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Abstract
This paper deals with the reconstruction of the desired demand in an optimal control
problem, stated over a tree-shaped transportation network which is governed by a lin-
ear hyperbolic conservation law. As desired demands typically undergo fluctuations
due to seasonality or unexpected events making short-term adjustments necessary,
such an approach can exemplary be used for forecasting from past data. We suggest
to model this problem as a so-called inverse optimal control problem, i.e., a hierar-
chical optimization problem whose inner problem is the optimal control problem and
whose outer problem is the reconstruction problem. In order to guarantee the exis-
tence of solutions in the function space framework, the hyperbolic conservation law
is interpreted in weak sense allowing for control functions in Lebesgue spaces. For
the computational treatment of the model, we transfer the hierarchical problem into a
nonsmooth single-level one by plugging the uniquely determined solution of the inner
optimal control problem into the outer reconstruction problem before applying tech-
niques from nonsmooth optimization. Some numerical experiments are presented to
visualize various features of themodel including different types of noise in the demand
and strategies of how to observe the network in order to obtain good reconstructions
of the desired demand.
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1 Introduction

Flow problems over energy and supply networks model a broad range of interesting
applications, see (Bressan et al. 2014) for a survey. In this paper, we investigate trans-
portation networks of tree shape where the flow on edges is modeled, for simplicity,
via (linear) hyperbolic conservation laws, as typically used for electric transmission
lines (Göttlich et al. 2016), heating networks (Rein et al. 2020), or networks of gas
pipelines (Banda et al. 2006; Gugat et al. 2018). A control function is used tomodel the
inflow at some source vertex, and the aim of optimization is to choose this function
in such a way that certain desired demands at the sinks of the network are tracked
as close as possible. As mentioned in some recent contributions, see (Göttlich et al.
2019; Göttlich and Schillinger 2022a, b), these desirable demands are subject to per-
turbations, noise, or other sources of stochasticity. In the aforementioned papers, this
issue has been faced by modeling the problem as a stochastic optimal control problem
which is influenced by randomness via appropriately chosen stochastic processes.

In this paper, we are concerned with related phenomena. Let us consider the fol-
lowing practically relevant situation. There exists a company (C2) which appoints a
second company (C1) to deliver a certain amount of electricity/heat/gas at the demand
vertices over time by inserting the requested product at the source of the network over
time. In this regard, C1 has to solve the optimal control problemmentioned above. We
now enrich the considered situation by assuming that there is a network operator (NO),
different from C1 and C2, which partially observes the flow along the network and,
depending on this, charges C1 and C2 to pay some tax for employing the network. As
outlined above, the desired demands requested by C2 are subject to stochastic influ-
ences and, additionally, may vary due to a seasonal behavior. From past data, NO now
wants to forecast the desired demand of C2 and the associated actions of C1, exem-
plary for fixing taxes to plan future income. Typically, NO is not aware of the desired
demand as he only observes the actual network flow along some but, most likely, not
all edges of the network (as it might be expensive to equip the overall network with
sensors or to run them on each edge over all time). Furthermore, the forecasting model
should be capable of recognizing seasonal behavior of the desired demands as it is
exemplarily presented for an electricity market in Coskun and Korn (2021).

In order tomodel this situation, we consider it from the viewpoint of inverse optimal
control, i.e., we aim to identify parameters in an optimal control problem (and not
only in a dynamical system). Here, the optimal control problem of interest is the
aforementioned network flow problem, and the appearing desired demand plays the
role of this parameter. We assume that we are given observed (but, most likely, noisy)
pairs of optimal inflow and optimal network flow, and aim to reconstruct the desired
demands which are modeled as a convex combination of given ansatz functions. It is,
thus, our goal to find the associated weight parameters which characterize a suitable
standard (periodically emerging) choice for the desired demand. As we are interested
in the robustness of our approach, we consider additional perturbations in the model
and study different types of temporal restrictions in the observation of the network to
evaluate whether these are sufficient for good forecasting.

Naturally, the model of interest is a hierarchical optimization problem with two
decision levels. Coming back to our exemplary situation from above, at the outer
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(or upper-level) problem, the NO is in position to partially observe the network and
chooses certain weights, which then give a tangible desired demand. At the inner (or
lower-level) problem, C1 now can solve the network flow problem. Along those parts
of the network, which are observed by NO, the latter can compare the past data and the
real-time data obtained from the inner problem for this particular choice of the weight
parameters. Noting that this decision order leads to a well-posed problem, NO aims
to choose the weight parameters in such a way that past data and real-time data match
as good as possible. As our model has two decision levels, it is a so-called bilevel
optimization problem.

For more than 50 years, bilevel optimization is a major field of research in math-
ematical programming due to numerous underlying applications e.g. in data science,
economy, finance, machine learning, or natural sciences, see (Bard 1998; Dempe
2002; Shimizu et al. 1997) for an introduction and Dempe (2020) for a recent survey
which presents an overview of contributions in this area. Recently, bilevel optimiza-
tion turned out to be of particular interest in the context of transportation or energy
networks, see e.g. Dempe et al. (2015). This also includes the rapidly growing field
of hierarchical control, see e.g. Mehlitz and Wachsmuth (2020) for an overview, and,
particularly, so-called inverse optimal control already mentioned earlier, see (Hinze
et al. 2009; Tröltzsch 2010; Troutman 1996; Vinter 2010) for an introduction to the
topic of optimal control. Inverse control possesses several interesting applications e.g.
in the context of human locomotion, see (Albrecht et al. 2012; Albrecht and Ulbrich
2017; Albrecht et al. 2010; Mombaur et al. 2010). The theory on inverse optimal
control including ordinary and partial differential equations addresses the existence
of solutions, optimality conditions, and solution algorithms, see e.g. (Dempe et al.
2019; Friedemann et al. 2023; Harder and Wachsmuth 2019; Hatz et al. 2012; Holler
et al. 2018; Suryan et al. 2016) and is developing fast. In abstract bilevel optimization,
two decision makers, a leader and a follower, need to choose variables in order to
minimize their associated cost function which also depends on the variables of the
other decision maker, respectively. More precisely, the leader chooses his variables
first which are handed over to the follower who now can solve his optimization prob-
lem (which is parametric in the leader’s variable) to global optimality. The solutions
are then given to the leader, who now can evaluate his objective. Often, one assumes
that leader and follower cooperate in order to optimize the leader’s objective, and this
procedure is referred to as the optimistic approach to the problem, see (Zemkoho 2016)
for an overview of other approaches avoiding ill-posedness in bilevel optimization.
The leader’s and follower’s problem are often referred to as upper- and lower-level
problem, respectively. As the follower has to determine globally optimal solutions of
his problem by nature of bilevel optimization, one typically requires that the lower-
level problem is convex in the follower’s variable in order to circumvent issues related
to nonconvex global optimization at the lower-level stage.

We start our investigations by modeling the problem of interest as an inverse con-
trol problem in Sect. 2. Therefore, we first study the existence of solutions for linear
hyperbolic conservation laws in a function space which is suitable for optimal control
before setting up the lower- and upper-level problem consecutively. Furthermore, we
demonstrate that the resulting optimization problem possesses an optimal solution in
the function space setting we are investigating. In Sect. 3, we address the computa-
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tional treatment of the model. Section3.1 describes our approach to the numerical
solution of the problem. As it is analytically possible to compute the network flow
associated with the input, we are in position to distill a state-reduced version of the
parametric optimal control problem. The associated solution operator, which, at least
in pointwise fashion, can similarly be computed analytically due to the nice structure
of the problem, turns out to be a nonsmooth single-valued mapping. Plugging the
latter into the superordinate reconstruction problem and performing a suitable dis-
cretization, we end up with a nonsmooth optimization which we solve with the aid
of MATLAB’s patternsearch solver in default mode. The general set-up of our
computational experiments is carved out in Sect. 3.2. Numerical results are presented
in Sect. 3.3 in order to visualize the effectiveness and several different features of
the approach. Particular focus is laid on the robustness of the model with respect to
additional uncertainties, restricted observation options, and the presence of additional
inflow constraints. Some concluding remarks close the paper in Sect. 4.

2 Themodel problem

In this section, we set up the model of our interest. First, we discuss the particular
shape of the lower-level parametric optimal control problem in Sect. 2.1. Therefore,
we first present the underlying network dynamics and discuss regularity features of
associated solutions. Second, the lower-level objective function is constructed, and
solvability of the overall lower-level problem is discussed. In Sect. 2.2, we derive
the superordinate upper-level problem and demonstrate that it possesses an optimal
solution in the function space setting.

2.1 The lower-level problem

In this subsection, we are concerned with the derivation and analysis of the lower-
level optimal control problem. To start, we state the lower-level dynamics and discuss
existence and uniqueness of solutions associated with this system. Afterwards, we
set up the (parametric) lower-level problem, show that, for each set of parameters,
it possesses a unique solution, and investigate properties of the associated solution
operator.

