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ABSTRACT
We study the estimation of nonlinear models with cross-sectional data using
two-step generalized estimating equations within the quasi-maximum likeli-
hood estimation framework. To improve efficiency, we propose a grouped esti-
mator that accounts for potential spatial correlation in the underlying innova-
tions of nonlinear models. Under mild weak dependence assumptions, we pro-
vide results on estimation consistency and asymptotic normality. Monte Carlo
simulations demonstrate the efficiency gain of our approach compared to var-
ious estimation methods. Finally, we apply the proposed approach to examine
the role of cultural distance in an extended gravity equation using interna-
tional trade data from China. Compared to existing methods, our approach
yields estimates with smaller standard errors and reinforces the hypothesis that
both cultural and geographical distances significantly negatively influence
international trade.
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1. Introduction

In empirical economics and social studies, there are many examples of discrete (noncontinuous) data
that exhibit spatial or cross-sectional correlations due to the ”distance” in a space. This ”distance” can be
geographical, economic, cultural, institutional, and so on. Arbia and Billé (2018) recently summarized
the existing literature on spatial discrete choice models. These nonlinear spatial models are used to study
the effect of nearby individuals due to various effects, such as spillover effect, neighborhood effect, or peer
effect. For example, the number of patents a firm receives can be affected by other nearby firms (Bloom,
Schankerman, and Van Reenen, 2013); an individual’s decision on whether to own stocks is affected by
the average stock market participation of the individual’s community (e.g., Brown et al., 2008); a student’s
academic performance is affected by his or her roommate (e.g., Sacerdote, 2001; and Angrist, 2014).

Nonlinear models are more appropriate than linear models for discrete (noncontinuous) response
data because they better handle the data’s bounded nature and allow the partial effect of any explanatory
variable to vary (see, e.g., Chapter 17 in Wooldridge (2020)). There are many studies on the theoretical
properties of nonlinear spatial autoregressive models (see, e.g., Xu and Lee, 2015a, 2015b), wherein the
dependent variable appears on the right-hand side of the equation. These models are also popular in
empirical research, as they can be used to model relationships between players in a game (de Paula, 2013)
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and social interactions in a network context (Lee, Liu, and Lin, 2010). Moreover, in a model with spatially
correlated dependent variables, the spatial autocorrelation parameter allows for assessing the direction
and strength of the effect (e.g., Gagliardini, Ossola, and Scaillet, 2020; Elhorst, 2014). A comprehensive
summary and more examples of spatial autoregressive (SAR) models can be found in Arbia and Billé
(2018), Arbia (2016), and Baltagi, Egger, and Kesina (2016).

In contrast, our research focuses on the estimation of nonlinear models with spatial errors, where
spatial dependence is modeled between error terms (and explanatory variables) for different individuals.
On the one hand, researchers have a keen interest in understanding various econometric issues for
models with solely spatial errors. For example, Baltagi, Song, and Koh (2003) studied statistical testing
problems in panel models with only spatial error correlation, and Kapoor, Kelejian, and Prucha (2007)
investigate consistent and efficient estimation for panels with only spatial error correlations. On the other
hand, there are also many empirical examples where models with spatial errors may be more appropriate
than spatial models like SAR. For instance, when the dependent variables are country-wise GDPs, it may
not be intuitive to draw causal links directly among GDPs. Instead, it is more meaningful to understand
the spillover effect from other variables or unobserved characteristics/shocks. Another example is when
the dependent variable is the number of murders; it is difficult to explain the direct interaction between
murder counts across different counties. Instead, the underlying (unobserved) correlated social and
economic characteristics are more likely to determine these numbers, and it makes more sense to study
the spillover effect via a spatial error model. Spatial error models are also useful when investigating
spatial heterogeneity. When only a single observation for each region is available, it is impossible to
estimate the unobserved individual heterogeneous effects directly. One way to tackle this issue, as is
commonly done in the spatial literature, is to assume these effects are similar to those of neighboring
units and model them via spatially correlated errors (LeSage and Pace, 2009). Thus, we shall focus
exclusively on the nonlinear models without spatial lags. More examples of spatially correlated error
models can be found in Graham (2008) and Carrell, Sacerdote, and West (2013).

There has been a sizable literature on models accounting for nonlinear spatially dependent errors.
Although the dependence structure of the underlying error is generally unknown in a spatial dataset,
many methods do not allow misspecifications that could lead to misleading results. For example, if
the joint distribution of the variables is misspecified, the maximum likelihood estimator (MLE) is not
consistent in general. One of the alternative methods is partial-maximum likelihood estimation (PMLE),
which only uses marginal distributions. Wang, Iglesias, and Wooldridge (2013) use a bivariate Probit
PMLE to improve the estimation efficiency of a spatial error model. Their approach requires correctly
specifying the marginal distribution of the binary response variable conditional on the covariates and
distance measures (a distance measure is how one defines the distances between observations). Another
method is quasi-maximum likelihood estimation (QMLE). Using a density that belongs to a linear
exponential family (LEF), QMLE is consistent if we correctly specify the conditional mean, while other
features of the density can remain misspecified (Gourieroux, Monfort, and Trognon, 1984). Lee (2004)
derives asymptotic distributions of QMLE for SAR models without assuming normal distributions.

Different from QMLE and PMLE, we shall adopt a method that produces a consistent estimator and
allows moderate misspecification of the underlying dependence structure. Moreover, it has favorable
efficiency performance when we are exploiting some given information on the dependence structure. In
this article, we adopt a generalized estimating equations (GEE) method for spatial data sets. The GEE
approach is one of the QMLE methods since it takes a specific form of the maximum likelihood score
equation for a multivariate Gaussian distribution. It can be used to account for serial correlation and thus
can achieve more efficient estimators, and it is adopted to estimate the parameters of a generalized linear
model with a possible unknown correlation between outcomes (Liang and Zeger, 1986). The spatial GEE
method proposed in our paper further relaxes distributional assumptions in the literature. We assume
that the mean function is correctly specified, and we choose a working variance-covariance matrix,
which is defined as a prespecified variance-covariance matrix. It may not be the same as the true one since
the true variance-covariance matrix is generally unknown. Under mild regularity conditions, parameter
estimates from the GEE are consistent even if this working variance-covariance structure is misspecified.
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Though the specification of the working variance-covariance matrix does not affect the consistency,
it does play a significant role in the efficiency of the estimator. We propose to work with data with nature
groups or some pre-given grouping information: Presumably, within the group there exists stronger
dependence, and between-group individuals are less related to each other. For example, in our cultural
distance applications, we group the data according to the natural geographical information. While this
group partition may make our model very similar to panel data, it is only imposed on the error term
to achieve estimation efficiency. Therefore, our model is of a very different nature from the panel data
model. As one may want to use techniques developed in panel data such as the random effects method
to achieve estimation efficiency, they are not directly applicable to our model as there are only cross-
section individuals in our model. How to model and estimate the cross-sectional dependence is much
more involved than for temporal dependence. As one of the main contributions of this paper, we adapt
the theories developed in Jenish and Prucha (2012, 2007) for our analysis. Furthermore, we also examine
the conditions under which efficiency gains can be achieved. Following the intuition of a nonlinear
weighted least square estimator, in Section 2.4, we show by some nontrivial algebra that the extent of
efficiency improvement depends on how closely the working variance-covariance matrix approximates
the true one. This means that the adopted group structure should appropriately reflect the underlying
dependence.

There are several studies applying grouping or blocking structures for estimating nonlinear GEE
models. Rao Chaganty and Joe (2004), Lin and Clayton (2005), and Oman et al. (2007) use estimating
equations for the binary response model, assuming that blocks are independently chosen. Adegboye,
Leung, and Wang (2018) analyze spatial data by considering different correlation structures. Our setup is
different from the research mentioned above: While their estimating equations focus on the correlations
of all individuals, our article assumes near-epoch dependence (NED) among all observations but applies
group partition when estimating the parameters. The proposed method only picks up within-group
correlations while, admittedly, there are correlations between individuals belonging to different groups.
We use the QMLE that ignores correlations within groups as the initial estimator for a two-step GEE
and show the efficiency gain of this GEE estimator.

Our method extends the QMLE proposed in Lee (2004) to nonlinear cases, who discusses a SAR
model that includes a spatially lagged dependent variable as an additional right-hand side regressor.
Our technique partly overlaps with the method in Xu and Lee (2015a). While they investigate a Tobit
model with a spatially lagged dependent variable as an additional regressor, we cover a more general
class of models, including those for count data with Poisson regression. Moreover, we theoretically show
the consistency of our GEE approach within the QMLE framework in a spatial data setting. To derive the
asymptotics for the GEE estimator, we use a uniform law of large numbers (ULLN) and a central limit
theorem (CLT). Our theoretical development is different from Conley (1999) and Jenish and Prucha
(2012, 2007), who derive the asymptotics for GMM estimators of spatial processes and for mixing or
NED spatial processes, respectively. While their hyperassumptions are directly imposed on the outcome
variables, ours are imposed on the latent innovations. Moreover, it is important to acknowledge that
GEE can be perceived as a specific instance of Z-estimation, as highlighted in Chapter 5 of Van der Vaart
(2000). Our investigation has been conducted to understand how the near-epoch dependence property
of the underlying processes contributes to the proof of the estimator’s asymptotic properties. Finally, we
provide a consistency proof of a proposed semiparametric estimator for the variance-covariance matrix.

To summarize, we contribute to the literature in four aspects. First, we develop a simple GEE method
for a general class of nonlinear models, which uses less distributional assumptions by only specifying the
conditional mean for spatially dependent data. The proposed technique simply groups data and imposes
weights to adjust for the group-wise dependence, and we model the spatial correlation in the underlying
innovations rather than in the dependent variable. Second, we focus on the aspects of the efficiency gain
with grouped data, in addition to the consistency of the estimation. Further, we provide a condition
on the working variance-covariance matrix that ensures efficiency gains over QMLE. Third, we prove
the asymptotic properties of our method by applying a ULLN and a CLT to the spatial GEE estimator.
Finally, we show in the simulation study that the proposed GEE method using spatial correlation has
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considerable efficiency gain for two types of data: count and binary response, and it is robust to moderate
group misspecification.

The article is organized as follows. In Section 2, the GEE methodology under the spatial data context
is proposed. Section 3 looks in detail at a Poisson model and a negative Binomial II model for count data
with a multiplicative spatial error term, and we further study a Probit model for binary response data with
spatial correlation in the latent error term. In Section 4, a series of assumptions are given, under which we
establish theorems on consistency and asymptotic normality of the spatial GEE estimator and provide
a consistent estimator for its variance-covariance matrix. Section 5 contains Monte Carlo simulation
results that compare the efficiency of different estimation methods for the nonlinear models explored in
the previous sections. Section 6 includes an application to study an extended gravity equation on trade
volume between China and its trade partners using country-product level data. Section 7 concludes the
article. The proofs and other technical details are provided in supplementary materials.

2. Methodology

2.1. Notation and definition

We first lay out the basic notations for our methodology. We delay important assumptions and
asymptotic results until Section 4.

Let θ ∈ � ⊂ R
p be the parameter of interest in the conditional mean, and γ ∈ � ⊂ R

q be the nuisance
variance parameter involved in the conditional variance. � × � is a compact set, and (θ0, γ 0) are the
true parameter values. We shall note that θ involved in the conditional variance will also be treated as
a nuisance parameter. Let the group index be g ∈ {1, · · · , G}, and Lg be the number of observations in
group g. Lg can be different and bounded by a constant. For simplicity, we assume Lg = L for all g. Notice
that the group structure is only for error terms and the parameters of interest are homogeneous across
groups (see Graham, 2008 for a similar setting). Otherwise, the model could be estimated by group-wise
analysis. Let dij denote the distance between observations i and j, and let dgh denote the distance between
group g and h.

