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1. Abstract 

Reciprocity is crucial in maintaining cooperative relationships and societal stability. Social 
representation theory posits that reciprocity decisions comprise a stable core (reciprocity 
propensity) and a flexible periphery (effect of decision context). Framing techniques allow 
researchers to differentiate and investigate these components by manipulating the periphery while 
keeping the core unchanged. In today's increasingly uncertain world, anxiety has become a 
prevalent concern, potentially impacting social behaviors like reciprocity.  

While previous research has identified brain networks that predict reciprocity propensity, these 
studies were conducted in specific contexts, overlooking the distinction between the core and 
periphery of reciprocity. Although studies have demonstrated peripheral effects on reciprocity, the 
underlying neurocomputational mechanisms are not well understood. In addition, previous 
research has shown that anxiety reduces reciprocity, but the neurocomputational mechanisms by 
which anxiety modulates the core and periphery of reciprocity remain unexplored. To address 
these gaps, this dissertation aimed to develop a comprehensive understanding of the core and 
periphery of reciprocity and to examine how anxiety affects both aspects of reciprocity. 
Specifically, three studies utilizing multimodal approaches, including task-free (resting-state) and 
task-based functional magnetic resonance imaging (fMRI), event-related potentials (ERPs), and 
eye-tracking, were conducted to reveal the neural (both network- and region-level localization and 
temporal dynamics) and computational mechanisms underlying reciprocity decisions. 

Study 1 aimed to identify the neural underpinning that explain the core and periphery of reciprocity. 
Participants first underwent resting-state fMRI and then completed one-shot Trust Game (TG; give 
framed context) and Distrust Game (DTG; take framed context) as trustees. Connectome-based 
predictive modeling (CPM) on resting-state functional connectivity (RSFC) was used to 
investigate how RSFC predicts the core and periphery of reciprocity. Results showed that inter-
network RSFC between the default mode network (DMN) and cingulo-opercular network (CON) 
contributed to predicting the core of reciprocity under both give and take framed contexts, while 
DMN intra-network RSFC primarily contributed to predicting the periphery of reciprocity.  

Study 2 aimed to delve deeper into the periphery of reciprocity by investigating its 
neurocomputational mechanisms. Participants engaged in a two-stage binary TG, framed in either 
gain or loss contexts while undergoing fMRI. Computational modeling revealed that advantageous 
inequity aversion mediates the contextual effect on reciprocity. Neuroimaging results showed that 
right amygdala activity negatively correlated with advantageous inequity aversion only in the gain-
framed context during overall reciprocity decision-making. During other-oriented inference 
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processes, no significant differences in the neural correlates of advantageous inequity aversion 
between the two contexts were observed. However, left anterior insula activity modulated this 
contextual effect, specifically in self-oriented evaluation processes, showing a positive association 
with advantageous inequity aversion exclusively in the gain frame and reduced activity in the loss-
framed context.  

Study 3 aimed to understand the neurocomputational mechanism underlying anxiety modulates 
both the core and periphery aspects of reciprocity. Participants with low and high trait anxiety 
completed a binary TG framed as gain and loss context while recording eye movement and 
electroencephalography. Computational modeling, validated by eye-tracking data, revealed that 
trait anxiety affects both the core and periphery of reciprocity. Regarding the core, trait anxiety 
reduced both overall reciprocity and specific psychological components of guilt aversion and 
advantageous inequity liking, regardless of context. ERP findings supported this, showing 
decreased P2 (selective attention) and increased LPP (cognitive regulation over emotion) 
amplitudes in anxious individuals. Regarding the periphery, trait anxiety altered contextual 
perceptions of advantageous inequity aversion and reward. Specifically, trait anxiety reversed the 
effect of context on advantageous inequity aversion, a pattern reflected in N2 amplitudes 
(cognitive control). 

In summary, the three studies in this dissertation uncover distinct neurocomputational mechanisms 
underlying the core and periphery of reciprocity and elucidate how reciprocity is affected by 
anxiety through these mechanisms. These findings provide a new perspective on reciprocity and 
identify potential psychological and neural targets for interventions aimed at promoting 
cooperative behavior in individuals with anxiety disorders. 
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2. General Introduction 

2.1. The Dynamics of Reciprocity: Core and Periphery 

"There is no duty more indispensable than that of returning a kindness," observed the ancient 
Roman statesman Cicero, manifesting the vital role of reciprocity in human interactions. Serving 
as a universal moral norm, reciprocity refers to the mutual exchange of kindness or help among 
individuals in a society (Gouldner, 1960). On the social level, reciprocity plays a crucial role in 
building interpersonal trust, promoting fairness, and fostering cooperation (Krueger, 2021). It 
enhances social harmony and has been pivotal in the evolution of human social systems, 
influencing daily interactions from personal relationships to broader societal structures (Falk & 
Fischbacher, 2006; Fehr et al., 2002). On an individual level, reciprocity offers benefits beyond its 
social impact. It cultivates gratitude and positive emotions, boosting well-being and life 
satisfaction (Algoe et al., 2008). Additionally, it enhances one’s reputation and social standing 
(Xia et al., 2023), playing a crucial role in both personal friendships and professional 
collaborations (Lang & Fingerman, 2003). 

While reciprocity is a fundamental part of human social behavior, it is not uniformly expressed 
across individuals or situations, reflecting both dispositional and contextual influences (X. Li et 
al., 2017; Mahmoodi et al., 2018). Some individuals have a strong inclination toward reciprocity, 
consistently returning favors regardless of the context under which the decision is made, while 
others might be more affected by the context where the reciprocity decisions are made (Bowles & 
Gintis, 2004; Fehr et al., 2002; Tucker & Ferson, 2008). Similarly, contexts that can shape 
reciprocity behavior often operate without being recognized in daily life. For instance, individuals 
tend to exhibit higher reciprocity in face-to-face interactions compared to interactions lacking 
direct personal contact (Behrens & Kret, 2019). People also show higher reciprocity in the context 
of “give” compared to the context of “take”—although the payoff structure is equivalent in both 
contexts (Keysar et al., 2008). Reciprocity decision-making is determined by both the stable 
personal characteristics and the fluctuation of the contexts. Therefore, to get deeper insight into 
reciprocity decision-making, it is vital to clarify the distinct influences of dispositional propensity 
and context. 

Social Representation Theory 

Social representation theory offers a framework for understanding such distinction in reciprocity 
decision-making (Abric, 1993; Hagen & Hammerstein, 2006; Wagenaar et al., 1988). According 
to social representation theory, reciprocity decision is composed of both a core and periphery 
(Abric, 1993). While the core represents the stable aspects of reciprocity which are resistant to 
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contextual changes, the periphery is more flexible and susceptible to immediate contextual 
modification (Abric, 1993; Hagen & Hammerstein, 2006; Wagenaar et al., 1988). The core is 
determined by an individual's inherent reciprocity propensity, which is strongly related to their 
personality and long-standing beliefs. In contrast, the periphery is determined by the context, 
related to how context is perceived. The same individual might reciprocate more in a social 
exchange than a business transaction, adapting their behavior to suit the context while their 
propensity for reciprocity remains constant (Batson & Moran, 1999).  

The distinction between the core and periphery structure has often been overlooked in previous 
studies on reciprocity, potentially limiting our understanding of the sources driving reciprocity 
behavior. Studies examining the neural mechanisms of reciprocity have typically used one specific 
context (Baumgartner et al., 2009; Bellucci et al., 2019; Bereczkei et al., 2015; Cáceda et al., 2015; 
Krueger et al., 2008; J. Li et al., 2009; van den Bos et al., 2009, 2011). Furthermore, without 
considering the effect brought by contexts, research has investigated how individual characteristics 
(Dohmen et al., 2008; Gunnthorsdottir et al., 2002; Pelligra, 2011; Perugini et al., 2003) or clinical 
symptoms (Anderl et al., 2018; Rodebaugh et al., 2011, 2013; Xiao et al., 2022) influence 
reciprocity. Since decisions always occur within specific contexts, drawing conclusions based on 
experiments conducted under certain contexts may blur the distinction between effects originating 
from the core and the periphery of reciprocity decision-making. Therefore, developing a strategy 
to disentangle this potential confounds is crucial, allowing us to track whether the observed effects 
are attributable to the core or the periphery of reciprocity. 

Framing Reciprocity Decisions 

The framing technique appears to be a promising strategy to resolve this challenge. The framing 
effect is a cognitive bias that impacts how people make decisions based on how information is 
framed (Tversky & Kahneman, 1981). Framing involves presenting a decision differently while 
keeping the objective facts the same (De Martino et al., 2006; Tversky & Kahneman, 1981). A 
well-known example of the framing effect is the phenomenon of loss aversion, as proposed by 
prospect theory (Kahneman and Tversky, 1979), where individuals tend to avoid losses over 
obtaining equivalent gains. By manipulating the context in the same decision problem, the choice 
of the same individual is shifted. The framing technique, well-aligned with the social presentation 
theory, allows us to manipulate the peripheral context in reciprocity decision-making while leaving 
the core unchanged. 

Research on reciprocity has consistently demonstrated framing effects across various experimental 
paradigms. In dictator games, where participants alternate between being passive receivers and 
active dictators, participants tend to reciprocate more generously in the 'give' frames compared to 
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'take' frames (Keysar et al., 2008). Similarly, another study that systematically compared the Trust 
Game (TG; 'give' frame) with the Distrust Game (DTG; 'take' frame) found that people reciprocate 
more in the 'give' frame than in the 'take' frame (Bohnet & Meier, 2005). While individual 
tendencies are an apparent deciding factor in decision-making, these studies emphasize the critical 
role of the psychological perceptions of the context in reciprocity decisions. Framing reciprocity 
decisions in different contexts can further help us to disentangle the context-dependent 
modifications (periphery) from stable individual tendencies (core) in reciprocity decisions.  

2.2. Anxiety's Influence on Reciprocity  

While reciprocity internally consists of a stable core and a contextual periphery, it can be affected 
by various factors. As the global economy slows down (Jung, 2024), geopolitical conflicts escalate 
(Eberle & Daniel, 2022), public health crises intensify (Collier Villaume et al., 2023), anxiety 
levels rise, posing a significant threat to social reciprocity and harmony.  

Research has shown that individuals with anxiety disorders demonstrate reduced reciprocity in 
economic exchange tasks (Anderl et al., 2018; Rodebaugh et al., 2011, 2013). However, it remains 
unclear how anxiety affects reciprocity decisions in terms of its core and peripheral mechanisms. 

Anxiety might alter an individual's general tendency to reciprocate (core), perception of different 
social contexts when reciprocating (periphery), or a combination of both. The observation that 
anxiety reduces reciprocity across various tasks (Anderl et al., 2018; Rodebaugh et al., 2011, 2013), 
suggests an attenuation of the core, as this effect persists under different contexts. Conversely, 
anxiety has also been associated with increased susceptibility to framing effects (Gu et al., 2017; 
Xu et al., 2013). Anxiety is positively associated with activation of amygdala based “emotional” 
system when decisions aligned with the framing effect, but negatively associated with activation 
in the dorsal anterior cingulate cortex based “analytic” system when decisions contradicted this 
effect (Xu et al., 2013). Heuristic processing seems to dominate individual with high anxiety in 
decision-making, which leads to their higher sensitivity to the framing effect (Jepma & López-
Solà, 2014). These previous studies suggest anxiety modulates not only the core but also the 
periphery of reciprocity, highlighting the critical need for an empirical study to examine these 
effects.  

2.3. Experimental Paradigms of Reciprocity 

To understand the complexity of reciprocity and how anxiety affects it, a suitable experimental 
paradigm is crucial. Game theory, a mathematical framework for analyzing decision-maker 
strategies in interactive economic games, provides a theoretical foundation for studying decision-
making during social interaction (Morris, 2012; Sanfey, 2007). Interactive economic games based 
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on game theory offer well-controlled settings to study social behavior. Several classical games 
have been widely used in the investigation of social-economic interaction (van Dijk & De Dreu, 
2021), including the Dictator Game (measuring altruism and fairness) (Harsanyi, 1961); the 
Prisoner's Dilemma (exploring cooperation and mutual benefit versus self-interest) (Rapoport & 
Chammah, 1965); and the Ultimatum Game (examining fairness) (Güth et al., 1982).  

The TG is particularly well-suited for studying reciprocity behavior because it allows researchers 
to measure both trust and reciprocity, mimicking real cooperative social interactions (Berg et al., 
1995). The game involves two players: the trustor was typically endowed with some amount 
initially while the trustee was not. In TG (continuous version; Fig. 1 A), trustors are endowed with 
some amount initially and decide how much of their endowment to transfer to the trustees (who 
were not endowed with any amount). The transferred amount is typically tripled by the 
experimenter, and the trustee then decides how much to return to the trustor. Trust is measured as 
the ratio between the transferred amount and the initial endowment for the trustor, while 
reciprocity as the ratio between the returned and received amount. A simpler version is the Binary 
TG (Fig. 1B), in which the trustor decides whether to trust or not (status quo) based on a given 
payoff structure. If the trustor chooses the status quo, both the trustor and trustee receive an amount 
directly. However, if the trustor decides to trust, the decision-making shifts to the trustee, who 
must then choose to either reciprocate the trust or betray it (Kreps & others, 1990). If the trustee 
chooses to reciprocate, both the trustor and the trustee receive a higher amount than they would 
under the status quo. Conversely, if the trustee chooses to betray, the trustor receives the lowest 
possible amount, while the trustee receives the highest amount among all their options. In this 
game, the levels of trust and reciprocity are typically measured by the frequency with which 
trustors and trustees choose their respective options. 
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Figure 1. (A) Trust game with continuous version. Both the trustor and the trustee are endowed 
with 10 units. The trustor first decides to send an amount (X) ranging from 0 to 10 to the trustee. 
Any amount sent is tripled by the experimenter. The trustee then decides to send back an amount 
(Y) ranging from 10 to 10 + 3X to the trustor. (B) Trust game with binary version. Based on the 
payoff structure presented, the trustor first decides between maintaining the status quo or placing 
trust. If the status quo is chosen, the trustor receives a1 and the trustee receives b1. If trust is chosen, 
the decision is delegated to the trustee. If the trustee chooses reciprocity, the trustor receives a2 
and the trustee receives b2. If betrayal is chosen, the trustor receives a3 and the trustee receives b3
. Note that a2 > a1 > a3 and b3 > b2 > b1. 

 

Besides different versions, there are two main variants of the TG based on the frequency of 
interaction with a partner: the one-shot TG and the repeated TG (Kanagaretnam et al., 2010). In 
the one-shot TG, participants play the game only once with a given partner, although they may 
engage in multiple rounds of one-shot games with different partners (i.e., multiple one-shots). In 
contrast, the repeated TG involves participants playing multiple rounds with the same partner(s). 
Compared to the repeated TG, the one-shot TG minimizes confounding factors such as reputation 
building, learning, and strategic behavior, which is more suitable for investigating the propensity 
for reciprocity (Alós-ferrer & Farolfi, 2019, p. 1995; Berg et al., 1995; Xia et al., 2023). Building 
upon the well-controlled and quantitative economic games in game theory, advanced modeling 
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and neuroimaging techniques can be utilized to uncover the psychological components driving the 
behavior and the underlying neural mechanisms. 

2.4. Psychological Mechanisms of Reciprocity  

Computational Modeling 

To gain insight into the complex psychological components of decision-making, computational 
modeling has emerged as a powerful technique and has gained popularity in recent years (Calder 
et al., 2018; Wilson & Collins, 2019). Traditional behavioral analyses, such as group or condition 
comparisons, correlation, and regression analyses, focus on inferring relationships between 
manipulated variables and direct observations, such as responses and reaction times. While these 
methods provide simple and straightforward results, they often struggle to uncover the underlying 
psychological processes that drive decisions, especially when these processes are difficult to 
manipulate or observe directly (Calder et al., 2018). Constructing computational models with 
hypothesized components to simulate decision-making processes can help map unobservable 
latent psychological processes onto observable behavior, providing deeper insights into the 
underlying mechanisms (Wilson & Collins, 2019).  

By fitting a computational model that includes these hypothesized components to behavioral data, 
the relative contributions of different components to decision-making can be estimated (Wilson & 
Collins, 2019). Generally, several plausible models, each with different hypothesized components, 
are constructed separately. A model comparison procedure is then employed to select the best-
fitting model based on criteria such as the Akaike Information Criterion (AIC) or Bayesian 
Information Criterion (BIC). The best-fitting model identified the most effective components 
(parameters) driving the behavior. To ensure the robustness of the model, a simulation process is 
conducted using the estimated parameter values to generate simulated data. A parameter recovery 
procedure is then performed by refitting the model to this simulated data, allowing for the recovery 
of parameter values. Analyzing the correlation between the estimated and recovered parameters 
helps verify the model's robustness. The estimated parameter values from the best-fitting model 
can be extracted and subjected to further statistical analyses. These parameter values can also be 
further used as regressors in neuroimaging data to explore the neural mechanisms underlying the 
psychological components. 

Computational modeling has been applied to the study of reciprocity in decision-making, 
identifying psychological components driving reciprocity behavior (Chang et al., 2011; Nihonsugi 
et al., 2015, 2021a; van Baar et al., 2019). Using a hidden multiplier TG to compare different moral 
strategies in reciprocity, a computational modeling study has identified components behind 
reciprocity, including guilt aversion, inequity aversion, and moral opportunism (i.e., adaptive 
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switching between guilt and inequity aversion) (van Baar et al., 2019). Employing the binary TG, 
guilty aversion and inequity aversion have been identified (Nihonsugi et al., 2015) and guilt 
aversion has been found to correlate with agreeableness (Nihonsugi et al., 2021). These prior 
studies emphasize the role of guilt aversion and inequity aversion in reciprocity.  

Although these studies did not consider the influence of different context which lead to the 
ambiguity of core and periphery of reciprocity, they provide valuable insight into the driving force 
of reciprocity. Guilt aversion is characterized by the discomfort of failing to meet others' 
expectations, while inequity aversion refers to the discomfort experienced when one receives more 
or less than others, which can be either advantageous or disadvantageous. Interestingly, 
advantageous inequity aversion does not always occur. For instance, individuals display 
advantageous inequity aversion when they actively decide this inequity, but it disappears when 
they passively receive it (O. Li et al., 2018). Conversely, research suggests that people often engage 
in social comparisons, striving to improve their relative standing (Festinger, 1954; Fiske, 2011; 
Starmans et al., 2017). This implies advantageous inequity liking, rather than aversion, might be 
present in certain contexts (Boyce et al., 2010; Cox, 2013; Dohmen et al., 2011). Thus, individuals 
may experience advantageous inequity aversion when considering betrayal, which usually leads 
to a more advantageous outcome and active harm, but presented advantageous inequity liking 
when contemplating reciprocity. 

Reciprocity is a social norm where individuals feel compelled to return the trust or kindness 
extended to them (Komorita et al., 1992). While reciprocity can alleviate negative feelings such as 
guilt and inequity aversion, it often comes at a cost, typically requiring the individual to sacrifice 
their own economic interests. Engaging in reciprocity involves resolving a social dilemma—
balancing the motive to reciprocate against the desire to maximize personal gain.  

Eye Movement  

In addition to computational modeling approaches, eye-tracking technique provides a window to 
observe the implicit decision-making processes that are not directly observable through behavioral 
response (Wedel et al., 2023). Eye-tracking offers various basic metrics including fixations, 
saccades, and pupil size (Skaramagkas et al., 2023). Noteworthily, gaze patterns, which represent 
transitions between areas of interest, capture eye movements during decision-making and reflect 
attentional processes (Wedel et al., 2023). These patterns can reveal the decision trade-offs 
between different payoff structures in economic games  (Devetag et al., 2016).  

Studies have demonstrated the power of eye-tracking in predicting decision outcomes. For instance, 
a recent study has shown that gaze patterns can predict consumer product liking decisions with 90% 
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accuracy (Palacios-Ibáñez et al., 2023). Interestingly, this gaze bias was found to be stronger for 
"Like" decisions compared to "Dislike" decisions (Mitsuda & Glaholt, 2014). In addition, eye 
movements also reflect individual characteristics. The gaze patterns of participants correspond to 
their social value orientations, with prosocial individuals paying more attention to the payoffs of 
other players compared to individualistic players (Jiang et al., 2016). 

Although eye-tracking studies specifically investigating reciprocity decisions have been limited in 
the literature, this technique has great potential helping us to uncover the myth of reciprocity. Eye-
tracking is especially valuable when combined with computational modeling in economic games, 
as it can help reflect and validate the psychological components underlying the decision-making 
processes. In binary TG, for instance, by applying eye-tracking while participants are making 
reciprocity decisions, we can observe how their focus moves through the six payoffs in the game 
(Fig. 1 B). Combining computational modeling, while the model identifies the psychological 
components, gaze pattern analyses based on eye-tracking data can provide observable validation 
to confirm the robustness of the according psychological components. For example, if the best-
fitting model identifies the psychological component of guilt aversion in reciprocity decisions, 
with the estimated value indicating how much each participant weights guilt aversion in their 
decisions, gaze pattern analysis could verify this finding by showing whether participants with 
higher guilt aversion pay more attention to areas related to guilt estimation. The underlying 
assumption is that individuals who place greater importance on a component are likely to focus 
more on the relevant areas associated with that component's estimation.  

2.5. Neural Mechanisms of Reciprocity 

While computational modeling and eye-tracking provide insights into the psychological 
mechanisms of decision-making, neuroimaging techniques, such as functional magnetic resonance 
imaging (fMRI) and electroencephalography (EEG), offer a comprehensive view of the neural 
basis of social decision-making.  

Functional Magnetic Resonance fMRI Imaging 

With its high spatial resolution, fMRI has been instrumental in mapping regional and dynamic 
alterations in brain metabolism (Glover, 2011). fMRI generally falls into two categories: task-
based and task-free (resting state) fMRI. Both methods rely on the blood oxygen level-dependent 
(BOLD) response, the primary signal measured in fMRI (Ogawa et al., 1990; Smith et al., 2009). 
Task-based fMRI captures these BOLD changes while specific cognitive tasks are performed. In 
contrast, resting-state fMRI measures spontaneous fluctuations in the BOLD signal when 
participants are not engaged in any explicit tasks (Smith et al., 2009). While task-based fMRI 
reflects brain function related to active cognitive processes, resting-state fMRI is useful for 
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understanding baseline brain function, which can be linked to neurological and psychological 
symptoms and traits. 

Task-based fMRI. In studies of reciprocity, task-based fMRI is used when participants are engaged 
in reciprocity decision-making tasks, such as in TG. Research has shown that prefrontal cortex 
activity is heightened when participants interact with a human partner, as opposed to a computer 
partner, in TG, regardless of whether they are in the role of trustor or trustee (McCabe et al., 2001). 
Specifically, activity in the ventromedial prefrontal cortex (VMPFC) predicts reciprocity 
behaviors (J. Li et al., 2009), while the anterior medial prefrontal cortex (aMPFC) shows greater 
activity when participants choose to defect rather than reciprocate (van den Bos et al., 2009). In 
addition, the role of the dorsolateral prefrontal cortex (DLPFC) for reciprocity was found (van den 
Bos et al., 2011), but also for exploiting others for profit in TG (Bereczkei et al., 2015). Anterior 
insula (AI) (Baumgartner et al., 2009; Bellucci et al., 2017, 2018; Krueger et al., 2008; van den 
Bos et al., 2011) also has a critical role in reciprocity decision-making in TG. Other regions, such 
as TPJ (Krueger et al., 2008), inferior frontal gyrus (IFG) (Baumgartner et al., 2009; Bereczkei et 
al., 2015), anterior cingulate cortex (ACC) (Baumgartner et al., 2009; van den Bos et al., 2011) 
have also been reported to be involved in reciprocity decision-making in TG. In resolving the 
dilemma between a preference for reciprocity (or avoiding negative feelings associated with not 
reciprocating) and maximizing self-interest in reciprocity decision-making, brain regions such as 
DLPFC and ACC (associated with cognitive control to regulate selfish motive), MPFC and TPJ 
(for mentalizing other’s intentions or expectations) and AI (linked to norm compliance or 
enforcement) are of utmost importance among all regions reported by previous studies. 

Combining fMRI with computational modeling can provide researchers with further insights into 
the neurocomputational mechanisms of reciprocity. Guilt aversion has been linked to the activation 
of the insula, supplementary motor area, DLPFC, and TPJ (Chang et al., 2011). Building on this, 
van Baar et al. (2019) showed that guilt aversion was associated with neural activity in the AI, 
putamen, MPFC, and left DLPFC, while inequity aversion was linked to activity in the AI, VMPFC, 
and dACC. In contrast, Nihonsugi et al. (2015) demonstrated that right DLPFC activity correlates 
with guilt aversion, while ventral striatum and amygdala activity correlates with inequity aversion. 
Importantly, they showed that transcranial direct current stimulation (tDCS; a non-invasive brain 
stimulation technique that modulates neuronal activity by applying a low electrical current 
(Gebodh et al., 2019)) targeting the right DLPFC selectively enhances guilt aversion, suggesting 
a causal role for this region in modulating guilt aversion.  

Task-based fMRI studies have provided insights into the neural mechanisms underlying 
reciprocity decision-making. More recent research that integrates fMRI with computational 
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modeling has advanced our understanding by revealing the neurocomputational mechanisms 
involved. Building on these findings, further investigation focusing on both the core and periphery 
of reciprocity is expected to provide a more comprehensive view of the complex dynamics that 
drive reciprocal behavior. 

Resting-state fMRI. In addition to task-based fMRI studies on reciprocity, researchers have also 
employed resting-state fMRI to examine how baseline brain connectivity patterns relate to 
reciprocity behavior. Resting-state functional connectivity (RSFC) is robust across sessions and 
aligns with coactivation patterns elicited by relevant task demands (Cao et al., 2014; Finn et al., 
2015; Raichle, 2011, 2015; Zuo & Xing, 2014). It has increasingly been utilized to decode the 
heterogeneity of individual differences, such as cognitive functions (Finn et al., 2015; Frith et al., 
2020; Yang et al., 2021), personality traits (Ren et al., 2021; Wang et al., 2021), and social 
behaviors (Bellucci et al., 2019; Shen et al., 2017). These individual characteristics are often 
mapped and interpreted at brain network level. The 160-node brain atlas is widely used 
(Dosenbach et al., 2010), which defines six networks (Fig. 2): cingulo-opercular network (CON), 
fronto-parietal network (FPN), default mode network (DMN), sensorimotor network (SMN), 
occipital network (OCCN), and cerebellum network. While the CON (primarily associated with 
saliency and cognitive control), FPN (cognitive control), DMN (mentalizing), SMN (motor 
function), and OCCN (visual processing) are widely involved in social behavior, the cerebellum 
network is less mentioned. 
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Figure 2. The 160-node network adapted by (Dosenbach et al., 2010). Six networks were 
identified: Cingulo-opercular, fronto-parietal, default, sensorimotor, occipital, and cerebellum 
network.  

 

Applying independent component analysis (ICA) on RSFC, reciprocity has been associated with 
increased inter-network RSFC between the cingulo-opercular network (CON) and the 
frontoparietal network (FPN) (Cáceda et al., 2015). Beyond ICA analysis on RSFC and relating it 
to reciprocity behavior, another powerful method used to decode individual characteristics based 
on resting-state fMRI data is connectome-based predictive modeling (CPM). CPM is a data-driven 
approach that leverages whole-brain RSFC patterns to predict individual differences in behavior 
or cognitive traits (Finn et al., 2015; Shen et al., 2017). CPM can reveal stable, trait-like neural 
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characteristics that predict individuals, capturing subtle individual differences in brain 
organization that may not be apparent in task-based studies. 

The CPM pipeline involves several key steps (Finn et al., 2015; Shen et al., 2017). Typically, it 
starts with calculating whole-brain RSFC, where the brain is parcellated into regions of interest 
(ROIs), and the correlation between the BOLD time series of each pair of ROI is calculated, 
resulting in a connectivity matrix for each participant. To construct the prediction model, cross-
validation procedures, such as leave-one-out-cross-validation (LOOCV) or tenfold-cross-
validation are used. For example, during each iteration in LOOCV, the connectivity matrix and 
the behavior of interest to be predicted (target) of one participant was left out as test set, while all 
the remaining participants were used as training set. Feature selection is then performed to identify 
connections (features) that are significantly correlated with the target in the training set. A model, 
such as support vector regression, is then trained to capture the relationship between these selected 
features and the target. The trained model is then applied to a new participant to predict the 
behavior using the selected features in the test set. The training and predicting procedure are 
repeated N times (N is the number of total participants). At the end of this procedure, each 
participant receives one predicted value. The model’s performance is assessed by metrics such as 
correlation coefficients between the actual and predicted targets. To validate the significance of 
the prediction, nonparametric permutation tests are often conducted. 

Utilizing a similar prediction framework, Bellucci et al. (2019) found that not only whole-brain 
RSFC but also intra-network RSFC of the DMN, FPN, or CON can predict reciprocity propensity 
as measured by a one-shot TG. These findings suggest that these networks serve as neural 
biomarkers for reciprocity propensity. Building on these findings, applying CPM to resting-state 
fMRI data to decode the neural mechanisms of reciprocity, while distinguishing between core and 
periphery, offers a promising approach for advancing our understanding of the neural basis of 
reciprocity. 

Electroencephalography 

Complementary to fMRI, EEG captures electrical activity in the brain through electrodes placed 
on the scalp, offering insight into the high temporal resolution of neural activity (Sur & Sinha, 
2009). Event-related potentials (ERPs) are derived from EEG data by averaging signals that are 
time-locked to specific events or stimuli (Luck, 2014). ERP enables researchers to examine distinct 
components associated with different cognitive processes. 

Regarding decision-making, ERP studies have provided valuable insights into the neural dynamics 
involved in this process. ERP can help map the neural activity underlying a range of key functions, 
such as attention deployment, cognitive control, emotional responses, and regulation during 
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decision-making. One early component of interest is the P2, a positive deflection that peaks around 
100-250ms post-stimulus. The P2 is thought to reflect early selective attentional allocation in 
decision-making (Hajcak et al., 2012; Luck et al., 1994; Potts, 2004; Rey-Mermet et al., 2019). 
The N2, a negative deflection peaking around 200-350ms, is another important ERP component 
linked to effortful, deliberate cognitive control during decision-making processes (Cavanagh & 
Shackman, 2015; Folstein & Van Petten, 2008; Hao et al., 2023; McLoughlin et al., 2022). The 
late positive potential (LPP), a slow wave usually peaking after 400ms, is often considered a 
marker of emotional reactivity (Hajcak et al., 2010; MacNamara & Proudfit, 2014; Paul et al., 
2016; Qi et al., 2016; Thiruchselvam et al., 2011), several studies have also linked it to emotional 
regulation, showing that enhanced LPP amplitudes reflect increased cognitive effort in managing 
emotional responses (Bernat et al., 2011; Desatnik et al., 2017; Moser et al., 2014; Shafir et al., 
2015). Specifically, in decisions involving moral conflict, larger LPP amplitudes suggest the 
greater cognitive effort is exerted to resolve these conflicts (Chen et al., 2009; Zhan et al., 2018, 
2020). 

Although ERP studies focusing on the decision-making process of reciprocity are lacking, this 
process entails key functions such as selective attention (directing attention to the key components 
important to the decision-maker), cognitive control (resisting the temptation of exploiting other’s 
trust), emotional regulation (managing negative feeling such as guilt aversion). The relevant ERP 
components as mentioned above could potentially serve as indicators of how these functions are 
involved in the decision-making of reciprocity. 

