggested decision in a clear and convincing way. The message is entered in free form
without explicit space or time limitations.

Note that each team takes the role of a single juror and members of the same team
always observe one and the same signal. Juries are therefore composed of n teams and
the jury decision derives from the n final decisions. However, our main analysis focuses
on the suggested decisions and messages of the individual subjects.9

1.3.2 Experimental procedures

We conducted six experimental sessions in the Experimental Economics Laboratory at the
University of Mannheim (mLab). A total of 96 subjects participated in the experiments.
Subjects were recruited from the University of Mannheim’s subject pool. The sessions
respectively had 12, 12, 24, 24, 12 and 12 subjects. All of the subjects were either Bach-
elor (69), Master (20) or Doctoral (7) students of the University of Mannheim. Subjects’
mean and median ages were 22. 52% of the subjects were female. Out of 96 subjects, 27
were studying Economics, 11 of them first year, 6 of them second year, 6 of them third
year and 4 of them forth year or above. 45% of the subjects had prior training in game
theory and 95% of them had previously participated in laboratory experiments.

Each session began with an initial test phase, during which subjects familiarized
themselves with the team communication procedures. During this test phase, subjects
answered two unrelated questions involving guessing the date of two different historical
events. Subsequently, subjects played the jury voting game in four consecutive parts, with
each part corresponding to a different treatment. Each part consisted of two periods, with
subjects playing the treatment-specific variation of the game in each period. For every
period, subjects were randomly reassigned to a new team and a jury.10 Prior to each part,
subjects were provided with instructions relevant only to that specific treatment. At the
end of each period, subjects were provided with the aggregated decision of their jury and
the resulting payoff for that period. After completing a part, subjects received a new set

9Arad et al. (2022) show that the team setup does not introduce systematic differences in strategic decisions
compared to a setup with individuals.

10Upon investigation, we have found no significant difference between the consecutive periods for each
treatment. Consequently, we combined the data from both periods to increase the number of observations
for our analysis.
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of instructions for the subsequent one. The experimenter read the instructions aloud and
addressed any clarification questions publicly.

The sessions were organized such that half of them followed an order in which sub-
jects first played O (without replacement) treatments for jury sizes of three and six, re-
spectively, followed by W (with replacement) treatments. The other half of the sessions
featured a reversed order for the sampling treatments while maintaining the same order
for the jury sizes.11

O W
∑

n = 3 192 192 384
n = 6 192 168 360∑

384 360 744

Table 1.5: Number of observations by treatments.

In sum, 744 observations are collected in 6 sessions. Table 1.5 indicates 24 fewer
observations for 6W treatment because of an imposed end in one session, in which several
subjects took significantly more time to make their decisions than expected.12

Remuneration for subjects was structured as follows: for each period, subjects earned
e 2 if their jury reached a correct decision, and e 0.20 if the decision was incorrect. A
show-up fee of e 4 was provided, with additional earnings based on the accuracy of their
jury’s decisions averaging at e 8.9, and ranging from a minimum of e 5 to a maximum of
e 12.4. The subjects received their payment after the experiment in private and in cash.

1.3.3 Classification Process

The messages are classified independently by two research assistants (RA). For each in-
dividual decision’s message they indicated the level of reasoning that the message corre-
sponds to most closely. For this task, the RAs are introduced to the level-k model and
received detailed instructions about characteristics of the individual types.13

The following features of the levels of reasoning are derived from the model and
guide the classification process (similar to Burchardi and Penczynski, 2014; Penczynski,
2017). Level-0 play corresponds to choosing randomly, entirely without justification or
with some justification completely unrelated to the task. Level-1 jurors always follow
their own signal. They may argue in favor of playing their own signal through some
probability argument. Level-2 reasoning assumes that all other jury members follow their
signal and suggests a way to best respond to that. Level-3 reasoning is aware that people
best respond to a belief that others follow their signal by voting red. Since level-3’s

11Order effects are analyzed and discussed in section 1.6.1.
12GMP faced a similar issue with their 6W treatment.
13Classification instructions for the RAs are reprinted in section 1.C of the online appendix.
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best response is to follow their signal, level-3 reasoning might have similarities to level-1
reasoning.

The classification procedure starts with both RAs providing independent sets of classi-
fications. Then, both are anonymously informed about the classifications of the other RA
and have the possibility to simultaneously revise their own classification. This revision
process is repeated twice. These iterations allow them to reconsider diverging classifica-
tions and to screen errors or misperceptions.14

Table 1.6 indicates that out of 744 observations and hence message opportunities, 529
(71.1%) sent a message, which was classified in all except 4 cases. Out of the classified
messages, 493 (93.2%) had a matching level classification by the RAs. Only observa-
tions with classified messages enter our analysis. Table 1.7 shows that the percentage of
messages classified out of all observations is stable across treatments. Table 1.8 shows
message examples that are classified for each type of level of thinking.

Message Sent No Message Sent
Classified Unclassified

525 4 215
Matched 493

Table 1.6: Number of observations by messages and classification.

O W
∑

n = 3 .69 .65 .67
n = 6 .65 .66 .66∑

.67 .66 .66

Table 1.7: Ratio of observations with classified messages by treatments.

GPT Classification

Additionally, we have utilized GPT-4 to benchmark the classification outcomes by RAs
and to investigate the accuracy of classifications by Large Language Models (LLMs). The
classifications by GPT-4 aligned with 91.3% of the RAs’ classifications. The details of
the GPT-4 classification procedure are provided in Chapter 2.

14The initial agreement rate was 77.6%. After the first revision it increased to 87.4%, and after the second
revision, the final agreement rate was 93.2%. See Burchardi and Penczynski (2014), Eich and Penczynski
(2016), and Penczynski (2019) for further evidence on the robustness and replicability of this kind of
classification.
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Level Message
L0 I don’t have a clue.
L0 Did not exactly understand this experiment seems to be just de-

pending on luck.
L1 The probability of our urn being the color of the ball is 2/3 while

the probability of the other color is 1/3.
L1 Hm.. the chance of it being the correct color is higher than it being

the wrong one.
L2 I’d take red, because if any other is taking blue, it’ll be blue any-

ways.
L2 I suggest we go for red because our decision won’t be decisive in

the committee’s vote if the others go for blue. We don’t hurt anyone
with this decision.

L3 I think we should stay at blue because the probability of the urn
to be blue is 50/50. So the others may decide to take red as they
assume that one team will choose blue but if every team thinks in
this way we would lose.

L3 Risky to vote blue but others may not vote blue even when draw
blue. I say we vote blue.

Table 1.8: Examples of messages

1.4 Hypotheses

The literature has identified many classes of games, in which subjects apply level-k rea-
soning. We therefore expect that such reasoning is also used for jury voting (Crawford et
al., 2013).

Hypothesis 1 Jury member decisions are governed by level-k reasoning.

Hypotheses 2 and 3 express some of the theoretical findings from section 1.2.4.

Hypothesis 2 Given a level of reasoning, the behaviour will not differ by treatment.

Hence, aggregate σ(b) will not depend on the treatments, but on the level-k distribution

d(k) only.

Hypothesis 3 The jury error rates in terms of Pr(R|B) and Pr(B|R) are a function of

the level-k distribution d(k).

What could influence the level-k distribution? At various points in the literature,
the dependence of the level-k distribution on game and population characteristics has
been discussed and empirically documented (Alaoui and Penta, 2016; Penczynski, 2016b,
2017; Koch and Penczynski, 2018).

Increasing task complexity raises the cognitive cost of strategic thinking, while re-
duced perceived pivotality curtails the motivation for such thought. In our experiment, we
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selected the sampling method and jury size as treatment dimensions, as each influences
task complexity by changing signal realizations within the jury, which in turn affects a ju-
ror’s perceived pivotality. A jury size of 3 presents fewer signal realizations than a jury of
6, irrespective of the sampling method. We hypothesize that such decreased complexity
leaves more cognitive capacity for strategic deliberation and thus leads to a higher mean
level of reasoning.

Hypothesis 4 The smaller number of possible signal realizations in jury size 3 compared

to jury size 6 frees cognitive capacity and leads to the observation of a higher average

level of reasoning µd.

In O, for a given state S, the distribution of red and blue signals within the jury is
predetermined and hence known by the jury members. Rabin (2002) models the belief in
the law of the small numbers by means of “without replacement” sampling, leading us to
expect that O makes deliberation easier for subjects. In W, many more signal realizations
are possible, especially with larger jury sizes n.

Hypothesis 5 The smaller number of possible signal realizations in O compared to W

frees cognitive capacity and leads to the observation of a higher average level of reason-

ing µd.

1.5 Results

Section 1.3.3 has shown that the RAs agreed about the content of messages in 93.2% of
the cases. Table 1.9 shows the aggregated level-k distribution according to these classi-
fications. The distribution d(k) is non-degenerate and features a heterogeneity of types,
a hump-shape with mode behaviour at level-1, and hardly any level-3 behaviour. All of
these are expected and common traits of level-k distributions as observed in other con-
texts (Crawford et al., 2013). An average level µd of 1.12 is well within the range between
1 and 1.5 that the literature commonly observes (Camerer et al., 2004; Costa-Gomes and
Crawford, 2006; Burchardi and Penczynski, 2014).15

Result 1 According to the message classification, jury member decisions are governed

by level-k reasoning in a similar fashion as other strategic decisions in the literature.

Table 1.10 shows behaviour σ(s) for both signals by treatment and levels. While
levels are inferred from messages without explicit knowledge of the suggested action,

15In each treatment, the balance between the received signals and the state of the urn is checked. The
proportions of the red signals received were as follows: 0.48 for 3O, 0.54 for 6O, 0.53 for 3W, and 0.51
for 6W. Similarly, the proportions of the red states were found to be: 0.47 for 3O, 0.66 for 6O, 0.53 for
3W, and 0.49 for 6W. In sum, barring the imbalance of red and blue states for 6O, the treatments are
balanced in terms of red and blue signals and states.
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d(k)

k = 0 .21
k = 1 .49
k = 2 .29
k = 3 .02
µd 1.12

Table 1.9: Aggregate level-k distribution d(k).

the behaviour of σ(s) within levels is not statistically different across treatments (Fisher
exact test, pmin > 0.187) except for level-0 behavior for s = b between 6O and 6W
(Fisher exact test, p = 0.081).

Some degree of informativeness in level-0 voting is identified for W treatments (Fisher
exact test, 3W: p = 0.134, 6W: p = 0.041), while level-1 and level-2 voting closely
align with predictions. Level-1 voting is primarily informative and significantly differs
between signals in all treatments (Fisher exact test, pmax < 0.001). Level-2 voting is
predominantly strategic and not significantly dependent on the signal (Fisher exact test,
pmin > 0.23)

O W
n = 3 n = 6 n = 3 n = 6

d(k) σ(b) σ(r) σ(b) σ(r) σ(b) σ(r) σ(b) σ(r)

k = 0 .75 .64 .71 .73 .40 .86 .38 .75
k = 1 .03 .97 .09 .97 .09 .97 .04 .97
k = 2 .92 1.00 .91 1.00 .92 1.00 1.00 1.00
k = 3 .00 – .00 – .00 – – –

Table 1.10: σ(s) per treatment and level.

Table 1.11 aggregates these numbers over levels. For σ(r), Table 1.11a shows that our
results (ÇP) are close to the NE predictions and d∗(k) implication of σ(r) = 1. Yet, due to
level-0 voting, we reject the null hypothesis that they are 0.99 or above for all treatments
(one-sample binomial test: for 3O, 6O, 6W pmax < 0.001; for 3W p = 0.071). For σ(b),
Table 1.11b shows that the jury size has less influence than NE and d∗(k) would predict,
both in our data and in GMP’s results. Specifically, in aggregate, σ(b) is found not to be
significantly different between jury sizes 3 and 6 for both O or W (Fisher exact test, O:
p = 0.371; W: p = 0.69), and it is found to be significantly lower than predicted in 6O
and 6W (one-sample proportion test , 6O: p = 0.004, 6W: p < 0.001).

In addition, note that in Table 1.11b, the aggregate strategic voting proportions, σ(b),
includes strategic votes by level-2 jurors but also non-strategic votes from level-0 jurors as
well as mistakes of level-1 jurors. As a consequence, the σ(b) proportions in Table 1.11b
reflect more than purely strategic voting. When the non-strategic votes are accounted for,
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the true aggregate strategic voting rates for 3O, 6O, 3W, and 6W decrease to .35, .34,
.20, and .22 respectively. Under these adjusted values the σ(b) proportions for 3O and
3W are also significantly lower than the NE predictions (one-sample proportion test, 3O:
p = 0.011; 3W: p = 0.037).

O W
NE/d∗ ÇP NE/d∗ ÇP GMP

n = 3 1 .92 1 .97 .95
n = 6 1 .93 1 .90 .90

(a) σ(r).

O W
NE/d∗ ÇP NE/d∗ ÇP GMP

n = 3 .50 .46 .32 .32 .36
n = 6 .71 .55 .66 .36 .48

(b) σ(b).

Table 1.11: Nash equilibrium and d∗(k) predictions and empirical results for behavior.

The logit regression in Table 1.12 summarizes these findings and shows on the one
hand the different and significant impact of different levels on the voting behavior com-
pared to level-0 – especially for σ(b) – and on the other hand the minor and insignificant
impact of the treatments.

Result 2 Given a level of reasoning, behavior does not differ across treatments. Aggre-

gate behavior σ(b) depends less on the treatments than predicted by NE and d∗(k).

The observed behavior in terms of σ(s) implies error rates as presented in Table 1.13.16

For each type of error, the observed error rate deviates in the same direction from the pre-
diction in all treatments. In Table 1.13a, the error rate Pr(B|R) is significantly higher in
6 than in 3 for both O and W and consequently higher than under NE or d∗ (Wilcoxon
ranksum test17, p < 0.001). Conversely, in Table 1.13b, the error rate Pr(R|B) is signifi-
cantly lower (Wilcoxon ranksum test, p < 0.001). Both movements can be explained with
the lower than optimal sophistication in the observed d(k) and the resulting infrequent
strategic voting with σ(b) = 1. With the increased blue votes, the probability Pr(B|R) –
acquitting a guilty – increases and Pr(R|B) – convicting an innocent – decreases.

16Due to our intra-team methodology, half of the time, a decision made by a subject is not reflected in the
final team decision. As a result, it is not possible to trivially sum the cases in which the jury’s aggregated
decision is correct using the experimental data of jury decisions. Instead, using the mean values for
σ(r) and σ(b), for each treatment and state, we calculated the expected jury accuracies by plugging σ(r)
and σ(b) into the formulas stated in Proposition 1 and Corollary 1.1 for ρR and ρB for W and O cases
respectively. In GMP, accuracy values are derived directly from the jury decisions.

17Wilcoxon ranksum test is performed on the bootstrapped distributions for the error rates. These distribu-
tions are generated by calculating the error rates from the re-sampled with replacement vote variable.
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Table 1.12: Logit regressions with average
marginal effects on σ(s).

M1 M2

σ(b) σ(r) σ(b) σ(r)

Level-1 -.508∗∗∗ .002∗∗∗ -.502∗∗∗ .002∗∗∗

(.072) (.001) (.070) (.001)

Level-2 .503∗∗∗ .090∗∗∗ .518∗∗∗ .093∗∗∗

(.123) (.027) (.118) (.025)

Level-3 -.407∗∗∗ -.407∗∗∗

(.056) (.055)

6O .062 -.000
(.149) (.000)

3W -.049 .000
(.119) (.000)

6W -.096 .000
(.101) (.000)

Notes: Values in parenthesis represent the stan-
dard errors clustered by subjects. ‘***’ represents
p < 0.001 significance. There are no level-3 ob-
servations for σ(r) cases. M2 only considers the
level variable while M1 additionally includes treat-
ment variable. We compared the fit of two logis-
tic regression models using a likelihood-ratio test,
we fail to reject M2 over M1 for each subsample
(pmin > 0.52). Hence, we did not find evidence
that including the treatment factors in the model
significantly improved the fit to the data.

O W
NE/d∗ ÇP NE/d∗ ÇP GMP

n = 3 .50 .61 .54 .57 .53
n = 6 .50 .78 .52 .86 .73

(a) Pr(B|R).
O W

NE/d∗ ÇP NE/d∗ ÇP GMP
n = 3 .25 .19 .16 .16 .19
n = 6 .25 .08 .21 .02 .03

(b) Pr(R|B).

Table 1.13: Nash equilibrium and d∗(k) predictions, and empirical results for the error
rates.
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Result 3 In line with the observed level-k distribution, the jury accuracy deviates from

the optimal accuracy in that convictions are less likely, independent of the state S.

Table 1.14 shows the level distribution d(k) by treatment. At first sight, the distribu-
tions and the mean levels µd are supportive of Hypotheses 5 and 4 that both treatment
dimensions have an influence on the sophistication of strategic thinking.

O W
d(k) n = 3 n = 6 n = 3 n = 6

k = 0 .15 .24 .14 .32
k = 1 .45 .40 .58 .51
k = 2 .37 .35 .26 .16
k = 3 .03 .01 .02 .00
µd 1.28 1.13 1.14 0.84

Table 1.14: Level-k distribution d(k) by treatment.

Pooling the level-k distribution across two jury sizes, Table 1.15a shows that the aver-
age level of reasoning is significantly higher under n = 3 compared to n = 6 (Wilcoxon
ranksum test, p < 0.001).18 Specifically, level-0 is higher while level-1, level-2, and
level-3 are lower in n = 6 compared to n = 3.19

d(k) n = 3 n = 6
k = 0 .14 .28
k = 1 .52 .45
k = 2 .32 .27
k = 3 .03 .00
µd 1.23 1.00

(a) Jury size n = 3 and n = 6.

d(k) O W
k = 0 .19 .23
k = 1 .43 .55
k = 2 .36 .22
k = 3 .02 .01
µd 1.22 1.01

(b) Sampling O and W.

Table 1.15: Level distributions d(k) by sampling and jury size.

Result 4 The treatments with jury size n = 3, which produce a smaller number of possi-

ble signal realizations in a jury, feature higher average levels of reasoning.

Pooling the level-k distributions across different sampling methods, Table 1.15b shows
that average level of reasoning is significantly higher under O compared to W (Wilcoxon

18Since the number of level-3 jurors are relatively low, we have additionally considered the same test on the
subset that excludes the level-3 data, and still found a significant difference (p = 0.003)

19The observed differences for level-0 and level-3 are found to be significantly different (Fisher exact test,
level-0: p < 0.001 ; level-3: p = 0.02), for level-1, it is found to be marginally different (Fisher exact
test, p = 0.149), and for level-2, it is found not to be significantly different (Fisher exact test, p = 0.315)
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ranksum test, p < 0.001).20 Specifically, the level-1 fraction is higher and the level-2
fraction is lower in W compared to O.21

Result 5 The sampling method O, which produces a smaller number of possible signal

realizations in a jury, features higher average levels of reasoning.

We have additionally compared the level distribution controlling for the signal. Al-
though the average level of sophistication is observed to be higher for the blue signal,
the difference between the two average levels of reasoning is found to only be marginally
significant (Wilcoxon ranksum test, p = 0.122). As can be seen in Table 1.16, except
for the level-3 ratios, the level of sophistication between the two distributions are quite
close to each other 22. Furthermore, when we exclude the few level-3 players from the
data, the average strategic sophistication level for the blue signal subset becomes 1.11,
and the marginal significance between the two subsets is lost (Wilcoxon ranksum test,
p = 0.318). Upon receiving a red signal since there is no distinction in terms of vot-
ing behavior among levels, subjects potentially did not have the motivation to consider a
higher level of reasoning. This might, in turn, have led to the lack of level-3 thinkers for
the red signal cases, producing the observed marginal significant difference in the level of
strategic sophistication between the two signals.

d(k) s = b s = r
k = 0 .20 .21
k = 1 .46 .51
k = 2 .31 .28
k = 3 .03 –
µd 1.17 1.08

Table 1.16: Distribution of levels controlling for signal

1.6 Further explorations

1.6.1 Order effects

Considering our experiment involved four consecutive treatments, and the fact that the
order of W and O treatments alternated between sessions, we explored potential fatigue

20Since the number of level-3 jurors are relatively low, we have additionally considered the same test on the
subset that excludes the level-3 data, and still found a significant difference (p = 0.002).

21For level-1 and level-2, the observed differences are found to be significantly different (Fisher exact test,
level-1: p = 0.009 ; level-2: p < 0.001) while for level-0 and level-3, they are found not to be significantly
different (Fisher exact test, level-0: p = 0.32 ; level-3: p = 0.29).

22The observed differences for level-0, level-1 and level-2 are found not to be significantly different (Fisher
exact test, pmax > 0.24), while for level-3, it is found to be significantly different (Fisher exact test,
p = 0.003).
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and learning effects. These effects could be in action and might potentially confound our
previously presented results.

Fatigue effect

As subjects advance through the treatments (rounds), they might get tired, leading them to
exhibit reduced strategic sophistication in later parts of the experiment. Therefore, if there
is a noticeable fatigue effect, regardless of the specific treatments involved, one would
anticipate a diminished average sophistication level in the later rounds of the experiment.

d(k) H1 H2

k = 0 .25 .17
k = 1 .44 .52
k = 2 .3 .29
k = 3 .01 .02
µd 1.07 1.17

Table 1.17: Fatigue effect

In Table 1.17, we categorized the data into two subsets based on treatments: those
played during the first two rounds, labeled as H1, and those from the last two rounds,
labeled as H2. We then analyzed the strategic level distribution across these subsets.
Contrary to the expectation of a drop in sophistication due to potential fatigue, the results
indicate a higher sophistication level in H2 (Wilcoxon ranksum test, p = 0.094). As
a result, we deduce that fatigue did not have a predominant influence on the subjects,
underscoring the robustness of our previously presented findings.

Learning effect

The learning effect, in contrast to the fatigue effect, might not manifest uniformly across
treatments. Specifically, while the fatigue effect might consistently impact all the later
rounds, the influence of the learning effect could differ based on the altering ordering of
treatments.

When subjects first play O and then transition to W (O2W), an easy-to-hard learning
effect might occur. The relatively lower complexity of the strategy space in O may enable
subjects to better grasp the strategic nature of the game. This enhanced initial understand-
ing of the game’s strategic aspects could then foster greater strategic sophistication when
subjects tackle more complex W that follow.

Conversely, when subjects start with W followed by O (W2O), a potential hard-to-easy
learning effect might emerge. Initially engaging with W exposes subjects to a broader
signal and strategy space, demanding heightened cognitive effort. As they transition to O,
characterized by a strategy space with fewer possible outcomes, their prior experience in
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the complex dynamics of W could enhance their grasp of the game, leading to increased
strategic sophistication compared to scenarios where O precede W.

Empirical evidence from domains such as motor skills (Wulf and Shea, 2002) and
auditory skills (Liu et al., 2008; Church et al., 2013; Wisniewski et al., 2017) suggests
that an easy-to-hard ordering of tasks can improve learning and performance compared
to random or hard-to-easy orderings. In the domain of test-taking, some studies find no
overall effect of question ordering on performance (Plake et al., 1982; Klimko, 1984),
while others demonstrate a positive impact with easy-to-hard ordering (Bassey et al.,
2022; Hambleton and Traub, 1974). In contrast, hard-to-easy ordering either shows no
significant benefit (Hauck et al., 2017) or a negative effect on performance (Hambleton
and Traub, 1974; Newman et al., 1988).

d(k) O2W W2O
k = 0 .16 .24
k = 1 .49 .48
k = 2 .34 .26
k = 3 .01 .02
µd 1.19 1.06

Table 1.18: Learning effect

In Table 1.18, we do observe that jurors portray a significantly higher level of strate-
gic sophistication in O2W relative to W2O (Wilcoxon ranksum test, p = 0.016). Given
that O2W represents the learning effect via the easy-to-hard ordering while W2O repre-
sents the learning effect via the hard-to-easy ordering, this initial investigation hints at the
possibility that only an easy-to-hard learning effect is present in our data.

Comparing the average level of strategic thinking between Tables 1.19a and 1.19b,
we observe an easy-to-hard learning effect in W: the average level in O2W (1.13) is sig-
nificantly higher than in W2O (0.89) (Wilcoxon ranksum test, p = 0.003). For O, how-
ever, the strategic thinking level in O2W (1.26) is higher than in W2O (1.19) (Wilcoxon
ranksum test, p = 0.1752), which makes a hard-to-easy learning effect unplausible.

d(k) O W
k = 0 .19 .14
k = 1 .37 .59
k = 2 .43 .26
k = 3 .01 .01
µd 1.26 1.13

(a) O to W order, Ord1

d(k) O W
k = 0 .19 .31
k = 1 .47 .5
k = 2 .31 .18
k = 3 .03 .01
µd 1.19 0.89

(b) W to O order, Ord2

Table 1.19: Level distributions d(k) by sampling and order.

Given the statistically significant influence of the easy-to-hard learning effect on W,
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we further examined whether our previously discussed results regarding the overall effect
of sampling and group size remain robust when controlling for order. As illustrated in Ta-
ble 1.19, the average sophistication level in O is consistently higher across both the O2W
and W2O subsets. This disparity is statistically significant for both subsets (Wilcoxon
ranksum test, O2W: p = 0.053; W2O: p < 0.001).

Similarly, Table 1.20 reveals that for both subsets, the average sophistication level is
higher in the treatments with a smaller group size, and these differences are also signifi-
cant (Wilcoxon ranksum test, O2W: p = 0.102; W2O: p = 0.002). Thus, our main results
remain consistent after accounting for the ordering effect.

d(k) n = 3 n = 6
k = 0 .12 .21
k = 1 .51 .46
k = 2 .35 .33
k = 3 .02 –
µd 1.26 1.13

(a) O to W order

d(k) n = 3 n = 6
k = 0 .16 .34
k = 1 .52 .44
k = 2 .29 .22
k = 3 .04 .01
µd 1.20 0.89

(b) W to O order

Table 1.20: Level distributions d(k) by group size and order.

Given the documented presence of the easy-to-hard learning effect in our data, a nat-
ural inquiry arises: could this effect also influence performance across jury sizes of 3 and
6? It is worth noting that in our experimental sessions, we alternated only the order of
sampling, while always maintaining the sequence of n = 6 treatments following n = 3

treatments. This consistent order means we lack the variation to explore this effect empir-
ically. However, if the easy-to-hard learning effect is inflating the strategic sophistication
in jury size 6 treatments, this implies an even more pronounced innate difference between
the two jury sizes than reported. Hence, the possibility of such a learning effect would
only further emphasize our findings on the differences in strategic thinking across the two
jury sizes.

1.6.2 Influence of team communication on votes

In light of our intra-team communication experimental design, we sought to understand
how communication impacts juror members’ decisions after their interactions (see Penczyn-
ski, 2016a; Arad et al., 2022) with their teammates (partners). This inquiry is explored in
Table 1.21.

Of the 493 messages, RAs were able to classify the strategic thinking levels of both
the juror and her partner for 336 instances (68.2%). Of these, only 85 cases (25.3%) had
differing pre-communication votes between the partners.

For partners that start with the same suggested vote, Table 1.21a shows that their
subsequent decisions remain largely unchanged and unaffected by the level of strategic
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thinking conveyed with their communication. In contrast, for diverging suggested votes,
Table 1.21b shows that the communicated message’s strategic depth has a discernible
influence. Specifically, jurors tend to change their vote in more instances when a higher
level of reasoning is exhibited by their partner.

Vote Changed?
Higher Lv. × ✓

Player 76 0
Neither 100 1
Partner 74 0

(a) Same Initial Vote.

Vote Changed?
Higher Lv. × ✓

Player 23 9
Neither 13 6
Partner 16 18

(b) Different Initial Vote.

Table 1.21: Comparison of vote changes.
Note: “Vote Changed?” indicates whether the Player’s final vote is different from their suggested vote.

1.7 Concluding remarks

Our study provides evidence that strategic thinking is relevant in jury voting and appropri-
ately modeled by the level-k model of reasoning. The predicted types and their behaviour
align with the evaluation of written accounts and decisions observed in the experimental
games. The model correctly predicts that – given a level of sophistication – behaviour is
unresponsive to changes in jury size and signal sampling method. The experimental text
and decision data support this prediction and show that behaviour reacts to treatments pri-
marily because strategic sophistication responds to the cognitive complexity of the task
at hand. Specifically, we find evidence that larger juries and the more involved “with
replacement” sampling of signals lead to a lower strategic sophistication.

The deviations of the observed jury error rates from the minimal error rates in equi-
librium can be viewed as a result of the sub-optimal distribution of the levels of reasoning
in the subject sample. Interestingly, these error rates would be much higher, and jury
votes under unanimity in large juries would basically be uninformative if only one type of
level-k reasoning with informative or strategic voting was present. From that perspective,
the heterogeneity in types being so close to the optimal distribution is what leads to the
observed low error rate in the jury voting. So while many arguments in favor of jury di-
versity already exist, the study adds and exhibits in detail a stark reason for jury diversity
in terms of strategic sophistication.
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Appendix to Chapter 1

1.A Proofs

1.A.1 Proof of Corollary 1.1

Following Feddersen and Pesendorfer (1998), we are looking for a responsive symmetric
equilibrium in mixed strategy profiles. First note that a necessary condition for a mixed
strategy profile is for a juror who receives a blue signal to be indifferent between voting
red and voting blue. This occurs when the probability that the urn is red (conditional
on the juror i’s vote being pivotal and on her private signal to be blue) is equal to the
threshold of reasonable doubt, q. Let Pr(S|s, pivi) represent the probability of state S,
conditional on the signal s and on juror i being pivotal. Then a juror who receives a blue
signal is indifferent between voting red and blue when

Pr(R|b, pivi) = q. (1.16)

Using Bayes formula we expand on equation (1.16) as:

Pr(pivi|R, b)Pr(b|R)Pr(R)

Pr(pivi|R, b)Pr(b|R)Pr(R) + Pr(pivi|B, b)Pr(b|B)Pr(B)
(1.17)

where due to the assumption that signals are drawn without replacement we have:

Pr(pivi|R, b) = σ(r)pnσ(b)(1−p)n−1 (1.18)

Pr(pivi|B, b) = σ(r)(1−p)nσ(b)pn−1 (1.19)

In words, equation (1.18) describes the probability of being pivotal given n many balls and
jurors where pn many balls are red and received by pn many other jurors, and (1−p)n−1

balls are blue and received by (1−p)n−1 many other jurors. Similarly, equation (1.19) de-
scribes the probability of being pivotal given n many balls and jurors where (1−p)n many
balls are red and received by (1− p)n many other jurors, and pn− 1 many balls are blue
and received by pn−1 many other jurors. Note that in FP Pr(pivi|R, b) and Pr(pivi|B, b)

are additively defined as (σ(r)p+ σ(b)(1− p))(n−1) and (σ(r)(1− p) + σ(b)p)(n−1) re-
spectively, while in the without replacement case, we have a simpler form as in equations

26



(1.18) and (1.19). Moreover, under the assumption σ(b) > 0, we have Pr(R|b, pivi) = q.
Clearly, Pr(R|r, pivi) > Pr(R|b, pivi) = q. Thus, we have σ(r) = 1. Then, using (1.18)
and (1.19) in (1.17), we get:

Pr(R|b, pivi) =
(1− p)σ(b)(1−p)n−1

(1− p)σ(b)(1−p)n−1 + pσ(b)pn−1
= q (1.20)

Isolating σ(b) in equation (1.20), we get:

σ(b) =

(
qp

(1− p)(1− q)

) 1
n(1−2p)

(1.21)

The probabilities for the jury’s decision to be wrong given the true state of the world
are defined as Pr(B|R) and Pr(R|B). In FP, for the with replacement case, they are
defined as (σ(r)p+ σ(b)(1− p))n and (σ(r)(1− p) + σ(b)p)n respectively. In the with-
out replacement case, due to the hypergeometric nature of the signals, they are defined
as Pr(B|R) = σ(r)pnσ(b)(1−p)n and Pr(R|B) = σ(r)(1−p)nσ(b)pn in a similar fashion
defined in equations 1.18 and 1.19.

Lastly, note that given (1.20), it can easily be shown that limn→∞ σ(b) = 1.

1.A.2 Proof of Proposition 2

For every juror i, her expected payoff for voting red given she receives a red signal is
defined as follows:

E(ui(σi(r) = 1)) = U(R,R)Pr(R|r)αr + U(R,B)Pr(B|r)βr

+ U(B,B)Pr(B|r)(1− βr) + U(B,R)Pr(R|r)(1− αr)

= p(παr − (1− q)(1− αr))

+ (1− p)(π(1− βr)− qβr) (1.22)

= −p(1− q)(1− αr)− (1− p)qβr (1.23)

= −(1− q)p+ p(1− q)αr − (1− p)qβr (1.24)

Note that the step from equality (1.22) to (1.23) has been taken via the assumption π = 0

and the same step has also been taken in the rest of the derivations of this subsection.
Through similar steps, one can define the juror i’s expected payoff for voting blue

given she receives a red signal as:

E(ui(σi(r) = 0)) = U(B,B)Pr(B|r) + U(B,R)Pr(R|r) (1.25)

= π(1− p)− (1− q)p

= −(1− q)p (1.26)
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Notice that in equation (1.25) we do have a relatively simplified right hand side equation
without the payoffs U(R,R) and U(R,B), and the pivotality probabilities. This is be-
cause since the juror votes blue, U(R,R) and U(R,B) cases never occurs and the belief
on what the other jurors will do becomes irrelevant. Using equalities (1.24) and (1.26),
we get the desired equality in (1.14) of the Proposition 2.

Next, for every juror i, we calculate her expected payoff for voting red given she
receives a blue signal as:

E(ui(σi(b) = 1)) = U(R,R)Pr(R|b)αb + U(R,B)Pr(B|b)βb

+ U(B,B)Pr(B|b)(1− βb) + U(B,R)Pr(R|b)(1− αb)

= π(1− p)αb − qpβb + πp(1− βb)− (1− q)(1− p)(1− αb)

= −qpβb − (1− q)(1− p)(1− αb)

= −qpβb + αb(1− q)(1− p)− (1− q)(1− p) (1.27)

Through similar steps, one can define her expected payoff for voting blue given she re-
ceives a blue signal as:

E(ui(σi(b) = 0)) = U(B,B)Pr(B|b) + U(B,R)Pr(R|b)

= πp− (1− q)(1− p)

= −(1− q)(1− p) (1.28)

Using equalities (1.27) and (1.28), we get the desired equality in (1.15) of the Proposition
2.

1.A.3 Proof of Corollary 2.1

Using Proposition 2, under the additional simplifying assumption that U(R,B) = U(B,R),
we identify the strict inequality conditions for voting either red or blue (conditional on the
signal) as in the Tables (1.22) and (1.23).

Note that for the inequalities in Tables (1.22) and (1.23) to be well defined, we assume,
respectively, the conditions αs + βs > 0 and αs, βs > 0 to hold for s ∈ {r, b}. Either
condition aims at avoiding the cases where a jury member is not pivotal in either state of
the world. Table (1.22) offers a more general format for the conditions, and as a result,
is presented in the main section of the paper. Table (1.23) provides a better starting point
for various algebraic manipulations that takes places in the subsequent proofs that utilizes
these boundary conditions.

In the with replacement case, since the signals are independent of each other, we have
αi = αj and βi = βj for i ̸= j and i, j ∈ {r, b}. Hence, for ease of notation, we can drop
the signal superscripts. Then, given p and n, we define the beliefs about pivotalities for
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V ote = r V ote = b

Signal = b
αb

αb + βb
> p

αb

αb + βb
< p

Signal = r
βr

αr + βr
< p

βr

αr + βr
> p

Table 1.22: Conditions for informative and strategic voting

V ote = r V ote = b

Signal = b
αb

βb
>

p

1− p

αb

βb
<

p

1− p

Signal = r
αr

βr
>

1− p

p

αr

βr
<

1− p

p

Table 1.23: Alternative conditions for informative and strategic voting

each state as:

α = (pσ(r) + (1− p)σ(b))n−1 (1.29)

β = ((1− p)σ(r) + pσ(b))n−1 (1.30)

In the without replacement case, given p and n, we define the beliefs on pivotalities
for each state and signal received as:

Given signal is red

αr = σ(r)(pn−1)σ(b)((1−p)n) (1.31)

βr = σ(r)((1−p)n−1)σ(b)(pn) (1.32)

Given signal is blue

αb = σ(r)(pn)σ(b)((1−p)n−1) (1.33)

βb = σ(r)((1−p)n)σ(b)(pn−1) (1.34)

Using equations (1.31)-(1.34) and Table 1.23, we have that, in the without replacement

case, a juror votes informatively if and only if
(

1−p
p

) 1
n(2p−1)

< σ(r)
σ(b)

<
(

p
1−p

) 1
n(2p−1)

; and

a juror votes strategically if and only if
(

p
1−p

) 1
n(2p−1)

< σ(r)
σ(b)

.
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1.A.4 Proof of Proposition 3

First of all, note that for the with replacement case, since the signals are independent of
each other, we have αr = αb and βr = βb. Henceforth, in the rest of the proof we will
omit the signal subscripts for ease of notation.

Secondly, we denote the level of the juror in their pivotality probability as αk and βk

for k ∈ N0.

Level-1 By assumption, a level-0 juror votes uninformatively. This translates to α1 =

β1 > 0 and α1

β1
= 1. By Table 1.23, a level-1 juror votes blue when the signal is blue,

σ1(b) = 0, if and only if
α1

β1

<
p

1− p
, and votes red when the signal is red, σ1(r) = 1, if

and only if
α1

β1

>
1− p

p
. Since p > 1

2
and α1

β1
= 1 by assumption, the informative voting

condition for both signals is satisfied and level-1 juror always votes informatively.

Level-2 By the above discussion, a level-1 juror always votes informatively. By defi-
nition, a level-1 juror receives the signal r with probability p in state R and with prob-
ability 1 − p in state B. Hence, assuming the state is R and there are n jurors in to-
tal, a level-2 juror believes to be pivotal with probability α2 = pn−1; and assuming the
state is B, she believes to be pivotal with probability β2 = (1 − p)n−1. Thus, we have
α2

β2
=
(

p
1−p

)(n−1)

. Given p > 1
2
, we have p

1−p
> 1 > 1−p

p
. Moreover note that ∀k > 1,

we have p
1−p

<
(

p
1−p

)k
. Setting k = n − 1 and noting k > 1 is equivalent to n > 2, we

have 1−p
p

< p
1−p

<
(

p
1−p

)(n−1)

. Hence both conditions for strategic voting in Table 1.23
are satisfied.

Level-3 Given a level-2 juror always votes red, a level-3 juror believes to be always
pivotal, α3 = β3 = 1. Given α3

β3
= 1, analogue to the level-1 behavior, every level-3 juror

votes informatively.

Level-4 and above Due to the assumed degenerate population belief on the next lower
level k − 1, every even-leveled juror behaves the same way as a level-2 juror and always
votes red. Furthermore, every odd-leveled juror behaves the same way as a level-3 juror
behaves and always votes informatively.

1.A.5 Proof of Proposition 4

In the following proof, we denote the level of the juror and the received signal in their
pivotality probability as αs

k and βs
k for k ∈ N0 and s ∈ {r, b}. If the signal subscript is

omitted in the subsection of the proof, this indicates that we have αr = αb and βr = βb.
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Level-1 By assumption a level-0 juror votes uninformatively. Introducing an ϵ possibil-
ity to make a mistake in a symmetric manner does not change this fact. Hence, we have
α1 = β1 > 0 which, in turn, implies α1

β1
= 1. By Table (1.23), a level-1 juror votes blue

when the signal is blue if and only if
αb
1

βb
1

<
p

1− p
, and votes red when the signal is red

if and only if
αr
1

βr
1

>
1− p

p
. Since p > 1

2
and α1

β1
= 1 by assumption, informative voting

condition for either type of signal received is always satisfied and a level-1 juror always
votes informatively.

Level-2 Based on the above discussion, a level-1 juror always intend to vote informa-
tively. Also note that she is assumed to make a mistake with some probability ϵ > 0

and votes against her signal. Given a juror receives a red signal, her probability of being
pivotal under states R and B are respectively defined as:

αr
2 = (1− ϵ)(np−1)ϵ(n(1−p)) (1.35)

βr
2 = (1− ϵ)n(1−p)−1ϵ(np) (1.36)

Using equation (1.35) and (1.36), we have αr
2

βr
2
=
(
1−ϵ
ϵ

)n(2p−1). Using Table (1.23), given
the received signal is red, in order for a level-2 juror to vote strategically we need:(

1− ϵ

ϵ

)n(2p−1)

>
(1− p)

p
(1.37)

With a bit of algebra, inequality (1.37) becomes:

ϵ <
1

1 +
(

(1−p)
p

) 1
(2p−1)n

(1.38)

Hence, given ϵ satisfies inequality (1.38), a level-2 juror votes red when she receives a red
signal.

Next, assume that the level-2 juror receives a blue signal. Then we have:

αb
2 = (1− ϵ)(np)ϵ(n(1−p)−1) (1.39)

βb
2 = (1− ϵ)n(1−p)ϵ(np−1) (1.40)

Using equation (1.39) and (1.40), we have αb
2

βb
2
=
(
1−ϵ
ϵ

)n(2p−1). Using Table (1.23), given
the received signal is blue, in order for a level-2 juror to vote strategically we need:(

1− ϵ

ϵ

)n(2p−1)

>
(p)

1− p
(1.41)
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With a bit of algebra, equation (1.41) translates to:

ϵ <
1

1 +
(

p
(1−p)

) 1
(2p−1)n

(1.42)

Hence, given ϵ satisfies inequality (1.42), a level-2 juror votes red when she receives a
blue signal.

Lastly, since p > 1
2
, we have:

1

1 +
(

p
(1−p)

) 1
(2p−1)n

<
1

1 +
(

(1−p)
p

) 1
(2p−1)n

Hence, inequality (1.42) is a sufficient condition for inequality (1.38) to be satisfied. Thus,
given inequality (1.42) is satisfied, a level-2 juror always votes red.

Level-3 Given a level-2 juror always votes red, a level-3 juror believes to be pivotal with
probability α3 = β3 = (1 − ϵ)(n−1). Since α3

β3
= 1, just like a level-1 juror, every level-3

juror votes informatively.

Level-4 and above Given the cyclical nature of the behavior at even and odd levels of
thinking, every even-leveled juror behaves the same way as a level-2 juror and always
votes red.

Given the cyclical nature of the behavior at even and odd levels of thinking, every
odd-leveled juror behaves the same way as a level-1 juror and always votes informatively.

1.A.6 Relaxing the level-0 jurors’ uninformativeness assumption

Assume that a level-0 juror votes her signal with probability θ and votes the opposite of
her signal with probability 1 − θ. Given this assumption, a level-0 juror votes randomly
given θ = 1

2
and as θ goes to 1 or 0, the informativeness of level-0 juror’s vote increases.

For θ = 1, a level-0 juror is equivalent to a level-1 juror. Given this assumption, when the
sampling is without replacement, we have the following pivotality values for the level-1
juror for the case where the signal is red as:

αr
1 = θnp−1(1− θ)n(1−p) (1.43)

βr
1 = θn(1−p)−1(1− θ)np (1.44)
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Given equations (1.43) and (1.44), using the Table 1.23, we get the following inequality
for level-1 juror to vote informatively when she receives a red signal:(

θ

1− θ

)n(2p−1)

>
1− p

p
(1.45)

Similarly for the case when the level-1 juror receives a blue signal, we have the following
pivotality values:

αb
1 = θnp(1− θ)n(1−p)−1 (1.46)

βb
1 = θn(1−p)(1− θ)np−1 (1.47)

Given the equations (1.46) and (1.47), using the Table 1.23, we get the following inequal-
ity for level-1 juror to vote informatively when she receives a blue signal:(

θ

1− θ

)n(2p−1)

>
p

1− p
(1.48)

Define K as
(

p
1−p

) 1
n(2p−1)

. Then with a bit of algebra, we get the following condition for
the level-1 juror to vote informatively:

θ ∈
(

1

1 +K
,

K

1 +K

)
(1.49)

First note that given p > 1
2

we have
1

1 +K
<

K

1 +K
. Then recall that θ represents

the probability for a level-0 juror to vote informatively, and note that given the constraint
for θ in (1.49), a level-1 juror votes informatively. Hence, given a level-0 juror votes
her signal, i.e. votes informatively with probability θ such that it satisfies the constraint
(1.49), a level-1 juror votes informatively.

Setting p to 2
3
, for n = 3, the inequality in (1.49) becomes

(
1
3
, 2
3

)
; and for n = 6, it

becomes
(

1
1+

√
2
,

√
2

1+
√
2

)
∼ (0.41, 0.59).

For the with replacement case, first note that since the signals are independent, we
have αr

1 = αb
1 and βr

1 = βb
1. Hence, we drop the superscript and define the following

pivotality values:

α1 = (pθ + (1− p)(1− θ))n−1 (1.50)

β1 = ((1− p)θ + p(1− θ))n−1 (1.51)

Given the equations in (1.50) and (1.51), using Table 1.23, we have the following
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inequality conditions for a level-1 juror to vote informatively:

pθ + (1− p)(1− θ)

(1− p)θ + p(1− θ)
>

1− p

p
(1.52)

pθ + (1− p)(1− θ)

(1− p)θ + p(1− θ)
<

p

1− p
(1.53)

Define K̃ as
(

1−p
p

) 1
n−1

. Then with a bit of algebra, we get the following condition for a
level-1 juror to vote informatively:

θ ∈

(
p(1 + K̃)− 1

(2p− 1)(1 + K̃)
,

p+ K̃(p− 1)

(2p− 1)(1 + K̃)

)
(1.54)

Setting p to 2
3
, for n = 3, the inequalities in (1.52) and (1.53) approximately translate

to θ ∈ (0.24, 0.76) and for n = 6, they translate to θ ∈ (0.4, 0.6).

Figure 1.1: Bounds for θ given n and sampling method

As can be observed in Figure 1.1, for both sampling cases, as the group size increases,
the range for θ, or in other words, the degree of a level-0 juror’s informativeness in her
vote decreases. For a level-1 juror to not vote informatively, i.e. to vote strategically,
her belief on the informativeness of the aggregation of the other jurors’ vote should over-
weight the informativeness of her signal. As the number of other jurors in the jury in-
creases the necessary informativeness each of these jurors should provide with their vote
for their aggregate informativeness to overweight the informativeness of the juror’s signal
decreases.
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1.B Experiment instructions

Introduction
You are about to participate in an experiment in team decision making. Please follow the instruc-
tions carefully.

In the experiment you may earn a considerable amount of money. Your decisions and the
decisions of the other participants determine the amount. You will be instructed in detail how your
earnings depend on your and the others’ decisions. All that you earn is yours to keep, and will be
paid to you in private and in cash, after today’s session.

It is important to us that you remain silent and do not look at other people’s screens. If you
have any questions or need assistance of any kind, please raise your hand, and an experimenter
will come to you. If you talk, exclaim out loud, etc., you will be asked to leave. Thank you.

Since this is a team experiment, you will at various times be matched randomly with another
participant in this room in order to form a team that plays as a single entity. Your team’s earnings
will always be shared equally between you and your team partner.

The experiment consists of four parts (Parts I, II, III and IV). The parts are independent of
each other but feature the same task in different settings. Each part consists of two rounds that
require you to take a single decision. The way you interact as a team to take decisions will be
the same throughout the experiment. Common features to the Parts will be given in the general
instructions section.

Now, let us explain how your Team’s Decision is determined. First of all, both you and your
team partner will individually submit a Final Decision and the computer will randomly choose
one of these two final decisions as your team’s decision. The probability that your team partner’s
final decision is chosen is equal to the probability that your final decision will be chosen (i.e. your
chances are 50:50). However, you have the possibility to influence your partner’s final decision
in the following way: Before you enter your final decision, you can propose to your partner a
Suggested Decision and send her one and only one text Message. Note that this message
is your only chance to convince your partner of the reasoning behind your suggested decision.
Therefore, use the message to explain your suggested decision to your team partner. After you
finish entering your suggested decision and your message, these will be shown to your team
partner. She will then make her final decision. Similarly, you will receive your partner’s suggested
decision and message. You will then also make your final decision. As indicated above, once you
both enter your final decision, the computer chooses randomly one of your final decisions as your
team’s decision.

If you have any questions at this point, please raise your hand. In order for you to get familiar
with the messaging system, you will now try it out in a Test Period. Please turn the page for
further instructions.

Test period
A participant in this room is now randomly chosen to be your team partner. The Test Period has
two rounds, with one question to answer in each round. Since this is only a test, your earnings will
not depend on any decision taken now. In both test rounds, you will need to answer a question
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about the year of an historic event. The team that is closest to the correct year wins. Ties will be
broken randomly by the computer.

As described, you will be able to send one Suggested Decision with your proposed year and
an explaining Message. After having read your partner’s suggested decision and message, you
will enter your Final Decision. As described earlier, either your or your partner’s final decision
will be chosen randomly to be your Team’s Decision.

The messenger allows Messages of any size. However, you have to enter the message line
by line since the input space is only one line. Within this line, you can delete text by using the
usual “Backspace” button of your keyboard. By pressing “Enter” on the keyboard, you add the
written sentence to the message. Please note that only added sentences will be sent and seen by
your partner. The words in the blue input line will not be sent. You can always delete previously
added sentences by clicking the “Clear Input” button. The number of lines you send is not limited.
You can therefore send messages of any length. You finally send the message to your partner by
clicking the “Send Message” button.

When you are ready, please click the “Ready” button to start the Test Period.

General Instructions
In every round of every part of the experiment you will be matched with a single, randomly chosen,
different team partner. Together with other teams, which will also differ in every round, your team
will face the following situation.

Your team along with other teams will constitute a committee in which each team has the
right to a single vote.

There will be two colored urns containing some number of colored balls. The urns will either
be red or blue, and either colored urn contains some number of red balls and some number of
blue balls.

The color of the urn will determine the ratio of the number of red and blue balls in it. In the
red urn, there will be two times more red balls than blue balls and in the blue urn, there will be
two times more blue balls than red balls.

Every round, your newly formed committee will be assigned to a single urn whose color will
be randomly determined by the computer as either blue or red with the equal probability.

Your team – like all other teams in your committee – will observe the color of only one ball
drawn from the urn assigned to your committee. Your task as a committee is to correctly guess
the color of the urn. The guess of the committee is determined by the votes of its teams.

The votes of the teams in the committee will be aggregated to a committee decision according
to the unanimity voting rule. The rules of the voting rule are as follows:

• If all the teams vote for the red color, then the color red will be the committee’s guess.

• If at least one of the three teams votes for the blue color, then the color blue will be the
committee’s guess.

In other words, in order for the committee to select the red color as the guess, all the teams
have to vote red. Thus, the teams need to reach a consensus in order to guess red; otherwise,
the guess of the group will be blue.
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If the committee correctly guesses the color of the urn they are assigned to, every team
member in the committee will receive 200 Eurocents. If the committee does not correctly guess
the color of the urn ,then every team member in the committee will receive 20 Eurocents.

Upon the observation of the color of your team’s ball, you will send your team partner a Sug-
gested Decision and a Message. Remember to explain in the message your reasoning behind
your suggested decision. After this information is exchanged, both of you enter your Final Deci-
sion, from which the computer randomly chooses the Team’s Decision.

The instructions of the Parts will specify the number of teams in the committee, the number of
balls in the urn and the exact procedures of drawing a ball from the urn. Are there any questions
at this point?

Part I
You are about to start Part I of the experiment. In each of the two rounds you will be matched
with a new team partner and a new committee. Your team belongs to a committee that consists
of three teams (your team and two other teams).

In this part, the balls are drawn from an urn that contains two balls of the same color of
the urn and one ball of the ”opposite” color. Your team will only observe the color of a single
ball drawn from the urn. For all three teams, the balls will be drawn without replacement. That
means that a drawn ball is not returned back to the urn for subsequent draws. There will therefore
always be two teams observing the correct color and one team observing the incorrect color (with
respect to the color of the urn assigned the teams). Your team will not know or observe the colors
of the balls given to the other teams in your committee.

Upon the observation of the color of your team’s ball, you will send your team partner a
Suggested Decision and a Message. Remember to explain in the message your reasoning
behind your suggested decision. (And note again that the words in the blue input line will not be
sent. Press “Enter” to add them to the message.) After this information is exchanged, both of you
enter your Final Decision, from which the computer randomly chooses the Team’s Decision.

When you click the “Ready” button, you will start Part I of the experiment.

Part II
You are about to start Part II of the experiment. In each of the two rounds you will be matched
with a new team partner and a new committee. Your team belongs to a committee that consists
of six teams (your team and five other teams).

In this part, the balls are drawn from an urn that contains four balls of the same color of
the urn and two balls of the ”opposite” color. Your team will only observe the color of a single
ball drawn from the urn. For all six teams, the balls will be drawn without replacement. That
means that a drawn ball is not returned back to the urn for subsequent draws. There will therefore
always be four teams observing the correct color and two teams observing the incorrect color
(with respect to the color of the urn assigned the teams). Your team will not know or observe the
colors of the balls given to the other teams in your committee.
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Upon the observation of the color of your team’s ball, you will send your team partner a
Suggested Decision and a Message. Remember to explain in the message your reasoning
behind your suggested decision. (And note again that the words in the blue input line will not be
sent. Press “Enter” to add them to the message.) After this information is exchanged, both of you
enter your Final Decision, from which the computer randomly chooses the Team’s Decision.

When you click the “Ready” button, you will start Part II of the experiment.

Part III
You are about to start Part III of the experiment. In each of the two rounds you will be matched
with a new team partner and a new committee. Your team belongs to a committee that consists
of three teams (your team and two other teams).

In this part, the balls are drawn from an urn that contains two balls of the same color of
the urn and one ball of the ”opposite” color. Your team will only observe the color of a single
ball drawn from the urn. For all three teams, the balls will be drawn with replacement. That
means that a drawn ball is returned to the urn for the subsequent draws. Independently of other
teams’ draws, each team will have a 2/3 chance of observing the correct color and a 1/3 chance
of observing the incorrect color (with respect to the color of the urn assigned the teams). Your
team will not know or observe the colors of the balls given to the other teams in your committee.

Upon the observation of the color of your team’s ball, you will send your team partner a
Suggested Decision and a Message. Remember to explain in the message your reasoning
behind your suggested decision. (And note again that the words in the blue input line will not be
sent. Press “Enter” to add them to the message.) After this information is exchanged, both of you
enter your Final Decision, from which the computer randomly chooses the Team’s Decision.

When you click the “Ready” button, you will start Part III of the experiment.

Part IV
You are about to start Part IV of the experiment. In each of the two rounds you will be matched
with a new team partner and a new committee. Your team belongs to a committee that consists
of six teams (your team and five other teams).

In this part, the balls are drawn from an urn that contains four balls of the same color of
the urn and two balls of the ”opposite” color. Your team will only observe the color of a single
ball drawn from the urn. For all three teams, the balls will be drawn with replacement. That
means that a drawn ball is returned to the urn for the subsequent draws. Independently of other
teams’ draws, each team will have a 2/3 chance of observing the correct color and a 1/3 chance
of observing the incorrect color (with respect to the color of the urn assigned the teams). Your
team will not know or observe the colors of the balls given to the other teams in your committee.

Upon the observation of the color of your team’s ball, you will send your team partner a
Suggested Decision and a Message. Remember to explain in the message your reasoning
behind your suggested decision. (And note again that the words in the blue input line will not be
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sent. Press “Enter” to add them to the message.) After this information is exchanged, both of you
enter your Final Decision, from which the computer randomly chooses the Team’s Decision.

When you click the “Ready” button, you will start Part IV of the experiment.
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1.C Classification instructions

Welcome
Thank you for participating in this experiment. In this document you will find instructions as to
how this experiment works. You will be asked to classify messages that have been collected in
an experiment on voting games. You as well are in an experiment which allows us to give you
particular incentives and makes it easier for us to pay you.

To take part in the experiment, we assume that you are familiar with the level-k model as it has
been introduced by Nagel (1995). However, in order to clarify potential questions of terminology,
we reproduce the main features of the level-k model. In addition we provide detailed instructions
of the original experiment, which explain the voting game and also give you a short introduction
to voting games. Please read all information carefully.

Classification Task

General Comments

Your task is to classify the messages sent by subjects to their team member into their according
level of thinking. You will read each comment and classify it according to the guidelines below. You
can enter your assessment into the excel sheet provided to you. The excel sheet will have 6 dif-
ferent columns: The first four columns (which are already provided/filled) will identify the message
by indicating the experiment, the part, the subject, the period. The fifth column is the classification
column that we want you to fill and the sixth column is to indicate your personal comments on your
task to further clarify your classification choice if necessary. The order of these columns will follow
the transcript we will provide you.

It is very important that you double check whether the first 3 columns are filled correctly, i.e.
that you enter the data for the correct subject, period, part and experiment. Based upon the
guidelines below your task will be to fill up the classification column with an integer between 0
and 3 (“0” for level-0, “1” for level-1, “2” for level-2 and “3” for level-3) or leave it empty. If you find
interesting elements that occur frequently but that have not been picked up by us, feel free to add
a new column and mark all messages that contain the element. You can then specify to us in an
email what exactly this element is.

For each individual classification, your assessment will be benchmarked against another clas-
sifier’s assessment. Your personal remuneration is based on the number of matches of the level
classification. A match is a classification that is congruent with the classification of another inde-
pendent classifier. Each match will be remunerated with 0.07 Euro.

Please read this document and the instructions for the experiment entirely in order to get an
overview and only then start the classification based on the player’s sent message and action
proposed. If you have any questions please do not hesitate to contact us.

40



The Original Experiment

A single experimental session consists of 4 parts and every part consists of 2 periods. In every
part, every subject is randomly paired with another one to form a team. Depending on the treat-
ment, every team then is randomly matched with 2 or 5 other teams to form a voting group. Then
every group will be assigned to a blue or red urn and every team in the group will draw a ball from
their assigned urn. The blue (red) urn contains twice more blue (red) balls then red (blue) balls.
One treatment variable is the group size, in every experiment, in parts 1 (2) and 3 (4) the groups
will consists of 3 (6) teams and accordingly the urns will contain 3 (6) balls. The other treatment
variable is the draw mechanism, depending on the session, either for the first 2 parts or the last
2 parts, the balls will be drawn from the urn without replacement (i.e. any ball picked will not be
placed back to the urn). For the other 2 parts, the balls will be drawn with replacement (i.e. any
ball picked will be placed back to the urn before the next draw). In addition, we have included
classroom experiments to the data set (experiments 7 and 8). In both experiments, the balls are
drawn from the urn without replacement. Both experiments have two parts where in the first part
the group size is 3 while in the second part the group size 6.

The goal of every group is to correctly state the color of the urn they are assigned to. Ev-
ery team submits a vote (either red or blue) and if every team in the group votes for red then
the group’s decision will be red, otherwise it will be blue. Beyond this brief description of the
experimental setup, please read the instruction sheets given to the subjects to have a better un-
derstanding of the situation of subjects 23.

How do the messages get produced? Every subject in a team observes the team’s drawn
ball and then makes a decision on the color of the urn. Then, they send a message to their
team member explaining why they should vote for the suggested color. Next, the team members
receive the suggestions and the message of their teammates, and make their final decision on
their own. Either of the team member’s decision is equally likely to be chosen as the team’s final
voting decision. This experimental methodology is developed to elicit subjects’ reasoning through
their sent messaged (see Burchardi and Penczynski, 2014). In the classroom experiments (ex-
periments 7 and 8), subjects were not paired into teams but instead they were asked to elaborate
on their reasoning for taking the action they have taken.

Model

General Model

It is assumed that you are familiar with the level-k model as it has been introduced by Nagel
(1995) or represented by Camerer (2004). In order to clarify potential questions of terminology
and introduce the main features of the model we quickly reproduce the main features of the model
in the terminology used in this document. The level-k model of bounded rationality assumes that
players only think through a certain number (k) of best responses. The model has four main
ingredients:

Population distribution: This distribution reflects the proportion of types with a certain level
k ∈ N0 = {0, 1, 2, 3, 4, 5, . . .}.

23there are two versions of the instruction sheet where the versions vary in their of treatments. We are
providing you with one copy. Please do not base the treatment ordering on the ordering of the instruction
sheet.
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Level-0 distribution: By definition, a level-0 player does not best respond. Hence, his ac-
tions are random to the game and distributed randomly over the action space. In our case, the
action space is A = {Red,Blue} where Red and Blue represent the voting choice of the player.
Note that, our model does not incorporate salience by assuming higher probabilities in the level-0
distributions for the action that is salient due the signal received (i.e. if a blue ball is received and
the player is playing random, the player, due to the availability of the blue signal, will chose to vote
blue)

Level-0 belief: In the model, the best responses of players with level k > 0 are anchored
in what they believe the level-0 players play. Their level-0 belief might not be consistent with the
level-0 distribution. For best responding, all that matters is the expected payoff from choosing an
action from the action space A = {Red,Blue}.

Population belief: Players do not expect other players to be of the same or a higher level
of reasoning. For a level-k player, the population belief is therefore defined on the set of levels
strictly below k. It follows that level-0 players have no defined belief, level-1 players have a trivial
belief with full probability mass on {0} (i.e. the belief that everyone else is level-0), level-2 players
have a well defined belief on {{0}, {1}}. From level 3 higher order beliefs are relevant as level-3
players have to form a belief about level-2’s beliefs.

Specific Model

We consider a game with n players (jurors in the voting context). The game starts by nature
choosing a state of the world S in Ω = {Red,Blue} with probability r and 1 − r respectively. The
players do not observe the state, but each acquires a private signal s about the realized state of
the world. If the true state is Blue, then each player observes an independent (or geometrically
dependent24) Bernoulli random variable (the private signal) which is blue with probability p and red

with probability 1− p (and conversely for when the true state is Red). After observing their private
signals, players chose an action a (a vote) from the action space A = {Red,Blue}. Given the
votes of the players, 1 ≤ k∗ ≤ n represents the number of votes needed for Red to be chosen for
the aggregate decision. In other words, if k∗ many or more players vote for Red, then the group
decision is Red otherwise it is Blue. The utility of jury j when she takes action a with certainty
given her signal is s and given the state is S is defined as uj(σj(s) = a, S). Given any signal
s, the utility u : A x Ω 7→ R for jury j is further defined by uj(σj(s) = blue,Blue) = uj(σj(s) =

red,Red) = 0, uj(σj(s) = red,Blue) = −q and uj(σj(s) = blue,Red) = −(1−q), where 0 < q < 1.
In all our experiments, we used k∗ = n (i.e., the unanimity voting rule), r = 0.5, q = 0.5 and

p =
2

3
. As previously explained treatments vary in the number of players n between 3 and 6.

