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ABSTRACT
Knowledge graphs have become a universal data representation
and integration mechanism. They recently gained interest in the
spatial area. Spatial-Temporal Knowledge Graphs (STKGs) in par-
ticular have been created to integrate diverse sets of spatial data
and model the relationships of spatial entities. Public knowledge
graphs, such as KnowWhereGraph and WorldKG, have received a
high traction in the domain of STKGs. In this paper, we compare
three STKGs using downstream tasks within the Spatio-Temporal
domain, and also discuss the underlying modeling decisions. We
conduct an evaluation on a wildfire dataset and a housing dataset,
comparing different embedding methodologies for the different
knowledge graphs. We show that modeling paradigms in STKGs as
well as algorithmic choices can have an impact on the downstream
performance, and discuss challenges in both areas.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Ap-
plied computing→ Earth and atmospheric sciences; • Computing
methodologies → Machine learning.
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1 INTRODUCTION
STKGs are powerful tools for analyzing complex relationships in
spatial-temporal data, integrating time and space to better under-
stand the evolution of entities and events. Their ability to capture
intricate patterns makes them essential for applications like urban
planning, environmental monitoring, navigation, and emergency re-
sponse. With the growing volume of spatial-temporal data, effective
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methods for leveraging spatial-temporal data become increasingly
important [9, 12].

This study evaluates the performance of STKGs in spatial-temporal
predictions, highlighting the strengths and limitations of each. By
exploring different representation paradigms, we provide insights
into their real-world applicability and contribute to a better un-
derstanding of how STKGs can enhance spatial data modeling and
prediction tasks [10].

The choice of representation in STKGs significantly impacts
their effectiveness. This work examines KnowWhereGraph [12],
WorldKG [9], and OSMh3KG [5], each using a different approach
to model spatial-temporal data. Our comparative analysis identifies
key factors influencing performance on spatial downstream tasks,
offering guidance for future developments in the field.

Our research extends beyond evaluating the three STKGs. We
aim to analyze the practical benefits and limitations of each, while
also highlighting potential future enhancements in STKG method-
ologies. We provide the first comparison of different preexisting
STKGs on spatial tasks using existing embedding methodologies, of-
fering an overview of existing frameworks in spatial-temporal data
analysis. We demonstrate that different Knowledge Graphs (KGs)
and embedding models lead to varying performance in downstream
tasks, sometimes not exceeding the baseline.

2 PRELIMINARIES
2.1 Problem Definition
In this paper, we analyze how the selected KGs perform overall on
different prediction tasks. To provide an overview of our research
objectives, we outline in this subsections our research hypotheses
together with the associated research questions.

In order to measure the improvement of the KG involvement, we
establish a baseline only containing the tabular dataset without KG
information. We hypothesize that (H1) enriching tabular datasets
with embeddings from KGs will improve predictions in spatial tasks,
outperforming the defined baseline. We also expect that (H2) KGs
that capture a complete set of spatial data will enhance prediction
results in hybrid scenarios.

Additionally, we hypothesize that (H3) different embeddingmeth-
ods will yield varying performances on downstream tasks. By ap-
plying various embedding methods to different KGs, we aim to
identify which structural patterns are most effective, allowing us
to compare our findings with existing research.

The following sections of our paper will elaborate on the above
hypotheses and will be examined against our research findings.
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2.2 Knowledge Graph Embedding Approaches
To utilize KGs in downstream tasks, we compute vector represen-
tations, i.e., embeddings with a number of established embedding
methodologies used in the area of KGs. Different research papers
within the area have analyzed extensively the performance of KG
embedding approaches on non-spatial KGs [8, 13]. Based on the
papers we select overall three different embedding methodologies
that allow the creation of embeddings for KG vertices: RDF2Vec,
TransE and ComplEx.