2.1.1 Setting up the network and network dynamics

We consider a directed graph G = (V , E) which is a tree (in the sense that whenever
the directed edges are interpreted as undirected, then the resulting graph would be
free of cycles). Let us use the notation V := {v0, . . . , vn} and note that |E | = n by
nature of trees. Some more details on G and the notation we are going to exploit are
discussed below.

• The uniquely determined source vertex of the network G is v0 ∈ V . Furthermore,
we assume that v0 is a leaf of G, i.e., there is only one edge which leaves v0, and
the vertex at its end will be denoted by v1.

123



Inverse demand tracking in transportation networks

Fig. 1 An exemplary network with VD = {v4, v5, v6}, VI = {v1, v2, v3}, E+(2) = {(4), (5)}, and
ED = {(4), (5), (6)}

• In VD ⊂ V , we collect all vertices which possess no outgoing edges. These are
the demand vertices.

• All remaining intermediate (or inner) vertices of the network are collected in the
set VI := V \ (VD ∪ {v0}).

• For vi ∈ V \ {v0}, we identify the uniquely determined edge which ends at vi by
(i).

• The set E+(i) is used to denote the set of all edges starting at vertexvi . Furthermore,
we use ED := {(i) ∈ E | vi ∈ VD} to denote the set of edges that end at a demand
vertex. Clearly, |ED| = |VD|.
We visualize the above notation in Fig. 1. For the theory of this paper, it is not

mandatory that the vertex v0 possesses just one outgoing edge. One can interpret v0 as
an upstream supersource. Besides, this additional assumption simplifies the notation
because we can abstain from the introduction of distribution parameters at the inflow
vertex later on.

At the source v0, the injection of flow over time T := (0, T ), where T > 0 is the
final time, is modeled by the control variable u : T → Rwhich has to be chosen from
an appropriate function space.

The flow over (i) at time t ∈ T at the spatial coordinate x ∈ � will be denoted by
z(i)(t, x). Here, we assume that � := (0, ω) is a bounded real interval. The density
has to obey the linear hyperbolic conservation law

z(i)t (t, x) + λ(i)z(i)x (t, x) = 0, a.e. on T × �, (i) ∈ E, (2.1a)

z(i)(0, x) = 0, a.e. on �, (i) ∈ E, (2.1b)

λ(1)z(1)(t, 0) = u(t), a.e. on T , (2.1c)

λ(k)z(k)(t, 0) = αi,kλ
(i)z(i)(t, ω), a.e. on T , vi ∈ VI , (k) ∈ E+(i). (2.1d)

Particularly, the flux functions of the conservation law are of linear structure. For each
i ∈ {1, . . . , n}, λ(i) > 0 is a given constant. Above, for each vi ∈ VI and (k) ∈ E+(i),
αi,k > 0 is a constant such that

∑
(k)∈E+(i) αi,k = 1 holds, i.e., the coefficients αi,k

model how the flow splits at vertex vi into the flows along the edges from E+(i).
This way, (2.1d) conserves the flow. We note that the theory can be extended to more
general situations. Exemplary, standard linear damping terms of type μ(i)z(i)(t, x)
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can be incorporated in (2.1a) for real constants μ(i) > 0 for each (i) ∈ E without
any problem. Under additional assumptions, the coefficients λ(i) and μ(i) may also
depend on time. Without loss of generality one could choose ω := 1. However, in
order to clearly distinguish between temporal and spatial variables in notation, we
stick to the seemingly more general situation where ω > 0 is arbitrary. Furthermore,
the findings in this paper extend to connected networks without cycles, but apart from
a more difficult notation, which also allows for vertices where flows are merged, we
do not believe that such a model comes along with a significantly different theory. We,
thus, concentrate on tree-shaped networks.

2.1.2 Discussion of the hyperbolic conservation law

Let us first review a classical existence result for the linear hyperbolic conservation
law (2.1). Therefore, we define a suitable control space by

C1
00(T ) :=

{
u ∈ C1(T ) | u(0) = 0, u′(0) = 0

}
.

We equip C1
00(T ) with the classical C1-norm, and note that this space is a closed

subspace ofC1(T ). The proof of the following result, which is based on the method of
characteristics, can be distilled fromBressan (Bressan 2000, Section 3.1, Theorems 3.4
and 3.6) under the condition that we only consider positive velocities on the network
and, thus, all waves are moving with positive speed.

Proposition 2.1 For each u ∈ C1
00(T ), the hyperbolic conservation law (2.1) pos-

sesses a unique solution z := (z(1), . . . , z(n)) ∈ C1(T × �,Rn). The latter is
explicitly given by

∀(t, x) ∈ T × � : z(1)(t, x) =
{

1
λ(1) u(t − x/λ(1)) t − x/λ(1) > 0,

0 t − x/λ(1) ≤ 0
(2.2)

on edge (1), and for each i ∈ {1, . . . , n} such that vi ∈ VI and (k) ∈ E+(i), we find

∀(t, x) ∈ T × � : z(k)(t, x) =
{

αi,k
λ(i)

λ(k) z
(i)(t − x/λ(k), ω) t − x/λ(k) > 0,

0 t − x/λ(k) ≤ 0.

(2.3)

Additionally, there is a constant κ > 0, not depending on u, such that ‖z‖C1(T ×�,Rn)
≤

κ‖u‖C1(T )
.

Let us note that formula (2.3) can be used recursively to determine the solution
along all edges of the network. Indeed, based on (2.2), the solution along all arcs from
E+(1) can be computed. Next, using (2.3), it is possible to determine the flow along
all edges starting in those vertices which are the end vertex of some edge in E+(1).
Repeating this procedure, one can iterate through the whole network.
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Clearly, Proposition 2.1 justifies to introduce amap fromC1
00(T ) toC1(T × �,Rn)

which assigns to each control function from C1
00(T ) the associated uniquely deter-

mined solution of (2.1). This mapping is a linear operator which is continuous by
Proposition 2.1.

Since we are interested in the optimal control of the system (2.1), working with
the control space C1

00(T ) induces some inherent difficulties. First, this space is non-
reflexive, i.e., to show the existence of optimal solutions for optimization problems
over (2.1) and the superordinate inverse optimal control problem, which we state in
Sect. 2.2, would be challenging. Second, the dual of this space, which naturally arises
when using the adjoint approach for the derivation of optimality conditions, is large
and difficult to handle numerically. It is, thus, a reasonable task to reconsider (2.1)
from the viewpoint of control functions u ∈ L2(T ). Besides, this choice allows for dis-
continuous controls which can be exploited to model switches in the inflow. Observe
that (2.1) does not need to possess a classical solution in the sense of Proposition 2.1
anymore whenever the control function is not continuously differentiable. To proceed,
we follow (Keimer 2014, Section 2.2), see (Gugat et al. 2015, Section 2) as well, to
introduce a suitable weak formulation of (2.1) as stated below. First, for the state z(1),
we demand

∫

Tτ

∫

�

z(1)(t, x)(ϕt (t, x) + λ(1)ϕx (t, x))dxdt

= −
∫

Tτ

u(t)ϕ(t, 0)dt ∀ϕ ∈ Wτ (2.4)

for all τ ∈ T , where Tτ := (0, τ ) and

Wτ :=
{

ϕ ∈ C1(Tτ × �)

∣
∣
∣
∣
ϕ(·, ω) = 0 on Tτ

ϕ(τ, ·) = 0 on �

}

is the space of test functions. Similarly as above, we demand

∫

Tτ

∫

�

z(k)(t, x)(ϕt (t, x) + λ(k)ϕx (t, x))dxdt

= −αi,kλ
(i)

∫

Tτ

z(i)(t, ω)ϕ(t, 0)dt ∀ϕ ∈ Wτ (2.5)

for all τ ∈ T , vi ∈ VI , and (k) ∈ E+(i). A function z ∈ C(�, L2(T ,Rn)) satisfying
these requirements is referred to as a weak solution of the hyperbolic conservation
law (2.1). Recall that the function space C(�, L2(T ,Rn)) comprises all functions
z : T ×� → R

n such that, for each x ∈ �, z(·, x) belongs to L2(T ,Rn), and� 
 x →
z(·, x) ∈ L2(T ,Rn) is continuous. Let us emphasize that the boundary conditions
(2.1b), (2.1c) are incorporated in this alternative formulation of the dynamics also in
weak sense only (by definition of the space Wτ ) since pointwise considerations are
meaningless in Lebesgue spaces.
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The following result shows that the (classical) solution characterized in Proposition
2.1 (with controls chosen from C1

00(T )) also provides the uniquely determined weak
solution of the hyperbolic conservation law (2.1) if the control is chosen from L2(T ).

Proposition 2.2 For each u ∈ L2(T ), the function z := (z(1), . . . , z(n)) ∈
C(�, L2(T ,Rn)) characterized via (2.2), (2.3) is the uniquely determined weak solu-
tion of the hyperbolic conservation law (2.1). Additionally, there is a constant κ > 0,
not depending on u, such that ‖z‖C(�,L2(T ,Rn)) ≤ κ ‖u‖L2(T ).

