
The Journal of Geometric Analysis           (2025) 35:29 
https://doi.org/10.1007/s12220-024-01861-w

Solutions of the Sinh-Gordon Equation of Spectral Genus
Two and ConstrainedWillmore Tori I

M. Knopf1 · R. Peña Hoepner1 ·M. U. Schmidt1

Received: 3 August 2017 / Accepted: 28 October 2024
© The Author(s) 2024

Abstract
In Pinkall and Sterling (Ann Math 130:407–451, 1989) and Hitchin (J Differ Geom
31:627–710, 1990) the solutions of the elliptic sinh-Gordon equation of finite spectral
genus g are investigated. These solutions are parametrized by complex matrix-valued
polynomials called potentials.On the space of these potentials there act two commuting
flows. The orbits of these flows are called Polynomial Killing fields. For g = 2 they are
double periodic. The eigenvalues of these matrix-valued polynomials are preserved
along the flows and determine the lattice of periods. For g = 2, we investigate the
level sets of these eigenvalues, which are called isospectral sets, and the dependence of
the period lattice on the isospectral sets. The limiting cases of spectral genus one and
zero are included. These limiting cases are used to construct on every elliptic curve
three conformal maps to H which are constrained Willmore. Finally, the Willmore
functional is calculated in dependence of the conformal class.
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Constrained Willmore surfaces
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1 Introduction

The elliptic sinh-Gordon equation is given by

�u + 2 sinh(2u) = 0, (1.1)

where � is the Laplacian of R
2 with respect to the Euclidean metric and u : R

2 → R

is a twice partially differentiable real-valued function. Pinkall and Sterling constructed
so called finite type solutions in terms of a finite dimensional ODE system [11, Sect. 5].
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We represent this system as in [6, Sect. 2] by two commuting flows on a certain space
ofmatrix valued polynomials. These polynomials are called potentials and their degree
is related to the genus of a naturally assigned algebraic curve. For spectral genus zero
there is only the trivial solution u = 0. Uwe Abresch investigated spectral genus one
solutions and spectral genus two solutions whose spectral curves have an additional
symmetry [1]. Here we take up the work [10] on general spectral genus two solutions
with the following space of potentials parametrized by α, β and γ :

P2 :=
{
ζ =

(
αλ− ᾱλ2 −γ−1 + βλ− γ λ2

γ λ− β̄λ2 + γ−1λ3 −αλ+ ᾱλ2

) ∣∣∣∣ α, β ∈ C, γ ∈ R
+
}
.

On this space the Lax equations define the following vector fields:

∂ζ

∂x
= [ζ,U (ζ )] ∂ζ

∂ y
= [ζ, V (ζ )] (1.2)

with

U (ζ ) :=
(

α−ᾱ
2 −γ−1λ−1 − γ

γ + γ−1λ ᾱ−α
2

)
, V (ζ ) := i

(
α+ᾱ
2 −γ−1λ−1 + γ

γ − γ−1λ −α+ᾱ
2 .

)
.

A direct calculation shows that these two vector fields (1.2) commute:

[U (ζ ), V (ζ )] + ∂V (ζ )

∂x
− ∂U (ζ )

∂ y
= 0,

∂2ζ

∂x∂ y
= ∂2ζ

∂ y∂x
. (1.3)

For every initial potential ζ(0) = ζ0 ∈ P2 the integral curves fit together and form
a map (x, y) �→ ζ(x, y) on an open neighborhood of (0, 0) in R

2 which is called
Polynomial Killing field. The corresponding function u(x, y) := ln γ (x, y) solves
the sinh-Gordon equation (1.1).

We define the polynomials a ∈ C
4[λ] of fourth degree as

det ζ = λa(λ). (1.4)

For all such polynomials a the corresponding level sets

I (a) = {ζ ∈ P2 | det ζ = λa(λ)} (1.5)

are called isospectral sets. A direct calculation utilizing (1.2) shows

∂a

∂x
= 0 = ∂a

∂ y
. (1.6)

Therefore the Polynomial Killing fields stay in the isospectral set of the initial potential
ζ0 ∈ P2.
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Outline of the Paper In Sect. 2 we show that all isospectral sets I (a) are compact and
that the Polynomial Killing fields are defined globally on (x, y) ∈ R

2 for all initial
potentials ζ ∈ P2. Consequently, the vector fields (1.2) induce an action

φ : R
2 � (x, y) �→ φ(x, y), φ(x, y) : P2 → P2 ζ �→ φ(x, y)ζ. (1.7)

We shall see that the isospectral sets I (a) are invariant with respect to the action (1.7)
and decompose either in one ore two orbits. For polynomials a with only one orbit in
I (a) the isotropy groups of this action


ζ = {γ ∈ R
2 | φ(γ )ζ = ζ } (1.8)

are the same for all ζ ∈ I (a). In Sect. 3 we investigate 
ζ and their dependence on
a. We define a sub-lattice 
̃a ⊂ 
ζ and show that the map T : a �→ 
̃a extends
continuously to general a. The isospectral sets I (a) of polynomials a with one or two
unitary double roots contain the spectral genus one and spectral genus zero solutions,
respectively. In Sect. 4 we calculate the polynomial Killing fields of these solutions
with g ≤ 1 in terms of elliptic functions and show that the corresponding restriction
of the map T : a �→ 
̃a is surjective. In Sect. 5 we show that for a sub-lattice 
̂a ⊂ 
̃a

all requirements from quaternionic function theory [9] are met in order to define a
conformal map fa : C/
̂a → H. For g ≤ 1, a theorem of [3] shows that these
maps are constrained Willmore, i.e. critical points of the restriction of the Willmore
functional

W :=
∫
C/
̂a

H2 d A (1.9)

to the space of all conformal maps fa : C/
̂a → H. Here, H is the mean curvature
vector and d A the induced volume formonC/
̂a . It follows fromSect. 4 that all elliptic
curves occur in this family. Finally, we plot the Willmore functional in dependence of
the conformal class.

2 The Isospectral Sets

Since all potentials in P2 are traceless, their eigenvalues are determined by the poly-
nomials a via (1.4). Due to (1.6), the coefficients of a are constant along the integral
curves of these vector fields. In the following theorem we investigate the global struc-
ture of these integral curves in dependence of the polynomials a. We distinguish
between integral curves in I (a) of polynomials a in the following sets:

M2 : = {a ∈ C
4[λ] | λa(λ) = det(ζ ) for a ζ ∈ P2},

M1
2 : = {a ∈M2 | a has four pairwise distinct simple roots absent S

1},
M2

2 : = {a ∈M2 | a has one double root on S
1 and two simple roots absent S

1},
M3

2 : = {a ∈M2 | a has two distinct double roots on S
1},
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M4
2 : = {a ∈M2 | a has a fourth-order root on S

1},
M5

2 : = {a ∈M2 | a has two distinct double roots absent S
1}.

ClearlyM2 is the disjoint unionM1
2 ∪M2

2 ∪M3
2 ∪M4

2 ∪M5
2. By definition of P2

the highest and lowest order coefficients of a are equal to one. In terms of α, β and γ

the coefficients of a take the form

a(λ) = λ4 + a1λ
3 + a2λ

2 + ā1λ+ 1 with

a1 = −ᾱ2 − βγ−1 − β̄γ ∈ C and a2 = 2αᾱ + ββ̄ + γ 2 + γ−2 ∈ R. (2.1)

Consequently, the map ζ �→ a can be represented as

C× C× R
+ → C× R

+, (α, β, γ ) �→ (a1, a2) (2.2)

with a1 and a2 as in (2.1). For unitary λ the matrices λ− 3
2 ζ are anti-hermitian. As the

determinant det is the square of a norm on such matrices, λ2a(λ) ≥ 0 for such λ and
a ∈M2. Therefore,

M2 = {a ∈ C
4[λ] | a(0) = 1, λ4a(λ̄−1) = a(λ), λ−2a(λ) ≥ 0 for λ ∈ S

1}.

Now we state the main theorem of this section:

Theorem 2.1 The vector fields (1.2) induce the action (1.7) of R
2 on P2. The

isospectral sets I (a) ⊂ P2 are compact and have the following properties:

1. For a ∈M1
2 the isospectral sets I (a) are two-dimensional compact submanifolds

of P2 with transitive group action (1.7), i.e.

I (a) = {φ(x, y)ζ | (x, y) ∈ R
2} for any ζ ∈ I (a).

2. For a ∈M2
2 the isospectral sets I (a) are one-dimensional compact subsets of P2

with transitive group action (1.7).
3. For a ∈ M3

2 ∪M4
2 the isospectral set I (a) consists of a single fixed point of the

group action (1.7).
4. For a ∈ M5

2 the isospectral set is a union of two disjoint orbits of the group
action (1.7):

I (a) = {ζ ∈ I (a) | ζ |
λ∈{λ1,λ̄−11 } 
= 0}︸ ︷︷ ︸
Ka

∪ {ζ ∈ I (a) | ζ |
λ∈{λ1,λ̄−11 } = 0}︸ ︷︷ ︸
La

.

Here λ1 and λ̄−11 are the double roots of a, Ka is a two-dimensional non-compact
submanifold of P2 with closure K̄a = I (a) and La consists of a single point.