Under the experimental set-up, the model provides the prototypical behavior of the subjects
given their level as follows:

n = 3 or n = 6 and with replacement:

When the blue ball is observed, optimal strategy for:
- level-1 player: vote blue

24Independent case refers to the aforementioned with replacement draws case while the geometrically de-
pendent case refers to the without replacement case
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- level-2 player: vote red

When the red ball is observed, optimal strategy for:
- level-1 player: vote red
- level-2 player: vote red

n = 3 and without replacement:

When the blue ball is observed, optimal strategy for:
- level-1 player: vote blue
- level-2 player: vote red

When the red ball is observed, optimal strategy for:
- level-1 player: vote red
- level-2 player: vote red or blue
(Voting red is strictly preferred to voting blue under additional assumption that the level-2 player
assumes with some small probability ϵ that the other players are level-0

n = 6 and without replacement:

When the blue ball is observed, optimal strategy for:
- level-1 player: vote blue
- level-2 player: vote red or blue25

(Voting blue is strictly preferred to voting blue under additional assumption that the level-2 player
assumes with some small probability ϵ that the other players are level-0 and not level-1)

When the red ball is observed, optimal strategy for:
- level-1 player: vote red
- level-2 player: vote red or blue
(Voting red is strictly preferred to voting blue under additional assumption that the level-2 player
assumes with some small probability ϵ that the other players are level-0)

Guidelines for classification

General Comments:

• Subjects do not necessarily describe every step of their thinking; therefore, it may not
always be obvious to decide which level they are. In many comments, any indications of a
level of thinking may be partial or implicit, you should then indicate the most likely level of
reasoning of the player.

• If the message indicates to simply refer to a previous message (”same as before/above”),

25Note that for n = 3 voting red is strictly preferred to voting blue
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then you can use the previous message’s evaluation to determine the level of the current
message. Please indicate this inference with a 1 in the column ”Other message inference”.

• If you are unsure of the level of the message, you should indicate the level you think is
more likely.

• We have deliberately chosen not to disclose the action taken by the subject. You may
still see in their comment which action they chose. We do not want you to base your
classification on the action taken as it may be misleading.

Empty classification:

If no message has been formulated you should leave the classification empty. Also, you should
leave the classification empty, if you are not sufficiently certain that any of the types below is
capturing the strategic thinking in the message.

Level-0 Player:

Characteristics Chooses randomly, without justification or through some justification completely
unrelated to the task. Might not have understood the game or shows no interest in the
game or in thinking about it.

Examples ”50 50 chance to get red at least 50 50 could also be 100 percent.”
”I like blue, so I chose blue.”
”Think it will be red again.”
”definitely red this time”
”We have to go for red. No other way than that. I like turtles”

Note Comments such as ”It is obviously blue” or ”Play red, trust me!” should not be considered
as level-0 thinking as these comments to some extent signal some level of understand-
ing/interest of the task. Such comments are likely to be level-1 comments yet without any
additional information, you should leave the specific cell empty.

Level-1 Player:

Characteristics Always follows his own signal. The subject may argue in favor of playing his own
signal through some probability argument

Examples ”Our signal is blue. Let’s play blue.”
”The probability that the red ball we observe is out of the red urn is twice the probability
that it is out of the blue urn”
”1/3 of all teams is observing wrong color, so we would try to find out whether we have
wrong or right ball, keep with red.”

Note The key idea in defining a level-1 player is to identify some thinking process that signals
the subject’s interest/understanding of the task and the private signal. Furthermore, it is
important that the subject does not offer any argument acknowledging the potential votes
of the other teams and how to vote accordingly (i.e. adjusting the strategy given what
others are expected to do).
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Level-2 Player:

Characteristics Assume that all other players almost always follow their signal (i.e. she assumes
almost all the other players are level-1 while an epsilon portion of them are level-0). Player
does offer an argument acknowledging the potential votes of the other teams and how to
vote accordingly (i.e. a best response given others are most likely playing their signal). In
other words, if you identify any comment that indicates that the subject assumes (or con-
siders the case) where the other players in her group play their signal, you should consider
the possibility that the subject is a level-2 player.

Examples ”Let’s take red because if the urn is red and we got the opposite color and we take blue,
the decision will be blue.”
”We need to chose Red. If we are the only ones who picked blue, then the urn is red and
we guess correct If the urn is blue, then the other guys will pick blue so there will be at least
one blue vote and we win as well If the others guys (also blue) think the same way then we
lose But this is too many ifs”
”I have a blue ball. If we have the blue urn, someone else also has a blue ball and as a
result our group will chose blue regardless of my vote. If we have the red urn, I am the only
one with the blue ball and if I vote blue, we will chose the wrong urn. So I should vote for
red.”
”In case two teams choose red and one chooses blue, blue will be taken. That means that
choosing red has a higher chance of being a good decision.”
”I guess this is more about luck because there is no way to know it for sure. I would say
blue just because of the higher probability. Also I like turtles Also it is likely that one other
team will pick blue and then it is that color anyways”
”There is no point for us to take blue I think the chances for us to get the right color are
higher if we stick with red” [red ball is observed]
”I suggest red because we donat hurt anyone with this decision If the others go for blue
because they have a blue ball, the committeeas decision will be blue regardless of our
decision”
”We could be the deciding vote for blue if the other two choose red. Choosing blue isnt as
helpful as choosing red, because: only one blue ball can overturn our whole decision but
only a unanimous decision for red can help us the same way”

Note In order to discern the two types, you should look for more than any trivial arguments such
as the ones given under level-1. There may be cases where the message starts as a
level-1 argument and then as the subjects elaborates on her reasoning, she starts con-
sidering the strategy of the other teams and justify her decision accordingly (see the third
example above). In such cases, this message should be considered as level-2. The ac-
knowledgment of other teams’ voting strategy may not always be obvious or may be worded
differently such as ”hurting the other’s decision” or ”not being helpful” (see the last three
examples above)

Level-3 Player:

Characteristics Assumes that almost all other subjects are level-2 players (partially degenerate
beliefs). The reasoning in a level-3 player message will have similarities with a level-1
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player message but it will have additional arguments indicating that she assumes others
are level-2 players.

Examples ”In my opinion, if there is another person with blue they may be afraid of voting blue so
we should vote blue to make sure.”
”Let’s now pick the shown colour because the others now will probably enter their opposite
colour.”
”Risky to vote blue but others may not vote blue even when they draw blue. I say we vote
blue.”

Note As stated above, level-3 players are likely to follow their signal like a level-1 player yet they
will argue to do so through a much more intricate argument (unlike a level-1 player merely
stating probabilities to argue her action). Level-3 players are rare. Higher levels (level-4
etc.) are assumed to not occur; therefore, you should consider only the first 4 levels of
thinking.

Thank you.
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Chapter 2

Using Large Language Models for Text
Classification in Experimental
Economics

Joint with Stefan P. Penczynski

2.1 Introduction

Advances in information technology increase the performance of computerised Natural
Language Processing (NLP), which in turn increases NLP’s potential contribution to the
scientific endeavour. The accessibility of Large Language Models (LLM) will further
increase the use of “text as data” in the social sciences (Gentzkow et al., 2019) because,
as we show here, text can easily and accurately be classified according to challenging
social scientific concepts.

In this study, we employed GPT models to classify text transcripts from economic
experiments focused on promise and the level of strategic thinking. We aim to answer the
following research questions:

• How do GPT models compare to expert human annotators and traditional machine
learning methods in classifying these concepts?

• Can classification instructions designed for human annotators be minimally modi-
fied to serve as prompts for LLMs, delivering comparable performance levels?

• How effective are established prompting techniques in classifying these concepts,
and how does model size influence task performance and the efficacy of these tech-
niques?

We vary the prompts along two dimensions in order to explore LLMs’ performance
and to understand which prompting techniques are most effective for the given classifica-
tion tasks. In the first dimension, we alternate between zero-shot and few-shot prompting,
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which relates to the number of example messages and classifications that are included in
the prompts (Dong et al., 2022). In the second dimension, we alternate between requir-
ing responses to be with or without the chain-of-thought (CoT) feature by employing the
0-shot CoT prompting technique introduced by Kojima et al. (2022). With CoT, the LLM
provides written justifications for each of its classification decisions. Furthermore, we
conducted all these classifications using OpenAI’s GPT-3.5 turbo as well as GPT-4 turbo
to investigate performance gains achievable with larger LLMs.

We find that GPT-4 outperforms GPT-3.5 and achieves high levels of agreement,
reaching near or above 90% and up to 73% in more complex tasks. Importantly, these high
levels can at times be attained through zero-shot classification instructions originally de-
signed for human annotators. Unlike traditional supervised machine learning approaches,
which necessitate partitioning data for training and testing (Penczynski, 2019), use of
LLMs obviates the need for data separation, making it particularly advantageous in low-
resource environments, such as those commonly found in economic experiments. More-
over, we document that while n-shot prompting consistently improves the performance
of both models, 0-shot CoT prompting’s effect on models’ performances is dependent on
the model, the prompt and the task difficulty. It often enhanced GPT-4’s performance
but did not reliably improve GPT-3.5’s performance across tasks and prompts, generated
more consistent performance gains for relatively more difficult tasks, and when used in
conjunction with n-shot prompting, always resulted in the best performing outcomes for
GPT-4.

Additionally, by examining the classification of two concepts –promises and strategic
thinking– which potentially vary in terms of their availability in the pre-training corpus of
the models, we investigate whether the classification task primarily involves recognition-
based or learning-based subtasks, depending on the concept (Pan et al., 2023). While
we find no significant difference in performance gains switching from GPT-3.5 to GPT-4
among concepts, we do observe a higher degree of performance gain from incorporating
demonstrations into the prompts for the classification of level of thinking compared to the
classification of promises, and thereby, find some evidence that the classification of level
of thinking involves more learning components than the classification of promises.

As a scientific tool, LLMs offer a number of advantages over RAs, making them an
increasingly attractive option for researchers working with ’text as data’ and enhancing
the scientific insights derived from text. The costs associated with RAs arise from re-
cruitment, instruction, and, most importantly, their work-time. In contrast, LLM services
are paid by tokens and are comparatively inexpensive. For example, classifying 100 mes-
sages in the most complex dataset cost 6.60 USD (as of February 2024) and took only 43
minutes. LLMs offer attractive and distinctive performance features that are poised to im-
prove further. They deliver immediate results, provide on-demand detailed justifications
(CoT), and ensure consistent classifications that are not subject to fatigue. Additionally,
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testing and gradually refining prompts is straightforward and cost-effective with LLMs,
whereas it is prohibitively expensive with RAs.

2.2 LLMs and related literatures

An LLM is a statistical language model trained on a large corpus to predict the next
word for any given textual input. By inputting text instructions, one can strategically
leverage this predictive capability to steer the model’s output towards a desired outcome,
a practice commonly referred to as prompting. The appeal of prompting stems from
the ease with which natural language allows us to convey complex ideas. Yet, this very
flexibility may introduce inaccuracies or ambiguities if concepts are not clearly defined
or presented with insufficient context. The effectiveness of a prompt hinges both on the
user’s adeptness at crafting instructions with clarity and contextual relevance, and on the
model’s ability to accurately interpret these instructions within their context. While an
LLM’s capacity to process text and follow instructions are fundamentally based upon
its pre and post training and its parameter size, for downstream tasks, the user can still
attempt to refine her mode of interacting with the LLM by engineering her prompts to
align more closely with model’s operational framework, in order to effectively leverage
its capabilities(Reynolds and McDonell, 2021).

2.2.1 GPTs in the computer science literature

FLAN (Wei et al., 2021), OPT (Zhang et al., 2022b), and PaLM (Chowdhery et al., 2023)
are examples of LLMs that have showcased remarkable proficiency in natural language
understanding (NLU) tasks (Ye et al., 2023). Particularly, the generative pre-trained trans-
former (GPT) series (Brown et al., 2020), more specifically GPT-3 and its subsequent
iterations GPT-3.5, GPT-3.5-turbo, GPT-4 and GPT-4-turbo introduced by OpenAI have
sparked considerable attention due to their exceptional performance in integrating various
NLU tasks into generative ones (Ye et al., 2023).

Earlier GPT models, GPT-1 and GPT-2, are limited in their ability to recognise textual
patterns across diverse tasks due to their relatively smaller training corpus and parameter
size (Radford et al., 2019). Consequently, these models require substantial fine-tuning on
task-specific datasets to achieve satisfactory performance. Yet fine-tuning poses several
problems: first, it requires large volumes of task-specific data; second, there is a risk that
these training datasets do not cover the full spectrum of task variations, which could lead
to suboptimal performance on data not represented within the training set (lack of gener-
alizability due to over-fitting) (Brown et al., 2020). Furthermore, fine-tuning an LLM on
data that introduces new knowledge is documented to increase the model’s likelihood to
make up information (hallucinate) (Gekhman et al., 2024).
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Building on its predecessor, GPT-3 has been trained on a significantly larger corpus,
consisting of approximately 400 billion tokens, compared to GPT-2 which was trained on
1.5 billion tokens (Brown et al., 2020). This extensive training has markedly imrpoved its
ability to detect diverse textual patterns (Brown et al., 2020) and has enabled reasoning-
like emergent qualities (Wei et al., 2022b). Notably, GPT-3 can perform specialised tasks
when provided with few examples demonstrating how to perform it (Brown et al., 2020).
This capability, which significantly reduced the need for parameter adjustments through
fine-tuning, catalysed the development of the In-Context Learning (ICL) paradigm for
LLMs comparable in size to GPT-3 or larger (Dong et al., 2022).

In the ICL paradigm, the process of demonstrating task execution through a small
number of input-output pairs, where the input serves as the question and the output as
the answer, is referred to as n-shot prompting. In the specific case of classification tasks,
the term “n” indicates the number of examples provided in the prompt. n-shot prompting
quickly gained popularity as it requires only a few demonstrations to guide the model
toward achieving performance comparable to that of fine-tuned models trained on exten-
sive datasets. Notably, a single demonstration can be as effective as fine-tuning the model
with approximately 300 to 3,500 input-output pairs, depending on the task (Scao and
Rush, 2021). Additionally, by modifying the format of the demonstrations from <input,
output> to <input, reasoning, output>, one can enable the model to demonstrate reason-
ing capabilities. This approach, referred to as n-shot-CoT (Chain of Thought), has proven
to significantly enhance the models’ performance, especially on more involved tasks that
can potentially benefit from multi-step reasoning (Huang and Chang, 2022).

Although the ICL paradigm offers a flexible and data-efficient way to “teach” the
model at inference, the efficacy of the method on improving the model’s task perfor-
mance, or in other words the model’s ability to “learn” from these demonstrations, relies
to a greater extent on the choice of examples, the sequence in which they are presented
within the prompt, and the frequency with which examples for each category to be clas-
sified are provided (Lu et al., 2021; Kumar and Talukdar, 2021a; Zhao et al., 2023). Al-
though various methods to select the optimal set of examples and their order have been
proposed, and documented to improve the model’s performance (Li and Qiu, 2023a; Su
et al., 2022; Liu et al., 2021; Luo et al., 2023; Chang and Jia, 2022), their technically
demanding procedures may be less accessible for social scientist to implement. This lack
of accessibility juxtaposes with the appeal of GPT’s out-of-the-box usability, which we
believe is necessary for any prompting method to be widely adopted by social scientists.

Given n-shot-CoT prompting is an extension to n-shot prompting, its effectiveness in
enhancing the model’s task performance also relies on the choice and order of examples.
In addition, however, its effectiveness is also dependent on the manner with which the
rationales are provided for each demonstration (Huang and Chang, 2022). To improve the
reliability of n-shot prompting, the most cited method is the “self-consistency” method
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proposed by Wang et al. (2022). In this method, the temperature hyperparameter is set to
a strictly positive value (e.g. 0.5 or 0.7) in order to increase the variability in the reason-
ing sequence of the output, and multiple request (e.g. 20 or 40) to the model are made
using the n-shot-CoT method for every single task instance. Then the most frequently
outputted answer is picked as the decisive (consistent) output. Noting that requesting a
reasoning prior the answer already puts additional token cost, by generating k many out-
puts with reasoning for each task instance, “self-consistency” method is increasing the
computational cost approximately k times more. Making the classification task approx-
imately k times more costly to improve the reliability of the model’s output could make
this approach prohibitively expensive for social scientists, and potentially deter them from
viewing it as a viable alternative to human annotators.

To refine the reasoning provided with each examples, it has been suggested, among
many, to use multiple human annotators to provide a diverse set of reasoning for each
example (Li and Qiu, 2023b), to use the LLM itself to generate a diverse sets of reasoning
for each examples and then select the reasoning with the most steps (Fu et al., 2022), or to
generate multiple outputs using the generic n-shot-CoT prompting method and to choose
the most frequently provided output as the final output of the model (Wang et al., 2022)
(see Huang and Chang (2022) for details and other methods to refine the rationale). Ar-
guably, although these proposed methods for refining the reasoning in demonstrations are
not computationally demanding, they still require careful selection of the most suitable
reasoning for each example, and may lead the researchers to doubt whether the expla-
nations considered were adequate, particularly when the model’s performance does not
meet their expectations.

In addition to the unreliability concerns with n-shot and n-shot-CoT prompting, it is
also unclear how the model “learns” at inference to perform a task via few demonstrations
of the task, and whether it genuinely learns via demonstrations (Reynolds and McDonell,
2021). Min et al. (2022) demonstrate that even when the output labels of the input-output
pairs in n-shot prompts are replaced with incorrect labels, the model’s performance re-
mains unaffected. They suggest that models do not learn from demonstrations in the
same way humans do from examples; rather, these examples primarily serve to delineate
the label space and the distribution of the input text, thereby aiding the model in task
execution1. Reynolds and McDonell (2021) argue that demonstrations do not actually
“teach” the model how to perform the task but simply enables the model to locate the
tasks in the model’s existing knowledge of tasks that it acquired during its pre-training2

1Yoo et al. (2022) revisited the assertions of Min et al. (2022) and found instances where employing incor-
rect output labels adversely affects model performance. Consequently, the question of whether and how
models learn from demonstrations, and precisely what they learn, remains an open question.

2As a consequence, In-Context learning is also referred to as priming (Webson and Pavlick, 2021). Yet,
the term priming encompasses a broader spectrum of prompting techniques. For instance, priming can
also be done by pre-pending a prompt with a series of token (instead of or in addition to the input-output
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(meta-knowledge). Similarly, with n-shot-CoT prompting, it is unclear whether the model
genuinely engages in reasoning and, if so, how this reasoning improves the task perfor-
mance (Madaan and Yazdanbakhsh, 2022). Furthermore, the ability of a model to reason
effectively has been shown to correlate with the frequency of a task’s presence in its pre-
training corpus: the more frequently a task is represented in the training data, the more
likely the model is to exhibit sound reasoning and produce accurate outputs (Razeghi et
al., 2022).

Given the aforementioned challenges with n-shot-CoT method, a notable, demonstration-
free alternative is the 0-shot-CoT prompting method (Kojima et al., 2022). This approach
simply involves appending the phrase “Let’s think step-by-step” to the instructions and
thereby triggers a reasoning process before generating the output. 0-shot-CoT, devoid of
the reliability concerns regarding the selection of examples or the quality of reasoning,
is task-agnostic and can seamlessly be integrated into an existing prompt by adding the
keyword “think step-by-step” into the specific sections of the instructions where the user
wishes to invoke reasoning steps in the model (OpenAI, 2023b). While 0-shot-CoT has
been shown to significantly enhance performance across a range of tasks, its efficacy di-
minishes with relatively more involved tasks that potentially requires an explicit outline
of the reasoning steps to be followed by the model. In such scenarios, the method often
yields suboptimal outcomes due to the model’s failure to accurately execute or complete
the necessary reasoning steps, either by omitting steps or by making errors within specific
steps of the reasoning process (Zheng et al., 2023; Wang et al., 2023). Consequently,
alternative 0-shot reasoning-invoking methods have been proposed to address these lim-
itations (Huang and Chang, 2022). Furthermore, 0-shot-CoT’s effectiveness is similarly
influenced by the model’s pre-training corpus. Tasks less represented within the training
corpus is observed to provide diminished performance improvements when the method is
integrated. This highlights, once again, the dependency of the model’s performance on
the attributes of its training corpus (Wu et al., 2023).

OpenAI has progressively enhanced GPT-3 by fine-tuning on a collection of instruction-
answer pairs3 (Ouyang et al., 2022). These improvements enabled the model to more
closely follow instructions, and reduced to a considerable degree the need to instruct the
model to perform a task via demonstrations (Chung et al., 2022). Consequently, recent
literature has begun to emphasise the instruction learning paradigm which shifts focus
from learning through demonstrations to learning via instructions (Lou and Yin, 2024).
It’s worth noting that this paradigm does not preclude the inclusion of demonstrations

demonstration pairs) that do not necessarily make intuitive sense (Kumar and Talukdar, 2021b).
3Fine-tuning GPT-3 to better follow instructions resulted in the development of GPT-3.5 (Ouyang et al.,
2022). GPT-3.5 was then further fine-tuned using reinforcement learning from human feedback (RLHF)
method to further enhance its capacity to understand instructions and to better engage in conversational
interactions with its users (Ye et al., 2023). These advancements led to the creation of GPT-3.5-Turbo, the
underlying model of the ChatGPT application.
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within the instructions; rather, it puts more weight on structuring and designing prompts
that combine instructions and examples to optimise the model’s performance (Lou et
al., 2023). There are only a few studies that aim to provide cross-task generalizable
prompt design tips intended to enhance demonstration-free instructions to be considered
in prompt engineering (Mishra et al., 2021a; Reynolds and McDonell, 2021; Mishra et
al., 2021b; Gu et al., 2022; White et al., 2023; Peskine et al., 2023). Additionally, as of
writing of this paper, only a single paper has systematically explored various instructional
prompting techniques across a wide range of tasks and documented each instructional
design component’s contribution on improving the model’s performance (for a more de-
tailed discussion and the application of these design choices, see Section 2.4.1) (Mishra
et al., 2021a).

The concept of instructing an LLM in a manner akin to how one might instruct a
human is appealing because it renders the act of prompting both intuitive and flexible.
Furthermore, prompting via detailed instructions, free of examples, circumvents various
methodological issues inherent with the ICL paradigm. Yet, the availability and diversity
of instructions in the training corpus of the model is also observed to be a determinant
factor on the effectiveness of 0-shot instructions on improving the model’s performance.
When instructions tailored for human annotators (such as mTurkers on Amazon Mechan-
ical Turk) are considered verbatim as prompts to assess the model’s ability on following
human-tailored instructions (turking test), the smaller GPT-2 model has demonstrated
poor performance(Efrat and Levy, 2020), while the larger GPT-3 model, when fine-tuned
on a large set of human-tailored instructions, has demonstrated the ability to effectively
follow unseen human-tailored instructions (Mishra et al., 2021a; Ouyang et al., 2022).
Moreover, human-tailored instructions are documented to outperform basic prompts that
instruct the model with one or two sentences devoid of any additional descriptive context
for categories (Mishra et al., 2021a). In brief, irrespective of how well instructions are
constructed to improve the model’s performance, the size of the model and whether the
model was fined-tuned on instructions are observed to play a major role in the model’s
performance; and if the model is fine-tuned on instructions, then using instruction pro-
vides an improvement over the performance of the model.

Similar to the ICL paradigm, where it is uncertain whether the model genuinely learns
from demonstrations, it is also unclear whether the model truly grasps the task’s context
and execution conditions from a set of 0-shot instructions (Webson and Pavlick, 2021).
If the model truly learns from instructions, variations between two different sets of in-
structions that convey the same meaning should not affect its performance. However, it
has been observed that, without sufficient fine-tuning on task-specific examples, changes
in word choices that preserve semantic textual similarity in 0-shot instruction prompts
can impact model performance as significantly as training it with an additional 200 task-
specific examples (Puri et al., 2022). On the other hand, when the model is fine-tuned
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with a large collection of task-specific examples, its performance demonstrates robust-
ness to variations in the wording of the instructions (Puri et al., 2022). These results,
on the one hand, demonstrates the importance of providing carefully designed instruc-
tions, while, on the other hand, hints at the fact that the model does not only learn from
a set of instructions but also leverages the provided descriptions to locate the task on its
existing knowledge. Lastly, demonstrations and carefully provided descriptions for each
classification category are observed to complement each other. Irrespective of whether the
model is sufficiently trained on task-specific instructions, when instructions are supple-
mented with a few demonstrations, the model’s performance is observed to remain stable
despite variations in the choice of words and phrases (Gu et al., 2022).

A recurring theme in our discussion of various prompting techniques is that the effec-
tiveness of any such technique in enhancing a model’s performance largely depends on
how well the task’s contextual components are represented in the model’s training corpus.
Certain elements of any given task might already be familiar to the model, while oth-
ers may be novel. This distinction categories any given task as either a recognition task,
where the model identifies elements it has seen before, or as a learning task, where the
model encounters new contextual elements. Through a series of carefully designed exper-
iments, Pan et al. (2023) demonstrate that the marginal effect of additional task examples
in a prompt diminishes for recognition tasks, since only a few examples are observed
to be sufficient for the model to recognize the task, and any additional examples do not
enable the model to “further recognize” it. Conversely, for learning tasks, the effect of
additional demonstrations is observed to be somewhat linear, with each additional exam-
ple helping the model grasp more of the task’s contextual nuances a bit more. Another
distinction between recognition and learning tasks identified by Pan et al. (2023) is the
scale of the model4. The model size is observed not to significantly enhance its perfor-
mance on recognition tasks, whereas it is observed to be a crucial factor for the model’s
ability to learn from demonstrations when faced with a novel task (Pan et al., 2023). This
observation is supported by Wei et al. (2022b), who argue that as the model scales, it
acquires an emergent capability to learn from the examples. Lastly, it is important to note
that any given task may consist of subtasks that fall into two either recognition or learning
task category. Furthermore, certain contextual elements of a task might be categorised as
learning tasks, while others are more appropriately considered as recognition tasks. Thus,
both the size of the pre-training corpus and the scale of the model are potentially crucial
factors that impact the performance of the model for a given task. Yet this impact may
vary depending on the proportion of recognition to learning components within the task.

4The scale or size of a model refers to the number of parameters in its neural network. Largest GPT-2
model has approximately 1.5 billion parameters (Radford et al., 2019) while GPT-3 has approximately
175 billion parameters (Brown et al., 2020), and although not exactly known, GPT-4 is estimated to have
over 1 trillion parameters (Baktash and Dawodi, 2023).
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Consequently, recognising that the impact of prompting techniques on model perfor-
mance can vary significantly with each specific task is crucial, as this variability neces-
sitates a case-by-case investigation of the effectiveness of different prompting techniques
and model configurations. Therefore, it is unreasonable to universally generalise that
one prompting technique or a model with a larger training set or more parameters will
consistently perform better across all tasks.

2.2.2 GPTs in the social science literature

In Table 2.1, we compile a selection of studies that explore the annotation capabilities
of various GPT models. Although this list is not exhaustive, it effectively showcases the
diverse prompting techniques used by researchers in a range of annotation tasks within
the social sciences.

Despite well-established guidelines from computer science literature, there is a no-
ticeable oversight in the related social science literature with respect to the integration of
various prompting strategies such as instruction learning, n-shot prompting, 0-shot-CoT,
and the proper usage of the temperature hyperparameter. Our aim is to provide insights
relevant to our current work and highlight methodological oversights such as the misuse
of the temperature hyperparameter (Reiss, 2023; Törnberg, 2023; Gilardi et al., 2023;
Pangakis et al., 2023; Matter et al., 2024; He et al., 2024; Li et al., 2024), misuse of 0-
shot-CoT (Zhu et al., 2023; Kuzman et al., 2023; Li et al., 2024), classifying messages in
batches (Zhang et al., 2022a; Amin et al., 2023; He et al., 2024; Heseltine and Clemm von
Hohenberg, 2024; Matter et al., 2024), and using chatGPT rather than the underlying GPT
model (Zhang et al., 2022a; Kuzman et al., 2023; Zhong et al., 2023; Amin et al., 2023;
Bhat and Varma, 2023; Heseltine and Clemm von Hohenberg, 2024). If unaddressed,
these oversights could compromise the perceived utility of LLMs in text annotation tasks
and could misdirect the literature towards suboptimal prompting practices. Moreover,
certain papers are often cited for their claims that GPT models are unreliable in text anno-
tation tasks, yet their conclusions rest on methodologically questionable practices (Reiss,
2023; Savelka et al., 2023). Meanwhile, other papers advocate for the adoption of spe-
cific prompting methodologies, but these recommendations either lack clarity (Pangakis
et al., 2023), or show inconsistencies between proposal and practice (Ziems et al., 2024).
Consequently, it is crucial to examine these studies more closely to ensure that they do
not mislead future research or get perpetuated uncritically in subsequent works.

In Table 2.1, under the “Prompt” column, the “Basic” tag is used for studies that
employ a very basic prompt format such as “Classify X as Y1, Y2, Y3, ...”. We labeled
slightly more involved basic prompts as “Basic+”. These prompts either provide addi-
tional context for the task, “Given context C, classify ...”, invoke a specific persona from
the model “Act as R and classify ...”, or offer explanations for each classification category,
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Table 2.1: Papers in social sciences

Paper Field GPT Temp. Prompt Shot CoT

Rytting et al. (2023) Poli. Sci. 3 ? Structured∗ 2, 3
Chae et al. (2023) Poli. Sci. 3 0 Basic∗ 0, 1, 2
Reiss (2023) Poli. Sci. 3.5 0.25, 1 Basic∗+ 0
Gilardi et al. (2023) Poli. Sci. 3.5∗ 0.2, 1 Original 0
Zhu et al. (2023) Psychology

Poli. Sci.
3.5∗ ? Basic 0

Li et al. (2024) Poli. Sci. 3.5∗ 0, 1 Original
Basic∗

0 ∼

Zhang et al. (2022a) Poli. Sci. 3̃.5∗ ∼ 0.7 Basic 0

Aiyappa et al. (2023) Poli. Sci. 3̃.5∗ ∼ 0.7 Basic 0

Kuzman et al. (2023) Linguistics 3̃.5∗ ∼ 0.7 Basic∗ 0 ∼
Zhong et al. (2023) Linguistics 3̃.5∗ ∼ 0.7 Basic∗ 0, 1, 5 ✓
Amin et al. (2023) Psychology 3̃.5∗ ∼ 0.7 Basic 0

Bhat et al. (2023) Psychology
Linguistics
Poli. Sci.

3̃.5∗ ∼ 0.7 Basic 0 ∼

Heseltine et al. (2024) Poli. Sci. 4̃∗ ∼ 0.7 Basic∗ 0
Törnberg (2023) Poli. Sci. 4 0.2, 1 Basic 0
Pangakis et al. (2023) Psychology

Linguistics
Poli. Sci.

4 0.6 Original∗ 0

Savelka et al. (2023) Law 4 0
Original &
Structured∗ 0 ✓

He et al. (2024) Linguistics 4 0.2, 1 Original 0
Rathje et al. (2023) Psychology 3.5∗, 4∗ 0 Basic∗ 0, 1
Matter et al. (2024) Sociology 3.5∗, 4∗ 0.1 Basic∗ 0 ∼
Ziems et al. (2024) Psychology

Linguistics
Poli. Sci.

3.5∗, 4 0 Basic+ 0, 1

Our Paper Economics 3.5∗, 4∗ 0
Basic+,
Original &
Structured∗

0− 19 ✓

Notes: The “Field” column represents the broad field under which the annotation tasks can be categorized. In the “Model” column, the asterisk indicates that the turbo
version of the model is used, and the tilde indicates that the model is not leveraged via the API but through the ChatGPT platform. In the “Prompt” column, “Basic”
indicates a basic instructions to classify a text, “Basic+” indicates a basic instruction accompanied by a short definition of for each category, “ Original” indicates that the
original human instructions are used verbatim as the prompt, and “Structured’ indicates that a prompt template is used to structure the prompt into distinct components such
as instructions, context, definitions, examples and so on. Moreover, in the “Prompt” column, asterisk superscript indicates that the study investigated either to improve the
model’s performance via restructuring or augmenting the prompt through rephrasing, incorporating additional context or definitions, making the instructions more precise,
etc. or to investigate the effect of a specific variation on the prompt such as considering the prompt in an other language, instructing the model to output a non-binary
classification, etc. The “Shot” column indicates the number of demonstrations used in the prompt (n-shot prompting). The “Temp.” column indicates the temperature
parameter(s) used for the respective model(s), question mark indicates that this value is not provided in the respective paper. Moreover, the exact temperature value for
ChatGPT is not known and 0.7 the unconfirmed yet commonly assumed value for it. The “CoT” column not only indicates whether the study used some form of chain-of-
thought prompting technique (✓) but also points out studies that considered asking for an explanation after the classification is done (∼) either as an attempt to improve
the performance or to further investigate the outputs provided.

“Classify X as Y1, Y2, ... where Y1 :< description >, Y2 :< description >, ... ”. The
“Structured” tag is assigned to prompts that imposes a structured template that organises
explanations, context, constraints, demonstrations and additional prompting techniques
into modular components via textual cues such as titles or delimiters. The “Original”
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tag is assigned to prompts that verbatim use instructions tailored for human annotators.
Consequently, using this tag in conjunction with the “Structured” tag indicates that the
original instructions have been reframed and restructured for its use as a prompt, and a
markup language is leveraged to impose this structure. All the papers with a “Structured”
tag in Table 2.1 used the Markdown language to structure their prompts. Lastly, the su-
perscript “*” is used to denote studies that explored variations on their initial prompts to
enhance model performance either by rephrasing, adding further information, simplifying
existing descriptions or using established prompt engineering techniques such as CoT.

A major determinant of a model’s task performance is the nature of the task itself,
which can be considered under two main dimensions: the representational depth of task-
specific categories in the model’s pre-training corpus and the complexity of the task.
Representational depth reflects the frequency and variety with which the categories to
be annotated are represented in the training corpus. A greater representational depth
ensures that the model is exposed to a wider range of conceptual diversity for given a
category which, in turn, impacts the model’s recognition and learning capabilities from
provided demonstrations or descriptions for a given annotation task (Reynolds and Mc-
Donell, 2021; Razeghi et al., 2022; Pan et al., 2023). Zhu et al. (2023) document that
GPT-3.5 performs relatively poorly when tasked with classifying topics that occurred af-
ter its training, such as the Ukraine-Russia war. In a similar vein, for GPT-4, Ziems et
al. (2024) report strong performance in tasks involving categories common in everyday
conversations, such as “anger” in an emotion recognition task, while in tasks requiring
expert knowledge and involving non-conventional categories, such as “white grievance”
in hate speech classification, GPT-4’s performance is notably weaker.

From an information perspective, a task that requires a more diverse set of information
is considered more complex (Liu and Li, 2012). Complexity can also be defined by the
level of abstraction necessary and the extent of inferential reasoning needed to effectively
interpret and act on information (Yang et al., 2016). For example, while utterance-level
classification involves analysing individual statements, conversational-level classification
should be considered as more complex as it requires understanding the broader context
and dynamics within entire dialogues (Arad et al., 2024). Similarly, analysing court opin-
ions to interpret legal concepts (Savelka et al., 2023) or classifying nth level strategic
thinking in jury voting (see Chapter 1) involves far more complex cognitive processes
than identifying promises (Charness and Dufwenberg, 2006). This increased complexity
necessitates a model that not only understands expert specific information but also inte-
grates and reasons about it in a manner that emulates higher-order cognitive processes
(Huang and Chang, 2022). For instance, Bhat and Varma (2023) investigate the anno-
tation performance of GPT-3.5 across three tasks of varying complexity and find that
the model performs poorly with linguistically more challenging task of news category
classification (51% average accuracy) compared to sentiment analysis (84% accuracy).
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Similarly, Savelka et al. (2023) observe poor GPT-4 performance in the task of analysing
court opinions to interpret legal concepts (46% average accuracy) yet this performance is
found to be still on par with expert level annotators. Lastly, Ziems et al. (2024) document
that as the complexity of the text increases, moving from standalone messages to conver-
sational texts, the performance of both GPT-3.5 and 4 models deteriorate in classification
tasks. In sum, the results corroborate that the performance of GPT-3.5 and GPT-4 models
are shaped by both the depth of representational coverage in their training data and the
complexity of the tasks they are assigned.

An additional aspect of representational depth is the linguistic diversity within the
model’s pre-training corpus. While specific details are often undisclosed, it is widely
inferred that the primary training data for GPT-3.5 and GPT-4 consist predominantly of
English texts (Lai et al., 2023). The limited representation of multilingual data can in
turn cause models’ performance on annotation tasks to deteriorate primarily on under-
represented language families with a syntactic order in the form of Subject-Object-Verb
(SOV, e.g., Hindi, Turkish, Arabic or Amharic) compared to the family of languages with
syntactic order in the form of Subject-Verb-Object (SVO, e.g., German, Italian, Spanish
or Slovenian) that English is a part of (Bjerva et al., 2019). This is because variations in
syntactic order alter the word inter-dependencies crucial for models’ language compre-
hension (Bender, 2011; Nivre et al., 2016). These structural differences result in unique
word co-occurrence patterns and grammatical dependencies that LLMs, primarily trained
on English, rely on to infer the semantics of the text. Consequently, GPT models may
face greater difficulties in effectively processing the semantics in language families with
syntactic structures distinct from English, while languages with a similar syntactic order,
such as German, may present fewer challenges (Conneau and Lample, 2019). In practice,
Heseltine and Clemm von Hohenberg (2024) find that GPT-4 demonstrates consistent
performance across tasks in German, Italian, and Chilean Spanish compared to English.
Conversely, Bhat and Varma (2023) observe that GPT-3.5 struggles with Indic languages,
although it was not tested against English texts to ascertain if the prompts would have
fared better in English. Rathje et al. (2023) report that GPT-3.5-turbo and GPT-4-turbo
show comparable performance in Turkish, various African languages5, and Arabic. Kuz-
man et al. (2023) document that while Slovenian texts are classified as effectively as
English texts by these models, prompts in Slovenian yield poorer results compared to
their English counterparts. The empirical findings largely corroborate the theoretical ex-
pectations that various GPT models perform better with languages syntactically similar
to English, as observed with German, Italian, and Spanish. However, the comparable

5African languages display diverse syntactic structures across several language families. The Niger-Congo
family mainly uses SVO order, similar to English, but variations like SOV are found in some Bantu lan-
guages. Nilo-Saharan languages typically feature SOV order, with dialectic variations (Vossen and Dim-
mendaal, 2020).
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performance in SOV languages, like Turkish or Arabic, suggests that the models have the
capability to effectively adapt to diverse linguistic structures.

The 0-shot improvement technique of providing context and label descriptions on a
“Basic” prompt is shown to improve the classification performance of the models (Peskine
et al., 2023). Chae and Davidson (2023) initially consider a simpler prompt than the
“Basic” prompt to instruct GPT-3 to classify political stance of Twitter messages with
the prompt “Stance:”. This method led the model to incorrectly output labels associated
with sentiment classification (“positive”, “negative”) rather than the intended stance labels
(“support”, “oppose”). Consequently, they opted for the “Basic” prompt to ensure the
correct classification labels, and then tested two incremental improvements on the “Basic”
prompt: first, by adding a statement indicating the potential expression of a stance, and
second, by providing a general definition of what “stance” entails. These modifications
improved the prompt’s performance by 11%.

Similarly, Heseltine and Clemm von Hohenberg (2024) started with a “Basic” prompt
and enhanced it by adding a single-sentence description for each category, which on av-
erage boosted the model’s performance by 8% across different tasks.

The 0-shot improvement technique of reframing instructions (Mishra et al., 2021b),
either by making existing instructions more precise or by adding descriptions to clarify
category definitions, has also been documented to enhance model performance. Savelka
et al. (2023) initially employed an “Original & Structured” prompt. They observed that
definitions provided for the categories were too broad and adversely affecting the classi-
fication performance. By reframing these definitions to be more precise, they managed to
increase the model’s performance by an average of 28% across multiple prompts. Matter
et al. (2024) first consider a “Basic” prompt. Their prompt has three main labels: explicit
violence, implicit violence and non-violence. For violence cases they have additional
three subcategories: directed to a specific person, directed to self or undirected. They first
test this on a randomly selected subset of the dataset. Then, to enhance model’s perfor-
mance, they provide a sentence description for each label. They, then, further refined the
prompt through a process of iteratively testing the refined prompt on additional randomly
selected subsets. This process involved identifying misclassifications, instructing GPT
to generate additional instructional text to address these errors, and then integrating these
GPT suggestions into the prompt. Through these iterations, they developed a final version
of the prompt that provides additional descriptions for explicit and implicit violence, and
directed and undirected violence categories and an example for explicit, direct category
and another example for implicit undirected violence each category. They claim the final
prompt significantly improves the model’s performance. However, since neither the ini-
tial “Basic” prompt nor the prompts from each iteration were tested on the full dataset,
they were not able to provide a specific percentage number for the significance of each
modification and for the overall effectiveness of the process compared to the initial “Ba-
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sic” prompt. Furthermore, it is unclear why only specific categories are provided with
additional instructions or examples. A similar prompt refinement procedure is proposed
by Pangakis et al. (2023) where a randomly selected subset of data was first classified by
human annotators, and then GPT was prompted to classify the same subset using identical
instructions. If the model’s classifications substantially diverge from the human annota-
tions (no specific match percentage is given to define “substantial”), they identify where
the model misclassifies and adjust the prompts accordingly to improve the model’s perfor-
mance. This process was repeated until a “satisfactory” alignment was achieved between
the model’s and humans’ classifications (yet again, no specific percentage is given to de-
fine a “satisfactory” alignment). This method was also found to significantly enhance
the model’s performance and promoted as a procedure to be adopted by other researches.
However, neither the precise effect of this method relative to a “Basic” prompt nor the
details of the adjustments made to the prompt were reported.

Although Matter et al. (2024) and Pangakis et al. (2023) provide case studies high-
lighting the importance of effective prompting on model performance, their methods risk
overfitting on a subsample of the messages, which could not only fail to improve but also
potentially degrade classification performance on the rest of the data. Furthermore, their
prompt enhancement procedures lack clear documentation. In Matter et al. (2024), one
must scrutinise the final prompt to discern the prompting techniques used, and it remains
unclear why certain labels are given additional descriptions or examples. In Pangakis et
al. (2023), the final prompts and details of the prompt refinements are not even disclosed.
As a result, neither study offers valuable insights into prompt engineering that could be
adopted by other researchers.

Attempts to enhance model performance using either 0-shot-CoT or n-shot-CoT prompt-
ing methods are observed in social science applications, albeit in very few instances, de-
spite the accessibility of the 0-shot-CoT method and detailed guidelines on its use (Ope-
nAI, 2023b). Depending on the complexity of the task, CoT is observed to have a varying
improvement on the model’s performance. Zhong et al. (2023) document that 0-shot-
CoT increases the performance by 15%, 1-shot-CoT increases performance by 8%, and
5-shot-CoT by 21%. Yet, they note that generating the reasoning examples for n-shot-
CoT prompts were challenging. They have first constructed a hand written reasoning
example for an input then instructed GPT to provide similar reasoning demonstrations for
other inputs which they used as the additional four reasoning examples in their 5-shot-
CoT prompt. Conversely, in Savelka et al. (2023) where the task is argued to be more
complex, 0-shot-CoT is documented to worsen the performance of the initial prompt by
13% and only to improve the performance of the improved prompt by 4%. In addition to
the established CoT prompting techniques, we identified various studies where the model
is prompted to provide reasoning after the classification. In Table 2.1, studies employing
this post-classification reasoning approach are indicated in the “CoT” column with a tilde
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(∼). Asking the model to reason after providing the response is documented to either
not improve or provide a minor improvement to the model’s performance compared to a
baseline of no CoT (Wei et al., 2022a). Therefore, future studies should consider avoiding
this methodological oversight to avoid suboptimal model performance.

Few studies have explored n-shot prompting. Chae and Davidson (2023) experi-
mented with various examples for 1-shot and 2-shot prompting and documented that the
choice of example significantly affects model performance, with F1 scores on average
varying between 42% and 73% across tasks. This variance corroborates concerns voiced
in the computer science literature about the high dependency of performance on the choice
of examples (Zhao et al., 2023). Rathje et al. (2023) implemented 1-shot prompting across
five tasks, with performance deteriorating in two tasks and slightly improving in three, re-
sulting in an average performance improvement of 3.5%. These outcomes emphasise the
majority label bias, where the model tends to favor labels that appear more frequently in
the demonstrations used in the prompt. Consequently, this bias is particularly pronounced
in 1-shot prompting, as the model often replicates the classification from the single ex-
ample provided, leading to either reduced performance or minimal gains (Zhao et al.,
2023). Furthermore, Rytting et al. (2023) experimented with up to 30 demonstrations in
few-shot prompting and noted that although performance improvements were observed,
these gains plateaued after two or three demonstrations. The diminishing marginal effect
of additional demonstrations after at most three examples suggests that the various tasks
considered by Rytting et al. (2023) may primarily be considered as recognition tasks (Pan
et al., 2023).

Although only three studies have considered few-shot prompting, six other studies on
our list have engaged in batch classification, where multiple distinct texts are classified
within a single request sent to the model (Zhang et al., 2022a; Amin et al., 2023; Savelka
et al., 2023; He et al., 2024; Matter et al., 2024; Heseltine and Clemm von Hohenberg,
2024). Given the autoregressive nature of GPT, any classified example in a batch classifi-
cation process effectively acts as a demonstration for the subsequent examples within that
batch. For instance, a batch classification of 2n + 1 messages is, on average, equivalent
to n-shot prompting, with the first message evaluated under 0-shot conditions and the last
message under 2n-shot conditions. Considering that the choice, order and number of ex-
amples used in n-shot prompting significantly affect the model’s performance (Lu et al.,
2021; Kumar and Talukdar, 2021a; Zhao et al., 2023), and given that in a batch classifica-
tion each input is classified using a different number, order, and choice of examples, the
performance for each classification can vary drastically when performing classification
in batches. This method has been promoted by all the stated studies for reducing costs
and time for classification. Matter et al. (2024) took batch classification a step further by
experimenting with different batch sizes to identify the optimal batch size that maximises
the model’s performance. We find it important to highlight this oversight in these studies’
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prompting methodology with the hope that it will be avoided in future research.
In the computer science literature, various papers that investigate prompting tech-

niques consistently set the temperature hyperparameter of the model to 0 to maximise
model consistency (Brown et al., 2020; Kojima et al., 2022; Wei et al., 2022a). OpenAI’s
code examples also state that for classification tasks, they set the temperature value to 0
(OpenAI, 2023a). Technically, the temperature hyperparameter, T , adjusts the softmax
function commonly used in machine learning. As depicted in Equation 2.1, the softmax
function normalises the raw input scores from a neural network’s final layer and trans-
forms these scores into probability values. The outputted probability values are propor-
tional to the input values. A lower temperature value generates a probability distribution
of the input scores where the input score with the highest score is given more weight.
As the temperature value approaches to 0, the softmax function effectively becomes the
argmax function that maps the highest input value to 1 and the other values to 0. As the
temperature increases, the distribution generated by the softmax function becomes more
uniform, reducing the weight on the highest scored tokens and increasing the weight on
lower scored tokens. This results in the LLM becoming more likely to pick lower-scored
tokens, essentially adding randomness to the token selection process.

Softmax(zi) =
ezi/T∑
j e

zj/T
(2.1)

Pangakis et al. (2023) set the temperature value to 0.6 and repeated the annotation task
at least three times, although the exact number of repetitions for each task was not spec-
ified. They observed a positive correlation between the consistency of the classification
across repetitions and the accuracy of the classification for each message within each task.
More specifically, they found that a classification was 19.4% more likely to be correct if
the model classified it the same way three or more times. This suggests that the model’s
next token probability distribution is indicative of the difficulty of the task classification
for the model. This observation aligns with OpenAI’s recommendation to use the proba-
bility distribution of the next token predictions as a way to measure the confidence level
of the model on its next token prediction (OpenAI, 2023c).

Gilardi et al. (2023); Törnberg (2023); Li et al. (2024) and He et al. (2024) investigated
the impact of using two different temperature settings on classification performance, as
detailed in Table 2.1. They conducted multiple classification iterations for the same mes-
sage and reported the internal consistency of classifications at each temperature setting
to demonstrate the robustness of their results under temperature variations. Although not
explicitly argued in these studies, the high consistency of classification results at higher
temperature settings suggests that the tasks were not too challenging for the model, or in
other words, the model had high confidence in its next token predictions, which was re-
flected in its next token probability distribution being close to degenerate (given the high
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consistency of the classification results even at high temperature values). Furthermore,
the correlation between high confidence and high accuracy, documented by Pangakis et
al. (2023), is further supported in these studies by the high accuracy of their results in con-
junction with the high consistency of their results at high temperatures. All these studies
documented that the model’s performance was either on par with or superior to that of
either online or expert annotators. However, these insights were lacking in these studies
as the goal of Gilardi et al. (2023); Törnberg (2023); Li et al. (2024); He et al. (2024)
in comparing the consistency of two sets of temperature values was only to argue that at
lower temperatures, the model is more consistent and recommended lower temperature to
be considered in future studies.

A more cost-efficient way of investigating this is to utilise the “logprob” functional-
ity of GPT models that became available via the API right before Christmas 2023. By
ensuring that the model outputs a single token as a classification output, the “logprob”
functionality can be used to obtain the probability distribution for each classification la-
bel (OpenAI, 2023c). This functionality not only provides probabilities associated with
each class prediction but also allows users to set their own confidence thresholds for the
classifications (OpenAI, 2023c). Although this functionality was not incorporated into
our current study due to its irrelevance for our research questions, it is important to note
that it presents a viable alternative for running multiple classifications to approximate
the model’s classification distribution and to assess the confidence level of the model’s
classification for each message.

In Table 2.1, studies that used ChatGPT instead of directly interacting with the mod-
els via the OpenAI API are denoted under the “GPT” column with a tilde. There are
several issues associated with using ChatGPT for research purposes. First, the tempera-
ture setting of the underlying model is not disclosed by OpenAI, and it cannot be altered
by users. The temperature of models used in ChatGPT is commonly assumed to be 0.7;
however, as previously stated, for task classification, the recommended temperature value
is 0 to achieve robust results. Second, ChatGPT employs a pre-defined system prompt
that precedes every conversation on the platform (see Section 2.4.1 for details), which
can confound any prompts considered and, in turn, undermine the robustness and replica-
bility of results 6. Third, there is a limit to the number of requests to ChatGPT. Although
this varies, the typical limit set by OpenAI allows only about 40 requests every three hours
which equates to a maximum of 320 classifications per day. In contrast, when using the
OpenAI API, our experience shows that depending on how involved the task is, one can
classify 100 messages in as little as 1.5 minutes and up to 43 minutes (see Section 2.9
for more details). Moreover, just like the temperature hyperparameter, it is unclear which
specific GPT model is the underlying model used for ChatGPT or ChatGPTplus, which in

6The only way to get rid of the system prompt is to build a GPT agent where the platform allows the users
to defined their own system prompts. Yet, none of the studies in Table 2.1 considered this option.

63



turn further undermines the robustness and replicability of results (Aiyappa et al., 2023).
Lastly, any classification task conducted in the platform has the risk of data leakage, as a
set of messages that are used for a classification via ChatGPT has the possibility of be-
coming part of the training data for the next iteration of the model used for the platform
(Aiyappa et al., 2023). In sum, we strongly recommend the researchers to not use Chat-
GPT due to the closed nature of its underlying GPT models and due to the risk of data
leakage.7

Reiss (2023), unlike other studies in our list, solely focuses on the consistency of
GPT-3.5. It is frequently cited in social science literature for its recommendation against
using GPT for text classification, highlighting the model’s unreliability due to documented
output inconsistencies. The author claims that the model’s classification is inconsistent,
and therefore, the model is unreliable in two dimensions. First, the author compares the
classification results for temperature values of 0.25 and 1 and shows that the classification
results are not consistent between these temperature values, as for a single repetition of
each message, the Krippendorf’s alpha is below 0.8 (0.71). Yet when he repeats the
classification three and ten times, the classifications results becomes consistent with a
Krippendor’s alpha above 0.8, reaching 0.91 for ten repetitions. The author’s fundamental
misunderstanding lies in his assumption that the output distribution of tokens varies with
changes in temperature. However, in reality, the model’s generated token distribution
is independent of the temperature hyperparameter (hence the prefix “hyper”). In other
words, the model produces a similar token distribution across classifications of the same
instance, regardless of the temperature value used. When the temperature is high, the
model tends to select less likely tokens more frequently, which in turn results in variation
in the outputted token (which corresponds to the classification provided by the model).
Therefore, what is perceived as inconsistency is merely a characteristic of the model’s
functionality, which can be mitigated by setting the temperature to 0, as recommended by
OpenAI (OpenAI, 2023a).

Second, the author compares the classification results for 10 different prompt varia-
tions where he describes the differences in instructions between these prompts as ”minor”.
Firstly, it is unclear whether the author pools the classification results from both tempera-
ture settings for this analysis. Assuming that the results are not pooled by temperature and
that only the lower temperature value of 0.25 is considered, he still misleads the reader
with his characterisation of the variations in the 10 prompts he compares as “minor”. A
closer examination of the 10 prompts under consideration reveals that the first prompt is
the original human instruction prompt, which is significantly longer than the others and

7Additionally, researchers should be cautious not to use “ChatGPT” to refer generically to any GPT model
they use in their research, as this is analogous to calling an Intel processor a Dell computer simply because
it is used within a Dell product. The classification tasks are performed by the underlying GPT model
leveraged by the ChatGPT platform.
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is written mostly in German with some parts in English. This original prompt provides
considerably more information about the labels “news” and “not news”. Previous studies
have documented that prompting in a language other than English significantly affects the
performance of the model (Kuzman et al., 2023). Moreover, providing additional defini-
tions in the prompt is expected to effect the classification results of the model (Chae and
Davidson, 2023; Peskine et al., 2023). Therefore, given that his subsequent prompts are
in English and do not provide additional descriptions of the categories, it is not surpris-
ing that the results from this first prompt differ form the classification results of the other
prompts. His second and third prompts are “Basic” prompts that indeed involve only mi-
nor changes. His fourth and fifth prompts also exhibit minor alterations; they maintain
the original semantics of the prompt while adding additional emphasis on how to label
categories.

On the other hand, prompts 6 and 7 employ the prompt engineering technique of in-
voking a persona on the model. In prompt 6, the model is instructed to “take a human
perspective”, and in prompt 7, it is instructed to act as “a research assistant in a scien-
tific project”. It has been documented that invoking a persona on the model significantly
changes the model’s performance and, consequently, the classification results Kong et al.
(2023); Salewski et al. (2024). Therefore, the fact that these prompts generate classifi-
cations that differ from the other prompts should be expected. In prompt 8, the model
is instructed to base its decision on the article “What is News? News values revisited
(again)” by Tony Harcup and Deirdre O’Neill. This represents a significant deviation
from the other prompts. Moreover, it is unclear how the model is influenced by being
instructed to use information from an article, as this approach has not traditionally been
recognised as a prompting technique. However, it is expected to significantly affect how
the text is classified, and therefore, it should not be surprising that the classification results
differ.

Lastly, in prompts 9 and 10, a weaker definition for the categories is used. For in-
stance, instead of the direct instruction “if the text is news classify it as 1”, the prompts
state “1 means all or most in the text is news”. Such a variation in the prompt can po-
tentially alter the classification outcomes even for human annotators. Therefore, the fact
that the model provides a different set of classifications when the classification category
is presented in a weaker form suggests that the model can discern semantic nuances in
the instructions and closely follows them; and this capability should not be considered as
evidence of inconsistency in the model’s performance.

In brief, what the author describes as “minor” variations in the prompts are in fact
significant changes, which naturally lead to different classification results. Therefore, his
arguments concerning variations in temperature and prompt design do not substantiate
the claim that GPT is unreliable, and his recommendation against using GPT for text
classification is unwarranted. More importantly, it is imperative that researchers take the
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time to thoroughly investigate the claims of a study by examining the prompts used to
ensure the validity of its claims.

A similar mistake is made by Savelka et al. (2023). They compare the classification
results of a prompt with 0-shot-CoT and without 0-shot-CoT, in both single and batch
classifications. Given that batch classification is effectively akin to n-shot prompting,
the authors inappropriately compare results from established prompting methods like 0-
shot-CoT and n-shot prompting to a prompt without these techniques, to argue that GPT
classification is not robust to “minor” prompt changes. However, the modifications to the
prompt are substantial enough to expect changes in the model’s classification outcomes,
and thus should not be cited as evidence of the model’s prompt “brittleness” (Kaddour et
al., 2023).

Lastly, we would like to address a major issue we observed with the prompts consid-
ered in Ziems et al. (2024). While their study offers valuable guidelines for effectively
conducting 0-shot prompting, a closer examination of their various prompts8 reveals sev-
eral inconsistencies and issues. Despite their claims of using 0-shot prompts, we identified
that two of their prompts inadvertently provide examples for each label, effectively mak-
ing them 1-shot. Additionally, while some of their prompts are “Basic”, others include
additional descriptions for each label. We also discovered that three prompts employed
the technique of invoking a persona. Moreover, although they arbitrarily used additional
explanations in some prompts and additional demonstrations in others, in one prompt,
they instructed the model to categorise labels “based on formal workplace social norms”.
“Social norm” is a term that is too broad and varies significantly across cultures. Consec-
utively, the models’ performance would have benefited significantly from a more detailed
description of what these social norms entailed, yet they arbitrarily decided not to provide
any. These inconsistencies across tasks are noteworthy because they compare the model’s
performance across tasks without controlling for the prompt techniques used. Further-
more, while some prompts include descriptions, others lack any explanatory detail, and
no efforts are made to standardise or improve these descriptions across different tasks.
Yet, they boldly claim that based on their results, LLMs should not be used for anno-
tation tasks. We believe that to make such bold claims, one must first ensure that their
prompts are optimised to maximize the LLMs’ performance to the fullest extent possible.
Without such rigorous optimisation, their recommendation against using LLMs for text
classification seems rather unwarranted.

8It was a challenge to access their prompts. They did not provide a supplementary online appendix where
they clearly displayed the various prompts they have used. We took the effort to search through their code
to find the prompts that they have used.
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2.2.3 Text analysis in Economics

In economics, the applications of text analysis include the evaluation of policy platforms,
understanding news impact on stock prices, central bank communication influence on
financial markets, media slant and more (Gentzkow et al., 2019). In Table 2.2, we provide
a representative list of the papers that used GPT, which are so far confined to the areas of
central bank communication, financial markets (sentiment analysis of firm specific news)
and corporate finance (analysis of conference call transcripts of firms).

Multiple studies (Hansen and Kazinnik, 2023; Alonso-Robisco and Carbó, 2023; Lopez-
Lira and Tang, 2023; Jha et al., 2024) in Table 2.2 have documented that GPT mod-
els outperform existing text classification techniques such as BERT9 (or its variants) or
dictionary-based methods (Penczynski, 2019; Hüning et al., 2022a). On the other hand,
in classifying Central Bank communication transcripts, GPT models are shown to per-
form poorly compared to expert annotators in classifying Central Bank communication
transcripts in all (Hansen and Kazinnik, 2023; Smales, 2023; Alonso-Robisco and Carbó,
2023; Peskoff et al., 2023) but one study (Fanta and Horvath, 2024).

In finance, the effectiveness of these models is typically assessed based on their ability
to predict investment returns or the value of companies over a set period, rather than by
comparing the classification results to a ground truth established by human annotators.
For instance, Lopez-Lira and Tang (2023) and Glasserman and Lin (2023) implemented
basic investment strategies, where stocks are bought or sold based on the news sentiment
classified by the model the day before the transaction. This approach resulted in cumula-
tive returns of 550% (Lopez-Lira and Tang, 2023) and 350% (Glasserman and Lin, 2023)
over a two-month period.

Almost all studies in Table 2.2, used either a “Basic” or “Basic+” prompt. Major-
ity of the studies related to finance have additionally leveraged invoking a persona of a
“Financial Expert” (Jha et al., 2024; Lopez-Lira and Tang, 2023; Glasserman and Lin,
2023). Differently from any other studies we have reviewed, Obaid and Pukthuanthong
(2024) used as a prompt a set of 14 survey type questions, each requiring a likert-scale
response that is traditionally used for human subjects. Hence, although their prompt is not
borrowed from an existing human instruction, we classified their prompts as “Original”.

9BERT (Bidirectional Encoder Representations from Transformers) and its derivative models, such as fin-
BERT, sBERT, roBERTa, are transfomer-based language models that are relatively “small” (Devlin et al.,
2018; Liu et al., 2019; Huang et al., 2023) with a parameter size of 110 million for the base model and
355 million parameters for its variants (see Section 2.2.1 for comparison to GPT models). Unlike GPT
models, or any other unidirectional LLMs such as Gemini or Claude, BERT cannot simply be inputted
with instructions that are potentially accompanied with detailed descriptions of categories and annotation
demonstrations, and be expected to either recognise or learn from these, nor can it provide reasoning in a
similar fashion to GPT-3.5 and GPT-4. Furthermore, BERT and its variants have a relatively small token
limit of 512 (Devlin et al., 2018; Liu et al., 2019; Huang et al., 2023), compared to token limits of 4096
for GPT-3.5-turbo, 8192 for GPT-4-turbo, and 32768 for GPT-4-32k. On the other hand, because BERT is
a significantly smaller language model, it is feasible to run BERT in a local system or to fine-tune it using
a training dataset at a comparatively lower cost.
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Table 2.2: Papers in economics

Paper Field GPT Temp. Prompt Shot CoT

Alonso-Robisco and
Carbó (2023)

Macroecon. 3̃.5∗ ∼ 0.7 Basic 0 ∼

Smales (2023) Macroecon. 3̃.5∗, 4̃∗ ∼ 0.7 Basic 0
Hansen and Kazinnik
(2023)

Macroecon. 3, 4 ? Basic 0

Peskoff et al. (2023) Macroecon. 4 ?
Basic+ &
Structured 0, 10

Fanta and Horvath
(2024)

Macroecon. 3̃.5∗, 4̃∗ ∼ 0.7 Basic 0, 1

Glasserman and Lin
(2023)

Finance 3.5 0 Basic+ 0

Kim et al. (2023) Finance 3.5∗ 0 Basic+ 0
Lopez-Lira and Tang
(2023)

Finance 3.5∗, 4 0 Basic+ 0

Jha et al. (2024) Finance 3̃.5∗ ∼ 0.7 Basic 0 ∼
Obaid and Pukthuan-
thong (2024)

Finance 4 ? Original 0

Our Paper Exp. Econ. 3.5∗, 4∗ 0
Basic+,
Original &
Structured∗

0− 19 ✓

Notes: The “Field” column represents the subfield of economics under which the annotation tasks can be categorized. In the
“Model” column, the asterisk indicates that the turbo version of the model is used, and the tilde indicates that the model is
not leveraged via the API but through the ChatGPT platform. In the “Prompt” column, “Basic” indicates a basic instructions
to classify a text, “Basic+” indicates a basic instruction accompanied by a short definition of for each category, “ Original”
indicates that the original human instructions are used verbatim as the prompt, and “Structured’ indicates that a prompt template
is used to structure the prompt into distinct components such as instructions, context, definitions, examples and so on. Moreover,
in the “Prompt” column, asterisk superscript indicates that the study investigated either to improve the model’s performance
via restructuring or augmenting the prompt through rephrasing, incorporating additional context or definitions, making the
instructions more precise, etc. or to investigate the effect of a specific variation on the prompt such as considering the prompt
in an other language, instructing the model to output a non-binary classification, etc. The “Shot” column indicates the number
of demonstrations used in the prompt (n-shot prompting). The “Temp.” column indicates the temperature parameter(s) used
for the respective model(s), question mark indicates that this value is not provided in the respective paper. Moreover, the exact
temperature value for ChatGPT is not known and 0.7 the unconfirmed yet commonly assumed value for it. The “CoT” column
not only indicates whether the study used some form of chain-of-thought prompting technique (✓) but also points out studies
that considered asking for an explanation after the classification is done (∼) either as an attempt to improve the performance or
to further investigate the outputs provided.