Proof Let us start to show that z(1) given in (2.2) satisfies (2.4) for each τ ∈ T and
given u ∈ L2(T ). Therefore, we introduce a function ū ∈ L2((−ω/λ(1), T )) by

∀t ∈ (−ω/λ(1), T ) : ū(t) :=
{
u(t) t > 0,

0 t ≤ 0.

Using a coordinate transformation with respect to the new domain

	τ := {(s, x) ∈ R
2 | x ∈ �, s ∈ (−x/λ(1), τ − x/λ(1))},

we find, for each ϕ ∈ Wτ and ϕ̄(s, x) := ϕ(s + x/λ(1), x) for all (s, x) ∈ 	τ , the
identities

∫

Tτ

∫

�

z(1)(t, x)(ϕt (t, x) + λ(1)ϕx (t, x))dxdt

= 1

λ(1)

∫

Tτ

∫

�

ū(t − x/λ(1))(ϕt (t, x) + λ(1)ϕx (t, x))dxdt

=
∫∫

	τ

ū(s)ϕ̄x (s, x) d(s, x)

=
∫ τ

−ω/λ(1)

∫ min(ω,λ(1)(τ−s))

max(0,−λ(1)s)
ū(s)ϕ̄x (s, x)dxds

=
∫ τ

0
u(s)

∫ min(ω,λ(1)(τ−s))

0
ϕ̄x (s, x)dxds

=
∫ τ

0
u(s)(ϕ̄(s,min(ω, λ(1)(τ − s))) − ϕ̄(s, 0))ds

= −
∫

Tτ

u(s)ϕ(s, 0)ds.

Above, we used the fact that the determinant of the Jacobian associatedwith the chosen
coordinate transform is 1, the fundamental theorem of calculus, and

ϕ̄(s,min(ω, λ(1)(τ − s))) =
{

ϕ(τ, λ(1)(τ − s)) = 0 λ(1)(τ − s) < ω,

ϕ(s + ω/λ(1), ω) = 0 λ(1)(τ − s) ≥ ω,
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which holds by definition of the space Wτ of test functions. Thus, the function from
(2.2) solves (2.4).

Next, we will verify z(1) ∈ C(�, L2(T )). By definition of z(1), z(1)(·, x) ∈ L2(T )

is obvious for each x ∈ �. Let us pick x1, x2 ∈ � such that, without loss of generality,
x1 < x2. Then we have

‖z(1)(·, x1) − z(1)(·, x2)‖2L2(T )

= 1

(λ(1))2

∫ T

0

(
ū(t − x1/λ

(1)) − ū(t − x2/λ
(1))

)2dt

= 1

(λ(1))2

(∫ x2/λ(1)

x1/λ(1)
u2(t − x1/λ

(1))dt +
∫ T

x2/λ(1)

(
u(t − x1/λ

(1)) − u(t − x2/λ
(1))

)2dt

)

.

As |x1 − x2| → 0, the first of these integrals trivially tends to 0, and one can exploit
similar arguments as used to prove (Dobrowolski 2006, Theorems 4.20, 4.21) in order
to verify that the second integral tends to 0 aswell. Hence, x �→ z(1)(·, x) is continuous
on �, i.e., z(1) ∈ C(�, L2(T )). Let us also note that

‖z(1)‖2
C(�,L2(T ))

= max
x∈[0,ω] ‖z

(1)(·, x)‖2L2(T )

= 1

(λ(1))2
max

x∈[0,ω]

∫ T

0
ū2(t − x/λ(1))dt

= 1

(λ(1))2
max

x∈[0,ω]

∫ max(0,T−x/λ(1))

0
u2(s)ds

≤ 1

(λ(1))2
max

x∈[0,ω]

∫ T

0
u2(s)ds = 1

(λ(1))2
‖u‖2L2(T )

,

which gives

‖z(1)‖C(�,L2(T )) ≤ (λ(1))−1 ‖u‖L2(T ) .

The above arguments can be repeated in order to show that, for each i ∈ {1, . . . , n}
such that vi ∈ VI and (k) ∈ E+(i), the function z(k) characterized in (2.3) satisfies
(2.5) for each τ ∈ T , belongs to C(�, L2(T )), and obeys the estimate

‖z(k)‖C(�,L2(T )) ≤ λ(i)

λ(k)
‖z(i)‖C(�,L2(T )).

By iteration through the whole network, we obtain that the considered function
z is a weak solution of the hyperbolic conservation law (2.1) which belongs to
C(�, L2(T ,Rn)). Finally, uniqueness of the weak solution follows from Keimer
(2014, Theorem 3.1.1). 
�

Proposition 2.2 motivates the following definition.
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Definition 2.3 Let S : L2(T ) → C(�, L2(T ,Rn)) be the operator which assigns to
each u ∈ L2(T ) the uniquely determinedweak solution of the hyperbolic conservation
law (2.1) which has been discussed in Proposition 2.2. For each u ∈ L2(T ), we make
use of the notation S(i)(u) and S(i)

ω (u) to address the i-th component function of S(u)

and the function S(i)(u)(·, ω) ∈ L2(T ) for all i ∈ {1, . . . , n}, respectively.
The operator S defined above encapsulates all the information provided by (2.1)

and later on allows us to state all optimization problems of interest in compact, state-
reduced form.

Remark 2.4 Due to Proposition 2.2, the operator S is linear and continuous. Further-
more, for each i ∈ {1, . . . , n}, S(i) : L2(T ) → C(�, L2(T )) and S(i)

ω : L2(T ) →
L2(T ) are linear and continuous operators.

Let us note that an alternative approach to access the analysis of the linear hyperbolic
conservation law (2.1) is given via semigroup theory, see e.g. Sikolya (2004).

2.1.3 The lower-level problem and its solution operator

Now, we are ready to formulate the optimal control problem of interest. In general,
the control function u ∈ L2(T ) has to be chosen from a certain set of feasible controls
such that a given demand is trackedwhile the control effort isminimal. This is achieved
by minimizing the expression

f (u, β) := 1

2

∑

(i)∈ED

∥
∥
∥S(i)

ω (u) −
∑m

�=1
β

(i)
� D(i)

�

∥
∥
∥
2

L2(T )
+ σ

2
‖u‖2L2(T )

(2.6)

with respect to u ∈ Uad ⊂ L2(T ), where

Uad := {u ∈ L2(T ) | ua(t) ≤ u(t) ≤ ub(t) a.e. on T } (2.7)

is a standard box-constrained set induced by given measurable functions ua : T →
{−∞} ∪ R and ub : T → R ∪ {∞}, and we assume that Uad is nonempty. In (2.6),
m ∈ N such that m ≥ 2 is a fixed natural number which does not depend on (i) for
simplicity. Recall that S(u) is used to represent the (weak) solution of (2.1) which we
discussed in Sect. 2.1.2, S(i)(u) is the component of S(u) which is associated with the
edge (i) ∈ E , i ∈ {1, . . . , n}, and S(i)

ω (u) ∈ L2(T ) is obtained from S(i)(u) by fixing
the spatial variable to x := ω, see Definition 2.3 as well. When controlling network
flows, one typically tries to track the demand only by means of the outflow at the
demand vertices over time, and this is reflected by definition of (2.6). The appearing
regularization term aims to minimize the control effort and, in parallel, guarantees
uniqueness of lower-level solutions as we will see later on, see Proposition 2.5 below.

In (2.6), for each (i) ∈ ED , D
(i)
1 , . . . , D(i)

m ∈ L2(T ) are typical demand profiles,
i.e., suitable ansatz functions modeling the outflow at demand vertices over time.
Furthermore, σ > 0 is a regularization parameter. The weights β(i) ∈ 
m , where


m := {b ∈ R
m

∣
∣ b ≥ 0,

∑m

�=1
b� = 1} (2.8)
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denotes the standard simplex in R
m , are, at the lower-level stage, fixed and shall

be reconstructed from measurements in a superordinate optimization problem, see
Sect. 2.2. For fixed (i) ∈ ED ,

∑m
�=1 β

(i)
� D(i)

� plays the role of the desired demand,
i.e., the outflow at demand vertex vi over time we are seeking. In this regard and by
definition of
m , D(i)

1 , . . . , D(i)
m play the role of extreme cases for the desired demand

as
∑m

�=1 β
(i)
� D(i)

� is a convex combination of these functions. If D(i)
1 , . . . , D(i)

m are
interpreted merely as basis functions of a suitable finite-dimensional subspace of
L2(T ), where the desired demand has to be chosen from, then the weights β(i) can be
taken as arbitrary vectors fromR

m , resulting in an easier superordinate reconstruction
problem. In (2.6), we used β := (β(i))(i)∈ED ∈ (Rm)|VD | for brevity of notation.

