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Abstract
Accurately estimating andassessing real-world quantities (e.g., how long itwill take to get to the train station; the calorie content
of a meal) is a central skill for adaptive cognition. To date, theoretical and empirical work on the mental resources recruited by
real-world estimation has focused primarily on the role of domain knowledge (e.g., knowledge of the metric and distributional
properties of objects in a domain). Here we examined the role of basic numeric abilities – specifically, symbolic-number
mapping – in real-world estimation. In Experiment 1 (N = 286) and Experiment 2 (N = 592), participants first completed
a country-population estimation task (a task domain commonly used to study real-world estimation) and then completed a
number-line task (an approach commonly used to measure symbolic-number mapping). In both experiments, participants
with better performance in the number-line task made more accurate estimates in the estimation task. Moreover, Experiment 2
showed that performance in the number-line task predicts estimation accuracy independently of domain knowledge. Further,
in Experiment 2 the association between estimation accuracy and symbolic-number mapping did not depend on whether
the number-line task involved small numbers (up to 1000) or large numbers that matched the range of the numbers in the
estimation task (up to 100,000,000). Our results show for the first time that basic numeric abilities contribute to the estimation
of real-world quantities. We discuss implications for theories of real-world estimation and for interventions aiming to improve
people’s ability to estimate real-world quantities.
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Introduction

People commonly need to estimate unknown quantities in
their daily lives – whether gauging how long it will take to
get to the train station or assessing the calorie content of a
meal. Correctly understanding and estimating such quantities
can be highly relevant: It is important not to miss one’s train,
and to be able to evaluate whether one’s calorie intake is in
line with one’s nutritional goals. Which mental resources are
involved in the estimation of real-world quantities?

To date, theoretical and empirical work on real-world esti-
mation – which has been studied across various domains,
including country populations, city-to-city distances, longi-
tudes and latitudes, sugar content of food items, frequency
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of health risks, the number of people participating in differ-
ent sports, and tuition fees for U.S. universities (Brown &
Siegler, 1993, 1996, 2001; Friedman & Brown, 2000; Groß
et al., 2024; Lawson & Bhagat, 2002; Pachur, 2024; Pachur
et al., 2013) – has focused primarily on the role of domain
knowledge. Domain knowledge refers to any knowledge that
a person might have of a given domain (e.g., country popula-
tions), including knowledge of both qualitative aspects (e.g.,
geographical features that indicate uninhabitable land such
as deserts) and quantitative aspects (e.g., exemplars such as
the population of a specific country, or ordinal relationships
between countries; Brown, 2002; Brown & Siegler, 1993;
Lawson & Bhagat, 2002).

However, is domain knowledge the only mental resource
contributing to the accurate estimation of real-world quan-
tities? The role of more basic numeric abilities, such as
symbolic-number mapping, has received considerable atten-
tion in the context of laboratory tasks involving quantities
(e.g., memory for numbers or preference for monetary lot-
teries) but has not yet been considered in the context of
real-world estimation. Symbolic-number mapping (Schnei-
der et al., 2018; Thompson & Siegler, 2010; Peters &
Bjalkebring, 2015; Schley & Peters, 2014) refers to a per-
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son’s ability to correctly representmagnitudes proportionally
to each other on a mental number line. It is often mea-
sured with the number-line task (Siegler & Opfer, 2003),
where participants are presented with a blank horizontal line
marked only with a range (usually from 0 to 100 or 1000)
and asked to map a given number (e.g., 42) onto the line
(Schneider et al., 2018; Siegler &Opfer, 2003). Performance
in the number-line task develops throughout childhood and
shifts from a logarithmic to a more linear mapping (Siegler
et al., 2009; Opfer & Siegler, 2007). Symbolic-number map-
ping has been shown to be associated with performance in
various complex numeric tasks. For instance, more accurate
symbolic-number mapping is related to a better memory for
numbers (Thompson & Siegler, 2010; Peters & Bjalkebring,
2015), to choosing the normatively better option more fre-
quently in a risky choice task (Peters & Bjalkebring, 2015;
Patalano et al., 2020), and to trading offmoney and timemore
proportionally (Schley & Peters, 2014).

Might symbolic-numbermapping also be involved in real-
world estimation? To date, the two strands of research have
existed independently. Studies on the relationship between
symbolic-number mapping and judgment and decision-
making have, for the most part, relied on decision-making
paradigms in which participants are presented with experi-
mentally designed numeric stimuli (e.g., lotteries, numbers
of objects; Patalano et al., 2020; Peters & Bjalkebring,
2015; Schley & Peters, 2014). All the information needed
to solve the task is provided by the experimenter. By con-
trast, research on the estimation of real-world quantities relies
on real-world stimuli. Here, participants have to retrieve
relevant information learned outside the lab from memory.
They generate an estimate by integrating various pieces of
numeric and non-numeric information from their real-world
knowledge. Due to these profound differences in stimuli and
task requirements, it seems difficult to determine whether
symbolic-numbermappingmay also play a role in real-world
estimation.

However, on a procedural level, there are indications this
might be the case. As described by Brown (2002), a real-
world estimate often has to be constructed based on a ballpark
notion of the general metric of the objects in a domain,
and on assessments of the ordinal position of the objects.
Specifically, once a general metric or response range for
objects in a domain has been set, “estimates are generated
by determining the relative or ordinal value of the target
item and selecting a numerical value from the appropriate
portion of the range” (p. 326). Arguably, mapping the posi-
tion of objects onto a metric range recruits abilities similar
to those required in symbolic-number mapping tasks (even
though symbolic-number mapping, unlike real-world esti-
mation, also requires perceptual skills). However, it has not
yet been testedwhether the accuracy of real-world estimation
is associated with symbolic-number mapping.