Differently from our model and previous studies discussed in Section 2.2.2, Peskoff et al.
(2023) imposed a format structure upon their prompt through XML tags. Moreover, only
two studies consider few-shot prompting technique and Fanta and Horvath (2024) docu-
ment that 1-shot prompting technique did not provide any improvement on the model’s
performance which is most likely due to their attempt to do classifications in batches.
Lastly, just as with almost all the studies reviewed in Section 2.2.2, none of the studies
in Table 2.2 considered either 0-shot or n-shot CoT prompting technique. Yet, few con-
sidered to leverage models’ reasoning capabilities for non-performance related inquiries
(such as getting a more detailed understanding of the classification made by the model)
by instructing the model to provide a reasoning after it provided its classification.

68



Similar issues with prompting methodologies, albeit minor, are also observed within
these studies. Few studies have failed to disclose the temperature hyperparameter they
have used for their models. One study have only provided a brief description of their
prompt but did not disclose it (Kim et al., 2023). And few others have used ChatGPT
platform for their classification rather than directly accessing the GPT models through
the OpenAI API. In addition, one puzzling prompting technique we observed with two
studies (Lopez-Lira and Tang, 2023; Glasserman and Lin, 2023) is to begin their prompts
with the statement: “Forget all your previous instructions”. This is the most basic prompt
injecting method to “jailbreak” a model from its pre-defined system prompt which serves
to prevent the user from leveraging the model to generate harmful content (Shen et al.,
2023). However, neither of the studies that used this statement did their classification
via the ChatGPT platform, hence there was no need to attempt to overwrite a system
prompt. Moreover, this specific prompt injection phrase is commonly known and most
likely already accounted for by the companies that provide the LLM services (Anthropic,
2023). Therefore, even if it was used as intended, it would not have worked, and would
have potentially resulted in their accounts to be flagged.

In experimental economics, the analysis of text has increased with the augmenta-
tion of experimental action data with choice-process data (Cooper et al., 2019). Starting
with a prominent exploration of strategicness in games by means of team chat (Cooper
and Kagel 2005), further investigations have used intra-team communication (Burchardi
and Penczynski, 2014), talk-aloud protocols (Capra, 2019) and written advice (Schotter,
2003a). Naturally-occurring language has also been analysed to understand, for example,
cooperative behaviour in large stake game shows (Van den Assem et al., 2012).

In an earlier attempt to computerise text classifications, Penczynski (2019) describes
the effectiveness of supervised machine learning techniques in classifying intra-team
communication in various games according to the level of strategic sophistication. More
recently, Hüning et al. (2022a) and Hüning et al. (2022b) consider both “traditional”
dictionary-based methods and BERT for classification of “premises”, and documented
that BERT performs as good as dictionary-based methods. Howevever, while their auto-
mated classification results show very good performance (87% match with human classi-
fication), the model’s performance heavily relies on the size of the training data, and dete-
riorates as the size of the training data decreases, or as the concepts to classified become
more nuanced10 (Hüning et al., 2022a). Notably, Hüning et al. (2022a) state that effec-

10Hüning et al. (2022a) demonstrate the difficulty of classifying nuanced text with the following pair of
messages: “Rent control will lead to fixed and projectable prices for renters.” and “Rent control will lead
to fixed prices that cannot fluctuate anymore.”. GPT-4-turbo successfully identifies the nuance between
these two messages, and classifies them correctly using the following “Basic+” prompt:
- Classify whether the following message is against or for rent control.

- Provide a step-by-step reasoning before providing your classification.

- Code ’for’ as 1 and ’against’ as 0.

- Refrain from providing any classification other than ‘for’ or ‘against’.
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tive performance with automated classification using BERT or dictionary-based methods
requires “a few hundred training data per classification category”. Unlike these methods,
the use of GPT in this study obviates the need for “supervision” – the training of a model
with substantial appropriate data.

2.3 Research questions

The following research questions guide our analysis of GPT classification performance.

RQ 1: [Prompts] Can classification instructions intended for human annotators be min-
imally modified into prompts that deliver GPT performance levels comparable to
those of human annotators?

1.a: [Promises] How does GPT’s performance in classifying “promises” compare
to that of expert-level human annotators and of the aggregated classifications
of groups of human annotators?

1.b: [Level of reasoning] How does GPT’s performance in classifying levels of
strategic thinking, as well as label and payoff salience, compare to that of
expert-level human annotators and of traditional machine learning methods?

RQ 2: [n-shot and CoT] How effective are n-shot and 0-shot-CoT prompting techniques
in classifying “promises” and various concepts related to strategic thinking?

RQ 3: [GPT-3.5 vs. GPT-4] How does the size of the model influence performance in
classifying “promises” and various concepts associated with strategic thinking?

2.4 Procedures

2.4.1 General Prompt Structure

In order to investigate whether GPT can be considered as a viable alternative to human
annotators, it is essential to ensure the observed performance is not compromised by
suboptimal prompt design choices. Research has shown that using instructions tailored
for human annotators directly as prompts leads to significantly poor GPT performance
(Efrat and Levy, 2020). On the other hand, reframing these human-tailored instructions
into cross-task generalizable prompt templates has been shown to substantially improve
GPT’s performance across a variety of tasks (Mishra et al., 2021b). While our objective
is not to identify the ultimate prompt design, we are nevertheless dedicated to optimising
our prompts. By doing so, we aim to ensure that if GPT’s performance falls short, it

- Follow the format: \n Reasoning: \n ... \n Classification: 0/1.
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is more likely a reflection of its own limitations rather than the result of our potentially
suboptimal prompt design.

Recall that the tasks we examine are grouped into two distinct classification concepts:
“promise” and “strategic thinking”. Within each of these groups, the tasks exhibit differ-
ences in complexity and context, leading to natural variations in their instruction design
and structure. Our interest lies in examining how the model’s performance adjusts as
the complexity within each task varies. However, since our prompts incorporate certain
crucial parts of the human instructions verbatim, there is a significant variation in word-
ing and, as a result, in the style of the prompts, especially noticeable between the two
“strategic thinking” classification instructions and, to a much lesser extent, between the
two “promise” classification instructions. Given the documented impact of word choice
on the model’s performance (Yuan et al., 2021; Haviv et al., 2021; Jiang et al., 2020), the
inherent potential for variability in the effectiveness of our instructions that a prompt tem-
plate cannot fully address remains. Nevertheless, it has also been established that even
minor variations in a prompt, such as spacing between statements or the choice of separa-
tors among arguments, can affect an LLM’s performance (Sclar et al., 2023). Therefore,
employing a general prompt template allowed us to at least mitigate variations stemming
from structural and formatting differences within the prompts of the two classification
tasks. In brief, our choice to use a general prompt template was also driven by the goal of
imposing a degree of control and consistency in the structure and format to the classifica-
tion instructions. This choice, in turn, enabled a more robust investigation and comparison
of the model’s performance across tasks that vary in complexity and context.

In brief, to understand how task-specific context and complexity influence GPT’s per-
formance and to assess its potential as an alternative for human annotators, adopting a gen-
eral prompt template was deemed essential. This strategy reduced the variability caused
by differing instructions and enhanced our ability to isolate and evaluate GPT’s true per-
formance consistently across tasks. Hence, following the guidelines (Zhao et al., 2023;
Ziems et al., 2024), recommendations (White et al., 2023), and investigations (Mishra
et al., 2021b; Clavié et al., 2023; Yuan et al., 2023; Chae and Davidson, 2023; Savelka
et al., 2023) for effective prompt design, we developed and utilised the prompt template
depicted in Figure 2.1.

All four human-tailored instructions that we used as a basis to construct our prompts
consisted of two consecutive parts: a first part providing the background information on
the experiment, followed by a second part detailing how the human annotator should
classify each message. The background information consisted of, to a varying degree, a
detailed explanation of various components of the experiment: the decision process of the
subjects, the payoff structure of the game, the communication protocol, and a theoretical
background for the game played. The ‘Context’ section of our prompt template served to
provide all these background information, in line with previous studies that have shown
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Figure 2.1: General prompt structure

# General Task
- Classify <X> in <E>
# Role Persona
- Act as a behavioral economist specialized in text classification,
concept <C> and game <G>
# Context
- <Game mechanics>
- <Experimental design/Decision Process>
- <Communication protocol>
- <Theory>
- ...
# Classification Task
- Classify <X> as <Y > given conditions <Y1, Y2, ...>
- ...
# Classification Coding
- Code <X> as <Z> if it is classified as <Y >
- ...
# Examples (only used in n-shot prompts)
- <Example text> <classification>
- ...
# Classification Process (only used in CoT prompts)
- Provide a step-by-step reasoning before providing your
classifications.
# Constraint(s)
- Follow the below output format.
- ...
# Output Format
<Desired output format>

incorporating additional background details into prompts positively impacts GPT’s per-
formance (Chae and Davidson, 2023; Savelka et al., 2023; Yuan et al., 2023). However,
rather than incorporating these information into the ‘Context’ section verbatim, we opted
to include only the most crucial information deemed necessary for GPT to properly infer
the context of the message to be classified (further details will be provided for each game
in Sections 2.5-2.8). Given that background information primarily serves to provide do-
main specific linguistic patterns to facilitate the model to better interpret the context of
the message (White et al., 2023), we conjectured that an effective summary of the back-
ground information is sufficient enough as long as this summary manages to maintain and
present the key words and phrases that encompasses these patterns. Although the litera-
ture presents mixed outcomes regarding the effectiveness of presenting information in a
more succinct manner –as it has been documented to either improve a prompt’s perfor-
mance (Beltagy et al., 2020; Kuznia et al., 2022) or have no significant effect (Mishra et
al., 2021b; Li and Qiu, 2023b) depending on the model deployed– it, at the very least,
served to significantly reduce the cost of our classifications by minimising the number of
inputted tokens.

In line with our objective to reduce the effort needed to utilise GPT for classification
tasks, we opted to incorporate the second part of the human-tailored instructions, which
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specifically detail the classification task, verbatim into the “Classification Task” section
of our prompt template. This approach not only allowed us to investigate the possibility
of using GPT for classification tasks with minimal effort but also provided us with the op-
portunity to assess if instructions designed for human annotators are effective enough to
elicit high-level performance from GPT. Peskine et al. (2023) compared the effectiveness
of label descriptions to having no descriptions and also evaluated the performance impact
of descriptions provided by experts versus those generated by GPT. They documented that
both types of label descriptions significantly enhanced the model’s performance, with de-
scriptions from experts leading to even greater improvements. Moreover, research by
Mishra et al. (2021a) indicates that task descriptions crafted by experts generally surpass
the effectiveness of basic instructions commonly found in NLP literature, such as those
presented by Bach et al. (2022) in PromptSource, e.g., “Classify whether the following
message constitutes a promise or not.” Additionally, Logan IV et al. (2021) have shown
that expert-crafted prompts from Schick and Schütze (2020) typically outperform auto-
matically generated (soft) prompts11. Hence, based on these findings, we argue that it
is ideal to use existing classification instructions prepared by experts and to restructure
them in a manner that is more easily processed by the model, following the guidelines
established by Mishra et al. (2021b).

The “Example” section was designated to separately provide examples provided in
the original instructions. However, in instances where the original instructions lacked
examples, this section was omitted from the prompt. Additionally, there were scenarios
where instructions on how to classify messages were interwoven with examples –forming
a pattern of instructions followed by supporting examples, then more instructions, and so
forth. In these situations, due to our commitment to use the classification instructions from
the original instructions verbatim, and considering that extracting examples from their
instructional context could compromise the coherence of the instructions, we chose not
to isolate these examples into a distinct “Example” section. Consequently, in such cases,
an independent “Example” section was also omitted. Moreover, there were instances in
the original codebook where examples were provided separately from the classification
instructions, yet each example or set of examples was accompanied by additional remarks.
In these cases, we opted to create a separate “Example” section while preserving the
structure of each example followed by its remark. This approach was taken with the aim
of staying as close as possible to the original instructions to minimise the effort needed to
restructure and reframe the codebooks into prompts.

11Soft prompts, in contrast to discrete, human-readable prompts, are vector-like, non-textual parameters
fine-tuned to steer the outputs of language models. They constitute an optimised set of tokens (words
or subwords) designed to influence a pre-trained language model’s output for specific tasks, facilitating
task-specific adjustments without modifying the core model (Refer to Li and Liang, 2021; Lester et al.,
2021, for additional information). Though this comparison primarily involves very basic single-sentence
prompts and soft prompts, it underscores the efficacy of expert-crafted prompts.
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Apart from the “Context”, “Classification Task”, and “Examples” sections, the other
sections in our prompt template were not directly derived from the original instruction
text. These additional sections were included based on recommendations found in the
literature regarding optimal prompt design (Reynolds and McDonell, 2021; Mishra et al.,
2021b; White et al., 2023).

The first section, “General Task”, serves as a direct task specification (Reynolds and
McDonell, 2021), that serves to summarise the task broadly by incorporating key terms
like “classify”, “message”, “promise”, or “strategic thinking”, without specifying how
to accomplish the task. The efficacy of this section in enhancing GPT’s performance is
predicated on the assumption that the model has already acquired an understanding of
these fundamental concepts during its pre-training phase (recognition task). Therefore,
by offering a high-level task description that includes these keywords, it is posited that
GPT is more aptly primed to produce the intended output (Mishra et al., 2021a; White et
al., 2023).

The “Role Persona” section acts as an augmented task specification that employs
memetic proxy concepts to deepen the task description (Reynolds and McDonell, 2021).
This section seeks to subtly expand upon key task concepts like “classify”, “message”,
“promise”, and “strategic thinking” by placing them within the context of “a behavioural
economist”. This method enhances the model’s contextual understanding of the task and
aligns its operation with the persona’s style of reasoning. Notably, research has shown
that directing the model to emulate a specific persona can elevate its performance simi-
larly to the impact observed with CoT prompting (Kong et al., 2023). Hence, differently
from the “General Task” section, this section implicitly instructs the model on how to per-
form the task, by drawing on the model’s pre-existing knowledge of such roles. However,
it’s worth noting that the specific traits of the persona adopted by the model are unclear.
This is primarily because there is no detailed knowledge about the specific data on which
GPT has been trained no. Hence, while the role persona technique has been effective in
elevating GPT’s performance (Kong et al., 2023), there’s a risk it may highlight biases
from its training dataset (Salewski et al., 2024).12 However, in our context, we do not
foresee any biases associated with assuming a behavioural economist persona negatively
impacting GPT’s task performance.

The “Constraint”, “Output Format”, and “Classification Coding” sections collectively
shape GPT’s output generation, each serving a complementary role in guiding the model
towards producing outputs in a specified format. The “Constraint” section ensures GPT
adheres to the particular format outlined in the “Output Format” section, which speci-
fies the exact formatting requirements for the model’s outputs. Together, these sections
are pivotal in achieving consistently formatted outputs and facilitate the extraction of

12For example, Salewski et al. (2024) observed that GPT-3.5’s ability to classify car models improves when
prompted to assume a male persona over a female one.
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classification outcomes using basic string pattern matching algorithms. Moreover, when
specific output criteria are necessary beyond the conventional format, the “Constraint”
section introduces additional directives to meet these tailored requirements to guarantee
that outputs precisely match the classification task’s needs13. Similarly, the “Classification
Coding” section, akin to both “Constraint” and “Output Format”, furthers this objective
by instructing the model on how to encode various label categories in its output14.

The “Classification Process” section was devised strictly to employ the 0-shot-CoT
prompting method, and was incorporated into our prompts only when we explored this
prompting technique’s effect on the classification performance of GPT. Our use of the
0-shot-CoT process diverges from the methodology presented in the foundational paper
by Kojima et al. (2022). In Kojima et al. (2022), the technique involves appending “Let’s
first think step-by-step” to the classification prompt, explicitly guiding the model to begin
with reasoning before tackling the assigned task. We’ve chosen an alternative strategy that
better fits our existing prompt template by instructing the model to “provide a step-by-step
reasoning before providing a classification” under the “Classification Process” section.
Furthermore, in order to ensure that this order is strictly followed by the model, when
CoT is considered in the prompt, the “Output Format” explicitly outlines that GPT should
structure its response by initially presenting a reasoning section, subsequently followed
by the classification in a dedicated section as depicted in Figure 2.2.

Figure 2.2: Output format section for CoT

# Output Format
## Reasoning
...
## Classification
<Desired output format>

Segmenting a lengthy set of instructions into a list format is argued to enhance the
model’s comprehension and response accuracy, and is documented to improve GPT’s
performance (Mishra et al., 2021b). Hence in order to optimise GPT’s classification per-
formance, we adopted this reframing technique by converting the original instructions into
sequences of semantically coherent statements. Each itemised statement was no longer
than two sentences long, preserved the original statements word for word, and ordered in
a way that stayed faithful to the original order of the instructions. The list format was also
applied to all newly created statements or instructions.

We opted to use Markdown for our prompt template due to its compatibility with our
methodological approach and structural needs. This format adeptly accommodates the

13An example includes addressing instances where GPT might provide explanations for its classifications,
not requested in the prompt. Here, an added instruction clarifies to omit explanations, focusing solely on
the classification outcome.

14For instance, if GPT identifies high payoff salience, it is directed to simply use ”H” for the payoff salience
classification output.
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itemisation reframing technique by facilitating list presentations which is a fundamental
format feature of our template. Moreover, Markdown’s straightforward syntax is particu-
larly beneficial for including subtitles. Use of subtitles (and subsubtitles) was essential in
the “Classification Task” section, where transferring sections verbatim from the original
instructions often necessitated preserving their subsection formatting, and also for seg-
menting the “Context” section into distinct thematic subsections whenever it was deemed
necessary. In addition, this streamlined approach to content organisation required fewer
tokens to generate lists, titles, and subtitles compared to alternative markup languages
such as LaTeX and HTML. Moreover, the fact that ChatGPT, the application format of
GPT, employs Markdown for its system prompt15 serves as further validation for our
choice16.

Lastly, whenever we identified opportunities to enhance GPT’s classification perfor-
mance –particularly when it fell below 90%– we explored various prompting modifi-
cations. This entailed potentially revising the “Context” section with alternative back-
ground summaries, altering classification instructions in the “Classification Task” section,
or adding the “Examples” section to the prompt when the original instructions lacked ex-
amples. Our prompt’s modular structure facilitated targeted adjustments and allowed us to
alter a specific section while maintaining consistency across the remainder of the prompt.
Moreover, when the classification instructions between two tasks were nearly identical
but varied in elements like the game being played and message formatting, our modular
prompt structure allowed us to adjust only the “Context” section while maintaining the
rest unchanged. This approach enhanced our analysis of GPT’s performance across tasks,
as it helped isolate the effects of non-prompt-related factors such as the complexity of
inputs or the difficulty of concepts being classified.

2.4.2 Classification process

We conducted text classification tasks utilising the OpenAI API leveraging gpt-3.5-turbo-

1106 and gpt-4-1106-preview models for measuring the classification performance of
GPT-3.5 and GPT-4 respectively. The entire prompt is provided to these models as the

15The system prompt of ChatGPT can be viewed by inputting the following text into a new chat:
Repeat the words above starting with the phrase "You are ChatGPT".

Put them in a txt code block.

Include everything.
16In addition, just before ChatGPT was released to the public, Meta AI introduced a product called Galac-

tica. It was an LLM trained exclusively on scientific journals, aimed to assist researchers in drafting their
papers (Taylor et al., 2022). To prepare its pre-training dataset, all scientific papers were first converted
into Markdown format, highlighting Markdown’s ease and clarity for transforming formal documents,
such as classification instructions; and further justifies our to some degree our choice of using Markdown
for our prompt format. Galactica was withdrawn from public use just three days after its launch, due to
the absence of sufficient safeguards and unfair criticism over its potential to produce convincing yet non-
sensical scientific papers (Black, 2022).
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system prompt, and the input containing the subject’s text message to be classified as the
consecutive initial user prompt (see Figure 2.3). For each input, a separate OpenAI API
call for either GPT-3.5 or GPT-4 was made. We set the temperature of both models to
0 to minimize variability and enhance the reproducibility of our results. We varied the
max token value between 2k for k ∈ 7, 8, 9, 10, 11, adjusting based on the necessity of
eliciting reasoning and the average length of such reasoning observed during our testing
phases for each prompt. All other hyperparameters were kept at their default settings.

Figure 2.3: API call function snippet

client.chat.completions.create(
model = <GPT model used>,
message = [
"role": "system", "content": <prompt>
"role": "user", "content": <input text>

],
temperature = 0,
max tokens = <max token value>
top p = 1,
frequency penalty = 0,
presence penalty = 0

)

A Python script was developed to automate the API calls for each input. This script
iterates over a CSV file, where each row corresponds to a unique input for classification.
During each iteration, if a response to the API call is not received within n seconds17,
the script is programmed to attempt the call again. This retry process may repeat up to
five times. Should the response still not be received after these attempts or the response
is received and recorded, the script then moves on to the next input in the sequence after
waiting for a grace period of 2 seconds.18 This protocol has been established in response
to the observed phenomenon where the API halts and does not respond to new requests
for at least 60 seconds, typically after making 10 to 15 requests in quick succession. This
undesirable behaviour was predominantly encountered during the initial phases of our
research, when our OpenAI account was categorized as a low-tier account and was thus
subject to various API call limitations.19

Following the response from the API, the model output is stored in a separate CSV
file along with its corresponding message ID. This approach of recording the output im-
mediately after each response not only provides the possibility to pause the classification

17The variable n is determined based on the classification task at hand. An average classification time per
message is established, to which an extra margin of 10 to 30 seconds is added, thus defining n.

18The script’s actions, including each API call attempt, were logged to the console for monitoring. In
instances where the API failed to respond within the predefined time frame across four attempts, the
process was temporarily paused and then resumed after a minute of waiting. This precautionary measure
ensured that no messages were skipped without a classification within a single run.

19For tier lists and their respective rate limits see https://platform.openai.com/docs/
guides/rate-limits
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process as needed but also provides a robust mechanism for addressing any unexpected
disruptions due to technical issues on either the client or server side.

In the event of resuming an incomplete classification process, the script first verifies
the existence of the classification output CSV file. If this file is found, the script then
examines the last classified message ID recorded in the file. Utilising this information, it
identifies the next message to be classified from the input CSV, aligning with the sequence
of messages. Following this verification, the script continues with the iterative process as
previously described, ensuring a seamless continuation from the point of interruption.
This procedure guarantees an efficient resumption of the classification task, eliminating
the duplication of efforts on messages that have already been classified. Additionally, this
eliminates the necessity for manually identifying the next message to be classified when
resuming an interrupted classification, a process that is prone to human error.

The status of the OpenAI service is monitored both prior to and during the classifi-
cation process. Should there be any reported incidents affecting the service, the classi-
fication task is either not initiated or immediately halted. Furthermore, if an incident is
reported during the classification process, or within the subsequent 12 hours involving the
specific model used, any classifications conducted in that time-frame are invalidated. A
fresh series of classifications for the same dataset using the same model is scheduled to
commence 24 hours after the incident has been reported as resolved. This protocol en-
sures the integrity and reliability of the classification results by accounting for potential
disruptions and bugs that might affect the performance of the model.

2.5 Promise I: Principal-Agent Game

2.5.1 Game and Data

Charness and Dufwenberg (2006, henceforth CD) test experimentally the impact of com-
munication in a principal-agent game. They find that messages sent by principals to
agents, particularly those containing promises, affect agents’ beliefs and thus their ac-
tions.

CD study a sequential two-player game using the strategy method. Player A chooses
In or Out, and player B chooses to either Roll or Don’t Roll a six-sided die. Player B’s
choice affects payoffs only if A chooses In. Player B makes her decision without knowing
player A’s actual choice, but under the hypothetical condition that A chose In. Figure 2.4
illustrates structure and payoffs of CD’s Γ1 game. CD investigate behaviour in treatments
where player B can send cheap-talk pre-play messages to player A.

We have five benchmark classifications for this dataset. CD classified the messages
themselves (CD). Further, Houser and Xiao (2011, henceforth HX) provide a classifica-
tion of strong and weak promises from both a traditional content analysis (CW and CS)
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Figure 2.4: Charness and Dufwenberg (2006)’s (5,5) game.

and the classification game they introduce (GW and GS).
HX conducted a series of experiments to build their classification datasets. All anno-

tators were students from George Mason University who participated in one of their “clas-
sification experiment” treatments. For the traditional content analysis, subjects received
detailed written instructions that provided two distinct criteria to determine whether a
message is “promise” or “empty talk” (see Appendix 2.A.1 for further details on the in-
structions). In their weak content treatment, CW , the section of the instructions subject to
treatment variations stated: “Classify a message as ‘Promise or intent’ if at least one of
the following conditions is probably satisfied”. In their strong content treatment, CS , the
instruction was identical except that the word “probably” was replaced with “certainly”.
Twenty-five subjects participated in the CW treatment, and twenty-four subjects in the CS

treatment. All participants received a show-up fee of $7 and were paid an hourly rate of
$12. On average, each participant was paid $19. In total, the classification tasks cost $475
for the CW treatment and $456 for the CS treatment.

In their classification game treatments, subjects were not given detailed instructions
outlining the criteria for the classification categories. Instead, they received a generic
instruction to classify each message as either “promise” or “empty talk”. For the weak
treatment, GW , subjects were verbally instructed to “Classify a message as ‘Promise or
intent’ if, in your opinion, it includes any statement of intent”. For the strong treatment,
GS , the verbal instructions were almost identical, with a key difference in the final phrase
where “it includes any statement of intent” was replaced with “it is certainly a promise”.
Twenty-five subjects participated in each treatment. Subjects were paid a show-up fee of
$7, and were additionally informed that three of their classifications would be randomly
selected. If these matched the majority classification, they would receive an additional
$5. The classification procedure lasted approximately one hour, and the median payment
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CD CS CW GS GW

P 24 26 27 24 31
E 14 12 11 14 7

fP .63 .68 .71 .63 .82

Table 2.3: Aggregate results of the different human classification methods

CD CS CW GS GW

CD 1
CS 77 1
CW 71 94 1
GS 78 89 82 1
GW 54 65 71 54 1

Table 2.4: Pairwise comparison of human classifications via Krippendorff’s α

per subject was $22. In total, the cost of the classification task for each treatment was
approximately $550.

Out of the 38 messages to be classified, all classification methods yielded the same re-
sult for 29 messages. The number of messages classified as “promise” (P ) or “empty talk”
(E) for each method is displayed in Table 2.3. HX argued that the coordination aspect of
the game classification method allowed subjects to be more sensitive to subtle variations
in the instructions that either weakened or strengthened the definition of what constitutes
a promise. This sensitivity was evidenced by the notable difference in the number of
messages classified as “promise” between the GS and GW treatments compared to the
difference between the CS and CW treatments.

Krippendorff’s α values, calculated for each pairwise comparison of classifications
as displayed in Table 2.4, quantify the variability in agreement among the classifiers,
which in turn, underlines the discrepancies in how annotators under different classifica-
tion methods reacted to the instructions. The near-perfect agreement between the CS and
CW classifications from traditional content analysis underscores the human classifiers’
lack of responsiveness to minor yet crucial variations in the instructions. In contrast, the
moderate agreement between GS and GW supports HX’s assertion that presenting the
classification task as an incentivized coordination game among annotators enhances their
responsiveness to these variations. Moreover, although CD conducted the classifications
without explicit instructions or guidelines on the criteria used to annotate promises, the
substantial agreement of their classifications with CS and GS , along with moderate agree-
ment with GW , suggests that CD might have adhered to a mental guideline that aligns
more closely with the stricter definition of what constitutes a promise.
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2.5.2 Prompts

We have considered four different prompts20: a Basic prompt, B, and three variations OS ,
ON , and OW , of the original instructions used by HX in their traditional content clas-
sifications (CS and CW ). All our prompts share the same following sections: “General
Task”, “Context” and “Output Format”. “General Task” briefly defines the task in a single
sentence; the “Context” section provides details about the type of players, game mechan-
ics, and communication protocol; and the “Output Format” section provides a template
for the model to follow when outputting its classification.

The basic prompt, B, does not include a “Role Persona” section, and its “Classifi-
cation Task” section does not provide any description of what constitutes a “promise”.
Instead, it combines instructing to classify a message as a “promise” or as “empty talk”
with how to code this classification (1 for “promise”, 0 for “empty talk”) within the same
directive.

For the three prompts that are based on the original instructions, OS , ON and OW ,
the “Classification Task” section uses the instructions provided by HX verbatim. We
adopt the same weak and strong instruction variations they considered in their CW and
CS treatments with the prompts OW and OS . Additionally, we have considered a neutral
version, ON , which does not use any additional adverbs (such as “probably” or “certainly”
used in OW and OS , respectively) to qualify the verb “satisfied” in the condition: “if
at least one of the following conditions is <adverb> satisfied.” Moreover, these three
prompts, unlike B, include a “Classification Coding” section that outlines how to code
specific categories in the output (1 for promise and 0 for empty talk). Lastly, because
HX’s original instructions included the statement “Operate as a coding machine”, which
imposes a role, we also did not include an additional “Role Persona” section in these
prompts.

2.5.3 Example

Figure 2.5: Promise I - Example 1

Hello fair stranger, anonymous partner... Choose whatever you want. Far be it from
me to influence your decision, but I think you should choose ‘‘in’’ and I should
choose ‘‘roll’’ and we should take the chance at both earning as much as we can. 5
chances out of 6 say it’ll work, and I’m totally broke, looking to rake in stray
cash however I can. I feel the luck in the air. I don’t really have much else to
say. Hope you’re doing well, whoever you are. Yes. That’s all. Random note from
random human

The message displayed in Figure 2.5 was contentious in the literature. As displayed in
Table 2.5, in the GW and CW treatments, 56% and 52% of subjects respectively classified

20All our prompts are presented in Appendix 2.A.2
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the message as “Promise” (1). In contrast, less than 50% of participants in the CS and GS

treatments classified the message as “Empty Talk” (0).

CD CS CW GS GW

Class. 0 0 1 0 1
f1 – < 50% 52% < 50% 56%

Table 2.5: Human classifications for the message in Figure 2.5

GPT classification results for the same message are presented in Table 2.6. Without
leveraging the 0-shot-CoT (henceforth CoT) prompting technique, GPT-4 identified the
message as “Promise” only under OW . When CoT is invoked, the classification for ON

switched to “Promise”, while it remained the same for the other prompts. On the other
hand, GPT-3.5 classified the message as “Promise” for all prompts irrespective of whether
CoT was invoked or not.

In Figure 2.6, the rationals generated by each model under prompts OW and OS us-
ing the CoT technique are presented. Both models successfully identify and use various
contextual aspects of this lengthy message to support their classifications. GPT-4 adopts
an exploratory tone that utilises less assertive modal verbs such as “could” and “would”.
This approach indicates a methodical progression in reasoning which begins without a
firm initial stance and progressively develops a conclusion through systematic observa-
tion. Conversely, GPT-3.5 adopts a more assertive tone. It initiates its reasoning with the
definitive “clearly indicated that” phrase, which suggests that subsequent arguments serve
more as justifications for a pre-determined conclusion rather than an open inquiry leading
to a decision. Consequently, while GPT-4’s exploratory reasoning potentially enables im-
provements in its classification, GPT-3.5’s reasoning lacks this inquisitive mode and fails
to improve its classification.

Figure 2.7 presents three messages classified as “promise” exclusively in GW , with
roughly two-thirds of subjects in GW identifying these messages as promises (60%, 60%,
and 64% for messages 2, 3, and 4 respectively). In contrast, while GPT-3.5 consistently
labels these messages as “promise”, GPT-4 consistently labels these messages as “empty
talk”. For messages 2 and 3, one can make a case for a very implicit statement of in-
tent, but message 4 contains no clear intent, as GPT-4 under OW suggests: “The message

GPT-3.5 GPT-4
no-CoT CoT no-CoT CoT

B 1 1 0 0
OS 1 1 0 0
ON 1 1 0 1
OW 1 1 1 1

Table 2.6: GPT classifications for the message in Figure 2.5
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Figure 2.6: Promise I - Classifications with CoT for prompts OW and OS

GPT-3.5

Output using OW

Reasoning:
The message clearly indicates that player B is suggesting a course of action to player
A, which is to choose "in" and for player B to choose "roll" in order to take a chance
at earning as much as they can. Player B also mentions being broke and looking to rake
in stray cash, which gives player A reasons to believe that player B would choose "roll"
to potentially earn more money.
Classification: 1
Output using OS

Reasoning:
The message clearly indicates that player B wants player A to choose "IN" and player
B to choose "ROLL" in order to take the chance at earning as much as they can. Player
B also mentions being broke and looking to rake in stray cash, which gives player A
reasons to believe that player B would choose "ROLL" to potentially earn more money.
Therefore, the message constitutes a statement of intent to choose "ROLL" and is not
just empty talk.
Classification: 1

GPT-4
Output using OW

Reasoning:
- Player B suggests that player A should choose "IN" and implies that they should choose
"ROLL" by stating "we should take the chance at both earning as much as we can."
- The message provides a reason for player A to expect that player B will choose "ROLL"
by mentioning the favorable odds ("5 chances out of 6 say it’ll work").
- Player B also mentions their own financial situation ("I’m totally broke, looking
to rake in stray cash however I can"), which could be interpreted as an indirect way
of saying they are motivated to choose the option that maximizes their earnings, which
would be "ROLL" in the case player A chooses "IN".
- The message does not contain a direct promise, but it does give player A reasons to
believe that player B has an intention to choose "ROLL" if player A chooses "IN".
Classification: 1
Output using OS

Reasoning:
- The message from player B suggests that player A should choose "IN" and implies that
player B would then choose "ROLL" by stating "we should take the chance at both earning
as much as we can."
- Player B mentions the probability of success (5 chances out of 6) to encourage player
A to choose "IN."
- The message includes a personal note about player B being broke and looking to earn
money, which could be interpreted as an indirect way to reassure player A that player B
has a vested interest in choosing "ROLL" to maximize their own earnings.
- However, the message does not contain a clear and direct promise or statement of
intent to choose "ROLL." The language used ("I think you should choose ’in’ and I should
choose ’roll’") is suggestive rather than committal.
- The message ends with a general well-wishing and does not reinforce any commitment to
a specific action.
Classification: 0

Figure 2.7: Promise I - Additional examples (percentage of promise class. in GW )

Example 2: (60%)
Please choose In so we can get paid more.
Example 3: (60%)
Hopefully I’ll make a lucky role.
Example 4: (64%)
If you choose IN you have the best opportunity to make the most money. You have a 5 /7
chance of making more money! So IN would be your best bet. Cheers.:)

could be interpreted as encouraging player A to choose ’IN’, but without a clear state-
ment of intent or promise from player B regarding their own subsequent action, it does
not satisfy the conditions for a promise.” On the other hand, the message “Both of ‘us’
can earn.”, which is arguably just as ambiguous, is uniformly classified by all human an-
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notation protocols as well as consistently by both GPT models as “empty talk”. These
examples demonstrate that, regardless of the number of subjects or the annotation proto-
col employed, classifications are prone to inconsistencies and errors inherent to human
judgement. Given GPT-4’s ability to classify promises at a level on par with human an-
notators, employing it may prove more effective, especially for ensuring consistency both
within a study and across multiple studies considering the same type of task classification
(Vanberg, 2008; Ismayilov and Potters, 2016; Ederer and Stremitzer, 2017; Di Bartolomeo
et al., 2019, 2023).

2.5.4 Results

no-CoT CoT

CD CS CW GS GW CD CS CW GS GW

GPT-3.5 B 71 76 79 71 90 82 82 84 82 84
OS 71 76 79 71 90 79 84 87 79 92
ON 68 74 76 68 87 74 79 82 74 87
OW 68 74 76 68 87 76 82 84 76 90

GPT-4 B 87 87 84 87 74 90 90 87 95 76
OS 92 92 90 97 79 97 92 90 92 84
ON 92 97 95 97 84 92 92 95 92 90
OW 84 95 96 90 87 90 95 97 90 92

Table 2.7: Overall accuracy of promise classification in %.

In Table 2.7, the columns labelled “no-CoT” and ”CoT” represent the treatments
where CoT prompting was not incorporated and was incorporated, respectively21. As
can be observed in Tables 2.7 and 2.8, GPT-3.5 demonstrates a negligible degree of re-
sponsiveness to the variations in the classification instructions of the prompts. Specifi-
cally, in no-CoT treatment, B and OS , and ON and OW generate identical classifications.
Moreover, the model’s classifications under OW differ from those under OS with just one
additional message classified as “promise.”

CoT prompting consistently improves GPT-3.5’s performance and leads to a greater
degree of variation in the classifications across prompts. However, this variation does not
necessarily imply that CoT prompting improves GPT-3.5’s adherence to instructions. Ide-
ally, if CoT prompting were effectively increasing the model’s responsiveness to instruc-

21Although we recognise that relying solely on accuracy values might be misleading, particularly for
datasets with unbalanced categories, we chose to use accuracy as our primary metric to present the mod-
els’ performance across all results. This decision was based on accuracy’s intuitiveness and ease of as-
sessment by researchers from diverse backgrounds. However, we also evaluated the models using the F1
metric, and these results are presented in the appendices. The performance outcomes do not significantly
differ whether assessed by accuracy or F1 score. For the F1 counterpart of the results presented in Table
2.7, see Appendix 2.A.4.
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tional nuances, OW would demonstrate the highest performance in the GW benchmark,
and OS in the GS benchmark. Yet, OS consistently outperforms OW . Furthermore, more
detailed instructions tend to deteriorate GPT-3.5’s performance: B outperforms OW and
ON under all benchmarks except GW , and OS only surpasses B under the benchmarks
characterized by weaker instructions, namely CW and GW .

no-CoT CoT

B OS ON OW B OS ON OW

GPT-3.5 P 35 35 36 36 29 32 34 33
E 3 3 2 2 9 6 4 5

fP .92 .92 .95 .95 .76 .84 .90 .87

GPT-4 P 21 23 25 27 22 25 27 28
E 17 15 13 11 16 13 11 10

fP .55 .61 .66 .71 .58 .66 .71 .74

Table 2.8: Aggregate classification results of different prompts

GPT-4 consistently outperforms GPT-3.5 except under GW benchmark. In Table 2.8,
relatively larger variation in the number of messages classified as “promise” observed for
GPT-4 is indicative of the model’s responsiveness to the instructional variations.22 Fur-
thermore, its responsiveness to the instructional nuances is reflected to some degree in its
classification performance. As can be observed in Table 2.7, OW consistently achieves the
highest accuracy scores under the GW and CW benchmarks, and under the GS benchmark,
OS and ON are tied for the best performance. On the other hand, in no-CoT treatment,
ON achieves the highest accuracy under the CS benchmark, surpassing the performance
of OS .

For GPT-4, CoT prompting does not consistently improve performance. The highest
performances for benchmarks CS and GS are achieved in no-CoT treatment using OS or
ON . Conversely, the highest performances for benchmarks CD, CW , and GW are achieved
in CoT treatment using OS or OW . Given the top performing results under benchmarks
with weaker “promise” classification conditions are achieved in CoT treatment and the
top performing results under the benchmark with the stronger “promise” classification
condition are achieved in no-CoT treatment suggests that CoT prompting introduces a
bias towards classifying messages as promises.

22Note that although the number of messages classified as “promise” increases as the prompt’s instruction
to adhere to “promise” conditions are relaxed, there are messages identified as “promise” under stricter
instructions that are not classified as “promise” under weaker instruction.
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2.6 Promise II: Public Good Game

2.6.1 Game and Data

Arad, Hugh-Jones and Penczynski (2024, henceforth AHP) carried out an online experi-
ment to understand which kind of communication predicts cooperation. 633 participants
engaged in five identical 3-player public good games, each with different anonymous op-
ponents. In every game, the three players had the opportunity to chat before making a
decision using a built-in platform resembling WhatsApp. The messages were classified
according to the presence of a promise by two RAs. On the basis of the free-flowing chat
between the three players, the classification indicates for each individual player, whether
a promise was made. In total, 717 chat instances were analysed for classification. The
RAs reached consensus on 89.9% of the instances, with a Krippendorff’s α of 0.798, in-
dicating substantial inter-rater reliability. Within these agreements, 53.3% were classified
as “promise”, hence the two categories are balanced in the dataset.

2.6.2 Prompts

We have considered three distinct prompts23: a basic prompt, B; a prompt that is the
reframed version of the original instructions, O; and a variation of O, termed O+, which
features an alternative set of classification conditions. Similar to the approach in the
“Promise I” section, all our prompts include the same subsequent sections: “General
Task”, “Context,” and “Output Format”. The “General Task” section briefly defines the
task in a single sentence. The “Context” section elaborates on the types of players, game
mechanics, and communication protocol. Finally, the “Output Format” section outlines
the template the model should use to format its classification output.

Since the classification instructions in the HX and AHP prompts are identical, B and
O closely resemble the prompts B and ON from the “Promise I” section, respectively.
Consequently, all information pertaining to prompts B and ON in Section 2.5.2 also ap-
plies to B and O. Specifically for their 0-shot versions, the primary distinction lies in the
“Context” section. The “Context” section of the prompts introduced in Section 2.5.2 de-
tails the investment game and features a standalone message from player A to B, whereas
in this section, the “Context” section of the prompts describes the public good game in-
volving a conversation among three players.

The codebook of AHP, unlike that of HX, includes a set of examples accompanying
its classification instructions. AHP use these demonstrations to provide more nuanced
conditions for the “promise” and “empty talk” categories. This section is structured as
a sequence of examples, each followed by a remark that highlights a specific case of

23All our prompts are presented in Appendix 2.A.2.
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promise or empty talk classification, then more examples and subsequent remarks, and
so on. We adopted this “Example” section verbatim in O, modifying its format to align
with our prompt template: each example is separated and indexed with a subtitle, such as
“Example #1”, followed by the content of the example, and each remark section between
sets of examples is distinguished with a “Remark” subtitle, followed by the remark. Con-
sequently, unlike ON from Section 2.5.2 and prompt B, O includes an “Example” section,
although this additional section is incorporated into the prompt only for n-shot treatments.

In total, 11 chat examples are provided for AHP, making our n-shot treatment for O
an 11-shot setup. Since we have adopted the example section of the original instructions
verbatim, the format of our prompt’s example section diverges from the conventional
<question, answer> format typically used in n-shot prompting. Instead, it includes ex-
planations between sets of examples. However, it also does not adhere to the traditional
n-shot-CoT prompting format of <question, explanation, answer>, as the provided ex-
planations (remarks) are sparse and do not offer detailed rationales for classifying sets of
messages. In summary, the “Example” section of O provides more information than a
traditional n-shot prompt but less than an n-shot-CoT prompt. Nevertheless, the presence
of remarks can still be seen as offering partial rationales, and therefore, their inclusion
in O is expected to enhance the model’s reasoning capabilities when CoT prompting is
utilised.

O+ differs from O in the “Classification Task” and “Example” sections. In the “Clas-
sification Task” section, we redefined the criteria to identify a promise and recast the
“empty talk” category as “non-promise.” Drawing inspiration from the content analysis
approach introduced by Cooper and Kagel (2005), we analysed the dataset to identify po-
tential subcategories within the main categories of “promise” and “empty talk.” We then
cross-referenced these identified categories with the subcategories presented through ex-
amples in AHP’s example section. This analysis led to the formulation of three distinct
conditions for each category.

Both HX and AHP specify two conditions for classifying a‘promise”:

1. Player indicates that she will take a certain course of action

2. Player gives other players a reason to believe that she will take a certain course of
action.

In O+, we introduced three refined conditions for the same category:

1. Player explicitly states his intention to take a specific action.

2. Player agrees to take an action suggested by another.

3. Player commits to an action, conditional on a specific event occuring.
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The first condition in O+ is a paraphrased version of HX and AHP’s first condition. The
second condition addresses a scenario frequently observed in the dataset and is empha-
sised through multiple demonstrations and a remark in AHP’s original instructions. Sim-
ilarly, the third condition, described as a ”conditional promise” in AHP’s examples, and
is frequently observed in some shape or form in the data.

On the other hand, we have omitted the belief-based promise condition used by HX
and AHP as we find it potentially problematic for GPT. Since GPT excels at identifying
explicit textual patterns but is not as proficient at inferring the beliefs of players (Moghad-
dam and Honey, 2023), omitting this belief-based condition and considering instead addi-
tional explicit “promise” cases better aligns with GPT’s strengths and is hoped to improve
the model’s performance.

Since, it is recommended to avoid negation when instructing the model (OpenAI,
2023b), such as defining “empty talk” as any message that does not meet the promise
category conditions, we have established three distinct conditions to classify the “empty
talk” category, rather than instructing the model to classify “empty talk” as any message
that fails to meet the conditions set for promises, as was done by HX and AHP:

1. Player suggests an action without an explicit commitment.

2. Player asks questions or discusses preferences without an explicit commitment.

3. Player talks about hypothetical, ideal or rational actions without an explicit com-
mitment.

Although these conditions are implicitly provided through examples in AHP’s instruc-
tions, they were not explicitly defined as noted above. Additionally, all three conditions
represent behaviours frequently observed in the dataset.

The following two additional instructions, originally provided by HX and AHP and
included in O as well as in all the prompts in Section 2.5.2 except for B, are omitted in
the classification instructions of O+:

• Capture what had been said rather than why it was said or what effect it had.

• Operate as a ”coding machine”.

Given that the second instruction involves role persona guidelines, in O+ we have instead
included an explicit “Role Persona” section following the “General Task” section that
instructs the model to “Act as a behavioural economist specialised in text classification,
the investment game and communication in games.”

The objective with the revised classification instructions in O+ is to establish a more
comprehensive set of conditions for the categories in order to provide the model with the
necessary classification information and thus to minimise reliance on demonstrations to
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convey semantic nuances inherent to both categories. The original instructions from AHP
utilise examples to build upon the classification conditions but do not focus on the ade-
quacy of these conditions to provide the required information for the models to execute
the classification task effectively. This limitation in the comprehensiveness of classifica-
tion instructions is directly reflected in prompt O. With prompt O+, our aim is to explore
whether a more comprehensive and alternative set of conditions can enhance the model’s
performance without relying on additional demonstrations, as required in O.

The “Example” section of O+ differs from that of O not only in format and explana-
tions but also partially in the provided examples. In O, a total of 22 classification cases
are provided, with 10 categorized as “empty talk” and 11 as “promise”. In the “Example”
section of O+, five of these chat instances are omitted, and three new chat instances are
introduced instead.

The necessity of examples 4, 5, 6, and 8 from the original instructions (see Appendix
2.A.1) was reassessed using the 0-shot O+ prompt and found to be redundant. Specif-
ically, with the 0-shot O+, GPT-4 reliably identifies statements such as “Let’s do X” or
“X sounds good” provided in examples 4, 6, and 8. Consequently, these examples have
been omitted from the “Example” section of n-shot O+. Furthermore, we observed that
providing demonstrations for explicit statements of action related to a previous round
was unnecessary, as the model consistently classified these types of statements as “non-
promise” using 0-shot O+. Additionally, example 11, which illustrates a player’s “change
of mind,” was removed after a detailed analysis of relevant messages revealed that it
did not aid the model in correctly identifying similar “change of mind” cases. Instead,
the inclusion of this example led to the model incorrectly classifying such cases as non-
promises, even though they were correctly classified as ”promise” under 0-shot O+. In
sum, the “Example” section of O+ provided 9 chat instances (9-shot).

Lastly, instead of the remarks sections in O, which provide partial rationales for sets
of demonstrations, in O+, we opted for concise descriptions that directly link to formerly
introduced category conditions (see Appendix 2.B.2 for details). This approach aims to
reinforce the semantics of the classification conditions through the demonstrations, rather
than introducing new classification conditions as in O; and is designed to generate a
stronger and clearer understanding of each category within the model.

2.6.3 Examples

Table 2.9 displays the classification results for the message shown in Figure 2.8 from both
human annotators and GPT models under CoT and n-shot prompting. The notation “0/1”
indicates a disagreement among RAs regarding the classification of player 3. GPT-3.5
aligns with the RAs’ classification for only player 1 under prompts O and O+. Con-
versely, GPT-4 concurs with the RAs on player 2’s classification but diverges on player
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Figure 2.8: Promise II - Example message 1

P3: hi
P2: Helloo
P1: Hi
P3: shall we sayy 50 p each?
P2: Why not maximum 200p each for max return
P1: Lets go with say £1 to start with
P3: okay
P3: meet in the middle at 1pound
P2: sure thing

GPT-3.5 GPT-4

P1 P2 P3 P1 P2 P3

B 0 0 0 0 1 1
O 1 0 0 0 1 0
O+ 1 0 0 0 1 1

RAs 1 1 0/1 1 1 0/1

Table 2.9: Human and n-shot CoT GPT classifications for the message in Figure 2.8

1’s classification across all prompts.
The rationals provided by GPT-3.5 and GPT-4 for O and O+ are presented in Fig-

ure 2.9. GPT-3.5’s reasoning tends to be relatively brief and omits certain parts of the
conversation. Specifically, under prompt O, it selects specific messages to base its clas-
sification on and neglects to analyse other messages from the same player. Conversely,
under prompt O+, while it attempts to provide a summary of all messages from each
player, it still does not capture every element of the conversation.

Under prompt O, GPT-3.5 overlooks player 2’s message “sure thing” and player 3’s
message “okay”. Interestingly, although GPT-3.5 does not account for player 3’s “okay”
under prompt O, it still classifies the player as making a promise based on their earlier
statement “shall we say 50 p each”, which should be characterised as a suggestion rather
than a promise. Thus, the model arrives at a correct classification (assuming the correct
classification is player 3 making a promise) but through incorrect reasoning.

Conversely, under prompt O+, GPT-3.5 correctly identifies “shall we say 50 p each”
as a suggestion and classifies player 3 as making a promise based on the message “okay”.
However, the model again overlooks player 2’s affirming message “sure thing”, and con-
sequently fails to classify player 2 as making a promise. This illustrates a consistent issue
with the GPT-3.5’s reasoning capabilities, as it fails to incorporate critical elements of the
conversation in its multi-step reasoning.

GPT-4’s reasoning is observed to be more detailed, with the model analysing each
message sent one-by-one without skipping any. Under both prompts, GPT-4 uses player
2’s message “sure thing” to assert that the player makes a promise. For the classification
of player 3, the model differs in its interpretation of the message “okay” under the two
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Figure 2.9: Promise II - Classifications with CoT for prompts O and O+

GPT-3.5

Output using O
Reasoning:
P3: The message "shall we sayy 50 p each?" indicates a specific action and gives others
reason to believe or expect that P3 will invest 50 pence. Therefore, it constitutes a
promise.
P2: The message "Why not maximum 200p each for max return" does not indicate a specific
action by P2, so it does not constitute a promise.
P1: The message "Lets go with say £1 to start with" does not indicate a specific action
by P1, so it does not constitute a promise.
Classification:
P1: 0
P2: 0
P3: 1
Output using O+

Reasoning:
P3: Initiates a suggestion of 50 pence each, then agrees to meet in the middle at £1,
indicating a commitment to the proposed amount.
P2: Counters P3’s suggestion with a different proposal of investing the maximum 200
pence each, showing a preference without a clear commitment.
P1: Suggests starting with £1, but does not explicitly commit to this amount.
Classification:
P1: 0
P2: 0
P3: 1

GPT-4
Output using O
Reasoning:
- P3’s initial message "shall we sayy 50 p each?" is a suggestion rather than a promise,
as it is phrased as a question and does not indicate a commitment to action.
- P2’s response "Why not maximum 200p each for max return" is also a suggestion and not
a promise, as it is phrased as a rhetorical question and does not indicate a commitment
to action.
- P1’s message "Lets go with say £1 to start with" is a suggestion, using the word "say"
which implies a proposal rather than a firm commitment.
- P3’s response "okay" is an acknowledgment of P1’s suggestion but does not constitute a
promise.
- P3’s subsequent message "meet in the middle at 1pound" is a proposal to compromise,
but it is not phrased as a commitment to action, so it is not a promise.
- P2’s response "sure thing" is an agreement to P3’s proposal, which can be interpreted
as a commitment to action, thus constituting a promise.
Classification:
P1: 0
P2: 1
P3: 0
Output using O+

Reasoning:
- P3’s initial message "shall we sayy 50 p each?" is a suggestion without a clear
commitment, so it’s not a promise.
- P2’s response "Why not maximum 200p each for max return" is also a suggestion and does
not explicitly commit to investing 200p, so it’s not a promise.
- P1’s message "Lets go with say £1 to start with" is a suggestion to invest a specific
amount, but it’s phrased as a proposal rather than a commitment, so it’s not a promise.
- P3’s response "okay" to P1’s suggestion is an agreement to the proposal, which can be
considered a commitment to invest £1, so it is a promise.
- P3’s follow-up "meet in the middle at 1 pound" is a restatement of the agreement to
invest £1, which is a promise.
- P2’s final message "sure thing" is an agreement to the previously discussed investment
amount of £1, which is a commitment and therefore a promise. Classification:
P1: 0
P2: 1
P3: 1
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prompts. While under O+, it considers it as an agreement to a proposal and therefore
classifies it as a promise, whereas under O it does not classify this acknowledgement as a
promise.

Despite the fact that player 1’s only relevant message, “Let’s go with say £1 to start
with”, is merely a suggestion and not a promise, and although the original instructions for
human annotators presents a similar example to showcase an “empty talk” classification,
RAs classify it as a promise. Furthermore, under O, GPT-4’s comment “...using the word
‘say’ which implies a proposal rather than a firm commitment” highlights its nuanced
understanding of language and its ability to effectively use it as a basis for classifying
player 1’s message as a suggestion and not as a statement of intent. Additionally, similar
to the disagreement observed under prompts O and O+ with GPT-4, also RAs disagree
on the classification of player 3. However, unlike with GPT-4, the specific reasons for the
RAs’ disagreement remain unclear. While it is understood that the reasoning provided
by GPT models is an as-if reasoning, this capability still renders it less of a ’black box’
compared to human annotators.

Figure 2.10: Promise II - Example message 2

P2: invest 200
P2: guarantee 400 each!

Despite numerous classification cases24 showcasing GPT-4’s ability to discern seman-
tic nuances in conversations, it equally fails in other cases that are obvious to a human
annotator. Consider the monologue displayed in Figure 2.10. As observed in Figure
2.11, GPT-4 under prompt O incorrectly interprets “guarantee 400 each!” as an explicit
statement of intent by interpreting it as “I guarantee 400 each”, which is most likely not
the intended usage by the subject. On the other hand, GPT-4 under prompt O+ aptly
recognises both likely intended usages of the statement and, in agreement with the RAs,
classifies it as “empty talk”.

2.6.4 Results

Performance results of both models under each treatment and prompt are presented in
Table 2.10. For GPT-3.5, 0-shot O consistently underperforms B. Where as 0-shot O+

significantly outperforms both 0-shot O and B. This underscores the benefit of providing
more comprehensive classification conditions for GPT-3.5.

In no-CoT treatments, n-shot prompting consistently improves GPT-3.5’s performance.
Yet, n-shot O underperforms 0-shot O+. This suggests that the performance gain from in-
structing with more comprehensive classification conditions is higher than the gain from
additionally providing examples.

24See Appendix 2.B.3 for more examples
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Figure 2.11: Promise II - Classifications with CoT for prompts O and O+

Output using O
Reasoning:
- P2’s first message "invest 200" is ambiguous. It could be a suggestion or a statement
of intention, but without additional context or explicit language, it’s not clear if P2
is making a commitment.
- P2’s second message "guarantee 400 each!" is more explicit. It suggests that P2 is
committing to an action that would ensure each player receives 400 pence. The use of
the word "guarantee" implies a promise to take action to achieve a specific outcome.
Classification:
P2: 1
Output using O+

Reasoning:
- P2’s first message "invest 200" is a directive or suggestion rather than a promise.
It lacks the personal commitment to a specific action that would make it a promise.
- P2’s second message "guarantee 400 each!" is a bit ambiguous. It could be interpreted
as a promise because it uses the word "guarantee," which implies a commitment. However,
without a clear subject (such as "I guarantee"), it’s not explicitly a personal promise
to invest a certain amount. It reads more like an expression of the outcome if everyone
invests 200, rather than a promise from P2 to do so.
Classification:
P2: 0

no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 B 59.4 – 61.4 –
O 57.5 61.3 54.7 55.2
O+ 72.2 75.7 67.3 75.2

GPT-4 B 67.5 – 71.8 –
O 68.8 82.9 72.5 84.8
O+ 86.5 86.2 84.2 88.7

Table 2.10: Overall accuracy of promise classification in %

In CoT treatments, n-shot prompting improves the performance of GPT-3.5 only un-
der O+. Furthermore, CoT prompting improves GPT-3.5’s performance only for B. This
contrasts with the results from the “Promise I” section (Section 2.5.4) where for GPT-
3.5, CoT prompting consistently improves the performance of 0-shot prompts. Notably,
despite the fact that 0-shot O and ON from Section 2.5 differ only in their “Context”
sections, CoT prompting in 0-shot O leads to poorer model performance, whereas the
opposite effect is observed in ON of Section 2.5.

GPT-4 consistently outperforms GPT-3.5. In no-CoT treatments, while n-shot prompt-
ing generates a significant improvement for GPT-4’s performance under O, it marginally
worsens its performance under O+. This suggests that given that the conditions for clas-
sification categories in O+ are comprehensive enough to enable the model to fully recog-
nise the task within its training corpus, and hence additionally providing classification
examples does not introduce any further information for the model to either improve its
recognition of the task or to learn a novel feature about the task.

In CoT treatments, GPT-4’s performance is consistently improved under both O and
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O+ when n-shot prompting is introduced. Moreover, contrary to GPT-3.5’s results, CoT
prompting improves GPT-4’s performance under all prompts except for 0-shot O+. Addi-
tionally, performance gains from using CoT prompting when demonstrations are present
are not significantly different between O and O+, with n-shot O+ benefiting slightly more
than n-shot O when CoT prompting is introduced (2.5 vs 1.9 percentage points increase,
respectively). This suggests that the remarks sections provided between examples in O,
which could be considered as partial rationales for the model, did not improve the effi-
cacy of CoT prompting more than demonstrations without any rationals provided in O+.
Overall, n-shot O+ with CoT under GPT-4 generates the highest performance.

2.7 Level-k I: Jury Voting Game

Promises are prevalent conversational statements likely to be frequently available in the
models’ pre-training corpus, and determining whether someone made a promise does not
require additional theoretical context. Consequently, it is not unreasonable to expect the
GPT models to identify promises in a text with some degree of success, as demonstrated
with the basic prompt B in previous sections. In contrast, “strategic thinking” or “levels
of thinking” are concepts defined by the application of level-k theory to specific games or
situations and are not commonly known, and therefore less likely to be discussed, outside
the behavioral economics literature. Consequently, they are much less likely to be part
of the models’ pre-training corpus. This distinction provides us with the opportunity to
additionally investigate the model’s behaviour in a task that potentially consists of more
learning-based subtasks compared to the classification task of “promises”.

2.7.1 Intra-team communication

Messages in the level-k I and II datasets are generated by the intra-team communication
protocol that was introduced in Burchardi and Penczynski (2014) and classified accord-
ing to the level-k of strategic reasoning. Teams of two subjects play as one entity and
exchange arguments as follows. Both subjects individually make a suggested decision
and write up a justifying message. Upon completion, this information is exchanged si-
multaneously and both subjects can enter individually a final decision. The computer
draws randomly one final decision to be the team’s action in the game. The protocol has
the advantage of recording the arguments of the individual player at the time of the deci-
sion making. Furthermore, the subject has incentives to convince his team partner of his
reasoning as the partner determines the team action with 50% chance.
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L0 L1 L2 L3

fL .21 .49 .29 .01

Table 2.11: Level distribution

2.7.2 Game and Data

Here, we briefly remind the reader of the necessary information from Chapter 1 that is
relevant for GPT classification.

In Chapter 1, we proposed a level-k model of strategic thinking in jury voting (JV)
games à la Feddersen and Pesendorfer (1998) and Guarnaschelli et al. (2000). In juries
of size 3 or 6, jurors receive informative signals (red or blue balls) and then vote to ac-
quit (blue) or convict (red) the defendant, with the jury decision ideally matching the
innocence (blue urn) or guilt (red urn) of the defendant. Looking at juries under the una-
nimity rule for conviction, we show that the jury performance depends on the strategic
sophistication of jury members, which in turn depends on the complexity of the task at
hand.

Our model assumes non-strategic, random level-0 play, to which a level-1 player best-
responds by always voting according to the received informative signal. Given the una-
nimity rule, the best response to informative voting by level-2 players is to strategically
vote always “convict” to make a conviction more likely and rely on other voters to acquit.
For level-3 players, the best-response to always convicting is to play informatively like
level-1 players do.

The messages are independently classified according to this level-k model by two
RAs. The RAs are introduced to the level-k model and received detailed instructions
about characteristics of the individual level-k types.

The classification procedure starts with both RAs providing independent sets of clas-
sifications. Then, both are anonymously informed about the classifications of the other
RA and have the possibility to simultaneously revise their own classification. This revi-
sion process is repeated twice. After the process, the two RAs agreed on 93.2% (493) of
the classifications.

As can be observed in Figure 2.11, the distribution of levels is non-degenerate and fea-
tures a heterogeneity of types, a hump-shape with mode behaviour at level-1, and hardly
any level-3 behaviour. This is a standard distribution commonly observed in similar stud-
ies and hence represents the type of distribution to be expected when researchers consider
to classify such data (Camerer et al., 2004; Costa-Gomes and Crawford, 2006; Burchardi
and Penczynski, 2014; Crawford et al., 2013). Their agreed classifications for 493 mes-
sages constitute the benchmark for the LLMs in this study.
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2.7.3 Prompts

Without the provision of specific characteristics of different levels of thinking, it is un-
clear how GPT could interpret them or distinguish, say, a level-1 thinker from a level-2
thinker. Given this uncertainty, we do not consider a basic prompt B for this classification
task. Instead, we investigate two prompts, O and O+, which closely follow the original
instructions and vary only in how they provide the context for the task.

The original codebook’s classification instructions for human annotators begin with
a “General Comments” subsection that notes the potential implicit nature of messages
and instructs annotators to classify messages at the level they believe is most likely when
uncertain. This section is followed by subsections for each level from 0 to 3, each further
containing “Characteristics”, “Examples” and “Note” subsections. The “Characteristics”
subsection outlines the observed traits of that level of thinking within the voting game,
while the “Note” subsection provides additional guidance for handling ambiguous cases.
The “Examples” subsections vary in number, with five examples for level-0, three for
level-1, eight for level-2, and three for level-3. There are no specific comments provided
for individual examples.