In this article, we consider spatial processes located on an unevenly spaced lattice D ⊆ R
d for d ≥ 1.

Moreover, DG denotes the lattice containing group locations, and each group location is denoted as
vectorizing the elements in Bg , where Bg is the associated set of locations within the group g. Dn is
defined similarly for each observation. Let the total number of groups be |DG| = G, and the total number
of observations is |Dn| = n. Let |U| denote the cardinality of a finite subset U ⊆ D.

2.2. The generalized estimating equations methodology

We extend the GEE methodology in Liang and Zeger (1986) to the estimation of nonlinear spatial
data, using a two-step procedure that first estimates the working correlation matrix and then solves the
generalized estimating equations. In our approach, we divide spatially correlated cross-sectional data
into groups, allowing arbitrary strong dependence within each group but requiring the between-group
dependence to diminish (in the sense of α-mixing that will be defined in Section 4.2). We assume that the
division of groups is exogenous, that is, how groups are divided does not affect outcomes once controlled
for explanatory variables. The division of groups can be based on, for example, geographical properties
or researcher-defined economic and social relationships. There are two extreme cases of group size.
The first case is when the group size is one, where the resulting estimators ignore all of the pairwise
correlations. The second case is when the group size is n, which means we are using all of the pairwise
information. If the group size is not equal to one or n, we have a ”partial” estimator. By ”partial,” we
mean that instead of using full information, we only use the information within the same groups. Note
that in our settings, the number of groups G → ∞, and the group size L are assumed to be fixed. Similar
settings are also maintained in many existing studies; see e.g., Section 20.3.1 in Wooldridge (2010) and
Wooldridge (2003). Moreover, these settings are compatible with many applications. For example, the



218 W. WANG ET AL.

group can represent classrooms, schools, families, or firms for which the number could be very large,
and the group members are generally fixed. In an empirical study investigating the impact of class size
on student achievement by Carter, Schnepel, and Steigerwald (2017) (see also Krueger, 1999), there are
318 groups (classrooms), and the number of students in each classroom is no more than 27.

Consider the following nonlinear model for the i-th observation yi:
yi = m

(
xi; θ0)+ ui, (1)

where the dependent variable yi can be continuous or discrete, m
(
xi; θ0) is the conditional expectation

function, xi is a 1 × p row vector of independent variables which can be continuous, discrete, or a
combination, θ0 is the parameter of interest, and ui is the unobserved error term.

The model for g-th group observations yg then could be written as

yg = m
(
xg ; θ0)+ ug . (2)

where yg and ug are both L × 1 vectors, including all dependent variables and error terms in group g,
m
(
xg ; θ0) (abbreviated as mg(θ0)) is an L × 1 vector of conditional mean functions, and xg is an L × p

matrix, including all independent variables in g-th group.
Note that for each individual in group g, xi is allowed to contain explanatory variables from other

individuals within the same group. To explain this with an example, we can write an explicit expectation
of observation i as

E
(
yi|xi

)= m
(
xi; θ0) , (3)

where xi = [zi, z(−i)] for i = 1, 2, ..., n, and z(−i) is some weighted value of other group members’
explanatory variables, capturing the exogenous interaction/spillover effects among the independent
variables with different intensities/weights. We denote the conditional variance-covariance matrix of yg

as Wg
def= Cov(yg , yg |xg) = E(ygy�

g |xg) − E(yg |xg)E(yg |xg)�, which is unknown in most cases. Usually,
for the conditional mean function, θ0 ∈ � ⊂ R

p is the main parameter of interest. We can parameterize
the corresponding weight matrix Wg by Wg(θ , γ ) with γ ∈ � ⊂ R

q and θ as (first-stage) nuisance
parameters, which are involved only in the estimation of the variance-covariance matrix.

The objective function for group g and the whole sample are given as follows:

qg(θ , γ ) = (
yg − mg(θ)

)� W−1
g (θ , γ )

(
yg − mg(θ)

)
, (4)

QG(θ , γ ) = G−1
G∑

g=1
qg(θ , γ ). (5)

Note that the objective function of GEE only uses group-wise information. Considering that γ is a
nuisance parameter, the quasi-score equation for estimating θ is then defined as follows:

SG (θ , γ ) = 1
G
∑

g
∇mg (θ)� W−1

g (θ , γ )
[
yg − mg (θ)

]
, (6)

where ∇mg (θ) is the gradient of mg (θ) with respect to θ . The above quasi-score equation is similar to
Eq. (6) in Liang and Zeger (1986). In this regard, the score function SG (θ , γ ) is parameterized by {θ , γ },
and the choice of θ and γ involved in W−1

g (θ , γ ) would affect the estimation efficiency of θ0. In practice,
we obtain the first-step estimator {θ̌ , γ̌ }, and then estimate θ0 with W−1

g (θ̌ , γ̌ ). Namely, we consider the
GEE estimator θ̂ that solves the following equation:

1
G

G∑
g=1

∇mg
(
θ̂
)�

W−1
g

(
θ̌ , γ̌

) [
yg − mg

(
θ̂
)]

= 0. (7)

This equation is similar to the Eq. (7) in Liang and Zeger (1986), who solve θ given a pre-estimator of the
nuisance parameter. It is worth noting that we need some identification assumptions (i.e., Assumption
A.5 in Section 4.3) to ensure the existence and uniqueness of the solution.
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We denote the population version of loss as Q∞(θ , γ )
def= limG→∞ G−1∑

g Eqg(θ , γ ) and S∞ (θ , γ )
def=

limG→∞ESG (θ , γ ). To make a difference between the first step plug-in nuisance parameter and the
parameter of interest, we rewrite the score into

SG
(
θ̌ , γ̌ , θ

)
= 1

G
∑

g
∇mg (θ)� W−1

g

(
θ̌ , γ̌

) [
yg − mg (θ)

]
.

Correspondingly, QG(θ̌ , γ̌ , θ) = G−1∑
g
(
yg − mg(θ)

)� W−1
g

(
θ̌ , γ̌

) (
yg − mg(θ)

)
. Frequently, we

restrict our attention to the exponential family, which embraces many distributions, such as the
Bernoulli, Poisson, and Gaussian distributions. Now, we link this estimation method with a QMLE
framework. We suppress the parameter γ for a moment. We assume that the probability density function
f
(
yg |xg ; θ

)
is in the LEF (See details of the exponential family in Section S3 of supplementary materials).

For instance, when there is only one observation for each group, i.e., we do not account for the spatial
covariance, a characterization of QMLE in LEF is by the following individual score function:

si (θ) = ∇m (xi; θ)� {yi − m (xi; θ)}/v (m (xi; θ)) , (8)

where ∇m (xi; θ) is the 1 × p gradient of the mean function and v (m (xi; θ)) is the conditional variance
function associated with the chosen LEF density. For Bernoulli distribution, we have v (m (xi; θ)) =
m (xi; θ) (1 − m (xi; θ)), and for Poisson distribution, v (m (xi; θ)) = m (xi; θ). Note that consistent
estimation of parameter θ0 could be obtained based on (8). While it accounts for potential het-
eroscedasticity, this estimator might not be the most efficient since it overlooks potential cross-sectional
correlations between observations.

Comparably, recall the score function for GEE can be written as

SG (θ , γ ) = 1
G
∑

g
sg (θ , γ ) = 1

G
∑

g
∇mg

� (θ) W−1
g (θ , γ )

[
yg − mg (θ)

]
,

where sg (θ , γ ) = ∇mg� (θ) W−1
g (θ , γ )

[
yg − mg (θ)

]
is the p × 1 vector of the score for the group

g with W−1
g (θ , γ ) accounting for group dependence. Accordingly, we denote the Hessian matrix as

HG (θ , γ ) = ∇θ SG (θ , γ ), and hg (θ , γ ) = ∇θ sg (θ , γ ) as the p × p matrix of Hessian for the group g.
We also define H∞ (θ , γ ) = limG→∞E[HG (θ , γ , θ)].

2.3. The first-step estimation of the weight matrix

In this subsection, we demonstrate one way to find an estimator for γ in Wg(θ , γ ), which can be written
as

Wg(θ , γ ) = V(xg ; θ)1/2�g (γ ) V(xg ; θ)1/2, (9)

where �g (γ ) is the L × L correlation matrix for the group g, and V(xg ; θ) is the L × L diagonal matrix
that only contains variances of yg − mg(xg , θ0):

V(xg ; θ) =

⎛⎜⎜⎜⎜⎝
vg1 0 · · · 0

0 vg2
...

...
. . . 0

0 ... 0 vgL

⎞⎟⎟⎟⎟⎠ , (10)

where {g1, g2, . . . , gL} is a subset of {i}n
i=1, indicating the members of the group g. The l-th element on

the diagonal is the variance vgl := Var(ygl|xgl) for l-th individual in the group g. ygl is the l-th element in
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the vector yg , and xgl is the l-th row in xg . Moreover, the correlation matrix is

�g (γ ) =

⎛⎜⎜⎜⎜⎝
1 πg12 · · · πg1L

πg21 1
...

...
. . . πg(L−1)L

πgL1 ... πgL(L−1) 1

⎞⎟⎟⎟⎟⎠ . (11)

Let dglm be the distance between the l−th and the m−th observations in group g. An example of a
parametrization of the (l, m)-th element (with l 
= m) of �g(γ ) would be πglm = ρ

(
1 − ďglm

)
(see e.g.

Cressie, 2015) with γ ≡ ρ being the spatial correlation parameter subject to 0 ≤ ρ ≤ 1, and 0 ≤ ďglm ≤ 1
is the normalized dglm. This choice is feasible as it assumes a linear decaying rate of spatial dependence.

Given a parametrization, we discuss the way to estimate γ . Let θ̌ be the first-step QMLE estimator,
ǔi = yi − m

(
xi; θ̌

)
be the first-step residual, and v̌i = v

(
m
(

xi; θ̌
))

be the fitted variance of the

individual i corresponding to the chosen LEF density. We also denote ři = ǔi/
√

v̌i as the standardized
residual. Recall that {g1, g2, ..gL} is a subset of {i}n

i=1, indicating the members in the group g. Let řg =(
řg1 , řg2 , ..., řgL

)�. Then řgř�
g is the estimated sample correlation matrix for the group g. Let eg(θ̌) be

a vector containing L(L − 1)/2 different elements of the lower (or upper) triangle of řgř�
g , excluding

the diagonal elements. Let zg(γ ) be the vector containing the elements in �g(γ ) corresponding to the
same entries of elements in řgř�

g . We can follow Prentice (1988), and find a consistent estimator for γ

by solving

γ̌ = argminγ∈�

∑
g

(eg(θ̌) − zg(γ ))�(eg(θ̌) − zg(γ )). (12)

Remark 1. As will be shown in Theorem 1 in Section 4, our proposed GEE estimator of θ0 is always
consistent as long as the conditional mean is correctly specified, even when the underlying dependence
structure is misspecified or γ is not consistently estimated. The misspecification of the dependence
structure and the estimation of γ only affect the efficiency but not the consistency. In the following
Section 2.4, we adopt an honest approach and provide conditions under which our estimator could
achieve efficiency gains over a QMLE estimator that does not consider any dependence, suggesting that
our proposed GEE method can accommodate a moderate misspecification of underlying dependence
structure. Inspired by the referees, to understand how close the specification is from the true (unknown)
structure, we may also employ some nonparametric/resampling methods (e.g., bootstrap) to recover the
true structure. The theoretical properties of these estimators are, however, unclear and may rely on some
stringent conditions, and we leave it as an interesting future research topic.

