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Abstract
Source monitoring involves attributing previous experiences (e.g., studied words as items) to their origins (e.g., screen posi-
tions as sources). The present study aimed toward a better understanding of temporal aspects of item and source processing. 
Participants made source decisions for recognized items either in succession (i.e., the standard format) or in separate test 
blocks providing independent measures of item and source decision speed. Comparable speeds of item and source decision 
across the test formats would suggest a full separation between item and source processing, whereas different speeds would 
imply their (partial) temporal overlap. To test these alternatives, we used the drift rate parameter of the diffusion model 
(Ratcliff, Psychological Review, 85, 59–108, 1978). We examined whether the drift rates, together with the other parameters, 
assessed separately for the item and source decision varied as a function of the test format. Threshold separation and nonde-
cision time differed between the test formats, but item and source decision speeds represented by drift rates did not change 
significantly. Thus, despite facilitation on the source decision when the item decision was immediately followed by a test for 
source memory than when item and source were tested in separate blocks, findings did not suggest that source information 
already begins accumulating in the item test in the standard format. We discuss the temporal sequence of item and source 
processing in light of different assumptions about the contribution of familiarity and recollection.
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Introduction

Do we first remember a piece of information itself (i.e., 
item) and then its context features (i.e., source) – for exam-
ple, where, when, or how we learned it – or can the retrieval 
of both overlap to some extent? Three decades ago, John-
son et al. (1993) introduced the source-monitoring frame-
work and outlined the set of memory and judgment pro-
cesses involved in attributions of mental experiences to their 
sources. Accordingly, both recognizing previous experiences 
(item memory, i.e., old or new?) and identifying their con-
textual details (source memory, i.e., source A or source B?) 
can be described within the source-monitoring framework 
with varying levels of differentiation. While item recognition 
succeeds even at lower differentiation levels, source attri-
bution relies on more complete information. The objective 

of the current study was to test the temporal sequence of 
item and source processing more closely. Specifically, we 
were interested in whether source processing already starts 
in parallel to item processing or only starts sequentially to 
the successful item retrieval.

To illustrate that less differentiated information becomes 
available at earlier stages of processing, Johnson et  al. 
(1994) investigated the time-course functions for item and 
source memory in an internal-external source-monitoring 
paradigm, also referred to as reality monitoring (Johnson 
& Raye, 1981), assessing memory for imagined versus per-
ceived items. They employed the response-signal technique 
(Reed, 1973, 1976) and manipulated the amount of time 
allowed for retrieval systematically across varied response 
lags in a test where item and source judgments were col-
lected simultaneously (response options: “imagined,” “per-
ceived,” or “new”). This is an established experimental 
method that was also applied in earlier time-course studies 
investigating the temporal availability of context information 
(e.g., Dosher, 1984; Dosher & Rosedale, 1991; Hancock, 
2002). Concerning its relevance to the focus of interest, the 
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response-signal technique was employed to compare the time 
course of item recognition with that of modality recognition 
(a source-memory task, see Hintzman & Caulton, 1997) or 
associative recognition (Gronlund & Ratcliff, 1989), differ-
ing from source memory with nuances in which each item is 
paired with another item (not a source) at study. Both studies 
revealed earlier availability of item information. Crucially, 
Johnson et al. (1994) further benefited from model-based 
approaches considering the multitude of processes involved 
in source-monitoring decisions. They assessed item and 
source memory separately and corrected for guessing based 
on multinomial-model parameters (Batchelder & Riefer, 
1990). Consistent with the source-monitoring framework, 
the results suggested earlier accessibility of item information 
than source information. In subsequent years, more rigorous 
tests on Johnson et al.’s (1994) data (Kinjo, 1998; McElree 
et al., 1999) raised concerns regarding the conclusiveness of 
the original findings. Following that, Kinjo (1998, Experi-
ment 1) conducted a stronger test in a modified procedure 
with more response-lag conditions and still observed that 
item memory was accessed before source memory. Later 
on, Spaniol and Bayen (2002) also used the combination of 
multinomial modeling (Bayen et al., 1996) and the response-
signal technique. However, the authors compared the time-
course functions of item memory and source guessing bias 
(but not source memory). They observed that item memory 
became available before source guessing.

Measurement models characterizing the underlying pro-
cesses of item and source judgments with different assump-
tions (e.g., threshold models vs. signal-detection models; 
see Bayen et al., 1996, and DeCarlo, 2003, respectively) 
also fostered the time-course research indirectly by probing 
discussion on whether there is source memory for unrec-
ognized items (e.g., Malejka & Bröder, 2016; Starns et al., 
2008; see also Fox & Osth, 2022, for an overview). How-
ever, these models do not posit a temporal ordering between 
the memorial information. Specifically, even though the 
two-high threshold multinomial model of source monitoring 
(Bayen et al., 1996) postulates source discrimination as con-
tingent on successful item recognition, the order of the item 
and source memory parameter in the multinomial model 
branches does not postulate a serial ordering. Rather, both 
could occur simultaneously in these branches (cf. Batch-
elder & Riefer, 1999). Indeed, Johnson et al. (1994) under-
lined this possibility of the parallel retrieval of item and 
source information under the serially represented structure 
of the multinomial model of source monitoring. Further, the 
source-monitoring framework predicts that differentiation 
of different memory characteristics can occur at different 
rates. However, it does not claim a full separation such that 
the completion of one processing is necessary for the onset 
of another processing. Instead, their time course can closely 
intertwine (see Fig. 1B in Johnson et al., 1993).