2.6. Research Gaps 

Despite substantial progress in understanding reciprocity, the neurocomputational mechanism 
underlying the core and the periphery of reciprocity remains unclear.  

Firstly, although RSFC has been shown to predict individual differences in reciprocity propensity 
(Bellucci et al., 2019; Cáceda et al., 2015), these findings were obtained within specific contexts. 
This contextual constraint implies that the measured reciprocity propensity may already 
encompass both the core (reciprocity propensity) and peripheral aspects of reciprocity, thereby 
potentially confounding the distinct contributions of each. 

Secondly, although the literature has informed about the peripheral (contextual) effects on 
reciprocity (Bohnet & Meier, 2005; Evans & van Beest, 2017; Keysar et al., 2008), the 
neurocomputational mechanisms underlying the peripheral effect of reciprocity remain unknown. 
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Lastly, while previous research has demonstrated that anxiety can reduce reciprocity in social 
interactions (Anderl et al., 2018; Rodebaugh et al., 2011, 2013), the neurocomputational 
mechanisms underlying the core and periphery of reciprocity which affected by anxiety are unclear. 

2.7. Overview of this Dissertation 

Research Aims  

Grounded in social representation theory and utilizing TG paradigms, the overarching aim of this 
dissertation was to investigate the neurocomputational mechanism of reciprocity by employing a 
multi-method approach that integrates task-free and task-based fMRI, ERP, and eye-tracking (Fig. 
3). Specifically, this dissertation seeks to delineate the core and periphery of reciprocity and 
elucidate how anxiety modulates the underlying core and periphery neurocomputational 
mechanisms. 

Study 1 aimed to identify the neural underpinning that represents the core and periphery of 
reciprocity. Using resting-state fMRI, followed by a one-shot TG (framed as give and take context), 
this study examined how patterns of RSFC within or between specific networks relate to 
reciprocity behavior using connectome-based predictive modeling (CPM). This data-driven 
approach enabled us to pinpoint the neural mechanism that underlies the core and periphery of 
reciprocity. 

Study 2 aimed to delve deeper into the periphery of reciprocity by investigating its 
neurocomputational mechanisms. By combining task-based fMRI with computational modeling 
in a multiple one-shot two-stage binary TG (framed as gain and loss context), this study identified 
the neural substrates associated with specific psychological components that underlie the 
subprocesses of reciprocity decision-making related to the periphery of reciprocity. 

Finally, Study 3 aimed to understand the neurocomputational mechanism underlying anxiety 
modulates reciprocity on the core and periphery. Integrating EEG and eye-tracking in a multiple 
one-shot two-stage binary TG (framed as gain and loss context), this study investigated how 
anxiety influences the neural dynamics and computational mechanism underlying the core and 
periphery of reciprocity.  
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Figure 3. Overview of research studies on the core and periphery of reciprocity in this 
dissertation. Study 1 combined resting-state fMRI (brain network level) with connectome-based 
predictive modeling to investigate the core (stable propensity) and the periphery (those sensitive 
to contextual changes) of reciprocity. Study 2 integrated computational modeling with task-based 
fMRI (brain region level) to explore the periphery of reciprocity. Study 3 employed computational 
modeling, eye-tracking, and ERP to examine how the core and periphery of reciprocity are 
influenced by anxiety. 

Working Hypotheses  

In this dissertation, we hypothesized distinct neurocomputational mechanisms for the core and 
periphery of reciprocity and proposed that anxiety affects reciprocity through these mechanisms. 

For study 1, we hypothesized that distinct brain patterns of functional connectivity would predict 
individual differences in the core and periphery of reciprocity. Specifically, the DMN, FPN, and 
CON were expected to be the contributing networks for predicting the core, while the DMN was 
hypothesized to be vital in predicting the periphery of reciprocity. 

For Study 2, we anticipated that peripheral manipulation would significantly influence reciprocity 
behavior through modulation of specific psychological components and subprocesses of 
reciprocity decision-making. This periphery modulation was expected to engage specific brain 
regions. 

Core

Periphery 
(Study 3) 

Anxiety

Context
A

Context
B

Study 1
Representation of core and 
periphery of reciprocity

Study 2
Peripheral effect of 
reciprocity

Study 3
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For Study 3, we predicted that trait anxiety would affect both the core and periphery of reciprocity. 
Specifically, higher trait anxiety was expected to be associated with reduced overall reciprocity, 
involving altered selective attentional allocation and emotion regulation, reflecting its impact on 
the core. Additionally, trait anxiety was hypothesized to modulate the peripheral effect, involving 
cognitive control mechanisms. 
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3. Study 1: Connectome of Reciprocity's Core and Periphery 

“Connectome-based individualized prediction of reciprocity propensity and sensitivity to 
framing: a resting-state functional magnetic resonance imaging study” 

 

Fang, H., Liao, C., Fu, Z., Tian, S., Luo, Y., Xu, P., & Krueger, F. (2022). Connectome-based 
individualized prediction of reciprocity propensity and sensitivity to framing: a resting-state 
functional magnetic resonance imaging study. Cerebral Cortex, 33(6), 3193-3206. 
https://doi.org/10.1093/cercor/bhac269  
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Connectome-based individualized prediction of
reciprocity propensity and sensitivity to framing: a
resting-state functional magnetic resonance imaging
study
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Background: The social representation theory states that individual differences in reciprocity decisions are composed of a stable
central core (i.e., reciprocity propensity, RP) and a contextual-dependent periphery (i.e., sensitivity to the framing effect; SFE, the
effect by how the decision is presented). However, the neural underpinnings that explain RP and SFE are still unknown.
Method: Here, we employed prediction and lesion models to decode resting-state functional connectivity (RSFC) of RP and SFE for
reciprocity decisions of healthy volunteers who underwent RS functional magnetic resonance imaging and completed one-shot trust
(give frame) and distrust (take frame) games as trustees.
Results: Regarding the central core, reciprocity rates were positively associated between the give and take frame. Neuroimaging
results showed that inter-network RSFC between the default-mode network (DMN; associated with mentalizing) and cingulo-
opercular network (associated with cognitive control) contributed to the prediction of reciprocity under both frames. Regarding the
periphery, behavioral results demonstrated a significant framing effect-people reciprocated more in the give than in the take frame.
Our neuroimaging results revealed that intra-network RSFC of DMN (associated with mentalizing) contributed dominantly to the
prediction of SFE.
Conclusion: Our findings provide evidence for distinct neural mechanisms of RP and SFE in reciprocity decisions.

Key words: distrust game; framing effect; prediction; reciprocity; resting-state functional connectivity; trust game.

Introduction
Reciprocity, a social norm intrinsically possessed in
human nature that one tends to return the act (positive
or negative) given by others, forms the pillar of human
interpersonal relationships (Chen et al. 2009; Caliendo
et al. 2012). Reciprocity propensity (RP) is regarded
as a stable personality trait, indicating how likely
an individual reciprocates the actions of others (Li
et al. 2017; Schino and Aureli 2017). However, when
investigating RP in social decisions, the framing effect—
the same objective facts are interpreted differently
depending on the framing (Hagen and Hammerstein
2006)—is one of the most prominent factors that account
for the instability of decisions (Alós-ferrer and Farolfi
2019). According to the social representation theory,
a decision is composed of both a central core (i.e.
implicit and stable) and periphery (i.e. explicit and
contextual) (Wagenaar et al. 1988; Abric 1993; Hagen
and Hammerstein 2006). While the central core (i.e. RP)

represents the commonly shared basis of reciprocity, the
periphery (i.e. framing of the decisions) is sensitive to and
determined by context (Abric 1993). Framing a decision
involves manipulating the periphery while keeping
the central core unchanged (Abric 1993; Flachaire and
Hollard 2008; Columbus et al. 2020).

The framing effect has been documented to influ-
ence social decisions. For example, participants are more
cooperative when a Prisoners’ dilemma game is framed
as a “community game” rather than a “wall street game”
(Kay and Ross 2003; Liberman et al. 2004) or as a “social
exchange” rather than a “business transaction” (Batson
and Moran 1999). In reciprocity decisions involving dic-
tator games (where participants play first as the passive
receiver and then as the dictator), people reciprocate
more in the give compared to the take frame—although
the objective outcomes are equivalent in both frames
(Keysar et al. 2008). When making social decisions, people
rely heavily on their psychological perceptions of social
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actions instead of the objective values (Keysar et al. 2008).
The trust game (TG) and distrust game (DTG) assess
both trust (or distrust) and reciprocity behaviors. Bohnet
and Meier (2005) systematically compared the standard
TG (representing a give frame) with the DTG (repre-
senting a take frame)—showing that people reciprocate
more in the give than take frame. Reciprocators “punish”
investors more severely for commission of distrust (i.e.
taking back some investment) than for omission of trust
(i.e. not giving more investment), suggesting that the
inference of intentions plays a vital role in the fram-
ing effect during reciprocation (Bohnet and Meier 2005).
Though RP is a stable trait rooted in an individual’s
personality, the framing effect is a non-negligible fac-
tor impacting people’s reciprocity decisions (Bohnet and
Meier 2005; Keysar et al. 2008). Since the evaluation of
reciprocity decisions (i.e. core and periphery) in labora-
tory studies or real-life situations can inevitably involve
specific contexts (e.g. describing the game under a give or
take frame), individuals’ differences in reciprocity deci-
sions depend not only on the unchanging central core
(i.e. RP) but also on the sensitivity to the manipulation
of the periphery (i.e. sensitivity to the framing effect,
SFE). However, studies so far only focused on the neural
mechanism of reciprocity decisions under one specific
frame [e.g. give frame, (Cáceda et al. 2015; Bellucci et al.
2019)]—leaving the influence of the framing effect on
reciprocity decisions unexplored. Therefore, identifying
the two components—central core: RP, periphery: SFE—
affecting an individual’s reciprocity decision, and inves-
tigating their underlying neuropsychological substrates
can help to better reveal their sources of heterogeneity.

Resting-state functional connectivity (RSFC) has been
increasingly used to decode the heterogeneity of indi-
vidual differences, including cognitive functions (Finn
et al. 2015; Frith et al. 2020; Yang et al. 2021), personality
traits (Ren et al. 2021; Wang et al. 2021a), and social
behaviors (Shen et al. 2017; Bellucci et al. 2019). RSFC
assesses the temporal synchronization of the blood-
oxygen-level-dependent (BOLD) signal across spatially
distributed brain regions at rest (Woodward and Cascio
2015), which is robust across sessions and overlaps with
coactivation patterns induced by relevant task demands
(Raichle 2011, 2015; Cao et al. 2014; Zuo and Xing 2014;
Finn et al. 2015). Studying the heterogeneity of reciprocity
decisions in a one-shot TG with RSFC, Bellucci et al. (2019)
showed that reciprocity could not only be predicted
by whole-brain RSFC but also by single intra-network
RSFC of the default-mode network (DMN), frontoparietal
network (FPN), or cingulo-opercular network (CON).
Combining independent component analysis with linear
regression, Cáceda et al. (2015) revealed that increased
inter-network RSFC between CON and FPN is associated
with reciprocity as measured with a one-shot TG.

While DMN is linked with mentalizing [i.e. the ability
to assess and evaluate one’s own and others’ actions
based on internal mental states such as beliefs, thoughts,
and emotions (Fonagy et al. 1998, 2018)] for reciprocity

decisions (Wang et al. 2021b), FPN and CON are linked
with cognitive control (Dosenbach et al. 2006, 2010; Hahn
et al. 2015), vital for resolving the social dilemma when
reciprocating between implementing prosocial prefer-
ences (Li et al. 2009; van den Bos et al. 2009; Cáceda et al.
2017; Bellucci et al. 2019) and maximizing self-benefits
(Cáceda et al. 2015; Bellucci et al. 2019). Importantly, the
two reciprocity studies reviewed above (Cáceda et al.
2015; Bellucci et al. 2019) may be influenced by the
framing effect as they were carried out under a specific
context (i.e. the give frame in TG). Hence, the neural
mechanism underlying the stable central core (i.e. RP)
that resists the change of periphery (i.e. framing) remains
elusive. Regarding SFE, a seed-based cross-validated
machine learning RSFC study showed that inter-network
RSFC between DMN and CON regions predicts SFE under
harm and help frames (Cui et al. 2021), while a task-based
functional magnetic resonance imaging (fMRI) study
found that FC within the DMN is associated with SFE
under harm and help frames (Liu et al. 2020). However,
the RSFC contribution to SFE in reciprocity decisions
remains elusive.

Although previous studies have examined the contri-
butions of RSFC to the prediction of reciprocity deci-
sions (Cáceda et al. 2015; Bellucci et al. 2019), findings
based on a single frame (e.g. give frame using the TG)
might be biased by specific context and do not allow
the differentiation of the central core (i.e. RP) from the
periphery (i.e. SFE; Hagen and Hammerstein 2006; Alós–
ferrer and Farolfi 2019). Moreover, Bellucci et al. (2019)
examined whether intra-network RSFC can predict reci-
procity behavior, while inter-network functional connec-
tivity was not examined. Furthermore, Cáceda et al.’s
(2015) results were based on a linear regression but not
on a cross-validated prediction approach. Therefore, a
more comprehensive and robust prediction framework
is needed to separately decode the neural mechanism of
RP and SFE. Finally, Cui et al. (2021) and Liu et al. (2020)
provided evidence for the relationship between FC and
SFE in moral decisions; however, the RSFC contribution
to SFE in reciprocity decisions remains elusive.

In this study, we employed two anonymous one-
shot economic exchange games under two frames
[TG (give frame) and DTG (take frame)]. Using cross-
validated connectome-based predictive modeling and
computational lesion approaches, we examined the
predictive role of whole-brain and inter-network in
the central core (i.e. RP) and the periphery (i.e. SFE)
of reciprocity decisions. In terms of the central core
of a reciprocity decision, we hypothesized a positive
relationship of reciprocity rates between the give (TG)
and take (DTG) frames at the behavioral level since
the theory of social representation assumes that the
central core of reciprocity (RP) is stable across contexts
(Wagenaar et al. 1988; Abric 1993). At the neural level, we
assumed a similar predictive RSFC pattern for reciprocity
decisions in both the give and take frames. Given that
reciprocity requires the engagement of mentalizing
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(Li et al. 2009; van den Bos et al. 2009; Cáceda et al.
2017) and the suppression of selfish motives (Cáceda
et al. 2015; Bellucci et al. 2019), we postulated that DMN,
as well as FPN and CON, are the contributing networks,
respectively, for the prediction of reciprocity regardless
of frames. In terms of the periphery of a reciprocity
decision, we hypothesized that participants reciprocate
more in the give than in the take frame at the behavioral
level, due to the fact that omission of trust in the give
frame is perceived as more benign than commission of
distrust in the take frame (Bohnet and Meier 2005; Keysar
et al. 2008). At the neural level, we theorized that the
DMN plays a vital role in the prediction of SFE—given
that the ability to mentalize is necessary to identify the
underlying intentions associated with different frames
(Bohnet and Meier 2005; Keysar et al. 2008; Liu et al.
2020).

Materials and methods
Subjects
Ninety healthy volunteers (44 females, 46 males, age in
years: 19.4 [mean, M] ± 0.16 [standard error of mean,
SEM]) were recruited for the study who had no history
of neurological and psychiatric disorders or head injury.
Two participants were removed from the neuroimag-
ing data analysis because of their head motions (under
the criteria of mean frame-wise displacement exceed-
ing 0.2 mm or more than 20% of the total number of
volumes exceeding 2 mm maximum translation or 2
degree rotation). As a result, 88 participants (43 females,
45 males, age in years: 19.4 ± 0.16) were included in the
neuroimaging data analysis. Our study was conducted
according to the Declaration of Helsinki and approved
by the local Ethics Committee at Shenzhen University,
China. Participants gave written informed consent for
the study and received compensation as a fixed show-up
fee (!100, approximately $16) and a variable monetary
reward based on their game decisions (ranging from !0
to !40).

Experimental task
Participants completed two one-shot economic exchange
games (TG, give frame; DTG, take frame) as trustees
(Player B) (Bohnet and Meier 2005) (Fig. 1A). Each par-
ticipant interacted with two different anonymous part-
ners in a counterbalanced order, who acted as trustors
(Players A). Participants completed the task after the
trustors had made their decisions in a previous session
(4.87 ± 0.14 days). Before the experiment, participants
were familiarized with the game rules and completed a
quiz to ensure their understanding of the games. For the
give frame, both A and B were endowed with !10 (about
$1.50). A decided first to send a portion of the endowed
money to B (!X, ranging from !0 to !10 in the step of
!1), which was then tripled by the experimenter. Then,
B decided to send a portion of the received money to A
(send !Y from !10 + 3 ∗ !X). For the take frame, only B

was endowed with !40 and A with !0. First, A decided
to take a portion of B’s endowed money (!X, ranging
from !0 to !30 in steps of !3). The money taken was
divided by three by the experimenter. Then, B decided
to send a portion of the remaining money to A (send
!Y from !40 to !X). In the view of participants (acting
the role of B) in the present study, for example, A gave
!6 from !10 in the give frame to the participant, which
is logically and consequently the same as A took !12
from !30 in the take frame from the participant, because
the participant owns !28 in both cases (i.e. give frame:
!18 [trippled from !6] +!10 [original endowment]; take
frame: !40 [original endowment] – !12 [taken by A])
before he/she makes the reciprocity decision. At the end
of the experiment, the monetary reward for both players
was determined based on their decisions randomly cho-
sen from one of their games. The experiment included
no deception, and the data for the trustor part will be
reported in another publication.

Resting-state functional magnetic resonance
imaging acquisition
Resting-state functional magnetic resonance imaging
(RS-fMRI) images were acquired on the same day before
the experimental task with a Siemens Magnetom Prisma
3 Tesla scanner equipped with a 64-channels head
coil at the Shenzhen University Magnetic Resonance
Imaging Center, Shenzhen, China. While completing
the 12-min scan, participants were instructed to open
their eyes, keep still, remain awake, and not think
about anything systematically. A total of 720 contiguous
volumes were acquired with a multi-band Echo planer
imaging (EPI) sequence (axial slice, 65; slice thickness,
2.0 mm; multiband slice acceleration factor, 5; repetition
time (TR) , 1,000 ms; echo time (TE) , 30 ms; flip angle, 90
degrees; voxel size, 2.0 × 2.0 × 2.0 mm3; field of view
(FOV) , 192 × 192 mm2). In addition, high-resolution
structural images were acquired through a 3D sagittal
T1-weighted magnetization-prepared rapid acquisition
with gradient-echo (MPRAGE) sequence (sagittal slices,
192; TR, 2,300 ms; TE, 2.26 ms; slice thickness, 1.0 mm;
voxel size, 1.0 × 1.0 × 1.0 mm3; flip angle, 8 degrees; FOV,
256 × 256 mm2).

Behavioral analysis
The behavioral statistical analyses were performed using
the R platform, version 4.1.1 (R Core Team 2020). A P-
value less than 0.05 (two-tailed) was considered statis-
tically significant. The reciprocity rate for each frame
(give and take) was calculated as the ratio between the
amount sent by B, and the amount B had before sending
(Bohnet and Meier 2005; Bellucci et al. 2019). In addition,
SFE was calculated as the reciprocity rate in the give
frame minus the reciprocity rate in the take frame (Liu
et al. 2020; Cui et al. 2021). The correlation between the
reciprocity rate under the give and take frame was calcu-
lated to examine the central core of reciprocity behaviors
(i.e. RP). To examine whether reciprocity behaviors were
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Fig. 1. Experimental task and behavioral results. (A) Acting as a trustee (player B), participants played a one-shot trust game and a one-shot DTG in
counterbalanced order with two different anonymous trustors (player A). (B) Participants who reciprocated higher in the give frame tended to reciprocate
higher in the take frame, suggesting a stable central core (i.e. RP) for both frames. (C) The reciprocity rate in the give frame was higher than that in the
take frame, suggesting that manipulation of the periphery (i.e. frame) can influence reciprocity decisions. Note: X, the amount player a gives or takes;
Y, the amount player B sends; RP, reciprocity propensity.

influenced by periphery manipulation, the difference
in the reciprocity behavior was compared between the
give and take frames. Reciprocity decisions in the give
and take frames were tested for normality (Shapiro–Wilk
test) and homogeneity (Levene’s test). If assumptions for
normality or homogeneity were violated, Kendall corre-
lation and paired-sample Wilcoxon test were performed
instead of Pearson correlation and paired-sample t-test.

Image analysis
Image preprocessing
Neuroimaging data analyses were performed with
the DPABI software plug-in package (http://rfmri.org/
dpabi) based on SPM12 (http://www.fil.ion.ucl.ac.uk/
spm). The first 10 volumes of the functional images
were discarded to allow for signal equilibrium. The
images were then slice-time corrected and realigned
for head movement correction. Structural brain images
were co-registered to their mean functional images
and were subsequently segmented. The deformation
fields derived from anatomical segmentation were
used to normalize each individual’s functional images
into the standard Montreal Neurological Institute (MNI
template, resampling voxel size was 2 × 2 × 2 mm3)
space. Common nuisance variables were regressed out—
including white matter signal, cerebrospinal fluid signal
(Fox et al. 2005; Snyder and Raichle 2012), and Friston’s
24 movement regressors (6 head motion parameters, 6
head motion parameters one time point before and 12
corresponding squared items) (Friston et al. 1996). The
linear trends of time courses were removed. Band-pass
filtering (0.01–0.1 Hz) was applied to the time series of
each voxel to reduce the effect of low-frequency drifts
and high-frequency physiological noise (Biswal et al.
1995; Zuo et al. 2010). Finally, functional images were

spatially smoothed using a Gaussian filter (4 × 4 × 4 mm3

full widths at half maximum) to decrease spatial
noise.

Analysis procedure
To examine whether RSFC can predict individual differ-
ences in RP, whole-brain predictive models for reciprocity
decisions in the give and take frames were tested, respec-
tively. Then, lesion analyses were performed to confirm
whether both frames exhibit a similar pattern and com-
mon key networks contributing to the prediction. Finally,
it was tested whether the predictive model in one frame
(e.g. give) can predict the other (e.g. take) to further
confirm the neural mechanism of the central core. To
examine how RSFC can explain the individual difference
in SFE, the same procedure was performed in the form of
whole-brain predictive models and lesion analyses.

Functional network construction
The workflow for individualized predictive modeling of
reciprocity in the give and take frames and SFE was the
same (Fig. 2). A 160 node atlas defined by Dosenbach
was used for the RSFC feature extraction (Dosenbach
et al. 2010). The nodes of the cerebellum network were
removed since the image collection of several partici-
pants did not cover the entire cerebellum. The reduced
atlas of 142 nodes (each node with a 5-mm sphere)
consisted of five RSFC networks, including CON, DMN,
FPN, sensorimotor network (SMN), and occipital network
(OccN). For each participant, the time course of each
node was computed by averaging the BOLD signal of all
voxels within the node at each time point. RSFC was then
computed in the form of a Pearson correlation between
the time courses of each pair of nodes. To improve
the normality of the correlation coefficients, Fisher’s Z
transformation was performed—resulting in a 142 × 142
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symmetric matrix that represented connections (edges)
in the RSFC profile for each participant.

Linear support vector regression modeling
Linear support vector regression (LSVR) models were
employed to test the prediction of whole-brain RSFC on
reciprocity behavior in the give and take frames and
SFE. For each of the prediction models, a leave-one-out-
cross-validation (LOOCV) procedure was implemented,
where one participant was left out as a test sample
in every iteration while all the other participants were
used as training samples. For the whole-brain prediction,
Kendall correlation between each pair of nodes in the
142 × 142 symmetric matrices (10,011 pairs in total) and
target behavior was computed in the training sample.
The Kendall correlation was used because of the nor-
mality violation of reciprocity rate in both frames and
SFE. Edges of the top 1% of the strongest correlation were
selected as the most relevant features (Shen et al. 2017;
Bellucci et al. 2019). The selected features were rescaled
into a range of 0–1 across the training samples, and the
same rescaled procedure was performed in the testing
sample to avoid some features with greater ranges dom-
inating other features (Cui et al. 2018; Cui and Gong
2018). The LSVR model was trained using the selected
features and their associated behaviors from training
samples, whereas the trained model was used to predict
the behaviors in the testing sample. The training and
predicting procedure were repeated 88 times (i.e. the total
number of participants included in the imaging analysis)
so that each participant was used once as a test sample.

Model validation
To evaluate the performance of the prediction models,
Kendall correlation coefficients (rτ ) and mean square
error (MSE) were computed between the actual and pre-
dicted behaviors. For the significant prediction models,
nonparametric permutation tests were further applied
to validate the significance of the prediction. The signifi-
cance of rτ and MSE was evaluated 1,000 times employing
nonparametric permutation tests, i.e. the behavior of
participants was permutated 999 times without replace-
ment where the behavioral outcome was shuffled ran-
domly during each permutation, and the LOOCV proce-
dure was performed. As a result, a distribution of 1,000
(true 1 plus shuffled 999) rτ and MSE was produced,
which indicated the null hypothesis. The P-values for
the permutation tests were calculated as the number of
times that the permutated performance is better (higher
for rτ and lower for MSE) than the true performance and
then divided by 1,000.

Tenfold cross-validation
Tenfold cross-validation (TFCV) was employed to validate
the results since a LOOCV approach biases the prediction
(Poldrack et al. 2020). Thus, participants were separated
into 10 subsets, 9 of which were utilized for training
and the remaining 1 for testing. The training data was

scaled before being used to train an LSVR prediction
model, which was then used to predict the scaled testing
data. This approach was performed 10 times to ensure
that each subset was tested just once. Finally, across all
individuals, the correlation rτ and MSE between true and
predictive values were determined. Because the entire
dataset was divided into 10 subsets at random, per-
formance may have been influenced by data division.
Therefore, the TFCV was performed 100 times, and the
results were averaged to get a final prediction perfor-
mance. The significance of the prediction performance
was tested 1,000 times using a permutation test.

Computational lesion prediction
To test the importance of intra- and inter-network con-
nectivity in the prediction, computational lesion predic-
tion analyses were performed (Feng et al. 2018; Wang
et al. 2021a). For example, to computationally lesion the
inter-network of DMN-CON, all edges belonging to the
DMN-CON inter-network were set to 0 in the 142 × 142
symmetric matrices (10,011 pairs in total). Then, the
lesion prediction procedure was conducted following the
same method as in whole-brain prediction. The pre-
dictive power was compared between the whole-brain
prediction with the accordingly lesion prediction using
Steiger’s Z (Steiger 1980). If the predictive power in lesion
prediction was significantly lower than the whole-brain
prediction, the lesion network connectivity was consid-
ered a significant contributor to the whole-brain predic-
tion (Feng et al. 2018; Wang et al. 2021a).

Commonality validation
To further validate the central core of reciprocity (i.e.
RP), it was tested whether the predictive edges (edges
that survived all iterations in the whole-brain prediction)
within common network connectivity in one frame can
predict the reciprocity in the other frame. For example,
if RSFC of DMN-CON contributed significantly to the
prediction for both the give and take frame, predictive
edges in DMN-CON in one frame were extracted to pre-
dict the other frame. Then, the model in the give (or
take) frame was used to predict the reciprocity rate in the
take (or give) frame, and the predictive performance was
evaluated by the Kendall correlation between the actual
and predicted behaviors.

Results
Behavioral results
Testing for normality and homogeneity, Shapiro–Wilk
tests revealed that the reciprocity rates for both frames
violated the normality assumption [give: W(90) = 0.94,
P < 0.001, take: W(90) = 0.83, P < 0.001]. Levene’s tests for
homogeneity showed that the variance of the reciprocity
rates was not significantly different between both frames
(F(1,178) = 0.83, P = 0.364). To confirm the central core of
reciprocity (i.e. RP), Kendall correlation analysis revealed
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Fig. 2. The workflow of individual predictive modeling. (A) BOLD RS-fMRI data were preprocessed. (B) RSFC ROIs and the network was defined based on
the Dosenbach atlas (five networks: DMN, FPN, CON, SMN, and OccN). (C) RSFC (features) and behavioral scores (targets: reciprocity rate in the give or
take frame or SFE) for each participant were calculated. As shown within the area of dash-line, cross-validation (i.e. LOOCV and TFCV) was implemented
for prediction (in LOOCV, each participant was used as a test sample once while the remaining participants were used as a training sample; in TFCV,
one subset of participants were used as test sample once while the other nine subsets of participants were used as training sample). In cross-validation,
(D) the correlation between RSFC and behavior in the training sample was calculated, and (E) the most relevant edges (selected feature, top 1% strongest
correlated edges) were selected to (F) train the LSVR model. (G) The trained model was applied to predict the behavior in the test samples. After the
cross-validation, (H) the performance of the predictive model was assessed by the Kendall correlation and the MSE between the actual and predictive
value. (I) a permutation test was further implemented to confirm the significance of the predictive model, where the P-value is calculated as the
number of times that the permutated performance is better (higher for correlation coefficient or lower for MSE) than the true performance (correlation
coefficient or MSE as indicated by dash line) and then divided by 1,000. Note: BOLD, blood-oxygen-level-dependent; RS-fMRI, resting-state functional
magnetic resonance imaging; RSFC resting-state functional connectivity; ROI, regions of interest; CON, cingulo-opercular network; DMN, default-mode
network; FPN, frontoparietal network; OccN, occipital network; SMN, sensorimotor network; SFE, sensitivity to framing effect; LOOCV, leave-one-out-
cross-validation; TFCV, tenfold-cross-validation; LSVR, linear support vector regression; MSE, mean square error.

that the reciprocity in both frames was positively cor-
related (rτ (88) = 0.47, P < 0.001; Fig. 1B), suggesting that
participants who reciprocated more in one frame also
reciprocated more in the other frame. For the influ-
ence of peripheral manipulation (i.e. SFE), paired-sample
Wilcoxon tests revealed that participants reciprocated
significantly more in the give than in the take frame
(Z = 2,997, P = 0.002, effect size (r) = 0.45; Fig. 1C). See Sup-
plementary for a comparison of money available before
decision-making between the two frames.

Neuroimaging results
Whole-brain RSFC prediction
For the central core, the LOOCV LSVR prediction proce-
dure revealed that whole-brain RSFC significantly pre-
dicted reciprocity in the give (rτ (86) = 0.30, Pperm = 0.009;
MSE = 0.032, Pperm = 0.005; Fig. 3) and take (rτ (86) = 0.33,
Pperm = 0.015; MSE = 0.028, Pperm = 0.004; Fig. 4) frames. The
inter-network RSFC of DMN-CON contributed the highest
number of predictive edges in predicting reciprocity
behavior under both frames (give: 13 edges, take: 16
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Fig. 3. Whole-brain functional connectivity prediction under the give frame. (A) the predicted model was significant as assessed by Kendall correlation
between the actual reciprocity rate and its predictive value. (B) the predicted model was significant as assessed by permutation distribution of correlation
coefficient and (C) MSE, where the P-value is calculated as the number of times that the permutated performance is better (higher for correlation
coefficient or lower for MSE) than the true performance (correlation coefficient or MSE as indicated by dash line) and then divided by 1,000. (D) Predictive
edges that survived all iterations in leave-one-out cross-validation are shown with brain connectomes plot (larger size of the node indicates that higher
number of edges are connected to the node), and (E) circle plot (predictive edges in DMN-CON were highlighted using black outlines, which can also
predict reciprocity rate under the take frame). Note: see Supplementary Table S1 for the name of abbreviations in plot e. MSE, mean square error; CON,
cingulo-opercular network; DMN, default-mode network; FPN, frontoparietal network; OccN, occipital network; SMN, sensorimotor network. ∗: P < 0.05;
∗∗: P < 0.01.

edges; Fig. 6A, also see Supplementary Fig. S2a for results
calculated as the ratio between predictive edges and
total edges). For the periphery, the cross-validated LSVR
prediction procedure revealed that whole-brain RSFC
significantly predicted SFE of reciprocity (rτ (86) = 0.41,
Pperm = 0.004, MSE = 0.028, Pperm = 0.001; Fig. 5), where
networks pairs (e.g. SMN-CON, SMN-SMN, OccN-FPN,
DMN-CON, DMN-DMN, DMN-OccN) nearly contributed
in terms of predictive edges numbers (Fig. 6B, also see
Supplementary Fig. S2b for results calculated as the ratio
between predictive edges and total edges).