If such an association exists, this would be informative
for theories on real-world estimation as well as for inter-
ventions aiming to improve people’s ability to estimate real-
world quantities. Specifically, in addition to domain-specific
approaches such as conveying quantitative knowledge of a
domain (e.g., the calorie content of different food items),
interventions could include domain-general approaches that
target basic numeric abilities, such as providing feedback on
the number-line task (e.g., Fitzsimmons et al., 2023; Opfer
& Siegler, 2007; Thompson & Opfer, 2016).

Our goal in this article is to assess whether the accuracy
of real-world estimation is associated with symbolic-number
mapping. In two experiments, participants estimated the pop-
ulation of various countries (a domain commonly used to
investigate real-world estimation; e.g., Brown, 2002; Brown
& Siegler, 1993, 1996) and performed a number-line task.
Experiment 2 further sought to disentangle the effects of
symbolic-numbermapping and domain knowledge by exam-
ining whether performance in the number-line task predicts
estimation accuracy independently of domain knowledge;
and tested whether the strength of the association between
estimation accuracy and symbolic-number mapping depends
on the match between the range of the quantities to be esti-
mated and the range of the numbers to be mapped.

Experiment 1

Method

Experiment 1 was part of a larger study investigating the
role of knowledge updating in hindsight bias (Groß et al.,
2023, Experiment 2). In a first phase, participants estimated
the population of several countries. In a second phase, they
received different types of numeric information, depending
on the experimental condition towhich theywere assigned. In
a third phase, participantswere asked to recall their responses
from the initial estimation phase. In a fourth phase, they pro-
vided estimates for a new set of countries. In a fifth and
final phase, participants completed a number-line task. For
the present purposes, only the initial estimation phase and
the number-line task are relevant. A more comprehensive
description of the full design and results can be found in
Groß et al. (2023), Experiment 2. The experiment was not
preregistered.

Participants

Asample of 295 participantswas recruited via Prolific (www.
prolific.co). All participants were native speakers of Ger-
man, aged 18 to 45 years (M = 27.8 years, 116 women,
178 men, one diverse). The majority of participants were
currently working (130) or studying (university or college,
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122), 29 participantswere looking forwork, sevenwere high-
school students, six were apprentices, and one was retired.
The median completion time for the entire experiment was
26.4 min and participants were paid a fixed compensation of
£5.60.

Material

For the estimation task, we compiled three sets of items con-
sisting of 32 countries each (see Appendix Table 1). Each
participant estimated one item set. The sets were assigned to
participants such that they were presented with comparable
frequency across participants. In the number-line task, par-
ticipants were presented with 22 numbers ranging from 2 to
938, which they were asked to map onto a 20-cm horizon-
tal line, labeled from 0 on the left to 1000 on the right (see
Procedure and design for details).

Procedure and design

The experiment was programmed with lab.js (Henninger et
al., 2022) and hosted via Open lab (Shevchenko, 2022). After
providing informed consent and demographic information,
participants completed an estimation task, in which they esti-
mated the population of 32 countries (see Fig. 1, panel A,
for a sample item). Responses smaller than 1000 were not
allowed, as they would likely reflect either a misunderstand-
ing of the task or a lack of attention. The country names were
presented sequentially and in random order for each partici-
pant. Participants took a median time of 8.1 seconds for each
item. Finally, participants completed the number-line task,
in which they indicated the position of 22 numbers on a hor-
izontal number line with a mouse click (see Fig. 1, panel B
for a sample item). The numbers were presented sequentially
and in fixed order (486, 122, 34, 163, 56, 754, 725, 366, 147,
2, 938, 606, 78, 818, 246, 722, 18, 738, 150, 5, 179, 100;
see Opfer & Siegler, 2007). Responses could be corrected if
necessary. Participants took a median time of 5.4 s for each

number. At the end of the experiment, participants could pro-
vide comments of any kind in an open response field.

Data diagnostics

Several exclusion criteria were applied to ensure good data
quality. First, participants were automatically excluded by
Prolific if they did not finish the study within a specified time
limit (106 min for a study with an estimated finishing time
of 40 min). Second, we excluded participants who reported
technical problems (two participants), having been consid-
erably distracted during participation (one participant), or
having looked up actual population figures during the estima-
tion task (one participant). Third, we excluded all responses
that were equal to or larger than the current world popula-
tion, 8 billion, and thus unrealistic (8 responses, 0.09% of
all responses in the estimation task). Fourth, we checked for
extremely fast responses (i.e., below 1 s), but there were no
such responses for either task. Fifth, we excluded partici-
pants whose median order of magnitude error (our measure
of estimation accuracy; see Eq. 1 below) in the estimation
task exceeded the threefold interquartile range (five partici-
pants). Sixth, we excluded responses in the number-line task
that exceeded the threefold interquartile range for a given
number (42 responses, 0.65% of all responses in the number-
line task). Finally, we checked whether more than 20% of
number-line task responses were excluded for any given par-
ticipant; this was not the case. The exclusions resulted in a
final sample of 286 participants. The data and the analysis
code are available at https://osf.io/34dvr/.

Analytic approach

To quantify accuracy in the estimation task, we calculated
the deviation of the estimated country population from the
actual country population in terms of the order of magnitude

Fig. 1 Sample item from (A) the estimation task and (B) the number-line task. Translated from German
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error (OME) for each item i and for each participant j (Brown
& Siegler, 1996):

OMEi j = |log10
(
estimatei j
actuali

)
|. (1)

The OME is a function of the difference between the esti-
mated and the actual value of an item and converts the
difference into an order of magnitude. A larger OME indi-
cates a larger error, that is, lower estimation accuracy. The
OME has been frequently used in the context of country-
population estimation.1

To quantify accuracy in the number-line task, we calcu-
lated the relative deviation of the number indicated on the line
from the target number for each item k and each participant j:

�k j = |
(
estimatek j − actualk

actualk

)
|. (2)

This measure is commonly used to quantify accuracy in the
number-line task, with larger values indicating lower accu-
racy (Schneider et al., 2018). Each participant’s accuracy
in the number-line task is calculated as the median � across
items. A larger� indicates lower symbolic-number mapping
accuracy.