Interestingly, this possible alternative of parallel pro-
cessing of item and source information is completely unad-
dressed by the published literature. Even though it can be 
concluded from direct investigations of response time lags 
that source retrieval completes later than item retrieval (cf. 
Johnson et al., 1994), it is not possible to ascertain from 
combining the response-signal technique and multinomial 
modeling whether source information is retrieved serial to 
completed item processing or already started in parallel to 
item processing (i.e., item processing starts before source 
processing, but their retrieval courses overlap to some 
extent). More broadly speaking, time-course curves of the 
response-signal technique display the change of accuracy as 
a function of response time characterized by separate param-
eters, thus allowing us to measure whether the onset of one 
processing occurs before the onset of another processing. 
Yet, under this particular circumstance, these time-course 
curves are described for parameter estimates of memory pro-
cesses, and memory accuracy is measured with multinomial 
threshold models. Crucially, these specific analyses only tap 
into whether source processing accumulated sufficiently to 
cross the source-discrimination threshold but cannot indicate 
whether it was already started during earlier stages. Further, 
restricting the time available for responding may increase 
the risk of altering the cognitive processes and, in particu-
lar, their mental organizations. Although the response-lag 
technique is an insightful temporal study design, we still 
deem it important to further pursue this line of research with 
different methods. In contrast to the extensive investigation 
of item and source accuracy performance, for example with 
experimental dissociations (e.g., Lindsay & Johnson, 1991), 
research on the temporal aspects of item and source pro-
cessing is relatively scarce, and to our knowledge, has only 
been conducted directly with the response-signal technique 
thus far. Therefore, to fully explore the breadth of the time-
course question, we should expand our analysis to include 
spontaneous (i.e., not temporally restricted) source retrieval 
and, thereby, consider promising alternative methodologies.

Recently, Tanyas and Kuhlmann (2023) tried to address 
the question of the seriality versus partial overlap of item 
and source memory with the mouse-tracking method (cf. 
Kieslich et al., 2019), which allows us to measure these 
retrieval processes dynamically as well as to outline their 
temporal development. The item (old or new?) and source 
tests (source A or source B?) were presented either con-
secutively for each recognized item (i.e., directly following 
each “old” response) as in the standard research of source 
monitoring, or the source test of the recognized items was 
presented as a separate block after the full completion of the 
item test (for a similar blocked test procedure in source mon-
itoring, see Osth, Fox, et al., 2018a). Contrary to the blocked 
format which provides relatively more independent measures 
of item and source (serving as the baseline), participants 
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made their source decisions more straightforwardly than 
their item decisions in the standard format as evidenced 
by the smoother (less curved) source trajectories than the 
item trajectories. There are two alternative interpretations 
of this pattern. First, during the item test of the standard 
format, source information might have been retrieved paral-
lel to item information as preparation for the ensuing source 
test. Second, rather than parallel processing, being already 
in the item recognition state might have rendered source 
retrieval more accessible. Carefully note that in the second 
scenario, source retrieval can be assumed to have operated 
in sequence, rather than in parallel, to item retrieval and still 
can explain the observed difference in the source trajectory 
pattern. Thus, the observed movement trajectories during 
the source tests are not conclusively indicative of serial or 
parallel item versus source processing. It may seem that the 
temporal sequence of item and source processing is far from 
being resolved, but these results clearly underline the close 
links of item and source retrieval courses. Next steps will 
be to consider different techniques that are better suited to a 
closer look at this fine-tuning association.

To conclude, a more thorough examination is needed to 
capture important nuances which might underly response 
times (RTs) and mouse trajectories in source-monitoring pro-
cesses. Notably, responses from such a higher-order cognitive 
task as source monitoring may reflect different processes of 
which only some are relevant to the item versus source attri-
bution specifically. To disentangle these latent processes, the 
diffusion model is a promising candidate and may open up 
new avenues to the time-course question in source monitoring.

Diffusion modeling in episodic memory research

When considered from the traditional viewpoint of cogni-
tive psychology, mean RT performance is considered the 
index of mental chronometry (cf. Balota & Yap, 2011). As a 
consequence of this approach, information from a number of 
experimental trials is condensed into a single mean, result-
ing in loss of information and a missing common metric that 
also accounts for accuracy. The diffusion model (Ratcliff, 
1978) is highly recommended to overcome these problems 
because it includes full distributions of RTs of correct and 
incorrect responses (e.g., Vandekerckhove & Tuerlinckx, 
2007; Voss et al., 2013; Wagenmakers, 2009). It assumes 
that during a binary choice task, information accumulates 
continuously until one of two thresholds (i.e., alternative 
decisional outcomes) is reached (see Fig. 1). This decision 
process is driven by systematic and random influences. 
Based on the RT and accuracy data from all test items, the 
model provides separate parameters for the speed of infor-
mation accumulation (i.e., the drift rate, parameter v), the 
amount of information considered in decision making (i.e., 
threshold separation, parameter a), possible a priori decision 

biases (i.e., starting point, parameter z), and the duration of 
nondecisional processes (e.g., encoding and response execu-
tion, parameter t0). In addition to these four key parameters, 
other parameters have also been added to the model over 
time such as to account for intertrial variability (i.e., param-
eters sv, sz, st0; see Ratcliff & Rouder, 1998; Ratcliff & Tuer-
linckx, 2002) and differences in speed of response execution 
(parameter d; see Voss et al., 2010). Overall, the diffusion 
model allows researchers to understand whether – and espe-
cially in what ways – task performance can be explained by 
psychologically meaningful processes (Voss et al., 2013).

One important domain for the diffusion model is episodic 
memory tasks on which item recognition is assessed in binary 
response options. In his seminal study, Ratcliff (1978) intro-
duced the diffusion model on the recognition memory para-
digm. It then became a useful tool in recognition studies for 
several reasons such as to decompose age-related changes 
(e.g., McKoon & Ratcliff, 2012; Ratcliff et al., 2004, 2011, 
Ratcliff & McKoon, 2015; Spaniol et al., 2008), to investigate 
emotion-modulated memory (Bowen et al., 2016) and clinical 
disorders (White et al., 2010), and to enhance understand-
ing of the strength-based mirror effect (Starns et al., 2012). 
The theoretical assumptions of the diffusion model are thus 
well met in recognition tests (Voss et al., 2013), and Arnold 
et al. (2015) further showed empirical validity of the diffu-
sion model parameters for recognition memory. Most rel-
evant to our research goal, Spaniol et al. (2006, Experiment 
2) extended the use of the diffusion model to a two-choice 
source-monitoring task (also see Starns, 2014, for another 
application of the diffusion model to a source-memory task) 
to separately estimate the contributions of different processes 

Fig. 1  Illustration of the decision process as proposed by the diffu-
sion model (Ratcliff, 1978). Here, the upper and lower thresholds 
correspond to decisional outcomes (alternatively, correct and incor-
rect responses). The distance between the thresholds is represented 
by a. Information accumulation starts at z (here centered between the 
two thresholds) and continues over time with speed |v| (denoted by 
the upward pointing arrow) until it reaches either of the two response 
alternatives. Random influences lead to unsteady fluctuations in the 
sample path. The duration of processes outside the decision pro-
cess (e.g., encoding or response execution) are accounted for t0. The 
response time distribution for choosing response X (response Y) is 
shown above (below) the respective threshold
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to episodic source retrieval in younger and older adults. They 
interpreted the drift rate in the source task as “the quality of 
the contextual information driving the decision process dur-
ing retrieval” (p. 116). Importantly, the drift rate expectedly 
showed age differences in episodic but not semantic memory 
tasks, meaning that it was sensitive to the specific memory 
processing of interest. Inspired by this extension, here we 
employed the diffusion model to separate cognitive processes 
underlying both item and source decisions on the parameter 
level and, in particular, to better capture item versus source 
processing speed with the drift rate estimates.