These classification instructions are incorporated verbatim into both prompts O and
O+, preserving the structure and format of the original level subsections and their respec-
tive “Characteristics”, “Examples” and “Note” subsections. The only exception is the
“Note” section of the level-0 subsection. In the codebook, this “Note” section instructs
annotators to leave a message unclassified if it contains ambiguous phrases like “Play
red, trust me!” that likely indicate level-1 thinking but lack additional context to confirm
it. Given that the messages considered for classification are those where both annotators
found enough information to classify, this specific instruction is redundant for the mod-
els and therefore omitted in the prompts. Additionally, the instruction in the “General
Comments” section to classify messages based on the most likely level when unsure con-
tradicts this instruction to leave messages unclassified when there is not enough context.
Hence, to maintain instructional consistency with our prompts, we adhered to the “most
likely level” instruction. Lastly, this modification also avoids the risk of the model mis-
interpreting the option to leave messages unclassified and incorrectly generalising it to
other unrelated but potentially ambiguous messages and other levels of thinking.

Prior to the classification instruction section, the codebook includes a three-page ex-
planation of the experiment, general level-k theory, and the application of level-k theory
to the voting game. We have omitted these sections and instead included the most es-
sential information in the “Context” section of the prompts. This section provides details
on general game mechanics and communication protocols, aimed at providing the model
with necessary context and textual patterns for its classification task. Compared to prompt
O, prompt O+ offers more detailed information on both game mechanics and communi-
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cation protocols, and also includes a brief level-k theory section specific to the voting
game. Additionally, in prompt O+, these three sections (game mechanics, communica-
tion protocol, and theory) are distinctly separated by subtitles.

All other sections of the prompts are identical. In the “General Task” section, the
model is instructed to classify a player’s level of strategic thinking in a voting game.
This is followed by the “Role Persona” section, where the model is instructed to act as a
behavioural economist specialised in level-k modelling, strategic thinking, and text clas-
sification. Other auxiliary sections, such as “Classification Process”, “Constraint”, and
“Output Format”, follow the format presented in Section 2.4.1, and are almost identical to
prompts from previous sections (see Sections 2.C.1 and 2.C.2 for the original codebook
and the prompts).

2.7.4 Examples

Figure 2.12: Level-k I - Example message

I believe we have the correct color There is no specific reason behind it If you
think that the danger to decide the whole vote for blue is to high, I will go with
red

The classification of the message shown in Figure 2.12 is detailed in Table 2.12, which
includes the results from RAs and GPT models using n-shot and CoT prompting tech-
niques for prompts O and O+.

GPT-3.5 GPT-4

O 0 2
O+ 1 2

RAs 1

Table 2.12: Human and GPT classifications of message in Figure 2.12 using n-shot and
CoT prompting

The numbers in Table 2.12 indicate the level of strategic thinking attributed to the
writer of the message. GPT-4’s classifications are consistent across both prompts. Except
for GPT-3.5 under prompt O+, all other model classifications differ from those made by
the RAs. This highlights a significant divergence in the assessment of strategic thinking
between the models and RAs.

The rationales provided by GPT-3.5 and GPT-4 for O and O+ using n-shot and CoT
prompting techniques are displayed in Figure 2.13. The rationales from GPT-3.5 are sig-
nificantly shorter. Specifically, under prompt O, GPT-3.5’s rationale focuses solely on the
phrase “there is no specific reason behind it” and concludes with a level-0 classification.
In contrast, under O+, while GPT-3.5 acknowledges additional statements from the mes-
sage such as “we have the correct color” and “danger to decide the whole vote for blue”,
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Figure 2.13: Level-k I - Classifications with CoT and n-shot for prompts O and O+ for
message in Figure 2.12

GPT-3.5

Output using O
Reasoning:
The player seems to be choosing randomly without any specific reasoning. They mention
that there is no specific reason behind their choice, indicating a lack of strategic
thinking.
Classification:
0
Output using O+

Reasoning:
The player does not provide any specific reasoning for their choice. They mention
that they believe they have the correct color without any justification. They also
consider the risk of deciding the whole vote for blue to be too high, indicating a
slight awareness of the potential consequences of their decision.
Classification:
1

GPT-4
Output using O
Reasoning:
The player starts with a statement that seems to be based on intuition rather than
strategic reasoning ("I believe we have the correct color There is no specific
reason behind it"). This could suggest a level-0 approach. However, the player then
acknowledges the potential impact of their vote on the group’s decision ("If you think
that the danger to decide the whole vote for blue is to high, I will go with red").
This shows some awareness of the voting dynamics and the strategic implications of their
choice, which is beyond level-0 reasoning.
The message does not contain a clear probability argument or a direct reference to
the player’s own signal, which would be indicative of level-1 reasoning. Instead, the
player seems to be considering the consequences of their vote in the context of the
group’s outcome, which aligns more with level-2 reasoning. They are aware that their
vote could be pivotal ("the danger to decide the whole vote for blue is too high") and
are willing to adjust their vote accordingly ("I will go with red"). This suggests
they are considering the strategies of other teams, assuming that other teams might play
their signals, and are trying to best respond to that.
The message lacks the complexity of a level-3 player, who would assume that other
players are also thinking at level-2 and would adjust their strategy even further based
on that assumption.
Classification:
2
Output using O+

Reasoning:
The player starts with a statement that seems to be based on intuition or a hunch ("I
believe we have the correct color") without providing a strategic justification. This
could hint at a level-0 approach. However, the player then acknowledges the potential
impact of their vote on the group’s decision ("the danger to decide the whole vote for
blue is too high"), which suggests an awareness of the voting dynamics and the strategic
implications of their choice. This awareness moves the reasoning beyond level-0.
The player also seems to be considering the risk associated with voting blue and is
willing to adjust their vote to red if their teammate perceives it as too risky. This
indicates a level of strategic thinking that takes into account the potential actions
of others, aligning more with level-2 reasoning. The player is not simply following
their own signal (which would be level-1) but is considering the group dynamics and the
possibility that their vote could be pivotal. They are not, however, explicitly stating
that they believe others will vote contrary to their signal, which would be indicative
of level-3 reasoning.
Classification:
2

it fails to provide any explicit or detailed interpretation of these statements. Moreover,
GPT-3.5 does not articulate in either rationale why the message should be classified in a
certain way; such details are only revealed in the classification section of its output.

GPT-4’s rationales under both prompts are significantly more detailed and thorough
in analysing the message compared to GPT-3.5. As it processes each statement, GPT-4
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evaluates every distinct phrase to determine its relevance for or against a specific level of
strategic reasoning. For instance, the phrase “no specific reason behind it” initially sug-
gests a possible classification as level-0. However, GPT-4 rejects this initial assessment,
recognising that the phrase “the danger to decide the whole vote for blue” indicates the
player is considering the impact of her actions on the group’s outcome. Consequently,
the model deliberates whether the player is operating at a level-1 or level-2 of reasoning
and ultimately classifies her as the latter. To ensure a comprehensive analysis, GPT-4 also
explores and dismisses the possibility that the player could be a level-3 thinker.

It is important to note that in neither prompt are there specific instructions to check
each potential level of reasoning as a candidate for classification and to disregard them if
they do not fit its provided descriptions. This approach of systematically evaluating each
level is an emergent strategy that GPT-4 adopts when CoT prompting is used.

Human annotators are instructed to classify a player as a level-2 strategic thinker if
“(The) player offers an argument acknowledging the potential votes of the other teams and
how to vote accordingly” (see Appendix 2.C.1 for the full instructions). These instructions
are provided verbatim in both prompts O and O+. The phrase “the danger to decide the
whole vote for blue” implicitly indicates an acknowledgement of other teams voting red
and the effect of voting blue in such a scenario. While this statement was not considered
explicit enough by RAs to classify the player as a level-2 thinker, GPT-4 does classify
it as such. This highlights a difference in the interpretation thresholds between human
annotators and GPT.

This case also illustrates the challenges of classification and the difficulties in pre-
cisely measuring the model’s classification performance, due to the inherent ambiguities
of natural language. Although there is a mildly convincing argument for the player to be
classified as level-2, GPT-4’s classifications are considered incorrect. Furthermore, this
type of ambiguity is prevalent in numerous other messages. The messages in Figure 2.14
provide two additional examples where the possibility of level-2 strategic thinking is even
more subtle, if present at all. The operative words “harmless” in the first example and
“safe” in the second are evaluated by the models as subtle indications that the player is
considering other players’ behaviour which in turn to some degree affect her action. As a
result, for the first message, both GPT-3.5 and GPT-4 under both prompts classified it as
level-2, while the RAs classified it as level-1; and for the second message, while GPT-3.5
and RAs classified it as level-0, GPT-4 under both prompts classified it as level-2.

Figure 2.14: Level-k I - Ambiguous messages

Example 1:
red is more probable and almost harmless for the outcome.

Example 2:
no clue, red is safe.

In Chapter 1, we analyse four different treatments within subjects, where each subject

99



plays two rounds. Out of 493 instances, subjects referred to a message from the previous
round in nine cases, either explicitly or implicitly. This occurred despite subjects being
randomly matched with new teammates in every round and being informed of this ar-
rangement. RAs are instructed to use information from previously classified messages to
classify any subsequent message that refers to these earlier messages and to make a note
of it if they have done so.

For a more thorough investigation of GPT’s performance, GPT is also provided with
the previously referred messages for these nine instances to ensure it has full context. This
step occurred after the initial classification of all the messages are independently made.
As a result, GPT initially provided a classification for each of these messages without the
context of the referred messages. In Figure 2.15, an example of such a message is shown.
This message refers to the message displayed in Figure 2.16.

Figure 2.15: Level-k I - Example message 3

Again I think we should go with red.

Both messages are provided by the subject within the same treatment in two consecu-
tive rounds. The referred message in Figure 2.16 is classified by both models and by RAs
as level-2. Using this information, the RAs also classified the message in Figure 2.15 as
level 2. Without being provided with the additional context of the previous message, GPT-
3.5, under both prompts, classified the message in Figure 2.15 as level-0. Surprisingly,
GPT-4 under prompt O classified this message as level-1, and as level-2 under O+.

Figure 2.16: Level-k I - Referred message

I think we should stick to read. The chances that everyone picks the red ball are
really small so we are save with read I hope

The rationale for both models’ classifications is presented in Figure 2.69. A detailed
analysis of the rationale under GPT-4 shows that the word “again” results in the model to
consider whether the player votes strategically or informatively, given her repeated choice
of red. Under prompt O, GPT-4 rules out the possibility that the player is a level-0 or level-
3 thinker and acknowledges that classifying her as a level-2 thinker is speculative, leading
to a level-1 classification. Conversely, under prompt O+, the model is more inclined to
assign a level-2 classification, albeit with an explicitly stated degree of uncertainty.

It is important to note that the original instructions include the directive: “If you are
unsure of the level of the message, you should indicate the level you think is more likely.”
This is also provided verbatim to the GPT models. Consequently, even when uncertain,
the model is compelled to make a classification. We have also explored a more relaxed
approach for this specific message, where the model is given the option to abstain from
classifying in cases of uncertainty. Under the option to abstain, the model consistently
chooses not to classify the message, citing a lack of context as the reason.
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Figure 2.17: Level-k I - Classifications of the message in Figure 2.15 with CoT and n-shot
for prompts O and O+

GPT-3.5

Output using O
Reasoning:
The player simply states their preference for the red option without providing any
reasoning or justification for their choice. There is no indication of any strategic
thinking or consideration of other players’ decisions.
Classification:
0
Output using O+

Reasoning:
The player simply states their preference for the color red without providing any
reasoning or justification for their choice. There is no indication of any strategic
thinking or consideration of other teams’ potential votes.
Classification:
0

GPT-4
Output using O
Reasoning:
The message "Again I think we should go with red" suggests that the player is following
a consistent strategy of voting red. However, the message lacks any explicit reasoning
or justification for this choice. It does not mention the color of the ball they
picked, nor does it consider the potential voting behavior of other teams. The use of
the word "again" implies that this is a repeated strategy, but without further context
or explanation, it is not clear whether this is based on a strategic consideration of
others’ likely actions (Level-2) or simply a personal rule or preference.
Given the lack of strategic reasoning evident in the message, it is not possible to
classify this player as Level-3. The message also does not contain any probability
argument or acknowledgment of the signal, which would be characteristic of a Level-1
player. It does not appear to be a random or unrelated choice, which would be
indicative of a Level-0 player.
The message could potentially be interpreted as a Level-2 strategy if we assume that
the player has previously considered the strategies of others and has settled on always
voting red as a best response. However, without explicit acknowledgment of others’
strategies, this interpretation is speculative.
Classification:
1
Output using O+

Reasoning:
The statement "Again I think we should go with red" suggests that the player is
following a consistent strategy of voting red. However, the reasoning behind this
choice is not explicitly stated. The use of the word "again" implies that this strategy
has been used before, possibly indicating a pattern or rule the player is following.
There is no mention of the color of the ball they drew, nor is there any consideration
of the other teams’ potential votes. This lack of strategic consideration for others’
actions could indicate a level-1 player who consistently follows their own signal, but
the message is too vague to confirm that. It could also be a level-2 player who has
adopted a strategy of always voting red, assuming that other players will vote according
to their own signal. Without further information, it is difficult to determine if this
is a level-1 or level-2 strategy.
The classification leans towards level-2 because the player seems to have a
predetermined strategy (voting red) that they are sticking to, which could be a response
to the assumption that other players are voting according to their own signals (level-1
behavior). However, due to the lack of explicit reasoning, this classification is made
with some uncertainty.
Classification:
2

In Figure 2.18, the rationale for classifying the message in Figure 2.15 is shown once
the previously referred message from Figure 2.16 is provided to GPT-4 under prompt
O25. This demonstrates that when the model is provided with the referred message, it

25Note that only the referred message, and not its prior classification as level-2, is provided as additional
context. Consequently, as can be observed in the rational in Figure 2.15, the model first classifies this re-
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can effectively incorporate it into its classification analysis and accordingly classify the
message as level-2.

Figure 2.18: Level-k I - Classifications of the message in Figure 2.14 with CoT and n-shot
for prompt O after the refered message is also provided.

GPT-4

Output using O
Reasoning:
The message "Again I think we should go with red." is brief and lacks explicit strategic
reasoning. However, the use of the word "again" suggests that this decision is based on
a previously established reasoning pattern. Given the context of the previous message,
which contained level-2 reasoning, it is likely that the player is continuing with the
same line of thought. The player is choosing red, potentially because they believe
other players will vote their signal, and red is a safer strategic choice. Despite
the brevity of the message, the implication is that the player is still considering the
actions of others, which is characteristic of level-2 reasoning.
Classification:
2

Although GPT-4’s classification capabilities are impressive, there are still instances
where it commits obvious blunders. Consider the message in Figure 2.19, written by a
subject who is attempting to randomise her response by coordinating with her teammate.
The message clearly indicates that the subject is a level-0 thinker. Yet, GPT-3.5 classifies
this message as level-2, and GPT-4 classifies it as level-1 under both prompts (with CoT
and n-shot).

Both models misinterpret the attempt to coordinate with a teammate as a strategic
play, and consequently, they erroneously argue for the player to be classified as either
level-1 or level-2 (see Appendix 2.C.3, Figure 2.73 for the rationales for the message in
Figure 2.19 and other additional examples). Although both models accurately understand
what constitutes a teammate, since they perceive this message as reflecting a basic under-
standing of the game mechanics, rather than a random play or an action unrelated to the
task, they eliminate the possibility that the subject is level-0. This suggests that the model
still needs this specific type of instance to be provided as an example or described as part
of the characteristics of level-0 play in order to classify it correctly26. Furthermore, it il-
lustrates that when the model is unable to classify a message under any specific category,
it considers other types of behaviours that can be considered strategic to determine the
player’s level of thinking –even if such behaviours, like attempting to coordinate with a
teammate, might not truly reflect sophisticated strategic behaviour.

Figure 2.19: Level-k I - Example message 4

i think its probably better if we dont pick the same colour, so if i pick blue you
should pick red

ferred message as level-2, then uses this classification to inform its assessment of the message in question,
and then, also classifies it as level-2.

26For instance an additional instructions such as “Refrain from considering any argument that involves the
behaviour of the player’s teammate as strategic”

102



2.7.5 Results

no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 O 70.2 64.5 64.1 64.5
O+ 68.8 75.2 66.1 70

GPT-4 O 79.5 84.4 79.5 91.3
O+ 76.9 79.9 76.3 89.5

Table 2.13: Overall accuracy of level classification

For GPT-3.5, n-shot O underperforms compared to 0-shot O in no-CoT treatment but
slightly outperforms its 0-shot counterpart in CoT treatment. N -shot prompting improves
GPT-3.5’s performance for both prompts only when CoT prompting is present. However,
CoT prompting generally worsens the performance of GPT-3.5, except for n-shot O. For
GPT-3.5, the performance under O+ is better than under O in most cases.

For GPT-4, n-shot prompting consistently improves the model’s performance. While
in 0-shot treatments, CoT prompting has little to no effect, it significantly boosts the
performance of GPT-4 in n-shot treatments. Overall, CoT prompting in conjunction with
n-shot prompting achieves the best performance for either prompt. Furthermore, GPT-
4’s performance under O is consistently better than its performance under O+ for all
treatments.

GPT-4 consistently outperforms GPT-3.5. While GPT-3.5’s performance benefits from
additional context and level-k theory emphasis, GPT-4’s performance declines under the
same conditions. This highlights a distinct difference in how the two models process and
benefit from additional context. The best performing result is achieved with GPT-4 using
CoT and n-shot prompting techniques for prompt O, with an accuracy of 91.3%.

2.8 Level-k II: Asymmetric-Payoff Coordination Games

2.8.1 Game and Data

Finally, van Elten and Penczynski (2020) study asymmetric-payoff coordination games
(APC) introduced by Crawford et al. (2008, henceforth CGR) and provide textual data
supporting the result that the incidence of level-k reasoning is low in symmetric, pure co-
ordination games and high in asymmetric, “battle of the sexes”-type coordination games.
The dataset is of particular interest, because its text analysis involves the classification of
non-trivial level-0 beliefs.

Table ?? describes the four X-Y games and four Pie games. In contrast to payoff-
symmetric games (in bold), payoff-asymmetric games feature a higher coordination pay-
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X-Y games (CGR notation) a π1, π2 Pie games (CGR notation) a π1, π2

Symmetric Payoffs (SL) X 5, 5 Symmetric Payoffs (S1) L ($) 5, 5
Y 5, 5 R (#) 5, 5

B (§) 5, 5

Slight Asymmetry (ASL) X 5, 5.1 Symmetric Payoffs (S2) L ($) 6, 6
Y 5.1, 5 R (#) 6, 6

B (§) 5, 5

Moderate Asymmetry (AML) X 5, 6 Moderate Asymmetry (AM2) L ($) 5, 6
Y 6, 5 R (#) 6, 5

B (§) 6, 5

Large Asymmetry (ALL) X 5, 10 Moderate Asymmetry (AM4) L ($) 6, 7
Y 10, 5 R (#) 7, 6

B (§) 7, 5

Table 2.14: Payoff structure of coordination games.

off π for one of the two players, depending on the action on which they coordinate. The
miscoordination payoff is 0 for both players. The choice is between letters X and Y in
the X-Y games and between 3 pie slices (L, R, B) which are identified by ($, #, §) and of
which B is uniquely white.

The dataset consists of 851 messages gathered through intra-team communication as
described in Section 2.7.1. All messages are in German. The benchmark classifications
are derived from the agreed assessments of two RAs27. The RAs provide a lower bound
and an upper bound for the level of reasoning in each message. They also identify whether
any label or payoff salience argument is present, and if so, classify the type of salience.

Tables 2.15a and 2.15b show the distributions of the lower and upper bound levels
where Ln indicates the level-n strategic thinking. Tables 2.16a and 2.16b show the distri-
butions of the benchmark classifications for label and payoff salience. In these tables, “∼”
indicates indifference to salience or payoff salience, “no“ signifies that there is no men-
tion of a payoff or label salience in the text, H and L denote high and low payoff salience
respectively, and §, #, $, X and Y represent the label salience for the game choice with
the same tag.

L0 L1 L2 L3 L4 L5

f .504 .334 .143 .016 .002 –

(a) Lower Bound

L0 L1 L2 L3 L4 L5

.341 .37 .234 .042 .006 .007

(b) Upper Bound

Table 2.15: Level distributions of the benchmark

Like the RAs, we instruct the GPT models to classify lower and upper bounds of
the messages’ levels of reasoning as well as the label- and payoff-salience of the level-0

27See van Elten and Penczynski (2020) for details
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belief. The results from the supervised machine learning approach in Penczynski (2019)
will provide an additional computerised benchmark.

§ # ∼ $ X Y no

f .159 .025 .024 .107 .103 .002 .581

(a) Label salience

∼ H L no

.722 .228 .039 .008

(b) Payoff salience

Table 2.16: Distributions for label and payoff salience classifications of the benchmark

Each participants goes through all eight games prior to any communication exchange.
We dropped those messages in which subjects refer to a reasoning that they laid out in an
earlier round, as we did not want the LLM to get into assigning reasoning from earlier
messages as the RAs did. In total 104 messages (12.2% of the data) are dropped.

2.8.2 Prompts

No basic prompt B is considered due to the same reasons outlined in Section 2.7. Instead,
two prompts, O and O+, which vary in their degree of reflecting the original classification
instructions tailored for human annotators, are considered. These two prompts differ in
their “Context” and “Classification Task” sections.

The original codebook is the most detailed and lengthy codebook we consider in this
study (see Appendix 2.D.1). Given the non-negligible effect of the degree of information
in the “Context” section on model performance observed in Section 2.7, we further in-
vestigated this effect with the current game by varying the level of information provided
among prompts O and O+.

“Context” sections of both prompts begin with an identical short subsection on game
mechanics, followed by a subsection on the two coordination games played in the experi-
ments where each game type (Pie and X-Y) is briefly introduced, and payoff tables for the
variations of each game type is provided in a similar table format as in Table 2.14 in Mark-
down format. The two prompts significantly diverge in terms of the details each provides
in the subsequent theory subsection. Prompt O closely follows the original instructions,
whereas prompt O+ provides a summary consisting of single sentence descriptions for
each of the fundamental concepts detailed in the original codebook.

The “Context” section in prompt O outlines the theory in a series of subsections. The
first subsection, “Salience in Decisions”, describes the concept of salience in the games.
This is followed by a “Level-k Model” subsection, which details level-0 distribution,
level-0 belief, and population belief concepts, and describes the characteristics of each
level from 0 to 4. Descriptions of each level’s characteristics are unevenly supplemented
with example messages: three examples for level-0 thinking, two for level-1, one for
level-2, and no examples for higher levels. Some of these examples also entails cases for
different types of salience. Nont of the level-0 examples provide label or payoff salience,
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level-1 examples only include label salience (one for each game type), and the level-2
example feature only a payoff salience example for the X-Y game.

The “Context” section of prompt O is followed by a “Classification Task” section that
separates the tasks into two subtasks: classification payoff or label salience and classifica-
tion of level of strategic thinking. The classification instructions under these subsections
are also taken verbatim from the original codebook, and therefore are detailed and lengthy.

Differently from the prompts considered in “Level-k I” Section (Section 2.7), prompt
O provides information related to the classification both in the “Context” section and in
the “Classification Task” section. This is a natural outcome of our choice to closely mirror
the format and instructions of the original codebook. The original instructions aim to first
ensure that the human annotators get a general understanding of the theory pertaining to
level-k modelling then proceeds this with the application of this theory for the outlined
coordination games. This is provided in the “Context” section of O. After establishing
the theory and its application, the codebook presents a detailed classification instructions.
This is provided in the “Classification Task” of O28. Therefore, prompt O takes a human-
centric approach to instruct the model by anthropomorphically assuming that the model
needs to “understand” the theory before “understanding” how to classify messages based
on this theory.

The original classification instructions, and therefore prompt O, include only five ex-
amples. These examples provide very limited coverage given the array of potential ex-
amples that can be generated by combining different levels of thinking with payoff or
label salience, and with the two types of coordination games (X-Y and Pie Games). Fur-
thermore, three out of the five examples that involve either payoff or label salience lack
information indicating the appropriate classification for these categories. Consequently,
it is debatable whether prompt O should be classified as a 5-shot prompt, given that the
examples do not conform to the typical characteristics of a standard n-shot prompt. Such
prompts should include a variety of examples for each possible category and clearly indi-
cate the classification of each example. Instead, it would be more appropriate to consider
these examples as supplementary instructional components rather than as explicit demon-
strations for the classification task. Hence, given the nature of these examples, we classify
prompt O as a 0-shot prompt.

In prompt O+, we diverge significantly from the detailed theory section provided in
prompt O by providing a very brief section on the level-k theory and decision salience.
We provide as detailed information on level-0 thinking as we have done in prompt O,
followed by a brief level-1 thinking description. We omit explicit description for each

28One deviations we made in the “Classification Task” section of O is that we switched the order of the two
classification tasks outlined in the original codebook to emphasise the order with which we want the GPT
models to classify the message which is to first classify the level-0 belief and decision salience then to
classify the level of strategic thinking.
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of the higher levels of thinking, and instead provide a brief generalised characterisation
of a level-k thinker for k > 1. Moreover, in its “Classification Task” section, we only
provide two lines of instructions that simply instruct the model to classify the payoff or
label salience, and lower and upper bound of level of thinking. Additionally, we omit any
examples in either of these sections. In other words, in prompt O+, we do not concern our-
selves too much with whether the model fully “understands” the concepts by considering
a significantly brief way of presenting the background information and the classification
instructions. Hence, prompt O+ is similar in nature to the basic prompts we have consid-
ered in Sections 2.5 and 2.6: it provides minimal contextual information and places more
weight on the model’s existing knowledge on the topic by omitting detailed information
on how to perform the task.

O+ without any demonstrations establishes a 0-shot baseline for the prompt, and en-
ables us to investigate the effect of incorporating demonstrations (n-shot prompting) in
a modular fashion. We do so by developing an “Examples” section where we attempt to
cover a broad array of possible case with a total of 16 demonstrations, four for each level
from 0 to 3. None of the demonstrations are from the dataset, and generated by us. All
examples are generated with the aim to explicitly depict their respective level of think-
ing. For instance, level-2 messages contain variations of the pattern ”They think that I
do <X>”, and level-3 messages explicitly state variations of ”They think that I think that
they will do <X>”. In level-0 examples, two provides examples of label salience, one
provides payoff salience, and one provides neither label nor payoff salience. Level-1 ex-
amples consist of three cases of label salience and one case of payoff salience. For levels
2 and 3, two cases for each type of salience are provided. Three of the level-0 examples
are for the X-Y game, and one for for the Pie game. Two of the level-1 examples are for
the X-Y game, one for the Pie game, and one that can be applicable to either game. For
levels 2 and 3, one example is for each game and two examples can be applicable to either
game. Each example is followed by information on level-0 belief, label salience, payoff
salience, and level classification.

The other sections of both prompts are identical (”General Task”, ”Role Persona”,
etc.). Except for the ”Input Format” section, the other sections are as defined in Section
2.4.1 and can be examined in more detail in Appendix 2.D.2. The ”Input Format” section
is an additional part present only for the current prompts. Human annotators receive
contextual information about the game, the team, and the subject’s initial decisions, which
are essential for understanding the message. The exact game being played, as shown in
Figure 2.14, and the team of the player are necessary for both human annotators and
GPT models to effectively grasp the context of the message. Consequently, unlike in our
previous classification experiments, GPT is provided not only with the subject’s message
but also with information about subject’s team, the game she is referring to, and her initial
decisions. The ”Input Format” section provides the template for the input that the model
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receives. By including this section in the prompt, we aim to help the model better orient
itself when provided with the defined input string. This metric is also referred to in the
literature as the Intersection over Union (IoU) metric or the Jaccard Index (Müller et al.,
2022).

2.8.3 Examples

Figure 2.20: Level-k II - Example message

Team: 1
Game: AML
Decision: X
Message: They might think that we think they are selfish.

GPT-3.5 GPT-4

LB UB SL SP LB UB SL SP

O 1 2 no no 1 2 no H
O+ 1 2 no no 3 3 no H

RAs 3 3 no H 3 3 no H

Table 2.17: Human and GPT classifications of message in Figure 2.20 using CoT prompt-
ing for n-shot O+ and 0-shot O

In Figure 2.20, the input provided for the models is presented. Note that although the
message is in English, the actual input provided to the models is in German. The subject,
part of team 1, plays the AML variation of the X-Y where she will receive a payoff of 6
if the teams coordinate on choice ”Y” and 5 if the teams coordinate on choice ”X”.

Table 2.17 presents the classification results from RAs and GPT models utilising CoT
prompting technique for 0-shot O and n-shot O+ where the columns LB, UB, SL, and
SP represent the lower bound of strategic thinking, upper bound of strategic thinking,
label-salience, and payoff salience, respectively. Except for GPT-4 under prompt O+, all
model classifications are identical and differ from those made by the RAs for the lower
and upper bounds. Moreover, GPT-3.5 fails to agree with the RAs on the payoff salience
classification.

In Figure 2.21, the rationals for both models under 0-shot O and n-shot O+ prompts
are displayed. Their consecutive classification output is omitted to fit the figure within a
single page. The reasoning under both models correlate with the length of the prompts:
for relatively longer prompt O, a longer reasoning is generated by the models. The cor-
relation between the length of the prompts and the length of reasoning produced by the
models suggests that LLMs might be relying on a straightforward strategy of mirroring the
extent of textual input provided in the prompts to generate what appears to be thoughtful
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Figure 2.21: Level-k II - Generated rationals for 0-shot O and n-shot O+ under CoT for
message in Figure 2.20

GPT-3.5

Output using O
Reasoning:
The player’s message seems to suggest that the other team might think that his team
considers them to be selfish. This indicates a level of strategic thinking as the
player is considering the other team’s potential thoughts and actions. However, the
message does not explicitly indicate any salience or strategic reasoning based on the
game’s framing.
Output using O+

Reasoning:
The player seems to be considering the other team’s perspective and how they might
perceive the decision-making process.

GPT-4
Output using O
Reasoning:
The message "sie werden bestimmt denken, wir würden über sie denken, sie wären
egoistisch" translates to "they will certainly think that we would think they are
selfish." This statement suggests a level of strategic thinking that involves
anticipating the other team’s thought process about one’s own team’s perceptions. The
player is considering that the other team might expect their own team to assume that
they (the other team) will act in their own self-interest, which is a characteristic of
higher-level strategic reasoning.
The message does not mention any preference for the label of the decision (X or Y) based
on its appearance or position. Therefore, the player does not exhibit label salience.
The message implies that the other team might be expected to act selfishly, which
suggests that the player is considering the payoffs. However, the message does not
explicitly state a preference for higher or lower payoffs for their own team. It is
more focused on the belief about the other team’s potential selfishness. Therefore, the
player exhibits a level-0 belief about the other team’s preference for higher payoff.
- Lower Bound: The player is engaging in strategic thinking beyond level-0, as they are
considering the other team’s potential beliefs about their own team’s perceptions. This
indicates at least level-1 reasoning.
- Upper Bound: The player’s message suggests they are considering what the other
team thinks about their own team’s beliefs, which is indicative of level-2 reasoning.
However, there is no clear indication that the player is considering higher levels of
reasoning, such as level-3 or above, where they would be best responding to the other
team’s level-2 reasoning.
Output using O+

Reasoning:
The message "sie werden bestimmt denken, wir würden über sie denken, sie wären
egoistisch" translates to "they will certainly think that we would think about them,
they are selfish." This message suggests a level of reasoning about what the other team
will think about Team 1’s beliefs regarding the other team’s preferences. The message
implies that the other team might believe that Team 1 thinks the other team is selfish,
which could mean that they would choose the option that gives them a higher payoff.
In the context of the AML game, where the payoffs are as follows:
- X: 5 Taler for Team 1, 6 Taler for Team 2
- Y: 6 Taler for Team 1, 5 Taler for Team 2
The message does not directly reference a preference for either label (X or Y) or
a specific payoff amount. However, it does imply a belief about the other team’s
potential selfishness, which is related to payoff salience. The message suggests that
the other team may choose the option that gives them a higher payoff (Y for Team 2), and
Team 1 should consider this in their decision-making.
The message indicates a higher level of reasoning, as it involves thinking about what
the other team believes Team 1 thinks about them. This is indicative of at least
level-3 reasoning, as it involves multiple layers of belief about the other team’s
thought process.

reasoning. This pattern indicates that the models may primarily be extending or “echo-
ing” the prompt’s text rather than engaging in genuine analytical thinking based on its
understanding of the concepts provided in the prompt (Bender et al., 2021).

GPT-3.5 provides significantly shorter rationales compared to GPT-4 under both prompts.
Under O, GPT-3.5 briefly addresses both strategic thinking and decision salience, while
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under O+, it only offers a rationale for strategic thinking. Although the model acknowl-
edges strategic thinking and correctly notes that the subject considers the other team’s
perspective, the rationales lack specific justification for classifying the lower bound for
her level of thinking as “1” and the upper bound of her level of thinking as “2”.

GPT-4 provides a significantly more detailed analysis of the message under both
prompts. It begins its rational by re-iterating the original message and translating it to
English. This is a commonly observed behaviour in many other instances, yet there are
also instances where the rational does not contain an English translation for the message
(See Appendix 2.D.3 for additional examples). Under both prompts, it begins its rational
by correctly identifying that the subject is considering the belief of the other team on the
subject’s belief about the other team. Then without providing a classification for her level
of thinking, it proceeds into the analysis of the subject’s payoff salience and level-0 be-
lief. Under both prompts, it notes the absence of clear payoff salience but argues that the
mention of the other team’s “selfishness” indicates subject’s belief about the other team’s
preference for a higher payoff, but only under prompt O, the model explicitly uses the
term “level-0 belief”.

Under prompt O+, GPT-4 correctly identifies the pattern “They think that we think
that they are selfish” with statement ”The message (...) involves thinking about what
the other team believes Team 1 thinks about them” and correctly classifies the player’s
level of thinking. In contrast, under prompt O, although GPT-4 makes the statements
“The statement involves (...) anticipating the other team’s thought process about one’s
own team’s perceptions” and “The player is considering that the other team might expect
their own team to assume that the other team will act in their own self-interest,” it falsely
classifies the player’s lower bound of strategic thinking as “1” and the upper bound as
“2”.

Despite the analogous arguments concerning levels of thinking between the prompts,
the misclassification of the model under prompt O supports the “Stochastic Parrots” view
of LLMs as articulated by Bender et al. (2021). According to this view, LLMs primarily
mimic language based on patterns and correlations learned during training. If GPT-4 truly
“understood” the rationale it provided, it would have also classified the subject’s level of
thinking as “3” under prompt O as it did under prompt O+. Alternatively, challenging the
’Stochastic Parrot’ interpretation, perhaps GPT-4 under prompt O correctly “understood”
its rationale but exhibited either an imprecise grasp of the distinction among higher lev-
els of thinking, or made a computational error in counting the number of iterative best
responses detailed in its rationale.

In Figure 2.22, the subject is playing AM4 variation of the Pie game and argues for
the ”fair” choice of alternative # that offers a payoff of 6 to the subject over alternative
§, which provides a payoff of 5, while under both alternatives a payoff of 7 is provided
for the other team players. The unmentioned alternative $ offers a higher payoff of 7 for
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Figure 2.22: Level-k II - Example message 2

Team: 2
Game: AM4
Decision: #
Message: I would take the second one (7.6) here because it is fairer than (7.5).

GPT-3.5 GPT-4

LB UB SL SP LB UB SL SP

O 1 1 no H 1 1 no H
O+ 1 1 no H 1 1 no H

RAs 0 0 no no 0 0 no no

Table 2.18: Human and GPT classifications of message in Figure 2.22 using CoT prompt-
ing for n-shot O+ and 0-shot O

the subject’s team and a lower payoff of 6 for the other team. The subject is classified
as a level-0 thinker by RAs but as a level-1 thinker by both models under both prompts.
Furthermore, while the RAs did not identify any label or payoff salience, both models
under both prompts classified the message as demonstrating high payoff salience.

Figure 2.23 provides the rationales for both models under both prompts. All rationales
argue that ”fairness” should be seen as a type of payoff salience. GPT-4 under prompt O
states that the subject’s preference for a payoff of 6 over 5 shows a preference for a higher
payoff under “the context of fairness”. Similarly, GPT-4 under prompt O+ identifies
the message as a ”nuanced form of payoff salience”. Classifying subject as displaying
a higher payoff salience is the initial and crucial point where the RAs and the models
differ. Because RAs did not identify any type of salience and therefore any type of level-
0 belief, they have consequently classified the player as a level-0 thinker. On the other
hand, because the model identifies fairness as a payoff salience and therefore establishes
a level-0 belief for the subject, it classifies the subject as a level-1 thinker by interpreting
the mention of fairness as an implicit acknowledgement of considering the other team’s
beliefs.

While attempting to argue that “fairness” implies level-1 thinking, GPT-4 under prompt
O+ makes contradictory statements. Initially, it recognizes the player’s consideration of
payoff fairness and asserts, “A level-0 player would not consider fairness or the other
team’s payoff”. Subsequently, however, it remarks, “The player’s message does not ex-
plicitly indicate that they are considering what the other team might think or do, which
would be characteristic of higher levels of reasoning (level-1 or above).” Yet despite this
apparent contradiction, it concludes “Therefore, the message suggests a lower bound of
level-1 reasoning, as the player is best responding to a belief about the other team’s po-
tential preference for fairness”. On one hand, these conflicting statements in its reasoning
might once again suggest that the model does not truly understand what it’s stating, align-
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Figure 2.23: Level-k II - Generated rationals for 0-shot O and n-shot O+ under CoT for
message in Figure 2.22

GPT-3.5

Output using O
Reasoning:
The player suggests choosing the second option because it is fairer than the first option. This
reasoning indicates a preference for the option that provides higher payoffs, which suggests a
level of strategic thinking. The player is considering the fairness of the payoffs, indicating a
level of strategic reasoning.
Output using O+

Reasoning:
The player’s message indicates a preference for the second option due to its fairness compared to
the first option. This suggests a form of payoff salience. The reasoning in the message seems
to exhibit a level-1 understanding, as the player is considering the fairness of the payoffs and
how the other team might perceive the decision.

GPT-4
Output using O
Reasoning:
The player from Team 2 has suggested the decision ‘#‘ in the AM4 variation of the Pie game. The
AM4 game has an asymmetric payoff structure where the decision ‘#‘ yields a payoff of 7 Taler
for Team 1 and 6 Taler for Team 2, while the decision ‘§‘ yields a payoff of 7 Taler for Team 1
and 5 Taler for Team 2. The player’s message, when translated from German, reads "here I would
take the second one (7,6) because it is fairer than (7,5)." This message indicates a concern for
fairness and a preference for a more balanced distribution of payoffs between the teams.
The player’s message does not explicitly mention any label salience, such as a preference for the
visual distinction of the ‘§‘ slice in the Pie chart. Therefore, we can infer that the player
does not exhibit label salience in this decision.
The player’s message does indicate payoff salience. The player prefers the decision ‘#‘ because
it offers a more balanced payoff (7,6) compared to the decision ‘§‘ (7,5), which would give a
lower payoff to their own team. This suggests that the player is attracted to the action that
yields a higher payoff for their own team, but within the context of fairness.
In terms of the level of strategic thinking, the player’s message suggests a level-1 reasoning.
The player is considering the payoffs and is choosing the decision that seems fairer, which
implies a best response to a belief about the other team’s action. The player does not consider
higher-order beliefs about what the other team might think about their team’s decision-making
process. Therefore, the lower bound of reasoning is level-1, as the player is best responding
to a belief about the other team’s likely action based on fairness. The upper bound is also
level-1, as there is no indication of higher-order strategic thinking in the message.
Output using O+

Reasoning:
The player’s message suggests choosing the option labeled ‘#‘ in the AM4 variation of the Pie
Game. The player justifies this choice by stating that the payoff of (7,6) is fairer than (7,5).
This indicates that the player is considering the distribution of payoffs between the two teams
and prefers the option where the difference in payoffs is smaller, which is a consideration of
fairness rather than simply choosing the highest individual payoff.
The player does not mention any label salience, such as preferring the symbol ‘#‘ over ‘$‘ or ‘§‘
for any reason other than the associated payoffs. Therefore, the player does not exhibit label
salience.
The player’s message does show payoff salience, as they are considering the fairness of the
payoffs, which is related to the magnitude of the payoffs for each team. The player prefers the
option where their team gets a slightly lower payoff (6) compared to the other team’s payoff (7),
which is the fairer distribution in their view. This suggests a preference for high payoffs but
with a consideration for fairness, which is a nuanced form of payoff salience.
In terms of the level of reasoning, the player is considering the fairness of the payoffs, which
suggests a level of strategic thinking beyond level-0. A level-0 player would not consider
fairness or the other team’s payoff. The player’s message does not explicitly indicate that
they are considering what the other team might think or do, which would be characteristic of
higher levels of reasoning (level-1 or above). Therefore, the message suggests a lower bound of
level-1 reasoning, as the player is best responding to a belief about the other team’s potential
preference for fairness.
The upper bound of reasoning is not clearly indicated in the message. The player does not
express any anticipation of the other team’s strategic thinking or multiple levels of iteration
in their decision-making process. Therefore, the upper bound of reasoning is also level-1, as
there is no evidence to suggest that the player is engaging in higher-level strategic thinking.

ing with the “statistical parrot” critique. On the other hand, such contradictions could
indicate that the model is “thinking out loud”, weighing arguments for and against the
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case of the subject being a level-1 thinker. Therefore, the model’s contradictions may
not necessarily reflect a lack of understanding but rather an exploration of uncertainty in
classifying the subject’s level of reasoning.

If fairness is viewed as a preference independent of individuals’ beliefs, GPT’s clas-
sification of this message is incorrect. However several studies argue that fairness is
primarily defined by the people’s belief about other’s expectations (Bicchieri and Chavez,
2010; Castelli et al., 2014), and the weight placed on considering others’ beliefs deter-
mines a person’s degree of fairness concerns in her decision-making process (Takagishi
et al., 2010). Thus, GPT’s claim that fairness consideration is indicative of a higher level
of reasoning has its support in the literature. But more importantly, this highlights the am-
biguities inherent in natural language, complicating the exact classification of a player’s
level of thinking based on their message, and possibly a more appropriate classification
for this message would be a lower bound of 0 and an upper bound of 1 for the subject’s
level of thinking29.

2.8.4 Results

Given that the benchmark classifications for levels of thinking are defined as an interval,
with a lower and an upper bound across six potential levels in any given instance (mes-
sage, the model’s task is a multi-class, multi-label classification. In this framework, a
given instance can be classified as positive under multiple classes. This opens up the pos-
sibility for a classification to be partially correct. A measurement that requires an exact
match with the actual interval might overlook this partial correctness and is therefore con-
sidered a harsh metric (Sorower, 2010). A more nuanced accuracy metric commonly used
in multi-label classification is the ratio of correctly predicted labels to the total number of
labels –both predicted and actual– averaged across all instances (Godbole and Sarawagi,
2004). This measurement is also referred to in the literature as the Intersection over Union
(IoU) metric or the Jaccard Index (Müller et al., 2022). Although IoU can be calculated for
every class and averaged (either macro or weighted), this approach has been criticised for
not adequately addressing correlations among different classes. Therefore, to assess the
classification performance of our models, we have chosen to employ the instance-based
accuracy metric as introduced by Godbole and Sarawagi (2004).

Table 2.19 presents the agreement rates of models’ classification with the RA clas-
sifications for each prompt under each treatment. GPT-3.5 consistently underperforms

29A similar argument applies to the concepts of selfishness and generosity. A subject calling herself selfish
may be less likely to be assumed to consider other players’ beliefs, whereas a subject calling herself
generous may be more likely to be assumed to consider other players’ beliefs. Interestingly, while RAs
classified the lower bound of the level of thinking as 0 for these two types of a basic messages, they
classified the upper bound of the level of thinking of a subject calling herself generous as 1 and the upper
bound for a subject calling herself selfish as 0. A similar classification pattern is also observed with GPT-4
under prompt O+. See Example Messages 4 and 5 in Appendix 2.D.3 for details.

113



no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 O 44.2 – 49.4 –
O+ 52.3 62.6 55.3 65.3

GPT-4 O 64 – 69.2 –
O+ 65.6 68.5 66.7 72.8

Table 2.19: Level classification accuracy (Jaccard)

GPT-4. CoT and n-shot prompting techniques consistently improve the performance of
either model. For GPT-3.5, 0-shot O+ consistently outperforms 0-shot O. This indicates
that GPT-3.5 does not benefit from few basic examples and significantly more detailed
instructions as provided in prompt O. Similarly, for GPT-4, 0-shot O+ outperforms 0-
shot O in the no-CoT treatment. Yet, the opposite is true in the CoT treatment. Hence,
the detailed descriptions and examples present in prompt O enhances CoT prompting’s
positive effect on GPT-4’s performance more than CoT’s effect on 0-shot O+. However,
when CoT prompting is used in conjunction with n-shot prompting, O+ generates the best
performing classification results for either model.

Penczynski (2019) classified the same text corpus using a machine learning algorithm
(MLA) that employs bag-of-words features. He evaluates the performance of his model
by calculating its accuracy via an exact match of the lower bound of the level of thinking
between human annotators and MLA classifications. The best-performing MLA model
achieves an accuracy rate of 67%. GPT-3.5 achieves a lower bound level of thinking
classification accuracy of up to 65.5%. Hence, MLA model’s out-of-sample performance
outperforms GPT-3.5’s best performing prompt. Conversely, GPT-4, except for prompt
O under no-CoT treatment (66.4%), outperforms the MLA classification. Furthermore,
GPT-4 under prompt n-shot O+ with CoT achieves the highest accuracy for the lower
bound of level of thinking classification with 76% (see Appendix 2.D.4 for the complete
set of classifications).

no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 O 34.9 – 44.1 –
O+ 35.9 72.5 48.9 66.2

GPT-4 O 61.1 – 69.5 –
O+ 58.6 71 62.7 69.4

Table 2.20: Payoff salience classification accuracy

Table 2.20 presents performance of both models for each prompt for payoff salience
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classification accuracy. n-shot prompting consistently improves the performance of both
models. While CoT prompting consistently improves both model’s performance for both
prompts in 0-shot treatments, it deteriorates them in n-shot treatments. Consequently, best
performing classifications are observed in n-shot no-CoT treatment for both models. In
no-CoT treatment, improvement enabled by n-shot prompting is much larger for GPT-3.5.
This results in GPT-3.5 to outperform GPT-4 in n-shot no-CoT treatment and to generate
the overall best performing classification.

GPT-3.5 consistently performs worse under prompt O which indicates that it fails to
benefit from its detailed instructions, whereas GPT-4 performs better under O compared
to O+. These performance differences under prompt O becomes more distinct in the CoT
treatment. This indicates that while detailed information worsens GPT-3.5’s reasoning, it
enhances GPT-4’s for the classification of payoff salience. Moreover, for GPT-4, in CoT
treatments, O slightly outperforms n-shot O+. This suggests that GPT-4’s rational and its
consecutive payoff salience classification benefits equally from detailed instructions with-
out explicit examples as from explicit demonstrations in terms of both the effectiveness
of rational and the accuracy of the payoff salience classification.

no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 O 40.5 – 58.6 –
O+ 41.8 47.1 59.2 67.5

GPT-4 O 62.2 – 83.9 –
O+ 44.4 78.4 78.7 86.2

Table 2.21: Label salience classification accuracy

In Table 2.21, the performance of both models for each prompt for label salience clas-
sification accuracy is presented. On average, the models are observed to perform better
at label salience classification than payoff salience classification. CoT prompting consis-
tently improves both models’ performance for both prompts. Similarly, n-shot prompting
consistently improves both models’ performance for O+, especially for GPT-4 in no-CoT
treatment.

While GPT-3.5 performs slightly better under 0-shot O+ relative to O, GPT-4, as in
payoff salience classification, benefits from the detailed instructions of prompt O and
performs better under prompt O compared to under 0-shot O+. However, contrary to both
models’ behaviour in payoff salience classification, their performance improves under
n-shot O+ when CoT prompting is introduced. Consequently, the highest classification
performance is achieved by GPT-4 under n-shot O+ with CoT prompting.
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2.9 Costs and benefits

Table 2.22 presents both monetary and time costs to classify 100 messages in Promise I.
Costs are given in terms of USD and time is shown in minutes. The monetary costs for
both GPT models are based on the number of input and output tokens, with output tokens
being twice as costly as input tokens. This is reflected in the monetary cost difference
between the no-CoT and CoT treatments. Furthermore, the token costs for GPT-4 are
approximately 20 times higher than those for GPT-3.5. This is reflected in higher costs
for each prompt under GPT-4 compared to GPT-3.5.

no-CoT CoT

Money T ime Money T ime

GPT-3.5 B 0.04 4.5 0.06 3.4
OS 0.06 2.6 0.08 6.4
ON 0.06 4 0.08 6.7
OW 0.06 2.3 0.08 6.6

GPT-4 B 0.5 1.1 0.9 10.9
OS 0.7 1.4 1 11.5
ON 0.6 1.5 1 12.2
OW 0.6 1.3 1 13.2

Table 2.22: Promise I: Money and time costs per 100 messages in USD and minutes.

Given GPT-4’s significantly larger parameter count, its time to generate the first to-
ken and time per output token are expected to be longer than GPT-3.5’s (Talamadupula,
2024). Yet, for no-CoT treatments, GPT-3.5’s time costs are two to three times higher.
This may be due to network congestion at the time of inference. Since GPT-3.5 is the
underlying model for the free version of ChatGPT, it likely receives significantly more re-
quests, leading to longer queuing times. On the other hand, for CoT treatments, GPT-4’s
time costs are two to three times higher than GPT-3.5’s. As shown in Examples sections
of our experiments, GPT-3.5 provides much shorter rationales, this in turn results in the
observed time differences between the two models.

HX’s classification methods, whether content-based or gamified, incurred costs of
approximately $1000 to classify 38 messages within 2 hours. Extrapolating from this,
classifying 100 messages would cost around $2500 and take about 5 hours. In contrast,
given the high classification accuracy of GPT-4 (ranging from 92% to 97%) and its desired
responsiveness to variations in instructions, the use of GPT-4 presents a more appealing
option than employing twenty-five human annotators in a lab to classify messages.

Prompts in Promise I are the shortest, whereas those in Level-k II are the longest,
leading to higher input token costs for Level-k II. Additionally, the examples from the
rational provided for each experiment suggest that in GPT-4, longer prompts tend to cor-
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relate with more extensive rationales. Consequently, in CoT treatments, Level-k II incurs
higher output token costs and time costs compared to other experiments. Furthermore,
in Level-k II experiments, we instruct the models to generate four distinct classification
outputs, as opposed to a single output in other experiments, which further increased time
and monetary costs.

In Table 2.23 displays the costs for each model under each prompt type in the Level-
k II experiments. For both models, monetary costs can be up to ten times higher than
those observed in the Promise I experiments. However, the time costs for GPT-3.5 do not
exceed those in Promise I, and for prompt O+, they are consistently lower, potentially
again due to the fluctuating demand for GPT-3.5. On the other hand, time costs for GPT-4
are significantly higher, with the average time of 42.7 minutes to classify 100 messages
using prompt O under CoT treatment.

Under either model, due to the significantly larger prompt size of O, it is consistently
more costly both in terms of time and money compared to O+. Yet, together with the
results from Table 2.19, we observe that the most costly prompt is not necessarily the best
performing one.

no-CoT CoT

Money T ime Money T ime

GPT-3.5 O 0.5 3.3 0.5 6.3
O+ 0.3 1.5 0.3 2.8

GPT-4 O 5.2 5.2 6.6 42.7
O+ 2.7 3.8 3.4 25.8

Table 2.23: Level-k II: Money and time costs per 100 messages in USD and minutes.

2.10 Discussion

Tables 2.24a and 2.24b present the highest and lowest accuracy achieved for each model
in each experiment. PI and PII refer to sections Promise I and II, and LI and LII refer
to sections Level-k I and II. For PI , these values are calculated by averaging the best or
worst performances over the benchmarks.

GPT-3.5

GPT-4

PI PII LI LII

85.6 75.7 75.2 65.3

96 88.7 91.3 72.8

(a) Highest

PI PII LI LII

74 53.2 64.1 44.2

83.2 67.5 76.3 64

(b) Lowest

Table 2.24: Highest and lowest accuracy across experiments
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Across all experiments, GPT-4 consistently outperforms GPT-3.5 in peak performance,
and achieves an accuracy above or near 90% in all experiments except LII . By switch-
ing from using GPT-3.5 to GPT-4, the best performance improves by 9 to 16 percentage
points, and the lowest performance improves by 9 to 20 percentage points. Moreover,
except for PII , GPT-4’s lowest performance is comparable to, or exceeds, the top per-
formance of GPT-3.5. Therefore, substantial gains in classification performance can be
achieved as the models scale.

In PI and PII , although the classification concept is the same and the classification
instructions provided are either identical or similar, there is a noticeable decline in the
top performance from PI to PII . In PI , by design, subjects are incentivized to provide
their intend in a single message. Consecutively, often the messages are explicit and thus
relatively straightforward to classify. In contrast, in PII subjects engage in conversation
where they try to persuade others to take certain actions without providing their intentions,
affirm or oppose previously made statements by others, explicitly state or hint at what
they intend to do, and so on. Consequently, chat messages encompass a broader array of
linguistic patterns and colloquial, often ambiguous language. Additionally, chat messages
are interdependent, and hence, are required to be evaluated within the full context of the
chat. This conversational and contextual complexity makes the classification task in PII

more challenging, leading to comparatively lower performance by the models.
The classification of strategic thinking levels requires understanding and applying spe-

cific game theory concepts, notably level-0 beliefs and iterative best responses, making
it more cognitively demanding than classifying promises. Additionally, the coordination
game in LII presents a more challenging classification task compared to the voting game
in LI . In the voting game, identifying level-1 and level-2 thinkers is relatively straight-
forward: subjects voting according to their received signals are likely level-1 thinkers,
while those consistently voting red and considering the opposing team’s behaviour are
likely level-2 thinkers. These explicit cues simplify the classification task for models by
reducing the need for a deep understanding of level-0 beliefs and best responses.

In contrast, the coordination games of LII involve more complex reasoning patterns,
such as “We think that they think that we think,” which can perplex even expert annotators.
The cyclical nature of these arguments requires models first to accurately identify in the
message the level-0 belief and the label or payoff salience associated with it, then to
identify the number of iterative best responses applied to this belief. This multi-step
process increases the likelihood of classification errors at steps prior the classification
of level of thinking and adds complexity to the task. Furthermore, instead of explicitly
stating beliefs about the other team’s intentions, such as “the other team wants the higher
payoff for themselves,” players might use indirect language, describing the other team as
“selfish” or “offensive”. Similarly, they might imply additional levels of reasoning with
statements like “but they may also think this way”. The use of such implicit linguistic
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patterns makes the classification task even more challenging for models. Additionally,
unlike in LI where a single level of thinking is classified, LII requires models to classify
both a lower and an upper bound for the subject’s level of thinking, adding another layer
of complexity. Consequently, it is no surprise that models exhibit lower performance in
LII .

Comparing the best and worst performances for each experiment reveals that different
prompts and prompting techniques produce a variation of 8 to 20 percentage points for
GPT-4 and 11 to 22 percentage points for GPT-3.5. This variation underscores the critical
role of prompt engineering and suggests a substantial potential for performance gains
with prompt optimisation. Moreover, it underscores the necessity for social scientists to
rigorously explore prompt variations and evaluate existing prompting techniques for their
effectiveness in improving the model’s performance on each distinct task relevant to social
sciences.

In PI , we relaxed the conditions for classifying promises across a series of prompts.
GPT-4’s classifications reflected this instructional variation, whereas GPT-3.5 did not re-
spond to it. In PII , we considered an alternative to the original codebook’s classification
instructions, where ”empty talk” was implicitly defined as any message not meeting the
criteria for a ”promise”. Instead, we provided explicit conditions for classifying ”empty
talk”. This alternative prompt led to an average improvement of 15 percentage points
in 0-shot treatments and 4.2 percentage points in n-shot treatments for GPT-4, and 13.7
and 17.2 percentage points improvements, respectively, for GPT-3.5. In LI , an alternative
prompt that included more detailed context information resulted in a 3 percentage point
decrease in accuracy for GPT-4 on average, but a 4.1 percentage point increase for GPT-
3.5. The increase in GPT-3.5 was primarily observed with the n-shot treatment. Lastly, in
LII , we experimented with one prompt providing nearly all information from the original
codebook, resulting in a lengthy 2200-word prompt, and another with minimal informa-
tion that was considerably shorter, around 900 words30. For GPT-4, the longer, more de-
tailed prompt slightly reduced accuracy by an average of 1.8 percentage points, whereas
for GPT-3.5, it resulted in an average decrease of 9.3 percentage points. In summary, we
observed that:

1. GPT-4 is responsive to small yet crucial changes in the instructions, while GPT-3.5
is not (PI).

2. Providing more comprehensive classification instructions improves performance
for both models (PII).

3. Additional context information at best slightly worsens GPT-4’s performance and
produces variable effects on GPT-3.5’s performance, ranging from slight improve-

30The n-shot variation included an additional “Example” section, adding about 500 words.
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ments to significant reductions as the complexity of the task increases (LI & LII).

PI PII LI LII

GPT-3.5 CoT + − ∼ +

n-shot + ∼ +

n-shot & CoT ∼ ∼ +

GPT-4 CoT ∼ ∼ ∼ +

n-shot ∼ + +

n-shot & CoT + + +

Table 2.25: Overall effect of treatments on model performance

In Table 2.25, the effect of CoT and n-shot prompting on each experiment are pre-
sented. A “+” indicates that the treatment increased model performance across all prompts,
a “−” indicates that it decreased performance across all prompts, and a “∼” indicates that
the treatment had mixed effects across different prompts.

Overall, prompting techniques generally improve model performance. Notably, ex-
cept for the consistent negative effect of CoT prompting on GPT-3.5 under PII , these
techniques invariably improve performance of both models for at least one of the consid-
ered prompts. On the other hand, for mixed effect cases (∼), the technique’s average effect
over the prompts is negative for GPT-3.5 but positive for GPT-4. This suggests that on
average, prompting techniques are less effective at improving classification performance
for GPT-3.5 compared to GPT-4. Furthermore, n-shot prompting is more often effective
at improving performance of each model than CoT prompting, and combining n-shot and
CoT prompting consistently leads to improvements only in GPT-4’s performance.

Table 2.26 shows under which treatments best and worst performance for each exper-
iment are observed. “Best” and “Worst” columns under each experiment indicate the
best and worst performance cases, respectively. A “✓” indicates that CoT or n-shot were
applied, while a ”×” denotes their absence. Specifically, a “×” for n-shot treatment de-
notes the 0-shot treatment and for CoT treatment, it represents the no-CoT treatment. A
“∼”, only used under PI , indicates that the best performance was achieved with the CoT
treatment in three out of five benchmarks.

Except for PI , best and worst performances are consistently achieved in n-shot and
0-shot treatments, respectively, for either model. For GPT-4, the best performance is
also invariably achieved in CoT treatments; and except for LI , the worst performance is
consistently observed in no-CoT treatments. For GPT-3.5, in PI and LII , best and worst
performances are observed in CoT and no-CoT treatments. Conversely, in PII and LI , the
best performance occurs in CoT treatments and the worst in no-CoT treatments.

In Table 2.27, we present the average performance gains from switching from GPT-3.5
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PI PII LI LII

Best Worst Best Worst Best Worst Best Worst

GPT-3.5 CoT ✓ × × ✓ × ✓ ✓ ×
n-shot ✓ × ✓ × ✓ ×

GPT-4 CoT ∼ × ✓ × ✓ ✓ ✓ ×
n-shot ✓ × ✓ × ✓ ×

Table 2.26: Active treatments for best and worst performance

to GPT-4 (∆GPT ) and from incorporating n-shot prompting (∆n) under no-CoT and CoT
treatments. ∆GPT shows minimal variation between experiments under no-CoT treat-
ments across experiments. However, when CoT prompting is introduced, its positive
effect diminishes for PI , increases for PII and LI , and remains the same for LII . ∆n

is similar in PII and LI , but is approximately three times greater in LII under no-CoT.
Furthermore, the incorporation of CoT consistently increases ∆n, underscoring a positive
synergy between the treatments.

PI PII LI LII

no-CoT ∆GPT 13.3 13.2 10.5 13

∆n 2.5 2.2 6.6

CoT ∆GPT 9 17.6 18 13

∆n 6.3 7.1 8.1

Table 2.27: Average performance gains

Pan et al. (2023) suggest that learning tasks benefit from larger LLMs and examples
(n-shot prompting), while recognition tasks see minimal gains from them. Isolating the
effects of scale and demonstrations and examining ∆GPT and ∆n under no-CoT treat-
ments, we observe that all experiments benefited from an increase in the scale of the
LLM. While all experiments also derived some benefit from demonstrations, LII showed
the largest improvement. These findings indicate that all tasks involve elements of learn-
ing, and notably, the task of classifying level-k thinking in coordination games (LII) may
encompass a relatively larger learning component.

In this study, we adhered closely to the original instructions to minimize the effort re-
quired for researchers to utilize LLMs with existing codebooks tailored for human anno-
tators. Given that the original codebooks for PII and LI included classification examples,
n-shot treatment naturally aligns with the existing instructions. Furthermore, 0-shot-CoT
does not conflict with our objective of adhering as closely as possible to the original
codebooks, as it can be seamlessly integrated with existing instructions. Consequently,
we selected n-shot prompting and 0-shot-CoT as our primary treatments.
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Computer science literature typically discusses n-shot prompting and n-shot-CoT
prompting –which includes both examples and their reasoning– separately, and to our
knowledge, there is no documented experimentation on the combined use of n-shot prompt-
ing and 0-shot-CoT for classification tasks (Dong et al., 2022; Huang and Chang, 2022;
Wei et al., 2022a). Our results suggest that combining n-shot prompting with 0-shot-
CoT, without the need to provide rationales for the demonstrations, is a viable and less
demanding alternative for GPT-4. Although we do not claim that this combination yields
higher performance than n-shot-CoT –as we have not investigated such a comparison–
we observe that it can be considered as an alternative for social scientists who want to
consider prompts closely based on existing codebooks and prefer not to devise rationales
for their examples, a feature that is not typically included in codebooks tailored for human
annotators.

If we consider moving beyond the strict adherence to original codebooks, it might
be possible to improve model performance by developing instructions specifically tai-
lored for LLMs. One approach could involve segmenting the classification of the level
of thinking into three subtasks: identifying level-0 beliefs, classifying salience type, and
determining the level of thinking, using the output from each as input for the next, a tech-
nique commonly refereed as prompt chaining (Wu et al., 2022a; Anthropic, 2024). This
method allows each subtask to have its own optimized prompt, focused solely on that spe-
cific aspect. Additionally, the classification of level of thinking could be further refined.
In an initial step, the model could assess whether a message mentions others’ actions or
beliefs; messages without such mentions could be classified as level-0. Subsequently,
messages that reference others’ actions or beliefs could be analyzed in a separate prompt
to determine the subject’s level of thinking.

The current paper judges the classification performance of GPT relative to the bench-
mark of human classifications. We acknowledge that human classifications, even the ones
agreed between 2 RAs, might deviate from an ideal “true classification”. After all, these
classifications are specific to the instructions given and might not be perfectly consistent
due to learning, fatigue, etc.

