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Abstract

Cross-Lingual Information Retrieval (CLIR) is the task of finding relevant docu-
ments written in a language different from the query language. Neural machine
translation systems and CLIR models based on supervised machine learning (deep
learning) are resource-hungry approaches requiring large amounts of training data,
which is expensive to obtain and therefore does not scale well to a large number of
languages. In this thesis, we study methods for transferring retrieval models across
languages in a resource-lean way. The overarching goal is to build effective CLIR
systems for languages for which we do not have access to large-scale training data.
On a high level, our contributions fall into three areas.

Unsupervised learning of CLIR models. In the first part, we propose two fully
unsupervised neural CLIR approaches for which no relevance annotations are re-
quired. In the representation-based approach, we encode queries and documents
into independent semantic vector representations and use vector space similarity
measures to calculate document relevance scores. Here, we obtain aligned query
and document representations from static cross-lingual word embeddings (CLWEs)
and contextual representations produced by multilingual text encoders. In the term-
by-term query translation approach, we translate query terms by replacing their
occurrences with their cross-lingual nearest neighbors found in CLWE spaces, ef-
fectively casting CLIR into a noisy variant of monolingual IR (MoIR). We conduct
a large-scale evaluation and, surprisingly, find that off-the-shelf multilingual text
encoders fall behind CLWE-based methods in a direct comparison, whereas further
specialization for sentence-level semantics yields the best results.

Resource-lean transfer of CLIR models. In the second part, we focus on the
standard zero-shot cross-lingual transfer (ZS-XLT) setup and use English training
data to transfer cross-encoder (CE) reranking models to other languages. We first
show that this approach suffers from “monolingual overfitting” where models are
biased towards lexical matches between query and document tokens. To regularize
this bias, we propose to train CEs on code-switched data instead. Our results show
that this consistently improves the ZS-XLT performance for CLIR and maintains
stable performance in MoIR. Next, we rely on parameter-efficient transfer methods
to disentangle the task of learning-to-rank from learning target language semantics.
We show that this modular approach improves upon the standard ZS-XLT approach
in a scenario where the training and test data are in different domains.

In the third part, we present on the example task of multilingual dependency
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parsing a proof of concept for instance-level model selection. Here, we propose
cross-lingual transfer with multiple monolingual expert models by using a rout-
ing model. Moving away from a single multilingual model bypasses any capacity
limits in terms of number of languages (“curse of multilinguality”). Our results
pave the way for future work on CLIR involving multiple encoders (e.g. language-
family specific encoders).



Zusammenfassung

Bei sprachübergreifender Informationssuche (engl. Cross-Lingual Information Re-
trieval; CLIR) geht es darum, relevante Dokumente zu finden, die in einer anderen
Sprache als die der Suchabfrage geschrieben sind. Neuronale maschinelle Überset-
zung und CLIR-Modelle basierend auf überwachtem maschinellem Lernen (Deep
Learning) sind ressourcenintensiv und erfordern große Mengen an Trainingsda-
ten, deren Beschaffung teuer ist und sich daher nicht gut auf eine große Anzahl
von Sprachen ausweiten lässt. In dieser Arbeit untersuchen wir deshalb ressour-
ceneffiziente Methoden, mit denen wir IR-Modelle zwischen verschiedenen Spra-
chen transferieren können. Das übergeordnete Ziel besteht darin, effektive CLIR-
Systeme für Sprachen zu entwickeln, für die wir keinen Zugriff auf umfangreiche
Trainingsdaten haben. Der Forschungsbeitrag dieser Arbeit lässt sich in folgende
drei Bereiche zusammenfassen.

Unüberwachtes Lernen von CLIR-Modellen. Im ersten Teil stellen wir zwei
unüberwachte Ansätze vor, mit denen wir CLIR-Modelle erhalten, ohne auf Rele-
vanzannotionen zurückzugreifen. Im repräsentationsbasierten Ansatz enkodieren
wir Suchabfragen und Dokumente unabhängig voneinander in semantische Vekto-
repräsentationen und verwenden diese, um mithilfe von Ähnlichkeitsmaßen Rele-
vanzwerte zu berechnen. Für das Enkodieren verwenden wir sprachübergreifende
Wortvektoren (engl. Cross-Lingual Word Embeddings; CLWE) und kontextuali-
sierte Repräsentationen, die von mehrsprachigen Textkodierern erstellt werden. Im
zweiten Ansatz, Term-für-Term-Abfrageübersetzung, ersetzen wir jedes Abfrage-
wort durch seinen nächsten sprachübergreifenden Nachbarn im CLWE-Raum und
überführen dadurch CLIR in ein monolinguales IR (MoIR) Problem. Wir verglei-
chen unsere Ansätze in einer umfangreichen Studie und stellen überraschender-
weise fest, dass mehrsprachige Sprachmodelle schlechter abschneiden als CLWE-
basierte Ansätze, wohingegen eine weitere Spezialisierung auf Semantik auf Sat-
zebene die besten Ergebnisse liefert.

Ressourceneffizienter Transfer von CLIR-Modellen. Im zweiten Teil konzen-
trieren wir uns auf den Standardansatz für sprachübergreifenden Zero-Shot-Transfer
(engl. Zero-Shot Cross-lingual Transfer; ZS-XLT) und verwenden ausschließlich
englische Trainingsdaten, um Cross-Encoder (CE) Modelle in andere Sprachen zu
transferieren. Wir zeigen zunächst auf, dass dieser Ansatz an einer “monolingualen
Überanpassung” leidet, bei der Modelle zu sehr auf lexikalische Übereinstimmun-
gen zwischen Abfrage- und Dokument-Tokens ausgerichtet sind. Um diesen Bias
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zu regulieren, schlagen wir vor, CE-Modelle stattdessen auf durch Code-Switching
manipulierte Daten zu trainieren. Unsere Ergebnisse zeigen, dass wir damit deren
ZS-XLT-Leistung für CLIR konsistent verbessern, ohne dabei die Ergebnisse in
MoIR zu verschlechtern. Als Nächstes verwenden wir parametereffiziente Trans-
fermethoden, um die Aufgabe des Erlernens von Relevanzmerkmalen vom Erler-
nen der Zielsprachensemantik zu entkoppeln. Wir zeigen, dass dieser modulare
Ansatz besser als der Standard-ZS-XLT-Ansatz abschneidet, wenn die Trainings-
und Testdaten in unterschiedlichen Domänen vorliegen.

Im dritten Teil präsentieren wir, am Beispiel von multilingualem Dependenz-
parsing, eine Machbarkeitsstudie zur Modellselektion auf Instanzebene. Hierbei
lernen wir ein Modell, das darauf spezialisiert ist, einzelne Instanzen an einen oder
mehrere monolinguale Expertenmodelle weiterzuleiten. Dabei umgehen wir mög-
liche Kapazitätsgrenzen hinsichtlich der Anzahl der unterstützen Sprachen, denen
multilinguale Sprachmodelle ausgesetzt sind (sog. “curse of multilinguality”). Un-
sere Ergebnisse ebnen den Weg für zukünftige Arbeiten an CLIR mit mehreren
Textkodierern, die zum Beispiel auf Daten von verschiedenen Sprachfamilien trai-
niert wurden.
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Chapter 1

Introduction

In this chapter, we first motivate the need for cross-lingual information retrieval and
resource-lean transfer of retrieval models between languages (Section 1.1). Next,
we summarize our main contributions (Section 1.2) and conclude with an outline
of the remainder of this thesis (Section 1.3).

1.1 Motivation

Information Retrieval (IR) is the task of satisfying a users’ information need (i.e., a
users’ desire to locate information about a topic) expressed in a query, by searching
for relevant content in a large collection of unstructured material and organizing
the collection in a way such that it can be searched in an efficient and effective
way (Schütze et al., 2008). The most common branch of IR is text search, where
unstructured material refers to large collections of text documents, also known as
document collection or corpus. In ranked retrieval, IR systems present a list of
documents ranked according to their estimated relevance. IR can be viewed as
a natural language processing (NLP) task because of the unstructured nature of
queries and documents. This distinguishes it from traditional database systems
which use a structured query language (SQL) to retrieve and process data, where
the structure is determined by pre-defined schemata.

IR systems and search engines are ubiquitous in our everyday life, journalists
seek information from diverse sources, researchers conduct literature reviews with
academic search engines, software engineers search for code on StackOverflow,
jobseekers browse vacancies on job portals, and lawyers use legal search engines
to search for case files and patents. Sometimes we interact with IR systems not
only in an explicit but also in an implicit way, e.g. when automated fact checking
tools verify claims during political debates, or when we interact with virtual assis-
tants. Most recently, the rise of generative large language models (LLMs) such as
ChatGPT and GPT-4 (OpenAI, 2022, 2023) or Llama-3 (Meta, 2024) have trans-
formed the way we view language processing applications. LLMs are now used
as general-purpose agents for a myriad of knowledge-intensive NLP tasks. This

1
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raises the question of whether we still need retrieval systems to search for relevant
information when we could also prompt LLMs to directly generate answers for our
questions. Previous work shows that LLMs store factual knowledge in their model
parameters (Mallen et al., 2022; Meng et al., 2022). However, due to their black-
box nature, it is unclear how the parametric knowledge is combined to generate the
model output (Litschko et al., 2023). As a result, users cannot reliably anticipate
under which conditions LLMs are prone to generate factually incorrect statements,
which are also known as hallucinations (Dziri et al., 2022; Mallen et al., 2022).
For example, Mallen et al. (2022); Kandpal et al. (2023) find that their ability in
answering factual questions about entities relates to their popularity, i.e., how well
they are represented in pre-training corpora. A recent line of work on retrieval-
augmented generation models (RAG) (Lee et al., 2019; Lewis et al., 2020b) shows
that grounding the output generation in externally retrieved, i.e. non-parametric
knowledge mitigates the hallucination problem in LLMs (Mallen et al., 2022; Sem-
nani et al., 2023; Ram et al., 2023, inter alia). This goes to show that information
retrieval is not only crucial for satisfying human information needs, but also for
LLMs to be more accurate and trustworthy (Litschko et al., 2023).

The web is arguably the largest document collection available for retrieval.
The common crawl corpus2 is an openly available collection of web crawl data.
A recent version (CC-MAIN-2023-50) contains a total of 3.35 billion web pages.
At the same time, Wikipedia being one of the most visited websites is currently
hosting ~62 million articles (see Appendix A). Over time, the web has become
increasingly linguistically diverse. For example, as shown in Figure 1.1, in De-
cember 2001 about 17K out of 19K Wikipedia articles were written in English
(89%), and twenty-two years later, its relative share has shrunk to 10.9% (6.8M
articles). Today, Wikipedia supports over 300 languages, and combining the ten
largest Wikipedia language editions still amounts to less than 50% of all articles.

1Figure 1.1 is adapted from (Wikimedia Commons, 2020).
2https://commoncrawl.org/
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This means that more than half of all Wikipedia articles belong to the long tail of
articles written in any of the other languages. Figure 1.2 shows the language dis-
tribution of all web pages contained in the Common Crawl corpus.3 Here, too, we
can see that for less than half of all web pages (44%) English has been classified
to be the primary language, followed by Russian (RU), German (DE), Japanese
(JP), Chinese (ZH), Spanish (ES), French (FR), Italian (IT) and Dutch (NL). No-
tably, these languages were identified with Google’s Compact Language Detector
2,4 which supports 83 languages. The fact that many web pages could not be cat-
egorized into any of those languages (<UNK>) indicates that a substantial portion
of the web is written in an underrepresented language. The proliferation of mul-
tilingual content on the web motivates the development of IR systems capable of
retrieving relevant documents across language boundaries, as discussed next.

1.1.1 Cross-Lingual Information Retrieval

Sometimes relevant information is written in a language different from the query
language in which the information need is expressed. To access this information,
we need cross-lingual information retrieval (CLIR) systems. CLIR systems go
beyond the users’ perspective because retrieving external information is also an in-
tegral part of many other natural language processing (NLP) applications. These
include, e.g., cross-lingual plagiarism detection (Potthast et al., 2011; Glavaš et al.,
2018) and combating misinformation with cross-lingual fact checking (Gupta and
Srikumar, 2021; Huang et al., 2022). Also, in question answering applications, the
answer for a given question might be present in a different language (Contractor
et al., 2010; Asai et al., 2021b; De Bruyn et al., 2021). We will now discuss how
improving information access across language boundaries therefore not only im-
proves user experience and contributes towards digital inclusion, but also how it
improves the usefulness of digital assistants that rely on search.

Digital Language Divide. In the previous section, we discussed how the web has
become increasingly multilingual. While one half is dominated by English and a
few other high-resource languages, the other half is made up of a long tail of other
languages. Similar to how English is the dominant language on the web, NLP re-
search has long been dominated by English (Mielke, 2016; Bender, 2019; Ruder,
2020; Søgaard, 2022). In fact, Søgaard (2022) found that about “two thirds of NLP
research at top venues is devoted exclusively to developing technology for speakers
of English”. According to the Ethnologue there exists over 7,000 languages (Eber-
hard et al., 2022), and most languages have very limited or no resources available
to train NLP and IR models (Joshi et al., 2020a; Wang et al., 2022a). The dispar-
ity of available resources creates a digital language divide (Young, 2015) between
speakers of few high-resource languages and speakers whose native language does

3https://commoncrawl.github.io/cc-crawl-statistics/plots/languages.csv
4https://github.com/CLD2Owners/cld2
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not have a large digital footprint. While the first group benefits from access to
mature information systems, the second group is left behind. Graham and Zook
(2013) exemplify this by showing how people searching for restaurants on Google
Maps get different search results depending on the language in which the query
is formulated. In general, one might not only get different search results, with
varying degrees of quality and diversity, but also a different number of search re-
sults. That is, the choice of language directly determines the experience on the web
(Young, 2015). In the context of web search, speakers of underrepresented groups
might be unable to interact with search engines by naturally expressing their infor-
mation needs in their native language, e.g., because it leads to substantially worse
search results or because it is not supported altogether. These examples show why
one might prefer to use a language different from their native language to avoid
a worse experience with information systems. In fact, Kornai (2013) predicted
most languages in existence will gain no digital presence and, consequently, the
dominance of some languages will cause gradual extinction of other languages.

The digital language divide undermines the freedom of language choice and
cultivation of linguistic diversity, which is deeply embedded in our societal val-
ues. For example, the United Nations declare in the Universal Declaration of Hu-
man Rights that “everyone has the right to freedom of opinions and expression;
this right includes freedom [...] to seek, receive and impart information and ideas
through any media and regardless of frontiers.” (Article 19). Here, the right to
seek information regardless of frontiers includes information access across lan-
guage boundaries. And the European Union states in the Charter of Fundamental
Right of the European Union: “The Union shall respect cultural, religious and
linguistic diversity” (Article 22). Thus, to make information truly accessible, IR
systems need to be able to bridge the gap between the languages in which informa-
tion needs are expressed and languages in which documents are written, motivat-
ing the development of cross-lingual information retrieval (CLIR) systems. CLIR
enables speakers of underrepresented languages to access information relevant to
their information needs and thereby promotes the linguistic diversity on the web,
i.e., CLIR contributes towards narrowing the digital language divide.

Information Asymmetry. In addition to democratizing language technologies and
information access to a larger group of people by narrowing the digital language
divide, CLIR also benefits speakers of high-resource languages. CLIR specifically
allows users to access information that is written by speakers with diverse cultural
backgrounds and perspectives. Information asymmetry describes the observation
that content written in different languages not only covers different topics but also
different perspectives on the same topics (Roy et al., 2022). We will now illus-
trate specific examples of information asymmetry on the web and focus on cultural
biases embedded in encyclopedic knowledge. In a recent study, Miquel-Ribé and
Laniado (2019) analyze the largest 40 Wikipedia language editions and find that,
on average, 25% of all content refer to local and cultural entities such as places,
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Figure 1.3: Information Asymmetry on Wikipedia. Searching for “Herrenberg”
on the Wikipedia domain can return varying amounts of information on its history.

traditions, languages, agriculture and biographies. The authors further find that
Wikipedia’s language editions are limited in their cultural diversity (culture gap),
i.e., most of the local cultural content cannot be found on other Wikipedia lan-
guage editions. Even if two Wikipedia articles in different languages discuss the
same topic, their nature and amount of content can vary. Kolbitsch and Maurer
(2006); Callahan and Herring (2011) examine Wikipedia biographies about locally
famous people, which they refer to as “local heroes”, to understand whether those
tend to be longer and more favorable compared to their version in a different lan-
guage. Specifically, Kolbitsch and Maurer (2006) highlight an example where the
English article about the American chess player Paul Morphy had significantly
more words than the German version. This analysis was later extended by Calla-
han and Herring (2011), who compare biographies of fifteen English and Polish
local heroes from different domains (sports, politics, music, etc.). Notably, their
results highlight that articles about the same entity in different languages have un-
balanced coverage of controversial information such as, e.g., extramarital affairs,
problems with law enforcement and career controversies. Unbalanced coverage is
not limited to biographies. In Figure 1.3, we provide a location-related example
of information asymmetry. Suppose we search for the term “Herrenberg” (small
town in Germany) to find information about its history. On the German Wikipedia
version, we get access to multiple paragraphs of relevant information, whereas the
history section of the English article contains only a single paragraph. The Span-
ish article contains some information in its lead paragraph, while the Italian article
is missing historical information altogether. Most of Wikipedia language versions
contain no article about the entity at all.
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Information asymmetry origins from the interests and knowledge of the people
who author and edit texts, which in turn is influenced, among others, by cultural bi-
ases and geographical factors (Callahan and Herring, 2011; Roy et al., 2022; Samir
et al., 2024). It negatively impacts web search because it leads to search results that
are potentially biased or fail to satisfy a users’ information need due to missing in-
formation. It can also pose a challenge for high recall search applications such as
patent retrieval (Piroi et al., 2011; Shalaby and Zadrozny, 2019), surveying exist-
ing methods on a topic (writing survey papers) (Wang et al., 2024), or evidence
retrieval for automatically fact-checking claims (Guo et al., 2022), where it is cru-
cial to gather as much relevant information as possible, irrespective of language
boundaries. Finally, the adverse effects of information asymmetry also propagate
to retrieval-augmented LLMs, because their ability to respond to a knowledge-
related question relies on the information that is accessible (Mallen et al., 2023).
If a model cannot access detailed information about an entity, it will not be able to
answer specific questions about it.

1.1.2 The Case for Resource-Lean Transfer

Modern information retrieval systems rely on supervised machine learning, in par-
ticular deep learning (Goodfellow et al., 2016), to train relevance prediction models
(see Section 3.4). The limited availability of resources (i.e., training data) and the
large number of languages in existence present unique challenges for developing
CLIR systems (Section 3.2). We therefore focus on resource-lean transfer methods
for CLIR. To this end, we distinguish between three types of resources:

R1. Language Resources refer to monolingual data (easy to obtain) and paral-
lel data (hard to obtain). Monolingual data allow language models to learn
syntactic and semantic knowledge during pre-training (Chapter 2). Paral-
lel data helps to align this knowledge across language boundaries (see Sec-
tions 2.2 and 2.3.3). In CLIR, parallel data can be used to specialize ranking
models for interlingual semantics or to train machine translation models.

R2. IR Resources refer to downstream task training data (i.e., monolingual task
supervision) and facilitates training supervised retrieval/ranking models. Dur-
ing training, IR models acquire task-specific language understanding capa-
bilities required to interpret/represent information needs (queries) and match
those against relevant documents.

R3. CLIR Resources refer to cross-lingual downstream task supervision (hard to
obtain). In theory, training ranking models on CLIR training data facilitates
learning both (R1) and (R2) in an end-to-end fashion.5

5In practice, obtaining high quality training data is important to train robust CLIR models. Similar
to other language understanding tasks, CLIR models trained on low quality data can potentially suffer
from learning heuristics and “shortcuts” (McCoy et al., 2019). In Chapter 7, we investigate one
particular heuristic, which we refer to as “monolingual overfitting”, where a model relies (too much)
on overlapping keywords between queries and documents.
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To motivate resource-lean transfer, we further distinguish languages by the
available amount of resources. There are different ways how languages can be
categorized according to their digital presence. One way is to distinguish between
head and tail languages (Siddhant et al., 2022; Imani et al., 2023), where the former
refers to the top hundred languages with the largest Wikipedia language versions
and the latter to all other languages. Another commonly adopted approach is pro-
posed in (Joshi et al., 2020b), who categorize languages into six classes according
to the amount of labeled and unlabeled data that exist. Yong et al. (2023) group
these into low-, mid- and high-resource languages. We adopt a simplified version
of this notion and differentiate only between low-resource languages and high-
resource languages (see Section 3.3 and Appendix B).

In Figure 1.4 we present a taxonomy of cross-lingual transfer methods for
cross-lingual retrieval. As discussed below, sourcing large amounts of high-quality
training data (R1-3) for a quadratic combination of up to 7,000 languages would
be extremely costly (i.e., resource-intensive) and infeasible in practice. In this the-
sis, we therefore focus on resource-lean methods for transferring CLIR models to
different languages. We first investigate methods for unsupervised retrieval (Chap-
ter 4 and 5). Here, our models do not require any task-level supervision (R2), and
only limited language resources in the form of bilingual dictionaries and mono-
lingual corpora (R1). We then focus on cross-lingual transfer based on two types
of limited task supervision (R3). In the first one, we investigate few-shot CLIR,
which refers to a scenario where we assume a limited annotation budget to obtain
relevance annotations for a few queries (Chapter 5). In the second one, we transfer
models trained on a task that is similar to CLIR. Here, the task supervision is not
limited in quantity but in quality (Chapter 6). Finally, in Chapters 6 to 9 we in-
vestigate transfer methods that rely only on monolingual task supervision (R2). In
summary, we ground our definition of resource-lean transfer methods for CLIR on
the availability of existing resources (R1-3) and include any method that enables
(or improves) transferring IR models across languages without the need of collect-
ing large-scale human-annotated data (i.e., direct supervision or parallel data). We
now discuss resource-lean and resource-intensive transfer in more detail.

Resource-Intensive Transfer Methods. In principle, machine translation (MT)
can be used to transform any cross-lingual IR task into a monolingual IR task.
One can train multilingual models on translated data (translate train) or translate
queries to the document language at inference time (translate test) (Artetxe et al.,
2023). The advantage of MT is that it allows us to reuse large amounts of (typically
English) IR resources to obtain supervised retrieval models for different target lan-
guages. However, training bilingual and multilingual MT systems requires massive
amounts of parallel and multi-way parallel data (Fan et al., 2021a; Kudugunta et al.,
2023). Furthermore, storing translations for many languages would lead to exces-
sive space requirements. Furthermore, the translate-test approach increases query
latency by the inference time required for translation, slowing down retrieval.
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Figure 1.4: Taxonomy of cross-lingual transfer methods for CLIR.

Alternatively, a straightforward way to obtain ranking models in different lan-
guages is to collect training data (i.e. direct supervision) in order to specialize
(or train from scratch) supervised ranking models for a given query-document lan-
guage pair. However, modern IR models based on neural networks (Pang et al.,
2016; Nogueira et al., 2019b; Khattab and Zaharia, 2020, inter alia) contain mil-
lions of parameters and thus require access to large amounts of training data.
Obtaining high quality relevance labels from manual annotations (i.e. human-
annotated data) is a labor-intensive task and therefore too expensive to scale up
to many language pairs. Exhaustively annotating all documents in a corpus has al-
ready been shown to be impractical for monolingual retrieval tasks. For example,
Voorhees (2001) illustrates how annotating relevance for a single information need
(query) and all documents in a moderately sized document collection consisting of
800k documents, with a judgment rate of 30 seconds, would take over nine months.
A commonly adopted practice when developing standard IR test collections is to
spend a limited annotation budget on a pool of documents, which are obtained
from multiple retrieval systems and likely to be relevant (see Section 3.1.1).6 An-
other common approach is to obtain synthetic relevance annotations from of inter-
language links on Wikipedia and synthetic queries extracted from Wikipedia titles
or lead paragraphs (Sasaki et al., 2018; Sun and Duh, 2020; Ogundepo et al., 2022,
inter alia). However, the quality of synthetic data is typically lower since its distri-
bution differs from the data distribution a model is exposed to at test time. In Sec-
tion 3.2 we further discuss the quality versus quantity trade-off between obtaining
annotations from humans and automatic construction of retrieval benchmarks.

6This is still expensive: Faggioli et al. (2023a) show how annotating 86,000 pooled documents
for 50 topics (queries) in the TREC-8 Ad hoc track (Voorhees and Harman, 1999) required over 700
assessor hours and cost about $15,000. In comparison, a commonly used dataset to train and evaluate
neural retrieval models, MS MARCO (Nguyen et al., 2016), contains 6,980 test queries.
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As of today, there exists no benchmark that (i) is large enough to train and eval-
uate neural CLIR models and simultaneously (ii) has a broad language coverage.
Motivated by this, we focus on resource-lean transfer methods, which allow us
to obtain cross-lingual retrieval models for different target language pairs without
requiring access to direct supervision.

Resource-Lean Transfer Methods. In this thesis, we aim to obtain CLIR sys-
tems without collecting large amounts of training data. We distinguish between
three resource-lean cross-lingual transfer scenarios with different levels of super-
vision, as shown in Figure 1.4. In the first scenario, we investigate transfer methods
that require no task supervision (Chapters 4 and 5). These methods rely on mul-
tilingual semantic representation spaces and vector space similarity measures (see
Chapter 2). Here, we rely on text representation models that are trained on large
monolingual corpora in a fully self-supervised fashion, (Mikolov et al., 2013c; De-
vlin et al., 2019) where labels are derived from the data itself. This scales well to
many languages and requires little to no bilingual supervision.

Resource-lean transfer methods with limited supervision break down into two
branches. In the first branch, the supervision is limited in a qualitative sense where
the task on which models are trained, cross-lingual semantic textual similarity
(STS) (Hercig and Kral, 2021), only cover some aspects of cross-lingual relevance
matching, which, according to Guo et al. (2016), can be characterized by the ability
to perform similarity matching, exact lexical matching, understanding query-term
importance and identifying local relevance signals in long documents. Here, we
investigate how effective cross-lingual STS models perform when they are applied
on CLIR (Chapter 5). In the second branch, the task supervision is limited in a
quantitative sense, referring to the size of the training data. Sometimes, there is a
limited annotation budget that can be spent to collect relevance judgements for a
few queries (Few-shot CLIR).7 This leads to high quality in-domain data, as it is
closer to distribution as the data we expect at test time. In this regard, we investi-
gate to what extent we can improve the performance of cross-lingual STS models
when fine-tuned on little in-domain data (Section 5.5.5).

Lastly, compared to CLIR it is easier and cheaper to obtain large(r) amounts
of IR resources in monolingual setups. This is because annotators do not need to
be bilingual, and one can obtain synthetic relevance judgments with unsupervised
lexical retrieval models (Sun and Duh, 2020; Ogundepo et al., 2022) or by exploit-
ing links between Wikipedia articles (Schamoni et al., 2014; Sasaki et al., 2018).
Also, companies and organizations can use existing user log data to derive rele-
vance judgments (Nguyen et al., 2016). In this thesis, we study how we can use
monolingual supervision to transfer retrieval models to (and across) different lan-
guages. Following the zero-shot cross-lingual transfer approach (Hu et al., 2020;

7The notion of few-shot training is usually related to the number of training instances. For exam-
ple, in the context of NMT, Chen et al. (2020) use few-shot training to refer to a setup with 50 to 500
training instances. We use few-shot CLIR to refer to annotating the rankings of a few queries.
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Liang et al., 2020), we train ranking models on top of multilingual language mod-
els (Devlin et al., 2019; Conneau and Lample, 2019) by using English training data.
In the model selection approach, we present a proof of concept (Chapter 9) and use
monolingual datasets in different languages to train multiple models. A routing
model then forwards inputs to the models with the highest expected performance.

1.2 Contributions

Motivated by the resource scarcity (Section 1.1.2) and the goal of making infor-
mation accessible across language boundaries (Section 1.1.1), the focus of this
thesis is the study of resource-lean cross-lingual transfer methods and facilitat-
ing information search irrespective of language boundaries. This goal entails de-
veloping retrieval systems capable of matching queries against documents in the
same language (monolingual IR; MoIR), in different languages (multilingual IR;
MLIR) and across different languages (cross-lingual IR; CLIR). Contrary to re-
trieval within language boundaries, as done in MoIR, in CLIR models cannot rely
on relevance signals based on exact lexical matches, rendering CLIR a challeng-
ing task. Neural representation learning has emerged as a powerful method for
representing text in a semantic vector space (Mikolov et al., 2013c; Devlin et al.,
2019), which allows us to compute soft matches based on semantic similarity be-
tween queries and documents. In this thesis, we focus on resource-lean transfer for
semantic CLIR models. We now summarize our contributions, grouped into five
topic areas (C1-5).