The current experiment

In the standard sequential test of source monitoring (cf. 
Lindsay et  al., 1991), item recognition for each trial is 
immediately followed by a source test. We aimed herein to 
investigate whether source decisions are reached after item 
decisions, compatible with this order of testing, or whether 
there can be some temporal overlap in item and source pro-
cessing such that the latter is already started during the first 
item test step. Similar to the rationale of Tanyas and Kuhl-
mann (2023), we manipulated different test formats of source 
monitoring so that item and source information were either 
tested in immediate succession (i.e., the standard format) or 
temporally separated (blocked) for the recognized items (i.e., 
hits and false alarms). Thus, both test formats include an item 
test for all stimuli and a source test for items only judged 
as old. Critically, in the standard format, participants were 
informed in advance that they would be tested for the source 
immediately following each item recognition. In the blocked 
format, however, participants did not have prior knowl-
edge about the upcoming source test block, and they were 
instructed to focus only on their item decisions during the 
item test block. Consequently, the blocked test format would 
provide a relatively more independent measure of item versus 
source decision speeds because the item and source tests are 
separated in time; thereby, they are more informative specifi-
cally about the duration of item versus source processing. 
Differences in decision speeds in the standard format with 
reference to the blocked format would then be informative 
regarding whether participants retrieved item and source in 
a sequenced or in a (partially) parallel way.

Of interest were RT data in relation to the accuracy of item 
and source test responses and parameter estimates for the dif-
fusion model derived therefrom. We used the absolute values 
of parameter v as a measure of decision speed (of item vs. 
source processing, respectively) in each test. The faster the 
information accumulation, the higher the absolute drift rate. 
Carefully note that in comparisons across task conditions the 
drift rate maps onto task difficulty, such that easier tasks are 
associated with higher absolute drift rates (Lerche & Voss, 
2019; Ratcliff & McKoon, 2008; Voss et al., 2004). Based 

on higher differentiation and greater recollection demands in 
source memory (Johnson et al., 1993; Yonelinas, 1999), slower 
speed of information accumulation in the source test (param-
eter vsource) compared to the item test (parameter vitem) could be 
expected. Most importantly, however, we planned to compare 
the speed of one type of processing (i.e., item or source) with 
its pendant between the test formats. Our following hypotheses 
explain how these test format comparisons can inform us about 
the seriality or parallelism of item versus source processing:

H1 If we observe statistically comparable item and source 
decision speeds across the standard and the blocked test 
formats (i.e., no interaction of test format and memory 
type), this suggests a full separation (or temporal sequence) 
between item and source processing. Notably, in the blocked 
test format, while participants are responding old/new, they 
do not know yet whether (and when) there will be a test for 
source at all. Put differently, we do not give participants the 
chance to benefit from parallel retrieval of item and source 
in the item test block. Therefore, if item and source process-
ing are sequential in the standard format, the speeds (i.e., 
of item and source) should always be the same as in the 
blocked format because this would always mean that the 
item is processed with its speed and subsequently the source 
is processed with its speed.

H2 By contrast, if item and source decision speeds differ by 
test format, our inference about temporal overlap would be 
based on the specific direction of condition differences. We 
would most plausibly expect the transfer of part (or all) of 
information accumulation from the source test of the stand-
ard format to its item test, which should be represented by 
slower item drift rates in the standard format compared to the 
blocked format. This would then suggest that source process-
ing already started during the item test of the standard format. 
Consequently, we would also expect faster source processing 
in the standard format than the blocked format, indicating that 
part of the information accumulation in the source test must 
have been outsourced to the item test of the standard format.

As preregistered, we additionally explored whether the 
other parameters of the diffusion model also differ across 
the test formats in order to gain a better understanding of 
what composes the full RT distributions of item and source 
decisions in the standard sequential source-monitoring test.

Method

All materials and data together with our preregistration pro-
tocol are available online on the Open Science Framework. 
The preregistration protocol is available at https:// osf. io/ 
j9zwr/ regis trati ons. The experiment script and the results 

https://osf.io/j9zwr/registrations
https://osf.io/j9zwr/registrations
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(including the supplementary analyses) are openly available 
from https:// osf. io/ j9zwr/.

Participants

A power analysis for an F test conducted with the 
G*Power-3 software (Faul et al., 2007) indicated that a 
sample size of 30 per test format condition (N = 60) would 
provide a power of .80 to detect a medium-sized (f = .25) 
interaction between memory type and test format (α = .05, 
correlation among repeated measures = .10; see also Tan-
yas & Kuhlmann, 2023, for a similar logic). As explained 
in our hypotheses, the detection or rejection of this inter-
action is most relevant to deciding on the seriality versus 
parallelism of item and source processing.

Inclusion criteria to participate in the study were native 
fluency in English (learned before the age of 6 years); age 
(18–30 years); normal or corrected-to-normal vision; no 
diagnosis of mild cognitive impairment; no mental illness 
daily impact; no head injury that caused a knock-out for a 
period of time; no severe respiratory diseases (i.e., pneu-
monia or chronic obstructive pulmonary disease (COPD)); 
no medically diagnosed coronary artery or heart issues; no 
use of medication affecting cognition. We used Prolific’s 
prescreening filters and additionally checked for these 
criteria before allowing participants to complete the full 
study. For the completed datasets, we also preregistered 
performance-based exclusion criteria that all participants 
should perform above-chance item memory (i.e., Hit rates 
> False alarm rates) and above-chance source memory 
(i.e., ACSIM score (average of the single-source condi-
tional source identification measures, CSIM; cf. Murnane 
& Bayen, 1996) above .50). The reasoning behind that was 
that memory should drive most of the responses in the 
tests such that the drift rates tap into the speed of item ver-
sus source memory specifically. Thus, we recruited a total 
of 80 participants from the online recruitment platform 
Prolific (https:// www. proli fic. com/; also see Palan & Schit-
ter, 2018) to meet the goal of analyzing data from a total 
of 60 participants. Nineteen participants were excluded 
from the data because they did meet the performance-
based exclusion criteria. One participant took the study 
twice because of technical/internet problems and thus was 
also excluded. As reported later, we removed data from 
three participants based on our diffusion model analyses 
(see section Parameter estimation and model fit). Thus, the 
results reported are based on 57 participants (33 female, 
23 male, one preferred not to indicate sex; Mage= 25.47 
years, age range = 19–30 years). The experiment lasted 
approximately 30 min. Participants received payment 
according to the Prolific-set rate of £6/h.

