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Summary 
 

Metacognition is the remarkable human ability to know and to think about one’s own 

cognition (Flavell, 1979). A large part of metacognition research has been conducted in the domain 

of memory where people’s assessments of their learning and memory are obtained via 

metamemory judgments. Inferential accounts of metacognition state that metamemory judgments 

such as judgments of learning (JOLs) – predictions of future memory –– are inferences based on 

cues and heuristics (Koriat, 1997). Since around the last 30 years, researchers have uncovered many 

cues that underlie metamemory judgments, most of which are valid and lead to accurate 

metamemory, but some of which are invalid and lead to illusions. Further, researchers have 

focused on understanding whether cues are directly and/or indirectly used for metamemory 

judgments through beliefs and/or feelings, respectively. But little is known about how cues 

informing metamemory judgments are learned or acquired.  

The goal of this thesis is to investigate and understand some of the mechanisms through 

which cues utilized for judging memory are learned. To this end, I used various experimental 

learning paradigms soliciting metamemory judgments. Across the three studies within this thesis, 

I found that experience with one’s own learning and testing is beneficial for judging the general 

memorability of pictures by increasing the judgment sensitivity to valid cues (Manuscript I). 

However, neither experiences across multiple study-test cycles nor cognitive feedback on the recall 

status and JOL given to each studied item are effective for learning cue validities in judgments for 

one’s own memory, JOLs. Rather, cue validities are learned through informative explanations 

about metacognition that lead to a deeper understanding of the cues (Manuscript II). Moreover, 

in a first demonstration of statistical learning influencing metacognition, I showed that regularities 

are extracted from experience with the environment and then used to inform JOLs. Since 

regularities in the environment are abundant, demonstrating that cues are learned via statistical 

learning mechanisms has relevant implications for real world learning (Manuscript III). 

With this, I showed when and which experiences are helpful for learning cues, what is 

effective in alleviating metacognitive illusions, and how to learn cues from the environment. 

Overall, the three manuscripts in this thesis contribute to our understanding of how cues for 

metamemory judgments are learned and pave the way for future research on cue learning in 

metamemory.  
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Manuscripts 
 
 The research in this thesis was conducted at the Center for Doctoral Studies in Social and 

Behavioral Sciences (CDSS) of the Graduate School of Economic and Social Sciences (GESS) at the 

University of Mannheim. It is based on three manuscripts, one of which has been published and 

two of which have been submitted for publication.  

 In the three manuscripts, I investigate the question of how cues for metamemory 

judgments are learned. I found that cue knowledge to judge the generic attribute of memorability 

in pictures is acquired from experiences with one’s own learning and testing (Manuscript I). I also 

showed that experiences across multiple study-tests cycles and cognitive feedback on the recall 

status and JOL given to each studied item is not sufficient for learning cue validities, but rather an 

in-depth explanation of metacognition is needed (Manuscript II). Finally, I demonstrated that cues 

that inform metamemory judgments are extracted from the environment and learned via statistical 

learning mechanisms (Manuscript III). In the following chapters, I provide theoretical foundations, 

manuscript summaries, and an integrative discussion of the manuscripts’ results. Details on the 

experimental paradigms and statistical analyses can be found in the original manuscripts appended 

to this thesis.  

 

Manuscript I 
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Mannheim. Department of Psychology, Technical University of Darmstadt.  

 

Manuscript III 

Navarro-Báez, S., Bröder, A., & Undorf, M. (2024). Detecting structure: Cues for metacognitive judgments 

are acquired via statistical learning. [Manuscript submitted for publication]. Department of 

Psychology, University of Mannheim. Department of Psychology, Technical University of 

Darmstadt.  
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1. Introduction 
 
 The human mind has the amazing cognitive ability to reflect upon itself. This allows us to 

reflect on our own thoughts. Over the centuries, abilities such as self-observation and 

introspection have been used as methods to gain knowledge about the self and the mind. Since 

the cognitive revolution of the 1960’s, modern psychology has focused on explicitly studying 

metacognition – not as a methodological tool for studying the mind, but as a mental operation per 

se. 

 Flavell (1979) was the first to define metacognition as knowledge and cognition about 

cognitive phenomena. This encompasses our knowledge, thoughts, and evaluations about how we 

can learn more effectively and remember information better, which are highly relevant in 

educational and professional settings. Consequently, metacognition research has mainly developed 

in the domain of memory. Metamemory refers to the ability to know and to assess memory 

(Dunlosky & Thiede, 2013). Researchers typically measure people’s assessments of their learning 

and memory by asking them to make metamemory judgments. Relevant to this thesis, judgments of 

learning (JOLs) are common prospective metamemory judgments about the likelihood of 

remembering recently studied items on an upcoming test (Dunlosky & Metcalfe, 2009). For 

example, a student predicts how likely it is that she will remember the definition of epigenetics on 

an upcoming exam. In Nelson and Narens' (1990) classic conceptual framework of metamemory, 

metamemory operates at a meta-level, interconnected with object-level cognitive processes like 

encoding and retrieval, through monitoring and controlling these object-level activities. Thus, in 

the previous example, the student would not only make a prediction about her memory 

(monitoring) but also use the output of her prediction to regulate her memory by deciding to 

allocate further study time to the topic of epigenetics (control) if the prediction was low. People 

also engage in metamemory in everyday life, for instance, when making a list to prevent forgetting 

something. These examples illustrate how monitoring is a guide for behavior. Importantly, the 

causal link between monitoring and control has now been demonstrated by several studies showing 

that items that participants feel the least confident of remembering are chosen to restudy, memory 

performance is better if monitoring and regulation are accurate (Metcalfe & Finn, 2008; Rhodes & 

Castel, 2009; Thiede et al., 2003; Tullis & Benjamin, 2012).  
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How do people monitor their memory?  
Initial theories of metamemory suggested that people have direct access to the varying 

strengths of the memory traces formed during encoding, and thus, they can transform them into 

accurate recall probability ratings to predict memory (Cohen et al., 1991; Hart, 1967; Schwartz, 

1994). The direct-access view predicts a strong correspondence between metamemory and 

memory given that both processes are based on the same underlying factor (i.e., memory trace 

strength). However, this is at odds with what psychology had already demonstrated that people 

cannot directly observe their cognitive processes as introspection does not produce an accurate 

picture of the mind (Nisbett & Wilson, 1977). In a seminal study, Koriat (1997) found unequivocal 

evidence against the direct-access hypothesis: whereas the effect of a factor inherent to the items 

(i.e., word pair relatedness) was equal on JOLs and the recall criterion, the effect of other extrinsic 

factor (i.e., study repetition) was stronger on recall and discounted on JOLs. Since then, vast 

evidence on systematic dissociations between predicted and actual recall have favored inferential 

accounts of metamemory (see Undorf et al., 2022, for a review). According to the cue-utilization 

approach (Koriat, 1997), JOLs are inferences based on cues and heuristics about the likelihood of 

remembering items. A cue can be any stimulus or characteristic that is intrinsic or extrinsic to the 

materials learned, such as word pair relatedness or number of study trials, respectively. Cues can 

also be internal to the learner such as the experience of ‘ease’ during learning (Undorf & Erdfelder, 

2011), or idiosyncratic such as the personal significance of to-be-studied materials (Undorf et al., 

2022). In this way, people use whichever cues are available to them for informing and making 

JOLs (Undorf et al., 2018). The accuracy of JOLs will be largely determined by the extent to which 

the cues used to make JOLs correlate with actual memory performance.  

 

How accurate is metamemory?  
Many cues predictive of memory performance have been found to underlie JOLs. For 

example JOLs are higher for related word pairs such as ‘nest – bird’ than for unrelated ones such as 

‘pineapple – monkey’ (e.g., Arbuckle & Cuddy, 1969), for concrete words such as ‘mouse’ than abstract 

ones such as ‘phase’ (e.g., Witherby & Tauber, 2017), and for emotional words such as ‘love’ than 

non-emotional ones such as ‘axis’ (e.g., Zimmerman & Kelley, 2010). However, JOLs have also 

been found to rely on invalid cues like the large font size in which words are displayed (Rhodes & 

Castel, 2008), or the loudness of words (Frank & Kuhlmann, 2017; Mueller et al., 2014). JOLs can 

also ignore valid cues like the number of future study opportunities (Kornell & Bjork, 2009). This 

indicates that although people have a good idea about which cues are predictive of memory and 

their JOLs are sensitive to those cues, their JOLs also ignore or reflect erroneous ideas about the 
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predictive value of certain qualities, situations, and experiences. Having said that, relative accuracy, 

the degree to which item-by-item JOLs correlate with actual memory performance for each item, 

is often moderate. But it can suffer when JOLs rely on invalid cues or fail to rely on valid cues 

(Undorf, et al., 2022). 

 

Methods to improve monitoring 
In general, the literature provides two methods to enhance the relative accuracy of JOLs, 

both of which rely on retrieval practice (Dunlosky & Metcalfe, 2009; Rhodes, 2016). The first 

method is testing practice, where retrieval success or failure during testing serves as a basis for 

subsequent memory predictions (Finn & Metcalfe, 2007, 2008). This greatly improves relative 

accuracy because current retrieval success is often predictive of performance on a future test 

(Dougherty et al., 2005). The second method that produces significant improvements in relative 

accuracy is delaying JOLs instead of prompting them immediately (Nelson & Dunlosky, 1991). 

The delayed-JOL-effect is explained by participants relying on long-term retrieval success or 

failure, which becomes diagnostic some time after study, rather than immediately when item 

information is still accessible in working memory (Dunlosky & Nelson, 1992). Another compatible 

explanation is that successful retrieval boosts final recall performance due to retrieval practice 

which ensures judgment predictive accuracy (Spellman & Bjork, 1992).  In conclusion, both testing 

practice and delaying JOLs are robust methods that enhance the relative accuracy of JOLs by 

relying on previous retrieval attempts. One caveat of testing practice is that when JOLs are required 

for new materials, accuracy remains unaffected because reliance on previous test performance is 

impossible. Moreover, both methods have the limitation that judgment sensitivity to valid cues, 

which is a determinant of accuracy, is not enhanced immediately during learning. Thus, ways to 

enhance monitoring accuracy per se in a first study trial are missing.  

 

The goal of this thesis 
Uncovering ways to enhance metacognitive sensitivity to valid cues immediately during the 

learning of new materials can be a powerful tool for effectively training metacognition. However, 

little is known about how to increase cue sensitivity of metamemory judgments, and about how 

people learn or discover new information that they can rely on when making metamemory 

judgments. Therefore, the goal of this thesis is to understand how cues that inform metamemory are 

learned. Specifically, in Manuscript I, I systematically compared the cue basis and relative accuracy 

of two different types of metamemory judgments, predictions of one’s own later memory 

performance (JOLs) and predictions of generic item memorability (memorability judgments, MJs). 

1. Introduction 



 4 

This systematic comparison demonstrated that both metamemory judgments have similar cue 

bases and relative accuracy. However, personal learning and testing experiences improve the 

relative accuracy of MJs by enhancing sensitivity to valid cues. In Manuscript II, in the context of 

metacognitive illusions, I tested different forms of feedback to enhance JOL sensitivity to valid 

cues but underweighted by JOLs (i.e., number of future study opportunities) and invalid cues but 

overweighted by JOLs (i.e., font size, font format). Results showed that people do not learn to 

appropriately weight cues on their JOLs from cognitive feedback about one’s own recall 

performance and JOL for each studied item. In contrast, additional metacognitive feedback that 

includes information about actual task performance at the population level, the functioning of 

metacognition, and ways to improve it increases JOL reliance on the number of future study 

opportunities, thereby enhancing relative accuracy. In Manuscript III, I tested statistical learning 

as a mechanism to extract regularities from the environment without explicit instruction, or 

intention to learn. This demonstrated that such regularities learned through statistical learning are 

used as cues to inform JOLs even if those are not necessarily predictive of actual memory 

performance. Overall, this expands our knowledge about metacognition and opens the door for 

further research on cue learning, a topic that has been largely overlooked in metacognition 

research.  

In Chapter 2, I first give a more extended overview on the historical origins of 

metamemory research. Second, I expand on the cue-utilization approach to JOLs. Third, relevant 

to this thesis, I present metamemory accuracy measures, and metacognitive illusions. Finally, I 

review two existing cue learning methods in the literature.  

In Chapter 3, I approach how people learn cues to inform their metamemory judgments through three 

different angles; learning about item memorability from one’s own experience (Manuscript I), 

learning and unlearning cues from feedback (Manuscript II), and learning new cues extracted from 

the environment (Manuscript III). With this, I contribute to three important specific questions in 

the field of metamemory: 1) how people learn to judge memorability as general attribute of an 

item, 2) how to alleviate metacognitive illusions, and 3) how to learn new cues from the 

environment.  

In Chapter 4, I conclude this thesis by integrating the implications of each study 

manuscript, by clarifying open questions about whether cue learning occurs from experience or 

feedback, and by examining the nature of the cue content learned. I also outline future research 

directions regarding the relationship between monitoring and control, as well as the effectiveness 

of cue learning paradigms

1. Introduction 
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2. Theoretical Foundations 
 
2.1 Historical Origins 

The origin of experimental research in metamemory can be traced back to the 1960’s with 

the first systematic investigations on feelings of knowing judgments (see Hart, 1965, 1967). Hart 

was interested in situations where people cannot directly answer a question, but report the feeling 

of knowing the answer and having it at the tip of their tongue. Specifically, he wanted to know 

whether those tips-of-the-tongue experiences are accurate indicators of what is stored in memory. 

To this end, he developed a paradigm to produce such experiences and evaluate their accuracy. 

The recall-judgment-recognition paradigm consist of a recall test, and a multiple-choice 

recognition test. In the recall test, subjects are tested on basic facts (e.g., Which is the largest planet in 

our solar system?) and they are asked to recall the correct answer. If they cannot recall the answer, 

they are asked to make a binary judgment about correctly recognizing the correct answer among 

four alternatives in a multiple-choice test (e.g., Pluto, Venus, Earth, Jupiter). Results showed that the 

judgments can discriminate with above-chance accuracy which items will later be recognized and 

which ones will not. The finding that people can accurately monitor their memory was crucial for 

the development of metacognition research. Hart interpreted his finding as evidence that people 

have direct access to the content of their memory. Importantly, however, this study paved the way 

to develop paradigms that test the validity of people’s judgments about their own cognition instead 

of taking accuracy for granted. 

Later, Arbuckle and Cuddy (1969) introduced prospective judgments about memory made 

during learning (i.e., JOLs). Specifically, their study tested whether people are sensitive to 

differences in the associative strength of two items. For this, they prompted participants during 

learning to predict future recall. Results showed that participants’ predictions were sensitive to 

differences in associative strength among items, and therefore, exceeded the criterion of chance 

performance. In their study, Arbuckle and Cuddy (1969) suggested to look for other possible 

factors that affect predictions about future recall without affecting actual memory performance. 

However, this agenda waited for a while since researchers focused on examining the development 

of metacognition in children (Flavell, 1979).  

The next important step in metacognition research was made by Flavell et al. (1970) who 

did not focus on examining basic metacognitive processes (e.g., direct-access accounts), but rather 

focused on the development of metacognition across childhood. In their study, they examined 

children’s ability to predict future recall and spontaneous use of learning strategies across different 
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age groups (i.e., nursery school, kindergarden, second graders, and fourth graders). Specifically, 

children were asked to study a sequence of pictures and make global predictions about the 

maximum number of pictures that they could correctly recall. In another task, children were asked 

to study pictures in their own self-paced time to achieve perfect recall while the experimenter was 

observing their study behavior. Results showed that all groups of children were overconfident in 

their predictions, but less overconfidence was observed in the two oldest age groups. In addition, 

more effective learning strategies were applied by the oldest children.  

These results were important for Flavell to develop his model of cognitive monitoring with 

four components (Flavell, 1979): 1) metacognitive knowledge, 2) metacognitive experiences, 3) 

goals (or tasks), and 4) actions (or strategies). Metacognitive knowledge refers to stored knowledge 

and beliefs about how our cognition operates (e.g., I am better at literature than at math). Metacognitive 

experiences refer to phenomological cues that arise during learning such as feelings of ease. Goals 

(or tasks) refer to the goal that one desires to attain with a particular cognitive enterprise, and 

actions (or strategies) refer to the specific cognitions and self-regulation strategies that one 

performs to achieve a goal. Flavell’s theoretical model provided the first stepping stones for 

examining the relation between monitoring and regulation of cognition. This opened research on 

metacognition in educational contexts (Brown et al., 1983). At the same time, the first 

investigations about memory beliefs were conducted in children (Borkowski et al., 1983; Kurtz & 

Borkowski, 1987), and questionnaires for evaluating people’s knowledge about memory, frequency 

of monitoring, and control strategies were designed (Gilewski et al., 1990). 

The next studies that solicited item-by-item memory predictions made during learning (i.e., 

JOLs) after Arbuckle and Cuddy (1969) were the studies by Groninger (1976, 1979). Subjects 

studied a list of words that varied in their word characteristics (concreteness, emotionality, 

nonsense). Results showed that words which received higher JOLs were more likely to be 

recognized than words which received lower JOLs. Crucially, Groninger (1976, 1979) interpreted 

the findings as subjects utilizing word attributes that are predictors of performance in their 

judgments, thereby moving away from direct-access interpretations. Afterwards, the research on 

JOLs continued with important study findings such as previous recall performance in a first trial 

being more predictive of recall performance in a second trial than second-trial-JOLs (King et al., 

1980). This study was important for the future line of research on the memory-for-past-test 

heuristic, which refers to basing memory predictions on previous memory performance when 

materials are studied repeatedly across trials (Finn & Metcalfe, 2007, 2008).  

Finally, Nelson and Narens (1990) provided a theoretical framework for metamemory 

which was an enormous contribution to the metamemory field promoting its rapid development. 

2. Theoretical Foundations 



 7  

The framework is built upon the idea that there are two independent levels: the object-level and 

the meta-level. Memory corresponds to the object-level and metamemory corresponds to the 

meta-level (see Figure 1). The two levels are interrelated via the flowing of information to form 

two processes called monitoring and control. Monitoring is the information that flows from the object-

level to the meta-level. This information changes the state of the meta-level by creating a 

representation of the object-level, in other words, creating a dynamic model of memory. This 

model is the content of metamemory. To assess monitoring, participant’s introspective reports of 

their own cognition are solicited. Control is the information that flows from the meta-level to the 

object-level. This information changes the state of the object-level by producing an action of 

initiation, continuation, or termination (e.g., a student decides to start, to continue, or to stop 

studying).  

Nelson and Narens also examined the degree to which people have direct (or privileged) 

access to their own memories. They concluded that feeling-of-knowing judgments do not monitor 

currently inaccessible items but rather information that is related to the item and speaks about its 

future retrievability (e.g., I have recalled this item in many previous occasions).   

 
Figure 1  
Nelson and Narens’ (1990) theoretical framework of metamemory 

 
Note. The framework consists of two structures (meta-level and object-level) and two relations (monitoring and 
control) in terms of the direction of the flow of information between the two levels. The meta-level (metamemory) 
contains a dynamic model of the object-level (memory).  
 

Furthermore, Nelson and Narens’ theoretical framework categorized some examples of 

monitoring and control judgments based on the time in which they are made during the memory 

process; acquisition, retention, and retrieval (see Figure 2). Research has now shown that 

monitoring judgments rely on different qualitative information depending on the time in which 

they are solicited (Busey et al., 2000; Dougherty et al., 2005), and that monitoring may be composed 

of two distinct abilities, one occurring during learning and one during retrieval (McDonough et al., 

2. Theoretical Foundations 
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2021). As previously mentioned, this thesis focuses on monitoring judgments of learning (JOLs) 

made during the acquisition phase to predict future test performance of recently acquired items. 

Importantly, this thesis also expands the metamemory framework by examining judgments about 

the generic memorability of items, not made during learning but tapping into people’s 

metacognitive models of item memorability.  

 

Figure 2 
Categorization of metamemory judgments in the theoretical metamemory framework by Nelson and Narens (1990) 

 
Note. Main stages of memory (acquisition, retention, retrieval) and some examples of monitoring judgments (top) 
and control judgments (bottom) linked to the stages of memory in which the judgments are made. This thesis 
focuses on judgments of learning monitoring ongoing learning. 
 
2.2 Cue-utilization Approach to JOLs 
 Koriat (1997) put forward the cue-utilization approach to JOLs. This approach explained 

several findings in the literature regarding the effect of different variables (e.g., word concreteness, 

word frequency, encoding strategies, number of study trials) on both the judgment and the 

memory criterion or just one (Begg et al., 1989; Mazzoni & Cornoldi, 1993; Zechmeister & 

Shaughnessy, 1980). The cue-utilization approach assumes that JOLs as other metamemory 

judgments are inferential in nature. This means that participants do not directly monitor the 

memory traces of items being learned, but rather use heuristics or cue information to infer future 

2. Theoretical Foundations 
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recall. Specifically, Koriat (1997) tested whether cue effects on predicted and actual recall would 

be similar or different as well as the sensitivity of JOLs to different cues. Results showed that JOLs 

followed the same pattern as recall performance for word pair relatedness (i.e., higher for related 

pairs than unrelated ones). However, JOLs differed from recall performance as they did not predict 

better memory for word pairs learned in two trials than in one trial only. This resulted in 

underconfident JOLs for word pairs learned across two trials, an effect called the underconfidence-

with-practice (UWP) effect. The finding that there are variables affecting predicted and actual recall 

differently provided unequivocal evidence for the cue-utilization approach. Furthermore, Koriat’s 

cue-utilization approach made two other important contributions: 1) providing a taxonomy for 

cues, and 2) suggesting two inferential routes by which cues influence JOLs.  

First, the taxonomy differentiates among three main classes of cues: extrinsic, intrinsic, and 

mnemonic. Extrinsic cues are related to the conditions in which items are learned or the encoding 

strategies employed for their learning, such as the number of study repetitions (e.g., Kornell & 

Bjork, 2009). Intrinsic cues are features inherent to the study items, such as word pair relatedness 

(e.g., Undorf & Erdfelder, 2015), or  word concreteness (e.g., Witherby & Tauber, 2017). Mnemonic 

cues refer to internal personal cues such as the subjective experience of ease that arises during 

learning, i.e., fluency (Alter & Oppenheimer, 2009). Importantly, mnemonic cues are sensitive to 

intrinsic and extrinsic cues. This is because experiences of ease during learning can arise from other 

underlying cues such as word pair relatedness.  

Second, the cue-utilization approach specifies two inferential routes how cues influence 

judgments. One route is theory-based or analytic: people deliberately apply a rule or a theory about 

a cue. For example, people believe that concrete words are more likely to be remembered than 

abstract words, and thus, make higher JOLs for concrete words than abstract ones (Witherby & 

Tauber, 2017). It is suggested that extrinsic and intrinsic cues affect JOLs directly through the 

theory-based route. Another route is experience-based or non-analytic: people implicitly use 

intrinsic or extrinsic cues via mnemonic cues (i.e., fluency) to inform their JOLs, without 

necessarily being aware of the actual cue that is producing fluency feelings (Koriat & Levy-Sadot, 

1999). For example, people make higher JOLs for items written with their dominant hand than 

non-dominant hand because writing with the dominant hand elicit fluency experiences even when 

there is no belief that the writing hand impact memory performance (Susser et al., 2017; Susser & 

Mulligan, 2015). 

Many metamemory studies have investigated the relative contributions of theory- and 

experience-based cues to JOLs. Thus, several methods have been developed to assess whether 

cues influence JOLs directly via beliefs, for instance; pre-study JOLs in which only cue information 

2. Theoretical Foundations 
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is provided (i.e., the word that you are about to study is concrete) (Castel, 2008; Witherby & Tauber, 2017), 

global predictions made before studying in combination with global poststudy predictions made 

after studying (Frank & Kuhlmann, 2017), and post-experimental questionnaires (Undorf et al., 

2017). Methods that have been used to measure whether the cues influence JOLs indirectly via 

fluency are: response times in a lexical decision task (Mueller et al., 2013), self-paced study times 

(Undorf & Erdfelder, 2015), trials to acquisition (Undorf & Erdfelder, 2015), and mental image 

latency (Hertzog et al., 2003), among others. Importantly, recent theoretical developments suggest 

that fluency can also influence JOLs via beliefs (i.e., analytic way) such as “it is quicker to learn, it 

must be memorable” (Undorf, 2020). Therefore, independent beliefs and fluency measures must be 

obtained to establish claims about the analytic or non-analytic basis of JOLs. 

 

2.3 Metamemory Accuracy Measures 
 A relevant question in metacognition research is the accuracy of metacognitive judgments 

(Koriat, 2007). Overall, metacognitive judgments are considered accurate if they closely 

correspond to the criterion (memory). However, this correspondence can be measured in either 

relative or absolute terms, which are the two central aspects of accuracy to differentiate.  

Relative accuracy (or resolution) refers to the degree to which the judgments discriminate 

between remembered and non-remembered items. This is the psychological ability to detect which 

items are more likely to be remembered than others. The within-subjects Goodman-Kruskal 

gamma correlation has become the standard measure of resolution as recommended by Nelson 

(1984). Goodman-Kruskal gamma is a rank correlation that measures at the ordinal level the 

association strength between the two observable variables: JOLs (continuous, from 0% to 100%) 

and memory performance (dichotomous, remembered = 1, or non-remembered = 0), ignoring 

ties. The recommendation is to calculate a gamma correlation for each participant’s data, JOLs and 

memory performance. These gamma correlations by participant are then submitted to statistical 

tests such as t-tests or Anovas to make group inferences about the effects of different variables. 

Gamma is calculated by counting the number of concordant and discordant pairs. A concordant 

pair consists of two items, one of which has a higher JOL than the other, and it is recalled while 

the other is not. A discordant pair consists of two items, one of which has a higher JOL than the 

other, but it is not recalled while the other is, and vice versa. A tie pair consists of two items that 

have the same value either in the predictor (JOL) or in the criterion (memory), these pairs are 

ignored in the gamma computation, as mentioned above. 

The gamma correlation is computed as follows:  
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Gamma = (Concordances – Discordances) / (Concordances + Discordances) 

 

Gamma ranges from +1 to -1, with higher values indicating better resolution, and a gamma 

of zero indicating that resolution is at chance level. Nelson (1989) noticed that the relation between 

Gamma and the probability measure V (V = Concordances) / (Concordances + Discordances) is 

one-to-one and linear: 

 

V = .5 (Gamma) + .5 

 

Calculating a gamma correlation for each participant’s data and then submitting it to an 

inferential test such as t-test or ANOVA is considered a by-participants analysis. This is because 

only the random sampling variation of participants is considered. Recently, Gamma has been 

criticized due to inflated Type 1 error in by-participant analysis because the random sampling 

variation of the items is ignored (Murayama et al., 2014). A solution proposed to this problem is 

the use of logistic mixed models that consider both the random participant effect and the random 

item effect, with the memory performance as the outcome variable and JOLs as the predictor 

variable. Another criticism of gamma is that it deviates from its actual value with liberal or 

conservative response bias (Masson & Rotello, 2009). The authors showed that this occurs despite 

gamma not making any distributional assumptions beyond the ordinal level, but because the 

gamma computation ignores ties. They suggested to use measures grounded on signal detection 

models that make distributional assumptions to correct for ties. However, to date, despite the 

criticism, the most widely used measure of relative accuracy among metamemory researchers is 

still the Goodman-Kruskal gamma correlation. This is probably the case because easy comparisons 

of relative accuracy as measured by gamma can be made across studies.  

The other aspect of accuracy is absolute accuracy (or calibration) which refers to the absolute 

difference of the average JOL and average memory performance. For example, if participants study 

a list of items and correctly recall 40% of them, while their average JOL is also 40%, this indicates 

perfect calibration. Bias is the calibration measure most widely used (Dunlosky & Metcalfe, 2009). 

Bias is easily computed by subtracting the average memory performance from the average JOL of 

each participant (Nelson & Dunlosky, 1991). Positive values of bias indicate overconfidence while 

negative values of bias indicate underconfidence. A bias equal to zero indicates perfect calibration. 

Importantly, to calculate bias, both JOLs and memory performance need to be in the same 

numerical scale. This is the reason for researchers to solicit JOL on a 0-100% probability scale 

rather than on a 7-point or 4-point Likert scale.  
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Relative and absolute accuracy have different implications as suggested by Koriat (2007). 

Specifically, relative accuracy is important at the item-level, while absolute accuracy is important at 

the task-level. For example, in the scenario where a student is preparing for an exam, relative 

accuracy helps the student to determine how much study time to allocate to each topic of the 

exam. Absolute accuracy is important for assessing the overall level of preparedness, it helps the 

student to make an informed decision regarding whether to stop or continue studying for the exam 

as whole. Importantly, both measures of accuracy, resolution, and calibration, are independent. 

For example, this is demonstrated by the underconfidence-with-practice-effect (UWP), in which 

there is a shift from overconfidence to underconfidence from the first study-test cycle on, but 

accompanied by an improvement in resolution (Koriat et al., 2002). This is presumably because 

JOLs fail to consider the benefit of a retrieval experience and a second learning trial, while 

increased reliance on mnemonic subjective experience or reliance on the memory-for-past-test 

heuristic improves resolution (Koriat, 1997).  

 

2.4 Metacognitive Illusions 
Systematic dissociations between predicted and actual memory (i.e., metacognitive 

illusions) have attracted great attention due to the opportunity to investigate the inferential basis 

of the judgments (i.e., theory-, experience-based). Relevant to this thesis (Manuscript II), I will 

now focus on three metacognitive illusions: the font size illusion, the stability bias, and the font 

format illusion.  

The font size illusion occurs when large-font words elicit higher JOLs compared to small-

font words, despite not resulting in better memory performance (Rhodes & Castel, 2008). This 

illusion has been widely replicated (see meta-analysis, Chang & Brainerd, 2022). In the original 

study by Rhodes & Castel (2008), the illusion persisted despite experience across multiple study-

test cycles and warnings but was reduced by manipulating the fluency of words via the font format 

(i.e., standard vs. AlTeRnAtInG). This implied that the font size illusion was non-analytic, i.e., 

experience based. However, later evidence suggested that fluency does not contribute as much as 

previously assumed: Mueller et al. (2014) reported that large-font words were not more fluent than 

small-font words as measured by reaction times in a lexical decision task or self-paced study time. 

Further, Luna et al. (2019) found evidence for the role of beliefs by showing that people believe 

large-font words are more important than small-font words. Similarly, Undorf & Zimdahl (2019) 

showed that JOLs increase monotonically with the font size of words to the point that words are 

not fluent anymore due to be presented in a very large font size. To date, the debate regarding the 

inferential basis of the font size illusion continues but belief (analytic) explanations are favored. 
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Furthermore, two meta-analyses have now shown that there is a small but significant font size 

effect on memory, suggesting that the font size illusion is a gross overestimation of a small effect 

(Chang & Brainerd, 2022; Luna et al., 2018).  

The stability bias illusion occurs when people assume that memories are stable over time, 

and thus, they fail to consider the benefit of future learning or the impact of forgetting (Kornell & 

Bjork, 2009). Specifically, Kornell & Bjork (2009) asked participants to predict their recall 

performance in a later test scheduled to take place after one, two, three, or four study trials (i.e., 

ST, SST, SSST, SSST). Results showed that, when the number of study trial was manipulated 

between-subjects, recall performance increased from Test 1 to Test 4 by an average of 33% points 

while predicted recall increased only by an average of 3%. The same was found when using 

aggregate predictions on a between-subjects basis, participants did not predict better recall with 

more study trials (i.e., average predicted recall for Test 1 was 54% and average predicted recall for 

Test 4 was 57%). Manipulating number of study trials on a within-subjects basis made JOLs slightly 

more sensitive to the number of study trials but participants still largely underestimated how much 

learning occurs (i.e., actual recall from Test 1 to Test 4 increased by an average of 43% points 

while predicted recall increased only by an average of 8%). In addition, warning participants about 

the beneficial effect of learning opportunities still did not fully reduce underestimations of learning 

(i.e., actual recall from Test 1 to Test 4 increased by an average of 48% points while predicted 

recall increased only by an average of 15%). Overall, participants underestimated how much they 

can learn with more study. This was despite they held the belief that studying results in better 

memory as measured by making two predictions for the same item, one for recalling the item in 

Test 1 and another one for  recalling the item in Test 2 or 4. The authors concluded that people 

failed to apply their metacognitive beliefs that studying results in better memory.  

The font format illusion occurs when standard-font words elicit higher JOLs compared to 

AlTeRnAtInG-font words, despite not resulting in better recall performance (Rhodes & Castel, 

2008, but see Mueller et al., 2013). This illusion has been used as a manipulation of perceptual 

fluency by two studies. In the study by Rhodes & Castel (2008), there was a significant interaction 

between font size and font format, indicating that the font size of words does not affect JOLs 

when words are presented disfluently in the alternating format compared to the standard format. 

However, Mueller et al. (2013) found no significant interaction between word pair relatedness and 

font format, indicating that the effect of relatedness is not disrupted by presenting words in 

alternating format. The fact that both studies have used font format as a manipulation of fluency 

does not indicate that beliefs do not contribute to the font format illusion. To sum up, the font 

size illusion, stability bias, and font format illusion are systematic dissociations between JOLs and 
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actual memory that occur due to erroneous beliefs about memory, the failure in the application of 

beliefs, and/or fluency. 

 

2.5 Cue Learning Methods 
 In general, the topic of cue learning has not been addressed in metamemory research as 

such. On the one hand, there are methods in the literature to enhance monitoring accuracy. On 

the other hand, researchers have tried to mend metacognitive illusions on JOLs. As mentioned in 

the introduction, testing practice and delaying JOLs are two robust methods that improve 

monitoring accuracy by relying on retrieval attempts of previously learned items (Dougherty et al., 

2005; Dunlosky & Nelson, 1992; Nelson & Dunlosky, 1991).  

In this thesis, I focus on methods for learning new cues to judge memory and for 

enhancing judgment cue sensitivity during the learning of new items. This is important because 

control judgments such as the allocation of study time, strategy selection, or restudy choices 

happen during the acquisition of information (see bottom part of Figure 2). At the same time, 

these decisions do not only happen for previously learned items but also happen for new items 

currently being learned. For example, during an initial study session, a student determines which 

topics need more focus and which can be covered with a single review. Given that accurate 

monitoring leads to effective regulation of learning (e.g., Metcalfe & Finn, 2008; Rhodes & Castel, 

2009; Tullis & Benjamin, 2012), it is crucial to know more about how to enhance judgment 

sensitivity to valid cues during learning. However, currently little is known about how to enhance 

cue sensitivity of immediate JOLs and how cues are generally learned. In this subsection, I will 

provide an overview of methods that can be considered for cue learning. These methods were 

originally investigated in the contexts of learning about strategy effectiveness from experience (i.e., 

knowledge updating research) and mending metacognitive illusions through direct instructions or 

warnings.  

 Knowledge updating refers to how individuals learn from experience about the effects of study 

strategies (Dunlosky & Hertzog, 2000). In knowledge updating studies, participants complete two 

study-test cycles in which they learn word pairs under a high effective study strategy (e.g. imagery,) 

or under a low effective study strategy (e.g., repetition) instruction. However, JOLs in the first 

cycle are not sufficiently sensitive to the relative effectiveness of both strategies. Because pairs 

studied under imagery are better recalled than pairs learned under repetition (mean difference of 

around 20%), JOLs in the second cycle are expected to accurately predict this difference in 

magnitude between the two strategies. The knowledge updating framework delineates four 

assumptions in which experiences from the first study-test cycle would lead to improved JOLs in 
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a second cycle. The first assumption is that the strategies must be differentially effective. The 

second assumption is that monitoring must occur during learning and testing. The third 

assumption is that recall performance must not only be monitored but also attributed to the 

specific strategy. The last assumption is that the newly acquired knowledge about strategy 

effectiveness must be utilized in JOLs. However, results from knowledge updating studies have 

shown that JOLs in a second cycle are not fully adjusted to reflect the superiority of the imagery 

strategy over repetition (Dunlosky & Hertzog, 2000; Hertzog et al., 2009; Mueller et al., 2015). 