Proof For compactness of I (a), the closedness follows from continuity of (2.2) and
the boundedness of α, β, γ and γ−1 results from the formula for a2 (2.1). Hence there
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exists for all a ∈M2 an ε > 0 such that for all initial ζ0 ∈ I (a) the Polynomial Killing
field is defined on (x, y) ∈ B(0, ε) ⊂ R

2. Since they stay in the isospectral set of the
initial ζ ∈ P2, the domain of the Polynomial Killing fields extends to (x, y) ∈ R

2.
Hence the two commuting local flows induced by (1.2) extend to the action (1.7) of
R
2.
1. In order to show that I (a) is a two-dimensional submanifold for a ∈ M1

2, we
shall prove that the Jacobian of P2 → C × R, ζ �→ (a1, a2) has full rank on I (a)

and apply the implicit function theorem. Let a ∈M1
2 and consider

ζ =
(

αλ− ᾱλ2 −γ−1 + βλ− γ λ2

γ λ− β̄λ2 + γ−1λ3 −αλ+ ᾱλ2

)
=

(
A(λ) B(λ)

λC(λ) −A(λ)

)
∈ I (a).

The potential ζ is rootless as a root λ ∈ C \ {0} of ζ would lead to a double root
in a which is excluded by a ∈ M1

2. We calculate the Jacobian J f of the map
(α, ᾱ, β, β̄, γ ) �→ (a1, ā1, a2) at ζ :

J f =
⎛
⎝ 0 −2ᾱ −γ−1 −γ (βγ−2 − β̄)

−2α 0 −γ −γ−1 (β̄γ−2 − β)

2ᾱ 2α β̄ β 2(γ − γ−3)

⎞
⎠ .

First assume α 
= 0. Then the Jacobian can be transformed via Gaussian elimination
into

⎛
⎝−2α 0 −γ −γ−1 (β̄γ−2 − β)

0 −2ᾱ −γ−1 −γ (βγ−2 − β̄)

0 0 θ ι κ

⎞
⎠

where

θ = β̄ − γα−1ᾱ − γ−1ᾱ−1α = −α−1ᾱ C(ᾱ−1α)

ι = β − γ−1α−1ᾱ − γ ᾱ−1α = α−1ᾱ B(ᾱ−1α)

κ = 2(γ − γ−3)+ ᾱ−1α(βγ−2 − β̄)+ α−1ᾱ(β̄γ−2 − β).

If the Jacobian J f has no full rank, then θ = ι = κ = 0. But then ζ has a root in
ᾱ−1α.

If α = 0, A(λ) = 0 and consequently, ζ is off-diagonal and has a root if and only
if the polynomials B(λ) and C(λ) have a common root. This is the case if and only if
the resultant res(B,C) equals zero. Since ζ has no root the resultant must be nonzero

res(B,C) 
= 0.

We calculate the resultant as the determinant of the Sylvester matrix (compare [4]):
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res(B,C) = det

⎛
⎜⎜⎝
−γ β −γ−1 0
0 −γ β −γ−1

γ−1 −β̄ γ 0
0 γ−1 −β̄ γ

⎞
⎟⎟⎠ = β2 + β̄2 − ββ̄(γ 2 + γ−2)+ γ 4 + γ−4 − 2.

Since α = 0, the first two columns of J f disappear and we conclude by showing that
the determinant of the remaining 3× 3 matrix is nonzero.

det

⎛
⎝−γ−1 −γ (βγ−2 − β̄)

−γ −γ−1 (β̄γ−2 − β)

β̄ β 2(γ − γ−3)

⎞
⎠ = −2γ−1 res(B,C) 
= 0.

This shows that J f has full rank at rootless ζ and the assertion is proven.
For transitivity, we first show that the vector fields (1.2) span the tangent space

of I (a) at rootless ζ . In fact, the only matrix which commutes with a non-trivial
traceless two-by-two matrix must be a multiple of the same matrix. Therefore, a linear
combination of the vector fields (1.2) vanishes if and only if a real linear combination of
U (ζ ) and V (ζ ) is the product of ζ with a meromorphic function g(λ). Since γ 
= 0,
the coefficients of λ and λ−1 in U (ζ ) and V (ζ ) are linearly independent over R,
respectively. Besides a first order pole at λ = 0, all other poles of g have to be roots
of ζ and λ2g(λ) is bounded for λ → ∞. Hence, for rootless ζ the map g vanishes
and the vector fields (1.2) span the tangent space of I (a). By the implicit function
theorem, for a ∈ M1

2 the orbits of (1.7) are open and closed in I (a), in particular
compact. Being continuous images of R

2, they are connected and consequently, the
compact connected components of I (a).

We just proved that for a ∈ M1
2 and for all ζ ∈ I (a) the map (x, y) �→ φ(x, y)ζ

is an immersion onto a compact connected component of I (a). Therefore it induces
a diffeomorphism from R

2/
ζ (see (1.8)) onto this compact connected component.
In particular, 
ζ is a two-dimensional lattice in R

2 and the connected components of
I (a) are two-dimensional tori. Now we claim that the function

(x, y) �→ γ (φ(x, y)ζ ) (2.3)

is a Morse function on R
2/
ζ . Explicit calculation of (1.2) shows that the critical

points are those (x, y) ∈ R
2 with off-diagonal φ(x, y)ζ . Such potentials are uniquely

determined by distributing the roots of a into two groups of roots of B(λ) and C(λ).
There are exactly four such off-diagonal ζ in I (a). Another calculation shows that
the Hessian is non-degenerate and (2.3) is a Morse function on R

2/
ζ . The Morse
inequalities show that every orbit contains the four critical points, one maximum, one
minimum and two saddle points. An explicit calculation of the Hessian at the critical
points yields the same assertion. Consequently, any two connected components of
I (a) have at least four common elements and are equal. This finishes the proof of
part 1.
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2. Let a ∈ M2
2. For ζ ∈ P2 and for unitary λ the product λ− 3

2 ζ is an anti-
hermitian two-by-two matrix. The determinant is on such matrices the square of a
norm. Consequently, ζ vanishes at all unitary roots of a(λ). Therefore, all ζ ∈ I (a)

are products of potentials of less degree with normalized polynomials in C[λ], whose
square divides a.

We show the statement analogously to part 1 and transfer the arguments from part 1
by first introducing the set of potentials for genus one:

P1 :=
{

ζ̂ =
(
0 −β̂−1
0 0

)
+

(
i α̂ −β̂

β̂ −i α̂
)

λ̂+
(

0 0
β̂−1 0

)
λ̂2

∣∣∣∣ α̂ ∈ R, β̂ ∈ R
+
}

.

For these potentials ζ̂ and for unitary λ̂, the matrix λ̂−1ζ̂ is anti-hermitian. The
determinant equals

det
(
ζ̂
)
= λ̂

(
λ̂2 + (α̂2 + β̂2 + β̂−2)λ̂+ 1

)
=: λ̂â(λ̂) = λ̂(λ̂2 + â1λ̂+ 1),

where â(λ̂) ∈M1 with

M1 : = {â ∈ C
2[λ̂] | λ̂â(λ̂) = det(ζ̂ ) for a ζ̂ ∈ P1}

= {â ∈ C
2[λ̂] | â(0) = 1, λ̂2â(

¯̂
λ−1) = â(λ̂), λ̂−1â(λ̂) ≥ 0 for λ̂ ∈ S

1}.

After redefining the correspondent sets and using the same subscription as in g = 2,
we consider the function

R× R
+ → R

+,

(
α̂

β̂

)
�→ â1 = α̂2 + β̂2 + β̂−2,

and one can easily verify that the gradient of this functions vanishes if and only if

(
2α̂

2β̂ − 2β̂−3
)
= 0⇔ ζ̂ =

[(
0 −1
0 0

)
+

(
0 0
1 0

)
λ̂

]
(λ̂+ 1).

In particular, if â ∈M1 has pairwise different roots, then

Î (â) := {ζ̂ ∈ P1 | det ζ̂ = λ̂â(λ̂)}

is a compact, one-dimensional submanifold of (α̂, β̂) ∈ R× R
+. The corresponding

Polynomial Killing fields ζ̂ : R
2 → P1, (x̂, ŷ) �→ ζ̂ (x̂, ŷ) solve the Lax equations

∂ζ̂

∂ x̂
= [ζ̂ , Û (ζ̂ )] ∂ζ̂

∂ ŷ
= [ζ̂ , V̂ (ζ̂ )]
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with ζ̂ (0) ∈ P1 and

Û (ζ̂ ) :=
(

i α̂ −β̂−1λ̂−1 − β̂

β̂ + β̂−1λ̂ −i α̂
)

V̂ (ζ̂ ) := i

(
0 −β̂−1λ̂−1 + β̂

β̂ − β̂−1λ̂ 0

)
.

The entries α̂ : R
2 → R and β̂ : R

2 → R
+ of a Polynomial Killing Field ζ̂ satisfy

∂α̂

∂ x̂
= 0,

∂α̂

∂ ŷ
= 2(β̂−2 − β̂2),

∂β̂

∂ x̂
= 0,

∂β̂

∂ ŷ
= 2α̂β̂.

We now transform these Polynomial Killing fields to the Polynomial Killing fields ζ

with ζ(0) ∈ I (a) and a ∈M2
2. Let e

2iϕ be the double root and λ̂1e−2iϕ , λ̂−11 e−2iϕ the
two simple roots of a(λ) with λ̂1 ∈ (−1, 0). The transformation is conducted by

ζ(x, y) := e3iϕ
(
1 0
0 ieiϕ

)
ζ̂ (x̂, ŷ)

(
1 0
0 −ie−iϕ

)
(λ− e2iϕ).

Here, the parameters (x̂, ŷ, λ̂) of ζ̂ are related to the corresponding parameters (x, y, λ)

of ζ via

(
x̂
ŷ

)
=

(
cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

) (
x
y

)
, λ̂ = −e2iϕλ.