We used Bayesian linear mixed-effects regression mod-
eling to test whether estimation accuracy (operationalized
as the OME) was associated with symbolic-number map-
ping (operationalized as median �). Specifically, the model
predicted the OME of participant j for each item i of the esti-
mation task, using as fixed effect the participant’s median
�. The model further included random intercepts for partic-
ipants and items to take by-person and by-item variability
in estimation accuracy into account. The analyses were
conducted with the brms package (Bürkner, 2017, 2018),
which calls STAN for MCMC sampling (Stan Development
Team, 2019). Prior specification and sensitivity analyses

1 Many real-world domains have highly skewed distributions spanning
several orders of magnitude; for such distributions the OME is a better
fit than more conventional indices such as the Pearson correlation coef-
ficient or the mean deviation (Brown, 2002; Brown & Siegler, 1996;
Groß et al., 2023). In such distributions, a single estimate can differ
from others by several orders of magnitude, which would lead to an
inflated impact of such outliers if more conventional indices were used.
Using a log-based measure such as the OME minimizes the distorting
effects of outliers, as under- and overestimation of the same order of
magnitude is weighted equally (Brown, 2002). An OME of 1 indicates
that the estimation is off by one order of magnitude (e.g., an estimated
value of 10 million or 100,000 for an actual value of 1 million); an
OME of 2 indicates that the estimation is off by two orders of mag-
nitude (e.g., an estimated value of 100 million or 10,000 for an actual
value of 1 million).

are provided in Appendix B. The general conclusions were
robust across different prior specifications.

To statistically evaluate the effects, we compared the full
model including a given fixed effect (i.e., symbolic-number
mapping),M1, to the baseline model without that effect,M0.
The baseline model included all random effects that were
specified in the full model. We compared the models using
the bayes_factor function in brms, which computes
Bayes factors (BF) based on bridge sampling (e.g., Gronau
et al. 2017). The BF10 quantifies the evidence for the alterna-
tive hypothesis relative to the null hypothesis by comparing
the full model M1 to the baseline model M0.2

Results

Participants’ average estimation accuracy, measured in terms
of median OME across items, was M = 0.36 (SD = 0.19;
range 0.02–1.12). Participants’ average symbolic-number
mapping accuracy, measured in terms of median �, was
M = 0.14 (SD = 0.1; range 0.04–0.68). As Fig. 2 shows,
symbolic-number mapping accuracy was associated with
accuracy in the estimation task. The results of the mixed-
effects model indicated that participants who were more
accurate in symbolic-number mapping also provided more
accurate estimates for the country populations (b = 0.38,
C I95% = [0.16, 0.59]).3

The standardized regression weight was β = 0.09,
implying that an increase of one standard deviation in
symbolic-number mapping accuracy was associated with an
increase of 0.09 standard deviations in estimation accuracy.
Although the size of the effect may appear modest, evidence
for it was strong (BF10 = 83).4

2 The BF is commonly interpreted as follows. A BF10 below 1/10
indicates strong evidence, between 1/10 and 1/3 moderate evidence,
and between 1/3 and 1 weak evidence for M0. A BF10 larger than 10
indicates strong evidence, between 3 and 10 moderate evidence, and
between 1 and 3 weak evidence for M1 (e.g., Jeffreys, 1998; Lee &
Wagenmakers, 2014; van Doorn et al., 2023).
3 One might object that the association between the performances in
the number-line task and the estimation task could be due to individual
differences in how diligently participants engaged in solving the tasks.
To address this possibility, we conducted additional analyses in which
we controlled for how much time participants spent on each of the
respective tasks. These analyses showed that the association between
symbolic-number mapping and estimation accuracy was independent
of the time spent on the tasks. The same held for the results of Experi-
ment 2.
4 InAppendixC,we report the results for two alternative quantifications
of symbolic-number mapping accuracy, namely, the median absolute�

and the median mapping OME. The general pattern of results was the
same for both quantifications of symbolic-number mapping.
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Fig. 2 Association between performance in the estimation task and per-
formance in the number-line task in Experiment 1.OME=order ofmag-
nitude error. Each point represents the performance of a participant. For
the OME, the median (across items) for each participant is shown. For
both OME and median �, larger values indicate worse performance. The
uncertainty band around the regression line represents the standard error

Discussion

Experiment 1 suggests that basic numeric abilities contribute
to real-world estimation. Given the novelty of this finding,
replicating it seems desirable. Furthermore, although the sta-
tistical evidence for the association was strong, the size of
the effect was rather modest. One possible reason is that the
number range of the number-line task (up to 1000) did not
match that of the estimation task (where the country pop-
ulations ranged in the millions). The effect size may be
larger if the two ranges match. To address this possibility,
in Experiment 2 we included two number-line task condi-
tions, one with small (up to 1000) and one with large (up to
100,000,000) quantities. Finally, individuals with a higher
symbolic number-mapping ability might also have more
knowledge about the domain (e.g., due to a common link
with general intelligence). The association observed between
symbolic-number mapping and estimation accuracy could
thus be due to a confound. We addressed this possibility in
Experiment 2 by including a measure of domain knowledge,
allowing us to statistically control for domain knowledge.5

5 In the preregistration, this research question was formulated as
exploratory. Furthermore, our original formulation of the research ques-
tion asked whether domain knowledge adds explanatory value to the
prediction of estimation accuracy after accounting for symbolic-number
mapping.When preparing the analyses, we realized that the other direc-
tion is theoretically more reasonable, as prior research has already
shown that domain knowledge subserves real-world estimation.

Experiment 2

Method

The experiment was preregistered (see https://aspredicted.
org/25K_F7H).