Design

The design was a 2 (test format: the standard format vs. 
the blocked format) × 2 (memory type: item memory vs. 
source memory) mixed factorial design with memory type as 
a within-subjects and test format as a between-subjects fac-
tor. We also manipulated spatial position of study words (top 
vs. bottom of the screen) serving as the source manipulation 
as a within-subjects factor. However, we expected compara-
ble item and source memory across sources and aggregated 
(as already planned in our preregistration) across spatial 
position for analyses (see Online Supplementary Material 
(OSM)).

Materials

We randomly selected 108 English nouns from the Toronto 
Word Pool (Friendly et al., 1982) after controlling for cer-
tain characteristics with the goal of selecting memorable 
items (imagery: ≥ 1.5 on a 7-point scale, concreteness: ≥ 
2 on a 7-point scale, and Kucera-Francis frequency: ≥ 20). 
From this set, assignment of the words as study items (72 
words) and distractors (36 words) as well as assignment of 
study items to the sources (50% on the top vs. the bottom of 
screen) were randomized anew across participants.

Procedure

We recruited participants on the platform Prolific, pre-fil-
tering in accordance with our inclusion criteria. After see-
ing a detailed description and requirements of our study on 
Prolific, participants were redirected to OpenLab (https:// 
open- lab. online/; Shevchenko, 2022) for the experimental 
task, which was programmed in an online study builder lab.
js (based on HTML and JavaScript; see Henninger et al., 
2022). The assignment to the test format conditions (the 
standard format vs. the blocked format) was randomized 
by OpenLab’s urn function. After consenting, participants 
completed a demographic and health questionnaire, and we 
made sure that their responses were matched with Prolific’s 
prescreening filters and thus checked our inclusion criteria 
again. If participants were deemed not eligible to partici-
pate, the session was terminated, and they received partial 
payment.

Eligible participants continued with the source-mon-
itoring task. To increase memory-based responses in the 
later test, instructions emphasized before study that par-
ticipants should learn both words (items) and their screen 
positions (sources) and that they would be informed later 
which exactly they will be tested on (cf. Tanyas & Kuhl-
mann, 2023). Before studying words, participants saw two 
fixed primacy buffer items (one on the top and one on the 
bottom with a randomized order for each participant) but 

https://osf.io/j9zwr/
https://www.prolific.com/
https://open-lab.online/
https://open-lab.online/
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not as part of the words used in the source-monitoring test, 
and later they were presented in the practice test again 
along with two more distractor words. During study, 72 
words were presented either on the top or on the bottom of 
the screen (random assignment of half of the items to each 
position) in a pseudorandom order with the restriction that 
there were no more than three consecutive repetitions in 
the same screen position. Each study item was shown 
in the respective position for 4 s, separated by a 500-ms 
inter-stimulus interval (a centered fixation cross and a 
blank screen, each lasting for 250 ms). Next, as a filler 
activity, participants verified simple math equations for 3 
min. Finally, participants completed a self-paced source-
monitoring test, designed according to their assigned test 
format condition. All stimuli were printed with 36-pt (cor-
responding to 48 px) Arial font in black against a white 
background throughout the experiment.

Participants in the standard format were informed that 
during their item decisions, if they indicated that a test trial 
was shown in the study phase before, their source memory 

for that trial would be tested immediately after (see Fig. 2A). 
In the blocked format, however, before the test session, par-
ticipants were (truthfully) informed that only the words 
(not positions) matter for the responses here. We did this to 
maintain item test validity, as reasoned in the Introduction 
section. Thus, in this condition, participants were first ques-
tioned about whether the test trials were shown in the study 
phase or not, without being provided any information about 
the upcoming source test block yet. After the completion of 
the item test for all test trials, participants were then retested 
on the words they had judged to be “old” in the same order 
as on the item test and asked to indicate their studied posi-
tions (see Fig. 2B).

Participants in all conditions were instructed to respond 
as accurately and as fast as possible. At test, they were 
presented with a list that consisted of the items from both 
sources and new items (i.e., distractors), but this time all 
appeared centered one at a time. During the item test, the 
question “Have you seen this word before?” appeared in blue 
on the upper portion of the computer screen above the test 

Fig. 2  Example visualizations of the test formats. (A) In the standard 
format, source decisions for each recognized test trial were collected 
in immediate succession to item decisions. (B) In the blocked format, 

source decisions for all recognized test trials were collected as a sepa-
rate test block after the completion of the item tests
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trials with the two response options. On the keyboard, “left 
arrow key” and “right arrow key” were assigned as “YES” 
and “NO,” respectively. During the source test, however, 
the previous question was replaced by the word “Where:” 
and appeared in red, and both source options appeared 
side by side on the screen. In order to indicate source deci-
sions, participants were required to press “up arrow key” 
or “down arrow key,” representing “TOP” or “BOTTOM”, 
respectively. These answer choices and key assignments 
were shown again on the test screen. We told them to sim-
ply guess if they could not remember whether and/or where 
the word was presented. Note that we needed targets to be 
able to assess source attributions, and more distractors are 
not particularly informative for our research question as for 
them a source cannot be retrieved. Therefore, we kept the 
same number of words for the categories “top,” “bottom,” 
and “new” (i.e., 36 for each). The presentation order of the 
test trials was also randomized by participants. Our lab.js 
scripts recorded response accuracy and RTs automatically.