2.4. Conditions for the improvement

The efficiency gain comes from the fact that the proposed GEE method accounts for the spatial
dependence that QMLE or PMLE methods fail to (or are not flexible enough to) consider. The limitation
of QMLE can be due to the non linearity of the model (the example in Section 3.1) or a latent spatial
error term (the example in Section 3.2).

In this section, we provide a condition on the relationship between the working variance-covariance
matrix and the true variance-covariance matrix, and this condition ensures efficiency improvement in
comparison to a QMLE estimator. Namely, if the working variance-covariance matrix is sufficiently close
to the true one, we can achieve an efficiency gain.

Recall that the parameter dimension of θ is p. Denote E(u2
i |x1:n) = v2

i where x1:n is an n × p matrix
of all the independent variables, and ∇m� (a n × p matrix) denotes a stack form of ∇mg(θ0). For
simplicity, we suppress θ0 and write ∇mg(θ0) as ∇mg from now on. We also let W denote a block
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diagonal matrix, where its g-th block element is Wg (an abbreviation of matrix Wg(θ0, γ 0) defined
in the previous section). �−1 is a diagonal matrix, where its i-th element is v−2

i . We compare the
QMLE estimator θ̂ug with the proposed grouped estimator θ̂GEE. Denote the gradient of m

(
xi; θ0) as

∇m
(
xi; θ0). The matrices involved in the variance of θ̂ug would be


A :=
n∑

i=1
(∇m

(
xi; θ0)�v−2

i ∇m
(
xi; θ0)) = ∇m��−1∇m,

and


B :=
n∑

i=1

n∑
j=1

∇∇m
(
xi; θ0)�v−2

i E(uiuj|x1:n)v−2
j ∇m

(
xj; θ0)= ∇m��−1V�−1∇m,

where V denotes the true variance-covariance matrix, and its ij-th element is E(uiuj|x1:n).
Thus, the asymptotic variance-covariance matrix of θ̂ug is of the following form:

Avar(θ̂ug |x1:n) = 
−1
A 
B
−1

A .

As a comparison, the asymptotic variance of the grouped estimator (i.e., θ̂GEE) is characterized by the
following two matrices:


G,A :=
∑

g
∇mg

�W−1
g ∇mg = ∇m�W−1∇m,


G,B :=
∑

g
(∇mg

�W−1
g E(ugu�

g |x1:G)W−1
g ∇mg) = ∇m�W−1VW−1∇m.

where recall ug = yg − mg
(
θ0).

The conditional asymptotic variance of θ̂GEE is denoted as

Avar(θ̂ |x1:G) = 
−1
G,A
G,B
−1

G,A.

A desirable condition is to ensure the positive definiteness of the matrix,


−1
A 
B
−1

A − 
−1
G,A
G,B
−1

G,A.

It shall be noted that if Wg is correctly specified, we have E(ugu�
g |xg) = Wg . Thus, we have 
G,B =∑

g ∇mg�W−1
g ∇mg = 
G,A. It follows that the above estimator attains the lower bound, i.e.,


−1
G,A
G,B
−1

G,A = 
−1
G,A.

We assume that the true matrix can be expressed as V = W + δB, where δ is some small enough
positive constant and B is a symmetric matrix. This basically assumes that W is equal to the true matrix
V plus a perturbation. This corresponds to the case of moderate misspecification.

To understand the improvement in the variance of the GEE estimator, we express its variance as


−1
G,A
G,B
−1

G,A = (∇m�W−1∇m)−1 + δ(∇m�W−1∇m)−1(∇m�W−1BW−1∇m)(∇m�W−1∇m)−1.

We shall see that the variance of the ungrouped QMLE estimator is


−1
A 
B
−1

A = (∇m��−1∇m)−1(∇m��−1W�−1∇m)(∇m��−1∇m)−1

+ δ(∇m��−1∇m)−1(∇m��−1B�−1∇m)(∇m��−1∇m)−1.

Now, we aim to find a condition such that 
−1
A 
B
−1

A − 
−1
G,A
G,B
−1

G,A is positive definite.
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First, note that
(∇m��−1∇m)−1(∇m��−1W�−1∇m)(∇m��−1∇m)−1 − (∇m�W−1∇m)−1

= (∇m��−1∇m)−1(∇m��−1W1/2)(I − W−1/2∇m(∇m�W−1∇m)−1

∇m�W−1/2)(W1/2�−1∇m)(∇m��−1∇m)−1,

which is positive definite since (I − W−1/2∇m(∇m�W−1∇m)−1∇m�W−1/2) is an idempotent matrix
with eigenvalues being either 1 or 0. Let λmin(·) denote a minimum eigenvalue of a matrix, we then have

λmin
(
(∇m��−1∇m)−1(∇m��−1W�−1∇m)(∇m��−1∇m)−1 − (∇m�W−1∇m)−1

)
= c > 0,

where the inequality is due to the fact that � 
= W.
Second, let

cmin = λmin
(
(∇m��−1∇m)−1(∇m��−1B�−1∇m)(∇m��−1∇m)−1

− (∇m�W−1∇m)−1(∇m�W−1BW−1∇m)(∇m�W−1∇m)−1
)

.

Note that cmin can be either positive or negative.
By Weyl’s inequality, we have

λmin(

−1
A 
B
−1

A − 
−1
G,A
G,B
−1

G,A) ≥ c + δcmin.

Therefore, to ensure the superior property of our GEE estimator (i.e., 
−1
A 
B
−1

A − 
−1
G,A
G,B
−1

G,A
to be positive definite), we can set

δ|cmin| < c, (13)
which corresponds to a moderate misspecification of the working variance-covariance matrix W.

3. Estimating nonlinear models with spatial error: two examples

In this section, we give two examples to show how discrete data can contain the spatially correlated error
term and how to use a GEE procedure to estimate the nonlinear models. The first example is for count
data, and the second one is for binary response data.

3.1. Example 1: count data with a multiplicative spatial error

A count variable is a variable that takes nonnegative integer values, such as the number of patents applied
for by a firm in a given year (e.g., Bloom, Schankerman, and Van Reenen, 2013) and the number of
children in the family (e.g., Wooldridge, 2010).

3.1.1. Poisson model
We first model the count data with a conditional Poisson density, f

(
y|x)= exp [−μ] μy/y!, where y! =

1 · 2 · ... · (y − 1
) · y and 0! = 1. Denote μ as the conditional mean of y. The Poisson QMLE only requires

the conditional mean to be correctly specified. A default assumption for the Poisson distribution is that
the mean is equal to the variance. Note that even if yi does not follow a Poisson distribution, the QMLE
approach will give a consistent estimator if the Poisson density function is used with a correctly specified
conditional mean (Gourieroux, Monfort, and Trognon, 1984). Furthermore, yi does not even have to be
a count variable.

A mean function commonly adopted in applied work is the exponential function:
E
(
yi|xi

)= exp (xiβ0) . (14)
When spatial correlations exist, we can characterize the count data model with a multiplicative spatial
error. Silva and Tenreyro (2006) consider a Poisson QMLE-type model with multiplicative error terms.



ECONOMETRIC REVIEWS 223

They indicate that the OLS is inconsistent due to the multiplicative error. Now we study a similar model
with spatial correlation, i.e.,

E
(
yi|xi, ξi

)= ξi exp (xiβ0) , (15)

where ξi is the multiplicative spatial error term, and we assume the model is characterized by the
following features:

(1) {(xi, ξi), i = 1, 2, ..., n} is a mixing sequence on the sampling space Dn, with a mixing coefficient α.
(2) E

(
yi|xi, ξi

)= ξi exp (xiβ0) .
(3) For i 
= j, yi and yj are independent conditional on xi, xj, ξi, and ξi.
(4) ξi has a conditional multivariate distribution, i.e., E (ξi|xi) = 1. Var (ξi|xi) = τ 2, and Cov(ξi, ξi|

xi, xj) = τ 2 · c
(
dij, ρ

)
, where c

(
dij, ρ

)
is the correlation function of ξi and ξi, and ρ is the parameter.

To be more explicit, the log conditional mean is assumed to be

log E(yi|xi, ξi) = xiβ + log ξi. (16)

Also, we can write λi = exp(xiβ + log ξi). The assumed conditional probability mass function is

P(yi = y|ξi, x�
i ) = exp(−λi)λ

y
i /y!. (17)

Under the above assumptions, we can integrate out ξi by using the law of iterated expectations,

E
(
yi|xi, Dn

)= E
(
E
(
yi|xi, ξi

) |xi, Dn
)= exp (xiβ0) , (18)

where we suppress the condition on Dn in the last equality. The QMLE gives a consistent estimator for
the mean parameters, which solves

β̌QMLE = argmaxβ

n∑
i=1

li (β) =
n∑

i=1
yixiβ −

n∑
i=1

exp (xiβ) −
n∑

i=1
log
(
yi!
)

. (19)

Its score function is
n∑

i=1
x�

i

[
yi − exp

(
xiβ̌QMLE

)]
= 0. (20)

Since the above estimator does not account for any heteroskedasticity or spatial correlation, a robust
estimator for the asymptotic variance of the QMLE estimator is provided as follows:

Âvar
(
β̌QMLE

)
=
[ n∑

i=1
exp

(
−xiβ̌QMLE

)
x�

i xi

]−1

n∑
i=1

n∑
j=1

k
(
dij
)

x�
i ǔiǔjxj

[ n∑
i=1

exp
(
−xiβ̌QMLE

)
x�

i xi

]−1

,

where k
(
dij
)

is a kernel function depending on the distance between observations i and j, and ǔi =
yi − exp

(
xiβ̌QMLE

)
.

Moreover, a very specific aspect of the Poisson distribution is that we can write down the conditional
variances of y as

Var
(
yi|xi, Dn

)= exp (xiβ0) + exp (2xiβ0) · τ 2. (22)

The conditional variance of yi given xi is a function of both the level and the quadratic of the conditional
mean. The conditional Poisson distribution is characterized by the equality between its conditional
variance and conditional mean, i.e., Var

(
yi|xi

)= exp (xiβ0) . One can relax the variance assumption
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to Var
(
yi|xi

)= σ 2 exp (xiβ0) with an overdispersion or underdispersion constant parameter σ 2. Obvi-
ously, there is an over-dispersion in (22) since exp (2xiβ0) · τ 2 ≥ 0, and the over-dispersion parameter is
1 + exp (xiβ0) · τ 2, which is changing with xi. This variance structure does not coincide with conditional
Poisson distribution. Moreover, the conditional covariances can be written in the following form:

Cov
(
yi, yj|xi, xj, Dn

)= exp (xiβ0) exp
(
xjβ0

) · τ 2 · c
(
dij, ρ

)
. (23)

In the group-level notation,

E
(
ygl|xg , DG

)= exp
(
xglβ0

)
. (24)

Let Wg be the variance-covariance matrix for the group g evaluated at the true value β0, ρ. The variance
of the l-th element in the group g is

vgl = exp
(
xglβ0

) (
1 + exp

(
xglβ0

) · τ 2) , (25)

and the covariance of the lth and mth elements in group g is

rglm = exp
(
xglβ0

)
exp

(
xgmβ0

) · τ 2 · c
(
dglm, ρ

)
. (26)

Here γ = (τ 2, ρ
)�, and let γ̌ = (τ̌ 2, ρ̌

)� be an estimator for γ . Let β̌QMLE be the QMLE estimator in the
first step. Then the elements in Wg can be estimated as:

v̂gl = exp
(

xglβ̌QMLE
)

+ exp
(

2xglβ̌QMLE
)

· τ̌ 2, (27)

and

r̂glm = exp
(

xglβ̌QMLE
)

exp
(

xgmβ̌QMLE
)

· τ̌ 2 · c
(
dglm, ρ̌

)
, (28)

where dglm is the distance between the object l and m in the group g, and it corresponds to the distance
dij with the label i, j.