C1: Unsupervised CLIR with Cross-Lingual Word Embeddings. In the first
part, we propose unsupervised CLIR models that require no relevance annotations.
We focus primarily on the bi-encoder paradigm (see Section 3.4), in which queries
and documents are independently projected into a latent semantic vector space.

1. CLIR Models based on CLWEs. Based on cross-lingual word embedding
(CLWE) spaces (Ruder et al., 2019), we propose two CLIR models (see Sec-
tion 4.2). The first method represent queries and documents by aggregating
their constituent CLWEs. The second method uses CLWEs to translate query
terms into the document language, followed by lexical retrieval. To the best
of our knowledge, we are the first to propose a fully unsupervised neural
CLIR pipeline. In a preliminary study, we validate the effectiveness of our
approach in a fully unsupervised CLIR setup.

2. Systematic evaluation of CLWEs on CLIR. We conduct a systematic eval-
uation of different resource-lean methods for inducing CLWE spaces and
compare their effectiveness on word-, sentence- and document-level CLIR
(Section 4.4). We show that the best results can be obtained with a method
that only requires a dictionary consisting of 5K word translation pairs.
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C2: Investigating the Role of Contextualization in CLIR. On the example of
two pre-trained language models (PLM), mBERT (Devlin et al., 2019) and XLM
(Conneau and Lample, 2019), we investigate multilingual text encoders for CLIR
with limited supervision and without any supervision. In Chapter 5, we investigate
the impact of contextualization on sentence-level and document-level CLIR.

1. CLIR Models based on PLMs. We study three different types of contextual-
ization. First, we encode tokens in isolation without any context (ISO). In the
second approach, we encode tokens by their “average over contexts” (AOC)
with representations extracted from their occurrences on Wikipedia. In both
cases, we construct static word embeddings from mPLMs. The third ap-
proach uses mPLMs to encode queries and documents similar to sentence
embeddings (SEMB) and dynamically contextualize tokens in-place with
their surrounding query or document tokens (Section 5.2).

2. Static versus in-place context. We show for document-level CLIR that con-
textualization (SEMB, AOC) yield gains up to twice as large as the perfor-
mance obtained with ISO representations (Section 5.5.1). On sentence-level
CLIR, we find that in-place context (SEMB) dominates over static contextual
representations (ISO, AOC). We further ablate over how many contexts we
need to average to obtain high quality AOC representations (Section 5.5.4).

3. Degree of contextualization. In addition to using contextualized representa-
tions from the output layer, we also investigate the impact of different de-
grees of contextualization. Here, we evaluate the internal layer representa-
tions of mBERT and XLM on CLIR (Section 5.5.4). Our results show that
upper layers (high degree of contextualization) work best for document-level
CLIR whereas middle layers (moderate degree of contextualization) work
best for sentence-level CLIR.

4. Context outside the maximum sequence length. Applying multilingual text
encoders only on the first n tokens up to the maximum sequence length ig-
nores relevance signals appearing at later positions. Here, we first show that
PLMs fall behind CLWEs if we do not account for larger context window
sizes (Section 5.5.1). We address this limitation and experiment with local-
ized relevance matching. Our results show that representing documents by
multiple local embeddings leads to better CLIR performance (Section 5.5.3).

C3: CLIR with Limited Supervision. We empirically evaluate the impact of
relying on supervision that is limited in quality and limited in quantity. Specifically,
we investigate how well models perform when trained on related tasks and when
trained on little in-domain CLIR data.

1. Sentence-similarity specialized PLMs. Semantic textual similarity (Hercig
and Kral, 2021) and bi-text mining (Artetxe and Schwenk, 2019a; Zweigen-
baum et al., 2018) are two closely related tasks. We evaluate multilin-
gual PLMs specialized for sentence-level similarity (Section 5.3.1) and show



12 1. Introduction

that these models can outperform both their vanilla mPLM counterparts and
CLWE-based models (Section 5.5.1). Our findings validate that cross-lingual
semantic matching is indeed a central part of CLIR and a strong proxy for
cross-lingual relevance matching.

2. Few-shot CLIR. We use a cross-fold validation setup to simulate a few-shot
CLIR scenario in which we have access to relevance annotations for less than
sixty queries (Section 5.5.5). We show that further fine-tuning sentence-
similarity specialized PLMs using a contrastive loss function consistently
yields performance improvements.

C4: Zero-shot Transfer for Cross-Lingual Re-ranking. In this part, we utilize
available relevance annotations in English to transfer retrieval models to other lan-
guages. We follow a model-based and a dataset-based transfer approach. Our
results on re-ranking in CLIR show that both approaches can improve upon the
standard zero-shot cross-lingual transfer approach with mPLMs.

1. Domain effects. In Section 6.4.1, we compare two reranking models trained
on datasets that differ both in size and in their domain similarity to the test
dataset. In our experiments, we find that the size of the training dataset plays
a crucial role in obtaining a good transfer performance. We further show
that few-shot fine-tuning (of multilingual sentence encoders) on in-domain
CLIR data outperforms zero-shot transfer based on PLMs trained on large-
scale out-of-domain MoIR data.

2. Dataset-based Zero-shot Transfer. We first show that training zero-shot CLIR
models on large monolingual training data is prone to overfitting to lexical
features which cannot be exploited at test time, which we refer to as “mono-
lingual overfitting” (see Section 6.4.2 and Chapter 7). We then demon-
strate the effectiveness of code-switching training data as a way to regularize
monolingual overfitting. The gains are most pronounced when queries and
relevant documents have no tokens in common (Section 7.4).

3. Model-based Zero-shot Transfer. In Chapter 8, we experiment with two
parameter-efficient transfer methods (Pfeiffer et al., 2020; Ansell et al., 2022)
that allow us to decouple (i) language specialization from (ii) learning to
match queries against relevant documents during training. Our results show
that this modular approach outperforms the standard zero-shot cross-lingual
transfer in a scenario where the training and test data are in different do-
mains. For the language pairs where we have access to machine translation
(MT) models, we show that parameter-efficient transfer can further improve
initial rankings obtained from a MT-based lexical retrieval system.

C5: Expert Model Selection (Proof of Concept). Multilingual encoders reach
capacity limits as we try to pre-train them on an increasing number of languages,
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which is also known as the “curse of multilinguality” (Conneau et al., 2020). We
present a proof of concept where, instead of transferring a multilingual model, we
transfer multiple expert models, thereby bypassing model capacity limitations of a
single multilingual model.

1. Instance-level model selection framework. In Chapter 9, we present an instance-
level model selection framework that consists of (i) independently trained
monolingual expert models and (ii) a routing model which predicts for each
instance-expert combination the expected performance.

2. Proof of concept. We use delexicalized dependency parsing as our proof-of-
concept task for which we have many training and test languages in high-
and low-resource languages. We train forty-two monolingual expert models
and transfer instances from a set of twenty low-resource languages. We find
that our approach outperforms two treebank-level model selection baselines.
However, there are still large gaps compared to the performance achieved by
oracle models, paving the way for future research.

1.3 Outline

This thesis is organized into four parts. In Part I Theoretical Background, we
review fundamental concepts and terminology on representation learning, infor-
mation retrieval and CLIR experiments. Here, we also describe our experimental
protocol (languages, datasets, baselines, and measures) used in our experiments.

In Part II Resource-lean Transfer of Bi-Encoders, we focus on the representation-
based retrieval paradigm where queries and documents are first independently pro-
jected into in a semantic embedding space and then compared with vector space
similarity measures to compute relevance scores (Section 3.4). In Chapter 4, we
first investigate unsupervised retrieval methods based on static cross-lingual word
embeddings, which are induced with minimal cross-lingual supervision (C1). In
Chapter 5, we study three CLIR models based on multilingual text encoders (C2.1)
and investigate the importance of context information on CLIR (C2.2 - C2.4). We
then compare models based on off-the-shelf mPLMs against (i) models trained on
related tasks (i.e., models specialized sentence similarity tasks; C3.1) and (ii) mod-
els trained on in-domain data in a few-shot setting (C3.2).

In Part III Resource-lean Transfer of Cross-Encoders, we focus on zero-shot
cross-lingual transfer (ZS-XLT) for cross-lingual reranking. Here, we assume the
availability of monolingual supervision. We transfer cross-encoder reranking mod-
els (see Section 3.4) trained on English queries and documents to a previously un-
seen language pairs in a zero-shot fashion. In Chapter 6, we first study domain
effects that occur when transferring rankers to out-of-domain datasets (C4.1). In
our experiments, we find that CE models trained on monolingual retrieval (MoIR)
data are biased towards lexical matching, which we refer to as “monolingual over-
fitting”. We find that it harms the ZS-XLT transfer performance for CLIR be-
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cause, unlike MoIR, queries and documents are written in different vocabularies.
In Chapter 7, we propose to regularize monolingual overfitting by training on code-
switched data instead (C4.3). Finally, in Chapter 8, we focus on parameter-efficient
ZS-XLT for CLIR. Here, we follow a modular approach and disentangle learning
target language semantics from learning ranking features.

In Part IV Resource-lean Transfer with Multiple Encoders, we investigate the
feasibility (proof of concept) using multiple models in a scenario where we have
access to monolingual training data in multiple languages. More precisely, we use
multiple monolingual data to train multiple monolingual expert models, instead of
training a single multilingual model (Chapter 9). We present an instance-based
model selection framework that routes input instances to the expert model that
is expected to perform best (C5.1). We evaluate this approach on the proof-of-
concept task of delexicalized dependency parsing (C5.2).

In Chapter 10, we summarize our main findings and present possible avenues
for future work. At the beginning of each chapter, we link its content to our taxon-
omy on cross-lingual transfer methods for CLIR introduced in Figure 1.4.
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Theoretical Background
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Chapter 2

Representation Learning

Traditionally, information retrieval (IR) models rely on lexical input features to
compute document relevance (Schütze et al., 2008). For example, the query likeli-
hood model (Ponte and Croft, 1998) builds statistical language models to capture
probability distributions of document tokens, the tf-idf model (Sparck Jones, 1972)
represents queries and documents as sparse vectors capturing word-level frequency
statistics (see also Section 3.3). A major shortcoming of these approaches is that
they are limited to lexical token matches (i.e., exact keyword matches) between
queries and documents.

In this chapter, we review representation learning methods as a way to learn
dense semantic vectors (Mikolov et al., 2013c; Devlin et al., 2019), which allow
us to represent queries and document based on their meaning. We first review
two types of static word embeddings in Section 2.1, followed by an introduction
into contextualized embeddings in Section 2.3. Finally, we discuss pre-training
methods for multilingual text embeddings in Section 2.3.3. This chapter lays the
groundwork for the retrieval models discussed in the rest of the thesis.

2.1 Word Embeddings: Bridging the Lexical Gap

As mentioned above and discussed in Section 3.2, lexical retrieval models suf-
fer from their inability to match queries against relevant documents when lexical
matches are not present. This is commonly the case in cross-lingual information
retrieval (CLIR) where the query and document language use different vocabular-
ies. Shared vocabulary tokens between two different languages are often limited to
lexical items that are not translated, such as names or numbers. Semantic text rep-
resentations do not represent terms by term-level statistics but by low-dimensional
dense vectors, known as word embeddings (Mikolov et al., 2013d; Bojanowski
et al., 2017a). Word embeddings represent words in a latent semantic vector space
(Deerwester et al., 1990) where, contrary to lexical representations, vector dimen-
sions are not directly interpretable since they encode underlying abstract concepts.
Word embeddings allow IR models to be sensitive to synonymy and polysemy.

17
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Figure 2.1: Illustration of a single forward pass for the Skip-gram model (left) and
the fastText model (right) with the current center word w “ report and context
word c4. Dashed lines connected to different context words ci represent different
forward passes, solid arrows represents a single forward pass. SkipGram illustra-
tion adapted from (Mikolov et al., 2013c).

In their seminal word2vec paper, Mikolov et al. (2013a) present two model
architectures for learning semantic word representations: the continuous bag-of-
words model (CBOW) and the SkipGram model. Different from lexical bag-of-
words approaches such as tf-idf, which represent terms as high-dimensional sparse
vectors, word2vec represents each word by a low-dimensional dense represen-
tation. Their method is inspired by the distributional hypothesis (Harris, 1954;
Sahlgren, 2008), which states that words that appear in similar contexts share sim-
ilar meanings. Word2vec models are trained by sliding a window of n tokens
through a large text corpus. Each window represents a local context and consists of
a center word and multiple surrounding context words. During training, word2vec
minimizes the distance (i.e., maximizes the similarity) between their respective
center and context word embeddings. The similarity between two words is calcu-
lated as by the dot product between their word embeddings simpa, bq “ wJ

a wb.
Word2vec follows the distributional hypothesis in the sense that if two words have
similar meanings, they are expected to appear oftentimes in the same local context
window, and therefore their respective word embeddings should point in a similar
direction in the embedding space.

The SkipGram model is a specific word2vec implementation (Mikolov et al.,
2013a). It is defined over a vocabulary of sizeN and parameterized by θ “ tU, V u

with U, V P RNˆd. Each vocabulary term is associated with a d-dimensional
context word embedding uw and a center word embedding vw. The model learns
to predict context words wc from center words wt, i.e. it maximizes the probability
ppwc|wtq. In the input layer, the center word is represented by a one hot vector

xi “ r0, . . . , 0, 1, 0, . . . , 0s (2.1)

where i refer to the word’s position in the vocabulary. During the forward pass,
wt is first projected into a dense embedding with the lookup uwt “ xiU . Next,
uJ
wt
V calculates for a given target word its similarity to each vocabulary term.

The similarity distribution over the context is then transformed into a probability
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wraps reichstag german artist

wrapping 0.771 landtag 0.744 austrian 0.692 artists 0.747
wrap 0.751 reichskanzler 0.742 germann 0.691 printmaker 0.692
wrapped 0.726 bundestag 0.733 germany 0.664 painter 0.685
wrappings 0.694 reichsrat 0.732 germans 0.616 watercolorist 0.673
stretchy 0.560 abgeordnetenhaus 0.718 polish 0.612 watercolourist 0.637

Table 2.1: Example query terms and their nearest (cosine) neighbors in a pre-
trained fastText embedding space (among 200k most frequent embedding terms).

distribution. The SkipGram model computes the probability of a context word for
the current center word ppwc|wtq by applying the softmax function:

ppwc|wtq “
euwt ¨vwc

řW
j“1 e

uwt ¨vj
(2.2)

As explained in (Goldberg and Levy, 2014), the model is trained by maximizing
the log-likelihood of ppwc|wtq for all pairs of pwt, wcq found in the training corpus:

Jpθq “
1

T

T
ÿ

t“1

ÿ

cPCpwtq

log ppwc|wtq (2.3)

“
1

T

T
ÿ

t“1

ÿ

cPCpwtq

plog euwt ¨vwc ´ log
W
ÿ

j“1

euwt ¨vj q (2.4)

The function Cpwtq returns for a current center word wt the surrounding context
words wc in a given window. After training, one can extract the final word em-
beddings from the model parameters. The original word2vec implementation1

uses wt to represent words. Exhaustively computing similarity scores for all nega-
tives

řW
j“1 e

uwt ¨vj is intractable for large vocabulary sizes N (Goldberg and Levy,
2014). Motivated by this, Mikolov et al. (2013c) propose to train the SkipGram
model (1) over samples of negative examples or (2) with a hierarchical softmax
formulation over the vocabulary.

The fastText word embedding model (Bojanowski et al., 2017a) is an extension
of the SkipGram model. Figure 2.1 shows a single forward pass for the word
“report” and a context word c4 for SkipGram and fastText. In fastText, the model
represents every word by its constituent n-gram embeddings g P Gw. That is,
instead of a single lookup uwt “ xpiqU , each word is now represented by multiple
n-gram embeddings zg. The similarity score between a target word wt and context
word wc is then computed as

ř

gPGw
zJ
g vwc .

Word embedding models such as SkipGram or fastText learn a mapping from
vocabulary terms to dense and low-dimensional word vectors in a latent semantic
space where individual dimensions are no longer interpretable. However, the topol-
ogy of embedding spaces exhibit rich syntactic and semantic regularities between

1https://github.com/tmikolov/word2vec/blob/master/word2vec.c
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words (Mikolov et al., 2013c,d). For example, in Table 2.1 we show for four words
their five nearest neighbors found in a pre-trained fastText embedding space. Here,
the distance between words is measured as the cosine similarity between their re-
spective pre-trained fastText embeddings.2 As mentioned earlier, lexical retrieval
methods are limited to aggregating relevance signals from exact token matches
between queries and documents. reprocessing steps such as stemming and lemma-
tization (Porter, 1980; Schütze et al., 2008) alleviate the vocabulary mismatch by
normalizing different word forms (wrapping, wrap, wrapped, . . . ) into a sin-
gle surface form, they fall short in capturing semantic relationships between differ-
ent words (reichstag, bundestag, abgeordnetenhaus).

The quality of pre-trained word embeddings can be evaluated on intrinsic eval-
uation tasks or extrinsically on downstream tasks (Wang et al., 2019b). Intrinsic
evaluations probe embeddings for linguistic regularities between words (Mikolov
et al., 2013d; Drozd et al., 2016; Wang et al., 2019b). For example, the word anal-
ogy task (Mikolov et al., 2013d) uses word embeddings to construct query vec-
tors such as, e.g., ÝÑq “ vecp“berlin”q ´ vecp“germany”q ` vecp“france”q and
evaluate if their nearest neighbors correspond to analogous words vecp“paris”q.3

Extrinsic evaluations are grounded in downstream tasks. In the context of retrieval,
Roy et al. (2018) evaluate the quality of word2vec and fastText under different
configurations. In Chapter 4 we evaluate cross-lingually aligned fastText represen-
tations on CLIR. More generally, combining off-the-shelf pre-trained word embed-
dings together with task-specific model architectures has been the de facto standard
in NLP applications (Conneau and Kiela, 2018), until they have been replaced by
contextual encoder models (see Section 2.3). In summary, intrinsic evaluations are
designed to measure how well embeddings represent syntactic and semantic word-
level relationships, and extrinsic evaluation measures the effectiveness of word em-
beddings when used as input features in downstream tasks.

Training information retrieval (IR) models with pre-trained input features that
already encode rich lexical semantics alleviates the need to learn those regulari-
ties in task-specific training. In order words, using pre-trained word embeddings
decouples “language acquisition” from learning IR-specific features (Guo et al.,
2016) such as exact matching signals, query term importance and topic relevance.
Retrieval models typically compare query and document tokens to compute rele-
vance signals from token-level interactions (see, e.g., full interaction and late inter-
action models discussed in Section 3.4). Contrary to lexical word representations
such as tf-idf (Sparck Jones, 1972), which are constrained to exact matches, word
embeddings allow for soft matches between any token-pair. This facilitates cap-
turing more nuanced and semantic token-level interactions beyond exact matches
where relevance signals are, e.g., sensitive to synonyms and related terms. Early
neural ranking models such as the deep relevance matching model (DRMM; Guo

2https://fasttext.cc/docs/en/crawl-vectors.html
3We use vec(¨) to denote a word embedding lookup and use cosine similarity to measure similar-

ity. The example has been computed on the same FastText embedding space as in Table 2.1.

https://fasttext.cc/docs/en/crawl-vectors.html
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Figure 2.2: Overview of cross-lingual word embedding induction methods accord-
ing to the classification by Ruder et al. (2019): (1) Alignment-based methods rely
on monolingual word embedding spaces and use dictionaries of word translation
pairs to learn projection(s) into a shared space. (2) Cross-lingual training rely on
aligned corpora to obtain pseudo cross-lingual data, on which a monolingual em-
bedding model is trained. Analogy example taken from (Mikolov et al., 2013d).

et al., 2016) or Co-PACCR (Hui et al., 2018) rely on word2vec embeddings to com-
pute input representations from all pair-wise similarities between query and doc-
ument terms, which are then used to extract higher-order similarities and predict
relevance scores. In Chapter 4, we systematically evaluate the effectiveness of dif-
ferent (resource-lean) methods for aligning different monolingual word embedding
spaces into a shared cross-lingual embedding space for cross-lingual retrieval.

2.2 Cross-lingual Word Embedding Spaces

1Cross-lingual Word Embedding (CLWE) spaces are word vector spaces, where se-
mantic features, as described above, are further aligned across languages (Mikolov
et al., 2013b; Faruqui and Dyer, 2014; Vulić and Moens, 2015; Joulin et al., 2018;
Artetxe et al., 2018; Lample et al., 2018; Hoshen and Wolf, 2018, inter alia). Ac-
cording to Ruder et al. (2019), most methods for inducing CLWE spaces can be
classified into projection-based approaches which map pre-trained monolingual

1This Section is adapted from: (1) Robert Litschko, Goran Glavaš, Simone Paolo Ponzetto, and
Ivan Vulić. 2018. Unsupervised cross-lingual information retrieval using monolingual data only.
In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval (SIGIR), pages 1253–1256; (2) Robert Litschko, Goran Glavaš, Ivan Vulić,
and Laura Dietz. 2019. Evaluating resource-lean cross-lingual embedding models in unsupervised
retrieval. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR), pages 1109–1112.
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word embedding spaces into a shared space and those that directly apply an embed-
ding method on a (pseudo-) cross-lingual corpus (see Figure 2.2). CLWE methods
can be further distinguished by their required level of cross-lingual supervision.
Here, we focus on CLWE methods that rely only on word-level alignments as those
are easier to obtain than sentence- and document-level alignments, and therefore
more suitable for a resource-lean cross-lingual transfer of CLIR models.

2.2.1 Projection-Based Framework

In the projection-based framework we start from two independently pre-trained
monolingual word embedding spaces (XL1 and XL2) and seek to learn the projec-
tion/mapping function(s) that either project vectors from one monolingual space to
the other or vectors from both monolingual spaces to the new joint vector space
(Glavaš et al., 2019). The projection(s) are learned using the dictionary of word
translations pairs DT “ tw

piq
L1, w

piq
L2uNi“1. Supervised models (Section 2.2.2) use

some readily available external translation dictionary usually consisting of few
thousand word translation pairs, whereas unsupervised models (Section 2.2.3) in-
duce D automatically (typically iteratively), assuming that approximate isomor-
phism holds between the monolingual embedding spaces. Using the translation
dictionary, projection-based CLWE models create word-aligned matrices – XS “

tx
piq
L1uNi“1 and XT “ tx

piq
L2uNi“1 – by looking up vectors for aligned words from D

in XL1 and XL2, respectively. In the general framework, a CLWE model uses XS

and XT to learn two projection matrices WL1 and WL2, projecting respectively
XL1 and XL2 to the shared cross-lingual space XCL “ XL1WL1 Y XL2WL2.
In practice, however, many of the models we evaluate learn only a single-direction
projection matrix WL1 which projects vectors from XL1 to XL2. This can be
seen as a special instantiation of the framework in which WL2 “ I , i.e., XCL “

XL1WL1 Y XL2.

2.2.2 Supervised Models

In the following, we review different resource-lean CLWE methods, which we
then evaluate on cross-lingual retrieval in Chapter 4. We first examine supervised
CLWE models that require an externally created translation dictionary D.

Canonical Correlation Analysis (CCA). Faruqui and Dyer (2014) treat XS and
XT as different views on the same data points and apply CCA to learn the data
representations that maximize the correlation between the two views. CCA learns
both projection matrices WL1 and WL2 and projects both monolingual spaces XL1

and XL2 to the new shared space. For a single pair of word translations xi P XL1

and xj P XL2, CCA finds projection matrices that maximizes their correlation:

ρpWL1xi,WL2xjq “
covpWL1xi,WL1xjq

a

varpWL1xiqvarpWL1xjq
(2.5)
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Here, covp¨, ¨q and varp¨q denote the correlation between and variance within la-
tent features of pairs of aligned monolingual word embeddings. This objective is
optimized for a pair of aligned word embedding matrices obtained from D.

Euclidean Distance and Procrustes Problem (PROC). Mikolov et al. (2013b)
cast the CLWE induction as a problem of learning the unidirectional projection
WL1 that minimizes Euclidean distance between the projected source language
vectors XL1 and their corresponding target language vectors XL2:

WL1 “ argmin
W

∥XL1W ´ XL2∥ (2.6)

By constraining WL1 to an orthogonal matrix, this minimization becomes a well-
known Procrustes problem (Xing et al., 2015; Smith et al., 2017) which has the
following closed-form solution:

WL1 “ UVJ, with

UΣVJ “ SVDpXL2XL1
Jq.

(2.7)

In Chapter 4, we evaluate two supervised models based on the solution on the
Procrustes problem. First, we evaluate the PROC model that induces WL1 using a
larger translation dictionary (5K word translation pairs). The second model, PROC-
B, starts from a significantly smaller translation dictionary (1K word pairs): it first
learns two single-directional projections – WL1 which induces the cross-lingual
space X1

CL “ XL1WL1 Y XL2 and WL2 that induces a different cross-lingual
space X2

CL “ XL2WL2 Y XL1 – and then augments the translation dictionary D
with pairs of words that are cross-lingual nearest neighbours according to both pro-
jections (i.e., both in X1

CL and X2
CL). Finally, PROC-B computes the new projec-

tion matrix WL1 by solving the Procrustes problem on the augmented dictionary.

Relaxed Cross-Domain Similarity Local Scaling (RCSLS). The model of Joulin
et al. (2018) learns the projection matrix WL1 by maximizing the ranking-based
measure called Cross-Domain Similarity Local Scaling (CSLS) between XSWL1

and XT (Lample et al., 2018). For a pair of aligned word embedding matricesXL1

and XL2 the Relaxed CSLS loss is defined as:

WL1 “ argmin
W

1

n

n
ÿ

i“1

´2 cospx
piq
L1W, x

piq
L2q

` rpx
piq
L1W, XL2q ` rpx

piq
L2, XL1Wq

(2.8)

where rpx
piq
L1W, XL2q denotes the average cosine similarity between the ith (trans-

lated) source vector xpiq and its k-nearest-neighbors in XL2. This term is applied
in both directions and adjusts for the “hubness problem” (Doddington et al., 1998;
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Dinu et al., 2014). CSLS, commonly used for inference in word translation (Glavaš
et al., 2019), is the cosine similarity normalized with the average similarity that
each of the vectors has with its cross-lingual nearest neighbors. For the maximiza-
tion of CSLS to be a convex optimization problem, the constraint that WL1 is
orthogonal must be relaxed. By using a BLI inference metric as its learning objec-
tive RCSLS is tailored to perform well in bilingual lexicon induction (Irvine and
Callison-Burch, 2017), as shown in Section 4.4.2.

2.2.3 Unsupervised Models

Unsupervised CLWE models automatically induce seed translation dictionaries
without any bilingual data. In Chapter 4, we include models that induce seed
dictionaries using different strategies: adversarial learning (Lample et al., 2018),
similarity-based heuristics (Artetxe et al., 2018), and principal component analysis
(PCA) (Hoshen and Wolf, 2018). After obtaining the seed dictionary D, a boot-
strapping procedure, similar to the one described for PROC-B, is executed. In the
final step, the Procrustes problem is again solved, using the dictionary produced
through bootstrapping.

Heuristic Alignment (VECMAP). Artetxe et al. (2018) induce the initial seed lex-
icon by comparing monolingual distributions of word similarities, assuming that
word translations have similar distributions of similarities with other words from
the same language. For a pair of two un-aligned matrices X and Z VECMAP

builds two monolingual similarity matrices Mx “ XXT and MZ “ ZZT , each
row i corresponds to the similarity distribution of the ith term to all other vo-
cabulary terms. Next, the values in each row are sorted (independently) yielding
sortedpMxq and sortedpMZq respectively. The initial seed dictionary D is com-
puted with a k-nearest-neighbor-search between rows of the two matrices. Word
pairs are assumed to be a translation pair (i.e., aligned) if they show similar in-
vocabulary similarity distributions. D then expanded in an iterative self-learning
bootstrapping procedure. VECMAP’s empirical robustness also crucially depends
on multiple additional steps: unit length normalization, mean centering, ZCA
whitening, cross-correlational re-weighting, de-whitening and dimensionality re-
duction.