Results

Parameter estimation and model fit

For the item test, we included both targets and lures in the 
analyses, and the thresholds of the diffusion model were 
linked to actual responses. Therefore, the upper and lower 
thresholds stand for “old” and “new” responses, respectively. 
However, for the source test, we restricted our analyses to 
only the items correctly identified as “old” because there 
cannot be source memory for lures as they were never pre-
sented with a source. The thresholds of the diffusion model 
were mapped to response accuracy. Thus, in the source test, 
the thresholds correspond to correct and incorrect source 
attributions given upon correct target detections. Consider-
ing the small trial number in our data, we used the maximum 
likelihood optimization criterion but with a strict outlier 
elimination procedure (following Lerche et al., 2017; Voss 
et al., 2013). Responses faster than 100 ms or slower than 
4,000 ms were excluded from analyses (cf. Spaniol et al., 
2006; Whelan, 2008). As an individualized elimination 
method, we additionally applied Tukey’s outlier criterion 
(Tukey, 1977) separately for the item (considering the RT 
distribution based on both targets and lures) and source RTs 
to discard further possible contaminants. We removed tri-
als that were more than three interquartile ranges below or 
more than three interquartile ranges above the third quar-
tile of a participant’s log-transformed RT distribution (e.g., 
Lerche, Neubauer, et al., 2018b). Prior to all analyses, we 
thus excluded a total of 2.21% of trials across participants.

Using the software fast-dm (Version 30.2; Voss & Voss, 
2007; Voss et al., 2015), we fitted the diffusion model 

separately to each participant’s data from the item test and 
the source test using the maximum likelihood optimization 
criterion. More specifically, for the item test, parameters 
comprised drift rates (v) for targets and lures, threshold 
separation (a), nondecision time (t0), and relative start-
ing point (zr = z/a; zr > 0.5 represents a bias towards the 
“old” response, whereas there is a bias towards the “new” 
response if zr < 0.5). Given the sensitivity of the maxi-
mum likelihood optimization criterion towards fast out-
liers, we additionally estimated the intertrial variability 
of nondecision time (st0) to possibly avoid the negative 
effects of fast contaminants and to improve the estima-
tion of the main parameters (Lerche & Voss, 2016). The 
intertrial variabilities of drift rate and starting point (sv 
and szr), however, were fixed at zero for the sake of model 
parsimony and due to challenges associated with their 
estimation (Boehm et al., 2018; also see van Ravenzwaaij 
et al., 2017).

Note that the source test was conditional on the item test 
(i.e., an “old” response), indicating that the source trials 
entering the analyses were fewer than the item trials. We 
thus kept the model as simple as possible for the source test 
due to the restricted trial numbers (e.g., Lerche, Neubauer 
et al., 2018b; also see Lerche et al., 2017). More specifically, 
the upper and lower thresholds corresponded to correct and 
incorrect responses, respectively, and we assumed the rela-
tive starting point to be unbiased, fixing it at .5 (cf. Voss 
et al., 2013). Consistent with the item test, for the source 
test, we estimated st0 once per participant and set sv and szr 
to zero.

In total, we estimated ten parameters per participant (i.e., 
vitemtargets, vitemlures, vsource, aitem, asource, t0item, t0source, zritem, 
st0item, and st0source).1 Two participants had to be excluded 
because parameter estimates could not be obtained due to 
very few source trials. One participant had a high propor-
tion of too slow item responses rendering the parameter 
estimation difficult and was also removed from the results. 
We report the following analyses based on the remaining 57 
participants.

An acceptable model fit is a prerequisite for analyzing and 
interpreting the diffusion model parameters. Figure 5 in the 
Appendix shows a graphical evaluation of model fit sepa-
rately for the test formats by means of scatter plots. These 
scatter plots compare the accuracy rate (i.e., proportion of 
correct responses out of the total number of responses) and 
several RT quantiles of the behavioral data against the cor-
responding statistics predicted by the diffusion model based 

1 Interested readers can find the raw data as well as the dataset 
including individual estimates of the diffusion model parameters and 
the behavioral variables (i.e., accuracy rate and mean RTs) per par-
ticipant in the OSF.
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on the parameter estimates. The empirical and predicted 
values are described along the x- and y-axes, respectively. 
Each data point thus reflects one participant, and the discrete 
symbols accompanied by different colors refer to the item 
(along with item type) and source tests. Overall, data points 
are positioned tightly on or near the plots’ main diagonal, 
indicating that the diffusion model provided a good account 
of the data of both groups.

Analyses of behavioral variables

Before further examining the diffusion model’s parameter 
estimates, we first report empirical statistics for the behav-
ioral variables’ accuracy rate and mean RTs for the 57 par-
ticipants included in the analyses. Mean accuracy rate and 
correct RTs are given in Fig. 3. Restricting to targets only, 
we performed separate 2 × 2 mixed ANOVAs using accu-
racy rate and mean RTs for correct responses with the 
within-subjects factor memory type and the between-sub-
jects factor test format. The alpha level was set at .05, and 
we report partial eta squared ( η2

p
 ) as the measure of effect 

size.

For accuracy rate, neither the main effects of test format 
nor memory type nor their interaction were significant (all 
Fs < 1). Because accurate test responses may stem from 
memory or guessing, we also applied the multinomial pro-
cessing tree (MPT) model of source monitoring (Bayen 
et al., 1996) to the present data as a more comprehensive 
analysis of the processes involved. Interested readers can 
find these more fine-grained accuracy analyses in the OSM.

In the analysis of correct mean RTs, the main effect of 
memory type, F(1, 55) = 37.22, p < .001, η2

p
=.40, and the 

test format × memory type interaction, F(1, 55) = 138.48, 
p < .001, η2

p
= .72, were significant, but not the main effect 

of test format, F(1, 55) = 2.94, p = .092, η2
p
=.05. Relevant 

to our interest, the simple main effect analyses following up 
on the significant interaction revealed that correct mean RTs 
in the item test of the standard format were slower than in 
the item test of the blocked format, F(1, 55)  =  18.13, 
p <  .001, η2

p
=.25. In contrast, correct mean RTs in the 

source test of the standard format were faster than in the 
source test of the blocked format, F(1, 55) = 62.70, p < .001, 
η
2
p
=.53.
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Next, we describe our subsequent statistical analyses 
on individual estimates of the diffusion model parameters. 
Thereby, we can test whether the observed effects on item 
and source RTs reflect changes in the actual processing of 
item and source decision and/or in nondecisional aspects of 
the test responses (e.g., the motoric response).