Tenfold cross-validation
TFCV was conducted to further validate the prediction
performance. Consistent with the results of LOOCV,
TFCV revealed that whole-brain RSFC can significantly
predict reciprocity in the give (rτ (86) = 0.17, Pperm = 0.009;
MSE = 0.033, Pperm = 0.014) and take (rτ (86) = 0.13, Pperm =
0.019; MSE = 0.034, Pperm = 0.014) frame as well as SFE
(rτ (86) = 0.24, Pperm = 0.001; MSE = 0.027, Pperm = 0.001).

Computational lesion prediction
Lesion prediction analyses were conducted to examine
whether specific intra- or inter-networks contributed
significantly to the prediction. To examine the signif-
icant contributing network connectivity in predicting

reciprocity behavior, edges within each intra- or inter-
network that paired with DMN, CON, or FPN were
lesioned (based on the descriptive plots in Fig. 6A
and intra-networks of DMN, CON, and FPN predicting
reciprocity (Bellucci et al. 2019). As a result, 12 lesion
prediction analyses were performed for each frame. The
models’ prediction power (rτ ) dropped significantly after
removing the inter-network RSFC of DMN-CON (Steiger’s
Z = 2.84, P = 0.004) and DMN-FPN (Steiger’s Z = 4.14,
P < 0.001) under the give frame, and removing the inter-
network RSFC of DMN-CON (Steiger’s Z = 7.99, P < 0.001)
under the take frame (Fig. 7A; also see Supplementary
Table S2 for the summary of predictive edges in DMN-
CON for RP). To examine the significant contribution of
intra- or inter-network connectivity in predicting SFE of
reciprocity, edges in each network pair were lesioned as
suggested by the descriptive plot in Fig. 6B. The results
showed that the prediction power of the model dropped
significantly after removing the intra-network RSFC of
DMN-DMN (Steiger’s Z = 2.84, P = 0.004) (Fig. 7B; also see
Supplementary Table S2 for the summary of predictive
edges in DMN-DMN for SFE).

Commonality validation
Since inter-network RSFC of DMN-CON significantly
contributed to the prediction of reciprocity under both
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Fig. 4. Whole-brain functional connectivity predicts reciprocity under the take frame. (A) the predicted model was significant as assessed by Kendall
correlation between the actual reciprocity rate and its predictive value. (B) the predicted model was further confirmed significant as assessed by
permutation distribution of correlation coefficient and (C) MSE, where the P-value is calculated as the number of times that the permutated performance
is better (higher for correlation coefficient or lower for MSE) than the true performance (correlation coefficient or MSE as indicated by dash line) and
then divided by 1,000. Predictive edges that survived all iterations in leave-one-out cross-validation were shown with (D) brain connectomes plot (larger
size of the node indicates that higher number of edges are connected to the node), and (E) circle plot (predictive edges in DMN-CON were highlighted
using black outlines, which can also predict reciprocity rate under the give frame). Note: see Supplementary Table S1 for the name of abbreviations in
plot e,. MSE, mean square error; CON, cingulo-opercular network; DMN, default-mode network; FPN, frontoparietal network; OccN, occipital network;
SMN, sensorimotor network. ∗: P < 0.05; ∗∗: P < 0.01.

frames, it was further investigated whether the predictive
edges in one frame can predict the other frame. The
results showed that the predictive reciprocity edges
within inter-network RSFC of DMN-CON under the
give frame can predict reciprocity under the take fame
(rτ = 0.23, P = 0.004), and predictive reciprocity edges
within inter-network RSFC of DMN-CON under the take
frame can also predict reciprocity under the give fame
(rτ = 0.33, P < 0.001).

Discussion
Combining economic exchange games measuring reci-
procity behavior with a cross-validated connectome-
based prediction framework, we investigated the framing
effect in reciprocity and how the individual difference of
RP (central core) and SFE (periphery) can be predicted by
large-scale RSFC networks. Regarding the central core,
we found that participants who reciprocated more in
one frame also reciprocated more in the other frame,
indicating that the decision to reciprocate may share a
common process (i.e. RP). Our prediction analyses consis-
tently demonstrated that whole-brain RSFC can predict
reciprocity in both frames and the inter-network RSFC of
DMN-CON contributed significantly to the prediction in
both frames. Commonality validation further confirmed

DMN-CON as the common network connectivity for both
frames, suggesting the neural mechanism underlying
RP. In addition, DMN-FPN contributed significantly to
the prediction of reciprocity decisions under the give
frame but not the take frame. In terms of the periphery,
participants reciprocated more in the give than take
frame, and SFE was predicted by whole-brain RSFC, with
intra-network RSFC of DMN as the key contributor.

According to social representation theory, the cen-
tral core of a decision should exhibit consistency while
only the periphery is changing (Wagenaar et al. 1988;
Abric 1993). Consistent with our first hypothesis, a sig-
nificant association was found between the reciprocity
under the give and take frame; thereby, supporting the
social representation theory (Wagenaar et al. 1988; Abric
1993). In both one-shot games (TG and DTG), reciprocity
requires one to resolve a social dilemma between engag-
ing prosocial preferences and maximizing self-benefits
(Li et al. 2009; van den Bos et al. 2009; Cáceda et al.
2015, 2017; Bellucci et al. 2019). Besides the motive to
maximize self-benefit under both frames, the trustee
has the prosocial incentive to repay the partner’s trust
(the partner could not have invested at all) in the TG
of the give frame and none-distrust (the partner could
have taken all the investment) in the DTG of the take
frame.
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Fig. 5. Whole-brain functional connectivity predicts SFE. (A) the predicted model was significant as assessed by Kendall correlation between the actual
SFE and its predictive value. (B) the predicted model was further confirmed significant as assessed by permutation distribution of correlation coefficient
and (C) MSE, where the P-value is calculated as the number of times that the permutated performance is better (higher for correlation coefficient or
lower for MSE) than the true performance (correlation coefficient or MSE as indicated by dash line) and then divided by 1,000. Predictive edges that
survived all iterations in leave-one-out cross-validation were shown with (D) brain connectomes plot (larger size of the node indicates that higher
number of edges are connected to the node), and (E) circle plot (predictive edges were highlighted using black outlines in DMN-DMN for the significant
prediction contribution). Note: see Supplementary Table S1 for the name of abbreviations in plot e. SFE, sensitivity to framing effect; MSE, mean square
error; CON, cingulo-opercular network; DMN, default-mode network; FPN, frontoparietal network; OccN, occipital network; SMN, sensorimotor network.
∗: P < 0.05; ∗∗: P < 0.01.

Fig. 6. Contributing network connectivity in whole brain prediction. (A) Contribution of network pair in predicting reciprocity under the give and take
frame. (B) Contribution of network pair in predicting SFE of reciprocity. Note: the number and color darkness in each cell of the color matrix indicate
the number of edges that survived all leave-one-out cross-validation iterations. SFE, sensitivity to framing effect; CON, cingulo-opercular network; DMN
default-mode network; FPN, frontoparietal network; OccN occipital network; SMN, sensorimotor network.

Confronting such a dilemma, while mentalizing is
needed to infer the intention of others to reciprocate
properly, cognitive control is also critical to suppress
the temptation of maximizing self-benefit (Fischbacher
and Gächter 2010; Gächter et al. 2017; Bellucci et al.
2018). Partially confirming our second hypothesis, we
found that reciprocity in both give and take frames

can be predicted by whole-brain RSFC and share a
similar predictive pattern. Importantly, as revealed by
the lesion analysis, the inter-network RSFC of DMN-CON
was the key contributor to predicting reciprocity under
both frames. Consistent with the positive correlation
between behaviors under the give and take frames, our
results showed a similar RSFC network predictive pattern
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Fig. 7. Prediction power comparison after computational lesion. Comparisons of prediction power between lesion prediction and whole-brain prediction
for (A) reciprocity in the give and take frames and (B) SFE. Note: SFE, sensitivity to framing effect; CON, cingulo-opercular network; DMN, default-mode
network; FPN, frontoparietal network; OccN, occipital network; SMN, sensorimotor network. ∗: P < 0.05; ∗∗: P < 0.01; ∗∗∗: P < 0.001.

for both frames, with the DMN-CON inter-network as
the key contributor. Our prediction results supported
the social representation theory; a stable central core
(i.e. RP) defines a reciprocity decision, though different
peripheries can be presented.

RP was predicted by RSFC of the inter-network of DMN-
CON. The DMN has been consistently linked with various
social functions, including self-reference, autobiography,
moral judgment, theory of mind, perspective-taking, and
mentalizing (Whitfield-Gabrieli and Ford 2012; Raichle
2015; Yeshurun et al. 2021), whereas CON has been
reliably linked with functions of cognitive control and
salience processing (Dosenbach et al. 2006; Seeley et al.
2007; Fischbacher and Gächter 2010). In our study, DMN
is possibly involved in mentalizing others’ intentions
to reciprocate in a proper manner since individuals
are intrinsically encoded with prosocial preferences (Li
et al. 2009; van den Bos et al. 2009; Cáceda et al. 2017;
Bellucci et al. 2019). CON probably acts as a regulator
for suppressing self-motives during reciprocation, as the

function of cognitive control is essential to overcome
the temptation of reaping benefits (Cáceda et al. 2015;
Bellucci et al. 2019). Thus, the direct communication
between DMN and CON predicting RP may represent the
trade-off between the preferences to care for others and
self-benefit preferences.

The DMN-CON was involved in reciprocity under both
the give and take frames. Specifically, the DMN, including
post cingulate cortex (Gobbini et al. 2007; Feldman 2015),
precuneus (Gobbini et al. 2007; Feldman 2015), angular
gyrus (Perry et al. 2011; Tanaka and Kirino 2019), and
occipital cortex (Atique et al. 2011), has been linked
with mentalizing, while the CON, consisting of thala-
mus (Dosenbach et al. 2007, 2008), parietal lobe (Roberts
et al. 2010; Luijten et al. 2015), and ventral frontal cortex
(Neubert et al. 2014; Loh et al. 2020), has been linked
with cognitive control. In addition, the insula (Chang
et al. 2011), thalamus (Fourie et al. 2014; Bastin et al.
2016), and basal ganglia (Wagner et al. 2011; Bastin et al.
2016) of CON have also been linked with feelings of guilt.
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Therefore, we postulate the role of CON in suppressing
self-interest to reciprocate might be driven by the need
to avoid feelings of guilt, as guilt aversion is one of the
critical components driving reciprocity decisions (Chang
et al. 2011; Nihonsugi et al. 2015). Further study is needed
to identify the role of these regions in connecting guilt
aversion and cognitive control.

Importantly, besides the common regions in both
frames, the reciprocity predictive edges in the give frame
involve a more distributed DMN regions, including the
vmPFC, mPFC, ACC, vlPFC, and IPS, while that in the take
frame involves a more distributed CON regions, including
precuneus, post cingulate cortex, TPJ, temporal cortex,
and ACC. These results suggest that reciprocity under
the give frame entails a more distributed mentalizing
network, while reciprocity under the take frame entails
a more distributed cognitive control network.

Noteworthy, we showed that whole-brain RSFC is pre-
dictive of reciprocity, contributed by inter-network RSFC
of DMN-CON and DMN-FPN under the give frame. How-
ever, Bellucci et al. (2019) showed that intra-network
RSFC of DMN, FPN, and CON alone can predict reciprocity
under the give frame. One reason for this inconsistency
might be that we applied a virtual computational lesion
approach based on whole-brain RSFC to test the sig-
nificant contribution of inter- and intra-network RSFC,
whereas Bellucci et al. (2019) only used single intra-
network RSFC to test significance predictions without
considering the role of inter-network RSFC. Compared
to a relatively small sample size (n = 26) and a LOOCV
approach used in Bellucci et al. (2019), our results were
based on a larger sample size (n = 88), and the LOOCV
findings were confirmed with a more robust TFCV to
avoid the overfitting problem in LOOCV (Poldrack et al.
2020). Combining with lesion prediction analyses, these
analyses robustly showed the important roles of DMN,
FPN, and CON, especially RSFC of the DMN with CON and
FPN, in prediction of reciprocity under the give frame.

While both inter-network RSFC of DMN-CON and
DMN-FPN contributed significantly to the prediction
of reciprocity in the give frame, only RSFC of DMN-
CON contributed significantly in the take frame in our
study. On the one hand, although CON alongside the
FPN is essential for top-down control, their differences
have also been documented (Dosenbach et al. 2006,
2007, 2008, 2010; Hahn et al. 2015). The CON controls
goal-directed behavior operating on a longer time
scale, whereas the FPN monitors ongoing trial-by-trial
processes (Dosenbach et al. 2006, 2007, 2008, 2010;
Hahn et al. 2015). Since RP is a stable trait that lasts
for a long period of time and is resistant to the change
in context, the CON may be essential for shaping RP
in terms of regulating one’s self-motives. This may
explain why DMN-CON was consistently found across
different frames. On the other hand, RSFC of DMN-
FPN only significantly contributed to the prediction of
reciprocity in the give but not the take frame. Because
people reciprocated more under the give than take

frame, these results indicate that more cognitive control
is engaged to suppress self-interest under the give
frame, supporting the idea that the FPN is specific for
monitoring the ongoing trial-by-trial processes (e.g. more
context-sensitive).

As opposed to the stable property of the central core,
the periphery of reciprocity decisions is conditional upon
the context, and manipulation of the periphery can influ-
ence those decisions. Confirming our third hypothesis,
our findings revealed that reciprocity was higher in the
give frame than in the take frame. Despite the simi-
larity between both frames, our result suggested that
reciprocity decisions are susceptible to social framing.
Framing (contextual manipulation, i.e. the periphery of
the decision) significantly shifted individuals’ reciprocity
decision while RP (stable personality trait, i.e. the central
core of the decision) remained well-aligned. Our results
support the social representation theory that the framing
(representing the periphery) and RP (representing the
central core) are independent components in decision-
making (Wagenaar et al. 1988; Abric 1993; Hagen and
Hammerstein 2006). Though sharing the same payoff
structure in both frames, perceived lack of trust when the
default is not trusting in TG is different from perceiving
distrust when the default is trusting in DTG (Kahneman
and Tversky 1979; Thaler 1980; Samuelson and Zeck-
hauser 1988). For example, the trustor gave !5 from his
!10 to the participant is logically and consequently, the
same as the trustor took !15 from !30 because the
trustee received !15 in both cases (the !5 was tripled
in the first case). Nevertheless, the act of giving (trust) is
perceived as relatively positive, whereas the act of taking
(distrust) is perceived as relatively negative. People tend
to “punish” more severely for commissions of distrust
than omissions of trust. It has been suggested that men-
talizing others’ intention plays a key role in the difference
in reciprocity between frames (Bohnet and Meier 2005).
The more benign (or malign) the reciprocator perceives
the partner’s intentions of an action to be, the more
reciprocator will reward (or punish) the partner (Rabin
1993; McCabe et al. 2003).

To explain why some people are more sensitive to
the change of different frames than others, we further
investigated how the whole-brain RSFC may predict SFE
in reciprocity. Consistent with our fourth hypothesis,
our neural network prediction results demonstrated
that the whole-brain RSFC can predict SFE. Further,
though the number of predictive edges is not the highest
among all network pairs, the intra-network RSFC of
DMN contributes significantly to the prediction, as
revealed by the lesion analysis. It should be noted
that a higher number of the predictive edges does not
guarantee a significant contribution to the prediction.
The brain regions of the DMN, including the occipital
cortex (Atique et al. 2011), ventromedial prefrontal cortex
(Lombardo et al. 2010; Atique et al. 2011), precuneus
(Gobbini et al. 2007; Feldman 2015), post cingulate cortex
(Gobbini et al. 2007; Feldman 2015), and superior frontal
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gyrus (Schneider-Hassloff et al. 2015), have been reported
to be involved in mentalizing. Though various functions
have been related to DMN as described above, it is
suggested to be the core network of the social brain
(Mars et al. 2012)—essential for assessment of social
contexts before engaging in prosocial actions (Krueger
et al. 2009) and moral decision-making (Greene et al.
2001). Consistent with a recent finding that FC within
DMN is associated with the social framing effect (help
vs. harm frame) (Liu et al. 2020), our results revealed
that individuals with stronger intra-network RSFC of
DMN tend to exhibit higher SFE. Stronger intra-network
RSFC of DMN suggests a better capacity for mentalizing
others’ intentions, which is related to a higher SFE.
Inconsistently, Cui et al. (2021) used a seed-based
approach and showed that the framing effect is linearly
correlated with RSFC between regions of DMN and CON.
Importantly, our results were based on whole-brain RSFC
and a more conservative procedure, including cross-
validated predictive modeling and lesion approaches.
Different results were found possibly because of different
task paradigms (i.e. to make a tradeoff between economic
benefits and the feeling of others) and framing (i.e. help
vs. harm) was used in Cui et al. (2021) compared to the
current study. However, further studies are needed to
resolve this discrepancy.

Despite our novel findings, the current study had
several limitations. First, our sample size was relatively
small (n = 88), and larger sample sizes are needed to
increase the accuracy or robustness of RSFC prediction
studies (Cui and Gong 2018; Poldrack et al. 2020). Second,
our RSFC prediction results can only be used to infer
a correlational predictive relationship between brain
connectivity and reciprocity behavior. A potential causal
relationship should be examined in future studies, such
as investigating the framing effect by stimulating outer-
cortex DMN regions using transcranial magnetic stim-
ulation (TMS) or inner-cortex DMN regions using low-
intensity transcranial focused ultrasound stimulation
(Tyler et al. 2018). Third, our study only manipulated
one type of frame (i.e. give vs. take), employing the
TG and DTG. Future studies should manipulate other
types of frames such as “gain” and “loss” using the
same game type to test whether the neural mechanism
underlying the central core remains the same, given
that the periphery is context-dependent while the
central core is stable. Forth, though the current study
identified the role of DMN-CON in RP, whether these RP
predictive networks can predict other types of reciprocity
or prosocial behavior should be tested in future studies.

To summarize, we examined whether the central
core (i.e. RP) and the sensitivity to the manipulation
of the periphery (i.e. SFE) of reciprocity behavior can
be predicted by RSFC using two one-shot economic
games (TG [give frame] and DTG [take frame]) that
are structurally the same but framed differently. In
terms of the central core, we observed a significant
association between the reciprocity rate in the give and

take frame—suggesting the existence of a central core
for reciprocity behaviors. The inter-network RSFC of
DMN-CON contributed significantly to the prediction of
reciprocity under the two frames, indicating the interplay
between mentalizing others’ intentions and suppressing
one’s self-motives in processing the central core (i.e.
RP) of reciprocity. Regarding the periphery, we found
that manipulation of the periphery can significantly
influence reciprocity behavior, leading to a significant
framing effect (give vs. take). The intra-network RSFC
of DMN contributed significantly to the prediction of
SFE, indicating the ability of mentalizing is related to the
sensitivity manipulation of the periphery.

In conclusion, our findings support the social rep-
resentation theory that a central core and periphery
constitute reciprocity behavior. We establish the RSFC
network model predicting the central core and sensitivity
to the periphery in reciprocity behavior. Our results
advance the understanding of how large-scale RSFC
networks can serve as biomarkers for an individual’s
social propensity and characteristic of sensitivity to the
change in social context.
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Abstract 

While reciprocity plays a fundamental role in cooperation, the neurocomputational mechanisms 
underlying its susceptibility to contextual influences in decision-making remain poorly understood. 
To examine the influence of contextual framing (gain vs. loss) on reciprocity, we utilized a 
combination of computational modeling and functional magnetic resonance imaging within the 
framework of a two-stage interactive binary trust game. Participants, acting as trustees, made 
reciprocity decisions (reciprocate/betray) and subsequently inferred their partner's prior choice 
(trust/status quo). Our behavioral findings demonstrate that the loss frame, as opposed to the gain 
frame, diminishes reciprocity by reducing advantageous inequity aversion. Neuroimaging results 
revealed distinct neural correlates of advantageous inequity aversion for other-oriented and self-
oriented processes under overall reciprocity decision-making. During overall decision-making, 
right amygdala activity was negatively associated with advantageous inequity aversion in the gain 
frame, but not the loss frame. During other-oriented inference processes, no frame-related 
differences were found. During self-oriented evaluation processes, advantageous inequity aversion 
was positively associated with left anterior insula (lAI) activity in the gain frame but not the loss 
frame, and lAI activity in the loss frame was reduced compared to the gain frame. In summary, 
our findings indicate that within a loss-framed context, the mechanism underlying advantageous 
inequity aversion appears to be attenuated or disrupted during both overall reciprocity decision-
making and self-oriented evaluation processes. Notably, advantageous inequity aversion neural 
correlates during other-oriented inference processes remain unaffected by this contextual framing. 
In conclusion, our study highlights the pivotal role of self-oriented evaluation in shaping context-
dependent reciprocal behavior, pinpointing specific decision-making components and 
subprocesses susceptible to contextual framing. 
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Introduction 

As a fundamental prosocial behavior, reciprocity has been instrumental in shaping human social 
interactions and cooperation throughout history (Nowak & Sigmund, 2005). According to social 
representation theory (SRT) (Abric, 1993; Hagen & Hammerstein, 2006; Wagenaar et al., 1988), 
reciprocity is determined not only by an individual's inherent disposition towards reciprocity but 
also by the social context where these decisions are made (Fang et al., 2022). 

Manipulating the framing of the decision context, while maintaining the integrity of the payoff 

structure, allows for the identification of contextual influences on reciprocal behavior (Evans & 

van Beest, 2017; Fang et al., 2022). Eye-tracking data indicates that individuals framed within a 

loss context exhibit a heightened focus on their own outcomes, resulting in a greater tendency 

towards self-interested choices in the dictator game, compared to those framed within a gain 

context (Fiedler & Hillenbrand, 2020). Research consistently indicates a heightened propensity for 

reciprocal behavior when individuals are framed within a “give” context, in contrast to a "take" 

context, even when the underlying payoff structures remain equivalent (Bohnet & Meier, 2005; 

Fang et al., 2022; Keysar et al., 2008; Y. Zhang et al., 2023). Given that context can influence 

prosocial behaviors like reciprocity, identifying the underlying psychological mechanisms through 

which it operates is essential for comprehending the origins of this contextual effect. 

Reciprocity decisions encompass multiple psychological components with complex cognitive 
processing. Reciprocity decisions often involve a conflict between self-interest (e.g., maximizing 
rewards by securing higher payoffs) and the social expectation to reciprocate kindness (e.g., 
repaying trust), creating a social dilemma. While reciprocation may necessitate foregoing 
immediate financial benefits, it can alleviate negative emotions such as guilt aversion (the 
discomfort of failing to meet reciprocal expectations) and advantageous inequity aversion (the 
discomfort associated with receiving more than others) (Fehr & Schmidt, 1999; Nihonsugi et al., 
2015, 2021). While evidence for advantageous inequity aversion exists, it's inconsistent, appearing 
when individuals actively choose advantageous inequity but disappearing when they passively 
receive it (O. Li et al., 2018). In contrast, research suggests that people constantly engage in social 
comparisons, often striving to improve their relative position comparisons (Festinger, 1954; Fiske, 
2011; Starmans et al., 2017). This implies advantageous inequity liking, rather than aversion, 
might be present in certain contexts (Boyce et al., 2010; Cox, 2013; Dohmen et al., 2011). 
Consequently, individuals may experience advantageous inequity aversion when considering 
betrayal, which usually leads to a more advantageous outcome and active harm, but favor 



Study 2: Neurocomputational Mechanisms of Contextual Reciprocity 

 

38 

advantageous distribution (advantageous inequity liking) when contemplating reciprocity. 
Furthermore, reciprocity decisions entail complex cognitive processes involving other-oriented 
inference (e.g., assessing trust bestowed by others or the need of others) (J. Li et al., 2009; van den 
Bos et al., 2009, 2011), self-oriented evaluation (e.g., gauging willingness to reciprocate or 
sacrifice) (Knoch et al., 2006; Rilling, 2011), and integrating these considerations to determine 
whether to reciprocate or betray (Crone, 2018; Fang et al., 2022).  

By investigating the psychological components and cognitive processes inherent in reciprocity 
decisions, we can gain a deeper understanding of how and at which stage of the decision-making 
process context exerts its influence on the underlying psychological factors driving reciprocal 
behavior. Although research exploring how context influences psychological components like 
guilt aversion and advantageous inequity liking in social decisions remains limited, studies have 
demonstrated that framing outcomes as losses rather than gains in dictator games attenuate 
advantageous inequity aversion (Boun My et al., 2018). Moreover, a loss-framed context, in 
contrast to a gain-framed one, appears to diminish moral concerns, resulting in increased dishonest 
behavior (Schindler & Pfattheicher, 2017) and a decreased preference for equity (De Dreu, 1996).  

Given the complex interplay of psychological factors and the potential influence of context on 
neural activity, an investigation into the neural correlates of reciprocity could yield valuable 
insights. For example, inequity aversion, encompassing both advantageous and disadvantageous 
inequity aversion, exhibits a negative correlation with right amygdala activation in prosocial 
individuals engaged in the dictator game (Haruno & Frith, 2010). However, inconsistent findings 
exist, with later studies reporting a positive association (Nihonsugi et al., 2015), suggesting that 
the link between amygdala activity and inequity aversion may be influenced by the interplay 
between advantageous and disadvantageous inequity aversion. Given the amygdala's established 
role in emotional processing (Phelps, 2006), and considering that reciprocity or the relinquishment 
of an advantageous position frequently involves sacrificing personal gains (Fang et al., 2022; Fehr 
& Schmidt, 1999), it is plausible that advantageous inequity aversion engages top-down cognitive 
control mechanisms to modulate emotional responses, and this modulation may manifest as 
reduced amygdala activity (Blair et al., 2007). Furthermore, the loss frame, by diminishing moral 
concern, may disrupt the association between advantageous inequity aversion and amygdala 
activity (De Dreu, 1996; Schindler & Pfattheicher, 2017).  

A direct investigation into contextual effects on advantageous inequity aversion, comparing self-

inflicted pain to other pain conditions, has revealed the involvement of brain regions such as the 

left anterior insula (lAI), right dorsolateral prefrontal cortex (rDLPFC), and dorsomedial prefrontal 

cortex (DMPFC) (Xiaoxue Gao et al., 2018). The AI is implicated in reciprocity, norm compliance, 
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and the processing of subjective emotional experiences (Bellucci et al., 2018; Chang & Sanfey, 

2011; Xiaoxue Gao et al., 2018). The DLPFC, critical for executive functions and cognitive control, 

contributes to the regulation of selfish impulses and emotions, while also influencing intention-

based decision-making (Knoch et al., 2006; Miller & Cohen, 2001; Nihonsugi et al., 2015; Ruff et 

al., 2013; Zhu et al., 2014). As a key component of the mentalizing network, the DMPFC plays a 

vital role in inferring intentions during interpersonal interactions (Isoda & Noritake, 2013; Xiaoxue 

Gao et al., 2018).  

While these studies suggest that context likely influences reciprocity through mechanisms 

involving advantageous inequity aversion and engages brain regions like the lAI, rDLPFC, 

DMPFC, and right amygdala, the specific neurocomputational mechanisms and cognitive 

processing stages underlying this modulation remain elusive. Our study aimed to elucidate the 

neurocomputational mechanisms by which context influences reciprocity, shedding light on the 

pertinent psychological components and processing stages involved, through the combined 

application of fMRI and computational modeling. 

To investigate the psychological components and the interplay of self and other considerations in 

reciprocity decisions, we employed a two-stage interactive economic task based on a binary trust 

game (Evans & van Beest, 2017). Participants, assigned the role of trustee, were randomly 

allocated to either a gain- or loss-framed context and interacted with anonymous partners (trustors) 

in each trial. The task consisted of a decision stage, where participants chose to reciprocate or 

betray, and an inference stage, where they inferred their partner's prior trust decision. Additionally, 

participants completed the Interpersonal Reactivity Index (IRI) (Davis, 1980) to assess empathy, 

reflecting other-oriented tendencies, and the Machiavellianism (Mach-IV) scale (Christie & Geis, 

1970) to gauge tendencies towards selfishness or its control, capturing self-oriented tendencies. 

Drawing upon prior research, we proposed the following three hypotheses: At the behavioral level, 
we anticipated that individuals in the loss frame would demonstrate lower reciprocity rates 
compared to those in the gain frame, given the tendency towards increased self-interest in the 
context of potential losses (Fiedler & Hillenbrand, 2020).  

At the psychological level, we hypothesized that individuals in the loss frame would exhibit 
reduced advantageous inequity aversion, which would subsequently impact reciprocity rates, in 
line with prior findings demonstrating decreased advantageous inequity aversion in loss frames 
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(Boun My et al., 2018). Furthermore, we posited positive correlations between other-oriented 
tendencies (as measured by the IRI) and advantageous inequity aversion, and negative correlations 
with self-oriented tendencies (as measured by the Mach-IV scale).  

At the neural level, we predicted that the contextual modulation of advantageous inequity aversion 
during reciprocity decisions would engage specific brain regions, including the right amygdala, 
lAI, DMPFC, and rDLPFC, consistent with prior neuroimaging findings (Haruno & Frith, 2010; 
Xiaoxue Gao et al., 2018). In particular, we anticipated the engagement of the DMPFC and 
rDLPFC during other-oriented inference, considering their well-documented functions in 
mentalizing (Isoda & Noritake, 2013; Krueger, 2021) and intention-based decision-making 
(Nihonsugi et al., 2015), respectively. For self-oriented evaluation, contrasting the decision and 
inference stages, we anticipated the engagement of lAI due to its role in norm compliance (Chang 
& Sanfey, 2011; Xiaoxue Gao et al., 2018) and the right amygdala given its involvement in 
personal affect and emotional awareness (Craig, 2009).  
Materials and Methods  

Participants 

Initially, 80 participants with no history of psychoactive medication use, mental disorders, or brain 

injuries were recruited and randomly assigned to either the gain or loss framed context group. 