This incomplete JOL update occurs despite global predictions about the number of items learned 

under each study strategy being better adjusted, though not entirely.  

One explanation for why participants do not fully update their JOLs is that the utilization 

assumption fails because other more prominent cues during learning overshadow the strategy 

effectiveness cue, this is called the encoding-disrupts-updating hypothesis (Mueller et al., 2015). Another 

explanation is that there is a failure in the attribution of item recall performance to the strategy, 

this is called the inferential-deficit hypothesis (Dunlosky & Hertzog, 2000; Matvey et al., 2002). Both 

hypotheses have received partial support. Mueller et al. (2015) used pre-study JOLs, which are not 

influenced by experiences during learning (e.g., You are about to study a pair using imagery (or repetition), 

please rate how likely you are to remember it), to test the encoding-disrupts-updating hypothesis. They 

found that pre-study JOLs are almost equivalent to immediate JOLs in that both show a utilization 

deficit by discounting newly acquired knowledge about strategy effectiveness in JOLs. Directly 

testing the inferential-deficit hypothesis by providing feedback on how many pairs are correctly 

recalled did not lead to more updating (Mueller et al., 2015). But, another study found that testing 

pairs in strategy blocks and presenting the strategy during test helped participants to monitor their 

test performance and make correct study strategy attributions which in turn was effective for JOL 

updating (Price et al., 2008). In sum, the knowledge updating framework for JOLs outlines 

assumptions that might support cue learning. This research shows that the second assumption (i.e., 

monitoring of study and test performance), the third assumption (i.e., test performance 

attributions to cues), and the fourth assumption (i.e., utilization of newly acquired knowledge) can 

fail and prevent adaptive cue learning.  

In the context of metacognitive illusions, researchers have tried to correct the metamemory 

biases by warning participants. Such warnings have been used to prevent the font size illusion 

(Rhodes & Castel, 2008, Experiment 4), the stability bias (Kornell & Bjork, 2009, Experiment 8), 

the interleaving illusion (Yan et al., 2016, Experiment 3, 4 , and 5), and the foresight bias (Koriat 

& Bjork, 2006a). All these studies used immediate JOLs except the study by Yan et al. (2016) which 

used aggregate memory predictions. Warnings are often provided in the form of a short 
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information about the effect of the cue manipulated on memory (e.g., the size of the word should not 

affect what you will be able to remember later so do not pay attention to size). In the studies on the font size 

illusion (Rhodes & Castel, 2008) and the stability bias (Kornell & Bjork, 2009), warnings were 

provided before participants started with the experimental tasks. In the study by Yan et al. (2016), 

warnings were provided after the study phase but before collecting aggregate memory predictions. 

In the study by Koriat and Bjork (2006a), warnings were provided between the first and the second 

study-test cycle. In most studies, warnings were not successful at mending the metamemory 

illusions except for the study by Koriat & Bjork (2006a). One critical difference of Koriat's and 

Bjork study is that warnings were not provided in the form of text but were given by the researcher 

who carefully explained the illusion and illustrated it by administering a short exercise to the 

participants.  

Yan et al. (2016) suggested that metacognitive judgments are hard to change because of a) 

pre-existing beliefs about learning and memory, b) experiences of fluency during learning, and c) 

the belief of being unique as a learner which implies that any feedback about how others perform 

in the task is not informative to oneself. It is likely that all or a combination of these factors 

contribute to the resistance to change of metamemory judgments. If warnings do not change pre-

existing beliefs, participants may disregard warnings as they consider themselves better experts on 

their cognition. Alternatively, if warnings change beliefs, participants' judgments may not improve 

because experiences during learning overshadow the use of beliefs (i.e., the utilization assumption 

from the knowledge updating framework fails). The latter possibility is supported by studies 

showing that beliefs need to be activated to impact JOLs (Ariel et al., 2014; Undorf & Erdfelder, 

2015). But it is not supported by studies showing that people can integrate multiple cues on their 

JOLs and do not focus on single unified feeling of ‘ease’ that overshadows the use of individual 

cues (Undorf et al., 2018; Undorf & Bröder, 2020).  

In sum, knowledge-updating research tells us that JOLs are not fully updated to reflect the 

beneficial effects of a study strategy on memory from experience across cycles. This can happen 

either because participants fail to monitor their study and test performance, fail to attribute their 

test performance to the effective strategy, or fail to use the recently acquired knowledge when 

making item-by-item JOLs. Further, research on mending metacognitive illusions tells us that 

warnings are not effective for people learning to adequately use cues for their JOLs because the 

warnings may not change pre-existing beliefs, or experiences during learning overshadow the 

knowledge gained from the warning.  

Studies highlight the challenges of learning and applying cues in metamemory judgments. 

This further underscores that it is crucial to understand how to increase monitoring sensitivity to 
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cues predictive of memory and how to learn new cues that inform metamemory judgments. In the 

following chapter, I test and discuss cue learning methods from three different angles: 1) learning 

about item memorability from one’s own experience, 2) learning and unlearning cues from 

feedback, and 3) learning new cues extracted from the environment. The next chapter summarizes 

the three manuscripts and present their core results (the full manuscripts can be found appended 

to this thesis).  
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3. Cue Learning in Metamemory  
 

In the three manuscripts presented in this chapter, I approach the question of how people 

learn cues to inform their metamemory judgments through three different angles; learning about item 

memorability from one’s own experience (Manuscript I), learning and unlearning cues from 

feedback (Manuscript II), and learning new cues extracted from the environment (Manuscript III). 

Specifically, Manuscript I tests the cue basis and resolution of two types of metamemory judgments 

made for different memory criteria (own memory [JOLs] vs. generic item memorability) and show 

that learning and testing experiences in a JOL task led to learning cues predictive of general item 

memorability, but not vice versa. Manuscript II tests the effectiveness of different forms of 

feedback to mend metacognitive illusions in JOLs and demonstrate that cognitive feedback about 

one’s own recall performance and JOL for each studied item is not effective while additional 

metacognitive feedback with an in-depth explanation about biased metacognition is. In Manuscript 

III, I take a novel approach by testing and demonstrating statistical learning as a mechanism for 

learning cues from the environment that subsequently inform JOLs.  

 

3.1. Learning About Item Memorability From One’s Own 
Experience 
 
Navarro-Báez, S., Undorf, M., & Bröder, A. (2024). Predicting the memorability of scene pictures: 

Improved accuracy through one’s own experience. Quarterly Journal of Experimental Psychology, 

0(0), 1-20. https://doi.org/10.1177/17470218241239829 

 

All data, materials, and analyses from the present manuscript are available at 

https://osf.io/hpy6q/. Experiments 1 and 2 were not preregistered. Experiment 3 was 

preregistered at https://osf.io/3fujm. 

 

The human visual memory capacity for pictures of scenes is extremely good (Nickerson, 

1965; Shepard, 1967; Standing, 1973; Standing et al., 1970). However, studies investigating 

metamemory accuracy of naturalistic scene pictures have yielded conflicting evidence: It is not 

clear how accurate people are at predicting which pictures will be remembered and which will not. 

https://doi.org/10.1177/17470218241239829
https://osf.io/hpy6q/
https://osf.io/3fujm
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The conflicting findings on metamemory accuracy for scene pictures stem from studies using 

either memorability judgments (MJs) — judgments of stimulus memorability in general — or judgments 

of learning (JOLs) — predictions of one’s own later memory performance for recently studied items. 

While MJs have been found to be unpredictive of actual picture memorability (Isola et al., 2011a, 

2011b, 2014), JOLs have been found to be moderately predictive of participant’s actual recognition 

memory for pictures (Kao et al., 2005; Schmoeger et al., 2020; Tauber et al., 2017; Undorf & 

Bröder, 2021). In this manuscript, we systematically compared the cue basis and relative accuracy 

of JOLs and MJs to test whether accuracy differences are due to MJs referring to memorability as 

a generic item attributed versus JOLs referring to one’s own future memory performance. In doing 

so, we found that MJs become more accurate after a JOL task due to increased sensitivity to cues 

predictive of picture memorability. This finding was replicated in Experiment 2. Experiment 3 was 

designed to disentangle which specific component of the JOL task drives the improvement in MJ 

cue basis and accuracy. I will first provide a short theoretical background on the two types of 

metamemory judgments: MJs and JOLs. I will then present the three experiments of this 

manuscript. 

 In a large-scale series of studies, Isola et al. (2011a, 2011b, 2014) quantified the memorability 

of more than 2,000 images of real-world scenes from the SUN database (Xiao et al., 2010) using a 

repeat detection task. In this task, a total of 665 participants saw sequences of 120 images and were 

asked to detect whenever there was a repetition of an image. Image memorability was measured 

as the percentage of correct detections by participants. Further, MJs were obtained in two tasks 

from different samples of 30 participants each. In the first task, every time a participant identified 

a repetition of an image, the question “Is this a memorable image? Yes/No” had to be answered for 36 

additional images. In the second task, the question “If you were to come across this image in the morning, 

and then happen to see it again at the end of the day, do you think you would realize that you have seen this image 

earlier in the day? Yes/No” had to be answered. Results showed that MJs did not predict image 

memorability: correlations between MJs and image memorability were ρ = −0.19 in the first task 

and ρ = −0.02 in the second task. This result suggests that people lack insight into picture 

memorability.  

In contrast, JOL studies using pictures of scenes have found that JOLs are relatively accurate 

in terms of relative accuracy and track cue effects on actual memory performance (Kao et al., 2005; 

Schmoeger et al., 2020; Tauber et al., 2017; Undorf & Bröder, 2021). This is illustrated in the study 

by Undorf and Bröder (2021) using also pictures from the SUN database (Xiao et al., 2010), in 

which JOLs were higher for all the fives cues that helped memory (i.e., contextually distinctiveness, 

color, telling a story, two repetitions, containing persons) and only failed to reflect that 
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peacefulness hindered memory. This result suggests that people know which image features are 

predictive of picture memorability and can accurately predict their recognition memory 

performance on this basis.  

The conflicting findings on the accuracy of MJs and JOLs may arise from genuine differences 

in the metamemory processes underlying each judgment. Specifically, the judgments are made for 

distinct aspects of memorability (i.e., one’s own memory vs. generic picture memorability). There 

is evidence that people use different cues when the metamemory judgment is about personal 

memory than when it is about others’ memory (Tullis & Fraundorf, 2017). The metamemory 

processes might also be different because of the task in which the metamemory judgments are 

solicited (i.e., during intentional learning vs. judgment task only). Cues vary in their availability 

depending on the time in the learning process that the judgment is solicited. For instance, pre-

study JOLs (“You are about to study an emotional item”) are less accurate than immediate JOLs because 

they cannot rely on experiential cues such as familiarity or encoding fluency (Price & Harrison, 

2017; Undorf & Bröder, 2020). The same is true for ease-of-learning judgments (“How easy is it to 

learn this item?”) made prior to learning (Kelemen et al., 2000; Leonesio & Nelson, 1990; Pieger et 

al., 2016).  

It is also possible, however, that differences in accuracy between the two judgments do not 

reflect genuine metamemory differences but rather result from methodological variations between 

the studies. JOL studies with pictures typically use an old/new recognition memory test in which 

participants intentionally learn pictures prior to the test (Caplan et al., 2019; Hourihan, 2020; 

Hourihan & Bursey, 2017; Kao et al., 2005; Undorf & Bröder, 2021). In contrast, MJs were related 

to memory performance measured in a repeat detection task in which participants simultaneously 

encoded and recognized pictures (Isola et al., 2011a, 2011b, 2014). Moreover, the memory criterion 

is different, JOLs are related to participant’s individual memory performance (i.e., correlation of 

JOLs with item recognition memory by participant), whereas MJs are related to image 

memorability at the item level (i.e., correlation of MJs with item recognition memory aggregated 

across participants). Image memorability is highly consistent across participants (Bainbridge et al., 

2013; Bylinskii et al., 2015; Isola, et al. 2011a; Isola, et al., 2011b, 2014), but there is also 

idiosyncratic information contributing to judgment predictive accuracy that get lost when 

recognition memory performance is aggregated across participants (Bröder & Undorf, 2019; 

Undorf et al., 2022). 

As previously mentioned, in this manuscript, we directly compared the cue basis and relative 

accuracy of JOLs and MJs for pictures of scenes. For this, participants made JOLs and MJs which 

differ on the aspect of picture memorability judged (one’s own future memory vs. memorability as 
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a generic item attribute) and the task (during learning vs. judgment-only task), respectively. At the 

same time, we ensured that the JOL and MJ methods were as similar as possible in all other respects 

(i.e., same 0-100 judgment scale, same materials with identical cues manipulated within picture sets, 

same memory criterion value). Population scene memorability was the memory criterion value used 

which was defined as the proportion of recognition hits minus the proportion of false alarms per 

scene in each experiment’s recognition memory task. This measure corresponds to the corrected 

hit rate, also known as Pr (Snodgrass & Corwin, 1988). If there were true metamemory processing 

differences between the judgments, we expected to see clear differences in cue use and judgment 

accuracy. In contrast, if discrepant findings were largely due to methodological differences across 

studies, we expected to see similar cue basis and accuracy of JOLs and MJs.  

In Experiments 1 and 2, we used a within-subjects design by presenting a JOL task and an 

MJ task to the same participants, with the order of tasks counterbalanced between participants 

(order condition: JOLs-first, MJs-first). In the JOL task, 52 participants (Experiment 1) and 50 

participants (Experiment 2) provided a JOL after studying each picture from a set of 120 pictures, 

and following a 3-min filler task, completed a recognition memory test with 240 pictures. In the 

MJ task, participants made an MJ for each picture from another set of 120 pictures. They were 

explicitly told not to study the pictures, but only to judge their general memorability.  

In Experiment 1 we orthogonally varied the cues aesthetics and interestingness in two levels 

(high vs. low) within picture sets. Aesthetics and interestingness were the image attributes 

identified as negative predictors of image memorability, but positively affecting MJs in Isola et al. 

(2011a, 2011b, 2014). Results showed that both JOLs and MJ were unaffected by aesthetics but 

were higher for pictures high rather than low in interestingness. Recognition memory performance 

was better for pictures low in aesthetics than high, and for picture high in interestingness than low. 

The metamemory results suggest a similar cue basis of JOLs and MJs. Furthermore, reliable 

resolution showed that both metamemory judgments captured differences in the relative 

population memorability of scenes. However, the accuracy of MJs improved substantially after 

completing a JOL task, whereas completing an MJ task first did not affect JOL accuracy (see Figure 

3 and Table 1). A potential reason for this improvement in MJs is that participants gained 

knowledge about the abstract image feature of memorability in the JOL task.  
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Figure 3 

Gamma Correlations Between Population Scene Memorability (Hit Rate Corrected per 
Scene) and Judgments of Learning (JOLs) or Memorability Judgments (MJs) in Each Task 
Order Condition of Experiment 1 and Experiment 2 
 

 

Note. Error bars represent one standard error of the mean. JOLs-first = the JOL task was 
completed first and the MJ task second. MJs-first = the MJ task was completed first and the 
JOL task second. 

 

Experiment 2 aimed to replicate the partly unexpected findings of Experiment 1. Because 

JOLs and MJs were based on similar cues in Experiment 1, we did not manipulate individual cues 

in Experiment 2, but instead used scenes that varied widely in scene memorability. Results showed 

that both JOLs and MJs were predictive of differences in population scene memorability. We 

replicated the finding that the relative accuracy of MJs improved after a JOL task, whereas prior 

experiences with making MJs did not improve JOL accuracy (see Figure 3 and Table 1). 

Importantly, MJs increased more strongly with scene memorability in the JOLs-first than in the 

MJs-first condition, indicating that MJs become more sensitive to scene memorability effects after 

a JOL task. In contrast, scene memorability effects on JOLs were unaffected by the task order 

condition. This finding supports our hypothesis that participants learn about the general 

memorability of scenes by completing a JOL task and, thus, make MJs for new set of pictures on 

an updated basis. 
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Table 1  

Means (SDs) of the Gamma Correlation Between Population Scene Memorability (Hit Rate 
Corrected per Scene) or Participant’s Own Memory Performance and JOLs or MJs in Each 
Task Order Condition of Experiments 1, 2, and 3 

 

Experiment 3 aimed at disentangling which component of the JOL task drives the 

improvement in MJ accuracy. For this, in the first part of the experiment, different groups of 

participants completed either the full JOL task (full-JOL-task condition), a learning phase with JOLs 

but without test (study-and-JOL-task condition), a learning without JOLs but with test (study-and-test-

task condition), or no component of the JOL task (MJ-task-only condition). In the second part of 

the experiment, all 205 participants completed an MJ task. Results showed that MJ accuracy 

improved in all experimental conditions in comparison to the control condition (MJ-task only), 

see Table 1 and Figure 4. As the learning phase is the common factor in all experimental 

conditions, our result suggests that a learning phase by itself provides experiences that are 

Experiment and condition  
Accuracy criterion 

Population scene 
memorability 

Own memory 
performance 

Experiment 1 JOLs  MJs  JOLs 

 JOLs first .21 (.14) .35 (.17) .36 (.15) 

 MJs first .27 (.17) .19 (.19) .40 (.16) 

Experiment 2    

 JOLs first .23 (.14) .31 (.15) .33 (.25) 

 MJs first .25 (.18) .19 (.17) .45 (.18) 

Experiment 3    

 MJ-task-only - .20 (.22) - 

 Full-JOL-task .26 (.14) .32 (.15) .38 (.22) 

 Study-and-JOL-task .28 (.18) .26 (.20) - 

 Study-and-test-task - .31 (.17) - 

Note. JOLs = judgments of learning, MJs = memorability judgments, 
Population scene memorability = hit rate minus false alarm rate per scene 
across participants in each experiment 
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beneficial for subsequently assessing the memorability of pictures. We did not find evidence for 

additive effects of making JOLs and taking a test on MJ accuracy. Regarding the individual effects 

of making JOLs and taking a test on MJ accuracy, gamma correlations suggested that neither 

making JOLs nor taking a test improves MJ accuracy, as did the mixed-effects model analysis. In 

contrast, the analysis of Pearson correlations suggested that a recognition memory test improves 

MJ accuracy more than making JOLs. Importantly, MJs were influenced more strongly by scene 

memorability in the study-and-test-task condition than in the study-and-JOL-task condition. This 

result suggests that completing a recognition memory test is more beneficial for enhancing the MJ 

sensitivity to valid cues than making JOLs.  

 

Figure 4 

Gamma Correlations Between Population Scene Memorability (Hit Rate Corrected per 
Scene) and Memorability Judgments (MJs) in Each Condition of Experiment 3 
 

 
 

Note. Error bars represent one standard error of the mean. 

 

In conclusion, the three experiments in this manuscript revealed that both MJs and JOLs 

are moderately accurate at predicting differences in the population memorability of scenes. The 

experiments also revealed that MJs and JOLs have a similar cue basis when pictures differed in 

aesthetics and interestingness (Experiment 1) or represented a broad range of scene memorability 

(Experiments 2 and 3). This implies that discrepant findings on the accuracy of JOLs and MJs 

reported in prior work were largely due to methodological differences across studies. At the same 

time, we did find a notable difference between JOLs and MJs: MJ accuracy improved with prior 
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learning and testing experience, whereas JOL accuracy was independent of prior assessments of 

general memorability. This shows that reflections about and experiences with one’s own learning 

and testing contribute to people’s understanding and knowledge about memorability as a generic 

attribute of an item. 
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3.2. Learning and Unlearning Cues From Feedback 
 

Navarro-Báez, S., Bröder, A., & Undorf, M. (2024). Mending metacognitive illusions requires metacognitive 

feedback. [Manuscript submitted for publication]. Department of Psychology, University of 

Mannheim. Department of Psychology, Technical University of Darmstadt.  

 

All data, materials, and analyses from the present manuscript are available at 

https://osf.io/vgy7d/?view_only=5d02381f12754484ad1c422cd1d4f44b. Designs and analyses 

of all experiments were not preregistered. 

 

Accurate metacognitive monitoring — the real-time assessment of cognitive processes — is 

important because it guides behavior (Nelson & Narens, 1990; also see Thiede et al., 2003; Tullis 

& Benjamin, 2012). This implies that the regulation of behavior such as self-regulated learning 

cannot be successful if metacognitive monitoring judgments are incorrect. Metacognitive illusions 

occur when the metacognitive judgments rely on invalid cues or fail to rely on valid cues predictive 

of performance (see Undorf et al., 2022, for a review). In this manuscript, we addressed the 

practically relevant question of how to improve metacognitive awareness of cue validity. To this end, we 

tested the effectiveness of two forms of feedback, cognitive feedback (Balzer et al., 1989) alone and 

with additional metacognitive feedback (Fiedler et al., 2020). We specifically tested whether these forms 

of feedback can improve metacognitive awareness of cue validity in JOLs and mend metacognitive 

illusions. Finding effective ways to train metacognitive monitoring is important because prior 

research has not yet discovered how to achieve robust and large improvements (e.g., Dunlosky & 

Hertzog, 2000; Hertzog et al., 2009; Kornell & Bjork, 2009; Mueller et al., 2015; Pan & Rivers, 

2023; Yan et al., 2016).  

Different methods have and have not been successful in promoting metacognitive awareness 

of the validity (or invalidity) of cues. These methods include: experience across multiple study-test 

cycles (Castel, 2008; Dunlosky & Hertzog, 2000; Hertzog et al., 2009; Mueller et al., 2015; Pan & 

Rivers, 2023; Sungkhasettee et al., 2011), warnings (Koriat & Bjork, 2006a; Kornell & Bjork, 2009; 

Rhodes & Castel, 2008; Yan et al., 2016), increasing the salience of relevant aspects of the study 

(Castel, 2008; Price et al., 2008; Yan et al., 2016), and performance feedback (Mueller et al., 2015; 

Pan & Rivers, 2023; Tullis et al., 2013). The method that has proven the most successful is 

increasing the salience of relevant aspects of the study. For instance, participants learned to predict 

the primacy and recency effect in memory when the serial position of items was presented before 

studying each item (Castel, 2008). In contrast, experience across multiple study-test cycles, 

https://osf.io/vgy7d/?view_only=5d02381f12754484ad1c422cd1d4f44b
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warnings, and performance feedback have been often ineffective for improving the cue basis of 

item-by-item JOLs.  

In another line of research, namely judgment and decision-making research, a famous paper 

by Brehmer (1980) reviewed studies on the ability to learn from experience in probabilistic 

situations such as clinical inference. Brehmer (1980) came to the pessimistic conclusion that people 

do not learn from experience with mere outcome feedback (i.e., knowing the outcome) in complex 

and uncertain tasks because of the number of biases that prevent them from learning (e.g., 

confirmation bias, positivity bias, belief that the world is deterministic rather than probabilistic). 

In contrast, a review by Balzer et al. (1989) revealed that so-called cognitive feedback is effective for 

improving the cue basis of judgments compared to mere outcome feedback. Cognitive feedback 

consists of task information, cognitive information, and functional validity information. Task 

information refers to the relations between cues and criterion (i.e., task system) – “Which cues are 

valid?”. Cognitive information refers to the subject’s cognitive system – “How do people use the cues 

for their judgments?”. Functional validity information refers to the relation of the cognitive system to 

the task system – “What is the difference between the former two?”. Several studies have demonstrated 

that cognitive feedback improves the cue basis and accuracy of judgments about the external world 

(e.g., Karlsson et al., 2004; Newell et al., 2009; Seong & Bisantz, 2008). Since judgments about 

external criteria are like judgments about one’s own cognition in that both judgments rely on 

probabilistic cues, cognitive feedback may be beneficial for learning to distinguish the different 

predictive validities of cues in metacognition as well. 

In all three experiments of this manuscript, participants completed three study-test cycles in 

which they studied three different lists of single words. Participants made JOLs and received either 

feedback or no feedback after each cycle. Experiment 1 aimed to test the effectiveness of cognitive 

feedback for mending the font size illusion (Rhodes & Castel, 2008) and the stability bias (Kornell 

& Bjork, 2009). Experiment 1 entailed four between-subjects groups. In the control group, 

participants received no feedback, so they only had their own memory of test performance as 

feedback on cue validity. In the outcome feedback group (recall-feedback group), participants saw 

the words they had recalled and not recalled, organized by the two cues (see Figure 5). In the 

cognitive feedback group (recall-and-JOL-feedback group), the list was accompanied by the JOL 

participants had given to each word during study. This enables to compare the actual recall (i.e., 

task information) with their prediction (i.e., cognitive information). Finally, the social-reference-

feedback group was informed about the cues manipulated in the experiment and their cue validity, 

accompanied by a table showing the average performance of other participants doing this task. 
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Figure 5 

Example Feedback Presented to Participants in the Recall-Feedback, Recall-and-JOL-
Feedback, and Social-Reference-Feedback Group in Experiment 1 

 
 
 

 

 
 

 

 

 

 
 
 

 
 

 
 

We hypothesized that the cognitive information in the recall-and-JOL-feedback group 

would increase JOL reliance on number of future study opportunities (i.e., valid cue) and decrease 

JOL reliance on font size (i.e., invalid cue), and in turn, increase relative accuracy. At the same 

time, it was an open question whether the outcome feedback in the recall-feedback group would 

lead to better cue weighting and accuracy as suggested by the inferential deficit hypothesis 

Recall-Feedback Group Recall-and-JOL-Feedback Group 

Social-Reference-Feedback Group 
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(Dunlosky & Hertzog, 2000). This hypothesis states that JOLs do not improve from experience 

because there are limited cognitive resources to monitor test performance and make inferences 

about valid cues. Hence, improvements should occur when participants are presented with 

feedback on their recall performance. It was also an open question whether social reference 

information would be sufficient for improvements or even go beyond the cognitive feedback. If, 

in contrast, improvements occur in all groups, this would indicate that study-test experience is 

beneficial for learning cue validities and implementing them in JOLs. 

Table 2  

Means (SDs) of the Gamma Correlation between JOLs and Recall Performance and Bias 
Measure in Each Cycle and Group of Experiments 1, 2, and 3 

Experiment and group 

Cycle 

Gamma Bias 

1 2 3 1 2 3 

Experiment 1       

 No feedback .33 
(.23) 

.30 
(.34) 

.26 
(.37) 

8.28 
(18.64) 

1.43 
(20.15) 

-0.83 
(18.64) 

 
Recall feedback .21 

(.27) 
.36 

(.26) 
.29 

(.28) 
7.12 

(18.41) 
-1.75 

(18.86) 
-1.67 

(18.25) 
 Recall and JOL 

feedback 
.20 

(.27) 
.22 

(.33) 
.25 

(.30) 
7.49 

(26.25) 
-3.97 

(23.18) 
-1.40 

(18.99) 
 Social reference 

feedback 
.29 

(.27) 
.31 

(.29) 
.31 

(.37) 
-2.60 

(21.68) 
-7.98 

(20.35) 
-7.16 

(14.86) 

Experiment 2       
 

No feedback .31 
(.32) 

.31 
(.41) 

.41 
(.26) 

10.26 
(27.65) 

-5.53 
(21.40) 

-5.03 
(20.49) 

 Catch-all cognitive 
feedback 

.26 
(.26) 

.30 
(.29) 

.23 
(.37) 

8.24 
(19.19) 

-0.69 
(14.27) 

-1.52 
(14.03) 

Experiment 3       
 

No feedback .21 
(.25) 

.36 
(.23) 

.30 
(.28) 

8.08 
(21.30) 

-5.94 
(16.45) 

-7.54 
(18.68) 

 Metacognitive 
feedback 

.28 
(.22) 

.30 
(.31) 

.44 
(.26) 

5.60 
(16.08) 

1.21 
(22.71) 

0.12 
(21.16) 
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 Experiment 1 (N = 156) results showed that neither type of feedback improved the cue 

basis of JOLs or JOL accuracy. Participants continued overweighting font size and underweighting 

number of future study opportunities in their JOLs even with the opportunity to relate individual 

JOLs to actual memory performance in the recall-and-JOL-feedback group (see Figure 6). At the 

same time, there were neither improvements in relative nor absolute accuracy (see Table 2). JOLs 

switched from overconfidence to underconfidence after the first cycle (see Table 2), a pattern that 

it is well established for repeated study-test cycles using the same materials and known as the 

underconfidence-with-practice effect (Koriat et al., 2002). 
 

Figure 6 

Mean Judgments of Learning (JOL) in Each Cycle for Words Presented Once (S1) or Twice 
(S2) in a Small (18 pt) or a Large (48 pt) Font Size in Each Group of Experiment 1 
 
Note. Error bars represent one standard error of the mean.  

No-Feedback Group Recall-Feedback Group 
  

Recall-and-JOL-Feedback Group Social-Reference-Feedback Group 
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Experiment 2 (N = 80) combined all forms of feedback into a single ‘catch-all cognitive 

feedback’ group to provide participants with maximum information. Participants in the catch-all-

cognitive-feedback group saw the same information as recall-and-JOL-feedback group (see Figure 

5) followed by the same information as the social-reference-feedback group (see Figure 5). In 

Experiment 2, we manipulated invalid cue font format, standard vs. aLtErnAtiNg words (Mueller 

et al., 2013; Rhodes & Castel, 2008), in addition to font size with the aim of facilitating cue learning 

when the two cues are perceptual. Results showed no improvements in cue use or JOL accuracy 

in the catch-all-cognitive-feedback group compared to the control group which received no 

feedback. Participants in this group continued overweighting font size and font format despite 

receiving maximum information (see Figure 7). Relative accuracy did not improve across cycles, 

and JOLs switched again from overconfidence to underconfidence after Cycle 1 (see Table 2). 

 

Figure 7 
 
Mean Judgments of Learning (JOL) and Percentage of Correctly Recalled Words (Recall) in 
Each Cycle for Words Presented in Alternating (Alt) or Standard (Strd) Font and in a Small 
(18 pt) or a Large (48 pt) Font Size in Each Group of Experiment 2 

Note. Error bars represent one standard error of the mean.  

No-Feedback Group Catch-All-Cognitive-Feedback Group 
  

No-Feedback Group Catch-All-Cognitive-Feedback Group 
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Experiment 2 showed that even a very blunt form of cognitive feedback was not effective 

for improving JOLs. This might be because pre-existing beliefs influence how the cognitive 

feedback is interpreted and stored (Yan et al., 2016). Thus, in Experiment 3 (N = 77), we designed 

a new form of feedback to remedy that participants might be misperceiving the cognitive feedback 

due to pre-existing beliefs. We followed Fiedler’s et. al. (2020) recommendations of an effective 

form of feedback to design an informative ‘metacognitive feedback’. After being presented with 

the average memory performance of other participants, participants read textual information from 

a first-person perspective about possible perceptions during learning (e.g., words written in a large font 

size are particularly conspicuous during learning and are perceived as particularly easy to read and learn), the 

validities of the cues (e.g., the font size of words does not usually affect memory performance), and 

recommendations on which factors to focus when making JOLs (e.g., an additional learning 

opportunity has a stronger influence on memory that the font size). Further, Experiment 3 used a similar 

approach as Pan and Rivers (2023) to ensure that participants fully attended and understood the 

feedback. This approach was asking participants to describe how each of the cues affected their 

memory and their JOLs after receiving feedback. Experiment 3 manipulated font size and the 

number of future study repetitions as in Experiment 1.  

 
Figure 8 
Mean Judgments of Learning (JOL) and Percentage of Correctly Recalled Words (Recall) in 
Each Cycle for Words Presented Once (S1) or Twice (S2) in a Small (18 pt) or a Large (48 pt) 
Font Size in Each Group of Experiment 3 

No-Feedback Group Metacognitive-Feedback Group 
  

No-Feedback Group Metacognitive-Feedback Group 
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 Note. Error bars represent one standard error of the mean. 
 
 

Experiment 3 results showed that the metacognitive feedback was successful at increasing 

JOL reliance on number of future study opportunities (see Figure 8), improving resolution, and 

descriptively, improving calibration (see Table 2). The questionnaire data clearly showed that most 

participants correctly identified better memory performance for words learned twice than once, 

but fewer participants correctly identified their memory performance for large- and small-font 

words. Although font size descriptively affected JOLs less strongly in Cycle 2 and even less so in 

Cycle 3 in the metacognitive-feedback group than in the no-feedback group (see Figure 8), the 

three-way interaction (Group x Cycle x Font Size) was not significant. This might be because JOLs 

are easier to correct for those cues with robust predictive validity, and not for those invalid cues. 

Specifically, experiences of high fluency produced by invalid cues may still contribute despite 

metacognitive beliefs being correct. Alternatively, individual differences in the effect of font size 

on memory performance (i.e., some participants showing better recall for large than small words) 

did not facilitate that all participants updated their JOLs which was reflected in the non-significant 

three-way interaction. Alternatively, given that we found the font size illusion decreased across 

study-test cycles in all conditions (Cycle x Font Size interaction), beneficial effects of metacognitive 

feedback were harder to detect, and doing so would have required more statistical power. 

To sum up, we found that cognitive feedback presenting individual task performance 

(recall only, recall and JOL) for each studied item and/or aggregated recall performance from 

previous participants was not effective at correcting either illusion (Experiments 1 and 2). In 

contrast, additional metacognitive feedback informing participants about possible metacognitions 

during the task, their biased nature, and ways to enhance the accuracy of their JOLs was effective 

for remedying the stability bias and improving the relative accuracy of JOLs (Experiment 3).  

This is the first demonstration that providing participants with the JOL and recall status 

of each studied item organized by cues is not effective for improving the cue basis and resolution 
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of JOLs in a subsequent cycle. A compelling reason presumably is that more in depth-knowledge 

about metacognition than acquired when receiving cognitive feedback about one’s JOLs and recall 

performance is needed to improve the judgment cue basis. This is demonstrated by our finding 

that JOLs relied on the number of future study opportunities after metacognitive feedback in 

Experiment 3. In conclusion, this study shows that cognitive feedback alone is not enough for 

improving the cue basis and resolution of JOLs and rather additional metacognitive feedback with 

an in-depth explanation of biased metacognition is needed. This is a very promising direction to 

mending metacognitive illusions, which has proved challenging in most prior studies. 
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3.3. Learning New Cues Extracted From The Environment 
 

Navarro-Báez, S., Bröder, A., &  Undorf, M. (2024). Detecting structure: Cues for metacognitive judgments 

are acquired via statistical learning. [Manuscript submitted for publication]. Department of 

Psychology, University of Mannheim. Department of Psychology, Technical University of 

Darmstadt.  

 

All data, materials, and analyses from the present manuscript are available at 

https://osf.io/pze9b/?view_only=c37f0bb0877742848971d646fb77b2d6. Experiment 1 was 

preregistered at https://osf.io/836y2. Experiment 2 was preregistered at https://osf.io/vqrt9.  

 

Metamemory research has focused on identifying which cues are used to predict memory 

and how those cues are used (i.e., analytically, non-analytically). Many cues have been found to 

underlie JOLs in laboratory studies such as concreteness (Begg et al., 1989; Witherby & Tauber, 

2017), word frequency (Benjamin, 2003), or word pair relatedness (Undorf & Erdfelder, 2015). 