Analyses of model parameters

Means of the estimates of the diffusion model parameters 
for conditions are presented in Table 1. Here, we examined 
three main diffusion model parameters (i.e., v, a, t0) as the 
dependent variables and report inferential statistics on their 
estimated values. We conducted separate mixed ANOVAs 
using the individual parameter estimates of participants with 
the within-subjects factor memory type and the between-
subjects factor test format. Bar plots for all three examined 
parameters are given in Fig. 4.

Drift rate (parameter v) indicates the direction and 
speed of information accumulation across all trials. Its 
sign is positive if the diffusion process reaches the upper 
threshold in the majority of trials and negative otherwise. 
Absolute drift rates, however, capture the speed of infor-
mation accumulation independent of its correctness, with 
higher values representing faster accumulation (cf. Lerche 
& Voss, 2016). Our main interest was to understand 
whether participants already made part (or all) of the 
information accumulation for the source decision during 
the item test of the standard format (regardless of whether 
their decision processes mostly reached the correct or 

incorrect threshold).2 We thus submitted the absolute val-
ues of drift rates for the item (again, only targets) and 
source test to the 2 × 2 ANOVA. Neither the main effects 
of test format, F < 1, nor memory type, F(1, 55) = 1.18, 
p = .282, η2

p
=.02, were significant. Importantly, test for-

mat did not interact with memory type, F < 1. This pattern 
is in line with our preregistered H1 supporting temporal 
sequence of item and source processing in the standard 
format. Item and source decision speeds did not differ by 
test format, such that the speed of information accumula-
tion was statistically comparable when tested in succes-
sion or a blocked manner. Thus, there was no convincing 
evidence for a transfer of source processing to the item test 
in the standard format. In the following, we report addi-
tional exploratory analyses on the other diffusion model 
parameters.

Threshold separation (parameter a) is informative for how 
much information is required to decide on a response. For 
threshold separation, there was no significant main effect of 
test format, F < 1. However, the main effect of memory type, 
F(1, 55) = 5.39, p = .024, η2

p
=.09, and the test format × 

memory type interaction were significant, F(1, 55) = 51.32, 
p < .001, η2

p
=.48. Follow-up simple main effects analyses 

revealed that a larger amount of information was needed for 
an item response in the standard format compared to the 
blocked format, F(1, 55) = 5.88, p = .019, η2

p
=.10. Notably, 

the respective difference was reversed in the source test such 
that less information was required in the standard format 
than in the blocked format, F(1, 55) = 8.21, p = .006, η2

p
=

.13. As threshold separation is part of the item and source 
decision making of interest to us, this pattern supports facili-
tation on the source decision by prior item retrieval (not 
significant for accumulation as captured by drift rates but 
significant for threshold).

Nondecision time (parameter t0) estimates the remaining 
time outside the diffusion process such as encoding stimulus 

Table 1  Group mean estimates of the diffusion model parameters and 
the t tests for the comparison of test format

Note. Standard errors are presented in parentheses
a Prior to analyses, we calculated the absolute values of drift rate esti-
mates to allow for the comparison of drift rates in terms of absolute 
size

Test format t test

Parameter Standard 
format (n = 
27)

Blocked 
format (n = 
30)

t(55) p Cohen’s d

vitemtargets
a 0.52 (0.08) 0.52 (0.11) 0.03 .975 0.01

vitemlures
a 0.94 (0.15) 1.27 (0.12) 1.73 .089 0.46

vsource
a 0.66 (0.12) 0.53 (0.07) −0.94 .349 −0.25

aitem 1.52 (0.08) 1.29 (0.06) −2.42 .019 −0.64
asource 1.16 (0.07) 1.47 (0.08) 2.87 .006 0.76
t0item 0.58 (0.03) 0.51 (0.02) −1.92 .060 −0.51
t0source 0.18 (0.02) 0.50 (0.03) 8.36 < .001 2.22
zritem 0.48 (0.02) 0.58 (0.02) 3.67 < .001 0.97
st0item 0.22 (0.03) 0.14 (0.03) −1.98 .052 −0.53
st0source 0.07 (0.02) 0.16 (0.03) 2.24 .029 0.59

2 Note that we carefully considered performance-based accuracy as 
an initial step by calculating hits and false alarms on the item and 
source responses and excluding participants performing with poor 
accuracy (see Participants section). Thus, for the exclusions, accu-
racy in this study was assessed within the scope of source-monitoring 
perspective as summary measures on the participant-level. However, 
these were lenient criteria, and in our included dataset, there were 
still 14 participants whose item and/or source drift rates were nega-
tive, which indicates that their decision usually ended on the incor-
rect threshold. Put differently, their answers were not mostly driven 
by memory. We repeated our analyses without these participants for 
tapping into a closer inspection of memory-driven data. Of course, 
remaining participants’ answers were not guessing-free either, but an 
exclusion of those 14 participants can be seen as a proxy to memory. 
Findings yielded similar patterns. Regarding drift rates, neither the 
main effects of test format nor memory type, Fs < 1, nor their inter-
action were significant, F(1, 41) = 1.62, p = .210, η2

p
=.04.
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and execution of the motor response. It is thus not informa-
tive about item and source processing per se but about dif-
ferences in these additional demands between the two test 
formats. For nondecision time, the main effects of test for-
mat, F(1, 55) = 16.02, p < .001, η2

p
=.23, and memory type, 

F(1, 55) = 141.42, p < .001, η2
p
=.72, as well as their interac-

tion, F(1, 55) = 122.25, p < .001, η2
p
=.69, were significant. 

The simple main effects analyses further showed that during 
the item test, extradecisional processes took marginally 
longer in the standard format than in the blocked format, 
F(1, 55) = 3.69, p = .060, η2

p
=.06. In contrast, during the 

source test, participants in the standard format had shorter 
nondecisional time compared to those in the blocked format, 
F(1, 55) = 69.87, p < .001, η2

p
=.56. Overall, item responses 

were slowed down while source responses sped up in the 
standard format, and this seems not only due to response 
caution (threshold separation) but also due to nondecisional 
factors.

