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In this paper, we discuss technologies and approaches based on Knowledge
Graphs (KGs) that enable the management of inline human interventions in AI-
assisted manufacturing processes in Industry 5.0 under potentially changing
conditions in order to maintain or improve the overall system performance.
Whereas KG-based systems are commonly based on a static view with their
structure fixed at design time, we argue that the dynamic challenge of inline
Human-AI (H-AI) collaboration in industrial settings calls for a late shaping
design principle. In contrast to early shaping, which determines the system’s
behavior at design time in a fine granular manner, late shaping is a coarse-to-
fine approach that leaves more space for fine-tuning, adaptation and integration
of human intelligence at runtime. In this context we discuss approaches and
lessons learned from the European manufacturing project Teaming.AI, https://
www.teamingai-project.eu/, addressing general challenges like the modeling of
domain expertise with particular focus on vertical knowledge integration, as
well as challenges linked to an industrial KG of choice, such as its dynamic
population and the late shaping of KG embeddings as the foundation of relational
machine learning models which have emerged as an e�ective tool for exploiting
graph-structured data to infer new insights.
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1 Introduction

Whereas recent developments around Artificial Intelligence (AI) have mostly focused

on how it can replace or help humans by giving them “superpowers,” we focus on situations

where technology (still) needs the support of knowledgeable humans. Although the degree

of automation in industry is steadily increasing, success and effectiveness still largely
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depend on human intervention in many situations (Hoch et al.,

2022). This is also the case with highly automated processes, for

example when adaptations or re-configurations have to be made, or

when there is little or no data available to solve a particular problem.

In this context, a key question that arises is how AI technologies

can help facilitate problem analysis and resolution through tight

collaboration between humans and AI.

For more than 25 years, the human-computer interaction

(HCI) community has proposed principles, guidelines, and

strategies for designing user interfaces and interacting with

applications that use AI models (Amershi et al., 2019; Xu and

Dainoff, 2023; Xu et al., 2023). The HCI guidelines resulting

from empirical studies can be seen as requirements on a model-

based approach to tackle H-AI collaboration.While such guidelines

remain general and typically do not go beyond a phenomenological

approach, they do offer a first systematic basis and orientation

for further analyses, questions and model building. Amershi

et al. (2019) sketches 18 guidelines addressing various phases of

operation covering the initial phase on informing the user about the

system’s capabilities and limitations, the phase during interaction

by postulating to display contextually relevant information to

the user’s current task and environment, and to ensure the

experience is delivered in a way that users would expect, given

their social and cultural context. The transition from high-level

guidelines to operational computational models is challenging

and remains by and large an open research issue. What does

currently exist are scattered case studies on specific aspects,

such as, e.g., user experience (Li et al., 2022), parallel and

continuous modes of interaction beyond of discrete sequential

patterns (Wintersberger et al., 2022), trust calibration (Naiseh et al.,

2023), and traceability (Schuitemaker and Xu, 2020). Also, the

extensive literature on explainable AI can be included in this

context. Beyond that there is conceptual work for a model-based

approach.

van den Bosch et al. (2019) distinguishes six main modeling

problems in achieving effective human-machine interaction and

collaboration: (1), a taxonomy model, i.e., a shared vocabulary of

concepts, (2), a team model, i.e., a shared set of work agreements

and interdependencies, (3), a task model, i.e., knowledge about

the regularities between task conditions, actions and outcomes,

(4) a self-model: knowledge about itself, including its needs,

goals, values, capabilities, resources and plans, (5), a theory-of-

mind model: knowledge of other agent’s needs, goals, values,

capabilities, resources and plans, and, (6), a communication model.

In addition, we add, (7), a normative model, to address boundaries

and requirements as a result of the application of laws and

regulations—such as general ethical requirements, the European

General Data Protection Regulation (GDPR), or the upcoming

European AI Regulation. The normative challenge consists of

the fact that the modeler will have to act within the boundaries

imposed by the laws and regulations. Those normative sources

frequently impose considerations that the modeler will have to

consider from the outset but which may only materialize once

the AI is put into practice. The models (1)–(5) are generally

neither static nor complete or certain. Rather they are in need

of refinement, updates and adaptation over time. As pointed out

by Bansal et al. (2019b), updates that boost AI performance can

actually degrade team performance. Therefore, adaptation of the

self, team, and theory-of-mind models in response to the dynamics

and performance context is required to ensure team effectiveness.

This dynamics aspect is one of the major challenges for effective

H-AI teaming (National Academies of Sciences, Engineering, and

Medicine, 2022). In particular the self-model, respectively, the

theory-of-mind model, will be partially incomplete and uncertain.

Ultimately, it is this incompleteness and uncertainty that needs

to be compensated through functionalities to integrate additional

context and H-AI collaboration.

In manufacturing processes, there are AI-intrinsic issues due to

inadequacies in system design resulting from non-ideal conditions

in the real production environment that deviate from the idealized

assumptions at the time of engineering. For example, when

training a machine learning model for the purpose of predictive

maintenance, it is assumed that the sample data are identically

distributed. However, there are often data shifts from the training

situation to the application scenario that may not be immediately

apparent, cf., e.g. Sugiyama and Kawanabe (2012), Bansal et al.

(2019a), and Becker and Becker (2021). Ultimately, humans

are required to oversee and interpret appropriate monitoring

parameters in order to compensate for such deficiencies and

initiate countermeasures. Critical phases occur particularly during

retrofitting and re-calibration and setup of a new process. In

this case, the self-model of the AI system requires correction

by the theory-of-mind model of the human collaborator. Vice

versa, human factors remain a key challenge in semi-automation

due to mental conditions that are difficult to model (e.g.,

knowledge, training, capabilities, skills, experience, creativity,

limited attention, cognitive bias etc.) as well as ergonomics and

physical conditions (e.g., safety, manual, fatigue, posture, wellbeing,

gesture, musculoskeletal disorder etc.), c.f., e.g., Neumann et al.

(2021) and Ma et al. (2023a). Here, the AI system’s theory-of-mind

model about its human collaborators’ states can help to refine the

humans’ self model, e.g., detecting ergonomic risks. Additionally,

adding a human factor introduces new challenges in relation to the

data that is used. In Europe, personal information used in training

an AI or to recalibrate the output falls under the scope of the GDPR

and, more importantly, the upcoming AI Regulation. Moreover, in

the upcoming AI Regulation, important requirements have been

introduced for providers and deployers of AI systems, in that they

need to take specific action to promote AI literacy and are subject

to specific transparency obligations.

In the remainder of this paper, we address this dynamics

challenge on the design and handling of knowledge graphs posed

by the management of inline human interventions in AI-assisted

manufacturing processes under potentially changing conditions. In

this context, it is a particular challenge to guide humans to assist

AI systems in adapting to changing conditions, rather than AI

being assisted by humans, which is the standard view of applying

AI systems (Peres et al., 2020; Abioye et al., 2021). Specifically,

we tackle the question to what extent and how context and

human integration is feasible and discuss the main challenges to

achieving it.

The paper is structured as follows: Section 2 provides a

problem analysis and outline of approaches, which is illustrated

by selected use case scenarios in manufacturing. The main part
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of the paper is then structured along the engineering cycle of

building and integrating a human-AI collaborating system in

an industrial process, comprising, (1) methodological challenges

of H-AI collaboration (Section 3), (2) enabling technologies to

address these challenges (Section 4), and (3), sketch of approaches

and lessons learning from the European Teaming.AI1 project

(Section 5).

2 Scenarios for human-AI
collaboration in Industry 5.0

Whereas Industry 4.0 (I4.0) focuses on design principles such

as intelligent, self-organizing Cyber-physical Production Systems

(CPPSs) that are flexible and adapt to changing requirements

(Vogel-Heuser and Hess, 2016), the introduction of Industry

5.0 has augmented this vision with a strong focus on humans

and machines working in symbiosis (Longo et al., 2020).

At the intersection of these visions, collaboration becomes

particularly important in flexible, self-organizing, and complex

CPPSs that integrate innovative processes and technologies in

highly automated, but increasingly flexible cells.

In this context we select three use case scenarios addressing

different aspects where human assistance is required. So, there is

a special need for H-AI collaboration to tackle process steps that

are more difficult to automate—such as

• ensuring human oversight in sensitive situations where the

AI system cannot be sufficiently trusted and where human

contextual understanding is required to manage ambiguous

settings, see use case 1 described in Section 2.1 and our

proposed implementation in Section 6.1;

• the readjustment of machine parameters during production

and the associated tasks of machine diagnostics, which require

in-depth expertise and the reasoning skills of experienced

humans, see use case 2 in Section 2.2, respectively Section 6.1;

• personalized ergonomic assessment that requires individual

feedback from the person concerned to compensate for the AI

system’s shortcomings in personalizing its inference, see use

case 3 in Section 2.3, respectively Section 6.1.

The limited degree of automation of such steps can be

attributed to the fact that humans typically rely on experiences,

background knowledge, and a richer set of sensory inputs to

form a mental model of the situation and causalities than

is reflected in documents and procedural guidelines. However,

human reasoning is challenged by limited attention and cognitive

capacity, which becomes increasingly difficult with increasingly

complex interactions and larger amounts of data. AI-based

capabilities can help improve situational awareness to enable better

understanding and decision making. However, without human

oversight or guidance, AI systems struggle to address situations and

contingencies for which there is a lack of data and knowledge at the

time of deployment.

1 https://www.teamingai-project.eu/

2.1 Scenario 1: human oversight and
process management

While industrial CPPSs are designed to operate without

human intervention, they still require significant planning and

oversight to ensure that they are properly configured and optimized

for their intended use. This requires (1) real-time observability

and situational awareness at all levels of the processes, (2)

prioritizing which changes need to be made urgently and which

can be deferred, without creating an intolerable backlog, (3)

executing and implementing planned changes, (4) managing and

scheduling all recovery testing, and (5) providing audit trails for

all compliance requirements. In this context, humans provide

crucial decision-making capabilities and management in process

orchestration platforms. While automation and AI algorithms

handle routine tasks and process execution, human intervention

becomes necessary for complex or ambiguous situations that

require judgment, creativity, and contextual understanding.

2.2 Scenario 2: root cause analysis and
machine diagnostics

Analytic tasks such as root cause analyses in machine diagnostics

constitute another broad class of tasks where synergistic

collaboration between humans and AI agents is particularly

helpful. As an example, consider quality management on the

shop floor, which requires (1) careful configuration of production

resources during initial setup and ramp-up of a production line,

(2) configuration and adaptation during setup for a production

run and (3) readjustments of machine parameters during

production. To navigate the complex space of potential machine

configurations and achieve consistent output with the desired

quality characteristics, operators currently primarily rely on their

experience and intuition to interpret indicators such as types of

defects observed as well as their positions on the produced parts to

form hypotheses on the causes which then determine the choice of

an adequate adjustment procedure.

2.3 Scenario 3: ensuring occupational
safety and health

Recent reports2 show that among the 170million workers in the

EU, three out of five report health issues in terms ofMusculoskeletal

disorders (MSDs). For detail on MSDs see, e.g., Kee (2023) and

Govaerts et al. (2021). Industrial companies often design their

work places to avoid safety and health related-problems or invite

Occupational Safety and Health (OSH) experts who examine the

work process. In this procedure the experts monitor a work process

from one to several days and perform a manual analysis which

results in an improvement report for those responsible—e.g the

shift managers. These approaches are both time consuming and

monetarily expensive and they are difficult to apply in more flexible

2 https://osha.europa.eu/en/publications/msds-facts-and-figures-

overview-prevalence-costs-and-demographics-msds-europe
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production scenarios due to regularly changing products, e.g., in

the domain of high-precision machining of large parts. In such

scenarios, the work process itself is developed and optimized along

with the first parts produced. Workers and shift managers can hold

regular improvement meetings on a daily basis, where they discuss

the previous shift and how the work process can be improved.

In this context, AI systems show their strength in high coverage

and non-tiring monitoring, but it is necessary to rely on human

knowledge and feedback to correct or resolve ambiguous situations.

3 Knowledge modeling and
orchestration challenges

In this section, we point out the need for a late design

principle for computational models to support collaboration

between humans and AI. In this context, we discuss the challenges

for knowledge modeling and population, vertical knowledge

integration, and team orchestration.