Further, there is ample evidence that cues are used directly via beliefs about memory and/or 

indirectly via experiences of ‘ease’ during learning (e.g., Frank & Kuhlmann, 2017; Mueller et al., 

2014; Undorf et al., 2017; Undorf & Zimdahl, 2019). However, the question of cue learning has 

only been addressed in situations where there are systematic dissociations between metamemory 

and memory, by attempts to correct people’s beliefs about memory, as previously discussed (e.g., 

Dunlosky & Hertzog, 2000; Koriat & Bjork, 2006a; Kornell & Bjork, 2009, Experiment 8; Rhodes 

& Castel, 2008, Experiment 4). Thus, much knowledge remains to be gained about how people 

learn information that they can rely on when making metamemory judgments.  

In this manuscript, we investigated statistical learning as a mechanism for acquiring cues for 

JOLs. Statistical learning (SL) is defined as the extraction of statistical regularities from the 

environment (Saffran, Aslin, et al., 1996). It happens from repeated exposure to environmental 

input, without explicit instructions, feedback, social reinforcement, or intentional effort to learn 

(Batterink et al., 2015).  SL was originally examined in the context of language acquisition as an 

experiential mechanism for segmenting fluent speech into words (Saffran, Aslin, et al., 1996; 

Saffran et al., 1997; Saffran, Newport, et al., 1996), but it has also been found to play a substantial 

role in other cognitive tasks such as visual search (Jones & Kaschak, 2012), sequence learning 

(Stadler, 1992), and causal learning (Sobel & Kirkham, 2007).  

One type of regularity often used by SL studies is transitional probabilities. Transitional 

probabilities describe the predictive relationship between two elements such as syllables. For 

https://osf.io/pze9b/?view_only=c37f0bb0877742848971d646fb77b2d6
https://osf.io/836y2
https://osf.io/vqrt9
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example, in the sequence “prettybaby”, assuming sufficient experience with English, “pre” is more 

predictive of “ty” than “ty” is of “ba”. This indicates that it is more likely that “pretty” is a word 

than “tyba” or “prettyba” are words. In fact, syllables with high transitional probabilities are likely 

to be part of the same word (Swingley, 2005).  

In a typical SL task, participants are exposed to input (e.g., auditory, pictorial) that is 

controlled by the researcher ensuring that it does not contain any other information than from the 

statistical information in transitional probabilities. In auditory SL studies, participants listen to a 

continuous stream of repeating three-syllable artificial words with high transitional probabilities 

within words and low transitional probabilities between words (i.e., certain syllables are more likely 

to appear together within a word than between words). Importantly, the auditory stream does not 

contain any other acoustic information such as pauses or stress differences. Above chance 

performance in a forced-choice-task in which each artificial word from the stream is presented 

together with a word foil that has the same syllables but does not follow the transitional 

probabilities from the input indicates that SL has taken place (e.g., Batterink et al., 2015; Endress 

& Mehler, 2009; Ordin & Polyanskaya, 2021; Perruchet & Poulin-Charronnat, 2012). There is 

evidence that learners do not show explicit verbal knowledge about transitional probabilities 

(Brady & Oliva, 2008; Conway & Christiansen, 2005; Turk-Browne et al., 2005). The literature 

strongly suggests that participants correctly choose words that follow transitional probabilities as 

part of the language learned based on an acquired wordlike quality even if those words have not 

been heard before (Endress & Mehler, 2009). 

Across two experiments (N = 87, and N = 85), we combined the auditory SL paradigm 

(Saffran et al., 1997; Saffran, Newport, et al., 1996) and a metamemory task with JOLs (Undorf et 

al., 2018). In a familiarization phase, participants were exposed to a language that consisted of a 

continuous auditory stream of artificial words with fixed 0.5 transitional probabilities between 

adjacent syllables (e.g., ro à se, or ro à ka). Afterwards, they studied and made JOLs for items 

that were presented in the familiarization phase and follow the transitional probabilities (‘word’, 

e.g., rosenu), for items that were not presented in the familiarization phase but follow the transitional 

probabilities (‘phantom’, e.g., roseti), and for items that were neither presented in the familiarization 

phase nor followed the transitional probabilities (‘non-word’, e.g., tasefa). To verify whether 

participants learned the statistical structure of the language in the familiarization phase, we asked 

one group of participants to indicate whether each study item belonged to the language of the 

auditory stream before making their JOL (‘SL-assessment’ group). To rule out the possibility that 

SL effects on JOLs were only due to prompting participants to think about the language, another 

group made JOLs only (‘no SL- assessment’ group). Finally, all participants completed a 
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recognition memory test (Experiment 1) or a 2-alternative-forced-choice memory test 

(Experiment 2). Based on prior SL findings (Endress & Mehler, 2009; Ordin & Polyanskaya, 2021), 

we expected that if SL takes place, words and phantoms will be perceived as wordlike because they 

follow transitional probabilities, and thus, they will be classified more often as belonging to the 

language than non-words. Further, we expected that JOLs would be influenced by wordlikeness. 

JOLs would be higher for words and phantoms than for non-words in both groups.  

Experiment 1 and 2 results showed clear and marked SL effects. On average, words and 

phantoms were more likely to be classified as part of the language than non-words (see Figure 9). 

Further, SL classifications did not differ between words and phantoms indicating that SL 

classifications were based on the learned statistical structure of items rather than on the increased 

familiarity of words heard in the familiarization phase.  

 

Figure 9 

Mean proportion of SL classifications for each type of item in the SL-assessment group in 
Experiment 1 and Experiment 2 
 

 
 
Note. Error bars represent one standard error of the mean. 
 
 

JOLs were also clearly influenced by the wordlikeness of items arising from the transitional 

probabilities learned via SL: they were higher for words and phantoms than for non-words and 

did not differ between words and phantoms (see Figure 10). Additionally, mediation analyses 

showed that SL as assessed through SL classifications mediated the relationship between item type 

and JOLs. Notably, the non-significant interaction between item type and group on JOLs 

suggested that SL also occurred in the no-SL-assessment group. Overall, metamemory results 
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indicated that participants learned the statistical relations between syllables which added a wordlike 

quality to the items and made JOLs on this basis.  

 

Figure 10 

Mean JOL for each type of item collapsed across the no-SL-assessment and SL-assessment 
groups in Experiment 1 and Experiment 2 
 

 
Note. Error bars represent one standard error of the mean. 
 

 

Regarding memory performance, in Experiment 1, recognition memory performance 

showed a different pattern of results than SL classifications and JOLs: Discrimination (Pr) was 

better for non-words than for words and phantoms (see Table 3). This was probably the case 

because items coherent with the statistical structure of the language (words and phantoms) 

appeared highly familiar in the test, regardless of whether they were studied or new. This probably 

impaired discrimination and promoted a lenient response bias. In contrast, high familiarity of non-

words could stem only from their occurrence in the study list, which allows for accurate 

recognition memory responses and yielded better discrimination and a stricter response bias for 

non-word items. 
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Table 3 

Mean (SDs) of Hits, FAs, Pr, and Br for each type of item in the No SL-assessment and SL-
assessment group in Experiment 1 
 

 

Experiment 2 used a 2-alternative-forced-choice (2-AFC) memory test to prevent any 

response tendencies or biases based on the type of item by having target and distractor items from 

the same type in each trial (i.e, word-word, phantom-phantom, or non-word-non-word). Results 

showed that performance in the 2-AFC test was similar for words, phantoms, and non-words (see 

Table 4). Discarding response bias in the 2-AFC memory test thus provided clear evidence that 

basing JOLs on wordlikeness resulted in discrepancies between JOLs and actual memory 

performance.  

 

 

 

 

 

Group and measure 
Item Type 

Non-word Phantom Word 

No-SL assessment    

 Hits .65 (.17) .78 (.12) .75 (.14) 

 FAs .12 (.18) .35 (.22) .36 (.24) 
 Pr .53 (.18) .43 (.22) .40 (.24) 
 Br .19 (.28) .58 (.27) .53 (.28) 

SL assessment    
 Hits .59 (.19) .71 (.19) .72 (.19) 
 FAs .19 (.21) .42 (.25) .50 (.30) 
 Pr .40 (.21) .29 (.25) .22 (.30) 
 Br .25 (.25) .57 (.27) .60 (.25) 
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Table 4 

Mean percentage of correct responses in the 2-AFC test for each type of item 
in the No SL-assessment and SL-assessment group in Experiment 2 
 

Item Type 
% correct 

No-SL assessment SL-assessment 

 Non-word 85.82 (34.95) 75 (43.40) 

 Phantom 79.08 (40.75) 81.14 (39.20) 

 Word 81.56 (38.85) 75.88 (42.88) 

 

 

In this manuscript, we demonstrated that information on which metamemory judgments 

rely on can be acquired through SL. This is relevant for metamemory in real-world learning because 

regularities or patterns in the environment are abundant, and SL processes are present in many 

everyday situations. For instance, it has been demonstrated that SL supports the initial acquisition 

of word forms in second language learning (Alexander et al., 2023). It is thus possible that natural 

lexical regularities inform metacognitive judgments when learning a second language. In 

conclusion, this manuscript uncovers SL as an experiential mechanism for extracting regularities 

from the environment and using them as cues to predict memory performance even if those cues 

are invalid. It remains to be examined whether items congruent to the statistical structure learned 

have a memory advantage when measuring memory performance with another test such as free 

recall. This study lays the foundation for future research on statistical learning and metacognition. 
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4. General Discussion  
 

In this thesis, various experimental paradigms were employed to investigate how cues 

informing metamemory judgments are learned. The three manuscripts contribute to the literature 

with important findings regarding the role of individual experiences for the acquisition of 

metacognitive knowledge about generic item memorability, regarding ways to mend metacognitive 

illusions, and regarding mechanisms through which environmental cues informing metamemory 

are acquired. The manuscripts of this thesis converge in underscoring the importance of cue 

learning in metacognition, referring not only to the acquisition of information in the form of cues 

but also to the use of such information for making monitoring judgments about learning and 

memory.  The literature review and empirical data from this thesis aims to advance theoretical 

understanding of metamemory regarding how cue learning occurs. 

In Manuscript I, we tested whether judgments of learning (JOLs) and memorability 

judgments (MJs) made for different memory criteria (one’s own memory vs. generic item 

memorability) and made during different tasks (learning task vs. judgment-only task) would differ 

in their cue bases and relative accuracy. We ensured that the methods were similar in all other 

respects (i.e., judgment scale, pictorial materials, and memory criterion value). Using a within-

subjects design with a JOL task and an MJ task in counterbalanced order, we found that people 

can predict not only their own future memory performance for scene pictures but also the general 

memorability of scene pictures with moderate accuracy and similar cue basis. Thus, demonstrating 

that discrepant findings on the accuracy of JOLs and MJs reported in prior work were largely due 

to methodological differences across prior studies. Crucially, MJs were more accurate and sensitive 

to valid cues after learning and testing in a JOL task. This shows that knowledge about general 

memorability that enhances MJs is acquired from experiences with one’s own learning and testing.  

In Manuscript II, we tested whether cognitive feedback known to correct illusions in 

judgments about the external world would alleviate illusions in JOLs. Participants studied single 

words, made JOLs, and completed a recall test across three study-test cycles with different study 

lists. Surprisingly, across two experiments, we showed that cognitive feedback about the recall 

status and JOL given to each studied item does not alleviate the font size illusion, the stability bias, 

and the font format illusion. In contrast, additional metacognitive feedback informing learners 

about possible metacognitions during the task, their biased nature, and ways to enhance JOLs, 

remedied the stability bias and thereby increased relative accuracy. In conclusion, this is the first 

demonstration that cognitive feedback on memory performance and JOLs at the item-level is 
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insufficient for improving JOLs. An explanation is that more substantial declarative knowledge 

about metacognition than the one given in cognitive feedback is required to alleviate illusions. This 

is a promising approach to mending metacognitive illusions.  

  In Manuscript III, we tested statistical learning as a mechanism to learn cues informing 

JOLs. To this end, participants were exposed to a continuous stream with artificial three-syllable 

words with fixed transitional probabilities between adjacent syllables. Afterwards, they studied, 

made JOLs, and completed a memory test for words that follow the transitional probabilities either 

presented in the stream or not, and for words that do not follow the transitional probabilities. 

Results showed that JOLs were based on the wordlikeness quality arising from the transitional 

probabilities statistically learned: JOLs were higher for items following the transitional probabilities 

than not following them. Intriguingly, recognition memory performance was better for items not 

following the transitional probabilities than for items following them. Further, performance in a 

2AFC test did not differ between item types. Thus, we found no correspondence of JOLs based 

on wordlikeness with actual recognition performance showing that the acquired wordlikeness of 

items was misleading. In conclusion, this is the first demonstration that cues influencing 

metacognition are acquired via statistical learning. This opens the field for future research on 

statistical learning and metacognition.   

 Taken together, the results of the three manuscripts presented in this thesis provide 

relevant knowledge about the acquisition of cues for metamemory judgments. As previously 

mentioned, while much is known about which and how cues are used in metamemory judgments, 

less is known about cue acquisition. The experimental evidence from each manuscript in this thesis 

contributes to close this gap.  

 

4.1. Open Questions 
Although each manuscript has implications on its own, it is important to integrate the 

common aspects in the three manuscripts to derive general conclusions about how cue learning in 

metamemory occurs. Further, this integration raises new questions and open new possibilities for 

future research. In the following, I will discuss some of the common aspects, open questions, and 

provide ideas for future research. 	 
 

4.1.1. Learning From Experience? 
  Across the three manuscripts, cue learning from experience either occurred or did not 

occur. To illustrate this, in Manuscript I, cue learning occurred from experience with one’s own 

learning and testing. In Manuscript II, cue learning did not occur from experience across multiple 
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study-test cycles. Finally, in Manuscript III, cue learning occurred from experience with the 

environment. From a quick glimpse, this seems inconsistent, and one may ask if and under which 

conditions people really learn cues from experience. To answer this question, it is important to 

clarify the nature of the experience, and the cue content learned.  

 First, I will discuss Manuscripts I and II which are similar in the quality of the experience. 

This experience refers to personal experience with a standard prospective metamemory task with 

three components: study phase, making of JOLs, and test phase. Previous research has mostly 

been conducted using the same study lists across study-test cycles. This research indicates that test 

experience is especially relevant for improving JOLs because participants can rely on past 

performance, retrieval success or failure, for subsequent memory predictions (Finn & Metcalfe, 

2007, 2008). In particular, two studies directly comparing the contributions of a study phase against 

a test phase indicate that testing experience is more effective than learning experience for 

enhancing JOL relative accuracy (Jang et al., 2012; Koriat & Bjork, 2006b). There is also evidence 

that self-paced study time is learned and used as a cue for metamemory judgments about others’ 

memory only after learners have made JOLs for their own memory (Koriat & Ackerman, 2010; 

Undorf & Erdfelder, 2011). In Manuscript I, we disentangled the different components of the JOL 

task and found that the learning and testing phase enhanced the accuracy of generic item 

memorability predictions for a new set of items. Further, the linear mixed model analysis indicated 

that MJs aligned more with diagnostic cues after having a test than after making JOLs.  

So, why then weren’t illusions in Manuscript II remedied by experience with a previous 

JOL task with a learning phase and a recall test? One plausible explanation is the metamemory 

judgment target. In Manuscript I, the cue learning effects were observed in metamemory 

judgments made for the generic item of memorability (MJs) but not for memory predictions about 

one’s own memory performance (JOLs). It might be that any knowledge acquired from task 

experience is easier to generalize to judgments about other’s memory in contrast to one’s own 

memory. This is because experiences during learning may interfere with the application of recently 

acquired knowledge in judgments about one’s own cognition. We can find evidence for this in the 

curse of knowledge literature suggesting that people are very prone to use their own privileged 

knowledge and experience to judge what other people know even if this is erroneous (Birch & 

Bloom, 2003; Kelley & Jacoby, 1996). Additionally, generalizing knowledge to MJs might be easier 

than to JOLs because participants might rely more on past experiences when judging the general 

memorability of each item, rather than when predicting their chances of remembering the items 

in the future. This would explain why participants do not improve their JOLs after having had 

experiences with a previous study-test cycle in Manuscript II.  
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Another plausible explanation is that participants do not learn so much from experience 

in a free recall test (Manuscript II) in contrast to a recognition memory test (Manuscript I). As 

previously mentioned, previous research has mainly focused on experience across cycles with 

repeated study lists but not with new study lists. The two studies suggesting that test experience is 

more relevant than study experience used a cue-recall test (Jang et al., 2012; Koriat & Bjork, 2006b). 

In a cued-recall test and a recognition memory test, participants may more easily identify which 

are the items that they better/worse recall when cued or better/worse recognize when seen. This 

can be helpful for learning valid cues. For instance, a participant might realize during the test that 

she recognizes interesting pictures or pictures with people better than others. In contrast, learning 

valid cues from a free recall test might be more complex where one has the task to retrieve and 

search items in memory at the same time. This increase in cognitive load may hinder cue learning 

from a free recall test experience. Future studies could test this prediction.  

Finally, alleviating illusions in Manuscript II involve that participants learn about the 

relations between the cues and recall as the criterion variable, this is, the cue validities. While 

participants learn from study and test experience in Manuscript I, we cannot be sure whether they 

explicitly learned cue-memory relations (i.e., cue validities). One possibility is that some cue 

information have reached the level of conscious awareness in the form of beliefs (e.g., Mueller et 

al., 2013, 2014). At the same time, it is also possible that cues have remained experiential at the 

level of subjective feelings that may not be fully articulated but serve as an inferential cue for 

metamemory judgments (e.g., Besken, 2016; Koriat & Levy-Sadot, 1999; Undorf et al., 2017). The 

same argument applies for Manuscript III, participants based their JOLs on statistical regularities 

recently learned. However, no participant except for one was able to articulate the syllable 

regularities. Thus, it is likely that the statistical regularities triggered feelings of fluency (Forest et 

al., 2022). In sum, experience may be helpful for learning cue information that probably remains 

at the experiential level, but not to develop explicit knowledge about cue-memory relations.  

In conclusion, there are three possible answers to the question of whether learning from 

experience occurs; 1) learning from one’s own previous experience may depend on the judgment 

target in which the cues acquired are transferred (i.e., likely for judgments about general item 

memorability, but not so likely for judgments about one’s own memory), 2) learning from 

experience may depend on the content learned (i.e., likely for implicit knowledge at the level of 

subjective feelings, but not so likely for explicit knowledge about cue-memory relations), and 3) 

learning from experience may more likely occur from a cued-recall or a recognition test than from 

a free recall test. Further research would be needed to evaluate these predictions. 
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4.1.2. Learning From Feedback? 
 Another difference across the manuscripts is whether learning occurred from feedback or 

not. In Manuscript II, not only cognitive feedback on recall performance and JOLs at the item-

level but also metacognitive feedback informing about illusory metacognition was required for 

alleviating the stability bias. In contrast, in Manuscript III, statistical learning took place and was 

reflected on JOLs without feedback or intention to learn. Also, in Manuscript I, explicit feedback 

was not required for participants to learn about the general memorability of items.  

So, why then was a very extreme form of feedback (cognitive plus metacognitive feedback) 

required for cue learning to occur in Manuscript II? A plausible explanation to this is that very 

explicit cue-memory relations must be learned to remedy metacognitive illusions. To illustrate this, 

participants must learn that the number of future study opportunities is positively related with 

actual recall performance, and that the font size of words is not related to recall performance. This 

requires a deep or clear understanding of the cue validities that was only achieved with the 

additional use of metacognitive feedback. In contrast, in Manuscript I and Manuscript II, it is still 

possible that participants did not explicitly learn relations between cues and memory, but rather 

acquired a general sense of which are the pictures most likely to be recognized or which are the 

words that sound more memorable. The current thesis focused on learning mechanisms, how people 

learn cues for their metamemory judgments, but not on the inferential cue basis of the judgments (i.e., 

analytic and/or non-analytic). A second step, after having demonstrated that learning has taken 

place, is to examine the inferential cue basis. This would allow one to resolve whether knowledge 

at the level of explicit cue-memory relations can be acquired without feedback or not. This would 

be a worthwhile endeavor for future research. 

 

4.1.3. What is the Cue Content Learned? 
 Finally, as previously mentioned, the cue knowledge acquired could be very different in 

nature. On the one hand, one can develop an intuition about which study items are more 

memorable than others without explicit knowledge about the cues that make the study item 

memorable (Koriat & Levy-Sadot, 1999). On the other hand, one can learn the specific cues that 

make study items more memorable. The latter implies that specific characteristics of the items are 

recognized and identified as memorable. This thesis focused on the acquisition of information of 

either kind of learning that influences item-by-item metamemory judgments. However, in future 

research, it is important to examine the nature of what was learned. This can be done by using one 

of the methods in the literature to assess whether a cue influences metamemory judgments via 

beliefs, for instance; global predictions and postdictions (Frank & Kuhlmann, 2017), post-

4. General Discussion 



 48 

experimental questionnaires (Undorf et al., 2017b), or vignette descriptions with global predictions 

(Mieth et al., 2021; Mueller et al., 2014). Since independent measures of fluency are important to 

obtain, a method to assess fluency such as feelings of “ease” (Alter & Oppenheimer, 2009) could 

be used, for instance; self-paced study times (Undorf & Erdfelder, 2015), or trials to acquisition 

(Undorf & Erdfelder, 2015).  

 For example, in Manuscript I and Manuscript II, this could be done by soliciting global 

predictions with a vignette description (Mieth et al., 2021; Mueller et al., 2014). In the vignette, 

participants are presented with a short description of the study. Then, they are asked to predict the 

number of items that they would remember by cue (e.g., number of beautiful and not beautiful pictures 

that you would recognize, number of words in large and small font size that you would recall). This approach 

could be used in combination with a fluency measure such as reaction times in a visual 

discrimination task with pictures in Manuscript I, or self-paced study times in Manuscript II. In 

Manuscript III, one could use a measure of fluency based on reaction times (Alexander et al., 2023; 

Batterink et al., 2015), where participants are presented with an auditory sequences of syllables and 

are asked to press a key whenever they hear a target item (i.e., following transitional probabilities 

or not). If reaction times are faster for items following transitional probabilities and this mediates 

the relation between transitional probabilities and JOLs, this would indicate that differences in 

processing fluency were acquired from statistical learning. To measure explicit cue knowledge 

acquired, the item stems with the first two syllables can be presented to participants for them to 

fill in the missing syllable. If participants can fill in the stem with above chance accuracy, this would 

indicate that they have acquired explicit knowledge about the statistical regularities. Further, once 

that it has been demonstrated that they have acquired explicit knowledge about the statistical 

regularities, a vignette explaining the item types and global predictions for these types can be used 

to measure whether they believe that items conforming to the statistical rules are more memorable 

than those that do not.  

 To sum up, clarifying what is the nature of the cue content learned (i.e., general sense of 

stimuli memorability, explicit cue-memory relations) would shed light on when and in which 

situations learning from experience and/or feedback can take place.  

 

 4.2. Further Future Directions 
Next, I will outline additional future research directions inspired by the findings of this 

thesis. 
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4.2.1. From Accurate Cue Learning to Effective Regulation  
 According to the Nelson and Narens' (1990) framework of metamemory, students first 

monitor their learning and then control their learning by making decisions about how to study, 

what to study, and for how long to study. If monitoring is accurate, better decisions about study 

can be made. Several studies have demonstrated that participants can effectively control their 

learning when monitoring is accurate. For instance, better memory performance is observed when 

participants are given the opportunity to self-pace their study rather than in an experiment-paced 

condition or an others-paced condition (Koriat et al., 2006; Mazzoni & Cornoldi, 1993; Tullis & 

Benjamin, 2011). The same is true for item selection for restudy. Participants recall more items 

when their restudy choices are honored compared to dishonored (Dunlosky et al., 2021; Kornell 

& Metcalfe, 2006)  

It is relevant to examine whether effects of cue learning from one’s own learning and 

testing experience (Manuscript I), from metacognitive feedback (Manuscript II), and from 

statistical learning (Manuscript III) translate to effective control. For instance, this could be done 

by allowing participants to self-pace their study time. Effects of cue learning on control would be 

shown if, in addition to improved JOLs, memory performance is better in a self-paced condition 

than in an experimenter-paced condition after cue learning has occurred. 

 

4.2.2. Effective Learning Paradigms  
As previously mentioned, the research on cue learning in metamemory is still in its infancy. 

The work of this thesis shows that metacognitive feedback and learning mechanisms such as 

statistical learning are promising directions about how cues informing metamemory judgments are 

learned. However, future studies should urgently examine the generalizability of metacognitive 

feedback to other cues (e.g., study strategies). This would be helpful for knowing about the 

effectiveness of informing individuals about metacognition which could be tested in applied 

contexts such as educational settings. Further, it is important to examine whether items following 

learned regularities are better remembered than items not following such regularities in other 

memory tests such as a free recall test and a cued-recall test. This would inform about the benefits 

of statistical learning as a cue learning paradigm.  

Finally, a closer investigation of the causal mechanisms underlying cue learning would be 

valuable, as learning cue-memory relations involves causal learning. Attributions of stimulus 

characteristics (i.e., cues) to memorability need to be made and integrated into beliefs that guide 

metacognitive judgments. These attributions can be facilitated, for instance, by simple 

reinforcement learning paradigms that combine feedback with monetary incentives. Although 
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monetary incentives in metamemory often boost overconfidence in confidence judgments 

(Krawczyk, 2012; Lebreton et al., 2018, 2019) and JOLs (Bröder et al., 2024), they have never been 

used in conjunction with metacognitive feedback. This approach could shed light on the 

motivational aspects of cue learning.  

 

4.3. Conclusion 
 Given the importance of accurate metacognitive monitoring for the effective regulation of 

behavior, this thesis investigated how people learn information to rely on for their metamemory 

monitoring judgments. The work in this thesis revealed that learning and testing experiences are 

relevant for acquiring knowledge about the general memorability of pictures. However, in 

metamemory judgments about one’s own memory, neither previous task experience nor cognitive 

feedback on recall and JOL at the item level are helpful for acquiring and utilizing knowledge about 

the validity (or invalidity) of cues. Instead, declarative knowledge about metacognition as provided 

in an informative metacognitive feedback is required. Finally, pioneering research linking statistical 

learning and metacognition revealed that regularities extracted from experience with the 

environment are learned to judge one’s own future memory. Altogether, the results in this thesis 

extend our understanding of how people acquire cues to evaluate their memory. 
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It is helpful to know which pictures are memorable. For 
instance, an illustrator may benefit from such knowledge 
when choosing pictures for advertisements. The ability to 
assess and to know about memory is termed as metamem-
ory (Dunlosky & Thiede, 2013). An advantage of accurate 
metamemory is the effective regulation of future memory 
performance (Bjork et al., 2013). However, studies inves-
tigating metamemory accuracy of naturalistic scene pic-
tures have yielded conflicting evidence: It is not clear how 
accurate people are at predicting which pictures will be 
remembered and which will not. Thus, although it is well 
known that the human visual memory storage for pictures 
is astonishing (Nickerson, 1965; Shepard, 1967; Standing, 
1973), how good metamemory for pictures is remains to 
be examined.

The conflicting findings on metamemory accuracy for 
scene pictures stem from studies using either 

memorability judgements (MJs)—judgements of stimulus 
memorability in general—or judgements of learning 
(JOLs)—predictions of one’s own later memory perfor-
mance for recently studied items. Isola, Parikh, et al. 
(2011) and Isola, Xiao, et al. (2011, 2014)) found that MJs 
are unpredictive of actual picture memorability. This is 
surprising since different people tend to remember and 
forget the same pictures (Isola, Parikh, et al., 2011;  Isola, 
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Xiao, et al., 2011, 2014). In contrast, JOLs have been 
found to be moderately predictive of actual individual 
recognition memory for pictures (Kao et al., 2005; 
Schmoeger et al., 2020; Tauber et al., 2017; Undorf & 
Bröder, 2021). The current study aims to test whether 
these differences are due to MJs referring to memorability 
as a generic item attribute, whereas JOLs refer to one’s 
own chances of remembering a recently studied item. This 
endeavour will enhance our understanding of the accu-
racy and basis of MJs and JOLs and extend our knowl-
edge about different metamemory judgements.

Memorability of scene pictures
Although items may naturally vary in their actual memora-
bility between individuals due to idiosyncratic encoding 
(Hintzman, 1980; Undorf et al., 2022), recent work has 
indicated that actual memorability of scene pictures is 
quite consistent across participants (Bainbridge et al., 
2013; Bylinskii et al., 2015; Isola, Parikh, et al., 2011;  
Isola, Xiao, et al., 2011, 2014). In a large-scale series of 
studies, Isola, Parikh, et al. (2011) and Isola, Xiao, et al. 
(2011,  2014)) measured the memorability of more than 
2,000 images of real-world scenes from the SUN database 
(Xiao et al., 2010). They used a repeat detection task in 
which participants saw sequences of 120 images and were 
asked to detect whenever there was a repetition of an 
image. Image memorability was measured as the percent-
age of correct detections by participants. To investigate 
how consistent image memorability is across participants, 
Isola, Parikh, et al. (2011) and Isola, Xiao, et al. (2011,  
2014)) randomly split the sample into two independent 
halves and correlated the image memorability values from 
the two halves. Repeating this procedure over 25 times, the 
average correlation was strong (ρ = .75) and indicated that 
people tend to recognise and miss the same pictures.

Given consistency of image memorability across par-
ticipants, a further step is to explain what makes an image 
memorable. Isola, Parikh, et al. (2011) and Isola, Xiao, et 
al. (2011,  2014)) identified attributes contributing to mem-
orability. Highly memorable images had semantic attrib-
utes such as enclosed spaces, telling a story, and people 
present. In contrast, less memorable images displayed open 
spaces, aesthetic settings, and were peaceful. Interestingly, 
perceptual image features such as colour (e.g., hue, satura-
tion) and object statistics (e.g., number of objects, coverage 
of pixels over objects) were unrelated to memorability. 
Overall, image memorability was mainly predicted by the 
high-level semantic information conveyed in the picture 
(but see Lin et al., 2021). Nevertheless, a large proportion 
of image memorability variance remained unexplained.

MJs
If image memorability tends to be the same across partici-
pants, it is reasonable to ask whether people can assess the 

memorability of pictures. To address this question, Isola, 
Parikh, et al. (2011) and Isola, Xiao, et al. (2011, 2014)) 
obtained MJs in two tasks; in the first task, 30 participants 
were asked, “Is this a memorable image? Yes/No,” and in 
the second task, 30 other participants were asked, “If you 
were to come across this image in the morning, and then 
happen to see it again at the end of the day, do you think you 
would realize that you have seen this image earlier in the 
day? Yes/No.” Results showed that MJs did not predict 
image memorability: correlations between MJs and memo-
rability were ρ = −0.19 in the first task and ρ = −0.02 in the 
second task. Instead, MJs were highly correlated with aver-
age ratings of semantic image attributes from a norming 
sample (aesthetics, ρ = .83; interestingness, ρ = .86) that 
were inversely related with image memorability (aesthetics, 
ρ = −.36; interestingness, ρ = −.23). These results suggest 
that people have the misconception that beautiful and inter-
esting images are highly memorable and, more generally, 
indicate that people lack insight into item memorability.

JOLs
JOLs are commonly studied metamemory judgements. 
When people make JOLs, they predict their own future 
memory performance for recently studied items. Crucially, 
JOLs are elicited after learning each item and are com-
pared with participant’s own later memory performance. 
Higher-order monitoring processes of learning and mem-
ory are involved when making JOLs (Nelson & Narens, 
1990). Inferential accounts of metamemory assume that 
JOLs are inferences based on available cues and heuristics 
because there is no direct access to the strength of the 
memory trace (Koriat, 1997). Cues for JOLs are classified 
into three different types (Koriat, 1997). Intrinsic cues are 
characteristics inherent to the studied items, such as word 
concreteness or the aesthetics of a picture. Extrinsic cues 
are related to the study conditions in which items are 
learned, such as the number of study repetitions and encod-
ing strategies used. Mnemonic cues are sensitive to the 
effects of extrinsic and intrinsic cues and derive from the 
quality of processing items during learning, such as ease of 
encoding or retrieval fluency.

Evidence for inferential accounts of metamemory 
comes from situations in which metamemory judgements 
are dissociated from actual memory, leading to metamem-
ory illusions (see Undorf, 2020; Undorf et al., 2022, for a 
review). For pictorial materials, there have been very few 
illusions found. One of them is for picture emotionality. 
Recognition memory performance is reduced for emo-
tional pictures, but JOLs tend to be higher for emotional 
pictures compared with neutral ones (Caplan et al., 2019; 
Hourihan, 2020; Hourihan & Bursey, 2017). However, on 
a free recall test in which participants verbally described 
studied pictures, JOLs accurately predict better memory 
for emotional pictures (Schmoeger et al., 2020; Tauber 
et al., 2017). Thus, people recognise the positive validity 
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of picture emotionality on free recall but fail to consider 
the differential negative effects of emotionality in a recog-
nition memory test.

Accurate JOLs, in contrast, imply that these are based 
on cues that are predictive of people’s actual memory per-
formance (Chandler, 1994; Dunlosky & Metcalfe, 2009; 
Koriat, 1997). An important aspect of metamemory accu-
racy is relative accuracy (or resolution)—the extent to 
which metamemory judgements discriminate between 
items that will be remembered and those that will not be 
remembered. Importantly, most of the few JOL studies 
using pictures of scenes have found that JOLs are rela-
tively accurate in terms of relative accuracy and track cue 
effects on actual memory performance (Kao et al., 2005; 
Schmoeger et al., 2020; Tauber et al., 2017; Undorf & 
Bröder, 2021). This is illustrated in the study by Undorf 
and Bröder (2021), in which a total of six intrinsic and 
extrinsic cues in pictures from the SUN database (Xiao 
et al., 2010) were manipulated across three experiments. 
Results showed that recognition memory performance was 
better for scenes that were contextually distinctive, col-
oured (vs. grayscale), telling a story, twice (vs. once) pre-
sented, and containing persons, whereas recognition 
memory performance was worse for peaceful scenes. At 
the same time, people’s JOLs were higher for all cues that 
helped memory and only failed to reflect that peacefulness 
hindered memory. Moreover, JOLs showed moderate rela-
tive accuracy, suggesting that reliance on valid probabilis-
tic cues is an important factor for relative accuracy. 
Similarly, studies with verbal materials found that JOLs 
are based on multiple cues most of which have predictive 
validity and are moderate in their relative accuracy (e.g., 
Bröder & Undorf, 2019; Koriat, 1997; Undorf et al., 2018).

Differences between JOLs and MJs
As mentioned above, prior research by Isola, Parikh, et al. 
(2011) and Isola, Xiao, et al. (2011,  2014)) suggest that 
MJs are unpredictive of actual image memorability across 
participants, while JOLs are relatively accurate at predict-
ing participants’ own memory performance (Kao et al., 
2005; Schmoeger et al., 2020; Tauber et al., 2017; Undorf 
& Bröder, 2021). This is interesting because both judge-
ments refer to picture memorability and, consequently the 
same judgement target.