Participants

To determine the target sample size, we conducted a
simulation-based a priori power analysis based on the data
from Experiment 1 with the mixedpower package in R
(Kumle et al., 2021). We simulated power for the full model
that included symbolic-number mapping (operationalized as
median �) as a fixed effect. We ran 500 simulations, and
defined a critical t value of 2, corresponding to an α level
of 5%. The simulation showed that a power of 95% would
be achieved with 290 participants. To ensure that our sample
size would be sufficient for both individual and joint analy-
ses of the two number-line conditions, we doubled this figure
to 580. To account for potential exclusions, we recruited an
additional 60 participants, resulting in an overall sample of
N = 640.

Participants were only allowed to take part in the exper-
iment if they had not taken part in Experiment 1. Of the
N = 640 participants who submitted their data on Pro-
lific (www.prolific.co), N = 636 completed the experiment.
The median completion time was 16.7 min and participants
received a fixed compensation of £3.70. All participantswere
native speakers of German, aged 18 to 45 years (M = 27.9
years, 277 women, 346 men, 10 diverse, 3 not specified).
The majority of participants were working (318) or studying
(university or college, 239), 46 were unemployed (33 look-
ing for work, 13 not looking for work), 11 were high-school
students, and 22 were apprentices.

Material and design

The estimation task included a fixed set of 46 countries (see
AppendixTable 2).We increased the number of items relative
to Experiment 1 (which included 32 countries) to increase the
power and reliability of the measure. Participants were ran-
domly assigned to one of two conditions of the number-line
task. In the Thousand condition the number line ranged from
0 to 1000. The task was identical to the number-line task in
Experiment 1, with the exception that 18 further numbers
were added to achieve a more even distribution across the
number range; participants thus mapped a total of 40 num-
bers (see Procedure for details). In theMillions condition the
number line ranged from 0 to 100,000,000 and involved the
same 40 numbers as in theThousand condition butmultiplied
by 100,000.
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We measured domain knowledge of country populations
with a Domain Engagement Question. Participants were
asked to indicate how often they had engaged with the topic
of country populations prior to this study on a seven-point
scale. Response options ranged from “very rarely” to “very
frequently” (see Appendix D for details). We opted for this
approach to measure domain knowledge for several reasons.
Asking participants to rate their knowledge directly (Ainley
et al., 2002) might tap into self-assessment accuracy and past
success at estimating country populations, the latter likely
being influenced by a mixture of basic numeric abilities and
prior knowledge. Our more indirect approach circumvents
this potential problem, focusing on the frequency of engage-
ment with the topic as a purer indicator of the amount of
knowledge acquired (e.g., through education and the media).

Procedure

The experiment was programmed with lab.js (Henninger
et al. 2022) and hosted via Jatos (Lange et al., 2015). After
providing informed consent, participants were asked to esti-
mate the population of 46 countries, one at a time. As in
Experiment 1, responses smaller than 1000were not allowed.
Participants took a median time of 7.2 s for each item.
Unlike in Experiment 1, the country names were presented
in fixed order for all participants. Subsequently, partici-
pants performed the number-line task. The procedure and
the instructions were the same as in Experiment 1. All 40
numbers were presented sequentially in a fixed order (for
the Thousand condition: 486, 319, 651, 547, 5, 100, 214,
18, 573, 827, 385, 905, 163, 179, 147, 302, 56, 863, 122,
2, 534, 439, 722, 983, 366, 738, 597, 725, 685, 246, 150,
78, 291, 818, 754, 872, 34, 938, 413, 606). The median
response times were 4.3 s and 4.4 s in the Thousand andMil-
lions conditions, respectively.After completing the two tasks,
participants answered the Domain Engagement Question,
provided demographic information, and indicated whether
they had participated seriously and whether they had cheated
(i.e., looked up answers, and/or asked others for help).
Finally, participants could provide comments of any kind
in an open response field.

Data diagnostics

Wepreregistered several exclusion criteria. First, participants
were automatically excluded by Prolific if they did not finish
the study within a specified time limit (71 min for a study
with an estimated finishing time of 22 min). For one partic-
ipant, this exclusion did not work due to technical reasons.
The participant had an overall completion time of over 4 h,
and was manually excluded by us. Second, we excluded par-

ticipants who reported problems with the experiment (one
participant), having cheated (14 participants), or having just
clicked through (three participants). Third, we excluded all
responses in the estimation task that were equal to or larger
than 8 billion (43 trials, 0.15% of responses in the estima-
tion task). Fourth, we excluded participants whose responses
took less than 1 s for more than 10% of items (in both
tasks); no such cases occurred. Fifth, we excluded partici-
pants whose median OME in the estimation task exceeded
the threefold interquartile range (19 participants). Sixth, we
excluded responses in the number-line task that exceeded
the threefold interquartile range for a given number (sepa-
rately for the Thousand andMillions condition); overall, 315
responses were excluded (1.24%). Finally, we excluded par-
ticipants for whom more than 20% of the responses in the
number-line task had to be excluded; this was the case for six
participants. The final sample consisted of N = 592 partici-
pants, with n = 303 participants in the Thousand condition
and n = 289 participants in the Millions condition.

Analytic approach

As in Experiment 1, we quantified accuracy in the estimation
task as the OME (Eq. 1) and accuracy in the number-line task
as the median � (Eq. 2). To quantify domain knowledge, we
converted the responses on the Domain Engagement Ques-
tion to numbers ranging from 1 (for very rarely) to 7 (for very
frequently).

We used a Bayesian linear mixed-effects regression
approach to test for associations of estimation accuracy with
symbolic-number mapping and domain knowledge. Specif-
ically, the models predicted the OME of participant j for
each item i of the estimation task. As fixed effects, we used
themedian� of participant j , the number-line task condition
theywere assigned to (Thousand vs.Millions), aswell as their
response to the Domain Engagement Question. In addition to
the fixed effects, all models included random intercepts for
participants and items to take by-person and by-itemvariabil-
ity in estimation accuracy into account. Prior specification
and sensitivity analyses are described in Appendix B. Again,
the general conclusions were robust across different prior
specifications. The data and the analysis code are available
at https://osf.io/34dvr/.