We investigate the lower-level optimal control problem

min
u

{ f (u, β) | u ∈ Uad}. (LL(β))

Here, f : L2(T )× (Rm)|VD | → R is the function defined in (2.6), and the set of feasi-
ble controlsUad is given in (2.7). Observing that the operators S

(i)
ω : L2(T ) → L2(T ),

(i) ∈ ED , are linear and continuous while keeping the presence of the nonvanishing
regularization term σ

2 ‖u‖2
L2(T )

in mind, the function f (·, β) is continuous and uni-

formly convex for each β ∈ (Rm)|VD |. Furthermore, Uad is, by construction, convex
and closed. Thus, noting that L2(T ) is a reflexive Banach space, (LL(β)) possesses a
uniquely determined (global) minimizer, see e.g. Tröltzsch (2010, Theorem 2.16) for
a similar result.

Proposition 2.5 For each β ∈ (Rm)|VD |, (LL(β)) possesses a uniquely determined
(global) minimizer.

The above result motivates the following definition.

Definition 2.6 Let � : (Rm)|VD | → L2(T ) be the operator which assigns to each
β ∈ (Rm)|VD | the uniquely determined (global) minimizer of (LL(β)).

In the subsequent result, we show via standard arguments that the mapping �

defined in Definition 2.6 is Lipschitz continuous.

Proposition 2.7 The mapping � is Lipschitz continuous.

Proof For ι = 1, 2, we choose βι ∈ (Rm)|VD | and set ūι := �(βι). Convexity and
continuous Fréchet differentiability of f (·, βι) as well as convexity and closedness of
Uad yield that ūι is the global minimizer of (LL(β)) if and only if the condition

∀u ∈ Uad : (
f ′(ūι, βι), u − ūι

)
L2(T )

≥ 0 (2.9)

is valid, see (Tröltzsch 2010, Lemma 2.21). Above, (·, ·)L2(T ) : L2(T )×L2(T ) → R

denotes the standard inner product of the Hilbert space L2(T ).
Applying the chain rule, we find an explicit formula for the derivative of f (·, βι)

with respect to u. More precisely, we have

f ′
u(u, βι) = A(u) − B(βι) (2.10)

123



S. Göttlich et al.

for the continuous linear operators A : L2(T ) → L2(T ) and B : (Rm)|VD | → L2(T )

given by

∀u ∈ L2(T ) : A(u) :=
∑

(i)∈ED

((S(i)
ω )∗ ◦ S(i)

ω )(u) + σu,

where, for each (i) ∈ ED , (S
(i)
ω )∗ : L2(T ) → L2(T ) is the adjoint of S(i)

ω : L2(T ) →
L2(T ), which is a linear, continuous operator again, see Remark 2.4, and

∀β ∈ (Rm)|VD | : B(β) :=
∑

(i)∈ED

m∑

�=1

β
(i)
� (S(i)

ω )∗(D(i)
� ).

Hence, from (2.9) and (2.10), we find

(A(ū1) − B(β1), ū2 − ū1)L2(T ) ≥ 0,

(A(ū2) − B(β2), ū1 − ū2)L2(T ) ≥ 0.

Adding up these inequalities and performing some rearrangements yields

(A(ū1 − ū2), ū1 − ū2)L2(T ) ≤ (B(β1 − β2), ū1 − ū2)L2(T ) . (2.11)

By definition of A, we find

(A(ū1 − ū2), ū1 − ū2)L2(T )

=
∑

(i)∈ED

(
((S(i)

ω )∗ ◦ S(i)
ω )(ū1 − ū2), ū1 − ū2

)

L2(T )
+ σ‖ū1 − ū2‖2L2(T )

=
∑

(i)∈ED

‖S(i)
ω (ū1 − ū2)‖2L2(T )

+ σ‖ū1 − ū2‖2L2(T )

≥ σ‖ū1 − ū2‖2L2(T )
,

and due to the continuity of B, there is a constant κ > 0, not depending on β1 and β2,
such that

(B(β1 − β2), ū1 − ū2)L2(T ) ≤ ‖B(β1 − β2)‖L2(T )‖ū1 − ū2‖L2(T )

≤ κ‖β1 − β2‖(Rm )|VD |‖ū1 − ū2‖L2(T ).

Combining this with (2.11), we end up with

‖ū1 − ū2‖L2(T ) ≤ (κ/σ )‖β1 − β2‖(Rm )|VD | ,

which shows the desired Lipschitzness of �. 
�
Let us close this subsection with some remarks.
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Remark 2.8 (a) Let us mention that whenever the box constraints in the optimization
problem (LL(β)) are dropped, i.e., ua ≡ −∞ and ub ≡ ∞ in (2.7), then the
associated solution operator� is linear and continuous (as the operatorA, defined
in the proof of Proposition 2.7, is coercive and, thus, as a consequence of the
Lax–Milgram lemma, see e.g. Dobrowolski (2006, Theorem 2.29), continuously
invertible).

(b) For the theory in this paper, it is essential that the dynamics in (LL(β)) are linear
as this, together with the structure of the objective function, guarantees that, for
fixed β ∈ (Rm)|VD |, (LL(β)) is a convex optimization problem which can be
solved to (global) optimality without any difficulty. Recall that solving the lower-
level problem globally is an intrinsic assumption in bilevel optimization. In case
where (2.1) is replaced by a nonlinear hyperbolic conservation law, it first has to
be studied whether (LL(β)) actually possesses a global solution, which can be
done in line with the findings in Keimer (2014). The far more challenging task
is to find a procedure which reliably computes the global minimizer of (LL(β)),
which is a nontrivial problem in the presence of nonlinear dynamics as additional
local minimizers and stationary points, which are not even local minimizers, may
exist.

2.2 The upper-level problem

To motivate the reconstruction problem, we first consider the optimal control problem

min
z,u

{g(z, u) | z = S(u), u ∈ Uad} (2.12)

where g : C(�, L2(T ,Rn))× L2(T ) → R is a classical tracking-type function given
by

g(z, u) := 1

2

∑

(i)∈ED

‖z(i)(·, ω) − D(i)
d ‖2L2(T )

+ σ

2
‖u‖2L2(T )

for each z ∈ C(�, L2(T ,Rn)) and u ∈ L2(T ), and Uad is the set of feasible con-
trols defined in (2.7). In (2.12), S denotes the solution operator associated with the
hyperbolic conservation law (2.1), see Definition 2.3. Furthermore, D(i)

d ∈ L2(T ),
(i) ∈ ED , is some desired demand at vertex vi which shall be approximated by the
associated components of the network flow resulting from a suitable choice of the
control function u.

We assume that, e.g., by numerical experiments, p ∈ N (approximate) pairs of
solutions (zo,r , uo,r ) ∈ C(�, L2(T ,Rn))× L2(T ), r = 1, . . . , p, of (2.12) have been
obtained for noisy desired demands, or that the measurement itself has been inexact
so that (zo,r , uo,r ) on their own are noisy. Let us emphasize that zo,r is some (noisy)
state corresponding to uo,r for each r = 1, . . . , p, i.e., zo,r ≈ S(uo,r ). Our goal is to
reconstruct the functions D(i)

d , (i) ∈ ED , from these observations. In order to do so,
we presume that, for suitably chosen β(i) ∈ 
m , where 
m has been defined in (2.8),
we can ensure
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D(i)
d ≈

m∑

�=1

β
(i)
� D(i)

�

for all (i) ∈ ED , where D(i)
1 , . . . , D(i)

m are the available prototypical demand profiles
we already mentioned in Sect. 2.1.3. Hence, (LL(β)) can be interpreted as a special
instance of (2.12).

In this regard, the reconstruction task can be modeled via the bilevel optimization
problem

min
β,u

{
1

2

p∑

r=1

(∥
∥C(S(u)) − C(zo,r )

∥
∥2
Oz

+ ∥
∥D(u) − D(uo,r )

∥
∥2
Ou

) ∣
∣
∣
∣
β ∈ (
m)|VD |

u = �(β)

}

.

(UL)

Here, some linear, continuous mapping C : C(�, L2(T ,Rn)) → Oz plays the role
of an observation operator that is applied to the network flows and the observed
flows. Their difference is measured in some observation space Oz . Similarly, the lin-
ear, continuous mapping D : L2(T ) → Ou plays the role of an observation operator
addressing the inflow, with Ou being yet another observation space. In order to obtain
differentiability in function space of the objective function in (UL), it is desirable
that Oz and Ou are Hilbert spaces, respectively, but this property is not required for
the analysis in this paper. It should be noted that the model (UL) merely exploits
the observations (C(zo,r ),D(uo,r )) ∈ Oz × Ou instead of the full approximate solu-
tions (zo,r , uo,r ) ∈ C(�, L2(T ,Rn)) × L2(T ), r = 1, . . . , p, for the construction
of the upper-level objective function. The latter fact allows for an efficient collection
of data, depending on the precise structure of C and D. In principle, it is also possi-
ble to use nonlinear, continuous observation operators in (UL), but for our purposes,
linear, continuous operators are sufficient. Let us also recall that � denotes the solu-
tion operator associated with the lower-level problem (LL(β)), see Definition 2.6. As
already pointed out in Sect. 2.1.3, it might also be reasonable to remove the constraint
β ∈ (
m)|VD | from (UL), resulting in a simpler problem.