However, the final sample comprised 65 participants (32 in the gain frame, 33 in the loss frame), 

following exclusions based on pre-defined criteria (Tab. 1): lack of belief in the authenticity of 

real-person interactions within the game (n=10), incorrect identification of their assigned role 

(n=4; 3 in the gain-framed condition, 1 in the loss-framed condition), and excessive head motion 

during data acquisition (n=1; criteria: mean frame-wise displacement exceeding 0.2 mm or more 

than 20% of the total number of volumes exceeding 2 mm maximum translation or 2 degree 

rotation). One participant met both the incorrect role identification and excessive head motion 

criteria. The study was conducted in accordance with the ethical guidelines outlined in the 

Declaration of Helsinki and received approval from the Ethics Committee at Shenzhen University 

in China. All participants provided written informed consent prior to participation. Participants 

received a fixed attendance fee of 60 yuan (approximately $8) and a variable monetary reward 

contingent on their performance in the game, ranging from 40 yuan to 80 yuan (approximately $6 

to $11). 
Questionnaires 
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Participants completed two self-report questionnaires through an online survey platform 
(https://www.wjx.cn). The IRI assessed trait empathy through four distinct 7-item subscales (Davis, 
1980): perspective-taking (PT), measuring the ability to understand others' viewpoints; fantasy 
(FS), evaluating the capacity to immerse oneself in fictional characters' experiences; empathetic 
concern (EC), measuring sympathy for others' concerns; and personal distress (PD), assessing 
discomfort when witnessing others' suffering. Participants completed the 28-item questionnaire 
using a 5-point Likert scale ("Does not describe me well" to "Describes me very well"). Cronbach's 
α analysis indicated acceptable internal consistency in our sample for all subscales and the total 
score: PT (α = 0.682), FS (α = 0.706), EC (α = 0.658), PD (α = 0.621), and total (α = 0.805). The 
Mach-IV questionnaire (Christie & Geis, 1970) assessed Machiavellianism, reflecting selfish 
tendencies. Participants responded to 20 items on a 7-point Likert scale, indicating their level of 
agreement or disagreement with statements about their attitudes and behaviors. The total score was 
calculated by summing the responses, with ten items reverse-scored. Cronbach's α analysis 
demonstrated acceptable internal consistency for the Mach-IV in our sample (α = 0.718). 
Experimental design 

Before the experiment, participants attended an orientation session to learn the game's rules and 
practice their roles within the binary trust game structure, after which they were assigned to either 
the gain or loss frame (between-subject design) based on their group allocation (Fig. 1 A). In this 
game (programmed with E-Prime 3.0, https://pstnet.com/products/e-prime), Player 1 (P1, trustor) 
chooses either "status quo" or "trust," followed by Player 2's (P2, trustee) choice of "reciprocate" 
or "betray" (Evans & van Beest, 2017). If P1 chooses "status quo," both receive immediate payoffs 
(P1: a1, P2: b1), with P2's decision having no impact. If P1 chooses "trust," final payoffs depend 
on P2's choice: "reciprocate" (P1: a2, P2: b2) or "betray" (P1: a3, P2: b3). Participants assumed 
the role of P2 and were informed that their counterparts (P1s) had already made their choices, 
recorded in the system. Final payoffs would be calculated based on both players' decisions. 
Participants' responses were collected using a response pad with their right hand. The experiment 
involved no deception; all counterparts were real participants. Note that data for P1s will be 
published separately. 

The binary trust game featured varying payoff structures across trials, maintaining consistent 
features: for P1, a2 > a1 > a3; for P2, b3 > b2 > b1; and in all trials, a1 > b1 and a3 < b3. The 
relationship between a2 and b2 varied, with a2 > b2 in 32 trials, a2 = b2 in 5 trials, and a2 < b2 in 
43 trials. From a purely rational perspective, P1 should always choose to "trust," anticipating that 
P2 will "reciprocate" to secure the highest possible payoff (a2). Conversely, P2's rational choice is 
to consistently "betray" to achieve their highest possible payoff (b3). 
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The experimental task consisted of 80 trials, divided into two runs (total duration: 25.33 minutes) 
with short breaks (approximately 3 minutes) interspersed for rest. Each trial followed a structured 
timeline (Fig. 1 B, C): Fixation stage: An asterisk was displayed on the screen for an average of 
3 seconds (range: 2-4 seconds). Decision stage: Participants had 6 seconds to choose between 
"reciprocate" or "betray." The chosen option was highlighted for 0.5 seconds, and an asterisk filled 
the remaining time if the decision was made quicker. Fixation stage: The asterisk reappeared for 
an average of 3 seconds (range: 2-4 seconds). Inference stage: Participants had 6 seconds to predict 
their partner's action ("trust" or "status quo"). Similar to the decision stage, the selected choice was 
highlighted, or an asterisk filled any remaining time. In both stages, if no response was made within 
the 6-second window, the highlight was omitted, and the asterisk filled the 0.5 seconds. 

To mitigate potential spatial biases in decision-making, four versions of the game were created by 
systematically alternating the on-screen positions of the "status quo"/"trust" and 
"reciprocate"/"betray" options. These versions were counterbalanced across participants within 
each frame group. For analysis, all versions were standardized to a single representation (Fig. 1 
A). The potential impact of these game version variations was assessed to ensure that observed 
effects were not attributable to differences in presentation. 

--- Insert Figure 1 about here --- 

The loss frame was adapted from the gain frame using a modified approach based on a previous 

study (Evans & van Beest, 2017). The sum of the "betray" option values (a3 + b3), rather than just 

b3, served as the reference point. Loss frame values were then calculated as the difference between 

each gain frame value and this reference. In the gain frame, participants started with 0 points and 

accumulated points, while in the loss frame, they began with 9,500 points and lost points based on 

their decisions. This design guaranteed equivalent outcomes if identical strategies were employed 

in both frames (Evans & van Beest, 2017). Participants' final earnings were determined by the 

accumulated points in the gain frame or the remaining points in the loss frame. 

After the experiment, participants completed a post-experimental check, evaluating: (1) whether 
participants believed they had interacted with real partners, and (2) whether they correctly 
identified their role as P2 in the game. Participants who doubted the interaction's authenticity or 
misidentified their role were excluded from subsequent data analysis, ensuring that the data for 
analysis reflected genuine social interactions by including only those who were fully engaged and 
understood their role. 
Computational modeling  
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A stage-wise model construction procedure was utilized to identify and quantify the latent 
psychological components influencing reciprocity behavior in our binary trust game (Gagne et al., 
2020; Z. Wang et al., 2023; L. Zhang & Gläscher, 2020). The model was sequentially refined based 
on the performance of the prior best-fitting model. Model comparisons were conducted using 
Akaike Information Criterion (AIC) (H. Wang et al., 2024), with the lowest values indicating the 
best model. Parameter estimation was performed using the optimize function in SciPy module on 
Python (van Baar et al., 2019). For each participant, the entire parameter space was explored using 
1000 random starting points. The parameters from the first occurrence of the best-fitting model 
were selected. Five plausible candidate models were tested in total. 

Informed by previous studies (Nihonsugi et al., 2015; Xiao et al., 2022), the initial model included 
components of guilt aversion and inequity aversion (M1). It hypothesized that decisions are 
influenced by the trade-off between socio-emotional factors and potential gains. The utility 
function (U) was defined as shown in Eq. 1: 

𝑈 = #𝑏! 	− 	𝛽" · (𝑎# 	− 	𝑎!) 	−	𝛽$ · (𝑏! 	− 	𝑎!), if betray
𝑏# 	− 	𝛽$ · |𝑏# −	𝑎#|																																						, if reciprocate                             M1 (1) 

Contrary to previous studies (Nihonsugi et al., 2015; Xiao et al., 2022), participants were not 
informed of their partner's reciprocity beliefs, mimicking real-world social interactions where such 
knowledge is often lacking. The term (𝑎# 	− 	𝑎!)  represented the extent of anticipated guilt 
experienced upon choosing betrayal (where the partner receives 𝑎!), taking into account the 
partner's assumed trust and expectation of reciprocity (anticipating 𝑎#), with 𝛽"  (0< 𝛽"  <10) 
capturing the participant's subjective aversion to guilt. The terms (𝑏! 	− 	𝑎!)  and |𝑏# −	𝑎#| 
measure the inequity in choosing betrayal and reciprocity, with 𝛽$  (0< 𝛽$  <10) indicating the 
participant's subjective aversion to inequity. In our binary trust game design, the participant's 
payoff (𝑏!) always exceeds the partner's payoff (a3) in the betrayal option. However, for the 
reciprocity option, the participant's payoff (𝑏#) may be greater or less than the partner's payoff (𝑎#). 
Our baseline model quantifies inequity as the absolute difference between b# and a# in the 
reciprocity option, assuming participants give equal weight to both advantageous and 
disadvantageous inequity aversions, following previous studies (Nihonsugi et al., 2015; Xiao et 
al., 2022). To calculate the probability of choosing reciprocation in each trial, utility (𝑈) of 
reciprocity and betrayal were entered into a SoftMax function with an inverse temperature 
parameter λ (0 < λ < 10) controlling the participant’s trade-off between randomness and 
determinism (Eq. 2): 

𝑃(𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑡𝑒) 	= 	 %
%	'	(!"($(%&'()%*'+,&)	!	$(/&,%+0))

                                       (2) 
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In M2 (Eq. 3), the Fehr–Schmidt inequity aversion model (Fehr & Schmidt, 1999) was used. This 
model distinguishes between two types of inequity aversion: advantageous inequity aversion and 
disadvantageous inequity aversion. 

𝑈 = # 𝑏! −	𝛽" · (𝑎# 	− 	𝑎!) 	−	𝛽)*+$) · (𝑏! 	− 	𝑎!)																				, if betray
𝑏# −	𝑝 · 𝛽)*+$) · (𝑏# −	𝑎#) 	− 	𝑞 · 	𝛽,-.)*+$)(𝑎# −	𝑏#)		, if reciprocate	                 M2 (3) 

Here, 𝛽)*+$) and 𝛽,-.)*+$) represents the participant’s subjective aversion to advantageous and 
disadvantageous inequity, respectively. 𝑝 and 𝑞 are conditional indicators: when 𝑏# >	𝑎#,	𝑝 = 1, 
𝑞 = 0; conversely, when 𝑏# >	𝑎#, 𝑝 = 0, 𝑞 = 1. Building on the improvement of model fitting, M3 
was developed by adding a reward parameter (Eq. 4) into M2, resulting in further improved model 
performance. 

𝑈 = # 𝛽/ · 𝑏! 		− 	𝛽" · (𝑎# 	− 	𝑎!) 	−	𝛽)*+$) · (𝑏! 	− 	𝑎!)																		, if betray
𝛽/ · 𝑏# −	𝑝 · 𝛽)*+$) · (𝑏# −	𝑎#) 	− 	𝑞 · 	𝛽,-.)*+$)(𝑎# −	𝑏#)		, if reciprocate	          M3 (4) 

 

Based on M3, M4 posits that participants dislike advantageous inequity in betrayal but favor it in 
reciprocity. Therefore, the inequity aversion term in the reciprocity option of M3 were replaced 
with an advantageous inequity liking component (Eq. 5). 

𝑈 = #𝛽/ · 𝑏! 	− 	𝛽" · (𝑎# 	− 	𝑎!) 	−	𝛽)*+$) · (𝑏! 	− 	𝑎!), if betray
𝛽/ · 𝑏# + 	𝛽)*+$0 · (𝑏# −	𝑎#)																																							, if reciprocate                            M4 (5) 

In this model, the term (𝑏# −	𝑎#)  represents the perceived magnitude and direction of 
advantageous inequity (positive or negative), while 𝛽)*+$0  signify the participant’s subjective 
liking to the advantageous inequity in reciprocity. The model comparison showed M4 
outperforming M3. M5 was established upon M4, assumes consistent trade-off between 
randomness and determinism in decision-making (𝜆	 = 	1) (Nihonsugi et al., 2021). Ultimately, 
model comparison confirmed M4 remained the winning model. 

M4 was validated using model prediction and parameter recovery (van Baar et al., 2019; H. Wang 
et al., 2024). To assess the model's predictive ability, the correlation between predicted and 
observed reciprocity rates, and the prediction accuracy was calculated. For parameter recovery, 
M4 was refitted to the simulated dataset and the correlation between the real and recovered 
parameters was assessed, thereby verifying the fitting precision of the model. 
Statistical analysis 

Statistical analyses of behavioral data were performed using Python (Version 3.9.9; 

https://www.python.org) and its pandas and scipy packages, with statistical significance set at p < 

0.05 (two-tailed). Visualizations were created with the seaborn package.  
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The effects of frame on reciprocity rate and psychological components from the winning model 

(advantageous inequity aversion, guilt aversion, advantageous inequity liking, reward sensitivity) 

were analyzed using the Mann-Whitney U test. Spearman correlation was employed to investigate 

the relationship between psychological components and brain activity within each frame. These 

non-parametric tests were chosen for their robustness to potential outliers and non-normal 

distributions, commonly observed in psychological data. 

To investigate the mediational role of advantageous inequity aversion between context and 

reciprocity rate, a mediation analysis was performed using the GLM Mediation Model within the 

MedMod module in jamovi (Version 2.3.18.0; www.jamoni.org). Confidence intervals were 

estimated through 1,000 bootstrap resamples using the bootstrap percentile method. 

The internal consistency of the questionnaire was assessed using Cronbach's α (Taber, 2018). 
Mann-Whitney U tests were conducted to compare questionnaire results between the gain and loss 
frame groups. Bivariate Spearman correlations were used to examine the relationship between 
scale scores and psychological components. 
Imaging data acquisition and preprocessing 

MRI data were acquired using a Siemens Trio 3T scanner with a 64-channel phased array head 
coil. Functional MRI (fMRI) data were collected with a T2∗-weighted multiband echo-planar 
imaging (EPI) protocol, with a multiband slice acceleration factor of 5, employing the following 
parameters: repetition time (TR) of 1,000 ms, echo time (TE) of 30 ms, 65 axial slices with a 2-
mm spacing between slices, a flip angle of 90°, a field of view (FOV) of 192 × 192 mm², and a 
voxel size of 2 × 2 × 2 mm³. There were two runs in total, each lasting 12.67 minutes and 
comprising 770 volumes. A high-resolution anatomical image was obtained after the experiment 
using a T1-weighted MPRAGE protocol, with TR/TE of 2300 ms/2.26 ms, 192 slices, a flip angle 
of 8°, an FOV of 256 × 256 mm², and a voxel size of 1 × 1 × 1 mm³. 

The anatomical and functional MRI data were preprocessed using fMRIPrep 21.0.2 (Esteban et al., 
2019), which is built on Nipype 1.6.1 (Gorgolewski et al., 2011). For more pipeline details, see the 
section corresponding to workflows in fMRIPrep’s documentation (https://fmriprep.org). Image 
preprocessing was conducted, including slice-timing correction, realignment, co-registration, 
spatial normalization to the Montreal Neurological Institute (MNI) space with a spatial resolution 
of 2 × 2 × 2 mm3. The preprocessed images (without smoothing) were then smoothed with a 
Gaussian kernel of 6 mm full width at half maximum (FWHM). 
Imaging data analysis 
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General linear model (GLM) analysis was performed using SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), running within the MATLAB environment. 
Given that advantageous inequity aversion was the only component in the model exhibiting a 
significant framing effect, its influence on the decision stage, inference stage, and the contrast 
between these stages was assessed. In addition, the beta values of identified brain regions related 
to advantageous inequity aversion were further compared between the gain and loss frames. To 
ensure the tested hypothesis had maximum variance and minimize potential multicollinearity 
issues, advantageous inequity aversion was examined using a separate model (Gao et al., 2024).  

The onsets of the decision and inference stages were modeled as conditions, with the objective 

advantageous inequity aversion value for all trials included as a parametric modulator. Six head 

movement parameters were also incorporated as covariates. The defined regressors were 

convolved with the canonical hemodynamic response function. Contrast images for the decision 

stage, inference stage, and their contrast—reflecting the modulator effect of advantageous inequity 

aversion from the first-level analysis—were entered into the second-level analysis. Here, 

subjective advantageous inequity aversion served as a regressor, while the game version was 

included as a covariate to identify the neural correlates of advantageous inequity aversion. 

Subsequently, beta values were extracted and compared between the gain and loss frames. 

The significance level was set to p < 0.001 uncorrected at the voxel level, with an FWE-corrected 
p < 0.05 at the cluster level. Small volume correction (SVC) analyses were also performed, 
focusing on regions of interest (ROIs) previously implicated in advantageous inequity aversion, 
including lAI, DMPFC, rDLPFC, and right amygdala (Haruno & Frith, 2010; Xiaoxue Gao et al., 
2018). For SVC, a threshold of p < 0.001 at the voxel level and p < 0.05 FWE-corrected at the 
cluster or peak level was applied. This approach aimed to enhance comparability with prior 
research while maintaining statistical rigor (H. Wang et al., 2024). Anatomical ROI masks from 
the AAL atlas in the SPM WFU Pickatlas toolbox (www.ansir.wfubmc.edu, version 3.0) were used 
for SVC analyses (Tzourio-Mazoyer et al., 2002). These included masks for the lAI, a mask 
combining Frontal_Sup_Medial_L and Frontal_Sup_Medial_R (covering DMPFC), a mask for 
Frontal_Mid_R (covering DLPFC), and the right amygdala. 
Results 

Behavioral and modeling results 

Investigating the impact of frame on reciprocity rate, a trend towards lower reciprocity rates in 
individuals under the loss frame compared to the gain frame was observed (U = 393, p = 0.078) 
(Fig. 2A).  
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--- Insert Figure 2 about here --- 

To uncover the psychological underpinnings of reciprocity, five plausible computational models 

were constructed, with model comparison revealing that the proposed model 4 (M4)—

encompassing components such as advantageous inequity aversion, advantageous inequity liking, 

guilt aversion, and reward sensitivity—provided the best fit to our data (Fig. S1, also see 

supplementary for model validation). 

Examining the impact of frame on the psychological components of reciprocity, individuals 
exhibited significantly lower advantageous inequity aversion under the loss frame compared to the 
gain frame (U = 371, p = 0.039) (Fig. 2B), while no significant frame effect was observed on guilt 
aversion (U = 450, p = 0.281), advantageous inequity liking (U = 600.5, p = 0.338), and reward 
sensitivity (U = 441.5, p = 0.259). The higher the advantageous inequity aversion was, the higher 
the reciprocity rate under the gain (rs = 0.61, p < 0.001) and loss (rs = 0.72, p < 0.001) frame (Fig. 
2C). The game version did not affect either the reciprocity decision or the psychological 
components, ps > 0.05. 

Mediation analysis revealed a significant complete indirect effect of frame on reciprocity rate via 

advantageous inequity aversion (a*b = -0.17, SE = 0.05, CI = [-0.196, -0.002]), indicating that the 

loss frame, compared to the gain frame, decreased reciprocity rate through its effect on 

advantageous inequity aversion (Fig. 2D). 
Questionnaire results 

Results from the psychometric measures showed no significant differences between the gain and 

loss frame groups on either the Mach-IV or IRI scales (Tab. 1). Exploratory analyses revealed 

only a trend-level negative correlation between advantageous inequity aversion and both 

Machiavellianism (rs = -0.24, p = 0.058) and PD (rs = -0.22, p = 0.073), suggesting that individuals 

higher in Machiavellianism or PD tend to exhibit lower advantageous inequity aversion. 
Neuroimaging results 

To pinpoint brain regions associated with advantageous inequity aversion in overall reciprocity 

decision-making, parametric modulation analysis was applied to the decision stage. A negative 

association with advantageous inequity aversion in the right amygdala was observed (peak at [30, 

0, -20], k = 12, voxel level Puncorrected < 0.001; cluster level PFWE < 0.05, SVC corrected) (Fig. 3), 

indicating that higher levels of advantageous inequity aversion were linked to decreased activity 

in the right amygdala. In particular, advantageous inequity aversion showed a significant negative 
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correlation with right amygdala activity under the gain (rs = -0.48, p = 0.006) but not under the 

loss (rs = -0.29, p = 0.102) frame. No significant difference in right amygdala activity was observed 

between the gain and loss frame (U = 507.0, p = 0.788). The observation that the right amygdala 

is associated with advantageous inequity aversion exclusively in the gain frame, but not in the loss 

frame, suggests its involvement in the processing of advantageous inequity aversion is contingent 

upon the specific context. 

--- Insert Figure 3 about here --- 

To identify brain regions involved in advantageous inequity aversion in inferencing other’s actions, 
parametric modulation analysis was applied to the inference stage. Brain activities positively 
related to advantageous inequity aversion were observed in DMPFC ([18, 34, 58], k = 631, cluster 
level PFWE < 0.05), rDLPFC ([46, 14, 42], k = 368, cluster level PFWE < 0.05) and lSMG ([-52, -
48, 58], k = 409, cluster level PFWE < 0.05) (Fig. 4 A). Specifically, advantageous inequity aversion 
showed a significant positive correlation with DMPFC under both gain and loss frame (gain: rs = 
0.52, p = 0.002; loss: rs = 0.57, p < 0.001), rDLPFC (gain: rs = 0.47, p = 0.006; loss: rs = 0.67, p < 
0.001), and lSMG (gain: rs = 0.59, p < 0.001; loss: rs = 0.53, p = 0.001) (Fig. 4 B). No significant 
differences in DMPFC (U = 507.0, p = 0.788), rDLPFC (U = 498.0, p = 0.699), and lSMG (U = 
509.0, p = 0.808) activities were observed between gain and loss frame (Fig. 4 C). The presence 
of the association of advantageous inequity aversion in these regions but the absence of the framing 
effect suggests their involvement in processing advantageous inequity aversion regardless of 
context. 

--- Insert Figure 4 about here --- 

Given that reciprocity decisions entail both self- and other-oriented considerations, parametric 
modulation analysis was also applied to the contrast between decision and inference stages to 
identify brain regions associated with advantageous inequity aversion in self-oriented evaluation. 
lAI activities ([-44, 8, -8], k = 8, voxel level Puncorrected < 0.001; cluster level PFWE < 0.05, SVC 
corrected) positively, but rDLPFC activity (peak at [46, 14, 44], k = 50, voxel level Puncorrected < 
0.001; cluster level PFWE < 0.05, SVC corrected) negatively, associated with advantageous inequity 
aversion was observed (Fig. 5 A). Specifically, advantageous inequity aversion showed a 
significant negative correlation with lAI activity under the gain (rs = 0.42, p = 0.017) but not under 
the loss (rs = 0.17, p = 0.338) frame. Advantageous inequity aversion showed a significant negative 
correlation with rDLPFC under both gain and loss frame (gain: rs = -0.43, p = 0.013; loss: rs = -
0.54, p = 0.001) (Fig. 5 B). The lAI activity was significantly lower under the loss compared to 
the gain (U = 685.0, p = 0.040) frame, whereas no significant difference in rDLPFC activity was 
observed between frames (U = 459.0, p = 0.369). The observation that the lAI is associated with 
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advantageous inequity aversion exclusively in the gain frame, but not in the loss frame, suggests 
its involvement in the processing of advantageous inequity aversion is contingent upon the specific 
context. The association of advantageous inequity aversion with rDLPFC in both frames, suggests 
their role in processing advantageous inequity aversion is context independent. 

--- Insert Figure 5 about here --- 
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Discussion 

Our study employed computational modeling and fMRI within an economic binary trust game, 
incorporating both other-oriented and self-oriented considerations, to examine the 
neurocomputational mechanisms driving the contextual influence (gain vs. loss frame) of 
reciprocity. At the behavioral level, our findings indicate that the loss frame, in contrast to the gain 
frame, showed a decrease trend in reciprocity rate. At the psychological level, this reduction was 
mediated by a diminished impact of the psychological construct of advantageous inequity aversion 
on reciprocity behavior. At the neural level, our findings revealed a context-dependent role for the 
right amygdala in modulating advantageous inequity aversion during overall decision-making, 
with activity inversely correlated specifically within the gain frame. While brain regions associated 
with advantageous inequity aversion during other-oriented inference exhibited no significant 
contextual modulation, the lAI demonstrated heightened activity in the gain compared to the loss 
frame and a unique association with advantageous inequity aversion exclusively within the gain 
context during self-oriented evaluation. Overall, our study elucidates the neurocomputational 
mechanisms and decision-making processes underlying reciprocity, emphasizing the pivotal role 
of self-oriented evaluation in mediating the contextual modulation of reciprocal behavior. 

Our behavioral results aligned with our first hypothesis, revealing a trend towards decreased 
reciprocity within the loss compared to the gain frame. While the payoff structures may be 
equivalent, prospect theory posits that individuals demonstrate a greater aversion to losses 
compared to their desire for equivalent gains (Kahneman & Tversky, 1979). Reciprocity, as 
opposed to betrayal, necessitates a personal sacrifice to enhance the partner's net payoff. The loss 
frame may amplify the perceived burden of reciprocation, thus diminishing other-regarding 
tendencies and reducing the likelihood of reciprocal behavior. Our finding corroborate previous 
evidence (Bohnet & Meier, 2005; Fang et al., 2022; Fiedler & Hillenbrand, 2020; Keysar et al., 
2008; Y. Zhang et al., 2023), demonstrating that negatively framed decisions, particularly those 
emphasizing potential losses, are frequently associated with decreased altruistic tendencies and an 
increased propensity for self-protective behaviors. To further investigate the computational 
mechanism by which context affects reciprocity, we employed computational modeling to unpack 
the decision-making components. Our analysis revealed that the best-fitting model included 
psychological components such as advantageous inequity aversion, guilt aversion, advantageous 
inequity liking, and reward sensitivity. 

In line with our second hypothesis, we observed that the contextual effect was specific to 
advantageous inequity aversion, supporting prior research (Boun My et al., 2018; Xiaoxue Gao et 
al., 2018). Advantageous inequity aversion was significantly reduced under the loss frame 
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compared to the gain frame, while the remaining three psychological components (guilt aversion, 
advantageous inequity liking, and reward sensitivity) remained unaffected by the context.  

Advantageous inequity aversion, a moral concern for others' welfare, manifests as discomfort 
when one holds an advantaged position relative to other and has been shown to influence prosocial 
decision-making (Starmans et al., 2017). Our findings are consistent with research demonstrating 
that loss contexts can diminish moral concerns, leading to increased dishonesty (Schindler & 
Pfattheicher, 2017) and reduced equity preferences (De Dreu, 1996). The observed contextual 
impact on advantageous inequity aversion, but not on reward sensitivity, suggests that the 
difference in reciprocity rates is not primarily driven by self-interest. Instead, our results indicate 
that loss frames decrease other-regarding concerns rather than amplify self-protection motives 
compared to gain frames. 

In partial alignment with our third hypothesis, our analysis of the reciprocity decision stage 

revealed a negative association between right amygdala activity and advantageous inequity 

aversion exclusively within the gain frame, with no such association observed in the loss frame. 

Prior studies have reported inconsistent findings regarding the relationship between amygdala 

activity and inequity aversion, demonstrating both positive and negative associations (Haruno & 

Frith, 2010; Nihonsugi et al., 2015). This discrepancy may stem from the conflation of 

advantageous inequity aversion and disadvantageous inequity aversion within the broader concept 

of inequity aversion. Our study addresses this ambiguity by focusing exclusively on advantageous 

inequity aversion, uncovering a negative association with amygdala activity. Since concern for 

others often necessitates personal sacrifice and may engage cognitive control mechanisms. The 

amygdala plays a well-established role in processing emotional responses, especially in relation to 

negative emotions and selfish impulses (Phelps, 2006; Scheggia et al., 2022). Our analysis of 

other-oriented inference revealed the involvement of rDLPFC, a region implicated in both 

cognitive control (Fang et al., 2022; Fehr & Schmidt, 1999) and emotional down-regulation (Blair 

et al., 2007), offers a potential explanation for the negative correlation between advantageous 

inequity aversion and amygdala activity. 

Our questionnaire data also revealed a trend towards reduced selfishness and personal distress in 

individuals exhibiting heightened advantageous inequity aversion, lending further support to the 

proposed down-regulation mechanism. While this observation diverges from our initial 

hypothesis, it suggests a potential association between heightened advantageous inequity aversion 
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and enhanced cognitive control especially in stage of inferencing other’s need. This enhanced 

cognitive control could facilitate the effective regulation of self-interest and emotional responses, 

manifesting as the observed lower selfishness and personal distress. Importantly, the negative 

correlation between amygdala activity and advantageous inequity aversion was exclusive to the 

gain frame, indicating a potential disruption of this down-regulation process within the loss frame. 

This disruption may be attributed to the diminished moral concern often associated with loss-

framed decision-making contexts (De Dreu, 1996; Leib et al., 2019; Schindler & Pfattheicher, 

2017).  

Reciprocity decision-making is a complex social cognitive process involving the integration of 
other-oriented inference and self-oriented evaluation. To elucidate the contextual effects on these 
distinct components, we implemented a two-stage design. Participants first made their own 
reciprocity decision, then immediately inferred their partner's trust decision. This approach 
enabled us to investigate both other-oriented inference and, through contrast analysis, to indirectly 
examine self-oriented evaluation. 

Our results partially confirmed our third hypothesis, demonstrating distinct neural substrates of 

advantageous inequity aversion during different processes of the reciprocity decision-making. 

During the other-oriented inference processes, activity in the DMPFC, rDLPFC, and lSMG was 

positively associated with advantageous inequity aversion. In contrast, during the self-oriented 

evaluation processes, we observed a positive modulation of advantageous inequity aversion in lAI 

and a negative modulation in rDLPFC.  

The neural regions identified in our study are well-established within the domains of social 
cognition and decision-making. The DMPFC, a key component of the mentalizing network, is 
integral for inferring intentions during social interactions (Isoda & Noritake, 2013; Xiaoxue Gao 
et al., 2018). The DLPFC, known for its critical role in executive functions and cognitive control 
(Miller & Cohen, 2001), contributes to the suppression of selfish motives, the regulation of 
negative emotions (Knoch et al., 2006; Ruff et al., 2013; Zhu et al., 2014), and plays a causal role 
in intention-based decision-making (Nihonsugi et al., 2015). The SMG, while less frequently 
implicated in social decision-making research, has also been associated with cognitive empathy 
(Kogler et al., 2020). The AI, a region commonly observed in reciprocity studies, is associated 
with norm compliance and the processing of subjective feelings and emotional awareness  (Chang 
& Sanfey, 2011; Craig, 2009; Xiaoxue Gao et al., 2018). Our findings contribute to the existing 
literature on the neural basis of advantageous inequity aversion (Xiaoxue Gao et al., 2018), by 
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delineating the distinct roles of these regions under other-oriented and self-oriented considerations 
during the processing of advantageous inequity aversion. 

Consistent with prior findings (Xiaoxue Gao et al., 2018), we observed a context-dependent 

modulation of advantageous inequity aversion specifically within the lAI during self-oriented 

evaluation processes. Notably, lAI activity was lower and its association with advantageous 

inequity aversion was absent in the loss frame compared to the gain frame. This attenuation 

suggests decreased subjective emotional awareness, potentially reflecting diminished moral 

concern in the loss frame. No contextual effects on the relationship between advantageous inequity 

aversion and DMPFC or rDLPFC activity were observed during either other-oriented inference or 

self-oriented evaluation. This divergence from previous findings might be attributable to variations 

in experimental paradigms (Xiaoxue Gao et al., 2018). Prior research employed stimuli with 

immediate biological relevance (e.g., pain), whereas our economic gain/loss manipulation might 

exhibit reduced sensitivity in detecting all brain regions susceptible to contextual modulation.  

Despite methodological variations between our study and prior research, the implication of the 

DMPFC, rDLPFC, and lAI underscores their fundamental role in the processing of advantageous 

inequity aversion. Our findings highlight the pivotal role of self-oriented considerations, 

particularly the willingness to sacrifice personal gain for the benefit of others, in mediating the 

contextual modulation of advantageous inequity aversion. The specific involvement of the lAI in 

this process underscores its significance in self-oriented evaluation, as opposed to other-oriented 

inference, during the complex decision-making processes involved in reciprocal social interactions. 