A potential reason for differences in accuracy between 
JOLs and MJs could be that they refer to different aspects 
of memorability. JOLs are predictions of one’s own mem-
ory performance, whereas MJs are estimations of memora-
bility as a general attribute (i.e., picture memorability) and 
do not focus on one’s own experiences during learning and 
remembering. It is possible that people use different cues 
to inform judgements about memorability as a general 
attribute as opposed to their own learning and memory 
(Tullis & Fraundorf, 2017). In addition, people may use 

different cues for metamemory judgements made during a 
learning task versus a judgement-only task. For instance, 
pre-study JOLs made prior to learning items based on 
information about cue levels only (e.g., “You are about to 
study an emotional item”) show lower relative accuracy 
than standard immediate JOLs. This is because pre-study 
JOLs can only be based on beliefs about how cue values 
affect memorability (e.g., “It is an emotional item, so it is 
easy to remember”; Price & Harrison, 2017; Undorf & 
Bröder, 2020), but not on learning. Similarly, ease-of-
learning judgements made prior to learning (e.g., “How 
easy or difficult will it be to learn this item?”) show lower 
relative accuracy than immediate JOLs (Kelemen et al., 
2000; Leonesio & Nelson, 1990; Pieger et al., 2016). 
Furthermore, JOLs that are elicited immediately after stud-
ying each item are less accurate than JOLs elicited with a 
delay (Dunlosky & Nelson, 1992, 1994; Nelson & 
Dunlosky, 1991). This is because the cues available after 
learning might be more diagnostic than those during learn-
ing where item information is still present in working 
memory. Taken together, JOLs might rely more on diag-
nostic cues than MJs because they are made for one’s own 
memory during a learning task.

In addition, the accuracy between JOLs and MJs might 
differ because of the memory tasks used to measure pic-
ture memorability and the memory criterion value used for 
accuracy. Picture memorability measures may, for exam-
ple, vary between memory tasks. JOL studies with pictures 
of scenes often use a learning phase followed by an old/
new recognition memory test (Caplan et al., 2019; 
Hourihan, 2020; Hourihan & Bursey, 2017; Kao et al., 
2005; Undorf & Bröder, 2021). In contrast, in their study 
on MJs, Isola, Parikh, et al. (2011) and Isola, Xiao, et al. 
(2011,  2014)) employed a repeat detection task in which 
participants simultaneously encoded images and detected 
image repetitions. Moreover, regarding the memory crite-
rion value, JOLs are related to participant’s own individual 
memory performance (i.e., correlation of JOLs with item 
recognition memory by participant), whereas MJs are 
related to image memorability at the item level (i.e., cor-
relation of MJs with item recognition memory aggregated 
across participants from other samples). Although it has 
been demonstrated that image memorability is highly con-
sistent across participants (Bainbridge et al., 2013; 
Bylinskii et al., 2015; Isola, Parikh, et al., 2011; Isola, 
Xiao, et al., 2011, 2014), there might be individual differ-
ences contributing to judgement predictive accuracy. By 
aggregating recognition memory performance across par-
ticipants, idiosyncratic information influencing memory 
and metamemory is not considered (Tullis & Fraundorf, 
2017; Undorf et al., 2022). This might be another reason 
contributing to the lower accuracy of MJs.

It is important to mention that a recent study showed 
that judgements of perceived memorability and JOLs for 
pictures of real-world objects and faces were both 
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predictive of actual stimulus memorability (Saito et al., 
2023). Given differences in the stimuli materials, parallels 
between that research and the current study are difficult to 
draw. Scene pictures are complex and high-dimensional 
stimuli that cannot be easily recoded with a simple verbal 
label. In contrast, real-world objects are easier to encode 
and retrieve because they benefit from an imaginal/verbal 
dual-coding processing (Paivio, 1991). Also, face process-
ing is highly specialised and may not be comparable to the 
processing of other visual stimuli (Bruce & Young, 1986; 
Schwaninger et al., 2004). Thus, MJs might have shown 
low accuracy in prior studies due to the complexity and 
high dimensionality of scene pictures.

The current study
The aim of this study was to directly compare the relative 
accuracy and cue basis of JOLs and MJs for pictures of 
scenes. To achieve this aim, participants made two types of 
metamemory judgements, JOLs and MJs, for different 
aspects of picture memorability (one’s own future memory 
vs. memorability as a generic item attribute) and during a 
learning versus judgement-only task, respectively. At the 
same time, we ensured that the MJ and JOL procedures 
were as similar as possible in all other respects. Specifically, 
we used the same judgement scale for both judgements, 
manipulated identical cues, and investigated the relative 
accuracy of JOLs and MJs with respect to the same mem-
ory criterion, namely, actual population memorability of 
scenes. Population scene memorability was defined as the 
proportion of recognition hits minus the proportion of false 
alarms per scene in each experiment’s recognition memory 
task. This measure corresponds to the proportion of cor-
rected hit rates (also known as Pr, Snodgrass & Corwin, 
1988) and prevents that false memories contribute to the 
actual memorability of scenes.1 We also investigated the 
relative accuracy of JOLs with respect to the participants’ 
own memory performance criterion.2 If discrepant find-
ings regarding the accuracy of JOLs and MJs reported in 
prior work are mainly due to differences in the judgements’ 
cue basis, we expect to see clear differences in cue use and 
judgement accuracy across JOLs and MJs. In contrast, if 
discrepant findings are largely due to methodological dif-
ferences across studies obtaining JOLs and MJs, we expect 
to see similar accuracy and cue basis.

In Experiments 1 and 2, we used a within-subjects design 
by presenting a JOL task and an MJ task to the same partici-
pants, with the order of tasks counterbalanced between par-
ticipants. In the JOL task, participants studied and made 
JOLs for a set of pictures, completed a distraction task, and 
finally completed a recognition memory test. In the MJ task, 
participants judged the memorability of another set of pic-
tures. In Experiment 1, we orthogonally manipulated aes-
thetics and interestingness in two clearly distinguishable 
levels to compare the cue basis of MJs and JOLs. In 

Experiments 2 and 3, we used pictures that represented the 
whole range of normed image memorability in a continuous 
way. To foreshadow the results, we found that MJs and 
JOLs had similar cue bases and were both predictive of 
scene memorability, but that the relative accuracy of MJs 
improved after a JOL task (Experiment 1). This effect was 
completely unexpected, so we replicated it in Experiment 2. 
To gain further insight in this unexpected and theoretically 
relevant result, we designed Experiment 3 to disentangle 
which component of the JOL task drives the improvement 
in MJ accuracy. For this, we used a four-group design in 
which participants completed either (1) the learning phase 
with JOLs and a memory test (i.e., the full JOL task as in the 
previous experiments), (2) the learning phase without JOLs 
plus a memory test, (3) the learning phase with JOLs but no 
memory test, or (4) no learning phase with JOLs and no 
memory test (i.e., no component of the JOL task) before 
completing the MJ task. We found that the learning phase by 
itself was sufficient for the improvement in MJ accuracy. In 
addition, we found that MJs were more sensitive to cue 
effects after a memory test than after making JOLs. This 
was in line with Pearson correlations showing higher MJ 
accuracy when participants previously took a test than when 
they made JOLs.

Experiment 1
In Experiment 1, we examined the relative accuracy and 
cue basis of JOLs and MJs for pictures of naturalistic 
scenes that varied in aesthetics and interestingness. 
Aesthetics and interestingness were the image attributes 
identified as negative predictors of image memorability, 
but positively affecting MJs in Isola, Parikh, et al. (2011) 
and Isola, Xiao, et al. (2011, 2014)). The JOL task was 
similar to the one used by Undorf and Bröder (2021). 
Participants provided a JOL after studying each picture 
from a set of 120 pictures, and, following the learning 
phase, completed a recognition memory test with 240 pic-
tures. In the MJ task, participants gave an MJ for each pic-
ture from another set of 120 pictures. They were explicitly 
instructed not to study the pictures, but only to judge their 
general memorability. This procedure was very similar to 
that used by Isola, Parikh, et al. (2011), Isola, Xiao, et al. 
(2011,  2014), with the exception that Isola et al. obtained 
binary ratings, whereas we used the same 11-point scale 
for MJs and JOLs. This was critical to prevent that poten-
tial accuracy differences between the two types of judge-
ments could stem from using different judgement scales. 
To manipulate aesthetics and interestingness, we presented 
scenes from all possible combinations of high and low 
interestingness and aesthetics to participants. As Isola, 
Parikh, et al. (2011) and Isola, Xiao, et al. (2011, 2014) 
found that aesthetics and interestingness negatively 
affected memory performance, we expected that memory 
performance for pictures would be worse for scenes high 
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in aesthetics and interestingness. Furthermore, given that 
JOLs for pictures were usually moderately accurate and 
relied on valid cues (Kao et al., 2005; Schmoeger et al., 
2020; Tauber et al., 2017; Undorf & Bröder, 2021), we pre-
dicted accurate JOLs that would decrease with aesthetics 
and interestingness. It was an open question whether MJs 
would be accurate and relying on valid cues.

Method
Design and materials. The design was a 2 (aesthetics: low 
vs. high) × 2 (interestingness: low vs. high) × 2 (task 
order condition: JOLs first vs. MJs first) mixed design, 
with aesthetics and interestingness as within-participants 
factors and task order as a between-participants factor. 
Half of the participants were randomly allocated to the 
JOLs-first condition (n = 26). The other half of participants 
were allocated to the MJs-first condition (n = 26). Aesthet-
ics and interestingness were manipulated by selecting dif-
ferent sets of normed scene pictures. Stimuli were 360 
pictures from the SUN database (Xiao et al., 2010). Nor-
med values for aesthetics and interestingness were taken 
from Isola, Parikh, et al. (2011) and Isola, Xiao, et al. 
(2011, 2014) who asked 30 participants “Is this an aes-
thetic image?” and “Is this an interesting image?” Yes/No. 
Ninety scenes each were low in aesthetics and interesting-
ness, low in aesthetics and high in interestingness, high in 
aesthetics and low in interestingness, and high in aesthet-
ics and interestingness (see Figure 1).3 We divided the 
scenes into three parallel sets each with 120 scenes in total, 
30 of them from each combination of aesthetics 

and interestingness. For each participant, scenes from one 
randomly selected set served as study items in the JOL 
task, scenes from another randomly selected set served as 
distractors in the test phase of the JOL task, and scenes 
from the third set were used in the MJ task.

Participants. We aimed at recruiting at least 50 participants 
from the Prolific online subject pool. This sample size pro-
vides a statistical power of (1 − β) = .94 to detect medium-
sized main and interaction effects (f = .25, equivalent to 
ηp

2 = .06) with α = .05 in a mixed ANOVA when assuming 
a correlation of .50 between repeated measures (G*Power 
3; Faul et al., 2007). We recruited participants who were 
18–61 years old, reported English as their first language, 
and had at least a high school diploma as highest degree. 
The experiment took approximately 40 min and partici-
pants were paid £5.

To ensure high data quality, our criteria for not accept-
ing submissions of participants in Prolific were: (1) study 
timed out, based on a time limit set by Prolific based on the 
estimated completion time (n = 4), (2) completing the study 
with a different device than a desktop computer (n = 0), or 
(3) low effort throughout the experiment operationally 
defined as writing gibberish in the filler task (n = 0) or cor-
rected hit rates of or very close to zero (n = 1).4 We accepted 
submissions from 57 participants. Our criteria for exclud-
ing accepted submissions from analysis were: participants 
reported technical problems (n = 5), admitted having used 
helping tools during the study (n = 0), or admitted having 
completed the study with the help of someone else (n = 0). 
The final sample included 52 participants (37 females, 14 

Figure 1. Example pictures for each combination of aesthetics and interestingness used in Experiment 1.
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males, and 1 other). Their mean age was 32.42 years 
(SD = 11.1), 3 participants were between 18 and 20 years 
in age, 29 participants were between 21 and 30 years in 
age, 7 participants were between 31 and 40 years in age, 7 
participants were between 41 and 50 years in age, and 6 
participants were between 51 and 61 years in age.

Procedure. The experiment consisted of a JOL task and 
an MJ task. Participants in the JOLs-first condition com-
pleted the JOL task first and then completed the MJ task. 
Task order was reversed for participants in the MJs-first 
condition. At the beginning of the experiment, we asked 
participants to comply with the following requirements: 
maximising the size of the web browser so that it covers 
the entire screen, completing the study in a single ses-
sion, not leaving the study to engage in other tasks, com-
pleting the study in an environment that is free of noise or 
distraction, and not using any helping tools to complete 
the tasks.

In the JOL task, participants were instructed that their 
task was to remember 120 scene pictures for a later memory 
test in which studied photos would be intermixed with new 
ones and they would be asked to indicate whether each 
photo presented was studied or new. They were also 
instructed to predict the chances that they would personally 
recognise the photo on the test immediately after learning 
each photo. At learning, each scene picture was centred in 
the top half of the screen and displayed for 1 s, preceded by 
a 500-ms fixation cross that appeared in the same location. 
Immediately afterwards, participants indicated their chances 
of recognising the picture at test. To make their self-paced 
JOL, participants clicked on one of 11 buttons labelled 0, 
10, . . ., 90, and 100. Following the learning phase, partici-
pants performed a semantic filler task for 3 min. On each 
filler trial, participants had 20 s to type in one word from 
each of three categories (i.e., animal, meal, and city) that 
started with a given letter. Finally, participants completed a 
self-paced recognition test with 240 scenes that included the 
120 studied and 120 new scenes. At test, each scene picture 
was centred in the top half of the screen and participants 
indicated whether they had studied the picture before by 
clicking on buttons labelled “yes” and “no.”

In the MJ task, participants were told that they would be 
presented with 120 scene pictures and their task is to judge 
how memorable each scene is. Participants were informed 
that they need not study the pictures themselves. At judging, 
each scene picture was centred in the top half of the screen 
and participants indicated how memorable the picture was 
for people who are asked to memorise the photo and later 
recognise it among new pictures. To make their self-paced 
MJ, participants clicked on one of 11 buttons labelled 0 (not 
memorable at all), 10, . . ., 90, and 100 (very memorable). 
For each participant, scene pictures were presented in a new 
random order in the learning phase and recognition memory 
test of the JOL task, and in the MJ task.

Data analysis
We report three different measures of judgement resolu-
tion. In all measures of judgement resolution, we used 
population scene memorability at the item level as mem-
ory criterion for MJ and JOL accuracy. Population scene 
memorability corresponds to the corrected hit rate for each 
scene, and it was calculated by subtracting the false alarm 
rate from the hit rate per scene. As the memory criterion 
for JOL accuracy at the individual level (i.e., participants’ 
own memory performance), we used uncorrected hit rates 
because it is impossible to correct hit rates for both indi-
vidual participants and individual items. Our main meas-
ure of judgement resolution is the within-subject 
Goodman–Kruskal gamma correlation between metam-
emory judgements and memory performance (Nelson, 
1984). This is one of the most used measures of relative 
metamemory accuracy. Because population scene memo-
rability was a continuous variable, we also report Pearson 
correlation coefficients. Furthermore, because gamma has 
been criticised due to inflated Type 1 errors (Murayama 
et al., 2014), discarded ties (Masson & Rotello, 2009; 
Spellman et al., 2014), and variation with liberal or con-
servative response criteria in recognition memory (Masson 
& Rotello, 2009), we additionally conducted a mixed-
effects model analysis predicting population scene memo-
rability from MJs and JOLs (Murayama et al., 2014).

Results
Resolution of JOLs and MJs. Table 1 and Figure 2 show 
mean gamma correlations between metamemory judge-
ments and population scene memorability for each task in 
each task order condition. All correlations were signifi-
cantly positive, t >= 5.02, p < .001, indicating that not 
only JOLs but also MJs captured differences in population 
scene memorability. A 2 (task: JOL vs. MJ; within-partic-
ipants) × 2 (task order condition: JOLs-first vs. MJs-first; 
between-participants) mixed ANOVA revealed no main 
effects, task: F(1, 50) = 2.24, p = .14, ηp

2 = .04, task order 
condition: F(1, 50) = 1.34, p = .25, ηp

2 = .03, but a signifi-
cant interaction, F(1, 50) = 25.30, p < .001, ηp

2 = .34. Fol-
low-up t-tests indicated that gamma correlations for JOLs 
did not differ between conditions, t(50) = 1.36, p = .18, 
d = 0.38, whereas gamma correlations for MJs were higher 
in the JOLs-first condition than in the MJs-first condition, 
t(50) = 3.09, p < .01, d = 0.88, which indicates higher rela-
tive accuracy of MJs when made after the JOL task. Equiv-
alent results were found with the mixed-effects model 
analysis (see the Supplementary Material 2). Similar 
results were found with Pearson correlations, except for a 
main effect of task indicating higher Pearson correlations 
for MJs than for JOLs (see the Supplementary Material 1).

Table 1 shows mean gamma correlations between JOLs 
and participant’s own memory performance (individual 
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memory performance) in each task order condition. Both 
gamma correlations were significantly positive, t ≥ 12.04, 
p < .001, and they did not differ between order conditions, 
t < 1.

Cue effects on JOLs and individual memory performance. Fig-
ure 3 presents JOLs and corrected hit rates from the JOL 
task by aesthetics and interestingness in the JOLs-first and 
MJs-first condition. A 2 (aesthetics: low vs. high) × 2 
(interestingness: low vs. high) × 2 (task order condition: 
JOLs first vs. MJs first) mixed ANOVA on JOLs revealed 
no main effect of aesthetics, F(1, 50) = 0.77, p = . 39, 
ηp

2 = .02, a main effect of interestingness, F(1, 50) = 90.02, 
p < .001, ηp

2 = .64, indicating higher JOLs for scenes high 
in interestingness than low in interestingness, no main 
effect of task order condition, F(1, 50) = 1.64, p = .21, 
ηp

2 = .03, and a significant interaction between order con-
dition and interestingness, F(1, 50) = 7.75, p < .01, 
ηp

2 = .13. Follow-up t-tests indicated that interestingness 
affected JOLs in both conditions, but more so in the MJs-
first condition, JOLs-first condition: t(25) = 5.34, p < .001, 
d = 1.07; MJs-first condition: t(25) = 7.87, p < .001, 
d = 1.58. No other interactions were significant, F < 1, 
p ≥ .37.

A similar ANOVA on corrected hit rates (Pr) revealed 
better recognition memory performance for scenes low in 
aesthetics than high in aesthetics, F(1, 50) = 54.73, 
p < .001, ηp

2 = .52, and for scenes high in interestingness 
than low in interestingness, F(1, 50) = 4.15, p = .047, 
ηp

2 = .08, no other effects were significant, F ≤ 1.64, 
p ≥ .21.5 We thus replicated Isola, Parikh, et al.’s (2011) 

and Isola, Xiao, et al.’s (2011, 2014) findings of better 
memory performance for scenes low in aesthetics, but did 
not replicate better memory performance for scenes low in 
interestingness. Instead, we found that memory perfor-
mance was better for scenes high in interestingness. We 
will return to this point in the “Discussion” section.

Cue effects on MJs. Figure 3 presents MJs from the MJ task 
by aesthetics and interestingness in the JOLs-first and 
MJs-first condition. A 2 (aesthetics: low vs. high) × 2 
(interestingness: low vs. high) × 2 (task order condition: 
JOLs first vs. MJs first) mixed ANOVA on MJs revealed 
no main effect of aesthetics, F(1, 50) = 3.65, p = .06, 
ηp

2 = .07, a main effect of interestingness, F(1, 50) = 224.02, 
p < .001, ηp

2 = .82, indicating higher MJs for scenes high 

Table 1. Means (SDs) of the gamma correlation between 
population scene memorability (hit rate corrected per scene) 
or participant’s own memory performance and JOLs or MJs in 
each task order condition of Experiments 1, 2, and 3.

Experiment and 
condition

Accuracy criterion

Population scene 
memorability

Own memory 
performance

JOLs MJs JOLs

Experiment 1
 JOLs first .21 (.14) .35 (.17) .36 (.15)
 MJs first .27 (.17) .19 (.19) .40 (.16)
Experiment 2
 JOLs first .23 (.14) .31 (.15) .33 (.25)
 MJs first .25 (.18) .19 (.17) .45 (.18)
Experiment 3
 MJ-task-only - .20 (.22) -
 Full-JOL-task .26 (.14) .32 (.15) .38 (.22)
 Study-and-JOL-task .28 (.18) .26 (.20) -
 Study-and-test-task - .31 (.17) -

Note. JOLs = judgements of learning, MJs = memorability judgements, 
Population scene memorability = hit rate minus false alarm rate per 
scene across participants in each experiment.

Figure 2. Gamma correlations between population scene 
memorability (hit rate corrected per scene) and judgements of 
learning (JOLs) or memorability judgements (MJs) in each task 
order condition of Experiments 1 and 2.
Note. Error bars represent one standard error of the mean.
Experiment 1: p = .003
Experiment 2: p = .008
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in interestingness than low in interestingness, a main effect 
of task order condition, F(1, 50) = 7.42, p < .01, ηp

2 = .13, 
indicating higher MJs in JOLs-first condition than in the 
MJs-first condition, and a significant interaction between 
interestingness and task order condition, F(1, 50) = 9.71, 
p < .01, ηp

2 = .16. Follow-up t-tests indicated that interest-
ingness affected MJs in both conditions, but more so in the 
MJs-first condition, JOLs-first condition: t(25) = 9.33, 
p < .001, d = 1.87; MJs-first condition: t(25) = 11.71, 
p < .001, d = 2.34. All other interactions, F ≤ 2.33, p ≥ .13.

Discussion
Recognition memory was affected by the two image 
characteristics aesthetics and interestingness. As in Isola 
et al., we found better memory performance for scenes 
low rather than high in aesthetics. Contrary to Isola et al., 
we found better memory performance for scenes high 
rather than low in interestingness. Potential explanations 
for this difference in results include that we used a differ-
ent recognition memory paradigm (i.e., learning phase 

followed by an old/new memory test), and that aesthetics 
and interestingness were strongly correlated in Isola 
et al.’s study (ρ = .85) but manipulated orthogonally here. 
Furthermore, the finding that JOLs and MJs were both 
unaffected by aesthetics, but higher for pictures high 
rather than low in interestingness suggests a similar cue 
basis of JOLs and MJs. The finding that aesthetics did not 
affect either metamemory judgement fits with prior find-
ings indicating that people sometimes fail to factor valid 
cues in their JOLs for scene pictures (e.g., peacefulness, 
Undorf & Bröder, 2021).

Despite people’s failure to recognise the predictive 
validity of aesthetics in their JOLs and MJs, reliable reso-
lution showed that both metamemory judgements captured 
differences in the relative population memorability of 
scenes. Thus, by directly comparing JOLs and MJs in a 
within-subjects design using the same memory criterion, 
our results showed that both types of judgement had mod-
erate resolution.

A new and unexpected finding was that the accuracy of 
MJs improved substantially after completing a JOL task, 

Figure 3. Mean judgements of learning (JOL), memorability judgements (MJ) and corrected hit rates (% hits corrected) by 
aesthetics and interestingness in the JOLs-first (top panel) and MJs-first (bottom panel) conditions of Experiment 1.
Note. Error bars represent one standard error of the mean.
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whereas completing an MJ task did not affect JOL accu-
racy.6 The order of the tasks also did not affect JOL accu-
racy when using participant’s own memory performance 
as memory criterion. This finding shows that the accuracy 
of JOLs and MJs differs in whether it is affected by the 
order of the tasks. Previous metamemory studies using 
multiple study-test cycles for the same materials have 
reported changes in the resolution and absolute accuracy 
of JOLs. From the second study-test cycle onward, reli-
ance on past memory performance increases JOL resolu-
tion and, at the same time, under-confidence lowers 
absolute accuracy of JOLs (Finn & Metcalfe, 2008; King 
et al., 1980; Koriat et al., 2006). Importantly, the current 
finding that MJ resolution improves after a JOL task is 
novel in that it demonstrates increased accuracy of judging 
the general memorability of new pictures after actively 
engaging in a learning phase with JOLs and a memory test.

In conclusion, the results of Experiment 1 indicate that 
(1) JOLs and MJs for scenes were predictive of population 
scene memorability and that (2) both types of metamem-
ory judgements had a similar cue basis (i.e., based on inter-
estingness, but not on aesthetics). A surprising finding was 
that (3) having completed a learning task with JOLs and a 
recognition memory test improved the accuracy of MJs, 
whereas making MJs did not improve the accuracy of 
JOLs. A potential mechanism for this improvement in rela-
tive accuracy is that participants gained experience by 
intentionally learning pictures and reflecting about their 
own memory performance. If MJs are made without this 
experience, participants probably lack knowledge about 
how to assess the abstract image feature memorability. 
This interpretation suggests that experiences with one’s 
own memory precede the understanding of memory in 
general, and it would help to explain why MJ and JOL 
accuracy is sometimes comparable and sometimes not. To 
rule out that improved MJ accuracy after the JOL task was 
an accidental result in Experiment 1, Experiment 2 aimed 
to conceptually replicate this finding.

Experiment 2
Experiment 2 aimed to replicate findings of Experiment 1 
and, specifically, the unexpected finding that having com-
pleted a JOL task with learning pictures, making JOLs, and 
taking a recognition memory test improved the relative 
accuracy of MJs. Because JOLs and MJs were based on 
similar cues in Experiment 1, we did not manipulate indi-
vidual cues in Experiment 2, but instead used scenes that 
varied widely in scene memorability. Based on the find-
ings obtained in Experiment 1, we expected that both JOLs 
and MJs would be similarly impacted by scene memorabil-
ity. As in Experiment 1, all participants completed a JOL 
task and an MJ task with the task order manipulated 
between participants. We expected that, as in Experiment 
1, JOLs and MJs would be predictive of population scene 

memorability. At the same time, given the experience and 
knowledge people gained in the JOL task, we hypothesised 
that the relative accuracy of MJs would be higher in the 
JOL-first condition than in the MJ-first condition.

Method
Design and materials. The design was a 10 (scene memo-
rability: 10 levels from low to high) × 2 (task order condi-
tion: JOLs-first vs. MJs-first) mixed design, with scene 
memorability as a within-participants factor and task 
order as a between-participants factor. Scene memorabil-
ity was manipulated by selecting different sets of scene 
pictures that varied in corrected hit rates (i.e., hit rate 
minus false alarm rate per scene) reported in Isola, Parikh, 
et al. (2011) and Isola, Xiao, et al. (2011, 2014). We used 
the deciles of the frequency distribution of scene memora-
bility as cutoff values and selected 36 scenes from each of 
the 10 levels, resulting in a total of 360 pictures (see Fig-
ure 4).7 We divided the scenes from each level of memo-
rability into three parallel sets with 12 scenes. Recombining 
these, we thus created 3 parallel sets of 120 pictures each 
(12 of each level). Sets were also similar in aesthetics and 
interestingness. For each participant, scenes from one ran-
domly selected set served as study items in the JOL task, 
scenes from another randomly selected set served as dis-
tractors in the test phase of the JOL task, and scenes from 
the third set were used in the MJ task.

Participants. We aimed at recruiting 50 participants from 
the Prolific online subject pool who were 18 to 61 years 
old, reported English as their first language, and had at 
least a high-school diploma as highest degree. Power anal-
ysis was identical to that of Experiment 1. The experiment 
took approximately 40 min and participants were paid £5. 
Based on the same criteria as in Experiment 1, we did not 
accept submissions in Prolific when the study timed out 
(n = 2), was completed on a different device than a desktop 
computer (n = 1), or there was low effort throughout the 
experiment (n = 0).

We accepted submissions from 55 participants. Based 
also on the same criteria of Experiment 1, we excluded 
accepted submissions from analysis when participants 
reported technical problems (n = 5), admitted having used 
helping tools during the study (n = 0), or admitted having 
completed the study with the help of someone else (n = 0). 
The final sample included 50 participants (30 females, 20 
males). The mean age of participants was 34.64 (SD = 9.94), 
2 participants were between 18 and 20 years in age, 21 par-
ticipants were between 21 and 30 years in age, 13 partici-
pants were between 31 and 40 years in age, 8 participants 
were between 41 and 50 years in age, and 6 participants 
were between 51 and 61 years in age.

Procedure. The procedure was identical to Experiment 1.
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Results
Resolution of JOLs and MJs. Table 1 and Figure 2 show 
mean gamma correlations between metamemory judge-
ments and population scene memorability for each task in 
each task order condition. All correlations were signifi-
cantly positive, t > 5.72, p < .001. A 2 (task: JOL vs. MJ; 
within-participants) × 2 (task order condition: JOLs-first 
vs. MJs-first; between participants) mixed ANOVA 
revealed no main effects: task, F < 1, task order condition, 
F (1, 48) = 1.52, p = .22, ηp

2 = .02, but a significant interac-
tion, F(1, 48) = 12.99, p < .001, ηp

2 = .21. Planned com-
parisons indicated that gamma correlations for JOLs did 
not differ between conditions, t < 1, p = .59, whereas 
gamma correlations for MJs were higher in the JOLs-first 
condition than in the MJs-first condition, t(48) = 2.77, 
p < .01, d = 0.80. As in Experiment 1, this again shows 
higher relative accuracy of MJs after learning items, mak-
ing JOLs, and completing a recognition memory test. 
Equivalent results were found with Pearson correlations 
and a mixed-effects model analysis (see the Supplemen-
tary Materials 1 and 2).

Table 1 shows mean gamma correlations between JOLs 
and participant’s own memory performance in each task 
order condition. Both correlations were significantly posi-
tive, t ≥ 6.65, p < .001, and did not differ between condi-
tions, t(48) = 1.88, p = .07, d = 0.57.

Cue effects. Figure 5 presents JOLs, corrected hit rates, 
and MJs. We used a mixed-effects model (Bates et al., 
2015) to evaluate whether JOLs and MJs increased mono-
tonically with scene memorability. This approach allowed 
us to directly test for a linear increase in metamemory 

judgements with scene memorability as a fixed-effects 
predictor with 10 levels. To evaluate whether the scene 
memorability slope differed between order conditions, we 
included order condition and its interaction with scene 
memorability as additional fixed-effects predictors in the 
model. We specified random intercepts for participants 
and uncorrelated random slopes for scene memorability. 
Scene memorability was mean-centred, and task order 
condition was effect coded (−1 = MJs-first, 1 = JOLs-first). 
We used a logistic regression model to evaluate a linear 
increase in hit rates with scene memorability.

Cue effects on JOLs and individual memory performance.  
Regressing JOLs on scene memorability, task order condi-
tion, and their interaction revealed a significantly positive 
unstandardized coefficient for scene memorability, b = 2.01, 
(SE = 0.22), t = 9.18, p < .001, indicating that JOLs 
increased with scene memorability. No other effects were 
significant, order condition: b = 4.02, (SE = 2.01), t = 2.00, 
p = .05, interaction: t < 1. A logistic regression model 
revealed that hit rates increased with scene memorability, 
b = 0.20, (SE = 0.01), z = 17.72, p < .001. No other effects 
were significant, z ≤ 1.41, p ≥ .16.

Cue effects on MJs. Regressing MJs on scene memorability, 
task order condition, and their interaction revealed signifi-
cantly positive unstandardized coefficients for scene mem-
orability, b = 1.91, (SE = 0.21), t = 8.90, p < .001, indicating 
that MJs increased with scene memorability. The model 
also revealed significantly positive unstandardized coeffi-
cients for order condition, b = 7.38, (SE = 1.79), t = 4.12, 
p < .001, indicating that MJs were higher in the JOLs-first 
condition, and for the interaction between scene 

Figure 4. Example pictures of each of the 10 levels of scene memorability (from 1 = lowest to 10 = highest) used in Experiments 2 
and 3.
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memorability and order condition, b = 0.51, (SE = 0.21), 
t = 2.38, p = .022, indicating differences in the effects of 
scene memorability on MJs across order conditions. Sepa-
rate follow-up regression models for each order condition 
revealed that MJs increased with scene memorability in 
both conditions, but more so in the JOLs-first condition, 
JOLs-first condition: b = 2.42, (SE = 0.28), t = 8.52, p < .001; 
MJs-first condition: b = 1.40, (SE = 0.32), t = 4.36, p < .001.

Discussion
As in Experiment 1, both JOLs and MJs were predictive of 
differences in population scene memorability. We again 
found that the relative accuracy of MJs improved after a 
JOL task, whereas prior experiences with making MJs did 
not improve JOL accuracy. Thus, when using the same 
memory criterion for accuracy at the item level, differ-
ences in accuracy between JOLs and MJs tied to the order 
of tasks still emerged. Importantly, this shows that the ben-
eficial impact of a preceding JOL task on MJ accuracy is a 
robust effect that merits further scrutiny. The finding that 

task order did not affect JOL resolution was independent 
of the memory criterion used for accuracy (i.e., population 
scene memorability, or participant’s own memory 
performance).

As expected, both JOLs and MJs monotonically 
increased with increasing scene memorability. This again 
indicated that the cue basis of the two metamemory judge-
ments is similar and suggested that several cues diagnostic 
of memorability underlie each type of metamemory judge-
ment (for evidence that multiple cues are integrated in 
JOLs for scene pictures and for verbal materials, see, for 
example, Undorf & Bröder, 2021; Undorf et al., 2018). 
Importantly, MJs increased more strongly with scene 
memorability in the JOLs-first than in the MJs-first condi-
tion, indicating that MJs become more sensitive to scene 
memorability effects after a JOL task. In contrast, scene 
memorability effects on JOLs were unaffected by the task 
order condition. This finding supports our hypothesis that 
participants learn about the general memorability of scenes 
by completing a JOL task and make MJs for new set of 
pictures on an updated basis.

Figure 5. Mean judgements of learning (JOL), memorability judgements (MJ), and corrected hit rates (% hits corrected) by scene 
memorability in the JOLs-first (top panel) and MJs-first (bottom panel) conditions of Experiment 2.
Note. Error bars represent one standard error of the mean.
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In summary, results from Experiment 2 again show that 
experience with a JOL task provides a viable basis for 
assessing the general memorability of scenes. Therefore, 
this novel result from Experiment 1 was proven to be rep-
licable and one may ask for an explanation. One step in 
this direction is to investigate which component of the JOL 
task (i.e., learning phase, making JOLs, recognition mem-
ory test) drives the improvement in MJ accuracy. Regarding 
the potential contribution of a learning phase to the relative 
accuracy of metamemory, literature is scarce. Two studies 
investigating the effects of prior learning versus prior test-
ing on metamemory accuracy found that test experience 
was more effective than learning experience (Jang et al., 
2012; Koriat & Bjork, 2006a). However, in the current 
study, it might be possible that a learning phase provides 
participants with the experience required to make accurate 
MJs. Regarding JOL experience, making JOLs for oneself 
might increase MJ accuracy because monitoring one’s 
own learning can increase sensitivity towards diagnostic 
cues. For instance, previous studies have found that pro-
cessing fluency as indicated by short self-paced study 
times is used as a cue for other’s memory predictions only 
after learners had made JOLs for their own memory 
(Koriat & Ackerman, 2010; Undorf & Erdfelder, 2011). 
Therefore, from a cue-weighting perspective (Undorf 
et al., 2018), it may be that completing a learning phase 
with JOLs fosters the use of valid cues for MJs. These 
valid cues might include mnemonic cues such as the ease 
of encoding (Begg et al., 1989; Chandler, 1994; Hertzog 
et al., 2003) or perceiving pictures (Besken, 2016; Fei-Fei 
et al., 2007; Undorf et al., 2017) and intrinsic cues such as 
emotionality and concreteness (Undorf & Bröder, 2020). 
Alternatively, or additionally, test experience might 
improve MJ accuracy for a new set of scenes by providing 
participants with feedback regarding the memorability of 
scene pictures. Specifically, monitoring one’s recognition 
memory performance for scene pictures during the test 
may provide hints of the features or feature combinations 
that make a picture memorable (Mitton & Fiacconi, 2020). 
For example, a participant might realise during the test that 
she recognises interesting pictures or pictures with people 
better than others. Thus, based on prior work, it is plausi-
ble that learning scene pictures, making JOLs, and taking 
a recognition memory test underlie the improvement in MJ 
accuracy observed in the previous experiments separately 
or in combination.