RDF2Vec is a walk based algorithm, which combines the ex-
tracted random walks with a Word2Vec model in order to generate
embeddings. In total two different hyperparameters are used for the
RDF2Vec walk extraction: The variable 𝑑 describes the maximum
depth for random walks starting from a single vertex 𝑣 . Further-
more, with the parameter ℎ the maximum number of extracted
walks per vertex is determined. For a specified depth 𝑑 ∈ N, graph
walks 𝑃𝑣 are extracted for a single vertex 𝑣 using the breadth-first
search algorithm. All elements within 𝑃𝑣 are treated as single words
within Word2Vec. Within our research, we use the CBOW model
for training the embeddings. [14].

With TransE, a translational embedding methodology is used.
TransE interprets the projection of entities into a vector space as
translations in the vector space. The scoring function of TransE uses
either the l1 or l2 normalization. The goal of the scoring function is
to minimize the score for valid triples and to maximize the score for
invalid triples which are not present in the KG. In order to achieve
this, TransE uses a margin-based ranking loss function. [3]

The third embedding approach ComplEx allows the modeling of
not only symmetric relations but also asymmetric relations. Com-
plEx makes use of the Hermitian Dot Product for modeling rela-
tionships within KGs. It has been shown that ComplEx scales well
for larger KGs. [8, 18]

3 METHODS
3.1 Datasets
In our research, we compare the performance of STKGs using two
datasets on spatial downstream tasks.

The first dataset focuses on wildfire prediction in California, cov-
ering monthly wildfire occurrences from 2014 to 2021. This dataset,
based on a GitHub repository [4], includes weather, landscape (el-
evation, land use), and wildfire data. The original hexagonal grid
structure was replaced with the h3 grid at level 7 for California.
A binary label indicates whether a wildfire occurred (1) or not (0)
for each timestamp and grid cell. The dataset is highly unbalanced,
with 0.7313% wildfire cases in the training set and 2.699% in the test
set. The spatial distribution of wildfires from 2005 to 2021 shows
that some regions in California experienced no wildfires during
this period.

The second dataset uses Airbnb data from Boston, comprising
three separate datasets: the listing dataset (attributes of Airbnb
sites), the calendar dataset (listing Identifier (ID), availability, and
price), and the review dataset. For our analysis, we focus on the
listing and calendar datasets to predict the price of an Airbnb rental.
Since only unbooked places during the data crawl show a price,
we drop records with Null values for price. The dataset contains
509,331 rows and 19 columns, covering the period from 2016-09-01

to 2017-09-30. The dataset includes price outliers, such as a listing
offered at over 6,000$ per night in October 2016, which are retained
to evaluate model performance on outliers [1]. Within our research
we do not conduct a removal of those outliers in order to measure
the overall model performance also on those outliers. A detailed
overview of the data statistics of the used KGs can be found under
the following GitHub repository page.

3.2 Evaluation Framework
In order to compare the performance of STKGs, we differentiate
between two datasets: the BaseCase, consisting of classical spatial
data in tabular form without any KG, and the HybridCase, which
integrates embeddings from STKGs with the BaseCase dataset.

The BaseCase serves as a baseline for analyzing the performance
of the enriched HybridCase datasets. We split the datasets into
training and testing sets based on the temporal dimension 𝑇 to
evaluate prediction accuracy. The HybridCase datasets are enriched
by joining the h3 grid ID and date with trained embeddings from
the KGs. Even if from the start the KG does not use the h3 grid, we
assign it to each individual node of the KG.

For classification task, we evaluate performance using F1-score
and Area under the receiver operating characteristic curve (AUC)
score. For the regression task, we use Mean Absolute Percentage
Error (MAPE), and 𝑅2. We employ the XGBoost algorithm for both
prediction tasks, as it has proven to be robust in structured data pre-
dictions [16]. To assess the significance of our results, we calculate
confidence intervals for the different performance metrics.

3.3 Temporal Alignment for Knowledge Graph
embedding

In our research, we train over the temporal dimension 𝑇 indepen-
dent embedding models which result in a different vector space
in order to prevent temporal leakage. In our case, we use the Or-
thogonal Procrustes alignment to align the different vector spaces
for each temporal step 𝑡 . Research papers have shown that the
orthogonal Procrustes alignment have shown robust results in the
task of entity alignment between different vector spaces [17]. For
our research we therefore make use of the orthogonal Procrustes
alignment for the vector alignment. In the following sections we
present our results of our paper on the two datasets together with
the constraint of hardware resources used in the experiments.