By an explicit calculation ζ̂ (0, 0) �→ ζ(0, 0) is a homomorphism from Î (â) onto I (a).
The analogously applied arguments frompart 1 show that for â(λ̂) = (λ̂−λ̂1)(λ̂−λ̂−11 )

the set Î (â) is a compact one-dimensional manifold with the action (ŷ, ζ̂ ) �→ φ̂(ŷ)ζ̂
of ŷ ∈ R. Each connected component of Î (â) is diffeomorphic to S

1. The action is
transitive and Î (â) connected, since the Morse function ŷ �→ β̂(ŷ) has two critical
points in Î (â).

3. The elements a ∈ M3
2 ∪M4

2 take the form a(λ) = (λ − λ1)
2(λ − λ̄1)

2 with
|λ1| = 1. The same argument as in the beginning of part 2 shows that all potentials
ζ ∈ I (a) are products of potentials of first degree with (λ−λ1)(λ− λ̄1). By definition
of P2 such ζ are off-diagonal with γ 2 = λ1λ̄1 = 1. Hence, there is only one such
element of the form

ζ =
[(

0 −1
0 0

)
+

(
0 0
1 0

)
λ

]
(λ− λ1)(λ− λ̄1).

Since I (a) is invariant with respect to (1.7), the vector fields (1.2) vanish on I (a).
4. The elements a ∈ M5

2 take the form (λ − λ1)
2(λ − λ̄−11 )2 with |λ1| 
= 1 and

λ21λ̄
−2
1 = 1. The condition λ−2a(λ) ≥ 0 for λ ∈ S

1 implies λ1 ∈ R\{−1, 0, 1}. For
ζ ∈ La one can argue analogously to part 3 and conclude that La contains only the
following potential

ζ =
[(

0 −1
0 0

)
+

(
0 0
1 0

)
λ

]
(λ− λ1)(λ− λ−11 ).
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Due to the form of (1.2), the roots of ζ are preserved along (1.7) and La is an orbit.
For Ka the submanifold property as well as its dimension follows from the corre-

sponding arguments in case 1. These arguments show also that the orbits of ζ ∈ Ka

are open and closed in Ka and furthermore, the orbits have to be the connected com-
ponents of Ka . By lack of compactness of these orbits we consider the closures of
these orbits rather than the orbits themselves. Since I (a) is compact, the closures
are compact and either equal to the orbits or to the union with La . The closure of
each orbit contains a maximum and a minimum of the function (2.3) which can either
be a local extremum in Ka or the only element of La . In particular, these elements
are off-diagonal potentials. In the present case I (a) contains three such off-diagonal
potentials. One is of course the trivial solution of (1.2) in La . A direct calculation
shows that (2.3) takes on La the value γ = 1 and at the other two elements in Ka

values larger or smaller than γ = 1. In order to proceed, we now study the subset of
potentials with γ = 1:

a(λ) = (λ− λ1)
2(λ− λ−11 )2

= λ4 − 2(λ1 + λ−11 )λ3 + (λ−21 + 4+ λ21)λ
2 − 2(λ1 + λ−11 )λ+ 1.

Due to (2.1) we obtain

−2(λ1 + λ−11 ) =− ᾱ2 − β − β̄, λ21 + 2+ λ−21 = 2αᾱ + ββ̄.

The second equation implies |
(β)| ≤ |λ1+λ−11 | and the first ᾱ2

2 = λ1+λ−11 −
(β).
Hence, α is imaginary for λ1 < 0 and real for λ1 > 0. We set α = √

2ix and
β = −z+ iy for λ1 < 0 and α = √

2x and β = z+ iy for λ1 > 0. In both cases we
obtain

|λ1 + λ−11 | = x2 + z, |λ1 + λ−11 |2 = 4x2 + y2 + z2 with (x, y, z) ∈ R
3.

We eliminate z by the first equation and arrive at:

x4 − (|λ1 + λ−11 | − 2)x2 + y2 = 0, ⇐⇒ y = ±x
√
|λ1 + λ−11 | − 2− x2.

Since |λ1 + λ−11 | > 2 the (x, y)-graph looks like∞ with an ordinary double point at
(x, y) = (0, 0) which corresponds to the single element of La . All other points are no
critical points of γ and on the corresponding orbits γ takes values smaller and larger
than 1. Consequently, the orbit of any ζ ∈ Ka with γ = 1 contains both off-diagonal
elements of Ka . This implies first that any orbit of Ka containes an offdiagonal element
and second that Ka is a single orbit, connected, non-compact and dense in I (a). ��

3 Lattices of Periods

Due to Theorem 2.1, the isospectral set I (a) of each a ∈M2 \M5
2 contains exactly

one orbit and 
ζ from (1.8) does not depend on ζ ∈ I (a). We identify (x, y) ∈ R
2
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with x + iy ∈ C and define


a := {x + iy ∈ C | ∀ζ ∈ I (a) : φ(x, y)(ζ ) = ζ }. (3.1)

This group 
a is an abelian and normal subgroup of C with quotient group C/
a . For
a ∈ M1

2, Theorem 2.1 proves that 
a is a discrete subgroup with compact quotient
and therefore, a lattice


a = ω1Z+ ω2Z

with (over R) linearly independent generators ω1, ω2 ∈ C. The choice of these gen-
erators is not unique. Given two lattices 
,
′ ⊂ C we call them isomorphic if they
originate from one another through a rotation-dilation. In [5, Chapter VI.1] it is proven,
that each lattice 
 in C is up to a rotation-dilation isomorphic to 
τ := Z+ Zτ with

τ ∈ {τ ∈ C | �(τ ) > 0, |
(τ )| ≤ 1
2 , ‖τ‖ ≥ 1}. (3.2)

Furthermore, the corresponding τ is unique up to the identifications of the following
τ :

−1

2
+ iy ∼ 1

2
+ iy for y ∈ [

√
3
2 ,∞), −x + i

√
1− x ∼ x + i

√
1− x for x ∈ [0, 1

2 ].

Let F denote the space of such τ with the quotient topology of the subset (3.2) of C

divided by the relation ∼. Hence, there exists a unique map

T :M1
2 → F , a �→ τa,

such that 
a is isomorphic to
τa . We nowwant to prove that T has a unique surjective
continuous extension to M2

2 ∪M3
2. In order to investigate the dependence of τa on

a ∈ M1
2 we introduce for any ω ∈ 
a the monodromy Mω with eigenvalues μω.

Let ζ : R
2 → P2 be a Polynomial Killing field with initial potential ζ0 ∈ P2. The

fundamental solution F of the following system of ordinary differential equations is
called frame:

∂F

∂x
= FU (ζ ),

∂F

∂ y
= FV (ζ ), F(0, 0) = �. (3.3)

The first equation in (1.3) is called Maurer-Cartan equation and ensures that F is
indeed a function of (x, y) ∈ R

2. For a ∈M3
2∪M4

2 bothU (ζ ) and V (ζ ) are constant
and F is equal to exp(xU (ζ )+ yV (ζ )). For a ∈M2

2 F is calculated in [8].We identify
(x, y) ∈ R

2 with z = x + iy ∈ C and consider F as a function on z ∈ C. For all
ω ∈ 
a the value Mω of F at ω is called monodromy. Since F−1ζ0F solve (1.2) we
have

ζ = F−1ζ0F .
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In particular, for all ω ∈ 
a the monodromy Mω commutes with ζ0 and maps the
eigenspaces of ζ0 into themselves. Since ζ0 is traceless these eigenspaces can only
have more than one dimension at the roots of ζ0. For ζ0 ∈ I (a) with a ∈ M1

2 they
do not exist and the one-dimensional eigenspaces of each ζ0 are parametrized by the
smooth Riemann surface

�∗ = {(λ, ν) ∈ (C \ {0})× C | det(ν1l− ζ0) = ν2 + λa(λ) = 0}. (3.4)

The identity λ̄4a(λ̄−1) = a(λ) induces the second of the following involutions:

σ : (λ, ν) �→ (λ,−ν), ρ : (λ, ν) �→ (λ̄−1,−λ̄−3ν̄).

The fixed points of ρ are the elements of �∗ (3.4) with λ ∈ S
1 since λ−2a(λ) ≥ 0 for

such λ. The monodromies Mω act on the one-dimensional eigenspaces of ζ0 as the
multiplication with a function μω : �∗ → C \ {0}. The involutions act on μω as

σ ∗μω = μ−1ω , ρ∗μω = μ̄−1ω . (3.5)

Our investigation of the map a �→ 
a is based on the following description of 
a :

Lemma 3.1 For all a ∈ M1
2 the elements of 
a are characterized as those ω ∈ C

such that the function exp(ωλ−1ν) on�∗ factorizes into the product of a holomorphic
function μω on �∗ obeying (3.5) with a holomorphic function on �∗, which extends
holomorphically to λ = 0 and takes there the value 1.

Proof Let G denote the group of holomorphic maps C\ {0} → SL(2, C) with the two
subgroups:

• G−: The holomorphic maps C \ {0} → SL(2, C) which take on S
1 values in

SU(2, C),
• G+: The holomorphic maps C → SL(2, C) which take at 0 ∈ C values in
SL+(2, C).

Here, SL+(2, C) denotes the subgroup of SL(2, C) consisting of upper triangular
matrices with real and positive diagonal entries. The corresponding Lie algebras are
denoted by g, the holomorphic maps C \ {0} → sl(2, C) with

• g−: The holomorphicmapsC\{0} → sl(2, C)which take onS
1 values in su(2, C),

• g+: The holomorphic maps C → sl(2, C)which take at 0 ∈ C values in sl+(2, C).

Here, sl+(2, C) denotes the traceless upper triangular matrices with real diagonal
entries, which is the Lie algebra of SL+(2, C). For all λ ∈ C \ {0} the elements g of
G− and γ of g− obey

g(λ) = (gT )−1(λ̄−1), γ (λ) = −γ T (λ̄−1).