Experiment 3
Experiment 3 was preregistered (https://osf.io/3fujm) and 
aimed at disentangling which component of the JOL task 
drives the improvement in MJ accuracy. For this, in the 
first part of the experiment, different groups of participants 
completed either the full JOL task (full-JOL-task 

condition), a learning phase with JOLs, but without a test 
(study-and-JOL-task condition), a learning phase without 
JOLs, but with a recognition memory test (study-and-test-
task condition), or no component of the JOL task (MJ-task-
only condition). In the second part of the experiment, all 
participants completed an MJ task. In this four-group 
design, making JOLs (yes, no) and taking a test (yes, no) 
are fully crossed with the MJ-task-only condition being the 
control. However, the MJ-task-only condition (i.e., no 
JOLs, no test) additionally differs from the other three con-
ditions by not including a learning phase. Because one 
cannot make JOLs or take a test without having learned the 
pictures, completing the learning phase (yes, no) cannot be 
fully crossed with the other variables (i.e., making JOLs, 
taking a test). Nevertheless, the imbalanced design allows 
for all crucial tests: If all experimental conditions show a 
similar improvement in MJ accuracy compared with the 
control condition, then completing a learning phase is the 
critical factor driving MJ accuracy. If MJ accuracy is 
higher in the full JOL-task condition than in the conditions 
in which participants make JOLs but do not take a test or 
take a test but do not make JOLs, then making JOLs and 
taking a test have additive effects on MJ accuracy. Finally, 
differences in MJ accuracy across the conditions in which 
participants make JOLs but do not take a test or take a test 
but do not make JOLs will reveal the relative importance 
of making JOLs or taking a test for improved MJ 
accuracy.

Method
Design and materials. The design was a 10 (scene memora-
bility: 10 levels from low to high) × 4 (condition: full-
JOL-task, study-and-test-task, study-and-JOL-task, 
MJ-task-only) mixed design, with scene memorability as a 
within-participants factor and condition as a between-par-
ticipants factor. We used the same sets of pictures as in 
Experiment 2.

Participants. We aimed at recruiting N = 212 participants 
from the Prolific online subject pool (n = 53 in each condi-
tion) who were 18 to 61 years old, reported English as their 
first language, and had at least a high-school diploma as 
highest degree. This sample size provides a statistical 
power of (1 − β) = .95 to detect medium-sized effects 
(f = .25, equivalent to ηp

2 = .06) with α = .05 in a fixed-
effects ANOVA employed to test power for contrasts with 
df = 1 and df = 4 in the numerator and the denominator, 
respectively (G*Power 3; Faul et al., 2007; Perugini et al., 
2018). The experiment took approximately 40 min and 
participants were paid £5. Participants were randomly 
allocated to one of the four conditions. Based on the same 
criteria as in Experiments 1 and 2, we did not accept sub-
missions in Prolific when the study timed out (n = 2), was 

https://osf.io/3fujm
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completed on a different device than a desktop computer 
(n = 1), or there was low effort throughout the experiment 
(n = 0). We accepted submissions from 212 participants. 
Based also on the same criteria as Experiments 1 and 2, we 
excluded data from analysis when participants reported 
technical problems (n = 0), admitted having used helping 
tools during the study (n = 3), admitted completing the 
study with the help of someone else (n = 4), or admitted 
having just clicked through the study without taking part 
seriously (n = 0). The final sample included 205 partici-
pants (n = 51 in the full-JOL-task, study-and-JOL-task, and 
MJ-task-only condition, n = 52 in the study-and-test-task 
condition). They were 113 females, 91 males, and 1 other. 
The mean age of participants was 37.29 years (SD = 10.54), 
6 participants were between 18 and 20 years in age, 59 par-
ticipants were between 21 and 30 years in age, 60 partici-
pants were between 31 and 40 years in age, 52 participants 
were between 41 and 50 years in age, and 28 participants 
were between 51 and 61 years in age.

Procedure. The experiment consisted of two parts. In the 
first part of the experiment, participants in the full-JOL-
task condition completed the same JOL task as in Experi-
ments 1 and 2 (i.e., learning phase with JOLs, semantic 
filler task, and recognition memory test). Participants in 
the study-and-JOL-task condition completed a learning 
phase with JOLs, and a semantic filler task, but no recog-
nition memory test. They received the same initial instruc-
tions as participants in the full-JOL-task condition but 
learned at the end of the experiment that we wanted to 
examine the accuracy of memorability estimates in partici-
pants who had not taken a memory test, which is why they 
had skipped the memory test. Participants in the study-
and-test-task condition completed a learning phase with-
out JOLs, a semantic filler task, and a recognition memory 
test. Participants in the MJ-task-only condition completed 
the semantic filler task only. In the second part of the 
experiment, participants from all conditions completed the 
same MJ task as in Experiments 1 and 2.

Results
Resolution of JOLs and MJs. As in Experiments 1 and 2 and 
as preregistered, we examined the extent to which MJs 
predicted differences in the actual population memorabil-
ity of scenes in this experiment using within-subject 
Goodman–Kruskal gamma correlations, Pearson correla-
tions (see the Supplementary Material 1), and a mixed-
effects model analysis (see the Supplementary Material 
2). To assess differences in MJ accuracy between condi-
tions, we transformed our hypotheses into a set of orthog-
onal contrasts using Helmert coding. This approach has 
two main advantages: (1) testing specific group differ-
ences that are independent and more informative than an 

omnibus F-test, and (2) greater statistical power than fol-
low-up t-tests (Rosenthal et al., 2000). The first contrast 
tested the difference between the control condition (MJs-
only; −3/4) and all three experimental conditions (full-
JOL-task, study-and-JOL-task, study-and-test-task; coded 
all as +1/4). The second contrast tested the difference 
between the full-JOL-task condition (+2/3) and the other 
two experimental conditions (study-and-JOL-task group, 
the study-and-test-task group; coded both as −1/3). The 
third contrast tested the difference between the study-and-
JOL-task condition (−1/2) and the study-and-test-task 
condition (+1/2).

Table 1 and Figure 6 show mean gamma correlations 
between MJs and population scene memorability in each 
condition of Experiment 3. All correlations were signifi-
cantly positive, t ≥ 6.39, p < .001, indicating that MJs in 
all conditions captured differences in population scene 
memorability. Planned contrasts revealed that the learning 
phase present in all experimental conditions improved MJ 
accuracy compared with only making MJs, t(201) = 3.22, 
p < .01. They also revealed that MJ accuracy did not differ 
between the full-JOL-task condition and the conditions 
with one component of the JOL task only (i.e., study-and-
JOL-task, study-and-test-task), t(201) = 1.18, p = .24, 
showing that there were no additive effects of making 
JOLs and taking a test. Finally, MJ accuracy did not differ 
between the study-and-JOL-task condition and the study-
and-test-task condition, t(201) = 1.49, p = .14, suggesting 
that making JOLs is not more beneficial than taking a test, 

Figure 6. Gamma correlations between population scene 
memorability (hit rate corrected per scene) and memorability 
judgements (MJs) in each condition of Experiment 3.
Note. Error bars represent one standard error of the mean.
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or vice versa. The latter result, however, was not supported 
by Pearson correlations which instead suggested that tak-
ing a test improved MJ accuracy more than making JOLs 
(see the Supplementary Material 1).

Cue effects on MJs. Figure 7 presents MJs in each condi-
tion of Experiment 3. As in Experiment 2 and as preregis-
tered, we used a mixed-effects model to examine whether 
MJs increased with scene memorability. We included con-
dition and its interaction with scene memorability as fixed-
effects predictors in the model to evaluate whether the 
scene memorability slope differs between conditions. We 
specified random intercepts for participants and uncorre-
lated random slopes for scene memorability. Scene memo-
rability was grand mean-centred, and condition was coded 

with the same Helmert contrasts as in the resolution 
analysis.

A significantly positive unstandardized coefficient for 
scene memorability, b = 2.43, (SE = 0.19), t = 22.43, 
p < .001, indicated that MJs again increased with scene 
memorability. Significantly positive unstandardized coef-
ficients for the second and third contrasts coding condition; 
b = 8.93, (SE = 2.56), t = 3.48, p < .001, b = 6.47, (SE = 2.95), 
t = 2.19, p < .05, indicated higher MJs in the full-JOL-task 
condition than in the study-and-JOL-task and the study-
and-test-task conditions, and higher MJs in the study-and-
test-task condition than in the study-and-JOL-task 
condition. More importantly, a significant interaction 
between scene memorability and the third contrast coding 
condition revealed differences in scene memorability 

Figure 7. Mean memorability judgements (MJ) by scene memorability in each condition of Experiment 3.
Note. Error bars represent one standard error of the mean.
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effects on MJs between the study-and-JOL-task and the 
study-and-test-task conditions, b = 0.85, (SE = 0.31), 
t = 2.78, p < .01. Separate follow-up regression models for 
each condition revealed that MJs increased with scene 
memorability in both conditions, but more so in the study-
and-test-task condition, study-and-JOL-task condition: 
b = 2.09, (SE = 0.19), t = 11.05, p < .001; study-and-test-task 
condition: b = 2.94, (SE = 0.26), t = 11.51, p < .001. All other 
effects were nonsignificant, t ≤ 1.52.

Cue effects on JOLs and individual memory performance. We 
used a similar mixed-effects model to evaluate whether 
JOLs in the full-JOL-task and the study-and-JOL-task 
conditions increase with scene memorability. Condition 
was effect coded (−1 = study-and-JOL-task condition, 
1 = full-JOL-task condition). This model revealed a signifi-
cantly positive unstandardized coefficient for scene mem-
orability, b = 2.17, (SE = 0.13), t = 16.79, p < .001, 
indicating that JOLs again increased with scene memora-
bility. All other effects were nonsignificant, t ≤ 0.75.

A logistic regression model was used to evaluate 
whether individual recognition memory performance in 
the full-JOL-task and the study-and-test-task conditions 
increases with scene memorability. Condition was effect 
coded (−1 = study-and-test-task condition, 1 = full-JOL-
task condition). This model revealed that hit rates increased 
with scene memorability, b = 0.16, (SE = 0.01), z = 20.40, 
p < .001, that hit rates were higher in the full-JOL-task 
than in the study-and-test-task condition, b = 0.53, 
(SE = 0.09), z = 5.88, p < .001, and that scene memorability 
effects on hit rates differed between the full-JOL-task and 
the study-and-test-task conditions, b = 0.05, (SE = 0.01), 
z = 5.85, p < .001. Separate follow-up regression models 
for the latter two conditions revealed that hit rates increased 
with scene memorability in both conditions, but more so in 
the full-JOL-task condition, study-and-test-task condition: 
b = 0.11, (SE = 0.01), z = 11.53, p < .001; full-JOL-task 
condition: b = 0.20, (SE = 0.01), z = 16.92, p < .001.

Discussion
The aim of Experiment 3 was to disentangle which compo-
nent of the JOL task drives the improvement in MJ accu-
racy observed in the previous experiments. All measures 
of resolution showed that MJ accuracy improved in all 
experimental conditions (full-JOL-task, study-and-JOL-
task, study-and-test-task) in comparison to the control con-
dition (MJs-only). As the learning phase is the common 
factor in all experimental conditions, our result suggests 
that a learning phase by itself provides experiences that are 
beneficial for subsequently assessing the memorability of 
pictures. Moreover, given that MJ accuracy was not better 
in the full-JOL-task condition than in the other two experi-
mental conditions (study-and-JOLs-task condition, study-
and-test-task condition), we did not find evidence for 

additive effects of making JOLs and taking a test on MJ 
accuracy. Regarding the individual effects of making JOLs 
and taking a test on MJ accuracy, gamma correlations sug-
gested that neither making JOLs nor taking a test improves 
MJ accuracy, as did the mixed-effects model analysis. In 
contrast, the analysis of Pearson correlations reported in 
the Supplementary Material 1 suggested that a recognition 
memory test improves MJ accuracy more than making 
JOLs.

As in Experiment 2, we found that scene memorability 
influenced MJs, JOLs, and recognition memory perfor-
mance. Importantly, MJs were influenced more strongly 
by scene memorability in the study-and-test-task condition 
than in the study-and-JOL-task condition. This result sug-
gests that completing a recognition memory test is more 
beneficial for MJ accuracy than making JOLs, which is 
consistent with the Pearson correlation analysis showing 
that MJ accuracy is higher when having previously taken a 
test than having made JOLs, but not with the gamma cor-
relation analysis or the mixed-effects model analysis.

General discussion
Previous research revealed inconsistent results on the 
accuracy of metamemory for pictures of naturalistic 
scenes. Specifically, Isola, Parikh, et al. (2011) and Isola, 
Xiao, et al. (2011,  2014) found that MJs are unpredictive 
of scene memorability, whereas other studies have found 
that JOLs are moderately predictive of individual memory 
performance for scene pictures (Kao et al., 2005; 
Schmoeger et al., 2020; Tauber et al., 2017; Undorf & 
Bröder, 2021). One potential explanation for these discrep-
ant results are differences in the cue basis underlying the 
two types of metamemory judgements. JOLs might rely 
more on diagnostic cues than MJs because such cues might 
be more available when making a judgement for one’s own 
memory during a learning task. Alternatively, methodo-
logical differences across studies such as the memory task 
used for measuring stimulus memorability (i.e., classical 
old/new recognition memory task versus repeat detection 
task) or the memory criterion value used for accuracy (i.e., 
recognition memory performance aggregated across par-
ticipants versus each participant’s own memory perfor-
mance) might be responsible for the discrepant results. 
The current study differentiated between these possibili-
ties by systematically investigating the relative accuracy 
and cue basis of MJs and JOLs for pictures of scenes.

Our three experiments revealed that both MJs and JOLs 
are moderately accurate at predicting differences in the 
population memorability of scenes. This finding held 
across three different measures of judgement resolution 
(within-subjects gamma correlations, within-subjects 
Pearson correlations, and a mixed-effects model analysis). 
Our experiments also revealed that MJs and JOLs have a 
similar cue basis when pictures differed in aesthetics and 



16 Quarterly Journal of Experimental Psychology 00(0)

interestingness (Experiment 1) or represented a broad 
range of scene memorability (Experiments 2 and 3). Thus, 
JOLs and MJs had similar accuracy and cue basis when 
obtained by similar procedures and differed only in that 
JOLs referred to people’s own memory and were made 
during a learning task, whereas MJs referred to memora-
bility is a generic item attribute and were made during a 
judgement-only task. This implies that discrepant findings 
on the accuracy of JOLs and MJs reported in prior work 
were largely due to methodological differences across 
studies.

We also found one crucial difference between MJs 
and JOLs. That is, MJ accuracy improved considerably 
when MJs were made after rather than before completing 
the JOL task. In contrast, this was not true for JOLs. 
Their accuracy was similar in both task order conditions. 
Experiment 3 was designed to disentangle which com-
ponent of the JOL task provides the experiences partici-
pants subsequently rely on to make more accurate MJs. 
Results showed that a learning phase is sufficient for 
improving MJ accuracy as indicated by all measures of 
judgement resolution. In addition, Pearson correlations 
(but not Gamma correlations or a mixed-effects model 
analysis) indicated that the recognition memory test 
improved MJ accuracy more than making JOLs. This 
result is consistent with the finding that MJs were more 
closely related to normed values of scene memorability 
after having taken a memory test than after having made 
JOLs.

Accuracy of MJs and JOLs
Our finding that MJs are predictive of differences in the 
memorability of scenes at the item level contrasts with 
Isola, Parikh, et al. (2011) and Isola, Xiao, et al. (2011,  
2014) results. MJ accuracy was instead consistent with the 
moderate accuracy of JOLs in our study and other metam-
emory studies (Kao et al., 2005; Schmoeger et al., 2020; 
Tauber et al., 2017; Undorf & Bröder, 2021). Our MJ 
results were also in line with Saito et al. (2023), who found 
that judgements of perceived memorability were predic-
tive of real-world objects and faces memorability. So, evi-
dence is accumulating that people can predict the general 
memorability of different types of images. This makes it 
even more interesting to ask for the reasons for the dis-
crepancy in MJ results between our study and Isola et al.’s 
study.

One potential explanation is that we used a fine-grained 
judgement scale, while Isola et al. used a binary scale (yes, 
no). Our participants could therefore make more nuanced 
scene memorability predictions. However, future research 
will be needed to test whether the opportunity to make 
fine-grained distinctions between the memorability of 
scenes really contributes to MJ resolution. So far, one rel-
evant prior study found that the range of confidence scales 

does not affect confidence accuracy in a recognition mem-
ory task (Tekin & Roediger, 2017).

Another potential explanation for why MJs were accu-
rate in our study but not in Isola et al.’s studies might be 
that we measured scene memorability in an old/new recog-
nition memory test that followed upon a learning phase, 
while Isola et al. used a repeat detection task. However, 
this explanation is inconsistent with two aspects of our 
results. First, Experiments 2 and 3 showed that MJs and 
JOLs increased with the normed values of scene memora-
bility obtained in Isola et al.’s detection task. Second, 
relating MJs with normed values of scene memorability 
revealed very similar results as did relating MJs with the 
population scene memorability measure obtained in this 
study. These observations suggest that MJ accuracy is sim-
ilar for classical old/new recognition memory tasks and 
repeat detection task.

Regarding the criterion for accuracy, MJs had similar 
moderate accuracy as JOLs at the item and individual 
level in our study and other metamemory studies (Kao 
et al., 2005; Schmoeger et al., 2020; Tauber et al., 2017; 
Undorf & Bröder, 2021). This suggests that the lack of MJ 
accuracy reported in Isola et al. was not due to analysing 
accuracy at the item level. This is not to say, however, that 
differences in accuracy between the item and individual 
level cannot exist. Quite to the contrary, idiosyncratic 
influences on memory and metamemory that can only 
contribute to judgement predictive accuracy at the indi-
vidual level have been obtained in several studies (see, for 
example, Tullis & Fraundorf, 2017; Undorf et al., 2022).

Order effects on MJ accuracy
Experiment 3 finding that a learning phase improves MJ 
accuracy suggests that having seen and intentionally 
learned pictures for oneself provides a good basis for 
assessing the general memorability of pictures. 
Interestingly, we did not find evidence that making JOLs 
per se improved MJ accuracy. This is in line with West 
et al. (2023), who showed that the well-documented 
increase in JOL accuracy through repeated trials does not 
rely on making JOLs. Thus, evidence so far indicates that 
experience with making metamemory judgements per se is 
not essential for subsequent metamemory accuracy.

Regarding the individual contribution of the memory 
test on MJ accuracy, Pearson correlations showed that a 
recognition memory test enhances MJ accuracy relative to 
merely having made JOLs. This finding is consistent with 
positive effects of test experience on metamemory accu-
racy reported in studies using the same verbal materials 
across multiple study-test cycles (Finn & Metcalfe, 2008; 
Hertzog et al., 2013; King et al., 1980; Koriat & Bjork, 
2006a; Touron et al., 2010; but see Mitton & Fiacconi, 
2020). However, it should be considered with caution, 
because it did not replicate in analyses based on gamma 
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correlations or linear mixed models. Nevertheless, in the 
current study with different material across trials, prior 
testing experience reliably increased the cue sensitivity of 
metamemory judgements for a new set of structurally sim-
ilar scenes. This implies that participants extracted infor-
mation diagnostic of memorability from testing and used 
this information to subsequently judge the general memo-
rability of scenes.

To sum up, participants learned about scene memora-
bility by experience with their own learning and testing. 
This illustrates what Flavell (1979) suggested in his semi-
nal work about metacognition by saying that experiences 
can “affect the metacognitive knowledge base by adding to 
it, deleting from it, or revising it” (p. 908).

Future research directions
Given the finding that both JOLs and MJs are predictive of 
scene memorability, it is important to ask if participants 
are aware of image features diagnostic of memorability. 
Based on metamemory research, it is likely that some cue 
information reaches the level of conscious awareness (e.g., 
Mueller et al., 2013, 2014). However, it is also plausible 
that some cues remain experiential at the level of subjec-
tive feelings that may not be fully articulated, but never-
theless serve as an inferential basis for the metamemory 
judgements (e.g., Besken, 2016; Koriat & Levy-Sadot, 
1999; Undorf et al., 2017). Prominent inferential accounts 
of metamemory (Koriat, 1997), distinguish between two 
types of processes through which cues affect metamemory 
judgements: theory-based and experience-based processes. 
Theory-based processes imply the deliberate application 
of explicit beliefs and knowledge about memory in general 
and one’s own memory. In contrast, experience-based pro-
cesses imply a non-analytic inferential process that oper-
ates below full awareness through which by-products of 
the cognitive processing of items such as the feeling of 
“ease” influence metamemory judgements.

Shedding light on participants awareness of stimulus 
memorability by examining the contributions of theory-
based and experience-based processes on metamemory 
judgements for scene pictures would be an interesting ave-
nue for future research. For instance, this could be done by 
soliciting pre-study metamemory judgements or using sur-
vey designs for assessing the contributions of beliefs to 
metamemory judgements about item memorability in 
general.

Limitations
A limitation of Experiment 3 is that we did not include a 
control group that completed the MJ task twice. We thus 
cannot fully exclude the possibility that experience with 
materials during an MJ task might be sufficient to increase 

MJ accuracy on a second trial. We do, however, regard it 
unlikely because completing the MJ task did not improve 
JOL accuracy. Nevertheless, more research will be needed 
to test whether completing the MJ task repeatedly improves 
accuracy and if so, whether the improvement is compara-
ble to the one observed after learning pictures for oneself.

Another limitation is that our MJ task was not fully 
identical to Isola et al.’s task. Our aim was to examine 
whether differences in accuracy between JOLs and MJs 
were due to differences in their cue basis arising from the 
different aspects of memorability judged (one’s own vs. 
generic item attribute) in different tasks (during learning 
vs. judgement-only). For this, it was necessary to make 
their procedures similar in all other respects. A potential 
drawback of this approach is that we cannot know which 
procedural change or combination of procedural changes 
are responsible for the differences in MJ accuracy obtained 
in Isola et al.’s study and the current study.

Conclusion
In conclusion, we found that the predictive accuracy of 
MJs is not necessarily different from that of JOLs. This 
stands in stark contrast to Isola, Parikh, et al. (2011) and 
Isola, Xiao, et al. (2011, 2014)  findings but is consistent 
with evidence that metamemory for scene pictures is mod-
erately accurate (Kao et al., 2005; Schmoeger et al., 2020; 
Tauber et al., 2017; Undorf & Bröder, 2021). Our work 
shows that people can predict not only their own future 
memory performance for scene pictures but also the gen-
eral memorability of scene pictures with moderate accu-
racy. At the same time, we did find a notable difference 
between JOLs and MJs: MJ accuracy improves with prior 
learning and testing experience, whereas JOL accuracy is 
independent of prior assessments of general memorability. 
This shows that reflections about and experiences with 
one’s own learning and memory contribute to our under-
standing and knowledge about metamemory and memory 
processes in general.
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Notes

1. Isola, Parikh, et al. (2011) and Isola, Xiao, et al. 
(2011, 2014) used uncorrected hit rates as a measure of 
scene memorability. We think that this is not legitimate 
in our experiments because FA rates ranged between 9% 
(Experiment 1) and 16% (Experiment 3). Please note that 
the use of corrected hit rates is a deviation from the pre-
registration of Experiment 3. Importantly, all results were 
identical when using uncorrected hit rates except for the 
main effect of task in the Pearson correlation analysis in 
Experiment 1 and the interactive effect in the mixed-effects 
model analysis in Experiment 3.

2. It was impossible to investigate the relative accuracy of MJs 
with respect to the participant’s own memory performance 
because participants did not complete a recognition memory 
test on MJ items.

3. Means and (SDs) of aesthetics and interestingness, respec-
tively, were: 0.13 (0.07) versus 0.49 (0.11) for scenes low in 
aesthetics and interestingness, 0.14 (0.07) versus 0.83 (0.06) 
for scenes low in aesthetics and high in interestingness, 0.52 
(0.11) versus 0.50 (0.10) for scenes high in aesthetics and 
low in interestingness, and 0.52 (.10) vs. 0.83 (0.05) for 
scenes high in aesthetics and interestingness.

4. Please note that low memory was a valid reason for rejec-
tion on Prolific when we collected data for Experiment 1 in 
2020 (Prolific guidelines have changed in this respect in the 
meantime).

5. Hit rates revealed the same pattern, aesthetics: F(1, 
50) = 22.71, p < .001, ηp

2 = .31, interestingness: F(1, 
50) = 11.19, p < .01, ηp

2 = .18, no other effects were signifi-
cant, F <= 2.96, p >= .09.

6. The MJ task numerically improved JOL resolution, but the 
effect was not reliable and only half the size of that for MJs.

7. Means and SDs of each of level of scene memorability were 
27.63 and 4.96 (Level 1), 38.72 and 2.72 (Level 2), 44.71 
and 1.38 (Level 3), 48.98 and 1.42 (Level 4), 53.80 and 1.42 
(Level 5), 58.22 and 1.38 (Level 6), 62.95 and 1.52 (Level 
7), 67.75 and 1.52 (Level 8), 72.52 and 1.60 (Level 9), 83.04 
and 4.55 (Level 10).
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Supplementary Material 1 

Pearson correlations between population scene memorability and JOLs or MJs in 

Experiment 1 and 2 

Table 1 shows mean Pearson correlations between metamemory judgments and 

population scene memorability for each task in each task order condition of Experiments 1, 2, 

and 3. All correlations were significantly positive, t  >= 5.45, p < .001 (Experiment 1), t  >= 

5.85, p < .001 (Experiment 2), corroborating results from gamma correlations indicating that 

JOLs and MJs captured differences in population scene memorability. A 2 (task: JOL vs. MJ) 

´ 2 (task order condition: JOLs-first vs. MJs-first) repeated-measures ANOVA on Fisher-Z-

transformed values revealed a main effect of task in Experiment 1, F(1, 50) = 5.15, p = .028, 

ηp2 = .09, no main effect of task in Experiment 2, F < 1, no main effects of task order 

condition, F < 1 (Experiment 1), F(1, 48) = 2.27, p = .14, ηp2 = .04 (Experiment 2), and 

significant interactions, F(1, 50) = 26.31, p < .001, ηp2 = .35 (Experiment 1), F(1, 48) = 

12.99, p < .001, ηp2 = .21 (Experiment 2). As with the gamma correlations, planned 

comparisons indicated that Pearson correlations (Fisher-Z-transformed) for JOLs did not 

differ between conditions, t(50) = 1.67, p = .10, d = 0.47 (Experiment 1), t < 1, p = 0.80, d = 

0.07 (Experiment 2), whereas Pearson correlations for MJs were higher in the JOLs-first 

condition than in the MJs-first condition, t(50) = 2.85, p < .01, d = 0.81 (Experiment 1), t(48) 

= 2.95, p < .01, d = 0.85 (Experiment 2), indicating higher relative accuracy of MJs when 

made after a JOL task with a recognition memory test. 

Pearson correlations between population scene memorability and MJs in Experiment 3 
 

All correlations were significantly positive, t  >= 9.06, p < .001, corroborating results 

from gamma correlations indicating that MJs in all conditions captured differences in 

population scene memorability. As with gamma correlations, planned contrasts on Fisher-Z-

transformed values revealed that the learning phase present in all experimental conditions 



improved MJ accuracy compared to only making MJs, t(201) = 3.46, p < .001. They also 

revealed that MJ accuracy did not differ between the full-JOL-task condition and the 

conditions with one component of the JOL task only (i.e., study-and-JOL-task, study-and-

test-task), t(201) = 0.87, p = .38. In contrast to gamma correlations, MJ accuracy was higher 

in the study-and-test-task condition than in the study-and-JOL-task condition, t(201) = 2.10, p 

= .036, indicating that taking a test improved MJ accuracy more than making JOLs.  

 
Table 1  

Means (SDs) of the Pearson Correlation Between Population Scene Memorability and JOLs 

or MJs in Each Task Order Condition of Experiments 1, 2, and 3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Experiment and condition Metamemory judgments 

Experiment 1 JOLs  MJs  

 JOLs first .23 (.15) .40 (.19) 

 MJs first .31 (.20) .24 (.23) 

Experiment 2   

 JOLs first .29 (.16) .39 (.17) 

 MJs first .30 (.22) .23 (.20) 

Experiment 3   

 MJ-task-only - .26 (.21) 

 Full-JOL-task .32 (.16) .39 (.17) 

 Study-and-JOL-task .34 (.15) .32 (.18) 

 Study-and-test-task - .40 (.20) 

Note. JOLs = judgments of learning, MJs = memorability judgments, 
Population scene memorability = hit rate minus false alarm rate per scene 
across participants in each experiment 



Supplementary Material 2 

Mixed-effects model analysis predicting population scene memorability from metamemory 

judgments in Experiment 1, 2, and 3 

Experiment 1 

In the mixed-effects model analysis, we predicted population scene memorability 

from task (effect coded: -1 = MJ, 1 = JOL), task order condition (effect coded: -1 = MJs first, 

1 = JOLs first), standardized metamemory judgments, and their interactions. We treated task, 

task order condition, and metamemory judgments as fixed effects. We specified random 

participant slopes for metamemory judgments to account for differences in accuracy across 

participants. We did not specify random intercepts for participants because population scene 

memorability was calculated by aggregating memory performance across participants. This 

model provided a significantly better fit to the data than an otherwise identical model without 

metamemory judgments as a fixed-effects predictor, χ2(4) = 117.97, p < .001, indicating that 

the metamemory judgments capture differences in the population memorability of scenes. 

This conclusion was also corroborated by the finding of a significantly positive regression 

weight for metamemory judgments, b = 0.06 (SE = 0.01), t = 10.89, p < .001. At the same 

time, main effects of task, b = 0.01 (SE = 0.002), t = 5.88, p < .001, and task order condition, 

b = -0.01 (SE = 0.002), t = -3.15, p < .01, as well as significant interactions between task and 

metamemory judgments, b = -0.01 (SE = 0.002), t = -4.61, p < .001, and among task, task 

order condition, and metamemory judgments, b = -0.01 (SE = 0.002), t = -6.25, p < .001, 

suggested differences in the relative accuracy of metamemory judgments across tasks and 

order conditions.   

Separate models for each task revealed that JOLs and MJs significantly predicted 

population scene memorability, b = 0.05 (SE = 0.01), t = 9.08, p < .001, b = 0.07 (SE = 0.01), 

t = 9.73, p < .001; respectively. In the JOL task, a main effect of order condition, b = -



0.01 (SE = 0.003), t = -4.37, p < .01, and no interaction between JOLs and order condition, b 

= -0.01 (SE = 0.01), t = -1.66, p = .10, showed that the predictive value of JOLs for 

population scene memorability did not differ between order conditions. In contrast, in the MJ 

task, the interaction between MJs and order condition, b = 0.02 (SE = 0.01), t = 2.68, p < .01, 

indicated that MJs were more accurate when made after the JOL task. The main effect of 

order condition was not significant, b = -0.001 (SE = 0.003), t = -0.39, p = .70. 

 
Experiment 2 

A mixed-effects model with standardized metamemory judgments as fixed-effects 

predictor provided a significantly better fit to the data than an otherwise identical model with 

task, task order condition and without metamemory judgments as a fixed-effects predictor, 

c2(4) = 97.60, p < .001. Results showed that metamemory judgments significantly predicted 

population scene memorability, b = 0.06 (SE = 0.01), t = 10.73, p < .001. There was also a 

main effect of task, b = 0.01 (SE = 0.002), t = 4.67, p < .001, a main effect of task order 

condition, b = -0.02 (SE = 0.002), t = -9.32, p < .001, and significant interactions between 

task and order condition, b = 0.01 (SE = 0.002), t = 6.95, p < .001, between task and 

metamemory judgments, b = -0.004 (SE = 0.002), t = -2.04, p = .041, and among task, task 

order condition, and metamemory judgments, b = -0.01 (SE = 0.002), t = -5.83, p < .001, 

suggesting differences in the relative accuracy of metamemory judgments across tasks and 

order conditions.  

In separate models for each task, JOLs and MJs significantly predicted population 

scene memorability, b = 0.06 (SE = 0.01), t = 8.16, p < .001, b = 0.06 (SE = 0.01), t = 9.69, p 

< .001; respectively. In the JOL task, a main effect of order condition, b = -0.01 (SE = 0.003), 

t = -2.26, p = .024, and no interaction, b = -0.01 (SE = 0.01), t = -0.74, p = .46, indicated that 

the predictive value of JOLs for population scene memorability did not differ between order 



conditions. In the MJ task, there was not only a main effect of order condition, b = -0.03 (SE 

= 0.003), t = -9.81, p < .001, but also the interaction was significant, b = 0.02 (SE = 0.01), t = 

3.11, p < .01, indicating that the predictive value of MJs for population scene memorability 

was higher after a JOL task.  

Experiment 3 
 
 In the mixed-effects model analysis, we predicted population scene memorability 

from condition using Helmert coding1 (see also pre-registration, https://osf.io/3fujm), 

standardized MJs, and their interactions. We treated condition, and MJs as fixed effects 

predictors. We specified random participant slopes for MJs to account for differences in 

accuracy across participants. We did not specify random intercepts for participants because 

population scene memorability was calculated by aggregating memory performance across 

participants.  

This model provided a significantly better fit to the data than an otherwise identical 

model without MJs as a fixed-effects predictor, χ2(4) = 242.02, p < .001, indicating that MJs 

capture differences in the population memorability of scenes as in Experiment 1 and 2. At the 

same time, there was a significantly positive regression weight for MJs, b = 0.06 (SE = 

0.003), t = 20.84, p < .001, which corroborates the above conclusion that MJs are predictive 

of scene memorability. There were also main effects of condition: the first contrast indicated 

that scene memorability was higher in the MJ-task-only condition vs. all other conditions, b = 

-0.01 (SE = 0.003), t = -4.25, p < .001, the second contrast indicated that scene memorability 

was higher in the study-and-JOL-task and study-and-test-task conditions vs. the full-JOL-task 

condition, b = -0.02 (SE = 0.003), t = -7.78, p < .001, and the third contrast indicated that 

 
1 The first contrast tested the difference between the control condition (MJs-only; -3/4) and all three 
experimental conditions (full-JOL-task, study-and-JOL-task, study-and-test-task; coded all as +1/4). The second 
contrast tested the difference between the full-JOL-task condition (+2/3) and the other two experimental 
conditions (study-and-JOL-task group, the study-and-test-task group; coded both as -1/3). The third contrast 
tested the difference between the study-and-JOL-task condition (-1/2) and the study-and-test-task condition 
(+1/2). 



scene memorability was higher in the study-and-JOL-task condition vs. study-and-test-task 

condition, b = -0.01 (SE = 0.003), t = -2.28, p = .022. As in Gamma and Pearson correlations, 

the significant interaction between MJs and the first contrast, b = 0.01 (SE = 0.01), t = 2.08, p 

= .038, indicated that MJs were more predictive of population scene memorability in the 

conditions with any component of the JOL task (i.e., full-JOL-task condition, study-and-JOL-

task condition, study-and-test-task condition) than in the MJ-task-only condition. The 

interactions of scene memorability and the second and third contrast were non-significant t < 

1.13.  