Adversarial Alignment (MUSE). Lample et al. (2018) use a Generative Adver-
sarial Network (GAN) architecture that learns a projection WL1 (generator) from
XL1 to XL2 until a discriminator D (a deep feed-forward network parameterized
by θD) cannot distinguish whether a vector originally comes from the target space
XL2 or has been projected from the source space (i.e., comes from XL1WL1 by
the generator). Specifically, for a set of n source and m target language embed-
dings the two adversaries are trained successively for every instance with stochastic
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gradient descent to minimize

LDpθD|Wq “ ´
1

n

n
ÿ

i“1

logPθD psrc “ L2|Wx
piq

L1q ´
1

m

m
ÿ

i“1

logPθD psrc “ L1|x
piq

L2q (2.9)

LWpW|θDq “ ´
1

n

n
ÿ

i“1

logPθD psrc “ L1|Wx
piq

L1q ´
1
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where PθDpsrc “ L1|zq denotes the discriminator’s confidence of vector z origi-
nating from XL1. The initial projection is then improved in an iterative bootstrap-
ping procedure (similar to those used by PROC-B and VECMAP). MUSE strongly
relies on isomorphism of monolingual spaces, often leading to poor GAN initial-
ization, particularly for distant languages.

Iterative Closest Point Model (ICP). Hoshen and Wolf (2018) induce the small
seed dictionary by projecting vectors of N most frequent words from both lan-
guages to a lower-dimensional space using PCA. They then search for translation
matrices WL1 and WL2 that find the optimal alignment (Euclidean distance) be-
tween the two sets of N words in this space low-dimensional space. Since both the
projection matrices and optimal word alignment are initially unknown they learn
them with the Iterative Closest Point algorithm. In each iteration, ICP first fixes the
projections and finds the optimal alignment D and then uses D to update the pro-
jection matrices. Next, they employ iterative dictionary bootstrapping and produce
the final projection by solving the Procrustes problem.

Bilingual Word Embeddings Skip-Gram (BWESG). Vulić and Moens (2015)
propose a model that exploits large document-aligned comparable corpora (e.g.,
Wikipedia).4 BWESG first creates a merged corpus of bilingual pseudo-documents
by intertwining pairs of available comparable documents, as shown in Figure 2.2
(right). It then applies a standard monolingual log-linear Skip-Gram model with
negative sampling (SGNS) on the merged corpus in which words have bilingual
contexts instead of monolingual ones (Mikolov et al., 2013c).

2.3 Contextual Representations

A significant limitation of pre-computed word embeddings is their static nature.
Representing each vocabulary term with a single embedding conflates different
meanings, rendering word embeddings inherently ineffective in dealing with poly-
semy. Several works attempt to mitigate this shortcoming with so called multi-
prototype embeddings, which represent words with multiple sense embeddings
(Reisinger and Mooney, 2010; Tian et al., 2014; Cao et al., 2017; Arora et al.,
2018, inter alia). The idea of pre-training static word embeddings has later been

4We refer the reader to the survey by Ruder et al. (2019) for a broad overview.
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superseded by pre-training deep language models (LM) as universal text encoders
that compute dynamic representations based on the context of surrounding words
(Howard and Ruder, 2018; Peters et al., 2018; Brown et al., 2020; Devlin et al.,
2019). Early encoder-based language models such as ULMFit (Howard and Ruder,
2018) and ELMo (Peters et al., 2018) pre-train variants of long short-term memory
networks (LSTMs) (Hochreiter and Schmidhuber, 1997) as encoders. In the fol-
lowing, we focus on Transformer-based text encoder models (Vaswani et al., 2017;
Devlin et al., 2019), which represent the state-of-the-art architecture for modelling
text representations and are still used in large language models (LLM) (Touvron
et al., 2023; OpenAI, 2023; Meta, 2024).

2.3.1 Transformers

Subword Tokenization. Most Transformer-based language models tokenize their
input text into subwords (Devlin et al., 2019; Conneau and Lample, 2019; Conneau
et al., 2020; Wang et al., 2020a, inter alia). Sharing subword representations across
different words leads to fewer model parameters and thereby reduces the overall
model size. They also allow models to represent a larger vocabulary space and to
obtain representations for previously unseen morphological variations of words and
rare terms, similar to fastText (Bojanowski et al., 2017a). In this regard, subwords
strike a good balance between the expressiveness of (1) fully character-based input
representations which lead to very long input sequences and (2) word-based in-
put representations which are not able to represent out-of-vocabulary (OOV) terms
(Sun et al., 2023). In retrieval tasks, excessively long character-based representa-
tions would have a negative impact in query latency and slow down retrieval. On
the other hand, word-based representations fail to capture relevance signals embed-
ded in previously unseen tokens. Especially unseen words often still contain seen
subwords that carry important information. For example, mBERT’s WordPiece
tokenizer (Devlin et al., 2019)5 splits the word bundestagsabgeordneter
(eng. member of the parliament) into the following subword tokens: bundestag,
##sa, ##b, ##geordnete and ##r. In this example, a word embedding model
that has never seen the word bundestagsabgeordneter is unable to repre-
sent the word in a meaningful way. A Transformer-based language model with a
subword tokenizer, however, might still be able to use information encoded in the
seen token bundestag and contextualize it with the suffix tokens. A downside
of subword tokenizers is that they lack robustness (i.e., they over-segment words)
when applied under domain shifts (Sun et al., 2023) and when exposed to noisy
text or text containing typos (Kumar et al., 2020; Sun et al., 2023).

Subword tokenizers are extracted from (i.e., trained on) large corpora prior to
pre-training language models (Wu et al., 2016; Sennrich et al., 2016; Kudo and
Richardson, 2018; Kudo, 2018). WordPiece (Wu et al., 2016) and byte pair encod-
ing (BPE) (Sennrich et al., 2016) are among the most widely used tokenizers. Both

5We use HuggingFace’s bert-base-multilingual-cased tokenizer (Wolf et al., 2020).
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models first pre-tokenize a given corpus into words to obtain a word frequency
distribution. Next, the initial vocabulary is derived from all observed characters.
The vocabulary is then iteratively updated by merging the most frequent neigh-
boring tokens (token bi-grams) based on co-occurrence statistics.6 This process is
repeated until a desired vocabulary size is reached. At test time, the input text is to-
kenized again first into words and characters, which are then successively merged
into subwords, either by following a greedy approach (WordPiece) or by applying
learned merge rules (BPE). Repeatedly merging frequently co-occurring token bi-
grams into new vocabulary tokens has the effect that high frequent words are more
likely to be represented by a single vocabulary entry, whereas rare words (long
tail) are more likely to be decomposed into multiple tokens. A trained Subword
tokenizer can therefore be seen as a compression of the corpus it was trained on
(Gage, 1994; Sennrich et al., 2016). Next, we discuss the model architecture used
to learn dynamic, i.e. context-sensitive subword representations.

Model Architecture. In their seminal paper, Vaswani et al. (2017) present a multi-
layer neural encoder-decoder model architecture. The underlying building blocks,
also known as Transformer layers, have become the de facto standard method for
encoding text in NLP and IR applications. In the following, we focus on the en-
coder part (henceforth, Transformer). Like word embeddings (WE) discussed in
Section 2.1, Transformers are trained to represent text in a latent semantic space.
Different from WE models, token representations are computed dynamically for
each input. That is, the representation of a given token is influenced (i.e. contextu-
alized) by all other tokens present in the same input sequence, whereas static WEs
are invariant to the context in which they are used at inference time. On a high
level, the Transformer model consists of L layers, which are recursively applied to
transform a sequence of N subword tokens t1, t2 . . . tN into a sequence of seman-
tic token embeddings hplq

i P Rdmodel , where dmodel is the model dimensionality. It is
also known as the embedding size or hidden size of a Transformer model.

Transformpt1, t2 . . . tN q “ h
pLq

1 , h
pLq

2 . . . h
pLq

N (2.11)

In the input layer (a.k.a. embedding layer), each token ti is represented as the
sum of its static subword embedding wi “ WE ptiq and a vector that encodes its
position pi “ PE piq.7

h
p0q

1 , h
p0q

2 . . . h
p0q

N “ w1 ` p1, w2 ` p2 . . . wN ` pN , (2.12)

Each subsequent layer is a parameterized function that recursively refines the
token representations of the previous layer:

h
plq
1 , h

plq
2 , . . . , h

plq
N “ Layerph

pl´1q

1 , h
pl´1q

1 , . . . , h
pl´1q

N q. (2.13)

6Here, BPE and WordPiece differ in how token bi-grams are scored. Please refer to the original
papers for further details on their scoring function.

7We refer the reader to (Vaswani et al., 2017) for more details on position encoding.
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Figure 2.3: Overview of a single Transformer encoder block/layer. Left: The
encoder block is applied to each input token. Middle: Multi-head attention com-
ponents. Right: Decomposition of the attention mechanism. Image adapted from
(Vaswani et al., 2017).

Processing token representations from bottom layers up until the output layer
increasingly contextualizes their representations. Prior work suggests that pre-
trained language models (PLM) have learned to encode lexical features in lower
layers and semantic features in upper layers (Tenney et al., 2019a; Jawahar et al.,
2019; Niu et al., 2022; Aoyama and Schneider, 2022).8 In principle, lower layers
in PLMs could refine the representation of bundestag with lexical information
stored in the representations of ##sa, ##b, ##geordnete in order to represent
the term bundestagsabgeordneter. Upper layers could further contextual-
ize this with information from surrounding words to signify, e.g., a specific person
or political party the term refers to. The output representations of the last layer are
typically used as general-purpose text features in downstream tasks (Devlin et al.,
2019; Nogueira and Cho, 2019). In the rest of this section, we describe the different
Transformer sub-layers and use the same notation as in (Vaswani et al., 2017).

Attention mechanism pre-dates Transformers and describes a class of functions
that contextualize token-level representations with information distributed across
a pre-specified context of input tokens (Bahdanau et al., 2015; Luong et al., 2015;
Brauwers and Frasincar, 2023). In Transformer (encoder) models, the context cor-
responds to the input token sequence in which a word appears. This can be im-
plemented in different ways; early and widely adopted approaches include additive
attention (Bahdanau et al., 2015) and multiplicative attention (Luong et al., 2015).
On a high level, both approaches can be described as follows: (1) First, compute
pair-wise token alignments between a given target token and a set of context tokens
(i.e., scalar attention scores). (2) Next, normalize attention scores into a probabil-
ity distribution (attention weights). (3) Finally, compute an updated representation

8In Section 5.5.3 we validate this observation for CLIR and show that the optimal layer and
degree of contextualization differ between sentence-level and document-level retrieval.
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of the target token by aggregating information from its surrounding tokens (i.e.,
compute a weighted sum over all input embeddings). The token alignments com-
puted in the first two steps dynamically control how much each neighboring token
informs the representation of a given target token.

We now describe the scaled dot-product attention mechanism introduced in
the Transformer model (Vaswani et al., 2017) and shown in Figure 2.3 (right).
For a given a sequence of N tokens, each token ti is represented by a query,
key, and value vector qi, ki, vi P Rd, which are obtained from a linear trans-
form of the input representation. Query and key vectors are used to measure pair-
wise token alignments, i.e. attention scores, as follows. (1) In the first step, the
alignment between the ith target token and jth context token is expressed as the
dot product between their query and key vector qikTj . Stacking all key vectors
K “ tk1, . . . , kNu P RNˆd for a given sequence of length N allows us to com-
pute all attention scores at once with qiKT . (2) These scores are then normalized
into a probability distribution (i.e., attention weights) with α “ softmaxpqKT q,
as shown in Equation 2.2. (3) Finally, the updated representation for the ith token,
hi, is computed as a weighted sum over all value vectors: hi “

ř

αivi. The Trans-
former model concatenates all query, key and value vectors into their respective
matrices Q,K, V P RNˆd, computing the scaled dot-product attention with

AttentionpQ,K, V q “ softmaxp
QKT

?
dk

qV, (2.14)

where dk is the hidden size of key vectors and
?
dk is a normalizing constant scal-

ing down large dot-product values (Vaswani et al., 2017).
Multi-head attention, which has also been introduced in the Transformer pa-

per, uses h different attention heads. This allows the model to “pay attention to
different aspects” (Figure 2.3, middle). For example, Clark et al. (2019) show
that attention heads of trained LMs capture (i) general patterns such as attend-
ing the whole sequence, attending punctuation, or positional offsets; and (ii) syn-
tactic patterns where attention heads attend to objects of verbs, determiners of
nouns, and coreference mentions. Each attention head captures a different as-
pect in its vector headi. A single attention head is parameterized by the matrices
WQ

i P Rdmodelˆdk ,WK
i P Rdmodelˆdk and W V

i P Rdmodelˆdv . These are used to
project a sequence of input embeddings into sequences of query, key and value
embeddings respectively.

headi “ AttentionpQWQ
i ,KW

K
i , V W

V
i q (2.15)

Finally, the multi-head attention sub-layer concatenates all attention heads into
a single matrix N ˆ hdv, which are then projected back to the original model
dimensionality dmodel with a linear transformation matrix WO P Rhdvˆdmodel .

MultiHeadpQ,K, V q “ Concatphead1, ...,headhqWO. (2.16)
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After contextualization, Transformer layers apply a position-wise feed-forward
network (FFN) (Rumelhart et al., 1986). Each input token x is passed through a
two-layered neural network with a ReLU activation function (Glorot et al., 2011).

FFNpxq “ maxp0, xW1 ` b1qW2 ` b2 (2.17)

While Transformer-based LMs use attention to contextualize token representations,
prior work shows that FFNs encode internal knowledge (i.e., parametric knowl-
edge) that is acquired during pre-training (Mallen et al., 2023; Neeman et al.,
2023). For example, Meng et al. (2022) find that factual and linguistic knowledge
can be localized in FFN parameters of pre-trained LMs.

Input vectors x and output vectors Sublayerpxq of both sub-layers (multi-head
attention, FFN) are connected with residual connections: y “ x ` Sublayerpxq

(He et al., 2016). Finally, layer normalization (Ba et al., 2016) re-scales token
vectors yi by subtracting the vector mean from each value and dividing it by the
vector’s standard deviation. Residual connections and layer normalization are used
to improve the training efficiency of deep neural networks with many layers. In
summary, Transformp¨q, as shown in Equation 2.11, constructs the input em-
beddings from static subword embeddings and position encodings, which are then
contextualized in each layer l “ 1 . . . L with

h
plq
1 , h

plq
2 . . . h

plq
N “ FFNlpMultiHeadlph

pl-1q

1 , h
pl-1q

2 . . . h
pl-1q

N qq, (2.18)

until the final output layer L.9 Next, we describe how Transformer-based language
models are pre-trained to learn to encode tokens into semantic representations.

2.3.2 Pre-trained Language Models

The original Transformer architecture is implemented as an encoder-decoder model
and trained and evaluated on neural machine translation (NMT) and constituency
parsing (Vaswani et al., 2017). In the following years, a plethora of Transformer-
based pre-trained language models (PLM) have been proposed. Most language
models can be grouped into “encoder-only” models (Devlin et al., 2019; Conneau
and Lample, 2019; Liu et al., 2019; Zhang et al., 2019; Conneau et al., 2020) and
autoregressive “decoder-only” models (Brown et al., 2020; Yang et al., 2019b; Raf-
fel et al., 2020; Xue et al., 2021). In the following, we focus on the first type of
PLMs due to their widespread application in information retrieval (see Section 3.4).

BERT (Bidirectional Encoder Representations from Transformers) is the first
Transformer-based PLM and has been trained with a bidirectional objective (De-
vlin et al., 2019). Similar to word embeddings discussed in Section 2.1, the goal is
to learn semantic text representations. Contrary to word embeddings, PLMs encode
input text dynamically, i.e. the same token in different contexts is represented with

9For brevity, we omit layer normalization and residual connections.
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Figure 2.4: Overview of pre-training BERT models: A training instance is con-
structed by pairing two text segments (sentences) A with N subword tokens ai
and B with M subword tokens bj , which is augmented by special tokens ([CLS],
[SEP]) and perturbed by randomly masking tokens ([MASK]). The input layer
aggregates subword, segment and position embeddings, leading to input token em-
beddings hp0q

i . These are then contextualized with a Transformer encoder model.
The pre-training task is to reconstruct masked-out tokens from their contextualized
representations hpLq

i in the final layer (MLM) and predict whether sentence B is a
randomly sampled sentence or the sentence that follows A in the training corpus
(NSP). Image adapted from (Devlin et al., 2019).

different embeddings. This allows encoders to be sensitive towards the meaning of
words based on their context. BERT consists of an input layer and a Transformer
encoder, as shown in Figure 2.4. The input layer uses a WordPiece tokenizer (Wu
et al., 2016) to tokenize text into subwords. Each subword is represented as the
sum of its token embedding, position embedding and segment embedding. The
model is pre-trained on sentence pairs A and B extracted from a large text corpus.
Here, BERT uses segment embeddings to encode whether a given token belong to
the first or second sentence. The model also uses a special separator token [SEP]
to mark sentence boundaries and a sequence classification token [CLS] token to
allow the model to learn sequence-level representations when it is fine-tuned on
different downstream tasks. For a given sentence pair, the input token sequence is
formatted as [CLS] A [SEP] B [SEP]. Next, the input embeddings are contex-
tualized with a Transformer encoder

BERTpA, Bq “ h
pLq

[CLS], h
pLq
a1 , . . . h

pLq

[SEP], h
pLq

b1 . . . h
pLq

[SEP]. (2.19)

Devlin et al. (2019) train BERT on a large training corpus consisting of the En-
glish Wikipedia and the BookCorpus (Zhu et al., 2015). For this, the authors intro-
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duce two novel pre-training objectives: Masked Language Modelling (MLM) and
Next Sentence Prediction (NSP). MLM and NSP are examples of self-supervised
learning objectives (Gui et al., 2024) where the labels for the task (i.e., the task
supervision) is obtained from the data itself, as described next.

MLM is a de-noising objective where the model is trained to reconstruct the
original text from perturbed text, where tokens are randomly masked out or re-
placed with other tokens. To train BERT, Devlin et al. (2019) replace 15% of the
tokens in a sentence with the [MASK] token (80% of the times), a random token
(10%) or not at all (10%). At each mask position i, the model is tasked to predict
the original token from its contextualized token embedding hpLq

i . BERT reuses the
subword embedding matrix to compute the output probability distribution over the
vocabulary o “ softmaxph

pLq

i W T
embq. The MLM loss LMLM is the cross-entropy

between the predicted output distribution o and the one-hot vector of the original
token (before masking). In this regard, MLM is similar to the CBOW word embed-
ding model (Mikolov et al., 2013a) where target words are predicted from context
words, following the distributional hypothesis (Harris, 1954).

NSP is a self-supervised binary classification task. Given a sentence pair A and
B, the task is to predict if B is a randomly sampled sentence (50% of the times) or
if it is the actual next sentence of A. Here, the [CLS]-embedding is used as input
for a binary softmax classifier (i.e., classification head) softmaxph

pLq

[CLS]W
J
headq.

The rationale behind NSP is that many NLP tasks can be framed as sentence-pair
prediction tasks (Devlin et al., 2019), and teaching BERT to encode the relation-
ship between sentence pairs in the [CLS]-embedding is expected to be helpful
when the model is fine-tuned on downstream tasks. Both pre-training objectives
are jointly optimized LBERT “ LMLM + LNSP. Devlin et al. (2019) show that fine-
tuning BERT exhibits state-of-the-art results (at the time) on the popular general
language understanding evaluation (GLUE) benchmark (Wang et al., 2019a).

In a follow-up work, Liu et al. (2019) find that the original BERT model is
undertrained and present RoBERTa, which is a BERT model that has been trained
under improved conditions. Those include upscaling the training data from 13GB
to 160GB, increasing the batch size from 256 to 8K, omitting the NSP loss and
masking input dynamically during training (Liu et al., 2019). The authors show
that RoBERTa significantly improves upon BERT on the GLUE benchmark.

Fine-tuning pre-trained language models. After language models are pre-trained
once on large corpora, they are then fine-tuned on much smaller task-specific
datasets (Peters et al., 2018; Devlin et al., 2019). To do so, PLMs are augmented
by task-specific parameters stacked on top of the Transformer encoder. These are
jointly fine-tuned with all other model parameters on a downstream task. MLM and
NSP, as discussed above, are examples of token-level and sequence-classification
tasks. In Section 3.4, we describe how retrieval models rely on PLMs to (i) frame
predicting the relevance of documents as a classification task or (ii) specialize their
output representations to reflect semantic similarity.
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BERTology. Following the success of BERT and RoBERTa, a line of research
dubbed BERTology emerged (Rogers et al., 2020a), which studies the language un-
derstanding capabilities of PLMs by probing their internal representations. For ex-
ample, prior work finds that PLMs encode syntactic knowledge (i.e., structural in-
formation) such as parts-of-speech, dependency structures and co-references (Ten-
ney et al., 2019b,a; Hewitt and Manning, 2019; Wu et al., 2020). Evidence for
other language understanding capabilities found in PLMs include lexical knowl-
edge (Vulić et al., 2020), conceptual/ontological knowledge (Peng et al., 2022; Wu
et al., 2023) and common-sense knowledge (Davison et al., 2019; Lin et al., 2020).
Furthermore, Wiedemann et al. (2019) find that contextualization allows PLMs to
represent different senses of polysemous words into different semantic subspaces.
In summary, PLMs such as BERT encode rich semantics in their representations.
These are acquired at pre-training time and can be utilized by task-specific models
that are fine-tuned on downstream tasks.

2.3.3 Multilingual Representations
1In this section, we first discuss multilingual pre-trained language models (mPLM)
and models specialized for sentence-level similarity, which we later investigate for
CLIR (Chapter 5). We then discuss the zero-shot cross-lingual transfer (ZS-XLT)
paradigm, which we adopt in Chapters 6 and 7.

Multilingual Language Model Pre-training. The multilingual extension of BERT
(mBERT) follows the same training approach and is trained on the concatenation
of the 104 largest Wikpedias (Devlin et al., 2019). During training, the model is
exposed to batches with sentences mixed from different languages. Accordingly,
mBERT’s vocabulary size has been increased from 30K to 110K subwords. To
control for the imbalance of the different languages, the authors apply a smoothed
sampling approach which under-samples instances from high-resource languages
and over-samples instances from low-resource languages (during model training
and tokenizer training).10 Conneau and Lample (2019) present two cross-lingual
language model (XLM) pre-training objectives: causal language modeling (CLM)
and translation language modeling (TLM). In CLM, the task is to predict the next
token given all previous tokens. TLM is functionally similar to MLM, except it
feeds the model with sentence translation pairs, which allows it to attend tokens in
one language while predicting masked-out tokens in the other language (Conneau
and Lample, 2019). Conneau et al. (2020) later introduced with XLM-RoBERTa
(XLM-R) a model that is trained on a corpus of 2TB common crawl and Wikipedia
data spanning 100 languages.

1Our discussion on multilingual sentence encoders is adapted from: Robert Litschko, Ivan Vulic,
Simone Paolo Ponzetto, and Goran Glavaš. 2021. Evaluating multilingual text encoders for unsuper-
vised cross-lingual retrieval. In Advances in Information Retrieval: 43rd European Conference on
IR Research (ECIR), pages 342–358, Lucca, Italy (Online)

10https://github.com/google-research/bert/blob/master/multilingual.md
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Training Multilingual Sentence Encoders. An extensive body of work focuses
on specializing multilingual encoders to capture sentence meaning. In Artetxe
and Schwenk (2019a), the multilingual encoder of a sequence-to-sequence model
is shared across languages and optimized to be language-agnostic, whereas Guo
et al. (2018) rely on a dual Transformer-based encoder architecture instead (with
tied/shared parameters) to represent parallel sentences. Rather than optimizing
for translation performance directly, their approach minimizes the cosine distance
between parallel sentences. A ranking softmax loss is used to classify the cor-
rect (i.e., aligned) sentence in the other language from negative samples (i.e., non-
aligned sentences). In (Yang et al., 2019a), this approach is extended by using a
bidirectional dual encoder and adding an additive margin softmax function, which
serves to push away non-translation-pairs in the shared embedding space. The
dual-encoder approach is now widely adopted (Guo et al., 2018; Yang et al., 2020b;
Feng et al., 2022; Reimers and Gurevych, 2020; Zhao et al., 2020a), and yields
state-of-the-art multilingual sentence encoders which excel in sentence-level NLU
tasks. Other recent approaches propose input space normalization and using par-
allel data to re-align mBERT and XLM (Zhao et al., 2020a; Cao et al., 2020), or
using a teacher-student framework where a student model is trained to imitate the
output of the teacher network while preserving high similarity of translation pairs
(Reimers and Gurevych, 2020). In (Yang et al., 2020b), authors combine multi-task
learning with a translation bridging task to train a universal sentence encoder. We
benchmark a series of representative sentence encoders in this thesis; their brief
descriptions are provided in Section 5.3.1.

Zero-shot Cross-Lingual Transfer. Being able to represent text from multiple
languages in a shared input space allows us to (1) fine-tune a model on a language
where we have access to task-specific training data and (2) apply it in a different
language in which we have no training data. This is also known as zero-shot cross-
lingual transfer (ZS-XLT) (Hu et al., 2020) where, due to the availability of training
data, models are typically transferred from English as the source language to other
target languages. Multilingual Transformers have shown to exhibit state-of-the-art
performance on standard cross-lingual language understanding benchmarks such
as XCOPA (Ponti et al., 2020), XTREME (Hu et al., 2020) and XGLUE (Liang
et al., 2020). Wu and Dredze (2019) show for different cross-lingual classifica-
tion and sequence labelling tasks that mBERT, which has been trained without any
explicit cross-lingual supervision (i.e., parallel data) performs surprisingly well in
ZS-XLT. This raises the question of which factors contribute to mBERT’s multi-
linguality. Prior work on understanding mBERT’s multilinguality can be grouped
into different lines of research, as discussed next.

(i) Representation space topology: To understand mBERT’s multilinguality,
several studies investigated the topology of the vector representations extracted
from mBERT (Wu and Dredze, 2019; Pires et al., 2019; Roy et al., 2020; Lim
et al., 2024, inter alia). Wu and Dredze (2019) probe mBERT’s internal repre-
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sentations and find that all layers perform well at the language identification task,
suggesting that each layer indeed encodes language-specific information. Cao et al.
(2020) study mBERT’s contextualized word representations, captured in the words’
last subword embeddings, and find that they are weakly aligned. That is, even
though word representations of translation pairs are close to another, there still ex-
ists language clusters. This finding has been independently confirmed by Pires et al.
(2019); Roy et al. (2020); Lim et al. (2024). For example, Pires et al. (2019) evalu-
ate mBERT’s multilingual representational alignment on a sentence similarity task
using parallel data consisting of 5K sentence translation pairs. The authors claim,
for mBERT to be truly multilingual, the distance between any sentence translation
pair should be invariant to the sentences themselves. To test this hypothesis for a
given language pair, the authors first encode each sentence into a sentence embed-
ding by averaging its constituent wordpiece embeddings (excluding [SEP] and
[CLS]). The authors use the average distance over all sentence translation-pairs to
represent a global language offset, which is then used to translate (i.e., shift) sen-
tence vectors from one language subspace to another. They find that in more than
50% of the cases, when representations are extracted from the middle and upper
layers, the nearest neighbors of the shifted vectors correspond to translations.

(ii) Lexical similarity: Many languages share some common vocabulary terms
such as named entities, anglicism and numerals. Pires et al. (2019) test the hypoth-
esis that mBERT’s strong ZS-XLT performance can be attributed to simply mem-
orizing the label-token relationships of shared tokens. To do so, the authors first
measure the extent to which the fine-tuning and test languages share common sets
of entity wordpieces. They then compare this overlap with the downstream per-
formance on named entity recognition (NER). Their results suggest that mBERT’s
transfer performance goes beyond simple vocabulary memorization, and that the
model is even able to transfer to languages written in entirely different scripts.
Lastly, Wu and Dredze (2019), Dufter and Schütze (2020) and Deshpande et al.
(2022) show for different NLP tasks that overlapping tokens between train and test
languages has a strong impact on zero-shot XLT performance.

(iii) Source language selection effects: In the ZS-XLT paradigm one can com-
pare the test language against (1) the pre-training languages used in (masked) lan-
guage modelling, and (2) the source language on which a PLM is subsequently
fine-tuned. Malkin et al. (2022) investigate (1) on ZS-XLT for NER and part-
of-speech (POS) tagging. The authors show empirically that the pre-training lan-
guages influence downstream performance. They find that some languages are
good “donor” languages (i.e., they improve a model’s ZS-XLT performance) while
other languages are good “recipient” languages (i.e., they benefit most from donor
languages). Lauscher et al. (2020) investigate (2) and study English as a source
transfer language for syntactic and semantic NLP tasks. Their findings show that
the ZS-XLT performance correlates with the typological proximity between the
source and target language. Turc et al. (2021) find that other source languages of-
ten outperform English, even when the data is machine translated from English.
Other studies investigate the synergies of transferring from multiple source lan-
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guages (Chen et al., 2019; Lim et al., 2024), and transferring between languages
from the same language family (Snæbjarnarson et al., 2023; Senel et al., 2024).