We would like to mention a prototypical choice for the operator C here. It seems
to be a reasonable idea to inspect the behavior of the flow along certain parts of
(selected) edges pointing towards demand vertices from VD . Thus, for some nonempty
set E ′ ⊂ ED and (potentially trivial) closed intervals I (i) ⊂ �, (i) ∈ E ′, one could
exploit C : C(�, L2(T ,Rn)) → ∏

(i)∈E ′ C(I (i), L2(T )) given by

∀z ∈ C(�, L2(T ,Rn)) : C(z) := (
z(i)(·, ·)|T ×I (i)

)
(i)∈E ′ .

Particularly, one can choose I (i) := {ω} for each (i) ∈ E ′ in order to compare
network flows and observed flows merely by means of the outflow at certain demand
vertices. Note that the operator C might be also restricted in time, see Sect. 3.1 and
our numerical experiments in Sect. 3.3.4. The operator D may be chosen similarly,
restricting the observation of the inflow in time, including the trivial case where D is
the identity. WheneverD is chosen to be the zero operator, the inflow is not observed.

123



Inverse demand tracking in transportation networks

Let us demonstrate that the reconstruction problem (UL) possesses an optimal
solution.

Proposition 2.9 The optimization problem (UL) possesses a globally optimal solution.

Proof We note that (UL) can be transferred into a finite-dimensional optimization
problem by plugging the lower-level solution operator � into the objective function.
It is obvious that a point β ∈ (Rm)|VD | is a global minimizer of the resulting control-
reduced problem if and only if (β,�(β)) is a global minimizer of (UL). By continuity
of�, see Proposition 2.7, and continuity of C as well asD, the objective function of the
reduced problem is then continuous, while its feasible set (
m)|VD | is nonempty and
compact. Thus, the reduced problem possesses a global minimizer β̄ ∈ (Rm)|VD | by
theWeierstraß theorem, and this yields that (β̄, �(β̄)) solves (UL) to global optimality.


�
Although being globally Lipschitz continuous, see Proposition 2.7, the lower-level

solution operator �, which, at least in discretized form, see Appendix A, can be
represented as the composition of a linear, continuous operator and the projection
onto Uad, is likely to be nonsmooth apart from the special situation where no control
constraints are present, see Remark 2.8. Eliminating the control variable u in (UL)
by plugging � into the objective function, thus, leads to a finite-dimensional but
nonconvex, nonsmooth optimization problem with polyhedral constraints. Whenever
Uad = L2(T ) holds, � is linear, see Remark 2.8 again, and (UL) is actually a convex
optimization problem. In this particular situation, numerical methods which identify
stationary points of (UL) may already compute global minimizers of the problem.
This is a rare property in hierarchical optimization where the multilevel structure is,
typically, a source of nonconvexity and nonsmoothness, and this problem we also face
in the general setting where control constraints are present.

3 Numerical solution and computational results

In this section, we first describe how (UL) can be solved in numerical practice. Second,
results of some computational experiments are presented.

3.1 Numerical solution of the problem

For the network discretization, we choose a time grid (t j )Jj=1 of J ∈ N discretization
points such that t j := ( j − 1)�t for all j ∈ {1, . . . , J }, where �t > 0 is a given
temporal stepsize, and a spatial discretization of each edge (i), represented by the
interval (0, ω), as (x (i)

q )L
(i)

q=1, where L(i) ∈ N is the number of discretization points,

x (i)
q := (q − 1)�x (i) for all q ∈ {1, . . . , L(i)}, and �x (i) > 0 is the spatial stepsize

for edge (i). The transported quantities z(i)j,q at time t j and position x (i)
q given by the

PDE in (2.1a) are calculated using a left-sided upwind scheme, i.e.,

z(i)j,q = z(i)j−1,q − �t

�x(i)
λ(i)

(
z(i)j−1,q − z(i)j−1,q−1

)
, j ∈ {2, . . . , J }, q ∈ {2, . . . , L(i)}.
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We also note that (2.1b) translates into z(i)1,q = 0 for all q ∈ {1, . . . , L(i)}. At the
junctions, according to (2.1c) and (2.1d), we require

z(1)j,1 = u j

λ(1)
, z(k)j,1 = αi,k

λ(i)

λ(k)
z(i)
j,L(i) , vi ∈ VI , (k) ∈ E+(i), j ∈ {1, . . . , J }

where u j := u(t j ) for all j ∈ {1, . . . , J }. For �t
�x (i) λ

(i) = 1, the upwind scheme shows

no diffusion. Therefore, we set �x (i) := λ(i)�t which leads to different spatial grids
on the different edges whenever the respective coefficients λ(i) are not the same.

We use this discretization for a finite differences approximation of the lower-level
problem (LL(β)). We define S(i),L(i) ∈ R

J×J to be the (discrete) realization of S(i)
ω

such that
∑J

ν=1 S
(i),L(i)

j,ν uν approximates the influence of the discretized inflow on the

density z(i)
j,L(i) at time t j and spatial point ω. Further, we denote the discrete versions

of the demand profiles D(i)
1 , . . . , D(i)

m for edge (i) ∈ ED by D̃(i)
1 , . . . , D̃(i)

m ∈ R
J .

For our computations, we will exploit that the columns of S(i),L(i)
are orthogonal

to each other. This is the case since, due to the special structure of the PDEs, there is
a one-to-one correspondence between the inflow into the system and the outflow out
of the system. Therefore, in the discretized setting, there is a unique time point for the
inflow that determines the outflow at the corresponding outflow time. This property
enforces the matrix S(i),L(i)

to be nonzero on its subdiagonal. Consequently, S(i),L(i)

is orthogonal.
For a given convex combination of base demands by the vector β and using (2.10),

we obtain the optimal inflow in the discretized setting in the absence of control con-
straints when solving the linear system Au − Bβ = 0 where A is given by

A :=
∑

(i)∈ED

(
S(i),L(i)

)� (
S(i),L(i)

)
+ σ IJ ,

where IJ ∈ R
J×J is the identity matrix, and

B := [
Q(i)

]
(i)∈ED

.

Above, for each (i) ∈ ED , Q(i) ∈ R
J×m is given by

Q(i) :=
[(

S(i),L(i)
)�

D̃(i)
1 . . .

(
S(i),L(i)

)�
D̃(i)
m

]

.

We note that the discretized lower-level problem is equivalent to

min
u

{ 12u�Au − (Bβ)�u | ua ≤ u ≤ ub},

where ua, j := ua(t j ) and ub, j := ub(t j ) for all j = 1, . . . , J . We obtain the solution
of this problem by projecting the solution of the linear equation Au − Bβ = 0 onto
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Fig. 2 The network considered in Sect. 3.3 with VD = {v7, v8, v9, v10, v11}, VI = {v1, v2, v3, v4, v5, v6},
and ED = {(7), (8), (9), (10), (11)}

the feasible box, since A is a diagonal positive definite matrix by orthogonality of
S(i),L(i)

, (i) ∈ ED , see Appendix A for details.
For the upper-level problem (UL), we apply the same discretization technique with

different stepsizes, see Sect. 3.3, and consider, if not specified differently, the obser-
vation operator C in which we only observe the densities at the demand vertices from
VD , corresponding to the last discretization points of the edges in ED , as well as at
the first discretization point of edge (1), monitoring the inflow at v0. Additionally, D
is the zero operator in our experiments. Further details and some numerical examples
are explained in Sect. 3.3 where it is also described how C and D can be adjusted.

Inserting the discretized solution operator of the lower-level problem into the
objective function of the discretized upper-level problem results in a nonsmooth opti-
mization problem with affine constraints, and we solve the latter using MATLAB’s
patternsearch solver in default mode. We want to emphasize that the perfor-
mance of this optimization routine heavily depends on the initial point that is handed
over to the solver. This, however, is not surprising as the considered nonsmooth prob-
lem of interest is nonconvex and, thus, likely to possess several local minimizers
and stationary points which are different from its global minimizers. As the model
is designed to reconstruct certain reference parameters from noisy data, we initialize
patternsearchwith a perturbed version of these reference parameters to face this
problem. We note that, in the absence of lower-level control constraints, the result-
ing single-level problem is a simple convex quadratic problem which can be solved,
exemplary, with the aid of MATLAB’s quadprog routine, and the aforementioned
issues do not occur.

3.2 General set-up of experiments

We consider the tree-shaped network presented in Fig. 2 in which each edge has a
length of ω = 1.