The current study possesses certain limitations that warrant consideration. Firstly, due to the 
inherent interconnectedness of other- and self-oriented considerations in reciprocity, we employed 
an indirect approach to examine the self-oriented evaluation by contrasting the decision stage with 
the other-oriented inference stage. Future research endeavors should aim to develop and implement 
more direct measures of self-oriented decision-making processes. Secondly, it is plausible that the 
contextual effects under investigation may emerge during the integration of other- and self-
oriented considerations, rather than solely within each individual process. Consequently, future 
studies should explicitly explore whether the contextual effect of advantageous inequity aversion 
manifests during this integrative stage. Finally, although our study has shed light on the 
neurocomputational mechanisms underlying the framing effect in reciprocity, a more 
comprehensive approach incorporating additional methodologies, such as eye-tracking, could 
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enhance the identification and validation of differences in advantageous inequity aversion under 
gain and loss contexts. For instance, analyzing eye-movement trajectories across different payoff 
distributions during reciprocity decisions could reveal important distinctions (Molter et al., 2022). 
Addressing these limitations in future research will be crucial to advance our understanding of the 
framing effect on reciprocity and its underlying mechanisms. 

Despite these limitations, our study has shed light on the contextual influences on reciprocity, 
demonstrating that context modulates reciprocity through its impact on advantageous inequity 
aversion. We identified distinct neural correlates of this phenomenon, observing context-
dependent modulation of right amygdala activity during overall reciprocity decision-making, and 
lAI activity specifically during the self-oriented evaluation processes. In conclusion, our findings 
offer valuable insights into the neurocomputational mechanisms underlying the contextual effects 
on reciprocity. These insights could potentially inform policymakers in their efforts to foster social 
harmony through the implementation of contextually appropriate frameworks in various social 
settings. 

  



Study 2: Neurocomputational Mechanisms of Contextual Reciprocity 

 
 

55 

Author Contributions 

Huihua Fang, Pengfei Xu, and Frank Krueger contributed to the study conception and design. 
Huihua Fang contributed to material preparation and data collection. Huihua Fang analyzed the 
data and visualized the results. Huihua Fang and Frank Krueger contributed to the original draft of 
the paper. Pengfei Xu and Yuejia Luo provided the funding support. All authors contributed to and 
approved the final manuscript. 
Acknowledgments 

We thank Chong Liao, Zhao Fu, and Shuang Tian for their assistance in data collection. 

This study was supported by the National Natural Science Foundation of China (31920103009 to 
YL, 31871137 to PX), the Major Project of National Social Science Foundation (20&ZD153 to 
YL), Young Elite Scientists Sponsorship Program by China Association for Science and 
Technology (YESS20180158 to PX), Shenzhen-Hong Kong Institute of Brain Science Shenzhen 
Fundamental Research Institutions (2022SHIBS0003 to YL), and Shenzhen Science and 
Technology Research Funding Program (JCYJ20180507183500566 to PX). The funders had no 
role in study design, data collection and analysis, decision to publish, or preparation of the 
manuscript. 
Data Availability Statement 

Data and material related to this paper are available on request from the corresponding author 
(Pengfei Xu). 

 

 
  



Study 2: Neurocomputational Mechanisms of Contextual Reciprocity 

 

56 

Reference 

Abric, J.-C. (1993). Central system, peripheral system: Their functions and roles in the dynamics 
of social representations. Papers on Social Representations, 2, 75–78. 

Bellucci, G., Feng, C., Camilleri, J., Eickhoff, S. B., & Krueger, F. (2018). The role of the anterior 
insula in social norm compliance and enforcement: Evidence from coordinate-based and 
functional connectivity meta-analyses. Neuroscience and Biobehavioral Reviews, 92, 378–
389. https://doi.org/10.1016/j.neubiorev.2018.06.024 

Blair, K. S., Smith, B. W., Mitchell, D. G. V., Morton, J., Vythilingam, M., Pessoa, L., Fridberg, 
D., Zametkin, A., Nelson, E. E., Drevets, W. C., Pine, D. S., Martin, A., & Blair, R. J. R. 
(2007). Modulation of emotion by cognition and cognition by emotion. NeuroImage, 35(1), 
430–440. https://doi.org/10.1016/j.neuroimage.2006.11.048 

Bohnet, I., & Meier, S. (2005). Deciding to distrust. SSRN Electronic Journal, 05. 
https://doi.org/10.2139/ssrn.839225 

Boun My, K., Lampach, N., Lefebvre, M., & Magnani, J. (2018). Effects of gain-loss frames on 
advantageous inequality aversion. Journal of the Economic Science Association, 4(2), 99–
109. https://doi.org/10.1007/s40881-018-0057-2 

Boyce, C. J., Brown, G. D., & Moore, S. C. (2010). Money and happiness: Rank of income, not 
income, affects life satisfaction. Psychological Science, 21(4), 471–475. 

Chang, L. J., & Sanfey, A. (2011). Great expectations: Neural computations underlying the use of 
social norms in decision-making. Social Cognitive and Affective Neuroscience, 8 3, 277–
284. https://doi.org/10.1093/scan/nsr094 

Christie, R., & Geis, F. L. (1970). Studies in machiavellianism. New York, NY: Academic Press. 

Cox, C. A. (2013). Inequity aversion and advantage seeking with asymmetric competition. Journal 
of Economic Behavior & Organization, 86, 121–136. 
https://doi.org/10.1016/j.jebo.2012.12.020 

Craig, A. D. (2009). How do you feel—Now? The anterior insula and human awareness. Nature 
Reviews Neuroscience, 10(1), 59–70. 

Crone, K. (2018). Understanding others, reciprocity, and self-consciousness. Phenomenology and 
the Cognitive Sciences, 17(2), 267–278. https://doi.org/10.1007/s11097-016-9498-3 

Davis, M. H. (1980). A multidimensional approach to individual differences in empathy. 

De Dreu, C. K. W. (1996). Gain–loss-frame in outcome-interdependence: Does it influence 
equality or equity considerations? European Journal of Social Psychology, 26(2), 315–324. 



Study 2: Neurocomputational Mechanisms of Contextual Reciprocity 

 
 

57 

https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-
0992%28199603%2926%3A2%3C315%3A%3AAID-EJSP759%3E3.0.CO%3B2-Z 

Dohmen, T., Falk, A., Fliessbach, K., Sunde, U., & Weber, B. (2011). Relative versus absolute 
income, joy of winning, and gender: Brain imaging evidence. Journal of Public Economics, 
95(3), 279–285. https://doi.org/10.1016/j.jpubeco.2010.11.025 

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., 
Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., 
Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: A robust preprocessing pipeline 
for functional MRI. Nature Methods, 16(1), 111–116. https://doi.org/10.1038/s41592-018-
0235-4 

Evans, A. M., & van Beest, I. (2017). Gain-loss framing effects in dilemmas of trust and reciprocity. 
Journal of Experimental Social Psychology, 73(July), 151–163. 
https://doi.org/10.1016/j.jesp.2017.06.012 

Fang, H., Liao, C., Fu, Z., Tian, S., Luo, Y., Xu, P., & Krueger, F. (2022). Connectome-based 
individualized prediction of reciprocity propensity and sensitivity to framing: A resting-
state functional magnetic resonance imaging study. Cerebral Cortex, 33(6), 3193–3206. 
https://doi.org/10.1093/cercor/bhac269 

Fehr, E., & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. The 
Quarterly Journal of Economics, 114(3), 817–868. 
https://doi.org/10.1162/003355399556151 

Festinger, L. (1954). A theory of social comparison processes. Human Relations, 7(2), 117–140. 

Fiedler, S., & Hillenbrand, A. (2020). Gain-loss framing in interdependent choice. Games and 
Economic Behavior, 121, 232–251. https://doi.org/10.1016/j.geb.2020.02.008 

Fiske, S. T. (2011). Envy up, scorn down: How status divides us. Russell Sage Foundation. 

Gagne, C., Zika, O., Dayan, P., & Bishop, S. J. (2020). Impaired adaptation of learning to 
contingency volatility in internalizing psychopathology. eLife, 9, e61387. 
https://doi.org/10.7554/eLife.61387 

Gao, X., Jolly, E., Yu, H., Liu, H., Zhou, X., & Chang, L. J. (2024). The psychological, 
computational, and neural foundations of indebtedness. Nature Communications, 15(1), 
Article 1. https://doi.org/10.1038/s41467-023-44286-9 



Study 2: Neurocomputational Mechanisms of Contextual Reciprocity 

 

58 

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & 
Ghosh, S. S. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data 
processing framework in python. Frontiers in Neuroinformatics, 5. 
https://doi.org/10.3389/fninf.2011.00013 

Hagen, E. H., & Hammerstein, P. (2006). Game theory and human evolution: A critique of some 
recent interpretations of experimental games. Theoretical Population Biology, 69(3), 339–
348. https://doi.org/10.1016/j.tpb.2005.09.005 

Haruno, M., & Frith, C. D. (2010). Activity in the amygdala elicited by unfair divisions predicts 
social value orientation. Nature Neuroscience, 13(2), 160–161. 
https://doi.org/10.1038/nn.2468 

Isoda, M., & Noritake, A. (2013). What makes the dorsomedial frontal cortex active during reading 
the mental states of others? Frontiers in Neuroscience, 7. 
https://doi.org/10.3389/fnins.2013.00232 

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. 
Econometrica, 47(2), 263–291. https://doi.org/10.2307/1914185 

Keysar, B., Converse, B. A., Wang, J., & Epley, N. (2008). Reciprocity is not give and take: 
Asymmetric reciprocity to positive and negative acts. Psychological Science, 19(12), 
1280–1286. https://doi.org/10.1111/j.1467-9280.2008.02223.x 

Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., & Fehr, E. (2006). Diminishing reciprocal 
fairness by disrupting the right prefrontal cortex. Science, 314(5800), 829–832. 
https://doi.org/10.1126/science.1129156 

Kogler, L., Müller, V. I., Werminghausen, E., Eickhoff, S. B., & Derntl, B. (2020). Do I feel or do 
I know? Neuroimaging meta-analyses on the multiple facets of empathy. Cortex, 129, 341–
355. https://doi.org/10.1016/j.cortex.2020.04.031 

Krueger, F. (2021). The Neurobiology of Trust. Cambridge University Press. 

Leib, M., Pittarello, A., Gordon-Hecker, T., Shalvi, S., & Roskes, M. (2019). Loss framing 
increases self-serving mistakes (but does not alter attention). Journal of Experimental 
Social Psychology, 85, 103880. https://doi.org/10.1016/j.jesp.2019.103880 

Li, J., Xiao, E., Houser, D., & Montague, P. R. (2009). Neural responses to sanction threats in two-
party economic exchange. Proceedings of the National Academy of Sciences of the United 
States of America, 106(39), 16835–16840. https://doi.org/10.1073/pnas.0908855106 



Study 2: Neurocomputational Mechanisms of Contextual Reciprocity 

 
 

59 

Li, O., Xu, F., & Wang, L. (2018). Advantageous inequity aversion does not always exist: The 
role of determining allocations modulates preferences for advantageous inequity. Frontiers 
in Psychology, 9, 749. https://doi.org/10.3389/fpsyg.2018.00749 

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual 
Review of Neuroscience, 24(Volume 24, 2001), 167–202. 
https://doi.org/10.1146/annurev.neuro.24.1.167 

Molter, F., Thomas, A. W., Huettel, S. A., Heekeren, H. R., & Mohr, P. N. C. (2022). Gaze-
dependent evidence accumulation predicts multi-alternative risky choice behaviour. PLOS 
Computational Biology, 18(7), e1010283. https://doi.org/10.1371/journal.pcbi.1010283 

Nihonsugi, T., Ihara, A., & Haruno, M. (2015). Selective increase of intention-based economic 
decisions by noninvasive brain stimulation to the dorsolateral prefrontal cortex. Journal of 
Neuroscience, 35(8), 3412–3419. https://doi.org/10.1523/JNEUROSCI.3885-14.2015 

Nihonsugi, T., Numano, S., & Haruno, M. (2021). Functional connectivity basis and underlying 
cognitive mechanisms for gender differences in guilt aversion. eNeuro, 8(6). 
https://doi.org/10.1523/ENEURO.0226-21.2021 

Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. Nature, 437(7063), 
Article 7063. https://doi.org/10.1038/nature04131 

Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annu. 
Rev. Psychol., 57(1), 27–53. 

Rilling, J. K. (2011). The neurobiology of cooperation and altruism. In Origins of altruism and 
cooperation (pp. 295–306). Springer. 

Ruff, C. C., Ugazio, G., & Fehr, E. (2013). Changing social norm compliance with noninvasive 
brain stimulation. Science, 342(6157), 482–484. https://doi.org/10.1126/science.1241399 

Scheggia, D., La Greca, F., Maltese, F., Chiacchierini, G., Italia, M., Molent, C., Bernardi, F., 
Coccia, G., Carrano, N., Zianni, E., Gardoni, F., Di Luca, M., & Papaleo, F. (2022). 
Reciprocal cortico-amygdala connections regulate prosocial and selfish choices in mice. 
Nature Neuroscience, 25(11), 1505–1518. https://doi.org/10.1038/s41593-022-01179-2 

Schindler, S., & Pfattheicher, S. (2017). The frame of the game: Loss-framing increases dishonest 
behavior. Journal of Experimental Social Psychology, 69, 172–177. 
https://doi.org/10.1016/j.jesp.2016.09.009 



Study 2: Neurocomputational Mechanisms of Contextual Reciprocity 

 

60 

Starmans, C., Sheskin, M., & Bloom, P. (2017). Why people prefer unequal societies. Nature 
Human Behaviour, 1(4), 1–7. https://doi.org/10.1038/s41562-017-0082 

Taber, K. S. (2018). The use of cronbach’s alpha when developing and reporting research 
instruments in science education. Research in Science Education, 48(6), 1273–1296. 
https://doi.org/10.1007/s11165-016-9602-2 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., 
Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM 
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. 
NeuroImage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978 

van Baar, J. M., Chang, L. J., & Sanfey, A. G. (2019). The computational and neural substrates of 
moral strategies in social decision-making. Nature Communications, 10(1), 1483. 
https://doi.org/10.1038/s41467-019-09161-6 

van den Bos, W., van Dijk, E., Westenberg, M., Rombouts, S. A. R. B., & Crone, E. A. (2009). 
What motivates repayment? Neural correlates of reciprocity in the trust game. Social 
Cognitive and Affective Neuroscience, 4(3), 294–304. https://doi.org/10.1093/scan/nsp009 

van den Bos, W., van Dijk, E., Westenberg, M., Rombouts, S. A. R. B., & Crone, E. A. (2011). 
Changing brains, changing perspectives: The neurocognitive development of reciprocity. 
Psychological Science, 22(1), 60–70. https://doi.org/10.1177/0956797610391102 

Wagenaar, W. A., Keren, G., & Lichtenstein, S. (1988). Islanders and hostages: Deep and surface 
structures of decision problems. Acta Psychologica, 67(2), 175–189. 
https://doi.org/10.1016/0001-6918(88)90012-1 

Wang, H., Wu, X., Xu, J., Zhu, R., Zhang, S., Xu, Z., Mai, X., Qin, S., & Liu, C. (2024). Acute 
stress during witnessing injustice shifts third-party interventions from punishing the 
perpetrator to helping the victim. PLOS Biology, 22(5), e3002195. 
https://doi.org/10.1371/journal.pbio.3002195 

Wang, Z., Nan, T., Goerlich, K. S., Li, Y., Aleman, A., Luo, Y., & Xu, P. (2023). 
Neurocomputational mechanisms underlying fear-biased adaptation learning in changing 
environments. PLOS Biology, 21(5), e3001724. 
https://doi.org/10.1371/journal.pbio.3001724 

Xiao, F., Zhao, J., Fan, L., Ji, X., Fang, S., Zhang, P., Kong, X., Liu, Q., Yu, H., Zhou, X., Gao, 
X., & Wang, X. (2022). Understanding guilt-related interpersonal dysfunction in 
obsessive-compulsive personality disorder through computational modeling of two social 



Study 2: Neurocomputational Mechanisms of Contextual Reciprocity 

 
 

61 

interaction tasks. Psychological Medicine, 53(12), 5569--5581. 
https://doi.org/10.1017/S003329172200277X 

Xiaoxue Gao, Gao, X., Hongbo Yu, Yu, H., Ignacio Sáez, Saez, I., Philip R. Blue, Blue, P. R., 
Lusha Zhu, Zhu, L., Ming Hsu, Hsu, M., Xiaolin Zhou, & Zhou, X. (2018). Distinguishing 
neural correlates of context-dependent advantageous- and disadvantageous-inequity 
aversion. Proceedings of the National Academy of Sciences of the United States of America, 
115(33), 201802523. https://doi.org/10.1073/pnas.1802523115 

Zhang, L., & Gläscher, J. (2020). A brain network supporting social influences in human decision-
making. Science Advances, 6(34), eabb4159. https://doi.org/10.1126/sciadv.abb4159 

Zhang, Y., Zhang, Y., Wu, Y., & Krueger, F. (2023). Default matters in trust and reciprocity. 
Games, 14(1), 8. https://doi.org/10.3390/g14010008 

Zhu, L., Jenkins, A. C., Set, E., Scabini, D., Knight, R. T., Chiu, P. H., King-Casas, B., & Hsu, M. 
(2014). Damage to dorsolateral prefrontal cortex affects tradeoffs between honesty and 
self-interest. Nature Neuroscience, 17(10), 1319–1321. https://doi.org/10.1038/nn.3798 

 
  



Study 2: Neurocomputational Mechanisms of Contextual Reciprocity 

 

62 

Figure Legends 

Figure 1. Experimental design. (A) Payoff structure: Player 1 (P1, trustor) chooses between 
"status quo" and "trust". If P1 selects "status quo", both players receive immediate payoffs (P1: a1, 
P2: b1). If P1 chooses "trust", Player 2 (P2, trustee) then decides to either "reciprocate" (P1: a2, 
P2: b2) or "betray" (P1: a3, P2: b3). Participants completed a binary trust game in the role of trustee 
(P2), assigned to either the gain (B) or loss (C) frame. Each trial in both frames consisted of 
decision and inference stages, separated by fixation periods. First, a fixation asterisk was presented. 
In the decision stage, participants chose to either "reciprocate" or "betray". In the gain frame, this 
meant selecting either the second column (P1 gains 40 and P2 gains 37) or the third column (P1 
gains 14 and P2 gains 45). In the loss frame, the choice was between the second column (P1 loses 
19 and P2 loses 22) or the third column (P1 loses 45 and P2 loses 14). An arrow highlighted the 
selected choice immediately after it was made. Following the decision stage, another fixation 
asterisk appeared. In the inference stage, participants inferred whether their partner (P1) had 
chosen "status quo" or "trust". The "status quo" option corresponded to P1 selecting the first 
column (in the gain frame: P1 gains 22 and P2 gains 9; in the loss frame: P1 loses 37 and P2 loses 
50), while "trust" meant P1 had deferred the decision to P2. An arrow highlighted the selected 
choice immediately after it was made. The gain frame game began with 0 points, while the loss 
frame game started with 9,500 points. Identical strategies in both frames would result in equivalent 
final outcomes. 
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Figure 2. Behavior and modeling results. (A) The loss frame tended to decrease reciprocity 
rates. (B) The loss frame significantly reduced advantageous inequity aversion. (C) 
Advantageous inequity aversion positively correlated with reciprocity rate in both gain and loss 
frame. (D) The loss frame indirectly boosted reciprocity by reducing advantageous inequity 
aversion. ~: p < 0.1; *: p < 0.05; ***: p < 0.001. 
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Figure 3. Brain regions associated with advantageous inequity aversion in overall reciprocity 
decision right amygdala activity. A negative association with advantageous inequity aversion 
was identified in the right amygdala. Advantageous inequity aversion is negatively associated with 
right amygdala activity in the gain frame but not in the loss frame. No significant difference in 
right amygdala activity was found between the gain and loss frames. **: p < 0.01. 

 
  



Study 2: Neurocomputational Mechanisms of Contextual Reciprocity 

 

66 

Figure 4. Brain regions associated with advantageous inequity aversion in other-oriented 
inference. (A) Positive associations with advantageous inequity aversion were identified in the 
DMPFC, rDLPFC, and lSMG. (B) Regardless of context, increased advantageous inequity 
aversion was associated with increased activity in the DMPFC, rDLPFC, and lSMG. (C) No 
significant differences in DMPFC, rDLPFC, and lSMG activity were observed between the gain 
and loss frames. **: p < 0.01; ***: p < 0.001; ns: p > 0.1. DMPFC: dorsal medial prefrontal cortex; 
rDLPFC: right dorsal lateral prefrontal cortex; lSMG: left Supramarginal Gyrus. 
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Figure 5. Brain regions associated with advantageous inequity aversion in self-regarding 
reciprocity. (A) A positive association with advantageous inequity aversion was identified in the 
lAI. The lAI activity demonstrated a positive correlation with advantageous inequity aversion 
exclusively in gain contexts, and was significantly elevated in gain compared to loss frame. (B) A 
negative association with advantageous inequity aversion was identified in the rDLPFC. The 
rDLPFC activity negatively correlated with advantageous inequity aversion under both gain and 
loss contexts, and did not differ between frames. *: p < 0.05; **: p < 0.01. lAI: left anterior insula; 
rDLPFC: right dorsal lateral prefrontal cortex. 
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Table Legends 

Table 1. Demographic and psychometric measures (mean ± standard error of means).  

 Gain 

(N = 32) 

Loss 

(N = 33) 

Group Difference 

(χ2/U [p-value]) 

Demographic measures 

Gender (male/female) 15/17 16/17 0.01 [0.904] 

Age (years) 19.59±0.29 19.27±0.24 477.50 [0.496] 

Psychometric measures 

Machiavellianism 104.97±1.69 105.96±2.04 501.50 [0.733] 

Interpersonal Reactivity Index    

Perspective-taking 17.50±0.57 17.45±0.59 512.50 [0.843] 

Fantasy 17.44±0.75 17.21±0.78 556.00 [0.717] 

Empathic concern 19.38±0.58 19.67±0.58 487.50 [0.597] 

Personal distress 15.06±0.76 14.64±0.59 585.50 [0.453] 
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Supplementary Materials 

Model comparison 

Figure S1. Model comparisons. Model 4 (M4) outperformed other candidate models. AIC: 
Akaike Information Criterion. 

 

 
Model validation 

Model validation showed that the reciprocity rate predicted by the M4 was significantly correlated 
with the true reciprocity rate (r = 0.98, 95% CI [0.976, 0.988], p < 0.001). Prediction accuracy of 
M4 was 0.74, 95% CI: [0.731, 0.750]. Parameter recovery for advantageous inequity aversion also 
showed that the recovered parameter was significantly correlated with the true parameter (rs = 0.59, 
p < 0.001). 
Parameter recovery 

Figure S2. Parameter recovery of advantageous inequity aversion. Recovered advantageous 
inequity aversion was significantly correlated with the true value. ***: p < 0.001. 
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5. Study 3: Anxiety's Impact on Reciprocity's Core and Periphery 

"Trait anxiety impairs reciprocity behavior: A multi-modal and computational modeling 
study" 

 

Fang, H., Wang, R., Wang, Z., Liu, Q., Luo, Y., Xu, P., & Krueger, F. (2024). Trait anxiety impairs 
reciprocity behavior: A multi-modal and computational modeling study. [Manuscript submitted 
for publication]. Department of Psychology, University of Mannheim.  
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Abstract 

Anxiety significantly impacts reciprocal behavior, crucial for positive social interactions. The 
neurocomputational mechanisms of anxiety's effects on the core (individual propensity) and 
peripheral (decision context) factors shaping reciprocity remain unclear. Here, we investigated 
reciprocity in individuals with low and high trait anxiety using a binary trust game with gain/loss 
framing, combining computational modeling, eye-tracking, and event-related potentials (ERPs). 
Our computational model, validated by eye-tracking data, identified four psychological 
components driving reciprocal behavior: reward, guilt aversion, advantageous inequity aversion, 
and advantageous inequity liking. Regarding the core of reciprocity, trait anxiety diminished both 
overall reciprocity and specific psychological components like guilt aversion and advantageous 
inequity liking, irrespective of context. The reduction in guilt aversion was supported by ERP 
findings showing decreased P2 (selective attention) and increased LPP (emotion regulation) 
amplitudes in anxious individuals. Regarding the periphery of reciprocity, trait anxiety altered the 
contextual perception of both advantageous inequity aversion and reward. Further, trait anxiety 
reversed the perception of advantageous inequity aversion from gain to loss contexts, a pattern that 
was linked to the N2 amplitudes (cognitive control). Our findings revealed distinct effects of trait 
anxiety on core and peripheral factors in reciprocity, offering potential targets for interventions 
aimed at improving reciprocity in individuals with anxiety disorders. 
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Introduction 

Reciprocity acts as a crucial glue for interpersonal interactions, playing a pivotal role in cultivating 
a harmonious and thriving society (Schmid et al., 2021). As the global economic slowdown 
intensifies and geopolitical conflicts escalate, anxiety levels among populations have increased 
significantly (Collier Villaume et al., 2023). Hence, understanding the impact of anxiety on 
reciprocity is essential for maintaining social cohesion. 

Social representation theory conceptualizes reciprocity decisions as having two main aspects: a 
core and a periphery (Abric, 1993; Fang et al., 2022; Hagen & Hammerstein, 2006; Wagenaar et 
al., 1988). The core represents an individual's inherent reciprocity propensity, which remains stable 
across different contexts. The periphery reflects an individual's contextual perception, shaping the 
decision by taking into account the situational context. Disentangling reciprocity propensity from 
contextual dynamics continues to be a challenge in decision-making. One effective solution is to 
systematically adjust the periphery by reframing the decision context while maintaining the same 
payoff structure (e.g., framing gains vs. losses) (Evans & van Beest, 2017; Fang et al., 2022). This 
approach enables the assessment of how trait anxiety influences both the core and periphery of 
reciprocity, clarifying whether these effects stem from the inherent reciprocity propensity or 
contextual modifications. 

In social interactions, reciprocating rather than betraying a partner’s trust helps mitigate negative 
emotions such as guilt aversion (failure to meet a partner's reciprocating expectations) and 
advantageous inequity aversion (feeling discomfort from receiving more than others). However, 
this often comes at a cost—sacrificing personal benefits, such as financial rewards, which would 
be the economically optimal choice (Nihonsugi et al., 2015, 2021).  

While guilt aversion and reward are widely recognized as key components affecting prosocial 
behaviors, the concept of advantageous inequity aversion remains controversial. For example, 
advantageous inequity aversion is not always present; it emerges only when the decision-maker 
actively chooses an advantageous inequitable distribution but disappears when the distribution is 
passively received (O. Li et al., 2018). Furthermore, evidence suggests that people constantly 
compare themselves with others (Festinger, 1954; Fiske, 2011; Starmans et al., 2017), often 
seeking to increase their own payoff relative to others, demonstrating advantageous inequity liking 
instead of aversion under certain circumstances (Boyce et al., 2010; Cox, 2013; Dohmen et al., 
2011). Since betrayal typically leads to a more advantageous distribution than reciprocity, it is 
plausible that individuals exhibit advantageous inequity aversion when considering betrayal but 
show a preference for advantageous inequity when evaluating reciprocity. This scenario creates a 
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complex social dilemma for decision-makers, who must balance moral considerations, social 
comparison, and personal interests. 

Recent research has increasingly utilized computational models to explore the complex 
psychological components driving reciprocity (Nihonsugi et al., 2015, 2021; Xiao et al., 2022). 
Those computational models typically suggest that decision-makers aim to maximize the utility of 
their choices by balancing economic benefits, such as monetary rewards, against the costs of norm 
violations, including anticipatory negative emotions like guilt and advantageous inequity aversion. 
However, the extent to which these psychological components reflect the actual psychological 
processes underlying decision-making has rarely been validated by empirical evidence. Eye-
tracking during decision-making, such as in economic games where participants look at payoff 
structures, can provide direct observation of the decision-maker’s focal points (Fiedler et al., 2013; 
Jiang et al., 2016; Polonio et al., 2015), allowing to validate whether these focuses align with the 
estimates derived from the proposed model. For example, decision-makers who are more sensitive 
to guilt aversion are expected to spend relatively more time looking at those payoff structures that 
trigger guilt aversion. Combining computational modeling and eye-tracking provides deeper 
insights into the psychological processes underlying reciprocity, including how factors like anxiety 
influence these processes. 

Research on social anxiety and generalized anxiety disorder has shown diminished generosity 
(Rodebaugh et al., 2016), cooperation (Walters & Hope, 1998), and reciprocity (Anderl et al., 2018; 
Rodebaugh et al., 2011, 2013), suggesting a broad inhibitory effect of anxiety on prosocial 
behaviors including reciprocity. Individuals with obsessive-compulsive personality disorder 
(OCPD), which often co-occurs with high anxiety levels, exhibit less guilt aversion in reciprocity 
decisions during a binary trust game, suggesting that anxiety might attenuate anticipatory feelings 
of guilt by restricting affective processing and reducing their sense of moral obligation (Xiao et 
al., 2022). Additionally, anxious individuals tend to adopt avoidance strategies (Duronto et al., 
2005; Raffety et al., 1997; Turner, 1988) and engage in excessive effortful processing when 
regulating emotion (Aldao et al., 2010; Campbell-Sills et al., 2011; Goldin et al., 2009). Overall, 
this evidence suggests that anxious individuals may mitigate anticipatory aversive feelings like 
guilt or advantageous inequity aversion during reciprocity decisions by actively avoiding negative 
emotions or reducing attention. 

Individuals with high trait anxiety are particularly susceptible to contextual effects  (Gu et al., 2017; 
Jepma & López-Solà, 2014; Xu et al., 2013) , which can influence the periphery of reciprocity. 
Previous studies have mainly focused on non-social aspects of decision-making, like risk 
evaluation in gambling tasks, rather than on tasks involving social interactions that balance social 
norms and personal economic benefits  (Gu et al., 2017; Jepma & López-Solà, 2014; Xu et al., 
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2013) . Although the contextual effects on social reciprocity have been investigated (Evans & van 
Beest, 2017), the impact of anxiety on these contextual influences and the underlying 
psychological components of reciprocity remains unexplored. Anxious individuals rely more on 
heuristics when making decisions, evidenced by increased brain activity in regions associated with 
cognitive effort during frame-inconsistent decisions  (Jepma & López-Solà, 2014; Power & 
Petersen, 2013) . Further, loss compared to gain frames are heuristically perceived as more harmful 
to others (Baron, 1995; Evans & van Beest, 2017), and more threatening to one's own payoff (Xu 
et al., 2013). Therefore, anxiety may alter the perception of other-regarding components, such as 
guilt and advantageous inequity aversion, and self-beneficial rewards in reciprocity, likely 
involving cognitive control mechanisms. 

To understand how anxiety affects reciprocity, it's essential to investigate the neuropsychological 
mechanisms by which anxiety influences contextual perceptions and reciprocity propensity. 
Electroencephalography (EEG), particularly event-related potentials (ERP), can offer significant 
insights into the temporal dynamics of neural mechanisms. For example, studies have linked P2 
with selective attentional allocation (Hajcak et al., 2012; Luck et al., 1994; Potts, 2004; Rey-
Mermet et al., 2019) and N2 with effortful top-down cognitive control in decision-making 
(Cavanagh & Shackman, 2015; Folstein & Van Petten, 2008a; Hao et al., 2023; McLoughlin et al., 
2022). Although late positive potential (LLP) is often seen as a marker of emotional reactivity 
(Hajcak et al., 2010; MacNamara & Proudfit, 2014; Paul et al., 2016; Qi et al., 2016; 
Thiruchselvam et al., 2011), several studies have linked LPP with emotional regulation and found 
that an enhanced LPP amplitudes index an increase of cognitive effort in managing emotional 
responses (Bernat et al., 2011; Desatnik et al., 2017; Moser et al., 2014; Shafir et al., 2015). 
Specifically, in decisions involving moral conflict, larger LPP amplitudes indicate more cognitive 
efforts deployed to resolve these conflicts (Chen et al., 2009; Zhan et al., 2018, 2020).  