(iv) Structural similarity: K et al. (2020) define structural similarity as “any-
thing that is invariant to the script of the language” and include morphology, word
ordering and word frequency as structural properties of languages. To disentangle
the effects of vocabulary overlap and structural similarity, the authors generate fake
English data ENFake and perturb English training data by shifting the Unicode of
all characters by a large offset.11 The generated data preserves structural properties
of EN but has no vocabulary overlap with any other language. Using three target
languages (TgT), K et al. (2020) train bilingual BERT models and compare the
performance between transferring from perturbed data (ENFakeÝÑTgT) and trans-
ferring from original English data (ENÝÑTgT). Contradictory to prior work (Pires
et al., 2019; Wu and Dredze, 2019), their results show no significant difference
between the two, i.e. removing wordpiece overlap with the target language does
not drastically impact downstream performance. On the other hand, they found
that perturbing ENFake data by shuffling wordpieces leads to large performance
drops. Pires et al. (2019) investigate the transfer performance with respect to struc-
tural similarity between the training and the test language in two ways. First, using
WALS features (Dryer and Haspelmath, 2013) related to grammatical ordering, the
authors show that a larger degree of structural similarity comes with performance
improvements on POS tagging. Secondly, the authors group languages according
to the two typological features Subject/Object/Verb order and Adjective/Noun or-
der. They then compare the performance between transferring to languages with
the same features (e.g. SVOÝÑSVO and ANÝÑAN) against transferring to lan-
guages with different features (e.g., SVOÝÑSOV and ANÝÑNA). Their experimen-
tal results show that the best performance is achieved when the source and target
language share the same structure.

In this thesis, we investigate these aspects in the context of cross-lingual re-
trieval and cross-lingual transfer for IR. For (i), we empirically evaluate the suit-
ability of representation spaces induced by mBERT and XLM when used as off-
the-shelf query and document encoders in Chapter 5. For (ii), we study the impact
of vocabulary overlap on zero-shot cross-lingual rerankers and propose to reduce
the vocabulary overlap in the training data as a way to improve their generalization
performance (Chapter 7). For (iii), throughout this thesis we experiment with a
diverse set of languages from different language families including high-resource
languages and low-resource languages, see Section 3.3 for an overview and Chap-
ter 10 for a discussion of our findings. For (iv), in the context of cross-lingual
transfer with multiple models, we compare predicting the best source languages
against a baseline that uses selects the source language based on structural similar-
ity (Chapter 9).

11A similar method has been applied in (Dufter and Schütze, 2020).
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2.4 Conclusion

In this chapter, we reviewed representation learning methods that allow us to en-
code text into semantic representations. We first discussed monolingual static word
embedding methods (Section 2.1) and different approaches of aligning them into
shared cross-lingual embedding spaces (Section 2.2). In Chapter 4, we present two
CLIR models based on static cross-lingual embeddings and evaluate their perfor-
mance on CLIR downstream tasks. We also reviewed pre-trained language models
(PLM) and their multilingual variants in Sections 2.3 and 2.3.3. PLMs are used in
current neural IR models, which we discuss in the next chapter. In the main part
of this thesis, we first investigate the suitability of PLM as multilingual query and
document encoders for representation-based CLIR (Chapter 5) and then focus on
zero-shot cross-lingual transfer for CLIR (Chapters 6 to 8).





Chapter 3

Cross-Lingual Information
Retrieval

To facilitate information access beyond language boundaries, we need retrieval
systems capable of interpreting information needs expressed in any language and
matching them with relevant content written in any language. This goal entails two
tasks, namely monolingual IR within different languages (MoIR) and cross-lingual
IR across different languages (CLIR). Compared to MoIR, CLIR is arguably the
more challenging task, as models cannot rely on exact keyword matches when the
query and document language vocabularies do not overlap. In this thesis, we study
ad-hoc document-level CLIR. That is, we assume every search interaction to be
independent and do not use any data from past user interactions. We specifically
focus on resource-lean methods that enable us to transfer CLIR models to other
language pairs without relying on expensive large scale training data.

In this chapter, we first introduce CLIR and provide an overview of standard
evaluation benchmarks (Section 3.1). In Section 3.2, we discuss why lexical re-
trieval models cannot be directly applied due to the lexical gap (between lan-
guages), and how the lack of training resources makes it difficult to scale CLIR
to many languages. In Section 3.3, we then introduce our evaluation protocol in-
cluding datasets, evaluation metrics and lexical retrieval baselines used through-
out most of the following chapters. We finally discuss different neural retrieval
paradigms in Section 3.4.

3.1 Introduction and Overview

In this section, we first introduce the standard evaluation paradigm used in infor-
mation retrieval research (Section 3.1.1). Next, we provide a historical overview
of different CLIR evaluation campaigns (Section 3.1.2), followed by an overview
of cross-lingual retrieval in NLP applications (Section 3.1.3).

39
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Figure 3.1: The Cranfield Evaluation Paradigm. Here, the experimental collection
is also known as test collection. Image source: (Ferro and Peters, 2019, p.7).
Reproduced with permission from Springer Nature.

3.1.1 Cranfield Evaluation Paradigm

Online and Offline Evaluation. IR research is oftentimes concerned with com-
paring the performance of two or more retrieval systems. For example, we might
want to test if a proposed model outperforms a baseline system (alternative hypoth-
esis H1) or whether there is no significant difference (null hypothesis H0). As dis-
cussed in (Ferro and Peters, 2019), to test such a hypothesis in a controlled experi-
ment, researchers define the components they can control and manipulate (indepen-
dent variables) and measure their observable effect on the dependent variables that
capture the quality of the retrieval systems (Cook et al., 2002; Hofmann et al., 2016,
p.11). They run experiments to collect data and perform statistical tests (Carterette,
2017) to either accept H1, concluding that observed differences between two com-
peting systems are significant, or rejectH1, attributing observed differences to ran-
dom chance. With online evaluation (Hofmann et al., 2016) and offline evaluation
(William, 1967), there exist two widely used evaluation paradigms.

Online evaluation is a user-centric approach that compares IR systems in a
live environment, where effects are measured by analyzing the behavior of real
users (Hofmann et al., 2016). A/B testing randomly separates user traffic into two
groups, the treatment group is exposed to a new/modified IR system and the control
group is exposed to the current system (Kohavi et al., 2009; Hofmann et al., 2016,
p.20). The effect of the group assignment (independent variable) is then measured
with metrics that capture user behavior (dependent variable). Another example of
online evaluation is interleaving (Chapelle et al., 2012; Radlinski and Craswell,
2013; Hofmann et al., 2016, p.26). Here, users are exposed to search results where
individual items are interleaved from two (or more) retrieval systems. Using im-
plicit feedback (Kelly and Teevan, 2003) from user behavior such as click data or
dwell time as a proxy for document relevance has a limited re-usability, because
experiments are tied to a dynamic environment.
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<top>

<num> 142

<title> Christo wraps German Reichstag

<desc> Find reports on the wrapping of the German
Reichstag in Berlin by the artist Christo.

<narr> The wrapping artist Christo took two weeks
in June 1995 to wrap the Berlin German Reichstag
in lengths of material. Find reports on this
artistic event. Any information on either
its preparation or its execution is relevant,
including political debates and decisions and
technical preparations.

</top>

Figure 3.2: Left: Example information need taken from the CLEF 2003 dataset
(Braschler, 2004). Right: Distribution of relevant documents across document lan-
guages.

Offline evaluation. The Cranfield evaluation paradigm (William, 1967) is the
standard approach used in most evaluation initiatives (Section 3.1.2). It formalizes
standard test environments for offline evaluation of retrieval systems in so-called
test collections (see Figure 3.1). A test collection consists of a document corpus, a
set of information needs (topics) and relevance judgments. Offline evaluation is the
standard approach adopted by TREC (Voorhees et al., 2005) and CLEF (Voorhees,
2019; Ferro and Peters, 2019), two of the largest IR evaluation campaigns. Con-
trary to online evaluation, the relevance of documents is not implicitly inferred
from user behavior but explicitly annotated by experts (ground truth). Evalua-
tion measures compare the ground truth with rankings produced by IR systems to
compute a performance score. Controlling for the test collection and evaluation
measure facilitates re-usability and allows for comparing the effectiveness of IR
systems (independent variables) under same the test conditions. Next, we describe
each component of a test collection in more detail.

Information Needs. Interactions between an IR system and a user typically begin
with an information need, which is a psychological state (Cooper, 1971) referring
to a users’ desire to find out more about a certain topic (Schütze et al., 2008). In-
formation needs can arise in a conversational context or as part of accomplishing
tasks, which in turn can trigger multiple information needs. For example, plan-
ning a holiday trip might involve looking for flights, researching different travel
destinations and learning about local cuisines. Information needs are then verbal-
ized into queries, e.g., “When are flight tickets cheapest?” or “Best city trips in
Europe”. Historically, TREC formalizes information needs into structured repre-
sentations known as TREC topic statements (Voorhees et al., 2005). As shown in
Figure 3.2 (left), each topic describes an information need at different levels of
granularity, which are stored in different fields. The title field represents the infor-
mation need as a short query limited to a few words, similar to how one would per-
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<DOC>

<DOCID>GH950620-000097

<TITLE>It’s a wrap in the name of art

<TEXT> WORKERS lower a giant panel of cloth
over the entrance to the Reichstag in Berlin,
helping Hungarian artist Christo to fulful
a dream of 24 years. Christo and his wife
Jeanne Claude are using a #4.6m loan secured
on their private art collection to fund the
work of covering the former German Parliament
in silver fabric. [...]

</DOC>

<DOC>

<DOCID>FR940123-000072

<TITLE>Christo

<TEXT> Des Künstlers Plan, den Berliner
Reichstag zu verpacken, ist bei
Umweltschützern auf Kritik gestoßen. Unter
Umweltgesichtspunkten, so urteilt Michael
Braungart, Vorsitzender des Hamburger
Umweltinstituts, ist das Projekt eine
Schweinerei. [...]

</DOC>

Figure 3.3: Two relevant CLEF documents in German and English for the infor-
mation need shown in Figure 3.2. For brevity, we only show the first two sentences
and exclude unused metadata. Both documents are part of the CLEF 2003 dataset
(Braschler, 2004).

form a keyword search. The description field provides more context and describes
the information need in one sentence. The narrative is a complete description of the
information need and allows annotators to determine whether a document is rele-
vant and meets an information need. In CLEF test collections, topics are developed
to cover events in a broad range of domains such as politics, culture, sports, science
and translated into different languages (Womser-Hacker, 2001; Braschler, 2004).
Topic development and relevance annotations are performed by hired and trained
native speakers also known as assessors. For example, most assessors employed
by NIST are retired intelligence analysts (Soboroff, 2021). In the NTCIR-1 and
NTCIR-2 evaluation campaigns, assessors were researchers in scientific domains
(Kando, 2000). As discussed in Section 1.1.2, the high costs associated with hiring
and training assessors, developing topics and collecting relevance judgments make
it impractical to create large-scale CLIR datasets for many languages.

Document Collection. Relevant information can be present in different modalities
such as text, image, and video. In this thesis, we focus on text retrieval where in-
dividual sentences, passages or entire articles can be relevant. We refer to a single
searchable text unit as document and to the set of all documents as document col-
lection or corpus. The CLEF 2003 benchmark (Braschler, 2004) is a popular test
collection used for ad-hoc document-level CLIR. Here, the document collection
consists of news articles written in different languages. Similar to topic statements,
documents are organized in structured representations, each document has a doc-
ument ID, a title and a text field. In Figure 3.3 we show two relevant documents
for our earlier example query (Figure 3.2). The English document discusses the
event of wrapping the “Reichstag in Berlin” on a rather high level, and the German
document discusses political aspects related to its environmental impact. This is an
example of information asymmetry, as discussed in Chapter 1. It shows how CLIR
enables access to not only more information but also more diverse and localized
information.
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Relevance Judgments. The notion of relevance emerges from a users’ informa-
tion need and from the intent behind a query. For example, the intent behind the
query “implementing batch normalization in Python” might be asking for passages
describing how to do the task (Answer Retrieval) or looking for specific code exam-
ples (Code Retrieval).1 The main difference between the Cranfield paradigm and
online user studies is that in Cranfield relevance is not implicitly inferred from user
behavior but explicitly annotated by experts. Those annotations are also known as
relevance judgments or relevance assessments.

Relevance can be assessed on a binary scale or on a scale of different degrees
of relevance (Cooper, 1971). As mentioned in Section 1.1.2, manually assessing
an entire corpus for each topic is too expensive for any reasonably large document
collection. In many IR applications such as web search most queries only have
a few relevant documents, skewing the label distributions towards non-relevant.
Annotating a random sample is therefore likely to miss relevant documents. In
other words, it is non-trivial to obtain documents that are likely relevant. Pooling
(Spark-Jones, 1975) is a commonly applied method for creating a pool of promis-
ing candidate documents to be manually annotated. For any given topic, the idea is
to collect n different search rankings Ri, e.g., from teams participating in the same
shared task. The pool depth k corresponds to the top-k documents taken from each
ranking Ripkq. Finally, the candidate document pool to be annotated is the union
of all documents that appear at a high rank in any participating ranking:

n
ď

i“1

Ripkq. (3.1)

The pool size and thus the annotation budget for a single topic bounded by n rank-
ings times k documents (Voorhees, 2019, p.82).

In CLIR, we assume the notion of relevance to be language agnostic, which
means that relevant documents can be present in any language. The CLEF 2003
benchmark (Braschler, 2004) adopts a binary relevance scale, where a document
is judged as relevant if it contains any relevant portion. Due to information asym-
metry, content in different languages may cover the same topic to different extends
(Section 1.1.1). Naturally, the number of relevant documents written in a language
may be influenced by whether the topic, e.g., refers to a local event where the lan-
guage is spoken. For example, the topic shown in Figure 3.2 (right) is covered more
often in German news articles than in other languages (see also Appendix B.1).

3.1.2 Historical Test Collections

Cross-lingual IR (CLIR) has been studied for a long time in different research
communities. In the following, we provide an overview of some CLIR evaluation
initiatives and their development in chronological order.

1This example is taken from (Asai et al., 2023) and shows that IR goes beyond lexical matching.
In fact, Fan et al. (2021b) show that different retrieval tasks require different linguistic skills to model
relevance.
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Text REtrieval Conference (TREC). In 1992 the US National Institute of Stan-
dards and Technology (NIST) initiated TREC, which is a leading information re-
trieval workshop that regularly organizes shared tasks related to text retrieval, also
known as TREC Tracks. The earliest official TREC CLIR tracks were organized
in the years between 1997 and 1999: TREC-6 (Schäuble and Sheridan, 1998),
TREC-7 (Braschler et al., 1999) and TREC-8 (Braschler et al., 2000).2

Initially developed independently of TREC, the Microsoft MAchine Reading
COmprehension (MS MARCO) dataset (Nguyen et al., 2016) is a large-scale En-
glish retrieval benchmark that contains labels, documents and queries from real
user interactions. Queries correspond to user questions and are sampled from
Bing’s search log, documents are passages extracted from websites retrieved with
Bing and relevance is manually annotated by editors. The MS MARCO dataset
has been used in the TREC Deep learning Tracks from 2019 until 2022 (Craswell
et al., 2020a, 2021a, 2022, 2023). Bonifacio et al. (2021) later created a multilin-
gual version of MS MARCO, dubbed mMARCO, where queries and documents
are machine translated into thirteen different languages.

In 2022 CLIR has returned to TREC with the recent NeuCLIR Track (Lawrie
et al., 2023). The organizers use the HC4 dataset (Lawrie et al., 2022), which in-
cludes Common Crawl News documents in Chinese, Persian and Russian. Impor-
tantly, different from prior TREC tracks, NeuCLIR also includes a large training
split. In the following year, TREC NeuCLIR also included retrieval tasks of tech-
nical documents written in Chinese and multilingual news retrieval (Lawrie et al.,
2024). It’s current iteration, NeuCLIR 2024,3 extends prior shared tasks by report
generation where CLIR systems are evaluated in the context of retrieval augmented
generation (Lewis et al., 2020b).

Cross-Language Evaluation Forum (CLEF). The CLEF initiative emerged as a
separate community in Europe to focus on cross-lingual and multilingual retrieval
evaluation for European languages (Voorhees, 2019). The first CLEF CLIR eval-
uation campaign (CLEF 2000) involved seven different query languages and En-
glish news articles (Braschler, 2001). In the following years, CLEF also included
news articles from different countries and written in different languages (Braschler,
2003, 2004). Specifically, the CLEF 2003 benchmark4 has expanded to eighth Eu-
ropean languages (Braschler, 2004) and for example included news articles, among
others, from the German newspaper Frankfurter Rundschau and news magazine
Der Spiegel, and the English newspaper Glasgow Herald. CLEF corpora were
used to organize tracks for monolingual, cross-lingual and multilingual retrieval.
In the years 2004 to 2009 CLEF continued to expand their evaluation campaigns
to different retrieval tasks and additional languages, for a comprehensive historical
review of CLEF we refer to (Ferro and Peters, 2019).

2In 1994 TREC-4 organized a shared task on multilingual retrieval (Davis and Dunning, 1995).
3https://neuclir.github.io/2024
4https://catalogue.elra.info/en-us/repository/browse/ELRA-E0008/

https://neuclir.github.io/2024
https://catalogue.elra.info/en-us/repository/browse/ELRA-E0008/
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Later in 2010 the CLEF initiative has been rebranded to Conference and Labs
of the Evaluation Forum and broadened the scope to include, e.g., retrieval in
other modalities such as image, speech and video (Voorhees, 2019). Most recently,
Bonab et al. (2019) extended the CLEF 2000-2003 test collections with new query
translations into the low-resource African languages Swahili and Somali. To fur-
ther advance research in low-resource languages, we contribute three additional
CLEF query translations into Kyrgyz, Uyghur and Turkish (see Chapter 8).

NII Testbeds and Community for Information access Research (NTCIR). 5

Next to the US and European IR research communities, the Japanese National In-
stitute of Informatics (NII) established the NTCIR initiative6 to hold regular work-
shops on IR tasks. Their focus lies on CLIR involving Asian languages. The first
workshop (NTCIR-1) took place in 1999 and included CLIR with Japanese queries
and English document collections (Kando et al., 1999). Documents consisted of
scientific abstracts from a broad range of disciplines and domains (Ferro and Pe-
ters, 2019). Later NTCIR iterations in 2002 to 2007 (i.e., NTCIR-3 to NTCIR-6)
also included the languages Chinese, English, Japanese, Korean (Chen et al., 2002;
Kishida et al., 2004a; Abdou and Savoy, 2005; Kando, 2007).

Forum for Information Retrieval (FIRE) is an initiative established by the In-
dian Statistical Institute in 2008 to promote the development of retrieval systems
for Indian languages (Hindi, Bangla, Marathi, Tamil, Telugu, Punjabi, Malayalam)
(Mitra and Majumdar, 2008).7 In the following years, FIRE organized different
CLIR shared tasks. FIRE-2010 (Majumder et al., 2013b) was the second iteration
of ad-hoc cross-lingual document retrieval. FIRE-2011 (Palchowdhury et al., 2013)
additionally included the tasks of Cross-Language Indian Text Reuse (CL!TR), i.e.,
plagiarism detection (Barrón-Cedeno et al., 2013) and SMS-based Cross-lingual
FAQ Retrieval with noisy text coming from “SMS language” (Contractor et al.,
2013). FIRE-2013 (Majumder et al., 2013a) included the Cross-Language !ndian
News Story Search (CL!NSS) Track (Gupta et al., 2013).

3.1.3 Cross-Lingual Retrieval for NLP

In the previous section, we discussed with TREC, CLEF, NTCIR and FIRE four
major CLIR initiatives. For a comprehensive survey including CLIR initiatives
from other different IR communities, we refer the reader to (Galuščáková et al.,
2021). CLIR has also been studied in the natural language processing (NLP) com-
munity. We now describe three related research and application areas where cross-
lingual retrieval is used.

5Formerly called National Center for Science Information Systems (NACSIS).
6https://www.nii.ac.jp/dsc/idr/en/ntcir/ntcir.html
7http://fire.irsi.res.in/fire/static/data

https://www.nii.ac.jp/dsc/idr/en/ntcir/ntcir.html
http://fire.irsi.res.in/fire/static/data
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CLIR for Machine Translation (MT). Word retrieval (Cao et al., 2020) and
bilingual lexicon induction (Irvine and Callison-Burch, 2017) are two tasks where
cross-lingual retrieval is evaluated on the word-level. The motivation for these
tasks is two-fold. First, they allow us to measure the lexical alignment of multilin-
gual representation spaces (see Sections 2.2 and 2.3.3), and, secondly, they allow
us to obtain translation dictionaries, which, e.g., can be used to induce cross-lingual
embedding spaces (Section 2.2.1). This resource-lean approach is suitable when
parallel data (i.e. sentence translation-pairs) is difficult to obtain. Early approaches
in CLIR rely on dictionaries for query translation and query augmentation (Balles-
teros and Croft, 1996; Adriani and Van Rijsbergen, 1999; Peters et al., 2012). In
this thesis, we use bilingual dictionaries to translate queries (Chapter 4) and code-
switch queries and documents (Chapter 7).

Cross-lingual sentence retrieval (a.k.a. bi-text mining) is motivated by the goal
of automatically extracting parallel data from large multilingual corpora to train
machine translation models (Zweigenbaum et al., 2018; Artetxe and Schwenk,
2019b). Regular shared tasks are organized by the Workshop on Building and
Using Comparable Corpora (BUCC) (Zweigenbaum et al., 2018).8 In addition
to BUCC corpora, the Tatoeba dataset (Artetxe and Schwenk, 2019b) is also com-
monly used to evaluate sentence-level retrieval. Finally, a closely related task,
cross-lingual semantic textual similarity (Hercig and Kral, 2021).

CLIR for Question Answering (QA). Cross-lingual answer retrieval is an in-
tegral part of question answering systems (Asai et al., 2021b; Roy et al., 2020;
Limkonchotiwat et al., 2022; Zheng et al., 2022; Albalak et al., 2023). The retriever-
reader framework (Asai et al., 2021b) divides the task of QA into (i) answer re-
trieval,9 i.e. finding the passage that contains the answer, and (ii) machine read-
ing comprehension where answers are extracted from retrieved text (Lewis et al.,
2020a; Ni et al., 2019). The recent Workshop on Multilingual Information Access
(MIA) involved a shared task to evaluate this paradigm in the cross-lingual do-
main (Asai et al., 2022). Similar approaches have been applied in multilingual fact
checking (Gupta and Srikumar, 2021) and cross-lingual fake news detection (De-
mentieva and Panchenko, 2021), where, e.g., CLIR is used to retrieve supporting
evidence in order to predict the truthfulness of claims (Huang et al., 2022).

In retrieval-augmented generation (RAG) (Lee et al., 2019; Lewis et al., 2020b;
Mallen et al., 2022), support passages are not used to extract or predict the answer
but instead to condition the answer generation process, e.g., with a pre-trained
sequence-to-sequence (seq2seq) model (Lewis et al., 2020b). Following seq2seq
RAG, Shi et al. (2022) propose a framework for cross-lingual Text-to-SQL gen-
eration, where the model is provided with a foreign language user question and
instructed to generate a SQL statement based on English database schemata. Here,

8https://comparable.limsi.fr/bucc2023/
9This is also known as Cross-Lingual Retrieval Question Answering (CL-ReQA) (Limkonchoti-

wat et al., 2022) and Language agnostic Retrieval QA (LaReQA; see Roy et al., 2020)

https://comparable.limsi.fr/bucc2023/
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CLIR is used to find the closest English examples (pairs of user questions and SQL
statements) in order to condition the generation of the SQL statement. Augment-
ing prompts with additional examples is also known as in-context learning (Brown
et al., 2020) and widely used in decoder-only large language models (LLMs) such
as ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023; Bubeck et al., 2023). In
in-context learning, LLMs solve a task formalized by a task description (instruc-
tion), a few in-context examples of expected input-output pairs and a test instance
to be solved. In the context of cross-lingual retrieval, Nie et al. (2023) and Lin
et al. (2024) study CLIR as means to improve in-context learning in low-resource
languages by retrieving semantically similar examples in high-resource languages.

Finally, a task that is closely related to answer retrieval is Frequently Asked
Question (FAQ) retrieval (Mass et al., 2020). The goal is to retrieve those question-
answer pairs that best match the intent and semantics of a user question. In cross-
lingual FAQ retrieval questions are formulated in a language that is different from
the language in which an existing collection of question-answer pairs are written
(Contractor et al., 2010; De Bruyn et al., 2021).

CLIR on Wikipedia data. There are numerous Wikipedia-based CLIR bench-
marks focusing on different languages and aspects of cross-lingual document re-
trieval (Schamoni et al., 2014; Sasaki et al., 2018; Sun and Duh, 2020; Ogundepo
et al., 2022; Li et al., 2022, inter alia). WikiCLIR (Sasaki et al., 2018) covers CLIR
in twenty-five language pairs. To obtain relevance labels, the authors derive mono-
lingual rely on links between articles, which are propagated to other languages
with inter-language links. Queries and documents are extracted from the first sen-
tence and first 200 words of the Wikipedia articles. CLIRMatrix (Sun and Duh,
2020) follows a similar approach and extends CLIR evaluation to 139 language
pairs. Here, relevance labels are derived from lexical retrieval scores instead (see
BM25 in Section 3.3), which are discretized and propagated to foreign language
documents with inter-language links. AfriCLIRMatrix (Ogundepo et al., 2022) is
created the same way and covers English queries and 15 diverse African document
languages. Finally, MuSeCLIR (Li et al., 2022) is derived from disambiguation
pages and focuses on lexical translation ambiguity.

As discussed in (Huang et al., 2023), an advantage of automated approaches
of creating CLIR benchmarks based on Wikipedia is that articles are authored by
native speakers and therefore are of high quality. A downside is that queries and
relevance judgements are synthetically derived and thus do not reflect the distribu-
tion of real information needs and query formulations. For the MIRACL dataset,
Zhang et al. (2023c) hired native speakers to obtain realistic questions and rele-
vance labels based on Wikipedia paragraphs. Their focus, however, lies on mono-
lingual retrieval in eighteen different languages. The authors use Wikipedia article
snippets to inspire human annotators to formulate queries. This approach has also
been adopted in TyDi QA (Clark et al., 2020), which has later been extended to
CLIR with the XOR QA dataset (Asai et al., 2021a).
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3.2 Main Challenges

In this section, we first discuss one of the fundamental challenges of CLIR: bridg-
ing the lexical gap between languages, which is the reason why unsupervised lex-
ical retrieval methods ineffective for CLIR. We then discuss the challenge of ob-
taining high quality training data for neural CLIR models and the limitations of
using machine translation.

Lexical Gap (Between Languages). The lexical gap describes a phenomenon
where queries and documents express the same concept with different terms (Berger
et al., 2000). Lexical retrieval models, which are based on exact term matches, fall
short in dealing with linguistic variety such as for example polysemy and syn-
onymy. Polysemous words have different meanings and can belong to different
word classes.10 Matching words only based on their surface form can therefore
inadvertently overestimate the relevance of non-relevant documents and lead to
false positives. The opposite holds for synonyms, where words with different sur-
face forms have the same meaning. Failing to match query terms with synony-
mous document terms leads to false negatives. Different heuristics exist to improve
the robustness of lexical retrievers towards lexical variations: Term-level normal-
ization approaches such as stemming (“reports” ÝÑ “report”) and lemmatization
(“took” ÝÑ “take”) translate different morphological surface forms to a common
canonical form (Porter, 1980; Schütze et al., 2008). Rather than normalizing to-
kens, queries can also be augmented with new terms (query expansion) to better
reflect the term distribution of the document collection and bridge the lexical gap
(Rocchio Jr, 1971; Abdul-Jaleel et al., 2004; Azad and Deepak, 2019). In sum-
mary, lexical methods suffer from the vocabulary mismatch problem because of
their inability to model semantic relatedness, linguistic variation and topical sim-
ilarity. This issue is further amplified in cross-lingual retrieval scenarios, where
the lexical gap between languages is caused by differences in language vocabu-
laries. In Section 2, we discussed how neural language models representing terms
in a semantic space (Devlin et al., 2019; Conneau and Lample, 2019). This al-
lows neural retrieval models (Section 3.4) to compute “soft matches” between any
query-document term pair, capturing their semantic similarity.