3.1.2. Negative binomial II model
Now we discuss the Negative Binomial Model for count data. Since the conditional variances and
covariances can be written in a specific form, we would consider the NegBin II model (NBII hereafter)
of Cameron and Trivedi (1986) as an appropriate choice. The NBII model can be derived from a Poisson
model with multiplicative error. With an exponential mean, we assume

yi|xi, ξi, εi, Dn ∼ Poisson
[
εiξi exp (xiβ0)

]
with ξi > 0, εi > 0,

where ξi follows from condition (4) in Section 3.1.1, and εi follows from Gamma distribution with the
density:

ψ−ψ

�(ψ)
ε
ψ−1
i exp(−εiψ), (29)

where E(εi) = 1, Var(εi) = 1/ψ , for ψ > 0, and �(·) is the gamma function. Moreover, we assume that
εis are independent of ξis and xis, and εis are i.i.d. We also assume that for i 
= j, yi and yj are independent
conditional on xi, xj, ξi, ξj, εi, and εj.

Under the above assumptions for the Poisson distribution, with the conditional mean as in (18) and
conditional variance similar to (22), yi|xi is shown to follow a negative binomial II distribution. The
model implies overdispersion as well, and the amount of overdispersion increases with the conditional
mean,

Var
(
yi|xi, Dn

)= exp (xiβ0)
(
1 + exp (xiβ0) · [τ 2/ψ + τ 2 + 1/ψ]) . (30)
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The covariance function in Eq. (26) for l 
= m stays the same. The pre-estimator β̌ and ψ̌ can be obtained
by a QMLE maximizing the likelihood function for the standard NBII model. See, e.g., Gourieroux,
Monfort, and Trognon (1984). The estimation of τ will be discussed in the following sub-section.

3.1.3. GEE estimation
In both cases, let θ̌ = β̌QMLE and γ̌ = (τ̌ , ρ̌) (γ̌ = (ψ̌ , τ̌ , ρ̌) for the NBII case). Let xg be L × p, and xgβ
be L × 1. Moreover, exp

(
xgβ

)
is a L × 1 vector, where exp is applied elementwise to xgβ . Based on the

conditional distribution, the first-order condition for GEE is∑
g

x�
g diag(exp

(
xg β̂GEE

)
)W−1

g

(
γ̌ , θ̌

) [
yg − exp

(
xg β̂GEE

)]
= 0. (31)

β̂GEE is consistent and follows a normal distribution asymptotically by Theorem 1 and 2 in Sections 4.3
and 4.4. We will abbreviate W−1

g

(
γ̌ , θ̌

)
to Ŵ−1

g in the following text. We denote μ̂g = exp
(

xg β̂GEE
)

and

ûg = yg − exp
(

xg β̂GEE
)

. Following the spatial heteroscedasticity and autocorrelation (HAC) consistent
estimation literature (see, e.g., Kelejian and Prucha, 1999), the asymptotic variance estimator could be
constructed as follows:

Âvar
(
β̂GEE

)
=
⎛⎝∑

g
x�

g diag(μ̂g)Ŵ−1
g diag(μ̂g)xg

⎞⎠−1

⎛⎝∑
g

∑
h

k(dgh)x�
g diag(μ̂g)Ŵ−1

g ûg û�
h Ŵ−1

h diag(μ̂h)xh

⎞⎠
⎛⎝∑

g
x�

g diag(μ̂g)Ŵ−1
g diag(μ̂g)xg

⎞⎠−1

,

where k(dgh) is a kernel function depending on the distances between groups.
The parameters, τ 2 and ρ, can be estimated using the Poisson QMLE residuals. Let ǔ2

i =[
yi − exp

(
xiβ̌QMLE

)]2
be the squared residuals from the Poisson QMLE. Based on Eq. (25), τ 2

(τ 2/ψ for the NBII case) can be estimated as the coefficient by regressing ǔ2
i − exp

(
xiβ̌QMLE

)
on

exp
(

2xiβ̌QMLE
)

. The estimation of ρ depends on the specific form of c
(
dij, ρ

)
. We can impose,

though perhaps wrongfully, a structure on the true covariance. For example, suppose that the covariance
structure of ei and ej is exp

(
ρ
dij

)
− 1, then an estimator for ρ is

ρ̂ = argminρ

n∑
i=1

n∑
j=1

⎧⎨⎩ ǔiǔj

exp
(

xiβ̌
)

exp
(

xjβ̌
) −

[
exp

(
ρ

dij

)
− 1

]⎫⎬⎭
2

. (33)

Then Ŵg is obtained by plugging τ̂ 2 and ρ̂ back into the variance-covariance matrix. We can also directly
calculate ρ̂ as

ρ̂ = 1
n · (n − 1)

n∑
i=1

n∑
j 
=i

⎡⎣log

⎛⎝ ǔiǔj

exp
(

xiβ̌
)

exp
(

xjβ̌
) + 1

⎞⎠ · dij

⎤⎦ . (34)

Then we can specify a GEE working correlation matrix to estimate (31).
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3.2. Example 2: binary response data with spatial correlation in the latent error

We start from the Probit model:

yi = 1
[
y∗

i > 0
]

, (35)
y∗

i = xiβ + ei, (36)

where y∗
i is an unobservable latent variable. Now let e = (e1, e2, ..., en)

� be the vector of latent spatially
correlated error. For example, Pinkse and Slade (1998) use the following assumption of e:

e = ρMwe + ε, (37)

where ε = (ε1, ε2, ..., εn) is a vector of independent standard normal distribution. Mw is an n × n
weighting matrix, where its diagonal elements are zeroes, and its off-diagonal element, for example Mw,ij
with i 
= j, is inversely proportional to the distances between location i and j. ρ is a spatial correlation
parameter. In this case, e can be written as a function of ε,

e = (I − ρMw)−1 ε. (38)

Thus, the conditional expectation of e is zero. The variance-covariance matrix of e is

Var (e|x, Dn) = (I − ρMw)−1 (I − ρMw)−1� . (39)

If we assume that e|x has a multivariate normal distribution with zero mean and a variance matrix
specified in (39), the conditional mean is correctly specified as follows:

E
(
yi|xi, Dn

)= �i (xiβ) , (40)

where �i is the marginal normal distribution function with its variance being the i-th element of the
diagonal of (39). Let φi(·) denote the corresponding density function. Moreover, the conditional variance
function for a Bernoulli distribution as

Var
(
yi|xi, Dn

)= �i (xiβ) [1 − �i (xiβ)] . (41)

Taking the Bernoulli QMLE as an example, which is obtained by maximizing the Probit log-likelihood.
The log-likelihood function for each observation is

li (β) =yi log �i (xiβ) + (1 − yi
)

log [1 − �i (xiβ)] . (42)

Let ǔi = yi − �i
(

xiβ̌
)

(for i = 1, 2, ..., n) be the residual from the QMLE estimation. At this stage, an

estimator for the asymptotic variance of β̌QMLE can be computed as follows:

Âvar
(
β̌QMLE

)
=
⎛⎝ n∑

i=1

φ2
i

(
xiβ̌QMLE

)
x�

i xi

�i
(

xiβ̌
) [

1 − �i
(

xiβ̌QMLE
)]
⎞⎠−1

⎛⎝ n∑
i=1

n∑
j=1

k
(
dij
) φi

(
xiβ̌QMLE

)
φi
(

xjβ̌QMLE
)

x�
i ǔiǔjxj

�i
(

xiβ̌QMLE
) [

1 − �i
(

xiβ̌QMLE
)]
⎞⎠

⎛⎝ n∑
i=1

φ2
i

(
xiβ̌QMLE

)
x�

i xi

�i
(

xiβ̌QMLE
) [

1 − �i
(

xiβ̌QMLE
)]
⎞⎠−1

,

where k
(
dij
)

is the kernel weight function that depends on pairwise distances. This QMLE and its robust
variance-covariance estimator provide a legitimate way of estimating the spatial Probit model.

We use QMLE as a first-step estimator. An estimator for the working variance matrix for each group
is

v̌gl = �gl
(

xglβ̌QMLE
) [

1 − �gl
(

xglβ̌QMLE
)]

. (44)
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Furthermore, we assume the working correlation function for l−th and m−th elements in group g is

πglm = C
(
dglm, ρ

)
. (45)

For example,

C
(
dglm, ρ

)= ρ

dglm
or exp

(
−dglm

ρ

)
. (46)

Let ǔgl be the QMLE residual for l-th element in r-th group, and r̂gl = ǔgl/
√

v̌gl be the standardized
residual. Using the correlations within groups, one estimator of ρ is

ρ̂ = argminρ

∑
g

L∑
l=1

∑
m<l

[
r̂glr̂gm − C

(
dglm, ρ

)]2 , (47)

for l < m.
Define �g(xg β̂GEE) = (�g1(xg1β̂GEE), . . . , �gL(xgLβ̂GEE))′, and μ̂g = (φg1, . . . , φgL) with φgl =

φ(xglβ̂), l = 1, 2, . . . , L. Similarly, the second-step GEE estimator solves∑
g

x�
g diag{φgl}Ŵ−1

g

(
yg − �g

(
xg β̂GEE

))
= 0. (48)

β̂GEE is consistent and follows a normal distribution asymptotically by Theorems 1 and 2 of Sections
4.3 and 4.4. β̂GEE is consistent even for misspecified spatial correlation structure Ŵg . We could again
construct the spatial HAC-type variance estimator as follows

Âvar
(
β̂GEE

)
=
⎛⎝∑

g
x�

g diag{μ̂g}Ŵ−1
g diag{μ̂g}xg

⎞⎠−1

⎛⎝∑
g

∑
h

k(dgh)x�
g diag{μ̂g}Ŵ−1

g ûg û�
h Ŵ−1

h diag{μ̂g}xh

⎞⎠
⎛⎝∑

g
x�

g diag{μ̂g}Ŵ−1
g diag{μ̂g}xg

⎞⎠−1

,

where k(dgh) is a kernel function that depends on the distances between groups.

4. Theorems

In this section, we present the assumptions and investigate the theoretical properties of our GEE
estimation. In Sections 4.1 and 4.2, we introduce some notations and definitions, while Sections 4.3
and 4.4 present the consistency and asymptotic normality of the GEE estimator in (7); Section 4.5
demonstrates the consistency of the estimation of the variance-covariance matrix of the proposed GEE
estimator.

4.1. Notations

We need ULLNs and CLTs for analyzing the properties of our proposed GEE estimator. While theories
for temporal dependence data have been well established in the literature (see, e.g., Davidson, 2021), they
are not suitable for our analysis since we are working with spatial data that lacks a natural order. Using
a distance measure defined based on the maximum metric, Jenish and Prucha (2012) develop a ULLN
and a CLT for α-mixing random fields on unevenly spaced lattices that allow nonstationary processes
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with trending moments. However, the mixing property can fail for quite a few reasons. Thus, we adopt
the notion of NED as in Jenish and Prucha (2012) which refers to a generalized class of random fields
that is ”closed with respect to infinite transformations.”