The velocities are chosen identically for all edges, we use λ(i) = 10, i = 1, . . . , 11.
The stepsizes are given by �t = 1

60 , �x = 1
6 for the backward calculation and
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�t = 1
70 , �x = 1

7 for the forward calculation, which are chosen differently to
avoid an inverse crime, see (Colton and Kress 2013, page 154), for the unconstrained
examples, and�t = 1

20 ,�x = 1
2 (backward calculation),�t = 1

30 ,�x = 1
3 (forward

calculation) when applying constraints to the inflow in order keep reasonable running
times. Note that �x (i) = �x is exploited, i = 1, . . . , 11. In both cases, the Courant–
Friedrichs–Lewy condition holds true with equality, i.e., �t

�x λ(i) = 1, i = 1, . . . , 11,
to avoid diffusion in the numerical scheme. The distribution parameters are set to

α1,2 = 0.65, α2,4 = 0.7, α4,7 = 0.5, α6,10 = 0.4,

α1,3 = 0.35, α2,5 = 0.3, α4,8 = 0.5, α6,11 = 0.6.

We consider the evolution of the demand within one week, i.e., T = 168 where one
time unit represents one hour and assume four underlying base demand levels which
are visualized in Fig. 3 and chosen as

• a time constant level of the demand:
D1(t) = 4,

• a daily varying level at which we attain the highest level in the morning:
D2(t) = 2 + sin (π(t − 2)/12),

• a daily varying level at which we attain the highest level in the afternoon:
D3(t) = 2 + sin (π(t − 10)/12),

• a level that illustrates the lower demand during the weekend:
D4(t) = 1[0,120](t).

These choices can similarly be found for example for the electricity market in
Coskun and Korn (2021) and describe the identified two-peak pattern of demand in
the intraday market (D2, D3) as well as the phenomenon referred to as the weekend
effect (D4). For the prototypical demand profiles, we make use of D(i)

� := d̂(i) D�,
i ∈ {7, . . . , 11}, � ∈ {1, 2, 3, 4}, where

d̂(7) = 0.2275, d̂(8) = 0.2275, d̂(9) = 0.195, d̂(10) = 0.14, d̂(11) = 0.21.

This choice proportionally accounts for the different distribution parameters in the
network. The historical observations are basically generated using the initial weights

(β1, β2, β3, β4) = (0.2, 0.15, 0.2, 0.45). (3.1)

In every time step and for every demand vertex, the base demand levels are perturbed
by random variables

Z (i)
1 ∼ N (0, 1), Z (i)

2 ∼ N (0, 1/4), Z (i)
3 ∼ N (0, 1/4), Z (i)

4 ∼ N (0, 1/4),

such that the historically desired demands are given by realizations of

D(i)
d =

4∑

�=1

β� d̂
(i)

(
D� + Z (i)

�

)
, i ∈ {7, . . . , 11}. (3.2)
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Fig. 3 Illustration of the four base demand levels

The historically observed pairs (zo, uo) are computed as solutions of the associated
problem (2.12).

3.3 Documentation of experiments

In the following, we investigate different variants of the bilevel optimization problem
(UL). The standard version is presented in Sect. 3.3.1, and settings with additional
perturbations in the historical observations are shown in Sects. 3.3.2 and 3.3.3. A
time-restricted observation operator C is investigated in Sect. 3.3.4. All subsections
are constructed in a similar way. First, we present exemplary historical demand obser-
vations, then we provide a comparison of the in- and outflows for the means of the
historical observations and the initially chosen β as well as for the reconstructed β in a
framework without an inflow constraint, which can also be considered as a framework
with a high constraint that does not really affect the inflow. These illustrations are
presented for the inflow vertex and the demand vertex v7 (the behavior at all other
demand vertices is similar). We can verify that, on the one hand, the optimal inflows
are calculated correctly and, on the other hand, see whether the reconstruction of the
weights β was successful. The second aspect is further underlined by a table present-
ing the means and variances for β of a Monte Carlo simulation of N = 40 runs for

123



S. Göttlich et al.

different numbers of historical observations p. Second, we repeat the investigations of
each subcase based on a medium inflow constraint ub ≡ 2 and a low inflow constraint
ub ≡ 1.5, where we also ensure nonnegative inflows, i.e., ua ≡ 0, the latter being
nonrestrictive as the desired demand at the vertices in VD is nonnegative.

3.3.1 Standard model without additional adjustments

In this scenario, no further perturbations or model changes are included, and we con-
sider the framework presented in the previous sections. Three examples for historical
observations are given in Fig. 4 which show the sinusoidal behavior of demand, as well
as the drop for t > 120 during the weekend. Furthermore, we detect the stochastic
noise in the demands, however, still verify that the demands show a very similar struc-
ture. The comparison of the inflow and outflow for demand vertex v7 are presented
in Fig. 5, where the blue curve shows the mean values of the p = 6 historical obser-
vations, the yellow dotted line represents the curve for the true β given in (3.1), and
the red line the in- or outflow for the reconstructed β. All considerations were made
without constraining the inflow control. It can be concluded that all three curves match
very well, which means that, on the one hand, the inflow is calculated appropriately
and, on the other hand, also the weights of the base demands are reobtained very well.
The outflow behavior at the demand vertices v8, . . . , v11 shows similar patterns and
is (for brevity of presentation) not illustrated. At the beginning and the end of the
considered time horizon, some curves in Fig. 5 decay to zero or show a jump. This can
be explained by the fact that around time t = 0, it takes some time until (starting from
an empty system) the first inserted quantity reaches the demand vertex. Therefore, the
outflows are zero in the very beginning of the time period. Conversely, the inflow for
times close to T = 168 vanishes, since these quantities do not reach the demand nodes
within the considered time horizon. The increase at T = 168 in the outflow figure
can be explained by considering T = 168 to be Monday already, where the demand
is larger again. Similar artifacts show up in some other figures in this section due to
analogous reasons.

Table 1 shows the means and variances of the reconstructed weights for the base
demands for different numbers of perturbed historical observations in a Monte Carlo
simulation of N = 40 runs and underlines the results from Fig. 5 quantitatively. As
it can be expected for larger numbers of historical observations, the means approach
the values in (3.1) and the variances in the runs decrease in the number of historical
observations p.

Accounting for a potential constraint on the inflow, we compare a scenario where
the inflow is limited to 2 (medium constraint) and 1.5 (low constraint). We repeat the
idea of Fig. 5 in Fig. 6 emphasizing that, except for the constraint, all other quantities
remain unchanged. However, the demand illustration seems to be less fluctuating
which can be explained by the coarser discretization grid that is used for the constrained
optimization. In themedium constraint case, we observe that the in- and outflow follow
the unconstrained case but are truncated at the very highest peaks and otherwise follow
the averaged demand well. Regarding the reconstruction of the weights of the base
demand levels when zooming in, one can still observe a quite goodmatch in the in- and
outflows of the optimized and initial choices of β. Table 2 underlines this observation,
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Fig. 4 Three of the perturbed historically observed demands for demand vertex v7 in the case of Sect. 3.3.1

Fig. 5 A comparison between the mean realization of the p = 6 historical in- and outflows with the in- and
outflow for the reconstructed β in the case of Sect. 3.3.1 and the initial β

Table 1 Means and variances of the reobtained weights for the base demands for different choices of the
number of perturbed historical observations p in the setting of Sect. 3.3.1

mean variance
p = 1 p = 6 p = 20 p = 200 p = 1 p = 6 p = 20 p = 200

β1 0.2003 0.2000 0.1999 0.2000 2.16e−06 0.25e−06 0.16e−06 0.10e−07

β2 0.1496 0.1499 0.1500 0.1500 6.65e−06 0.42e−06 0.29e−06 0.21e−07

β3 0.2001 0.2001 0.2002 0.2000 2.82e−06 0.87e−06 0.31e−06 0.18e−07

β4 0.4503 0.4500 0.4499 0.4500 4.16e−06 0.57e−06 0.34e−06 0.21e−07
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Fig. 6 A comparison between the mean realization of the p = 6 historical in- and outflows with the in-
and outflow for the reconstructed β in the case of Sect. 3.3.1 and the initial β with two different inflow
constraints

Table 2 Means and variances of the reobtained weights for the base demands for different choices of the
number of perturbed historical observations p in the setting of Sect. 3.3.1 with additional inflow constraints

mean variance
medium low medium low
p = 6 p = 200 p = 6 p = 200 p = 6 p = 200 p = 6 p = 200

β1 0.1960 0.1972 0.2460 0.2474 2.87e−06 0.11e−06 0.83e−04 0.11e−05

β2 0.1549 0.1536 0.0997 0.0988 5.93e−06 0.22e−06 0.91e−04 0.10e−05

β3 0.1997 0.1997 0.1297 0.1284 6.77e−06 0.35e−06 1.10e−04 0.21e−05

β4 0.4493 0.4495 0.5245 0.5254 6.24e−06 0.30e−06 1.11e−04 0.15e−05

but shows a small deviation especially in the parameters β1 and β2 compared to the
unrestricted case. For the low constraint, the inflow is cut from Monday to Friday and
in some peak times also during the weekend, so that most of the time demand cannot
be satisfied on average. Then the reconstruction task is also not successful, and we
can observe a visible mismatch in the green circles (associated to the optimal outflow
for the initial β) and purple diamonds (representing the outflow for the reconstructed
β) during the weekend. Referring again to Table 2, one can see that there is a large
deviation in the reconstructed values of β, where the very low values of β2 and β3
are particularly striking. This effect can be explained by the fact that D2 and D3 are
the sinusoidal components of demand and that the observations are smoothed and
truncated at the majority of time.
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Fig. 7 Three of the perturbed historically observed demands for demand vertex v7 in the case of Sect. 3.3.2