3.1 Late Shaping design paradigm
challenges

In psychology there is the notion of shaping (Peterson, 2004),

which reflects the process of strengthening a behavior through

punishment and reinforcement. In the setting of AI systems, usually

the system’s behavior is shaped by training at design time. But as

the example of data shift shows, merely early shaping at design

time can be too inflexible and insufficient. In contrast to early

shaping, late shaping refers to fine tuning in a later phase based

on an already trained model, e.g., in a (re-)calibration phase.

Early and late shaping is discussed for personalizing machine

learning models via transfer learning (Schneider and Vlachos,

2021) and domain adaptation (Dinu et al., 2023) that is to tailor

the system’s behavior to the characteristics of a sub-sample from

the whole universe of samples. In our setting, see Figure 1, we

argue that a late-shaping mechanism is needed that goes beyond

the purely statistical framework of transfer learning in order to

respond flexibly to unforeseen changes for which the original

system was not trained. The heterogeneity of data and knowledge

representations in our environment goes beyond current machine

learning systems, so we are dealing with a hybrid system consisting

of machine learning and knowledge models augmented by human

intelligence as an additional component. As long as context-aware

AI systems are only available for specific sub-domains (Kejriwal,

2021; del Carmen Rodríguez-Hernández and Ilarri, 2021), our

approach is to harness human intelligence and experience in the

form of background knowledge and common sense to compensate

for the shortcomings of current AI systems. From a conceptual

perspective, we therefore consider the utilization of context, its

supervision and augmentation by humans as key factors for

effective H-AI collaboration systems. From a model and system

design perspective, the performance of the system improves when

it becomes adaptable and can be tailored to the context, thus

requiring a late-shaping approach. The advantage of the late

shaping approach is that it is possible to make updates and

adjustments even after the initial training phase, based on process

monitoring and tracking (Ding et al., 2020; Schuitemaker and

Xu, 2020), detection and prediction of deviations (Cardoso and

Ferreira, 2020), as well as explanations, plausibility checks and trust

evaluations (Wang et al., 2022; Naiseh et al., 2023; Ma et al., 2023b)

at run time.

3.2 Knowledge modeling, population and
integration challenges

3.2.1 Knowledge modeling
Knowledge Modeling is a process to identify concepts,

entities and their relationship from a given domain in order to

conceptualize it. Knowledgemodeling plays a crucial role in various

domains of H-AI collaboration. It involves the representation and

management of different types of knowledge to support effective

decision-making and cooperation between humans andAI systems.

To this end, it should provide an integration point that connects

manufacturing data and knowledge at scale in order to enable the

enactment of teaming scenarios on top of this data. The resulting

model should create a semantically organized digital shadow of

the manufacturing environment that enriches and contextualizes

events that emanate from the production environment and relates

them to relevant domain knowledge.

Specifically, we identified several (potential) areas that the

knowledge modeling process needs to cover in the context of

H-AI collaboration: (1) Domain knowledge: Specific knowledge

obtained from specialized disciplines, fields, or business areas

(e.g., stakeholders, products, processes, assets, etc.); (2) Process

knowledge: Knowledge related to business processes aspect such

as events, activities, input-output, conditions, etc.; (3) Policy

knowledge: Regulation, policies, or rules used to control system

implementation or application; (4) Observational knowledge:

Knowledge derived from resources used as the main input of a

process, such as sensor measurements, machine parameters, visual

tracking events, etc.; (5) Context knowledge: Additional knowledge

used to contextualize monitoring and decision-making processes,

enriching and constraining them based on existing conditions

to resolve or mitigate ambiguities; (6) Teaming knowledge:

Knowledge related to H-AI interaction, encompassing teaming

processes, teaming events, and teaming activities. Orthogonal to

this, the above categories include both explicitly asserted and

inferred knowledge, i.e., new knowledge that can be deduced from

existing knowledge, generated through logical inference, statistical

inference, machine learning prediction, etc.

3.2.2 Knowledge population
Knowledge population refers to the process of constructing

and maintaining knowledge by integrating diverse data sources

and modalities. Knowledge population methods tackle a number

of general challenges involved in the construction of a knowledge

base—such as, e.g., interoperability, data heterogeneity, quality, and

incompleteness.

In particular, we identified the following key challenges for

knowledge modeling and population for H-AI collaboration:
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FIGURE 1

Early vs. late shaping for human AI interaction systems. While early shaping fixes the AI model’s behavior in a fine granular manner at design time, late
shaping leaves room for update and model adaptation after deployment. In the latter, human intelligence is used for continuous context integration
(1), to assist the system in improving its monitoring and trust assessment (2), and to trigger model updates (3).

(1) Data heterogeneity: knowledge modeling requires integrating

and contextualizing data from heterogeneous source and topic

domains. Different sources may have varying formats, structures,

and semantics, making it challenging to harmonize and combine

them effectively. (2) Data Scope Management: determining what

data to include in a shared knowledge model is a challenge.

Including all available data may lead to issues related to

manageability and scalability. Therefore, careful consideration is

required to select the most relevant and valuable data for inclusion.

(3) Semantic Localization: establishing clear mappings between the

original data sources and their representations is a challenge. It

requires a deep understanding of the domain and expertise in

ontology development. (4) Data Catalog Management: managing

data that does not meet the inclusion criteria, such as large-

scale raw data without well-defined semantics poses a challenge.

Therefore, it is necessary to ensure that such data is appropriately

cataloged and coordinated.

3.2.3 Knowledge integration
To facilitate collaboration between and among human experts

frommultiple domains and AI agents, knowledge integration based

on shared concepts is a key challenge that needs to be addressed.

This necessitates a modular, layered approach to (1) deliver a

trustworthy, auditable, integrated data store in order to cope with

the inherent heterogeneity of manufacturing data, (2) facilitate the

combination of different types of AI and human reasoning in an

integrated platform, and (3) improve overall decision quality in

manufacturing, for example, by allowing for improved parameter

selection of injection molding machines.

A number of well-established domain-specific layering models

that are prevalent in the manufacturing domain can be used as a

foundation for vertical knowledge integration. The ANSI-ISA-95

and IEC 62264 standards, cf. IEC (2003), for instance, partition

activities in manufacturing enterprises into a functional hierarchy,

i.e., (1) production process, (2) sensing and manipulation,

(3) monitoring and supervision, (4) manufacturing operations

management, and (5) business planning and logistics. It also

introduces terminology and interfaces between these layers and

aims to establish a common understanding for all participants

and precisely defined interactions between any two layers.

More recently, the Reference Architecture Industry 4.0 (RAMI),

cf. Adolphs et al. (2015), introduced a three-dimensional

conceptual framework that represents the Industry 4.0 space along

three axes: (1) life cycle and value stream (IEC 62890), (2) hierarchy

levels (IEC 62264), and (3) layers.

3.3 Normative constraints

Collecting, labeling, and otherwise using human knowledge to

develop AI agents to work together with humans leads to challenges

from a normative perspective as well. Two legislative frameworks

almost always apply in the EuropeanUnion to anAI driven teaming

context: Regulation 2016/679 on the protection of natural persons

with regard to the processing of personal data and on the free

movement of such data, otherwise known as the GDPR, and the

upcoming AI Regulation (proposal for a regulation on AI).

First, the GDPR is a horizontal regulation, meaning that it

applies to any processing of so-called personal data, irrespective of

the context or sector. It imposes requirements that must be taken

into account by the developer and by any users of AI systems.

Notably, (1) they will have to be mindful that certain categories

of personal data are deemed sensitive under the GDPR, leading

to more stringent legal requirements. For example, in Use Case 3,

health data and biometric data is processed of the operators on the

shop floor. (2) data can only be processed (incl. collected) in a lawful

manner. This means that a legal basis under the GDPR needs to be

established before collecting or otherwise processing the data. (3)

a transparency obligation applies. Persons whose data is processed
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need to be informedwith respect to the responsible entity, the scope

of data collecting, the intended use and recipients of the data, and

the planned retention period. (4) they will have to ensure that only

relevant personal data is processed and that the data collected and

processed is accurate and up-to-date.

Second, the development of AI agents to work together with

human actors will be impacted by the upcoming AI Regulation

in the future. The proposed AI Regulation distinguishes four risk

profiles of AI systems, from standard risk to forbidden risks. The

higher the risk of the AI system, the stricter the interpretation of

the requirements. Any AI system would require human agency

and oversight, with the system being overseen and controlled by

humans. A human-AI teaming model suits this criterion quite

well. AI systems must also be safe and secured against malicious

and unlawful uses by third parties. The AI Regulation furthermore

imposes high standards in terms of data quality and integrity,

including for training data, and is more demanding than the GDPR

with respect to transparency and explainability. Humans need to

be made aware whenever they communicate or interact with an

AI system, and be informed of the capabilities and limitations of

that AI system. These criteria apply more stringently for higher risk

systems. For example, the AI system that would be developed under

Use Case 3 would be considered a high-risk AI system, whereas

the AI systems under the Use Cases 1 and 2 would be qualified as

“normal" AI systems.

It is clear that the normative frameworks in the European

Union impose significant legal obligations on researchers and users

of AI systems. These frameworks are more and more intertwined,

and increasingly require developers to have access to both legal and

technological insight. European legislation imposes particularly

high standards of transparency, proportionality, explainability and

human involvement - topics that, as the reader will recognize,

teaming models are relatively well suited to addressing.

3.4 Human-AI teaming orchestration
challenges

In contrast to typical human-in-the-loop settings, teaming

orchestration addresses a broader scope of tasks, e.g., to cope with

oversight and management problems as outlined in Section 2.1.

Teaming orchestration, i.e., monitoring and real-time management

of complex activities (Yang et al., 2023; du Boulay et al., 2023) is

challenging because it needs to take into account the different and

unique characteristics of its participants, but also combine their

respective strengths.

Rather than using AI as a mere substitute for humans, teaming

orchestration needs to lean into AI factors and leverage the innate

abilities of AI systems in order to overcome teaming limitations in

high-complexity collaborative tasks (Zhang et al., 2021). For this,

orchestration needs to follow a structured approach that is also

generalizable across use cases and domains. On the one hand, it

requires clear rules to determine, for example, when to request

data labels from a human operator, or which samples to choose

intelligently to be most effective. AI systems should guide humans

and make appropriate queries to obtain the desired information.

At the same time, it is important to efficiently manage and use

the managed data, both labeled and unlabeled, to improve and

evolve an AI system over time. On the other hand, implementing

these rules in software necessitates a generalizable approach that

allows the creation of workflow pipelines without modifying the

software code extensively when adopting the software platform to

a new use case or refining (late shaping) existing deployments.

To address these challenges, we aim for a model-based approach

that allows the specification of teaming workflows using process

models that allow changing communication pattern and sequences

by means of software configuration, thus ensuring flexibility and

maintainability in large-scale application scenarios. Moreover,

incorporating the dynamics of the teaming process into these

workflows at runtime poses a further challenge. Merely relying

on a single static process model is insufficient; instead, we need

to consider alternative pathways, dynamic switches between these

alternatives, and variations in path executions, such as role sharing.

To achieve this, we need to combine process models with dynamic

information modeling that captures runtime dynamics in process

executions.

Realizing and implementing these coordinationmechanisms by

means of computational models is still an under-explored research

challenge (Bansal et al., 2019a; Zhang et al., 2021).

4 Enabling technologies

This section provides an overview of the modeling and

representation technologies applied in this work.

4.1 Methods for knowledge graph
modeling and population

Knowledge Graphs are a powerful tool for knowledge

modeling. They provides a comprehensive and interconnected

view of knowledge that enables effective knowledge organization,

retrieval, and reasoning. The potential of KGs for knowledge

modeling lies in their ability to capture and represent rich semantic

relationships between entities. Unlike traditional databases or

hierarchical taxonomies, KGs allow for flexible and dynamic

modeling, which accommodates various types of relationships and

complex knowledge structures.