Let Z = {Zn,i, i ∈ Dn, n ≥ 1} and ε = {εn,i, i ∈ Tn, n ≥ 1} be triangular arrays of random fields defined
on a probability space (�ε , F , P), where Tn is a larger lattice with Dn ⊆ Tn ⊆ D. D satisfies the following
Assumption A.1. The cardinality of Dn and Tn satisfies lim

n→∞ |Dn| → ∞, lim
n→∞ |Tn| → ∞. For i, j ∈ R

d,

we consider a metric d(i, j) def= max1≤l≤d|jl − il| with the norm |i|∞ = max1≤l≤d|il|, where il is the l-
th component of i. The distance between any subsets U, V ∈ D is defined as d(U, V) = inf{d(i, j) : i ∈
U and j ∈ V}. For a vector (matrix) A, let |A|2 denote its L2−norm, and |A|a return a vector (matrix)
wherein each element is the absolute value of the corresponding element in vector (matrix) A. For
any random vector X, let ‖Xn,i‖p = (E |Xn,i|p)1/p denote its Lp-norm, given that the absolute p-th
moment exists. In the case of p = 2, we abbreviate ‖Xn,i‖2 as ‖Xn,i‖. Finally, We let Fn,i(s) = σ(εn,j :
j ∈ Dn, d(i, j) ≤ s) be the σ - field generated by random vectors εn,j located within a distance of s from i.

4.2. Definitions

We start with definitions needed for the consistency and asymptotic normality of our estimator.

Definition 1. Let Z = {Zn,i, i ∈ Dn, n ≥ 1} and ε = {εn,i, i ∈ Dn, n ≥ 1} be random fields with ‖Zn,i‖p <

∞, p ≥ 1, where Dn ⊆ D, and its cardinality is |Dn| = n. Let {dn,i, i ∈ Dn, n ≥ 1} be an array of finite
positive constants. Then the random field Z is said to be Lp-near-epoch dependent on the random field
ε (Lp-NED on ε) if

‖Zn,i − E(Zn,i|Fn,i(s))‖p < dn,iϕ(s)
holds for some sequence ϕ(s) ≥ 0 with lim

s→∞ ϕ(s) = 0, where ϕ(s) denotes the NED coefficient, and dn,i

is a NED scaling factor. Furthermore, if ψ(s) = s−μ for some μ > λ > 0, then Z is referred to as Lp-NED
on ε of size −λ. Moreover, if sup

n
sup
i∈Dn

dn,i < ∞, then Z is called uniformly Lp-NED on ε.

We will present the L2-NED properties of a random field Z on some α-mixing random field ε. The
definition of the α-mixing coefficient employed in the article is stated as follows.

Definition 2. Let A and B be two σ -algebras of F , and let
α(A , B) = sup

A,B
(|P(A ∩ B) − P(A)P(B)|A ∈ A , B ∈ B),

For U ⊆ Dn and V ⊆ Dn, let σn(U) = σ(εn,i, i ∈ U) (σn(V) = σ(εn,i, i ∈ V)) and αn(U, V) =
α(σn(U), σn(V)). Then, the α-mixing coefficients for the random field ε are defined as:

α(u, v, h) = sup
n

sup
U,V

(αn(U, V), |U| ≤ u, |V| ≤ v, d(U, V) ≥ h).

where d(·, ·) is the distance measure based on the maximum metric.

Compared with the one applied in temporal analysis, the above-defined α-mixing also depends on
the size of the subsets, as given a fixed distance in random fields, it is natural to expect more dependence
between two larger sets than between two smaller sets. Moving forward, we will suppress the dependence
on n for a triangular array if there is no confusion in the context.

4.3. Consistency

In the following, we present assumptions needed for establishing asymptotic theories.
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Assumption A.1. (Sampling point). The lattice D ⊆ R
d, d ≥ 1, is infinitely countable. The distance d(i, j)

between any two different individual units i and j in D is at least larger than a positive constant, i.e., ∀i, j ∈
D : d(i, j) ≥ ρ0. W.l.o.g., we assume ρ0 > 1.

This is the basic assumption on the distance measure and the lattices. We do not consider infill
asymptotic framework and therefore we impose a minimum distance assumption between observations.

Assumption A.2. (Decay dependence). {yi} is L4- uniformly NED on the α- mixing random field
ε = {εi, i ∈ Dn}, where εi = (xi, ui) (ui’s are some underlying innovation processes). For the α-mixing
coefficient α, it holds that α(u, v, r) ≤ (u + v)τ α̂(r) for a constant τ ≥ 0 and a function α̂(·) that
satisfies limr→∞ α̂(r) = 0 and

∑∞
r=1 rd−1α̂(r) < ∞. The NED constant is denoted by dn,i, which satis-

fies supn,i∈Tn dn,i < ∞. The NED coefficient is denoted by ψ(s), which satisfies lims→∞ ψ(s) = 0, and∑∞
r=0 rd−1ψ(r) < ∞.

Assumption A.3. (Parameter space). The parameter space � × � is a compact subset of Rp+q with
euclidean metric |.|2. qg (θ , γ ), sg(θ , γ ), and hg(θ , γ ) defined in Section 2.2 are functions from � × � to
R

1, Rp, and R
p2 , respectively. These functions are measurable for each θ ∈ � and γ ∈ �, and are Lipschitz

continuous on � × �.

From now on, we work with group-level asymptotics. We define the field ε̃ = {εg : g ∈ 1, · · · , G}
with grouped observations. First of all, suppose that Dn is divided into G blocks with ∪G

1 Bg = Dn ⊂
Tn (recall that the group-level lattice is denoted as DG). Define the distance between two groups, g
and h, as d(g, h) = mini∈Bg ,j∈Bh d(i, j). Then, the α-mixing coefficient between group U = {g1, · · · , gL}
and group V = {h1, · · · , hM} is thus α̃(u, v, r) = supL≤u,M≤v,d(U,V)≥r α(σ(U), σ(V)), where d(U, V) =
minl∈1···L,m∈1,··· ,Md(gl, hm). As L is assumed to be fixed, the grouping observations ε̃ will satisfy the
mixing coefficients restrictions imposed in Assumption A.2. Moreover, since L is the same for every
group, we shall have α̃(u, v, r) = (uL + vL)τ α̂(r).

Assumption A.4. (Moment assumptions). E supθ∈� |mg,i|r ≤ C1, E supθ∈�,γ∈�|wg,ij|r ≤ C2, E |yg,i|r ≤
C3, and E supθ∈�|∇θ mg,i|r ≤ C4, where C1, C2, C3, and C4 are positive constants, and wg,ij, yg,i, and
mg,i are the element-wise components for W−1

g (θ , γ ), yg , and mg(θ , γ ).mg,i and wg,ij are continuously
differentiable up to the third order derivatives, and their r-th moments (after taking the supreme over the
parameter space) are bounded up to the second order derivatives, with r > 4p′ and p′ ≥ 1.

Remark 2. The moment conditions in Assumption A.4 are needed for establishing the ULLN to show
the consistency of our proposed estimator; see the proof for Lemma 1 in supplementary material. These
conditions are primitive conditions and widely employed in the literature; see, e.g., Lemma 2.5 in Newey
and McFadden (1994) or Assumption 3 in Newey and Powell (2003).

Assumption A.5. (Identifiability). The true parameter θ0 is the unique minimizer for the objective function
in the sense that, for any ε > 0, there exists a positive number c0 such that lim infG→∞ infθ∈�:|θ−θ0|2≥ε

QG
(
θ̌ , γ̌ , θ

)
> c0 + Q∞

(
θ̌ , γ̌ , θ0

)
.

Assumption A.2 concerns the L2-NED property of data-generating processes. See Section S2 in
supplementary material for detailed verification of the special cases. It should be noted that by Lyapunov
inequality, if {yi} is Lk-NED, it is also Ll-NED with the same coefficients, dn,i and ψ(s), for any l ≤ k.
In fact, as we work with the group-level asymptotics, we can also directly replace the assumption
by the NED property of yg on {εg}. This assumption also imposes the algebraic decaying rate of
an underlying process, and will not restrict the dependence within groups as we set the group size
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to be fixed. Assumption A.3 contains the standard regularities assumptions. Assumption A.4 is a
collection of moment conditions on the statistical objects involved in the estimation and also on
each element of Hessian matrices, ensuring the boundedness of the moments. Assumption A.5 is a
condition on the identification of our proposed estimator. It can be implied by the positive definiteness of
W−1

g (θ , γ ) and the same identification assumption lim infG→∞ infθ∈�:|θ−θ0|2≥εQ′
G(θ) > c0 + Q′∞(θ)

on Q′
G(θ)

def= 1
|DG|

∑
g∈|DG| E

[
yg − mg

(
xg ; θ

)]� [yg − mg
(
xg ; θ

)]
and Q′∞(θ)

def= lim G→∞Q′
G(θ).

It can be shown that lim infG→∞ infθ∈�:|θ−θ0|2≥εQG
(
θ̌ , γ̌ , θ

)
> λmin{W−1

g (θ̌ , γ̌ )}(c0 + Q′∞(θ)),

where λmin{W−1
g (θ̌ , γ̌ )} is the minimum eigenvalue of the matrix W−1

g (θ̌ , γ̌ ). When infθ∈�,γ∈�λmin
{W−1

g (θ , γ )} > c for c > 0, Assumption A.5 is then satisfied with probability approaching one. Given
these assumptions, we can provide the consistency property of our estimation.

Theorem 1. (Consistency). Under Assumptions A.1–A.5, the proposed GEE estimator obtained by solving
Eq. (7) is consistent: |θ̂ − θ0|2 p−→ 0 as G → ∞.

Theorem 1 indicates that the consistency of θ̂ does not rely on the consistent estimation for γ in the
first step as long as the number of groups tends to infinity and the conditional mean function is correctly
specified. The proof is provided in Section S1.2 of supplementary material.

4.4. Normality

To further establish the asymptotic normality of the estimate, we additionally impose the following
assumptions:

Assumption A.6. (Decaying dependence). The function α̂ satisfies
∑∞

r=1 r(dτ∗+d)−1Lτ∗
α̂δ/(2+δ)(r) < ∞

for δ > 0 and τ ∗ = δτ/(4 + 2δ).

Assumption A.7. (Nuisance plug-in). The limiting points of the nuisance parameters, θ∗ and γ ∗, lie in
the interiors of � and �, respectively. Furthermore, we assume |γ̌ − γ ∗|2 = Op(G−1/2) and |θ̌ − θ∗|2 =
Op(G−1/2).

Define

ASG = 1
G
∑

g
E
[
∇mg

� (θ0)W−1
g
(
θ∗, γ ∗)ugu�

g W−1
g
(
θ∗, γ ∗)∇mg

(
θ0)] (50)

+ 1
G
∑

g

∑
h,h 
=g

E
[
∇mg

� (θ0)W−1
g
(
θ∗, γ ∗)ugu�

h W−1
h
(
θ∗, γ ∗)∇mh

(
θ0)] .

and AS∞ = limG→∞ ASG. We then impose:

Assumption A.8. (Variance-covariance matrix). There exist two positive constants, c′ and C′, such that
c′ < λmin(E[∇mg�(θ0)W−1

g (θ∗, γ ∗)∇mg(θ0)]) < λmax(E[∇mg�(θ0)W−1
g (θ∗, γ ∗)(∇mg(θ0)] < C′.

Furthermore, infG |DG|−1λmin(AS∞) > 0.

Assumption A.9. (Initial estimator and root assumption). It holds that SG
(
γ̌ , θ̌ , θ̂

)
= Op(1/

√
G).