Therefore, the elements of G− ∩G+ and g− ∩g+ extend to holomorphic maps on P
1,

which are constant. This implies G− ∩G+ = {1l} and g− ∩ g+ = {0}. For ζ0 ∈ P2 let
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z �→ F(z) denote the corresponding frame (3.3). We calculate

d
dz

(
F−1(z) exp(zλ−1ζ0)

)
exp(−zλ−1ζ0)F(z) =

= −U (F−1(z)ζ0F(z))dx − V (F−1(z)ζ0F(z))dy + F−1(z)λ−1ζ0F(z)dz.

The 1-form on the right hand side takes values in g+ because the 1-form

λ−1ζdz −U (ζ )dx − V (ζ )dy =
(

α
2 dz + ᾱ

2 dz̄ − ᾱλdz βdz + γ dz̄ − γ λdz
−β̄λdz − γ−1λdz̄ + γ−1λ2dz −α

2 dz − ᾱ
2 dz̄ + ᾱλdz

)
.

takes values in g+ at all ζ ∈ P2. Therefore λ �→ F−1(z) exp(zλ−1ζ0) belongs to G+
and λ �→ F(z) is the unique element of G−, whose product with an element of G+
is equal to exp(zλ−1ζ0). An element ω ∈ C belongs to 
a , if and only if F(ω) and ζ0
commute. Equivalently, both factors (g−, g+) ∈ G− × G+ of exp(ωλ−1ζ0) = g−g+
commute with ζ0. For ζ0 without roots on λ ∈ C \ {0} this is equivalent to both factors
taking the form

1l f (λ)+ g(λ)ζ with holomorphic f , g : C \ {0} → C.

They act on the eigenspaces of ζ0 as the multiplication with the function f (λ)+g(λ)ν

on �∗. Such an element belongs to G−, if and only if the corresponding function
μω = f (λ) + g(λ)ν obeys (3.5). It belongs to G+, if and only if the corresponding
function μ = f (λ) + g(λ)ν obeys σ ∗μ = μ−1, extends holomorphically to λ = 0
and equals one at that point. ��
The proof shows that the function μω in the lemma is unique and equal to the action
of Mω on the eigenspaces of ζ0. The logarithmic derivative of this function is a mero-
morphic differential of second kind with second order poles at λ = 0 and λ = ∞.
Due to (3.5) it takes the form

d lnμω = bω(λ)

2ν
d ln λ with bω ∈ C

3[λ] such that λ̄3bω(λ̄−1) = −bω(λ).

(3.6)

The forgoing lemma implies that a branch of lnμω obeys lnμω = ωλ−1ν + O(ν)

nearby λ = 0. Since a(0) = 1 we have ν2 = −λ + O(λ2) and dν = −1+O(λ)
2ν dλ

nearby λ = 0 and bω(0) = ω as well as the fact that the highest coefficient of bω

equals−ω̄. Since the integrals along the closed cycles uniquely determine the 1-forms
on�∗ (which extend holomorphically to λ = 0 and λ = ∞) the two other coefficients
of bω are determined by the condition that the integrals of d lnμω along the closed
cycles of �∗ are purely imaginary. If all these integrals are multiples of 2π i , then
there exists a function μω, whose logarithmic derivative is given by (3.6). The 1-form
d lnμω determines μω only up to a multiplicative constant and (3.5) up to ±1. But
the characterization of μω in Lemma 3.1 determines μω uniquely in terms of bω. This
proves the following corollary:
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Corollary 3.2 For a ∈ M1
2 the elements of 
a are the values ω = bω(0) of those

bω in (3.6), whose 1-forms d lnμω are the logarithmic derivatives of a holomorphic
function μω on �∗ (3.4). ��
The arguments of the proof of Theorem 2.1 can be used to extend the characterization
in Lemma 3.1 to a characterization of 
ζ for all ζ ∈ P2. Due to Theorem 2.1, the
groups 
ζ are no lattices for a ∈ M2

2 ∪M3
2 ∪M4

2 ∪M5
2. For a ∈ M2

2 ∪M3
2 we

impose in addition to condition (3.5)

μω = fω(λ)+ gω(λ)ν with holomorphic fω, gω : C \ {0} → C. (3.7)

This condition ensures thatμω is regular on the variety�∗ (3.4)which has singularities
at the higher order roots of a. Together with (3.5) it implies that μω takes the value
±1 at each root of a.

For each a ∈M1
2 ∪M2

2 ∪M3
2 let �

◦ denote the variety (3.4) without the singular
points at the double roots of a. For such a we choose two closed cycles of �◦ which
surround in the λ-plane exactly two roots α and ᾱ−1 of λ �→ λa(λ) and call them
A-cycles. The sum of both negative A-cycles is homologous to a cycle surrounding
the two fixed points of σ at λ = 0 and λ = ∞. If two simple roots of a coalesce at
a unitary double root, then the corresponding A-cycle converges to the cycle of �◦
which surrounds in the λ-plane the double root. The involution ρ maps these A-cycles
onto their negative, since they contain two fixed points of ρ.

Lemma 3.3 For all a ∈M1
2∪M2

2∪M3
2 and ω ∈ C there exists a unique bω ∈ C

3[λ]
with the following properties:

1. bω(0) = ω.
2. λ̄3bω(λ̄−1) = −bω(λ) for all λ ∈ C.
3. The integral of bω(λ)

2ν d ln λ along the A-cycles vanishes.

Proof The integrals in the third condition are real, because the second condition implies
the equations

σ ∗ bω(λ)
2ν d ln λ = − bω(λ)

2ν d ln λ, ρ∗ bω(λ)
2ν d ln λ = − bω(λ)

2ν d ln λ̄. (3.8)

Condition 1 and 2 imply that bω is equal to

bω = ω − ω̄λ3 + β1(λ− λ2)+ iβ2(λ+ λ2) with β1, β2 ∈ R.

We convert the third condition into a real linear inhomogeneous system of two equa-
tions with respect to β1 and β2. Let A denote the corresponding real two-by-two
coefficient matrix. Now the assertion follows if A is invertible. For a ∈ M1

2 the fol-
lowing 1-forms corresponding to β1 and β2 build a basis of the holomorphic 1-forms
of the compact Riemann surface �̄ of genus two which is the two-sheeted covering
of P

1 branched at the four simple roots of a as well as at λ = 0 and λ = ∞:

λ− λ2

ν
d ln λ

i(λ+ λ2)

ν
d ln λ.

123



   29 Page 14 of 28 M. Knopf et al.

This implies that A is invertible. For a ∈ M2
2 let �̄ denote the compact Riemann

surface of genus one which is the two-sheeted covering branched at the 2 simple roots
of a and at λ = 0 and λ = ∞. The 1-forms of those bω ∈ C

2[λ], which vanish at the
double root of a and at λ = 0 extend to holomorphic 1-forms on �̄. The integral of
these 1-forms along the A-cycle surrounding the two simple roots of a is non-zero.
The integral along the other A-cycle around the double root of a is a multiple of the
value of bω at the double root. This again implies that A is invertible. Finally, for
a ∈M3

2 the integrals along an A-cycle surrounding a double root is a multiple of the
value of bω at this double root. Therefore, also in this caseA is invertible. This finishes
the proof. ��
Our choice of A-cycles is defined in a neighborhood of each a ∈ M1

2 ∪M2
2 ∪M3

2.
The entries of A and the integrals of the 1-forms corresponding to bω = ω − ω̄λ3

along the A-cycles depend continuously on (ω, a) ∈ C×M1
2∪M2

2∪M3
2. Therefore,

the same is true for bω.
Now we supplement the two A-cycles by two B-cycles. For a ∈ M1

2 let αi with
i = 1, 2 denote the unique simple roots of a with |αi | < 1, which is surrounded by
the i-th A-cycle. The first B-cycle is defined as a cycle that surrounds in the λ-plane
inside the unit disc λ = 0 and passes through α1 without surrounding the other simple
roots inside the unit disc. This cycle is homologous to a cycle that surrounds λ = 0
and λ = α1 inside the unit disc. Our definition is also well defined in the limiting
cases a →M2

2∪M3
2∪M4

2∪M5
2. The other B-cycle passes through ᾱ−12 outside the

unit disc and surrounds all other roots of a. Again, this cycle is homologous to a cycle
that surrounds α1, α2, ᾱ

−1
1 . Together with the A-cycles they build a canonical basis

of cycles of the compact Riemann surface �̄ of genus two. The involution ρ reverses
the orientation and the intersection numbers. Therefore ρ preserves the B-cycles up
to an addition of A-cycles and the integrals of the 1-forms (3.6) in Lemma 3.3 along
the B-cycles are purely imaginary. Due to the first equation in (3.8) these 1-forms
have no residues at λ = 0 and λ = ∞ and all their integrals are purely imaginary.
For a ∈ M2

2 ∪M3
2 let �̄ denote the smooth compact Riemann surface of genus 0

or 1 which is the two-sheeted covering branched only at the simple roots of a and at
λ = 0 and λ = ∞. In the limit a →M2

2 ∪M3
2 a B-cycle passing through a root of a

which coalesce at a unitary double root converges to a non-closed path of �̄. This path
surrounds λ = 0 and connects the two points in �̄ lying above the double root of a.
The conclusion that the integrals of the 1-forms (3.6) in Lemma 3.3 along the B-cycles
and all other cycles of �◦ are purely imaginary is also true for a ∈ M2

2 ∪M3
2. This

implies that for all ω ∈ C there exists a harmonic function hω : �◦ → R, such that
dh is the real part of the 1-form (3.6). The derivative determines hω up to an additive
constant, which is fixed by the condition σ ∗hω = −hω.