To develop and structure their schema, several methodologies

can be adapted and reused that have been developed for ontology

engineering (Noy and McGuinness, 2001; Fernández-López et al.,

1997; Sure et al., 2004; De Nicola and Missikoff, 2016). In our

industrial setting, methods for rapid ontology engineering such as

Sure et al. (2004); De Nicola and Missikoff (2016) that focus on

agile and application-driven development with strong involvement

of industrial domain experts are particularly suitable in the context

of rapidly changing requirements (c.f. Spoladore and Pessot, 2022

for a review and evaluation).

Beyond the schema-level, Knowledge Graph construction

approaches can more broadly be characterized along several

dimensions: Manual vs. (semi-) automated: KGs can be manually

constructed or automatically populated. Manual construction

involves expert-driven or community-driven approaches but can

be costly and manual curation can quickly become infeasible
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for large-scale KGs (Stepanova et al., 2018). WordNet (Miller,

1995), Freebase (Bollacker et al., 2008), Wikidata (Vrandečić

and Krötzsch, 2014) are examples of this approach. Manual

construction is also not feasible for continuously updating a

KG based on events and observations from a live (e.g., cyber-

physical production) system. The automated population uses

existing (semi-) structured sources such as YAGO (Suchanek et al.,

2007) and DBPedia (Lehmann et al., 2014) or extracts knowledge

from unstructured text such as NELL (Carlson et al., 2010).

However, this may come with limitations in terms of precision

and quality.

4.2 Methods for process modeling,
monitoring and orchestration

Business processes provide organizations a way to flexibly

compose a set of activities that are performed in a defined order to

achieve a business goal (Weske and Weske, 2019). These activities

can be executed by a human, a machine, another entity (e.g., a

software system) or a combination thereof.

Process models enable the formal definition of such processes

by describing the structure of the process and assigning units of

work to agents that perform the assigned task. These units of

work are called process activities. The structure defined by process

models may range from a simple sequential order to complex

structures that involve different gateways and loops, c.f. Weske and

Weske (2019). Dedicated languages to model business processes

[such as Business Process Modeling and Notation (BPMN)] have

also been adopted in manufacturing scenarios (Prades et al., 2013).

Process can be described either declaratively or imperatively. In

programming, imperative programming languages imply to “say

how to do something” (Van Roy and Haridi, 2004) whereas

declarative paradigms “say what is required and let the system

determine how to achieve it.” Hence, imperative programming

languages describe exactly the control flow of computation whereas

declarative programming languages focus on expressing the logic of

computation.

Similarly, imperative process modeling is characterized by

an inside-to-outside approach (Pichler et al., 2012) that requires

that each step of a process—including all possible execution

alternatives—is explicitly specified before the process is executed.

Declarative process modeling, on the other hand, follows an

outside-to-inside approach, i.e., the process is not defined

beforehand, but only its essential characteristics are defined as

constraints on the model that must not be violated during

execution, c.f. Pichler et al. (2012). These constraints are usually

exerted over activities and express norms, behavioral patterns and

best practices that restrict the possible behavior and execution order

of the activities (van Dongen et al., 2021).

With respect to the respective strengths and weaknesses of these

modeling paradigms, we found that they are not uniform across our

collaborative use cases.Whereas the declarative modeling approach

allows more flexible execution and is therefore well-suited for

volatile environments (Mazzola et al., 2017), which is beneficial,

e.g., for diagnostic tasks such as Use Case Scenario 2, the imperative

paradigm has benefits in terms of minimal description length (van

Dongen et al., 2021) and human understanding (Haisjackl et al.,

2013; Di Ciccio et al., 2019). Furthermore, we found that most of

the Use Case Scenarios can easily be described imperatively and that

the required flexibility can be reintroduced in imperative modeling

environments by decoupling independent and autonomous, but

imperatively structured processes through (1) message flows and

events, and (2) abstract activities.

4.3 Knowledge graph embeddings as
enablers of relational machine learning

Industrial KGs can be employed to integrate and standardize

domain knowledge. However, the application of KG embeddings

as lean KG feature representations of graph elements has yet to

be extensively explored in this domain. We utilize the notion of a

(standard) KG G = (V ,E), which is identified by a set of nodes

V and a set of triples E ⊆ V × R × V consisting of directed and

labeled edges, with R denoting the set of valid relations defined

in an underlying ontology (Krause et al., 2022). Thus, a KG fact

(s, p, o) ∈ E denotes an edge from the subject s ∈ V to the object

o ∈ V via the predicate p ∈ R. Given a KG and dimension d ∈ N,

embedding methods exploit the KG topology to generate feature

representations γ :V → R
d.

Besides an improved applicability of graph-based data in

recommendation systems (Palumbo et al., 2018) or question

answering (Diefenbach et al., 2020), KG embeddings have also

proven to be valuable as complements to graph data. This is due

to their ability to provide an empirical approach for enhancing the

expressivity of graph topologies by means of downstream tasks like

entity linking (Sun et al., 2018) and link prediction (Rossi et al.,

2021). Accordingly, relational ML receives significant attention in

both literature and applications (Nickel et al., 2016), building upon

the idea of utilizing KG embeddings as lean feature representations

to be fed into downstreamMachine Learning (ML) models. Besides

transfer approaches like RDF2Vec (Ristoski et al., 2019) to derive

KG embeddings from random graph walks via NLP methods such

as Word2Vec (Mikolov et al., 2013), KG embedding methods

can be categorized into geometric models, tensor decomposition

models, and deep learning models (Rossi et al., 2021).

To apply KG embedding formalisms within the use cases

presented in this paper, a process-oriented KG representation is

indispensable to effectively integrate relational machine learning as

an enabler of the validation of data consistency and the empirical

derivation of new knowledge. Such a KG plays a fundamental

role in facilitating the dynamic adaptation of ML models to

semantically linked industrial data, ensuring a more robust and

reliable system for knowledge extraction and integration. In the

following, approaches are proposed to dynamically encode teaming

knowledge within a corresponding KG.

5 Approaches on modeling and
orchestrating human-AI processes

This section provides solution approaches that aim to

resolve the key challenges introduced in Section 3 regarding
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the implementation of H-AI interactions within the use case

scenarios introduced in Section 2 by leveraging the enabling

technologies from Section 4. For a related software architecture we

refer to Haindl et al. (2022). Figure 2 provides a comprehensive

overview of the following sub-sections, including their thematic

connections. Sections 5.1 and 5.2 introduce the modeling and

population of industrial KGs as digital shadows of existing

manufacturing environments. Section 5.3 addresses the task of

orchestrating BPMN Teaming processes from an engineering

perspective. Based on these findings, Sections 5.4 and 5.5 provide

approaches to integrate BPMN process models and their dynamic

executions in a shared KG, linking it to existing domain knowledge.

Sample implementations for the previously introduced use case

scenarios are described in Section 2. Moreover, the knowledge

representations proposed in this chapter can ultimately be adopted

in relational ML models based on dynamic KG embeddings which

are to be introduced in Section 7, allowing for empirical late shaping

approaches.

5.1 Vertical knowledge integration

To address knowledge integration challenges in the context

of H-AI teaming in manufacturing, we developed a layering

approach for H-AI collaboration that focuses on the vertical layer

axis in RAMI I4.0 (Adolphs et al., 2015). This axis decomposes

complex I4.0 manufacturing systems into loosely coupled layers,

adopting principles from information systems and software

engineering. We leverage this layering model as a framework

for the conceptualization of a KG to support vertical knowledge

integration. Mapping concepts to layers facilitates a modularization

of the KG that is consistent with the layering of the manufacturing

system. For example, vocabularies to express sensor observations

are assigned to and used across the lower layers, whereas policy

specifications, expert-knowledge-derived decision rules, or process

models will be scoped and restricted to the higher layers.

The use case presented in Section 6.2, for instance, is composed

of the steps: (1) setup of the injection process, (2) production,

and (3) quality inspection. The layering allows to interface

with the domain experts appropriately: the process engineer

for example acts at the communication and integration layers

[typically represented by Supervisory Control and Data Acquisition

(SCADA) and/or Programmable Logic Controller (PLC) systems].

At production run time, the layers serve as a guideline to structure

the interactions between components and stakeholders with the

knowledge graph, based on the modularization principles of the

framework. Note that the layering approach does not imply

architectural choices or commitment to particular implementation

options (for example interfaces, or whether and how the data

represented in the knowledge graph is materialized). Classifications

made by an automated visual quality inspection components,

for instance, are assigned to the integration layer and may be

propagated from there through higher-level events to the upper

layers. In this context, the knowledge graph represents a partial

view on the real-world system that links relevant aspects for a given

perspective.

Methodologically, we propose a modular and incremental

approach to develop knowledge graph-based applications in

Industry 4.0; rather than developing a single, monolithic KG, which

requires a large up-front investment and bears considerable risk,

our approach aims to incrementally build a system-wide knowledge

graph as an aggregation of more granular per-use case views,

while ensuring their conceptual alignment through a set of shared

core concepts. This also enables cross-view linking—either through

a shared underlying knowledge graph or explicit, user-generated

links—and navigation across multiple perspectives (dashed lines in

Figure 3).

5.1.1 Lessons learned
The application of a layering approach in H-AI collaboration,

particularly within the framework of Industry 4.0 manufacturing

systems, offers significant benefits for the conceptualization and

development of a knowledge graph aimed at vertical knowledge

integration. By mapping distinct concepts to various layers,

the knowledge graph becomes modular and is systematically

aligned with the layering structure of the manufacturing system.

This method facilitates cross-view linking and navigation

across different perspectives, thereby enriching the system-wide

comprehension and utilization of the knowledge graph. However,

some limitations typically arise. For instance, the complexity

of accurately mapping concepts to appropriate layers can be

challenging, especially in dynamic and evolving manufacturing

environments. Additionally, maintaining the integrity and

consistency of the knowledge graph across different layers

can become difficult, potentially leading to misalignment or

fragmentation in understanding.

5.2 Knowledge graph modeling and
population strategy

In order to ensure manageability and scalability, it is crucial to

adopt a strategic approach when modeling and incorporating data

into KGs. Instead of incorporating all available data, the KG should

facilitate an agile, use case-driven approach toward data integration

that grounds decisions about what data to integrate into the KG

in use-case requirements. Consequently, H-AI systems KGs will

not include materialized collections of, e.g., large-scale structured

source data that is not graph-structured and can be managed more

efficiently in e.g., relational systems or data lakes. For such data, the

KG can act as a data catalog that facilitates semantic localization of

granular source data for the use case scenarios.

Based on these principles, we propose the following inclusion

criteria for data to be added to the H-AI system KGs: (1)

Include domain knowledge that can contextualize observational

data and/or facilitates automated interpretation (e.g., through

rule-based decision support components). (2) Incorporate data

that is relevant for the construction of teaming events, i.e.,

data that affects the execution flow in the teaming process

model. For example, visual quality inspection data (OK/NOK,

defect characterization, etc.) that may trigger teaming processes

should be included (e.g., as quality inspection events). (3) Include
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FIGURE 2

Schematic interconnection of the solution approaches presented in this chapter based on the manufacturing elements and KG components that are
addressed in the corresponding subchapters.

FIGURE 3

Knowledge graph layering concept.

observational knowledge that provides context to other events

(e.g., environmental sensor data that qualifies other observations).

(4) Incorporate data needed for stakeholder coordination, i.e.,

data that establishes the context so that the KG can serve as

a coordination artifact. (5) Include data leveraged by relational

machine learning components, i.e., to enable them to learn,

generate insight and make informed decisions based on the KGs.

(6) Incorporate data used to construct facts that can be checked

against policies, i.e., to ensure compliance with predefined rules

and regulations.

Use case-relevant data that does not fulfilll these criteria (e.g.,

large-scale raw data without well-defined semantics stored in

Data Lakes) can be inventoried in the data catalog. Therefore,

it is then considered outside the scope of the H-AI systems but

may be accessed exogenously by activities that are coordinated

through it.

5.2.1 Guidelines for knowledge graph population
To address the challenges regarding knowledge population

described in Section 3.2, we propose a set of guidelines and

requirements for the KG population in the context of H-AI

collaboration: (G1) Knowledge management and integration: The

KG needs to integrate heterogeneous data sources andmodalities to

create a shared understanding among stakeholders and AI systems.