Assumption A.6 is needed for establishing moment inequalities which are necessary for establishing
CLT; see also Assumption 10 in Xu and Lee (2015a). Assumption A.7 concerns the pre-estimation of the
nuisance parameters γ and θ ; It shall be noted that in Assumption A.7, (θ∗, γ ∗) can be different from the
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true parameter (θ0, γ 0), which will not affect the consistency of our estimator. For more explanations,
see the proof of Theorem 2 in supplementary material. In Section S1.4 of supplementary material, we
also provide primitive conditions for verifying that the estimator for γ̌ , presented by (12) in Section 2,
satisfies Assumption A.7. Assumption A.8 is a standard regularity condition for nonlinear estimation.
The assumption on score function in Assumption A.9 acknowledges the fact that for some nonlinear
estimation equations, the existence of a solution might not be a trivial issue; see Jacod and Sørensen
(2018) for relevant discussions.

We define H∞ = limG→∞ E HG(θ∗, γ ∗, θ0), where HG(θ∗, γ ∗, θ0) is the Hessian matrix with respect
to θ0. Furthermore, define AV = AV

(
γ ∗, θ∗, θ0) def= H�∞AS∞H∞. It is not surprising to see in the

following Theorem 2 that our estimation is asymptotically normal, and the rate of convergence is
√

G.

Theorem 2. Under Assumptions A.1–A.9, we have
√

GAV−1/2(θ̂ − θ0) ∼d N(0, Ip). (51)

4.5. Consistency of variance-covariance matrix estimation

In this subsection, we propose a semiparametric estimator of the asymptotic variance in Theorem 2 and
prove its consistency. The estimation is tailored to account for the spatial dependence of the underlying
process. This facilitates the statistical inference for the proposed estimator.

First, we define

Â= 1
|DG|

∑
g

∇m̂�
g Ŵ−1

g ∇m̂g , (52)

B̂ = 1
|DG|

∑
g

∑
h 
=g

k(dgh)∇m̂�
g Ŵ−1

g ûg û�
h Ŵ−1

h ∇m̂�
h , (53)

where ∇m̂g ≡ ∇m̂g
(
θ̂
)

, Ŵg ≡ Ŵg(γ̌ , θ̌ ), and ûg = yg − mg(θ̂) is an estimator for ug .
Following the spatial HAC literature (see, e.g., Kelejian and Prucha, 2007), we construct an estimator

for AV as

ÂV
(
γ̌ , θ̌ , θ̂

)
= |DG|

⎛⎝∑
g

∇m̂�
g Ŵ−1

g ∇m̂g

⎞⎠−1

(54)

⎛⎝∑
g

∑
h( 
=g)

∇m̂�
g Ŵ−1

g k
(
dgh
)

ûg û�
h Ŵ−1

h ∇m̂h

⎞⎠
⎛⎝∑

g
∇m̂�

g Ŵ−1
g ∇m̂g

⎞⎠−1

= Â−1B̂Â−1,

where k
(
dgh
)

is a kernel function depending on the distance between group g and h, i.e., dgh (which is
also denoted as d(g, h)), and a bandwidth parameter bg . As noted in Kelejian and Prucha (2007), there
are many choices for the kernel function, such as the rectangular kernel, Bartlett or triangular kernel. In
particular, without loss of generality, we can choose the Bartlett kernel function: k

(
dgh
)= 1 − d(g, h)/bg

for d(g, h) < bg , and k
(
dgh
)= 0 for d(g, h) ≥ bg .

We now list assumptions that are needed for the consistent estimation of the variance-covariance
matrix.
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Assumption A.10. (Residual property). ûg − ug = Cg�g , where Cg is a L × p matrix, and �g is a p × 1
dimensional vector. It holds that |Cg |2 = Op(1) and ||�g || = Op(G−1/2).

Assumption A.11. (Kernel assumption). The kernel function k(·) satisfies |k(dgh) − 1| ≤ Ck|dgh/bg |ρk ,
where ρk > 0, dgh/bg ≤ 1, bg → 0, and Ck is a generic constant. It also holds that bd/q′

g |DG|−1 = O(1),
|DG|−1∑

g
∑

h |d(g, h)/bg |ρk = O(1), and b2d
g
∑∞

r=1 rd−1ψ((r − bg)+) = O(G), where (r − bg)+ =
max(r − bg , 0), and recall that ψ(·) is the NED coefficient.

Assumption B.1 is an assumption for decomposing the difference between the residuals and the true
error; a similar assumption is imposed by Kelejian and Prucha (2007). Assumption B.2 concerns the
properties of the kernel function, and also puts constraints on the spatial dependence coefficients and
the bandwidth parameter. In the following theorem, we demonstrate the consistency of the ÂV.

Theorem 3. Under Assumption A.1–A.9 and B.1–B.2, the variance-covariance estimator presented in (54)
is consistent, i.e., ÂV

(
γ̌ , θ̌ , θ̂

) p−→ AV
(
γ ∗, θ∗, θ0) .

5. Monte Carlo simulations

In this section, we use Monte Carlo simulations to investigate the finite sample performance of the pro-
posed GEE approach and compare it to QMLE. By studying five different cases for count data and binary
response data, we show that the proposed GEE estimator not only has better performance under various
data-generating processes, but also is robust to moderate misspecification of the working correlation
matrix or the group structure. Our code has been uploaded to GitHub (link: https://github.com/Uwe-
xu/NonlinearGEE.)

5.1. Sampling space

We sample 400 or 1600 observations on a linear lattice. The data are divided into groups of size 4, with
each group’s points being normally distributed, sharing the same mean and a variance of 0.1. In the case
where n = 400, the group means are represented by 100 equally spaced points in [0, 10], while in the case
where n = 1600, they are represented by 400 equally spaced points. The distance dij between locations i
and j is calculated as Euclidean distance on the real line.

5.2. Count data

5.2.1. Data-generating process
For a spatial Poisson distribution, given the spatial correlation, the variances and covariances of the
count-dependent variable can be expressed in closed forms, as illustrated in Eqs. (22) and (23). Consider
the following spatial count data-generating process:

mi = ξi exp
(
β1xi,1 + β2xi,2

)
,

β1 = β2 = 1,

xi,1, xi,2
i.i.d.∼ N (0, 1) ,

Yi ∼ Poisson (mi) ,
where ξi is a random variable independent of X with E(ξi) = 1. We consider two cases with different types
of spatial correlations of ξi. In the following, we describe the case-specific data-generating processes and
within-group correlation matrices. The corresponding variance-covariance matrix, Wg , is defined in Eq.
(9), and estimation procedures can be found in Section 3.
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Case 1. ξi is simulated as a multivariate lognormal variable by exponentiating an underlying multi-
variate normal distribution that has a marginal distribution N

(− 1
2 , 1
)

and a within-group correlation
matrix �g . For i 
= j, we have �g,ij = ρ, i.e., the correlation matrix is exchangeable. We let ρ = 0.1,
0.5, 0.8, and 1. The underlying normal distribution implies that ξi follows a multivariate lognormal
distribution with E (ξi) = 1. The group size equals four. The within-group correlation matrix is

�g =

⎛⎜⎜⎝
1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

⎞⎟⎟⎠ . (55)

Case 2. The setting is similar to Case 1: we have ξi ∼ logN(− 1
2 , 1), and the group size is four. However,

the correlation between j-th and i-th elements is specified as corr(ξi, ξi) = ρ(1 − dij), i.e., it depends on
both ρ and the spatial distance. The within-group correlation matrix is

�g =

⎛⎜⎜⎝
1 ρ(1 − d12) ρ(1 − d13) ρ(1 − d14)

ρ(1 − d21) 1 ρ(1 − d23) ρ(1 − d24)
ρ(1 − d31) ρ(1 − d32) 1 ρ(1 − d34)
ρ(1 − d41) ρ(1 − d42) ρ(1 − d43) 1

⎞⎟⎟⎠ . (56)

5.2.2. Simulation results
Table 1 shows simulation results under Case 1 and Case 2, with two sample sizes: n ∈ {400, 1600}
and G ∈ {100, 400}. There are two estimators, Poisson QMLE and Poisson GEE. For the Poisson GEE
estimation, we divide the data into groups of four, sequentially grouping every four elements from start
to finish. Then, we employ the estimated working variance-covariance matrices (55) and (56) in the GEE
estimation for Cases 1 and 2, respectively. All the columns are based on 1000 Monte Carlo replications.
For each setting, Monte Carlo means and standard errors are computed.

In general, we can see that the Monte Carlo means are very close to the true values, suggesting
that in Case 1 and Case 2, both methods are asymptotically unbiased. Therefore, we can focus on the
comparison of standard errors. We use bold font to highlight estimates that have smaller standard errors.

From Table 1, we see that the Poisson GEE methods perform considerably better than Poisson QMLE
methods in every case, sample size, and ρ. For example, in Case 1 and n = 400, the improvements (in
terms of the standard deviation) range from 28% (for β̂2 with ρ = 0.1) to 50% (for β̂2 with ρ = 1); in Case
2 and n = 1600, the improvements range from 37% (for β̂1 with ρ = 0.1) to 66% (for β̂1 with ρ = 1).

Another observation is that with ρ increasing, the performance gaps between the two methods
become larger. For example, in Case 1 and n = 400, when ρ = 0.1 (weak spatial correlation), the
improvement for β̂1 is 1 − 0.1061/0.1486 ≈ 29%; when ρ = 1 (high spatial correlation), the improve-
ment for β̂1 increases to 1 − 0.08/0.1489 ≈ 44%. This is in line with our expectation since the proposed
GEE method is capable of accounting for the spatial correlation in the underlying innovations. The
stronger the correlation, the larger the improvement.

5.3. Binary response data

5.3.1. Data-generating process and misspecified working correlation matrix
For the spatial Probit model, the correlations of the latent errors result in the correlations of the
observable binary response variables. However, the correlations become different after transformation,
and the true correlation between two binary responses does not have a closed analytical form. This
provides a natural setting to test the robustness of the proposed GEE methods when the working
correlation matrix is moderately misspecified. Let us consider the following setting:
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Table 1. Means and standard deviations for Case 1 and Case 2, averaged over 1000 samples.

n = 400, G = 100, L = 4 n = 1600, G = 400, L = 4

Case 1 Case 2 Case 1 Case 2

Poisson GEE-Poisson Poisson GEE-Poisson Poisson GEE-Poisson Poisson GEE-Poisson

ρ = 1

β̂1 1.0475 1.0067 1.0593 0.9994 0.9993 0.9956 1.0012 0.9959
s.d.(β̂1) 0.1489 0.0800 0.1494 0.0666 0.0804 0.0295 0.0805 0.0275

β̂2 1.0465 1.0078 1.0557 1.0015 1.0007 0.9966 1.0037 0.9963
s.d.(β̂2) 0.1494 0.0750 0.1470 0.0696 0.0790 0.0295 0.0808 0.0283

ρ = 0.8

β̂1 1.0408 0.9900 1.0620 0.9966 1.0019 0.9963 0.9827 0.9882
s.d.(β̂1) 0.1511 0.0955 0.1558 0.1025 0.0810 0.0414 0.0752 0.0386

β̂2 1.0448 0.9886 1.0580 0.9925 1.0021 0.9923 0.9855 0.9904
s.d.(β̂2) 0.1596 0.0988 0.1536 0.0979 0.0759 0.0424 0.0739 0.0356

ρ = 0.5

β̂1 1.0325 0.9893 1.0431 1.0062 0.9970 0.9968 1.0162 1.0058
s.d.(β̂1) 0.1509 0.1120 0.1397 0.1111 0.0752 0.0429 0.0747 0.0406

β̂2 1.0375 0.9939 1.0344 1.0032 1.0012 0.9979 1.0172 1.0086
s.d.(β̂2) 0.1454 0.1123 0.1433 0.1067 0.0744 0.0424 0.0736 0.0447

ρ = 0.1

β̂1 1.0225 1.0046 0.9567 0.9556 1.0013 0.9996 1.0007 0.9967
s.d.(β̂1) 0.1486 0.1061 0.1470 0.1125 0.0750 0.0453 0.0791 0.0468

β̂2 1.0199 1.0036 0.9554 0.9494 0.9981 0.9968 1.0018 0.9999
s.d.(β̂2) 0.1439 0.1039 0.1455 0.1102 0.0800 0.0462 0.0761 0.0481

s.d. stands for standard deviations.
The estimates with smaller standard deviations are highlighted in bold font.