Results

Is estimation accuracy associated with symbolic-number
mapping?

Participants’ accuracy in the estimation task was compara-
ble to that of Experiment 1, with a median (across items)
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OME of M = 0.35 (SD = 0.19; range 0.02–1.07), on aver-
age. Accuracy in the number-line task measured in terms
of median �, was M = 0.07 (SD = 0.03; range 0.02–
0.17), on average, and thus better than in Experiment 1
(M = 0.14, SD = 0.1, range 0.04–0.68). Nevertheless, as
Fig. 3 shows, estimation accuracy and accuracy in symbolic-
number mapping were again positively associated, as in
Experiment 1. Across both number-line conditions, partic-
ipants with more accurate symbolic-number mapping also
did better in the estimation task. This association was cor-
roborated by a mixed-effects model predicting estimation
accuracy from symbolic-number mapping (b = 0.70, C I95%
= [0.18, 1.21], BF10 = 34). The standardized regression
weight was β = 0.04.

Does the association depend on the number range
used to measure symbolic-number mapping?

Accuracy in the estimation task was similar across the two
number-line conditions, with a median (across items) OME
of M = 0.36 (SD = 0.19; range 0.05–1.02), on average, in
the Thousand condition and M = 0.35 (SD = 0.18; range
0.02–1.07), on average, in theMillions condition. The same
held for accuracy in the number-line task, with M = 0.06
(SD = 0.03; range 0.02–0.17) in the Thousand condition
and M = 0.07 (SD = 0.03; range 0.02–0.16) in the Mil-

Fig. 3 Association between performance in the estimation task and
performance in the number-line task in Experiment 2 by number-line
condition. OME = order of magnitude error. Each point represents the
performance of a participant. For the OME, the median (across items)
for each participant is shown. For both OME and median �, larger
values indicate worse performance. The uncertainty band around the
regression line represents the standard error

lions condition. To test whether the size of the association
was larger in the Millions condition than in the Thousand
condition, we compared a model including the interaction of
symbolic-numbermapping and number-line conditionwith a
baseline model containing only the two fixed effects. Results
showed that the association did not differ between the two
conditions (b = −0.03, C I95% = [−0.75, 0.69]). While the
credible interval of the regression coefficient of the interac-
tion term included zero, the Bayes factor of BF10 = 0.62
indicated only weak evidence for the absence of an interac-
tion.

Does symbolic-number mapping predict estimation
accuracy beyond domain knowledge?

Participants’ response on the Domain Engagement Question
(ranging from 1 = very rarely to 7 = very frequently), was
M = 2.58 (SD = 1.37), on average. Domain knowledge
was uncorrelated with symbolic-number mapping (r = .00,
BF10 = 0.10), but it was associated with estimation accuracy
(b = −0.05, C I95% = [−0.07,−0.04], BF10 > 100, 000).
The standardized regression coefficient was β = −0.17,
indicating that an increase of one standard deviation in
domain knowledge was associated with an increase of 0.17
standard deviations in estimation accuracy (i.e., a decrease in
OME). To test whether estimation accuracy was associated
with symbolic-number mapping when statistically control-
ling for domain knowledge, we compared a model including
both domain knowledge and symbolic-number mapping as
fixed effects to a baseline model that included only domain
knowledge as a fixed effect. Symbolic-number mapping pre-
dicted estimation accuracy even when domain knowledge
was included as a covariate (b = 0.71, C I95% = [0.24, 1.20],
BF10 = 30). The standardized regression coefficient of
symbolic-number mapping was β = 0.04.6

Discussion

We replicated the key finding of Experiment 1, namely, that
symbolic-number mapping is associated with accuracy in
real-world estimation. The predictive strength of symbolic-
number mapping was smaller in Experiment 2 (β = 0.04)
than in Experiment 1 (β = 0.09). This could be due to the

6 As in Experiment 1, we also report the results for two alternative
quantifications of symbolic-number mapping accuracy in Appendix C,
namely the median absolute � and the median mapping OME. The
general pattern of results was the same for both quantifications of
symbolic-number mapping.
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overall higher accuracy (i.e., lower median �) and smaller
variability in symbolic-number mapping in Experiment 2
(M = 0.07, SD = 0.03, range 0.02–0.17; Experiment 1:
M = 0.14, SD = 0.1, range 0.04–0.68). As Experiment
2 was shorter than Experiment 1, the higher accuracy may
be due to higher participant motivation or concentration.
Importantly, however, symbolic-number mapping emerged
as a robust predictor of real-world estimation accuracy in
both experiments, irrespective of differences in accuracy and
variability.

Furthermore, the strength of the association between
symbolic-number mapping and real-world estimation was
not dependent on whether symbolic-number mapping was
measured using numbers that matched the range of quantities
in the estimation task (country populations in themillions) or
not. This indicates that the facet of symbolic-number map-
ping that is linked to real-world estimation is independent of
the range of the numbers used to measure symbolic-number
mapping.

Finally, our findings underscore that domain knowledge
plays an important role for accurate real-world estima-
tion (Brown & Siegler, 1993; Brown, 2002): Self-reported
domain knowledge was a stronger predictor of estimation
accuracy (β = −0.17) than was symbolic-number mapping
(β = 0.04). Crucially, however, symbolic-number mapping
predicted estimation accuracy beyond domain knowledge,
suggesting a unique role of symbolic-number mapping.