4 EXPERIMENTS AND RESULT
4.1 Experimental Settings
For the RDF2Vec embedding approach, we implemented our own so-
lution to handle large-scale processing, using the C-based igraph li-
brary, which showed faster performance compared to other RDF2Vec
implementations [7]. We set the walk depth 𝑑 to 4 and generated
500 random walks per entity. Each generated embedding contains
in total 100 dimensions.

For TransE and ComplEx embeddings, we used the pykeen li-
brary, loading the KG and splitting it into 80% train, 10% validation,
and 10% test datasets. We trained both models for up to 100 epochs,
with validation checks every 10 epochs. If validation results wors-
ened, training was stopped early [2]. For the XGBoost training,
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we used default parameters on the downstream datasets [6]. For
classification tasks, we applied random oversampling to balance the
training data and one-hot encoding for categorical values. Similarly
to RDf2Vec for both models we generated embedding containing in
total 100 dimensions. Our computational setup included a virtual
machine with 64 vCPUs, 512 GB RAM, and an Nvidia RTX A6000
GPU with 47 GB VRAM. We set a 10-day limit for experiments; if
an embedding generation or model training exceeded this, results
were marked with ▲. If the VM ran out of GPU vRAM or RAM,
results were marked with †.

4.2 Result Overview
We present the test results for both datasets in tables 1 and 2. As
outlined in subsection 2.1, a temporal split is applied between the
train and test datasets to evaluate model performance. The wildfire
test dataset starts from 2020-01-01, while the Airbnb test dataset
starts from 2017-04-01.

Table 1: Results for the Wildfire dataset for different KGs
and embedding approaches

KG
Embedding
approach F1 AUC

/ / 0.1760 ± 0.0038 0.8519 ± 0.0012
WorldKG RDF2Vec 0.1183 ± 0.0071 0.8269 ± 0.0027
WorldKG TransE 0.1328 ± 0.0074 0.8363 ± 0.0025
WorldKG ComplEx ▲ ▲
KWG RDF2Vec 0.0287 ± 0.0043 0.7849 ± 0.0025
KWG TransE 0.1596 ± 0.0043 0.8305 ± 0.0015
KWG ComplEx 0.1787 ± 0.0044 0.8260 ± 0.0016
OSMh3KG RDF2Vec 0.3176 ± 0.0045 0.8565 ± 0.0013
OSMh3KG TransE † †
OSMh3KG ComplEx † †

Table 2: Results for the Airbnb dataset for the different KGs
and embedding approaches.

KG
Embedding
approach MAPE 𝑅2

/ / 0.1774 ± 0.0012 0.6463 ± 0.0012
WorldKG RDF2Vec 0.1627 ± 0.0002 0.6617 ± 0.0002
WorldKG TransE 0.1605 ± 0.0001 0.6636 ± 0.0001
WorldKG ComplEx 0.1605 ± 0.0002 0.6636 ± 0.0020
KWG RDF2Vec 0.2142 ± 0.0071 0.5954 ± 0.0067
KWG TransE 0.1587 ± 0.0011 0.6524 ± 0.0012
KWG ComplEx 0.1502 ± 0.0063 0.6274 ± 0.0060
OSMh3KG RDF2Vec 0.1434 ± 0.0071 0.6384 ± 0.0012
OSMh3KG TransE 0.1941 ± 0.0011 0.6339 ± 0.0012
OSMh3KG ComplEx 0.2045 ± 0.0011 0.6314 ± 0.0013

Based on the results provided in table 1 and 2, we determine
several findings based on our initial research hypotheses:

With RDF2Vec, OSMh3KG significantly outperformed the base-
line and all other KGs and embedding methods on the Airbnb

dataset. However, when using TransE and ComplEx, OSMh3KG
performed worse than the baseline. Similarly, in the wildfire dataset,
RDF2Vec with OSMh3KG outperformed other KG or embedding
combinations, though we couldn’t evaluate ComplEx and TransE
due to hardware constraints during our research.