To investigate the neurocomputational mechanisms underlying reciprocity decisions, we 
formulated four hypotheses. First, based on prior research (Boyce et al., 2010; Cox, 2013; Dohmen 
et al., 2011; O. Li et al., 2018; Nihonsugi et al., 2015, 2021; Xiao et al., 2022), we hypothesized 
that the best computational model for reciprocity decisions would consist of four distinct 
psychological components: reward, guilt aversion, advantageous inequity aversion, and 
advantageous inequity liking. Second, we predicted that individuals more sensitive to these 
psychological components would spend relatively more time visually attending to the according 
payoff structure within the binary trust game, reflecting their evaluation processes during 
reciprocity decisions (Fiedler et al., 2013; Jiang et al., 2016; Polonio et al., 2015). Third, regarding 
the core of reciprocity, we expected trait anxiety to attenuate the core of reciprocity across gain 
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and loss frames, given that anxious individuals exhibit reduced reciprocity behavior (Anderl et al., 
2018; Rodebaugh et al., 2011, 2013). In particular, we hypothesized that high trait anxiety would 
reduce guilt and advantageous inequity aversion, as anxious individuals tend to adopt avoidance 
strategies (Duronto et al., 2005; Raffety et al., 1997; Turner, 1988) and mitigate negative feelings 
by limiting affective processing and reducing moral obligation (Kantor, 2016; Xiao et al., 2022). 
We anticipated this process would manifest in the P2 and LPP ERP components, given P2's 
association with selective attentional allocation (Hajcak et al., 2012; Luck et al., 1994; Potts, 2004; 
Rey-Mermet et al., 2019) and LPP's connection to emotional regulation (Bernat et al., 2011; 
Desatnik et al., 2017; Moser et al., 2014; Shafir et al., 2015) and moral conflict (Chen et al., 2009; 
Zhan et al., 2018, 2020). Fourth, regarding the periphery of reciprocity, we postulated that trait 
anxiety modulates reciprocity differently under gain and loss contexts, given that anxious 
individuals are more susceptible to contextual influences (Gu et al., 2017; Xu et al., 2013). We 
proposed that trait anxiety would differentially modulate other regarding components (i.e., guilt 
aversion and advantageous inequity aversion) and reward sensitivity across varying contextual 
frames, given that anxious individuals often rely on heuristics in decision-making  (Jepma & 
López-Solà, 2014) , and that loss frames are generally perceived as more detrimental to others 
(Baron, 1995; Evans & van Beest, 2017) and to one's own economic interests (Xu et al., 2013). 
We predicted these anxiety-related alterations would engage N2 cognitive control mechanisms. 

To test our hypotheses, we combined EEG, eye-tracking, and computational modeling in a binary 
trust game to investigate the neurocomputational mechanisms of reciprocity decisions in 
individuals with low and high trait anxiety under gain and loss frames (Fig. 1). Participants also 
completed in addition two self-report questionnaires, the Interpersonal Reactivity Index (IRI) 
measuring aspects of empathy (Davis, 1980) and Machiavellianism (Mach-IV) scale measuring 
the tendency towards selfishness (Christie & Geis, 1970). Our computational modeling analysis 
identified four psychological components underlying reciprocity decisions—reward, guilt 
aversion, advantageous inequity aversion, and advantageous inequity liking—which were 
validated by the eye-tracking analyses. Regarding the core, our findings revealed that trait anxiety 
reduced reciprocity at the behavioral level and diminished guilt aversion and advantageous 
inequity liking at the psychological level. At the neural level, trait anxiety attenuated guilt aversion 
by decreasing P2 amplitude (related to selective attention) and increasing LPP amplitude 
(associated with effortful emotion regulation). Regarding the periphery, trait anxiety influenced 
the contextual effects on reward and advantageous inequity aversion at the psychological level, 
although it did not affect reciprocity behaviorally. Specifically, trait anxiety modified the 
contextual effect on advantageous inequity aversion through the N2 cognitive control mechanism 
at the neural level. 
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Figure 1. Experimental design. Participants completed a trust game with two distinct frame 
sessions in a counterbalanced order: (A) Gain frame session and (B) Loss frame session. The gain 
frame session started with 0 points while the loss frame session started with 15,000 points. If 
participants used the same strategies in both frames, their final outcomes would be identical (Evans 
& van Beest, 2017). For each trial session, participants were introduced to a different anonymous 
partner, represented by an icon with a partially obscured name (i.e., one word in the first name was 
blocked). Participants then decided whether to “reciprocate” (e.g., in the gain frame, choosing the 
middle rectangle resulted in a distribution of 46 points for themselves and 34 points for their 
partner; in the loss frame, it involved a deduction of 22 points for themselves and 34 points for 
their partner) or “betray” (e.g., in the gain frame, choosing the right rectangle resulted in a 
distribution of 62 points for themselves and 6 points for their partner; in the loss frame, it involved 
a deduction of 6 points for themselves and 62 points for their partner) without knowing whether 
the partner had chosen “trust” (e.g., the larger rectangle containing both the “reciprocate” and 
“betray” option) or “distrust” (e.g., in the gain frame, the left rectangle resulted in a distribution of 
12 points for themselves and 28 points for their partner; in the loss frame, it involved a deduction 
of 56 points for themselves and 40 points for their partner). Finally, participants received feedback 
with a blue highlight indicating whether the partner had initially chosen to "trust" (as shown in A) 
or "distrust" (as shown in B). Participants were unaware the feedback was randomly generated by 
the computer. Participants were informed of the rules before the game that if the partner had chosen 
to "distrust," the payoff would be distributed accordingly, but if the partner had chosen to "trust," 
the payoff would be based on the participant's decision. 
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Results 

Computational Modeling of Reciprocity 

Computational modeling was employed to unveil the psychological components behind 
reciprocity as measures with the binary trust game. Seven plausible candidate models (see 
Materials and Methods)—adapted from previous studies (Nihonsugi et al., 2015, 2021; Xiao et 
al., 2022) with components including reward, guilt aversion, inequity aversion, advantageous 
inequity aversion, and advantageous inequity liking—were constructed and compared using a 
stage-wise approach (Gagne et al., 2020; Wang et al., 2023; Zhang & Gläscher, 2020). 

The proposed model 4 (M4, pseudo r2 = 0.359; Fig. 2A; Tab. 1) outperformed all other candidate 
models, as indicated by the leave-one-out information criterion (LOOIC) and widely applicable 
information criterion (WAIC). M4 included the components of reward sensitivity, guilt aversion, 
advantageous inequity aversion, and advantageous inequity liking, explaining over 93% of the 
variance in reciprocity rates (Fig. 2B). Higher subjective sensitivity to guilt aversion, advantageous 
inequity aversion, and advantageous inequity liking was associated with increased reciprocity rates, 
while greater sensitivity to reward with lower reciprocity rates (Fig. 2C). 

Table 1. Model comparison. The winning model M4 outperformed all other candidate models, as 
indicated by LOOIC and WAIC. M4 included the components of reward sensitivity (𝜷𝑹), guilt 
aversion 𝜷𝑮 , advantageous inequity aversion 𝜷𝑨𝒅+𝑰𝑨, advantageous inequity liking 𝜷𝑨𝒅+𝑰𝑳 and 
Inverse tempareture (𝝀) for four conditions (Anxiety [high, low] × Frame [gain, loss]). ΔLOOIC, 
leave-one-out information criterion relative to the winning model; ΔWAIC, widely applicable 
information criterion relative to the winning model. 

Models Parameters Number of 

parameter components 

ΔLOOIC ΔWAIC 

M4 𝜷𝑹, 𝜷𝑮, 𝜷𝑨𝒅−𝑰𝑨, 𝜷𝑨𝒅−𝑰𝑳,	𝝀  20 0 0 

M3 𝛽𝑅,𝛽𝐺, 𝛽𝐴𝑑−𝐼𝐴,	𝛽𝐷𝑖𝑠𝐴𝑑−𝐼,	𝜆  20 10.9 8.2 

M5 𝛽𝑅, 𝛽𝐺, 𝛽𝐴𝑑−𝐼𝐴, 𝛽𝐴𝑑−𝐼𝐿,	𝜆 20 11.4 10.5 

M2 𝛽𝐺, 𝛽𝐴𝑑−𝐼𝐴,	𝛽𝐷𝑖𝑠𝐴𝑑−𝐼𝐴,	𝜆    16 13.5 21 

M6 𝛽𝑅, 𝛽𝐺, 𝛽𝐴𝑑−𝐼𝐴, 𝛽𝐴𝑑−𝐼𝐿,	𝜆  18 23.1 27.5 

M1 𝛽2 , 𝛽3, 𝜆  12 55.8 59.5 

M7 𝛽4, 𝛽2 , 𝛽56735, 𝛽56738  16 51926.5 128630645 
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Figure 2. Components in the winning model and their association with reciprocity. (A) 
Schematic of winning model. Schematic illustration of the payoff structure in the binary trust 
game with components of the winning model: guilt aversion, advantageous inequity aversion, 
reward sensitivity, and advantageous inequity liking. The blue-filled areas (a2>a1>a3) were 
related to the payoff structure of the trustor (partner) and the green-filled areas (b3>b2>b1) for the 
trustee (participant) in both gain and loss frames (Note that deeper color signifies higher value of 
gain or lower value of lose). The objective size of guilt aversion was quantified as the difference 
in the payoff structure between a2 and a3; advantageous inequity aversion between b3 and a3; 
reward between b3 and b2; and advantageous inequity liking between b2 and a2. (B) Variance 
explained by components. The four components explained more than 93% of the variance of the 
reciprocity rate. Inverse temperature (1.4%) controls the trade-off between randomness and 
determinism in decision-making processes and there is a 4.9% variance unexplained by the model. 
(C) Association between parameters of components and reciprocity rate. Higher subjective 
sensitivity to guilt aversion, advantageous inequity aversion, and advantageous inequity liking 
were associated with increased reciprocity rates, whereas higher sensitivity to reward was 
associated with lower reciprocity rates. Guilt: guilt aversion; Ad-IA.: advantageous inequity 
aversion; Ad-IL.: advantageous inequity liking; Reward: reward sensitivity. 

Model prediction from M4 demonstrated that the true and simulated reciprocity rates were highly 
correlated (rs > 0.96, Fig. S2). Parameter recovery for M4 also indicated successful recovery of 
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all parameters from M4 (guilt aversion: rs > 0.90; advantageous inequity aversion: rs > 0.69; 
reward: rs > 0.64; advantageous inequity liking: rs > 0.68; inverse temperature: rs > 0.55; Fig. S3). 

Validation of Winning Model through Eye-Tracking Data 

To validate the winning model, the relationship between the estimated parameters of the 
components and observed eye movements was investigated. Six areas of interest (AOIs) were 
defined, corresponding to the six rectangles containing payoffs in the binary trust game (Fig. 2A). 
The relative time spent on transitions between each pair of AOIs was calculated based on the 
fixation sequence of eye movements within each trial (see Materials and Methods). As a result, 
21 unique transitions were extracted and the proportion of fixation time (normalized with the total 
reaction time for each trial) on each transition was calculated.  

Validating our winning model (M4), individuals spent significantly more time on the transitions 
related to its four identified components compared to all other transitions (Fig. 3A). The Linear 
Mixed Model (LMM) (Tab. 2) indicated that greater subjective sensitivity to specific components 
was associated with more time spent on transitions related to those components (Fig. 3B). 
Furthermore, resembling the relationship between model parameter and reciprocity rate (Fig. 2C), 
increased fixation time on transitions involving guilt aversion, advantageous inequity aversion, 
and advantageous inequity liking correlated with a higher rate of reciprocity, while increased 
fixation time on reward transitions was linked to a lower rate of reciprocity (Fig. 3C, Tab. 2). 
These eye-movement results confirmed that the parameter estimated by the winning model reflects 
the underlying psychological components of reciprocity. 
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Figure 3. The fixation duration of the transitions and their associations with component 
parameters and reciprocity rate. (A) Proportion of fixation duration on each transition 
(Mean ± standard error of mean, SE). The transitions related to the four components (guilt 
aversion [a2_a3], advantageous inequity aversion [a3_b3], advantageous inequity liking [a2_b2], 
and reward [b2_b3]) dominated the proportion of fixation duration when making reciprocity 
decisions. Dash line represent a 10% proportion of fixation duration. (B) Association between 
parameter value of components and fixation duration. Higher sensitivity to the components 
was associated with an increased proportion of fixation duration on related transitions. (C) 
Association between fixation duration and reciprocity rate. An increased proportion of 
duration on the transitions of guilt aversion, advantageous inequity aversion, and advantageous 
inequity liking predicted a higher rate of reciprocity, while an increased proportion of duration on 
the transitions of reward predicts a lower rate of reciprocity. Guilt: guilt aversion; Ad-IA.: 
advantageous inequity aversion; Ad-IL.: advantageous inequity liking; Reward: reward sensitivity. 
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Table 2. Association between fixation duration on components and subjective sensitivity to 
corresponding components and reciprocity rate. Left columns: An increased proportion of 
fixation duration of components was associated with higher subjective sensitivity to the 
corresponding components. Right columns: increased proportion of duration on the transitions of 
guilt aversion [a2_a3], advantageous inequity aversion [a3_b3], and advantageous inequity liking 
[a2_b2] predicted a higher rate of reciprocity, while an increased proportion of duration on the 
transitions of reward [b2_b3] predicts a lower rate of reciprocity. SE: standard error of mean; CI 
(95%): 95% confidence interval. 

 

 

Transitions 

Subjective sensitivity to components Reciprocity Rate 

Beta SE CI (95%) t p Beta SE CI (95%) t p 

Guilt aversion 

[a2_a3] 
0.04 0.02 0.00 – 0.07 2.04 0.042 0.04 0.02 0.01 – 0.07 2.29 0.024 

Advantageous 
inequity 
aversion 

[a3_b3] 

0.04 0.01 0.02 – 0.07 3.24 0.001 0.05 0.02 0.01 – 0.09 2.29 0.024 

Reward 

[b2_b3] 
0.11 0.01 0.09 – 0.14 8.80 <0.001 -0.05 0.02 -0.09 – -0.01 -2.46 0.016 

Advantageous 
inequity liking 

[a2_b2] 

0.10 0.01 0.08 – 0.13 7.83 <0.001 0.07 0.02 0.03 – 0.10 3.88 <0.001 

 

Impact of Trait Anxiety on Core and Periphery of Reciprocity 

The LMM on the reciprocity rate revealed a significant main effect of Anxiety, χ²(1) = 4.37, p = 
0.036, 𝜂7# = 0.07 (Fig. 4), where individuals with high trait anxiety showed a lower reciprocity rate 
compared to those with low trait anxiety. The main effect of Frame was marginally significant, 
χ²(1) = 3.20, p = 0.074, 𝜂7# = 0.05, where individuals under the Gain Frame reciprocated more than 
those under the Loss Frame. The Anxiety × Frame interaction effect was not significant, χ²(1) = 
0.003, p = 0.954. The presence of the main effect of Anxiety and the absence of Anxiety × Frame 
interaction effect suggest that trait anxiety attenuated reciprocity regardless of contexts.  
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The LMM on the reaction time revealed no significant main effect of Anxiety, χ²(1) = 0.21, p = 
0.646, nor a significant Anxiety x Frame interaction, χ²(1) = 1.49, p = 0.221, but a marginal main 
effect of Frame, χ²(1) = 3.06, p = 0.085, with slower decisions under the Loss Frame than the Gain 
Frame (Fig. S1).  

 

Figure 4. The impact of anxiety on reciprocity rate (Mean ± SE). High Anxiety group exhibited 
lower reciprocity rates than Low Anxiety group. Further, individuals under a Loss Frame showed 
a trend toward a lower reciprocity rate compared to those under a Gain Frame. *: p < 0.05, ~: p < 
0.1. 

 

Computational mechanism underlying trait anxiety’s impact on core and periphery of 
reciprocity 

The parameter 𝛽" , 𝛽)*+$) , 𝛽/  and 𝛽)*+$0  in M4 represent the participant’s sensitivity to guilt 
aversion, advantageous inequity aversion, reward, and advantageous inequity liking, respectively. 

Guilt aversion. The LMM on the guilt aversion parameters revealed no significant main effect of 
Frame, χ²(1) = 0.22, p = 0.638, but a significant main effect of Anxiety, χ²(1) = 4.23, p = 0.039, 𝜂7# 
= 0.06, where the High Anxiety group showed lower guilt	aversion	compared to the Low Anxiety 
group (Fig. 5A). The main effect of Anxiety is significant and the interaction effect of Anxiety × 
Frame was not, χ²(1) = 0.09, p = 0.759, indicating that trait anxiety attenuated guilt aversion 
regardless of contexts.  

Advantageous inequity aversion. The LMM on advantageous inequity aversion parameters 
showed no significant main effect of Frame, χ²(1) = 0.01, p = 0.921, but a significant main effect 
of Anxiety, χ²(1) = 4.53, p = 0.033, 𝜂7#  = 0.07, where the High Anxiety group had a lower 
advantageous inequity aversion compared to the Low Anxiety group (Fig. 5 B). Further, the 



Study 3: Anxiety's Impact on Reciprocity's Core and Periphery 

 

84 

interaction effect of Anxiety × Frame was significant, χ²(1) = 11.65, p < 0.001,	𝜂7# = 0.16. Planned 
follow-up post-hoc analyses revealed that Low Anxiety group showed lower advantageous 
inequity aversion in the Loss than in the Gain Frame, β = 0.41, SE = 0.17, t = 2.46, p = 0.017, but 
a reverse pattern was observed for the High Anxiety group, β = -0.38, SE = 0.16, t = -2.36, p = 
0.021. The presence of a reversed contextual effect on advantageous inequity aversion between 
the High and the Low Anxiety group suggests that trait anxiety altered the contextual perception 
of advantageous inequity aversion. Moreover, High Anxiety group exhibited lower advantageous 
inequity aversion than those in the Low Anxiety group under the Gain Frame, β = 0.71, SE = 0.19, 
t = 3.78, p = 0.003, but not Loss Frame, β = 0.08, SE = 0.19, t = 0.42, p = 0.675. The presence of 
anxiety effect on advantageous inequity aversion in the Gain Frame but absence in the Loss Frame 
suggests that the effect of anxiety on advantageous inequity aversion depended on contexts. 

Reward sensitivity. The LMM on reward sensitivity parameters revealed no significant main effect 
of Anxiety, χ²(1) = 1.37, p = 0.242, but a significant main effect of Frame, χ²(1) = 20.77, p < 0.001,	
𝜂7# = 0.25, where individuals under the Loss Frame showed significantly higher reward sensitivity 
compared to the Gain Frame (Fig. 5C). Further, the interaction effect of Anxiety x Frame was 
significant, χ²(1) = 14.03, p < .001,	𝜂7# = 0.19. Planned follow-up post-hoc analyses revealed that 
individuals with high anxiety showed greater reward sensitivity in the Loss than in Gain Frame, β 
= -2.43, SE = 0.41, t = -5.92, p < 0.001. However, this pattern disappeared in the Low Anxiety 
group, β = -0.24, SE = 0.42, t = -0.57, p = 0.571. The presence of contextual effect on reward 
sensitivity in the High but absence in the Low Anxiety group suggests that trait anxiety altered the 
contextual perception of reward sensitivity. Moreover, High Anxiety group exhibited lower reward 
sensitivity than those in the Low Anxiety group under the Gain Frame, β = -1.55, SE = 0.49, t = -
3.19, p = 0.002, but not Loss Frame, β = 0.64, SE = 0.49, t = 1.32, p = 0.189. The presence of 
anxiety effect on reward sensitivity in the Gain Frame but absence in the Loss Frame suggests that 
the effect of anxiety on reward sensitivity depended on contexts. 

Advantageous inequity liking. The LMM on advantageous inequity liking parameters indicated a 
significant main effect of Anxiety, χ²(1) = 5.34, p = 0.021, 𝜂7# = 0.08, demonstrating the High 
Anxiety group showed lower advantageous inequity liking than the Low Anxiety group (Fig. 5D). 
Further, a significant main effect of Frame was observed, χ²(1) = 35.40, p < 0.001,	𝜂7# = 0.37, with 
a higher advantageous inequity liking in the Gain compared to the Loss Frame. However, the 
interaction effect of Anxiety x Frame was not significant, χ²(1) = 2.11, p = 0.147, suggesting that 
trait anxiety attenuated advantageous inequity liking regardless of contexts. 
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Figure 5. Impact of trait anxiety on the psychological components of reciprocity (Mean ± SE). 
(A) Guilt Aversion. Trait anxiety attenuated guilt aversion regardless of context. (B) 
Advantageous inequity aversion. Trait anxiety altered contextual perception, with high and low 
trait anxiety individuals showing reversed contextual effects. In addition, high trait anxiety 
individuals demonstrated a significant contextual effect, whereas low trait anxiety individuals 
showed no contextual effect. (C) Reward sensitivity.  Trait anxiety altered the contextual 
perception of reward sensitivity, with high trait anxiety individuals displaying a contextual effect, 
while those with low trait anxiety showed no contextual effect. (D) Advantageous inequity liking. 
Trait anxiety reduced advantageous inequity liking regardless of context, and the loss frame 
decreased advantageous inequity liking compared to the gain frame. ***: p < 0.001; **: p < 0.01; 
*: p < 0.05. 

Brain mechanism underlying trait anxiety’s impact on core and periphery of reciprocity 

Given that guilt aversion and advantageous inequity liking are psychological components affected 
by trait anxiety in the core of reciprocity (i.e., Anxiety effect regardless of contexts), and 
advantageous inequity aversion and reward in the periphery (i.e., Anxiety effect depended on 
contexts), the brain mechanisms underlying the impact of trait anxiety on core and periphery were 
investigated. First, ERP components of P2, N2, and LPP were examined, differentiating the impact 
of trait anxiety on the core and peripheral processes.  

P2 component. The LMM analysis on the P2 amplitude showed a significant main effect of 
Anxiety, χ²(1) = 4.28, p = 0.039, 𝜂7# = 0.07, where the High Anxiety group exhibited a lower P2 
amplitude than the Low Anxiety group (Fig. 6A, B). No main effect of Frame, χ²(1) = 2.50, p = 
0.114, nor an interaction effect of Anxiety × Frame was found, χ²(1) = 0.05, p = 0.829. The 
presence of the Anxiety main effect and absence of Anxiety × Frame interaction effect suggests 
that trait anxiety decreased P2 amplitude regardless of contexts. 
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N2 component. The LMM analysis on the N2 amplitude demonstrated no significant main effect 
of Frame, χ²(1) = 0.32, p = 0.573, nor a main effect of Anxiety, χ²(1) = 2.67, p = 0.102, where the 
High Anxiety group exhibited a lower N2 amplitude than the Low Anxiety group (Fig. 6A, C). 
Further, a significant Anxiety × Frame interaction effect was observed, χ²(1) = 9.46, p < 0.001, 𝜂7# 
= 0.15. Planned follow-up post-hoc analyses indicated that the Low Anxiety group showed a 
greater N2 amplitude under the Loss compared to the Gain Frame, β = -0.46, SE = 0.18, z = -2.56, 
p = 0.011. However, the High Anxiety group showed a reversed pattern, demonstrating a 
marginally significantly smaller N2 amplitude under the Loss compared to the Gain Frame, β = 
0.32, SE = 0.18, z = 1.79, p = 0.074. The presence of a reversed contextual effect on N2 amplitude 
between the High and the Low Anxiety group suggests that trait anxiety altered the contextual 
effect of N2 amplitude. Moreover, High Anxiety group exhibited a smaller N2 amplitude than Low 
Anxiety group under the Gain Frame, β = 1.26, SE = 0.54, z = 2.32, p = 0.020, but not Loss Frame, 
β = 0.47, SE = 0.55, z = 0.87, p = 0.387. The presence of anxiety effect on N2 amplitude in the 
Gain Frame but absence in the Loss Frame suggests that the effect of trait anxiety on N2 amplitude 
depended on contexts. 

LPP component. The LMM analysis on the LPP amplitude showed a significant main effect of 
Anxiety, χ²(1) = 4.19, p = 0.041, 𝜂7# = 0.07, where the High anxiety group exhibited a higher LPP 
amplitude than the Low Anxiety group (Fig. 6A, D). However, no significant main effect of Frame, 
χ²(1) = 0.12, p = 0.716, nor interaction effect of Anxiety × Frame were found, χ²(1) = 0.23, p = 
0.633. The presence of Anxiety main effect and absence of Anxiety × Frame interaction effect 
suggests that trait anxiety decreased LPP amplitude regardless of contexts. 
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Figure 6. Condition comparisons of event-related potentials on reciprocity decision (Mean ± 
SE). (A) Grand average potential waveforms.  Grand average potential waveforms for the four 
conditions (Anxiety × Frame) were measured at the Fz electrode and Pz. (B) Comparison of P2 
amplitudes. P2 amplitudes (measured at F1, Fz, F2) were significantly lower in individuals with 
high trait anxiety compared to those with low trait anxiety regardless of frame. (C) Comparison 
of N2 amplitudes. N2 amplitudes (measured at F1, Fz, F2) showed a reversed contextual effect 
for individuals with high and low trait anxiety. (D) Comparison of LPP amplitudes. LPP 
amplitude (measured at P1, Pz, P2) was significantly lower in individuals with high trait anxiety 
than those with low trait anxiety regardless of frame. *: p < 0.05, ~: p < 0.1. 
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Second, mediation analyses were employed to investigate how trait anxiety impacted these ERP 
components and, subsequently, the psychological components underlying reciprocity. Since trait 
anxiety affected P2 and LPP responses similarly to guilt aversion and advantageous inequity liking 
regarding the core of reciprocity, serial mediation analysis was used to test if trait anxiety impacts 
these psychological components through changes in P2 and LPP amplitudes. 

The serial mediation analysis revealed that higher trait anxiety was associated with a lower P2 
amplitude and a higher LPP amplitude, leading to reduced guilt aversion (indirect effect [a*b*c] 
= -0.017, SE = 0.003, z = -6.34, p < 0.001, 95% CI [-0.022, -0.012]) (Fig. 7A). Further, higher 
trait anxiety attenuated guilt aversion through increased LPP amplitude alone (indirect effect [a2*c] 
= -0.090, SE = 0.015, z = -6.15, p < 0.001, 95% CI [-0.121, -0.063]). Moreover, trait anxiety did 
not significantly modulate guilt aversion through P2 amplitude alone (indirect effect [a*b2] = 
0.019, SE = 0.015, z = 1.23, p = 0.220, 95% CI [-0.012, 0.048]). Those results demonstrated that 
higher trait anxiety led to lower guilt aversion by increased LPP amplitude alone or by reducing 
P2 amplitude, which then translated into increased LPP amplitude.  

However, the serial mediation analysis showed no significant indirect effect of trait anxiety on 
advantageous inequity aversion through both P2 and LPP amplitude (indirect effect [a*b*c] = 
0.001, SE = 0.001, z = 1.01, p = 0.311, 95% CI [-0.000, 0.002]), nor effects through P2 amplitude 
alone (indirect effect [a*b2] = 0.009, SE = 0.006, z = 1.40, p = 0.163, 95% CI [-0.003, 0.022]) or 
LPP amplitude alone (indirect effect [a2*c] = 0.003, SE = 0.003, z = 1.02, p = 0.309, 95% CI [-
0.003, 0.010]). These insignificant results suggest that P2 or LPP amplitude was not involved in 
the processing of advantageous inequity liking. 

 

Figure 7. P2 and LPP mediated trait anxiety effects on guilt aversion and their association 
with personal distress. (A) The attenuating effect of trait anxiety on guilt aversion occurred 
partially through decreasing P2 amplitude and increasing LPP amplitude. While (B) Personal 
distress is not related to P2 amplitude, (C) but positively related to LPP amplitude. ***: p < 0.001; 
**: p < 0.01; *: p < 0.05. 
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Third, to better interpret the ERP components, the associations between ERP amplitudes and self-
report measures like IRI (empathy) and Machiavellianism (selfishness) were examined. Mann-
Whitney U tests showed that the High Anxiety group exhibited higher scores on Machiavellianism 
and IRI personal distress compared to the Low Anxiety group (Tab. 3). Further, Spearman 
correlation analyses indicated that Machiavellianism was not correlated with P2 amplitude (Gain: 
rs = -0.14, p  = 0.294; Loss: rs = -0.074, p = 0.576) nor LPP amplitude (Gain: rs = 0.17, p = 0.186; 
Loss: rs = 0.12, p = 0.373). In contrast, personal distress was not correlated with P2 amplitude 
(Gain frame: rs = -0.17, p = 0.196; Loss frame: rs = -0.14, p = 0.302) (Fig. 7B), but positively 
associated with LPP amplitude (Gain frame: rs = 0.28, p = 0.027; Loss frame: rs = 0.33, p = 0.011 
(Fig. 7C). These results suggest that LPP amplitude may reflect emotional regulation mechanisms 
for negative emotions, especially in individuals with high trait anxiety. Individuals who 
experienced higher levels of personal distress, tended to exert more effort to suppress anticipatory 
guilt (indicated by higher LPP amplitude) as an emotional regulation strategy to avoid further 
emotional burden during social interactions. 

Table 3. Psychometric measures (Mean ± SE). Individuals with high trait anxiety group 
exhibited higher scores on Machiavellianism and IRI personal distress compared to those with low 
anxiety. SE: standard error of mean; U: Mann-Whitney U value; p: p-value. 

 High trait anxiety Low trait anxiety  U p 

Machiavellianism 79.47±2.35 71.87±1.74 604 0.023 

Interpersonal Reactivity Index     

Perspective-taking 18.03±0.79 19.35±0.63 357.5 0.172 

Fantasy 17.72±0.63 17.77±0.85 457.5 0.917 

Empathic concern 19.19±0.64 19.39±0.57 428.5 0.755 

Personal distress 17.91±0.63 14.71±0.83 636.5 0.006 
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Brain mechanism of trait anxiety on contextual effect 

Since N2 reflects cognitive control, which is essential for contextual perception and influenced by 
trait anxiety on the periphery, the relationship between N2 amplitude, advantageous inequity 
aversion, and reward sensitivity was tested. The contextual effect of advantageous inequity 
aversion and reward sensitivity was calculated as the difference between loss and gain contexts. 
The impact of trait anxiety on the contextual effect of N2 amplitude, advantageous inequity 
aversion, and reward was analyzed. 

Mann-Whitney U tests showed that Anxiety significantly altered the contextual effect on 
advantageous inequity aversion (U = 128, p < 0.001 (Fig. 8A) and N2 amplitude (U = 316, p = 
0.048) (Fig. 8B) in a similar manner. Spearman correlation showed that changes in the contextual 
effect on advantageous inequity aversion positively correspond with changes in N2 amplitude (rs 
= 0.38, p = 0.003) (Fig. 8C). Mann-Whitney U tests showed that Anxiety significantly altered the 
contextual effect on reward sensitivity (U = 227, p < 0.001). However, Spearman correlation 
indicated no significant relationship between the contextual effect of reward sensitivity and N2 
amplitude (rs = 0.15, p = 0.245). These results suggest that N2 amplitude potentially regulates the 
contextual perception of advantageous inequity aversion. 