High accuracies above 90% – as observed for some LLM classifications here – raise
the question whether the human classification might not be the appropriate benchmark,
because its own accuracy will likely be below 100% accuracy with the “true classifica-
tion”. For future comparisons, we intend to prepare “high-quality classification bench-
marks” that represent the consensus of multiple diverse (expert, layman, LLM, ...) coders
after sufficient deliberation.

Given GPT-4’s out-performance over GPT-3.5, we are optimistic that LLM’s will be
a significant facilitator of future research efforts with text as data. Kaplan et al. (2020)
show that as the models’ get larger both in their parameter size and in their pre-training
corpus, their performance will steadily increase. Hence, we expect the observed perfor-
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mance levels to further improve with larger language models. Furthermore, in the last
few months since we conducted our experiments, the computing cost for GPT-4 signifi-
cantly decreased (approximately 75% cheaper). Lastly, for more involved classification
tasks where LLM’s performance consistently stays less than desirable, it can at the very
least be considered within a human-in-the-loop classification system to assist and improve
human annotators’ performance.

2.11 Conclusion

In this study, we investigated the classification of promises and levels of strategic thinking
using GPT models. Our results showed that GPT-4 achieves accuracy levels compara-
ble to human annotators and surpass the performance of traditional NLP methods. The
comparison between GPT-3.5 and GPT-4 revealed that larger models are more adept at
handling relatively more involved classification tasks and benefit more from n-shot and
0-shot-CoT prompting techniques. Furthermore, our investigations of n-shot and 0-shot-
CoT prompting on model performance showed that demonstrations generally improved
model performance, and particularly for GPT-4, asking the model to provide a step-by-
step reasoning before making its classifications often led to improved task performance.

We investigated classification tasks that vary in difficulty both conceptually (promise
vs strategic thinking) and in linguistic diversity (standalone message vs conversation), and
showed that as task difficulty increases, the model size and prompting techniques became
more crucial in achieving performance levels comparable to those of human annotators.
Additionally, the consistent improvement in model performance due to increased model
size and n-shot prompting suggested that all tasks we considered incorporate a learning
component. These effects, and consequently the learning aspect of the classification tasks,
are observed to be more pronounced in the classification of strategic thinking compared
to promises, especially with the classification of strategic thinking in coordination games,
which additionally required an understanding of level-0 beliefs and related payoff or label
salience.

We explored adapting existing classification codebooks, tailored for human annota-
tors, to serve as prompts for LLMs. This adaptation involved reframing and reformatting
the instructions to better align with the models’ input processing. Our findings indicated
that relatively shorter codebooks, which neither contain nor require extensive theoretical
background knowledge for the classification task, can be effectively leveraged as prompts
with minimal reframing and restructuring. By using prompts that closely adhere to these
original codebooks, GPT-4 can achieve satisfactory classification performance, with ac-
curacy levels reaching or exceeding 90%. For longer codebooks, we observed that using
the detailed background information verbatim in the prompts often hindered rather than
improved the model’s performance. Therefore, when reframing extensive codebooks,
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we recommend against anthropomorphising the model. Instead of providing explana-
tions aimed at expanding its understanding of the topic –as one might do with a human
annotator– focus should be placed on presenting textual patterns and linguistic cues that
assist the model in a more mechanistic fashion during its classification task.

Lastly, we document that comprehensive classification instructions can be as effective
as providing classification examples. This 0-shot method offers a viable alternative to n-
shot prompting that relies on expanding a narrower set of classification conditions through
examples. Furthermore, it mitigates issues associated with n-shot prompting, such as the
model’s sensitivity to the selection and order of examples, as well as the frequency of each
category within these examples. Therefore, when revising the classification conditions in
an existing codebook, researchers should aim to develop criteria with finer specificity with
the intent to encompass a broader range of potential instances within each category of the
dataset under analysis.
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Declaration of Generative AI and AI-assisted technologies
in the writing process

During the preparation of this work I used GPT-4 in order to improve readability and
language of the text. After using this tool, I reviewed and edited the content as needed.
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Appendix to Chapter 2

2.A Promise I

2.A.1 Original Instructions

Figure 2.24: Original instructions used for content analysis

Your task:
You will be given a list of messages. Your task is to evaluate whether each of the messages is:

• A statement of intent or promise

• Empty Talk

The messages were written by participants in a previous experiment (Experiment I). To evaluate the messages, you
need to first understand Experiment I. The pages beginning on page 2 describe Experiment I. Please read those
pages carefully. The message writer is in the role of subject B.

It is important for you to know more about how to code the messages before you read the instructions. Here are
your specific instructions for how you code the messages:

1. (Weak Promise) You should code a message as ‘‘A statement of intent or promise’’ if you think at least
one of the following conditions is probably satisfied.
(Strong Promise) You should code a message as ‘‘A statement of intent or promise’’ if you think at least
one of the following conditions is certainly satisfied.

a. The writer, subject B, indicates in the message he/she would do something favorable to subject A
or refrain from doing something that hurts subject A.

b. The message gives subject A reasons to believe or expect that subject B would do something
favorable to subject A or refrain from doing something that hurts subject A.

2. (Weak Promise) You should code a message as ‘‘Empty Talk’’, if the message does not probably satisfy any
of the above conditions.
(Strong Promise) You should code a message as ‘‘Empty Talk’’, if the message does not certainly satisfy
any of the above conditions.

3. You should independently code all messages. Do not discuss with anyone else in this room about how to
code the messages.

4. Your job is to capture what had been said rather than why it was said or what effect it had. Think of
yourself as a ‘‘coding machine.’’

5. When you complete the coding, go through the entire list of messages a second time to (1) review all
your codes and revise them if needed for accuracy; (2) make sure you code every message.
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Figure 2.25: Original instructions used for HX classification game

Your task:
In this experiment, you will be given a list of messages. Your task in this experiment is to evaluate whether each of
the messages is:

• A statement of intent or promise

• Empty Talk

The messages were written by participants in a previous experiment (Experiment I). To evaluate the messages, you need
to first understand Experiment I. The next few pages describe Experiment I. Please read it carefully. The message
writer is in the role of subject B.

Subjects were also told:
Weak Promise treatment: ‘‘You should classify a message as ‘Promise or Intent’ if, in your opinion, it includes any
statement of intent.’’
Strong Promise treatment: ‘‘You should classify a message as ‘Promise or Intent’ if, in your opinion, it is certainly
a promise.’’

2.A.2 Prompts

Figure 2.26: Prompt B∗

# General Task
- Evaluate a player’s message in an economic experiment game to determine if it constitutes a promise.
# Context
- Players: Two players, A and B.
- Game Mechanics:
+ First, player A chooses between the two decisions ’IN’ and ’OUT’.
+ If player A chooses ’OUT’, each player receives $5.
+ If player A chooses ’IN’, player B chooses between the two decisions ’ROLL’ or ’DON’T ROLL’ (a die).
+ If player A chooses ’IN’ and player B chooses ’DON’T ROLL’, then player B receives $14 and A receives $0.
+ If player A chooses ’IN’, and player B chooses ’ROLL’, player B receives $10 and rolls a six-sided die to

determine player A’s payoff. If the die comes up 1 (1/6 likelihood), player A receives $0; if the die comes up 2-6
(5/6 likelihood), player A receives $12.
+ In addition, each player receives $5 show-up fee for participating in the experiment.

- Communication: Prior to Player A’s decision to ’IN’ or ’OUT’, player B has the option to send a message to player
A.
- Task: Classify whether the message sent by player B constitutes a promise or not.
# Classification Task
- Classify player’s message as ‘1‘ if it’s a promise.
- Classify as ‘0‘ if it’s an empty talk.
# Constraint
- Follow the below output format.
# Output Format

0/1
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Figure 2.27: Prompt OS , ON and OW

# General Task
- Evaluate a player’s message in an economic experiment game to determine if it constitutes a promise.
# Context
- Players: Two players, A and B.
- Game Mechanics:
+ First, player A chooses between the two decisions ’IN’ and ’OUT’.
+ If player A chooses ’OUT’, each player receives $5.
+ If player A chooses ’IN’, player B chooses between the two decisions ’ROLL’ or ’DON’T ROLL’ (a die).
+ If player A chooses ’IN’ and player B chooses ’DON’T ROLL’, then player B receives $14 and A receives $0.
+ If player A chooses ’IN’, and player B chooses ’ROLL’, player B receives $10 and rolls a six-sided die to

determine player A’s payoff. If the die comes up 1 (1/6 likelihood), player A receives $0; if the die comes up 2-6
(5/6 likelihood), player A receives $12.
+ In addition, each player receives $5 show-up fee for participating in the experiment.

- Communication: Prior to Player A’s decision to ’IN’ or ’OUT’, player B has the option to send a message to player
A.
- Task: Classify whether the message sent by player B constitutes a promise or not.
# Classification Task
(OS)- Classify a message as a "promise or a statement of intent" if at least one of the following conditions is

**certainly** satisfied:
(ON)- Classify a message as a "promise or a statement of intent" if at least one of the following conditions is
satisfied:
(OW )- Classify a message as a "promise or a statement of intent" if at least one of the following conditions is

**probably** satisfied:
+ Player B indicates in the message he would do something favorable to player A or refrain from doing something that

hurts player A
+ The message gives player A reasons to believe or expect that player B would do something favorable to player A or

refrain from doing something that hurts player A.
(OS)- If the message does not **certainly** satisfy any of the above conditions, classify player B’s message as
"Empty Talk".
(ON)- If the message does not satisfy any of the above conditions, classify player B’s message as "Empty Talk".
(OW )- If the message does not **probably** satisfy any of the above conditions, classify player B’s message as
"Empty Talk".
- Capture what had been said rather than why it was said or what effect it had.
- Operate as a "coding machine".
# Classification Coding
- Code player’s message as ‘1‘ if it’s a promise.
- Code as ‘0‘ if it’s an empty talk.
# Constraint
- Follow the below output format.
# Output Format
0/1

2.A.3 Additional Examples

Figure 2.28: Promise I - Example message 2

If you choose IN, and I roll, the chances of our getting the most $ are very high. The likelyhood of my rolling
a 1 is small compared to the chances of rolling a 2â6. So we both get cash.

CD CS CW GS GW

Class. 0 1 1 1 1
f1 – 54% 76% 56% 76%

Table 2.28: Human classifications for the message in Figure 2.28
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GPT-3.5 GPT-4
no-CoT CoT no-CoT CoT

B 1 1 0 0
OS 1 1 0 0
ON 1 1 1 1
OW 1 1 1 1

Table 2.29: GPT classifications for the message in Figure 2.28

Figure 2.29: Classifications with CoT for prompts OW and OS for message in Figure 2.28

GPT-4

Output using OW
Reasoning:
- Player B is explaining the probabilities of the game outcomes if player A chooses ’IN’ and player B chooses ’ROLL’.
- Player B is indicating that the likelihood of rolling a 2-6 is high, which would be favorable to player A as it
would result in player A receiving $12.
- The message gives player A a reason to believe or expect that player B is leaning towards choosing ’ROLL’, which is
favorable to player A.
Classification: 1

Output using OS
Reasoning:
- Player B is explaining the probabilities of the outcomes if player A chooses ’IN’ and player B chooses ’ROLL’.
- Player B is stating that the likelihood of rolling a 1 is small, which implies that the chance of player A getting
$12 is high.
- However, player B does not explicitly state what they will do; they are only discussing the probabilities and
potential outcomes.
- There is no clear commitment or statement of intent to choose ’ROLL’ or ’DON’T ROLL’.
Classification: 0

GPT-3.5
Output using OW
Reasoning:
The message indicates that if player A chooses ’IN’ and player B rolls the die, there is a high likelihood of both
players getting cash. Player B is providing a reason for player A to believe that choosing ’IN’ and player B rolling
the die would result in a favorable outcome for both players.
Classification: 1

Output using OS
Reasoning:
The message from player B indicates that if player A chooses ’IN’ and player B chooses to roll, there is a high
likelihood of both players getting cash. Player B is providing reasons for player A to believe that choosing ’IN’ and
player B choosing to roll would result in favorable outcomes for both players.
Classification: 1
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Figure 2.30: Promise I - Example message 3

If you stay in, the chances of the die coming up other than 1 are 5 in 6 â pretty good. Otherwise, we’d both be
stuck at $5. (If you opt out)

CD CS CW GS GW

Class. 0 1 1 0 1
f1 – 73% 72% < 50% 84%

Table 2.30: Human classifications for the message in Figure 2.30

GPT-3.5 GPT-4
no-CoT CoT no-CoT CoT

B 1 1 0 0
OS 1 1 0 0
ON 1 1 0 0
OW 1 1 1 1

Table 2.31: GPT classifications for the message in Figure 2.30

Figure 2.31: Classifications with CoT for prompts OW and OS for message in figure 2.30

GPT-4

Output using OW
Reasoning:
- Player B is explaining the probabilities associated with the ’ROLL’ decision, indicating that there is a high chance
(5 in 6) that player A will receive a favorable outcome ($12) if player B chooses to ’ROLL’. - Player B contrasts
this with the guaranteed but lower payoff of $5 each if player A chooses ’OUT’. - Although player B is not explicitly
stating what they will do, they are providing information that could influence player A’s decision by highlighting
the potential benefits of choosing ’IN’ and relying on player B to ’ROLL’. - The message gives player A a reason to
believe that choosing ’IN’ could lead to a favorable outcome, which is indirectly suggesting that player B might be
inclined to choose ’ROLL’ to allow for that favorable outcome. Classification: 1

Output using OS
Reasoning:
- The message from player B is providing information about the probabilities of the outcomes if player A chooses ’IN’
and player B subsequently chooses ’ROLL’. - Player B is stating a fact about the likelihood of the die roll outcome,
which is a 5 in 6 chance of player A receiving $12. - However, player B does not explicitly state what they will do
if player A chooses ’IN’. There is no clear indication of player B’s intended action, only a statement of the odds. -
The message does not contain a clear promise or statement of intent to choose ’ROLL’ or ’DON’T ROLL’. Classification:
0

GPT-3.5
Output using OW
Reasoning:
The message provides reasoning to player A about the favorable outcome of choosing ’IN’ and the likelihood of
receiving a higher payoff. It also implies that player B would prefer player A to choose ’IN’ for a better outcome
for both players.
Classification: 1

Output using OS
Reasoning:
The message provides reasoning to player A about the favorable outcome of staying in, indicating that the chances of
the die coming up other than 1 are 5 in 6, which is pretty good. It also highlights the unfavorable outcome of opting
out, where both players would be stuck at $5. Therefore, the message gives player A reasons to believe or expect that
player B would do something favorable to player A.
Classification: 1
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2.A.4 Additional Analysis

Weighted F1 (F1W ) and F1 macro averages for all four prompts across the five human
classification baselines for both with (CoT) and without CoT (no-CoT) prompting are
displayed in Tables 2.32 and 2.33, respectively.

no-CoT CoT

CD CS CW GS GW CD CS CW GS GW

GPT-3.5 B .65 .71 .74 .65 .88 .80 .83 .84 .80 .85
OS .65 .71 .74 .65 .88 .76 .81 .85 .76 .92
ON .60 .67 .70 .60 .83 .69 .75 .78 .69 .85
OW .60 .67 .70 .60 .83 .73 .79 .82 .73 .89

GPT-4 B .87 .87 .85 .87 .77 .90 .90 .88 .95 .79
OS .93 .92 .90 .97 .81 .97 .92 .89 .92 .86
ON .92 .97 .95 .97 .86 .92 .92 .95 .92 .90
OW .83 .94 .97 .89 .87 .89 .94 .97 .89 .93

Table 2.32: Weighted F1

no-CoT CoT

CD CS CW GS GW CD CS CW GS GW

GPT-3.5 B .58 .62 .65 .58 .77 .78 .77 .80 .78 .76
OS .58 .62 .65 .58 .77 .73 .78 .81 .73 .86
ON .52 .56 .58 .52 .68 .64 .68 .70 .64 .74
OW .52 .56 .58 .52 .68 .68 .74 .76 .68 .80

GPT-4 B .86 .86 .83 .86 .70 .89 .89 .86 .95 .72
OS .92 .92 .88 .97 .74 .97 .91 .88 .92 .80
ON .92 .97 .94 .97 .80 .91 .90 .94 .91 .86
OW .82 .94 .96 .88 .81 .88 .94 .96 .88 .88

Table 2.33: F1 Macro averages
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2.B Promise II

2.B.1 Original Instructions

In Figure 2.32, the original instructions are presented with certain sections omitted that
are not relevant to the prompt. Additionally, to accommodate the instructions on a single
page, various line spacings have been reduced. The actual format of the original instruc-
tions is much easier to follow (see Arad et al. (2024) for further information).

Figure 2.32: Original instructions

In the excel file, you will find a list of messages written by participants in an online experiment on
individual and group investments.
The list consists of many conversations between groups of three participants.
Your task is to evaluate, for each conversation, whether each of the participants stated an intent or a promise
to take a particular course of action.
You will classify a participant’s message in a conversation into one of the two categories:
- A statement of intent or promise (1)
- Other (0)

To evaluate the messages, you need to first understand the experiment. The next page describes the experiment,
followed by more detailed instructions for your classification task.
(Explanation of the experiment is skipped)
Classification
Here are your specific instructions for how you code the messages.
1) You should code a participant’s message (including his/her entire text in the conversation) as âA statement
of intent or promiseâ if you think at least one of the following conditions is satisfied.
a. The writer indicates in the message he/she would take a certain course of action.
b. The message gives the other participants reasons to believe or expect that that the writer of the message

would take a certain course of action.
2) You should code a message as âotherâ, if the message does not satisfy any of the above conditions.
3) You should independently code all messages. Do not discuss it with anyone else.
4) Your job is to capture what had been said rather than why it was said or what effect it had. Think of
yourself as a âcoding machine.â
5) When you complete the coding, go through the entire list of messages a second time to review all your codes
and revise them if needed for accuracy. Make sure you code every message.
Examples
Let’s illustrate how promises may look like:
Participant 1: "all 200 then?"
Participant 2: "yes"
The "yes" of Participant 2 is a promise.
Participant 1: "Are we all just going to with max?â
Participant 2: "agree"
The "agree" of Participant 2 is a promise.
It would not include statements such as
Participant 1: "I think it’s best if we invest 200" or
Participant 1: "let’s do 200" or
Participant 1: "I have been doing 200 in the last round" or
Participant 1: "100 sounds good".
Rather than spelling out numbers such as 200, people might refer to "max" or "all in".
In a particular context, "let’s do it" may be a promise. For example:
Participant 1: "200?"
Participant 2: "let’s do it"
or similarly:
Participant 1: "150. player 2 are you in agreement?"
Participant 2: "hi sounds good"
------------------------------------------------------------------------
It may include conditional promises (do something if someone else agrees).
For example, in
Participant 1: "happy with 200 if we all agree"...
Participant 2: "cool let’s do it"
Participant 3: "Yep."
In this case, all participants 1, 2 and 3 made promises.
But in
Participant 1: "200 each?"
Participant 2: "agree"
Participant 3: "agree"
only participants 2 and 3 make a promise, because "200 each?" does not make it clear that the first participant

*will* do 200 if the others do that as well.
------------------------------------------------------------------------
Initial promises about which people later change their mind do not count:
Participant 1: "200"
Participant 2: "agreed"
Participant 3: "I suggest 100"
Participant 2: "I’m happy with either"
Participant 2 is not making any promise here.

2.B.2 Prompts
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Figure 2.33: Prompt B

# General Task
- Evaluate each player in an investment game to determine whether he makes a promise or not.
# Context
- Players: Group of three.
- Initial Endowment: 200 pence each.
- Investment: Maximum 200 pence each.
- Mechanics: Invested amount is doubled and split equally.
- Communication: Players can chat before investing.
- Duration: Multiple rounds.
# Classification Task
- Classify a player as ‘1‘ if he made a promise.
- Classify as ‘0‘ otherwise.
# Constraints
- Refrain from providing an explanation for your classification. (only for no-CoT cases)
- Provide a final and single classification for each player.
- Follow the below output format.
# Output Format
P# : 0/1

Figure 2.34: Prompt O

# General Task
- Evaluate each player in an investment game to determine whether he makes a promise or not.
# Context
- Players: Group of three.
- Initial Endowment: 200 pence each.
- Investment: Maximum 200 pence each.
- Mechanics: Invested amount is doubled and split equally.
- Communication: Players can chat before investing.
- Duration: Multiple rounds.
# Classification Task
- Classify a player’s message as "a statement of intent or a promise" if at least one of the following
conditions is satisfied:
+ The message indicates that the player will take a certain course of action.
+ The message gives others reason to believe or expect that the player will take a certain course of action

- If the message does not satisfy either of the above conditions, classify it as an "Empty Talk".
- Capture what had been said rather than why it was said or what effect it had.
- Operate as a "coding machine".
# Classification Coding
- Code player’s message as ‘1‘ if it’s a promise or statement of intent.
- Code as ‘0‘ if it’s an empty talk.
# Examples (Only in n-shot treatment) (See Figure 2.35)
# Constraints
- Refrain from providing an explanation for your classification. (only for no-CoT cases)
- Provide a final and single classification for each player.
- Follow the below output format.
# Output Format
P# : 0/1

133



Figure 2.35: Example section for prompt O

# Examples (Only in n-shot treatment)
## Example 1
### Chat
P1: all 200 then?
P2: yes
### Classification
P1: 0
P2: 1
## Example 2
### Chat
P1: Are we all just going to with max?
P2: agree
### Classification
P1: 0
P2: 1
## Example 3
### Chat
P1: I think it’s best if we invest 200
### Classification
P1: 0
## Example 4
### Chat
P1: let’s do 200
### Classification
P1: 0
## Remark
- Rather than spelling out numbers such as 200, people might refer to "max" or "all in".
## Example 5
### Chat
P1: I have been doing 200 in the last round
### Classification
P1: 0
## Example 6
### Chat
P1: 100 sounds good
### Classification
P1: 0
## Remark
- In a particular contexts, "let’s do it" or "sounds good" may be a promise (examples 7 and 8).
## Example 7:
### Chat
P1: 200?
P2: let’s do it
### Classification
P1: 0
P2: 1
## Example 8
### Chat
P1: 150. player 2 are you in agreement?
P2: hi sounds good
### Classification
P1: 1
P2: 1
## Remark
- A message may include conditional promises (do something if someone else agrees) (example 9).
## Example 9:
### Chat
P1: happy with 200 if we all agree
P2: cool let’s do it
P3: Yep.
### Classification
P1: 1 (conditional promise)
P2: 1
P3: 1
## Remark
- In example 10, only players 2 and 3 make a promise, because "200 each?" does not make it clear that the first
participant *will* do 200 if the others do that as well.
## Example 10
### Chat
P1: 200 each?
P2: agree
P3: agree
### Classification
P1: 0
P2: 1
P3: 1
## Remark
- Initial promises about which player later change their mind do not count (example 11).
## Example 11
### Chat
P1: 200
P2: agreed (initial promise)
P3: I suggest 100
P2: I’m happy with either (P2 changes her mind)
### Classification
P1: 1
P2: 0 (due to change of mind after an initial promise)
P3: 0
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Figure 2.36: Prompt O+

# General Task
- Evaluate each player in an investment game to determine whether he makes a promise or not.
# Role Persona
- Act as a behavioral economist specialized in text classification, investment game and communication in games.
# Context
- Players: Group of three.
- Initial Endowment: 200 pence each.
- Investment: Maximum 200 pence each.
- Mechanics: Invested amount is doubled and split equally.
- Communication: Players can chat before investing.
- Duration: Multiple rounds.
# Classification Task
- Classify player’s message as a promise if the player:
+ Explicitly states their intention to take a specific action.
+ Explicitly agrees to take an action suggested by another.
+ Commits to an action, conditional on a specific event occurring.

- Classify player’s message as a non-promise if the player:
+ Suggests actions without commitment.
+ Asks questions or discusses preferences without explicitly committing.
+ Talks about hypothetical, ideal, or rational actions without explicit commitment.

# Classification Coding
- Code player’s message as ‘1‘ if it’s a promise.
- Code as ‘0‘ if it’s a non-promise.
# Examples (Only in n-shot treatment)
1. P1: "I’ll invest 150 pence if you do the same." (Code as 1 - Conditional promise)
2. P2: "What if we all invest 200 pence?" (Code as 0 - Question, no commitment)
3. P3: "Investing 200 pence seems the best strategy." (Code as 0 - Suggestion, no explicit commitment)
4. P1: "all 200 then?" P2: "yes" (Code P2 as 1 - Clear affirmative response to a suggestion is a Promise,
code P1 as 0 - Question, no commitment)
5. P1: "Are we all just going with max?â P2: "agree" (Code P2 as 1 - Clear affirmative response to a
suggestion is a Promise, code P1 as 0 - Question, no commitment)
6. P1: "I think it’s best if we invest 200" (Code as 0 - Opinion, no commitment)
7. P1: "200?" P2: "let’s do it" (Code P2 as 1 - Clear affirmative response to a suggestion is a Promise, code
P1 as 0 - Question, no commitment)
8. P1: "happy with 200 if we all agree" P2: "cool let’s do it" P3: "Yep." (Code P1 as 1 - Conditional
promises, code P2 and P3 as 1 - Clear affirmative response to a conditional promise)
9. P1: "200 each?" P2: "agree" P3: "agree" (Code P1 as 0 - Question, no commitment, Code P2 and P3 as 1 -
Promises by P2 and P3 - clear affirmative response to a question)
# Constraints
- Refrain from providing an explanation for your classification. (only for no-CoT cases)
- Provide a final and single classification for each player.
- Follow the below output format.
# Output Format
P# : 0/1

2.B.3 Additional Examples

Figure 2.37: Promise II - Example message 3

P2: Hello
P3: Hi there
P3: Any bots in here?
P2: Nope
P1: no
P3: Nice one
P3: OK
P3: I suggest we all invest the maximum to max out our rewards
P2: we should each invest fully for the best outcome
P3: I agree, we are all here for the cash :)
P2: I’m happy to do that
P2: Excellent
P3: If we just stuff 200 in we’ll all get the most reward
P3: I’m not here to be dishonest and cheat you all, we know how expensive life is right now
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GPT-3.5 GPT-4

P1 P2 P3 P1 P2 P3

B 0 1 1 0 1 1
O 0 0 0 0 1 1
O+ 0 1 1 0 1 0

RAs 0 1 1 0 1 1

Table 2.34: Human and n-shot CoT GPT classifications for the message in Figure 2.37

Figure 2.38: Promise II - Classifications with CoT for prompts O and O+ for message in
Figure 2.37

GPT-3.5

Output using O
Reasoning:
P2: No specific promise made, just general agreement and positive attitude.
P3: Suggests investing the maximum and agrees to it, emphasizing the desire for the best outcome. Also mentions not
being dishonest and the expensive nature of life, but does not make a specific promise.
Classification:
P1: 0
P2: 0
P3: 0
Output using O+
Reasoning:
The conversation starts with casual greetings and small talk, with no explicit commitment to any action. However,
as the conversation progresses, P3 suggests investing the maximum and emphasizes the benefits, while P2 agrees and
expresses happiness with the decision. P3 also mentions being honest and not cheating, which implies a commitment to
the suggested action.
Classification:
P1: 0
P2: 1
P3: 1

GPT-4
Output using O
Reasoning:
- P2 starts with greetings and does not make any promises in the initial exchanges.
- P3 asks a question and then makes a suggestion to invest the maximum, which is a promise to invest the maximum if
others agree.
- P2 then agrees with P3’s suggestion and states a willingness to invest fully, which is a promise.
- P3 reiterates the agreement and mentions being there for the cash, which is not a promise but an expression of
intent or motivation.
- P2 expresses happiness to follow through with the full investment, which is a reaffirmation of the promise.
- P3 then explicitly states the intention to invest 200, which is a promise, and follows up with a statement about
honesty and not cheating, which reinforces the commitment to the promise but is not a promise in itself.
Classification:
P1: 0
P2: 1
P3: 1
Output using O+
Reasoning:
- P2 starts with a greeting, which is not a promise (Code as 0).
- P3 also greets and asks a question about bots, which is not a promise (Code as 0).
- P2 and P1 confirm there are no bots, which are statements of fact, not promises (Code as 0).
- P3 makes a suggestion to invest the maximum, which is a suggestion without a commitment (Code as 0).
- P2 echoes the suggestion that each should invest fully for the best outcome, which is still a suggestion without
explicit commitment (Code as 0).
- P3 agrees with the sentiment that they are all there for the cash, which is an expression of agreement with the
rationale but not a commitment to action (Code as 0).
- P2 then expresses happiness to follow the suggestion, which is a commitment to action (Code as 1).
- P2’s "Excellent" is an expression of satisfaction, not a promise (Code as 0).
- P3 states what they should do ("If we just stuff 200 in we’ll all get the most reward"), which is a continuation of
the suggestion and rationale but not an explicit commitment (Code as 0).
- P3’s statement about not being there to be dishonest is an expression of intent but does not constitute a promise
regarding the specific action of investing (Code as 0).
Classification:
P1: 0
P2: 1
P3: 0

Figure 2.39: Promise II - Example message 4

P2: Hi
P1: Hi all . What say you on how much to put in?
P2: I recommend investing 200 each for maximum returns
P3: same
P1: OK:)
P2: Please stick to it
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GPT-3.5 GPT-4

P1 P2 P3 P1 P2 P3

B 0 1 0 0 0 0
O 0 1 0 0 1 1
O+ 0 1 0 0 0 0

RAs 1 0 0 1 0 1

Table 2.35: Human and n-shot CoT GPT classifications for the message in Figure 2.39

Figure 2.40: Promise II - Classifications with CoT for prompts O and O+ for message in
Figure 2.39

GPT-3.5

Output using O
Reasoning:
P2’s message "I recommend investing 200 each for maximum returns" constitutes a promise as it indicates a specific
action and gives others reason to believe or expect that P2 will invest 200. P1’s message "OK:)" does not constitute
a promise as it does not indicate a specific action.
Classification:
P1: 0
P2: 1
P3: 0
Output using O+
Reasoning:
P2: The message "I recommend investing 200 each for maximum returns" suggests a specific action and implies a
commitment to that action.
Classification:
P1: 0
P2: 1
P3: 0

GPT-4
Output using O
Reasoning:
P2 starts with a greeting, which does not constitute a promise. P1’s message is a question about the investment
amount, which is also not a promise. P2 then recommends investing 200 each, which is a suggestion but does not
explicitly state that P2 will do so; however, the context implies that P2 is advocating for this action and is likely
to follow through with it, so it can be considered a promise. P3’s response "same" indicates agreement with P2’s
suggestion and implies a commitment to invest 200 as well, which can be classified as a promise. P1’s "OK:)" is an
acknowledgment of the plan but does not explicitly state that P1 will invest 200, so it is not a promise. However,
P2’s follow-up with "Please stick to it" is a request for commitment, reinforcing the earlier promise to invest 200.
Classification:
P1: 0
P2: 1
P3: 1
Output using O+
Reasoning:
- P2 starts with a greeting, which does not contain any commitment or promise.
- P1 asks for opinions on the investment amount, which is a question without commitment.
- P2 recommends investing 200 each, which is a suggestion but does not explicitly state that they will do so
themselves, hence no commitment.
- P3 agrees with P2’s suggestion, which could be interpreted as a commitment, but without an explicit statement of
personal action, it remains a general agreement.
- P1 responds with "OK:)" which indicates agreement but does not explicitly state a commitment to invest a specific
amount.
- P2 then asks to "Please stick to it," which is a request for others to commit but is not a self-commitment.
Classification:
P1: 0
P2: 0
P3: 0

Figure 2.41: Promise II - Example message 5

P2: max? then doubled.
P1: 200
P3: Yes, agree.
P2: *thumbs up*
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GPT-3.5 GPT-4

P1 P2 P3 P1 P2 P3

B 0 1 0 0 0 0
O 0 1 0 0 0 1
O+ 0 0 1 1 0 1

RAs 0 1 1 0 1 1

Table 2.36: Human and n-shot CoT GPT classifications for the message in Figure 2.41

Figure 2.42: Promise 2 - Classifications with CoT for prompts O and O+ for message in
Figure 2.41

GPT-3.5

Output using O
Reasoning:
P2: The message "max? then doubled." indicates a specific action by the player and gives others reason to believe or
expect that the player will invest the maximum amount. Therefore, it constitutes a promise.
P1: The message "200" does not constitute a promise as it does not indicate a specific action by the player or give
others reason to believe or expect a certain course of action.
P3: The message "Yes, agree." does not constitute a promise as it does not indicate a specific action by the player
or give others reason to believe or expect a certain course of action.
P2: The message "*thumbs up*" does not constitute a promise as it does not indicate a specific action by the player
or give others reason to believe or expect a certain course of action.
Classification:
P1: 0 P2: 1 P3: 0
Output using O+
Reasoning:
P2 suggests "max? then doubled." without explicitly committing to the action. P1 responds with "200" which could be
interpreted as a suggestion or a statement of intention, but it’s not explicitly a promise. P3 responds with "Yes,
agree," which indicates a clear affirmative response but is conditional on the previous messages. P2’s "thumbs up"
could be interpreted as agreement, but it’s not a clear commitment.
Classification:
P1: 0 P2: 0 P3: 1

GPT-4
Output using O
Reasoning:
P2’s initial message "max? then doubled." is a question and a statement of the game’s mechanics, not a promise to
invest a specific amount.
P1’s message "200" is a clear indication of the amount they are considering to invest. However, without additional
context or a statement that commits them to this action, it is not a promise.
P3’s message "Yes, agree." is a response to the previous messages, indicating agreement with the proposed action.
This can be interpreted as a commitment to invest the amount that is being discussed, which in this context is 200
pence.
P2’s message "*thumbs up*" is a non-verbal indication of agreement or approval but does not constitute a verbal
promise to take a specific action.
Classification:
P1: 0 P2: 0 P3: 1
Output using O+
Reasoning:
- P2’s initial message "max? then doubled." is a question about the game mechanics, not a commitment to invest a
specific amount. Therefore, it’s not a promise.
- P1’s response "200" is a statement of a specific amount, which in this context seems to be an agreement to invest
200 pence. This can be interpreted as a promise to take that action.
- P3’s response "Yes, agree." is an explicit agreement to the previously mentioned action (investing 200 pence). This
is a promise to take that action.
- P2’s response with a "*thumbs up*" emoji is a non-verbal affirmative response, which in this context can be
interpreted as an agreement to the proposed action. However, it’s less explicit than a verbal commitment, and without
additional context, it’s not as strong as a clear statement of intent. It could be seen as an endorsement of the
plan rather than a personal commitment to action. Given the ambiguity, I will lean towards not classifying it as a
promise.
Classification:
P1: 1 P2: 0 P3: 1

Figure 2.43: Promise 2 - Example message 6

P3: Hi everyone
P2: hi
P1: I think we should do 100 each
P2: i was thinking the same
P2: are we agreed?
P1: player 3?
P3: If we all do 200 we get the most back I think?
P2: we should meet in the middle then and do 150?
P1: I’m good with that
P3: Hep
P3: Yep
P1: Lets do it
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GPT-3.5 GPT-4

P1 P2 P3 P1 P2 P3

B 1 1 1 0 0 0
O 0 0 0 0 1 0
O+ 1 1 1 1 1 1

RAs 1 1 1 1 1 1

Table 2.37: Human and n-shot CoT GPT classifications for the message in Figure 2.43

Figure 2.44: Promise 2 - Classifications with CoT for prompts O and O+ for message in
Figure 2.43

GPT-3.5

Output using O
Reasoning:
- P1 suggests an amount (100 each) but does not explicitly promise to invest that amount.
- P2 agrees with the suggestion but also does not explicitly promise to invest that amount.
- P3 suggests investing 200 each, but does not explicitly promise to invest that amount.
- P2 suggests meeting in the middle at 150, but does not explicitly promise to invest that amount.
- P1 agrees with the suggestion but does not explicitly promise to invest that amount.
- P3 confirms agreement with "Yep" but does not explicitly promise to invest that amount.
- P1’s "Let’s do it" does not explicitly promise to invest 150.
- P2’s "50 it is then" does not explicitly promise to invest 150.
Classification:
P1: 0 P2: 0 P3: 0
Output using O+
Reasoning:
P3 initiates the discussion by suggesting that investing 200 each would yield the most return. P2 then suggests
meeting in the middle at 150, to which P1 agrees. P3 responds with "Yep" and P2 confirms "50 it is then."
Classification:
P1: 1 P2: 1 P3: 1

GPT-4
Output using O
Reasoning:
P3 starts with a greeting, which is not a promise (‘0‘). P2 also greets, which is not a promise (‘0‘). P1 suggests
doing 100 each, which is a proposal but not a commitment (‘0‘). P2 agrees with the idea of 100 each and asks for
confirmation (‘0‘), as this is still part of the negotiation process. P1 asks for P3’s input, which is not a promise
(‘0‘). P3 suggests that investing 200 each would yield the most return, which is an opinion, not a promise (‘0‘).
P2 then suggests meeting in the middle with 150, which is a counter-proposal but not a firm commitment (‘0‘). P1
agrees with the 150 proposal, which is an acceptance of the suggestion but not a clear promise (‘0‘). P3 agrees with
"Yep," which is an affirmation but not a clear commitment (‘0‘). P1 then says "Let’s do it," which is an agreement to
proceed but not a specific promise to invest a certain amount (‘0‘). P2 finally states "150 it is then," which is a
confirmation of the agreed amount and can be considered a promise to invest that amount (‘1‘).
Classification:
P1: 0 P2: 1 P3: 0
Output using O+
Reasoning:
P1 starts with a suggestion to invest 100 each, which is not a commitment but an opinion (Code as 0). P2 expresses
agreement with the initial suggestion and asks for confirmation (Code as 0 for agreement without commitment, and 0
for the question). P1 asks P3 for their opinion, which is a question and not a commitment (Code as 0). P3 suggests
that investing 200 each would yield the most return, which is an opinion and not a commitment (Code as 0). P2 then
suggests meeting in the middle with 150 each, which is a suggestion without a commitment (Code as 0). P1 agrees with
P2’s suggestion, which is a commitment to the action (Code as 1). P3 agrees with the suggestion by saying "Yep,"
which is a commitment (Code as 1). P1 then reaffirms the decision with "Lets do it," which is a commitment (Code as
1). P2 confirms the amount with "150 it is then," which is a commitment (Code as 1).
Classification:
P1: 1 P2: 1 P3: 1
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2.B.4 Additional Analysis

In Tables 2.38 and 2.39, weighted F1 and F1 macro averages are presented. Since the
“promise” and “empty talk” categories are balanced with 53.3% of the messages classified
as “promise” in the groundtruth, weighted F1 and F1 macro averages are very close to the
accuracy results reported in Table 2.10 in Section 2.6.4.

no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 B .57 – .614 –
O .574 .574 .547 .525
O+ .719 .749 .672 .75

GPT-4 B .674 – .707 –
O .684 .827 .718 .848
O+ .865 .862 .841 .887

Table 2.38: Weighted F1

no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 B .563 – .614 –
O .572 .595 .546 .52
O+ .717 .746 .673 .751

GPT-4 B .675 – .71 –
O .681 .826 .721 .847
O+ .865 .861 .841 .886

Table 2.39: F1 Macro averages
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2.C Level-k I

2.C.1 Original Instructions

Figure 2.45: Original classification instructions

General Comments:
Subjects do not necessarily describe every step of their thinking; therefore, it may not always be obvious to decide which level
they are. In many comments, any indications of a level of thinking may be partial or implicit, you should then indicate the most
likely level of reasoning of the player. If the message indicates to simply refer to a previous message ("same as before/above"),
then you can use the previous message’s evaluation to determine the level of the current message. If you are unsure of the level
of the message, you should indicate the level you think is more likely.
Level-0 Player:
Characteristics: Chooses randomly, without justification or through some justification completely unrelated to the task. Might
not have understood the game or shows no interest in the game or in thinking about it.
Examples:
"50 50 chance to get red at least 50 50 could also be 100 percent."
"I like blue, so I chose blue."
"Think it will be red again."
"definitely red this time"
"We have to go for red. No other way than that. I like turtles"
Note: Comments such as "It is obviously blue" or "Play red, trust me!" should not be considered as level-0 thinking as these
comments to some extent signal some level of understanding/interest of the task. Such comments are likely to be level-1 comments
yet without any additional information, you should leave the specific cell empty.
Level-1 Player:
Characteristics: Always follows his own signal. The subject may argue in favor of playing his own signal through some
probability argument
Examples:
"Our signal is blue. Let’s play blue."
"The probability that the red ball we observe is out of the red urn is twice the probability that it is out of the blue urn"
"1/3 of all teams is observing wrong color, so we would try to find out whether we have wrong or right ball, keep with red."
Note: The key idea in defining a level-1 player is to identify some thinking process that signals the subject’s
interest/understanding of the task and the private signal. Furthermore, it is important that the subject does not offer any
argument acknowledging the potential votes of the other teams and how to vote accordingly (i.e. adjusting the strategy given what
others are expected to do).
Level-2 Player:
Characteristics: Assume that all other players almost always follow their signal (i.e. she assumes almost all the other players
are level-1 while an epsilon portion of them are level-0). Player does offer an argument acknowledging the potential votes of
the other teams and how to vote accordingly (i.e. a best response given others are most likely playing their signal). In other
words, if you identify any comment that indicates that the subject assumes (or considers the case) where the other players in her
group play their signal, you should consider the possibility that the subject is a level-2 player.
Examples:
"Let’s take red because if the urn is red and we got the opposite color and we take blue, the decision will be blue."
"We need to chose Red. If we are the only ones who picked blue, then the urn is red and we guess correct If the urn is blue, then
the other guys will pick blue so there will be at least one blue vote and we win as well If the others guys (also blue) think the
same way then we lose But this is too many ifs"
"I have a blue ball. If we have the blue urn, someone else also has a blue ball and as a result our group will chose blue
regardless of my vote. If we have the red urn, I am the only one with the blue ball and if I vote blue, we will chose the wrong
urn. So I should vote for red."
"In case two teams choose red and one chooses blue, blue will be taken. That means that choosing red has a higher chance of being
a good decision."
"I guess this is more about luck because there is no way to know it for sure. I would say blue just because of the higher
probability. Also I like turtles Also it is likely that one other team will pick blue and then it is that color anyways"
"There is no point for us to take blue I think the chances for us to get the right color are higher if we stick with red" [red
ball is observed]
"I suggest red because we donat hurt anyone with this decision If the others go for blue because they have a blue ball, the
committeeas decision will be blue regardless of our decision"
"We could be the deciding vote for blue if the other two choose red. Choosing blue isnt as helpful as choosing red, because:
only one blue ball can overturn our whole decision but only a unanimous decision for red can help us the same way"
Note: In order to discern the two types, you should look for more than any trivial arguments such as the ones given under
level-1. There may be cases where the message starts as a level-1 argument and then as the subjects elaborates on her reasoning,
she starts considering the strategy of the other teams and justify her decision accordingly (see the third example above). In
such cases, this message should be considered as level-2. The acknowledgment of other teams’ voting strategy may not always be
obvious or may be worded differently such as "hurting the other’s decision" or "not being helpful" (see the last three examples
above)
Level-3 Player:
Characteristics:
Assumes that almost all other subjects are level-2 players (partially degenerate beliefs). The reasoning in a level-3 player
message will have similarities with a level-1 player message but it will have additional arguments indicating that she assumes
others are level-2 players.
Examples:
"In my opinion, if there is another person with blue they may be afraid of voting blue so we should vote blue to make sure."
"Let’s now pick the shown colour because the others now will probably enter their opposite colour."
"Risky to vote blue but others may not vote blue even when they draw blue. I say we vote blue."
Note: As stated above, level-3 players are likely to follow their signal like a level-1 player yet they will argue to do so
through a much more intricate argument (unlike a level-1 player merely stating probabilities to argue her action). Level-3
players are rare. Higher levels (level-4 etc.) are assumed to not occur; therefore, you should consider only the first 4 levels
of thinking.

We have omitted various sections of the original instructions to fit in the instructions
into a single page. The original instructions begins with a lengthy section regarding the
general theory of level-k modeling and its specific application to the experiments. These
sections aggregate to 3 pages of instructions. Although the context of these sections are
relevant in terms how we have very briefly summarized them in the “Context” section
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of our prompts, we omitted them in Figure 2.45. Furthermore, some sentences in the
instructions that were not related to the classification of instructions, such as how to code
certain concepts in the excel sheet, are also omitted. See Chapter 1 for the instructions in
its entirety.

2.C.2 Prompts

Figure 2.46: Prompts O and O+

# General Task
- Classify player’s level of strategic thinking in a voting game
# Role Persona
- Act as a behavioral economist specialized in level-k modeling, strategic thinking and text classification.
# Context (see Figures 2.47 and 2.48)
# Classification Task
- Classify a player’s level of strategic thinking as 0, 1, 2 or 3 based on the message provided.
- Use the below characteristics, examples and notes provided for each level to determine your classification.
## Level-0 Player
### Characteristics
- Chooses randomly, without justification or through some justification completely unrelated to the task.
- Might not have understood the game or shows no interest in the game or in thinking about it.
- Provides a vote without a clear justification to the probability of the game or strategic reasoning.
### Note
- Comments such as ’It is obviously blue’ or ’Play red, trust me!’should not be considered as level-0 thinking as
these comments to some extent signal some level of understanding/interest of the task. Such comments are likely to be
level-1 comments.
## Level-1 Player
### Characteristics
- Always follows his own signal.
- The subject may argue in favor of playing his own signal through some probability argument.
### Note
- The key idea in defining a level-1 player is to identify some thinking process that signals the subject’s
interest/understanding of the task and the private signal.
- It is important that the subject does not offer any argument acknowledging the potential votes of the other teams
and how to vote accordingly (i.e. adjusting the strategy given what others are expected to do).
## Level-2 Player
### Characteristics
- Assume that all other players almost always follow their signal (i.e. a level-2 player assumes almost all the other
players are level-1 while a small portion of them are level-0).
- Player does offer an argument acknowledging the potential votes of the other teams and how to vote accordingly (i.e.
a best response given others are most likely playing their signal).
- if you identify any comment that indicates that the subject assumes (or considers the case) where the other players
in her group play their signal, you should consider the possibility that the subject is a level-2 player.
### Note
- In order to discern between level-1 and level-2 types, you should look for more than any trivial arguments such as
the ones given under level-1.
- There may be cases where the message starts as a level-1 argument and then as the subjects elaborates on her
reasoning, she starts considering the strategy of the other teams and justify her decision accordingly (see the fifth
example above). In such cases, this message should be considered as level-2.
- The acknowledgment of other teams’ voting strategy may not always be obvious or may be worded differently such as
"hurting the other’s decision" or "not being helpful" a (see the last three examples above)
## Level-3 Player
### Characteristics
- Assumes that almost all other subjects are level-2 players (partially degenerate beliefs).
- The reasoning in a level-3 player message will have similarities with a level-1 player message but it will have
additional arguments indicating that she assumes others are level-2 players.
### Notes
- level-3 players are likely to follow their signal like a level-1 player yet they will argue to do so through a much
more intricate argument (unlike a level-1 player merely stating probabilities to argue her action).
- Level-3 players are rare.
## General Comments
- Players do not necessarily describe every step of their thinking; therefore, it may not always be obvious to decide
which level they are. In many messages, any indications of a level of thinking may be partial or implicit. In such
cases provide the most likely level of reasoning from the messages.
- If you are unsure of the level of the message, you should indicate the level you think is more likely.
# Constraint
- Only provide a single level classification.
- Follow the below output format.
# Output Format
0/1/2/3
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“Classification Process” section used for CoT prompting and the variation in the “Out-
put Format” are as presented in Figures 2.1 and 2.2 and are omitted. Since the prompts
only differ in their “Context” section, we present both prompts all other identical parts
in Figure 2.46. “Examples” section used for n-shot prompting is presented separately in
Figure 2.49.

Figure 2.47: Prompt O - Context

# Context
- Teams of two players, part of larger groups, draw a colored ball from an urn, play a voting game with their group to
guess the color of the urn for multiple periods.
- Teams are randomly paired each period. Teams consist always of 2 players.
- Teams are grouped into either 3 or 6 teams per group.
- Each period, a group is assigned to an urn with a blue or red color with equal probability.
- An urn only contains blue and red balls. Blue urn has twice more blue balls than red balls and a red urn has twice
more red balls than blue balls. The color of the ball has a 2/3 chance of matching the urn’s color.
- After the urn with either red or blue color is assigned to a group, each team within a group draws a ball from the
urn to infer the urn’s color. The drawing can be with or without replacement depending on the period.
- Teams do not know the color of the urn. They do not know the colors of the balls picked by the other teams in their
group. They only know the color of their own ball.
- The group’s objective is to correctly guess the color of the assigned urn.
- Each team in a group provides a single vote. A team votes for either the color red or blue. Group’s decision is
determined based on the aggregation of its teams’ votes.
- Teams communicate internally to decide on a vote for the urn’s color. If all votes are red, the group decision is
red; any blue vote results in a blue group decision.
- Teams do not observe the votes of the other teams in their group.
- Teams weigh their own ball’s color and strategize their vote considering the group’s outcome.
- Players exhibit levels of strategic reasoning (0 to 3), influencing their decision-making and messaging.

Figure 2.48: Prompt O+ - Context

# Context
## Game Mechanics
- Teams of two players, part of larger groups, draw a colored ball from an urn, play a voting game with their group to
guess the color of the urn for multiple periods.
- Teams are randomly paired each period. Teams consist always of 2 players.
- Teams are grouped into either 3 or 6 teams per group.
- Each period, a group is assigned to an urn with a blue or red color with equal probability.
- An urn only contains blue and red balls. Blue urn has twice more blue balls than red balls and a red urn has twice
more red balls than blue balls. The color of the ball has a 2/3 chance of matching the urn’s color.
- After the urn with either red or blue color is assigned to a group, each team within a group draws a ball from the
urn to infer the urn’s color. The drawing can be with or without replacement depending on the period.
- In without replacement case, for group size of 3, if the urn is red (blue), 2 teams will draw red (blue) ball and 1
team will draw blue (red) ball. For the group size of 6, if the urn is red (blue), 4 teams will draw red (blue) ball
and 2 teams will draw blue (red) ball.
- In with replacement case, irrespective of the group size, the probability of drawing a red (blue) ball from the red
(blue) urn will be 2/3.
- Teams do not know the color of the urn. They do not know the colors of the balls picked by the other teams in their
group. They only know the color of their own ball.
- The group’s objective is to correctly guess the color of the assigned urn.
- Each team in a group provides a single vote. A team votes for either the color red or blue. Group’s decision is
determined based on the aggregation of its teams’ votes.
- Teams do not observe the votes of the other teams in their group.
## Communication
- Teams communicate internally to decide on a vote for the urn’s color. If all votes are red, the group decision is
red; any blue vote results in a blue group decision.
- Each player within a team can only send a single message to their teammate. Both teammates send their messages
before observing their teammate’s message.
## Strategic Reasoning
- Teams weigh their own ball’s color and strategize their vote considering the group’s outcome.
- Players exhibit levels of strategic reasoning (0 to 3), influencing their decision-making and messaging.
- Level-0: Any action that can be considered as random play, non-strategic or unrelated to the game mechanics
- Level-1: Almost always votes the color of the ball picked. Does not assume any behavior by other teams.
- Level-2: Almost always votes red regardless of the color of the ball picked. Assumes that everybody else almost
always votes the color of the ball they pick (i.e. assumes everybody else is almost always level-1).
- Level-3: Almost always votes the color of the ball picked. Assumes that everybody else almost always votes red
regardless of the color of the ball they pick (i.e. assumes everybody else is almost always level-2)
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Figure 2.49: Prompt O and O+ - Example sections

# Classification Task
## Level-0 Player
### Characteristics ...
### Examples
1. "50 50 chance to get red at least 50 50 could also be 100 percent."
2. "I like blue, so I chose blue."
3. "Think it will be red again."
4. "definitely red this time"
5. "We have to go for red. No other way than that. I like turtles"
### Notes ...
## Level-1 Player
### Characteristics ...
### Examples
1. "Our signal is blue. Let’s play blue."
2. "The probability that the red ball we observe is out of the red urn is twice the probability that it is out of the
blue urn"
3. "1/3 of all teams is observing wrong color, so we would try to find out whether we have wrong or right ball, keep
with red."
### Notes ...
## Level-2 Player
### Characteristics ...
### Examples
1. "Let’s take red because if the urn is red and we got the opposite color and we take blue, the decision will be
blue."
2. "We need to chose Red. If we are the only ones who picked blue, then the urn is red and we guess correct If the
urn is blue, then the other guys will pick blue so there will be at least one blue vote and we win as well If the
others guys (also blue) think the same way then we lose But this is too many ifs"
3. "I have a blue ball. If we have the blue urn, someone else also has a blue ball and as a result our group will
chose blue regardless of my vote. If we have the red urn, I am the only one with the blue ball and if I vote blue, we
will chose the wrong urn. So I should vote for red."
4. "In case two teams choose red and one chooses blue, blue will be taken. That means that choosing red has a higher
chance of being a good decision."
5. "I guess this is more about luck because there is no way to know it for sure. I would say blue just because of
the higher probability. Also I like turtles Also it is likely that one other team will pick blue and then it is that
color anyways"
6. "There is no point for us to take blue I think the chances for us to get the right color are higher if we stick
with red" [red ball is observed]
7. "I suggest red because we donat hurt anyone with this decision If the others go for blue because they have a blue
ball, the committeeas decision will be blue regardless of our decision"
8. "We could be the deciding vote for blue if the other two choose red. Choosing blue isnt as helpful as choosing
red, because: only one blue ball can overturn our whole decision but only a unanimous decision for red can help us
the same way"
### Notes ...
## Level-3 Player
### Characteristics ...
### Examples
1. "If everyone else assumes others play their own signal then they will always play red. Since I have the blue
ball, it is more likely that we have the blue urn so I will vote blue"
2. "Let’s now pick the shown colour because the others now will probably enter their opposite colour."
3. "Risky to vote blue but others may not vote blue even when they draw blue. I say we vote blue."
### Notes ...

2.C.3 Additional Examples

Figure 2.50: Level-k I - Example message 4

the chance that we recieve the wrong ball is smaller than the chance that we receive the correct ball However I think
every team will think in the same way and there is no chance that the committe gets it right...

GPT-3.5 GPT-4

O 2 1
O+ 2 1

RAs 0

Table 2.40: Human and GPT classifications of message in Figure 2.50 using n-shot and
CoT prompting
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Figure 2.51: Level-k I - Classifications with CoT and n-shot for prompts O and O+ for
message in Figure 2.19 or Figure 2.50

GPT-3.5

Output using O
Reasoning:
The player is considering the possibility of not picking the same color as their partner in order to avoid a tie.
They are strategizing based on the assumption that their partner will follow their signal.
Classification:
2
Output using O+
Reasoning:
The player is considering the possibility of not picking the same color as their teammate to avoid a unanimous vote,
indicating some level of strategic thinking. They are suggesting a coordinated strategy to ensure their vote is
different from their teammate’s.
Classification:
2

GPT-4
Output using O
Reasoning:
The player is suggesting a strategy that involves coordination with their teammate to cover both possible outcomes.
This indicates that the player is considering the actions of their teammate and how it could affect the group’s
decision. The message implies a basic understanding of the game’s mechanics and the importance of diversifying the
votes within the team. However, the player does not explicitly acknowledge the strategies or potential votes of other
teams in the group, which would be characteristic of a level-2 player. The message suggests a simple strategy without
deeper strategic reasoning about the other teams’ likely actions.
Classification:
1
Output using O+
Reasoning:
The player is suggesting a strategy that involves coordination with their teammate to cover both possible outcomes.
This message indicates that the player is considering the actions of their teammate and how it could affect the
group’s decision. However, the player does not explicitly consider the strategies of the other teams in the
group, which would be characteristic of a level-2 player. The message also lacks the assumption that other players
are level-2, which would be necessary to classify the player as level-3. The player’s message does not fit the
characteristics of a level-0 player, as it is not a random choice or unrelated to the task. Therefore, the message
most closely aligns with level-1 reasoning, where the player is interested in the task and is considering their own
signal and that of their teammate but not the strategies of other teams.
Classification:
1

Figure 2.52: Level-k I - Example message 5

I’d say always choose red but maybe we should choose blue since everbody thinks always choose red and it’s 2/3 that we
win.

GPT-3.5 GPT-4

O 2 3
O+ 2 3

RAs 3

Table 2.41: Human and GPT classifications of message in Figure 2.52 using n-shot and
CoT prompting
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Figure 2.53: Level-k I - Classifications with CoT and n-shot for prompts O and O+ for
message in Figure 2.52

GPT-3.5

Output using O
Reasoning:
The player seems to be considering the strategy of the other players in the group. They mention that everyone
thinks "always choose red" and then consider choosing blue as a response to this. This indicates an awareness of the
potential votes of the other teams and how to vote accordingly.
Classification: 2
Output using O+
Reasoning:
The player starts by suggesting "always choose red" but then considers the possibility of choosing blue because
everyone else might be thinking the same way. The player acknowledges the potential votes of the other teams and how
to vote accordingly, indicating a consideration of the strategy of the other teams.
Classification: 2

GPT-4
Output using O
Reasoning:
The player starts by considering the strategy of "always choose red," which is indicative of level-2 thinking, as
it shows an awareness of a common strategy that assumes other players will vote their signal (level-1 behavior).
However, the player then suggests choosing blue, acknowledging that other players might also be thinking strategically
at level-2 and therefore might "always choose red." This suggests that the player is considering the possibility that
others are at level-2 and is adjusting their strategy accordingly, which is characteristic of level-3 thinking.
Classification: 3
Output using O+
Reasoning:
The player starts with a consideration that might suggest a level-2 strategy ("always choose red") but then moves
on to consider what other players might be thinking. The player acknowledges that other players might be following
a level-2 strategy ("everybody thinks ’always choose red’") and suggests adapting their own strategy based on this
assumption. This indicates that the player is considering the strategic choices of others and is trying to best
respond to what they perceive as the common strategy. This is characteristic of level-3 reasoning, where the player
assumes that others are level-2 players and adjusts their strategy accordingly.
Classification: 3

Figure 2.54: Level-k I - Example message 6

the chance that we recieve the wrong ball is smaller than the chance that we receive the correct ball However I
think every team will think in the same way and there is no chance that the committe gets it right...

GPT-3.5 GPT-4

O 2 2
O+ 2 2

RAs 1

Table 2.42: Human and GPT classifications of message in Figure 2.54 using n-shot and
CoT prompting
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Figure 2.55: Level-k I - Classifications with CoT and n-shot for prompts O and O+ for
message in Figure 2.54

GPT-3.5

Output using O
Reasoning:
The player acknowledges the probability of receiving the wrong ball being smaller than receiving the correct ball.
However, they also express a belief that every team will think in the same way, leading to the conclusion that there
is no chance that the committee gets it right. This indicates a consideration of the potential votes of the other
teams and how to vote accordingly, suggesting a level-2 strategic thinking.
Classification: 2
Output using O+
Reasoning:
The player acknowledges the probability of receiving the wrong ball and the correct ball. They also express a belief
that every team will think in the same way, leading to the conclusion that there is no chance that the committee
gets it right. This indicates an awareness of the potential votes of the other teams and how to vote accordingly,
suggesting a level-2 strategic thinking.
Classification: 2

GPT-4
Output using O
Reasoning:
The player acknowledges the probability of receiving the correct ball versus the wrong ball, which shows an
understanding of the game’s mechanics. However, the player also considers the thought process of other teams,
assuming that they will think similarly and that this collective reasoning will lead to an incorrect group decision.
This indicates that the player is considering the strategies of others and how those strategies will affect the group
outcome, which aligns with level-2 strategic thinking.
Classification: 2
Output using O+
Reasoning:
The player starts with a probability argument, which is a characteristic of level-1 thinking, by acknowledging that
the chance of receiving the correct ball is higher than receiving the wrong one. However, the player then moves on to
consider what other teams might think and do, which is a characteristic of level-2 thinking. The player assumes that
every team will think in the same way, which suggests they are considering the strategies of other teams and how it
affects the group outcome. This is a key feature of level-2 strategic reasoning, where the player assumes others are
likely to be level-1 and play their signal, and thus adjusts their own strategy accordingly.
Classification: 2

Figure 2.56: Level-k I - Example message 7

I suggest we vote red. There is a higher chance that the urn is red. if even one person chooses blue - the
committee’s decision is blue, so our decision won’t make a difference.

GPT-3.5 GPT-4

O 2 2
O+ 2 2

RAs 1

Table 2.43: Human and GPT classifications of message in Figure 2.56 using n-shot and
CoT prompting
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Figure 2.57: Level-k I - Classifications with CoT and n-shot for Prompts O and O+ for
message in Figure 2.56

GPT-3.5

Output using O
Reasoning:
The player suggests voting red because they believe there is a higher chance that the urn is red. They also consider
the scenario where even one person chooses blue, in which case the committee’s decision will be blue, making their
decision not impactful.
Classification: 2
Output using O+
Reasoning:
The player suggests voting red based on the higher chance of the urn being red. They also consider the potential
committee’s decision, stating that if even one person chooses blue, the committee’s decision will be blue, so their
decision won’t make a difference.
Classification: 2

GPT-4
Output using O
Reasoning:
The player acknowledges the rules of the game, specifically the impact of a single blue vote on the committee’s
decision. They are considering the strategic implications of their vote in the context of the group’s outcome. This
indicates that they are thinking about the potential votes of the other teams and how to vote accordingly. The player
is not just following their own signal but is also considering the likelihood of others voting blue and how it affects
the final decision. This suggests that the player is at least at level-2, as they are considering the best response
given that others are most likely playing their signal.
Classification: 2
Output using O+
Reasoning:
The player is considering the rules of the game, specifically the voting mechanism where a single blue vote can
determine the group’s decision. They are also acknowledging the likelihood of the urn being red and the strategic
implications of their vote in relation to the votes of others. This indicates that the player is thinking about the
potential votes of other teams and how to vote accordingly, which aligns with the characteristics of a level-2 player.
Classification: 2

2.C.4 Additional Analysis

Weighted F1 scores are presented in Table 2.44. The level-k distribution shown in Table
2.11 is a standard distribution commonly observed in similar studies and represents the
expected distribution when researchers classify such data (Camerer et al., 2004; Costa-
Gomes and Crawford, 2006; Burchardi and Penczynski, 2014; Crawford et al., 2013).
Given this, weighted F1 is the most relevant metric for assessing the models’ performance,
and F1 macro averages are omitted.

no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 O .694 .639 .651 .641
O+ .653 .757 .667 .693

GPT-4 O .797 .843 .792 .913
O+ .768 .789 .744 .895

Table 2.44: Weighted F1 of level classification
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2.D Level-k II

2.D.1 Original Instructions

Figure 2.58: Original instructions - Part 1

Classification Instructions
Thank you for participating in this experiment. In this section you find instructions as to how this experiment
works. To take part in the experiment, we assume that you are familiar with the level-k model as it has been
introduced by Nagel (1995) and also with the concept of team reasoning as it has been introduced by Schelling
(1960). In the experiment, subjects play pure coordination games with symmetric and asymmetric payoffs. We assume
that you are familiar with the concept of coordination games as they have been carried out by Crawford, Gneezy and
Rottenstreich (2008).
However, in order to clarify potential questions of terminology, we reproduce the main features of the level-k model
and the concept of team reasoning. In addition we provide detailed experimental instructions, which explain the game
and also give you a short introduction to coordination games. Please read all information carefully in order to know
how the original experiment proceeded.
Experimental Setting
Introduction
This section describes the main features of the experiment. Subjects are randomly assigned into teams of two
players. For a given strategic situation, each player makes suggestions for the team action at two points in time.
First, the so-called "suggested decision" and a justifying written message are exchanged between the team partners
simultaneously. After this, the "final decision" is taken individually by each team player. The computer chooses
randomly one of the two final decisions to obtain the "team’s action."
All teams play a series of eight coordination games. Coordination games are characterised by situations in which all
parties can realize mutual gains, but only by making mutually consistent decisions. Each team is randomly matched
with another team. If a matched pair of teams both decide on identical team actions, they coordinate their behavior
successfully and are rewarded with a payoff.
However, if both teams choose different team actions, they fail to coordinate their behavior and do not receive
any payoff. Thus both teams are motivated solely to coordinate their strategies in order to obtain an outcome that
is best for them. The following example illustrates a random coordination game in which each team decides on one
strategy X, Y or Z simultaneously. Only if both teams make mutually consistent decisions they receive a payoff of 2
units each.