General discussion

Accurately estimating real-world quantities is a relevant skill
in daily life. However, empirical and theoretical work on
the mental resources that contribute to real-world estima-
tion is scarce. While domain knowledge has been shown
to play a role (Brown & Siegler, 1993; Brown, 2002), the
potential contribution of basic numeric abilities has not
yet been considered. The two experiments reported in this
article demonstrated that real-world estimation is reliably
associated with symbolic-number mapping. Importantly, we
showed that this association is not merely an epiphenomenon
arising from a confound between symbolic-number map-
ping and domain knowledge (e.g., via intelligence): Domain
knowledge and basic numeric abilities seem to contribute
independently to real-world estimation.

Theoretical implications

Our results can informand further specify theoretical ideas on
real-world estimation. Brown (2002) proposed a conceptual
framework outlining the processes that people may engage

in when estimating real-world quantities. According to this
proposal, people first come up with a general idea of the met-
ric magnitude of the domain in question, such as the range or
distribution of objects in that domain. They then locate the
relative position of the object to be estimated in this metric
range. Where in this process could basic numeric abilities
come into play? One possibility is that they influence the
estimation process itself: More accurate symbolic-number
mapping might allow people to define a more appropriate
metric range and to pinpoint the relative position of the
object more accurately. Symbolic-number mapping could
also facilitate the development of a relevant knowledge base
that is recruited for real-world estimation. When presented
with numeric information about a domain, people with more
accurate symbolic-number mapping might be better able
to integrate this information into existing knowledge. Con-
sistent with this idea, people with better symbolic-number
mapping have been shown to perform better in memory tasks
involving numbers (Thompson & Siegler, 2010; Peters &
Bjalkebring, 2015).

Practical implications

Our insights into the mental resources contributing to
real-world estimation can inform the development of inter-
ventions to boost citizens’ ability to estimate real-world
quantities. A common approach here is to improve people’s
domain knowledge by presenting them with a representative
selection of items from the corresponding domain (Bröder
et al., 2023; Brown & Siegler, 1993; Groß et al., 2024;
Marghetis et al., 2019). Although this kind of intervention
is simple and effective, the expected improvements are nec-
essarily limited to the specific domain.

Our findings suggest that interventions to boost real-world
estimation could also benefit from a more domain-general
approach that aims to improve symbolic-number mapping.
This could be achieved, for instance, by providing people
with corrective feedback on the placement of numbers in a
number-line task, or by presenting them with worked exam-
ples and asking them to explain why they are correct or
incorrect. Prior research suggests that such interventions can
improve accuracy not only for symbolic-number mapping
itself, but also for other numeric tasks such as memory for
numbers (Opfer & Siegler, 2007; Thompson & Opfer, 2016;
Fitzsimmons et al., 2023). Improving symbolic-numbermap-
ping could improve estimation accuracy by helping people
to reorganize their existing knowledge base and correct inac-
curate relational ordering or mapping of objects in a domain.
In addition, such interventions might help people to integrate
numerical information more accurately into the knowledge
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base,making subsequent retrieval and use of that information
more effective.

Limitations and outlook

In Experiment 2, participants’ performance in the number-
line taskwas not affected bywhether it involved small or large
numbers. This result may seem surprising, given that prior
studies reported poorer number-line performance for large
numbers (e.g., Landy et al., 2017, 2013). A possible expla-
nation for the similar accuracy in the Thousand andMillions
conditions is that the participants simplified theMillions task
by mentally crossing out the zeros at the end of the num-
bers. Future studies could employ numbers without zeros at
the end to see whether this affects the results. Note, how-
ever, that Landy et al. (2013) and Landy et al. (2017) also
used large numbers with zeros at the end and still observed
lower mapping accuracy for larger than for smaller numbers.
Another possible reason that Landy and colleagues (Landy
et al., 2013, 2017) found lower number-line performance for
larger than for smaller numbers, whereaswe did not, could be
that our number-line taskwith larger numbers only ranged up
to 100 million (to match the country populations), whereas
it ranged up to a billion in Landy et al. (2013) and Landy et
al. (2017).

A potential limitation of our approach to measuring
domain knowledge in Experiment 2 is that we used a sin-
gle self-report item: Participants indicated how often they
had engaged with the topic of country populations prior
to our study. Arguably, this is a rather indirect measure of
domain knowledge. Future studies might consider using gen-
uine knowledge questions about the domain, as in Light et
al. (2022). Additionally, future work could include a general
measure of cognitive ability, such as IQ, to further clarify the
relationship of estimation accuracy with symbolic-number
mapping and domain knowledge.

Further, given that our estimation task focused on a spe-
cific (though commonly investigated) real-world domain –
country populations – it is an open question to what extent
our conclusions generalize to other knowledge domains. In
general, the relative contribution of symbolic-number map-
ping and domain knowledge is likely to vary depending on
the amount of knowledge available in a domain. For instance,
basic numeric abilities might play a smaller role for estimat-
ing quantities in familiar domains, such as the sugar content
of food items, than in less familiar domains, such as the car-
bon footprint of food items (Bröder et al., 2023; Groß et al.,
2024). Overall, however, we have no basis to assume that the
role of basic numeric abilities will disappear completely in
familiar domains.

Furthermore, there is a discrepancy between the estima-
tion task and the number-line task regarding the scale format:
the estimation task used an open-ended scale, whereas
the number-line task used a bounded scale with a clearly
defined endpoint. This reflects how these tasks are usu-
ally implemented in the literature (for a measurement of
symbolic-number mapping with an open-ended scale, see
Reinert & Moeller, 2021). Future research could examine to
what extent the association between real-world estimation
and symbolic-number mapping is affected when both tasks
use the same type of response scale (open-ended or bounded).

Conclusion

What role do basic numeric abilities such as symbolic-
number mapping play in judgment and decision-making?
To date, research has focused primarily on decision-making
tasks such as monetary lotteries or trade-offs betweenmoney
and time,where thenumeric stimuli are stated explicitly.Here
we found evidence that symbolic-number mapping is also
involved in a judgment task where a numeric response has to
be constructed by integrating both numeric and non-numeric
information from complex real-world knowledge. This high-
lights the potentially general importance of numeric abilities
for judgments requiring numeric responses.