Discussion

The current research examined the temporal aspect of item 
and source processing in the standard sequential source-
monitoring test by comparison with a blocked testing pro-
cedure. We collected source decisions for recognized trials 
either in immediate succession to item decisions as in the 
standard format or in a separate test block upon the comple-
tion of the item tests. The goal was to elucidate whether item 
and source processing are executed in sequence consistent 
with the order of standard testing (i.e., first item processing, 
then source processing) or whether there can be (partial) 

temporal overlap between item and source processing during 
the item test of the standard format. To disentangle latent 
processes merged in raw RTs, while also considering accu-
racy, we applied the diffusion model (Ratcliff, 1978) analysis 
for each condition. Focusing primarily on the absolute drift 
rates, we compared the item and source decision speeds in 
the standard format with the blocked format to test the alter-
native time-courses. Although decision criteria and extrade-
cisional processes showed differential effects across condi-
tions, item and source decision speeds did not significantly 
differ by test format. On the behavioral level, participants 
knowing that they would be tested with an ensuing source 
test next upon their item decisions (i.e., an “old” response) 
gave slower item (but faster source) responses compared to 
those of the blocked format. However, these changes in RTs 
were unrelated to the speed of source information accumu-
lation itself. Rather, our results point out response caution 
as a decision-level phenomenon and further underline the 
involvement of factors outside the decision process.

Given our preregistered hypotheses upon the interaction 
test of memory type and test format for the drift rates, we 
tentatively infer that there is no convincing evidence for tem-
poral overlap between item and source. Accordingly, our 
results favored seriality, meaning that participants did not 
retrieve source information in parallel to item information 
when they were tested for their item memory. Otherwise, 
the transfer of information accumulation from the source 
test of the standard format to its item test should have led to 
a cost in information accumulation in the item test, and this 
should have been further supported by the reversed pattern 
in source decision speed.

The next question that could arise is why changes (or 
no considerable changes) especially in item decision speed 
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across different test formats indicate whether source pro-
cessing is taking place in parallel or not. This question can 
be theoretically discussed benefiting from the underlying 
mechanisms that subserve item and source memory (i.e., 
familiarity- vs. recollection-driven processes). It is particu-
larly noteworthy that in episodic memory research, there is 
an ongoing debate on the contributions of these operating 
mechanisms to item and source memory, and, importantly, 
these different assumptions also invite different interpreta-
tions of the current results. We thus additionally address an 
alternative explanation. On the one hand, arguing from the 
dual-process accounts of recognition (Yonelinas, 1999), one 
could claim that source memory primarily relies on non-
automatic resource-consuming recollection, whereas item 
memory is merely familiarity-based, that is, driven by auto-
matic processes of memory. Borrowing from this assumption, 
the reasoning behind our preregistered hypotheses can be, 
admittedly, argued against. By its common definition, auto-
maticity refers to the aspects that are fast, governed by stimuli 
(not deliberate intentions), and less effortful (cf. Spaniol & 
Bayen, 2002). If we had observed significant changes in item 
decision speed in the standard format, it might have sup-
ported the notion that the serially following source response 
is interfering with prior item retrieval. However, the inference 
is less clear when we do not observe a significant change as 
in the current situation. One would intuitively assume that 
any parallel processing, if it occurs, is not shown by item 
decision speed because this might be an efficient processing 
without costs to the time spent on the item test. On the other 
hand, from the source-monitoring framework (Johnson et al., 
1993), it is legitimate to assume that recollection also con-
tributes to item memory. Empirical dissociations of item and 
source memory (e.g., Bayen et al., 1996; Lindsay & John-
son, 1991) do not necessarily imply that there is no resource 
dependency at all. Johnson (2005) emphasizes that other epi-
sodic memory tasks, such as item recognition, involve some 
processes that are not unique to source memory. In fact, item 
memory is not familiarity-based only, but rather, additionally 
requires the recollection of the experimental context (e.g., “Is 
this specific test item from the learning episode?”). More spe-
cifically, although recollection demands of item memory are 
not as specific as source memory, item recognition may not 
be effortless. Therefore, bearing on the role of slower recol-
lection processes (e.g., Hintzman & Caulton, 1997; McElree 
et al., 1999), one could rightfully claim that if there was other 
processing taking place in parallel, it should have changed 
the item decision speed. Likewise, the start of – primarily 
recollection-based – source decisions in the item test should 
have been further represented by higher source drift rates in 
the standard format compared to the blocked format, but this 
prediction did not hold, either.

Thus, the current findings cannot present decisive evi-
dence to distinguish between serial versus parallel processing 

of item and source because they cannot discard alternative 
time-course scenarios independent from the assumptions 
about the nature of the mechanisms underlying item and 
source decisions. However, the current results interestingly 
enough do show that in the often-employed standard source-
monitoring task querying about the source following “old” 
responses on the item test does not necessarily change the 
speed of item information accumulation on this previous test. 
In other words, item information accumulation is robust to 
an ensuing source query. This means that item information 
accumulation can be well studied within a source-monitoring 
paradigm. Both of theoretical (regarding its automaticity sta-
tus) and practical interest, it will be interesting to further 
test this robustness of item information accumulation under 
different conditions (e.g., different encoding conditions (cf. 
Lindsay & Johnson, 1991) or different test designs (cf. Fox 
& Osth, 2022)). Further, it seems important to study whether 
people can engage in source accumulation parallel to item 
accumulation and whether this may bring benefits to source 
memory. In continuing this research, we deem it important 
to conceive the time course of item and source processing 
may not be limited to the dyadic description (i.e., seriality vs. 
parallelism), but rather, the overlap possibly can vary along a 
continuum, which may even manifest differently under cer-
tain conditions or for different individuals (e.g., the differen-
tial age-related deficits on item and source memory (cf. Old 
& Naveh-Benjamin, 2008) may also alter their time-courses).

Drift rates are able to capture the changes on the memory 
tasks of interest (e.g., see Spaniol et al., 2006, for dissoci-
ating semantic and episodic memory drift rates), and thus 
can be quite informative for the temporal ordering of item 
and source processing with appropriate designs. Notably, 
McKoon and Ratcliff (2012) defined the drift rate in the 
memory domain as “the quality of the evidence from mem-
ory that drives the decision process” (p. 417). However, as 
also acknowledged by Spaniol et al. (2006), the diffusion 
model alone is incapable of addressing which component(s) 
of memory (i.e., encoding, maintenance (vs. forgetting), 
retrieval) “the quality” maps on. Despite its utility in sum-
marizing latent processes (e.g., the rate of evidence accu-
mulation), it is agnostic with regard to the explanations of 
these processes (e.g., underlying mechanisms that generate 
evidence accumulation in a memory task; for further discus-
sion, see Osth, Jansson et al., 2018b). This important con-
straint can be enhanced by integrated models of memory and 
decision-making (e.g., adopting characteristics of memory 
representations together with the assumptions of accumula-
tor models; see Cox & Shiffrin, 2017; Nosofsky et al., 2011; 
Osth et al., 2023). In particular, such a combined model 
framework has the potential to decompose the drift rate into 
properties that are relevant to theories of memory.