It should provide a flexible, graph-based representation of real-

world entities, their interrelations, and various topical domains.

For example, the KG should describe products, production assets,

organizational units, processes, events and activities models. (G2)

Stakeholder coordination: The KG should enable collaboration

between human agents and AI components by representing

a shared mental model and acting as a coordination artifact.

This coordination facilitates dynamic population, where the KG

dynamically coordinates various agents in tasks such as diagnostic
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analyses. (G3) Application services: The KG should provide

additional capabilities beyond knowledge representation, such as

entity resolution, entity linking, and KG completion. Dynamic

updating of embeddings in the knowledge engine allows for

continuous population and supports downstream application

services like predictive services and anomaly detection. (G4)

Integrated digital shadow: The KG should accommodate a digital

semantic shadow of production assets, capturing their variable

properties across their lifecycle. It can link and integrate multiple

digital shadows to provide an integrated semantic shadow. The

continuous population is essential to maintain the digital shadow

with incoming events and data from the production environment.

(G5) Dynamic population workflows: The KG should support

dynamic extension through collaborative editing by multiple

agents. This includes manual curation by domain experts, logical

inference by reasoning agents, and statistical inference by machine

learning agents.

5.2.2 KG population in the H-AI system
architecture

KG population within H-AI System is viewed as a dynamic

digital shadow of a production system, incorporating domain

knowledge, real-time data, human input, and AI-generated

enrichment. It involves automated, semi-automated, and manual

activities scheduled or triggered by events, carried out by both

human stakeholders and AI agents. Treating KG population as an

explicit teaming process addresses the requirements of knowledge

management, stakeholder coordination, and integrated digital

shadow.

To implement this teaming-centric approach, KG population

components (e.g., ETL scripts) should provide APIs for invocation

by the teaming engine. This allows flexibility and easy adaptation of

KG population workflows by teaming engineers, who can consider

them as separate tasks or part of user stories. Not all data in

all use cases need to be incorporated through teaming-based

population activities, but wrapping population components as

services accessible by the teaming engine can maximize flexibility.

We proposed a H-AI system architecture that integrates KG

population components as a teaming process. Figure 4 shows

how the KG population components interact with the H-AI

system component. In the following, we discuss the role of each

of these platform components for KG population. (i) Teaming

Engine: The Teaming Engine orchestrates the teaming model,

including the teaming process, activity model, event model, and

policy model. In the teaming-centric population approach, KG

population workflows are considered as teaming processes and

KG population activities are treated as teaming activities. The

execution flow of the teaming model determines when population

activities are performed. KG population tasks can be triggered

based on the completion of other activities, scheduled tasks, or

teaming events received via the event translation component. (ii)

Event Translation: The event translation component, facilitated by

a synchronization assistant, maps changes in the KG to teaming

events. It filters, aggregates, and maps runtime events to teaming

events that can be processed by the Teaming Engine. The event

translation server does not modify the KG directly but triggers

population workflows by mapping runtime events to teaming

events. (iii) Knowledge Graph Engine: The knowledge graph engine

provides a triple-store, query engine, synchronization service, and

API. It serves as the core component for managing the KG. The

triple-store server stores the KG and offers a query engine with an

API. The synchronization assistant detects changes in the KG and

facilitates synchronization with other components. (iv) Knowledge

Graph Runtime: The knowledge graph runtime consumes event

streams from the shop floor, lifts, filters, and aggregates raw events

into well-defined runtime events, adding observational knowledge

to the KG. The KG runtime continuously inserts new triples into

the KG based on event data from the shop floors as well as human

feedback from the Human Machine Interface (HMI).

5.2.3 Lessons learned
In a H-AI system, the population of a KG acts as a

dynamic digital shadow of the production system, incorporating

domain knowledge, real-time data, and H-AI interactions. Treating

KG population as a collaborative teaming process facilitates

effective knowledge management, stakeholder coordination, and

the creation of an integrated digital shadow. Nevertheless, there

are potential limitations to consider. One challenge is ensuring

the continuous and accurate integration of real-time data, which

can be affected by data quality issues or system inconsistencies.

Additionally, coordinating among multiple stakeholders with

diverse expertise and interests might lead to communication

barriers or conflicts, complicating the knowledge management

process.

5.3 Teaming modeling and orchestration

To address the challenge of teaming orchestration described in

Section 3.4, we follow a model-based approach that represents H-

AI interaction patterns in models, using BPMN as an enabling

technology. The resulting teaming process model can then be

executed by the teaming engine, a core component of the

Teaming.AI software platform. Teaming policies bring dynamics

into BPMN-based process executions and thereby allow for late

shaping of execution at runtime.

As an example, Figure 5 depicts a simplified BPMN process

model for Scenario 2 described in Section 2.2.

During the initialization phase, which makes the software

platform ready for operation on a concrete use case, teaming

engineers and domain experts need to instantiate and customize

these teaming process models and integrate it with the target

system. Tasks can be instantiated, connected and configured, which

then are linked to activities, events, and policies. The use of domain-

specific modeling descriptions tailored to the requirements of the

respective domain enables efficient and lightweight teaming model

development by different domain experts. Model transformations

can be implemented to connect the process-oriented view with

the information-centric model of the KG and the event-oriented

application platform integration. In formalizing the description

of H-AI teaming in a teaming process model, recurring elements

and integration patterns emerge that reflect different aspects which

are necessary or important for the orchestration of H-AI teaming
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FIGURE 4

Knowledge graph population in H-AI system architecture.

processes, e.g., policy checking, data logging for auditability, and so

on.

In addition to the BPMN-based teaming process model, we

also define policy, activity, and event models. In practice, this

separation enables individual parts to be developed by different

domain experts. For instance, a process expert can model the

BPMN process, but might not be an expert on how to link it

to runtime events. Similarly, legal and ethics policy experts are

typically not concerned with technical aspects of data collection for

verifying these policies.

To execute the teaming process model at runtime, we leverage

state-of-the-art technology. The teaming engine (see also Figure 4)

employs both Camunda3 (Lammert and Boer, 2015) and Apache

Kafka (Garg, 2013) to help in process automation and facilitate

synchronizing the information flow. Camunda is an open-source

platform for workflow and decision automation. It allows the

users to model, automate, and optimize business processes using

the BPMN and Decision Model and Notation (DMN) standards.

Apache Kafka is a distributed streaming platform that is able to

handle high-volume and real-time data streams. It allows real-time

3 https://camunda.com/bpmn/

data pipelines and streaming applications. By combining both

platforms into the core part of teaming engine we allow for

data ingestion, processing, and integration across multiple systems

and bridge the gap between machine learning and end-users and

facilitate process orchestration.

Moreover, the software architecture follows an event-driven

communication paradigm, where process workflows are triggered

by events. This allows for loose coupling between components

and the ability to scale platform processes independently. By using

Kafka event streams, the teaming platform can monitor streams of

data from various sources and process it in real-time. The processed

data can then be used to feed machine learning models or inform

decisions within Camunda workflows. Also, ML models can be

integrated into Camunda workflows by exposing them as service

endpoints. These models can then be used to make predictions or

recommendations based on real-time data processing by Kafka.

5.3.1 Lessons learned
BPMN-based teaming processmodeling and execution is suited

for capturing and orchestrating H-AI teaming workflows. By

providing modular teaming activities which may be switched
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FIGURE 5

BPMN process model for Scenario 2 example.

dynamically during runtime using policy constraints, we are able

to take into account changing circumstances at runtime. This

approach brings more flexibility to process execution by allowing

to apply the Teaming Engine to difference use cases just by means

of configuring a respective Teaming Process Model. The BPMN

language provides a domain-specificmodeling language suitable for

efficient and lightweight teaming model development by different

domain experts. The BPMN model provides a high-level view on

the process performed collaboratively by humans and AI agents.

On a technical level, a BPMN task is executed by triggering

microservice calls to different components, e.g. performing ML

prediction, or sending a prompt to the HMI. However, the focus

of the teaming engine execution should be on orchestrating

interactions with the human instead of coordinating all software

communication within the platform so as to avoid teaming engine

becoming a performance bottleneck.

5.4 Semantic representation of human-AI
interaction models

Whereas formalisms like BPMN allow for the modeling of H-

AI interactions in manufacturing, they lack the ability to enrich

process knowledge and link it to existing domain background

knowledge within an industrial KG, as outlined in Sections 5.1

and 5.2. To address this limitation, and allowmanufacturers to gain

a better understanding of their operations and improve process

efficiency and effectiveness, we propose to represent process models

and instances in KGs. More specifically, by capturing Teaming

process models in a KG and linking them to domain knowledge,

we aim to enable new insights about H-AI interactions. Based on

such new insights, late shaping can be performed to improve the

overall quality of the corresponding knowledge representation and

the manufacturing processes in general.

To facilitate process representation, BPMN already provides a

graphical notation for standardizing organizational processes, but it

is not natively available in RDF. Several domain-specific approaches

exist to transform BPMN terminology into RDF-based ontologies

such as e3-value (Gordijn, 2004) for e-business processes,

BPMN4TOSCA (Kopp et al., 2012) for cloud applications, or

the PROV ontology (Moreau and Groth, 2013) for modeling

provenance information. Moreover, works exist that intend to

introduce generalized BPMN components in ontologies (Annane

et al., 2019; Rospocher et al., 2014). For instance, the BPMN

Based Ontology (BBO) (Annane et al., 2019) defines a set of

concepts and properties to identify a BPMN process diagram as a

bbo:FlowElementsContainer containing a set of bbo:FlowElements,

such as activities (bbo:Activity), events (bbo:Event), gateways

(bbo:Gateway), or sequence flows (bbo:SequenceFlow). Human and

AI agents are represented as instances of the bbo:Agent class. Thus,

we can define activities to be performed by a human agent, an AI

agent, or both. Moreover, to represent valid sequence flows, H-AI

policies can be applied to structure their interactions.

For instance, the BPMN diagram depicted in Figure 6

represents a manufacturing process that includes a potential

human-initiated H-AI interaction. It can be transformed into RDF

structures by tools like BPMN2KG (Bachhofner et al., 2022), which
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FIGURE 6

H-AI interaction encoded in a BPMN process diagram, including KG instance URIs.

is based on the BBO ontology. Thus, we receive KG instances of

sequence flows (SF), activities (A), gateways (GW), human workers

(HW), and AI agents (AIA), and events (E). These can be enriched

with background knowledge, e.g., the required experience of a

worker or the underlying ML model(s) of an AI agent. However,

this knowledge can only be aligned with process models to further

query this information prior to process execution. Although it

is possible to define abstract entities of bbo:Role or bbo:Agent

(e.g., :HW1 and :AIA1) that are enabled to perform an actviity,

these instances do not represent actual executions of these process

components and thus, do not allow for capturing dynamic process

executions to subsequently learn from them.

5.4.1 Lessons learned
Several methods exist for capturing BPMN terminology within

ontological frameworks and generating KG representations of

BPMN process models, these methods typically fall short in

incorporating the dynamic executions of these processes. To

address this limitation, it is essential to develop solutions that

enable the integration of real-time process executions into the

KG representations. A potential limitation in this area is the

complexity of real-time data integration, which requires robust and

flexible data processing mechanisms. Additionally, ensuring that

the dynamic aspects of BPMN processes are accurately reflected in

the knowledge graph can be challenging, particularly in scenarios

with frequent changes or updates to the processes.

5.5 Dynamic knowledge graph
representations of human-AI interactions

As outlined in the previous section, KGs can be used to

represent static BPMN concepts and process models. Based

on the information contained within the KG and the current

environmental state, subsequent activities can be determined, or

agents can be assigned to specific tasks. However, the proposed

KG encoding neglects the dynamic aspects of individual process

executions. While the dynamic orchestration of production and

Teaming processes is implicitly controlled through the information

encoded within the KG, the dynamic executions of these processes

are not stored in the graph itself. Thus, we aim to analyze

approaches for enabling comprehensive representations of process

executions, underlying process models, and BPM terminology in a

shared KG. By doing so, we do not only highlight the opportunities

that arise from integrating dynamic process executions and

domain knowledge but also provide insights, guidelines, and

implementation approaches for future research in this field. In

particular, such formalisms could be used to effectively describe and

trace H-AI interaction scenarios.