Case 3
yi = 1(y∗

i > 0), (57)
y∗

i = xiβ + ei, (58)
ui = yi − E(yi|xi) = yi − �(xiβ),

where the true parameter β = (β1, β2)
T = (1, 1)T and xi ∼ N(0, I2); The marginal distribution of ei is

N(0, 1). With the group size L = 4, the correlation between i-th and j-th elements is corr(ei, ej) = ρ(1 −
dij) if they are in the same group, and 0 otherwise.

We specify the following conditional working correlation matrix for ui in group g:

�g =

⎛⎜⎜⎝
1 c(1 − d12) c(1 − d13) c(1 − d14)

c(1 − d21) 1 c(1 − d23) c(1 − d24)
c(1 − d31) c(1 − d32) 1 c(1 − d34)
c(1 − d41) c(1 − d42) c(1 − d43) 1

⎞⎟⎟⎠ . (59)

While �g might mimic the correlation structure of ei, it does not correctly specify that of ui. Namely,
the working correlation matrix is misspecified. The parameter c can be regarded as the coefficient of the
linear regression of the product of the group member ui and uj on their closeness (1 − dij). In estimation,
we replace ui with the plug-in ǔi := yi − �(xiβ̌QMLE).

5.3.2. Simulation results
Table 2 shows the simulation results of Case 3 with two sample sizes and group numbers: n ∈ {400, 1600}
and G ∈ {100, 400}. The two estimators are Probit QMLE and Probit GEE. For the Probit GEE approach,
the grouping strategy is implemented in the same way as described in Section 5.2.2. All the columns are
based on 1000 Monte Carlo replications. In general, we can see that for Case 3, the estimation biases are
in general larger than those in Case 1 and Case 2. Thus, we choose mean square errors (MSE) instead
of standard deviations to measure the estimation performance. We highlight the estimates with smaller
MSE in bold font.

When the spatial correlation is comparatively large (ρ = 1, 0.8, and 0.5 in the latent model), the
Probit GEE performs better than Probit QMLE in every sample size. For example, for n = 400, the
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Table 2. Means and MSEs for Case 3 averaged over 1000 samples

n = 400, G = 100, L = 4 n = 1600, G = 400, L = 4

Probit GEE-Probit Probit GEE-Probit

ρ = 1

β̂1 0.8880 0.8897 1.0046 1.0055
MSE(β̂1) 8.1876 7.4890 4.1530 3.3511

β̂2 0.8858 0.8874 1.0061 1.0067
MSE(β̂2) 8.5451 7.8048 4.4365 3.5446

ρ = 0.8

β̂1 0.9087 0.9099 0.9938 0.9950
MSE(β̂1) 6.7392 6.1236 3.9748 3.5374

β̂2 0.9047 0.9055 0.9960 0.9968
MSE(β̂2) 7.1594 6.6605 4.0776 3.5528

ρ = 0.5

β̂1 0.9372 0.9380 0.9831 0.9831
MSE(β̂1) 5.3103 5.0167 4.5959 4.3844

β̂2 0.9368 0.9372 0.9852 0.9853
MSE(β̂2) 5.2776 5.0261 4.1201 3.8726

ρ = 0.1

β̂1 0.9771 0.9774 0.9769 0.9776
MSE(β̂1) 4.4622 4.5111 4.7612 4.5880

β̂2 0.9671 0.9671 0.9768 0.9775
MSE(β̂2) 4.2051 4.3404 4.7526 4.5802

MSE stands for mean square errors.
The estimates with smaller MSE are highlighted in bold font.

improvements (in terms of MSE) range from 4.8% (for β2 with 0.5) to 8.7% (for β2 with ρ = 1); for
n = 1600, the improvements range from 4.6% (for β2 with ρ = 0.5) to 19.3% (for β1 with ρ = 1). Again,
the improvement increases with the (latent) spatial correlation parameter ρ. When the spatial correlation
is very small and the sample size is relatively small (ρ = 0.1 in the latent model and n = 400), Probit
QMLE has smaller MSEs than Probit GEE.

In sum, we can conclude that the Probit GEE outperforms Probit QMLE in most cases. We also note
that in general, the improvements are smaller than those in count models. There are two reasons: (i) We
use a moderately misspecified working correlation matrix (59), which only captures a part of the spatial
correlations in errors ui; (ii) the transformation from the latent model (58) to the observed model (57)
attenuates the correlation. This explains the unexpected result for the case of ρ = 0.1 and n = 400: The
original spatial correlation in the latent model is weak, resulting in a weaker correlation in the observed
model. Furthermore, the small sample size makes the situation worse. If we increase the sample size to
1600, Probit GEE becomes the best of the two methods again.

5.4. Misspecified group

In practice, the group structure can be misspecified, particularly if the data does not naturally segregate
into distinct groups. In this section, we will concentrate on the cases where the groups defined
in the estimation process do not align with the group structure inherent to the data-generating
processes.

In Case 4 and Case 5, we follow the model in Case 3

yi = 1
(
y∗

i > 0
)

y∗
i = xiβ0 + ei

ui = yi − �(xiβ0) ,

but the group sizes for the data-generating processes are L = 2 for Case 4 and L = 8 for Case 5. During
the estimation, we continue to employ the same specifications of the working correlation matrix as
previously done in Case 3, implementing a group size of L = 4 (cf. Section 5.2.2). Under this estimation
strategy, the groups are misspecified in both cases. In Case 4, the groups specified in the estimation are
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Table 3. Means and standard deviations for the binary cases 4 and 5, averaged over 1000 samples

n = 400 n = 1600

L = 2, G = 200 L = 8, G = 50 L = 2, G = 800 L = 8, G = 200

Case 4 Case 5 Case 4 Case 5

Probit GEE-Probit Probit GEE-Probit Probit GEE-Probit Probit GEE-Probit

ρ = 1

β̂1 0.9034 0.9025 0.8964 0.8967 0.9954 0.9954 1.0277 1.0296
MSE(β̂1) 7.4279 7.2388 7.6083 6.8683 4.4444 4.0655 5.6752 4.8035

β̂2 0.9050 0.9050 0.9007 0.8984 0.9926 0.9928 1.0280 1.0301
MSE(β̂2) 7.2592 6.9608 7.1524 6.7493 4.0545 4.0676 5.3047 4.7150

ρ = 0.8

β̂1 0.9151 0.9146 0.9107 0.9115 0.9919 0.9920 1.0118 1.0127
MSE(β̂1) 6.6283 6.5599 6.5958 6.0885 4.3971 4.1647 4.8029 4.0730

β̂2 0.9164 0.9169 0.9117 0.9117 0.9882 0.9880 1.0138 1.0152
s.d.(β̂2) 6.2610 6.2941 6.6896 6.2341 4.1810 4.0104 4.4290 3.8600

ρ = 0.5

β̂1 0.9267 0.9270 0.9223 0.9228 0.9877 0.9879 0.9953 0.9956
MSE(β̂1) 5.7652 5.6154 5.9215 5.5827 4.6214 4.5277 4.3116 3.9813

β̂2 0.9311 0.9314 0.9226 0.9228 0.9844 0.9844 0.9968 0.9976
MSE(β̂2) 5.3039 5.2009 5.7635 5.4962 4.5617 4.5057 4.0585 3.7314

ρ = 0.1

β̂1 0.9521 0.9521 0.9540 0.9545 0.9822 0.9822 0.9776 0.9775
MSE(β̂1) 4.9518 4.9357 4.2188 4.2327 4.5033 4.5048 4.8236 4.8293

β̂2 0.9539 0.9541 0.9533 0.9530 0.9797 0.9796 0.9778 0.9778
MSE(β̂2) 4.8634 4.8948 4.7074 4.7704 4.8286 4.8186 4.5974 4.6024

MSE stands for the mean square error.
The estimates with smaller MSEs are highlighted in bold font.
The group structure implemented in estimation: L = 4 and G = n/L.

too coarse, leading to pairs of observations, which actually belong to different groups, being clustered
into the same group. As a result, the proposed GEE method should become less efficient since it
estimates and plugs in many estimators of correlations that are zero, thereby introducing additional
estimation noises. In Case 5, the groups specified in the estimation are overly granular, causing many
pairs of observations, which inherently belong to the same group, to be categorized into different groups.
Consequently, their correlations are misspecified as 0.

Moreover, we want to emphasize that our estimation strategy in both Case 4 and Case 5 confronts
misspecification issues in both within-group structure and the group size. The former arises from the
latent model transformation, as discussed in Case 3 (following Eq. (59)).

5.4.1. Simulation results
Table 3 presents the simulation results. In general, the proposed GEE method outperforms the Probit-
QMLE when the groups are moderately misspecified. We implemented 1,000 Monte Carlo simulations
across eight settings, estimating a total of 16 parameters (2 cases × 4 ρ’s× 2 methods). In Case 4, of these
16 parameters, the Probit-GEE achieves smaller Monte-Carlo MSEs 12 times. In contrast, the Probit-
QMLE yields smaller MSEs only three times, two of which occur in the case of ρ = 0.1. In this instance,
the spatial correlation is minimal, rendering the Probit-QMLE nearly optimal.

The results for Case 5 follow a similar pattern. Out of the estimation of 16 parameters, our proposed
method attains smaller Monte-Carlo MSEs 12 times, and the majority of scenarios where the Probit-
QMLE outperforms the Probit-GEE occur in the case of ρ = 0.1.

Overall, the simulation results support the implementation of the proposed GEE method.

6. An empirical application of the role of cultural distance in the gravity equation

The gravity equation has been widely used in international trade since Tinbergen (1962). In this
section, we extend the gravity equation by incorporating cultural distance (CD) between countries and
demonstrate how to use the proposed GEE method to estimate the extended gravity equation.
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6.1. Background and notations

Anderson and Van Wincoop (2003) specify the gravity equation as:

Tij = α0Yα1
i Yα2

j Dα3
ij ηij, (60)

where Tij is the trade flow between country i and country j; Tij is proportional to the product of the
two countries’ GDPs, denoted by Yi and Yj, and inversely proportional to their distance. Dij broadly
represents trade resistance, while ηij is a multiplicative stochastic error. In the literature, it is traditional
to take the natural logarithms of both sides of an equation and to include additional control variables,
represented by Zij. The resulting log-linearized equation is as follows:

log Tij = log α0 + α1 log Yi + α2 log Yj + α3 log Dij + βZij + log ηij. (61)

A traditional estimation approach for (61) is to use ordinary least squares (OLS). However, log-linearized
models estimated by OLS can be highly misleading in the presence of heteroscedasticity. Silva and
Tenreyro (2006) discuss this situation and suggest using a nonlinear estimator which is numerically
equivalent to the pseudo Poisson MLE. Their approach is essentially a pooled Poisson QMLE that does
not account for any spatial correlation. In this section, we adopt nonlinear specification to the gravity
equation and further apply the proposed GEE approach using the product-level trade data between
China and the rest of the world in 2016. By including the culture distance variable (log CDgl), we specify
the conditional mean function of the trade volume as follows:

E
(
Tradeglk|Xgl

)= exp(β0 + β1 log CDgl + β2 log GDPPCgl + β3 log Distgl (62)
+ β4Languagegl + β5Landlockgl),

where g = 1, 2, ..., G index groups, and l = 1, 2, ..., Lg index the members in the group g, and k is an index
for products. Tradegl is the trade flow between China and the lth country in group g. We study three types
of the dependent variable of Tradegl: export, import, and total trade. The control variables include the
log of country gl’s GDP per capita (log GDPPCgl), the geographical distance from China to country gl
(log Distgl), an indicator as to whether country gl shares a common language with China (Languagegl),
and an indicator as to whether country gl is landlocked (Landlockgl).