3.3.2 Results with additional noise in the weightsˇ

In addition to the investigation of Sect. 3.3.1, we introduce a structural and uncertain
deviation in the choice of β, when generating the historically desired demand in (3.2).
We assume that the uncertainty mainly comes into play for β4 such that for any
historical observation, the weights for the demand levels are chosen as

(β1, β2, β3, β4) =
(

0.2

1 + Z̃
,
0.15

1 + Z̃
,

0.2

1 + Z̃
,
0.45 + Z̃

1 + Z̃

)

(3.3)

for a uniformly distributed random variable Z̃ ∼ U([−0.05, 0.05]).
The results for some historical observations are presented below in Fig. 7. There is

not only noise in the demands but also structurally different behavior due to differ-
ent realizations of Z̃ in the weights of the demands. Therefore, the yellow curve of
historic data 3 seems to be lower (corresponding to a larger value of Z̃ ) than the blue
curve (corresponding to a smaller value of Z̃ ). Figure8 shows the different in- and
outflows which are supplemented by Table 3 showing the means and the variances
of a Monte Carlo simulation for the reconstructed weights of the base demands for
different numbers of perturbed historical observations. We observe that in Fig. 8, the
expected outflow and inflow match quite well, but considering Table 3, it can be seen
that the reconstruction is more difficult than in the standard setting. For small p, the
reconstructed β deviatesmore significantly from the initial choice. For a larger number
of observations p, the data indicates that the performances are improved and lead to
good reconstructed values of β.

Also in this scenario, we investigate a constraint on the inflow control on a medium
level of 2 and a low constraint of 1.5. Similar to Sect. 3.3.1, the reconstruction works at
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Fig. 8 A comparison between the mean realization of the p = 6 historical in- and outflows with the in- and
outflow for the reconstructed β in the case of Sect. 3.3.2 and the initial β

Table 3 Means and variances of the reobtained weights for the base demands for different choices of the
number of perturbed historical observations p in the setting of Sect. 3.3.2

mean variance
p = 1 p = 6 p = 20 p = 200 p = 1 p = 6 p = 20 p = 200

β1 0.2012 0.2010 0.2001 0.2001 0.36e−04 0.08e−04 0.19e−05 0.01e−05

β2 0.1497 0.1509 0.1500 0.1501 0.26e−04 0.04e−04 0.14e−05 0.01e−05

β3 0.2013 0.2013 0.2003 0.2001 0.40e−04 0.06e−04 0.19e−05 0.01e−05

β4 0.4477 0.4468 0.4496 0.4497 2.76e−04 0.49e−04 1.37e−05 0.08e−05

least satisfactorily in the medium constraint case, whereas it fails in the low constraint
case. Nevertheless, in both cases, the average outflow matches the optimal outflow for
the reconstructed β, see Fig. 9. Table 4 shows for p ∈ {6, 200} the mean and the vari-
ance as the adapted version of Table 3 with medium and low inflow constraint, where
the variances are similar but slightly higher than in the unconstrained framework. The
observed effects are comparable to those obtained for the constrained but unperturbed
regime in Table 2.

3.3.3 Results with changed base demand level D4

This section is based on the investigations in Sect. 3.3.1. Instead of perturbing β, we
assume that there is a structural deviation in the base demand levels. Particularly,
we assume that in the generation of the observations, we adjust the base demand
D4 to D4(t) = 3

21[0,120](t), which means that there is larger share of demand on
weekdays. Furthermore, we omit the normalization restriction to the weights, i.e., we
merely assume β� ≥ 0, � ∈ {1, . . . , 4}, and drop the constraint

∑4
�=1 β� = 1, since

the increase in the base demand level should now be captured by a larger weight on
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Fig. 9 A comparison between the mean realization of the p = 6 historical in- and outflows with the in-
and outflow for the reconstructed β in the case of Sect. 3.3.2 and the initial β with two different inflow
constraints

Table 4 Means and variances of the reobtained weights for the base demands for different choices of the
number of perturbed historical observations p in the setting of Sect. 3.3.2 with additional inflow constraints

mean variance
medium low medium low
p = 6 p = 200 p = 6 p = 200 p = 6 p = 200 p = 6 p = 200

β1 0.1958 0.1965 0.2494 0.2518 0.06e−04 0.02e−05 1.01e−04 0.18e−05

β2 0.1548 0.1539 0.0923 0.0909 0.10e−04 0.06e−05 0.85e−04 0.10e−05

β3 0.1996 0.1997 0.1285 0.1262 0.10e−04 0.09e−05 1.21e−04 0.28e−05

β4 0.4498 0.4499 0.5297 0.5310 0.36e−04 0.27e−05 1.09e−04 0.24e−05

β4. Note that we still use D4(t) = 1[0,120](t) in the lower-level objective function
from (2.6) for the reconstruction task. Similar to Sect. 3.3.1, examples of the historical
observations are presented in Fig. 10 which now show a larger difference between the
weekday demand and the weekend demand induced by the larger value in D4. Again,
Fig. 11 shows the in- and outflows for themeans of the observations (blue), the initial β
from (3.1) (yellow dotted), and the reconstructed β (red). One can see that the in- and
outflow of the initial β do not match from Monday to Friday, but do on the weekend,
since they are not able to take into account the change in D4. The reconstructedweights
yield the correct inflows and outflows with respect to the observations and manage
to compensate the structural deviation in D4. In Table 5, we observe that the values
for β1, β2, and β3 are very well reobtained with similar variances as in Table 1. The
value of β4 now exceeds significantly the initial value of 0.45. Recalling that the base
demand level D4 was increased from 1 to 1.5 at the lower-level stage, one notices that

123



S. Göttlich et al.

Fig. 10 Three of the perturbed historically observed demands for demand vertex v7 in the case of Sect. 3.3.3

Fig. 11 A comparison between the mean realization of the p = 6 historical in- and outflows with the in- and
outflow for the reconstructed β in the case of Sect. 3.3.3 and the initial β including the structural deviation
in D4

also the reconstructed value of β4 increased by factor 1.5 to compensate to unchanged
level of D4 in the parameter reconstruction. This allows for a good reconstruction of
the observation means, but as expected violates the normalization of the base demand
weights.
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Table 5 Means and variances of the reobtained weights for the base demands for different choices of the
number of perturbed historical observations p with additive deviation in D4 in the setting of Sect. 3.3.3

mean variance
p = 1 p = 6 p = 20 p = 200 p = 1 p = 6 p = 20 p = 200

β1 0.1999 0.1998 0.1998 0.2000 0.59e−05 0.14e−05 0.03e−05 0.03e−06

β2 0.1505 0.1499 0.1502 0.1499 0.77e−05 0.16e−05 0.03e−05 0.03e−06

β3 0.2003 0.2002 0.2003 0.2000 0.53e−05 0.13e−05 0.03e−05 0.03e−06

β4 0.6734 0.6752 0.6750 0.6749 1.20e−05 0.20e−05 0.04e−05 0.06e−06

Fig. 12 A comparison between the mean realization of the p = 6 historical in- and outflows with the in- and
outflow for the reconstructed β in the case of Sect. 3.3.3 and the initial β including the structural deviation
in D4 with two different inflow constraints

When adapting the base demand level accounting for the weekend effect with a
medium constraint ub ≡ 2, similar to the unconstrained case, we observe in Fig. 12
that the in- and outflow rates for the reconstructed β exceed those for the initial β,
but are cut at the maximum inflow level of 2. Therefore, in Table 6, the values of the
reconstructed β are very similar to the ones obtained in Table 5 without constraint, but
have a lower value for β4 due to the inflow constraint and the resulting lower observed
supply. For the more restricted inflow control with ub ≡ 1.5, the reconstructed β is
far from the initial one, since by cutting off the inflow, we lose information about the
true demand.