RDF KGs are typically composed of a concept layer and an

instance layer, also referred to as TBox and ABox. While the TBox

contains a domain ontology, usually based on the Web Ontology

Language (OWL), to define conceptual relationships, the ABox

stores the instantiated KG data. In contrast, three abstraction layers

are required for describing BPMN process executions, namely the

BPMN terminology (such as BBO), the BPMN process model, and

the actual BPMN process executions.

While BPMN terminologies need to be stored in the KG TBox

and process executions represent ABox instances, the positioning

of BPMN process models as process blueprints within the RDF

abstraction layers remains ambiguous as they may be regarded both

as instantiations of BPMN concepts and conceptual models for

BPMN executions. Therefore, we address approaches to integrate

BPMN process models either in (i) the concept layer or (ii)

the instance layer of a process-enabled KG by applying the idea

of (i) OWL constraints or (ii) definite and indefinite instances,

respectively. We reuse the BPMN diagram and corresponding H-

AI interaction scenario from Figure 6. Furthermore, to showcase

the expressiveness of the respective approaches, we attempt to

implement the following constraints to further extend this

1. An instance of the AI agent :AIA1 must utilize one of the pre-

trained ML models :MLX or :MLY (we assume the predicate

:uses_ML_model).

2. Given an instance of the process :P0, only one human isntance

:HW1 may participate in the process instance, i.e., the worker

requesting an AI quality assessment also needs to incorporate it.

5.5.1 Representing BPMN process models via
OWL constraints

BPMN ontologies like BBO provide a structured framework

for capturing BPMN process models within a KG. This approach

allows for the representation of process models in the KG TBox,

enabling subsequent instantiations in its ABox based on actual

process executions. By leveraging this methodology, it becomes

possible to encode BPMN process models, such as :P0, as subclasses

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2024.1247712
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krause et al. 10.3389/frai.2024.1247712

of the bbo:Process concept, while specific process elements like the

gateway :GW1 can be represented as a subclass of bbo:Gateway.

To ensure the consistency and integrity of the BPMN execution,

certain constraints need to be satisfied. For example, it is essential

that each instance of :GW1 is contained within an execution

of the process :P0. Furthermore, :GW1 must be linked to an

incoming bbo:SequenceFlow of type :SF1 and have exactly one

outgoing bbo:SequenceFlow, which can be of type :SF3 or :SF4.

These execution constraints can be effectively defined using OWL

class descriptions and axioms via the equivalent class of :GW1

(bbo:has_container exactly 1 :P0) and (bbo:has_incoming exactly 1

:SF2)

and (bbo:has_outgoing exactly 1 (:SF3 or :SF4)),

encapsulating the necessary execution characteristics and

behaviors. Analogously, the previously introduced constraint 1 can

be integrated via a superclass of :AIA1, i.e.,

:uses_ML_model exactly 1 ({:MLX, :MLY}).

Hence, the TBox encodings of BPMN process models serve as

valuable representations that capture both valid process flows

and constraint-based execution policies. These encodings can be

further enriched with domain background knowledge, facilitating

the establishment of reusability and integrability.

However, it is important to note that OWL lacks the ability

to express overlapping constraints, such as constraint 2. It is not

possible to define that two executions of the same process element

within an identical processmust be performed by the same agent. In

such cases, more expressive formalisms like SWRL (Semantic Web

Rule Language) need to be employed. However, this introduces

additional complexity to the ontology, which is known to hinder the

adoption of ontology-based process modeling (Corea et al., 2021).

5.5.1.1 Lesson learned
While there are no restrictions regarding the dynamics of

BPMN process executions, the same flexibility does not apply to

BPMN process models since process flows are captured within

OWL constraints. Any updates or modifications to the models may

lead to constraint violations in previously performed executions.

This highlights the need for careful consideration and management

of the model dynamics within the context of ontology-based

models of BPMN process models.

5.5.2 Representing BPMN process models via
definite and indefinite instances

Besides OWL-based KG constraints, the alignment of BPMN

and KG abstraction layers can also be achieved by encoding

BPMN models and BPMN executions within a shared ABox. This

approach is in line with existing works like BPMN2KG (Bachhofner

et al., 2022), which represent BPMN models and components as

instances in a KG. By adopting this methodology, process execution

rules can be defined using OWL constraints and by utilizing

instance-level properties such as node labels or assignments of

agent instances to specific activities. For instance, in order to specify

the qualifications required to carry out the AI activity :AIA1 as

per constraint 1, SHACL constraints can be utilized to design

corresponding node shapes (Knublauch and Kontokostas, 2017).

Therefore, this approach enables the representation of process flows

through explicit facts, as opposed to relying solely on OWL class

restrictions. Analogously, we can fulfill constraint 2 by defining a

single executor of the activity :A1 or by linkingmultiple instances of

:HW1 via the owl:sameAs relationship. However, to accommodate

BPMN executions as KG instances, it becomes necessary to

augment the ABox with an additional abstraction layer.

We propose an extension of the KG TBox by introducing

the class :IndefiniteInstance and the property :definiteInstanceOf

allowing for the identification of executed BPMN components

as definite instances of indefinite BPMN components. While

no explicit rules are implemented to automatically verify logical

correctness, the ABox encodings of process models allow for

more flexibility in representing dynamic BPMN models compared

to OWL-based BPMN process model encodings. Furthermore,

the instance-level representation contributes to simpler TBox

structures, which is a crucial aspect for successful KG and ontology

implementations in real-world use cases.

5.5.2.1 Lesson learned
The introduction of definite and indefinite instance layers

enhances the expressiveness and dynamics of BPMN-KG

integrations, enabling the representation of real-world process

executions and their associated BPMN components within a

coherent framework. However, when it comes to describing

complex manufacturing processes, auxiliary frameworks such

as Semantic Web Rule Language (SWRL) or Shapes Constraint

Language (SHACL) often need to be employed. These auxiliary

frameworks provide additional capabilities for capturing intricate

rules and constraints that cannot be easily expressed within the

standard BPMN-KG structure. However, a potential limitation

is the increased complexity in implementing and maintaining

these supplementary frameworks, which may require specialized

knowledge and resources.

6 Example use case implementations

This section presents illustrative example implementations

of the H-AI teaming platform in three use cases within the

general scenario settings introduced in Section 2. All use

case implementations apply previous findings regarding vertical

knowledge integration (Section 5.1), KG modeling and population

(Section 5.2), teaming modeling and orchestration (Section 5.3),

semantic representation of H-AI interaction models (Section 5.4),

and dynamic KG representations of H-AI interactions (Section 5.5).

6.1 Use case 1: collaborative quality
inspection

As an example of human oversight scenarios (cf. Section 2.1), we

implemented a use case where human expertise and flexibility can

be integrated with AI-based capabilities in order to optimize quality

management in the context of an injection molding production

line. In this solution, oversight and decision-making still remain in

the hands of human operators, while AI provides decision support.
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Interaction takes place in a structured and orchestrated manner.

The teaming process model and execution may orchestrate human

operators and AI agents to collaborate in quality inspection tasks.

See also Figure 6 for reference. At production runtime, an AI-

based computer vision agent may perform initial quality checks

and the teaming engine may request a human operator (via the

operator HMI) to double-check in cases of not-OK parts or when

the AI is faced with uncertainty or low confidence. Operators have

the ability to provide feedback on the quality of AI suggestions,

thus realizing closed-loop communication. By incorporating this

additional information, the AI agents can continuously learn from

human expertise and improve the accuracy and reliability of their

predictions.

We apply the guidelines for populating the KG outlined in

Section 5.2: (G1) highlights the need for knowledge management

and integration, including data from the AI-based quality

inspection, human quality inspection, human feedback via the

HMI, machine parameter setup, and process model. Stakeholder

coordination (G2) involves providing a shared mental model

between humans (i.e. quality engineers) and AI agents (i.e., AI-

based quality inspectors) to coordinate their tasks while performing

collaborative (automated and manual) quality inspections. The

application service involves collaborative quality inspection process

by taking into account the inspection outcomes (e.g., AI prediction

including their level of confidence) and human interpretation and

decision (e.g., based on their experience). The integrated digital

shadow (G4) is done through the transformation of the involved

domain knowledge (e.g., process models, machine information,

AI-models, and human feedback) into the KG. The dynamic

population workflow (G5) involves manual curation of knowledge

sources as well as a population from the dynamic learning of

AI-prediction with human feedback when vetoing the decisions.

6.2 Use case 2: hybrid H-AI parameter
optimization in injection molding

As a use case within machine diagnostics (cf. Section 2.2),

we implemented a collaborative H-AI teaming process at another

industrial partner from the automotive sector. For this use case,

we envisioned a hybrid approach that allows human experts to

share their knowledge among each other and with AI agents. In

particular, the use case combines the representation of root cause

analysis knowledge with the analytic capabilities of ML models to

guide the diagnostic process. To this end, we formalize the relevant

domain knowledge to coordinate diagnostic tasks and extend them

to capture domain knowledge and observed regularities by the

stakeholders in a synergistic manner.

To populate a KG for this use case, we follow the process

discussed in Section 5.2. This includes (i) managing and integrating

multiple knowledge sources such as injection machine and its

parameters, the visual quality inspection system, the HMI, process

model, Injection Parameter Adjustment Protocols (IPAP) and

Failure Mode and Effect Analysis (FMEA); (ii) Stakeholder

coordination focuses on a shared knowledge base between the

process model, IPAP and FMEA stakeholders for root cause

analysis; (iii) Application services involve optimizing injection

parameters by integrating IPAP and FMEA data; (iv) The integrated

digital shadow emphasizes the unidirectional information flow

indicating that IPAP and FMEA documents are transformed

into a KG within the pipeline. (v) The dynamic population

workflows involves manual curation of knowledge sources, as well

as population from inference services, logic-based or machine

learning-based methods. Figure 7 illustrates the KG population

system for this use case that facilitate broader tasks e.g., defect

prediction, parameter recommendation, failure pattern analysis etc.

6.3 Use case 3: occupational risk
monitoring and continuous feedback

As a final use case implemented at an industrial partner

producing windmill components, we focused on occupational

safety and health during hazardous tasks such as industrial

milling of large metal parts. In this use case, it is necessary to

analyze and predict ergonomic risks on the machine operator.

To this end, we dynamically integrate heterogeneous data and

knowledge from diverse sources such as monitoring sensors (e.g.,

the detected objects and poses), production planning systems,

process information, rule sets for the assessment of ergonomic risks

etc. This requires a trustworthy knowledge base for stakeholders on

the shop floor (operators), production planners, process engineers,

ergonomic assessors etc. AI agents—including visual tracking

systems, objection and pose recognition components, ML-and

logic-based inference components for risk scoring purposes over

sensor data, e.g., using the Rapid Entire Body Assessment (REBA)

assessment method (Hignett andMcAtamney, 2000)—can leverage

the knowledge base for coordination.

In the implemented use case, high-definition cameras monitor

the postures and movements of workers during the whole work

shift and the system automatically analyzes it for MSD risks. These

risks are reported to the shift managers, who can discuss the

information during their daily improvement meetings. With this,

the AI is becoming a team member providing important OSH

information to the team. The system is set up to improve its analysis

on the human input for the next time.

Following the same guideline introduced in Section 5.2,

the KG population focuses on addressing the requirement for

integrated ergonomic risk assessment. (G1) emphasizes the need

for knowledge management and integration, including data from

monitoring sensors, process information, and assessment rule

knowledge e.g., REBA. Stakeholder coordination (G2) is a key

aspect in this use case as they require a combination across

multiple heterogeneous sources e.g., operators from the shop floor,

production planners, process engineers, and ergonomic assessors.

The application services (G3) emphasize the objective of predicting

ergonomic risks for machine operators and the integration of

heterogeneous knowledge sources to enable a holistic assessment.

The Integrated digital shadow (G4) provides the unidirectional flow

of data from sources to the KG through a population pipeline e.g.,

the transformation of the detection data produced by the camera

and several other information into a KG. Lastly, (G5) involves

the importance of dynamic population workflows involving logic-

based inference and human curation of the information sources
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FIGURE 7

KG population for Use Case 2.

to score poses and apply assessment rules e.g., REBA assessment

method.