Team 2
X Y Z

Team 1
X (2,2) (0,0) (0,0)
Y (0,0) (2,2) (0,0)
Z (0,0) (0,0) (2,2)

The payoff is represented through an experimental currency unit ("Taler"). One Taler is worth 0,40 Euro. In a
symmetric coordination game each team is rewarded the same payoff if they coordinate their behavior successfully. In
asymmetric coordination games players usually disagree on which action they prefer to coordinate. There may be one
outcome where one team disproportionately benefits in comparison to the other team.
X-Y Coordination Games
All subjects face a series of eight coordination games composed of four "X-Y Games" and four "Pie Games". We
reproduce the main features and attributes of those games in the following. "X-Y Games" are characterised by a binary
choice option "X" or "Y". The assignment of payoffs for successful coordination is indicated in brackets. Example:
X [6 Taler for Team 1 and 5 Taler for Team 2]
Y [5 Taler for Team 1 and 6 Taler for Team 2]
If a matched pair of teams both decide on the identical team action "X", team one receives 6 Taler and team two
receives 5 Taler. If both teams chose "Y", the assignment of payoffs would be reversed. If both teams chose
decisions with different labels "X" and "Y", neither team receives any payoff. The payoff differences vary within the
four "X-Y treatments".
Pie Coordination Games
"Pie Games" are characterised by a visual representation of different choice options as indicated in the following
figure. Each team simultaneously selects one of the three "pie slices". Each slice is labeled with an abstract
decision label §, $ or #. The assignment of payoffs for successful coordination is indicated in brackets within the
three slices. The first number represents the quantity of Taler for team one, the second number the quantity of Taler
for team two.
--Image of a Pie with payoffs-- (omitted see van Elten and Penczynski (2020) page 47)
If a matched pair of teams both decide on the identical team action "#", team one receives 7 Taler and team two
receives 6 Taler. If both teams chose decisions with different labels §, $ or #, neither team receives any payoff.
The payoff differences alternate within the four "Pie treatments".
Note that the "X-Y Game" and the "Pie Game" might both contain one alternative that is visually distinctive from
another alternative. For instance, the unshaded bottom slice is visually distinctive from the two upper slices ($ and
#) that are shaded in a light grey color. We refer to a visually distinctive alternative as label-salient. Moreover
an alternative might be payoff-salient in a way that it is distinctive with respect to its payoff structure. The
concept of label and payoff salience is important for the classification process.
Treatment Overview
We conducted six sessions in Mannheim and three sessions Heidelberg. All sessions consist of the same eight
treatments (four "X-Y games" and four "Pie games"), however the sequence of treatments in Mannheim is different
from the sequence of treatments in Heidelberg. The following two tables provide a brief overview over the sessions
conducted in Mannheim (session 1-3, session 7-9 [rounds 7 and 8 moved to the beginning]) and the sessions conducted
in Heidelberg (session 4-6). The payoff for successful coordination is indicated in brackets. The first number
represents the quantity of Taler for team one, the second number represents the quantity of Taler for team two, if
both teams coordinate their behavior.
--Table presenting games played in each round in each experiment-- (omitted see van Elten and Penczynski (2020) page
49)
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Figure 2.59: Original instructions - Part 2

Classification Process
Remember: Each player makes suggestions for the team action at two points in time. First, the so-called "suggested
decision" and a justifying written message are exchanged between the team partners simultaneously. After this,
the "final decision" is taken individually by each team player. The computer chooses randomly one of the two final
decisions to obtain the "team’s action." Your task is to classify the written messages into different categories. In
the following we will describe the classification process for the analysis of the experiment.
Level k Model
Notation of the level k model
It is assumed that you are familiar with the level-k model as it has been introduced by Nagel (1995) or represented
by Camerer (2004). The model here is extended to incorporate salience in the level-0 belief according to Bacharach
and Stahl (2000). In order to clarify potential questions of terminology and introduce the main features of the model
we quickly reproduce the main features of the model in the terminology used in this document. The level-k model of
bounded rationality assumes that players only think through a certain number (k) of best responses. The model has
four main ingredients:
Population distribution: This distribution reflects the proportion of types with a certain level k ∈ N0 =
{0, 1, 2, 3, 4, 5, ...}.
Level-0 distribution: By definition, a level-0 player does not best respond. Hence, his actions are random to
the game and distributed randomly over the action space. In our case, the action space is A = {{X}, {Y }} or A =
{{§}, {$}, {#}}. The model incorporates salience by assuming higher probabilities in the level-0 distribution for
actions that are visually distinctive (salient). An action might be salient in terms of payoffs and in terms of
labels. In the "X-Y" treatments, the level-0 distribution would not assign a uniform probability of 0.5 to each
possible action, but p > 0.5 to the salient one and qi < p for the remaining actions. In the "Pie" treatments, the
level-0 distribution would not assign a uniform probability of 1/3 to each possible action, but p > 1/3 to the salient
one and qi < p for the remaining actions.
Level-0 belief: In the model, the best responses of players with k > 0 are anchored in what they believe the level-0
players play. Their level-0 belief might not be consistent with the level-0 distribution. For best responding,
all that matters is the expected payoff from choosing an action from the action space A = {{X}, {Y }} or A =
{{§}, {$}, {#}}. A subject would therefore decide on a particular action, when the probability is highest, that the
other team chooses the same action.
Population belief: Players do not expect other players to be of the same or a higher level of reasoning. For a
level-k player, the population belief is therefore defined on the set of levels strictly below k. It follows that
level-0 players have no defined belief, level-1 players have a trivial belief with full probability mass on {0},
level-2 players have a well defined belief on {{0}, {1}}. From level 3 higher order beliefs are relevant as level-3
players have to form a belief about level-2’s beliefs.
Characterisation of the different levels
Level 0 The player does not exhibit any strategic reasoning whatsoever. Different versions of this might be randomly
chosen or purely guessed actions, misunderstanding of the game structure or other non-strategic ’reasons’ for picking
a location, e.g. by taste or salience. It is important that no best-responding to the other’s play occurs. There
could be considerations of what others might play, but without best responding to it. Examples: "Well, it’s a pure
guess", "There are no arguments. Simply choose any."
Level 1 This player best responds to some belief about the other teams’ action. However, he does not realise that
others will be strategic as well. Example: "They are probably picking X, so we do as well", "The other team would
naturally go for the visual distinctive bottom slice, no?"
Level 2 This player not only shows the basic strategic consideration of playing best response (matching/mismatching),
but also realises that other players best respond as well according to the belief they entertain. A level-2 player
clearly contemplates how the other player might best respond to his frame. The player plays a best response to this
hypothesised consideration. Example: "The other team may think we are most attracted to the alternative # with the
highest payoff. In order to coordinate our behavior we should also choose the # slice."
Level 3 This player realises that others could be level-2 and reacts by best responding to the associated expected
play. Put differently, he realises that others realise that others best respond to their initial belief. Therefore,
a level-3 player clearly states that his opponent expects that he (the level-3 player at question) best-responds to a
certain belief.
Level 4, 5, ... The process goes on in a similar fashion. A level k player realises that other subjects could be
level k-1 and reacts by best responding to the associated expected play.
Category 1: Lower and upper bound on the level of reasoning
Your aim
is to classify the written messages into the underlying level k ∈ N0 = {0, 1, 2, 3, 4, 5, ...} of reasoning. For a given
statement it might not be possible to exactly determine the underlying level of reasoning. To extract as much
information as possible, we ask you to indicate a lower and an upper bound on the level of reasoning.
For the lower bound on the level of reasoning, you should ask yourself: "What is the minimum level of reasoning that
this statement clearly exhibits?" Once noted, you should be able to say to yourself: "It seems impossible that the
players’ level of reasoning is below this number!" Here we ask you to be very cautious with the classification, not
giving away high levels easily.
The upper bounds should give the maximum level of reasoning that could be interpreted into the statement. Therefore,
you should ask yourself: "What is the highest level of reasoning that can be underlying this statement?" Once noted,
you should be able to say: "Although maybe not clearly communicated, this statement could be an expression of this
level. If the player reasoned higher than this number, this was not expressed in the statement!" For both lower and
upper bound, please refer to the characterisation of the different levels.
There are two necessary conditions for a player to exhibit a level greater than 0. First, the player has to be
responsive to the salience of the games’ framing. Secondly, the player has to be strategic in best-responding to his
level-0 belief, which is shaped by label or payoff salience. If he did not react to salience, he would have no reason
to chose one over the other object, resulting in random level 0 play.
For this category, the excel-sheet for the classification will feature a drop-down menu where you can choose upper and
lower bounds between 0 and 5. If no inference can be made since nothing or nothing to the point is written, you can
choose not applicable (n/a).
Category 2: Level-0 belief
Your aim
is to indicate the underlying level-0 belief that is connected with the lowest possible level of reasoning. If level
reasoning is observed in the statement, there has to be a starting point in the argument which states an attraction
or aversion to one alternative. This is then not derived by strategic reasons, but is an intuitive reaction to the
framing of the coordination game.
Otherwise, level reasoning would not occur. Please indicate the underlying level-0 belief that is connected with the
lowest possible level of reasoning. Note that the level-0 belief of a person reasoning on an odd level, i.e. level
1, 3, 5, etc. is always with respect to how a player of the opposite side intuitively reacts to the framing. The
belief of a person reasoning on an even level, i.e. level 2, 4 etc. is always with respect to what the opposite type
believes about the own type’s intuitive reaction.
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Figure 2.60: Original instructions - Part 3

There are two kinds of framing in these games. On the one hand, subjects might react to the framing of the
coordination game (label salience). Imagine a subject that you classify to be level-1. It might communicate
that the other team is most attracted to the visual distinctive white bottom slice § and therefore proposes Â§ as team
decision. A subject that you classify to be level-2 might indicate that the other team believes that one’s own team
is more likely to choose "X", because this alternative is mentioned first on the screen. To reflect a level-0 belief
of an attraction to X or Y , or to #, §, or $, the excel-sheet features a drop-down menu that allows to indicate
such a preference or an indifference. If such a preference or indifference over labels is not indicated, or if the
subjects’ level of attractiveness cannot be distinguished or is not expressed clearly within the message, please
indicate that the level-0 belief from the message does not exhibit any label salience.
On the other hand, subjects might respond to the payoffs (payoff salience). For example, consider a subject that
you classify to be level-1. It might communicate that the other team is most likely to choose alternative X as it
offers the highest payoff to this very team. Or, a subject that you classify to be level-2 might indicate that the
other team remains of the conviction that one’s own team is not attracted to the action that gives one’s own team
high payoffs. To reflect the exhibited level-0 beliefs you can indicate in the excel-sheet whether the team that
the level-0 belief is formed about is believed to be attracted to a) the action that yields --under coordination-- a
higher payoff for this team, to b) the action that yields --under coordination-- a higher payoff to the other team or
c) is indifferent. If no such preference or indifference over salient payoff actions is indicated, please indicate
that the level-0 belief from the message does not exhibit any payoff structure.
Please note that payoff and label salience are not mutually exclusive, please indicate both if both is expressed in
the message. Finally, for players whose lower bound is 0, the level-0 belief classification can be used to indicate
whether a level-0 player states for his action a preference with respect to label or payoff salience.
Classification Summary
In coordination games both teams are motivated solely to coordinate their strategies in order to obtain an outcome
that is best for them. For a given strategic situation, each player proposes a suggested decision and writes a
justifying written message to the team partner. Your task is to classify the written messages into different
categories that are summarized in the following:
Category 1 Please classify the written messages into the underlying level k ∈ N0 = {0, 1, 2, 3, 4, 5, ...} of reasoning.
Provide the lower and an upper bounds on the level of reasoning as described.
Category 2 Please indicate the underlying level-0 belief that is connected with the lowest conceivable level of
reasoning. Information about the underlying level-0 belief that one might obtain out of the communication is
how subjects respond to payoffs (payoff salience) and how subjects react to the framing (label salience) of the
coordination games.
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2.D.2 Prompts

Figure 2.61: Prompts O - Part 1

# General Task
- Evaluate player’s message from a specific coordination game to identify their decision-process and to classify their
level of strategic thinking.
# Role Persona
- Act as a behavioral economist specialized in coordination games, decision salience and text analysis.
# Context
## Game Mechanics
- Subjects (players) participate in an experiment where they play a coordination game.
- Players are assigned into teams of two.
- Each team is matched with another team to play a series of coordination games where the teams try to coordinate on a
specific alternative.
- If both teams pick the same alternative, each team is rewarded with a payoff. Otherwise, neither team receives any
payoff.
- Each player sends a suggested decision and a justifying message to their teammate.
- Coordination game is not played within the team members but between the two teams.
- There is no communication between the teams.
- Payoffs are represented in currency called Taler.
- 1 Taler = 40 cents (ct).
- Each player plays a series of 8 (rounds of) coordination games, split between *X-Y* games and *Pie* games.
## Coordination Games
- Payoff tables for each variation of each game is represented below.
- In each payoff table, ‘d‘ represents decision taken, ‘π1‘ represents payoff of team 1, and ‘π2‘ represents payoff of
team 2.
- Payoff tables only represent the cases where both teams match in the given decision ‘d‘, if teams’ decisions do not
match, each team receives 0 Taler.
### Pie Game
- Payoffs are displayed on a pie chart that is divided into three equally sized segments.
- Top left segment is labeled as ‘$‘.
- Top right segment is labeled as ‘#‘.
- Top segments are shaded in gray.
- Bottom segment is labeled as ‘§‘ and is highlighted in white.
- There are 4 payoff variations labeled as S1, S2, AM2 and AM4.
#### S1
| d |π1, π2|
|-------|------ |
| L ($) | 5, 5 |
| R (#) | 5, 5 |
| B (§) | 5, 5 |
#### S2
| d |π1, π2|
|-------|------ |
| L ($) | 6, 6 |
| R (#) | 6, 6 |
| B (§) | 5, 5 |
#### AM2
| d |π1, π2|
|-------|------ |
| L ($) | 5, 6 |
| R (#) | 6, 5 |
| B (§) | 6, 5 |
#### AM4
| d |π1, π2|
|-------|------ |
| L ($) | 6, 7 |
| R (#) | 7, 6 |
| B (§) | 7, 5 |
### X-Y Game
- Alternatives are displayed in two consecutive lines.
- Alternative ‘X‘ is displayed on the first line.
- Alternative ‘Y‘ is displayed on the second line.
- There are 4 payoff variations labeled as SL, ASL, AML and ALL.
#### SL
| d |π1, π2 |
|---|------- |
| X | 5, 5 |
| Y | 5, 5 |
#### ASL
| d |π1, π2 |
|---|------- |
| X | 5, 5.1 |
| Y | 5.1, 5 |
#### AML
| d |π1, π2 |
|---|------- |
| X | 5, 6 |
| Y | 6, 5 |
#### ALL
| d |π1, π2 |
|---|------- |
| X | 5, 10 |
| Y | 10, 5 |
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Figure 2.62: Prompts O - Part 2

## Salience in Decisions
### Salient Label
- Both *Pie* and *X-Y* games may contain a decision that is visually distinctive from other available decision(s).
- In the Pie game, the bottom segment (slice) that is highlighted in white in the Pie game is visually distinctive
from the upper slices ($ and #) that are shaded in gray color.
- In the X-Y game, the decision X may be perceived as more salient because it is the top or the first decision
presented.
- We refer to a visually distinctive decision as **label-salient**.
### Salient Payoff
- A decision might be also **payoff-salient** in a way that is distinctive with respect to its payoff structure.
- A decision alternative that provides the highest or lowest payoff for one of the teams can be considered as payoff
salient.
- In ALL variation of the X-Y game, option X may be considered to have high payoff salience for team 1, while option Y
may be considered to have high payoff salience for team 2.
## Level-k Model
### Level-0 Distribution
- Level-0 player does not best respond but instead play according to some probability distribution over the action
space (level-0 distribution).

+ For the X-Y game the action space is X,Y
+ For the Pie game the action space is $,#,§

- Without any salient actions, a level-0 player’s actions distributed randomly and evenly over the action space.
- The model incorporate salience by assuming higher probabilities for either payoff salience or label salience actions
in the level-0 player’s action space distribution.
+ In the X-Y game, level-0 distribution would not assign equal probability of 0.5 to each action but instead assign

p > 0.5 to the salient action and and q < 0.5 for the non-salient action.
+ In the Pie game, level-0 distribution would not assign equal probability of 1/3 to each possible action, but p >

1/3 to the salient action and q < 1/3 for the non-salient actions.
### Level-0 Belief
- The best response of a level-k (k > 0) player is anchored in what he believes a level-0 player plays. This is
called the level-0 belief of the level-k player.
- A level-k player performs k many iterative best responses and always starts its iterative reasoning from his level-0
belief.
### Population Belief
- Players do not expect other players to be of the same or higher level of reasoning. For a level-k player, the
population belief is therefore defined on the set of levels strictly below k.
- A level-0 player has no defined population belief.
- A level-1 player has a trivial belief with full probability on all other players being level-0.
- A level-2 player has a well defined belief distribution on all other players being level-1 and level-0.
- A level-3 player has a well defined belief distribution on all other players being level-2, level-1 and level-0 (and
so on for higher order of levels of thinker).
### Characterization of different levels
#### Level-0
- A level-0 player does not exhibit any strategic reasoning.
- A level-0 player may be randomly choosing or purely guessing an action.
- A level-0 player may misunderstand the game structure.
- A level-0 player may pick an action for non-strategic reasons such as taste or salience.
- A level-0 player does not best respond to other players potential actions.
##### Examples
- "Well, it’s a pure guess"
- "There are no arguments. Simply choose any."
#### Level-1
- A level-1 player best responds to some belief about the other teams’ action, but he does not consider that the other
teams may be strategic as well.
##### Examples
- "They are probably picking X, so we do as well"
- "The other team would naturally go for the visually distinctive bottom slice"
#### Level-2
- A level-2 player does not only show the basic strategic consideration of playing best response to a his level-0
belief, but also recognizes that other players may best respond as well according to their level-0 belief.
- A level-2 player clearly contemplates how the other player might best respond to his frame. The player plays a best
response to this hypothesized consideration.
##### Example
- "The other team may think we are most attracted to the alternative with the highest payoff. In order to coordinate
our behavior, we should also choose the slice."
#### Level-3
- A level-3 player realizes that the other players (team) could be level-2 and best-responds accordingly
- A level-3 player realizes that others realize that others best-respond to their level-0 belief.
- A level-3 player states that his opponent expects that he (the level-3 player at question) best-responds to a
certain belief.
#### Level-4,5,...
- The process goes on in a similar fashion
- A level-k player realizes that other subjects could be level-(k-1) and reacts by best responding to the associated
expected play.
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Figure 2.63: Prompts O - Part 3 - Classification task

# Classification Task
## Task 1: Level-0 Belief
- Your task is to indicate the underlying level-0 belief that is connected with the lowest possible level of
reasoning.
- If the level of reasoning is observed in the message, there has to be a starting point in the argument which states
an attraction or aversion to one alternative. This is then not derived by strategic reasons, but is an intuitive
reaction to the framing of the coordination game. Otherwise, level reasoning would not occur.
- Information about the underlying level-0 belief that one might obtain out of the communication is how players
respond to payoffs (payoff salience) and how players react to framing (label salience) of the coordination games.
- Level-0 belief of a person reasoning on an odd level (level 1,3 or 5) is always with respect to how a player of the
opposite side intuitively reacts to the framing (salience).
- Level-0 belief of a person reasoning on an even level (level 2 or 4) is always with respect to what the opposite
type believes about the own type’s intuitive reaction.
### Salience
- There are two kinds of salience in these games: label and payoff
- Payoff and label salience are not mutually exclusive. A player may display both payoff and label salience within
the same reasoning.
- For players whose lower bound is 0, the level-0 belief classification can be used to indicate whether a level-0
player states for his action a preference with respect to label or payoff salience.
#### Label
- Players may react to the framing of the coordination game (label salience)
- A player that you classify to be level-1 may communicate that the other team is most attracted to the visual
distinctive white bottom slice §and therefor proposes Â§ as team decision.
- A player that you classify to be level-2 may indicate that the other team believes that one’s own team is more
likely to be choose ‘X‘ because this alternative is mentioned first on the screen.
- For X-Y game, classify the label salience of the message as one of the following:
+ prefers ‘X‘ over ‘Y‘ (a level-0 belief of an attraction to ‘X‘)
+ prefers ‘Y‘ over ‘X‘ (a level-0 belief of an attraction to ‘Y‘)
+ is indifferent between labels ‘X‘ and ‘Y‘
+ does not exhibit label salience

- For Pie game, classify the label salience of the message as one of the following:
+ prefers ‘$‘ (a level-0 belief of an attraction to ‘$‘)
+ prefers ‘#‘ (a level-0 belief of an attraction to ‘#‘)
+ prefers ‘§‘ (a level-0 belief of an attraction to ‘§‘)
+ is indifferent across labels
+ does not exhibit label salience

#### Payoff
- Players respond to the payoffs’ salience.
- A player you classify to be level-1 may communicate that the other team is most likely to choose alternative ‘X‘ as
it offers the highest payoff to this very team.
- A player you classify to be level-2 may indicate that the other team remains of the conviction that one’s own team
is not attracted to the action that gives one’s own team high payoffs.
- For either game, classify the payoff salience of the message as one of the following:
+ prefers high payoffs (a level-0 belief of an attraction to high payoff)
+ prefers low payoffs (a level-0 belief of an attraction to low payoff)
+ is indifferent across payoffs
+ does not exhibit payoff salience

## Task 2: Level of Strategic Thinking
- Your task is to classify the written messages into the underlying level-k of reasoning.
- For a given statement it might not be possible to exactly determine the underlying level of reasoning.
- To extract as much information as possible, you are asked to indicate a lower and an upper bound on the level of
reasoning
- Use the information provided under the subsection "Characterization of different levels" in the "Context" section
above to classify lower and upper bounds on the level of reasoning.
### Lower bound
- Ask yourself: "What is the minimum level of reasoning that this statement clearly exhibits?". Once noted, you
should be able to state to yourself: "It seems impossible that the players’ level of reasoning is below this number!"
- Be very cautious with the classification of the lower bound.
- Do not give away high levels easily.
### Upper bound
- The upper bounds should give the maximum level of reasoning that could be interpreted into the statement.
- You should ask yourself: "What is the highest level of reasoning that can be underlying this statement?". Once
noted, you should be able to say: "Although maybe not clearly communicated, this statement could be an expression of
this level. If the player reasoned higher than this number, this was not expressed in the statement!"
## Necessary conditions for a player to exhibit a level of thinking greater than 0:
1. The player has to be responsive to the salience of the games’ framing (either payoff or label salience)
2. The player has to be strategic in best-responding to his level-0 belief, which is shaped by label or payoff
salience. If he did not react to salience, he would have no reason to choose one over the other action, resulting in
random level 0 play.
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Figure 2.64: Prompts O - Part 4

# Classification Coding
## Label Salience
### X-Y Game
- Code as ‘X‘ if player’s label salience is "prefers X over Y"
- Code as ‘Y‘ if player’s label salience is "prefers Y over X"
- Code as ‘∼‘ if player’s label salience is "indifferent across payoffs"
- Code as ‘no‘ if the player does not exhibit payoff salience.
### Pie Game
- Code as ‘$‘ if player’s label salience is "prefers $"
- Code as ‘#‘ if player’s label salience is "prefers #"
- Code as ‘§‘ if player’s label salience is "prefers §"
- Code as ‘∼‘ if player’s label salience is "indifferent across labels"
- Code as ‘no‘ if the player does not exhibit label salience.
## Payoff Salience
- Code as ‘H‘ if player’s payoff salience is "prefers high payoffs"
- Code as ‘L‘ if player’s payoff salience is "prefers low payoffs"
- Code as ‘∼‘ if player’s payoff salience is "indifferent across payoffs"
- Code as ‘no‘ if the player does not exhibit payoff salience.
## Upper and Lower Bounds
- 0,1,2,3,4 or 5.
# Input Format

Team:
Game:
Decision:
Message:

# Constraint
- Follow the below output format
# Output Format

Label Salience:
Payoff Salience:
Lower Bound:
Upper Bound:

Figure 2.65: Prompts O+ - Examples

# Examples
- "X is first, let’s pick X" (Level-0 belief: prefers X. Label salience: X. Payoff salience: no. Level: 0.)
- "§is highlighted in white, hence §" (Level-0 belief: prefers §. Label salience: §. Payoff salience: no. Level:
0.)
- "Y provides a higher payoff, let’s go X" (Level-0 belief: prefers higher payoff. Label salience: no. Payoff
salience: higher payoff. Level: 0.)
- "It is random. You pick X and I pick Y." (Level-0 belief: random play. Label salience: no. Payoff salience:
no. Level: 0.)
- "Other team may pick X as it is on top, let’s pick X" (Level-0 belief: prefers X. Label salience: X. Payoff
salience: no. Level: 1.)
- "X is first, let’s pick X. And other team may think the same way." (Level-0 belief: prefers X. Label salience: X.
Payoff salience: no. Level: 1.)
- "People will go for the highlighted segment. Hence §" (Level-0 belief: prefers §. Label salience: §. Payoff
salience: no. Level: 1.)
- "Other team may want to the high payoff for themselves, let’s coordinate with them and pick the higher payoff for
them (which is the lower payoff for us)." (Level-0 belief: prefers higher payoff. Label salience: no. Payoff
salience: higher payoff. Level: 1.)
- "Others will think we go for top. So let’s go for top." (Level-0 belief: prefers X. Label salience: X. Payoff
salience: no. Level: 2.)
- "The other team will think we pick the highlighted segment. So we should coordinate and pick §" (Level-0 belief:
prefers §. Label salience: §. Payoff salience: no. Level: 2.)
- "Other team may think that we want the high payoff for us, let’s coordinate with them and pick the higher payoff for
us." (Level-0 belief: prefers higher payoff. Label salience: no. Payoff salience: higher payoff. Level: 2.)
- "Other team may want to the high payoff for themselves. But they may assume the same thing about us and pick the
alternative that gives us the higher payoff. So let’s coordinate with them and pick the higher payoff for us (which
is the lower payoff for them)." (Level-0 belief: prefers higher payoff. Label salience: no. Payoff salience:
higher payoff. Level: 2.)
- "Others will think that we think that they will go for top. So let’s go for top." (Level-0 belief: prefers X.
Label salience: X. Payoff salience: no. Level: 3.)
- "The other team will think that we think that they pick the highlighted segment. So we should coordinate and pick
§" (Level-0 belief: prefers §. Label salience: §. Payoff salience: no. Level: 3.)
- "Other team may think that we think that they want the high payoff for themselves, let’s coordinate with them and
pick the higher payoff for them." (Level-0 belief: prefers higher payoff. Label salience: no. Payoff salience:
higher payoff. Level: 3.)
- "Other team may think that we want the high payoff for us. But they may assume the same thing about us and pick the
alternative that gives us the higher payoff for themselves. So let’s coordinate with them and pick the higher payoff
for them." (Level-0 belief: prefers higher payoff. Label salience: no. Payoff salience: higher payoff. Level:
3.)
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Figure 2.66: Prompts O+ - Part 1

# General Task
- Evaluate player’s message from a specific coordination game to identify their decision-process and to classify their
level of strategic thinking.
# Role Persona
- Act as a behavioral economist specialized in coordination games, decision salience and text analysis.
# Context
## Game Mechanics
- Subjects (players) participate in an experiment where they play a coordination game.
- Players are assigned into teams of two.
- Each team is matched with another team to play a series of coordination games where the teams try to coordinate on a
specific alternative.
- If both teams pick the same alternative, each team is rewarded with a payoff. Otherwise, neither team receives any
payoff.
- Each player sends a suggested decision and a justifying message to their teammate.
- Coordination game is not played within the team members but between the two teams.
- There is no communication between the teams.
- Payoffs are represented in currency called Taler.
- 1 Taler = 40 cents (ct).
- Each player plays a series of 8 (rounds of) coordination games, split between *X-Y* games and *Pie* games.
## Coordination Games
- Payoff tables for each variation of each game is represented below.
- In each payoff table, ‘d‘ represents decision taken, ‘π1‘ represents payoff of team 1, and ‘π2‘ represents payoff of
team 2.
- Payoff tables only represent the cases where both teams match in the given decision ‘d‘, if teams’ decisions do not
match, each team receives 0 Taler.
### Pie Game
- Payoffs are displayed on a pie chart that is divided into three equally sized segments.
- Top left segment is labeled as ‘$‘.
- Top right segment is labeled as ‘#‘.
- Top segments are shaded in gray.
- Bottom segment is labeled as ‘§‘ and is highlighted in white.
- There are 4 payoff variations labeled as S1, S2, AM2 and AM4.
#### S1
| d |π1, π2|
|-------|------ |
| L ($) | 5, 5 |
| R (#) | 5, 5 |
| B (§) | 5, 5 |
#### S2
| d |π1, π2|
|-------|------ |
| L ($) | 6, 6 |
| R (#) | 6, 6 |
| B (§) | 5, 5 |
#### AM2
| d |π1, π2|
|-------|------ |
| L ($) | 5, 6 |
| R (#) | 6, 5 |
| B (§) | 6, 5 |
#### AM4
| d |π1, π2|
|-------|------ |
| L ($) | 6, 7 |
| R (#) | 7, 6 |
| B (§) | 7, 5 |
### X-Y Game
- Alternatives are displayed in two consecutive lines.
- Alternative ‘X‘ is displayed on the first line.
- Alternative ‘Y‘ is displayed on the second line.
- There are 4 payoff variations labeled as SL, ASL, AML and ALL.
#### SL
| d |π1, π2 |
|---|------- |
| X | 5, 5 |
| Y | 5, 5 |
#### ASL
| d |π1, π2 |
|---|------- |
| X | 5, 5.1 |
| Y | 5.1, 5 |
#### AML
| d |π1, π2 |
|---|------- |
| X | 5, 6 |
| Y | 6, 5 |
#### ALL
| d |π1, π2 |
|---|------- |
| X | 5, 10 |
| Y | 10, 5 |
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Figure 2.67: Prompts O+ - Part 2

## Salience
- Label salience: players may react to the framing of alternatives.
- Payoff salience: Players may react to the payoff differences of alternatives .
## Level-k Model
- A level-k player performs k many iterative best responses and always starts its iterative reasoning from his level-0
belief. This starting point is called the level-0 belief of the level-k player.
- Level-0 belief is the belief of the level-k player on how the level-0 player will potentially play the game.
- A level-0 player picks an alternative for non-strategic, instinctive reasons such as payoff or label salience.
- A level-0 player does not best respond to other players potential actions.
- A level-0 player may be randomly choosing or purely guessing an action.
- A level-0 player may misunderstand the game structure.
- A level-1 player assumes that the other team consists of level-0 players and best responds based on his level-0
belief to these level-0 players.
- A level-k (k>1) player recognizes the possibility that the other team may consist of level-(k-1) players.
- A level-k player assumes that the level-(k-1) players assume he (the level-k player) is a level-(k-2) player.
## Level-0 Belief
- Level-0 belief of a player reasoning on an odd level (level 1,3 or 5) is always with respect to how a player of the
opposite side intuitively reacts to the framing (label or payoff salience).
- Level-0 belief of a player reasoning on an even level (level 2 or 4) is always with respect to what the opposite
type believes about the own type’s intuitive reaction (label or payoff salience).
## Lower bound
- The minimum level of reasoning that the message clearly exhibits.
## Upper bound
- The maximum level of reasoning that can be inferred from the message.
# Classification Tasks
- Classify player’s label or payoff salience (if any).
- Classify lower and upper bounds for the player’s level of reasoning.
# Classification Coding
## Label Salience
### X-Y Game
- Code as ‘X‘ if player’s label salience is "prefers X over Y"
- Code as ‘Y‘ if player’s label salience is "prefers Y over X"
- Code as ‘∼‘ if player’s label salience is "indifferent across payoffs"
- Code as ‘no‘ if the player does not exhibit payoff salience.
### Pie Game
- Code as ‘$‘ if player’s label salience is "prefers $"
- Code as ‘#‘ if player’s label salience is "prefers #"
- Code as ‘§‘ if player’s label salience is "prefers §"
- Code as ‘∼‘ if player’s label salience is "indifferent across labels"
- Code as ‘no‘ if the player does not exhibit label salience.
## Payoff Salience
- Code as ‘H‘ if player’s payoff salience is "prefers high payoffs"
- Code as ‘L‘ if player’s payoff salience is "prefers low payoffs"
- Code as ‘∼‘ if player’s payoff salience is "indifferent across payoffs"
- Code as ‘no‘ if the player does not exhibit payoff salience.
## Upper and Lower Bounds
- 0,1,2,3,4 or 5.
# Examples (see Figure 2.65) (Only used in n-shot treatments)
# Input Format

Team:
Game:
Decision:
Message:

# Constraint
- Follow the below output format
# Output Format

Label Salience:
Payoff Salience:
Lower Bound:
Upper Bound:
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2.D.3 Additional Examples

Figure 2.68: Level-k II - Example message 3

Team: 1
Game: ASL
Decision: Y
Message: I think they will propose a larger payout to us because they think we will keep it for ourselves to
ensure coordination... however, I can imagine that they have the exact same mindset as I do and will do the
opposite... I’ll call it Y

GPT-3.5 GPT-4
LB UB SL SP LB UB SL SP

O 1 2 ∼ H 1 2 no H
O+ 1 2 no H 3 3 no H

RAs 3 3 no H 3 3 no H

Table 2.45: Human and GPT classifications of message in Figure 2.68 using CoT prompt-
ing for n-shot O+ and 0-shot O

Figure 2.69: Level-k II - Generated rationals for 0-shot O and n-shot O+ under CoT for
message in Figure 2.68

GPT-3.5

Output using O
Reasoning:
The player seems to be considering the other team’s potential decision and how it relates to their own team’s payoff.
The player is suggesting that the other team might propose the action that yields a higher payoff for them, assuming
that their team will keep the higher payoff for themselves. However, the player also acknowledges that the other team
might have the same thought process and propose the opposite action. This indicates a level of strategic thinking
beyond pure guessing.
Output using O+
Reasoning:
The player seems to be considering the other team’s potential strategy and trying to anticipate their decision based
on the belief that the other team may think they want the higher payoff for themselves. This indicates a level of
strategic thinking beyond just instinctive or random play.

GPT-4
Output using O
Reasoning:
The player’s message indicates a complex thought process involving multiple levels of strategic reasoning. The
player starts by suggesting that the other team will propose the action that gives team 1 the larger payoff, under
the assumption that team 1 will want to keep the larger payoff for themselves. This is a strategic consideration and
indicates that the player is not operating at level-0, which would involve no strategic reasoning or a random choice.
The player then goes on to consider that the other team might have the same line of thinking and might, therefore,
choose the opposite action to ensure coordination. This indicates a higher level of reasoning, as the player is
considering the other team’s potential strategy and how they might anticipate team 1’s actions.
The player’s final decision to suggest ’Y’ seems to be a best response to the anticipated strategy of the other team,
which suggests a level-2 reasoning. The player is considering that the other team is also reasoning strategically
(level-1) and is best responding to that.
The message does not clearly indicate a level-3 reasoning, as the player does not explicitly state that they believe
the other team is considering that team 1 might be level-2 thinkers. Therefore, the upper bound of the reasoning
level would be level-2.
Regarding the level-0 belief, the player’s message indicates a consideration of the payoffs, as they mention the
larger payoff and the desire to keep it. This suggests a payoff salience in their reasoning. There is no explicit
mention of label salience in the message.
Output using O+
Reasoning:
The player’s message suggests a complex line of reasoning. The player starts by considering that the other team will
propose the alternative that gives Team 1 the larger payoff, under the assumption that Team 1 would want to keep the
larger payoff for themselves. This is a strategic consideration that goes beyond a simple preference for a label or
payoff, indicating a higher level of reasoning.
The player then goes on to consider that the other team might have the same line of reasoning and therefore might do
the opposite. This is an additional layer of strategic thinking, suggesting that the player is trying to anticipate
the other team’s anticipation of their own team’s actions.
The player concludes by suggesting "Y" as the decision. Since the game is ASL, where the payoffs are 5 for X and 5.1
for Y for Team 1, and 5.1 for X and 5 for Y for Team 2, the player is suggesting to pick the alternative that gives
the other team the higher payoff, which aligns with the initial part of the reasoning.
The message indicates a level-0 belief that the other team prefers higher payoffs (since they are expected to propose
the alternative that gives Team 1 the larger payoff). However, the player’s own decision does not directly reflect a
preference for higher payoffs for themselves, but rather a strategic move to coordinate with the other team’s expected
strategy.
The player’s reasoning involves anticipating the other team’s anticipation of their own team’s actions, which is
characteristic of level-3 reasoning. The player assumes that the other team is level-2, who in turn assumes that Team
1 is level-1.
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Figure 2.70: Level-k II - Example message 4

Team: 1
Game: ALL
Decision: X
Message: We also need to be selfish sometimes.

GPT-3.5 GPT-4

LB UB SL SP LB UB SL SP

O 1 1 no H 0 0 no H
O+ 0 1 no H 0 0 no H

RAs 0 0 no no 0 0 no no

Table 2.46: Human and GPT classifications of message in Figure 2.72 using CoT prompt-
ing for n-shot O+ and 0-shot O

Figure 2.71: Level-k II - Generated rationals for 0-shot O and n-shot O+ under CoT for
message in Figure 2.72

GPT-3.5

Output using O
Reasoning:
The player’s message suggests that they believe their team should be selfish. This indicates a preference for the
action X, which yields a higher payoff for their team. The player is exhibiting payoff salience by being attracted to
the action that provides a higher payoff for their team.
Output using O+
Reasoning:
The player’s message suggests a focus on being selfish, which indicates a potential preference for the higher payoff.

GPT-4
Output using O
Reasoning:
The message "Wir müssen auch mal egoistisch sein," which translates to "We also have to be selfish sometimes,"
suggests that the player is considering the payoffs for their own team. In the context of the ALL game, the decision
’X’ yields a higher payoff for Team 1 (5 Taler for Team 1 and 10 Taler for Team 2). By choosing ’X’, the player
is indicating a preference for the action that benefits their own team more, which is consistent with the message’s
emphasis on being selfish.
Given the message, the player is not making any explicit reference to the strategic considerations of what the other
team might do or how the other team might perceive their team’s actions. The message does not indicate any iterative
reasoning about the other team’s potential level of thinking. Therefore, the player’s reasoning seems to be at a
basic strategic level, where they are considering their own payoffs without explicitly considering the other team’s
response.
The message does not mention anything about the label salience, such as the order of the options or any visual
distinction between them. Therefore, we cannot infer any label salience from this message.
Output using O+
Reasoning:
The message "Wir müssen auch mal egoistisch sein" translates to "We also have to be selfish sometimes." This message
suggests that the player is considering their own interests, which in the context of the ALL game, where the payoffs
are asymmetric (5 Taler for one team and 10 Taler for the other), implies a focus on the higher payoff for themselves.
The message does not provide any indication of label salience, as it does not reference the labels X or Y. The level
of reasoning is not explicitly stated, but the use of "egoistisch" (selfish) suggests a level-0 belief that prefers
higher payoffs. Since the message does not indicate any anticipation of the other team’s reasoning or actions, it is
best classified as level-0 reasoning.

159



Figure 2.72: Level-k II - Example message 5

Team: 1
Game: ASL
Decision: X
Message Hmm, tricky because hardly any difference - I’ll be generous - alternative X

GPT-3.5 GPT-4
LB UB SL SP LB UB SL SP

O 0 0 no no 0 1 no ∼
O+ 0 1 no ∼ 1 1 no L

RAs 0 1 no H 0 1 no H

Table 2.47: Human and GPT classifications of message in Figure 2.72 using CoT prompt-
ing for n-shot O+ and 0-shot O

Figure 2.73: Level-k II - Generated rationals for 0-shot O and n-shot O+ under CoT for
message in Figure 2.72

GPT-3.5

Output using O
Reasoning:
The player’s message indicates that there is hardly any difference between the options and he is being generous by
choosing alternative X. The message does not explicitly exhibit any strategic reasoning or salience. The player seems
to be randomly choosing an option without any clear indication of salience or strategic thinking.
Output using O+
Reasoning:
The player seems to be considering the small difference in payoffs and is leaning towards being generous by choosing
alternative X.

GPT-4
Output using O
Reasoning:
The message provided by the player from Team 1 in the ASL game, where they have chosen decision X, is brief and
suggests a level of indifference or difficulty in distinguishing between the options due to the small difference in
payoffs ("kaum Unterschied"). The use of the word "großzügig" (generous) implies that the player is aware of the
slight asymmetry in the payoffs but decides to not prioritize this difference. The player’s choice of "Alt. X"
(alternative X) does not provide a clear strategic rationale for the decision.
The player does not mention any aspect of the label salience in their message. There is no indication that the
player prefers X over Y due to its position or any other visual feature. Therefore, the player does not exhibit label
salience.
The player acknowledges the small difference in payoffs but does not express a clear preference for the higher payoff.
The use of "großzügig" could suggest a willingness to not focus on the slight advantage in payoffs for their team,
which could be interpreted as a preference for low payoffs. However, since the player ultimately chooses X, which
for the ASL game would provide a slightly higher payoff for their own team (5 Taler for Team 1 vs. 5.1 Taler for
Team 2), it is not clear if the player is indeed being generous to the other team or simply indifferent to the payoff
difference. Therefore, the player’s message could be interpreted as showing indifference across payoffs.
The player’s message does not clearly exhibit strategic reasoning. The player does not articulate a belief about
what the other team might choose or how their own choice might influence the other team’s decision. The message
seems to reflect a random or non-strategic choice, which aligns with a level-0 player. However, the acknowledgment of
the small difference in payoffs and the use of "großzügig" could suggest a minimal level of strategic consideration,
potentially indicating a level-1 reasoning where the player is aware of the payoffs but does not articulate a
strategic response to them.
Given the lack of clear strategic reasoning and the absence of a stated belief about the other team’s likely action,
the minimum level of reasoning that this statement clearly exhibits is level-0.
The highest level of reasoning that could be underlying this statement, given the player’s acknowledgment of the
payoff difference, could be level-1. The player does not express any higher-order strategic considerations, such as
anticipating the other team’s response to their own decision or considering multiple levels of reasoning.
Output using O+
Reasoning:
The message "Hmm, fies weil kaum Unterschied - ich bin mal großzügig - Alt. X" translates to "Hmm, tricky because
there’s hardly any difference - I’ll be generous - Alt. X". This message indicates that the player is aware of the
small difference in payoffs between the alternatives X and Y in the ASL game, where the payoffs are 5 Taler for the
player’s team and 5.1 Taler for the other team for alternative X, and vice versa for alternative Y. The use of the
word "generous" suggests that the player is willing to choose the option that gives the other team a slightly higher
payoff, which is alternative X for the ASL game.
The player does not express a preference for a label (X or Y) but rather comments on the small difference in payoffs,
indicating a recognition of payoff salience. However, the player does not explicitly state a preference for higher or
lower payoffs, just that they are being "generous" by choosing the alternative that gives the other team a slightly
higher payoff. This could be interpreted as a preference for lower payoffs for themselves (since they are giving the
other team the higher payoff), but it is not a strong indication of such a preference.
The player’s level of reasoning seems to be at least level-1 because they are considering the other team’s potential
payoff and are making a decision based on that consideration. However, there is no clear indication that the player
is thinking beyond this, such as considering what the other team might think they will do. Therefore, the upper bound
of reasoning is also level-1.
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Figure 2.74: Level-k II - Example message 6

Team: 2
Game: S2
Decision: §
Message: Even if § is the lower payout, it is the only one where both teams get a clear solution, so they don’t
have to hesitate!

GPT-3.5 GPT-4

LB UB SL SP LB UB SL SP

O 1 2 § ∼ 0 1 § L
O+ 1 2 § no 1 1 no L

RAs 0 1 § no 0 1 § no

Table 2.48: Human and GPT classifications of message in Figure 2.74 using CoT prompt-
ing for n-shot O+ and 0-shot O

Figure 2.75: Level-k II - Generated rationals for 0-shot O and n-shot O+ under CoT for
message in Figure 2.74

GPT-3.5

Output using O
Reasoning:
The player seems to be considering the fact that § is the only option where both teams can get a clear solution
without any ambiguity. This indicates that the player is considering the clarity of the decision and the ease of
coordination rather than focusing solely on the payoff.
Output using O+
Reasoning:
The message indicates that the player is considering the unique solution where both teams can make a clear decision
without hesitation. This suggests a level of strategic thinking beyond just focusing on the payoff amounts.

GPT-4
Output using O
Reasoning:
The player from Team 2 has suggested the decision ‘§‘ in the S2 game of the Pie game. The message in German
translates to "Even though § is the lower payout, it is the only one where both teams get a clear solution, so
they don’t have to waver!" This message indicates a few key points:
1. The player acknowledges the payoff structure, recognizing that ‘§‘ is not the highest paying option.
2. The player emphasizes the clarity and definiteness of the ‘§‘ option, suggesting a preference for a
straightforward and unambiguous decision.
3. The player does not mention any strategic anticipation of the other team’s decision-making process but focuses on
the inherent property of the ‘§‘ option as being a clear solution for both teams.
Given these points, the player seems to be responding to the label salience of the game, as ‘§‘ is the visually
distinctive option in the Pie game. The player also shows an attraction to the action that provides a clear solution,
which can be interpreted as a preference for simplicity or fairness over maximizing payoffs. This suggests that the
player is not exhibiting strategic reasoning based on the expected choices of the other team but is instead focused on
an intrinsic property of the ‘§‘ option.
The lower bound is set at 0 because the player’s message does not clearly exhibit strategic reasoning; they are
focused on the clarity of the decision rather than the strategic implications of the payoffs. The upper bound is
set at 1 because the player’s message could be interpreted as a basic strategic consideration, where they suggest
‘§‘ as a clear solution that both teams might gravitate towards without considering that the other team might also be
strategic. However, the message does not explicitly state that the other team will think the same way, which would be
necessary for a higher level of reasoning.
Output using O+
Reasoning:
The message suggests that the player is focusing on the fact that the § option is the only one that provides a
clear solution for both teams, despite it being the lower payoff in the S2 variation of the Pie Game. The player
is emphasizing coordination on a unique solution rather than the amount of the payoff. This indicates that the
player is not primarily driven by the desire for a higher payoff but rather by the desire for a clear and unambiguous
coordination point.
The message does not explicitly mention a preference for the label of §, but the emphasis on the unique solution that
§provides could be interpreted as a form of label salience, as the player is pointing out a distinctive feature of
the §option. However, since the message is more about the strategic aspect of coordination rather than an inherent
preference for the label itself, it is more appropriate to classify the label salience as "no."
The player does not exhibit a preference for higher payoffs, as they are advocating for the option with a lower
payoff. Instead, they are focused on the strategic aspect of ensuring coordination. Therefore, the payoff salience
is "L" for preferring low payoffs.
In terms of the level of reasoning, the player is considering the strategic aspect of the game, which involves
thinking about the other team’s potential decision. This suggests a level of reasoning beyond level-0, as they are
not choosing based on instinctive reactions or random choice. The player is reasoning at least at level-1, as they
are best responding to their belief about the other team’s decision. However, since the message does not indicate a
belief about higher-order reasoning (i.e., what the other team thinks about their team’s thinking), the upper bound of
reasoning is also level-1.
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2.D.4 Additional Analysis

no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 O .499 – .522 –
O+ .625 .622 .652 .655

GPT-4 O .664 – .712 –
O+ .68 .70 .681 .76

Table 2.49: Lower bound accuracy

no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 O .309 – .402 –
O+ .378 .577 .412 .609

GPT-4 O .597 – .651 –
O+ .616 .66 .641 .681

Table 2.50: Upper bound accuracy

no-CoT CoT

0-Shot n-Shot 0-Shot n-Shot

GPT-3.5 O .541 – .577 –
O+ .643 .698 .651 .722

GPT-4 O .704 – .75 –
O+ .719 .721 .719 .772

Table 2.51: F1

F1 measure presented in Table 2.51 is with respect to the classification of the level of
thinking intervals, which are defined by the classified upper and lower bounds of the level
of thinking. It is a multi-label classification, calculated using the equations presented in
Godbole and Sarawagi (2004, page 6). It is neither a micro nor a macro averaged measure
but calculated as the average over instances (messages).
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Chapter 3

Autonomy and Expectations in
Algorithm-in-the-loop Systems

Joint with Hunter Phoenix van Wagoner, Andria Smith, Ksenia Keplinger

3.1 Introduction

Advice significantly influences the decision making in a diverse set of scenarios, rang-
ing from simple daily life choices such as which dishwasher to buy, to complex choices
of whether to convict a defendant or not (Tzioti, 2010). It can manifest as offered solu-
tions, additional knowledge to aid in finding solutions, or validation of existing decisions
(Cross et al., 2001). Even basic, most commonly observed word-of-mouth advice from
non-experts, “naive advice”, has the potential to shape people’s decision making process
(Schotter, 2003b). It has been documented that “naive advice” can improve social learn-
ing and coordination (Schotter and Sopher, 2003), increase the degree of strategic think-
ing (Kocher et al., 2007) and enhance the level of trust, trustworthiness, and reciprocity
(Schotter and Sopher, 2006; Blanco et al., 2009) of individuals.

Although naive advice holds considerable influence, the impact of expert advice has
been shown to have an even greater impact on the decision process (Goldsmith and Fitch,
1997; Jungermann and Fischer, 2005; Meshi et al., 2012). Expert advice, characterized
by specialized knowledge and experience in a particular field, provides more accurate and
reliable guidance relative to naive advice (Yaniv and Kleinberger, 2000), and therefore, it
is more likely to be utilized by an advisee (Sniezek et al., 2004; Jungermann and Fischer,
2005).

Acquiring expert advice can be challenging due to its cost and availability, yet recent
advances in artificial intelligence (AI) have made expert level algorithmic advice more
accessible (Adadi and Berrada, 2018; Lundberg et al., 2018; Patel et al., 2019; Green and
Chen, 2019a; Howard et al., 2020; Chugunova and Sele, 2020; Gonzalez et al., 2022).
Given algorithmic advice’s growing prevalence, lower cost and increasing accessibility in
fields that require expertise level knowledge such as programming (Dakhel et al., 2023;
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Mozannar et al., 2024), finance (Zhang et al., 2021; Fenneman et al., 2021), law (Angwin
et al., 2016; Green and Chen, 2019a), and medical diagnosis (Jacobs et al., 2021; Dvi-
jotham et al., 2023), and with the advent of large language models (LLMs) making algo-
rithmic expert level advice a daily occurrence, understanding the dynamics of algorithmic
advice becomes a necessity.

A natural form of advice is solicited advice, where the decision maker actively seeks
additional information to make a more accurate decision. Multiple studies have shown
that soliciting advice from a human advisor positively affects advice utilization relative
to receiving unsolicited advice (Goldsmith, 2000; Gibbons et al., 2003; Deelstra et al.,
2003), and unsolicited advice is documented to be perceived as a threat to the decision
maker’s autonomy and is consequently heavily discounted (Deelstra et al., 2003; Harber
et al., 2005; Reinhardt et al., 2006).

In the domain of algorithmic advice taking, prior research has examined the choice
between seeking advice from a human or an algorithm (Dietvorst et al., 2015; Castelo et
al., 2019; Longoni et al., 2019; Yeomans et al., 2019; Önkal et al., 2009; Luo et al., 2019;
Berger et al., 2021), yet providing further autonomy to the human decision maker by
making algorithmic advice optional, where the alternative is receiving no advice, remains
unexplored. Given human interactions with AI advisors may differ from those with human
advisors (Castelo, 2019; Jago, 2019; Chugunova and Sele, 2020; Renier et al., 2021), it is
unclear how actively soliciting advice will affect a human decision maker’s algorithmic
advice utilization.

The absence of research on the effect of making algorithmic advice optional can be at-
tributed to the prevalence of human-in-the-loop (HITL) systems (Mantelero, 2022; Herm
et al., 2023). In these AI centric systems, humans serve to support and enhance an algo-
rithm’s decision making process (Zanzotto, 2019; Enarsson et al., 2022). Broadly speak-
ing, HITL systems operate by having the algorithm perform a task and delegate it to a
human only when its confidence falls below a threshold (Wu et al., 2022b). Common
examples include airport security checks and face recognition at border control, where al-
gorithms flag issues for human inspection when necessary. The lack of human autonomy
in these systems precludes the study of optional algorithmic advice.

While certain studies emphasize the advantages of HITL systems over stand alone
algorithmic decision making systems (Wang et al., 2016; Lundberg et al., 2018; Patel
et al., 2019), others voice concerns about the risk of amplifying algorithmic biases due
to the imbalances in the algorithm’s training data (Angwin et al., 2016; d’Alessandro et
al., 2017; Danks and London, 2017; Buolamwini and Gebru, 2018; Yarger et al., 2020).
Furthermore, it has been argued that most jobs will not be fully automated nor will humans
solely serve as an on-demand intelligence for algorithms (Brynjolfsson et al., 2018). Most
jobs will instead involve collaboration between AI systems and humans, with AI systems
complementing workers rather than fully or partially substituting them (Shrestha et al.,
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2019). Consecutively, more recently, AI systems in advisory roles that augment rather
than replace human decision making processes have been increasingly investigated in
various fields (Adadi and Berrada, 2018; Murray et al., 2021). These type of AI systems
grant a higher degree of accountability to the human decision makers by providing them
with a higher degree of autonomy in their decision making process (Methnani et al., 2021).
Such human centric human-AI team decision making systems where humans make the
final decision and AI serves to improve human’s judgement are commonly referred to as
Algorithm-in-the-loop (AITL) systems (Green and Chen, 2019a,b). AITL systems are
primarily used in fields that requires expert level knowledge, and the final decision may
have ethical considerations or severe consequences such as sentence time of a defendant
(Angwin et al., 2016), credit score of a consumer (Siddiqi, 2012), or medical diagnosis
of a patient (Dvijotham et al., 2023). Lastly, with the advent of more general purpose
generative AI tools such as ChatGPT, AITL systems have started to become a prevalent
and integral part of daily decision making processes.1

The current study aims to advance human centric approaches by examining how giv-
ing human decision makers more autonomy affects their algorithmic advice utilization.
More specifically, we are investigating how offering algorithmic advice as an optional
tool, left at the discretion of human decision makers, compared to always providing the
advice, influences their utilization of this advice.

People perceive and therefore evaluate AI systems differently from human advisors
(Renier et al., 2021). While people expect human advisor to err (Renier et al., 2021),
AI systems are expected to deliver consistent, near-perfect performance (Dzindolet et al.,
2002; Madhavan and Wiegmann, 2007; Dietvorst et al., 2015; Goodyear et al., 2017; Li
et al., 2020b; Liel and Zalmanson, 2020), particularly in perceivably objective2 (Castelo
et al., 2019) or complex3 (von Walter et al., 2022) tasks with unambiguous ground truths4

(Dietvorst and Bharti, 2020). This biased near-perfect prior expectation from algorithms
is commonly referred in the literature as the perfect automation schema (Dzindolet et al.,
2002), yet we will refer to it in the rest of the paper as the perfect automation bias (PAB).
Since people do not expect consistent or near-perfect performance from human advisors
(Renier et al., 2021), findings on the effect of providing additional performance-related

1ChatGPT can be considered as an AITL, as the human user solicits information from ChatGPT to accom-
plish a certain goal.

2Predicting the degree of funniness of a joke, recommending a romantic partner are examples of tasks that
are commonly perceived as subjective, whereas forecasting the weather or stock prices are examples of
tasks that are commonly perceived as objective (Castelo, 2019).

3Tasks that involve multiple, interdependent steps and aspects that require the expert assessment are per-
ceived as complex tasks (Mikolon et al., 2015). Financial and legal advice are perceived as complex tasks
(von Walter et al., 2022).

4Tasks such as facial recognition, speech recognition, or medical diagnosis can be considered as tasks with
unambiguous ground truths, whereas forecasting the stock prices, identifying an ideal romantic partner
for someone, or text classification for certain ambiguous text can be considered as tasks with ambiguous
ground truths.
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information about the advisor on advice utilization (Yaniv and Kleinberger, 2000; Sniezek
and Van Swol, 2001; Yaniv, 2004; Van Swol and Sniezek, 2005) does not necessarily
apply to settings where advice is provided by an algorithm (Dietvorst et al., 2015; Pálfi et
al., 2022; You et al., 2022).

While in multiple studies, additional accuracy information is shown to have no sig-
nificant effect on algorithmic advice utilization (Longoni et al., 2019; Pálfi et al., 2022;
You et al., 2022), other studies have shown that subjects are responsive to the prior perfor-
mance information of the AI system (Dietvorst et al., 2015; Castelo, 2019). Given these
mixed results on the effect of additional accuracy information on algorithmic advice uti-
lization, and assuming the majority of the people are subject to PAB, we ask the question
of how algorithmic advice utilization is affected when algorithmic advice is accompanied
by additional accuracy information indicating different performance levels, ranging from
perfect to below near-perfect to poor. Moreover, we investigate whether the weight placed
on this information, and its consequent effect on advice utilization is mediated by whether
the advice is provided involuntarily or actively solicited by the decision maker. Addition-
ally, we examine whether the level of understanding and experience with an AI system
influences subjects’ prior expectations of an AI system and therefore mediates the effect
of additional accuracy information on their algorithmic advice utilization.

For our investigation into the effect of making algorithmic advice optional and the
effect of providing additional accuracy information, we opted for the task of facial image
pair classification, where subjects determine whether a pair of facial images belong to the
same person or not. Except for a small population of superrecognizers, humans show low
variance in facial recognition skills (Tardif et al., 2019; Towler et al., 2023). This, in turn,
allows us to have a higher degree of control over the skill variance for the task among our
subjects. Moreover, humans are inherently good at the facial recognition task, exhibiting
on average roughly 80% accuracy (Tardif et al., 2019; Faghel-Soubeyrand et al., 2021).
Hence, our subjects can be considered as experts in facial recognition. Consecutively,
using the facial recognition task enables us to generalize our results to AITL systems in
broader contexts where the algorithm collaborates with expert human decision makers,
such as doctors making medical diagnoses or developers programming code, all the while
maintaining a desirable level of variability in the subject pool in terms of age, gender,
race, education, algorithm aversion, and experience with AI technology.

Additionally, facial recognition is an objective task with an unambiguous ground truth.
Hence, given the findings in the literature, it is reasonable to expect that the general popu-
lation has near-perfect prior expectations from a face recognition system (FRS) (Dietvorst
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and Bharti, 2020; Castelo et al., 2019; von Walter et al., 2022).5 Furthermore, such an ex-
pectation is not without basis as FRS are documented to exhibit superior performance,
achieving 90-99% accuracy in majority of instances (Li et al., 2020a). However, their
performance deteriorates to as low as 60% for dark-skinned individuals, and especially
dark-skinned females due to these AI systems’ biases in their training datasets (Klare
et al., 2012; O’Toole et al., 2012; Buolamwini and Gebru, 2018; Grother et al., 2019).
Yet, this variability enables us to provide subjects with different FRS accuracy values
for different demographic groups, signaling near-perfect performance for light-skinned
facial images and below near-perfect performance for dark-skinned facial images, while
maintaining external validity for actively used state-of-the-art FRS.6

Our findings show that subjects are more likely to use algorithmic advice when they
actively solicit it. However, because they do not solicit advice frequently enough, the
average utilization is lower when advice is optional compared to when it is mandatory.
Additionally, our results indicate that additional accuracy information that is on par with
subjects’ assumed near-perfect performance expectations, does not significantly affect
their algorithmic advice utilization, whereas accuracy information signaling below near-
perfect or poor FRS performance significantly decreases it. However, this negative effect
becomes insignificant when advice is solicited, indicating that subjects tend to disregard
the accuracy information when they actively seek advice.

Additionally, we found that subjects’ prior degree of FRS understanding and expe-
rience influence their prior FRS performance expectations. Subjects with greater FRS
understanding or experience have prior performance expectations that align more closely
with the state of the art FRS performance across various facial image pair types (light vs
dark skinned, male vs female), and therefore are not observed to significantly alter their
advice utilization when additional accuracy information is present. Conversely, the data
suggests that subjects with less FRS understanding and experience are more likely to be
prone to PAB, as additional accuracy information is found to calibrate their prior per-
formance expectations downwards, leading them to utilize advice less. Lastly, a higher
degree of trust in FRS is found to have a significant positive effect on advice utilization.

Our research contributes to the emerging field of algorithmic advice taking literature
in four distinct ways. First, we are the first study to document the positive effect of so-
liciting advice on algorithmic advice utilization and the overall negative effect of making

5To our knowledge, there are no studies that provide any information on the general population’s perception
of FRS performance. This lack of research is not limited to FRS; generally, there is a scarcity of knowledge
on how the general population perceives the performance of specific AI systems. See Section 3.3 for further
discussion.

6We do not concern ourselves with how our findings can be considered within the existing literature on
algorithmic advice taking in the narrow context of an application of an FRS (Fysh and Bindemann, 2018;
Howard et al., 2020). This is primarily because real-life applications of FRS are HITL systems and not
AITL systems; hence, whether advice solicitation affects algorithmic advice utilization within the specific
context of FRS holds no value as it lacks any external validity.
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algorithmic advice optional relative to making it mandatory. Second, our research con-
tributes to the existing literature by demonstrating that the effect of additional accuracy
information on algorithmic advice utilization is governed by subjects’ prior performance
expectations. Third, our study is the first to demonstrate that making advice optional nulli-
fies the desirable effect of additional accuracy information on mitigating subjects’ perfect
automation bias. Lastly, we are the first to show that subjects’ prior understanding and ex-
perience with an AI system mediate the effect of additional accuracy information on their
use of algorithmic advice. Furthermore, our study aims to bridge the precise methods of
experimental economics, which has explored advice in the past (Schotter, 2003b; Schotter
and Sopher, 2003; Çelen et al., 2003; Schotter and Sopher, 2006), with the more recent in-
vestigation of human-AI interaction in the context of HITL (Wu et al., 2022b; Mantelero,
2022; Herm et al., 2023) and AITL (Siddiqi, 2012; Angwin et al., 2016; Green and Chen,
2019b) systems.