Lemma 3.4 The map (ω, a) �→ bω has a continuous extension to (ω, a) ∈ C×M2.

Proof For any sequence (an)n∈N in M1
2 ∪M2

2 ∪M3
2 with limit in M4

2 ∪M5
2 the

corresponding renormalized polynomials bω/‖bω‖ have convergent subsequences.
Here, ‖·‖ is any norm defined on the vector spaceC

3[λ]. The corresponding functions
hω/‖bω‖ also converge uniformly on compact subsets of�◦. By the strong maximum
principle for harmonic functions, hω is bounded on the complement of two small
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disjoint discs around the two poles of dhω at λ = 0 and λ = ∞, since the singular
parts of dh are determined by ω. Due to the theorem on removable singularities
of harmonic functions, the limit extends to a harmonic function on the two-sheeted
covering of C \ {0}, which is branched only at the simple roots of a. This implies that
the limit of bω/‖bω‖ vanishes at all double roots of a and has a second order root at
any fourth order root of a. In particular, the coefficients β1 and β2 of bω are bounded
for bounded ω. Therefore, ‖bω‖ is bounded and all limits of bω coincide. This implies
the claim. ��
Now we are ready to prove the main theorem of this section.

Theorem 3.5 For a ∈M1
2 ∪M2

2 ∪M3
2 the values bω(0) = ω of all bω in (3.6) with

the following property build a lattice 
̃a in C: They define d lnμω (3.6) of a function
μω on �∗ (3.4) which obeys (3.5) and (3.7). The map T :M1

2 ∪M2
2 ∪M3

2 → F to
the corresponding isomorphism class is continuous. For all compact subsets K ⊂ F
each a ∈M4

2 ∪M5
2 has a neighborhood O inM2, such that T−1[K] ∩ O = ∅.

The last statement ensures that the map T extends to a continuous map from M2
to the one-point compactification F ∪ {∞} of F , such that T takes the value ∞ on
M4

2 ∪M5
2.

Proof For a ∈ M1
2 ∪M2

2 ∪M3
2 the condition (3.7) is equivalent to the condition

that μω takes only one value at the double roots of a. For μω obeying (3.5), this
condition is equivalent to the condition that μω takes values±1 at the double roots of
a. Therefore, an ω ∈ C has the property in the Theorem 3.5 if and only if all integrals
of the 1-forms (3.6) in Lemma 3.3 along the B-cycles belong to 2π iZ. Now we claim
that if these integrals along the B-cycles vanish, then ω vanishes. In fact, if ω 
= 0 and
these integrals vanish, then the integrals along all cycles vanish and the 1-form (3.6) is
the exterior derivative of a meromorphic function h. For a ∈M1

2 the function h−σ ∗h
has exactly two simple poles at λ = 0,∞ and roots at all four roots of a, which is
impossible. For a ∈M2

2∪M3
2 the polynomial bω vanishes at the double roots of a and

h is holomorphic on the two-sheeted covering ofC\{0}, which is branched only at the
simple roots of a. Again h−σ ∗h has simple poles at λ = 0,∞ and vanishes at simple
roots of a and at both points which cover a double root of a, which is impossible. This
proves the claim.

In particular, for a ∈M1
2∪M2

2∪M3
2 the map fromω ∈ C to the integrals of the 1-

forms (3.6) in Lemma 3.3 along the B-cycles is aR-linear isomorphism to iR2.We call
these integrals B-periods. This shows that the property of Theorem 3.5 characterizes
the elements ω of a lattice. Again, the B-cycles extend to small neighborhoods in
M1

2 ∪M2
2 ∪M3

2 and the B-periods depend continuously on (ω, a) ∈ C ×M1
2 ∪

M2
2 ∪M3

2. Therefore T :M1
2 ∪M2

2 ∪M3
2 → F is well defined and continuous.

It remains to prove the last statement. We first consider limits a → M4
2. A small

neighborhood in M2 of each a ∈ M4
2 is disjoint from M2

2 ∪M3
2. For a ∈ M1

2 the
lattices 
̃a = 
a contain those ω ∈ C, whose B-periods belong to 2π iZ. We claim
that the ω ∈ 
̃a with equal B-periods are bounded in the limit a → M4

2, and the
ω ∈ 
̃a with different B-periods are unbounded in the limit a →M4

2.
Let us first assume on the contrary that there exists a convergent sequence an →

a ∈M4
2 inM1

2 and a bounded sequence ωn ∈ 
̃an with constant different B-periods.

123



   29 Page 16 of 28 M. Knopf et al.

Due to Lemma 3.4 the sequence bωn of a convergent subsequence ωn converges.
Moreover the corresponding meromorphic 1-forms (3.6) in Lemma 3.3 converge to
a meromorphic 1-form on the two-sheeted covering of P

1, which is branched only
at λ = 0 and λ = ∞. The limits have two simple poles at λ = 0 and λ = ∞
and no other poles. Along cycles surrounding two simple roots of an , which coalesce
at a ∈ M4

2, the integrals of the 1-forms (3.6) defined by bωn converge to zero. For
an ∈M1

2 these cycles have opposite intersection numbers±1 with both A-cycles, and
these integrals are the difference of both B-periods. This contradicts the assumption
of constant different B-periods. Therefore, the ω ∈ 
a with different B-periods are
unbounded.

Now we show that all ω ∈ 
a with equal B-periods extend continuously to a →
M4

2. If the B-periods coincide, then the corresponding 1-form (3.6) in Lemma 3.3
has vanishing integrals along all cycles of the two-sheeted covering over a disc in λ ∈
C\{0} containing all four roots of a. In particular, this 1-form is the derivative dpω of a
holomorphic function pω on this two-sheeted covering. Let an →M4

2 be a convergent
sequence inM1

2 andωn ∈ 
̃an a sequencewith constant equal B-periods.The sequence
of functions pωn/|ωn| converges locally on the two-sheeted covering nearby the four
roots of a. Consequently bωn/|ωn| and the integrals of the corresponding 1-forms (3.6)
along the B-periods converge to the corresponding integrals of the limit of bωn/|ωn|.
An explicit calculation yields that the limit of bωn in terms of the constant equals
B-periods. Hence, ωn are bounded and the ω ∈ 
̃a extends continuously to the limits
a →M4

2. This proves the claim and for a →M4
2 the last statement of the theorem.

These arguments extends to limits a → M5
2. For bounded sequences bωn ∈ 
̃an

with constant different B-periods and an → a ∈ M5
2 a subsequence of the func-

tions (3.7) fωn and gωn converge by the maximum modulus theorem on all compact
subsets of λ ∈ C \ {0}. In particular, the corresponding B-periods converge to the
integrals of the limiting 1-forms along the limits of the B-cycles. By definition of the
B-cycles and due to the transformation properties of bω the limits of the periods are
again the same in contradiction to constant different B-periods.

For sequences ωn ∈ 
̃an with constant equal B-periods, the functions pωn take the
same value at all four roots of an . Without loss of generalization we may choose this
value as zero. Then pωn can be represented as hωn (λ)ν with a holomorphic function
hωn on the disc in λ ∈ C\{0} around the four roots of an . Again the function hωn/|ωn|
converges. In particular, the limit of pωn/|ωn| has a second order root at the fourth
order root of the limit a ∈M5

2. Consequently, the limit of bωn/|ωn| has a third order
root there and the limit of bωn is again determined by the constant equal B-periods.
Therefore, also in this case the ω ∈ 
̃a with equal B-periods extend continuously to
the limits a →M5

2. ��

4 Explicit Calculation of Spectral Data inM2
2 andM3

2

In this section we shall express for a ∈ M2
2 ∪M3

2 the period lattices 
̃a and the
corresponding 1-forms (3.6) in Lemma 3.3 in terms of elliptic functions. We start with
a ∈M2

2 and afterwards consider a ∈M3
2 as limiting cases.
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Fig. 1 Fixed point sets I , I I of
the involution z �→ z̄ and
I I I , I V of the involution ρ on
the torus C/(2ωZ+ 2ω′Z)

We parameterize the elements a ∈M2
2 by r ∈ (0, 1) and ϕ ∈ [0, π) such that

a(λ) = (λ− re−2iϕ)(λ− r−1e−2iϕ)(λ− e2iϕ)2.

The two-sheeted covering �̄ is branched at the two simple roots of a and an elliptic
curve at λ = 0 and λ = ∞. We use elliptic Weierstraß functions [2, Chapter 13.12]
and present this elliptic curve as z ∈ C/(2ωZ+ 2ω′Z). Since �̄ is endowed with two
involutions (3.3) whose composition has no fixed points, we may choose the first half
period ω to be real and the second half period to be imaginary. The involutions act as

σ : z �→ −z, ρ : z �→ z̄ + ω′. (4.1)

We identify z = 0 with λ = ∞ and z = ω′ with λ = 0. For simplicity, we determine
λ̂ and the eigenvalue ν̂ of ζ̂ instead of (λ, ν) in terms of Weierstraß elliptic functions.
They have the following properties:

ν̂2 + λ̂â(λ̂) = 0 with â(λ̂) = (λ̂+ r)(λ̂+ r−1) ∈M1,

σ : (λ̂, ν̂) �→ (λ̂,−ν̂), ρ : (λ̂, ν̂) �→ (
¯̂
λ−1,−¯̂λ−2 ¯̂ν). (4.2)

These properties determine the values of ℘ at the roots of ℘′ and λ̂ and ν̂:

e3 = − r+r−1
3 < e2 = 2r−r−1

3 < e1 = 2r−1−r
3 , λ̂(z) = e3 − ℘(z), ν̂ = ℘′(z)

2
.