For WorldKG, ComplEx outperformed TransE and RDF2Vec on
both datasets. While WorldKG surpassed the baseline on the Airbnb
dataset, it failed to outperform the baseline on the wildfire dataset.
Due to the 10-day processing limit, we couldn’t obtain results for
the wildfire dataset and the ComplEx dataset.

KnowWhereGraph, which uses thematic datasets rather than
large data sources like OpenStreetMap (OSM), outperformed the
baseline on the Airbnb dataset with both ComplEx and TransE.
ComplEx performed better than TransE for MAPE, though not for
𝑅2. On the wildfire dataset, KnowWhereGraph failed to outperform
the baseline with RDF2Vec and TransE, although it achieved a
higher F1-score with ComplEx, but did not surpass the baseline
in AUC. In subsection 4.3, we will reflect on the different results
and provide a comparison to the existing research to determine
reasons for the difference in the performances seen in our research.
Furthermore, we will reflect on the different hypotheses presented
in subsection 2.1.

4.3 Discussion
The datasets selected for this study inherently introduce a bias in
the Machine Learning (ML) results, as not all potential influencing
factors, such as long-term drought conditions or socioeconomic
data, are included. This omission means that the findings from the
modeling phase should be critically reviewed, acknowledging that
not all relevant factors for the spatial events are captured in the data.
Additionally, our choice of wildfire and Airbnb datasets limits the
scope of the research to specific spatial regions and issues, meaning
the findings are closely tied to these particular datasets [11].

As noted in previous studies, TransE struggles with learning
complex relations, particularly when entities share multiple rela-
tions, such as spatial intersections. This limitation is evident in the
OSMh3KG results, where such relations are prevalent [8]. Interest-
ingly, while OSMh3KG performed well with RDF2Vec embeddings,
WorldKG and KnowWhereGraph did not. OSMh3KG’s advantage
lies in its use of grid cells to model spatial relationships via DE-9IM,
capturing spatial patterns within and around each grid cell. This
structure is not present inWorldKG or fully utilized in KnowWhere-
Graph, which impacts their performance confirming partially our
second hypothesis.

Contrary to our first hypothesis, the choice of KGs and embed-
ding methods significantly affects the likelihood of outperforming
the baseline. While other studies have shown that STKGs typi-
cally enhance model performance, our results varied. For exam-
ple, OSMh3KG with ComplEx and TransE underperformed com-
pared to the baseline in the Airbnb dataset. Similarly, RDF2Vec with
KnowWhereGraph also failed to surpass the baseline on the same
dataset. Overall, 3 out of 9 KG and embedding combinations for the
Airbnb dataset did not exceed baseline performance using MAPE,
and for the wildfire dataset, only 2 out of 6 combinations showed
better results using F1 and AUC scores.
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We also observed that the overall algorithmic choice for KG
embedding methods has a significant impact on prediction perfor-
mance, particularly for KnowWhereGraph and OSMh3KG, where
the differences between models were more pronounced. This obser-
vation confirms our third hypothesis. In contrast, WorldKG showed
minimal deviation in results across different embedding methods,
suggesting that its lack of a spatial grid in the KG might contribute
to this consistency. Both KnowWhereGraph and OSMh3KG incor-
porate spatial grid relations between grid cells, which seems to in-
fluence howwell they perform with specific embedding approaches.
This aligns with previous studies that have noted similar effects
[8, 15]. However, our findings differ from those where ComplEx
performed consistently well across various KGs which is a result
that was not replicated in our experiments with OSMh3KG [15].