3.2 Experimental design

We consider a 2 by 2 between-subject experimental design, varying the use of FRS, either
as optional (O) or mandatory (M ), in one dimension, and whether to provide additional
accuracy information on FRS (I) or not (N ) in the other dimension. In each treatment,
subjects are tasked with classifying whether the pair of facial images belong to the same
person or not. They repeat this task for 24 distinct pair of photos. The order in which the
photo pairs are presented is randomized for each subject.

3.2.1 Photo Pair Selection

The dataset used in the experiment is derived from the color FERET facial image database
(Phillips et al., 1998). First, Microsoft Azure face API is used to produce similarity scores
for each possible pair combination. Every pair combination is then placed either in the
“same person” subset (A) or “two different people” subset (B). Then, 200 pairs with the
lowest similarity score from the subset A and 200 pairs with the highest similarity score
from the subset B are selected.

Following this initial selection, a research assistant manually reviewed the selected
pairs. She eliminated any pairs that could be easily identified by humans, and generated
new pairs that can be challenging for the human eye but trivial for FRS. She was instructed
to ensure that the selected photos presented a similar level of difficulty across all four
gender (male, female) and race (black, white) sub-categories, and to pay less attention to
whether the pair is from subset A or B. This task resulted in a total of 96 photo pairs with
24 in each subcategory, black female, black male, white female and white male.

Within the 96 photos pairs, there were facial images of the same person taken from
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different angles used in different pairs. In order to eliminate potential unwarranted cues
that can occur in-between photo pairs that share the same person, images are edited to
remove or replace potential identifying cues, such as jewelry and clothing. Furthermore,
for images where the lighting was poor and the facial features were not clear enough, the
images are edited to improve their identifiability for humans. To perform these edits, a
professional digital artist is hired7.

The edited 96 pair of images are then used in our pre-experiment conducted with 160
subjects via Prolific platform where subjects were tasked with classifying each photo pair
as belonging to the same person or not. Subjects were balanced in terms of their gender
and race. For every subject, pairs were provided in a randomized order. Subject were
not incentivized for their accuracy, but instead were paid a fixed fee of 2.9 Pounds for
completing the experiment. Based on the results, photo pairs are categorized by race
(black or white) and gender (male or female). Within each subcategory, pairs are ranked
according to their predicted average accuracy scores8. Six pairs with the lowest scores are
picked from each subcategory to construct the final data set of 24 photo pairs to be used
in the experiments. Of these, 9 were from the subset A and 15 were from the subset B.

3.2.2 Classification task

For each photo pair, we used a two-step decision process to measure the degree of advice
utilization by the advisee. This process is commonly considered in the behavioral decision
making literature (Bonaccio and Dalal, 2006) and more recently started to be adopted in
the computer science literature (Mucha et al., 2021). In the first step, subjects were shown
a facial image pair and asked to determine if the images feature the same individual or
not. Upon making their decision, they were asked to provide their confidence level in the
correctness of their decision on a scale of 0 to 100 with 0 indicating full uncertainty and
100 indicating certainty.9

In the second step, depending on the treatment, subjects either always received FRS
classification of the photo pair (M ) or were presented with the option to solicit the clas-
sification of FRS (O). Furthermore, in instances where FRS classification is provided,
depending on the treatment, additional accuracy information on its classification is pro-
vided (I) or not (N ). Following the classification of FRS, subjects were asked to classify

7A total of 400 USD is paid for his services. We thank him for his generous work. See Appendix 3.E,
Figure 3.4 for an example of facial image before and after editing.

8A logit regression model is used, where the dependent variable is 1 if the answer is correct and 0 other-
wise, and the independent variable is the photo pair ID. Predicted accuracy values for each photo pair are
calculated using the model estimates.

9From a probability theory standpoint, 50% confidence represents full uncertainty, and 0% confidence im-
plies 100% incorrectness, also indicating full certainty. However, we were concerned that 50% confidence
might confuse subjects. Therefore, we used a 0 to 100 scale, clearly stating during the instruction phase
that 0% indicated full uncertainty and 100% indicated full certainty.
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the photo pair for a second time, and to subsequently state their confidence level on this
second decision. In the O treatments, this second step occurred regardless of whether the
FRS classification is solicited or not.10

3.2.3 Additional Accuracy Information

The accuracy information is represented through four bar plots for the subcategories:
White Woman (WW), White Man (WM), Black Man (BM), and Black Woman (BW).
These plots correspond to accuracy percentages of 94%, 100%, 83%, and 65%, respec-
tively. The bar plot percentages aim to reflect a realistic depiction of the state of the art
performance of the FRS for each pair type. As such, they were determined based on the
previous survey research conducted on FRS that documented variation in classification
performance on basic facial features such as skin color and gender (Klare et al., 2012;
O’Toole et al., 2012; Ngan et al., 2015; Buolamwini and Gebru, 2018; Grother et al.,
2019; Li et al., 2020a).

You et al. (2022) document that providing average accuracy information instead of
instance specific accuracy information imposes a lower degree of external cognitive load
on the decision maker and therefore improves advice utilization by providing more cogni-
tive capacity for the internal cognitive functioning primarily used in the decision making
process (Van Merrienboer and Sweller, 2005; Sweller et al., 2019). Hence, in order to
minimize the external cognitive load imposed upon the subjects and therefore in order to
increase the internal cognitive load used for advice taking decision, the additional accu-
racy information provided in the experiments is not specific to each task in the experiment,
but instead offers a general performance measure of FRS for each category. This infor-
mation is always presented with the bar plots for all pair types, regardless of the race and
gender of the pair in each classification task. Consequently, the accuracy information re-
mains consistent across all tasks, providing an overall performance view of the FRS for
each pair type.

The numerical percentage values were not provided on these bar plot.11 Hence, sub-
jects were provided only with an approximate graphical representation of the accuracy
values. This approach is also aimed to minimize the external cognitive load on subjects
by simplifying the presentation of accuracy information and therefore to improve their
decision making capacity. Furthermore, this approach is done with the additional inten-

10The serial position effect theory posits that in a sequence of actions, the effect of an intervention, such as
providing advice, at the initial phase is larger than its effect at a later or more recent phase in the sequence
(Mahmud et al., 2022). Work by Dijkstra (1999) suggests that if an advice is provided at a later stage in
the decision making process, then it is discounted more. Consecutively, the two-stage decision making
procedure we are considering where advice is provided at a later stage should be expected to have a lower
advice utilization compared to an hypothetical single-stage decision making procedure where the advice
is provided simultaneously with the classification task from the start.

11See Figure 3.3 in Appendix 3.E.
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tion to provide an intuitive and easily comprehensible information to the subjects in order
to more clearly emphasize that FRS achieves near-perfect accuracy with white pairs, per-
forms not as good as the white pairs and hence performs below near-perfect accuracy
with the black male pairs, and performs relatively significantly worse with the black fe-
male pairs.

It has been documented that subjects have a tendency to assume that AI systems are
consistent in their behavior, hence when they observe it to err once, they start heavily
discounting its advice (Dzindolet et al., 2002; Dietvorst et al., 2015; Bogert et al., 2021).
In order to minimize the possibility of the subjects to discount advice due to their per-
ceived error in the classification provided by the FRS, we opted to provide advice that is
always correct. Although this does not prevent the possibility for the subjects to falsely
perceive FRS providing a false classification, we believed, at the very least, that the choice
of FRS always providing the correct classification minimizes this unwarranted possibility
by eliminating the possibility of false classification.12

3.2.4 Flat-fee payment

Subjects received a flat fee upon completing the experiment, with no monetary incen-
tives linked to their accuracy on classification tasks. This payment structure incentivizes
quicker completion for higher effective per minute earnings. In the M treatments, sub-
jects cannot explicitly reduce the experiment duration. However, the O treatments allow
participants to save time by opting out of seeking advice. This option, in turn, introduces
an implicit time cost for soliciting advice.13

3.2.5 Experimental procedures

The experiments were conducted using the Prolific subject pool within the span of ap-
proximately one and half month, with an average of 2 weeks in between, in three different
sessions. In total, data from 931 subjects is collected. Across the sessions, subjects were
balanced in terms of race and gender with 50.24% of the subjects being female and 50%
of the subjects being black. The average age of the subjects was 38.37 with a minimum
of 18 and a maximum of 78. 18.64% of the subjects had a master or PhD degree, 76.76%
of the subjects had an undergraduate degree, 2.42% of the subjects had a trade school
degree, and 2.2% of the subjects had a high school degree as their highest educational
degree. Subjects were from 22 different countries with 41.76% from USA, 24.93% from
UK, 17.55% from South Africa, 4.36% from Portugal, 4.12% from Poland and 1.93%

12Hence, except for the WM accuracy information, the accuracy information provided to the subjects were
misleading.

13Rather than offering monetary incentives, we attempted to motivate subjects by assigning them the role
of security officers responsible for identifying whether individuals entering a high-security office building
are employees or not. See Appendix 3.F for the details of the experimental instructions.
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from Italy.14 Upon completion of the entire experiments, subjects were paid 2.9 pounds.
In total approximately 3375 pounds (∼4000 Euros) are spent. On average, subjects spent
28.4 minutes to complete the survey.

Every experiment started with a tutorial that explained the general rules of the experi-
ment, and provided the hypothetical high-stake scenario where the subject played the role
of a human operator (with the help of an FRS) who is tasked with determining if a person
entering a company building is an employee or not. At the end of the tutorial, two practice
rounds using pictures of famous people were conducted to ensure subjects could use the
interface correctly. Subsequently, a five-question quiz based on the tutorial’s information
was administered to confirm that subjects possessed the minimum necessary knowledge
for the experiment.15

In every treatment, subjects evaluated the same 24 photo pairs in a randomized order
and provided their decision and confidence twice in a row in the two step decision process
formerly described. The task replicates the scenario where a human operator assesses the
image of an individual entering a high security building, compares it to the closest match
in the image database, and potentially utilizing the FRS classification, decides to either
allow entry or request an ID card.16 Lastly, two attention questions unrelated to the facial
image classification task were evenly placed within the series of classification tasks.

After the classification task, subjects were asked to fill out a series of surveys. Subjects
filled out the explicit sexism survey (Swim et al., 1995), the Bayesian racism survey17

(Uhlmann et al., 2010), propensity to trust in a specific technology survey18 (Mcknight et
al., 2011), and a general propensity to trust survey (Gefen and Straub, 2004). After the
surveys, the experiment ended with subjects providing various demographic information
such as age, gender and education.

Any subject who failed to correctly answer either of the attention questions and any
subject who failed more than 50% of the quiz questions are dropped out of the experi-
ment. Furthermore, subjects who did not answer any of the surveys (sexism, trust in FRS,
racism etc.), subjects who did not provide an answer for the race, gender or age questions,
subjects who provided an unreasonable age (any value above 80), subjects who declared
their gender as non-binary are dropped out of the data set. In total, out of our 931 subjects,
105 (11.3%) of them are dropped out of the data set.

14Each of the other countries constitute less than 1% of the data. The other countries are: Greece, Hungary,
Scotland, Czechia, Estonia, Ireland, Mexico, Canada, Germany, Latvia, Netherlands, Slovenia, Denmark,
Finland, Spain and Wales. In total these countries constituted approximately 5.33% of the participants.

15See Appendix 3.F for the details of the experimental instructions.
16See Appendix 3.F for examples of user interface.
17Unlike other racism surveys available in the literature, the Bayesian racism survey does not specifi-

cally measure subjects’ biases towards black people. Instead, it measures biases towards minority ethnic
groups.

18The survey is modified to measure trust specifically on FRS. This is done by replacing specific technology
placeholder in each survey question with FRS. See Appendix 3.F for the modified version of this survey.
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3.3 Theory and Hypothesis

When decision makers re-evaluate their judgement based on new information, such as ad-
vice, they update their prior beliefs by incorporating this new evidence. The weight given
to the new evidence depends on their confidence in their prior beliefs and the perceived
reliability of the new information (El-Gamal and Grether, 1995). However, biases in the
belief updating process can cause decision makers to either underweight or overweight
this additional information (Tversky and Kahneman, 1974; Nyarko et al., 2006; Pescetelli
et al., 2021).

Within the context of advice taking, the decision making literature offers multiple
potential underlying mechanisms for why such biases arise during the belief updating
process. Krueger (2003) suggests that individuals inherently favor their own judgments,
as they believe them to be superior. This phenomenon, where subjects overestimate the
correctness of their initial beliefs, is referred to as overconfidence (Gardner and Berry,
1995; Harvey and Fischer, 1997). Additionally, decision makers highly value their per-
ceived sense of autonomy (Koestner et al., 1999; Schultze et al., 2018) and see follow-
ing the advice of another as a treat to their abilities and self-worth (Harber et al., 2005;
Reinhardt et al., 2006; Paik, 2020), and consecutively underweight the advice. Fear of
loss of autonomy in conjunction with overconfidence leads to what is commonly referred
to as egocentric advice discounting (Yaniv and Kleinberger, 2000; Deelstra et al., 2003;
Krueger, 2003; Schultze et al., 2018).

Alternatively, according to Yaniv (2004), the underlying reason for advice discount-
ing is the difference in accessibility between a decision maker’s own reasoning and the
advisor’s reasoning. This difference in accessibility is also referred to as differential in-
formation (Gino, 2008). Due to this lack of access, the decision maker cannot fully com-
prehend the advisor’s rationale, leading her to underweight the advice and overweight her
prior beliefs. From a Bayesian perspective, optimal updating would require the decision
maker to integrate the advisor’s input with her prior beliefs in a way that reflects the rel-
ative reliability of both sources. Yet, lack of accessibility to advisor’s rational results in
perceiving his advice as less reliable than it actually is, which in turn results in the deci-
sion maker’s posterior beliefs to be biased towards her prior beliefs (Robalo and Sayag,
2018).

Conversely, Krueger (2003) documents that even in novel tasks where the decision
maker is not able to easily provide a rational for her prior beliefs just as she is not easily
able to provide a rational for the advisor (i.e. there is minimal differential information),
subjects are still observed to overestimate the correctness of their prior beliefs and there-
fore to underweight the information provided by the advisor. Hence, he argues that it is
not because of a lack of accessibility to the advisor’s rational that the discounting occurs
but because the decision maker simply favors any additional information that confirms
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her prior beliefs and discounts the ones that contradicts them (confirmation bias). For
instance, Zaleskiewicz et al. (2016) document that confirmation bias is the primary factor
influencing lay people’s utilization of financial advice from experts such that they utilize
the expert advice mainly when the expert advice is in accordance with their pre-advice
investment decisions.

AI systems based on deep neural networks, such as FRS, are often considered “black
boxes” (Chander et al., 2018). Consecutively, a human decision maker faced with an ad-
vice from such an AI system experiences a significant degree of lack of accessibility to
the “reasoning” behind its advice, and therefore is likely to discount it (Litterscheidt and
Streich, 2020). Furthermore, it has been documented that, in various domains, human de-
cision makers prefer to take advice from a human advisor over an AI advisor, discount the
human expert’s advice relatively less than the AI’s advice, and trust AI less due to this rel-
atively higher degree of lack of accessibility to the algorithmic “reasoning” (Önkal et al.,
2009; Kayande et al., 2009; Van Dongen and Van Maanen, 2013; Goodwin et al., 2013).
Moreover, algorithmic advice that is accompanied by some rational improves the decision
maker’s algorithmic advice utilization as the provided “reasoning” makes the algorithmic
advice more accessible to the human decision maker (Gönül et al., 2006; Chander et al.,
2018; Litterscheidt and Streich, 2020). These results underscore the differential infor-
mation mechanism argued in the decision making literature within the context of human
advisor, human advisee scenarios, and show that it is equally present in scenarios where
the advisor is an algorithm. Additionally, various studies demonstrate that human deci-
sion maker’s egocentric biase due to their overconfidence are also at play when interacting
with an AI advisor (Sutherland et al., 2016; Logg et al., 2019). Furthermore, Kawaguchi
(2021) shows that human decision makers fear losing their autonomy upon following the
directives of an algorithmic, and consecutively underweight its advice. In summary, the
fundamental mechanism through which human decision makers are argued to discount the
human advisor’s advice are to a large extend mirrored in the settings where the advisor is
an algorithm.

3.3.1 Solicited Advice

In human advisor, human advisee settings, when advice is optional and actively sought, it
has been documented to significantly decrease advice discounting (Goldsmith, 2000; Gib-
bons et al., 2003; Deelstra et al., 2003; Paik, 2020). The act of seeking advice is argued
to represent a shift from an over-reliance on self-referent knowledge to a more balanced
approach that includes both internal and external information sources and therefore serves
to minimize the negative effects of information differential on advice utilization (Bonac-
cio and Dalal, 2006). This change occurs as seeking advice inherently acknowledges the
need for additional perspectives or information, which, in turn, challenges the tendency to
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rely predominantly on self-generated knowledge (Goldsmith, 2000; Gibbons et al., 2003;
Deelstra et al., 2003).

For highly egocentric individuals, unsolicited advice may seem like an infringement
on their self-reliance (Harber et al., 2005; Reinhardt et al., 2006). In contrast, when they
actively seek advice, this act serves a dual purpose: it acknowledges their knowledge
limitations and simultaneously affords them an additional sense of autonomy (Gibbons et
al., 2003). In other words, act of solicitation mitigates their overconfidence and alleviates
their fear of loss of autonomy. This newfound autonomy, derived from the decision to seek
external input, is argued to allow them to more comfortably rely on outside knowledge
without feeling a significant loss of self-governance (Gibbons et al., 2003).

Since the mechanism through which advice solicitation improves advice utilization is
advisee-centric, and independent of the attributes of the advisor, it should be equally ap-
plicable when the advice is provided by an algorithm. Hence, we expect the documented
negative effects of differential information, egocentric bias and fear of losing autonomy
on algorithmic advice utilization to be mitigated when the advice is solicited. Therefore,
we conjecture that solicited algorithmic advice will be discounted less than unsolicited
algorithmic advice.

Hypothesis 1 Solicited algorithmic advice will be discounted less than unsolicited algo-

rithmic advice.

3.3.2 Optional Advice

The effect of making advice optional (O) compared to always providing it (M ) on the
overall advice utilization depends on two factors. First, it depends on the extent to which
solicited advice is utilized more than advice that is always provided. Second, it hinges on
how often participants solicit advice. Even if solicited advice leads to higher utilization,
infrequent solicitation can result in lower overall advice utilization in the O treatments
compared to the M treatments.

Given the subjects receive a flat-fee upon completion of the experiment, the faster
they complete the tasks, the higher their per minute pay rate will be. In the O treatments,
refraining from soliciting advice can save time on the classification task. Therefore, we
anticipate that due to the flat-fee payment scheme, subjects will perceive soliciting advice
as costly. Conversely, in the M treatments, since advice is always present, this additional
cost is expected not to be salient and therefore is not expected to be a potential factor in
advice utilization.

Research suggests that making advice costly can lessen the tendency to discount it
(Gino, 2008; Sniezek et al., 2004; Patt et al., 2006; Hofmann et al., 2009). This phe-
nomenon is argued to be driven by the sunk cost effect in conjunction with cognitive
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dissonance theory (Festinger, 1962), where individuals, having incurred a cost for advice,
are more likely to use it to justify their expenditure and to eliminate the dissonance caused
by incurring a cost (Gino, 2008). Hence, in addition to the aforementioned reasons, in our
experimental setup, in the O treatments, solicited advice is expected to be discounted less
also due to being costly.19

On the other hand, Gino (2008) shows that advice is solicited less frequently when it
involves a cost. Consecutively, in our experimental framework, where soliciting advice
has an implicit cost, participants may not seek advice often, potentially leading to lower
overall advice utilization in the O treatments compared to the M treatments.

These two juxtaposing effects make it unclear whether the net effect of making advice
optional will lead to higher advice utilization than the average advice utilization observed
in the M treatments. Therefore, we refrain from conjecturing whether on average a higher
degree of advice utilization will be observed in the O treatments compared to the M

treatments.

3.3.3 Additional Accuracy Information

Mandatory Advice

In the human advisor, human advisee setting, Sniezek and Buckley (1995) posit that an
advisor’s confidence in the correctness of his advice increases his influence in decision
making cases under uncertainty. Furthermore, Schrah et al. (2006) argue that advice is
often viewed with skepticism due to doubts about the advisor’s expertise, and multiple
studies have shown that when an advisor indicates high confidence in the accuracy of
his advice or is depicted as an expert, advisees have a higher tendency to utilize this
advice (Cooper, 1991; Harvey and Fischer, 1997; Sniezek and Buckley, 1995; Yaniv and
Kleinberger, 2000; Sniezek and Van Swol, 2001; Van Swol and Sniezek, 2005; Gibbons
et al., 2003). However, individuals often have significantly different and consistently
biased prior expectations of AI systems’ performance. Thus, providing information that
indicates the algorithmic advice is highly accurate, similar to a human advisor expressing
high confidence, may not necessarily result in higher algorithmic advice utilization.

Prior research has documented that people are subject to PAB, and hence expect AI
systems to demonstrate near-perfect performance (Dzindolet et al., 2002; Madhavan and
Wiegmann, 2007; Yu et al., 2019; Castelo et al., 2019; Dietvorst and Bharti, 2020; von
Walter et al., 2022). Furthermore, PAB is particularly evident for AI systems that perform
objective tasks with unambiguous ground truths (Castelo et al., 2019; von Walter et al.,

19We acknowledge that our experimental design does not allow us to distinguish the positive effect of the
cost of soliciting advice from the positive effect of soliciting advice itself on advice utilization. However,
in real life, act of soliciting always bares at the very least a time-dependent cost. Hence with our flat-fee
payment scheme, our experimental design can be argued to provide a more externally valid setup for the
investigation of the effect of soliciting advice.
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2022; Dietvorst and Bharti, 2020). Since face recognition is an objective task without
inherent uncertainty, in the absence of any prior performance information regarding the
system, subjects are, on average, expected to believe that FRS classification performance
is near-perfect and utilize its advice accordingly.

In the I treatments, FRS classification is accompanied by a separate accuracy value
for each pair type. These values aim to inform subjects about the average classification
performance of FRS for each pair type and to update for their prior beliefs on FRS classi-
fication performance.

Prior work on the threshold accuracy value above which the general population would
perceive an AI system to be performing at a near-perfect performance level is scarce.
Madhavan and Wiegmann (2007) document that a 90% accuracy level can be considered
as the near-perfect performance threshold, whereas investigation of Yu et al. (2019) sug-
gest that the threshold value could be as low as 70% for some individuals. Furthermore,
these threshold values may be task specific and not reflect a near-perfect performance
threshold value for AI systems in general (Daschner and Obermaier, 2022). Yet, given
that FRS are documented to have near-perfect to perfect performance with classification
accuracy ranging from 90% to 99% for the majority of instances (Ngan et al., 2015;
Grother et al., 2019; Li et al., 2020a), and considering the precedent of using 90% ac-
curacy as the near-perfect performance threshold (Madhavan and Wiegmann, 2007), we
assumed 90% as the near-perfect threshold value that the subjects will on average consider
when interacting with the FRS in our experiments.

With 100% accuracy for WM pairs and 94% for WW pairs, we aim to signal the
subjects that FRS’ classification will be always correct for WM pairs and almost always
correct for WW pairs. In other words, assuming 90% accuracy as the threshold for near-
perfect performance for FRS, these additional accuracy information aim to signal the
subjects that FRS performs either perfect or near-perfect in the classification of white
photo pairs.

On the other hand, an accuracy of 83% for BM pairs is aimed to signal the subjects that
FRS classification performance is “less than ideal” for these pairs, as it is below the near-
perfect threshold of 90% we assume. Furthermore, a 65% accuracy for BW pairs is aimed
to signal the subjects that FRS performs relatively poorly with the classification of these
pairs. Overall, we expect these additional accuracy information to signal the subjects that
FRS classification performance is less than near-perfect for black photo pairs, especially
with the black women pairs.

Assuming the majority of the subjects portray PAB and assuming 90% accuracy as the
perceived near-perfect threshold value, we expect that observing accuracy values below
this threshold will result in the subjects to lower their FRS performance expectations.
Consequently, we posit that additional accuracy information for white photo pairs will
have no significant effect on advice utilization, whereas it will negatively affect advice
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utilization for black photo pairs, with a more significant negative effect for BW photo
pairs. Furthermore, given the equal number of classification tasks for each photo pair
type, we conjecture that the overall effect of introducing additional accuracy information
will negatively impact subjects’ average advice utilization.

Hypothesis 2 Accuracy information will have no effect on advice utilization for white

photo pairs, but it will have a negative effect on advice utilization for black photo pairs.

Hypothesis 3 Overall, advice with accuracy information will be discounted more than

advice without accuracy information.

Solicited Advice

Several studies document that costly expert level advice is discounted less (Patt et al.,
2006; Sniezek et al., 2004). Yet, Gino (2008) argues that an advice being costly may
be perceived as being an expert-level advice, and this may be the reason why subjects
discount costly advice less. In a series of experiments, she shows that even when subjects’
perception of the advice’s quality is controlled for, they discount advice less when it is
costly. Her results suggest that the quality of the advice does not significantly impact
subjects’ decision-making process, as due to the sunk cost fallacy, subjects are more likely
to use the advice to justify the pre-committed cost, regardless of its quality.

Given the effectively costly nature of optional advice in our experiment due to the
flat-fee payment design, we previously argued that subjects will discount the advice less
when solicited. On the other hand, we also argued that providing advice with additional
accuracy information would on average cause subjects to discount it more.

When solicited advice is accompanied by additional accuracy information, we expect
that, to justify the cost of seeking advice or to mitigate the cognitive dissonance gener-
ated by this cost (Festinger, 1962), subjects will ignore accuracy information that would
typically lead them to discount the advice, as acknowledging it and therefore discounting
the advice would imply that the cost of soliciting was in vain. In other words, we con-
jecture that the sunk cost effect will mitigate the negative impact of additional accuracy
information on solicited advice. Thus, we expect additional accuracy information to have
no significant effect on advice utilization when advice is solicited.

Hypothesis 4 Soliciting advice will offset the negative effect of additional accuracy

information on advice utilization. Consequently, the overall degree of advice utilization

for solicited advice, whether accompanied by additional information or not, will not differ

significantly.
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3.3.4 Trust in FRS

It has been previously shown that a higher trust in the human advisor increases advice uti-
lization (Jungermann, 1999; Sniezek and Van Swol, 2001; Van Swol and Sniezek, 2005;
Jungermann and Fischer, 2005; Wang and Du, 2018). Additionally, it has been shown that
a higher degree of trust or reliance on automation increases advice utilization (Workman,
2005; Önkal et al., 2009; Shaffer et al., 2012). Based on these past results, we expect sub-
jects’ self-reported trust in FRS values to positively correlate with their advice utilization.

Hypothesis 5 Subjects with higher trust in FRS will discount advice less.

3.4 Results

Throughout the results section, an ample amount of pair-wise tests are conducted. We
recognize that as the number of pair-wise test results increases, the likelihood of a study-
wide, variable-specific type 1 error to occur significantly increases. In order to alleviate
these concerns, we define any result to be “marginally significant” for any p-value be-
tween 0.01 and 0.001, and we set the “significance” threshold value to 0.001.20

In Table 3.1a, mismatch percentages between subjects’ initial (pre-advice) classifi-
cation and FRS’ classification are presented. Since FRS classification is always correct
by design, the mismatch percentages represent subjects’ average initial false classifica-
tion rates (error rates). The rows labeled as N and I represent the treatments N and I ,
respectively. Similarly, the columns labeled M and O represent the overall mismatch per-
centage under mandatory advice and optional advice treatments (both solicited and not
solicited), respectively. Furthermore, the columns labeled Os and Ox represent subcases
under optional advice treatment where subjects solicited and not solicited advice, respec-
tively. Lastly, the row labeled µNI and the column µMO represent average values across
N and I , and M and O treatments, respectively.

20More specifically, by far the highest number of pair-wise tests conducted in the results and additional
analysis sections combined is with respect to the average percentage change in decision. In the results
section, we report pairwise comparison between NM & IM , NOs & IOs, NM & NOs, IM & IOs,
NM & NO, IM & IO, NOx & NM , NOx & NOs, IOx & IM and IOx & IOs for 2 different subsets
of data, and we report pair-wise comparison between NM & IM and NOs & IOs for 4 different subsets
of data. In addition, in the additional analysis section, we report pair-wise comparison tests between NM
& IM and NOs & IOs for 13 different subsets of data. Hence in total we conduct 54 pair-wise tests.
Using the Bonferroni correction method, and setting our initial significance threshold to 0.05, we get the
corrected threshold value of 0.00093. For convenience, we rounded up this value and get the formerly
stated threshold value of 0.001 for rejecting any null hypothesis. The marginal significance threshold of
0.01 is a value we established based on the set of p-values we have observed in our 54 pair-wise tests
with the goal of distinguishing results that we considered it would be too conservative to redeem them
as insignificant. Additionally, for the interpretation of our logit model estimates, we refer to a slightly
more relax alternative set of criteria to evaluate significance where any p-value below 0.05 is considered
as significant, any p-value between 0.05 and 0.1 is considered as marginally significant, and any p-value
above 0.1 is considered as not significant.
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M O Os Ox µMO

N 45.1 44.3 46.1 39.9 44.7
I 44.1 42.3 43.9 39.1 43.1

µNI 44.6 43.3 45 39.4 43.9

(a) Initial mismatch %

M O Os Ox µMO

N 14 18.1 9.1 40.9 16.2
I 16.4 19.7 9.9 39.3 18.2

µNI 15.2 18.9 9.5 39.9 17.2

(b) Final mismatch %

Table 3.1: Mismatch between human and FRS classifications

In every treatment, NM , NO, IM and IO, subjects’ post-advice classification are
better than random guessing, as error rates are significantly below 50% for each treatment
(proportion test, pmax < 0.001). Error rates between treatments NM , IM and NO are
found to not to be significantly different (proportion test, pmin > 0.339). Moreover, while
the average error rate in IO is found not to be significantly different from the ones in IM

and NO (proportion test, pmin > 0.028), it is found to be marginally significantly lower
than the one in NM (proportion test, p = 0.002). Lastly, the overall error rates are not sig-
nificantly different between N and I treatments (44.7 vs 43.1; proportion test, p = 0.012)
and not significantly different between M and O treatments (44.6 vs 43.3; proportion test,
p = 0.027). In summary, there are no notable differences among treatments in terms of
the subjects’ initial classification performances.21

On the other hand, a significant difference is observed between Os and Ox under
either N or I (proportion test, pmax < 0.001). These results hint at a positive correla-
tion between the likelihood of soliciting advice and the likelihood of initial misclassifica-
tion. Moreover, while there is no statistical difference between NOx and IOx (proportion
test, p = 0.64), average error rate under IOs is statistically lower than that under MOs

(proportion test, p < 0.001). This difference along with the statistically higher average
percentage of soliciting advice of 71.9% in NO compared to 66.6% in IO (proportion
test, p < 0.001) result in the IO treatment to generate the observed slightly lower (yet
insignificant) average error rates.

Additionally, a mixed-effect logistic regression with the binary dependent variable be-

21The differences between IO, IM , and NO treatments are insignificant given our defined threshold values,
but the proportion test still yields a small p-value less than 0.05. Hence, it is worth noting the possibility
that the IO treatment is significantly lower than all the other treatments and not only the NM treatment.
This would imply that subjects in the IO treatment are slightly better at the classification task. However,
this difference is small, with at most a 2.8 percentage point difference. Similarly, the insignificance
between the overall error rates of the N and I treatments, and between the M and O treatments, suggests
that relaxing the significance thresholds would imply that subjects in the I treatments are slightly better
at the classification task than those in the N treatments, and subjects in the O treatments are slightly
better than those in the M treatments. Given the insignificance between NM , IM , and NO treatments,
the overall difference between N and I , and M and O, should be attributed to the lower average error
rates observed in the IO treatment. Given in the subsequent analysis, we are investigating the effect of
treatment variables on advice utilization by comparing the average percentage change in the decision, we
are, to some degree, controlling for variations in subjects’ initial error rates across the treatments.
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ing whether the photo pair is misclassified (1) or not (0) is considered.22 In this model,
photo pair specific and subject specific covariates are additionally controlled for. Further-
more, a random effect is included in the model for each subject to address unobserved
heterogeneity among them. Neither of the treatment variables are found to have a sig-
nificant effect on the probability to misclassify a photo pair prior potentially receiving
an advice. On the other hand, BW photo pairs are found to have a negative marginally
significant effect, and WW photo pairs are found to have a positive significant effect on
the probability to misclassify a photo pair. These results indicate that, overall, relative to
the baseline of BM photo pairs, BW photo pairs were easier, WW pairs were harder and
BM photo pairs were as difficult as WM photo pairs to classify. Lastly, female subjects,
older subjects and subjects with higher racism score are found to be more likely to make
an initial misclassification.

In Table 3.1b, the final average error rates for each treatment are displayed. Except for
subcases where subjects did not solicit advice, Ox, post-advice error rates are significantly
lower relative to their pre-advice counterparts under each treatment (proportion test, p <

0.001). For Ox subcases, there is no statistical difference between the initial and final error
rates (proportion test, pmin > 0.611). Given FRS’ advice is always correct by design,
post-advice error rates should be considered as a proxy for advice utilization. Hence, the
observed lower post-advice error rates indicate some degree of advice utilization across
treatments.

The average error rates are significantly lower for Os subcases compared to M treat-
ments under either N or I treatments (proportion test, pmax < 0.001). Yet, because
subjects did not solicit advice frequently enough, average error rates under O treatments
are significantly higher than the ones under M treatments under either N or I treatments
(proportion test, pmax < 0.001). Taking the observed average error rates for Os and Ox

subcases as given, for the error rates to be lower under O than M , subjects needed to so-
licit approximately at least 13 percentage points more than the observed 71.9% and 66.6%
solicit frequencies for treatments N and I , respectively. These results hint that solicited
advice is on average discounted less than unsolicited advice, yet, overall, making advice
optional results in lower average utilization of advice due to the advice not being solicited
frequently enough.

Additionally, post-advice error rates are significantly lower in the NM treatment com-
pared to IM treatment (proportion test, p < 0.001). This result potentially suggests that
when advice is always provided, additional accuracy information is observed to negatively
affect the advice utilization. Conversely, no significant difference is found between NO

and IO treatments (18.1 vs 19.7; proportion test, p = 0.057) nor between NOs and IOs

(9.1 vs 9.9; proportion test, p = 0.254) nor between NOx and IOx (40.9 vs 39.3; propor-

22See Appendix 3.D Table 3.19 for details.
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tion test, p = 0.364). The insignificance between NOs and IOs suggests that the negative
effect of additional information observed in M treatments is offset when the advice is
solicited.

In Tables 3.2a and 3.2b average percentages for changing the initial classification are
presented for each treatment. Table 3.2a displays the cases for when subject’s initial
classification matches the classification of FRS (match cases), and Table 3.2b displays
the cases for when the subject’s initial classification differs from the classification of FRS
(mismatch cases).23

M O Os Ox µMO

N 0.8 1.4 0.6 3.2 1.1
I 1.4 1.8 1.2 2.9 1.6

µNI 1.1 1.6 0.8 3 1.4

(a) Match cases

M O Os Ox µMO

N 69.9 60.9 80.8 2.4 65.2
I 64.6 55.8 78.9 3.9 60

µNI 67.3 58.4 79.9 3.3 62.6

(b) Mismatch cases

Table 3.2: Percentage change in classification decision

In match cases, change of decision is equivalent to deviating from FRS’ classification,
hence, in match cases, a higher average level of percentage change in decision indicates a
higher degree of advice discounting. Conversely, in mismatch cases, change of decision
is equivalent to adopting the classification of FRS, hence, in mismatch cases, a higher av-
erage level of percentage change in decision implies a higher degree of advice utilization.

In match cases, subjects, on average, change their initial classification in less than
1.5% of the time, while in mismatch cases, subjects change their initial classification in
more than 60% of the time. In other words, in match cases, subjects rarely deviated from
the advised classification, while in mismatch cases, subjects on average discounted advice
in less than 40% of the time.24

In match cases, soliciting advice does not make a statistical difference in the average
percentage change from the initial decision for either N or I treatments (NM vs NOs;
IM vs IOs; proportion test, pmin > 0.35). Moreover, the overall effect of O treatment
compared to the M treatments is not found to be significantly different under either N
or I treatments (proportion test, pmin > 0.07). Similarly, observing additional accuracy
information does not make significant difference either under M treatments or under Os

subcases (proportion test, pmin > 0.05). Conversely, NOx is found to be statistically
larger than either NM or NOs (proportion test pmax < 0.001), and IOx is found to be
statistically larger than either IM or IOs (proportion test, pmax < 0.001).

The fact that, on average, we observe less than 1.5% change rate when advice is ob-

23Recall from Table3.1a that match cases represent 56.1% of the dataset where as the mismatch cases
represent 43.9%.

24Overall, subjects changed their initial classification in 28.3% of the cases. Of these changes, 0.8% oc-
curred in match cases, while 27.5% occurred in mismatch cases.
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served indicate that observation of confirmatory FRS classification consolidates subject’s
pre-advice classification, and the subject is less likely to change her decision compared to
when she does not receive the confirmatory advice (Ox subcases). This general absence
of change in decision is translated into the lack of responsiveness of the subject to either
treatments: whether the advice is solicited or not, or whether the advice is accompanied
by an additional accuracy information or not does not make a significant difference in
the subjects’ final classification decision. Hence, at the very least, either treatment effect
is observed not to negatively affect advice utilization when the pre-advice classification
matches FRS’ advice.25

In mismatch cases, irrespective of whether additional accuracy information is pro-
vided or not, subjects are on average significantly more likely to change their classification
to FRS’ classification when advice is solicited (NM vs. NOs, IM vs IOs; proportion
test, pmax < 0.001). This result suggests that, for mismatch cases, when advice is so-
licited, subjects are less likely to discount it. However, because subjects changed their
(false) initial classification on average 3.3% of the time when they did not observe FRS’
classification (Ox subcases), overall, average percentage change is significantly lower in
the O treatments compared to the M treatments (NM vs NO, IM vs IO; proportion
test, pmax < 0.001). This result indicates that making advice optional overall leads to
lower advice utilization due to the prevalence of cases where advice is not sought. For
the average percentage change in the O treatments to match or to exceed those in the M

treatments, either the average frequency of soliciting advice must increase, as previously
argued, by approximately 13 percentage points, or the average percentage change in de-
cision must rise by about 13 percentage points for the NO treatment and 15 percentage
points for the IO treatment.

In mismatch cases, additional information is observed to increase the average advice
discounting under M treatments (proportion test, p < 0.001). This indicates that addi-
tional accuracy information causes subject to, on average, discount advice more. How-
ever, when advice is solicited additional information is observed not to make a significant
difference (NOs vs IOs, proportion test, p = 0.162). This lack of significance in con-
junction with the former significant positive effect of solicited advice on advice utilization
point out that the negative effect of additional information on advice utilization is offset
by the positive effect of solicited advice.

In Table 3.3, we summarize our findings. Ma denotes the match cases and Mima de-
notes the mismatch cases. “−” indicates a negative significant effect on advice utilization,

25In Appendix 3.C, we have additionally considered the treatments effect on the change in the confidence
levels, examining the difference between pre- and post- advice confidence levels. We found that ob-
serving an advice that matches subject’s initial classification has a significant increase on the confidence.
Furthermore, despite the subjects not changing their initial classification upon observing a confirmatory
advice, we found that soliciting advice significantly further increases the confidence, whereas additional
information significantly mitigates this increase.
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Ma Mima

I ∼ −
O ∼ −
Os ∼ +
I : Os ∼ ∼

Table 3.3: Advice utilization

“+” indicates a positive significant effect on advice utilization effect, and “∼” denotes no
significant effect on advice utilization. Furthermore, labels I , O, and Os represents the
effect of additional information treatment, optional advice treatment and soliciting advice
subcase, respectively. Lastly, I : Os represents the effect of additional accuracy informa-
tion when advice is solicited.

In summary, we observe that for match cases neither treatment is observed to have a
significant effect, while for mismatch cases we observe additional information to have a
negative and soliciting advice to have a positive effect on advice utilization. Furthermore,
the negative effect of additional accuracy information is observed to be offset when ad-
vice is solicited. Lastly, overall, optional advice treatment results in a lower degree of
advice utilization indicating that the positive effect of advice solicitation is not enough to
compensate for the cases where the subjects did not solicit advice.

To complement the above analysis, in Table 3.4, results of a series of logit regression
models that estimate the effect of treatments on the probability of a subject to change
her initial decision are presented. The models are specified as a mixed-effect models
with subject-specific random effects where the treatment variables, their interaction, and
additional two covariates are gradually introduced.

Each treatment variable is a dummy variable that takes the value of 1 if the data point
is from that treatment and takes the value of 0 otherwise (baseline). In CD4, the dummy
variable Ox is introduced. It takes the value of 1 if the subject is in the treatment O and
chooses not to solicit advice, and 0 otherwise (baseline). When Ox is introduced into
the model, treatment variable O effectively presents the effect of the subcases where the
treatment is O, and the subject chooses to solicit advice. To reflect this conceptual change
in O, we re-label it as Os and introduce it in two new rows along side with its interaction
with the I treatment variable. For models CD4−7, and any subsequent model that includes
Ox, we use this re-labeled format instead of O and I : O.

Given the drastic difference in the average percentage change in decision made dis-
played between the match and mismatch cases in Tables 3.2a and 3.2b, we control for
it by introducing the dummy variable Ma in models CD5−7. Ma gets the value of 1
if the initial classification of the subject is the same as the classification of FRS and 0
otherwise (baseline). In models CD6−7, we introduce the initial confidence reported by
the subjects, C1. C1 gets a value between 50 and 100. 100 represents subject’s perceived
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Table 3.4: Probability to change decision

CD1 CD2 CD3 CD4 CD5 CD6 CD7

α -0.95∗∗∗ -0.83∗∗∗ -0.84∗∗∗ -0.83∗∗∗ 1.23∗∗∗ 6.91∗∗∗ 4.56∗∗∗

(0.04) (0.05) (0.06) (0.06) (0.12) (0.36) (0.42)

I -0.17∗∗ -0.17∗∗ -0.15† -0.15† -0.32† -0.32† -0.31†

(0.06) (0.06) (0.08) (0.08) (0.17) (0.18) (0.17)

O -0.23∗∗∗ -0.22∗∗

(0.06) (0.08)

I : O -0.04
(0.12)

Os 0.29∗∗∗ 0.60∗∗∗ 0.52∗∗ 0.51∗∗

(0.08) (0.17) (0.18) (0.17)

I : Os 0.05 0.18 0.16 0.17
(0.11) (0.24) (0.26) (0.25)

Ox -3.19∗∗∗ -5.06∗∗∗ -4.69∗∗∗ -4.7∗∗∗

(0.16) (0.21) (0.22) (0.22)

I : Ox 0.14 0.15 0.13 0.16
(0.22) (0.29) (0.30) (0.30)

Ma -6.43∗∗∗ -6.74∗∗∗ -6.74∗∗∗

(0.11) (0.12) (0.12)

C1 -0.07∗∗∗ -0.07∗∗∗

(0.00) (0.00)

TC 0.67∗∗∗

(0.07)

varRE 0.5 0.49 0.49 0.41 2.27 2.73 2.41
AIC 24138 24124 24126 20952 10025 9693 9614
Obs 20952 20952 20952 20952 20952 20952 20952

All the variables in the first column except “varRE” are the estimated fixed effects. “α” is the inter-
cept. “varRE” is the variance of the player specific random effects. “AIC” is the Akaike information
criterion. “Obs” represents the number of observations. “:” represents the interaction between two
variables used before and after it.
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “†” 0.1 ”‡” 0.2 ” ” 1

complete certainty on the correctness of her initial classification and 50 represents sub-
ject’s full uncertainty on the correctness of her initial classification.26. Lastly, in model
CD7, we introduce the trust in FRS variable TC . It is a subject specific variable that takes

26In the experiments, subjects were asked to provide a value between 0 and 100 to express their level of
confidence with 0 being fully uncertain and 100 being fully certain. This interval then converted into a 50
to 100 interval to make it in par with the mathematically correct form for the subject’s belief where 50%
belief in the correctness in decision indicates fully uncertainty. Given the logistic nature of the models,
alternative normalization considerations for C1 such as 0 for complete uncertainty and 1 (or 100) for full
uncertainty would not make a difference in the results except for the amplitude of the estimated coefficient
for C1.
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a value between 1 and 5 with 5 presenting the highest degree of trust towards FRS.
Given in match cases, percentage change in the initial decision is on average 1.3%,

our primary concern is the mismatch cases. Consecutively, we omit the presentation
of additional models that consider interaction of the treatment variables with the Ma

covariate in Table 3.4.27

Across CD1 to CD7, the coefficient for variable I is negative, yet its statistical sig-
nificance becomes marginal when Ox is introduced in models CD3−7. The estimated
coefficient for I gets larger when we control for the matched classification cases, Ma,
in models CD5−7. These results in conjunction with the former statistical investigation
confirm our hypothesis that additional accuracy information causes subjects to discount
advice more compared to the case where such information is not provided with the FRS’
advice.

Result 1 FRS advice with additional accuracy information is discounted more.

In model CD2, the negative and significant coefficient for variable O shows the overall
negative effect of making FRS advice optional on the advice utilization. This result is in
accordance with our former analysis on the overall negative significant effect of making
advice optional on advice utilization for mismatch cases (Table 3.3).28

Result 2 When FRS advice is optional, subjects utilize it less compared to when it is

always provided.

In models CD4−7, when we control for the cases where the subject chooses not to
solicit advice with Ox, the coefficient for the dummy variable Os is found to be positive
and statistically significant, highlighting the positive significant effect of soliciting advice
on advice utilization. This is also on par with our former analysis for mismatch cases, and
confirms our hypothesis that when advice is solicited it is discounted less.29

Result 3 Solicited FRS advice is discounted less than the unsolicited FRS advice.

The interaction between the two treatments I : O in model CD3, and the interaction
between additional accuracy information and solicited advice upon controlling for the

27The results do not change when the interaction of Ma covariate with treatment variables is considered.
See Appendix 3.5, Table 3.20 for additional models that consider the interaction of the treatment variables
with the Ma covariates.

28Additionally, when we interact Ma with O, we observed that Ma : O, which represents the overall effect
of optional advice treatment on the match cases, is found to be significant and positive. This indicates that
contrary to our former finding on the effect of O in advice utilization to be insignificant (Table 3.3), the O
treatment is observed to increase advice discounting, as a positive sign indicate in match cases deviating
from the advised classification. See Appendix 3.5, Table 3.20, model CD3b for details.

29Additionally, when we interact Ma with Os, we observe that Ma : Os, which represents the effect of
soliciting advice on the match cases, it is found to be negative and significant. This is again contrary
to our former analysis on match cases where we found no statistical effect and suggests that, also for
match cases, when advice is solicited, the subject is less likely to diverge from the FRS’ classification, i.e.
discount advice less. See Appendix 3.5, Table 3.20, model CD6b for details
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cases where subject did not solicited advice I : Os in models CD4−7, all are found to be
insignificant. This is on par with our former analysis and our hypothesis that additional
accuracy information has no effect on advice utilization when advice is solicited.

Result 4 When advice is solicited, additional accuracy information has no significant

effect on advice utilization.

Furthermore, as expected, the coefficient for Ox is estimated to be significant and neg-
ative. Hence, as previously argued, although when advice is solicited it is discounted less,
either because solicited advice is not utilized enough or because advice is not solicited
frequently enough, overall, FRS’ advice is utilized less when it is optional.

In models CD5−7, the large, negative and significant coefficient for variable Ma con-
firms the drastic difference in the average percentage change from initial classification
observed between match and mismatch cases (Tables 3.2a and 3.2b). Moreover, this
result in conjunction with Table 3.2a highlight the fact that the observed effects of the
treatment variables on the probability to change the initial classification is primarily due
to the variation in the mismatch cases, and hence reassures our former assertion that the
estimated effects of the treatment variables primarily reflect their effect on advice utiliza-
tion. In model CD6, the negative and significant coefficient for variable C1 indicates that
as subjects’ confidence in their initial classification increases, they discount FRS’ advice
more. The negative effect of C1 confirms the commonly observed result that as subjects
become less confident on their initial classification, they become more likely to utilize
advice.

Lastly, in model CD7, trust in FRS, TC , is observed to be positive and significant, in-
dicating that a higher trust in FRS results in a higher likelihood of advice utilization. This
results confirms our initial hypothesis on algorithmic trust’s positive effect on algorithmic
advice utilization.

Result 5 A subject with a higher level of trust in FRS discounts its advice less.

Although we found strong evidence that additional information negatively affects ad-
vice utilization, consistent with our hypothesis, it is unclear whether this effect results
from the near-perfect prior expectations of the subjects. To investigate the underlying
mechanism, we proceed with the investigation of additional information’s impact on ad-
vice utilization for each pair type. To do so, we focus on the effect of treatment I within
each pair type subset. Thus, the following analysis will concentrate solely on the effect of
additional information on advice utilization and omit any discussion unrelated to it.

Table 3.5 presents the average percentage change in decisions for each photo pair type.
Although the average percentage change is lower under IM than NM for all photo pairs,
this difference is not significant for WM (proportion test, p = 0.109) and WW (propor-
tion test, p = 0.403) pairs. For BM pairs, the average percentage change under NM is
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M O Os Ox µMO

N 68.4 64.4 83.2 6.3 66.3
I 63.7 57.1 80 57.9 60.3

µNI 66.2 60.8 81.7 6 63.4

(a) WM

M O Os Ox µMO

N 70.7 58.8 79 1.1 64.4
I 68.3 57.5 79.8 2.6 62.6

µNI 69.5 58.1 79.4 1.9 63.5

(b) WW

M O Os Ox µMO

N 69.9 60 79 1.2 64.6
I 61.6 53.2 77.6 3.5 57.3

µNI 65.8 56.8 78.7 2.5 61.1

(c) BM

M O Os Ox µMO

N 71.2 60.7 82.1 0.8 65.6
I 64.2 54.7 77.6 4.3 59.3

µNI 67.7 57.8 79.9 2.6 62.5

(d) BW

Table 3.5: Percentage change in classification decision for each pair type

significantly greater than under IM (proportion test, p = 0.001), and for WM pairs, it is
marginally significant (proportion test, p = 0.007). These results support our conjecture
that subjects, on average, have near-perfect expectation from FRS and these expectations
to some degree are confirmed with the accuracy information provided for white pairs.
Consecutively, additional accuracy information has no significant effect on the advice
utilization for the white photo pairs.30 Conversely, the additional accuracy information
provided for black photo pairs causes subjects to lower their prior belief that FRS per-
forms near-perfect classification, resulting in a significant decrease in advice utilization
for black photo pairs.

Additionally, we observe that for all pair types, when advice with additional infor-
mation is solicited, there is no significant effect on the average percentage change in the
decision (NOs vs IOs; proportion test, pmin > 0.179). This results indicate that irrespec-
tive of whether the additional accuracy information matches subjects’ prior near-perfect
expectation or it its below their prior expectations, when advice is solicited, additional
information is to a significant degree disregarded and consecutively has no significant
negative effect on advice utilization.

To complement the above analysis, Table 3.6 presents model CD7 estimates for each
pair type subset, as indicated by the subscripts of the model labels on the top row of the
table. Consistent with prior results, the coefficient for the dummy variable I is negative
across all models, but it is significant only in models CDBM and CDBW . Furthermore,
the interaction between soliciting advice and additional information is not significant in

30Although the insignificance among IM and NM treatments confirm our argument that subjects have a
near-perfect prior expectations, the fact that average values are consistently lower for white pairs and to
a discernible degree with WM pairs suggest that, additional accuracy information may cause additional
negative effect on advice utilization for mechanisms we have not accounted for. See Section 3.6 for further
discussion.
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Table 3.6: Probability to change decision for each pair type

CDWM CDWW CDBM CDBW

α 3.68∗∗∗ 3.02∗∗∗ 3.94∗∗∗ 3.34∗∗∗

(0.75) (0.54) (0.73) (0.71)

I -0.32 -0.08 -0.57∗ -0.4∗

(0.27) (0.19) (0.25) (0.17)

Os 0.93∗∗∗ 0.3† 0.46† 0.58∗

(0.26) (0.18) (0.25) (0.24)

I : Os -0.01 0.24 0.49 0.14
(0.37) (0.25) (0.36) (0.34)

Ox -5.4∗∗∗ -4.06∗∗∗ -5.18∗∗∗ -4.87∗∗∗

(0.45) (0.36) (0.45) (0.48)

I : Ox 0.31 0.03 0.21 0.12
(0.56) (0.47) (0.57) (0.63)

Ma -7.61∗∗∗ -5.84∗∗∗ -6.97∗∗∗ -6.63∗∗∗

(0.32) (0.21) (0.28) (0.28)

C1 -0.06∗∗∗ -0.05∗∗∗ -0.06∗∗∗ -0.05∗∗∗

(0.01) (0.01) (0.01) (0.01)

TC 0.68∗∗∗ 0.59∗∗∗ 0.8∗∗∗ 0.63∗∗∗

(0.11) (0.07) (0.11) (0.1)

varRE 3.3 0.95 3.48 2.03
AIC 2633 2981 2793 2108
Obs 5238 5238 5238 5238

All the variables in the first column except “varRE” are the estimated fixed effects. “α” is the inter-
cept. “varRE” is the variance of the player specific random effects. “AIC” is the Akaike information
criterion. “Obs” represents the number of observations. “:” represents the interaction between two
variables used before and after it.
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “†” 0.1 “ ” 1

any of the models.
Our prior analysis and confirmatory regression analysis reveal that additional accu-

racy information’s negative effect is to a discernible degree governed by the difference
between the accuracy information and the subjects’ prior near-perfect expectations, and
only observed when advice is mandatory. Hence, we confirm our hypothesis that the
negative effect of additional information on advice utilization is primarily observed with
black photo pairs. Yet, it is worth noting that there is no discernible difference between
BM and BW pairs even though, accuracy information for BM pairs is closed to being
near-perfect whereas for BW pairs it is distinctly farther away from being near-perfect.

Result 6 Additional accuracy information has no significant effect on advice utilization

for white photo pairs, but has a significant negative effect on advice utilization for black

189



photo pairs.

3.5 Additional Analysis

3.5.1 Prior Expectations

Given that near-perfect prior expectations mediate the impact of additional accuracy in-
formation on advice utilization, we investigate whether subjects’ self-reported level of
FRS understanding and experience might influence these prior expectations.

The self-reported understanding of new technology can be biased if acquired from
unreliable sources, leading to unreasonably high expectations (Horstmann and Krämer,
2019). Moreover, subjects may understand the technical workings of FRS but lack aware-
ness of its poor performance with certain minorities, particularly black faces and more
specifically with black female faces, due to biased training data sets used to develop cur-
rently used FRS (Buolamwini and Gebru, 2018). Hence, a high level of self-reported
understanding of FRS does not necessarily imply that the subjects have better calibrated
expectations more in line with the accuracy information provided in the I treatments.
Conversely, if information is obtained from reliable sources that provide accurate details
on the varying performance of FRS, the self-reported understanding may be a reliable
indicator of well calibrated performance expectations.

Similarly, self-reported experience may be influenced by memory biases, such as re-
calling only instances of poor performance (Kahneman et al., 1993) or overestimating
the level of perceived experience based on limited interactions (Tversky and Kahneman,
1971, 1974). However, a high level of self-reported experience with FRS may also be an
accurate depiction of the subjects’ prior experience with FRS, and these subjects could
be expected to have better calibrated expectations due to their close familiarity with the
technology (Koskinen et al., 2019; Mahmud et al., 2022).

(a) Understanding (b) Experience

Figure 3.1: Self-reported understanding of FRS and experience with FRS
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Figures 3.1a and 3.1b present the distributions of self-reported FRS understanding
and experience of the subjects. For both plots, the y-axis represents the percentage of the
subjects and the x-axis represents the self-reported score from 0 to 100 for the respec-
tive concept. The mean and the median value for the self-reported understanding is 70,
whereas for the self-reported experience, the mean is 40 and the median is 38. Using
these self-reported values, we categorize the subjects in two categories for each concept.
We define above average understanding as any subject reporting an understanding score
above 70 and a below average understanding as any subject reporting an understanding
score equal to or below 70. Similarly, we define above average experience as any subject
reporting an experience score above 40 and a below average experience as any subject re-
porting an experience equal to or below 40. We denote above average understanding and
above average experience categories as HU and HE , respectively, and denote below aver-
age understanding and below average experience categories as LU and LE , respectively.
HU contains 40% of the subject pool, whereas HE contains 43% of the subject pool. In
Figures 3.1a and 3.1b, the red dashed lines represent the cutoff points for the separation
of these two categories.

M Os

N 68.4 84.1
I 71.8 80.5

(a) HU

M Os

N 71 79.1
I 59.3 77.8

(b) LU

M Os

N 70.9 80.9
I 67.3 79.3

(c) HE

M Os

N 69.3 80.8
I 62 78.6

(d) LE

Table 3.7: Percentage change in classification decision for high and low understanding or
experience of the subjects

Tables 3.7a and 3.7b represent the average percentage change in decision for mismatch
cases for subsets HU and LU , respectively. For subjects with above average understanding
of FRS (HU ), NM and IM are not significantly different (proportion test, p = 0.304),
whereas for subjects with below average understanding of FRS (LU ), under the M treat-
ment, additional accuracy information is found to have a significantly negative effect on
the average percentage change in decision (proportion test, p < 0.001). Furthermore,
for either subsets of subjects, no statistical difference is found between NOs and IOs

(proportion test pmin > 0.1).
Tables 3.7c and 3.7d represent the average percentage change in decision for mismatch

cases for subsets HE and LE , respectively. For subjects with above average experience
with FRS (HE), under the M treatment, changes in NM and IM are not significantly
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different (proportion test, p = 0.1), whereas for subjects with below average experience
with FRS (LE), under the M treatment, additional accuracy information is found to have
a significantly negative effect on the average percentage change in decision (proportion
test, p < 0.001). Furthermore, for either subsets of subjects, no statistical difference is
found between NOs and IOs (proportion test pmin > 0.212). Lastly, across all cases,
HU , HE , LU and LE , the average percentage change in decision in NM treatments are
statistically not different from each other (proportion test, pmin > 0.21).

These results suggest that subjects with either above average understanding or above
average experience are better calibrated in terms of their prior expectations for the FRS
performance, and consequently, additional accuracy information does not have a signifi-
cant effect on subjects with above average FRS understanding. Conversely, subjects either
with below average understanding or below average experience are observed to potentially
depict near-perfect prior expectations which in turn results in them to utilize advice less
when they additionally observe the accuracy information.31

The insignificance of additional accuracy information across all four subsets when
advice is solicited further supports the robustness of our results. The fact that additional
accuracy information has no significant effect on advice utilization, despite potentially
differing prior performance expectations, indicates that such information is largely disre-
garded when advice is solicited.

We further investigate the observed mediating effect of self-reported experience and
understanding with a series of mixed-effect logit regression models where we took the
existing model CD7 and introduced various potential mediator variables by interacting
each with the treatment variables. In model CDFRSU

, the FRSU variable that repre-
sents the continuous self-reported understanding of the subject is introduced, in model
CDFRSE

, FRSE , the continuous self-reported experience of the subject is introduced.
In model CDDU

, the DU dummy variable that takes the value of 1 if the subject has an
above average understanding and 0 otherwise is introduced. In model CDDE

, the DE

dummy variable that takes the value of 1 if the subject has an above average experience
and 0 otherwise is introduced. The results of these models are presented in Table 3.8. To
minimize the number of rows, instead of providing a row for each introduced variable and
its interactions with the treatment variables, we denote the additional variable under each
model with the label X . For model CDFRSU

, X represents FRSU , for model CDFRSE
, it

represents FRSE , for model CDDU
, it represents DU , and for model CDDE

, it represents
DE .

Under models CDFRSU
and CDFRSE

, the estimated coefficient for I is marginally

31We have additionally investigated the effect of additional information on advice utilization for subjects
with above average understanding or with above average experience under each pair type subset. For every
pair type, for subjects with either above average understanding or above average experience, additional
accuracy information is found not to have a significant effect on advice utilization. See Appendix 3.A for
details.
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Table 3.8: Probability to change decision

CDFRSU
CDFRSE

CDDU
CDDE

α 4.82∗∗∗ 4.59∗∗∗ 4.72∗∗∗ 4.6∗∗∗

(0.59) (0.44) (0.43) (0.43)

I -1.16† -0.48† -0.62∗∗ -0.49∗

(0.67) (0.29) (0.22) (0.24)

Os 0.08 0.59∗ 0.33 0.61∗∗

(0.63) (0.28) (0.22) (0.23)

I : Os 1.16 0.18 0.41 0.13
(0.92) (0.4) (0.32) (0.34)

Ox -5.16∗∗∗ -4.52∗∗∗ -4.87∗∗∗ -4.54∗∗∗

(0.74) (0.35) (0.3) (0.29)

I : Ox 0.37 0.09 0.53 -0.12
(1.07) (0.5) (0.4) (0.44)

Ma -6.74∗∗∗ -6.74∗∗∗ -6.73∗∗∗ -6.74∗∗∗

(0.12) (0.12) (0.12) (0.12)

C1 -0.07∗∗∗ -0.07∗∗∗ -0.07∗∗∗ -0.07∗∗∗

(0.00) (0.00) (0.00) (0.00)

TC 0.65∗∗∗ 0.65∗∗∗ 0.64∗∗∗ 0.66∗∗∗

(0.07) (0.07) (0.07) (0.08)

X 0.00 0.00 -0.06 0.03
(0.01) (0.01) (0.25) (0.25)

X : I 0.01 0.00 0.73∗ 0.35
(0.01) (0.01) (0.35) (0.35)

X : Os 0.01 0.00 0.48 -0.25
(0.01) (0.01) (0.36) (0.35)

X : I : Os -0.01 0.00 -0.98 0.15
(0.01) (0.01) (0.81) (0.5)

X : Ox 0.01 0.00 0.36 -0.31
(0.01) (0.01) (0.43) (0.43)

X : I : Ox 0.00 0.00 -0.82 0.51
(0.01) (0.01) (0.61) (0.61)

varRE 2.4 2.4 2.36 2.39
AIC 9622 9622 9613 9652
Obs 20952 20952 20952 20952

All the variables in the first column except “varRE” are the estimated fixed effects. “α” is the inter-
cept. “varRE” is the variance of the player specific random effects. “AIC” is the Akaike information
criterion. “Obs” represents the number of observations. “:” represents the interaction between two
variables used before and after it.
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “†” 0.1 “ ” 1
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significant and negative, but the introduced variable and its interaction with the treatment
dummies are negligibly small and insignificant. For models CDDU

and CDDE
, the esti-

mated coefficient for I is significant and negative. While for model CDDE
, neither the

introduced variable DE nor its interaction with the treatment dummies are significant,
whereas in model CDDU

, the interaction of the introduced dummies DU with I is signif-
icant and positive. Lastly, in all the models, the interaction of the variable with I : Os is
found not to be significant confirming our former analysis.