 

Figure 8. Alteration of trait anxiety on contextual perception of advantageous inequity 
aversion and N2 mechanism. (A) Alteration of trait anxiety on the contextual perception of 
advantageous inequity aversion. Trait anxiety significantly altered the contextual effect of 
advantageous inequity aversion. (B) Alteration of trait anxiety on the contextual effect of N2 
amplitude. Similarly, trait anxiety affected N2 amplitude in a parallel pattern with advantageous 
inequity aversion. (C) Association between the contextual effect of N2 amplitude and those of 
advantageous inequity aversion. The contextual effect of N2 amplitude was positively correlated 
with the contextual effect of advantageous inequity aversion. **: p < 0.01; *: p < 0.05. 
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Discussion 

Reciprocity is a complex social behavior influenced by both reciprocity propensity (core) and 
contextual perception (periphery) (Fang et al., 2022; Hagen & Hammerstein, 2006); however, their 
underlying neurocomputational mechanism remain unknown. In this study, we employed 
computational modeling, eye-tracking, and ERP within an economic binary trust game under gain 
and loss frame to examine how trait anxiety affects the core and periphery of reciprocity and its 
underlying psychological components. We identified four psychological components—validated 
by eye-tracking analyses—underlying reciprocity decisions: reward, guilt aversion, advantageous 
inequity aversion, and advantageous inequity liking. For the core of reciprocity decisions, we 
found that trait anxiety reduced reciprocity at the behavioral level and decreased guilt aversion and 
advantageous inequity liking at the psychological level across different framed contexts. At the 
neural level, we found that trait anxiety attenuated guilt aversion by decreasing P2 amplitude 
related to selective attention and increasing LPP amplitude linked to effortful emotion regulation. 
For the periphery of reciprocity decisions, we showed that trait anxiety altered the contextual 
perception of reward and advantageous inequity aversion at the psychological level, but did not 
affect reciprocity at the behavioral level. In particular, trait anxiety altered the contextual 
perception of advantageous inequity aversion which involved the N2 cognitive control mechanism 
at the neural level. Overall, our study added knowledge on the neurocomputational mechanisms 
of how trait anxiety impacts the core and periphery of reciprocity decisions.  

Computational Modeling of Reciprocity Decisions 

Using computational modeling, we first analyzed the psychological components of how 
individuals make reciprocity decisions. In line with our first hypothesis, extending previous 
findings (Nihonsugi et al., 2015, 2021; Xiao et al., 2022), our best model identified four 
psychological components of reciprocity decisions: reward, guilt aversion, advantageous inequity 
aversion, and advantageous inequity liking. Individuals who prioritize reward tended to reciprocate 
less, while those who emphasize guilt aversion, advantageous inequity aversion, and advantageous 
inequity liking were more likely to reciprocate. Our model indicated that advantageous inequity 
aversion occurs when evaluating the betrayal option, while advantageous inequity liking appears 
when evaluating the reciprocity option in the binary game. Although the reward in the reciprocity 
option is less appealing compared to the betrayal option, individuals are more likely to reciprocate 
due to the higher relative payoff, supporting the notion that advantageous inequity aversion is 
condition-dependent rather than always present (Boyce et al., 2010; Cox, 2013; Dohmen et al., 
2011; O. Li et al., 2018). 
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Next, we validated the model's predicted psychological components for reciprocity decisions using 
eye-tracking. Consistent with our second hypothesis, in addition to model validation procedures 
through model prediction and parameter recovery, eye-tracking results also empirically validated 
our model. Our results showed that the transitions of the four components—guilt aversion, 
advantageous inequity aversion, reward, and advantageous inequity liking—dominated the top of 
all transitions, indicating the significant contribution of these components in reciprocity decision-
making. Furthermore, higher component parameter values were correlated with increased relative 
fixation duration on the corresponding transitions, based on the binary trust game's payoff structure. 
Moreover, resembling the relationship between the four components and reciprocity rate, we found 
that increased fixation duration on transitions mapping guilt aversion, advantageous inequity 
aversion, and advantageous inequity liking correlated with a higher reciprocity rate, while 
increased fixation duration on transition mapping reward correlated with a lower reciprocity rate. 
Notably, these transitions involve specific comparisons and evaluations during decision-making 
as a trustee based on the payoff structure in the binary trust game (Fiedler et al., 2013; Jiang et al., 
2016; Polonio et al., 2015). For reward, it involves comparing the participant’s payoffs between 
reciprocity and betrayal options, whereas for guilt aversion, it involves comparing the partner’s 
payoffs between these options. Advantageous inequity liking is evaluated by comparing payoffs 
between the participant and the partner within the reciprocity option, while advantageous inequity 
aversion is assessed by comparing these payoffs within the betrayal option. 

Trait Anxiety’s Impact on the Core of Reciprocity 

To explore how trait anxiety affects reciprocity, we examined the behavioral and computational 
mechanisms in both gain and loss contexts. We partially confirmed our third hypothesis that trait 
anxiety influences reciprocity both at the behavioral and psychological levels regardless of context. 
At the behavioral level, consistent with previous studies (Anderl et al., 2018; Rodebaugh et al., 
2011, 2013), our results indicated that individuals with high trait anxiety exhibited lower 
reciprocity than those with lower trait anxiety. At the psychological level, our results demonstrated 
that trait anxiety attenuated guilt aversion as well as advantageous inequity liking independently 
of context. These effects align with findings in individuals with OCPD, often comorbid with 
anxiety disorders (Xiao et al., 2022). Anxious individuals tend to use avoidance strategies in social 
interactions (Duronto et al., 2005; Raffety et al., 1997; Turner, 1988), likely reducing guilt aversion 
by limiting affective processing and diminishing a sense of moral obligation  (Kantor, 2016; Xiao 
et al., 2022).  

Contrary to our hypothesis, we failed to observe an impact of trait anxiety on advantageous 
inequity aversion as a core psychological component of reciprocity. While anxiety had a main 
effect on advantageous inequity aversion, the interaction between trait anxiety and frame showed 
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that this effect depends on the context. Specifically, trait anxiety reduced reciprocity in a gain 
frame but had no effect in a loss frame, suggesting it impacts the periphery of reciprocity rather 
than its core. Although less discussed in the literature, our results showed that trait anxiety reduces 
sensitivity to advantageous inequity liking when evaluating reciprocity. Due to the smaller payoff 
difference in the reciprocity option compared to the betrayal option, individuals with high trait 
anxiety might overlook minor payoff differences because of impaired attention and increased 
distractibility (Eysenck et al., 2007; Pacheco-Unguetti et al., 2010). Alternatively, their cognitive 
bias toward negative outcomes might have reduced their sensitivity to positive incentives (Bar-
Haim et al., 2007) like advantageous inequity liking in reciprocity decisions. 

Building on our computational findings, we investigated the neural mechanisms of how trait 
anxiety affects reciprocity. As hypothesized, our study revealed that higher trait anxiety is 
associated with lower P2 and higher LPP amplitudes, regardless of context. The P2 component is 
linked to selective attentional allocation (Hajcak et al., 2012; Luck et al., 1994; Potts, 2004; Rey-
Mermet et al., 2019), whereas the LPP component is associated with an effortful cognitive 
regulation over emotion (Bernat et al., 2011; Desatnik et al., 2017; Moser et al., 2014; Shafir et al., 
2015), particularly during the resolution of moral conflicts (Chen et al., 2009; Zhan et al., 2018, 
2020). These results suggest that individuals with high trait anxiety may allocate fewer attentional 
resources to evaluating moral conflicts or exert more effort to resolve or disengage from the 
dilemmas in reciprocity decisions. 

Our mediation analysis further supports this interpretation, indicating that trait anxiety attenuated 
guilt aversion through diminished P2 and elevated LPP amplitudes. To further elucidate the role 
of these ERP components, we examined relationships between self-report measures 
(Machiavellianism and IRI) and P2 as well as LPP amplitudes. Both Machiavellianism and IRI 
personal distress were higher in individuals with high trait anxiety compared to those with low 
trait anxiety. Further, individuals with higher personal distress exhibited higher LPP amplitudes in 
both gain and loss contexts. However, no significant relationships were found between personal 
distress and P2 amplitudes, Machiavellianism and P2 amplitudes, or Machiavellianism and LPP 
amplitudes. These findings suggest that LPP reflects effortful regulation and disengagement from 
negative emotions (Bernat et al., 2011; Desatnik et al., 2017; Moser et al., 2014; Shafir et al., 2015), 
supporting the idea that individuals with higher trait anxiety tend to adopt avoidance strategies 
(Duronto et al., 2005; Raffety et al., 1997; Turner, 1988). Overall, anxiety’s decreasing effect on 
P2 amplitudes indicates fewer attentional resources allocated to assessing guilt (Hajcak et al., 2012; 
Luck et al., 1994; Potts, 2004; Rey-Mermet et al., 2019), while anxiety’s increasing effect on LPP 
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amplitudes suggests effortful emotion regulation and disengagement from the anticipatory guilt in 
reciprocity decisions (Chen et al., 2009; Zhan et al., 2018, 2020). 

Trait Anxiety’s Impact on the Periphery of Reciprocity Decisions 

To elucidate the trait anxiety’s impact on the periphery of reciprocity decisions, we further 
investigated the behavioral and computational mechanism underlying how trait anxiety alters the 
contextual perception between gain and loss context. Partially supporting our fourth hypothesis, 
trait anxiety did not affect the behavioral aspects of reciprocity but did alter its psychological 
components. Our results indicated that individuals with low trait anxiety showed no contextual 
effect on reward, while those with high trait anxiety were more sensitive to reward under a loss 
than a gain frame. This finding aligns with previous evidence  (Gu et al., 2017; Jepma & López-
Solà, 2014; Xu et al., 2013)  showing that individuals with high trait anxiety are more susceptible 
to contextual effects on reward. Our results further showed that trait anxiety alters the contextual 
effect on advantageous inequity aversion. While individuals with high trait anxiety generally 
exhibited lower advantageous inequity aversion, context modulated this response: a loss frame 
reduced advantageous inequity aversion in those with low trait anxiety but enhanced it in those 
with high trait anxiety. This indicates distinct context-dependent processing mechanisms between 
individuals with low and high trait anxiety. 

Anxiety's effect on contextual perception may stem from how individuals with varying trait anxiety 
levels respond to different contexts. Individuals with high anxiety tend to rely more on heuristic 
decision-making than those with low anxiety  (Jepma & López-Solà, 2014) . Further, loss frames 
are heuristically perceived as more harmful to others (Baron, 1995; Evans & van Beest, 2017) and 
more threatening to one's own reward (Xu et al., 2013) compared to gain frames. Therefore, loss 
framing prompts individuals with high trait anxiety to increase advantageous inequity aversion 
and reward sensitivity, possibly driven by the "do-no-harm" principle (Evans & van Beest, 2017) 
and self-protective strategies (Meleshko & Alden, 1993). For example, even with the same payoff 
structure, making a partner lose more than the decision-maker is seen as more harmful than making 
the partner gain less. Similarly, losing more of their own payoff is perceived as more harmful than 
gaining less. The dual increase in advantageous inequity aversion and reward sensitivity in high 
trait anxiety individuals reflects the complex reality of decision-making with conflicting effects of 
the latent psychological components. This may potentially explain the lack of a significant 
contextual effect on behavioral reciprocity in high-anxiety individuals, as the effect of these latent 
psychological components might cancel each other out. In contrast, low anxiety individuals 
showed higher advantageous inequity aversion under the gain framing but lower under loss 
framing, suggesting a shift toward self-protection over other-regarding behavior. 
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Looking into the neural mechanism underlying trait anxiety’s impact on the periphery of 
reciprocity, consistent with our fourth hypothesis, our findings indicate that trait anxiety reverses 
the pattern of N2 amplitude in line with advantageous inequity aversion. When moving from a 
gain to a loss context, individuals with low trait anxiety showed decreased advantageous inequity 
aversion and heightened N2 amplitude, while those with high trait anxiety exhibited increased 
advantageous inequity aversion and attenuated N2 amplitude. The context's influence on 
advantageous inequity aversion was linked to its effect on N2 amplitude. The N2 component, 
which emerges during decision-making involving conflict and typically indicates higher cognitive 
control or more effortful response inhibition (Folstein & Van Petten, 2008b; Nieuwenhuis et al., 
2003), is also linked to the framing effect (Zhao et al., 2018). Our results suggest several key 
insights: Advantageous inequity aversion appears to be an instinctual response, with reducing it 
requiring cognitive control and enhanced N2 effort, while increasing it involves less cognitive 
effort. Further, the influence of framing on advantageous inequity aversion is likely modulated by 
N2 cognitive control, i.e., that perception differences in advantageous inequity aversion due to 
framing are shaped by the degree of cognitive control exerted during decision-making. Finally, 
trait anxiety likely alters how framing affects advantageous inequity aversion through mechanisms 
that regulate cognitive control. 

Limitation and Future Direction  

Several limitations should be noted in this study. Firstly, while our model identified four 
components influencing reciprocity in parallel, individuals may evaluate decisions hierarchically, 
prioritizing some components initially and others later. Future research should model the 
hierarchical structure of these components (Grover & Vriens, 2006). Secondly, our participants 
were healthy college students, not clinical patients with anxiety disorders, so generalizing to 
clinical populations should be done cautiously. Future studies should validate these results in 
clinical populations. Nonetheless, our findings could aid in diagnosing anxiety disorders. For 
instance, individuals showing lower guilt aversion, lower P2 amplitudes, and higher LPP 
amplitudes during reciprocity decisions may be at higher risk for anxiety disorders. Thirdly, we 
measured trait anxiety but did not assess state anxiety during the experiment. Future studies should 
measure state anxiety to control for this potential confound. Finally, our study combined eye-
tracking and EEG measures, but eye movements can create artifacts in EEG data. We used 
independent component analysis to minimize these artifacts, enhancing data reliability. Future 
studies should further refine these methods to improve data quality. Despite these limitations, our 
work provides valuable insights into how anxiety impacts reciprocity decisions through the lens 
of eye movement, EEG, and psychological components. 
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Conclusions 

Our study investigated how trait anxiety affects the core and periphery of reciprocity. We found 
that trait anxiety reduces reciprocity propensity and influences latent psychological components 
such as guilt and advantageous inequity liking, involving attentional allocation and emotion 
regulation processes. Additionally, trait anxiety alters the contextual effect of advantageous 
inequity aversion, involving cognitive control processes. Our findings offer insights into the 
neurocomputational mechanisms of trait anxiety's impact on reciprocity and may aid in the 
improvement of reciprocity in individuals with anxiety disorders.  
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Materials and Methods  

Participants 

A total of 550 participants completed the online version of the trait subscale of the Chinese State-
Trait Anxiety Inventory (STAI) (W. Li & Qian, 1995; Speilberger et al., 1983). The sample's trait 
anxiety scores ranged with a mean (M) of 41.52 and a standard deviation (SD) of 9.75, with the 
25th percentile at 35 and the 75th percentile at 48. Participants were classified into two groups 
based on their trait anxiety scores (TAS): those with TAS ≤ 35 were defined as the low trait anxiety 
group, and those with TAS ≥ 48 were defined as the high trait anxiety group. A target sample size 
of 30 participants for each trait anxiety group was determined based on prior related work (Chen 
et al., 2009; Zhan et al., 2018, 2020). In total, 69 participants were recruited for the study. Of the 
recruited participants, 34 were assigned to the low trait anxiety group (16 females; M = 31.65, SD 
= 2.83), and 35 were assigned to the high trait anxiety group (18 females; M = 53.57, SD = 3.12). 
None of the participants reported taking psychoactive medications or any history of mental 
disorder or brain injury. Participants who pressed the same button in 95% of the trials were 
considered nonresponsive to the task setting or not focused on the task, and were excluded from 
the analysis. As a result, 63 participants were included in the analysis, with 31 in low trait anxiety 
group (15 females; M = 31.65, SD = 2.85), and 32 in high trait anxiety group (16 females; M = 
53.56, SD = 3.22). The study was conducted according to the Declaration of Helsinki and approved 
by the local Ethics Committee at Shenzhen University, China. Participants provided written 
informed consent prior to their involvement in the study. Compensation included a fixed 
attendance fee of 60 yuan (approximately $10) and a variable monetary reward based on their 
decisions during the game, which ranged from 40 yuan to 80 yuan (approximately $7 to $13). 

Questionnaire 

Participants completed two self-report questionnaires: the Interpersonal Reactivity Index (IRI) 
measuring four empathy subscales (perspective taking, fantasy, empathic concern, and personal 
distress) (Davis, 1980), and the Machiavellianism (Mach-IV) scale assessing selfish tendencies 
(Christie & Geis, 1970). 

Experimental Procedure and Tasks 

Prior to the experiment, participants underwent a comprehensive briefing session on the rules of 
the game. This session also included practice designed to familiarize participants with their roles 
and the structure of the binary trust game. Participants were informed that their partners had 
already participated as the first movers, and their decisions were recorded and stored in the 
computer system, with these decisions to be shown in the formal experiment. This setup was 
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designed to avoid the potential confound brought by physical interaction with a partner on the 
measurement of reciprocity and also foster a belief among participants that they were engaging in 
authentic dynamics of interpersonal interaction. 

During the experimental task, participants completed 240 trials in two counterbalanced sessions 
(Gain frame, Loss frame) to control for order effects, each with two 60-trial blocks separated by 
short breaks. Each trial paired participants with a new anonymous partner (icon, partially obscured 
name). Participants then chose to "reciprocate" or "betray" the partner's "trust." Immediate 
feedback revealed whether the partner (50% chance) initially "trusted" or "distrusted." 

The binary trust game, utilized in this study, is an interactive economic game involving two player 
roles: Player A and B (Evans & van Beest, 2017). In the present study, the participant played the 
role of B and the partner played the role of A. The rule for the binary game was as follows: A made 
a first move by choosing “distrust” (the square containing the left column) or “trust” (the combined 
square containing the middle and right columns). If A chose “distrust”, the system distributed the 
point directly to A (gaining [in the gain frame] or losing [in the loss frame] the points colored in 
blue ) and to B (gaining or losing the points colored in green). In this case, B's subsequent choice 
did not influence the point distribution. Conversely, if A chose “trust,” the distribution of points 
depended on B’s decision. B could either "reciprocate" by selecting the square on the left inside 
the “trust” rectangle or "betray" by selecting the square on the right inside the same rectangle. 
Based on B’s decision, both players would gain or lose points accordingly.  

To mitigate the potential influence of decision spatial location on reciprocity choices, various 
versions of the binary trust game were employed. These adaptations involved altering the positions 
of the "trust" and "distrust" options, as well as the "reciprocate" and "betray" options, by switching 
their placements from left to right and vice versa. Consequently, four distinct versions of the game 
structure were applied. These variations were counterbalanced across participants in each trait 
anxiety group to ensure that any effects related to the positioning of choices were minimized, 
allowing for a more accurate assessment of decision-making behaviors without the bias of spatial 
location. Note that all four versions were standardized into one version (as displayed in Fig. 2A) 
for statistical analysis. The potential influence of the different versions was examined to ensure 
that the experimental effects were not due to version differences (Supplementary).  

Trials were varied by changing the six payoff values. The payoffs structure in all the trials in both 
gain and loss frames has several features (Fig. 2A): (1) for A, a2 > a1 > a3; (2) for B, b3 > b2 > 
b1; and (3) while a1>b1 and a3 < b3 in all trials, a2 can be greater than, equal to, or less than b2 
in different trials, with a2 > b2 in 124 trials, a2 = b2 in 6 trials, and a2 < b2 in 110 trials. Thus, 
rationally, to maximize the outcome, A should “trust” and expect B to “reciprocate”, securing the 
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payoff a2, which is economically the most beneficial for A. Conversely, B should consistently 
choose to "betray" to attain b3, which is economically the most beneficial for B.  

The loss frame was constructed from the gain frame using a modified version (Evans & van Beest, 
2017), balancing the value scale between frames. Unlike Evans & van Beest (2017), who used b3 
(highest gain frame value) as reference, we used the sum of "betray" option values (a3 + b3) to 
construct the loss frame. The six loss frame values were calculated as the difference between each 
corresponding gain frame value and the reference value (e.g., 59 [14+45]) (Fig. 1). In the gain 
frame, participants started with 0 points and gained points throughout. In the loss frame, 
participants started with 15000 points and lost points based on decisions, ensuring equivalent final 
outcomes if the same strategies were used in both frames (Evans & van Beest, 2017). Final income 
was randomly determined from either the accumulated points in the gain session or the remaining 
points in the loss session. 

Eye-Tracking Data Acquisition and Processing 

Eye movements were recorded at 1000 Hz using an EyeLink 1000 Plus (SR Research Ltd., Ottawa, 
Ontario, Canada) with head-chin stabilization. Participants were seated 60 cm from a 1280×1024 
pixel monitor and instructed to maintain fixation on a central cross. A 9-point 
calibration/validation was performed before each block. Fixations, saccades, and blinks were 
classified from raw data using EyeLink Data Viewer software (SR Research Ltd., Ottawa, Canada) 
with default settings. Subsequent analysis in R ("eyelinker" library) focused on fixations, 
excluding saccades and blinks. Large stimulus separation and high calibration accuracy allowed 
for generous AOI margins. Six rectangular AOIs (a1, a2, a3, b1, b2, b3; 164x144 pixels each) were 
aligned with the six values in the binary trust game (Fig. 2A). A central fixation cross AOI 
("Center"; 105 x 85.5 pixels) was also defined, with remaining areas labeled "Undefined." Manual 
examination of fixation areas for each participant and block resulted in the exclusion of four 
participants due to drift outside AOIs. For each trial, fixation sequences were extracted, and unique 
transitions between the six value AOIs (excluding "Center" and "Undefined") were identified. 
These transitions, without considering direction (e.g., a2_a3 is equivalent to a3_a2), reflecting 
decision-maker comparisons (Devetag et al., 2016), were mapped to model components like guilt 
aversion (a2_a3), advantageous inequity aversion (a3_b3), reward (b2_b3), and advantageous 
inequity liking (a2_b2). Relative fixation time for each of the 21 possible AOI combinations was 
calculated by dividing fixation duration by response time, with absent transitions assigned 0. For 
example, in a trial with fixation sequence "center_a1_a3_a3_undefined_a2_undefined_b2_b3," 
only transitions a1_a3 and b2_b3 would be relevant for decision processing. 
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EEG Data Acquisition and Processing  

EEG data was collected during the binary trust game using 64 Ag/AgCl electrodes placed 
according to the International 10-20 system (Brain Products GmbH). Recordings were made at 
1000 Hz with a 0.01-100 Hz passband, using FCz as online reference. Electrode impedance was 
kept below 5 kΩ. Electrooculographic (EOG) signals were also recorded to identify and remove 
eye movement artifacts. 

EEG data were preprocessed in EEGLAB (Delorme & Makeig, 2004), an open-source toolbox in 
MATLAB (The MathWorks, Inc., Natick, Massachusetts, USA). Recordings were re-referenced 
offline to the whole brain common average and band-pass filtered (0.1-30 Hz). Ocular artifacts 
were identified by their contributions to EOG channels and frontal scalp distribution, and corrected 
using independent component analysis (Delorme & Makeig, 2004). EEG epochs time-locked to 
reciprocity decision onsets were extracted using a 2,000 ms window (-500 ms to 1500 ms). Epochs 
with response times under 800 ms were discarded. After baseline correction using the pre-stimulus 
interval, epochs were visually inspected for gross movement artifacts, which were then excluded 
to ensure data quality. 

For each participant and each trial, the mean amplitudes of P2, N2, and LPP ERP components 
were measured within their specific time windows and at their related electrodes. The selection of 
time windows and electrodes for ERP amplitude measurement was informed by previous studies 
and by examining the grand average ERP waveforms and scalp topographies. In particular, the P2 
amplitude was measured at 110–200 ms (Boudreau et al., 2009; Fang et al., 2021; Liu et al., 2023; 
Potts et al., 2006), and the N2 amplitude was measured at 280–340 ms (Cavanagh & Shackman, 
2015; Folstein & Van Petten, 2008a; Hao et al., 2023; McLoughlin et al., 2022) after stimulus 
onset at frontal electrodes (F1, Fz, and F2). The LPP amplitude was measured at parietal electrodes 
(P1, Pz, and P2) 450–800 ms after stimulus onset (Bernat et al., 2011; Desatnik et al., 2017; Moser 
et al., 2014; Shafir et al., 2015). Scalp topographies of these ERP components were computed by 
spline interpolation. 

Computational Modeling of Reciprocity Decision-Making 

A stage-wise model construction procedure was utilized to identify and quantify the latent 
psychological components influencing reciprocity behavior in our binary trust game (Gagne et al., 
2020; Wang et al., 2023; Zhang & Gläscher, 2020). This iterative approach involved sequentially 
refining the model based on the performance of the previous best-fitting model. Leave-One-Out 
Information Criterion (LOOIC) and Widely Applicable Information Criterion (WAIC) were used 
for model comparison to minimize overfitting, with lowest values indicating best fit to the data 
(Gagne et al., 2020; Wang et al., 2023; Zhang & Gläscher, 2020). The goodness of fit was assessed 
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using Tjur's pseudo R² (Tjur, 2009), with higher values indicating better model fit. Parameters 
were estimated using hierarchical Bayesian analysis (Gagne et al., 2020; Wang et al., 2023; Zhang 
& Gläscher, 2020). The posterior inference was conducted via Markov chain Monte Carlo (MCMC) 
sampling, utilizing four independent chains, each with 4,000 iterations, to draw samples from the 
posterior distribution and ensure robust parameter estimation (Wang et al., 2023). Seven plausible 
candidate models were tested in total using Rstan in R (Carpenter et al., 2017) for model-related 
procedures. 

Guided by prior research (Nihonsugi et al., 2015; Xiao et al., 2022), the baseline model (M1) 
incorporated guilt aversion, inequity aversion, and reward, positing that decisions arise from the 
interplay between these socio-emotional factors and potential gains. The utility function (𝑈) was 
formulated as Eq. 1: 

𝑈 = #𝑏! 	− 	𝛽" · (𝑎# 	− 	𝑎!) 	−	𝛽$ · (𝑏! 	− 	𝑎!), if betray
𝑏# 	− 	𝛽$ · |𝑏# −	𝑎#|																			, if reciprocate              M1 (1) 

Departing from previous studies (Nihonsugi et al., 2015; Xiao et al., 2022), participants were not 
informed of their partner's beliefs regarding reciprocity, thus simulating real-world social 
interactions where individuals often lack explicit knowledge of others' internal beliefs. The term 
(𝑎# 	− 	𝑎!) approximates the anticipated guilt experienced upon choosing betrayal (where the 
partner receives 𝑎!), considering the partner's assumed trust and expectation of reciprocity 
(anticipating 𝑎#), with 𝛽"  (0< 𝛽"  <10) capturing the participant's aversion to guilt. The terms 
(𝑏! 	− 	𝑎!)  and |𝑏# −	𝑎#|  quantify the aversion to inequity associated with betrayal and 
reciprocity, with 𝛽$ (0< 𝛽$ <10) representing the participant's aversion to inequity. By design of 
the binary trust game, what the participant receives (𝑏!) is constantly larger than what the partner 
receives (𝑎!) in the option of betrayal, whereas the participant receives (𝑏#) can be either greater 
or less than what the partner receives (𝑎#) in the option of reciprocity. In the baseline model M1, 
inequity was quantified as the absolute difference between b# and a# in the option of reciprocity, 
assuming that participants equally weigh both advantageous and disadvantageous inequity 
aversions (Nihonsugi et al., 2015; Xiao et al., 2022). Finally, the utility (𝑈) of choosing to 
reciprocate and betray was entered into a SoftMax function with an inverse temperature parameter 
𝜆 (0< 𝜆 <10), such that the probability of choosing to reciprocate in each trial was expressed as 
(Eq.2): 

𝑃(𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑡𝑒) 	= 	 %
%	'	(!"($(%&'()%*'+,&)	!	$(/&,%+0))

                   (2) 
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The initial model, M1, expanded upon the established baseline model by incorporating varying 

sensitivities to guilt and inequity aversion across the four experimental conditions, namely 

low/high trait anxiety and gain/loss framing. M2 (Eq. 3) employed the Fehr–Schmidt inequity 

aversion model (Fehr & Schmidt, 1999), which separated inequity aversion into advantageous 

inequity aversion (advantageous inequity aversion) and disadvantageous inequity aversion.  

𝑈 = # 𝑏! −	𝛽" · (𝑎# 	− 	𝑎!) 	−	𝛽)*+$) · (𝑏! 	− 	𝑎!)										, if betray
𝑏# −	𝑝 · 𝛽)*+$) · (𝑏# −	𝑎#) 	− 	𝑞 · 	𝛽,-.)*+$)(𝑎# −	𝑏#)	, if reciprocate	          M2 (3) 

 

Here, 𝛽)*+$) and 𝛽,-.)*+$) represents the participant’s subjective aversion to advantageous and 
disadvantageous inequity. 𝑝 and 𝑞 are conditional indicators: if 𝑏# >	𝑎#,	𝑝 = 1, 𝑞 = 0; if 𝑎# >	𝑏#, 
𝑝 = 0, 𝑞 = 1. Given that M2 outperformed M1, M3 was developed by incorporating a reward 
parameter (Eq. 4) into M2, resulting in further improved model performance. 

𝑈 = # 𝛽/ · 𝑏! 	− 	𝛽" · (𝑎# 	− 	𝑎!) 	−	𝛽)*+$) · (𝑏! 	− 	𝑎!)									, if betray
𝛽/ · 𝑏# −	𝑝 · 𝛽)*+$) · (𝑏# −	𝑎#) 	− 	𝑞 · 	𝛽,-.)*+$)(𝑎# −	𝑏#)	, if reciprocate	      M3 (4) 

 

Building upon M3, M4 assumes that participants exhibit a dislike for advantageous inequity in 
betrayal scenarios yet appreciate it in reciprocity scenarios (Eq. 5), leading to the replacement of 
the inequity aversion term in the reciprocity option with an advantageous inequity liking 
component. 

𝑈 = #𝛽/ · 𝑏! 	− 	𝛽" · (𝑎# 	− 	𝑎!) 	−	𝛽)*+$) · (𝑏! 	− 	𝑎!), if betray
𝛽/ · 𝑏# + 	𝛽)*+$0 · (𝑏# −	𝑎#)																			, if reciprocate              M4 (5) 

Here, the term (𝑏# −	𝑎#) represents the magnitude and direction of the objective advantageous 
inequity (positive or negative), while and 𝛽)*+$0  reflected the participant’s sensitivity to this 
advantageous inequity liking. The model comparison revealed that M4 outperformed M3. 
Building upon M4, M5 introduces a reward weighting parameter against other components (0 < 
𝛽/ < 1) (Eq. 6), while M6 assumes individuals hold a consistent trade-off between randomness 
and determinism in decision-making, employing a shared inverse temperature parameter (𝜆) across 
frames, and M7 replaces 𝜆  with constant 1 as previous suggested (Nihonsugi et al., 2021). 
Ultimately, model comparison confirmed M4 as the winning model. 

𝑈 = # 𝛽! · (𝑏" 	− 	𝑏#)																																																		, if betray
	(1	 −	𝛽!) · {𝛽$%&'( · (𝑏# −	𝑎#) +	𝛽) · (𝑎# 	− 	𝑎") 	+	𝛽$%&'$ · (𝑏" 	− 	𝑎")}	, if reciprocate    M5 (6) 
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M4 was validated using posterior predictive checks and parameter recovery (Wilson & Collins, 
2019). For each participant and frame, model parameters were drawn and averaged from the 
posterior distribution to simulate decision choices and compute a predicted reciprocity rate. The 
correlation between these predicted and observed reciprocity rates was then used to assess the 
model's predictive accuracy. Parameter recovery was conducted by refitting M4 to the simulated 
dataset and assessing the correlation between the original and recovered parameters, thus 
validating the model's fitting precision. 