6.2. Data source

The data on trade volume are from Trade Map (www.trademap.org). Per capital GDP is from Word
Development Indicators (WDI). Geographical distance, common language, and landlock are from the
French Centre d’Etudes Prospectives et d’Informations Internationales (CEPII). Cultural distance is
calculated based on the dataset of Hofstede Insights, which provides national culture scores for 103
countries or regions in the year 2016. Due to missing data, our final sample contains pairwise trade data
between China and 95 other countries across 97 products, resulting in a sample size of 9215 observations.

In particular, the cultural distance measure, CDgl, is calculated using six different national culture
scores: power distance, individualism versus collectivism, masculinity versus femininity, uncertainty
avoidance, long-term versus short-term normative orientation, and indulgence versus restraint. We refer
to Hofstede, Hofstede, and Minkov (2010) for more details about the calculation of cultural distance.

6.3. Estimation strategies

In Section 6.4.1 below, we apply OLS, Poisson QMLE, and Poisson GEE to the aforementioned dataset
and compare their performance. The Poisson QMLE is implemented as suggested by Silva and Tenreyro
(2006). In the OLS approach, we estimate a model that is the log-linearized version of (62):

log Tradeglk = β0 + β1 log(CDgl) + β2 log
(
GDPPCgl

)+ β3 log(Distgl)

+ β4Languagegl + β5Landlockgl + ugl.
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Table 4. OLS estimates of the gravity equation.

Trade Export Import

CD −0.432∗∗∗ −0.345∗∗∗ −0.557∗∗∗
s.e. (0.043) (0.043) (0.064)
logGDPPC 0.547∗∗∗ 0.398∗∗∗ 0.989∗∗∗
s.e. (0.028) (0.029) (0.045)
logDist −0.912∗∗∗ −0.993∗∗∗ −1.073∗∗∗
s.e. (0.069) (0.069) (0.097)
Language 0.109 0.439∗ −1.305∗∗∗
s.e. (0.177) (0.179) (0.269)
Landlock −2.130∗∗∗ −2.213∗∗∗ −1.095∗∗∗
s.e. (0.110) (0.111) (0.151)
constant 13.645∗∗∗ 15.090∗∗∗ 8.868∗∗∗
s.e. (0.680) (0.683) (0.942)
N 8513 8318 5737

s.e. stands for heteroskedasticity robust standard errors.

For the proposed GEE approach, a group structure has to be chosen for constructing the working
variance-covariance matrix. Given the data is inherently divided into 97 groups by product, we use
these product types to define the groups in the following Section 6.4.1. Without further information
to differentiate products within each group, a natural choice for the within-group dependence structure
is the exchangeable correlation matrix; see Eq. (55) for an example.

Furthermore, as a robustness check, we apply the proposed GEE approach to country-level data
in the subsequent Section 6.4.2. The country-level data aggregates the trade volumes of 97 products
between a country and China into a single item, resulting in a sample of 95 countries. (As a result,
we remove the group index k from the model (62).) In this separate analysis, we group the data based
on geographical locations. In a baseline setup, we divide countries into different groups according to
their continents. This natural strategy results in five major groups (w.r.t. five continents). In the second
grouping, we divide countries into groups, each containing six members. Specifically, we group every six
countries from the same continent together in the initial round. Then, if there are remaining countries
within a continent, we incorporate these leftovers with those from other continents into the last group.
Given the sample of 95 countries, the second strategy results in 16 groups. To test the robustness of
our approach under different (possibly misspecified) within-group dependence structures, we continue
to use the exchangeable correlation matrix. It is worth noting that the proposed GEE approach can
deliver decent performance even when the working variance-covariance matrix is moderately mis-
specified; see Section 2.4 and Sections 5.3 and 5.4 for theoretical discussions and simulation evidence,
respectively.

6.4. Estimation results

6.4.1. Main results at the product level
For comparison, we provide the OLS estimates of the log-linearized model in Table 4.

The log-linearized model suffers from two main problems. First, the dependent variable cannot
be log-transformed if it is zero. As a result, the sample size in each column in Table 4 has reduced
a lot, especially in the import column. Second, as mentioned in Silva and Tenreyro (2006), the log-
linearization can cause bias in parameter estimates if there is heteroskedasticity in the error term. In
comparison, the Poisson QMLE and Poisson GEE are less likely to be prone to these biases. The pooled
Poisson QMLE estimates, which do not account for any spatial correlation, are provided in Table 5; the
estimates from the proposed GEE approach are provided in Table 6.

Comparing Tables 5 and 6, we see that the Poisson GEE method generally reduces the standard errors
of parameter estimates. All estimation results confirm the negative effect of the cultural distance on
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Table 5. Poisson QMLE estimates of the gravity equation.

Trade Export Import

logCD −0.378∗∗∗ −0.306∗∗∗ −0.493∗∗
s.e. (0.083) (0.059) (0.164)
logGDPPC 0.760∗∗∗ 0.699∗∗∗ 0.860∗∗∗
s.e. (0.093) (0.094) (0.148)
logDist −0.665∗∗∗ −0.609∗∗∗ −0.729∗∗∗
s.e. (0.157) (0.145) (0.211)
Language −0.522 0.030 −1.611∗
s.e. (0.445) (0.428) (0.711)
Landlock −1.832∗∗∗ −2.354∗∗∗ −1.439∗
s.e. (0.401) (0.274) (0.567)
constant 12.359∗∗∗ 11.769∗∗∗ 11.332∗∗∗
s.e. (1.781) (1.890) (2.357)
N 9215 9215 9215

s.e. stands for heteroskedasticity robust standard errors.

Table 6. Poisson GEE estimates of the gravity equation.

Trade Export Import

logCD −0.381∗∗∗ −0.327∗∗∗ −0.515∗∗∗
s.e. (0.054) (0.012) (0.130)
logGDPPC 0.766∗∗∗ 0.742∗∗∗ 0.895∗∗∗
s.e. (0.077) (0.069) (0.183)
logDist −0.667∗∗∗ −0.627∗∗∗ −0.738∗∗
s.e. (0.143) (0.093) (0.255)
Language −0.529 −0.004 −1.672∗∗
s.e. (0.303) (0.211) (0.526)
Landlock −1.848∗∗∗ −2.548∗∗∗ −1.500∗
s.e. (0.399) (0.189) (0.613)
constant 12.317∗∗∗ 11.450∗∗∗ 11.066∗∗∗
s.e. (1.802) (1.052) (3.352)
N 9215 9215 9215

s.e. stands for standard errors that are robust to model misspecification.

trade in the gravity equation, along with the negative effect of the geographical distance and the positive
effect of the GDP per capita. These estimates are all significant at the 1% level. For the main explanatory
variable, the cultural distance, the Poisson GEE estimated coefficients for trade, export, and import are
–0.381, –0.327, and –0.515. All of them are larger in absolute values than the corresponding effects
estimated with Poisson QMLE. Furthermore, all the standard errors of the Poisson GEE estimates for
the coefficients of the cultural distance are smaller than those of Poisson QMLE. Overall, the Poisson
GEEs’ results strengthen the hypothesis that cultural distance has significant negative influences on
international trade.

6.4.2. Additional result at the country level
As a robust test, we apply our GEE estimates to country-level data using two different grouping strategies
detailed in Section 6.3. The estimation results presented by Table 7 show that for both types of grouping,
the proposed GEE approach continues to demonstrate the negative impacts of both geographical
distance and cultural distance on trade, as well as the positive effect of the GDP per capita in the
gravity equation. For the main explanatory variable, the cultural distance, the Poisson GEE estimated
coefficients for trade, export, and import in the first type of grouping are −0.407, −0.346, and −0.519.
Overall, the estimation results from country-level data under two alternative grouping strategies are
comparable to those from product-level data, showing only moderate differences in the coefficient
magnitudes.
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Table 7. Poisson GEE for country-level data.

Trade Export Import Trade Export Import
Grouping 1 Grouping 1 Grouping 1 Grouping 2 Grouping 2 Grouping 2

logCD −0.407∗∗∗ −0.346∗∗∗ −0.519∗∗ −0.401∗∗ −0.305∗ −0.505∗
s.e. (0.109) (0.077) (0.162) (0.143) (0.120) (0.241)
logGDPPC 0.900∗∗ 0.840∗ 1.008∗∗∗ 0.776∗∗∗ 0.698∗∗ 0.869∗∗∗
s.e. (0.346) (0.424) (0.238) (0.230) (0.264) (0.237)
logDist −0.522∗ −0.521 −0.535∗∗ −0.644∗ −0.610∗ −0.719∗
s.e. (0.219) (0.266) (0.202) (0.290) (0.306) (0.283)
Language −0.897∗ −0.293 −2.045∗∗∗ −0.587 0.033 −1.646
s.e. (0.407) (0.383) (0.450) (0.461) (0.354) (1.015)
Landlock −1.198∗∗∗ −1.682∗∗∗ −1.003∗∗∗ −1.778∗∗∗ −2.358∗∗∗ −1.424∗∗
s.e. (0.291) (0.279) (0.258) (0.425) (0.534) (0.454)
constant 14.625∗∗ 14.402∗ 13.073∗∗∗ 16.663∗∗∗ 16.356∗∗ 15.763∗∗∗
s.e. (5.000) (6.230) (3.615) (4.390) (4.986) (3.838)
N 95 95 95 95 95 95

s.e. stands for standard errors that are robust to model misspecification.

7. Conclusion and further work

We propose a GEE method to estimate nonlinear models in the presence of spatially dependent
innovations. To target applications with latent causal links, we focus on nonlinear models with spatial
errors. We suggest grouping the data to adjust for the dependence induced by the spatial errors,
with a grouped working variance-covariance matrix accounting for the within-group dependence. We
list a condition on the working variance-covariance matrix under which the proposed spatial GEE
estimator has the actual efficiency gain relative to the ungrouped QMLE estimator, and show that the
former does perform better than the latter in simulations for various data-generating processes. The
specific estimation procedures of the proposed method are given for the Probit binary model and
the Poisson count model, and the asymptotic properties and a consistent estimator of the variance-
covariance matrix of the proposed GEE estimator are provided. In the end, to illustrate the usage of
our method, we implement the proposed GEE method to the extended gravity equation with the trade
data between China and the rest of the world, and document the important role of the cultural distance
on international trade.

We suggest the following directions for further research. First, throughout the article, we assume
that the group structure is exogenous. We do not consider the case where groups are endogenously
generated. One can investigate further how to model endogenous group accounting for a class of general
nonlinear models with spatial dependence. Second, although in many applications, such as Section 6,
natural grouped information is available to specify the working variance-covariance matrix, there are
cases where this information is not available. How to specify a group structure in the first step within
the current framework deserves further attention. Third, as pointed out by one of the referees, extending
the current method to models where the dependent variables are also spatially correlated would also be
an important and interesting future research topic.
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