(4.3)

The inequalities are given in [2, Chapter 13.15]. The Weierstraß invariants are equal
to

g2(r) := 4
3 (r + r−1)2 − 4, g3(r) := 8

27 (r + r−1)3 − 4
3 (r + r−1).

The corresponding a has an additional double root in the fixed point set λ̂ ∈ S
1 of ρ.

This fixed point set decomposes into the two components z ∈ ±ω′
2 +R/2ωZ denoted

by III and IV in Fig. 1.Instead of ϕ we shall use t ∈ R/2ωZ such that z+ = ω′
2 + t

corresponds to the double root of a with λ̂(z+) = −e4iϕ . The parameter λ and a ∈M2
are equal to
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λ = −e−2iϕλ̂, a(λ) = (λ+ e−2iϕλ̂1)(λ+ e−2iϕλ̂−11 )(λ− e2iϕ)2.

In particular, we have

d ln λ = ℘′(z)dz
℘(z)− e3

, dz = −λ̂

2ν̂
d ln λ̂.

The subgroup 
a ⊂ C (3.1) contains a one-dimensional subspace. This subspace
contains a one-dimensional lattice of periods in 
̃a . Let μ1 denote the eigenvalue
of a monodromy along a generator of this lattice. The logarithm is a single-valued
meromorphic function on C/(2ωZ+ 2ω′Z) (compare [2, Chapter 13.13 (18)]):

lnμ1 = π i
ζ(z)− ζ(z − ω′)− η′

ζ(z+)− ζ(z+ − ω′)− η′ = π i
℘′(z)

2(e3 − ℘(z))

2(e3 − ℘(z+))

℘′(z+)
= π i

ν̂

λ̂

λ̂+
ν̂+

,

(4.4)

where index + denotes the value at z+. This meromorphic function has first order
poles at z ∈ 2ωZ+ω′Z with lnμ1,+ = π i . The involutions act on lnμ1 as (compare
(3.5)):

σ ∗ lnμ1 = − lnμ1, ρ∗ lnμ1 = −lnμ1.

These properties uniquely determine lnμ1 with roots at z ∈ ω + 2ωZ+ ω′Z.
Let μ2 denote the eigenvalue of another monodromy, whose logarithmic derivative

d lnμ2 has integral 2π i along 2ω. The meromorphic function

lnμ2 = ω′(ζ(z)+ζ(z−ω′)+η′)−2η′z−ω′(ζ(z+)+ζ(z+−ω′)+η′)−2η′z+
π i

lnμ1

(4.5)

is multivalued on �̄ but single valued on z ∈ Cwith first order poles at z ∈ 2ωZ+ω′Z.
It takes the value π i at z = ω and is uniquely determined by the following properties:

lnμ2(z + 2ω) = lnμ2(z)+ 2π i, lnμ2(z + 2ω′) = lnμ2(z), lnμ2(z+) = 0,

lnμ2(−z) = − lnμ2(z), lnμ2(z̄ + ω′) = −lnμ2(z).

The corresponding periods ω1, ω2 generate 
̃a and are proportional to the Laurent
coefficients of lnμ1 and lnμ2 in front of 1

z−ω′ at z = ω′. Therefore 
̃a is isomorphic
to

−π i

ζ(z+)− ζ(z+ − ω′)− η′
Z+

(
ω′ + ω′(ζ(z+)+ ζ(z+ − ω′)+ η′)− 2η′z+

ζ(z+)− ζ(z+ − ω′)− η′

)
Z.
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Fig. 2 τ̃a for a ∈M3
2 and the

corresponding elements of F are
sketched in the same color

This lattice is isomorphic to the lattice generated by 1 and

τ̃a = 2η′z+ − 2ω′ζ(z+)

π i
.

Now we consider the limit r → 1 which corresponds to a → M3
2. In this case we

have

e3 = − 2
3 , e2 = 1

3 , e1 = 1
3 , g2 = 4

3 , g3 = − 8
27 .

Due to [2, Chapter 13.15] this corresponds to

ω = ∞, ω′ = π i

2
, ℘ (z) = 1

3
+ 1

sinh2(z)
, ζ(z) = − z

3
+ coth(z),

η′ = −π i

6
, z+ = π i

4
+ t, λ̂(z) = − 1

sinh2(z)
, ν̂ = i

cosh(z)

sinh3(z)
,

lnμ1 = π i
cosh(2t)

sinh(2z)
, lnμ2 = π i

cosh(2z)− sinh(2t)

sinh(2z)
, τ̃a = i − tanh(t)

1− i tanh(t)
.

(4.6)

Theorem 4.1 T restricted toM2
2 is a surjective immersion onto F \ { 1±i

√
3

2 }.
Remark 4.2 The restriction of T toM2

2∩T−1[{τ ∈ F | |τ | > 1 and 
(τ ) ∈ (− 1
2 ,

1
2 )}]

is a 3-sheeted unbranched covering. Moreover, T restricted toM3
2 is a surjective map

to {τ ∈ F | |τ | = 1 or 
(τ ) = ± 1
2 } that is an immersion on the open, dense

subset M3
2 ∩ T−1[F\{ 1±i

√
3

2 , i}]. In Fig. 2 we show τ̃a (4.6) for a ∈ M3
2 and the

corresponding elements in the boundary of F .

Proof First we show that the restriction of T toM2
2 is an immersion. For z+ ∈ ω′

2 +R

we use z̄+ = z+ − ω′ and obtain


(τ̃a)= 2η′z+−ω′(ζ(z+)+ζ(z+−ω′)+η′)
π i

, �(τ̃a)= ω′(η′−ζ(z+)+ζ(z+−ω′)
−π

= ω′ν̂+
πλ̂+

.
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The second expression is a meromorphic function on the elliptic curve (4.2), and the
first obeys


(τ̃a)(z+ + 2ω) = 
(τ̃a)(z+)− 2, 
(τ̃a)(z+ + 2ω′) = 
(τ̃a)(z+).

We consider
(
(τ̃a),�(τ̃a)

)
and their complex continuations as functions depending

on (λ̂+, r) ∈ S
1 × (0, 1) ⊂ C × R. Consequently, their derivatives have poles at

λ̂+ ∈ {∞, 0} and at the roots of dλ̂+ at λ̂+ ∈ {−r ,−r−1}. Since the additive constant
in the first equation does not depend on (λ̂+, r), all these derivatives are meromorphic
functions on the elliptic curve (4.2). Inserting (4.3) in [2, Chapter 13.13 (13)] gives

℘(z+ − ω′) − e3 = (e3−e1)(e3−e2)
℘ (z+)−e3 = (−r−1)(−r)

−λ̂+
= −λ̂−1+ . Now [2, Chapter 13.12]

yields

∂
(τ̃a)

∂λ̂+
= ω′(λ̂+ + λ̂−1+ )− 2(ω′e3 + η′)

2π i ν̂+
,

∂�(τ̃a)

∂λ̂+
= ω′(λ̂−1+ − λ̂+)

2πν̂+
.

At λ̂+ ∈ {−r ,−r−1} both functions take values which do not depend on r :


(τ̃a)|λ̂+=−r =−1, 
(τ̃a)|λ̂+=−r−1=−1, �(τ̃a)|λ̂+=−r =0, �(τ̃a)|λ̂+=−r−1=0.

(4.7)

Since the corresponding total derivatives with respect to r vanishes, we conclude that

∂
(τ̃a)

∂r
− ∂
(τ̃a)

∂λ̂+
and

∂�(τ̃a)

∂r
− ∂�(τ̃a)

∂λ̂+
have no pole at λ̂+ = −r ,

∂
(τ̃a)

∂r
+ r−2 ∂
(τ̃a)

∂λ̂+
and

∂�(τ̃a)

∂r
+ r−2 ∂�(τ̃a)

∂λ̂+
have no pole at λ̂+ = −r−1.

Since
(
(τ̃a),�(τ̃a)

)
have at λ̂+ = 0,∞ the same simple poles as λ̂

± 1
2+ , we obtain

that

∂
(τ̃a)

∂r
+ 2λ̂+

ω′
∂ω′
∂r

∂
(τ̃a)

∂λ̂+
and

∂�(τ̃a)

∂r
+ 2λ̂+

ω′
∂ω′
∂r

∂�(τ̃a)

∂λ̂+
have no pole at λ̂+ = 0,

∂
(τ̃a)

∂r
− 2λ̂+

ω′
∂ω′
∂r

∂
(τ̃a)

∂λ̂+
and

∂�(τ̃a)

∂r
− 2λ̂+

ω′
∂ω′
∂r

∂�(τ̃a)

∂λ̂+
have no pole at λ̂+ = ∞.

Both derivatives with respect to r and λ̂+ are anti-symmetric with respect to σ and
uniquely determined by their poles.We insert r+r−1 = −3e3 (see (4.3)) and calculate

∂
(τ̃a)

∂r
= 2 ∂ω′

∂r (λ̂2+−1)

2π i ν̂+
,

∂�(τ̃a)

∂r
= ω′(r−2−1)λ̂+−2 ∂ω′

∂r â(λ̂+)

2πν̂+
,

∂ω′
∂r

= 2η′−ω′e3
2(1− r2)

.
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By [2, Chapter 13.13 (13)] the last equation follows also from ω′ = − ∫ 0
ω′ dz+ =∫∞

0
dλ̂+
2ν̂+ :

∂ω′

∂r
=

∫ ∞

0

λ̂+(r−2 − 1)dλ̂+
4ν̂+(λ̂+ + r)(λ̂+ + r−1)

=
∫ ∞

0

(
r−2

λ̂+ + r−1
− 1

λ̂+ + r

)
dλ̂+
4ν̂+

=
∫ ω′

0

(
℘(z+ + ω + ω′)− e2

r(r − r−1)
− ℘(z+ − ω)− e1

r(r−1 − r)

)
dz+
2

=

= 1

2(1− r2)

(
ζ(z+ − ω)+ ζ(z+ + ω + ω′)− e3z+

)∣∣z+=ω′
z+=0 = 2η′ − ω′e3

2(1− r2)
.