Another important finding worthy of further attention is 
that we observed substantial effects on threshold separation, 
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which gives further insight into the decision process under-
lying item and source responses. That is, the amount of 
information considered in decision making was significantly 
different between the test formats both for the item and 
source test. Compared to the blocked format, anticipating 
an immediate source test made the participants more con-
servative (i.e., setting higher thresholds) while making their 
item decisions. This difference was in the opposite direc-
tion for the source test, with smaller threshold separations 
in the standard format. This supports the notion that already 
being in the item recognition state requires less information 
to decide for a source response (cf. Tanyas & Kuhlmann, 
2023). Technically speaking, prior item retrieval may just 
facilitate source attributions, thus leading to a closer dis-
tance between thresholds in the source test of the standard 
format, meaning that a smaller amount of evidence is neces-
sary to accumulate in order to reach a threshold (i.e., make 
a source decision).

Overall, the distinct patterns in threshold separation 
suggests that our test format manipulation did really affect 
the decisional components underlying the item and source 
responses. Apart from threshold separation, further analyses 
of nondecision time showed that the test format manipu-
lation not only yielded differences in decision settings 
but additionally affected nondecision-related factors. For 
example, comparisons with the blocked format indicated 
that in the standard format, nondecision time marginally 
increased during the item test but drastically decreased dur-
ing the source test. A decrease in nondecision time is not 
surprising for the source test of the standard format since 
the same stimulus was tested again immediately after the 
“old” response. Thus, encoding of the stimulus in the source 
test should not have entailed as much time as in the blocked 
format, and this observed difference was most likely driven 
by perceptual encoding. At the same time, the intermixed 
presentation of the item and source test trials in the standard 
format means that participants also had to frequently switch 
between the keys assigned to the item and source responses. 
As a result, (marginally) increased nondecision time during 
the item test of the standard format can be mainly attributed 
to task preparation (cf. Schmitz & Voss, 2012) and motor 
activity – albeit being difficult to resolve precisely. It is thus 
clear that there are other factors underlying our test format 
manipulation that affect the speed of the responses without 
affecting the processing of the decision itself. The promi-
nence of the drift rate enabled us to interpret the results that 
were corrected for nondecisional factors. Otherwise, it was 

likely to observe the effects hidden in the mean (or median) 
RTs or confounded with related accuracy.

As a limitation of our study, we must acknowledge 
that the trial number in our dataset, albeit being typical 
for source-monitoring tasks, is conventionally considered 
small for the diffusion model analysis (but also see other 
instances, e.g., Lerche, Neubauer, et al., 2018b). Yet, pre-
vious simulation research investigating parameter recovery 
reveals that under certain conditions the diffusion model can 
offer reliable results even with small trial numbers (Lerche 
et al., 2017). Moreover, it is not always desirable to increase 
the number of trials because this may increase involvement 
of other processes (e.g., guessing) as memory would be 
overtaxed, and responses would no longer primarily result 
from the accumulation process which the diffusion model 
is assumed to measure (Lerche, Christmann, et al., 2018a). 
Here, we showed a successful application of the diffusion 
model to the source-monitoring paradigm by adopting the 
typical circumstances. In addition, our application shows 
that the diffusion model is applicable to a higher-order cog-
nition which subsumes multiple processes, as is the case 
for the current source-monitoring study (see also Lerche, 
Christmann, et al., 2018a). We recommend episodic memory 
researchers to consider the feasibility and benefit of the dif-
fusion-modeling approach, especially in RT studies. Finally, 
we acknowledge that our modeling approach implemented 
here is limited to separate treatment of the item and source 
RTs. While more sophisticated modeling techniques could 
simultaneously treat both test RTs and also model the cog-
nitive processes involved in the source attribution (e.g., see 
supplemental MPT analyses in the OSM), we think that our 
experimental approach of manipulating and comparing mul-
tiple test condition RTs is insightful with the benefit of being 
a quite direct approach to studying this research question. 
Comparing response speed across experimental conditions 
to learn about seriality versus parallelism of processing has 
a long-standing tradition in cognitive psychology (Sternberg, 
1969). Although, as discussed, one might argue whether 
strict seriality can indeed be inferred from our results, our 
drift rate analysis clearly shows that querying for the source 
right after the item response (as is standard in source moni-
toring research) does not change the core item processing. 
More sophisticated model-based analyses linking response 
speed to memory parameters would require making much 
more arguable assumptions about the nature of memory 
processes involved in source monitoring, which are heavily 
debated (cf. Fox & Osth, 2022).
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Conclusion

Our study suggests that presenting item and source tests 
consecutively or in separate test blocks changed both deci-
sional and nondecisional aspects of the item and source test 
responses. For the item response, we found a need for more 
information to decide and (marginally) increased nonde-
cision time, resulting in a slower response in the standard 
format compared to the blocked format. However, when the 
source was queried immediately upon item detection, par-
ticipants required less information for their source decisions 
and reduced nondecision time at this stage. Most impor-
tantly, although the way item and source memory are being 
tested affected other processes that confound overall RTs, the 

decision speeds matched with the drift rates did not change 
considerably across the test formats. A null effect in this 
interaction can be attributable to the lack of evidence for the 
temporal overlap of item and source processing, but it is also 
not warranted to assume a sharp separation between item 
and source retrieval even though they were probed in that 
order by the standard testing. Methodological progress can be 
made with more diagnostic models to rigorously assess direct 
connections between drift rates and memory characteristics 
(e.g., benefiting from process models). However, theoretical 
progress would likely come from the grounded assumptions 
of the source-monitoring framework, when the time-course 
question is reconciled more with the contributions of the dif-
ferent processes subserving item and source memory.
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Fig. 5  Graphical displays of model fit. Concordance of the empirical 
and predicted statistics for the accuracy of responses and the .1, .3, 
.5, .7, and .9 quantile of correct response time distributions for each 

person in each condition. RT = response time; ritem = correlation 
between empirical and predicted statistics for item test; rsource = cor-
relation between empirical and predicted statistics for source test
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