7 Late shaping of domain knowledge
via dynamic KG embeddings

The solution approaches for semantic representations of

teaming processes introduced in Section 5 already allow for rule-

based late shaping formalisms of domain knowledge based on

updates of KGs or process models. Contrarily, in this section we

intend to analyze the application of KG embeddings and relational

ML models to empirically identify the need for late shapings within

our domain. Such methods can be considered since the previously

described approaches for knowledge and process modeling are in

line with requirements regarding the application of industrial KG

embeddings, which were discussed in Section 4.3.

However, traditional KG embedding algorithms focus

on capturing stationary graph snapshots and their inherent

relationships. However, in real-world scenarios like H-AI teaming,

KGs typically need to be regarded as dynamic, with entities and

edges being added, modified, or deleted over time. Therefore,

it is crucial to develop techniques that can capture the domain

dynamics and update KG embeddings accordingly, preferably in

an autonomous and real-time manner.

7.1 The knowledge engine: implementing
dynamic knowledge graph embeddings

Most of the existing works on dynamic graph embedding

algorithms do not account for directed and labeled graphs, such

as KGs. Rather, they are restricted to undirected and/or unlabeled

graphs (such as Pareja et al., 2020; Trivedi et al., 2019; Chen et al.,

2021), or they aim to embed temporally enhanced snapshots of

stationary graphs (Xu et al., 2020; Dasgupta et al., 2018; Liao et al.,

2021). Moreover, approaches like the one proposed in Wewer et al.

(2021) exist that intend to concentrate the online training process

for updated KG embedding to regions of the graph which were

affected by KG updates. However, the overall embedding structure

is still affected, leading to a need for continuous adjustments of

downstream tasks based on KG embeddings, such as graph-based

ML models. Thus, we require a dynamic KG embedding formalism

that (i) can produce real-time embeddings for dynamic KGs and

(ii) is able to preserve the original structure of KG embeddings to

allow for consistent downstream applications.

The proposed method addresses this challenge by introducing

the concept of a knowledge engine as illustrated in Figure 8.

It intends to extend an existing triplestore framework such as

Apache Jena4 by means of a KG embedding storage, containing

dynamic KG embeddings that is automatically adapted to evolving

environments. The dynamic embedder is informed about KG

updates through an auxiliary synchronizing assistant which is

capable of transforming highly complex SPARQL update queries

into sets of inserted and deleted facts. These are archived by the

embedding server, including respective timestamps.

At an initial timestamp t0, the embedding server computes an

initial embedding γ̃t0 :Vt0 → R
d of the KG Gt0 = (Vt0 ,Et0 ) as

per Section 4.3. Accordingly, a dynamic KG is defined as a family

of stationary snapshots (Gt)t∈T with respect to some time set T .

Given a t > t0, the dynamic embedder should provide a consistent

embedding γt :Vt → R
d so that previously trained downstream

applications can still be used. To align with these requirements,

we introduce the Navi approach as a dynamic KG embedding

formalism.

4 Apache Software Foundation, 2021. Apache Jena, Available at: https://

jena.apache.org/.
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FIGURE 8

Architectural overview of the proposed knowledge engine methodology.

7.2 The navi approach: dynamic KG
embeddings via local embedding
reconstructions

The Navi approach is based on the core idea of GNNs, i.e., to

propagate information between connected nodes to capture local

and global semantic relations (Krause, 2022). Regarding a node

embedding γ (v), it leverages the idea to reconstruct it based on its

neighborhood embeddings and thus, embedding reconstructions

are based on the unique adjacency tensors
(
A(t)

)
t∈T

with A(t) ∈

R
k×nt×nt . Here, nt =

∣∣⋃
τ≤t Vτ

∣∣ denotes the number of nodes that

were known to exist since t0 and thus, nt ≥ nt0 holds.

An initial embedding matrix X̃t0 ∈ R
nt0×d, containing initial

embeddings as per γ̃t0 . Considering the extended adjacency tensor

Â(t0), this matrix is reconstructed based on itself via

σ

(
Â(t0)self · 2t0 ·Wself +

∑k

h=1
Â(t0)h · X̃t0 ·Wh

)

= :Xt0 ≈ X̃t0 .

During training, a global embedding γself ∈ R
d is introduced,

enabling independence of initial and reconstructed embeddings. It

is utilized in self-relations, i.e., 2t0 ∈ R
nt0×d contains nt0 copies of

γself and for self-loops in general. Moreover, we randomly replace

input node embeddings with γself to simulate the semantic impact

of unknown nodes to prevent overfitting. A detailed overview,

including benchmark evaluation results, can be found in Krause

(2022). The evaluation implies that, given a timestamp t > t0, this

approach allows for high-qualitative and consistent embeddings

γt :Vt → R
d that are computed via

σ

(
Â(t)self · Ŵt ·Wself +

∑k

h=1
Â(t)h · X̃t ·Wh

)
= :Xt ,

i.e., the i-th row of Xt represents γt(vi). In the case of new nodes,

X̃t and 2t are extensions of X̃t0 and 2t0 , respectively, by inserting

copies of γr0 . Moreover, the update of the adjacency tensor can be

performed via

A(t)h = I(t0, t)
T ·A(t0)h · I(t0, t)+ B(t0, t)h.

On the one hand, the matrix I(t0, t) ∈ {0, 1}nt0×nt accounts for

newly inserted nodes, i.e.,

I(t0, t)i,j = 1 ⇐⇒ i = j.

On the other hand, the update matrices B(t0, t)h ∈ {−1, 0, 1}nt×nt

represent KG updates

B(t0, t)i,j

=

{
1 ⇐⇒ the edge (vi, rh, vj) was inserted between t0 and t

−1 ⇐⇒ the edge (vi, rh, vj) was deleted between t0 and t
.

After the KG update, the synchronizing assistant (cf. Figure 8)

is to provide (i) the number of nodes nt and (ii) the

update tensor B(t0, t) ∈ {−1, 0, 1}k×nt×nt . For instance,

given an Apache Jena Fuseki KG, logging tools like rdf-

delta5 can be extended to use them accordingly. Moreover,

while we focus on a single update at time t ∈ T ,

transitions between arbitrary timestamps can be handled as

well, i.e.,

A(t′)h = I(t, t′)T ·A(t)h · I(t, t
′)+ B(t, t′)h for t0 < t < t′.

To summarize, the late shaping of KG embeddings

via Navi reconstructions can be highly valuable for

dynamic domains like manufacturing and H-AI due

to their ability to capture evolving knowledge in lean

representations, offering a powerful tool to analyze and

reason over the evolving relationships and characteristics

of entities in this domain, such as human and

AI agents.

8 Conclusions

This work has explored the role of AI in facilitating

H-AI collaboration, with a specific focus on computational

5 https://afs.github.io/rdf-delta/
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modeling by means of knowledge graphs. To do that, we have

introduced the concepts of early shaping and late shaping design

principles and examined how humans might contribute to AI

systems’ adaptation to operating conditions. Future research

will further investigate our knowledge graph-based approach

and complement it by recently discussed strategies to utilize

generative AI methods, e.g. to streamline the process of populating

knowledge graphs from semi-structured sources, as proposed

in Pan et al. (2024).

Data availability statement

The raw data supporting the conclusions of this

article will be made available by the authors, without

undue reservation.

Author contributions

BM, FK, EK, and BH contributed to the conception and

design of the paper. NÜ, JD-L, ML, HE-L, GS, MK, and

JM-G contributed to the use case sections. BM wrote the

section on late shaping. EK, KK, and JM-G wrote the sections

on non-dynamic knowledge modeling with contributions from

PD and HG on normative aspects. FK wrote the sections on

dynamic knowledge modeling. FK and HP wrote the sections on

knowledge graph embeddings and BH, AS, and TH on teaming

orchestration. All authors contributed to the article and approved

the submitted version.

Funding

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No. 957402 and the AI Mission Austria Flagship Project

FAIR-AI (FFG grant no. 904624).

Acknowledgments

We would like to thank the corporate partners GOIMEK,

Farplas and IAlegre of the European project Teaming. AI for their

support with the use cases.

Conflict of interest

PD and HG were employed at Timelex BV/SRL.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Davila Delgado, J. M.,
Bilal, M., et al. (2021). Artificial intelligence in the construction industry: a review
of present status, opportunities and future challenges. J. Build. Eng. 44:103299.
doi: 10.1016/j.jobe.2021.103299

Adolphs, P., Bedenbender, H., Dirzus, D., Ehlich, M., Epple, U., Hankel, M., et al.
(2015). Reference Architecture Model Industrie 4.0 (rami4. 0). ZVEI and VDI, Status
Report. Frankfurt: ZVEI.

Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson,
P., et al. (2019). “Guidelines for human-AI interaction,” in Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, CHI ’19 (New
York, NY: Association for Computing Machinery), 1–13. doi: 10.1145/3290605.
3300233

Annane, A., Aussenac-Gilles, N., and Kamel, M. (2019). “BBO: BPMN 2.0 based
ontology for business process representation,” in 20th European Conference on
Knowledge Management (ECKM 2019) (Lisbon), 49–59.

Bachhofner, S., Kiesling, E., Revoredo, K., Waibel, P., and Polleres, A. (2022).
“Automated process knowledge graph construction from bpmn models,” in Database
and Expert Systems Applications: 33rd International Conference, DEXA 2022, Vienna,
Austria, August 22–24, 2022, Proceedings, Part I (Cham: Springer International
Publishing Cham), 32–47. doi: 10.1007/978-3-031-12423-5_3

Bansal, G., Nushi, B., Kamar, E., Lasecki, W. S., Weld, D. S., Horvitz, E., et al.
(2019a). Beyond accuracy: the role of mental models in human-AI team performance.
Proc. AAAI Conf. Hum. Comput. Crowdsourc. 7, 2–11. doi: 10.1609/hcomp.v7i1.5285

Bansal, G., Nushi, B., Kamar, E., Weld, D. S., Lasecki, W. S., Horvitz, E.,
et al. (2019b). Updates in human-AI teams: understanding and addressing the
performance/compatibility tradeoff. Proc. AAAI Conf. Artif. Intell. 33, 2429–2437.
doi: 10.1609/aaai.v33i01.33012429

Becker, A., and Becker, J. (2021). Dataset shift assessment measures
in monitoring predictive models. Procedia Comput. Sci. 192, 3391–3402.
doi: 10.1016/j.procs.2021.09.112

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. (2008). “Freebase:
a collaboratively created graph database for structuring human knowledge,” in
Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data (New York, NY: Association for Computing Machinery), SIGMOD ’08, 1247–
1250. doi: 10.1145/1376616.1376746

Cardoso, D., and Ferreira, L. (2020). Application of predictive maintenance
concepts using artificial intelligence tools. Appl. Sci. 11:18. doi: 10.3390/app11010018

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R., and Mitchell, T. M.
(2010). “Toward an architecture for never-ending language learning,” in Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence (Washington, DC: AAAI
Press), AAAI’10, 1306–1313.