 



Supplementary Material  

Experiment 1 

Table S1 

Mean (SDs) of Hit Rates (Hits), False Alarm Rates (FAs), and Hit Rates Corrected (Pr) of 

Scenes used in Experiment 1 

Interestingness Aesthetics Hits % FAs % Pr 

Low Low 74.12 (14.19) 6.94 (9.74) 67.17 (17.19) 

Low High 64.14 (19.44) 9.61 (11.30) 54.53 (22.45) 

High Low 76.16 (16.63) 6.24 (7.87) 69.93 (19.08) 

High High 69.08 (19.68) 12.11 (13.53) 56.97 (24.17) 

 
 

 

Experiment 2 

Table S2 

Mean (SDs) of Hit Rates (Hits), False Alarm Rates (FAs), and Hit Rates Corrected (Pr) of 

Scenes used in Experiment 2 

Scene Memorability 
Level Hits % FAs % Pr 

1 54.19 (15.07) 14.29 (11.33) 39.90 (15.60) 

2 61.85 (12.37) 14.04 (12.19) 47.81 (17.18) 

3 63.10 (13.55) 16.54 (13.10) 46.56 (16.65) 

4 64.25 (14.61) 11.89 (8.00) 52.36 (15.47) 

5 71.12 (13.11) 10.77 (10.04) 60.36 (14.51) 

6 71.56 (13.44) 13.46 (12.55) 58.10 (19.78) 



7 73.80 (12.99) 14.31 (12.74) 59.49 (16.72) 

8 78.25 (10.79) 8.06 (9.88) 70.19 (14.38) 

9 82.61 (11.71) 6.16 (8.19) 76.45 (15.67) 

10 90.93 (9.16) 4.49 (5.27) 86.44 (10.33) 

 
 

 

Experiment 3 

Table S3 

Mean (SDs) of Hit Rates (Hits), False Alarm Rates (FAs), and Hit Rates Corrected (Pr) of 

Scenes used in Experiment 3 

Scene Memorability 
Level Hits % FAs % Pr 

1 52.18 (14.82) 21.03 (9.85) 31.16 (15.00) 

2 58.07 (9.09) 18.59 (8.93) 39.47 (11.87) 

3 62.58 (11.17) 21.82 (8.74) 40.76 (13.02) 

4 62.55 (12.75) 17.70 (9.88) 44.85 (12.45) 

5 65.41 (11.16) 15.99 (8.57) 49.41 (12.48) 

6 68.43 (8.72) 16.60 (11.07) 51.83 (12.51) 

7 67.84 (8.53) 15.15 (8.97) 52.69 (10.38) 

8 71.56 (10.97) 11.28 (8.09) 60.28 (11.56) 

9 76.08 (8.89) 11.64 (8.91) 64.44 (11.66) 

10 80.96 (9.95) 6.96 (4.52) 74.00 (11.28) 
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Abstract 

The metacognitive monitoring of cognitive processes, such as learning and memory, 

is not always accurate. Metacognitive illusions occur when metacognitive judgments rely on 

invalid information or fail to rely on valid information. Given the importance of accurate 

metacognitive monitoring for the effective regulation of behavior, this study tested the 

effectiveness of feedback in mending metacognitive illusions. Across three experiments, 

participants completed three study-test cycles in which they studied three different study lists. 

Participants made judgments of learning (JOLs) and received feedback or no feedback after 

each cycle. In Experiments 1 and 2, cognitive feedback about one’s own recall performance 

and JOL for each studied item was provided. In Experiment 3, additional metacognitive 

feedback informed learners about possible metacognitions during the task, their biased 

nature, and ways to enhance JOLs. Results showed that cognitive feedback was not effective 

for mending the font size illusion (Experiments 1 and 2), the stability bias (Experiment 1), or 

the font format illusion (Experiment 2). In contrast, metacognitive feedback remedied the 

stability bias and in turn improved relative JOL accuracy (Experiment 3). Moreover, the font 

size illusion decreased across cycles when manipulated orthogonally to a valid cue 

(Experiments 1 and 3), but not to an invalid cue (Experiment 2). In conclusion, this study 

shows that cognitive feedback alone is not enough for improving the cue basis and resolution 

of JOLs but rather metacognitive feedback with an in-depth explanation of biased 

metacognition is needed.  

Keywords: metacognitive illusions; metamemory; judgments of learning; cognitive 

feedback, metacognitive feedback 
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Introduction 

Accurate metacognitive monitoring — the real-time assessment of cognitive processes 

— is important because it guides behavior (Nelson & Narens, 1990). For example, a student 

with accurate metacognitive monitoring may correctly identify which topics she has mastered 

sufficiently for the exam and continue to study those that she has not yet mastered. In fact, 

experimental studies show that participants with higher monitoring accuracy can regulate 

their learning better by selecting material to restudy more appropriately (Dunlosky et al., 

2021; Thiede et al., 2003; Tullis & Benjamin, 2012). This ultimately leads to better grades as 

shown by a meta-analysis demonstrating the positive relationship between metacognition and 

academic performance even when controlling for intelligence (Ohtani & Hisasaka, 2018). 

However, unfortunately, metacognition is not always helpful because monitoring is 

sometimes incorrect. Metacognitive monitoring judgments are inferential in nature and rely 

on cues, which are broadly categorized into characteristics of the study condition (e.g., study 

strategies used), inherent characteristics of the study material (e.g., concreteness of study 

words), and subjective experiences of ease (Koriat, 1997). The accuracy of metacognitive 

judgments suffers when these rely on invalid cues or fail to rely on the valid cues (Undorf et 

al., 2022).  

Improving self-regulated learning thus requires metacognitive awareness of cue 

validity. This is that people’s metacognitive judgments rely on valid cues and ignore invalid 

cues. How to improve metacognitive awareness of cue validity is therefore a practically 

relevant question. So far, however, research has mainly proven that correcting metacognitive 

illusions (i.e., systematic dissociations between people’s metacognitions and cognitions) is 

very difficult, often does not work at all, and when it does, the improvement is very small 

(e.g., Dunlosky & Hertzog, 2000; Hertzog et al., 2009; Kornell & Bjork, 2009; Mueller et al., 

2015; Pan & Rivers, 2023; Yan et al., 2016). In the current study, we tested the effectiveness 
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of two forms of feedback, cognitive feedback (Balzer et al., 1989) alone and with additional 

metacognitive feedback (Fiedler et al., 2020). We tested whether these can improve 

metacognitive awareness of cue validity in judgments of learning (JOLs) – predictions of 

future memory performance (Rhodes, 2016).  In the following, we will review the methods 

that have and have not been successful in promoting metacognitive awareness of the validity 

(or invalidity) of cues. We will then discuss the cognitive feedback method tested in 

Experiment 1 and 2 which has been demonstrated to improve the cue basis and accuracy of 

judgments about the external world (e.g., Karlsson et al., 2004; Little & Lewandowsky, 2009; 

Newell et al., 2009; Smithson et al., 2023).  

Methods used to foster metacognitive awareness 

 Several studies have used experience across multiple learning-test cycles as a method 

to improve metacognitive awareness of cues (Castel, 2008; Dunlosky & Hertzog, 2000; 

Hertzog et al., 2009; Mueller et al., 2015; Pan & Rivers, 2023; Sungkhasettee et al., 2011; 

Tauber & Rhodes, 2010). The idea is that encoding and retrieval experiences from learning 

and test phases aid learners to become aware of cues that are helpful for their learning and 

memory and this fosters adaptive cue utilization in metacognitive judgments. This is 

especially the case in studies using novel item lists across cycles. When making 

metacognitive judgments for the same materials, memory of past performance can be used as 

a heuristic (Ariel & Dunlosky, 2011; Finn & Metcalfe, 2008; Koriat & Bjork, 2006a; Tauber 

& Rhodes, 2012). This strong heuristic cue might prevent cue discovery by overshadowing 

subtler cues. The former studies with novel item lists across cycles illustrate that participants 

acquire correct knowledge about the effectiveness of study strategies (e.g., imagery is better 

than repetition) as demonstrated by global predictions and strategy effectiveness ratings, but 

fail to use this knowledge in their item-by-item metacognitive judgments (Dunlosky & 

Hertzog, 2000; Hertzog et al., 2009; Mueller et al., 2015). Other studies have shown that task 
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experience is not helpful for metacognitive judgments to become sensitive to word 

orientation (i.e., greater memory performance for words presented inverted rather than 

upright, as shown by Sungkhasettee et al., 2011), serial position effects in memory (Castel, 

2008), and the benefit of pre-testing as a study strategy (Pan & Rivers, 2023). An exception is 

a study in which metacognitive judgments became more accurate at predicting greater 

memory performance for occupations than for surnames (Tauber & Rhodes, 2010). Overall, 

despite the easy accessibility of direct task experience, it does not generally increase the 

sensitivity of metacognitive judgments to valid cues.  

 Warnings are another method researchers have used in attempts to foster that 

metacognitive judgments rely on valid cues and ignore invalid cues in situations where 

metacognitive illusions occur. For instance, Kornell and Bjork (2009) warned participants to 

keep in mind that their future memory will improve with the number of study opportunities, 

however, participants continued underestimating their future learning. Rhodes and Castel 

(2008) warned participants that the font size of words will not affect their future memory, but 

participants still relied on font size for their JOLs even though actual memory performance 

was unaffected by font size. Yan et al. (2016) informed participants about the superiority of 

interleaving exemplars of to-be-learned categories over blocking exemplars by category, but 

participants still predicted benefits of blocking for themselves. Although most studies have 

proven that warnings are ineffective, warnings can be successful when detailed information 

that is tailored and delivered individually to participants is provided (Koriat & Bjork, 2006b; 

Miller & Geraci, 2011). However, this comes with the limitation that information tailored and 

delivered individually is difficult or even impossible to implement.  To sum up, these studies 

demonstrate the persistence of metacognitive illusions and lack of reliance on valid cues even 

when the experiment instructions provide very explicit warnings. 
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 Increasing the salience of relevant aspects of the task can be a successful intervention 

for fostering cue awareness. Participants accurately predicted the primacy and recency effect 

in memory when the serial position of items was presented before studying each item (Castel, 

2008). Studies asking participants to study items with differentially effective strategies on a 

within-subjects basis have made the strategy cue salient by having strategy blocks (e.g., first 

all imagery items, then all repetition items, or vice versa). In general, having blocks instead 

of a random intermix of items is partially effective for making the strategy cue salient and 

making JOLs rely on the strategy cue. In the study by Yan et al. (2016), this method was 

successful when the highly effective strategy was presented first but not when it was 

presented second. In the study by Price et al., (2008), there was a moderate improvement of 

JOLs. In sum, making cues salient can sometimes be an effective intervention for improving 

judgment cue sensitivity.  

 Finally, performance feedback has been suggested as a method for participants to 

identify effective study strategies from task experience according to the inferential deficit 

hypothesis (Dunlosky & Hertzog, 2000; Matvey et al., 2002). This hypothesis states that there 

are limited cognitive resources to monitor test performance and make inferences about valid 

cues. Thus, studies have provided performance feedback related to the cues manipulated with 

the aim to support participants to distinguish the validity of cues from their test performance 

(Pan & Rivers, 2023; Tullis et al., 2013). The study by Tullis et al. (2013) provided 

participants with the number of correctly recalled restudied and pre-tested items. This 

resulted in a correct identification that pre-testing is a more effective strategy than re-

studying. However, the study by Pan and Rivers (2023) had to prompt participants to recall 

their predictions in addition to providing them with feedback on their test performance to 

enhance their awareness of the superiority of the pre-testing strategy. Importantly, both 

studies used global predictions, which largely reflect metamemory beliefs, rather than item-
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by-item predictions, where learning experiences contribute more. One study with item-by-

item JOLs providing aggregated performance feedback (i.e., number of words recalled per 

item type) showed that feedback was effective for improving global predictions but not 

immediate JOLs (Mueller et al., 2015). Overall, there is evidence that performance feedback 

is effective for improving global judgments, but its effectiveness for item-by-item JOLs 

remains to be further examined.  

Cognitive feedback 

 Research on judgment and decision making assumes that people rely on cues when 

making judgments about the external world. A famous paper by Brehmer (1980) reviewed 

studies on the ability to learn from experience in probabilistic situations such as clinical 

inference. He came to the pessimistic conclusion that people do not learn from experience 

with mere outcome feedback (i.e., knowing the outcome) in complex and uncertain tasks 

because of the number of biases that prevent them from learning. He argues that learning is 

not a passive process of just observing the world, but rather an active process of hypothesis 

testing. However, people usually confirm hypothesis rather than refute incorrect hypothesis, 

focus on positive information, neglect negative information, and have the implicit assumption 

that the world is deterministic rather than probabilistic. Because of all these reasons, any 

knowledge acquired by experience is not necessarily valid. 

 In contrast, a review by Balzer et al. (1989) revealed that so-called cognitive feedback 

is effective for improving the cue basis of judgments compared to mere outcome feedback. 

Cognitive feedback consists of task information, cognitive information, and functional 

validity information. Task information refers to the relations between cues and criterion (i.e., 

task system) – “Which cues are valid?”. Cognitive information refers to the subject’s 

cognitive system – “How do people use the cues for their judgments?”. Functional validity 

information refers to the relation of the cognitive system to the task system – “What is the 
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difference between the former two?”. Several studies have demonstrated that cognitive 

feedback improves the cue basis and accuracy of judgments about the external world 

(Karlsson et al., 2004; Little & Lewandowsky, 2009; Newell et al., 2009; Seong & Bisantz, 

2008; Smithson et al., 2023). For example, Newell et al. (2009) showed that cognitive 

feedback helped participants to distinguish the predictive validity of different cues for the 

share price of a fictional stock company. Similarly, in the study by Seong & Bisantz (2008), 

participants learned to identify an aircraft moving on a simulated radar screen as either hostile 

or friendly with four key aircraft parameters: speed, altitude, range, and time. This 

identification process was aided by an automated decision-aid and cognitive feedback about 

the functioning of the decision-aid was given.  

 Since judgments about external criteria are like judgments about one’s own cognition 

in that both judgments rely on probabilistic cues, cognitive feedback may be beneficial for 

learning to distinguish the different predictive validities of cues in metacognition as well. 

Specially, the opportunity to relate JOLs to actual memory performance (i.e., functional 

validity information) should support an understanding of which cues are valid for memory 

performance and in which direction (i.e., this helps versus impairs memory), and which ones 

are not valid at all (i.e., this does not affect memory). The critical aspect is to transfer the 

acquired knowledge from cognitive feedback to the online monitoring situation during 

learning. This might be challenging when other varying cues that are not under the control of 

experimenter such as idiosyncratic cues are present (Bröder & Undorf, 2019; Undorf, et al., 

2022). Given the importance of finding effective ways to train metacognition, it is worth 

testing cognitive feedback as an intervention to improve the cue use and the accuracy of item-

by-item JOLs. Thus, in Experiment 1 and 2, we tested the effectiveness of cognitive 

feedback. Since the cognitive feedback intervention was surprisingly ineffective, in 
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Experiment 3, we additionally included a different form of feedback, metacognitive feedback, 

which we will discuss later.  

This study  

 In this study, we tested the effectiveness of different forms of feedback in improving 

the cue basis and accuracy of judgments of learning (JOLs). Across three experiments, 

participants completed three study-test cycles with JOLs and received either feedback or no 

feedback after each study-test cycle. In all three experiments, we orthogonally manipulated 

two cues in total. In all experiments, we manipulated font size (18 pt vs. 48 pt), a cue that is 

overweighted in JOLs — large-font words elicit higher JOLs than small-font words but font 

size has a very small or no effect on recall performance (Chang & Brainerd, 2022; Luna et 

al., 2018; Rhodes & Castel, 2008). In Experiment 1 and 3, additional to font size, we 

manipulated the number of study opportunities (1 vs. 2), a cue that is underweighted in JOLs 

— JOLs do not differ between once-learned and twice-learned words while twice-learned 

words are better recalled (Kornell & Bjork, 2009). In Experiment 2, the additional cue 

manipulated was font format (standard vs. aLtErnAtiNg), a cue that is overweighted in JOLs 

— standard-format words elicit higher JOLs than alternating-format words but font format 

has no effect on recall performance (Rhodes & Castel, 2008)1.  

 We hypothesized that feedback would lead to JOLs relying increasingly on valid cues 

(i.e., number of study opportunities) and ignore invalid cues (i.e., font size, font format). This 

means that JOLs should be higher for twice-learned than once-learned words after feedback. 

Further, JOLs should not differ between large-font and small-font words, and between 

standard-font and alternating-font words after feedback. If, in contrast, these improvements 

occur in both groups, this would indicate that study-test experience is beneficial for learning 

cue validities and implementing them in JOLs.   

 
1 Mueller et al. (2013) found worse recall performance for alternating-format than standard-format word pairs. 
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Experiment 1  

Experiment 1 aimed to test the effectiveness of cognitive feedback for increasing JOL 

reliance on number of study opportunities (i.e., valid cue) and for decreasing JOL reliance on 

font size (i.e., invalid cue). Experiment 1 entailed four between-subjects groups. In the 

control group, participants received no feedback, so they only had their own memory of test 

performance as feedback on cue validity. In the outcome feedback group (recall-feedback 

group), participants saw the words they had recalled and not recalled, organized by the two 

cues (see Figure 1). In the cognitive feedback group (recall-and-JOL-feedback group), the list 

was accompanied by the JOL participants had given to each word during study. This enables 

to compare the actual recall (i.e., task information) with their prediction (i.e., cognitive 

information). Finally, the social-reference-feedback group was informed about the cues 

manipulated in the experiment and their cue validity, accompanied by a table showing the 

average performance of other participants doing this task.  

We hypothesized that the cognitive information in the recall-and-JOL-feedback group 

would improve cue weighting in JOLs (i.e., effect of number of study opportunities and no 

effect of font size) and, in turn, increase relative accuracy. At the same time, it was an open 

question whether the outcome feedback in the recall-feedback group would lead to better cue 

weighting and accuracy as suggested by the inferential deficit hypothesis (Hertzog et al., 

2009; Matvey et al., 2002) or whether social reference information would be sufficient for 

improvements or even go beyond the cognitive feedback.  

 

Figure 1 

Example Feedback Presented to Participants in the Recall-Feedback, Recall-and-JOL-

Feedback, and Social-Reference-Feedback Group in Experiment 1 

 
 Recall-Feedback Group Recall-and-JOL-Feedback Group 
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Method 
 

Transparency and Openness 

 In this and all subsequent experiments, we report how we determined our sample 

size, all data exclusions, all manipulations, and all measures. All data, materials, and analysis 

code are available at https://osf.io/vgy7d/?view_only=5d02381f12754484ad1c422cd1d4f44b. 

Designs and analyses of all experiments were not preregistered. 

Design 

Social-Reference-Feedback Group 
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The design was a mixed design with font size (18 point, 48 point), number of study 

presentations (1, 2), and study-test cycle (1, 2, 3) as within-subjects factors and feedback 

group (no-feedback, recall-feedback, recall-and-JOL feedback, social-reference-feedback) as 

a between-subjects factor. 

Materials 

Stimuli were 120 German six-letter nouns. All words were of neutral valence (M = 

0.36, SD = 0.93; rated on a 7-point scale, -3 = very negative to 3 = very positive), moderate 

arousal (M = 2.59, SD = 0.80; rated on a 5-point scale, 1 = low arousal to 5 = high arousal), 

and moderate concreteness (M = 4.87, SD = 1.67; rated on a 7-point scale, 1 = low 

imageability to 7 = high imageability). All normed values were taken from Võ et al. (2009). 

We constructed three study lists of 40 items that were parallel in all word characteristics. For 

each participant, study lists were randomly assigned to study-test cycles. For each participant, 

20 randomly chosen words were presented once for study and the remaining 20 words were 

presented twice for study. One randomly selected half of the once- and twice presented words 

were displayed in small 18-point Arial font or in a large 48-point Arial font. The first four 

items represented each combination of number of study opportunities and font size and were 

used as buffer items that were not included in the analysis. Items were presented in a new 

random order for each participant. 

Participants 

Participants were 160 University of Mannheim undergraduates. When assuming a 

correlation of .50 between repeated measures, this sample size provides a statistical power of 

(1 - β) > .99 for detecting medium-sized (f = .25, equivalent to ηp2 = .06) main effects of the 

within-subjects factors and interaction effects with α = .05 in a mixed ANOVA and a 

statistical power of (1 - β) = .87 for detecting medium-sized main effects of the between-

subjects factor (G*Power 3; Faul et al., 2007). Participants were randomly allocated to the 



METACOGNITIVE FEEDBACK DEBIASES METACOGNITIVE ILLUSIONS 

 13 

four feedback groups (n = 40 in each group). We excluded participants who assigned the 

same JOL to all items in one or more study phases (n = 2) or who had zero recall 

performance in one or more test phases (n = 2). The final sample included 156 participants 

with a mean age of 23 years (SD = 4.10), n = 37 in the no-feedback group, n = 41 in the 

recall-feedback group, n = 40 in the recall-and-JOL-feedback group, n = 38 in the social-

reference-feedback group.  

Procedure 

The experiment consisted of three study-test cycles, each of which included a study 

phase with JOLs, a distractor task, and a free recall test. Instructions informed participants 

that in each cycle they would study 40 words and would be asked to recall as many words as 

they could remember in a memory test. Participants were also told that they would be asked 

to predict the chance of recalling each word immediately after studying it and that they would 

have an extra study opportunity for some words before the test. At study, each word appeared 

on the screen for 4 s. Immediately afterwards, the number of study presentations (1 vs 2) and 

the JOL prompt Chance of recall (0-100)? appeared on the screen, and participants pressed 

on one of 11 keys labeled 0, 10, …, 90, and 100 to make their JOL. Consequently, we 

obtained one JOL for once-presented words and two JOLs for twice-presented words. A 200-

ms blank screen preceded the presentation of each word. Following a 1-min numerical filler 

task, participants had 4 min to write down as many studied words as they could remember. At 

the end of each study-test cycle, participants in the no-feedback group typed examples of one 

randomly chosen category (i.e., mountains, capitals, or rivers) for 3 minutes. Participants in 

the recall-feedback group saw an overview of the words they had remembered and had not 

remembered organized by font size and number of study presentations (see Figure 1). Recall 

feedback remained on the screen for as long as they wished and for a minimum duration of 

45 s. Participants in the recall-and-JOL-feedback group saw the same organized overview of 
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remembered and not-remembered words as the recall-feedback group, however, 

complemented by their own JOLs from the study phase (see Figure 1). Participants in the 

social-reference-feedback group received the following information: This experiment deals 

with misjudgments of one’s own memory performance. One reason for misjudgments is that 

learners do not know exactly how certain features of the study situation affect memory. In this 

experiment, you will have the opportunity to learn how 1) the font size during study and 2) 

the number of study opportunities influence memory. They were also told that they would see 

the memory performance of students who participated in the same experiment and learned 

and remembered the same words as they themselves. They then saw an overview of the 

average number of remembered words by font size and number of study presentations from 

other participants from a previous experiment. This overview remained on the screen for as 

long as participants wished and for a minimum duration of 45 s (see Figure 1). Afterwards, 

participants were told the following: Many student participants have overestimated the 

influence of font size on their memory in this part of the experiment. In addition, many 

students have underestimated the influence of an additional study opportunity on their 

memory. Now please consider: Did you maybe make these mistakes in Part 1 (2, 3)? 

Immediately prior to the next block, participants from all feedback groups then responded to 

the question: What did you learn about your learning and memory from this feedback? 
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Results 

Effects are considered significant based on an alpha level of .05 and a Greenhouse-

Geisser correction was applied when the sphericity assumption was violated.  

JOLs 

 Figure 2 presents mean JOLs in each cycle by font size and number of study 

presentations in each group of Experiment 1. JOLs from the first study presentation were 

submitted to a mixed ANOVA with cycle (1, 2, 3), font size (18, 48 point), and number of 

study presentations (1, 2) as within-subjects factors and feedback group (no-feedback, recall-

feedback, recall-and-JOL-feedback, social-reference-feedback) as a between-subjects factor.  

A significant main effect of cycle revealed that JOLs decreased across cycles, F(1.48, 

225.22) = 10.33, p < .001, ηp2 = .06. Pairwise follow-up t-tests showed significant differences 

among all three cycles, t(155) >= 2.07, p <= .04, dz >= 0.17. A significant main effect of font 

size revealed higher JOLs for words displayed in the large font than for words displayed in 

the small font, F(1, 152) = 75.02, p < .001, ηp2 = .33. A significant main effect of number of 

study presentations revealed higher JOLs for twice-presented words than for once-presented 

words, F(1, 152) = 3.96, p = .048, ηp2 = .03. The main effect of feedback group was not 

significant, F(3, 152) = 1.31, p = .275, ηp2 = .02. 

There were significant interactions between cycle and font size, F(1.82, 276.24) = 

6.25, p < .01, ηp2 = .04, and between cycle and number of study presentations, F(1.84, 

280.12) = 5.88, p < .01, ηp2 = .04. Follow-up t-tests indicated that the size of the font size 

effect on JOLs decreased across cycles, Cycle 1: t(155) = 7.67, p < .001, dz = 0.61, Cycle 2: 

t(155) = 6.78, p < .001, dz = 0.54, Cycle 3: t(155) = 5.02, p < .001, dz = 0.40, and that JOLs 

were higher for twice-presented words than for once-presented words in Cycle 2, t(155) = 

3.69, p < .001, dz = 0.30, but not in Cycles 1 or 3, Cycle 1: t < 1, Cycle 3: t(155) = 1.09, p = 

.276, dz = 0.09. None of the other interactions were significant, F <= 1.71, p >= .168.  
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Figure 2 

Mean Judgments of Learning (JOL) in Each Cycle for Words Presented Once (S1) or Twice 

(S2) in a Small (18 pt) or a Large (48 pt) Font Size in Each Group of Experiment 1 

 

Note. Error bars represent one standard error of the mean. 

 

Recall Performance 

Figure 3 presents the mean percentage of recalled words in each cycle by font size 

and number of study presentations in each group of Experiment 1. A 3 (cycle: 1, 2, 3) x 2 

(font size: 18, 48 point) x 2 (number of study presentations: 1,2) x 4 (feedback group: no-

feedback, recall-feedback, recall-and-JOL-feedback, social-reference-feedback) mixed 

ANOVA on recall performance revealed that memory performance varied with cycle, F(1.81, 

No-Feedback Group Recall-Feedback Group 
  

Recall-and-JOL-Feedback Group Social-Reference-Feedback Group 
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275.36) = 12.85, p < .001, ηp2 = .08. Follow-up t tests showed worse memory performance in 

Cycle 1 than in Cycles 2 and 3, Cycle 1 vs. 2: t(155) = 4.90, p < .001, dz = 0.39,  Cycle 1 vs. 

3: t(155) = 3.23, p < .01, dz = 0.26, but no differences between Cycles 2 and 3, t(155) = 1.53, 

p = .128, dz = 0.12. A significant main effect of font size revealed better memory 

performance for words displayed in the large font than in the small font, F(1, 152) = 5.51, p = 

.020, ηp2 = .04. A significant main effect of number of study presentations revealed better 

memory performance for twice-presented words than for once-presented words, F(1, 152) = 

942.72, p < .001, ηp2 = .86. None of the other main effects or interactions were significant F 

<= 2.88, p >= .058.  
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Figure 3 

Mean Percentage of Correctly Recalled Words (Recall) in Each Cycle for Words Presented 

Once (S1) or Twice (S2) in a Small (18 pt) or a Large (48 pt) Font Size in Each Group of 

Experiment 1 

 

 
Note. Error bars represent one standard error of the mean. 

  

No-Feedback Group Recall-Feedback Group 
  

Recall-and-JOL-Feedback Group Social-Reference-Feedback Group 
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Resolution and Calibration 

 Gamma correlations could not be computed for three participants in one cycle due to 

perfect recall performance.  

Table 1 presents Gamma correlations in each cycle for each group of Experiment 1. 

Gamma correlations between JOLs and recall performance were significantly positive in each 

study-test cycle and feedback group, t >= 4.21, p < .001, d >= 0.69, indicating that 

participants from all feedback groups made moderately accurate JOLs in all study-test cycles. 

A 3 (cycle: 1, 2, 3) x 4 (feedback group: no-feedback, recall-feedback, recall-and-JOL-

feedback, social-reference-feedback) mixed ANOVA revealed no main effects of cycle, 

F(1.99, 296.38) = 1.26, p = .286, ηp2 = .01, or group, F(3, 149) = 0.90, p = .443, ηp2 = .02, 

and also no interaction, F(5.97, 296.38) = 1.37, p = .228, ηp2 = .03.  

A similar mixed ANOVA on calibration revealed that the difference between JOLs 

and recall performance (i.e., bias) varied with cycle, F(1.77, 268.83) = 23.57, p < .001, ηp2 = 

.13, with pairwise comparisons indicating a switch from overconfidence in Cycle 1 (M = 

5.12, SD = 21.8) to underconfidence in Cycle 2 (M = -3.08 , SD = 20.8) and Cycle 3 (M = -

2.74, SD = 19.1). Cycle 1 vs. 2: t(155) = 5.93, p < .001, d = 0.47, Cycle 1 vs. 3, t(157) = 5.20, 

p < .001, d = 0.42, Cycle 2 vs. 3: t < 1. Neither the main effect of feedback group, F(3, 152) 

= 1.77, p = .155, ηp2 = .03, nor the interaction were significant, F < 1.  
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Table 1  

Means (SDs) of the Gamma Correlation between JOLs and Recall Performance in 

Each Cycle and Group of Experiments 1, 2, and 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Experiment and group 
Cycle 

1 2 3 

Experiment 1   
 

 No-feedback .33 (.23) .30 (.34) .26 (.37) 

 Recall-feedback .21 (.27) .36 (.26) .29 (.28) 

 Recall-and JOL-feedback .20 (.27) .22 (.33) .25 (.30) 

 Social-reference-feedback .29 (.27) .31 (.29) .31 (.37) 

Experiment 2    

 No-feedback .31 (.32) .31 (.41) .41 (.26) 

 Catch-all-cognitive-feedback .26 (.26) .30 (.29) .23 (.37) 

Experiment 3    

 No-feedback .21 (.25) .36 (.23) .30 (.28) 

 Metacognitive-feedback .28 (.22) .30 (.31) .44 (.26) 
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Discussion 
 

 Experiment 1 showed that neither type of feedback improved the cue basis of  JOLs 

or JOL accuracy. Participants continued overweighting font size and underweighting number 

of study opportunities in their JOLs even with the opportunity to relate individual JOLs to 

actual memory performance in the recall-and-JOL-feedback group. At the same time, there 

were no improvements in relative or absolute accuracy. We found, however, that the weight 

given to font size decreased across cycles in all groups. Since study-test experience is 

provided to all groups, participants may have learned from experience to rely less on font 

size. However, this finding was unexpected, and it remains to be seen whether it would 

replicate. Finally, we found that JOLs switched from overconfidence to underconfidence after 

the first cycle, a pattern that it is well established for repeated study-test cycles using the 

same materials repeatedly and known as the underconfidence-with-practice effect (Koriat et 

al., 2002).  

Experiment 2 

Since Experiment 1 was not successful at improving JOLs, Experiment 2 combined 

all forms of feedback into a single ‘catch-all-cognitive-feedback’ group to provide 

participants with maximum information. Participants in the catch-all-cognitive-feedback 

group saw a list of the words they had recalled and not recalled accompanied by the JOL they 

had given to each word during study, organized by the two cues (see recall-and-JOL-

feedback group in Figure 1). This was followed by information about each cue’s 

effectiveness and average performance of other participants in this same task (see social-

reference-feedback group in Figure 1). If this extreme catch-all-cognitive-feedback does not 

improve cue use in JOLs and JOL accuracy, this will demonstrate the resistance of 

metacognition to change. In Experiment 2, we manipulated font format (standard, 

aLtErnAtiNg) in addition to font size. Standard-font words typically elicit higher JOLs than 
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alternating-font words, while there are typically no differences in recall performance between 

the two font formats ( Rhodes & Castel, 2008; but see Mueller et al., 2013). We hoped that 

cue learning would be facilitated by manipulating two perceptual cues. 

Method 

Design 

The design was a mixed design with font size (18 point, 48 point), font format 

(standard, aLtErnAtiNg), and study-test cycle (1, 2, 3) as within-subjects factors and group 

(no-feedback, catch-all-cognitive-feedback) as between-subjects factor.  

Materials 

Stimuli were identical to Experiment 1. The only exception was that for each 

participant one randomly selected half of the large- and small font words were displayed in 

standard or aLtErNaTiNg format instead of being presented once or twice for study. The first 

four items represented each combination of font size and font format and were used as buffer 

items that were not included in the analysis.  

Participants 

We aimed at recruiting at least N = 80 participants. Power calculations were identical 

to those reported in Experiment 1. We recruited 43 University of Mannheim undergraduates, 

37 of which completed the study in the laboratory and 6 of which completed the study online. 

Due to the Covid-19 pandemic, we recruited 43 additional participants from the Prolific 

online pool (https://www.prolific.co). These participants were native-German speakers who 

were located in Germany, 18 to 35 years old, and mostly students (93.02%). Participants were 

randomly allocated to the control (n = 40), and feedback (n = 40) groups. We used the same 

exclusion criteria as in Experiment 1 and excluded participants who assigned the same JOL to 

all items in one or more study phases (n = 5) or who had zero recall performance in one or 

https://www.prolific.co/
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more test phases (n = 1). The final sample included 80 participants with a mean age of 23.3 

years (SD = 5.19), n = 40 in the control group, and n = 40 in the feedback group. 

Procedure 

The procedure was identical to that of Experiment 1 with the following exceptions. 

All words were presented only once for study. Participants in the catch-all-cognitive-

feedback group received the same information as the social-reference-feedback group in 

Experiment 1. However, before being presented with the average memory performance of 

other participants, they additionally were presented with the same feedback as the recall-and-

JOL-feedback group in Experiment 1. This feedback included an overview of the words they 

had remembered and had not remembered with JOLs organized by font size and font format.  

Results 

JOLs 

 Figure 4 presents mean JOLs in each cycle by font format and size in each group of 

Experiment 2 in the upper row. JOLs were submitted to a mixed ANOVA with cycle (1 vs 2 

vs 3), font size (18 vs 48 point), and font format (standard vs aLtErNaTiNg) as within-

subjects factors and feedback group (no-feedback, catch-all-cognitive-feedback) as between-

subjects factor.  

A significant main effect of cycle revealed that JOLs decreased across cycles, F (1.42, 

110.64) = 9.82, p < .001, ηp2 = .11. Follow-up t tests showed larger JOLs in Cycle 1 than in 

Cycles 2 and 3, Cycle 1 vs. 2: t(79) = 2.95, p < .01, dz = 0.33, Cycle 1 vs. 3:  t(79) = 3.54, p < 

.001, d = 0.40, but no differences between Cycles 2 and 3, t(79) = 1.47, p = .146, dz = 0.16. A 

significant main effect of font size revealed higher JOLs for words displayed in large font 

than for words displayed in small font, F (1, 78) = 13.78, p < .001, ηp2 = .15, and a significant 

main effect of font format revealed higher JOLs for words displayed in standard format than 
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for words displayed in alternating format, F (1, 78) = 23.60, p < .001, ηp2 = .23. None of the 

other main effects or interactions were significant, F <= 3.17, p >= .08.  

 

Figure 4 

Mean Judgments of Learning (JOL) and Percentage of Correctly Recalled Words (Recall) in 

Each Cycle for Words Presented in Alternating (Alt) or Standard (Strd) Font and in a Small 

(18 pt) or a Large (48 pt) Font Size in Each Group of Experiment 2 

 

Note. Error bars represent one standard error of the mean. 