Training Resources: Quantity vs. Quality Trade-off. Access to a large amount
of relevance judgments is key for training (and evaluating) neural CLIR models.
As discussed in Section 1.1.2, human-annotated relevance assessments are of high
quality but are expensive to obtain. Because of this reason, many traditional ad-
hoc document retrieval benchmarks (Section 3.1.2) contain a limited number of
queries and are mainly used to evaluate CLIR systems. For example, the CLEF

10For example, the description field in our example (cf. <desc> in Figure 3.2) contains the word
“report”, for which WordNet 3.1 (Miller, 1995) lists thirteen different meanings and two different
word classes (noun, verb).
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2003 dataset contains only 60 queries (Braschler, 2004). There are different ways
to reduce the high cost associated to relevance assessments (Faggioli et al., 2023a),
we now discuss two widely adopted approaches.

A commonly adopted low-cost approach in document-level CLIR is to use
Wikipedia as a resource to automatically derive benchmarks (Section 3.1.2). For
example, the CLIRMatrix benchmark supports 139 language pairs with a total of
49.3M queries and 50.5M documents (Sun and Duh, 2020). Wikipedia-based CLIR
datasets use article links (Sasaki et al., 2018) or discretized lexical matching scores
(Sun and Duh, 2020; Ogundepo et al., 2022) to obtain relevance labels, which are
then propagated to other languages with inter-language links. The shortcoming of
(automatically derived) Wikipedia-based benchmarks is that they are limited to en-
cyclopedic knowledge with synthetic queries and relevance assessments, which
might not be representative of how humans express natural information needs.
Other benchmarks such as MS MARCO (Craswell et al., 2021b) and MIRACL
(Zhang et al., 2023c) contain queries written by humans and relevance judged by
humans. However, these benchmarks are created to evaluate monolingual instead
of cross-lingual retrieval. As of today, there exist no large scale CLIR dataset with
human-annotated relevance judgments and natural queries.

Recent works use generative models to generate synthetic data (Bonifacio et al.,
2022; Dai et al., 2023; Mayfield et al., 2023; Thakur et al., 2023). For example,
InPars (Bonifacio et al., 2022) and Promptagator (Dai et al., 2023) generate syn-
thetic queries from corpus documents. Similarly, Askari et al. (2023) generate
passages for queries with ChatGPT (OpenAI, 2022). Mayfield et al. (2023) adopts
this approach for CLIR and generate for pairs of target language documents En-
glish queries such that one document is relevant, and the other is non-relevant. The
authors discuss error categories such as generating under- and overspecified queries
and hallucinations. Empirically, their proposed method shows mixed results when
compared to machine translation, which we discuss next.

Limitations of Machine Translation (MT). There are two standard ways of us-
ing MT to close the language gap in CLIR. One can either translate queries at test
time (translate test) or translate training data to obtain supervised ranking mod-
els in our target language pair of interest (translate train) (Artetxe et al., 2023).
In practice, however, MT-based CLIR approaches relying on commercial transla-
tion systems such as Google Translate (Li and Cheng, 2018; Shi et al., 2021) are
limited by its language coverage. Furthermore, Bonifacio et al. (2021) show that
translation quality and retrieval effectiveness are weakly correlated. In the context
of low-resource African languages, Ogundepo et al. (2023) show that MT-based
CLIR models still perform poorly. Similarly, our qualitative analysis in Section 8.4
reveals that MT can cause unwanted artifacts such as topic shifts, repetition and
hallucinations. We refer the reader to (Guerreiro et al., 2023) for a comprehensive
classification of different types of hallucinations in neural MT.

Moreover, people in different geographic regions are naturally interested in
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different entities such as local organizations, places and people. Callahan and Her-
ring (2011) investigate how different Wikipedia versions contain varying amounts
of information on “local heroes”. Such cultural biases play a crucial role in CLIR
and other knowledge-intensive NLP applications (Ponti et al., 2020; Peskov et al.,
2021; Asai et al., 2021a) and cause a domain mismatch between translated training
data and test data (Shen et al., 2021). For example, consider a hypothetical world
where we have access to an oracle translation model. Translating English train-
ing data would adapt it to lexical and syntactic properties of the target languages;
however, it would not change the content (i.e., topic and entity distribution) of the
source language (Peskov et al., 2021; Asai et al., 2021a). Consequently, cultural
and topical biases propagate to CLIR models trained on translated data. One way to
account for local interests and cultural differences is to involve non-English native
speakers from different geographic regions in the development of CLIR datasets,
as done for example in the recent question answering benchmarks XOR-QA (Asai
et al., 2021a) and AfriQA (Ogundepo et al., 2023).

3.3 Evaluation Protocol

Ranking Notation. In this thesis, we focus on ad-hoc document-level ranked re-
trieval. The task input is a list of queries Q derived from a respective list of infor-
mation needs (i.e., topics), a document collection C and relevance assessments for
query-document pairs. We adopt the notation from Lin et al. (2021b) and denote
with q P Q a single query with its constituent query tokens tqi and with d a single
document with the tokens tdi . In ranked retrieval, the task is to return a ranked list
of documents R “ rpd1, s1q, pd2, s2q . . . pdn, snqs. This ranking is created such
that documents are sorted according to their relevance scores in descending order
from most relevant to least relevant s1 ą s2 ą ¨ ¨ ¨ ą sn. We denote the number of
queries as |Q| and the set of rankings after evaluating each query as R “ tRiu

|Q|

i“1.
Relevance scores si can be computed in different ways. Vector space retrieval

methods (Schütze et al., 2008) first encode queries and documents independently
of each other into vector representations ÝÑq and

ÝÑ
d , and then use vector space

similarity measures to compute relevance scores s “ simpÝÑq ,
ÝÑ
d q. Lexical re-

trieval models such as tf-idf (Sparck Jones, 1972) encode queries and documents
as sparse vectors, which capture term-level statistics extracted from corpora. In
the Chapters 4 and 5 we investigate semantic text encoders known as bi-encoders
(Karpukhin et al., 2020), where query and documents are represented with dense
semantic embeddings (see Section 3.4). A different way to obtain relevance scores
is to frame it as a machine learning task, also known as learning-to-rank (Liu,
2009). In the Chapters 6 to 8 we follow the cross-encoder approach first proposed
by Nogueira et al. (2019c) and treat scoring a documents’ relevance as a classifi-
cation task. For this, we train a supervised model s “ fpq, dq to jointly encode
query-document pairs and predict the document relevance. This paradigm is also
known as pointwise learning-to-rank (Liu, 2009, p.33).
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Lexical Relevance Matching Baselines. Relevance scores si are computed from
relevance signals. Different retrieval paradigms can be distinguished by the way
they aggregate relevance signals and score documents. Lexical retrieval models
(Sparck Jones, 1972; Robertson et al., 1995; Ponte and Croft, 1998) compute
relevance signals based on exact term matches between queries and documents.
Lexical scoring functions such as the tf-idf model (Sparck Jones, 1972) use term
weighting schemes involving variants of term frequency tfpt, dq and inverse docu-
ment frequency idfptq (Schütze et al., 2008). The simplest weighting scheme uses
the raw frequency of a term t in a document and calculates idf as idfptq “ N

dfptq ,
where N is the corpus size and df(t) the document frequency, i.e. the number of
documents containing t. Intuitively, if an exact matching term appears more often
in a given document, then a higher term frequency tfpt, dq increases its relevance
signal. Conversely, if it also appears in a large number of documents, then a lower
idfptq reduces its relevance signal. Using tf-idf weights and a vocabulary of size
|V |, we can represent documents and queries in a |V |-dimensional vector space
ÝÑq ,

ÝÑ
d P R|V | and compute the relevance score by their inner product:

stf-idfpQ,Dq “
ÿ

tPqXd

tf-idfpt, dq “ xÝÑq ,
ÝÑ
d y (3.2)

Among lexical scoring models, BM25 is arguably one of the most widely used
scoring function (Robertson et al., 1995):

sBM25pq, dq “
ÿ

tPqXd

log
N ´ dft ` 0.5

dfptq ` 0.5
¨

tfpt, dq ¨ pk1 ` 1q

tfpt, dq ` k1 ¨
`

1 ´ b` b ¨
ld
L

˘ (3.3)

In BM25 each relevance signal is the product of two components: The first com-
ponent is a smoothed variant of idfptq and captures a global perspective, terms that
appear in very few documents are useful in discriminating between documents. On
the other hand, terms that appear in all documents, such as words that function as
grammatical building blocks, do not contribute towards contrasting relevant from
non-relevant documents. The second factor captures a local perspective of rele-
vance. Here, the term frequency tfpt, dq is additionally scaled by the document
length ld relative to the average document length L. The impact of the normaliza-
tion factor ld

L and tfpt, dq is controlled by two parameters b and k1.
The query likelihood model (QLM) is a probabilistic lexical relevance match-

ing model (Ponte and Croft, 1998). QLM scores documents according to their
probability of being relevant to a given query P pd|qq. Instead of directly estimat-
ing this probability, the authors propose to apply the Bayes rule to reformulate
the probability as P pd|qq “ P pq|dqP pdq{P pqq. The probability P pqq is indepen-
dent of documents and thus dropped, because it does not impact on the document
ranking. P pdq can be used to encode a priori relevance criteria such as “authority,
length, genre, newness and number of previous people who have read the docu-
ment” (Schütze et al., 2008). Assuming each document to be equally likely rel-
evant, we can drop P pdq, which reduces QLM to estimating P pq|dq. The QLM
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model estimates P pq|dq with document-side unigram language models Md. Each
model captures document-specific term probabilities based on their term frequen-
cies and the document length P pt|Mdq “ tfpt, dq{ld. The relevance score with the
QLM model sQLM breaks down into query term probabilities:

sQLMpq, dq “ P pq|dq “
ź

tPq

P pt|Mdq “
ź

tPq

tfpq, dq

ld
(3.4)

QLM scores each document according to sQLMpq, dq and ranks documents accord-
ing to the likelihood of the query being generated by their language models Md.
In Chapter 4, we use lexical matching as a baseline for CLIR, where it is limited
to shared tokens between languages such as numbers and named entities. In the
Chapters 6 to 8, we use lexical matching as a baseline in (i) monolingual IR in
different languages and (ii) in a pipelined approach based on machine translation.

Evaluation Metrics. In most parts of this thesis (Chapters 4 to 8) we use Mean
Average Precision (MAP) (Harman, 1992) to evaluate our retrieval models. Fol-
lowing the notation from (Lin et al., 2022), the Average Precision (AP) for a single
query is defined as

APpR, qq “

ř

pk,dqPR Precision@kpR, qq ¨ relpq, dq
ř

dPC relpq, dq
. (3.5)

whereR “ rd1, d2, . . . , dN s is the ranking for a single query q. The binary function
relpq, dq indicates whether d is relevant for q. Precision@k evaluates the fraction
of relevant documents out of all top-k documents. Computing the mean of all
AP-values queries yields the Mean Average Precision (MAP):

MAPpR,Qq “
1

|Q|

ÿ

APpR, qq (3.6)

In this thesis, we also use the Mean Reciprocal Rank (MRR) (Kantor and Voorhees,
2000). MRR is applicable when there is only one relevant document for a given
query, or when the user seeks a specific document that is known to exist or has
been seen before (Craswell, 2009). For a given set of N queries Q “ tqiu

N
i“1 and

corresponding set of document rankings R, MRR is defined as

MRRpR, Qq “
1

N

N
ÿ

i“1

1

ranki
, (3.7)

where ranki denotes the position of the first relevant document in the ranking R
and 1

ranki
denotes the reciprocal rank. In Chapter 7, we use the mMARCO dataset

(Bonifacio et al., 2021), for which the official evaluation metric is MRR@10 (Kan-
tor and Voorhees, 2000). MRR@10 evaluates the reciprocal rank only up to the first
ten documents found in a ranking R “ rd1, d2, . . . , d10s, and relevant documents
appearing at later positions are assigned a reciprocal rank of zero.



3.3. Evaluation Protocol 53

Language Class Family Branch CLEF mMARCO

High-resource Languages

English (EN) 5 Indo-European Germanic ✓ ✓
German (DE) 5 Indo-European Germanic ✓ ✓
Finnish (FI) 4 Uralic Baltic-Finnic ✓
Italian (IT) 4 Indo-European Romance ✓ ✓
Russian (RU) 4 Indo-European Balto-Slavic ✓ ✓
Dutch (NL) 4 Indo-European Germanic ✓
Turkish (TR) 4 Turkic Oghuz ✓
Arabic (AR) 5 Afro-Asiatic Semitic ✓
Chinese (ZH) 5 Sino-Tibetan Sinitic ✓
French (FR) 5 Indo-European Romance ✓
Portuguese (PT) 4 Indo-European Romance ✓
Vietnamese (VT) 4 Austronesian Vietic ✓

Low-resource Languages

Indonesian (ID) 3 Austronesian Malayic ✓
Swahili (SW) 2 Niger-Congo Sabaki ✓
Somali (SO) 1 Afro-Asiatic Cushitic ✓
Kyrgyz (KG) 1 Turkic Kipchak ✓
Uyghur (UG) 1 Turkic Karluk ✓

Table 3.1: Overview of CLIR languages used. The class column refers to the
language taxonomy proposed by Joshi et al. (2020b), who distinguish between
languages “exceptionally limited resources” (0), languages with “some amount of
unlabeled data” (1), languages with “a small set of labelled datasets” (2), languages
“with a strong web presence” (3), languages with “large amount of unlabelled data”
and those with lesser amounts of data (4) and languages with “a dominant online
presence” (5).

Evaluation Benchmarks. We evaluate resource-lean transfer methods for ad-hoc
document-level CLIR primarily on the standard test collections from the CLEF
2001-2003 benchmark (Braschler, 2002, 2003, 2004).11 We additionally experi-
ment on the low-resource query languages Swahili and Somali provided by Bonab
et al. (2019) and, as an additional contribution, we also published three new query
translations into Uyghur, Kyrgyz and Turkish (Chapter 8). With CLEF, we have
access to (1) natural, i.e. human-annotated relevance labels and human-written
documents and queries, and (2) a dataset that facilitates evaluation in both mono-
lingual retrieval in different languages (MoIR) and across languages (CLIR). Fol-
lowing standard practice (Lavrenko et al., 2002; Vulić and Moens, 2015), we create
queries by concatenating the title and description field of each CLEF “topic” (Fig-
ure 3.3), and the title and text fields in documents (Figure 3.2).

11Many of the CLIR collections in CLEF, TREC, NTCIR, and FIRE have strict licensing con-
straints and are not publicly accessible (Galuščáková et al., 2021).
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Rel. Doc. Document Length Query Length

Corpus size Average Median Whitespace WordPiece Whitespace WordPiece

EN 169.5K 18.6 7.0 509.1 698.4 18.8 22.4
DE 294.8K 32.6 24.0 283.5 488.9 17.2 28.4
IT 157.6K 15.9 8.0 298.3 480.8 21.3 30.3
FI 55.3K 10.7 5.0 256.0 646.7 12.8 34.8
RU 16.7K 5.4 3.0 258.3 555.8 16.9 34.8
TR - - - - 14.6 31.3

SW - - - - 21.5 40.3
SO - - - - 17.6 43.0
KG - - - - 14.8 45.3
UG - - - - 15.6 58.2

Table 3.2: CLEF 2003 dataset statistics of document collections and queries. We
report the total number of documents (corpus size), the average/median number
of relevant documents per query and the average/median number of tokens af-
ter whitespace and WordPiece tokenization (we use the pre-trained tokenizer of
mBERT (Devlin et al., 2019)). Swahili and Somali queries are provided by (Bonab
et al., 2019), and Kyrgyz and Uyghur are provided by us (see Chapter 8).

In Table 3.1 we list all languages used in this thesis and show their language
resource categorization according to Joshi et al. (2020b).12 Following Yong et al.
(2023), we group languages belonging to resource category 4 and 5 into high-
resource languages (top half). Deviating from their classification, we consider all
other languages as low-resource languages (bottom half). In summary, our experi-
ments involve twelve high-resource and five low-resource languages from a diverse
set of seven languages families. Table 3.2 summarizes token frequency statistics
of the CLEF 2003 dataset (Braschler, 2004). CLEF contains 60 queries, which
are manually translated into document languages. The number of documents in
CLEF range from 16.7K (RU) to 294.8K (DE). Notably, we find that WordPiece
tokenization leads to disproportionately more tokens for Finnish and Russian doc-
uments and low-resource queries.13 This reflects the fact that some languages are
under-represented in the pre-training corpus on which the tokenizer was trained (cf.
Chapter 2.3). It also indicates that these languages are less favored in IR because
models need to allocate a larger token budget to encode the same queries.

For our experiments in Chapter 7, we require a large-scale in-domain training
dataset to train our ranking models. While the CLEF datasets are sufficiently large
and realistic for CLIR evaluation, they are too small to train supervised neural
ranking models. We therefore resort to the mMARCO benchmark (Bonifacio et al.,
2021), which consists of parallel (i.e., machine translated) queries and documents
in thirteen different languages.

12See also https://microsoft.github.io/linguisticdiversity/
13In Appendix B, we show token-level distributions of queries and documents.

https://microsoft.github.io/linguisticdiversity/
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Figure 3.4: Overview of Neural IR paradigms: a) Bi-Encoder models encode
queries and documents independently and compute relevance scores with vector
similarity measures. b) Cross-Encoder models jointly represent query-document
pairs and model relevance as a classification problem. Here, the encoder enables
full interaction in all layers. c) Late interaction models pre-compute document
token representations offline and query-document interactions on the last layer on-
line. d) Models construct “image” representations from query-document token-
level interactions and higher-level interactions with convolutional neural networks.
e) Encoder-decoder models predict relevance based on token generation probabili-
ties. This image adapted from (Khattab and Zaharia, 2020).

3.4 Neural Retrieval Paradigms

Neural retrieval models are based on semantic representations of query and doc-
ument (sub)words. As shown in Figure 3.4, different approaches can be broadly
classified by the way how interactions between query and document tokens are cal-
culated and how relevance scores are predicted. Most retrieval models have in com-
mon that they are composed of (1) a token-level representation lookup, followed
by (2) computing higher-level semantic representations from token-level interac-
tions. In the following, adopt the classification of (Khattab and Zaharia, 2020) and
review neural retrieval paradigms. Due to their relevance in the following chap-
ters, we focus on bi-encoder and cross-encoder models. Our overview is limited to
neural retrievers. We acknowledge the existence of other neural approaches such
as query and document expansion models (Nogueira et al., 2019c,a; Formal et al.,
2021; Gospodinov et al., 2023, inter alia) and refer the reader to (Guo et al., 2020;
Lin et al., 2022) for a more comprehensive overview of existing methods.
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3.4.1 No Interaction: Bi-Encoders

Bi-encoder models are also known as dual encoders (Karpukhin et al., 2020; Ni
et al., 2022), dense retrieval models (Lin et al., 2022), or Siamese networks (Brom-
ley et al., 1993; Kenter et al., 2016) when two encoders share the same weights.
In this approach, queries q and documents d are projected (i.e., embedded) inde-
pendently of each other into fixed-sized low-dimensional vector representations
ÝÑq ,

ÝÑ
d P Rd. The relevance score for a given a document is computed with a vec-

tor space similarity measure sBE “ simpÝÑq ,
ÝÑ
d q such as cosine similarity (see

Figure 3.4 a)). Bi-encoders compute semantic query/document representations ei-
ther (1) with a non-parametric aggregation function such as average pooling (Le
and Mikolov, 2014; Kenter et al., 2016; Galke et al., 2017, inter alia),14 or (2)
with a trained encoder model that computes intra-token interactions (Reimers and
Gurevych, 2019; Karpukhin et al., 2020; Xiong et al., 2021; Qu et al., 2021). In
Transformer-based encoders, these interactions are computed with attention mech-
anism and summarized in [CLS]-embeddings (see Section 2.3). We now briefly
discuss two popular implementations of Transformer-based bi-encoders.

Karpukhin et al. (2020) present the dense passage retrieval (DPR) model, which
is trained with a contrastive training objective to learn [CLS]-embeddings to min-
imize (maximize) the distance between queries and relevant (non-relevant) docu-
ments. For this, the authors use different question answering (QA) datasets and
train DPR on random in-batch negative examples (i.e., non-relevant documents),
hard negatives mined with BM25 (negative examples with a high lexical overlap),
and positive passages (relevant documents). Later, Thakur et al. (2021) showed
that DPR performs well when tested on in-domain data and substantially worse
than BM25 when it is applied on out-of-domain datasets (zero-shot domain trans-
fer).15 Another popular dense retriever is Contriever (Izacard et al., 2021). Con-
trary to DPR, it is trained in a self-supervised way without any human-labeled data.
To obtain positive query-document training pairs, the authors apply two random
cropping strategies. First, following the Inverse Cloze Task (Lee et al., 2019), the
authors extract random spans as queries and use their complement (i.e., text out-
side the span) as relevant documents. To include positive examples where queries
and document can have overlapping tokens (i.e., exact lexical matches), the authors
additionally sample contiguous overlapping text segments. Negative examples are
obtained by mixing positive pairs from different examples. Izacard et al. (2021)
train Contriever on web data and Wikipedia and show that it outperforms both
DPR and BM25. Both DPR and Contriever have multilingual variants, dubbed
mContriever (Izacard et al., 2021) and mDPR (Zhang et al., 2021, 2023c).

Bi-encoders do not compute inter-token interactions between query and docu-
ment tokens. Encoding all semantic information in a fixed-sized vector of limited
capacity is a bottleneck when we want to encode long documents such as news
articles covering multiple topics (Tran et al., 2024). Instead of only considering

14We refer the reader to (Mitra and Craswell, 2017) for a more thorough review.
15This is in line with our results on zero-shot cross-lingual transfer for CLIR (see Chapter 6).
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the first n document tokens (Karpukhin et al., 2020), one can also (1) encode lo-
cal parts of documents extracted with a sliding window (Hofstätter et al., 2020b)
or (2) increase the representational capacity by encoding documents with multi-
ple embeddings, each capturing different local aspects (Zhang et al., 2022b; Kong
et al., 2022). For example, Zhang et al. (2022b) replace the [CLS] token by mul-
tiple [Viewer] tokens. The embeddings of these tokens are optimized to encode
different aspects of the input text. Here, the similarity between a query and a
document is measured as the similarity between the query and a document’s most
similar [Viewer] token. To avoid different [Viewer] tokens to collapse to the
same representation during training, the authors use a uniformity loss to incentivize
dissimilarity between the most similar viewer token (i.e., the embedding closest to
the query embedding) and other viewer tokens.16

Despite their limited “capacity” bi-encoders are still a popular approach be-
cause document embeddings can be pre-computed and stored offline. Online re-
trieval can be run in a very efficient way thanks to fast approximate nearest neigh-
bor libraries (Johnson et al., 2019). Because of this, bi-encoders are especially
used as first-stage retrievers (Nogueira et al., 2019b), also known as prerankers.
Multilingual bi-encoders are effective prerankers in CLIR, because they allow for
efficient retrieval in setups where queries and documents are expected to have little
to no lexical overlap.

3.4.2 Full Interaction: Cross-Encoders

Nogueira and Cho (2019) are the first to adopt BERT (Devlin et al., 2019) for IR.
Their model, dubbed MonoBERT, frames predicting the relevance of a document
as a binary classification task and can therefore be considered an instance of point-
wise learning-to-rank (Liu, 2009, p.33). MonoBERT represents query-document
pairs by concatenating their tokens into a single input sequence Concatpq, dq “

[CLS] q [SEP] d [SEP]. It uses the contextualized embedding of the spe-
cial classification tokenE[CLS] at the output layer to jointly encode query-document
pairs with a single dense feature representation, which is then used to predict the
document relevance in a final classification layer.

sCEpq, dq “ softmaxpE[CLS] ¨W ` bq (3.8)

The forward pass of MonoBERT’s Transformer layers enables full interaction
because all query tokens can attend all other query tokens as well as all document
tokens, and vice versa. According to Lin et al. (2022), models that (1) follow
the input representation template of concatenating queries and documents, as de-
scribed above, and (2) combine Transformers with a classification head are called

16Li et al. (2023b) distinguish between single-vector retrieval and multi-vector retrieval. Here,
we consider multi-view models as bi-encoder models, as there is no token-level interaction between
queries and documents involved during the computation of relevance signals.
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cross-encoders (CE) (MacAvaney et al., 2019; Nogueira and Cho, 2019). Cross-
encoders are inherently limited by the maximum input sequence length the under-
lying BERT-based encoder model can encode. To mitigate this limitation, cross-
encoder variants such as BERT-MaxP and BERT-SumP (Dai and Callan, 2019),
and BIRCH (Yilmaz et al., 2019) compute passage-level or sentence-level rele-
vance scores, which are then aggregated into document-level relevance scores. PA-
RADE (Li et al., 2023a) takes a different approach and instead aggregates passage-
level [CLS] representations with pooling mechanisms (e.g., max pooling or av-
erage pooling) or with model-based aggregation. In Section 5.5.3, we investigate
relevance score aggregation for cross-lingual retrieval.

While cross-encoders are more expressive than bi-encoders they are also much
slower due to the quadratic complexity of the attention mechanism (cf. Section 2.3).
To balance retrieval speed and retrieval effectiveness, Nogueira et al. (2019b) pro-
pose to use MonoBERT in a multi-stage system as a slower but more effective
reranker that is used to refine (i.e., rerank) the ranking of the top-k documents
returned by an efficient first-stage retriever.17 Other approaches to improve the re-
trieval speed include knowledge distillation from large cross-encoders into smaller
cross-encoders (Chen et al., 2021) or into bi-encoder models (see Section 3.4.4),
and early stopping in lower layers (Xin et al., 2020).

3.4.3 Late Interaction: ColBERT

Late interaction models (Khattab and Zaharia, 2020; Gao et al., 2021a; Qian et al.,
2022, inter alia) strike a balance between the efficiency of bi-encoders and expres-
siveness of cross-encoders. These models pre-compute and store document token
representations at indexing time. At search time, rather than computing full in-
teraction in all layers, they compute query-document token interactions only on
representations extracted from the output layer.

The first late interaction model, dubbed ColBERT, was proposed by Khattab
and Zaharia (2020). ColBERT uses a BERT-based encoder to first contextualize
query and document tokens independently of each other. Here, input sequences
are prepended by special tokens [Q] and [D]. Queries shorter than a pre-defined
number of tokens are additionally padded with [mask] tokens, which function
as a soft version of query augmentation (Khattab and Zaharia, 2020). To reduce
the index size, the authors project query and document tokens embeddings into
smaller vectors. ColBERT uses a non-parametric function to compute inter-token
interactions and relevance scores (MaxSim). More precisely, MaxSim implements
late interaction and identifies for each query token its most similar document token
according to the cosine similarity between their respective embeddings. In other
words, the relevance score is computed as the sum of “best match”-similarities
across all query tokens. Formally, for a sequence of length-normalized (L2 vector
norm) and contextualized query tokens Q “ rQ1, Q2, ..., QN s and document to-

17We revisit multi-stage ranking in Chapter 6.
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kens D “ rD1, D2, ..., DM s, a document’s relevance score sColBERTpq, dq is com-
puted as the sum of maximum similarities:

sColBERTpq, dq “

N
ÿ

i“1

M
max
j“1

Qi ¨DT
j (3.9)

Khattab and Zaharia (2020) show that ColBERT can be used directly as a
reranker and, importantly, that the MaxSim operator can also be used to directly
identify for each query token its best matching token in the entire corpus. This
allows ColBERT to be also deployed as a first stage ranker. Similar to bi-encoders,
MaxSim can be computed efficiently on the entire corpus by using fast approximate
nearest neighbor search libraries such as FAISS (Johnson et al., 2017). Late inter-
action can also be implemented with attention models (Gao et al., 2020). However,
the ability to utilize FAISS makes ColBERT a more efficient choice.

Several studies focus on (1) reducing ColBERTs index size, (2) reducing its
query latency and (3) improving the effectiveness of late interaction (Gao et al.,
2021a; Hofstätter et al., 2022; Santhanam et al., 2022). For example, ColBERTer
(Hofstätter et al., 2022) learns transformations from subword token embeddings to
word-level embeddings to reduce the index size. COIL (Gao et al., 2021a) com-
putes relevance scores as the sum of (i) interactions between exact lexical matches
between query and document tokens and (ii) the dot product between their re-
spective [CLS]-embeddings. Between computing late interaction on all query-
document tokens on one hand and only on exact lexical matches on the other hand,
the CITADEL model (Li et al., 2023b) frames computing interactions between
query and document tokens as a dynamic lexical routing problem. Here, a routing
model predicts alignments that encode which query-document token pairs interact.
In a different work, Qian et al. (2022) propose to relax the constraint that each
query token can only be matched to a single document token. Their model, dubbed
ALIGNER, constructs interaction matrices from pairwise dot products, and con-
trols which tokens get aligned with a learned sparse alignment matrix. Finally,
ColBERT-PRF combines ColBERT’s token-level embeddings and k-means clus-
tering for pseudo-relevance feedback (Wang et al., 2021b).