The fact that FRSU and its interaction with the treatment dummies are insignificant
whereas the dummy variable DU and its interaction with I is significant suggests that
there is a threshold for the self-reported understanding of FRS. Only above this threshold
do subjects’ prior expectations lower significantly enough to increase advice utilization
upon observing the additional accuracy information. Furthermore, the fact that neither
FRSE nor DE , and neither their interaction with I are found to be significant suggests
that self-reported experience is not as good of a proxy for prior expectation of the subjects
as their self-reported understanding. Lastly, the fact that additional information does not
significantly affect advice utilization when advice is solicited, irrespective of the subjects’
understanding or experience levels, suggests that the tendency to disregard additional
accuracy information when soliciting advice is prevalent across all subject types and is
not mediated by the prior FRS performance expectation of the subjects.

These results to some degree support the former analysis that subjects with an higher
degree of understanding are indeed better calibrated in their FRS performance expecta-
tions. Furthermore, these types of subjects, due to their more in-tune expectations, are
not negatively affected by the accuracy information provided in terms of advice utiliza-
tion. The positive significant coefficient for X : I in model CDDU

further highlights the
possibility that these subjects have on average a lower level performance expectation of
FRS.

3.5.2 Additional Factors Affecting Advice Utilization

In Table 3.9, additional covariates are gradually introduced to the model CD7. In CD8,
covariates related to the task specific variables are introduced. µA1 is a photo pair specific
variable that represents the average initial accuracy level calculated based on the subjects’
performance on her respective treatment.32 TP stands for “True Positive” and is a dummy
variable that takes 1 if the photo pair belongs to the same person and 0 otherwise. PT

stands for “Pair Type” and is a categorical variable with BM pair type as its baseline, and
the subscripts denotes the other photo pair types.

In model CD9, a covariate on the subject’s trust disposition towards humans, TH ,

32Alternatively, we considered the average accuracy levels calculated across all treatments and found no
discernible difference in the estimated effects.
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Table 3.9: Probability to change decision with additional covariates

CD8 CD9 CD10 CD11 CD12

α 6.29∗∗∗ 4.26∗∗∗ 4.10∗∗∗ 4.13∗∗∗ 4.04∗∗∗

(0.38) (0.47) (0.46) (0.51) (0.52)

I -0.31† -0.32† -0.32† -0.30† -0.30†

(0.18) (0.18) (0.18) (0.18) (0.18)

O 0.52∗ 0.51∗ 0.53∗ 0.53∗ 0.54∗

(0.18) (0.18) (0.18) (0.18) (0.18)

I : O 0.15 0.14 0.12 0.11 0.10
(0.26) (0.30) (0.25) (0.25) (0.24)

Ox -4.70∗∗∗ -4.71∗∗∗ -4.71∗∗∗ -4.71∗∗∗ -4.71∗∗∗

(0.22) (0.22) (0.22) (0.22) (0.22)

I : Ox 0.12 0.17 0.17 0.16 0.16
(0.30) (0.30) (0.30) (0.30) (0.30)

Ma -6.82∗∗∗ -6.83∗∗∗ -6.83∗∗∗ -6.83∗∗∗ -6.83∗∗∗

(0.12) (0.12) (0.12) (0.12) (0.12)

C1 -0.07∗∗∗ -0.07∗∗∗ -0.07∗∗∗ -0.07∗∗∗ -0.07∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)

TC 0.67∗∗∗ 0.71∗∗∗ 0.67∗∗∗ 0.67∗∗∗ 0.65∗∗∗

(0.08) (0.08) (0.08) (0.08) (0.08)

µA1
1.14∗∗∗ 1.15∗∗∗ 1.15∗∗∗ 1.15∗∗∗ 1.15∗∗∗

(0.25) (0.24) (0.24) (0.24) (0.25)

TP 0.05 0.05 0.05 0.05 0.05
(0.07) (0.07) (0.07) (0.07) (0.07)

PTBW -0.23∗ -0.24∗ -0.24∗ -0.24∗ -0.24∗

(0.09) (0.09) (0.09) (0.09) (0.09)

PTWM 0.14† 0.14† 0.14† 0.14† 0.14†

(0.08) (0.08) (0.08) (0.08) (0.08)

PTWW 0.07 0.07 0.07 0.07 0.07
(0.08) (0.08) (0.08) (0.08) (0.08)

TH -0.1∗ -0.1∗ -0.1∗ -0.1∗

(0.04) (0.04) (0.04) (0.04)

FRSE 0.00 0.00 0.00
(0.00) (0.00) (0.00)

FRSU 0.00 0.00 0.00
(0.00) (0.00) (0.00)

FRSI 0.00 0.00 0.00
(0.00) (0.00) (0.00)

Female -0.10 -0.11
(0.12) (0.12)

Age 0.00 0.00
(0.00) (0.00)

Black 0.05 0.05
(0.13) (0.13)

EduH 0.18 0.18
(0.13) (0.13)

Sexism 0.05
(0.05)

Racism 0.00
(0.05)

varRE 2.76 2.42 2.41 2.4 2.4
AIC 9664 9583 9584 9590 9593
Obs 20952 20952 20952 20952 20952

All the variables in the first column except “varRE” are the estimated fixed effects. “α” is the intercept. “varRE” is the variance of the player specific random effects.
“AIC” is the Akaike information criterion. “Obs” represents the number of observations. “:” represents the interaction between two variables used before and after it.
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “†” 0.1 ” ” 1
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the variables FRSE , FRSU and FRSI , respectively.
In model CD11, subject-specific demographic attributes gender, race, age and ed-

ucation are introduced with covariates Female, Black, Age and EduH , respectively.
Female is a dummy variable that takes 1 if the subject is female and 0 otherwise (male).
Black is a dummy variable that takes 1 if the subject is black and 0 otherwise (white).
Age denotes subject’s age. EduH is a dummy variable that takes 1 if the subject has
an undergraduate education or higher and 0 otherwise. Lastly, in model CD12, sexism
and racism score of the subjects are introduced with the covariates Sexism and Racism,
respectively. A higher score denotes a higher degree of sexism or racism.

Inclusion of the additional covariates did do not change the previously stated effects
of the treatments variables, I , Os, I : Os and Ox. Furthermore the effect of Ma, C1 and
TC are also observed not to be affected by the inclusion of additional covariates.

The average initial correct classification percentage of a given pair, µA1 , is found to be
positive and significant across all models. This indicates that for photo pairs that subjects
are, on average, more likely to initially classify correctly, those who initially misclassify
them are more likely to correct their mistakes after observing the correct classification
from FRS.33

The type of photo pair is observed to be significant and negative for BW and marginally
significant and positive for WM with respect to the baseline of BM. General trust dis-
position (towards humans) TH is found to have a significant negative effect on advice
utilization. Furthermore, having a higher FRS experience, understanding of FRS, or in-
terest in FRS is found not to have a significant effect on the algorithmic advice utilization.
Similarly, gender, age, race or education level are found not to have a statistical effect on
the advice utilization. Lastly, neither the degree of racism nor sexism is found to have a
significant effect on the algorithmic advice utilization.

3.6 Discussion

3.6.1 Soliciting Advice

We show that granting human decision makers the autonomy to choose when to take
algorithmic advice significantly improves advice utilization compared to when the advice
is a mandatory part of the decision making process. Although we are the first to document
that the positive effect of soliciting advice on its utilization as previously documented in
human advisor settings, also applies when the advisor is an algorithm, we do not provide
further insight into whether this observed effect is primarily due to mitigating fear of loss

33It is worth noting that µA1
does not represent the perceived difficulty of a task. Therefore, this result

does not imply that subjects who perceive a task as harder utilize advice less. Perceived task difficulty is
better indicated by the subject’s initial confidence, and we have previously documented that a decrease in
confidence significantly increases advice utilization.
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of autonomy, egocentric bias, the lack of accessibility to the algorithm’s “reasoning”, the
cost of soliciting, or a combination of these factors.

One may argue that the positive effect of soliciting advice arises not from mitigating
the aforementioned factors but from the subjects’ initial confidence levels. According to
Bayesian updating, when a subject has lower confidence in the correctness of her decision,
she will give more weight to additional information. This is confirmed by the significant
negative effect of initial confidence on the probability of utilizing algorithmic advice. Ad-
ditionally, in Appendix 3.B, we show that higher initial confidence significantly reduces
the likelihood of soliciting advice. Furthermore, in Appendix 3.C, we demonstrate that
the average initial confidence of subjects who solicit advice is significantly lower than
those who do not solicit advice. These results suggest that subjects generally have less
confidence in the correctness of their initial classifications for tasks where they solicit ad-
vice from the FRS. Hence, it can be argued that solicited advice is utilized more because
subjects have lower confidence in their initial classifications for the tasks on which they
seek advice. However, in Section 3.4, Table 3.4, models CD6−7, after controlling for the
initial confidence with the variable C1, soliciting advice still has a significant positive ef-
fect on the probability of utilizing advice, and the estimated coefficient for Os decreases
only slightly from 0.6 to 0.52 after introducing C1. This indicates that while initial con-
fidence plays a significant role in advice utilization, soliciting advice has a significant
positive effect on advice utilization through the aforementioned mechanisms that are not
directly tied to the subjects’ initial confidence.

To determine whether fear of loss of autonomy significantly influences the positive
effect of advice solicitation on algorithmic advice utilization, future research could con-
trol for subjects’ degree of autonomy using the reactive autonomy scale considered by
Koestner et al. (1999).34 Additionally, to investigate the role of information accessibility,
one could use GPT-4 instead of a traditional FRS and include an additional treatment di-
mension where GPT’s classification is provided with additional reasoning generated by
the model.35 Then, by comparing treatments with and without the additional reasoning, it
would be possible to measure whether the positive effect of soliciting advice diminishes
when additional reasoning is provided. Lastly, one could consider an additional treatment
where the time cost of soliciting advice is controlled for by forcing subjects to wait for
some amount of seconds even if they do not solicit advice, and compare the positive effect
of soliciting advice between the these two treatments with and without the effective cost

34Koestner et al. (1999) document that subjects with a higher degree of reactive autonomy discount expert
advice more.

35GPT-4 can take images as input and provide not only classification on the provided visual input (such as
facial image pair comparison) but also offer a ”reasoning” for its classification (Achiam et al., 2023) using
the 0-shot chain of thought prompting technique (Kojima et al., 2022). We considered such an application.
The classification performance appears to be worse than that of a human classifier. The rationale for its
classification included information on the similarities or differences in various facial features, such as eye,
nose, and lip shapes, as well as hair and skin color.
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of soliciting.
Making advice optional places greater reliance on the human decision maker to rec-

ognize when to seek advice. In Appendix 3.B, Table 3.12, model PS3∗ , we show that
making an initial incorrect classification significantly increases the likelihood to solicit
advice, and in Appendix 3.E, Table 3.19, model PRECon2 , we show that making an ini-
tial incorrect classification significantly decreases the initial confidence.36 Yet, in 28%
of the cases, subjects failed to recognize their initial misclassification and opted not to
solicit advice. Furthermore, 20.1% of the time, although subjects solicited advice when
their initial classification were incorrect, they failed to correct their initial misclassifica-
tion by not adopting the classification of FRS. Consequently, although in the mandatory
advice treatment a significantly larger percentage of subjects failed to correct their initial
misclassification by not adopting the algorithmic advice (32.7%), because their overall
exposure to algorithmic advice was approximately 44% higher, we observed average ad-
vice utilization to be lower in the optional advice treatment compared to mandatory advice
treatment.

3.6.2 Additional Accuracy

Overall, providing additional accuracy information had a negative effect on the algorith-
mic advice utilization. Based on previous research, we made the assumption that subjects
have a near-perfect performance expectation from FRS. Consequently, any additional in-
formation provided against this expectation was expected to lead to a decreased advice
utilization. For white photo pairs, additional accuracy information signaled the subjects
that FRS performs perfect to near-perfect, and consequently it did not have a significant
effect on the algorithmic advice utilization for these pairs as it was on par with the as-
sumed prior near-perfect expectation of the subjects for FRS. On the other hand, for black
photo pairs, additional accuracy information signaled the subject that FRS performs be-
low near-perfect, and consecutively subjects updated their prior near-perfect expectation
for FRS downwards and additional accuracy information resulted in a significant negative
effect on advice utilization for black photo pairs. Furthermore, given 83% accuracy of the
black photo pairs results in a significant decrease in the advice utilization suggests that
the assumed 90% threshold value for subjects’ perceived near-perfect performance is a
suitable threshold value to consider at the very least for FRS. Moreover, these results sug-
gest that although people, as previously documented (Dzindolet et al., 2002; Madhavan
and Wiegmann, 2007; Goodyear et al., 2017; Yu et al., 2019; Dietvorst and Bharti, 2020),
have biased near-perfect expectations from AI systems, this bias can be to some degree

36We acknowledge that in both models PS3∗ and PRECon2
, considering initial incorrect classification as

an independent variable is flawed since subjects do not know whether their classification is correct. Yet,
we considered them in order to investigate the correlation between the respective dependent variable and
the subject initially making an incorrect classification.
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mitigated by providing the subjects with the accuracy information for specific use cases
of that AI system.

On the other hand, this desirable debiasing effect of additional accuracy information
is observed to be nullified when advice is solicited. Moreover, we document that this nul-
lifying effect is observed regardless of subjects’ FRS understanding or experience levels.
Since we assume FRS understanding and experience to correlate with prior performance
expectations of FRS, this independence indicates that the effect is also independent of the
subjects’ prior FRS performance expectations. Thus, the observed nullification is not due
to the positive effect of advice solicitation offsetting the negative effect of additional in-
formation. Instead, these results suggest that subjects who solicit advice simply ignore the
additional accuracy information to a significant degree, and thereby fail to benefit from
its potential debiasing effect on their prior expectations.

In brief, these observations suggest that the positive impact of soliciting advice on ad-
vice utilization has an unintended negative consequence: it leads subjects to significantly
ignore the additional accuracy information. If this result generalizes to any AI system, it is
concerning. Consider the current use case of LLMs by the general population. Currently,
LLMs are not fully integrated to our decision making process, but used as on-demand
tools (Zhu and Wang, 2023). In other words, when a person needs to acquire information
from an LLM, she is effectively soliciting its advice. Our findings suggest that despite
warnings about the stochastic nature (Bender et al., 2021) and potential hallucinations
problems of LLMs (Rudolph et al., 2023; Hicks et al., 2024; Xu et al., 2024), people may
ignore these warnings and use its advice in situations where caution is needed, leading to
an unwarranted degree of algorithmic trust due to a lack of desirable degree of skepticism
towards its output. Given that ChatGPT-like LLMs are always used on an on-demand ba-
sis, meaning they are always solicited, any warnings on its user interface about potential
pitfalls, such as ”ChatGPT can make mistakes. Check important info,” will not effectively
make users skeptical of the output provided.

The assumed perfect automation bias, partially mitigated when additional accuracy
information is provided in mandatory advice cases, is documented to partially stem from
subjects’ lack of understanding and experience with FRS. These results underscore the
importance of experience and understanding in effectively benefiting from AI systems.
The mediating effect of prior FRS understanding and experience on the negative effect of
additional accuracy information on advice utilization suggests that educating individuals
about the weaknesses and advantages of AI systems can mitigate PAB. This, in turn,
can foster a desirable degree of skepticism, reducing over-trust and over-reliance on AI
systems, and also mitigate the tendency to heavily discount AI advice after observing it
to err once (Dietvorst et al., 2015; Bogert et al., 2021).

Although we found no significant difference between NM and IM treatments in
terms of the average percentage change in decision for white photo pairs, the average

199



percentage change under IM was consistently lower than the change under NM . This
could stem from variance in subjects’ subjective definitions of near-perfect performance
and their degree of perfect automation bias. However, the consistent, albeit insignifi-
cant, difference for white male photo pairs on the average percentage change in decision
between NM and IM treatments, for which the additional accuracy value is 100%, sug-
gests that additional accuracy information may negatively affect advice utilization through
mechanisms we have not accounted for.

One potential cause for the systematic (yet insignificant) negative effect of additional
information on advice utilization may be the additional external cognitive load that addi-
tional accuracy information places on the subjects (Van Merrienboer and Sweller, 2005;
Sweller et al., 2019). You et al. (2022) argue that providing performance information
regarding the AI system places an additional external cognitive load on the subjects, and
document that increased external cognitive load negatively affects advice utilization as
a higher degree of external cognitive load constraints the individuals internal cognition,
resulting in their decision making capacity to deteriorate (Van Merrienboer and Sweller,
2005; Sweller et al., 2019). Hence, introducing additional accuracy information may
overall cause the subjects to have less internal cognitive capacity to effectively use advice
which consecutively results in an overall decrease on their algorithmic advice utilization.

Additionally, our user interface provides on the right side of the photo pair an infor-
mation box with hypothetical details (name, employee ID, office number, last seen date)
to create a realistic scenario and increase subjects’ intrinsic motivation to effectively per-
form the classification tasks. However, it has been shown that such additional information
deteriorates the facial recognition performance of the human classifier (McCaffery and
Burton, 2016; Feng and Burton, 2019). One may argue that this is because the additional
information increases subjects’ external cognitive load, thereby deteriorating their face
recognition performance. Given that our interface already imposes a high cognitive load
via this information box, additional accuracy information might further exacerbated this
effect, leading to a consistent (though not significant) negative impact on advice utiliza-
tion.

3.7 Final Accuracy

This study focused on the factors affecting advice utilization, and not on the factors affect-
ing the final decision accuracy. Since FRS advice was always correct in our experiments,
a higher degree of advice utilization artificially implied a higher level of final decision
accuracy. As previously argued, this design was chosen to avoid cases where subjects
observe simple errors by the FRS which causes them to subsequently severely discount
its advice. While this approach is suitable for measuring advice utilization, it is unreal-
istic for investigating the effect of treatment variables on final accuracy. If an AI system
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were always correct, it would be unnecessary to allocate this decision to a human decision
maker that is prone to making mistakes. This would be akin to arguing for an AITL sys-
tem involving a human and a calculator for arithmetic tasks. Thus, the observed effects
of treatment variables on advice utilization should not be extrapolated to their effects on
final accuracy, as this would have no external validity.

If an AI system is not always correct, then discounting its advice for cases when
it is not correct would be the desirable action for the subjects to take to improve their
final accuracy. In such cases, the negative effect of additional accuracy information on
advice utilization by debiasing the subjects’ near-perfect performance expectations would
be a desirable for two reasons. Firstly, it would increase the likelihood of the subjects to
discount misleading advice. Secondly, it would mitigate the possibility of the subjects to
heavily discount the advice upon observing a simple error by the algorithm as they will
be less likely to have near-perfect performance expectation from the AI advice. Similarly,
the negative effect of making advice optional on advice utilization would be desirable for
two reasons. Firstly, by trivially not observing a misleading advice, the subject would
not be subject to a false advice that may potentially misguide her. Secondly, by not
soliciting in instances where the algorithmic advice is incorrect, the subject is highly
confident about her classification and her initial classification is correct, she will not be
exposed to the misleading algorithmig advice which she will likely to perceive as false and
therefore not discount the algorithmic advice for the subsequent advices where she should
not necessarily discount. In other words, not soliciting advice will not be a strictly bad
action to take for the subjects, if the AI system with some percentage provides incorrect
advice.

Additionally, the degree of correlation between the errors an AI system makes and
the human makes would matter for how these treatments affect the final accuracy. If the
errors made by the AI system perfectly align with the errors made by human subjects,
the AI advice will only reinforce the subjects’ initial misclassifications. In this scenario,
advice discounting would be beneficial, as the AI system would exacerbate human mis-
takes by providing confirmatory information, leading to increased confidence in incorrect
decisions. Hence, in such an extreme scenario, additional accuracy information would be
beneficial to calibrate the expectations, whereas in this specific scenario, making advice
optional would not make a difference in the final accuracy.

Conversely, if the errors made by the AI system are perfectly negatively correlated
with human errors, soliciting AI advice would improve final accuracy. In this case, the AI
system would correct human misclassifications, leading to better overall decision making
outcomes. Additionally, soliciting advice in such a scenario would minimize the chances
of observing obvious AI errors, thereby reducing the likelihood of heavy discounting of
AI advice in subsequent decisions. Additional accuracy information in this scenario might
again benefit the subject, as the subject will be less likely to portray perfect automation
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bias and therefore will be more likely to critically evaluate algorithmic advice and dis-
count it. However, additional accuracy information would also increase the likelihood of
discounting algorithmic advice when the advice was needed to be adopted. Hence, it is
unclear whether additional accuracy information would generate an overall increase in
final accuracy in this scenario.

Overall, the question of whether the final accuracy of AITL system would be higher
than either of the human or the AI system alone is an empirical question that depends on
the average performance of both the AI system and human, the correlation among the two
parties tendency to make errors in the same tasks, and the meta-cognitive capability of the
human to effectively solicit advice.

Our study has several limitations that warrant further investigation. The reliance on
self-reported measures of understanding and experience with FRS is not desirable as sub-
jects may underestimate or overestimate their degree of FRS understanding or experience.
Future research could explore objective measures of these factors to validate or disprove
our findings. Additionally, we do not measure the perceived near-perfect threshold of
each subject nor the degree of each subject’s perfect automation bias. Instead, based on
the previous prevalent results in the literature, we make broad assumptions that we gener-
alize to the entire subject pool. Future work should consider identifying subject specific
near-perfect performance thresholds and measuring each subject’s the degree of perfect
automation bias in order to improve the validity and robustness of the claims made in this
paper.

3.8 Conclusion

In this research, we investigated whether providing further autonomy to human decision
makers by giving them the option to solicit advice affects their utilization of algorithmic
advice. We documented that although solicited advice is utilized significantly more com-
pared to when advice is always provided, the overall utilization of algorithmic advice is
lower when it is optional because it is not solicited frequently enough.

Furthermore, we investigated the effect of additional accuracy information on algo-
rithmic advice utilization and found that additional accuracy information has an overall
negative effect on algorithmic advice utilization. This negative effect is documented to
occur because subjects with near-perfect performance expectations adjust their beliefs
downward upon seeing information indicating FRS performance below near-perfect lev-
els.

Additionally, subjects with higher levels of prior FRS understanding and experience
are shown to have more accurate performance expectations of FRS. This is demonstrated
by the negative effect of additional accuracy information being primarily observed in
subjects with below average FRS understanding and experience.
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Lastly, it has been documented that when subjects solicit advice accompanied by
additional accuracy information, they often ignore the additional accuracy information.
Hence, the desirable debiasing effect of additional accuracy information fails to be ob-
served when advice is solicited.

While the concept of providing further autonomy to human decision makers warrants
further exploration, our findings show that making advice optional leads to lower algo-
rithmic advice utilization and the ignoring of additional accuracy information. Therefore,
we do not recommend making advice optional as a means to enhance autonomy in an
AITL system.

Future research should explore alternative methods of enhancing human decision
makers’ autonomy by introducing mechanisms that balance reliance on human judgment
with autonomy. One potential alternative could involve giving decision makers the ability
to solicit a brief description of the rationale behind the algorithmic advice while making
advice without rationale mandatory.

203



Author Contributions
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Appendix to Chapter 3

3.A Additional Analysis on Prior Expectations

Tables 3.10a and 3.10b present average percentage change in decision for the subset of the
subjects with above average understanding and above average experience, respectively.
Rows NM and IM indicate the treatments with the same abbreviations. Moreover the
column p denotes the p-value for the proportion test between the NM and IM for that
respective column. The columns WM , WW , BM and BW denote the subset of the data
for each pair type.

WM WW BM BW

NM 68.4 69.6 68.8 65.9
IM 72 77.4 67.5 69.2

p 0.453 0.033 0.846 0.291

(a) HU

WM WW BM BW

NM 71.6 72.5 68.6 70.5
IM 66.7 70.5 65.7 66

p 0.252 0.683 0.545 0.397

(b) HE

Table 3.10: Percentage change in classification decision for high and/or low understand-
ing and experience of the subject for each pair type subset

3.B Probability to Solicit Advice

Soliciting advice is a necessary but not sufficient step for advice utilization in O treat-
ments. If the advice is not solicited, then advice is trivially not utilized; yet, soliciting
advice does not guarantee its utilization. This section examines factors influencing advice
solicitation, considering only data pertaining to O treatments.

Subjects decide to solicit advice before viewing the advice and its associated accu-
racy information. In the IO treatment, this decision requires recalling the accuracy values
relevant to the classification task’s pair type. Therefore, for the initial solicitation, addi-
tional accuracy information is unknown, and advice with additional accuracy information
is expected to positively affect the likelihood of advice solicitation for any photo pair type
due to its expected additional informational value (Yaniv and Kleinberger, 2000; Nyarko
et al., 2006). However, once subjects observe the accuracy information during their first
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Figure 3.2: Distribution of average solicit percentage of subjects in optional advice treat-
ments

solicitation, assuming perfect recall, they will be fully informed about the FRS’s clas-
sification performance and update their prior beliefs downward. Thus, after the initial
solicitation, subjects with perfect recall of the additional information may view FRS’s
advice as less valuable for black photo pairs than initially expected and equally valuable
for white photo pairs as initially expected in no information treatments (N ). Therefore,
given perfect recall of the previously observed accuracy information, additional accuracy
information could be expected to negatively impact advice solicitation for black photo
pairs, have no effect for white photo pairs, and overall result in a negative effect on the
propensity to solicit advice.

Our rationale on the effect of additional accuracy information relies on the assump-
tion that subjects have a perfect recall of the accuracy information once they observe it.
However, the extent of previous exposure to accuracy information and the subjects’ abil-
ity to recall this information may influence the effect of additional accuracy information
on their likelihood to seek advice, potentially invalidating our expectation that subjects’
likelihood to solicit advice is mediated by the specific accuracy values provided for each
pair type.

Alternatively, subjects may vaguely recall the additional accuracy information, aver-
aging the pair type specific accuracy values into a single value that signals FRS’s perfor-
mance as not near-perfect. In other words, the lower accuracy values for BW and BM
pairs may negatively affect subjects’ overall perception of FRS’s performance. Conse-
quently, while subjects are still expected to solicit advice less when additional accuracy
information is present, the decision to solicit advice may not be responsive to the specific
accuracy values for each pair type.

Figure 3.2 displays the distribution of propensity to solicit advice for subjects in the O
treatment. Close to 20% of the subjects always solicited advice, approximately one third
of the subjects solicited advice at least 90% of the time, and approximately half of the
subjects solicited advice at least 70% of the time. Conversely, around 25% of the subjects

207



solicited less than half of the time. In brief, there is a significant degree of variance among
subjects in terms of their exposure to the additional accuracy information.

Given the randomization of photo pairs and subjects likely paying attention only to
relevant pair type accuracy at a given classification task, subjects might only correctly
recall the relevant accuracy information if the prior task involved the same pair type. This
creates uncertainty regarding whether treatment I significantly affects the likelihood of
soliciting advice and if pair type specific accuracy information influences this likelihood.
Moreover, the randomized order of classification tasks makes it unclear how subjects’ so-
licitation behavior evolved.37 For those who solicited advice in less than 90% of cases,
there could be a considerable number of tasks where they did not solicit advice and there-
fore did not observe the additional accuracy information between the tasks where they
did solicit advice, reducing their likelihood of remembering the additional accuracy in-
formation from previous tasks. Hence, lower overall solicitation frequency diminishes the
probability of recalling previously observed accuracy information, thus decreasing the po-
tential effect of additional accuracy information on the likelihood of soliciting advice.

fAll
s fWM

s fWW
s fBM

s fBW
s

N 71.9 72 72.8 72.4 70.2

I 66.6 66.4 70 64.9 65.2

µNI 69.2 69.2 71.4 68.6 67.7

Table 3.11: Average percentage to solicit advice

Table 3.11 shows the average percentages of soliciting advice in O treatments. The
variable fs indicates the average solicitation percentage. The All superscript denotes
the average for the entire O treatment dataset, while the WM , WW , BM , and BW

superscripts denote the averages for the WM, WW, BM, and BW pair type subsets under
the O treatment. The rows correspond to the N and I treatments.

Overall, the average percentage to solicit is observed to be significantly lower in I

treatment compared to N treatment (71.9 vs 66.6; proportion test, p < 0.001). This
result indicates that additional accuracy information, overall, has a negative effect on the
likelihood of soliciting advice.

Additionally, for the BM and WM subsets, average solicitation percentages are sig-
nificantly lower in the I treatment compared to the N treatment (proportion test, pmax <

0.001). In contrast, for the BW subset, the average solicitation percentage is marginally
lower in the I treatment (proportion test, p = 0.005), while for the WW subset, there
is no significant difference between the treatments (proportion test, p = 0.114). These
results suggest that pair type specific accuracy information values do not correlate with

37We did not track the order with which each subject received each classification task.
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the subjects’ average likelihood of soliciting advice.
The significant difference for BM and the marginal significance for BW suggest

that subjects may account for the pair type specific accuracy information values, as their
accuracy values, signaling less than perfect performance from FRS, negatively impact
solicitation likelihood among subjects with near-perfect prior expectations. Furthermore,
the lack of a significant effect for the WW subset is consistent with our rationale, as
we expected that high accuracy would not alter subjects’ near-perfect prior expectations
and thus would not affect their solicitation likelihood. However, WM ’s 100% accuracy
was also expected not to affect solicitation likelihood, as it confirms subjects’ prior near-
perfect expectations. The significant difference found under for WM is in conflict with
our formerly argued expectations. Consequently, we find only partial evidence for the
effect of pair type specific additional accuracy information on the likelihood to solicit
advice.

Table 3.12: Probability to solicit advice

PS1 PS2 PS3 PS3∗

α 1.57∗∗∗ 20.8∗∗∗ 20.42∗∗∗ 20.3∗∗∗

(0.14) (0.57) (0.77) (0.77)

I -0.42∗ -0.52∗ -0.52∗ -0.51∗

(0.20) (0.24) (0.24) (0.24)

C1 -0.22∗∗∗ -0.22∗∗∗ -0.22∗∗∗

(0.01) (0.01) (0.01)

TC -0.11 -0.11
(0.15) (0.15)

MiMa 0.23∗∗∗

0.06

varRE 3.95 5.89 5.87 5.89
AIC 10586 8069 8071 8059
Obs 11160 11160 11160 11160

All the variables in the first column except “varRE” are the estimated fixed effects. “α” is the inter-
cept. “varRE” is the variance of the player specific random effects. “AIC” is the Akaike information
criterion. “Obs” represents the number of observations.
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “†” 0.1 “ ” 1

In Table 3.12, we investigated the effect of additional accuracy information with
three38 logistic mixed-effect models (PS1−3) where the dependent variable is the binary

38We have a forth model PS3∗ where we include the dummy variable MiMa, which takes 1 if the initial
classification of the subject does not match the FRS classification. Given FRS classification is always
correct, MiMa effectively represents the cases where the subject’s initial classification is incorrect. From
a modeling perspective this model is flawed. Introducing MiMa as an independent variable assumes
MiMa affects the probability of solicitation. However, since subjects observe the FRS classification
only after soliciting advice, a direction of causality from MiMa to probability to solicit is not plausible.
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Table 3.13: Probability to solicit advice for each pair type subset

PSWM PSWW PSBM PSBW

α 20.9∗∗∗ 18.38∗∗∗ 22.33∗∗∗ 18.98∗∗∗

(1.29) (1.18) (1.42) (1.23)

I -0.48† -0.37 -0.7∗ -0.4
(0.26) (0.25) (0.29) (0.26)

C1 -0.22∗∗∗ -0.2∗∗∗ -0.23∗∗∗ -0.2∗∗∗

(0.01) (0.01) (0.01) (0.01)

TC 0.11 0.17 0.02 0.12
(0.15) (0.15) (0.17) (0.16)

varRE 5.29 4.87 6.53 5.52
AIC 2363 2345 2310 2434
Obs 2790 2790 2790 2790

All the variables in the first column except “varRE” are the estimated fixed effects. “α” is the inter-
cept. “varRE” is the variance of the player specific random effects. “AIC” is the Akaike information
criterion. “Obs” represents the number of observations. “:” represents the interaction between two
variables used before and after it.
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “†” 0.1 “ ” 1

variable to get advice. The models are conducted on the subset of the data containing
only the O treatments. Subjects are incorporated as random effect to the models. In all
models, additional accuracy information is observed to have a significant negative effect
on the probability to solicit advice. Additionally, while initial confidence is observed to
have a negative significant effect on the probability to solicit advice, trust in FRS is found
not to have a significant effect on the probability to solicit advice.

Additionally, in Table 3.13, we have estimated model PS3 under each pair type sub-
set. Additional accuracy information is found to significantly and negatively affect the
probability to solicit advice only for the pair type BM, and negatively and marginally
significantly affect the probability to solicit advice for the pair type WM. These results
provide further evidence that there is no correlation between the degree of accuracy pro-
vided for the specific pair type and the probability to solicit advice.

In Table 3.14, covariates are gradually introduced to the model PS3, in the same
fashion done with models CD7−11. The negative effect of additional information and
initial confidence on the probability to solicit advice is maintained across models PS4−8.

This model is an attempt to investigate whether subjects are more likely to solicit advice following an
initial misclassification, even though they do not receive any feedback on their initial classification and
hence they do not know whether they have made a false classification, and even though we already account
for their confidence in the correctness of their initial classification with the variable C1. The results of
this model, especially the significant positive estimated coefficient of MiMa is considered as a part of
a discussion in Section 3.6 regarding the subjects’ ability to effectively solicit advice when they have
an initial incorrect classification. Hence this model is not part of the investigation regarding the factors
affecting subjects’ probability to solicit advice but provided in Table 3.12 for convenience.
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Table 3.14: Probability to solicit advice with additional covariates

PS4 PS5 PS6 PS7 PS8

α -5.73∗∗∗ -6.67∗ -7.51∗∗∗ -8.2∗∗∗ -7.87∗

(2.57) (2.64) (2.64) (2.67) (2.67)

I -0.50∗ -0.46† -0.50∗ -0.53† -0.54∗

(0.25) (0.25) (0.24) (0.24) (0.23)

C1 0.42∗∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.42∗∗∗

(0.06) (0.06) (0.06) (0.06) (0.06)

TC 0.1 0.08 -0.03 -0.01 0.05
(0.16) (0.15) (0.15) (0.15) (0.15)

µA1 -0.32 -0.32 -0.32 -0.32 -0.32
(0.25) (0.25) (0.25) (0.25) (0.25)

TP -0.04 -0.04 -0.04 -0.04 -0.04
(0.07) (0.07) (0.07) (0.07) (0.07)

PTBW -0.09 -0.09 -0.09 -0.09 -0.09
(0.09) (0.09) (0.09) (0.09) (0.09)

PTWM 0.04 0.04 0.04 0.04 0.04
(0.09) (0.09) (0.09) (0.09) (0.09)

PTWW 0.10 0.10 0.11 0.10 0.10
(0.09) (0.09) (0.09) (0.09) (0.09)

TH 0.13† 0.1 0.07 0.03
(0.09) (0.08) (0.08) (0.08)

FRSE -0.01† -0.01† -0.01†

(0.00) (0.00) (0.00)

FRSU 0.32 0.28 0.23
(0.28) (0.27) (0.27)

FRSI 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.01) (0.01) (0.00)

Female -0.17 -0.15
(0.24) (0.23)

Age 0.03∗∗∗ 0.03∗∗∗

(0.01) (0.01)

Black -0.08 -0.09
(0.24) (0.24)

EduH -0.33 -0.31
(0.25) (0.24)

Sexism 0.08
(0.1)

Racism -0.3∗

(0.1)

varRE 6.08 6.02 5.58 5.38 5.26
AIC 7981 7982 7963 7956 7951
Obs 11160 11160 11160 11160 11160

All the variables in the first column except “varRE” are the estimated fixed effects. “α” is the inter-
cept. “varRE” is the variance of the player specific random effects. “AIC” is the Akaike information
criterion. “Obs” represents the number of observations. “:” represents the interaction between two
variables used before and after it.
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “†” 0.1 “ ” 1
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None of the classification task specific covariates (µA1 , TP , PTBW , PTWM , PTWW )
are observed to have a significant effect on the probability to solicit advice. For models
PS6−7, a higher degree of experience in FRS, FRSE , is observed to have a negative and
significant, albeit minuscule, effect on the probability to solicit advice, whereas a higher
degree of interest in FRS, FRSI , is observed to have a positive and significant, albeit
small, effect on the probability to solicit advice for models PS6−8. Furthermore, older
subjects are found to be more likely to solicit advice, and subjects with a higher degree of
racism are found to be less likely to solicit advice.

3.C Change in Confidence

The primary measure of advice utilization we have so far considered is the subject’s switch
from their initial classification to the observed advised classification. Difference between
pre- and post-advice confidence levels can provide a more nuanced understanding on
how the advice influences subject’s decision process (Bonaccio and Dalal, 2006). Even
if the subject does not alter her initial classification upon receiving a differing advice, a
reduction in her confidence will suggest that the advice, at the very least, affected her
belief in the correctness of her initial classification. Conversely, if the subject observes an
agreeing classification advice from FRS, although she is very much likely not to change
her pre-advice classification, an increase in her confidence may be observed.

Past studies have shown that, on average, receiving advice increases subjects’ confi-
dence (Heath and Gonzalez, 1995; Savadori et al., 2001; Soll et al., 2022). Savadori et al.
(2001) argue that the process of advice evaluation enables the advisees to further develop
their rational for their classification. This process, in turn, results in a higher post-advice
confidence level compared to the pre-advice confidence level. In addition, Soll et al.
(2022) argue that when subjects’ initial classification matches the advised classification,
their confidence level increases to the degree of being considered as overconfident. In line
with the previous results in the literature, we expect that when advice aligns with subjects’
initial classifications, it serves as a confirmatory signal that boosts subjects’ belief in the
correctness of their decisions (Nickerson, 1998).

Conversely, in cases where there is a mismatch between the two classifications, advice
can be expected to serve as a signal that decreases subjects’ belief on the correctness of
their classification, and hence, to decrease subjects’ post-advice confidence. On the other
hand, it is also likely for this non-confirmatory information to be under-weighted, if not
ignored (Edwards and Smith, 1996). Zaleskiewicz and Gasiorowska (2018) show that if
the advice is not in line with the subject’s initial decision, subjects have a higher tendency
to disregard the advice and question the advisor’s ability to correctly assess the problem
(rather than questioning the correctness of their answer). Hence, subject’s post-advice
confidence level may be expected not to decrease upon observing a contradictory advice,
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and may even be increased to compensate for the dissonance generated by the observed
disagreement between the classifications of FRS and the subject.

M O Os Ox µMO

N 85.3 86.1 83.3 92.9 85.7
I 85.3 86.2 82.8 92.9 85.8

µNI 85.3 86.1 83.1 92.9 85.8

Table 3.15: Initial confidence

In Table 3.15, initial confidence levels for each treatment are presented. Labels are as
defined for Table 3.1a. There is no significant difference in the initial confidence levels
of the subjects in the treatments NM and IM (ranksum test, p = 0.39), and in the
treatments NO and IO (ranksum test, p = 0.19). On the other hand, overall, subjects in
the O treatments are observed to have significantly higher initial confidence relative to the
subjects in the M treatments under either N or I treatments (ranksum test, pmax < 0.001).
Yet, although the difference is significant, it is less than a percentage point higher than
the average initial confidence levels observed in the M treatments. Subjects who solicited
advice are observed to have a significantly lower initial confidence levels than subjects
who did not solicited advice, Ox (ranksum test, pmax < 0.001) and than the subjects in
the M treatments (ranksum test, pmax < 0.001) under either N or I treatments. Whereas
subjects who choose not to solicit advice are observed to have a significantly higher initial
confidence levels than subjects in the M treatments (ranksum test, pmax < 0.001). These
significant differences corroborate our finding that initial confidence is a significant factor
in the decision to solicit advice from FRS.

Additionally, a mixed-effect linear regression model39 with the initial confidence level
as the dependent variable is considered to further investigate the effect of treatment vari-
ables while controlling for additional covariates on the initial confidence levels. As be-
fore, each subject is treated as a random effect in the model.

Neither of the treatment variables are found to have a significant effect on the initial
confidence levels. Moreover, BW and WW photo pairs are found to have a negative
significant effect on the initial confidence levels. This indicates that, overall, relative to the
baseline of BM photo pairs, BW and WW photo pairs are perceived as pairs that subjects
are less confident in the correctness of their classification. However, as we have previously
presented, BW pairs have a positive significant effect on the initial classification accuracy,
whereas WW pairs have a negative significant effect on the initial classification accuracy.
Hence, while with WW pairs subject’s accuracy and her confidence in her accuracy are
positively correlated, for BW pairs, it is negatively correlated, indicating some degree of
underconfidence in the classification of BW pairs.

39See Appendix 3.D Table 3.19 for details.
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Additionally, black subjects are found to be more confident in their initial classifi-
cation. Similarly, higher education is found to be marginally significant and positive,
suggesting higher education having a positive effect on the initial confidence of the sub-
jects. Education’s effect on confidence is on par with its marginal positive effect on the
accuracy of the initial classification, indicating the subjects with higher education are
slightly better at the classification task and more confident on their initial classification.
A higher degree of sexism and racism are both found to have a positive significant effect
on the initial confidence level. While a higher degree of sexism was not found to have
any effect on the initial accuracy, racism was observed to have a negative effect on the
initial accuracy. Hence, a higher degree of racism, and to some degree a higher degree of
sexism, result in the subjects to be overconfident in their initial classification.

M O Os Ox µMO

N 9.9 9.1 12.9 0.2 9.4
I 9.1 8.7 13.3 0.3 8.9

µNI 9.5 8.9 13.1 0.2 9.2

Table 3.16: Percentage change in confidence for match cases

In Table 3.16, average percentage changes in the confidence for match cases are pre-
sented. Match cases denote the cases where the subject’s initial classification matches
with FRS’ classification. Recall from Table 3.2a that on average only around 1.4% of the
instances, subjects change their initial classification, if their initial classification matches
with the FRS’ classification. Thus, the confidence changes in Table 3.16 primarily reflect
the subjects’ reactions to FRS’ advice matching their initial classification. Furthermore,
in addition to the investigation of the additional information’s effect on confidence, un-
like our prior investigation on the percentage change in decision, we are not interested in
the overall effect of the O treatments on the percentage change in confidence, as we are
attempting to discern whether subjects who did not change their decision upon observing
advice are still affected by it via adjusting their belief on the correctness of their classi-
fication. While the overall effect of the O treatment is relevant for the advice utilization,
as opting to not receive advice is a trivial type of advice discounting, it is not relevant for
the effect of advice on the level of confidence. Instead, we are concerned with identifying
whether soliciting advice has an effect on the post-advice confidence, as we are investi-
gating whether there is a change in the confidence for cases where the subject discounted
the advice by opting not to adopt the FRS’ classification.

In Table 3.16, percentage changes in confidence is marginally significantly greater
in NM treatment compared to IM treatment (ranksum test, p = 0.002). Conversely,
there is no significant difference found between NOs and IOs (ranksum test, p = 0.872).
These results indicate that for match cases while the additional information treatment has
a negative effect on the post-advice confidence, this effect is reversed when the advice
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is solicited. However this reversing effect of soliciting advice on additional information
is found not to be statistically significant. On the other hand, percentage changes in
confidence is found to be significantly greater when advice is solicited, Os, then when
advice is mandatory, M , under either information treatment, N or I (ranksum test pmax <

0.001). Lastly, when advice is not received, Ox, the change in confidence is found to be
significantly lower then any other case (ranksum test pmax < 0.001), but still significantly
larger than 0 (ranksum test, pmin > 0.11).

In summary, when subjects observe FRS’ advice to agree with their initial classifica-
tion, their initial confidence increase on average by 9.2 percentage points. This increase
is significantly larger when the subjects solicit the advice. Furthermore, the presence of
additional information has a significant negative effect on post-advice confidence only
when advice is mandatory.

M O Os Ox µMO

N 3.1 4.6 4.6 -0.8 3.8
I 0.9 5.8 5.9 1.9 3.3

µNI 2.1 5.2 5.3 0.1 3.6

(a) Decision changed

M O Os Ox µMO

N -4.9 -1.8 -5.6 0.3 -3.1
I -5.3 -0.8 -3.2 0.4 -2.7

µNI -5.1 -1.3 -4.5 0.4 -2.9

(b) Decision not changed

Table 3.17: Percentage change in confidence for mismatch cases

In Tables 3.17a and 3.17b, average percentage changes in the confidence for mismatch
cases are presented. The mismatch cases denote the cases where the subject’s initial
classification differs from the classification of FRS. Table 3.17b presents the subcases
where subjects changed their classification to FRS’ classification, whereas Table 3.17a
presents the subcases where subjects did not change their classification despite observing
a different classification by FRS.

In Table 3.17a, for the cases where the subjects adopted the advised classification,
except for the IM treatment and Ox subcases, percentage change in confidence is signifi-
cantly larger than 0 (ranksum test, pmax < 0.001). Moreover, except for Ox subcases, the
value in each cell in Table 3.17a is significantly lower than the values in their respective
counterpart cells in 3.16 (ranksum test, pmax < 0.001) where the advised classification
matches the initial classification. These two results indicate that changing the classifica-
tion to the advised classification increases the confidence but this increase is not as high as
the increase observed when subjects receive an advice matching their initial classification.

The results in Table 3.17a parallel the results we observed with match cases in Table
3.16. Additional information is causing the increase in the post-advice confidence to be
lower in M treatments while the reverse holds true when the advice is solicited. More-
over, similar to the match cases, while the difference between NM and IM is found to
be significant (ranksum test, p < 0.001), the difference between NOs and IOs is found
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not to be signficant (ranksum test, p = 0.226). These results indicate that when ad-
vice is mandatory, if it is accompanied by additional information, additional information
mitigates subject’s tendency to increase her confidence upon adopting FRS’ advice. On
the other hand when advice is solicited, additional information further boosts subject’s
tendency to increase her confidence upon adopting FRS’ advice, but this effect is not
significant.

Additionally, percentage changes in confidence is found to be significantly greater
when advice is solicited, Os, then when advice is mandatory under I (ranksum test,
p < 0.001), and marginally significantly greater under N (ranksum test p = 0.007).
These results indicate that soliciting advice not only enables a higher degree of advice
utilization, but also reinforces advice utilization by generating a higher degree of increase
in the initial confidence of the subjects when advice confirms with subjects’ initial (cor-
rect) classification. Lastly, average percentage changes in Ox cases are found not to be
significantly different from 0 under either N or I treatments (ranksum test, pmin > 0.659).

In Table 3.17b, except for Ox subcases, all the average percentage change in confi-
dence values negative. Furthermore, except for IO where the value of -0.8 is found not
to be significantly different from 0 (ranksum test, p = 0.022), they are all found to sig-
nificantly less than 0 (ranksum test, pmax < 0.001). These results show that when the
advised classification differs and the subjects do not change their classification, they still,
on average, adjust their confidence by being less certain about the correctness of their
initial confidence.

The results in Table 3.17b align with the previously observed results regarding the
effect of additional information. In M treatments, additional information causes the de-
crease in the post-advice confidence to be higher, whereas the decrease in confidence is
mitigated when advice is solicited. Yet, unlike previous cases, the effect of additional
information is significant under Os (ranksum test, p < 0.001) but not under M (ranksum
test, p = 0.123).

Note that although additional accuracy information’s effect and its direction parallels
previous cases, its implications differ in this scenario where the subjects do not adopt the
FRS advice, i.e. utilize the advice. In the mismatch cases where the subjects adopted
the FRS classification, an increase in confidence implies that the subjects become more
confident upon utilizing the advice. Whereas, in this scenario, an increase in confidence
implies that the subjects become more confident upon discounting the advice. Hence,
the observed significant positive effect of additional information in Os subcases on initial
confidence implies that when advice is solicited, observing additional information rein-
forces subjects’ advice discounting by mitigating the decrease in their initial confidence
for not utilizing the advice.

Furthermore, unlike previous cases, soliciting advice does not significantly affect post-
advice confidence under the no information treatment N (ranksum test, p = 0.083). How-
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ever, under the additional information treatment I , soliciting advice has a significant pos-
itive effect on post-advice confidence (ranksum test, p < 0.001). These results suggest
that while subjects may not change their classification to match the advised classifica-
tion, their (mis)belief on the correctness of their initial classification decreases to a larger
degree when advice is solicited.

Table 3.18 presents four linear mixed-effect models estimating the effect of treatment
variables on the percentage change in subjects’ confidence, treating each subject as a ran-
dom effect. Except for DCAll, each model is estimated on a specific subset of the dataset.
DCAll is based on the entire dataset, DCMa on match cases, DCCD

Mima on mismatch cases
where subjects changed their decision, and DCNCD

Mima on mismatch cases where subjects
did not change their decision.

Table 3.18: Percentage change in confidence

DCAll DCMa DCCD
MiMa DCNCD

MiMa

α 5.18∗∗∗ 9.94∗∗∗ 2.62∗∗ -6.34∗∗∗

(1.12) (0.52) (0.89) (0.57)

I -1.22† -0.79 -2.44† 0.84
(0.72) (0.74) (1.26) (0.77)

Os 2.83∗∗∗ 3.13∗∗∗ 1.7 0.73
(0.71) (0.73) (1.23) (0.82)

I : Os 1.87† 0.79 3.72∗ 2.1†

(1) (1.03) (1.76) (1.13)

Ox -9.16∗∗∗ -12.91∗∗∗ -7.93† -5.48∗∗∗

(0.43) (0.46) (4.26) (0.61)

I : Ox -0.07 0.47 7.81 -3.21∗∗∗

(0.59) (0.63) (5.54) (0.83)

NCD 4.24∗∗∗ 0.78
(1) (0.85)

MiMa -9.16∗∗∗

(0.43)

MiMa : NCd -5.46∗∗∗

(1.05)

varRE 46.29 48.9 42.98 29.53
AIC 164625 88020 48270 23432
Obs 20952 11750 5763 3439

All the variables in the first column except “varRE” are the estimated fixed effects. “α” is the inter-
cept. “varRE” is the variance of the player specific random effects. “AIC” is the Akaike information
criterion. “Obs” represents the number of observations. “:” represents the interaction between two
variables used before and after it.
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “†” 0.1 “ ” 1

In model DCAll, we introduce the dummy variable MiMa, which takes the value of
1 if there is a mismatch between the subject’s initial classification and the FRS’ classifi-
cation and 0 otherwise. Additionally, we include the dummy variable NCD, which takes
the value of 1 if the subject did not change her initial decision and 0 otherwise.
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In model DCAll, the marginally significant negative coefficient for I and the signifi-
cant positive coefficient for IOs indicate that additional information overall reduces post-
advice confidence, while soliciting advice increases it. Furthermore, choosing not to re-
ceive advice, Ox, significantly decreases confidence. The significant positive coefficient
for NCd suggests that when subjects receive confirming advice and do not change their
decision, their confidence increases. Conversely, the significant negative coefficient for
MiMa indicates that conflicting advice and changing the initial classification decrease
confidence. Lastly, the significant negative estimated coefficient for the interaction term
between MiMa and NCd shows that observing conflicting advice and not changing the
initial classification further decreases confidence.

In models DCMa, DCCD
MiMa, and DCNCD

MiMa, the varying number of observations makes
it difficult to compare the insignificance of the dummy variable coefficients across mod-
els. That being said, the significant positive intercepts in models DCMa and DCCD

MiMa, and
the significant negative intercept in DCNCD

MiMa, are consistent with previous observations:
confidence increases in match cases and in mismatch cases where subjects changed their
decision, but decreases in mismatch cases where subjects did not change their decision,
except for Ox subcases. The marginally significant negative coefficient for I in DCCD

MiMa

aligns with the previously observed negative effect of additional accuracy on confidence
changes in match cases and mismatch cases where subjects changed their initial classi-
fication. The positive coefficients for Os in models DCMa and DCCD

MiMa, though only
significant in DCMa, are consistent with the previously observed positive effect of solic-
iting advice on confidence changes in match cases and mismatch cases where subjects
did not change their classification. Lastly, despite the earlier observation of a significant
positive interaction between treatments only in mismatch cases where subjects did not
change their decision, we observe the estimated coefficient for I : Os to be positive and
significant under model DCCD

MiMa and to be positive and marginally significant under the
model DCNCD

MiMa. Thus, our complementary regression analysis largely corroborates our
earlier results.

In brief, the change in confidence analysis shows that not only additional accuracy in-
formation decreases advice utilization, but for cases where subjects utilizes FRS’ advice,
either by not changing their initial classification upon observing confirmatory advice or
by switching to the advised classification, it causes the subject to be less confident in uti-
lizing FRS’ advice. Similarly, soliciting advice not only increases advice utilization but it
also increase subjects’ post-advice confidence upon the utilization of the advice. Lastly,
when solicited advice is accompanied by additional accuracy information and the advice
contradicts with the subject’s initial classification and the subject decide not to switch her
classification to the advised classification, additional accuracy information reinforces this
discounting behavior by mitigating the overall effect of decrease in confidence when the
advised classification is not utilized.
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3.D Additional Tables

Table 3.19: Pre-Advice error and confidence

PREErr PRECon1 PRECon2

α -0.33∗∗∗ 80.41∗∗∗ 80.56∗∗∗

(0.08) (1.17) (1.17)

I -0.06 0.08 0.07
(0.05) (0.74) (0.74)

O -0.03 0.82 0.81
(0.05) (0.71) (0.71)

I : O -0.02 0.09 0.09
(0.07) (1.01) (1.01)

PTBW -0.55∗∗∗ -0.28∗ -0.32∗

(0.04) (0.16) (0.16)

PTWM 0.00 0.05 0.05
(0.04) (0.16) (0.16)

PTWW 0.10∗ -0.69∗∗∗ -0.68∗∗∗

(0.04) (0.16) (0.16)

Female 0.10∗ 0.40 0.41
(0.03) (0.51) (0.51)

Age 0.00∗ 0.02 0.02
(0.00) (0.02) (0.02)

Black -0.05 2.51∗∗∗ 2.51∗∗∗

(0.03) (0.51) (0.51)

EduH -0.05 0.79 0.78
(0.04) (0.52) (0.52)

Sexism 0.01 0.40† 0.40†

(0.01) (0.21) (0.21)

Racism 0.05∗ 0.38† 0.39†

(0.01) (0.22) (0.22)

MiMa -0.36∗∗

(0.12)

varRE 0.08 52.23 52.15
AIC 28321 149030 149023
Obs 20952 20952 20952

All the variables in the first column except “varRE” are the estimated fixed effects. “α” is the intercept. “MiMa” represents
the cases where the subjects’ initial classification does not match the FRS classification. It takes 1 if there is a mismatch and 0
otherwise. Since FRS classification is always correct, it effectively represents the cases where the subjects’ initial classification
is false. “varRE” is the variance of the player specific random effects. “AIC” is the Akaike information criterion. “Obs”
represents the number of observations.
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “†” 0.1 “ ” 1
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Table 3.20: Probability to change decision

CD3b CD6b

α 9.79∗∗∗ 7.88∗∗∗

(0.35) (0.39)

I -0.44† -0.45†

(0.2) (0.21)

O -0.7∗∗∗

(0.19)

I : O 0.07
(0.26)

Os 0.72∗∗∗

(0.21)

I : Os 0.06
(0.3)

Ox -6.49∗∗∗

(0.33)

I : Ox 0.71‡

(0.43)

Ma -7.8∗∗∗ -7.72∗∗∗

(0.27) (0.27)

C1 -0.1∗∗∗ -0.08∗∗∗

(0.00) (0.00)

Ma : I 0.83† 0.83†

(0.35) (0.35)

Ma : O 1.55∗∗∗

(0.32)

Ma : I : O -0.19
(0.43)

Ma : Os -1.17†

(0.43)

Ma : I : Os 0.53∗∗∗

(0.55)

Ma : Ox 9.13∗∗∗

(0.49)

Ma : I : Ox -1.74∗

(0.62)

varRE 2.95 3.31
AIC 11112 9039
Obs 20952 20952

All the variables in the first column except “varRE” are the estimated fixed effects. “α” is the inter-
cept. “varRE” is the variance of the player specific random effects. “AIC” is the Akaike information
criterion. “Obs” represents the number of observations. “:” represents the interaction between two
variables used before and after it.
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “†” 0.1 “ ” 1
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3.E Additional Materials

Figure 3.3: FRS advice screen with additional accuracy bar plots for each pair type

Figure 3.4: Example of an edited photo
On the middle and the right, we have the original images of the same person. In order to make this
classification task, the earrings are edited out and the clothing is replaced on the image on the left.
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3.F Experimental Instructions

Figure 3.5: Main instructions page 1

Figure 3.6: Main instructions page 2
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Figure 3.7: Tutorial instructions
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Figure 3.8: Tutorial task example
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Figure 3.9: Quiz questions
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Figure 3.10: Classification task step 1 example
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Figure 3.11: Classification task step 2 example
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Figure 3.12: FRS understanding, experience and interest questions
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3.F.1 Trust in FRS Questionnaire

I believe facial recognition systems are competent performers.40

I trust facial recognition systems.

I have confidence in the advice given by facial recognition systems.

I can depend on facial recognition systems.

I can rely on facial recognition systems to behave in consistent ways.

40These survey questions are adopted from Mcknight et al. (2011) to fit the concept of FRS. For each
question the following choices are given:
Strongly disagree, Rather disagree, Neither agree nor disagree, Rather agree, Strongly agree
Other questionnaires (sexism, racism, general trust propensity) are used without any modification to their
questions and hence are omitted.
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Wang, Najoung Kim, Jacob Andreas, and Yoon Kim, “Reasoning or reciting?

exploring the capabilities and limitations of language models through counterfactual

tasks,” arXiv preprint arXiv:2307.02477, 2023.

Wulf, Gabriele and Charles H Shea, “Principles derived from the study of simple

skills do not generalize to complex skill learning,” Psychonomic bulletin & review,

2002, 9 (2), 185–211.

Xu, Ziwei, Sanjay Jain, and Mohan Kankanhalli, “Hallucination is inevitable: An

innate limitation of large language models,” arXiv preprint arXiv:2401.11817, 2024.

Yang, Jie, Judith Redi, Gianluca Demartini, and Alessandro Bozzon, “Modeling

task complexity in crowdsourcing,” in “Proceedings of the AAAI Conference on

Human Computation and Crowdsourcing,” Vol. 4 2016, pp. 249–258.

Yaniv, I. and E. Kleinberger, “Advice taking in decision making: egocentric

discounting and reputation formation,” Organizational Behavior and Human Decision

Processes, 2000, 83, 260–281.

Yaniv, Ilan, “Receiving other people’s advice: Influence and benefit,” Organizational

behavior and human decision processes, 2004, 93 (1), 1–13.

Yarger, Lynette, Fay Cobb Payton, and Bikalpa Neupane, “Algorithmic equity in

the hiring of underrepresented IT job candidates,” Online information review, 2020,

44 (2), 383–395.

Ye, Junjie, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan

Cui, Zeyang Zhou, Chao Gong, Yang Shen et al., “A comprehensive capability

analysis of gpt-3 and gpt-3.5 series models,” arXiv preprint arXiv:2303.10420, 2023.

260



Yeomans, Michael, Anuj Shah, Sendhil Mullainathan, and Jon Kleinberg,

“Making sense of recommendations,” Journal of Behavioral Decision Making, 2019,

32 (4), 403–414.

Yoo, Kang Min, Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo,

Sang-Woo Lee, Sang goo Lee, and Taeuk Kim, “Ground-truth labels matter: A

deeper look into input-label demonstrations,” arXiv preprint arXiv:2205.12685, 2022.

You, Sangseok, Cathy Liu Yang, and Xitong Li, “Algorithmic versus human advice:

does presenting prediction performance matter for algorithm appreciation?,” Journal

of Management Information Systems, 2022, 39 (2), 336–365.

Yu, Kun, Shlomo Berkovsky, Ronnie Taib, Jianlong Zhou, and Fang Chen, “Do I

trust my machine teammate? an investigation from perception to decision,” in

“Proceedings of the 24th International Conference on Intelligent User Interfaces”

2019, pp. 460–468.

Yuan, J, P Bao, Z Chen, M Yuan, J Zhao, J Pan, Y Xie, Y Cao, Y Wang, Z Wang

et al., “Advanced prompting as a catalyst: Empowering large language models in the

management of gastrointestinal cancers,” The Innovation, 2023.

Yuan, Weizhe, Graham Neubig, and Pengfei Liu, “Bartscore: Evaluating generated

text as text generation,” Advances in Neural Information Processing Systems, 2021,

34, 27263–27277.

Zaleskiewicz, Tomasz, Agata Gasiorowska, Katarzyna Stasiuk, Renata

Maksymiuk, and Yoram Bar-Tal, “Lay evaluation of financial experts: The action

advice effect and confirmation bias,” Frontiers in psychology, 2016, 7, 1476.

and , “Tell me what I wanted to hear: Confirmation effect in lay evaluations of

financial expert authority,” Applied Psychology, 2018, 67 (4), 686–722.

Zanzotto, Fabio Massimo, “Human-in-the-loop artificial intelligence,” Journal of

Artificial Intelligence Research, 2019, 64, 243–252.

Zhang, Bowen, Daijun Ding, and Liwen Jing, “How would stance detection

techniques evolve after the launch of chatgpt?,” arXiv preprint arXiv:2212.14548,

2022.

261



Zhang, Lixuan, Iryna Pentina, and Yuhong Fan, “Who do you choose? Comparing

perceptions of human vs robo-advisor in the context of financial services,” Journal of

Services Marketing, 2021, 35 (5), 634–646.

Zhang, Susan, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,

Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin et al.,

“Opt: Open pre-trained transformer language models,” arXiv preprint

arXiv:2205.01068, 2022.

Zhao, Wayne Xin, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,

Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong et al., “A survey of large

language models,” arXiv preprint arXiv:2303.18223, 2023.

Zheng, Huaixiu Steven, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H

Chi, Quoc V Le, and Denny Zhou, “Take a step back: Evoking reasoning via

abstraction in large language models,” arXiv preprint arXiv:2310.06117, 2023.

Zhong, Qihuang, Liang Ding, Juhua Liu, Bo Du, and Dacheng Tao, “Can chatgpt

understand too? a comparative study on chatgpt and fine-tuned bert,” arXiv preprint

arXiv:2302.10198, 2023.

Zhu, Qingxiaoyang and Hao-Chuan Wang, “Leveraging Large Language Model as

Support for Human Problem Solving: An Exploration of Its Appropriation and

Impact,” in “Companion Publication of the 2023 Conference on Computer Supported

Cooperative Work and Social Computing” 2023, pp. 333–337.

Zhu, Yiming, Peixian Zhang, Ehsan-Ul Haq, Pan Hui, and Gareth Tyson, “Can

chatgpt reproduce human-generated labels? a study of social computing tasks,” arXiv

preprint arXiv:2304.10145, 2023.

Ziems, Caleb, William Held, Omar Shaikh, Jiaao Chen, Zhehao Zhang, and Diyi

Yang, “Can large language models transform computational social science?,”

Computational Linguistics, 2024, pp. 1–55.

262



Declaration of Generative AI and
AI-assisted technologies in the writing
process

During the preparation of this dissertation I used GPT-4 in order to improve readability
and language of the text. After using this tool, I reviewed and edited the content as needed.

263



This page is intentionally left blank



Eidesstattliche Erklärung
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