  

No-Feedback Group Catch-All-Cogni>ve-Feedback Group 
  

No-Feedback Group Catch-All-Cogni>ve-Feedback Group 
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Recall Performance 

 Figure 4 (lower row) presents the mean percentage of recalled words in each cycle by 

font format and font size in each group of Experiment 2. A 3 (cycle: 1, 2, 3) x 2 (font size: 

18, 48 point) x 2 (font format: standard, aLtErNaTiNg) x 4 (feedback group: no-feedback, 

catch-all-cognitive-feedback) mixed ANOVA on recall performance revealed that memory 

performance varied with cycle, F (1.88, 146.85) = 19.35, p < .001, ηp2 = .20. Follow-up t tests 

showed worse memory performance in Cycle 1 than in Cycles 2 and 3, Cycle 1 vs. 2: t(79) = 

5.29, p < .001, dz = 0.59, Cycle 1 vs. 3: t(79) = 4.84, p < .001, dz = 0.54, but did not differ 

between Cycles 2 and 3, t < 1. Neither the main effect of font size, F(1, 78) = 2.98, p = .09, 

ηp2 = .04, nor the main effect of font format were significant, F(1, 78) = 1.84, p = .18, ηp2 = 

.02. None of the other main effects or interactions were significant, F <= 2.18, p >= .12.  

Resolution and Calibration 

 Table 1 presents Gamma correlations in each cycle for each group of Experiment 2. 

As in Experiment 1, all Gamma correlations by group and cycle were significantly positive t 

>= 4.03, p < .001, d >= .64, indicating that participants from both groups made moderately 

accurate JOLs in all study-test cycles. A 3 (cycle: 1, 2, 3) x 2 (group: no-feedback, catch-all-

cognitive-feedback) mixed ANOVA revealed no main effects of cycle, F < 1, or group, 

F(1,78) = 2.45, p = .121, ηp2 = .03, and also no interaction, F(1.98, 154.76) = 1.85, p = .161, 

ηp2 = .02.  

A similar mixed ANOVA on calibration revealed that bias varied with cycle, F(1.64, 

127.67) = 30.13, p < .001, ηp2 = .28, with pairwise comparisons indicating a switch from 

overconfidence in Cycle 1 (M = 9.25, SD = 23.7) to underconfidence in Cycle 2 (M = -3.11, 

SD = 18.2) and Cycle 3 (M = -3.27, SD = 17.5). Cycle 1 vs. Cycle 2: t(79) = 5.97, p < .001, dz 

= 0.67, Cycle 1 vs. 3: t(79) = 6.02, p < .001, dz = 0.67, Cycle 2 vs. 3: t < 1. Neither the main 
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effect of group, F < 1, nor the interaction were significant, F(1.64, 127.67) = 1.94, p = .156, 

ηp2 = .02. 

Discussion 

Experiment 2 results showed no improvements in cue use or JOL accuracy in the 

catch-all-cognitive-feedback group. Participants in this group continued overweighting font 

size and font format despite receiving maximum information. Unlike Experiment 1, this 

experiment showed that the illusory effect of font size was stable across cycles. Relative 

accuracy did not improve across cycles, and JOLs switched again from overconfidence to 

underconfidence after Cycle 1. Overall, this demonstrates that metamemory judgments are 

resistant to change. This contrasts with the improvement in judgments about external criteria 

found when participants receive cognitive feedback (Balzer et al., 1989; Karlsson et al., 2004; 

Little & Lewandowsky, 2009; Newell et al., 2009). 

One reason why participants do not change the cue basis of their JOLs can be that 

experiential cues dominate during learning (e.g., fluency). However, this is at odds with 

evidence showing that people can base their JOLs on multiple cues rather than on a unified 

feeling of ease (Undorf et al., 2018; Undorf & Bröder, 2020). Further, the font size effect on 

JOLs has been mostly explained by beliefs rather than fluency (Luna et al., 2019; Mueller et 

al., 2014; Undorf & Zimdahl, 2019). Yan et al. (2016) argue that metacognitive judgments 

are hard to change because of a) pre-existing beliefs about learning and memory, b) 

experiences of fluency during learning, and c) the belief of being unique as a learner. Thus, it 

might be that participants’ pre-existing beliefs influence how they interpret and store the 

cognitive feedback provided. In some situations, participants might even disregard the 

cognitive feedback because they consider themselves experts on their own cognitions or think 

that the average performance of other participants is irrelevant for them as unique learners, as 
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suggested by Yan et al. (2016). Experiment 3 aims to dismantle possible erroneous 

metacognitive beliefs. 

Experiment 3 

 In Experiment 3, we designed a new form of feedback to remedy the possibility that 

participants might be misperceiving the cognitive feedback due to pre-existing beliefs. For 

this, we followed Fiedler et al.’s (2020) recommendations of effective forms of feedback. 

These recommendations were made by 10 scientists and state that an effective debiasing 

treatment should not only provide information about judgments that are “correct” versus 

“incorrect”, but to also relate this feedback to a) the representation of the stimuli, and b) 

explicit instructions about how to make accurate judgments. Based on these 

recommendations, we designed an informative ‘metacognitive-feedback’ in which we 

adopted a first-person perspective at explaining the metacognitions that likely occur during 

learning (e.g., large-font words stand out more and therefore must be more memorable), their 

biased nature, and instructions about which cues to consider when making judgments. Our 

aim was to specifically tackle participants’ metacognitions and dismantle any erroneous pre-

existing beliefs. 

 Further, Experiment 3 aimed to ensure that participants fully attended the cognitive 

feedback and achieved a deep understanding of cue validities and biased metacognitions 

during learning. To achieve this goal, we used a similar approach as Pan and Rivers (2023) 

and asked participants to describe how each of the cues affected their memory and their JOLs 

after receiving feedback. 

Method 

Design 
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The design was a mixed design with font size (18 point, 48 point), number of study 

presentations (1,2), and study-test cycle (1, 2, 3) as within-subjects factors and group (no-

feedback, metacognitive-feedback) as between-subjects factor.  

Materials 

Stimuli were identical to Experiment 1.  

Participants 

We aimed at recruiting at least N = 80 participants. Power calculations were identical 

to those reported in Experiment 1. We recruited 23 University of Mannheim and 57 

Technical University of Darmstadt undergraduates. Participants were randomly allocated to 

the no-feedback (n = 40), and metacognitive-feedback (n = 40) groups. We used the same 

exclusion criteria as in Experiment 1 and excluded participants who assigned the same JOL to 

all items in one or more study phases (n =1) or who had zero recall performance in one or 

more test phases (n = 0). Additionally, we excluded incomplete data due to a technical PC 

error (n = 2).  The final sample included 77 participants with a mean age of 21.92 years (SD = 

2.92), n = 39 in the control group, and n = 38 in the feedback group.  

Procedure 

The procedure was identical to that of Experiment 2 with the following exceptions. 

All words were in a standard format for study. For each participant, one randomly selected 

half of the small-font (18-pt Arial font) and large-font (48-pt Arial font) words were 

presented once or twice for study. To ensure that participants understood the feedback screen 

that presented an overview of the words they had remembered and had not remembered with 

JOLs, they were asked two questions about their recall performance and memory predictions; 

Question 1: “Which statement best describes your actual memory performance in Part 1 [2, 

3]? In the test, I was able to…” Answer Option 1: remember more words learned twice [in 

large font size] than words learned once [in small font size]. Answer Option 2: remember 
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fewer words learned twice [in large font size] than words learned once [in small font size]. 

Answer Option 3: remember the same number of words learned twice [in large font size] and 

once [in small font size]. Question 2: “Which statement best describes your memory 

predictions in Part 1 [2, 3]?” Answer Option 1: I underestimated the impact of an additional 

learning opportunity [of a large font size] on my memory. Answer Option 2: I correctly 

assessed the influence of an additional learning opportunity [of a large font size] on my 

memory. Answer Option 3: I overestimated the influence of an additional learning 

opportunity [ of large font size] on my memory. After being presented with the average 

memory performance of other participants, participants read textual information about the 

font size illusion and the stability bias. The text informed about possible perceptions during 

learning, the validities of the cues, font size and number of study opportunities, and 

recommendations on which factors to focus when making JOLs (see Appendix).  

Results 

JOLs 

 Figure 5 presents mean JOLs in each cycle by font size and number of study 

presentations in each group of Experiment 3. JOLs from the first study presentation were 

submitted to a mixed ANOVA with cycle (1, 2, 3), font size (18, 48 point), and number of 

study presentations (1, 2) as within-subjects factors and feedback group (no-feedback, 

metacognitive-feedback) as a between-subjects factor.  

A significant main effect of cycle revealed differences in JOLs across cycles, F(1.57, 

117.99) = 6.90, p < .01, ηp2 = .08. Specifically, JOLs were lower in Cycles 2 and 3 than in 

Cycle 1, Cycle 1 vs. Cycle 2: t(76) = 2.51, p = .01, dz = 0.29, Cycle 1 vs. 3: t(76) = 3.01, p < 

.01, dz = 0.34, but did not differ between Cycle 2 and 3, t(76) = 1.66, p = .10, dz = 0.19. A 

significant main effect of font size revealed higher JOLs for words displayed in the large font 

than for words displayed in the small font, F(1, 75) = 39.05, p < .001, ηp2 = .34. A significant 
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main effect of number of study presentations revealed higher JOLs for twice-presented words 

than for once-presented words, F(1, 75) = 8.40, p < .01, ηp2 = .10. The main effect of group 

was not significant, F < 1.  

As in Experiment 1, there was a significant interaction between cycle and font size, 

F(1.68, 125.65) = 10.06, p < .001, ηp2 = .12. Follow-up t tests indicated that the size of the 

font size effect on JOLs decreased across cycles, Cycle 1: t(76) = 6.47, p < .001, dz = 0.74, 

Cycle 2: t(76) = 4.20, p < .001, dz = 0.48, Cycle 3: t(76) = 2.29, p = .02, dz = 0.26. 

Importantly, the three-way interaction between group and cycle and number of study 

presentations was significant, F(1.99, 149.17) = 3.07, p = .0495, ηp2 = .04. Follow-up 

analyses showed that the interaction between cycle and number of study presentations was 

not significant in the control group, F < 1, but was significant in the metacognitive-feedback 

group, F(1.93, 71.48) = 4.07, p = .02, ηp2 = .10, with t-tests showing that JOLs were higher 

for twice- than for once-studied words in Cycle 3, t(37) = 2.91, p < .01, dz = 0.47, but not in 

Cycle 1 and 2, Cycle 1: t < 1, Cycle 2: t < 1. The three-way interaction between group, cycle 

and font size was not significant, F(1.68, 125.65) = 2.39, p = .10, ηp2 = .03. None of the other 

interactions were significant, F <= 3.69, p >= .06.  
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Figure 5 

Mean Judgments of Learning (JOL) and Percentage of Correctly Recalled Words (Recall) in 

Each Cycle for Words Presented Once (S1) or Twice (S2) in a Small (18 pt) or a Large (48 

pt) Font Size in Each Group of Experiment 3 

 

Note. Error bars represent one standard error of the mean. 

  

No-Feedback Group Metacogni>ve-Feedback Group 
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Recall Performance 

Figure 5 presents the mean percentage of recalled words in each cycle by font size 

and number of study presentations in each group of Experiment 3. A 3 (cycle: 1, 2, 3) x 2 

(font size: 18, 48 point) x 2 (number of study presentations: 1,2) x 2 (no-feedback, 

metacognitive-feedback) mixed ANOVA on recall performance revealed that memory 

performance varied with cycle, F(1.91, 143.50) = 8.84, p < .001, ηp2 = .11. Follow-up t tests 

showed worse memory performance in Cycle 1 than in Cycles 2 and 3, Cycle 1 vs. 2: t(76) = 

3.59, p < .001, dz = 0.41,  Cycle 1 vs. 3: t(76) = 3.29, p < .01, dz = 0.38, but no differences 

between Cycles 2 and 3, t < 1. A significant main effect of number of study presentations 

revealed better memory performance for twice-presented words than for once-presented 

words, F(1, 75) = 666.88, p < .001, ηp2 = .90. None of the other main effects or interactions 

were significant F <= 2.62, p >= .080. 

Resolution and Calibration 

 Table 1 presents Gamma correlations in each cycle for each group of Experiment 3. 

As in Experiments 1 and 2, all Gamma correlations by group and cycle were significantly 

positive, t >= 5.24, p < .001, d >= .84, indicating that participants from both groups made 

moderately accurate JOLs in all study-test cycles. A 3 (cycle: 1, 2, 3) x 2 (group: no-

feedback, metacognitive-feedback) mixed ANOVA revealed a main effect of cycle, F(1.94, 

145.76) = 5.51, p < .01, ηp2 = .07, no main effect of group, F(1,75) = 1.46, p = .230, ηp2 = .02, 

and a significant interaction, F(1.94, 145.76) = 3.57, p = .032, ηp2 = .05. In the metacognitive-

feedback group, resolution was markedly improved in Cycle 3, but it did not differ between 

Cycle 1 and 2, Cycle 1 vs. 2: t < 1, Cycle 1 vs. 3: t(37) = 2.84, p < .001, dz = 0.46, Cycle 2 vs. 

3: t(37) = 2.45, p = .019, dz = 0.40. In contrast, in the control group, resolution improved only 

between Cycle 1 and 2, t(38) = 2.90, p < .01, dz = 0.46, but it remained similar in Cycle 1 and 
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3 and Cycle 2 and 3, Cycle 1 vs. 3: t(38) = 1.51, p = .140, dz = 0.24, Cycle 2 vs. 3: t(38) = 

1.23, p = .224, dz = 0.20.  

A similar mixed ANOVA on calibration revealed a main effect of cycle, F(1.82, 

136.34) = 17.69, p < .001, ηp2 = .19, no main effect of group, F(1, 75) = 1.13, p = .290, ηp2 = 

.02, and a significant interaction, F(1.82, 136.34) = 4.38, p = .017, ηp2 = .06. In the control 

group, there was a switch from overconfidence in Cycle 1 (M = 8.08, SD = 21.3) to 

underconfidence in Cycle 2 (M = -5.94, SD = 16.5) and 3 (M = -7.54, SD = 18.7). Cycle 1 vs. 

2: t(38) = 4.82, p < .001, dz = 0.77, Cycle 1 vs. 3: t(38) = 4.87, p < .001, dz = 0.78, Cycle 2 

vs. 3: t < 1. In the metacognitive-feedback group, calibration did not differ across cycles, but 

there was a trend towards a reduction in bias across cycles (Cycle 1: M = 5.60, SD = 16.1, 

Cycle 2: M = 1.21, SD = 22.7, Cycle 3: M = 0.12, SD = 21.2), t(37) >= 1.99, p >= .053, dz 

<= 0.32.  

Questionnaire Data 

 Regarding the number of study opportunities, most of the 38 participants in the 

feedback group reported remembering more twice-learned than once-learned words; Cycle 1: 

78.95% (with 73.68% out of the 38 participants being correct), Cycle 2: 81.58% (73.68% were 

correct), Cycle 3: 76.31% (57.89% were correct). The remaining participants either said that 

they remembered more words learned once than twice; Cycle 1: 13.16% (all were incorrect), 

Cycle 2: 7.89% (2.63% were correct), Cycle 3: 13.16% (2.63% were correct), or that they 

remembered the same number of words learned twice and once (2.63% were on average correct 

across cycles). The percentage of participants who indicated that they had accurately predicted 

the effect of number of study repetitions in their JOLs increased from around one third in Cycle 

1 to half in Cycle 2 and 3; Cycle 1: 31.58% (18.42% were correct), Cycle 2: 55.26% (26.32% 

were correct), Cycle 3: 52.63% (28.95% were correct). The remaining participants said that 

they had underestimated the impact of a second repetition on their memory; Cycle 1: 42.10% 



METACOGNITIVE FEEDBACK DEBIASES METACOGNITIVE ILLUSIONS 

 34 

(26.32% were correct), Cycle 2: 23.68% (21.05% were correct), Cycle 3: 31.58% (10.53% 

were correct), or that they had overestimated it (11.32% were on average correct across cycles). 

 Regarding the font size of words, the percentage of participants who reported 

remembering more large-font words than small-font words decreased after Cycle 1; Cycle 1: 

47.37% (42.10% were correct), Cycle 2: 21.05% (13.16% were correct), Cycle 3: 28.95% 

(15.79% were correct), with just below half of the participants reporting equal memory for 

large and small words in Cycles 2 and 3; Cycle 1: 36.84% (7.89% were correct), Cycle 2: 

47.37% (7.89% were correct), Cycle 3: 44.74% (7.89% were correct), and a minority saying 

that memory was better for small-font than large-font words (18.42% were on average correct 

across cycle). Regarding the accuracy of their JOLs, more than half of the participants reported 

that they correctly predicted the impact of font size on memory after Cycle 1: Cycle 1: 42.10% 

(15.79% were correct), Cycle 2: 63.16% (34.21% were correct), Cycle 3: 57.89% (36.84% 

were correct). The other participants said that they had underestimated the impact of font size 

decreased after Cycle 1: Cycle 1: 34.21% (2.63% were correct), Cycle 2: 13.16% (5.26% were 

correct), Cycle 3: 15.79% (5.26% were correct), or that they had overestimated it (15.94% were 

on average correct across cycles).  

Discussion 

Experiment 3 results showed that metacognitive feedback informing not only about 

cognitive processes but also about how metacognition operates and how metacognition can 

be improved was successful at increasing JOL reliance on valid cues. Specifically, the 

metacognitive feedback was effective at increasing the reliance of JOLs on number of study 

opportunities, improving resolution, and, descriptively, improving calibration. Participants 

learned that number of study opportunities is a valid predictor of their memory and therefore 

relied on this cue for their predictions in Cycle 3. At the same time, improved resolution 

demonstrated that relying on valid cues fostered JOL accuracy. Also, in the metacognitive-
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feedback group, JOLs were well-calibrated after Cycle 1. The questionnaire data clearly 

shows that most participants correctly identified better memory performance for words 

learned twice than once, and the percentage of participants who accurately reported correctly 

estimating the number of study opportunities cue increased after Cycle 1 to nearly half. 

Further, the interaction between font size and cycle from Experiment 1 was again obtained, 

unlike in Experiment 2, in which the invalid cue font format was manipulated as a second 

cue. It might be that a valid cue needs to be present in the environment for participants to 

learn to rely less on font size from experience. However, this is only a speculation that would 

need further testing. Although font size descriptively affected JOLs less strongly in Cycle 2 

and even less so in Cycle 3 in the metacognitive-feedback group but not in the no-feedback 

group, the three-way interaction was not significant. This might be because JOLs are easier to 

correct for those cues with robust predictive validity, and not for those without validity. 

Furthermore, it could be that individual differences in the effect of font size on memory 

performance (i.e., some participants showing better recall for large than small words) did not 

enable that all participants updated their JOLs which was reflected in the non-significant 

three-way interaction.  

General discussion 

This study tested the effectiveness of different forms of feedback for improving the 

cue basis and accuracy of JOLs in the context of metacognitive illusions. In all three 

experiments, feedback and multiple study-test-cycles for different lists were provided to 

remedy the font size illusion (Rhodes & Castel, 2008). Additionally, in Experiment 1 and 3, 

feedback was directed to remedy the stability bias (Kornell & Bjork, 2009), and, in 

Experiment 2, the font format illusion (Rhodes & Castel, 2008). We found that cognitive 

feedback presenting individual task performance (recall only, recall and JOL) for each 

studied item and/or aggregated recall performance from previous participants was not 
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effective at correcting either illusion (Experiments 1 and 2). In contrast, additional 

metacognitive feedback informing participants about possible metacognitions during the task, 

their biased nature, and ways to enhance the accuracy of their JOLs was effective at 

remedying the stability bias and improving the relative accuracy of JOLs (Experiment 3). 

This study thus shows that people do not learn to appropriately use cues from mere task 

experience and/or cognitive feedback on their own memory and JOLs, but rather that 

information about how metacognition operates and how it may be improved is effective for 

mending metacognitive illusions.  

The finding that metacognitive feedback is effective is in line with studies showing 

that detailed information about metacognition improve metacognitive judgments (Koriat & 

Bjork, 2006b; Miller & Geraci, 2011). Importantly, however, this is the first demonstration 

that information about metacognition is effective even when provided as part of computerized 

experiment instructions rather than in personal discussions with an experimenter. 

Further, this is the first study to show that providing participants with the JOL and 

recall status of each studied item organized by cues is not effective for improving the cue 

basis of JOLs in a subsequent cycle. This contrasts with studies about external world criteria 

(Karlsson et al., 2004; Little & Lewandowsky, 2009; Newell et al., 2009; Seong & Bisantz, 

2008). It also disconfirms the inferential deficit hypothesis in metamemory research 

according to which JOLs do not improve across cycles because there is a failure to monitor 

test performance and make correct cue attributions (Dunlosky & Hertzog, 2000; Matvey et 

al., 2002). Experiment 3 showed that most participants can correctly understand the feedback 

on how the number of study opportunities and, to a somewhat lesser extent, how font size 

affect recall performance. So, one reason for why the illusions were not remedied by 

feedback in Experiments 1 and 2 might be that participants failed to apply the declarative 

knowledge gained about the cue effects on recall performance when making JOLs for a new 
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study list (see Dunlosky & Hertzog, 2000). This might be because beliefs must be activated 

to impact JOLs (Ariel et al., 2014; Undorf & Erdfelder, 2015). Another reason might be that 

other experiential cues during learning such as fluency or idiosyncratic cues overshadow the 

cue knowledge recently acquired (Koriat & Ackerman, 2010; Undorf, et al. 2022; Undorf & 

Erdfelder, 2011). However, the finding that JOLs are based on multiple cues instead of a 

unified feeling of ease speak against the latter possibility (Undorf & Bröder, 2020). A more 

compelling reason presumably is that more in depth-knowledge about metacognition than 

acquired when receiving cognitive feedback about one’s JOLs and recall performance is 

needed to improve the judgment cue basis. This is demonstrated by our finding that JOLs 

relied on the number of study opportunities after metacognitive feedback in Experiment 3. 

We think that the declarative knowledge must be more substantial to be correctly applied 

when making JOLs. 

Our finding that metamemory feedback is effective may rise the question why 

warnings are not (Kornell & Bjork, 2009; Rhodes & Castel, 2008; Yan et al., 2016). The 

crucial difference between the metacognitive feedback used in this study and the warnings 

used in other studies is that only metacognitive feedback provides information about how 

metacognitive illusions arise from a first-person perspective (e.g., by explaining the 

impressions during learning that might bias metacognition). In contrast, typical warnings only 

provide information about the normative correctness of metacognitive judgments but do not 

entail any information about the experiences during learning or metacognitive beliefs that 

may bias metacognition (e.g., Kornell & Bjork, 2009; Rhodes & Castel, 2008).  

This study is not without limitations. First, while metacognitive feedback reduced the 

stability bias, it did not alleviate the font size illusion. One possible reason for this is that 

because the font size illusion decreased across study-test cycles in all conditions, additional 

beneficial effects of metacognitive feedback were harder to substantiate, and doing so would 
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have required more statistical power. Alternatively, it might be that decreasing the reliance on 

invalid cues is more resistant to metacognitive feedback than increasing the reliance on valid 

cues. This is because experiences of high fluency produced by invalid cues may still 

contribute despite metacognitive beliefs being correct. Second, the improvement in the cue 

basis of JOLs was observed only in the third cycle whereas the cue basis of JOLs remained 

unaffected in the second cycle. One would need to replicate this finding to know whether it is 

robust. If so, it might be related to participants wanting to verify that the metacognitive 

feedback is correct. Hence, presenting the metacognitive feedback immediately before or 

after the cognitive feedback would lead to improved JOLs. This is because participants can 

then confirm that the information in the metacognitive feedback indeed aligns with their task 

performance in the first cycle.  

In conclusion, this study shows that cognitive feedback on memory performance and 

JOLs on the item level is not sufficient for improving the cue basis and resolution of JOLs. In 

contrast, metacognitive feedback that provides an in-depth explanation of biased 

metacognitions and how to evade their detrimental impact is effective for correcting the cue 

basis of JOLs and, in turn, improves JOL resolution. This is a very promising direction to 

mending metacognitive illusions, which has proved very challenging in many prior studies.  
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Appendix 

As you have seen, many students overestimated the influence of font size on their 

memory in this part of the experiment. 

This is because words written in a large font size are particularly conspicuous during 

learning and are perceived as particularly easy to read and learn. However, these 

perceptions during learning say little about actual test performance: The font size of 

words does not usually affect memory performance. 

You have also seen that many students underestimated the influence of an additional 

learning opportunity on their memory. 

This is because the sensations during learning are very similar for words with an 

additional learning opportunity and for words without an additional learning 

opportunity. Despite the similarity in the sensations during learning, the following 

applies: An additional learning opportunity greatly improves memory performance in 

the test. 

The following therefore applies in this experiment:  

The perceptions about the ease of learning triggered by the font size say little about how 

well the words can actually be learnt. These perceptions should therefore not play a role 

in your assessments. An additional learning opportunity, on the other hand, has a 

stronger influence on memory. 
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Abstract 

Since there is no direct monitoring of cognition during activities such as learning and 

memory, metacognition is inferential in nature and informed by cues. Much is known about 

the many cues that underlie predictions of future memory performance (judgments of 

learning, JOLs); however, little is known about specific mechanisms for learning cues. To 

address this gap, we examined statistical learning as a mechanism to extract regularities from 

the environment and use this knowledge to inform JOLs. Across two experiments, 

participants were exposed to a continuous auditory stream of artificial words with fixed 

transitional probabilities between adjacent syllables. Afterwards, they studied and made JOLs 

for (1) word items that were presented in the stream (2) phantom items that were not 

presented in the stream but followed transitional probabilities, and (3) non-word items that 

did not follow transitional probabilities. Results showed that JOLs were based on the 

wordlikeness cue arising from transitional probabilities: JOLs were higher for word and 

phantom than for non-word items. In Experiment 1, using an old-new recognition memory 

test, discrimination was worse for word and phantom than for non-word items. In Experiment 

2, using a 2-alternative-forced-choice recognition memory test, performance did not vary 

across trial types. This study shows that statistical learning is one method through which 

metacognitive cues are acquired even when they are invalid.  

Keywords: metacognition; metamemory; statistical learning; cue learning; judgments 

of learning 
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Metacognition defined as the ability to monitor and control cognitive performance is 

crucial for many cognitive activities such as learning and memory. Hence, it is often studied 

in the domain of memory by obtaining metamemory judgments like judgments of learning 

(JOLs). JOLs are predictions about the likelihood of remembering a recently studied item on 

an upcoming test (Dunlosky & Thiede, 2013). For example, a student learning for an exam 

predicts whether she will remember a definition at test. In metamemory research, it is well 

known that people cannot directly monitor the varying strengths of memory traces when 

making their predictions but rely on cues to make inferences about memory performance 

(Koriat, 1997). Many cues have been found to underlie JOLs in laboratory studies such as 

concreteness (Begg et al., 1989; Witherby & Tauber, 2017), word frequency (Begg et al., 

1989; Benjamin, 2003; Mendes et al., 2020), word pair relatedness (Mueller et al., 2013; 

Undorf & Erdfelder, 2015), or font size (Mueller et al., 2014; Rhodes & Castel, 2008). 

However, little attention has been paid to how people learn cues for their JOLs.  

Understanding the potential mechanisms of cue acquisition is essential for gaining a 

deeper understanding of metacognition. This study aims to examine whether statistical 

learning is a mechanism for learning cues for JOLs. Statistical learning, defined as the 

extraction of regularities from the environment, is a powerful form of learning (Saffran, Aslin 

& Newport, 1996). It was originally examined in the context of language acquisition as an 

experiential mechanism for segmenting fluent speech into words (Saffran et al., 1996, 1997; 

Seidenberg, 1997), but it has also been demonstrated in visual search (Jones & Kaschak, 

2012), sequence learning (Stadler, 1992), causal learning (Sobel & Kirkham, 2007), and 

category learning (Brady & Oliva, 2008). Given the ubiquity of statistical learning in various 

areas of cognition, the idea that metacognitive cues are acquired in this fashion is a viable 

hypothesis deserving investigation. 
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Cue learning in metamemory 

Research on the cue basis of metamemory judgments has mostly focused on 

identifying and understanding which and how cues are used rather than how they are learned. 

There is ample evidence that cues are used directly via beliefs about memory and/or 

indirectly via experiences of ‘ease’ during learning (e.g., Frank & Kuhlmann, 2017; Mueller 

et al., 2014; Undorf & Zimdahl, 2019, Undorf et al., 2017). It is only in situations where 

JOLs are based on invalid cues (i.e., not predictive of memory performance) or fail to rely on 

valid cues (i.e., predictive of memory performance) that research has addressed the question 

of cue learning. Typically, this is done by attempts to correct people’s beliefs about memory 

or raising awareness about valid cues (e.g., Castel, 2008; Dunlosky & Hertzog, 2000; Hertzog 

et al., 2009; Koriat & Bjork, 2006; Kornell & Bjork, 2009, Experiment 8; Mueller et al., 

2015; Rhodes & Castel, 2008, Experiment 4). 

For example, a set of studies on knowledge updating tested whether people learn to 

use study strategy effectiveness as a cue for their metamemory judgments from task 

experience across multiple study-test cycles (Dunlosky & Hertzog, 2000; Hertzog et al., 

2009; Mueller et al., 2015). Results show that task experience alone is insufficient for 

improving metamemory judgments. An explanation is that people do not keep track of their 

test performance and therefore cannot identify effective study strategies. In line with this 

explanation, providing test performance feedback or presenting study strategies during test 

allowed participants to learn the differential effects of study strategies and use study strategy 

effectiveness as a cue for their judgments (Pan & Rivers, 2023; Price et al., 2008; Yan et al., 

2016). However, there are also findings showing that even participants who have learned the 

differential effectiveness of study strategies fail to rely on this information when making 

metamemory judgments (Hertzog et al., 2009; Mueller et al., 2015; Yan et al., 2016). 

Moreover, there is evidence that recognizing valid cues can be challenging in itself (e.g., 
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Castel, 2008; Koriat & Bjork, 2006; Kornell & Bjork, 2009, Experiment 8; Pan & Rivers, 

2023; Yan et al., 2016).  

Another study by Koriat & Bjork (2006) tested whether people learn to correct their 

metamemory judgments from either task experience or educational training in the context of 

a metamemory illusion. Foresight bias is the overconfidence in recalling the second word of 

a word pair that seems obviously associated with the first word at study, but it is difficult to 

remember at test because the association is backward. For example, rain – umbrella appears 

semantically associated and highly memorable during study, but many other words are likely 

to come to mind when rain is presented alone at test. In one condition, participants were 

provided with experience in a first study-test cycle. In another condition, participants were 

additionally educated after the first study-test cycle by being informed about the nature of the 

bias and asked to estimate the likelihood of recalling ten words pairs, and then presented with 

the actual recall probabilities. In this study, task experience was successful in reducing 

foresight bias, but only when the same materials were used in a second cycle. The educational 

feedback, however, did not only reduce foresight bias with old materials but also with new 

materials, thus showing learning transfer effects.   

In general, research on cue learning in metamemory shows that it is not easy for 

people to learn valid cues and use them for making metamemory judgments. Task experience 

has proven to be insufficient for learning cues (Dunlosky & Hertzog, 2000; Hertzog et al., 

2009; Mueller et al., 2015). If anything, experience with the task is helpful when using the 

same materials but there is no transfer to new materials (Koriat & Bjork, 2006). In cases 

when valid cues are learned through instructions, performance feedback, or hints at test 

(Hertzog et al., 2009; Mueller et al., 2015; Yan et al., 2016), the learned cues are not always 

used for memory predictions. Providing detailed information to participants was the most 

successful intervention in achieving that participants learned the predictive validity of a cue 
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and used it consistently in their judgments (Koriat & Bjork, 2006; but see Rhodes & Castel, 

2008, Experiment 4; Yan et al., 2026, Experiments 3, 4, and 5). Importantly, studies on cue 

learning in metamemory have not focused on the mechanisms by which cues could be 

spontaneously acquired from the environment.  

Learning cues via statistical learning 

Statistical learning refers to a set of processes through which regularities or patterns in 

the environment are discovered by repeated experience. One type of regularity often used by 

statistical learning studies is transitional probabilities. Transitional probabilities describe the 

predictive relationship between two elements such as syllables. For example, in the sequence 

“prettybaby”, assuming sufficient experience with English, “pre” is more predictive of “ty” 

than “ty” is of “ba”. In the typical auditory statistical learning paradigm from Saffran, Aslin 

& Newport (1996), participants are exposed to a continuous auditory stream of repeating 

three-syllable artificial words. Critically, the continuous stream does not contain any acoustic 

information about word boundaries, such as pauses or stress differences, and all syllables are 

repeated equally often. The only cues to word boundaries are transitional probabilities 

between syllables, which are high within words and low between words. These co-

occurrences of syllables described by transitional probabilities are the target of statistical 

learning. To assess statistical learning, studies use a forced-choice-task which each artificial 

word from the stream is presented together with a word foil that has the same syllables as 

those in the stream but does not follow the transitional probabilities. Above-chance 

performance in this task indicates statistical learning, which has been found in many studies 

(e.g., Batterink et al., 2015; Endress & Mehler, 2009; Ordin & Polyanskaya, 2021; Perruchet 

& Poulin-Charronnat, 2012). 

A key process underlying statistical learning is extraction which refers to the 

identification of statistically related clusters and their storage in memory (Thiessen et al., 
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2013). Two models have been proposed to explain extraction. While boundary-finding 

models place words boundaries where there is a low likelihood that two syllables follow each 

other (Endress & Mehler, 2009), clustering models group syllables that are highly likely to 

co-occur (Frank et al., 2010; Perruchet & Poulin-Charronnat, 2012; Perruchet & Vinter, 

1998). Consequently, boundary finding models predict the extraction of statistical 

relationships between syllables rather than the extraction of word units as predicted by 

clustering models. Evidence regarding the two models is mixed. However, studies have 

shown that artificial words not presented in the stream that do, however, preserve the 

transitional probabilities (phantom items) are equally chosen as word items from the stream 

in the 2-alternative-forced choice test (Endress & Mehler, 2009; Ordin et al., 2020; Ordin & 

Polyanskaya, 2021). These findings confirm boundary finding models in auditory statistical 

learning. 

Since phantoms are perceived as part of the language in the auditory stream (Endress 

& Mehler, 2009; Ordin et al., 2020; Ordin & Polyanskaya, 2021), it is likely that they acquire 

a wordlike quality. In fact, learners show no explicit knowledge about the regularities in the 

stimuli when assessed via verbal reports (e.g., Brady & Oliva, 2008; Conway & Christiansen, 

2005; Turk-Browne et al., 2005). When closely examining implicit and explicit knowledge, 

Batterink et al. (2015) found that explicit recognition-based knowledge can be developed in 

parallel to implicit representations measured by a reaction time-based task. Importantly, 

participants who did not show explicit recognition still showed facilitation effects on the 

implicit measure based on reaction times. A study by Ordin and Polyanskaya (2021) suggests 

that confidence judgments about performance in the forced-choice-task reflect a conscious 

feeling of familiarity with respect to statistically learned content. Crucially, this finding does 

not imply that people are consciously aware of their knowledge about transitional 

probabilities. Overall, the literature on statistical learning strongly suggests that items with 
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transitional probabilities (i.e., phantoms and words) are chosen as part of the language 

learned in the familiarization phase based on their wordlike quality rather than statistical 

rules.  

This study 

 In this study, we tested statistical learning as a set of mechanisms for learning 

metacognitive cues to predict memory performance with JOLs. Based on prior statistical 

learning findings (Endress & Mehler, 2009; Ordin et al., 2020; Ordin & Polyanskaya, 2021), 

we expected that if statistical learning takes place, words and phantoms will be perceived as 

wordlike because they follow transitional probabilities. Further, we expected that participants 

will use wordlikeness as a cue for their JOLs. 