Additionally, we experimented with increasing the maximum
walk distance 𝑑 for RDF2Vec using OSMh3KG, from 4 to 9. This ad-
justment led to significantly worse results in both datasets. For the
wildfire dataset, the F1-Score dropped to 0.0891 (from 0.3176) and
the AUC score to 0.8256. Similarly, for the Airbnb dataset, MAPE
increased to 0.2123 (from 0.1434). The analysis of the random walks
showed that most walks captured grid-based relations, which did
not positively contribute to the prediction tasks in our experiments.

5 CONCLUSION AND OUTLOOK
In our paper, we compared the performance of several preexisting
KGs across two different datasets.We found that, in some cases, KGs-
enriched predictions significantly outperformed baseline datasets.
This suggests that our research, is in line with our first hypothesis,
supports the idea that spatial data combined with KGs can have a
beneficial impact on prediction tasks. Moreover, our study demon-
strated that existing KGs can be effectively reused and aligned with
specific prediction needs, eliminating the necessity to build cus-
tom KGs. Both WorldKG and OSMh3KG, which leverage large data
foundations like OSM, provide a more accurate spatial represen-
tation. We also observed that the structure of a KG influences the
effectiveness of different embedding approaches, emphasizing the
importance of selecting the appropriate embedding algorithm based
on the KG used.

For future research, expanding the comparison to include other
embedding approaches could be valuable. Due to the scale of our
KGs, deep learning-based methods like CompGCN were only appli-
cable to a subset of experimental settings. Implementing models on
our own could enable scaling to multiple GPUs. Additionally, most
existing embedding approaches treat geometries as string literals,
but specialized methods that interpret geometries directly could
improve embedding quality.

ACKNOWLEDGMENTS
Map data copyrighted OpenStreetMap contributors and available
from https://www.openstreetmap.org.

REFERENCES
[1] Airbnb Inc. 2020. Boston Airbnb Open Data. https://kaggle.com/datasets/airbnb/

boston/data
[2] Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Shar-

ifzadeh, Volker Tresp, and Jens Lehmann. 2021. PyKEEN 1.0: A Python Library
for Training and Evaluating Knowledge Graph Embeddings. Journal of Machine
Learning Research 22, 82 (2021), 1–6. http://jmlr.org/papers/v22/20-825.html

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In Advances in Neural Information Processing Systems, C. J. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.), Vol. 26. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2013/file/
1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

[4] Martin Böckling. 2023. MartinBoeckling/WildfirePredictionSTKG: Initial release.
https://doi.org/10.5281/ZENODO.8383318

[5] Martin Böckling, Heiko Paulheim, and Sarah Detzler. 2024. A Planet Scale
Spatial-Temporal Knowledge Graph Based On OpenStreetMap And H3 Grid.
arXiv:2405.15375 [cs].

[6] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, San Francisco California USA,
785–794. https://doi.org/10.1145/2939672.2939785

[7] Gabor Csardi and Tamas Nepusz. 2005. The Igraph Software Package for Complex
Network Research. InterJournal Complex Systems (Nov. 2005), 1695.

[8] Yuanfei Dai, Shiping Wang, Neal N. Xiong, and Wenzhong Guo. 2020. A Survey
on Knowledge Graph Embedding: Approaches, Applications and Benchmarks.
Electronics 9, 5 (May 2020), 750. https://doi.org/10.3390/electronics9050750

[9] Alishiba Dsouza, Nicolas Tempelmeier, Ran Yu, Simon Gottschalk, and Elena
Demidova. 2021. WorldKG: A World-Scale Geographic Knowledge Graph. In
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. ACM, Virtual Event Queensland Australia, 4475–4484. https:
//doi.org/10.1145/3459637.3482023

[10] Nicolas Heist, Sven Hertling, and Heiko Paulheim. 2023. KGrEaT: A Framework
to Evaluate Knowledge Graphs via Downstream Tasks. In Proceedings of the
32nd ACM International Conference on Information and Knowledge Management.
ACM, Birmingham United Kingdom, 3938–3942. https://doi.org/10.1145/3583780.
3615241