Chen, C., Li, K., Zou, X., and Li, Y. (2021). “Dygnn: algorithm and
architecture support of dynamic pruning for graph neural networks,” in 58th
ACM/IEEE Design Automation Conference (DAC) (New York, NY: ACM), 1201–1206.
doi: 10.1109/DAC18074.2021.9586298

Corea, C., Fellmann, M., and Delfmann, P. (2021). “Ontology-based process
modelling - will we live to see it?" in Conceptual Modeling (Cham: Springer
International Publishing), 36–46. doi: 10.1007/978-3-030-89022-3_4

Dasgupta, S. S., Ray, S. N., and Talukdar, P. (2018). “HyTE: hyperplane-based
temporally aware knowledge graph embedding,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing (Association for Computational
Linguistics), 2001–2011. doi: 10.18653/v1/D18-1225

De Nicola, A., and Missikoff, M. (2016). A lightweight methodology for rapid
ontology engineering. Commun. ACM. 59, 79–86. doi: 10.1145/2818359

Frontiers in Artificial Intelligence 18 frontiersin.org

https://doi.org/10.3389/frai.2024.1247712
https://doi.org/10.1016/j.jobe.2021.103299
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1007/978-3-031-12423-5_3
https://doi.org/10.1609/hcomp.v7i1.5285
https://doi.org/10.1609/aaai.v33i01.33012429
https://doi.org/10.1016/j.procs.2021.09.112
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.3390/app11010018
https://doi.org/10.1109/DAC18074.2021.9586298
https://doi.org/10.1007/978-3-030-89022-3_4
https://doi.org/10.18653/v1/D18-1225
https://doi.org/10.1145/2818359
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krause et al. 10.3389/frai.2024.1247712

del Carmen Rodríguez-Hernández, M., and Ilarri, S. (2021). AI-
based mobile context-aware recommender systems from an information
management perspective: progress and directions. Knowl.-Based Syst. 215:106740.
doi: 10.1016/j.knosys.2021.106740

Di Ciccio, C., Ekaputra, F. J., Cecconi, A., Ekelhart, A., and Kiesling, E. (2019).
“Finding non-compliances with declarative process constraints through semantic
technologies,” in Information Systems Engineering in Responsible Information Systems:
CAiSE Forum 2019, Rome, Italy, June 3–7, 2019, Proceedings 31 (Cham: Springer),
60–74. doi: 10.1007/978-3-030-21297-1_6

Diefenbach, D., Giménez-García, J., and Both, A., Singh, K., and Maret,
P. (2020). “Qanswer KG: designing a portable question answering system over
rdf data,” in The Semantic Web: 17th International Conference, ESWC 2020,
Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings (Heraklion), 429–445.
doi: 10.1007/978-3-030-49461-2_25

Ding, H., Gao, R. X., Isaksson, A. J., Landers, R. G., Parisini, T., Yuan,
Y., et al. (2020). State of AI-based monitoring in smart manufacturing and
introduction to focused section. IEEE/ASME Trans. Mechatron. 25, 2143–2154.
doi: 10.1109/TMECH.2020.3022983

Dinu, M.-C., Holzleitner, M., Beck, M., Nguyen, H. D., Huber, A., Eghbal-zadeh, H.,
et al. (2023). “Addressing parameter choice issues in unsupervised domain adaptation
by aggregation,” in The Eleventh International Conference on Learning Representations,
ICLR 2023 (Kigali).

du Boulay, B., Mitrovic, A., and Yacef, K. (2023). Handbook of Artificial
Intelligence in Education. Northampton, MA: Edward Elgar Publishing.
doi: 10.4337/9781800375413

Fernández-López, M., Gómez-Pérez, A., and Juristo, N. (1997). “Methontology:
from ontological art towards ontological engineering,” in Proceedings of the AAAI97
Spring Symposium (Stanford, CA), 33–40.

Garg, N. (2013). Apache Kafka. Birmingham: Packt Publishing.

Gordijn, J. (2004). “e-business value modelling using the e3-value ontology,” in
Value Creation from E-Business Models (Oxford: Butterworth-Heinemann), 98–127.
doi: 10.1016/B978-075066140-9/50007-2

Govaerts, R., Tassignon, B., Ghillebert, J., Serrien, B., de Bock, S., and
Ampe, K. (2021). Prevalence and incidence of work-related musculoskeletal
disorders in secondary industries of 21st century Europe: a systematic review
and meta-analysis. BMC Musculoskelet. Disord. 22:751. doi: 10.1186/s12891-021-0
4615-9

Haindl, P., Buchgeher, G., Khan, M., and Moser, B. (2022). “Towards a
reference software architecture for human-AI teaming in smart manufacturing,”
in Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: New Ideas and Emerging Results (New York, NY: ACM), 96–100.
doi: 10.1109/ICSE-NIER55298.2022.9793509

Haisjackl, C., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera, J., et al. (2013).
“Making sense of declarative process models: common strategies and typical pitfalls,”
in Enterprise, Business-Process and Information Systems Modeling: 14th International
Conference, BPMDS 2013, 18th International Conference, EMMSAD 2013, Held at
CAiSE 2013, Valencia, Spain, June 17-18, 2013. Proceedings (Cham: Springer), 2–17.
doi: 10.1007/978-3-642-38484-4_2

Hignett, S., andMcAtamney, L. (2000). Rapid entire body assessment (REBA).Appl.
Ergon. 31, 201–205. doi: 10.1016/S0003-6870(99)00039-3

Hoch, T., Heinzl, B., Czech, G., Khan, M., Waibel, P., Bachhofner, S., et al.
(2022). “Teaming.AI: enabling human-AI teaming intelligence in manufacturing,” in
Proceedings of Interoperability for Enterprise Systems and Applications Workshops co-
located with 11th International Conference on Interoperability for Enterprise Systems
and Applications (I-ESA 2022), Valencia, Spain, March 23-25, 2022, volume 3214 of
CEUR Workshop Proceedings, eds. M. Zelm, A. Boza, R. D. León, and R. Rodríguez-
Rodríguez. Available at: https://ceur-ws.org/Vol-3214/WS5Paper6.pdf

IEC (2003). IEC 62264-1 enterprise-control system integration-part 1: Models and
terminology. Atlanta, GA: IEC.

Kee, D. (2023). Characteristics of work-related musculoskeletal disorders in Korea.
Int. J. Environ. Res. Public Health 20:1024. doi: 10.3390/ijerph20021024

Kejriwal, M. (2021). Essential features in a theory of context for enabling artificial
general intelligence. Appl. Sci. 11:11991. doi: 10.3390/app112411991

Knublauch, H., and Kontokostas, D. (2017). Shapes constraint language (SHACL).
W3CMember Submission. Available at: https://www.w3.org/TR/shacl/

Kopp, O., Binz, T., Breitenbücher, U., and Leymann, F. (2012). “Bpmn4tosca:
a domain-specific language to model management plans for composite
applications,” in Business Process Model and Notation (Berlin: Springer), 38–52.
doi: 10.1007/978-3-642-33155-8_4

Krause, F. (2022). “Dynamic knowledge graph embeddings via local embedding
reconstructions,” in The Semantic Web: ESWC Satellite Events (Cham: Springer),
215–223. doi: 10.1007/978-3-031-11609-4_36

Krause, F., Weller, T., and Paulheim, H. (2022). “On a generalized framework for
time-aware knowledge graphs,” in Towards a Knowledge-Aware AI - Proceedings of the
18th International Conference on Semantic Systems, vol. 55 (Amsterdam: IOS Press),
69–74. doi: 10.3233/SSW220010

Lammert, J., and Boer, T. (2015). Evaluation des camunda bpmn workflow systems
(PhD thesis, Master’s thesis). Magdeburg: Universität Magdeburg.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P., et al.
(2014). Dbpedia - a large-scale, multilingual knowledge base extracted from wikipedia.
Semant. Web J. 6, 167–195. doi: 10.3233/SW-140134

Li, T., Vorvoreanu, M., DeBellis, D., and Amershi, S. (2022). Assessing human-AI
interaction early through factorial surveys: a study on the guidelines for human-AI
interaction. ACM Trans. Comput.-Hum. Interact. 30:69. doi: 10.1145/3511605

Liao, S., Liang, S., Meng, Z., and Zhang, Q. (2021). “Learning dynamic embeddings
for temporal knowledge graphs,” in Proceedings of the 14th ACM International
Conference on Web Search and Data Mining (New York, NY: Association for
Computing Machinery), 535–543. doi: 10.1145/3437963.3441741

Longo, F., Padovano, A., and Umbrello, S. (2020). Value-oriented and ethical
technology engineering in Industry 5.0: a human-centric perspective for the design of
the factory of the future. Appl. Sci. 10:4182. doi: 10.3390/app10124182

Ma, S., Lei, Y., Wang, X., Zheng, C., Shi, C., Yin, M., et al. (2023a). “Who should
I trust: AI or myself? Leveraging human and AI correctness likelihood to promote
appropriate trust in AI-assisted decision-making,” in Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, CHI 2023, Hamburg, Germany,
April 23-28, 2023, eds. A. Schmidt, K. Väänänen, T. Goyal, P. O. Kristensson, A. Peters,
S. Mueller, et al. (New York, NY: ACM), 759:1–759:19. doi: 10.1145/3544548.3581058

Ma, S., Lei, Y., Wang, X., Zheng, C., Shi, C., Yin, M., et al. (2023b). “Who
should i trust: AI or myself? Leveraging human and AI correctness likelihood to
promote appropriate trust in AI-assisted decision-making,” in Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems, CHI ’23 (New York, NY:
Association for Computing Machinery). doi: 10.1145/3544548.3581058

Mazzola, L., Kapahnke, P., Waibel, P., Hochreiner, C., and Klusch, M. (2017).
“Fce4bpmn: on-demand qos-based optimised process model execution in the cloud,” in
2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC)
(Madeira: IEEE), 305–314. doi: 10.1109/ICE.2017.8279903

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). “Distributed
representations of words and phrases and their compositionality,” in Advances in
Neural Information Processing Systems, vol. 26 (RedHook, NY: Curran Associates, Inc.),
3111–3119.

Miller, G. A. (1995). Wordnet: a lexical database for English. Commun. ACM 38,
39–41. doi: 10.1145/219717.219748

Moreau, L. and Groth, P. (2013). “The prov ontology,” in Provenance:
An Introduction to PROV (Cham: Springer International Publishing), 21–38.
doi: 10.1007/978-3-031-79450-6_3

Naiseh,M., Al-Thani, D., Jiang, N., and Ali, R. (2023). How the different explanation
classes impact trust calibration: the case of clinical decision support systems. Int. J.
Hum. Comput. Stud. 169:102941. doi: 10.1016/j.ijhcs.2022.102941

National Academies of Sciences, Engineering, and Medicine (2022). Human-AI
Teaming: State-of-the-art and Research Needs. Consensus Study Report. Washington,
DC: National Academies Press.

Neumann, W. P., Winkelhaus, S., Grosse, E. H., and Glock, C. H. (2021). Industry
4.0 and the human factor - a systems framework and analysis methodology for
successful development. Int. J. Prod. Econ. 233:107992. doi: 10.1016/j.ijpe.2020.107992

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2016). A review
of relational machine learning for knowledge graphs. Proc. IEEE 104, 11–33.
doi: 10.1109/JPROC.2015.2483592

Noy, N. F., and McGuinness, D. L. (2001). Ontology development 101: A guide
to creating your first ontology. Technical Report KSL-01-05 and Stanford Medical
Informatics Technical Report SMI-2001-0880.