Across two experiments, we combined the auditory statistical learning paradigm 

(Saffran et al., 1997; Saffran, Newport, et al., 1996) and a metamemory task with JOLs 

(Koriat, 1997; Undorf et al., 2018). In a familiarization phase, participants were exposed to a 

language that consisted of a continuous auditory stream of artificial words with fixed 

transitional probabilities between adjacent syllables. Afterwards, they studied and made JOLs 

for items that were presented in the familiarization phase and follow the transitional 

probabilities (‘word’), for items that were not presented in the familiarization phase but 

follow the transitional probabilities (‘phantom’), and for items that were neither presented in 

the familiarization phase nor followed the transitional probabilities (‘non-word’). Finally, all 

participants completed a recognition memory test (Experiment 1) or a 2-alternative-forced-

choice memory test (Experiment 2). At the end of the study, they were asked about their 

knowledge of syllable patterns in the studied artificial words.  

To verify whether participants learned the statistical structure of the language in the 

familiarization phase, we asked one group of participants to indicate whether each study item 

belonged to the language of the auditory stream before making their JOL (“SL-assessment” 
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group). To rule out the possibility that statistical learning effects on JOLs were only due to 

prompting participants to think about the language, another group made JOLs only (“no SL-

assessment” group).  

We predicted that if statistical learning takes place, items that follow the transitional 

probabilities (words and phantoms) would be more likely to be classified as belonging to the 

language than items that do not follow the transitional probabilities (non-words). Further, we 

predicted that if JOLs rely on wordlikeness acquired via statistical learning, JOLs would be 

higher for words and phantoms than for items that do not follow the transitional probabilities 

in both groups. Notably, phantoms were not presented during the familiarization phase and 

were therefore unfamiliar to the participants. Thus, if participants still assigned higher JOLs 

to phantoms than to non-words, this can only be attributed to phantoms being perceived as 

words of the artificial language, indicating that wordlikeness serves as a cue to inform JOLs.  

Experiment 1 

Experiment 1 was pre-registered (https://osf.io/836y2) and aimed to test whether 

metacognitive cues to predict memory performance can be acquired through statistical 

learning. All experiments were conducted in line with international and local ethics 

guidelines; they were exempt from review by the local ethics committees. 

Method 

Design 

The design was a 3 (item type: word, phantom, non-word) x 2 (group: SL-assessment, 

no SL-assessment) mixed design with item type as within-subjects factor and group as 

between-subjects factor. Half of the participants were randomly allocated to the SL-

assessment group (n = 45). The other half of the participants were randomly allocated to the 

no SL-assessment group (n = 42).  

https://osf.io/836y2
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Materials 

The stimuli were obtained from Ordin et al. (2020). The stimulus set consisted of 18 

syllables that created three types of tri-syllabic nonsense items: 1) 12 words, 2) 12 phantoms, 

and 3) 12 non-words. In each item type subset, each syllable contributed to two items only 

and no pair of adjacent syllables appeared in more than one item. In words, transitional 

probabilities between adjacent syllables were 0.5. For example, the transitional probability 

that the syllable ro is followed by the syllable se is 0.5 because there were two words with ro 

(rosenu and rokafa) and ro was followed by se in one of these words. Phantoms had the same 

pairs of adjacent syllables as words, and thus followed the same transitional probabilities as 

words (e.g., roseti, rokati). Syllables in non-words were randomly combined with the 

restriction that they did not follow transitional probabilities between adjacent syllables as 

words. We synthesized the stimuli using eSpeak NG with the MBROLA de2 voice (Dutoit et 

al., 1996). Each syllable was 240 ms in duration. 

For the familiarization phase, we randomly concatenated words into a continuous 

auditory stream with no pauses between them (18 min in total), with the restriction that each 

word was repeated 125 times and the same word never occurred consecutively. Because the 

auditory stream contained no pauses or prosodic cues indicative of word units, the only 

linguistic cues to word units were statistical in nature (i.e., transitional probabilities were 

higher between adjacent syllables within words than between words). Transitional 

probabilities between word boundaries were around 0.15 and varied because of the random 

order of syllables in the continuous auditory stream. The auditory stream was divided into 3 

equal blocks of 6 minutes in length. To prevent that the first and last word unit in each block 

was extracted, the stream was faded in and out at the start and end of each block.  

To ensure attention to the auditory stream, we asked participants to complete a pitch 

detection task. For this, we introduced 10 pitch changes in each block. Pitch changes (high or 
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low) started at a random syllable of the stream (first, second, or third syllable of a word) and 

spanned four consecutive syllables (960 ms in duration). We created 10 additional syllable 

sequences for practice trials of 25 syllables from the stimulus set that were randomly 

concatenated without pauses and included one high and one low pitch change.  

For the study phase and the recognition memory test, each word, phantom, and non-

word was synthesized as a separate file that was 720 ms in duration.  

Participants 

 We conducted an a priori power analyses using G*Power (Faul et al., 2007) with a 

focus on assessing a medium-sized main effect of item type on SL classifications in the SL-

assessment group (f = .25, equivalent to hp2 = .06). We aimed at a sample of 43 participants 

per group to obtain a statistical power of (1 - β) = .95 with a α = .05 when assuming a 

correlation of .50 between repeated measures.   

 We recruited 90 participants from the Prolific online subject pool 

(https://www.prolific.com) who were 18 to 30 years old, reported German as their first 

language, reported no language-related disorders, and had at least a high school diploma. The 

experiment took approximately 45 minutes and participants were paid £6.75. We excluded 

participants who reported technical problems (n = 0), admitted having completed the study 

without headphones (n = 1), admitted having used helping tools during the study (n = 0), 

admitted completing the study with the help of someone else (n = 1), or failed the seriousness 

check by admitting having just clicked through the study without taking part seriously (n = 

0). We also excluded participants who had no variability in JOLs (n = 1). The final sample 

included 87 participants (40 female, 45 male, 2 non-binary) with a mean age of 24.38 (SD = 

3.05), n = 45 in the SL-assessment group and n = 42 in the No SL-assessment group.  

Procedure 

https://www.prolific.com/
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 The experiment was programmed in lab.js (Henninger, et al., 2022). At the start of the 

experiment, participants were informed about the study goal and procedure, and signed an 

online consent form. As mentioned above, the experiment consisted of a familiarization 

phase, study phase, distraction task, and recognition memory test. All auditory material in the 

experiment was played through headphones. Before the familiarization phase, participants 

were asked to complete a headphone screening task in which they had to judge which of three 

tones was the quietest (Woods et al., 2017). If participants successfully completed the 

headphone screening task, they could proceed to the familiarization phase.  

Familiarization phase 

In the familiarization phase, participants were informed that they would hear an alien 

language in which words were strung together without pauses in three blocks of 6 minutes 

each. They were asked to try to familiarize themselves with the language and get a feeling for 

where each alien word begins and ends. To ensure attention to the language during the 

familiarization phase, participants were asked to detect at least 70% of pitch changes (i.e., 7 

pitch changes) in each block by pressing the upwards arrow for high pitch changes and the 

downwards arrow for low pitch changes. A similar cover task on pitch change detection was 

used by Batterink et al. (2015). Before starting with the first block of the familiarization 

phase, participants completed three practice trials and were given the choice to continue with 

up to five additional practice trials. Each practice trial took 6 s. Participants had to correctly 

identify one high and one low pitch change in each practice trial. 

Metamemory task 

Immediately after the familiarization phase, participants studied 8 randomly selected 

items per type (word, phantom, non-word). They were told that their task was to study 24 

artificial words for a later memory test in which they would have to recognize the studied 

words among new artificial words. They were also asked to estimate the likelihood of 
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recognizing each artificial word at test. Participants in the SL-assessment group were 

additionally informed that some of the artificial words belonged to the alien language and 

they would be asked to indicate whether each artificial word is an alien language word 

immediately after studying it. Nothing was said about the artificial words being part of the 

alien language to participants in the no-SL-assessment group. During the study phase, each 

item was displayed at the center of the screen for 3 seconds (preceded by a 500-ms fixation 

cross that appeared in the same location) and presented auditorily at 500 ms after the onset of 

the screen for a duration of 720 ms. Immediately after each item presentation, participants in 

the SL-assessment group classified the item as belonging to the alien language or not and 

then made their JOL, participants in no-SL-assessment group made their JOL immediately 

after each item presentation. Both SL classifications and JOLs were self-paced. SL 

classifications were prompted by the question “Is this word part of the alien language you got 

to know during the familiarization phase?” and participants typed 1 for ‘yes’ and 0 for ‘no’. 

JOLs were prompted by “Chances of recognition?” and participants entered any whole 

number between 0-100%. Participants were told that 0% indicates that the item will not be 

recognized and 100% indicates that the item will be absolutely recognized. Following the 

study phase, participants performed a 1.5-minute distraction task consisting of abstract 

reasoning ability items from Chierchia et al. (2019). Then, participants completed a 

recognition memory test that included all 24 studied items (8 words, 8 phantoms, and 8 non-

words) and the 12 remaining items (4 words, 4 phantoms, and 4 non-words). At test, each 

item was displayed at the center of the screen and presented auditorily at 500 ms after the 

onset of the screen. Participants indicated whether they had studied it by typing 1 for ‘yes’ 

and 0 for ‘no’. After the test, participants were asked 1) to describe their approach to learning 

the artificial words for the memory test, and 2) to describe whether they had the impression 

that the syllables within artificial words followed certain patterns and, if so, at what point in 
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time they had noticed the patterns. Finally, participants completed questions about 

demographics and instructions, then they were debriefed.  

Results  

The Greenhouse-Geisser correction was used when the assumption of sphericity was violated.  

SL classifications 

Figure 1 presents the mean proportion of SL classifications for each item type in the 

SL-assessment group. A one-way ANOVA on SL classifications with item type (word, 

phantom, non-word) as within-subjects factor revealed that SL classifications varied with 

item type, F(1.93, 84.87) = 8.55, p <  .001, ηp2 = .16. Pairwise comparisons (one-tailed) 

showed that there was a higher proportion of SL classifications for words than for non-words, 

t(44) = 4.29, p < .001, dz = 0.64. Similarly, the proportion of SL classifications was higher for 

phantoms than for non-words, t(44) = 3.09, p < .01, dz = 0.46. SL classifications did not differ 

between words and phantoms, t < 1. These results demonstrate that statistical learning took 

place since participants classified items according to their transitional probabilities.  

---------------- 

Figure 1 

Mean proportion of SL classifications for each type of item in the SL-assessment groups in 

Experiment 1 and Experiment 2 
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Note. Error bars represent one standard error of the mean. 

------------------------------ 

JOLs 

 Figure 2 presents mean JOLs for each type of item collapsed across the SL-

assessment and no-SL-assessment groups (see Table A1 in the appendix for mean JOLs per 

item type and group). A 3 (item type: word, phantom, non-word) x 2 (group: SL-assessment, 

no-SL-assessment) mixed ANOVA on JOLs revealed a main effect of item type, F(1.97, 

167.51) = 12.54, p <  .001, ηp2 = .13, no main effect of group, F < 1, and no interaction 

between item type and group, F(1.97, 167.51) = 1.95, p = .15, ηp2 = .02. Pairwise 

comparisons (one-tailed) showed that JOLs were higher for words than non-words, t(86) = 

4.50, p < .001, dz = 0.67, higher for phantoms than non-words, t(86) = 3.86, p < .001, dz = 

0.58, and did not differ between words and phantoms, t < 1. Thus, JOLs relied on 

wordlikeness arising from transitional probabilities within items learned by statistical 

learning.  
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Figure 2 

Mean JOL for each type of item collapsed across the no-SL-assessment and SL-assessment 

groups in Experiment 1 and Experiment 2 

 

Note. Error bars represent one standard error of the mean. 

---------------------------- 

SL classifications and JOLs  

In addition to the pre-registered analyses, we explored the relationship between SL 

classifications and JOLs in the SL-assessment group by conducting a multilevel regression 

analysis with the R lme4 package (Bates et al., 2015). We included SL classifications (0 = 

item does not belong to the alien language, 1 = item belongs to the alien language) as a fixed-

effects predictor in the model and used random intercepts for participants. This model 

revealed a significantly positive coefficient for SL classifications, b = 21.45 (SE = 1.24), t = 

17.37, p < .001, indicating that JOLs for items perceived as part of the alien language were 

higher by 21.45 points.  

Mediation analysis 

To directly test whether statistical learning is the driving mechanism for basing JOLs 

on the perception of wordlikeness in items following transitional probabilities, we conducted 
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a Bayesian multilevel mediation analysis with the R bmlm package (Vuorre, 2017).1 In a first 

model, we examined whether SL classifications mediated JOL differences between non-

words and words and thus included item type (non-word = 0, word = 1) as the independent 

variable, SL classifications as the mediator variable, and JOLs as the outcome variable. In a 

second model, we examined whether SL classifications mediated JOL differences between 

non-words and phantoms and thus included item type (non-word = 0, phantom = 1) as the 

independent variable. Both models estimated the mediation effect with four Markov Chain 

Monte Carlo (MCMC) chains and 10,000 iterations for each chain. Results from the first 

model showed an indirect effect of item type (words vs. non-words) on JOLs through SL 

classifications, M = 3.04, 95% CI = [1.34, 4.99], indicating that transitional probabilities 

within words indirectly increased JOLs via statistical learning. However, a direct effect of 

item type (words vs. non-words) on JOLs, M = 3.26, 95% CI = [0.07, 6.44] indicated that 

statistical learning only partially mediated the JOL difference between words and nonwords. 

Results from the second model showed an indirect effect of item type (phantoms vs. non-

words) on JOLs through SL classifications, M = 2.65, 95% CI = [0.84, 4.77], indicating that 

the transitional probabilities within phantoms indirectly increased JOLs via statistical 

learning. A non-reliable direct effect of item type (phantoms vs. non-words) on JOLs, M = 

0.64, 95% CI = [-2.29, 3.56], indicated that statistical learning fully mediated the JOL 

difference between phantoms and non-words.  

Recognition memory test 

 Table 1 present hits, false alarms (FAs), discrimination index (Pr), and bias index (Br) 

for each item type in the two groups. The discrimination index (Pr) was calculated by 

subtracting the false alarm rate from the hit rate (Snodgrass & Corwin, 1988). 3 (item type: 

word, phantom, non-word) x 2 (group: SL-assessment, no SL-assessment) mixed ANOVAs 

 
1 This analysis was not pre-registered. We are grateful to David Shanks for suggesting this analysis.  
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on hits and FAs revealed that both varied with item type, F(1.94, 164.81) = 19.56, p <  .001, 

ηp2 = .19 (hits),  F(1.87, 159.22) = 37.16, p <  .001, ηp2 = .30 (FAs). The ANOVAs also 

revealed differences in memory performance between groups; there were more hits, F(1, 85) 

= 5.89, p <  .05, ηp2 = .07, and fewer FAs, F(1, 85) = 8.95, p <  .01, ηp2 = .10, in the no-SL-

assessment than in the SL-assessment group. The interactions between group and item type 

on hits and FAs were insignificant, both F < 1. Pairwise comparisons showed that there were 

more hits and FAs for words than non-words, t(86) = 5.16, p < .001, dz = 0.77 (hits), t(86) = 

7.30, p < .001, dz = 1.09 (FAs), and for phantoms than non-words, t(86) = 5.28, p < .001, dz = 

0.79 (Hits), t(86) = 7.79, p < .001, dz = 1.16 (FAs). In contrast, hits and FAs did not differ 

between words and phantoms, t < 1 (Hits), t(86) = 1.26, p = 0.21, dz = 0.19 (FAs).  

 A 3 x 2 mixed ANOVA revealed that Pr varied with item type, F(1.91, 162.32) = 7.08, 

p <  .01, ηp2 = .07, that Pr was higher in the no-SL-assessment group than in the SL-

assessment group, F(1, 85) = 16.51, p <  .05, ηp2 = .16, and no interaction between item type 

and group, F < 1. Unlike SL classifications and JOLs, discrimination Pr was better for non-

words than words, t(86) = 3.53, p < .001, dz = 0.53, and better for non-words than phantoms, 

t(86) = 2.84, p < .001, dz = 0.42, and did not differ between words and phantoms, t(86) = 

1.16, p = .25, dz = 0.17. Further, Br indicated a more liberal response bias for words than non-

words, t(86) = 8.33, p < .001, dz = 1.24, and for phantoms than non-words, t(86) = 8.67, p < 

.001, dz = 1.29, but no difference between words and phantoms, t < 1. These results suggest 

that recognition memory was better for non-words than for words and phantoms, and that 

participants tended to classify words and phantoms as ‘old’ rather than ‘new’ (lenient 

response bias).  
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Table 1 

Means (SDs) of Hits, FAs, Pr, and Br for each item type in the no-SL-assessment and SL- 

assessment groups in Experiment 1  

 

 

 

 

 

 

 

 

 

 

 

 

Verbal reports 

When asked at the end of the study whether they had the impression that the syllables 

within artificial words of the alien language followed certain patterns, around half of the 

participants (n = 39, 44.83%) exclusively said that they noticed, either during the 

familiarization phase or during the learning phase, that artificial words consisted of 3 

syllables and that each syllable consisted of a consonant and a vowel. Other participants (n = 

28, 32.18%) said that they had feelings of syllable repetitions or similarity among artificial 

words, but they did not articulate any specific sequence of syllables. The remaining 

participants (n = 20, 22.99%) said that they had not detected any syllable pattern. Thus, not a 

Group and measure 
Item Type 

Non-word Phantom Word 

No-SL assessment 
   

 Hits .65 (.17) .78 (.12) .75 (.14) 

 FAs .12 (.18) .35 (.22) .36 (.24) 

 Pr .53 (.18) .43 (.22) .40 (.24) 

 Br .19 (.28) .58 (.27) .53 (.28) 

SL assessment    

 Hits .59 (.19) .71 (.19) .72 (.19) 

 FAs .19 (.21) .42 (.25) .50 (.30) 

 Pr .40 (.21) .29 (.25) .22 (.30) 

 Br .25 (.25) .57 (.27) .60 (.25) 
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single response indicated that participants had explicit knowledge about transitional 

probabilities. 

We also asked participants to describe their approach to learning the artificial words 

for the memory test (responses could be classified into multiple categories). Around half of 

the participants said that they had tried to associate the artificial words with real words or 

names (n = 52, 59.77%). Participants also reported that they had payed attention to the sound 

of words (n = 26, 29.89%), memorized the spelling of words (n = 22, 25.29%), used mental 

repetition (n = 16, 18.39%), used imagery (n = 3, 3.09%), or linked words together (n = 2, 

2.3%). 

Discussion 

 Experiment 1 results showed clear and marked statistical learning effects. On average, 

words and phantoms were more likely to be classified as part of the language than non-words.  

Further, SL classifications did not differ between words and phantoms indicating that SL 

classifications were based on the learned statistical structure of items rather than on increased 

familiarity of word units (see also Endress & Mehler, 2009). JOLs were also clearly 

influenced by the wordlikeness of items arising from the transitional probabilities acquired 

via statistical learning: they were higher for words and phantoms than for non-words and did 

not differ between words and phantoms. Additionally, mediation analyses showed that 

statistical learning as assessed through SL classifications mediated the relationship between 

item type and JOLs. Notably, the non-significant interaction between item type and group on 

JOLs suggests that statistical learning also occured in the no-SL-assessment group. 

Recognition memory performance showed a different pattern of results than SL 

classifications and JOLs: It was better for non-words than for words and phantoms. This was 

probably the case because items coherent with the statistical structure of the language (words 

and phantoms) were highly familiar in the test, regardless of whether they were studied or 
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new. This probably impaired discrimination and promoted a lenient response bias. In contrast, 

high familiarity of non-words could stem only from their occurrence in the study list, which 

allows for accurate recognition memory responses and yielded better discrimination and a 

stricter response bias for non-word items.  

While mean JOLs accurately tracked differences in hit rates across item types, they 

were inaccurate when compared to the discrimination index Pr. This means that participants 

made correct predictions and were metacognitively competent when measuring memory 

performance in terms of hit rates. In doing so, participants followed task instructions which 

were to predict the probability of recognizing each study item, rather than to predict 

discrimination performance. Considering Pr as the relevant standard of comparison is thus 

one from researchers who know that Pr is a better measure of recognition memory 

performance than hit rates. Experiment 2 focused on resolving this ambiguity to conclusively 

evaluate the question if participants use the cue wordlikeness in an adaptive fashion to 

increase their JOL accuracy.  

Experiment 2 

Experiment 2 was pre-registered (https://osf.io/vqrt9) and had two aims. The first aim 

was to replicate Experiment 1 findings that people base their JOLs on the wordlikeness of 

items acquired via statistical learning. The second aim was to examine memory performance 

in a test where hit rates are unaffected by response bias. For this, we used a 2-alternative-

forced-choice (2-AFC) memory test, in which participants chose between one target item and 

one distractor item. To prevent any response tendencies or biases based on the type of item, 

target and distractor items were always from the same type (i.e, word-word, phantom-

phantom, or non-word-non-word). This allowed us to test whether JOLs are predictive of 

memory performance when JOL instructions (chance to recognize each study item at test) 

coincide with the accuracy measure (percentage of correct choices). 

https://osf.io/vqrt9
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Method 

Design  

 The design was identical to Experiment 1.  

Materials 

 Materials were the same as in Experiment 1. 

Participants  

 Power analysis was identical to that of Experiment 1. We aimed at recruiting 43 

participants in each group. We recruited 50 participants from the Prolific online subject pool 

(https://www.prolific.com) and 39 participants from the student pool of the Technical 

University of Darmstadt. Participants were 18 to 35 years old, reported German as their first 

language, reported no language related disorders, and had at least a high school diploma as 

highest degree. The experiment took approximately 45 minutes. Participants from Prolific 

were paid £6.75 or €7.90 approximately. Participants from the Technical University of 

Darmstadt received course credits or €7.50. As in Experiment 1 and according to the pre-

registration, we excluded participants who reported technical problems (n = 0), admitted 

having completed parts of the study without headphones (n = 1), admitted having used 

helping tools during the study (n = 1), admitted completing the study with the help of 

someone else (n = 2), or admitted having just clicked through the study without taking part 

seriously (n = 0). We excluded no participant for lacking variability in JOLs. The final 

sample included 85 participants (50 female, 34 male, 1 non-binary) with a mean age of 23.71 

(SD = 3.41), n = 38 in the SL-assessment group and n = 47 in the no-SL-assessment group.  

Procedure 

 The procedure was identical to Experiment 1 except that the participants studied 18 

randomly selected items per type (6 words, 6 phantoms, 6 non-words) and that the memory 

https://www.prolific.com/
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test was a 2-AFC recognition memory test. The 36 items used in the 2-AFC test included 18 

studied and 18 new items for a total of 18 trials. In the study phase, participants were 

informed that their task was to study artificial words for a later memory test in which each 

study word will be shown together with a new artificial word, and they would have to 

recognize the studied word. At test, two items were displayed vertically centered at the left 

and right side of the screen. The item at the left side was displayed first at the onset of the 

screen and presented auditorily at 500 ms after the onset of the screen. The item at the right 

side was displayed second at 1420 ms after the onset of the screen and presented auditorily at 

1920 ms after the onset of the screen (i.e., with a gap of 700 ms between the two auditory 

presentations). Participants indicated that they had studied the item at the left side by typing 1 

and that they had studied the item at the right side by typing 0. We counterbalanced item 

positions such that one half of the studied items were presented on each side for every 

participant.  

Results  

The Greenhouse-Geisser correction was used when the assumption of sphericity was violated. 

SL classifications 

 Figure 1 presents the mean proportion of SL classifications for each type of item in 

the SL-assessment group. A one-way ANOVA revealed that SL classifications varied with 

item type, F(1.87, 69.30) = 9.26, p <  .001, ηp2 = .20. Pairwise comparisons (one-tailed) 

showed that proportions of SL classifications were higher for words than for non-words, t(37) 

= 3.58, p < .001, dz = 0.58, for phantoms than for non-words, t(37) = 3.71, p < .001, dz = 0.60,  

and did not differ between words and phantoms, t < 1. As in Experiment 1, these results show 

that statistical learning took place. 

JOLs 
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 Figure 2 presents mean JOLs for each type of item collapsed across the SL-

assessment and no-SL-assessment groups. A 3 (item type: word, phantom, non-word) x 2 

(group: SL assessment, no SL assessment) mixed ANOVA on JOLs revealed a main effect of 

item type, F(1.97, 163.44) = 13.34, p <  .001, ηp2 = .14, no main effect of group, F < 1, and 

no interaction between item type and group, F < 1 (see Table A1 in the appendix for mean 

JOLs per item type and group). Pairwise comparisons (one-tailed) showed that JOLs were 

higher for words than for non-words, t(84) = 4.17, p < .001, dz = 0.45, for phantoms than for 

non-words, t(84) = 4.96, p < .001, dz = 0.54, and did not differ between words and phantoms, 

t < 1. These findings replicate JOL results from Experiment 1. 

SL classifications and JOLs  

As in Experiment 1, in addition to pre-registered analyses, we examined the 

relationship between SL classifications and JOLs in the SL-assessment group by conducting a 

multilevel regression analysis with random intercepts for participants. SL classifications (0 = 

item does not belong to the alien language, 1 = item belongs to the alien language) were the 

fixed-effects predictor. The significantly positive coefficient for SL classifications, b = 19.04 

(SE = 1.38), t = 14.03, p < .001, indicated that JOLs for items perceived as part of the alien 

language were higher by 19.04 points.  

Mediation analysis 

 We conducted the same Bayesian multilevel mediation analysis as in Experiment 1. 

The first model again included item type (non-word = 0, word = 1) as independent variable, 

SL classifications as mediator variable, and JOLs as outcome variable and the second model 

was identical to the first one except that it coded item type (non-word = 0, phantom = 1) as 

independent variable. Results from the first model showed an indirect effect of item type 

(words vs. non-words) on JOLs through SL classifications, M = 3.79, 95% CI = [1.56, 6.27], 

indicating that transitional probabilities within words indirectly increased JOLs via statistical 
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learning. The direct effect of item type (words vs. non-words) on JOLs, M = 3.63, 95% CI = 

[0.14, 7.20] again indicated that statistical learning only partially mediated the JOL difference 

between words and non-words. Results from the second model showed an indirect effect of 

item type (phantoms vs. non-words) on JOLs through SL classifications, M = 2.78, 95% CI = 

[0.92, 4.90], indicating that transitional probabilities within phantoms indirectly increased 

JOLs via statistical learning. Unlike in Experiment 1, the direct effect of item type (phantom 

vs. non-word), M = 4.16, 95% CI = [0.98, 7.38], indicated that statistical learning only 

partially mediated the JOL difference between phantoms and non-words.  

Two-alternative-forced-choice (2-AFC) memory test 

Table 2 presents the percentage of correct responses in the 2-AFC test for each item 

type in both groups. A 2 (Group: SL-assessment, no-SL-assessment) x 3 (Item type: word, 

phantom, non-word) mixed ANOVA2 revealed that the percentage of correct responses did 

not vary with item type, F < 1. It also revealed higher performance in the no-SL-assessment 

group than in the SL-assessment group, F(1, 83) = 4.30, p = .04, ηp2 = .05, and a significant 

interaction between group and item type, F(2.00, 165.59) = 3.59, p = .03, ηp2 = .04. 

Comparing the percentage of correct responses for each item type across groups revealed 

better memory performance for non-words in the no-SL-assessment group than in the SL-

assessment group, t(83) = 3.25, p = .002, ds = 0.71, but no group differences for words, t(83) 

= 1.49, p = .14, ds = 0.32, or phantoms, t < 1.  

----------- 

 

 
2 We deviate from the pre-registration here by not reporting results for the target-order condition (left, right). 
When including target order as an additional control factor in the ANOVA, we found a significant interaction 
between item type and target-order condition, F(1.97, 163.49) = 4.47, p = .01, ηp2 = .05, which was driven by 
better memory performance for words presented on the right side, t(84) = 3.24, p < .01, dz = 0.35. No differences 
by target-order were found for phantoms or non-words, t <= 1.19. We did not expect the significant interaction 
and abstain from further interpretation. All other results of the pre-registered ANOVA were identical to the ones 
reported here.  
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Table 2 

Mean (SD) percentage of correct responses in the 2-AFC test for each type of item in the No 

SL-assessment and SL-assessment group in Experiment 2 

Item Type 
% correct 

No-SL assessment SL-assessment 

 Non-word 85.82 (34.95) 75 (43.40) 

 Phantom 79.08 (40.75) 81.14 (39.20) 

 Word 81.56 (38.85) 75.88 (42.88) 

 

Verbal reports 

At the end of the study, participants (n = 35, 41.18%) exclusively said that they 

noticed that artificial words consisted of 3 syllables and that each syllable consisted of a 

consonant and a vowel. Other participants (n = 23, 27.06%) said that they had feelings of 

syllable repetitions or similarity among artificial words, but they did not articulate any 

specific sequence of syllables except for one participant who mentioned the syllable “ko” 

appearing together with “niko” or “riko” and therefore “iko” was memorable. The remaining 

participants (n = 27, 31.76%) said that they had not detected any syllable pattern. Importantly, 

none of the results reported above changed when we excluded the one participant who 

verbalized explicit knowledge about one transitional probability from the analysis.  

As in Experiment 1, we also asked participants to describe their approach to learning 

artificial words for the memory test. Again, around half of the participants (n = 46, 54.12%) 

said that they tried to associate the artificial words with real words or names. Participants also 

reported using mental repetition (n = 26, 30.59%), paying attention to the sound of the words 

(n = 11, 12.94%), using imagery (n = 11, 12.94%), memorizing the spelling (n = 10, 11.76%), 

and linking words together (n = 3, 3.53%).  
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Discussion 

Experiment 2 replicated Experiment 1 in showing that statistical learning took place 

and that JOLs were based on the wordlikeness of items, with higher JOLs for words and 

phantoms than for non-words and no JOL differences between words and phantoms. The 

mediation analysis again showed that SL classifications mediated the relationship between 

the item type and JOLs, demonstrating that participants used the wordlikeness of items 

acquired via statistical learning as a cue for JOLs.  

Results clearly showed that JOLs did not accurately track memory differences across 

item types, because performance in the 2-AFC test was similar for words, phantoms, and 

non-words. Discarding response bias in the 2-AFC memory test thus provided clear evidence 

that basing JOLs on wordlikeness resulted in discrepancies between JOLs and actual memory 

performance.  

As in Experiment 1, memory performance was worse in the SL-assessment group 

than in the no-SL-assessment group. A plausible explanation is that there are less resources 

for encoding when participants have the additional task of making an SL-classification 

immediately after studying each item (Mitchum et al., 2016). Unlike in Experiment 1, 

however, this difference in performance was restricted to the non-words because non-words 

are presumably the most difficult to encode and suffer the most from an additional task. 

General Discussion 

This study tested statistical learning as a mechanism for extracting regularities from 

the environment and using them as metacognitive cues to predict memory performance. 

Across two experiments, JOLs were based on the perceived wordlikeness of items acquired 

via statistical learning. An intriguing aspect of the results is that study items that had been 

repeatedly presented as part of the familiarization phase (words) did not yield higher JOLs 

than study items that followed transitional probabilities but had never been presented 
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(phantoms). This clearly demonstrates that participants learned the statistical relations 

between syllables that added a wordlike quality to the items and used wordlikeness as a cue 

for their JOLs.  

Our results also show that statistical learning of cues did not contribute to JOL 

accuracy but rather resulted in people basing their JOLs on an invalid cue. Experiments 1 and 

2, using a recognition memory performance test and a 2-alternative forced-choice memory 

test, respectively, show that items following transitional probabilities from the familiarization 

phase were not better remembered than items not following transitional probabilities. Thus, 

contrary to what people’s JOLs predicted, items perceived as wordlike did not have a 

memory advantage over items not perceived as wordlike. Examining whether this is true for 

metacognitive cues acquired through statistical learning in general or specific to the 

paradigms used in this study is an important avenue for future research. For instance, 

wordlikeness might be predictive of actual memory performance when using a recall memory 

test. In an analogous fashion, JOLs predict that high-frequency words are more memorable 

than low-frequency words, which is accurate in recall tests, but not in recognition tests 

(Benjamin, 2003).  

The present study is an important first step towards understanding the mechanisms of 

cue acquisition in metamemory, a topic that has been largely neglected in the metacognition 

literature. Its results indicate that statistical learning is one way for people to extract 

regularities from the environment and to use them as cues for inferences about future 

memory. This is relevant for metamemory in real-world learning because regularities or 

patterns in the environment are abundant, and statistical learning processes are present in 

many everyday situations. For example, in many real languages, syllables with high 

transitional probabilities are likely to be part of the same word (Swingley, 2005). A study by 

Alexander et al. (2023) found that statistical learning mechanisms support the acquisition of a 
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second language in real-world contexts. In this study, participants who were exposed to 

Italian for two weeks demonstrated better ability to detect Italian words than a control group. 

It is thus possible that lexical regularities inform metamemory monitoring when learning a 

second language.  

In the visual and conceptual domain, a study found that participants learned co-

occurrences in the categories of real-world scenes (Brady & Oliva, 2008). In particular, 

sequences of scene triplets (e.g., A, B, C; mountain, bathroom, and street scene) were 

discriminated above chance level from foil sequences that presented images from three 

different triplets. This statistical categorical learning occurred even when the scenes were 

different and only the categories remained the same, when the test used verbal labels rather 

than scenes (e.g., “mountain”), and when participants were not consciously aware of the 

categorical patterns in the stream of scenes. The authors concluded that statistical learning is 

a useful tool for organizing conceptual knowledge and learning relationships between visual 

episodes. For instance, cognitive maps can be learned by extracting sequences of places that 

frequently appear together, such as “playgrounds appearing in the center of residential areas”. 

This can influence metacognition during navigation by increasing the confidence of being 

near a playground when the area looks residential.   

At a more general level, this study contributes to the metamemory literature by 

demonstrating that any feature or cue may be incorporated in metamemory judgments if it is 

connected to a belief about how memory works and/or feelings of ease or fluency. In this 

study, it is likely that items perceived as wordlike were processed more fluently than items 

not perceived as wordlike. In fact, statistical learning facilitates the processing of complex 

stimuli and results in structures becoming simpler (Forest et al., 2022). Notably, any fluency 

of processing wordlike items in our study can only be attributed to statistical learning 

mechanisms, because all items were composed from the same syllables that occurred for the 
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same number of times and, thus, were similar in complexity. Since items acquired their 

wordlike quality with experience, our study provides support for the experiential basis of 

JOLs other studies have found (e.g., Besken, 2016; Frank & Kuhlmann, 2017; Undorf & 

Erdfelder, 2011, 2015).  

In conclusion, this study is the first to demonstrate that cues for metamemory 

judgments can be acquired through statistical learning. This finding opens the door for further 

research on mechanisms of cue learning, a topic that has been largely overlooked in 

metacognition research. We hope that understanding how people acquire information from 

the environment that they then utilize for assessing their cognitions will help to develop new 

methods for effectively training metacognition.  
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Appendix 

Table A1 

Means (SDs) of JOLs for each type of item in the No SL-assessment and SL-assessment group 

in Experiment 1 and Experiment 2 

Group and Item Type 
JOLs 

Experiment 1 Experiment 2 

No-SL assessment   

 Non-word 44.85 (24.32) 43.71 (23.36) 

 Phantom 50.32 (26.68) 49.89 (24.53) 

 Word 48.85 (26.32) 47.80 (25.31) 

SL-assessment   

 Non-word 44.49 (24.65) 43.79 (25.63) 

 Phantom 47.96 (24.90) 50.31 (26.02) 

 Word 50.95 (25.79) 50.96 (26.28) 
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