[11] SimonHug. 2003. Selection Bias in Comparative Research: The Case of Incomplete
Data Sets. Political Analysis 11, 3 (2003), 255–274. https://doi.org/10.1093/pan/
mpg014

[12] Krzysztof Janowicz, Pascal Hitzler, Wenwen Li, and et al. 2022. Know, Know
Where, KnowWhereGraph: A densely connected, cross-domain knowledge graph
and geo-enrichment service stack for applications in environmental intelligence.
AI Magazine 43, 1 (March 2022), 30–39. https://doi.org/10.1002/aaai.12043

[13] Jan Portisch, Nicolas Heist, and Heiko Paulheim. 2022. Knowledge graph
embedding for data mining vs. knowledge graph embedding for link predic-
tion – two sides of the same coin? Semantic Web 13, 3 (April 2022), 399–422.
https://doi.org/10.3233/SW-212892

[14] Petar Ristoski and Heiko Paulheim. 2016. RDF2Vec: RDF Graph Embeddings
for Data Mining. In The Semantic Web – ISWC 2016, Paul Groth, Elena Simperl,
Alasdair Gray, Marta Sabou, Markus Krötzsch, Freddy Lecue, Fabian Flöck, and
Yolanda Gil (Eds.). Vol. 9981. Springer International Publishing, Cham, 498–514.

[15] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo
Merialdo. 2021. Knowledge Graph Embedding for Link Prediction: A Comparative
Analysis. ACM Transactions on Knowledge Discovery from Data 15, 2 (April 2021),
1–49. https://doi.org/10.1145/3424672

[16] Zhenfeng Shao, Muhammad Nasar Ahmad, and Akib Javed. 2024. Comparison
of Random Forest and XGBoost Classifiers Using Integrated Optical and SAR
Features for Mapping Urban Impervious Surface. Remote Sensing 16, 4 (Feb. 2024),
665. https://doi.org/10.3390/rs16040665

[17] Kamil Tagowski, Piotr Bielak, and Tomasz Kajdanowicz. 2021. Embedding Align-
ment Methods in Dynamic Networks. In Computational Science – ICCS 2021,
Maciej Paszynski, Dieter Kranzlmüller, Valeria V. Krzhizhanovskaya, Jack J. Don-
garra, and Peter M. A. Sloot (Eds.). Springer International Publishing, Cham,
599–613.

[18] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume
Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In Proceedings
of The 33rd International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.).
PMLR, New York, New York, USA, 2071–2080. https://proceedings.mlr.press/
v48/trouillon16.html

A ONLINE RESOURCES
Our coding of this paper can be found under the following Github
repository. Data produced in the intermediate steps is made avail-
able up on request by the authors.

Received ; revised ; accepted

https://www.openstreetmap.org
https://kaggle.com/datasets/airbnb/boston/data
https://kaggle.com/datasets/airbnb/boston/data
http://jmlr.org/papers/v22/20-825.html
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.5281/ZENODO.8383318
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3390/electronics9050750
https://doi.org/10.1145/3459637.3482023
https://doi.org/10.1145/3459637.3482023
https://doi.org/10.1145/3583780.3615241
https://doi.org/10.1145/3583780.3615241
https://doi.org/10.1093/pan/mpg014
https://doi.org/10.1093/pan/mpg014
https://doi.org/10.1002/aaai.12043
https://doi.org/10.3233/SW-212892
https://doi.org/10.1145/3424672
https://doi.org/10.3390/rs16040665
https://proceedings.mlr.press/v48/trouillon16.html
https://proceedings.mlr.press/v48/trouillon16.html
https://github.com/MartinBoeckling/stkg_comparisons
https://github.com/MartinBoeckling/stkg_comparisons

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Knowledge Graph Embedding Approaches

	3 Methods
	3.1 Datasets
	3.2 Evaluation Framework
	3.3 Temporal Alignment for Knowledge Graph embedding

	4 Experiments and Result
	4.1 Experimental Settings
	4.2 Result Overview
	4.3 Discussion

	5 Conclusion and Outlook
	Acknowledgments
	References
	A Online Resources