3.4.4 Other Approaches

Query-Document Interaction Models. Early neural ranking models rely on (pre-
trained) word embeddings and compute input representations from local pair-wise
interactions between query and document tokens (Pang et al., 2016; Guo et al.,
2016; Hui et al., 2017, 2018; Xiong et al., 2017). For example, MatchPyramid
(Pang et al., 2016) and PACCR (Hui et al., 2017, 2018) model relevance prediction
analogous to image classification. These models construct “images” where each
“pixel” corresponds to, e.g., the dot product similarity between a query-document
word embedding pair. Higher-level interactions such as matching phrases are cap-
tured with convolutional neural networks (CNN) (LeCun and Bengio, 1995). Dif-
ferent 2D CNN kernels capture different n-gram similarity patterns. MatchPyramid
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and PACCR aggregate local matches into feature vectors that are used to compute
relevance scores. Later, MacAvaney et al. (2019) show that word embeddings can
be replaced with contextualized BERT embeddings.

Generation-based IR. Raffel et al. (2020) propose a unified transfer learning
paradigm that casts different types of NLP task into sequence-to-sequence (seq2seq)
tasks. The authors train a single encoder-decoder model, dubbed “Text-to-Text
Transfer Transformer” (T5), on the union of training instances from a diverse set of
NLP tasks. Nogueira et al. (2020) adopt this approach for IR. Their model, dubbed
MonoT5, is similar to MonoBERT in the sense that both models are pointwise
learning-to-rank models (Liu, 2009, p.33). Nogueira et al. (2020) use the template
“Query: {q} Document: {d} Relevant:” to create training instances. The authors
initialize MonoT5 with a T5 checkpoint and train the model to predict the next
token to be “true” and “false” for relevant and non-relevant documents. To obtain
a document’s relevance score smonoT5, the authors compute the softmax function
only over the vocabulary tokens “true” and “false” and use the probability assigned
to the former. A shortcoming of MonoT5 is that it can only be used for re-ranking
because each document needs to be scored individually.

Tay et al. (2022) introduced with the Differentiable Search Index (DSI) model a
novel and fully end-to-end retrieval paradigm. DSI exploits the fact that large lan-
guage models can memorize factual knowledge in their model parameters (Bansal
et al., 2022; Mallen et al., 2022; Carlini et al., 2023). The idea of DSI is to “store”
(i.e. memorize) a corpus during indexing and decode document IDs from query
text at retrieval time. Indexing is cast as a seq2seq task, where a DSI model learns
to associate the content of a document to its document ID. That is, the indexing
task is to predict document IDs from their content. To represent document IDs,
Tay et al. (2022) investigate (1) atomic identifiers, (2) tokenizable IDs and (3)
semantic IDs obtained from hierarchical k-means clustering. Retrieval is formu-
lated as another seq2seq task. Here, the model learns to match queries to (rele-
vant) document IDs. At test time, DSI ranks documents by sorting softmax logits
of (atomic) document IDs or with beam-search decoding (tokenizable) document
IDs. Follow-up work focuses on improving the representation of document IDs
(Wang et al., 2022b), effectively generating query-document pairs for training DSI
models (Zhuang et al., 2022; Bevilacqua et al., 2022) and different self-supervised
pre-training tasks (Chen et al., 2022a). In summary, DSI is different from the clas-
sic “index-retrieve-then-rank” paradigm (Chen et al., 2022a) and learns the entire
pipeline in an end-to-end fashion (Metzler et al., 2021).

Hybrid Approaches. Different paradigms excel at different aspects of retrieval.
Prior work (Thakur et al., 2021; Chen et al., 2022b) shows that dense retrieval mod-
els trained on general domain data struggle when applied on out-of-domain data, a
setting to which lexical models are robust and perform competitively. Sparse-dense
hybrid approaches address this challenge, e.g., by linearly interpolating relevance
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scores from sparse and dense rankers (Wang et al., 2021a; Luan et al., 2021), fusing
rankings produced by sparse and dense rankers (Cormack et al., 2009; Chen et al.,
2022b), or by guiding the training of dense rankers to explicitly capture signals that
BM25 fails to capture (Gao et al., 2021c). On the architecture side, Zhang et al.
(2023a) propose a hybrid between cross-encoders and late interaction models and
show improvements on out-of-domain generalization while maintaining constant
in-domain performance. In their model, the final relevance score is computed as
the sum of MonoBERT’s relevance score and an additional late interaction rele-
vance score. In another hybrid approach, Zhang et al. (2022a) use a cross-encoder
ranker and bi-encoder retriever in an “Adversarial Retriever-Ranker” (AR2) setup
to gradually improve the ranker by training on increasingly more difficult negative
examples provided by the retriever.

Finally, several studies use knowledge distillation (KD) (Hinton et al., 2015)
to train a student bi-encoder model to imitate a slower but more expressive teacher
model (Hofstätter et al., 2020a; Lin et al., 2021c; Izacard and Grave, 2021). For
example, TCT-ColBERT (Lin et al., 2021c) uses ColBERT as a teacher model to
distil its late interaction features into bi-encoder student models. TRMD-ColBERT
(Choi et al., 2021) follow a two ranker multi-teacher KD approach. In the context
of open-domain question answering (see Section 3.1.3), Izacard and Grave (2021)
propose to inform the retriever with knowledge encoded in the model that is used
to extract answers (i.e., the reader model). In this work, the authors distil cross-
attention scores from a sequence-to-sequence model to a bi-encoder.

3.5 Conclusion

In this chapter, we provide an overview of the Cranfield evaluation paradigm and
historical IR test collections (Section 3.1). In Section 3.2, we discussed the main
challenges that arise in CLIR due to the lexical gap and lack of resources. We in-
troduced our evaluation protocol (Section 3.3) and described datasets, metrics and
baselines which we use throughout the rest of this thesis. Finally, we reviewed
different neural retrieval paradigms and retrieval model architectures (Section 3.4).
In the following chapters, we investigate the bi-encoder paradigm based on cross-
lingual word embeddings (Chapter 4) and multilingual sentence encoders (Chap-
ter 5). We then focus on resource-lean transfer of multilingual zero-shot cross-
encoders in Chapters 6 to 8.
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Chapter 4

Cross-Lingual Retrieval with
Static Word Embeddings

1In this chapter, we propose a fully unsupervised framework for ad-hoc cross-
lingual information retrieval (CLIR), requiring no cross-lingual supervision and
no CLIR task supervision at all. The framework leverages shared cross-lingual
word embedding spaces (CLWE) in which terms, queries, and documents can be
represented in a cross-lingually aligned semantic embedding space. We specif-
ically experiment with CLWE induction methods introduced in Section 2.2. In
Section 4.2, we introduce BoW-Agg, which is a CLIR model that follows the bi-
encoder paradigm under the bag-of-words assumption. BoW-Agg encodes queries
and documents by aggregating their constituent CLWEs. In the second model, we
use CLWEs to perform a term-by-term query translation (TbT-QT) using cross-
lingual nearest neighbors. In Section 4.4.1, we first conduct pilot experiments to
validate the effectiveness of our CLIR models. In Section 4.4.2, we then provide
a comprehensive comparative evaluation of projection-based, i.e. resource-lean
CLWE induction models on word-level, sentence-level and document-level cross-
lingual retrieval. Our findings show that resource-lean CLWE-based CLIR mod-
els perform well and outperform a lexical baseline. Compared to our resource-
intensive CLIR baseline, where we use machine translation to translate queries,
CLWE-based CLIR models fall behind.

1This chapter is adapted from: (1) Robert Litschko, Goran Glavaš, Simone Paolo Ponzetto, and
Ivan Vulić. 2018. Unsupervised crosslingual information retrieval using monolingual data only. In
The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval
(SIGIR), pages 1253–1256, (2) Robert Litschko, Goran Glavaš, Ivan Vulić, and Laura Dietz. 2019.
Evaluating resource-lean cross-lingual embedding models in unsupervised retrieval. In Proceedings
of the 42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pages 1109–1112.
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4.1 Introduction

Traditional symbolic information retrieval models such as tf-idf (Sparck Jones,
1972) rely on lexical signals to match queries with documents based on overlap-
ping terms. As discussed in Section 3.2, whenever there is a lack of word overlap
between queries and documents, i.e. a lexical gap (Berger et al., 2000), those mod-
els fail to accurately estimate relevance. This can occur for many reasons, includ-
ing cultural language variation (soccer vs. football) or language variation due to
paraphrasing and the use of synonyms. To mitigate this problem, researchers have
developed query (document) expansion models that augment queries (documents)
with additional keywords (Lee et al., 2008; Nogueira et al., 2019a,c). Moving away
from symbolic retrieval methods and towards semantic representation-based mod-
els allows retrieval to learn distributional word representations or, as they are more
commonly referred to, word embeddings that map words to a semantic vector space
where words with similar meanings have similar representations (Chapter 2).

In Cross-lingual Information Retrieval (CLIR) the lexical gap between lan-
guages is caused by mismatching vocabularies (Levow et al., 2005; Nie, 2010),
shared words between languages are mostly limited to numerals and named enti-
ties. Researchers have soon broadened the work on word vector representations
to cross-lingual word embeddings (CLWEs; see also Section 2.2). CLWE models
typically operate on the word-level and induce a single shared cross-lingual vector
space, so that representations of word translations are additionally aligned between
languages. In this way, CLWEs provide a way of knowledge transfer between lan-
guages, thereby facilitating cross-lingual NLP (Klementiev et al., 2012; Hermann
and Blunsom, 2014; Guo et al., 2015; Zhang et al., 2016; Heyman et al., 2017a,
inter alia) and IR applications (Vulić and Moens, 2015) in a straightforward fash-
ion. In CLIR, a shared cross-lingual space can (1) serve as an aligned input space
for end-to-end neural ranking models (Guo et al., 2016; Mitra et al., 2017; MacA-
vaney et al., 2020b, inter alia), or (2) be used to construct semantic representations
of queries and documents from embedding spaces for unsupervised cross-lingual
retrieval, which is the focus of this chapter.

Contributions. Our key contributions and findings are summarized as follows:

(1) We present two CLIR models based on cross-lingual word embeddings. Our
first model, dubbed BoW-Agg, follows the bi-encoder paradigm (Section 3.4)
and encodes queries and documents independently into their respective em-
beddings by aggregating their constituent CLWEs.

(2) Our second model uses CLWEs to find nearest cross-lingual word neighbors
for individual query terms. Those are then used in a term-by-term query trans-
lation (TbT-QT) approach to translate the query into the document language,
which is then followed by a query likelihood retrieval model (Section 3.3).

(3) We benchmark both models on word-, sentence- and document-level cross-
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lingual retrieval. Our results show that CLWEs are an effective and resource-
lean way to bridge the cross-lingual language gap, as they require no direct
task-level supervision and only limited cross-lingual supervision (bilingual
dictionaries of 5k word pairs).

Resource-Lean Transfer. Referring to our taxonomy introduced in Chapter 1
(Figure 1.4), transferring CLIR models using only CLWEs fall under unsupervised
CLIR branch since they require no (CL)IR training data (i.e., direct task supervi-
sion). To obtain CLIR models in different languages, we require (1) monolingual
language data in the target languages and (2) minimal cross-lingual supervision in
the form of bilingual dictionaries. Since bilingual dictionaries can be obtained in
an unsupervised way (Section 2.2.3), our approaches are fully unsupervised and
therefore suitable for scaling CLIR to a large number of languages.

Non-Parametric Bi-Encoders Based on CLWEs. As mentioned in Section 3.5,
the notion of bi-encoders is typically used for parametric models (Karpukhin et al.,
2020; Thakur et al., 2021; Izacard et al., 2021). Lin et al. (2022, p. 139) character-
ize bi-encoders along two criteria, they need to (1) represent queries and documents
into a fixed-sized vectors and (2) use similarity measures to perform retrieval near-
est neighbor search. We adopt this definition and refer to our models that aggregate
token embeddings (Section 4.2.1 and Section 5.2) as non-parametric versions of
bi-encoders.

4.2 Unsupervised Cross-lingual Retrieval Models

Our models rely on pre-trained CLWEs discussed in Section 2.2. With the induced
cross-lingual spaces we can directly measure semantic similarity between words
from the query and document language, but we still need to define how to represent
queries and documents. In the following, we outline two models that use pre-
trained cross-lingual embedding spaces for CLIR tasks.

4.2.1 Bag-of-Words Aggregation

In the first approach, dubbed BoW-Agg, we derive the cross-lingual embeddings
of queries and documents by aggregating the cross-lingual embeddings of their
constituent terms. Let ÝÑ

t be the embedding of the term t, obtained from the cross-
lingual embedding space and let d “ tt1, t2, ..., tNd

u be a document from the col-
lection consisting of Nd terms. The embedding of the document d in the shared
space can then be computed as:

ÝÑ
d “

ÝÑ
t1 ˝

ÝÑ
t2 ˝ ¨ ¨ ¨ ˝

ÝÑ
tNd

(4.1)
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where ˝ is a semantic composition operator: it aggregates constituent term embed-
dings into a document embedding.1 We opt for vector addition as composition for
two reasons: 1) word embedding spaces exhibit linear linguistic regularities and
2) addition displays robust performance in compositional and IR tasks. A repre-
sentation of the query vector ÝÑq is then computed as the sum of embeddings of its
constituent terms, disregarding their word order:

ÝÑq “

Nq
ÿ

i“1

“
ÝÑ
tqi (4.2)

To obtain document representations, we compare two aggregation functions. First,
we experiment with a simple non-weighted addition akin to how we compute query
embeddings (BoW-Agg-Add). We also experiment with weighted addition where
each term’s embedding is weighted with the term’s inverse document frequency
(BoW-Agg-IDF):

ÝÑ
d “

Nd
ÿ

i“1

“ idfptdi q ¨
ÝÑ
tdi (4.3)

BoW-Agg-IDF relies on the common assumption that not all terms equally con-
tribute to the document meaning: it emphasizes vectors of more document specific
terms.2 Finally, we compute the relevance score simply as the cosine similarity
between query and document embeddings in the shared cross-lingual space:

relAggpq, dq “
ÝÑq ¨

ÝÑ
d

||ÝÑq || ¨ ||
ÝÑ
d ||

(4.4)

Notably, Galke et al. (2017) and Zhang et al. (2018) also investigate aggregating
monolingual word embeddings for IR. In BoW-Agg, however, we first align mono-
lingual embedding spaces and then aggregate CLWEs for unsupervised CLIR.

4.2.2 Term-by-Term Query Translation

Our second CLIR model, Term-by-Term Query Translation (TbT-QT), exploits the
cross-lingual word embedding space in a different manner: it performs a term-
by-term translation of the query into the language of the document collection re-
lying solely on the shared cross-lingual space. Each source language query term

1There is a large number of options for the composition operator, ranging from unsupervised
operations like addition and element-wise multiplication (Mitchell and Lapata, 2008) to complex
parametrized (e.g., tensor-based) composition functions (Milajevs and et al, 2014). We discard the
parametrized composition functions because they require parameter optimization through supervi-
sion, and we are interested in fully unsupervised CLIR.

2Note that with both variants of BoW-Agg, we effectively ignore both query and document terms
that are not represented in the cross-lingual embedding space.
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tq is replaced by the target language term trptqq, that is, its cross-lingual near-
est neighbor in the embedding space. The cosine similarity is used for com-
puting cross-lingual semantic similarities of terms. In other words, the query
q1 “ ttrptq1q, trptq2q, . . . , trptqNq

q, u in LT .
By effectively transforming a CLIR task into a monolingual IR task, we can

apply any of the traditional IR ranking functions designed for sparse text repre-
sentations. We opt for the ubiquitous query likelihood model (Ponte and Croft,
1998), which we introduce in Section 3.3. We additionally apply smoothing on the
unigram language model (LM-UN) of individual documents with the unigram lan-
guage model of the entire collection, using the Dirichlet smoothing scheme (Zhai
and Lafferty, 2004):

relTbT pq1, dq “ Π
Nq1

i“1λ ¨ P ptq
1

i |dq ` p1 ´ λq ¨ P ptq
1

i |Dq (4.5)

P ptq
1

i |dq is the maximum likelihood estimate (MLE) of term tq
1

i appearing in doc-
ument d, P ptq

1

i |Dq is the MLE of term’s probability based on the target collection
D, and λ “ Nd{pNd ` µq determines the ratio between the contributions of the
local and global language model, with Nd being the document length and µ the
parameter of Dirichlet smoothing. TbT-QT is conceptually similar to query expan-
sion methods proposed in (Roy et al., 2016, 2018), where monolingual embedding
spaces are used to expand queries with k-nearest neighbors extracted from query
terms. TbT-QT and BoW-Agg, when combined with unsupervised cross-lingual
word embeddings, represent a fully unsupervised CLIR framework.

4.3 Experimental Setup

Our experimental design is two-fold. In a pilot study, we first validate the effec-
tiveness of our CLWE-based models on a smaller set of languages (Section 4.4.1,
and then provide a large-scale evaluation of resource-lean CLWE models on word-
level, sentence-level and document-level retrieval (Section 4.4.2).

CLIR Datasets and Language Pairs. First, we benchmark BoW-Agg and TbT-
QT on ad-hoc document-level retrieval on a reduced set of three language pairs
of the CLEF 2001–2003 benchmarks (Braschler, 2002, 2003, 2004): ENÑNL,
ENÑIT, ENÑFI.3 We then expand our evaluation and also include word-level and
sentence-level cross-lingual retrieval. We evaluate our models on six languages
of varying language proximity - English (EN), German (DE), Italian (IT), Finnish
(FI), Dutch (NL) and Russian (RU). Specifically, we experiment with the follow-
ing nine language pairs in CLEF 2003: ENÑ{DE, FI, IT, RU}, DEÑ{FI, IT, RU},
and FIÑ{IT, RU}. For sentence-level CLIR evaluation, we resort to the parallel
Europarl corpus (Koehn, 2005). Since Europarl does not contain Russian transla-
tions, we evaluate sentence-level CLIR on the remaining six language pairs. For

3Finnish was included to CLEF evaluation only in 2002 and 2003.
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each language pair we randomly sample 1K “queries” (i.e., source language sen-
tences) and 100K “documents” (i.e., target language sentences). Given a sentence
in the source language, an ideal CLIR model would rank its mate sentence (i.e., its
translation) in the target language on top. That is, in this setting there is only one
relevant “document” per “query”.

CLWE Training Data. We use pre-trained 300-dimensional FASTTEXT vectors
(Bojanowski et al., 2017b)4 for CLWE models that build on top of monolingual
word embeddings. For our pilot experiments (Table 4.1) we trained BWESG em-
beddings on full document-aligned Wikipedias5 using SGNS with suggested pa-
rameters from prior work (Vulić and Moens, 2016): 15 negative samples, a global
decreasing learning rate of 0.025 and a window size of 16. PROC embeddings
of Smith et al. (2017) are trained with 10K translation pairs obtained from Google
Translate. The training setup for MUSE follows closely the default setup of Lample
et al. (2018): we refer the reader to the original paper and the model implemen-
tation accessible online for more information and technical details.6 For our main
experiments (Table 4.2, Table 4.3 and Table 4.4) we obtained dictionaries for su-
pervised CLE models by translating 7K most frequent English words to the other
four languages via Google Translate. For each language pair, we split the dictio-
naries into 5K pairs for training7 and 2K pairs for word-level CLIR evaluation on
bilingual lexicon induction (BLI) (Irvine and Callison-Burch, 2017).

Models and Baselines. We evaluate different CLIR models, obtained by combin-
ing models for inducing cross-lingual word vector spaces discussed in Section 2.2
- CCA, PROC, PROC-B, RCSLS, VECMAP, MUSE, ICP, BWESG - with each of
the two ranking models BoW-Agg and TbT-QT. For the latter we compute the rele-
vance score relTbT with a Dirichlet smoothing parameter value of µ “ 1000 (Zhai
and Lafferty, 2004). In our pilot experiments we additionally evaluate an ensemble
ranker that combines the two ranking functions: BoW-Agg-IDF and TbT-QT. If r1
is the rank of document d for query q according to the TbT-QT model and r2 is
the rank produced by BoW-Agg-IDF, the ensemble ranker ranks the documents in
increasing order of the scores λ ¨ r1 ` p1 ´ λq ¨ r2. This approach is similar to
Reciprocal Rank Fusion proposed by Cormack et al. (2009). We evaluate ensem-
bles with values λ “ 0.5 and λ “ 0.7, i.e., with more weight allocated to the more
powerful TbT-QT model (see Table 4.1). We compute the results of CLWE-based
models to two baselines: (1) a monolingual unigram language model (LM-UNI;

4https://fasttext.cc/docs/en/pretrained-vectors.html
5http://linguatools.org/tools/corpora/wikipedia-comparable-corpora/
6https://github.com/facebookresearch/MUSE
7We use all 5K pairs to train all supervised models except Proc-B, for which we use training

dictionaries of only 1K word translation pairs. This is because we want to evaluate whether the
bootstrapping procedure can compensate for less bilingual supervision.

https://fasttext.cc/docs/en/pretrained-vectors.html
http://linguatools.org/tools/corpora/wikipedia-comparable-corpora/
https://github.com/facebookresearch/MUSE
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ENÑNL ENÑ IT ENÑ FI

CLWE Model 2001 2002 2003 2001 2002 2003 2002 2003 AVG

– LM-UNI .122 .204 .145 .087 .161 .128 .096 .138 .135

BoW-Agg-Add .111 .138 .137 .087 .115 .147 .027 .085 .106
BoW-Agg-IDF .144 .202 .188 .127 .157 .188 .083 .125 .152

BWESG TbT-QT .296 .309 .344 .292 .306 .342 .182 .167 .280

Ensemble (λ “ 0.5) .236 .296 .316 .255 .260 .314 .169 .187 .254
Ensemble (λ “ 0.7) .255 .309 .326 .272 .278 .333 .173 .205 .269

BoW-Agg-Add .149 .168 .203 .138 .155 .236 .078 .217 .168
BoW-Agg-IDF .185 .196 .243 .169 .166 .248 .086 .204 .187

PROC TbT-QT .241 .268 .314 .234 .286 .328 .140 .182 .249

Ensemble (λ “ 0.5) .258 .296 .327 .232 .271 .317 .136 .259 .262
Ensemble (λ “ 0.7) .257 .300 .331 .240 .281 .328 .149 .261 .268

BoW-Agg-Add .150 .181 .218 .140 .166 .249 .103 .259 .183
BoW-Agg-IDF .198 .224 .268 .178 .193 .276 .118 .246 .213

MUSE TbT-QT .268 .298 .359 .244 .272 .354 .147 .239 .273

Ensemble (λ “ 0.5) .278 .318 .354 .241 .269 .356 .157 .319 .286
Ensemble (λ “ 0.7) .279 .323 .361 .244 .275 .354 .163 .312 .289

Table 4.1: CLIR performance on all three test language pairs for all models in
comparison (MAP scores). Best (ensemble) models are highlighted in bold.

i.e., without query translation) as a sanity check baseline;8 (2) a much stronger
baseline (MT-IR) translates the query to the collection language using a full-blown
MT model and then performs monolingual retrieval using LM-UNI. In contrast to
CLWE-based CLIR, our MT-IR baseline is more resource-demanding as it requires
large sentence-aligned corpora.

4.4 Results and Discussion

In Section 4.4.1 we first validate the effectiveness of BoW-Agg-{Add, IDF} and
TbT-QT in isolation and as ensembles on three language pairs. We then experiment
with seven resource-lean CLWE induction methods (i.e. mapping based methods
relying on bilingual dictionaries) on nine language pairs in Section 4.4.2.

4.4.1 Unsupervised Retrieval using Monolingual Data Only

Table 4.1 shows the performance of all models on all test collections, reported in
terms of the standard mean average precision (MAP) measure (Section 3.3).

8Relying on lexical overlap between the query and documents, LM-UNI is bound to perform
poorly in CLIR where the query language differs from the collection language.
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CLIR based on Unsupervised vs. Supervised CLWEs. First, apart from BoW-
Agg-Add (with BWESG CLWEs), all models outperform the lexical baseline LM-
UNI. This demonstrates the effectiveness of our CLIR models in bridging the lan-
guage gap across languages. The weighted variant of BoW-Agg (BoW-Agg-IDF)
outperforms the simpler non-weighted summation model (BoW-Agg-Add) across
the board. These results suggest that the common IR assumption about document-
specific terms being more important than the terms occurring collection-wide is
also valid for constructing dense document representations by summing word em-
beddings. BoW-Agg models based on PROC embeddings (the bilingual signal is
word translation pairs) outperform models based on BWESG (requiring document-
aligned data) on average. This is an encouraging finding, as word translations pairs
are easier to obtain than document-aligned comparable corpora. Most importantly,
the unsupervised MUSE + TbT-QT CLIR model displays peak performance close
to BWESG, which requires comparable data and is thus more resource-intensive
than MUSE (fully unsupervised). We find this to be a very important result: it
shows that we can perform robust CLIR without any cross-lingual information,
that is, by relying purely on monolingual data.

Ensemble Models. Ensembles generally outperform the best-performing individ-
ual CLIR models, and for some test collections (e.g., ENÑNL 2002, ENÑFI
2003) by a wide margin. Between the two interpolation factors, λ “ 0.5 and
λ “ 0.7, we find that the latter yields consistently stronger results than the former
(except for ENÑFI 2003). This is not surprising, since the single models TbT-QT
also outperforms BoW-Agg-IDF. Notably, our ensemble method is a specific in-
stance of a broader class of rank fusion methods (Kurland and Culpepper, 2018).
The individual effectiveness of TbT-QT and BoW-Agg-IDF and the observation
that our ensembles improve upon both models indicate that they encode comple-
mentary relevance signals. This is intuitive as the former matches queries against
documents in the lexical space while the latter uses semantic representations.

Language Similarity and Aggregation. The results in Table 4.1 imply that the
proximity of CLIR languages plays a role only to a certain extent. Most models do
exhibit lower performance for ENÑFI than for the other two language pairs: this
is expected since Finnish is lexically and typologically more distant from English
than Italian and Dutch. However, even though NL is linguistically closer to EN
than IT,9 we find mixed results. Overall, the results for TbT-QT and BoW-Agg
are higher when the document language is NL. A closer inspection reveals that the
results for ENÑIT are higher in six out of nine cases on the 2003 portion of CLEF,
whereas on the remaining two portions, we find ENÑNL consistently yields better
results (except for PROC TbT-QT on the 2002 portion of CLEF).

9Both NL and EN are Germanic languages, while Italian is a Romanic language (see Section 3.3).
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DEÑX ENÑX FIÑX

CLWE Model FI IT RU DE FI IT RU IT RU AVG

CCA .353 .506 .411 .542 .383 .624 .454 .353 .340 .441
PROC .359 .510 .425 .544 .396 .625 .464 .355 .342 .447
PROC-B .354 .507 .392 .521 .360 .605 .419 .328 .315 .422
RCSLS .395 .529 .458 .580 .438 .652 .510 .388 .376 .481

VECMAP .302 .493 .322 .521 .292 .600 .323 .355 .312 .391
MUSE .000 .496 .272 .520 .000 .608 .000 .000 .001 .211
ICP .251 .447 .245 .486 .262 .577 .259 .263 .231 .336

Table 4.2: BLI performance of different CLWE models.

4.4.2 Resource-Lean Cross-Lingual Embedding Models

We now compare the CLIR performance of seven different resource-lean CLWE
methods on nine different languages. This excludes BWSG since it relies on com-
parable corpora, while other CLWE methods are mapping-based and use bilingual
dictionaries.

Word Translation Results. We examine how word translation performance of
CLWE models relates to their CLIR performance in Table 4.2. We first intrinsi-
cally evaluate BLI performance on 2K test dictionaries, in terms of mean reciprocal
rank (MRR). Not surprisingly, the RCSLS model with a BLI-tailored objective ex-
hibits the best word translation performance. Simple projection models – CCA and
PROC – also exhibit solid performance and the bootstrapping-based model PROC-
B, trained using only 1K pairs, does not lag behind by much. Unsupervised CLWE
models, among which VECMAP (Artetxe et al., 2018) performs best, despite recent
claims (Lample et al., 2018; Artetxe et al., 2018), do not match the performance of
their supervised competitors.