Moreover, the first integral does not vanish for r ∈ (0, 1). In order to calculate the real
Jacobian of the restriction of T to M2

2 we again use the real parameter ϕ instead of
λ̂+ = −e4iϕ . Then the determinant of the Jacobian can be calculated explicitly as

∂
(τ̃a)

∂ϕ

∂�(τ̃a)

∂r
− ∂�(τ̃a)

∂ϕ

∂
(τ̃a)

∂r
= 4((ω′e3 + η′)2 − ω′2)

π2(1− r2)
.

The complex continuation of 
(τ̃a) is purely imaginary on λ̂+ ∈ R and takes the
same values (4.7) at λ̂+ ∈ {−r ,−r−1}. Using the transformation with respect to ρ we
conclude

0 =
λ̂+=−r∫

λ̂+=−r−1

ω′(λ̂+ + λ̂−1+ )− 2(ω′e3 + η′)
2π i ν̂+

dλ̂+ = 2

λ̂+=−r∫

λ̂+=−1

ω′(λ̂+ + λ̂−1+ )− 2(ω′e3 + η′)
2π i ν̂+

dλ̂+.

Therefore,d
(τ̃a)has a single root in each interval λ̂+ ∈ (−r−1,−1) and (−1,−r−1).
This implies ω′e3+η′

ω′ < −1 and the fact that the former Jacobian has negative
determinant as well as the restriction of T toM2

2 is an immersion.
For λ̂+ = ±1 the real part of τ̃a is zero and ±1, respectively. For fixed r ∈ (0, 1)

these values correspond to the maximum and the minimum of �(τ̃a). For r = 1, we
have calculated τ̃a (see Fig. 2). Now the Theorem follows from the behavior of ζ in
the limit r → 0 as described in [2, Chapter 13.15 (9)]. ��

In Fig. 3 we plot τ̃a against t ∈ (−ω,ω) for several values r ∈ (0, 1). For increas-
ing r the curves are continuously moving upwards and the described arc will be
successively compressed until it resembles a horizontal line.

Finally, we remark that the calculations in the proof of Theorem 4.1 give explicit
formulas for the coefficients of the polynomials b̂1 and b̂2, such that

d lnμ1 = b̂1(λ̂)

2ν̂
d ln λ̂, d lnμ2 = b̂2(λ̂)

2ν̂
d ln λ̂.
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Fig. 3 τ̃a for increasing r

5 TheWillmore Energy of Conformal Maps fa : C/0̂a → H

In this section we use quaternionic function theory [9] and define for each a ∈
M1

2 ∪M2
2 ∪M3

2 a conformal map fa : C/
̂a → H for some sublattice 
̂a ⊂ 
̃a .
More precisely, we define a quaternionic holomorphic line bundle on C/
̂a with two
holomorphic sections s1 and s2. They define the map fa such that s2 = s1fa . This map
is conformal.

For any p = (λ, ν) ∈ �∗ (3.4) each ζ0 ∈ I (a) has at λ a nontrivial eigenspace with
eigenvalue ν. This eigenspace is away from the roots of a one-dimensional. At simple
roots of a ν vanishes, ζ0 is nilpotent and the eigenspace is also one-dimensional. We
define an eigenfunction ψ of ζ for p = (λ, ν) ∈ �∗ in terms of the fundamental
solution (3.3):

ψ(z) = F |−1λ (z)χ with z ∈ C and χ ∈ C
2 \ {(0, 0)} such that ζ0|λχ = νχ.

(5.1)

Let j = ( 0 1−1 0 ) represent the quaternion j as a 2 × 2-matrix. The whole set H is
represented by the 2× 2-matrices A obeying jA = Āj or equivalently by the matrices
of the form (χ,− j χ̄ ) with χ ∈ C

2. The involution η = σ ◦ ρ acts on ζ0 and F as

η∗ζ0 = −jζ̄0j, η∗F(z) = −jF̄(z)j.

Hence −jχ is an eigenvector of ζ0|η(λ) with eigenvalue η(ν), if χ is an eigenvector
of ζ0|λ with eigenvalues ν, and F |−1η(λ)(z)(−jχ̄) = −jψ̄(z). For two points p1, p2 in

�∗ and non-trivial eigenvectors χ1, χ2 ∈ C
2 \ {(0, 0)} of ζ0 at these two points, the

vectors

χ3 = −jχ̄1 and χ4 = −jχ̄2
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are eigenvectors of ζ0 at the points p3 = η(p1) and p4 = η(p2). The corresponding
functions ψ1, . . . , ψ4 (5.1) define the following maps s1, s2, fa : C → H:

s1 = (ψ1, ψ3) = (ψ1,−jψ̄1), s2 = (ψ2, ψ4) = (ψ2,−jψ̄2), fa = s−11 s2. (5.2)

We remark that s1 has no roots, since F (3.3) is for all (λ, z) ∈ C
× × C an invertible

2× 2 matrix. We want to consider s1 and s2 as sections of a quaternionic line bundle.
Since the monodromies along two generators ω̂1 and ω̂2 of 
̂a commute with ζ0,
the translations by ω̂ j with j = 1, 2 act on s1 and s2 as left multiplication by the
eigenvalues μ̂ j of Mω̂ j

(
μ̂ j (p1) 0

0 μ̂ j (p3)

)
=

(
μ̂ j (p1) 0

0 ¯̂μ j (p1)

)
,

(
μ̂ j (p2) 0

0 μ̂ j (p4)

)
=

(
μ̂ j (p2) 0

0 ¯̂μ j (p2)

)

respectively. They commute with the right action of H on the trivial bundle C×H, if
they are all real. In this case the representation 
̂a → C

× with ω̂ j �→ μ̂ j (pi ), induces
for each i = 1, 2 onC/
̂a , a quaternionic line bundlewith section (ψi ,−jψi ). Further-
more, both quaternionic line bundles coincide, if the following closing condition (C)
holds. In this case a direct calculation confirms that the function fa is periodic with
respect to 
̂a .

(C) There exist k1, k2 ∈ R \ {0} such that μ̂ j (pi ) = k j for j = 1, 2 and i = 1, 2.

Due to Theorem 2.1 the fundamental solutions F, F̃ of two ζ0, ζ̃0 ∈ I (a) differ
by a translation with respect to z and a left multiplication by an invertible 2 × 2-
matrix. The corresponding sections s1, s̃1 and s2, s̃2 (5.2) differ by translation and right
multiplication by quaternions, respectively. Finally, fa and f̃a differ by translation with
respect to z ∈ C and by left and right multiplication with quaternions. The left and
right multiplication by the quaternions are global conformal maps of H. This shows
that fa and f̃a induce up to translations with respect to z and global conformal maps
of H the same maps to H.

We remark that cmc tori in S
3 are special cases of our construction. If p1 is a

fixed point of ρ, then the map s−11 is1 to the unit imaginary quaternions (which are
isomorphic to the 2-sphere in the imaginary quaternions � R

3) is harmonic. If p2 is
a fixed point of ρ then s−12 is2 is harmonic. If both conditions hold, then the Cartesian
product s−11 is1×s−12 is2 is harmonic and fa is a cmc torus in unit quaternions� S

3 (see
[8]). In quaternionic function theory these two maps are called left and right normal
[3, Sect. 6.2].

Lemma 5.1 For a ∈ M2
2 ∪ M3

2 we identify �̄ with C/(2ωZ + 2ω′Z). Let
(p1, p2, p3, p4) correspond to (z+, ω,−z̄++ω′, ω+ω′). Then the following equations
hold:

p3 = η(p1), p4 = η(p2), (μ1, μ2)|p1,p3 = (−1, 1), (μ1, μ2)|p2,p4 = (1,−1).

Proof In Sect. 4 we have seen

lnμ1|p1 = iπ, lnμ1|p2 = 0, lnμ2|p1 = 0, lnμ2|p2 = iπ.
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The transformations (4.1) and (3.5) imply the four equations of the Lemma. ��
Corollary 5.2 For a ∈M1

2 we can label the roots of a by p1, p2, p3, p4 in such a way
that the statements from Lemma 5.1 still hold true.

Proof Choose a path from a ∈M1
2 toM2

2. Due to Theorem 3.5, the lattice 
̃a depends
continuously on a. The generators ω1, ω2 at the end point of the path extend uniquely
to generators of 
̃a along the path. The eigenvalues μ1, μ2 of the corresponding
monodromies also extend along the path. Since the roots of a are fixed points of σ ,
μ1 and μ2 take values ±1 there. These values are constant along the path. ��
We shall now construct a sublattice 
̂a ⊂ 
̃a such that the condition (C) is satisfied.

Lemma 5.3 Consider the lattice 
̃a with generators ω1, ω2 constructed in Sect.4
for a ∈ M2

2 ∪ M3
2 and in the proof of Corollary 5.2 for a ∈ M1

2. The eigen-
values of the sublattice 
̂a generated by ω̂1 = ω1 + ω2 and ω̂2 = ω2 − ω1
satisfy (μ̂1, μ̂2)|p1,p2,p3,p4 = (−1,−1). The transformation 
̃a �→ 
̂a induces a
transformation τ̃a �→ τ̂a given by

τ̂a = τ̃a − 1

τ̃a + 1
.