3.3.4 Results with no noise inˇ and observations only on Sunday

In this section, we consider another variant of the framework in Sect. 3.3.1 and do
not introduce additional noise or deviations. Instead, we restrict the observation time
of the historical data by adjusting the observation operators C and D. Therefore, the
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Table 6 Means and variances of the reobtained weights for the base demands for different choices of the
number of perturbed historical observations p with additive deviation in D4 in the setting of Sect. 3.3.3
with additional inflow constraints

mean variance
medium low medium low
p = 6 p = 200 p = 6 p = 200 p = 6 p = 200 p = 6 p = 200

β1 0.2056 0.2049 0.2429 0.2445 0.18e−04 0.07e−05 0.84e−04 0.14e−05

β2 0.1474 0.1489 0.0993 0.0980 0.27e−04 0.08e−05 0.93e−04 0.12e−05

β3 0.1915 0.1918 0.1379 0.1358 0.28e−04 0.10e−05 1.15e−04 0.26e−05

β4 0.6111 0.6130 0.9867 0.9991 0.38e−04 0.08e−05 3.85e−04 8.18e−05

Fig. 13 A comparison between the mean realization of the p = 6 historical in- and outflows with the in-
and outflow for the reconstructed β in the case of Sect. 3.3.4 and the initial β where observations can only
be made on Sundays (t ∈ [144, 168])

observation operators only consider t ∈ [144, 168], i.e., historical data is only taken
into account on Sundays, and themodel is used to reestimate the choices of β from that
knowledge for the entire week. Furthermore, to avoid hidden information on β4 via the
normalization constraint, similar to Sect. 3.3.3, we drop the condition

∑4
�=1 β� = 1

in the optimization problem (UL) and merely require β� ≥ 0, � ∈ {1, . . . , 4}. For the
illustration of historical data, we refer to Fig. 4 in Sect. 3.3.1 as there are no differences
in the historical data. In Fig. 13, for the in- and outflows, we observe an undersupply
in the curve of the optimal β (red) from Monday to Friday. For the weekend, the
reconstruction works fine, since past information is available for this time period.
Table 7 underlines that there is no information on the choice of β4. While the means
seem to be close together in the Monte Carlo simulation for the different numbers
of observations, the very large variances reveal that β4 is arbitrary to choose in the
case of restricted information. This, however, is not surprising as, on the one hand, the
normalization condition on the weights has been dropped and, on the other hand, D4
vanishes during the weekend.
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Table 7 Means and variances of the reobtained weights for the base demands for different choices of the
number of perturbed historical observations p with observations only for t ∈ [144, 168] from Sect. 3.3.4

mean variance
p = 1 p = 6 p = 20 p = 200 p = 1 p = 6 p = 20 p = 200

β1 0.2007 0.1998 0.1997 0.2001 3.35e−06 0.60e−06 0.20e−06 0.15e−07

β2 0.1500 0.1504 0.1503 0.1499 3.76e−06 0.78e−06 0.23e−06 0.20e−07

β3 0.1988 0.1999 0.2003 0.2000 4.48e−06 0.77e−06 0.26e−06 0.24e−07

β4 0.3622 0.3814 0.3663 0.3718 1.788 0.191 0.075 0.007

Fig. 14 A comparison between the mean realization of the p = 6 historical in- and outflows with the in-
and outflow for the reconstructed β in the case of Sect. 3.3.4 and the initial β where observations can only
be made on Sundays (t ∈ [144, 168]) with two different inflow constraints

Under additional inflow constraints, Fig. 14 shows the behavior of the in- and out-
flows according to the choices for the initial and reconstructed β. For the medium
inflow constraint of level 2, we observe that fromMonday to Friday the reconstructed
in- and outflow deviate significantly from the outflow observations, since all the mea-
surements were taken on Sunday. This is also underlined by Table 8 where, in this
case, we find a highly varying reconstructed β4, depicting that the choice of β4 cannot
be controlled and has no impact on the objective function. During the weekend, the
observed outflowand the outflow from the optimally reconstructedβ are in good agree-
ment. This is no longer true when considering the lower constraint where the inflow
is also cut on Sundays. Therefore, as in all previous examples, the reconstruction of
β is not successful for the low inflow constraint.
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Table 8 Means and variances of the reobtained weights for the base demands for different choices of the
number of perturbed historical observations p with observations only for t ∈ [144, 168] from Sect. 3.3.4
with additional inflow constraints

mean variance
medium low medium low
p = 6 p = 200 p = 6 p = 200 p = 6 p = 200 p = 6 p = 200

β1 0.1763 0.1760 0.2192 0.2443 0.56e−04 0.16e−05 0.465e−04 0.343e−06

β2 0.1665 0.1684 0.1206 0.0966 0.78e−04 0.31e−05 0.481e−04 0.390e−06

β3 0.2220 0.2240 0.1642 0.1377 0.86e−04 0.22e−05 0.574e−04 0.571e−06

β4 0.3452 0.3578 0.3001 0.3133 0.1934 0.009 0.215 0.013

4 Conclusions

The present paper is devoted to the inverse demand tracking over transportation net-
works of tree shape governed by linear hyperbolic conservation laws. By considering
this problem in the setting of Lebesgue spaces for control variables, we were in posi-
tion to ensure the existence of optimal solutions. These were numerically computed
by solving an associated finite-dimensional nonsmooth optimization problem which
results from the original hierarchical model by plugging the pointwise computable
Lipschitzian solution operator of the subordinate convex network flow problem into
the upper-level objective function before discretizing the resulting single-level prob-
lem by means of a finite differences scheme. Numerical experiments demonstrated
that for full time observation operators in the absence of control constraints, there
is a very good agreement of solutions for the optimal and the benchmark problem.
Restricted-in-time observation operators or the presence of control constraints may
lead to different solutions, depending on the choice of the underlying base demands
or the restrictiveness of the employed constraint.

Our findings give rise to at least two interesting directions for future research. First,
it is well known that several network dynamics obey nonlinear hyperbolic partial dif-
ferential equations like the flow of gases, see e.g. Bressan (2000), while, in this paper,
we focused onmerely linear dynamics.We note that incorporating nonlinear dynamics
in an inverse optimal control problem makes the lower-level problem nonconvex and,
thus, an explicit computation of the lower-level solution operator is highly challeng-
ing, see Remark 2.8 as well. Furthermore, one cannot simply replace the lower-level
problem by (necessary but not necessarily sufficient) optimality conditions without
enlarging the feasible set significantly. Second, in the setting discussed in this paper, it
might be worth trying to solve the finite-dimensional nonsmooth single-level problem
with a more enhanced numerical scheme than just MATLAB’s patternsearch
method. Indeed, the special structure of the Lipschitzian lower-level solution operator
discussed in Appendix A allows for an explicit computation of its so-called Clarke
generalized Jacobian, see (Clarke 1983), and this object can be used to construct a
bundle-type algorithm, see (Schramm and Zowe 1992), for the numerical solution
of the nonsmooth optimization problem of interest since the latter merely possesses
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affine constraints, see the classical paper (Dempe and Bard 1992) for a related idea
and Gfrerer and Outrata (2024) for a modern view.

A Special quadratic problems with box constraints

Let us fix vectors θ, vd ∈ R
n as well as va ∈ (R∪ {−∞})n and vb ∈ (R∪ {∞})n such

that all entries of θ are positivewhile va ≤ vb holds componentwise. For� := diag(θ),
we aim to solve

min
v

{ 12v��v − v�
d v | v ∈ Vad} (QP)

where Vad ⊂ R
n is the box given by

Vad := {v ∈ R
n | va ≤ v ≤ vb}.

First, we observe that the objective function in (QP) is uniformly convex while the
feasible set is nonempty, closed, and convex. Hence, (QP) possesses a uniquely deter-
mined global minimizer v̄ ∈ Vad. The latter can be characterized in terms of the
necessary and sufficient optimality condition

∀v ∈ Vad : (�v̄ − vd)
�(v − v̄) ≥ 0. (A.1)

We note that � is a positive definite diagonal matrix. Hence, it is reasonable to set

ṽ := �−1vd.

Note that ṽi = θ−1
i vd,i holds for all i = 1, . . . , n. We will now show that

v̄ = max(va,min(ṽ, vb)) (A.2)

holds true, i.e., that v̄ is the projection of ṽ onto the box Vad. Note that max and min
have to be interpreted componentwise in (A.2). We introduce index sets Ia, I0, Ib ⊂
{1, . . . , n} by means of

Ia := {i ∈ {1, . . . , n} | ṽi < va,i },
I0 := {i ∈ {1, . . . , n} | va,i ≤ ṽi ≤ vb,i },
Ia := {i ∈ {1, . . . , n} | vb,i < ṽi }.

Clearly, these sets form a disjoint partition of {1, . . . , n}, and (A.2) can be rewritten
as

∀i ∈ {1, . . . , n} : v̄i =

⎧
⎪⎨

⎪⎩

va,i i ∈ Ia,

ṽi i ∈ I0,

vb,i i ∈ Ib.
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Pick v ∈ Vad arbitrarily. Taking together all of the above findings, we end up with

(�v̄ − vd)
�(v − v̄)

=
∑

i∈Ia
(θiva,i − vd,i ) (vi − va,i )

︸ ︷︷ ︸
≥0

+
∑

i∈Ib
(θivb,i − vd,i ) (vi − vb,i )

︸ ︷︷ ︸
≤0

+
∑

i∈I0
(θi ṽi − vd,i )
︸ ︷︷ ︸

=0

(vi − ṽi )

≥
∑

i∈Ia
(θi ṽi − vd,i )
︸ ︷︷ ︸

=0

(vi − va,i ) +
∑

i∈Ib
(θi ṽi − vd,i )
︸ ︷︷ ︸

=0

(vi − vb,i ) = 0,

and this shows that v̄ constructed as in (A.2) is, indeed, a solution of (A.1) and, thus,
the uniquely determined global minimizer of (QP).
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