Appendix A: Materials
Materials are shown in Table 1 (Exp. 1) and Table 2 (Exp.
2).

Appendix B: Prior specification
and sensitivity analyses

To facilitate specification of the priors, we mean-centered
the criterion variable estimation accuracy (operationalized
as OME) and the predictors symbolic-number mapping
(operationalized as median�) and domain knowledge (oper-
ationalized as the response to the Domain Engagement
Question). We ran prior predictive checks to verify that the
priors produced realistic-looking data, as recommended by
Schad et al. (2023).

For the intercept parameter (Experiments 1 and 2), we
specified a normal distribution normal(0, 1.5). For the
standard deviation of the random effects and the residual
standard deviation, we specified half-normal distributions,
normal(0, 0.5) with values > 0.

For the slope parameters, we specified normal distribu-
tions with mean zero, implying that they are theory-neutral
with regard to potential effects. For the models including
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Table 1 Sets of country populations used in Experiment 1

Set 1 Set 2 Set 3

1 203, 177, 034 Pakistan 1 211, 819, 321 Brazil 1 268, 501, 680 Indonesia

2 199, 045, 324 Nigeria 2 167, 422, 187 Bangladesh 2 143, 919, 453 Russia

3 131, 738, 729 Mexico 3 107, 505, 862 Philippines 3 126, 976, 591 Japan

4 97, 074, 662 Vietnam 4 100, 488, 879 Egypt 4 109, 159, 044 Ethiopia

5 85, 705, 256 Democratic Republic
of the Congo

5 82, 592, 416 Turkey 5 82, 518, 959 Iran

6 69, 256, 846 Thailand 6 59, 246, 609 Italy 6 66, 816, 286 United Kingdom

7 60, 229, 204 Tanzania 7 57, 812, 482 South Africa 7 65, 387, 848 France

8 51, 273, 440 South Korea 8 50, 220, 000 Kenya 8 54, 158, 522 Myanmar

9 49, 705, 306 Colombia 9 46, 439, 538 Spain 9 38, 056, 163 Poland

10 45, 169, 147 Uganda 10 44, 946, 136 Argentina 10 37, 156, 729 Canada

11 43, 877, 093 Ukraine 11 42, 425, 837 Algeria 11 36, 468, 117 Morocco

12 32, 790, 012 Peru 12 40, 002, 380 Iraq 12 33, 912, 223 Saudi Arabia

13 32, 294, 009 Malaysia 13 36, 883, 979 Afghanistan 13 32, 642, 668 Uzbekistan

14 25, 683, 863 North Korea 14 31, 404, 292 Angola 14 32, 630, 416 Venezuela

15 22, 850, 032 Niger 15 29, 858, 634 Ghana 15 31, 077, 768 Mozambique

16 20, 106, 983 Burkina Faso 16 29, 822, 097 Nepal 16 25, 295, 354 Ivory Coast

17 19, 519, 762 Romania 17 29,329,832 Yemen 17 20, 992, 622 Sri Lanka

18 17, 154, 637 Zimbabwe 18 26, 704, 247 Madagascar 18 18, 284, 455 Chile

19 17, 114, 912 Netherlands 19 25, 074, 109 Cameroon 19 17, 938, 326 Zambia

20 14, 600, 000 Somalia 20 24, 970, 495 Australia 20 17, 452, 973 Guatemala

21 13, 270, 289 Guinea 21 19, 510, 631 Malawi 21 15, 639, 892 Chad

22 11, 683, 042 Benin 22 19, 471, 687 Mali 22 13, 132, 406 South Sudan

23 11, 193, 953 Haiti 23 18, 518, 517 Kazakhstan 23 11, 980, 000 Rwanda

24 11, 133, 944 Greece 24 17, 011, 566 Ecuador 24 11, 489, 711 Cuba

25 10, 629, 078 Czech Republic 25 16, 574, 342 Senegal 25 11, 443, 124 Burundi

26 9, 980, 369 Azerbaijan 26 16, 394, 043 Cambodia 26 11, 430, 000 Tunesia

27 9, 222, 905 Tajikistan 27 11, 539, 843 Belgium 27 10, 269, 227 Portugal

28 8, 582, 983 Switzerland 28 11, 318, 180 Bolivia 28 10, 026, 898 Sweden

29 7, 027, 153 Laos 29 10, 953, 914 Dominican Republic 29 10, 000, 697 Jordan

30 6, 432, 904 El Salvador 30 9, 667, 861 Hungary 30 9, 439, 781 Belarus

31 4, 833, 127 Ireland 31 5, 450, 438 Slovakia 31 8, 758, 508 Austria

32 3, 908, 462 Georgia 32 4, 149, 214 Croatia 32 7, 006, 598 Bulgaria

symbolic-number mapping, condition and their interaction
as predictors, we ran prior sensitivity analyses, as Bayes
factors can vary depending on the prior distribution; see
Schad et al. (2023) or Nicenboim et al. (2021) for discus-
sion. Specifically, we varied the standard deviation of the
normal distribution, such that our prior assumptions were
differently informed with regard to the expected effect sizes.
Table 3 shows which priors were defined for each model and
the resulting Bayes factor. In the main text, we report the
results for Prior 1. As can be seen, for both experiments, the
different priors affected the size of the Bayes factors. How-
ever, the general conclusions remained the same.

For the model that contained domain knowledge as the
only fixed effect (Experiment 2), we assumed a normal
distribution normal(0, 0.3) as the prior for the slope
parameter.