Proof We get for a sublattice 
̂a ⊂ 
̃a

μ̂1 = μ1μ2, μ̂2 = μ1μ
−1
2 .

With τ̃a = ω2
ω1

we obtain τ̂a = ω̂2
ω̂1
= τ̃a−1

τ̃a+1 and the claim is proved. ��

Remark 5.4 The volume of C/
̂a is vol(C/
̂a) = |
̃a/
̂a | · vol(C/
̃a) = 2 ·
vol(C/
̃a).

Remark 5.5 We want to emphasize that the map

T̂ : M2
2 → F , a �→ τ̂a

is continuous but not differentiable at the points corresponding to (r , z+) ∈ (0, 1) ×
{ω}. In fact, as a function from the fundamental domainF onto itself τ̃a �→ τ̂a is given
by

τ̂a =
{

τ̃a−1
τ̃a+1 for 
(τ̃a) < 0
1+τ̃a
1−τ̃a

for 
(τ̃a) ≥ 0
.

Theorem 5.6 For all a ∈ M1
2 ∪M2

2 ∪M3
2 the map fa : C/
̂a → H is a conformal

immersion.
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Proof Let us first verify condition (C). From Lemma 5.3 we set k1 = k2 = −1 ∈ R.
Next we show that fa has the form of the example in [9, p. 395]. Due to (1.3) the

1-form

� = U (ζ )dx + V (ζ ))dy =
(

α
2 dz − ᾱ

2 dz̄ −γ dz̄ − γ−1λ−1dz
γ dz + γ−1λdz̄ ᾱ

2 dz̄ − α
2 dz

)

defines on the trivial quaternionic line bundle over x + iy ∈ R
2 a real flat connection

depending on λ. The left multiplication with i = ( i 0
0 −i ) endows this bundle with a

complex structure in the sense of quaternionic function theory [9]. The (0, 1)-part

1
2 (�+ i ∗�) =

(− ᾱ
2 dz̄ −γ dz̄

γ dz −α
2 dz

)

(with ∗dz = idz and ∗dz̄ = −id z̄ [9]) does not depend on λ and defines an anti-
holomorphic structure in the sense of [9]. Both factors s1 and s2 (5.2) are holomorphic
sections of this quaternionic line bundle and fa is a conformal map. ��

For a = (λ2 + 1)2 the immersion fa is the Clifford torus. The Willmore energy of fa
is

W =
∫
C/
̂a

H2 d A.

Here, H denotes themean curvature and d A the induced volume form. By construction
of fa the left normal N [9] and the Hopf field Q = 1

4 (NdN + ∗dN ) are equal to

N = s−11 is1, 1
4 (NdN + ∗dN ) = s−11

(
0 −γ dz

γ dz̄ 0

)
s1. (5.3)

Recall that due to [9, p. 395], the Willmore energy is the L2-norm of the Hopf field
Q:

W =
∫
C/
̂a

(H2 − K − K⊥) d A =
∫
C/
̂a

4|Q|2 =
∫
C/
̂a

4γ 2 dx ∧ dy.

Note that the topological constant
∫
C/
̂a

(K+K⊥)d A vanishes in the present situation,
since it vanishes for the Clifford torus.

Theorem 5.7 For all a ∈ M1
2 ∪M2

2 ∪M3
2 the Willmore energy W (a) of fa is equal

to

W (a) =
∫

C/
̂a

4γ 2 dx ∧ dy =
∫

C/
̃a

8γ 2 dx ∧ dy = 4i Res
λ=0 ln(μ2)d ln(μ1).
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For a ∈M2
2 ∪M3

2 the immersion fa is constrained Willmore with Willmore energy

W (a) = 16π(ω′e3 + η′)℘′(z+)

e3 − ℘(z+)
.

Proof From (3.3) we obtain dψ = −�ψ . We define κ1 = iω̄2�(ω2ω̄1)
and κ2 = iω̄1�(ω1ω̄2)

with


(κ1ω1) = 1 = 
(κ2ω2), 
(κ1ω2) = 0 = 
(κ2ω1).

In a neighborhood p = (λ, ν) of p0 = (0, 0) the following function ψ̃ is by definition
of κ1 and κ2 double periodic with respect to 
̃a and obeys due to d ln γ = −αdz −
ᾱdz̄ (1.2):

ψ̃(z) =
(

ψ̃1(z)
ψ̃2(z)

)
= exp(lnμ1
(κ1z)+ lnμ2
(κ2z))

(
γ
1
2 (z) 0

0 γ
− 1
2 (z)ν−1

)
ψ(z),

dψ̃ =
(
lnμ1
(κ1dz)+ lnμ2
(κ2dz)− αdz λ−1νdz + νγ 2dz̄

−ν−1dz − γ−2λν−1dz̄ lnμ1
(κ1dz)+ lnμ2
(κ2dz)+ αdz

)
ψ̃.

We utilize Lemma 3.3 and expand the following functions nearby p0 (see [7, Sect. 3]):

lnμ1 = −ω1ν
−1 +W1ν +O(ν3), lnμ2 = −ω2ν

−1 +W2ν +O(ν3), W1,W2 ∈ C,

lnμ1
(κ1dz)+ lnμ2
(κ2dz) = −dzν−1 +
(

(W1ω̄2−W2ω̄1)
2�(ω2ω̄1)

dz+ (W2ω1−W1ω2)
2�(ω2ω̄1)

dz̄
)
iν +O(ν3).

Therefore we may expand the dz and dz̄ parts of dψ̃ independently:

dψ̃ =
(
−

(
1 1
1 1

)
ν−1dz +O(ν0)dz +

(
i W2ω1−W1ω2

2�(ω2ω̄1)
γ 2

γ−2 i W2ω1−W1ω2
2�(ω2ω̄1)

)
νdz̄ +O(ν2)dz̄

)
ψ̃.

We normalize the vector χ in (5.1) by χ1 = γ− 1
2 (0) such that ψ̃1|z=0 = 1. Since

χ is an eigenvector of ζ0 with eigenvalue ν this implies χ2 = −νγ
1
2 (0) + O(ν2)

and ψ̃2|z=0 = −1 + O(ν). Thus ψ̃ takes at p0 the value
(

1−1
)
in the kernel of the

leading matrix
(
1 1
1 1

)
. Since the dz̄-part vanishes at p0 the double periodic function ψ̃

is constant at p0:

ψ̃1 = ψ̃1,0 + νψ̃1,1 +O(ν2), ψ̃2 = ψ̃2,0 + νψ̃2,1 +O(ν2)

∂̄ψ̃1,0 = 0 = ∂̄ψ̃2,0 i.e. ψ̃1,0 and ψ̃2,0 are constant.

Now we obtain from the previous expansion

∂̄ψ̃1,1 = i W2ω1−W1ω2
2�(ω2ω̄1)

− γ 2, ∂̄ψ̃2,1 = γ−2 + i W1ω2−W2ω1
2�(ω2ω̄1)

.
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Since �(ω2ω̄1) = 1
�(κ2κ̄1)

> 0 is vol(C/
̃a), the integration over C/
̃a yields

4i Res
λ=0 lnμ2d lnμ1 = 4i(W2ω1 −W1ω2) =

∫

C/
̃a

8i W2ω1−W1ω2
2�(ω2ω̄1)

dx ∧ dy

=
∫

C/
̃a

8γ 2dx ∧ dy.

For a ∈ M2
2 ∪M3

2 the function λ takes at both points p1 and p2 the same value.
Therefore the left normal N (5.3) is defined in terms of the frame F (3.3) of the solution
u = ln γ of the sinh-Gordon equation. In particular, N defines a harmonic map to S

2

[7]. Now [3, Theorem 6.1 or Lemma 6.3] implies that fa is constrained Willmore.
Due to (3.5) the residue of lnμ2d lnμ2 at λ = ∞ is the complex conjugated and

therefore the negative of the residue at λ = 0. In this case �(ω2ω̄1) = |ω|2
�(ω′/ω)

> 0,
and (4.4)-(4.5) yields

W (a) = 4π Res
z=0(ω

′(ζ(z)+ ζ(z − ω′)+ η′)− 2η′z) ℘ (z − ω′)− ℘(z)

ζ(z+)− ζ(z+ − ω′)− η′ dz

= 8π(ω′e3 + η′)
ζ(z+)− ζ(z+ − ω′)− η′ =

16π(ω′e3 + η′)℘′(z+)

e3 − ℘(z+)
.

In the last equation we used [2, Chapter 13.13 (18)]. ��
The sub-family (fa)a∈M3

2
are rotational cmc tori in the unit quaternions� S

3 with rect-
angular conformal classes. They are isothermic surfaces. In terms of the coordinates
r = 1 and z+ = π i

4 + t of (4.6) their Willmore functional is

W (a) = 2π2(2 cosh2(t)− 1).

The minimum W (a) = 2π2 is taken for t = 0, which corresponds to the Clifford
torus. For non-rectangular conformal classes they are no isothermic surfaces. In Fig. 4
we plot the Willmore functional W (a)/(4π) of the family fa of constrained Willmore
tori in dependence of the conformal class τ̂a . We conjecture that this family represents
the minimum of the Willmore functional for all conformal classes nearby τ̂a = i . In
a subsequent work we shall construct a second family of constrained Willmore tori
in terms of the solutions of the sinh-Gordon equation presented here. The spectral
genus of the second family varies between zero and two. Nearby the Clifford torus
it coincides with the family fa . Only for spectral genus two and on some parts for
spectral genus one it differs form the family presented here and has less Willmore
energy.
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Fig. 4 W (a)/(4π) in
dependence of τ̂a
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