Statistical Analysis 

All statistical analyses were performed in R (v4.1.1; www.r-project.org). LMM was performed 
with the lme4 package (Bates et al., 2015). Results were considered statistically significant at the 
statistical threshold level p < .05 (two-tailed). LMM analyses were used to examine the effects of 
trait anxiety and context (frame) on reciprocity rate, guilt aversion, advantageous inequity aversion, 
reward sensitivity, and advantageous inequity liking, as derived from the winning model. Fixed 
effects for trait anxiety, frame, and their interaction were included, along with subject-specific 
random intercepts. Differences in IRI subscales and Machiavellianism between high and low trait 
anxiety groups were assessed using the Mann-Whitney U test, chosen for its robustness to potential 
outliers and non-normal distributions often observed in these psychological measures. 

To assess the contribution of each winning model component to reciprocity rate variance, a linear 
model was employed. Component weights were calculated using the "relaimpo" library in R. To 
validate the model, LMMs were used to examine the relationship between individual sensitivity to 
each model component and corresponding eye movement transitions. The LMM included fixed 
effects for individual component sensitivity, along with subject-specific random intercepts. To 
control for potential confounding factors, the objective value of the component, frame (gain/loss), 
and reaction time were included as fixed effects. 

To investigate the effects of trait anxiety and frame on ERP P2, N2, and LPP amplitudes, LMMs 
with trial-level data were employed. The models included fixed effects for trait anxiety, frame, and 
their interaction, as well as subject-specific random intercepts and slopes for frame. To examine 
the mediating roles of P2 and LPP amplitudes, serial mediation analysis was performed using the 
R library "bruceR" (Bao, 2023), an adaptation of SPSS's "PROCESS" (Hayes, 2017). Trial-level 
P2 and LPP amplitudes were used, along with trial-level guilt aversion and advantageous inequity 
aversion, calculated as the subjective value (𝛽" , 𝛽8)9) multiplied by the corresponding objective 
value (a2-a3 for guilt aversion, b2-a2 for advantageous inequity aversion) (Wang et al., 2023).  
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To investigate the impacts of trait anxiety on the contextual effect of advantageous inequity 
aversion, reward sensitivity, and N2 amplitude, Mann-Whitney U tests were conducted. To assess 
the association between the contextual effect of advantageous inequity aversion and N2 amplitude, 
Spearman correlation analyses were implemented. 
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Supplementary 

Reaction time 

 

Figure S1. The impact of trait anxiety and context on reaction time in reciprocity decision 
(Mean ± SE). Individuals under Loss Frame exhibited a trend of longer reaction time than those 
under Gain Frame. ~: p < 0.1. 

 

Model prediction 

 

Figure S2. Model prediction from winning model M4. (A) True reciprocity rate was correlated 
with simulated reciprocity rate in both Gain and Loss frame. ***: p < 0.001. 

 

Parameter recovery 
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Figure S3. Parameter recovery from winning model M4. True parameters of (A) guilt aversion, 
(B) advantageous inequity aversion, (C) reward sensitivity, (D) advantageous inequity liking, and 
(E) inverse temperature were correlated with recovered parameters in both Gain and Loss frame. 
***: p < 0.001. 

 

Displaying version effect 

The LMMs revealed no significant main effect of displaying version on the recirpocity rate (χ²(1) 
= 1.64, p = 0.650) and parameters of guilt aversion (χ²(1) = 0.52, p = 0.915), advantageous inequity 
aversion (χ²(1) = 2.62, p = 0.453), reward sensitivity (χ²(1) = 2.73, p = 0.435), advantageous 
inequity liking (χ²(1) = 3.16, p = 0.368) and inverse temperature (χ²(1) = 0.758, p = 0.860) from 
the winning model M4. 
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6. General Discussion 

The aim of this dissertation was to investigate the core and periphery of reciprocity within the 
framework of social representation theory and explore how anxiety influenced reciprocity through 
these components. The dissertation integrated a multi-modal investigation across three studies, 
including neuroimaging (EEG, fMRI), eye-tracking, and computational modeling techniques, to 
comprehensively unveil the complexity of reciprocity. The collective findings provide an 
understanding of the neural (both brain network- and region-level localization and temporal 
dynamics) and computational (psychological) mechanisms underlying the core and periphery of 
reciprocity. The dissertation also elucidated the neurocomputational mechanism underlying how 
anxiety modulates the core and periphery of reciprocity. 

Neural network mechanism for the core and periphery of reciprocity 

The aim of Study 1 was to identify the neural networks representing the core and periphery 
mechanisms of reciprocity. Combining task-free fMRI with CPM in economic games (the one-
shot TG [“give” frame] and DTG [“take” frame]), the study elucidated the core and periphery in 
reciprocity. Regarding the core, it showed that reciprocity under the “give” and “take” frames was 
positively correlated. CPM results highlighted the contribution of inter-network RSFC between 
the DMN (associated with mentalizing) and CON (associated with cognitive control) in 
representing the core of reciprocity. Regarding the periphery, the study showed that the reciprocity 
rate was higher under the “give” frame than the “take” frame. CPM results indicated the intra-
network connectivity of DMN (associated with mentalizing) contributes to the periphery of 
reciprocity.  

Previous studies have elucidated the neural mechanism of reciprocity (Bellucci et al., 2019; Cáceda 
et al., 2015); however, the effect of context in the measured decision is often neglected. Utilizing 
a well-controlled framing technique, Study 1 advanced our understanding of reciprocity by 
considering both the individual propensity for reciprocity and the perception of peripheral context. 
Previous research has shown that the DMN, CON, and FPN alone can predict reciprocity, 
underscoring their vital role in resolving the social dilemma of reciprocity (Bellucci et al., 2019). 
Study 1 extended and refined this by focusing on the core of reciprocity, emphasizing the role of 
the inter-network RSFC of DMN-CON, which explains the interplay between mentalizing ability 
for inference of intention and cognitive control for the temptation to betrayal in resolving the 
dilemma. Consistent with previous findings that functional connectivity within DMN is associated 
with social framing effects (help vs. harm frame) (Liu et al., 2020). Study 1 also highlights the 
important role of DMN in the periphery of reciprocity. This aligns with the interpretation that 
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DMN is the hub of the social brain, which is essential for assessing social contexts (Krueger et al., 
2009; Mars et al., 2012). These findings supported social representation theory, providing an 
empirical behavioral and neural basis for understanding the core and periphery of reciprocity. 
Although focuses on reciprocity, the revelation of neural bases for these structures can inspire 
future research to account for the core and periphery in other decision-making domains. 

Neurocomputational mechanism for the periphery of reciprocity 

The aim of Study 2 was to specifically investigate the neurocomputational mechanism underlying 
how peripheral manipulation shapes reciprocity. Utilizing task-based fMRI and computational 
modeling within a two-stage binary TG (framed as either gain or loss contexts), the study provided 
insights into the neurocomputational mechanism at the brain region level. The results showed that 
the peripheral manipulation of context influenced reciprocity through advantageous inequity 
aversion (discomfort associated with receiving more than partners). Neural results highlighted the 
role of the right amygdala and left anterior insula (lAI) in the periphery of reciprocity. The results 
also emphasized distinct contributions in the subprocesses (other-oriented inference and self-
oriented evaluation) of reciprocity decision-making for the periphery. In overall reciprocity 
decision-making, right amygdala activity was negatively associated with advantageous inequity 
aversion in the gain frame only. For the other-oriented inference process, although rDLPFC, 
DMPFC, and lSMG activity are associated with advantageous inequity aversion, no peripheral 
effect-related region was found. For the self-oriented evaluation process, reduced lAI association 
was observed in the loss frame compared to the gain frame, and it was positively associated with 
advantageous inequity aversion exclusively in the gain frame.  

The peripheral effect of advantageous inequity aversion has been demonstrated in a previous study 
employing stimuli with immediate biological relevance (e.g., pain), showing the involvement of 
the rDLPFC, lAI, and DMPFC (Xiaoxue Gao et al., 2018). Study 2 is consistent with this prior 
study, highlighting the important role of advantageous inequity aversion for the peripheral effect, 
while other components, such as guilt aversion, advantageous inequity liking, and reward 
sensitivity, do not. In addition, while confirming the important role of the involvement of lAI for 
the peripheral effect, Study 1 further elucidated that this effect specifically lies in the self-oriented 
evaluation. Contrary to previous findings (Xiaoxue Gao et al., 2018),  Study 2 did not reveal the 
involvement of DMPFC or rDLPFC in the peripheral effect but showed that these regions are 
related to the advantageous inequity aversion in other-oriented evaluations across different framed 
contexts. This discrepancy might be due to the different experimental settings, as previous studies 
used biologically relevant stimuli, which are thought to be more sensitive in detecting the 
peripheral effect. Moreover, aligned with precious findings (Haruno & Frith, 2009), Study 2 also 
indicated the right amygdala’s involvement in the periphery effect of advantageous inequity 
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aversion during the overall reciprocity decision-making. These findings provided a more detailed 
understanding of the periphery of reciprocity, elucidating the specific role of advantageous 
inequity aversion and the self-oriented evaluation in driving reciprocity. 

Neurocomputational mechanism for anxiety effect on the core and periphery of reciprocity 

The aim of Study 3 was to understand the neurocomputational mechanism by which anxiety 
modulates reciprocity in both the core and periphery. To achieve this, a combination of eye-
tracking and EEG recording was applied to a binary TG (framed as either gain or loss contexts). 
As expected, the computational modeling results (validated by eye-tracking data) indicated that 
both the core and periphery underlying reciprocity were modulated by anxiety. Regarding the core, 
anxiety impaired reciprocity through reduced guilt aversion and advantageous inequity liking, 
regardless of context. Specifically, the reduction in guilt aversion due to anxiety was mediated by 
decreased P2 amplitudes (reflecting reduced selective attention) and increased LPP amplitudes 
(indicating heightened emotion regulation). Regarding the periphery, anxiety appeared to alter the 
peripheral perception of advantageous inequity aversion and reward sensitivity. The alteration of 
anxiety's effect on the peripheral perception of advantageous inequity aversion was associated with 
changes in N2 amplitudes (indicating modulation of cognitive control).  

Following the computational modeling approach of Study 2, the use of eye-tracking techniques in 
Study 3 provided more observable measurements and successfully validated the computational 
model. The analysis of gaze patterns in Study 3 focused on transitions between areas of interest, 
capturing the decision-making process and reflecting the key psychological components 
underlying reciprocity (Devetag et al., 2016). This validation substantiates the main psychological 
components identified by the winning computational model, aligning with previous findings that 
individuals spend relatively more time on their areas of interest (Mitsuda & Glaholt, 2014; 
Palacios-Ibáñez et al., 2023). Additionally, EEG recordings complemented the fMRI methods used 
in the previous studies, providing high temporal resolution insights into the neural mechanisms of 
reciprocity. 

Building upon the core and periphery structure of reciprocity established in Study 1 and Study 2, 
Study 3 took a step further, revealing how anxiety affects reciprocity. According to the literature, 
anxiety has been documented as detrimental to various prosocial behaviors, including reduced 
generosity (Rodebaugh et al., 2016), cooperation (Walters & Hope, 1998), and reciprocity (Anderl 
et al., 2018; Rodebaugh et al., 2011, 2013). Consistent with these broader detrimental effects, 
Study 3 confirmed that anxiety impairs reciprocity and elucidated how these effects transfer 
through psychological components and the core and periphery structure.  
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Extending the previous finding on individuals with the disorder often co-occurring with high 
anxiety levels, which showed lower guilt aversion (Xiao et al., 2022), findings from Study 3 
emphasized the role of guilt aversion in anxiety’s effect on the core of reciprocity. This result 
suggests that higher anxiety may allocate fewer attentional resources to assessing guilt (indicated 
by P2 amplitude) (Hajcak et al., 2012; Luck et al., 1994; Potts, 2004; Rey-Mermet et al., 2019), 
and more effortful cognitive regulation over or disengagement from the anticipatory guilt 
(indicated by LPP amplitude) in reciprocity decisions (Chen et al., 2009; Zhan et al., 2018, 2020). 
Our finding supports the idea that individuals with higher trait anxiety tend to adopt avoidance 
strategies (Duronto et al., 2005; Raffety et al., 1997; Turner, 1988). 

Interestingly, study 3 demonstrated the distinct and opposite peripheral effects for the 
advantageous inequity aversion between individuals with low and high trait anxiety. This finding 
suggests several key points: First, advantageous inequity aversion is an instinctual response, and 
it take efforts to suppress this aversion. Second, the influence of peripheral manipulation is likely 
modulated by the N2 cognitive control process. Third, anxiety likely affects the periphery of 
reciprocity through the N2 cognitive control process. These findings unveiled how anxiety affects 
reciprocity from the behavioral, psychological, and neural levels and clarified its impact on the 
core and periphery of reciprocity. 

Summary of Studies 

While Study 1 provided the core and periphery neural mechanism of reciprocity at the brain 
network level, Study 2 further delved into the neurocomputational mechanisms, focusing on 
peripheral reciprocity and examining the overall reciprocity decision-making and its subprocess 
(other-oriented inference and self-oriented evaluation) at the brain region level. Based on these 
findings, Study 3 further contributed to identifying the neurocomputational mechanism underlying 
how anxiety distinctively affects reciprocity on the core and periphery.  

Specifically, using computational modeling, both Study 2 and Study 3 identified the same winning 
(best-fitting) model that included psychological components of guilt aversion, advantageous 
inequity aversion, advantageous inequity liking, and reward sensitivity. Noteworthily, the 
employment of the eye-tracking technique in Study 3 validated all these four components, 
underscoring the robustness of the computational findings in this dissertation. These replication 
and verification strengthen the validity of the model and suggests the common involvement of 
these psychological components in reciprocity across different populations, such as groups with 
varying levels of trait anxiety. 
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Overall, this work provides convergent evidence for the distinct neurocomputational mechanisms 
underlying the core and periphery of reciprocity and reveals how anxiety influences reciprocity 
through these mechanisms. 

6.1. Integration of Findings 

Reciprocity decisions, while unavoidably influenced by varying peripheral contexts, possess a 
stable core mechanism that remains consistent. To better understand reciprocity, this dissertation 
is specifically interested in capturing those core and periphery in reciprocity decision-making. 

Core Mechanism of Reciprocity  

The core mechanism of reciprocity can be elucidated by examining individuals unaffected by 
contextual manipulations and identifying commonalities across different contexts. Although Study 
2 didn't directly examine the core's psychological components, its results indirectly support Study 
3's findings. Study 3 identified guilt aversion and advantageous inequity liking as core components 
of reciprocity, both attenuated by anxiety regardless of gain or loss contexts. The absence of 
peripheral effects on these components in Study 2 further suggests their resilience to manipulation, 
reinforcing the notion that they are part of reciprocity's core rather than its periphery. 

Advantageous inequity aversion, identified as a peripheral component of reciprocity in both 
Studies 2 and 3, revealed complex dynamics between core and periphery across different 
subprocesses of reciprocity decision-making. In Study 2, the DMPFC, rDLPFC, and lSMG were 
significantly associated with advantageous inequity aversion during the other-oriented inference 
subprocess, with no peripheral differences found for these regions. This finding suggests that 
although specific computational components appear sensitive to the peripheral manipulation 
overall, the core mechanisms that are resistant to the change of context may also exist, depending 
on the specific sub-processing stage and brain region involved. 

Converging the findings from three studies, the role of mentalizing and cognitive regulation 
(cognitive control) is of utmost importance for the core of reciprocity, regardless of context. Study 
1 demonstrated the vital function of inter-network RSFC of DMN-CON for the core, with this 
inter-network connectivity contributing commonly to predicting reciprocity across both contexts. 
The finding highlights the interactive role of DMN and CON in reciprocity, where DMN facilitates 
mentalizing others' expectations, while CON exerts cognitive control over betrayal temptations. 
This interaction is crucial for resolving the social dilemma inherent in reciprocity decisions. 
Extending the findings from Study 1, Study 2 found that during reciprocity, the other-oriented 
inference subprocess involves DMPFC (a key hub of DMN related to mentalizing) and rDLPFC 
(associated with cognitive control), which are resistant to the peripheral manipulations. In addition, 
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Study 3 complemented these findings, identifying guilt aversion as a core component underlying 
anxiety’s impact on reciprocity. As the feeling of guilt derived from failing to meet others' 
expectations, mentalizing and empathy is the basis of guilt aversion (Chang et al., 2011; Xiao et 
al., 2022). Specifically, LPP amplitude, which mediates guilt aversion, is related to cognitive 
regulation over emotion (Bernat et al., 2011; Desatnik et al., 2017; Moser et al., 2014; Shafir et al., 
2015), especially during the resolution of moral conflicts (Chen et al., 2009; Zhan et al., 2018, 
2020). Integrating these findings from different neuroimaging methods (fMRI and EEG) and 
analytical techniques (CPM, computational modeling), the results from the three studies 
convergently provided robust evidence for the central role of mentalizing and cognitive regulation 
in the core of reciprocity.  

Periphery Mechanism of Reciprocity 

In contrast to the relatively indirect investigation of the core mechanism, a key strength of this 
dissertation lies in the consistent, direct manipulation of context to investigate the periphery of 
reciprocity across all three studies. Despite employing different framing (give/take and gain/loss), 
all studies demonstrated a peripheral effect on reciprocity at behavioral, psychological, and neural 
levels. 

Peripheral Modulation on Behaviors  

Specifically, Study 1 examined give and take framing with a one-shot TG and DTG, while Studies 
2 and 3 explored then gain and loss framing in a binary TG. The consistent emergence of peripheral 
effects across different framing contexts highlights the robustness of the finding that reciprocity is 
susceptible to contextual changes. It suggests that contextual susceptibility is not limited to a 
specific type of framing but is probably a general property in reciprocity decision-making. 
Moreover, supporting social representation theory, the observation of peripheral effects across 
studies strengthens the argument for the existence of separable core and peripheral components in 
reciprocity decisions (Abric, 1993). 

While the contextual effect on reciprocity was significant in Study 1, it showed marginal 
significance in both Study 2 and Study 3. This discrepancy in the strength of contextual effects 
can be attributed to these two points: On the one hand, the nature of the experimental paradigms 
and framing approaches differed between the studies. Study 1 employed a one-shot TG and DTG 
presented as give and take frames, while Study 2 and Study 3 utilized a multiple one-shot binary 
TG framed in gain and loss contexts. These different types of framing may have elicited different 
levels of psychological processing. The give/take framing carries a stronger social-emotional 
connotation, emphasizing the interpersonal nature of the exchange (Keysar et al., 2008). In contrast, 
the gain/loss framing could activate broader reward-processing mechanisms, highlighting the 
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economic aspects of the interaction (Xu et al., 2013). As people tend to base their decisions more 
on emotional factors than on purely calculational ones (Lerner et al., 2015), the give/take framing 
may elicit a more pronounced effect on reciprocity behavior. 

On the other hand, the measurement of reciprocity varied between studies. Study 1 used a 
continuous measure (the ratio between sent and previous received amounts) in single one-shot TG 
and DTG, whereas Study 2 and Study 3 employed a multiple categorical measure (the frequency 
of choosing reciprocity or betrayal) in multiple one-shot binary TG. This difference in 
measurement could affect the sensitivity to detect contextual effects. Although multiple categorical 
decisions allow for more stable estimates of behavior, single one-shot continuous measures might 
capture more subtle, instinctual responses (Rivera-Garrido et al., 2022), which results in relatively 
higher sensitivity of measurement in Study 1. 

Peripheral Modulation on Psychological Components 

Delving into the psychological mechanisms underlying reciprocity, the studies revealed intriguing 
patterns in the peripheral effects on advantageous inequity aversion. Study 2, which involved 
typically recruited university students, showed lower advantageous inequity aversion in the loss 
context compared to the gain context. Study 3 replicated this finding in the low anxiety group (trait 
anxiety score ≤ 35) but revealed an inverse pattern in the high anxiety group (trait anxiety score ≥ 
48), where advantageous inequity aversion was higher in the loss context compared to the gain 
context. 

Although trait anxiety score was not explicitly measured in Study 2, it is reasonable to assume that 
the participant sample represented a middle range of anxiety levels, given the random recruitment 
from the same university population. Synthesizing the results from both studies, we can infer a 
potential continuum of anxiety's impact on the peripheral effect of advantageous inequity aversion. 
Low anxiety and the inferred middle anxiety groups showed lower advantageous inequity aversion 
in loss compared to gain contexts, while the high anxiety group exhibited higher advantageous 
inequity aversion in loss compared to gain contexts. This pattern suggests a non-linear relationship 
between anxiety and the contextual modulation of advantageous inequity aversion. The reversal 
of contextual effects in high-anxiety individuals, compared to those with low or moderate anxiety, 
highlights a fundamental shift in how anxiety influences responses to moral concerns, such as 
other-regarding considerations, across different contexts. 

The peripheral effect on reward sensitivity also exhibits interesting variations across Study 2 and 
Study 3, providing nuanced insights into the role of individual differences in contextual sensitivity. 
While Study 2 did not observe a peripheral effect on reward sensitivity, Study 3 revealed this effect 
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specifically in the high anxiety group. The finding aligns with previous research demonstrating 
that individuals with high anxiety are more susceptible to framing effects on reward-related 
decisions (Gu et al., 2017; Xu et al., 2013). The differential impact of anxiety on contextual 
perception can be attributed to distinct decision-making strategies employed by individuals with 
varying levels of anxiety. Those with high anxiety tend to rely more heavily on heuristic decision-
making processes compared to their low anxiety counterparts (Jepma & López-Solà, 2014). This 
tendency interacts with the way different frames are perceived: loss frames are heuristically 
interpreted as more harmful to others (Baron, 1995; Evans & van Beest, 2017) and more 
threatening to one's own rewards (Xu et al., 2013) compared to gain frames. Consequently, when 
faced with a loss frame, individuals with high trait anxiety may increase both their advantageous 
inequity aversion and reward sensitivity. This dual increase could be driven by two complementary 
motivations: the "do-no-harm" principle (Baron, 1995), which heightens concern for others in 
potentially harmful situations, and self-protective strategies (Meleshko & Alden, 1993), which 
amplifies attention to potential personal losses. 

Peripheral Modulation on Neural Correlates 

Regarding the neurospacial mechanism, a notable discrepancy for the peripheral modulation 
emerged between the findings of Study 1 and Study 2: 

Study 1 highlighted the role of the intra-network RSFC of DMN in the periphery of reciprocity. In 
contrast, Study 2 emphasized the involvement of the right amygdala and lAI in the peripheral effect 
on advantageous inequity aversion. These regions are typically associated with the CON or 
salience network, but not DMN (Dosenbach et al., 2010; Shen et al., 2017). This discrepancy may 
be explained by the reason that advantageous inequity aversion may not capture all neural 
mechanisms involved in reciprocity behavior as it is one of the psychological components 
underlying reciprocity decisions. The overall reciprocity response likely emerges from the 
interactive contributions of multiple subcomponents, each potentially influenced by context in 
distinct ways even if they are not significantly shown under the current analysis method. 
Nevertheless, further studies are needed to resolve this inconsistent finding. 

Regarding neurotemporal mechanisms, Study 3 links the N2 cognitive control mechanism to 
advantageous inequity aversion, indicating that this aspect of peripheral modulation is sensitive to 
contextual modification. Anxiety specifically alters both advantageous inequity aversion and the 
N2 cognitive control mechanism in a similar pattern, further supporting the explanation from Study 
2 that advantageous inequity aversion is instinctual, with its modulation requiring cognitive 
effort—a function that the N2 cognitive process appears to facilitate. 
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Findings from a different angle highlights the value of a multi-method approach in studying 
complex social behaviors like reciprocity in this dissertation. By employing different paradigms 
and analytic methods, we can build a more comprehensive understanding of how peripheral 
manipulation influences reciprocity. 

6.2. Contributions to the Literature  

This dissertation makes several significant contributions to the existing literature on reciprocity.  

Unlike previous studies that overlooked the role of context in reciprocity decision-making, this 
dissertation is grounded in social representation theory, unveiling the complexity of reciprocity by 
delving into its core and periphery. By integrating diverse perspectives from computational 
modeling, eye-tracking analysis, neural dynamics, and neuroimaging at both regional and network 
levels, this dissertation offers an unprecedented depth of understanding. The multi-modal and 
multi-level investigation presented in this dissertation provides a holistic view of reciprocity, 
spanning from large-scale brain networks to specific regional activities, and from slow 
hemodynamic responses to rapid electrophysiological changes. Furthermore, it bridges the gap 
between behavioral manifestations and underlying psychological components, while also linking 
latent psychological components to their observable validations through eye movement patterns. 

Resolving the social dilemma between reciprocating others and maximizing personal interest is 
the key to reciprocity decision-making. While reciprocating may sacrifice self-interest, it can 
relieve the negative feelings such as guilt aversion, and advantageous inequity aversion as revealed 
in Study 2 and Study 3. Through the findings of Study 2 and Study 3, this work has identified core 
components of reciprocity, such as guilt aversion, as well as peripheral components like 
advantageous inequity aversion and reward sensitivity. These discoveries make significant 
contributions to the current literature by elucidating the origins of underlying psychological factors 
and revealing the fundamental psychological driving force of reciprocity propensity while 
distinguishing context-dependent elements.  

Beyond the psychological implications, these studies also revealed the neural correlates of these 
psychological components. For example, in Study 2, although serving as a peripheral component 
overall, neural correlates of advantageous inequity aversion during other-oriented inference in 
reciprocity decisions exhibited core-like characteristics, localizing to specific brain regions such 
as the rDLPFC and DMPFC. In contrast, neural correlates of advantageous inequity aversion 
during overall and self-oriented evaluation in reciprocity decisions were localized to the right 
amygdala and lAI, demonstrating peripheral effects. In addition, Study 3 showed that the core 
component of guilt aversion was mediated by P2 and LPP amplitudes, whereas the peripheral 
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component of advantageous inequity aversion was modulated by N2 amplitudes. These findings 
significantly contribute to the literature by elucidating both the spatial localization and temporal 
processing underlying the core and peripheral psychological components of reciprocity. 

Study 1 provided the core and periphery mechanism of reciprocity by revealing their contributing 
large-scale neural network. Although not directly examining the psychological processes, the 
machine-learning prediction method used in this study established a more direct link between 
reciprocity behavior (core and periphery) and underlying neural mechanisms. Complementary to 
Study 2 and Study 3, the finding of Study 1 is particularly valuable to the literature given that 
behavior is often complex and may not perfectly correspond to individual psychological driving 
forces.  

In sum, this dissertation significantly advances the field by providing a theoretically grounded, 
methodologically diverse, and multi-level analysis of reciprocity. It enhances our understanding 
of the mechanisms underlying reciprocity behavior and provides insights into the core-periphery 
framework, which has implications for future research on reciprocity and other aspects of social 
decision-making. 

6.3. Practical Implications 

Besides the contribution to the literature, this dissertation has several practical implications. 

Study 1 identified connectome-based predictors for both the core propensity and context sensitivity 
associated with reciprocity. These neural "fingerprints" related to the core (inter-network RSFC of 
DMN-CON) and periphery (intra-network RSFC of DMN) could serve as biomarkers indexing an 
individual’s reciprocity propensity and sensitivity to the contexts. Such insights could enable early 
identification of individuals who may be less inclined to reciprocate, with or without considering 
their sensitivity to the context, facilitating the implementation of early support or education 
programs to foster more cooperative tendencies.  

Study 2 also identified specific neural regions associated with component of reciprocity 
(advantageous inequity aversion) that is unaffected by peripheral manipulations, offering potential 
targets for neural interventions. The brain regions associated with advantageous inequity aversion 
during other-oriented inference, particularly the DMPFC, rDLPFC, and lSMG, could be potential 
targets for fMRI-based neurofeedback training or noninvasive stimulation methods like 
transcranial magnetic stimulation (TMS) on the rDLPFC. These interventions may help to enhance 
the reciprocity propensity, especially during inferring others' expectations. In contrast, based on 
the findings in Study 3, EEG-based neurofeedback training focusing on the LPP components 
(associated with emotional regulation) could potentially reduce guilt aversion, which helps 
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individual with anxiety to relieve their psychological burden although it might also reduce their 
reciprocity propensity. 

Study 3 demonstrated an inverted peripheral effect on advantageous inequity aversion in highly 
anxious individuals, which could serve as a potential marker for pathological anxiety. The distinct 
pattern in moral processing may help explain the lack of prosocial behavior often seen in anxiety 
disorders, suggesting that this behavior may not solely result from dispositional characteristics but 
rather from the unique response pattern to certain contexts. Moreover, targeting the modulation of 
advantageous inequity aversion could be a promising approach for interventions to enhance social 
functioning in individuals with high anxiety.  

In summary, these studies provide several psychological and neural indicators that could 
potentially be used to promote prosocial behavior at both individual and societal levels. By 
leveraging these insights, we can work towards creating more cooperative and harmonious social 
environments. 

6.4. Limitations and Future Directions  

While this dissertation provides significant insights into the neural and computational mechanisms 
of reciprocity, several limitations should be acknowledged, which in turn suggest promising 
avenues for future research. 

Integration of Spatial and Temporal Neural Measures: While this thesis employed both fMRI 
(Studies 1 and 2) and EEG (Study 3) techniques, these methods were not combined within a single 
study. Integrating fMRI and EEG in future research could provide a simultaneous understanding 
of both the spatial and temporal aspects of neural activity during reciprocity decisions. This 
combined approach would allow for better elucidation of the rapid temporal dynamics (from EEG) 
within specific brain regions or networks (from fMRI), offering a more complete picture of the 
neural processes underlying reciprocity. 

Causal Inferences: The correlational nature of the neuroimaging data limits our ability to draw 
causal conclusions about the relationship between brain activity and reciprocity behavior. Future 
studies could employ techniques such as TDCS or TMS to establish causal relationships between 
specific brain regions and reciprocity decisions. 

Clinical Applications: The findings regarding anxiety’s impairment of reciprocity suggest 
potential clinical relevance, but this was not explored in the clinical population. Future research 
could more directly investigate how clinical anxiety disorder affects reciprocity behavior and its 
neural underpinnings.  
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Computational Model Refinement: While the winning model in both Study 2 and Study 3 
comprised four psychological components influencing reciprocity in a parallel structure, 
participants may evaluate decisions hierarchically. For instance, they might evaluate some 
components first and others later in the reciprocity decision. Future studies could explore more 
complex models considering the hierarchical structure of these components (Grover & Vriens, 
2006). 

By addressing these limitations and pursuing these future directions, researchers can build upon 
the foundation laid by this thesis to develop an even more comprehensive understanding of 
reciprocity. 

6.5. Conclusions  

Through a multi-modal and multi-level approach, this dissertation contributes to our understanding 
of how stable individual tendencies (core) and context-dependent processes (periphery) shapes 
reciprocity through their underlying neurocomputational mechanism. This research advances our 
understanding of the complex neurocomputational architecture supporting reciprocity and offers 
potential avenues for promoting reciprocity. While underscoring the need for further investigation, 
this work contributes to a nuanced, mechanistic understanding of reciprocity, bridging 
neuroscience, psychology, and economics. These insights bring us closer to fostering more 
cooperative social interactions at both individual and societal levels.  
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