CLIR Results. In Table 4.3 we show CLIR results at the document level (CLEF
dataset; MAP), and in Table 4.4 we summarize sentence-level CLIR performance
(Europarl dataset; MRR) of CLWE-based CLIR models. The scores in the upper
half of both tables correspond to the embedding aggregation model (BoW-Agg-
IDF), and the scores in the lower half are obtained with the term-by-term query
translation model (TbT-QT). In both CLIR evaluations, we find that TbT-QT and
BoW-Agg perform comparably. Interestingly, on document-level CLIR, on six
out of nine language pairs, the best results are achieved with TbT-QT, whereas
in sentence-level CLIR, in five out of six language pairs, the best-performaning
model is BoW-Agg-IDF. This supports the intuition that semantic matching with
CLWEs is robust towards lexical variations, but less effective for long and topically
diverse documents. Conversely, TbT-QT fully relies on lexical matches, but it does
not suffer (as much) from topical diversity. Both TbT-QT and BoW-Agg outper-
form the unigram (LM-UNI) model, validating the results in our pilot experiments.
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DEÑX ENÑX FIÑX

Model CLWE FI IT RU DE FI IT RU IT RU AVG

LM-UNI – .113 .137 .001 .139 .138 .128 .001 .130 .001 .088
MT-IR – .338 .431 .238 .384 .282 .428 .265 .406 .261 .337

BoW-
Agg-IDF

CCA .251 .210 .158 .249 .193 .243 .151 .145 .146 .194
PROC .255 .212 .152 .261 .200 .240 .152 .149 .146 .196
PROC-B .295 .230 .155 .288 .259 .265 .166 .151 .136 .216
RCSLS .196 .189 .122 .237 .127 .211 .133 .130 .113 .162

ICP .252 .170 .167 .230 .230 .231 .119 .117 .124 .182
MUSE .001 .210 .195 .280 .000 .272 .002 .002 .001 .107
VECMAP .240 .129 .162 .200 .150 .201 .104 .096 .109 .154

TbT-QT

CCA .159 .243 .133 .290 .150 .335 .141 .212 .170 .204
PROC .160 .242 .098 .283 .147 .325 .179 .215 .183 .204
PROC-B .207 .267 .099 .286 .154 .368 .138 .189 .151 .206
RCSLS .119 .186 .146 .262 .117 .261 .156 .185 .086 .169

ICP .141 .215 .105 .265 .174 .304 .144 .138 .144 .181
MUSE .000 .247 .120 .267 .000 .338 .002 .004 .000 .109
VECMAP .278 .241 .099 .278 .149 .259 .145 .194 .209 .206

Table 4.3: Document-level CLIR results (CLEF).

Compared to the resource-intensive MT-IR baseline, CLWE-based models under-
perform in document and sentence retrieval. Sometimes the gap narrows down to
a few MAP points (e.g., DEÑRU and ENÑFI on CLEF). Notably, the gaps are
larger in sentence-level CLIR. This is expected since MT models are trained on
parallel data such as Europarl.

Comparing different CLWE models, we observe that these CLIR results do
not follow the trends observed in the BLI task. For example, the best-performing
CLWE model on BLI, RCSLS, yields only mediocre CLIR results. This im-
plies that overfitting CLWE models to word translation performance may hurt per-
formance in downstream tasks such as CLIR. Furthermore, the PROC-B model,
trained using only 1K word pairs, exhibits better CLIR performance than other
supervised models (CCA, PROC, and RCSLS), trained on 5K word pairs. In
sentence-level CLIR evaluation, the unsupervised VECMAP outperforms other em-
bedding models on most languages. This is consistent with its strong BLI perfor-
mance, where it performs best among unsupervised CLWE models, and expected,
since both BLI and sentence-level CLIR are similar tasks (i.e., retrieval of trans-
lation pairs). The performance drops of MUSE between our pilot experiments and
main experiments confirm its lack of robustness reported in (Glavaš et al., 2019).

Overall, we conclude that MT is a better option for languages where we have
training data available, whereas the resource-lean CLWE models offer an effective
and resource-lean solution for in scenarios where we have no parallel data to train
MT models. As such, they are a viable alternative for transferring CLIR models to
a large number of languages.
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Model CLWE DEÑFI DEÑIT ENÑDE ENÑFI ENÑIT FIÑIT AVG

LM-UNI - .047 .071 .073 .043 .078 .036 .058
MT-IR - .543 .693 .726 .661 .804 .698 .688

BoW-
Agg-IDF

CCA .132 .309 .390 .135 .492 .122 .263
PROC .131 .309 .396 .135 .496 .124 .265
PROC-B .162 .341 .414 .143 .521 .137 .286
RCSLS .121 .301 .350 .117 .438 .136 .244

ICP .087 .158 .243 .074 .300 .054 .153
MUSE .001 .336 .404 .000 .499 .000 .207
VECMAP .227 .360 .306 .156 .470 .204 .287

TbT-QT

CCA .104 .336 .363 .113 .537 .171 .270
PROC .100 .336 .364 .110 .529 .172 .269
PROC-B .112 .344 .358 .105 .550 .158 .271
RCSLS .091 .313 .321 .097 .471 .160 .242

ICP .121 .312 .342 .094 .508 .135 .252
MUSE .009 .344 .352 .009 .533 .010 .210
VECMAP .138 .334 .362 .106 .528 .182 .275

Table 4.4: Sentence-level CLIR results (Europarl).

4.5 Conclusion

In this chapter, we presented a fully unsupervised CLIR framework that lever-
ages unsupervised cross-lingual word embeddings induced solely on the basis of
monolingual corpora. We show that our models are able to retrieve relevant con-
tent cross-lingually without any bilingual data at all, i.e., they exhibit competitive
performance on standard CLEF CLIR evaluation data for all three test language
pairs (pilot study). We also present a comprehensive evaluation study on the ef-
fectiveness of resource-lean models for inducing cross-lingual embedding spaces
for cross-lingual retrieval. We show that the word translation (BLI) performance,
on which resource-lean CWLE models are commonly evaluated, is a poor predic-
tor for CLIR performance of the model. Our results also reveal that MT-based
CLIR models outperform CLWE-based CLIR models by a large margin. However,
their adoption is limited by the availability of large-scale parallel training data.
In resource-lean scenarios, CLWE-based CLIR models are a viable solution, as
demonstrated by their ability to outperform lexical baselines.

Importantly, compared to pre-trained language models (PLM) (Devlin et al.,
2019; Conneau and Lample, 2019) and large language models (LLM) (OpenAI,
2023; Touvron et al., 2023), CLWEs have distinct advantages: (i) they require
substantially less compute power and are therefore more sustainable, (ii) they do
not suffer from the “curse of multilinguality” (Conneau et al., 2020), since each
language has its own parameter budget, and (iii) models such as TbT-QT operate
on the symbolic space and are therefore easier to interpret. We make our code and
resources available at: https://github.com/rlitschk/UnsupCLIR

https://github.com/rlitschk/UnsupCLIR




Chapter 5

Cross-Lingual Retrieval with
Contextual Embeddings

1In Section 2.3.3, we discussed multilingual pre-trained language models (mPLM)
which encode text as contextual embeddings in a shared embedding space. In
this chapter, we investigate how effective multilingual spaces induced by mPLMs
are for cross-lingual IR and, compared to static cross-lingual word embeddings
(CLWE), to what extent contextualization impacts CLIR in a resource-lean sce-
nario. In Section 5.2, we propose three mPLM-based CLIR models with different
types of contextualization (none, static and in-place contextualization) and com-
pare them against multilingual text encoders specialized for sentence-level similar-
ity, i.e. multilingual sentence encoders (see Section 5.3.1). Our results on sentence-
and document-level CLIR reveal that mPLMs fall behind static CLWEs and that
the best results are achieved with a multilingual sentence encoder. We show that
further gains can be obtained from localized relevance matching where queries
are matched against document segments, which allow models to capture relevance
signals beyond the supported maximum sequence length of mPLMs. Finally, in
Section 5.5.5, we show that following a few-shot learning approach consistently
improves the results of the best-performing multilingual sentence encoder.

5.1 Introduction

Cross-lingual information retrieval (CLIR) systems respond to queries in a source
language by retrieving relevant documents in another, target language. Their suc-
cess is typically hindered by data scarcity: they operate in challenging low-resource

1Adapted from: (1) Robert Litschko, Ivan Vulic, Simone Paolo Ponzetto, and Goran Glavaš.
2021. Evaluating multilingual text encoders for unsupervised cross-lingual retrieval. In Advances in
Information Retrieval: 43rd European Conference on IR Research (ECIR), pages 342–358, Lucca,
Italy (Online); (2) Robert Litschko, Ivan Vulic, Simone Paolo Ponzetto, and Goran Glavaš. 2022.
On cross-lingual retrieval with multilingual text encoders. Information Retrieval Journal 25.2, pages
149–183.
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settings without sufficient labeled training data, i.e., human relevance judgments, to
build reliable in-domain supervised models (e.g., neural matching models for pair-
wise retrieval (Yu and Allan, 2020; Jiang et al., 2020a)). In Chapter 4, we showed
that language transfer by means of cross-lingual embedding spaces (CLWEs) can
yield strong performance in a range of unsupervised ad-hoc CLIR setups. How-
ever, this approach, by limitations of static CLWEs, cannot capture and handle pol-
ysemy in the underlying text representations, and captures only “static” word-level
semantics. Contextual representations, obtained from multilingual pre-trained lan-
guage models (mPLM), alleviate this issue (Liu et al., 2020) because they encode
occurrences of the same word differently depending on its context (Section 2.3).

Multilingual text encoders have already found applications in document-level
CLIR. Jiang et al. (2020a) use mBERT as a matching model by feeding pairs of
English queries and foreign language documents. MacAvaney et al. (2020b) use
mBERT in a zero-shot setting, where they train a retrieval model on top of mBERT
on English relevance data and apply it on a different language. However, prior
work has not investigated unsupervised CLIR setups, and a systematic compara-
tive study focused on the suitability of the multilingual text encoders for diverse
ad-hoc CLIR tasks and language pairs is still lacking. In the current chapter, we
address this research gap and study whether these general-purpose multilingual
text encoders can be used directly for ad-hoc CLIR without any additional supervi-
sion (i.e., cross-lingual relevance judgments). To this end, we investigate whether
they can outperform unsupervised CLIR approaches based on static CLWEs, and
how they perform depending on the (properties of the) language pair at hand. We
compare three classes of models: CLIR models based on representations extracted
from mPLMs, multilingual sentence encoders (Section 2.3.3), and few-shot CLIR
where we further fine-tune models on limited in-domain supervision.

We first study unsupervised mPLM-backed CLIR models and propose differ-
ent “encoding variants” with varying degrees of contextualization (Section 5.2).
The first variant completely ignores contextualization and extracts static word em-
beddings from mPLMs by encoding words in isolation (ISO). The second vari-
ant, AOC, aggregates for each word multiple contextual representations. The third
variant, SEMB, creates in-place embeddings and directly encodes queries and doc-
uments with mPLMs. During retrieval, we follow the BoW-Agg approach intro-
duced in Chapter 4. There exist many pre-trained models that can be used out of
the box for cross-lingual fine-tuning. Here, we investigate two popular models,
mBERT (Devlin et al., 2019) and XLM (Conneau and Lample, 2019), on CLEF
document-level retrieval and Europarl sentence-level retrieval.

Moreover, with the rising interest in zero-shot or few-shot learning, i.e., train-
ing a multilingual encoder on a resource-rich language and applying it on a resource-
scarce language with little to no extra training, much research has focused on de-
veloping general-purpose multilingual sentence encoders (Artetxe and Schwenk,
2019a; Yang et al., 2020b; Feng et al., 2022; Reimers and Gurevych, 2020). Conse-
quently, besides mBERT and XLM, we additionally benchmark multilingual sen-
tence encoders in our unsupervised CLIR setup. We focus on four popular off-
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the-shelf sentence encoders, discussed in Section 5.3.1, to gauge their effective-
ness in document-level and sentence-level CLIR. Those encoders are naturally de-
signed for cross-lingual sentence retrieval and unable to encode long documents.
We therefore experiment with a localized relevance matching approach in Sec-
tion 5.5.3, where we follow a sliding window approach to represent each document
with multiple embeddings corresponding to sentences or chunks.

Finally, we measure the performance gains obtained from further fine-tuning
multilingual sentence encoders on little in-domain data under a few-shot learning
setting. This simulates a scenario where limited annotation budget is available.

Contributions. Our key contributions and findings are summarized as follows:

(1) We empirically validate that, without any task-specific fine-tuning, multilin-
gual encoders such as mBERT and XLM fail to outperform CLIR approaches
based on static CLWEs (Sections 5.5.1 to 5.5.2). Their performance also cru-
cially depends on how one encodes semantic information with the models (e.g.,
treating them as sentence/document encoders directly versus averaging over
constituent words and/or subwords).

(2) We show that multilingual sentence encoders, i.e. mPLMs fine-tuned on la-
beled data from sentence pair tasks like natural language inference or seman-
tic text similarity as well as using parallel sentences, substantially outperform
general-purpose models (mBERT and XLM) in sentence-level CLIR (Sec-
tion 5.5.2); further, they can be leveraged for localized relevance matching and
in such a pooling setup improve the performance on unsupervised document-
level CLIR (Section 5.5.3).

(3) In-domain fine-tuning of the best-performing unsupervised Transformer model
(Reimers and Gurevych, 2020) (i.e., zero-shot language transfer, no domain
transfer) – yields considerable gains over the original unsupervised ranker
(Section 5.5.5). This renders fine-tuning with little in-domain data more bene-
ficial than transferring models trained on large-scale out-of-domain datasets.

Resource-Lean Transfer. Our CLIR models based only on mPLMs (ISO, AOC,
SEMB) do not use any direct task supervision (i.e., IR training data) and therefore
fall into the class of unsupervised CLIR methods (cf. Chapter 1, Figure 1.4). We
also benchmark multilingual sentence encoders, which are trained on sentence-
similarity tasks (Section 5.3.1). From a retrieval perspective, those models are
transferred from related tasks. Here, the task supervision is limited in a qualitative
sense, i.e. sentence similarity models do not capture the same features as retrieval
models. The task differences between semantic matching and relevance matching
are also discussed in (Guo et al., 2016; Rao et al., 2019a). We finally quantify
the performance difference of multilingual sentence encoders compared to their
variants fine-tuned in a few-shot setting. Here, the supervision is limited in quantity,
i.e. we assume availability of relevance annotations of a few queries.
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Figure 5.1: CLIR Models based on Multilingual Transformers. Left: Induce a
static embedding space by encoding each vocabulary term in isolation; then re-
fine the bilingual space for a specific language pair using the standard Procrustes
projection. Middle: Aggregate different contextual representations of the same
vocabulary term to induce static embedding space; then refine the bilingual space
for a specific language pair using the standard Procrustes projection. Right: Direct
encoding of a query-document pair with the multilingual encoder.

5.2 Unsupervised Cross-lingual Retrieval Models

Massively multilingual pre-trained neural language models such as mBERT and
XLM(-R) can be used as a dynamic embedding layer to produce contextualized
word representations, since they share a common input space on the subword level
(e.g. word-pieces, byte-pair-encodings) across all languages (Section 2.3.3). Let us
assume that a term (i.e., a word-level token) is tokenized into a sequence of K sub-
word tokens (K ě 1; for simplicity, we assume that the subwords are word-pieces
(wp)): ti “

␣

wpi,k
(K

k“1
. The multilingual encoder then produces contextualized

subword embeddings for the term’s K constituent subwords ÝÝÝÑwpi,k, k “ 1, . . . ,K,
and we can aggregate these subword embeddings to obtain the representation of the
term ti:

ÝÑ
ti “ ψ

`

tÝÝÝÑwpi,kuKk“1

˘

, where the function ψpq is the aggregation function
over the K constituent subword embeddings. Once these term embeddings ÝÑ

ti are
obtained, we follow the BoW-Agg-IDF approach to obtain query and document
embeddings. We refer the reader to Section 4.2.1 for details. We now illustrate
three encoding variants to obtaining word and sentence representations from pre-
trained Transformers (Figure 5.1) and describe them in more detail in what follows.

5.2.1 Encoding Words in Isolation

In this approach, we obtain static word embeddings from multilingual language
models. We first use mBERT and XLM in two different ways to induce static
word embedding spaces for all languages. In a simpler variant, we feed terms
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into the encoders in isolation (ISO), that is, without providing any surrounding
context for the terms. This effectively constructs a static word embedding table
similar to what is done with the CLWEs in Section 4.2.1, and allows the CLIR
model to operate at a non-contextual word level. An empirical CLIR comparison
between ISO and CLIR operating on traditionally induced CLWEs (Chapter 4) then
effectively quantifies how well multilingual encoders (mBERT and XLM) capture
word-level representations (Vulić et al., 2020). We specifically feed each term ti
tokenized into its subwords twpi,kuKk“1 together with the special tokens into the
encoder [CLS]wpi,1 . . . wpi,K[SEP] to obtain the terms’ subword embeddings
tÝÝÝÑwpi,kuKk“1. We then extract the contextualized embedding of t via mean-pooling,
i.e., by averaging of their constituent subword embeddings:

ψptÝÝÝÑwpi,kuKk“1q “
1

K

K
ÿ

k“1

ÝÝÝÑwpi,k (5.1)

As a result, we obtain for each term a d-dimensional term embedding where d
corresponds to the encoder models’ hidden size. Following this approach, we en-
code all |V | vocabulary terms of a given language L1 and concatenate their term
embeddings to form the embedding matrix XL1 P Rdˆ|V |.

In a preliminary analysis we evaluated the static ISO (and AOC embeddings,
see below) induced for different languages with multilingual encoders, on the bilin-
gual lexicon induction (BLI) task (Glavaš et al., 2019). We observed poor BLI per-
formance, suggesting that further projection-based alignment of respective mono-
lingual embedding spaces is warranted. In other words, the obtained static embed-
dings, despite being induced with multilingual encoders, did not appear to be lex-
ically well-aligned across languages, which consistent with (Cao et al., 2020). To
strengthen the token-level alignment, we adopted the standard Procrustes method
(Smith et al., 2017; Artetxe et al., 2018) for learning an orthogonal linear projec-
tion from the embedding (sub)space of one language to the embedding space of the
other language (Glavaš et al., 2019). More precisely, for a given query language L1

and document language L2, we first encode their vocabularies into respective em-
bedding matrices XL1 and XL2 . Next, we project L1 onto L2 by using a learned
projection matrix W, which we obtain from the Procrustes method explained in
Section 2.2.1. During retrieval we use query embeddings XL1W and document
embeddings XL2 to encode them following the bag of word embedding approach
(BoW-Agg-IDF; see Section 4.2.1).

5.2.2 Average-over-Context Embeddings

In the second, more elaborate variant we do leverage the contexts in which the
terms appear, constructing average-over-contexts embeddings (AOC). For each
term t we collect a set of sentences si P St in which the term t occurs. We
use the full set of Wikipedia sentences S to sample sets of contexts St for each
vocabulary term t. For a given sentence si let j denote the position of t’s first
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occurrence. We then transform si with mBERT or XLM as the encoder, encpsiq,
and, similar to ISO embeddings, extract the contextualized embedding of t via
mean-pooling, ψ

`

tÝÝÝÑwpj,kuKk“1

˘

“ 1{K ¨
řK

k“1
ÝÝÝÑwpj,k. For each vocabulary term,

we obtain Nt “ minp|St|, τq contextualized vectors, with |St| as the number of
Wikipedia sentences containing t and τ as the maximal number of sentence sam-
ples for a term. The final static embedding of t is then simply the average over the
Nt contextualized vectors:

ÝÑ
t “

1

Nt

Nt
ÿ

siPSt

ψ pencpsiqj:j`Kq (5.2)

We denote with j:j`K the subsequence in sentence si corresponding to the first
occurrence of term t consisting of K subwords. Similar to ISO embeddings, we
first form static embedding tables by encoding and concatenating vocabulary term
embeddings, and then map, for each language pair, the query language embedding
space to the document language.

5.2.3 Multilingual LMs as Sentence Embedders

In both AOC and ISO, we exploit the multilingual (contextual) encoders to ob-
tain the static embeddings for word types (i.e., terms): we can then leverage these
static word embeddings obtained from contextualized encoders in exactly the same
ad-hoc CLIR setup (Section 4.2.1) in which CLWEs had previously been eval-
uated (Chapter 4). In an arguably more straightforward approach, we also use
pre-trained multilingual Transformers (i.e., mBERT or XLM) to directly seman-
tically encode the whole input text (SEMB). To this end, we encode the input
text by averaging the contextualized representations of all terms in the text (we
again compute the weighted average, where the terms’ IDF scores are used as
weights, see Section 4.2.1). For SEMB, we take the contextualized representation
of each term ti to be the contextualized representation of its first subword token,
i.e., ÝÑ

ti “ ψ
`

tÝÝÝÑwpi,kuKk“1

˘

“ ÝÝÝÑwpi,1.
2

5.3 Cross-Lingual Transfer with Limited Supervision

We now discuss two resource-lean transfer methods for CLIR. In Section 5.3.1, we
first discuss multilingual sentence encoders, i.e. we transfer models from related
tasks (limited supervision) to CLIR. We then discuss our few-shot CLIR approach
where we specialize sentence encoders on in-domain data (Section 5.3.2).

2In our preliminary experiments taking the vector of the first term’s subword consistently outper-
formed averaging vectors of all its constituent subwords.
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5.3.1 Specialized Multilingual Sentence Encoders

Off-the-shelf multilingual Transformers (mBERT and XLM) have been shown to
yield sub-par performance in unsupervised text similarity tasks; therefore, in or-
der to be successful in semantic text (sentences or paragraph) comparisons, they
first need to be fine-tuned on text matching (typically sentence matching) datasets
(Reimers and Gurevych, 2020; Cao et al., 2020; Zhao et al., 2020b). Such en-
coders specialized for semantic similarity are supposed to encode sentence mean-
ing more accurately, supporting tasks that require unsupervised (ad-hoc) semantic
text matching. In contrast to off-the-shelf mBERT and XLM, which contextualize
(sub)word representations, these models directly produce a semantic embedding of
the input text. We provide a brief overview of the models included in our compar-
ative evaluation.

Language Agnostic SEntence Representations (LASER). Artetxe and Schwenk
(2019a) adopt a standard sequence-to-sequence architecture typical for neural ma-
chine translation (MT). It is trained on 223M parallel sentences covering 93 lan-
guages. The encoder is a multi-layered bidirectional LSTM and the decoder is a
single-layer unidirectional LSTM. The 1024-dimensional sentence embedding is
produced by max-pooling over the outputs of the encoder’s last layer. The decoder
then takes the sentence embedding as additional input at each decoding step. The
decoder-to-encoder attention and language identifiers on the encoder side are delib-
erately omitted, so that all relevant information gets ‘crammed’ into the fixed-sized
sentence embedding produced by the encoder. In our experiments, we directly use
the output of the encoder to represent both queries and documents.

Language-agnostic BERT Sentence Embeddings (LaBSE) (Feng et al., 2022)
is another neural dual-encoder framework, also trained with parallel data. Unlike
LASER and m-USE, where the encoders are trained from scratch on parallel data,
LaBSE starts its training from a pre-trained mBERT instance (i.e., a 12-layer Trans-
former network pre-trained on the concatenated corpora of 100+ languages). In ad-
dition to the multi-task training objective of m-USE, LaBSE additionally uses stan-
dard self-supervised objectives used in pre-training of mBERT and XLM: masked
and translation language modeling (MLM and TLM, see Section 2.3.3). For further
details, we refer the reader to the original work.

Knowledge Distillation (DISTIL) (Reimers and Gurevych, 2020) is a teacher-
student framework for injecting the knowledge obtained through specialization for
semantic similarity from a specialized monolingual Transformer (e.g., BERT) into
a non-specialized multilingual Transformer (e.g., mBERT). It first specializes for
semantic similarity a monolingual (English) teacher encoderM using the available
semantic sentence-matching datasets for supervision. In the second, knowledge
distillation step a pre-trained multilingual student encoder xM is trained to mimic
the output of the teacher model. For a given batch of sentence translation pairs
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B “ tpsj , tjqu, the teacher-student distillation training minimizes the following
loss:

J pBq “
1

|B|

ÿ

jPB

„

´

Mpsjq ´ xMpsjq
¯2

`

´

Mpsjq ´ xMptjq
¯2
ȷ

(5.3)

The teacher model M is Sentence-BERT (Reimers and Gurevych, 2019), BERT
specialized for embedding sentence meaning on semantic text similarity (Cer et al.,
2017) and natural language inference (Williams et al., 2018) datasets. The teacher
network only encodes English sentences si. The student model xM is then trained
to produce for both sj and tj the same representation thatM produces for sj . Min-
imizing the distance between Mpsjq and xMpsjq encourages the student to learn
semantic knowledge encoded by the teacher model, and minimizing the distance
between Mpsjq and xMptjq aligns it across language boundaries. We benchmark
different DISTIL models in our CLIR experiments, with the student xM initialized
with different multilingual Transformers.

Multilingual Universal Sentence Encoder (m-USE) is a general-purpose sen-
tence embedding model for transfer learning and semantic text retrieval tasks (Yang
et al., 2020b). It relies on a standard dual-encoder neural framework (Chidambaram
et al., 2019; Yang et al., 2019a) with shared weights, trained in a multi-task setting
with an additional translation bridging task. For more details, we refer the reader
to the original work. There are two pre-trained m-USE instances available – we
opt for the 3-layer Transformer encoder with average-pooling.

5.3.2 In-Domain Contrastive Fine-Tuning

Contrastive Metric-Based Learning. In most ad-hoc retrieval setups, one at best
has a handful of relevance judgments for the test collection of interest. One ap-
proach in such low-supervision settings is to use the few available relevance judg-
ments to reshape the representation space of (multilingual) text encoders. In this
so called bi-encoder paradigm, the objective is to bring representations of queries,
produced independently by the pre-trained encoder, closer to the representations
of their relevant documents (produced again independently by the same encoder)
than to the representations of irrelevant documents. In Section 4.1, we defined
non-parametric bi-encoders as models which encode queries and documents with
a parameter-free aggregating function such as mean-pooling. Here, we assume
limited task supervision to train parametric bi-encoders (henceforth, bi-encoders).
The objectives of contrastive metric-based learning push the instances that stand in
a particular relation (e.g., query and relevant document) closer together according
to a predefined similarity or distance metric (e.g., cosine similarity) than corre-
sponding pairs that do not stand in the relation of interest (e.g., the same query and
some irrelevant document). It is precisely the approach used for obtaining multi-
lingual encoders specialized for sentence similarity tasks covered in Section 5.3.1
(Reimers and Gurevych, 2019; Feng et al., 2022; Yang et al., 2020b).
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We propose to use contrastive metric-based learning to fine-tune the represen-
tation space for the concrete ad-hoc retrieval task, using a limited amount of rel-
evance judgments available for the target collection. To this end, we employ a
popular contrastive learning objective referred to as Multiple Negative Ranking
Loss (MNRL) (Thakur et al., 2020). Given a query vector qi, a relevant docu-
ment d`

i and a set of in-batch negatives td´
i,ju

m
j“1 we fine-tune the parameters of a

pre-trained multilingual encoder by minimizing MNRL, given as:

L
´

qi, d
`
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´
i,ju

m
j“1

¯

“ ´ log
eλ¨simpqi,d

`
i q

eλ¨simpqi,d
`
i q `

řm
j“1 e

λ¨simpqi,d
´
i,jq

(5.4)

Each document, the relevant d`
j and each of the irrelevant d´

i,j , receives a score
that reflects their similarity to the query qi: for this, we rely on cosine similarity,
i.e. simpqi, djq “ cospqi, djq. Document scores, scaled with a temperature factor
λ, are then converted into a probability distribution with a softmax function. The
loss is then, intuitively, the negative log likelihood of the relevant document d`

j . In
Section 5.5.5, we fine-tune in this manner the best-performing multilingual encoder
on document-level CLIR (Section 5.5.1).