Palumbo, E., Rizzo, G., Troncy, R., Baralis, E., Osella, M., and Ferro1, E.
(2018). “Knowledge graph embeddings with node2vec for item recommendation,”
in The Semantic Web: ESWC Satellite Events (Cham: Springer), 117–120.
doi: 10.1007/978-3-319-98192-5_22

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X., et al. (2024). Unifying large
language models and knowledge graphs: a roadmap. IEEE Trans. Knowl. Data Eng. 36,
3580–3599. doi: 10.1109/TKDE.2024.3352100

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., et al.
(2020). “Evolvegcn: evolving graph convolutional networks for dynamic graphs,” in
The Thirty-Fourth AAAI Conference on Artificial Intelligence AAAI, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference IAAI, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence EAAI (Washington, DC:
AAAI Press), 5363–5370. doi: 10.1609/aaai.v34i04.5984

Peres, R. S., Jia, X., Lee, J., Sun, K., Colombo, A. W., Barata, J., et al.
(2020). Industrial artificial intelligence in industry 4.0 - systematic review,
challenges and outlook. IEEE Access 8, 220121–220139. doi: 10.1109/ACCESS.2020.
3042874

Peterson, G. B. (2004). A day of great illumination: B. F. Skinner’s discovery of
shaping. J. Exp. Anal. Behav. 82, 317–328. doi: 10.1901/jeab.2004.82-317

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., and Reijers, H. A. (2012).
“Imperative versus declarative process modeling languages: an empirical investigation,”
in Business Process Management Workshops: BPM 2011 International Workshops,

Frontiers in Artificial Intelligence 19 frontiersin.org

https://doi.org/10.3389/frai.2024.1247712
https://doi.org/10.1016/j.knosys.2021.106740
https://doi.org/10.1007/978-3-030-21297-1_6
https://doi.org/10.1007/978-3-030-49461-2_25
https://doi.org/10.1109/TMECH.2020.3022983
https://doi.org/10.4337/9781800375413
https://doi.org/10.1016/B978-075066140-9/50007-2
https://doi.org/10.1186/s12891-021-04615-9
https://doi.org/10.1109/ICSE-NIER55298.2022.9793509
https://doi.org/10.1007/978-3-642-38484-4_2
https://doi.org/10.1016/S0003-6870(99)00039-3
https://ceur-ws.org/Vol-3214/WS5Paper6.pdf
https://doi.org/10.3390/ijerph20021024
https://doi.org/10.3390/app112411991
https://www.w3.org/TR/shacl/
https://doi.org/10.1007/978-3-642-33155-8_4
https://doi.org/10.1007/978-3-031-11609-4_36
https://doi.org/10.3233/SSW220010
https://doi.org/10.3233/SW-140134
https://doi.org/10.1145/3511605
https://doi.org/10.1145/3437963.3441741
https://doi.org/10.3390/app10124182
https://doi.org/10.1145/3544548.3581058
https://doi.org/10.1145/3544548.3581058
https://doi.org/10.1109/ICE.2017.8279903
https://doi.org/10.1145/219717.219748
https://doi.org/10.1007/978-3-031-79450-6_3
https://doi.org/10.1016/j.ijhcs.2022.102941
https://doi.org/10.1016/j.ijpe.2020.107992
https://doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1007/978-3-319-98192-5_22
https://doi.org/10.1109/TKDE.2024.3352100
https://doi.org/10.1609/aaai.v34i04.5984
https://doi.org/10.1109/ACCESS.2020.3042874
https://doi.org/10.1901/jeab.2004.82-317
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krause et al. 10.3389/frai.2024.1247712

Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers, Part I 9 (Cham:
Springer), 383–394. doi: 10.1007/978-3-642-28108-2_37

Prades, L., Romero, F., Estruch, A., García-Domínguez, A., and Serrano, J. (2013).
Defining a methodology to design and implement business process models in bpmn
according to the standard ansi/isa-95 in a manufacturing enterprise. Procedia Eng. 63,
115–122. doi: 10.1016/j.proeng.2013.08.283

Ristoski, P., Rosati, J., Di Noia, T., De Leone, R., and Paulheimand, H. (2019).
Rdf2vec: Rdf graph embeddings and their applications. Semantic Web 10, 721–752.
doi: 10.3233/SW-180317

Rospocher, M., Ghidini, C., and Serafini, L. (2014). “An ontology for the business
process modelling notation,” in Formal Ontology in Information Systems - Proceedings
of the Eighth International Conference, (FOIS) 2014, September, 22-25, 2014, Rio de
Janeiro, Brazil (Rio de Janeiro), 133–146.

Rossi, A., Barbosa, D., Firmani, D., Matinata, A., and Merialdo, P. (2021).
Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans.
Knowl. Discov. Data 15:49. doi: 10.1145/3424672

Schneider, J., and Vlachos, M. (2021). “Personalization of deep learning,” in
Data Science-Analytics and Applications, eds. P. Haber, T. Lampoltshammer, M.
Mayr, and K. Plankensteiner (Wiesbaden: Springer Fachmedien Wiesbaden), 89–96.
doi: 10.1007/978-3-658-32182-6_14

Schuitemaker, R., and Xu, X. (2020). Product traceability in manufacturing: a
technical review. Procedia CIRP 93, 700–705. doi: 10.1016/j.procir.2020.04.078

Spoladore, D., and Pessot, E. (2022). An evaluation of agile ontology engineering
methodologies for the digital transformation of companies. Comput. Ind. 140:103690.
doi: 10.1016/j.compind.2022.103690

Stepanova, D., Gad-Elrab, M. H., and Ho, V. T. (2018). Rule Induction and
Reasoning over Knowledge Graphs. Cham: Springer International Publishing, 142–172.
doi: 10.1007/978-3-030-00338-86

Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). “Yago: a core of semantic
knowledge,” in Proceedings of the 16th international conference on World Wide Web
(New York, NY: ACM). 697–706. doi: 10.1145/1242572.1242667

Sugiyama, M., and Kawanabe, M. (2012). “23Introduction and problem
formulation,” in Machine Learning in Non-Stationary Environments:
Introduction to Covariate Shift Adaptation (Cambridge, MA: The MIT Press).
doi: 10.7551/mitpress/9780262017091.001.0001

Sun, Z., Hu, W., Zhang, Q., and Qu, Y. (2018). “Bootstrapping entity alignment
with knowledge graph embedding,” in Proceedings of the 27th International Joint
Conference on Artificial Intelligence (Washington, DC: AAAI Press), 4396–4402.
doi: 10.24963/ijcai.2018/611

Sure, Y., Staab, S., and Studer, R. (2004). On-To-Knowledge Methodology (OTKM).
Berlin: Springer Berlin Heidelberg, p. 117–132. doi: 10.1007/978-3-540-24750-06

Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. (2019). “Dyrep: learning
representations over dynamic,” in 7th International Conference on Learning
Representations, ICLR 2019 (New Orleans, LA)

van den Bosch, K., Schoonderwoerd, T., Blankendaal, R., and Neerincx, M. A.
(2019). “Six challenges for human-AI co-learning,” inAdaptive Instructional Systems
- First International Conference, AIS 2019, Held as Part of the 21st HCI International

Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, volume 11597
of Lecture Notes in Computer Science, eds. R. A. Sottilare, and J. Schwarz (Cham:
Springer), 572–589. doi: 10.1007/978-3-030-22341-0_45

van Dongen, B. F., De Smedt, J., Di Ciccio, C., and Mendling, J. (2021).
Conformance checking of mixed-paradigm process models. Inform. Syst. 102:101685
doi: 10.1016/j.is.2020.101685

Van Roy, P., and Haridi, S. (2004). Concepts, Techniques, and Models of Computer
Programming. Cambridge, MA: MIT press.

Vogel-Heuser, B. and Hess, D. (2016). Guest editorial Industry 4.0-prerequisites
and visions. IEEE Trans. Autom. Sci. Eng. 13, 411–413. doi: 10.1109/TASE.2016.
2523639

Vrandečić, D., and Krötzsch, M. (2014). Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 78–85. doi: 10.1145/2629489

Wang, X., Lu, Z., and Yin, M. (2022). Will you accept the AI
recommendation? Predicting human behavior in AI-assisted decision making.
doi: 10.1145/3485447.3512240

Weske, M., andWeske, M. (2019). “Business process management architectures,” in
Business ProcessManagement: Concepts, Languages, architectures, ed.M.Weske (Cham:
Springer), 351–384.

Wewer, C., Lemmerich, F., and Cochez, M. (2021). Updating embeddings
for dynamic knowledge graphs. arXiv. [Preprint]. arXiv:2109.10896.
doi: 10.48550/arXiv.2109.10896

Wintersberger, P., van Berkel, N., Fereydooni, N., Tag, B., Glassman, E. L., Buschek,
D., et al. (2022). “Designing for continuous interaction with artificial intelligence
systems,” in Extended Abstracts of the 2022 CHI Conference on Human Factors
in Computing Systems, CHI EA ’22 (New York, NY: Association for Computing
Machinery). doi: 10.1145/3491101.3516409

Xu, C., Nayyeri, M., Alkhoury, F., Shariat Yazdi, H., and Lehmann, J. (2020). “TeRo:
a time-aware knowledge graph embedding via temporal rotation,” in Proceedings of the
28th International Conference on Computational Linguistics (International Committee
on Computational Linguistics) (Barcelona), 1583–1593. doi: 10.18653/v1/2020.coling-
main.139

Xu, W., and Dainoff, M. (2023). Enabling human-centered AI: a new junction
and shared journey between AI and HCI communities. Interactions 30, 42–47.
doi: 10.1145/3571883

Xu, W., Dainoff, M. J., Ge, L., and Gao, Z. (2023). Transitioning to human
interaction with AI systems: new challenges and opportunities for HCI professionals
to enable human-centered AI. Int. J. Hum.-Comput. Interact. 39, 494–518.
doi: 10.1080/10447318.2022.2041900

Yang, K. B., Echeverria, V., Lu, Z., Mao, H., Holstein, K., Rummel, N., et al. (2023).
“Pair-up: prototyping human-AI co-orchestration of dynamic transitions between
individual and collaborative learning in the classroom,” in Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (New York, NY: ACM), 1–17.
doi: 10.1145/3544548.3581398

Zhang, R., McNeese, N. J., Freeman, G., and Musick, G. (2021). “An ideal human"
expectations of AI teammates in human-AI teaming. Proc. ACM Hum.-Comput.
Interact. 4(CSCW3), 1–25. doi: 10.1145/3432945

Frontiers in Artificial Intelligence 20 frontiersin.org

https://doi.org/10.3389/frai.2024.1247712
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1016/j.proeng.2013.08.283
https://doi.org/10.3233/SW-180317
https://doi.org/10.1145/3424672
https://doi.org/10.1007/978-3-658-32182-6_14
https://doi.org/10.1016/j.procir.2020.04.078
https://doi.org/10.1016/j.compind.2022.103690
https://doi.org/10.1007/978-3-030-00338-86
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.7551/mitpress/9780262017091.001.0001
https://doi.org/10.24963/ijcai.2018/611
https://doi.org/10.1007/978-3-540-24750-06
https://doi.org/10.1007/978-3-030-22341-0_45
https://doi.org/10.1016/j.is.2020.101685
https://doi.org/10.1109/TASE.2016.2523639
https://doi.org/10.1145/2629489
https://doi.org/10.1145/3485447.3512240
https://doi.org/10.48550/arXiv.2109.10896
https://doi.org/10.1145/3491101.3516409
https://doi.org/10.18653/v1/2020.coling-main.139
https://doi.org/10.1145/3571883
https://doi.org/10.1080/10447318.2022.2041900
https://doi.org/10.1145/3544548.3581398
https://doi.org/10.1145/3432945
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Managing human-AI collaborations within Industry 5.0 scenarios via knowledge graphs: key challenges and lessons learned
	1 Introduction
	2 Scenarios for human-AI collaboration in Industry 5.0
	2.1 Scenario 1: human oversight and process management
	2.2 Scenario 2: root cause analysis and machine diagnostics
	2.3 Scenario 3: ensuring occupational safety and health

	3 Knowledge modeling and orchestration challenges
	3.1 Late Shaping design paradigm challenges
	3.2 Knowledge modeling, population and integration challenges
	3.2.1 Knowledge modeling
	3.2.2 Knowledge population
	3.2.3 Knowledge integration

	3.3 Normative constraints
	3.4 Human-AI teaming orchestration challenges

	4 Enabling technologies 
	4.1 Methods for knowledge graph modeling and population
	4.2 Methods for process modeling, monitoring and orchestration
	4.3 Knowledge graph embeddings as enablers of relational machine learning

	5 Approaches on modeling and orchestrating human-AI processes
	5.1 Vertical knowledge integration
	5.1.1 Lessons learned

	5.2 Knowledge graph modeling and population strategy
	5.2.1 Guidelines for knowledge graph population
	5.2.2 KG population in the *hai system architecture
	5.2.3 Lessons learned

	5.3 Teaming modeling and orchestration
	5.3.1 Lessons learned

	5.4 Semantic representation of human-AI interaction models
	5.4.1 Lessons learned

	5.5 Dynamic knowledge graph representations of human-AI interactions
	5.5.1 Representing BPMN process models via OWL constraints
	5.5.1.1 Lesson learned

	5.5.2 Representing BPMN process models via definite and indefinite instances
	5.5.2.1 Lesson learned



	6 Example use case implementations
	6.1 Use case 1: collaborative quality inspection
	6.2 Use case 2: hybrid H-AI parameter optimization in injection molding
	6.3 Use case 3: occupational risk monitoring and continuous feedback

	7 Late shaping of domain knowledge via dynamic KG embeddings
	7.1 The knowledge engine: implementing dynamic knowledge graph embeddings
	7.2 The navi approach: dynamic KG embeddings via local embedding reconstructions

	8 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