Appendix C: Results with alternative
measures of symbolic-number mapping

In addition to the analyses reported in the main text, we re-
ran the analyses to ensure that the results also hold when
using two alternative quantifications. The first is a common
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Table 2 Set of country
populations used in
Experiment 2

Set Set (continued)

1 11, 589, 623 Belgium 24 31, 072, 940 Ghana

2 31, 255, 435 Mozambique 25 32, 971, 854 Peru

3 60, 461, 826 Italy 26 206, 139, 589 Nigeria

4 20, 903, 273 Burkina Faso 27 69, 799, 978 Thailand

5 9, 449, 323 Belarus 28 3, 989, 167 Georgia

6 102, 334, 404 Egypt 29 45, 195, 774 Argentina

7 27, 691, 018 Madagascar 30 9, 660, 351 Hungary

8 29, 825, 964 Yemen 31 59, 308, 690 South Africa

9 97, 338, 579 Vietnam 32 8, 654, 622 Switzerland

10 16, 743, 927 Senegal 33 51, 269, 185 South Korea

11 11, 402, 528 Haiti 34 19, 129, 952 Malawi

12 67, 886, 011 United Kingdom 35 10, 203, 134 Jordan

13 11, 673, 021 Bolivia 36 10, 847, 910 Dominican Republic

14 212, 559, 417 Brazil 37 5, 459, 642 Slovakia

15 11, 193, 725 South Sudan 38 45, 741, 007 Uganda

16 109, 581, 078 Philippines 39 20, 250, 833 Mali

17 40, 222, 493 Iraq 40 17, 915, 568 Guatemala

18 32, 866, 272 Angola 41 17, 643, 054 Ecuador

19 43, 851, 044 Algeria 42 19, 237, 691 Romania

20 4, 105, 267 Croatia 43 16, 718, 965 Cambodia

21 273, 523, 615 Indonesia 44 29, 136, 808 Nepal

22 18, 776, 707 Kazakhstan 45 84, 339, 067 Turkey

23 46, 754, 778 Spain 46 38, 928, 346 Afghanistan

quantification in the symbolic-number mapping literature,
the median absolute � (Eq. 3; Schneider et al., 2018), the
second is a logarithmic measure that is more similar to our
logarithmicmeasure of estimation accuracy, themedianmap-
pingOME(Eq. 4).7 Both are computed as deviationmeasures
for the number indicated (i.e., estimate) from the number pre-
sented (i.e., actual) for each item k and each participant j:

Absolute�k j = |estimatek j − actualk |. (3)

MappingOMEkj = |log10
(
estimatek j
actualk

)
|. (4)

Median absolute1

For the slope parameter of symbolic-number mapping and
its interaction with the number-line condition, we defined as
prior a normal distributionnormal(0, 0.00125) for the
median absolute �. Overall, the results closely mirrored the

7 Please note that the control analyses with median absolute � were
preregistered, whereas the analyses with the Mapping OME were not.

results presented in the main text. Estimation accuracy was
associated with symbolic-number mapping in both Experi-
ment 1 (b = 0.0017, C I95% = [0.0002, 0.0032], BF10 = 7,
standardized regression weight β = 0.05) and Experiment 2
(b = 0.0015,C I95% = [0.0001, 0.0028], BF10 = 8, standard-
ized regression weight β = 0.03). In addition, there was no
interaction between symbolic-number mapping and number-
line condition (b = −0.0003, C I95% = [−0.0021, 0.0017],
BF10 = 0.79).

MedianMapping OME

Aspriors,we used the priors defined inPrior 1 inAppendixB.
Again, the results closely mirrored the results presented
in the main text. Estimation accuracy was associated with
symbolic-number mapping in both Experiment 1 (b = 0.54,
C I95% = [0.20, 0.89], BF10 = 41, standardized regression
weight β = 0.07) and Experiment 2 (b = 0.77, C I95% =
[−0.02, 1.57], BF10 = 5.00, standardized regression weight
β = 0.02). In addition, there was no interaction between
symbolic-number mapping and number-line condition (b =
0.16, C I95% = [−0.72, 1.04], BF10 = 0.82).
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Table 3 Prior sensitivity analyses for Experiments 1 and 2

Predictors
Models Symbolic-number mapping Condition Symbolic-number mapping Domain knowledge Bayes factor

× condition

Experiment 1
Model 1
Prior 1 normal(0, 0.5) — — — 83
Prior 2 normal(0, 1) — — — 56
Prior 3 normal(0, 2) — — — 28
Prior 4 normal(0, 5) — — — 12
Experiment 2
Model 1
Prior 1 normal(0, 0.5) — — — 34
Prior 2 normal(0, 1) — — — 36
Prior 3 normal(0, 2) — — — 19
Prior 4 normal(0, 5) — — — 5
Experiment 2
Model 2
Prior 1 normal(0, 0.5) normal(0, 2) normal(0, 0.5) — 0.62
Prior 2 normal(0, 0.5) normal(0, 2) normal(0, 1) — 0.62
Prior 3 normal(0, 0.5) normal(0, 2) normal(0, 2) — 0.37
Prior 4 normal(0, 0.5) normal(0, 2) normal(0, 5) — 0.06
Experiment 2
Model 3
Prior 1 normal(0, 0.5) — — normal(0, 0.3) 30
Prior 2 normal(0, 1) — — normal(0, 0.3) 49
Prior 3 normal(0, 2) — — normal(0, 0.3) 30
Prior 4 normal(0, 5) — — normal(0, 0.3) 15

Note. Shown in bold is the effect of interest for which the sensitivity analyses were run

Appendix D: Domain Engagement Question

The Domain Engagement Question was worded as follows
(translated from German): “At the beginning of this study,
you answered several questions about the populations of
countries. How frequently, prior to this study, have you
engaged with this topic (e.g., at school, at work, or in your
leisure time)?”

The response options were: very rarely, rarely, rather
rarely, neither rarely nor frequently, rather frequently, fre-
quently, very frequently.
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