5.4 Experimental Setup

Evaluation Data. We follow the experimental setup outlined in Section 4.3 and
compare the models from Section 5.2 on language pairs comprising five languages:
English (EN), German (DE), Italian (IT), Finnish (FI) and Russian (RU). Specifi-
cally, for document-level retrieval we run experiments for the following nine lan-
guage pairs: EN-{FI, DE, IT, RU}, DE-{FI, IT, RU}, FI-{IT, RU}. Following our
previous experiments, we use the 2003 portion of the CLEF benchmark (Braschler,
2004), see Section 3.3 for details. For sentence-level retrieval, we use the same ex-
perimental setup as in Section 4.3. That is, for each language pair we sample from
Europarl (Koehn, 2005) 1K source language sentences as queries and 100K target
language sentences as the “document collection”.3

Baseline Models. To establish whether multilingual encoders outperform CLWEs
in a fair comparison, we compare their performance against the strongest CLWE-
based CLIR model from Section 4.4, dubbed Proc-B. Proc-B induces a bilingual
CLWE space from pre-trained monolingual FASTTEXT embeddings4 using the lin-
ear projection computed as the solution of the Procrustes problem given the dictio-
nary of word-translation pairs. Compared to simple Procrustes mapping, Proc-B
iteratively (1) augments the word translation dictionary by finding mutual nearest

3Russian is not included in Europarl and we therefore exclude it from sentence-level experiments.
Further, since some multilingual encoders have not seen Finnish data in pre-training, we additionally
report the results over a subset of language pairs that do not involve Finnish.

4https://fasttext.cc/docs/en/pretrained-vectors.html

https://fasttext.cc/docs/en/pretrained-vectors.html
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neighbors and (2) induces a new projection matrix using the augmented dictionary.
The final bilingual CLWE space is then plugged into the BoW-Agg-IDF model
from Section 2.2.

Our document-level retrieval SEMB models do not get to see the whole docu-
ment but only the first 128 word-piece tokens. For a more direct comparison, we
therefore additionally evaluate the Proc-B baseline (PROC-BLEN) which is exposed
to exactly the same amount of document text as the multilingual XLM encoder (i.e.,
the leading document text corresponding to first 128 word-piece tokens). Finally,
we compare CLIR models based on multilingual Transformers to a baseline relying
on machine translation baseline (MT-IR). In MT-IR, 1) we translate the query to
the document language using Google Translate and then 2) perform monolingual
retrieval using a standard Query Likelihood Model (Ponte and Croft, 1998) with
Dirichlet smoothing (Zhai and Lafferty, 2004).

Model Details. For all multilingual encoders we experiment with different in-
put sequence lengths: 64, 128, 256 subword tokens. For AOC we collect (at
most) τ “ 60 contexts for each vocabulary term: for a term not present at all
in Wikipedia, we fall back to the ISO embedding of that term. We also investigate
the impact of τ in Section 5.5.4. In all cases (SEMB, ISO, AOC), we surround the
input with the special sequence start and end tokens of respective pre-trained mod-
els: [CLS] and [SEP] for BERT-based models and xsy and x{sy for XLM-based
models. For vanilla multilingual encoders (mBERT and XLM) and all three vari-
ants (SEMB, ISO, AOC), we independently evaluate representations from differ-
ent Transformer layers (cf. Section 5.5.4). For comparability, for ISO and AOC –
methods that effectively induce static word embeddings using multilingual contex-
tual encoders – we opt for exactly the same term vocabularies used by the Proc-B
baseline, namely the top 100K most frequent terms from respective monolingual
fastText vocabularies. We additionally experiment with different instances of the
DISTIL model: DISTILXLM-R initializes the student model with the pre-trained
XLM-R Transformer (Conneau et al., 2020); DISTILUSE instantiates the student as
the pre-trained m-USE model (Yang et al., 2020b); whereas DISTILDistilmBERT dis-
tils the knowledge from the Sentence-BERT teacher into a multilingual version of
DistilBERT (Sanh et al., 2019), a 6-layer Transformer pre-distilled from mBERT.5

For SEMB models we scale embeddings of special tokens (sequence start and end
tokens, e.g., [CLS] and [SEP] for mBERT) with the mean IDF value of input
terms.

5.5 Results and Discussion

We first discuss our main results of document- and sentence-level retrieval, fol-
lowed by localized relevance matching, further analysis and few-shot CLIR.

5Working with mBERT directly instead of its distilled version led to similar scores, while increas-
ing running times.
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ENÑX DEÑX FIÑX

FI IT RU DE FI IT RU IT RU AVG w/o FI

Baselines

MT-IR .276 .428 .383 .263 .332 .431 .238 .406 .261 .335 .349
PROC-B .258 .265 .166 .288 .294 .230 .155 .151 .136 .216 .227
PROC-BLEN .165 .232 .176 .194 .207 .186 .192 .126 .154 .181 .196

Models based on multilingual Transformers

SEMBXLM .199* .187* .183 .126* .156* .166* .228 .186* .139 .174 .178
SEMBmBERT .145* .146* .167 .107* .151* .116* .149* .117 .128* .136 .137

AOCXLM .168 .261 .208 .206* .183 .190 .162 .123 .099 .178 .206
AOCmBERT .172* .209* .167 .193* .131* .143* .143 .104 .132 .155 .171

ISOXLM .058* .159* .050* .096* .026* .077* .035* .050* .055* .067 .083
ISOmBERT .075* .209 .096* .157* .061* .107* .025* .051* .014* .088 .119

Similarity-specialized sentence encoders (with parallel data supervision)

DISTILFILTER .291 .261 .278 .255 .272 .217 .237 .221 .270 .256 .250

DISTILXLM-R .216 .190* .179 .114* .237 .181 .173 .166 .138 .177 .167
DISTILUSE .141* .346* .182 .258 .139* .324* .179 .104 .111 .198 .258
DISTILDistilmBERT .294 .290* .313 .247* .300 .267* .284 .221* .302* .280 .280

LaBSE .180* .175* .128 .059* .178* .160* .113* .126 .149 .141 .127
LASER .142 .134* .076 .046* .163* .140* .065* .144 .107 .113 .094
m-USE .109* .328* .214 .230* .107* .294* .204 .073 .090 .183 .254

Table 5.1: Document-level CLIR results (Mean Average Precision). Bold: best
model for each language-pair. *: difference in performance w.r.t. PROC-B signifi-
cant at p ă 0.05, computed via paired two-tailed t-test with Bonferroni correction.

5.5.1 Document-Level CLIR Results

We show the performance (MAP) of multilingual encoders on document-level
CLIR tasks in Table 5.1. The first main finding is that none of the self-supervised
models (mBERT and XLM in ISO, AOC, and SEMB variants) outperforms the
CLWE baseline PROC-B. However, the full PROC-B baseline has, unlike mBERT
and XLM variants, been exposed to the full content of the documents. A fairer
comparison, against PROC-BLEN, which has also been exposed to the same amount
of text,6 reveals that SEMB and AOC variants come reasonably close, albeit still
do not outperform PROC-BLEN. This suggests that the document-level retrieval
could benefit from encoders able to encode longer portions of text, e.g., (Beltagy
et al., 2020; Zaheer et al., 2020). For document-level CLIR, however, these models
would first have to be ported to multilingual setups. Scaling embeddings by their
idf (PROC-B) effectively filters out high-frequent terms such as stopwords. We
therefore experiment with explicit a priori stopword filtering in DISTILDistilmBERT,

6Specifically, we tokenize queries/documents with the BPE tokenizer of XLM and then de-
tokenize the first 128 subword tokens back into word tokens.
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dubbed DISTILFILTER. Results show that performance deteriorates which indicates
that stopwords provide important contextualization information. While SEMB and
AOC variants exhibit similar performance, ISO variants perform much worse. The
direct comparison between ISO and AOC demonstrates the importance of con-
textual information and seemingly limited usability of off-the-shelf multilingual
encoders as word encoders, if no context is available, and if they are not further
specialized to encode word-level information (Liu et al., 2021).

Similarity-specialized multilingual encoders, which rely on pre-training with
parallel data, yield mixed results. Three models, DISTILDistilmBERT, DISTILUSE
and m-USE, generally outperform the PROC-B baseline.7 LASER is the only en-
coder trained on parallel data that does not beat the PROC-B baseline. We be-
lieve this is because (a) LASER’s recurrent encoder provides text embeddings of
lower quality than Transformer-based encoders of m-USE and DISTIL variants
and (b) it has not been subjected to any self-supervised pre-training like DISTIL
models. Even the best-performing CLIR model based on a multilingual encoder
(DISTILDistilmBERT) overall falls behind the MT-based baseline (MT-IR). However,
it is very important to note that the performance of MT-IR critically depends on the
quality of MT for the concrete language pair: for language pairs with weaker MT
(e.g., FI-RU, EN-FI, FI-RU, DE-RU), DISTILDistilmBERT can substantially outper-
form MT-IR (e.g., 9 MAP points for FI-RU and DE-RU). In contrast, the gap in
favor of MT-IR is, as expected, largest for the pairs of large typologically similar
languages, for which also the most reliable MT systems exist: EN-IT, EN-DE. In
other words, the feasibility and robustness of a strong MT-IR CLIR model seems
to diminish with more distant language pairs and lower-resource languages.

The variation in results with similarity-specialized sentence encoders indicates
that: (a) despite their seemingly similar high-level architectures typically based
on dual-encoder networks (Cer et al., 2018), it is important to carefully choose a
sentence encoder in document-level retrieval, and (b) there is an inherent mismatch
between the granularity of information encoded by the current state-of-the-art text
representation models and the document-level CLIR task.

5.5.2 Sentence-Level Cross-Lingual Retrieval

We show the sentence-level CLIR performance in Table 5.2. Unlike in document-
level CLIR, self-supervised SEMB variants here manage to outperform PROC-B.
The better relative SEMB performance than in document-level retrieval is some-
what expected: sentences are much shorter than documents (i.e., typically shorter
than the maximal sequence length of 128 word pieces). All purely self-supervised
mBERT and XLM variants, however, perform worse than the MT-IR baseline.

Multilingual sentence encoders specialized with parallel data excel in sentence-
level CLIR, all of them substantially outperforming the competitive MT-IR base-
line. This, however, does not come as much of a surprise, because these models

7As expected, m-USE and DISTILUSE perform poorly on language pairs involving Finnish, as
they have not been trained on any Finnish data.
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ENÑFI ENÑIT ENÑDE DEÑFI DEÑIT FIÑIT AVG w/o FI

Baselines

MT-IR .659 .803 .725 .541 .694 .698 .687 .740
Proc-B .143 .523 .415 .162 .342 .137 .287 .427

Models based on multilingual Transformers

SEMBXLM .309* .677* .465 .391* .495* .346* .447 .545
SEMBmBERT .199* .570 .355 .231* .481* .353* .365 .469

AOCXLM .099 .527 .274* .102* .282 .070* .226 .361
AOCmBERT .095* .433* .274* .088* .230* .059* .197 .312

ISOXLM .016* .178* .053* .006* .017* .002* .045 .082
ISOmBERT .010* .141* .087* .005* .017* .000* .043 .082

Similarity-specialized sentence encoders (with parallel data supervision)

DISTILXLM-R .935* .944* .943* .911* .919* .914* .928 .935
DISTILUSE .084* .960* .952* .137 .920* .072* .521 .944
DISTILDistilmBERT .847* .901* .901* .811* .842* .793* .849 .882

LaBSE .971* .972* .964* .948* .954* .951* .960 .963
LASER .974* .976* .969* .967* .965* .961* .969 .970
m-USE .079* .951* .929* .086* .886* .039* .495 .922

Table 5.2: Sentence-level CLIR results (MAP). Bold: best model for each
language-pair. *: difference in performance with respect to Proc-B, significant
at p ă 0.05, computed via paired two-tailed t-test with Bonferroni correction.

(a) have been trained using parallel data (i.e., sentence translations), and (b) have
been optimized exactly on the sentence similarity task. In other words, in the con-
text of the cross-lingual sentence-level task, these models are effectively supervised
models. The effect of supervision is most strongly pronounced for LASER, which
was, being also trained on parallel data from Europarl, effectively subjected to in-
domain training. We note that at the same time LASER was the weakest model
from this group on average in the document-level CLIR task.

The fact that similarity-specialized multilingual encoders perform much bet-
ter in sentence-level than in document-level CLIR suggests viability of a different
approach to document-level retrieval: instead of obtaining a single encoding for
the document, one may (independently) encode its sentences (or larger windows of
content) and (independently) measure their semantic correspondence to the query.
We investigate this localized relevance matching approach to document-level CLIR
with similarity-specialized multilingual encoders in the next section.

5.5.3 Localized Relevance Matching

Contrary to most NLP tasks, in ad-hoc document retrieval we face the challenge
of semantically representing long documents. According to Robertson and Walker
(1994), documents can be viewed either as a concatenation of topically heteroge-
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neous short sub-documents (“Scope Hypothesis”) or as a more verbose version
of a short document on the same topic (“Verbosity Hypothesis”). Under both hy-
potheses, the source of relevance of the document for the query is localized, i.e.,
there should exist (at least one) segment (relatively short w.r.t. the length of the
whole document) that is the source of relevance of the document for the query.
Furthermore, a query may represent an information need on a specific aspect of
a topic that is simply not discussed at the beginning, but rather somewhere later
in the document: the maximum input sequence length imposed by neural text
encoders directly limits the retrieval effectiveness in such cases. Even if we as-
sume that we can encode the complete document with our multilingual encoders,
these document representations would likely become semantically less precise (i.e.,
fuzzier) as they would aggregate contextualized representations of many more to-
kens; in Section 5.5.4 we validate this empirically and show that simply increasing
the maximum sequence length of multilingual encoders does not improve their
cross-lingual retrieval performance.

Recent work proposed pre-training procedures for encoding long documents
(Dai et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020). These models have been
pre-trained only for English. Pre-training their multilingual counterparts, however,
would require extremely large and massively multilingual corpora and computa-
tional resources of the scale that we do not have at our disposal. In the following,
we instead experiment with two resource-lean alternatives: we represent docu-
ments either as (1) sets of overlapping text segments obtained by running a slid-
ing window over the document or (2) a collection of document sentences, which
we then encode independently similar to (Akkalyoncu Yilmaz et al., 2019). For
a single document, we now need to store multiple semantic representations (em-
beddings), one for each text segment or sentence. While these approaches clearly
increase the index size as well as the retrieval latency (as the query representation
needs to be compared against embeddings of all document segments or sentences),
sufficiently fast ad-hoc retrieval for most use cases can still be achieved with highly
efficient approximate search libraries such as FAISS (Johnson et al., 2017). In the
context of monolingual reranking with cross-encoders (Chapter 6), related work
shows that aggregating relevance scores (Dai and Callan, 2019; Yilmaz et al., 2019)
or representations (Li et al., 2023a) obtained from different passages and sentences
improves retrieval results. Representing documents as multiple segments or sen-
tences allows for fine-grained local matching against the query: a setting in which
sentence-specialized multilingual encoders are supposed to excel, see Table 5.2.

Localized Relevance Matching: Segments. In this approach, we slide a window
of size 128 word tokens over the document with a stride of 42 tokens, creating
multiple overlapping 128-word segments from the input document. Each segment
is then encoded separately, leveraging the encoders from Section 5.2. We then
score for relevance each segment by comparing its respective embedding with the
query embedding. We then compute the final relevance score by averaging the
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ENÑX DEÑX FIÑX

k FI IT RU DE FI IT RU IT RU AVG ∆ AVG

PROC-B

1 .242 .253 .182 .286 .280 .217 .158 .147 .166 .215 ´0.86
2 .241 .244 .153 .287 .282 .207 .116 .147 .115 .199 ´2.40
3 .234 .235 .150 .277 .269 .194 .113 .153 .109 .193 ´3.04
4 .228 .217 .135 .255 .276 .171 .105 .167 .098 .184 ´3.95

DISTILDmBERT

1 .330 .327 .248 .365 .324 .293 .244 .268 .236 .293 +1.32
2 .349 .315 .269 .382 .347 .287 .216 .272 .226 .296 +1.61
3 .323 .291 .261 .353 .335 .268 .226 .248 .208 .279 ´0.03
4 .299 .263 .207 .330 .316 .236 .189 .217 .181 .249 ´3.10

DISTILXLM-R

1 .284 .218 .160 .233 .267 .195 .162 .181 .156 .206 +2.92
2 .279 .208 .164 .253 .264 .194 .179 .187 .157 .209 +3.25
3 .264 .191 .141 .228 .253 .188 .145 .171 .157 .193 +1.60
4 .236 .169 .105 .203 .237 .167 .114 .153 .113 .166 ´1.07

DISTILUSE

1 .149 .355 .202 .363 .138 .332 .199 .074 .118 .214 +1.64
2 .162 .377 .192 .416 .136 .344 .197 .081 .095 .222 +2.42
3 .150 .344 .180 .391 .137 .319 .181 .079 .091 .208 +1.00
4 .135 .313 .163 .364 .128 .280 .158 .064 .086 .188 ´1.03

LaBSE

1 .221 .108 .124 .141 .198 .093 .077 .063 .143 .130 ´1.32
2 .212 .118 .102 .189 .199 .103 .060 .085 .083 .128 ´1.13
3 .198 .104 .080 .153 .190 .089 .052 .076 .066 .112 ´2.90
4 .186 .088 .065 .128 .176 .075 .036 .069 .049 .097 ´4.42

mUSE

1 .073 .345 .215 .361 .082 .331 .210 .053 .084 .195 +1.19
2 .102 .370 .213 .404 .085 .344 .209 .056 .085 .208 +2.46
3 .083 .333 .198 .376 .074 .296 .186 .053 .082 .187 +0.38
4 .075 .291 .178 .348 .067 .257 .178 .047 .077 .169 ´1.43

LASER

1 .135 .058 .049 .075 .155 .054 .070 .082 .061 .082 +1.40
2 .150 .069 .071 .099 .161 .055 .060 .088 .062 .091 +2.26
3 .136 .054 .053 .074 .142 .044 .052 .072 .049 .075 +0.71
4 .113 .037 .038 .057 .118 .032 .045 .052 .038 .059 ´0.91

Table 5.3: Document-level CLIR results for localized relevance matching against
document segments (overlapping 128-token segments). Document relevance is the
average of relevance scores of k highest-scoring segments. Results (for 9 language
pairs from CLEF) shown for the PROC-B baseline and all similarity-specialized
encoders. ∆ AVG denotes relative performance increases/decreases w.r.t. the re-
spective base performances from Table 5.1.

relevance scores of the top-k highest-scoring segments.
Table 5.3 displays the results of all multilingual encoders in our comparison, for

k P t1, 2, 3, 4u.8 For most encoders (with the exception of LaBSE and the PROC-B
baseline) we observe gains from segment-based localized relevance matching: we
observe the largest average gain of 3.25 MAP points for DISTILXLM-R (from 0.177
for document encoding to 0.209 for segment-based localized relevance matching).

8For k “ 1, the relevance of the document is exactly the score of the highest scoring segment.
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Figure 5.2: Comparison of within-document positions of top-ranked segments
in segment-based localized relevance matching for different collection languages.
Proportions aggregated across all multilingual CLIR models from Table 5.3.

Most importantly, we observe gains for our best-performing multilingual encoder
DISTILDmBERT: localized relevance matching (for k “ 2) pushes its performance
by 1.6 MAP points (the base performance of 0.28 is shown in Table 5.1). We sus-
pect that applying BoW-Agg-IDF in PROC-B (see Equation 4.3 in Section 4.2.1)
has a similar (albeit query-independent) soft filtering effect to localized relevance
matching and that this is why localized relevance matching does not yield any gains
for this competitive baseline.

For all five multilingual encoders for which we observe gains from localized
relevance matching, these gains are the largest for k “ 2, i.e., when we average the
relevance scores of the two highest-scoring segments. In 63.7% of the cases, the
two highest-scoring segments are mutually consecutive, overlapping segments: we
speculate that in those cases it is the span of text in which they overlap that contains
the signal that makes the document relevant for the query. Matching queries with
the most similar segment embedding effectively filters out the rest of the docu-
ment. Our results suggest that improvements are pretty consistent across language
pairs: we only fail to observe gains when Russian is the language of the target
document collection. Localized relevance matching can in principle decrease the
performance if segmentation produces (many) false positives (i.e., irrelevant seg-
ments with high semantic similarity with the query). We suspect this to more
often be the case for Russian than for other languages. We further investigate this
by comparing positions of high-scoring segments across document collection lan-
guages. We look at the distributions of document positions among the top-ranked
100 segments (gathered from all collection documents): the distributions of top-
ranked segment results per positions in respective documents (i.e., 1 indicates the
first segment of the document, 2 the second, etc.) are shown for each of the four
collection languages (aggregated across all multilingual encoders from Table 5.3)
in Figure 5.2. The distributions of positions of high-scoring segments confirms
our suspicion that something is different for Russian compared to other languages:
we observe a much larger presence of high-scoring segments that appear later in
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Figure 5.3: Comparison of within-document positions of top-ranked segments
in segment-based localized relevance matching for different multilingual text en-
coders. Proportions aggregated across all multilingual CLIR models from Ta-
ble 5.3.

the documents, i.e., at positions larger than 10 (ą10): while there is between 2%
and 5% of such “late” high-scoring segments in Italian, German, and Finnish col-
lections, in the Russian collection there is 13% of such segments. Our manual
inspection confirmed that these late segments are indeed most often false positives
(i.e., irrelevant for the query, yet with representations highly similar to those of the
queries): this presumably causes the lower performance on *-RU benchmarks.

Figure 5.3 compares the individual multilingual encoders along the same di-
mension: document positions of the segments they rank the highest. Unlike for
collection languages, we do not observe major differences across multilingual en-
coders – for all of them, the top-ranked segments seem to have similar within-
document position distributions, with “early” segments (positions 1 and 2) having
the highest relative participation at the top of the ranking. In general, the analysis
of positions of high-scoring segments empirically validates the intuition that the
most relevant content is often localized at the beginning of the target documents
within the newswire CLEF corpora, which in turn reflects the writing style of the
news domain.

Localized Relevance Matching: Sentences. The selection of the segmentation
strategy can have a profound effect on the effectiveness of localized relevance
matching. Instead of (overlapping 128-token) segments, one could, for example,
measure the relevance of each document sentence for the query and (max-)pool
the sentence relevance scores. Sentence-level segmentation and relevance pooling
is particularly interesting when considering multilingual encoders that have been
specialized precisely for sentence-level semantics (i.e., produce accurate sentence-
level representations; see Section 5.3.1). In Table 5.4 we show the results of
sentence-level localized relevance matching for all multilingual encoders. Unlike
with segment-based localized relevance matching (see Table 5.3), here we see im-
provements for all multilingual encoders: what is more important, improvements
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ENÑX DEÑX FIÑX

k FI IT RU DE FI IT RU IT RU AVG ∆ AVG

Proc-B

1 .219 .207 .136 .191 .235 .203 .138 .089 .126 .171 ´5.16
2 .216 .273 .158 .238 .267 .247 .176 .142 .122 .204 ´1.90
3 .229 .267 .165 .245 .284 .231 .168 .153 .120 .207 ´1.61
4 .231 .247 .173 .235 .286 .215 .166 .150 .120 .202 ´2.07

DISTILDmBERT

1 .381 .288 .249 .332 .338 .248 .234 .234 .234 .282 `0.24
2 .371 .313 .303 .399 .343 .285 .286 .246 .280 .314 `3.44
3 .360 .308 .288 .407 .359 .274 .288 .247 .279 .312 `3.26
4 .345 .298 .264 .382 .352 .262 .263 .248 .271 .298 `1.87

DISTILXLM-R

1 .323 .220 .144 .239 .316 .215 .148 .200 .149 .217 `4.00
2 .339 .250 .199 .306 .305 .246 .200 .229 .196 .252 `7.51
3 .328 .260 .205 .311 .318 .237 .209 .222 .208 .255 `7.81
4 .311 .263 .188 .298 .319 .225 .178 .220 .179 .242 `6.52

DISTILUSE

1 .131 .270 .181 .332 .121 .244 .200 .070 .054 .178 ´2.01
2 .139 .331 .226 .408 .134 .321 .240 .076 .132 .223 `2.50
3 .131 .329 .220 .433 .129 .334 .235 .074 .129 .224 `2.56
4 .134 .340 .212 .428 .122 .329 .225 .068 .124 .220 `2.21

LaBSE

1 .188 .182 .126 .167 .185 .147 .101 .112 .112 .147 `0.57
2 .225 .197 .182 .213 .227 .180 .108 .138 .139 .179 `3.77
3 .245 .186 .157 .234 .255 .163 .089 .136 .110 .175 `3.39
4 .249 .192 .117 .235 .248 .139 .077 .145 .106 .167 `2.65

mUSE

1 .123 .270 .147 .317 .112 .256 .124 .070 .034 .161 ´2.17
2 .139 .368 .212 .395 .127 .334 .187 .079 .069 .212 `2.92
3 .142 .369 .230 .428 .122 .341 .189 .083 .077 .220 `3.72
4 .138 .357 .220 .429 .116 .331 .172 .081 .086 .214 `3.13

LASER

1 .207 .130 .096 .147 .206 .123 .107 .141 .112 .141 `7.30
2 .175 .172 .127 .184 .206 .138 .133 .165 .129 .159 `9.07
3 .191 .177 .153 .185 .197 .141 .154 .172 .136 .167 `9.94
4 .175 .172 .133 .179 .184 .131 .125 .166 .123 .154 `8.60

Table 5.4: Document-level CLIR results for localized relevance matching against
document sentences. Document relevance is the average of relevance scores of k
highest-scoring sentences. Results (for 9 language pairs from CLEF) shown for the
Proc-B baseline and all multilingual encoders specialized for encoding sentence-
level semantics. ∆ AVG denotes relative performance increases/decreases w.r.t.
the respective base performances from Table 5.1.

over the baseline performance of the same encoders (see Table 5.1) are substan-
tially larger than for segment-based localized relevance matching (e.g., 10 and
3.8 MAP-point improvements from sentence matching for LASER and LaBSE,
respectively, compared to 2-point improvement for LASER and an 1-point MAP
drop for LaBSE from segment matching). Sentence-level matching with the best-
performing base multilingual encoder DISTILDmBERT and pooling over two highest-
ranking sentences (i.e., k “ 2) yields the best unsupervised CLIR score that we ob-
served overall (31.4 MAP points). For all encoders, averaging the scores of k “ 2
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Segmentation Sentence Splitting

#Documents #Segments Factor #Sentences Factor

DE 294,809 1,281,993 4.35 5,385,103 18.27
IT 157,558 749,855 4.76 2,225,069 14.12
FI 55,344 224,390 4.05 1,286,702 23.25
RU 16,715 72,102 4.31 289,740 17.33

Table 5.5: Increase in computational complexity (i.e., decrease in retrieval effi-
ciency) due to localized relevance matching via segments and sentences.

or k “ 3 highest-scoring sentences gives better results than considering only the
single best sentence (i.e., k “ 1) – this would indicate that the content relevant to
a given query is still not overly localized within documents (i.e., not confined to a
single document sentence).

Finally, it is important to note that the gains in retrieval effectiveness (i.e., MAP
gains) obtained with localized relevance matching (segment-level and sentence-
level) come at the expense of reduced retrieval efficiency (i.e., increased retrieval
time): the query representation now needs to be compared with each of the segment
or sentence representations, instead of with only one aggregate representation for
the whole document. The slowdown factor is proportional to the average number
of segments/sentences per document in the document collection. Table 5.5 sum-
marizes the approximate slowdown factors (i.e., average numbers of segments and
sentences) for CLEF document collections in different languages.

5.5.4 Further Analysis

We now further investigate three aspects that may impact CLIR performance of
models based on multilingual encoders: (1) layer(s) from which we take vector
representations, (2) number of contexts used in AOC variants, and (3) sequence
length in document-level CLIR.

Layer Selection. All multilingual encoders have multiple layers and one may in
principle choose to take (sub)word representations for CLIR at the output of any
of them. Figure 5.4 shows the impact of taking subword representations after
each layer for self-supervised mBERT and XLM variants. We find that the op-
timal layer differs across the encoding strategies (AOC, ISO, and SEMB; cf. Sec-
tion 5.2) and tasks (document-level vs. sentence-level CLIR). ISO, where we feed
the terms into encoders without any context, seems to do best if we take the rep-
resentations from lowest layers. This makes intuitive sense, as the parameters
of higher Transformer layers encode compositional rather than lexical semantics
(Ethayarajh, 2019; Rogers et al., 2020b). For AOC and SEMB, where both mod-
els obtain representations by contextualizing (sub)words in a sentence, we get the
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Figure 5.4: CLIR performance of mBERT and XLM as a function of the Trans-
former layer from which we obtain the representations. Results (averaged over all
language pairs) shown for all three encoding strategies (SEMB, AOC, ISO).

best performance for higher layers – the optimal layers for document-level retrieval
(L9/L12 for mBERT, and L15 for XLM) seem to be higher than for sentence-level
retrieval (L9 for mBERT and L11/L12 for XLM). These results are consistent with
related work done on monolingual news document retrieval (Fan et al., 2021b;
MacAvaney et al., 2019) and retrieval of short documents (Fan et al., 2021b).

Number of Contexts in AOC. We construct AOC term embeddings by averaging
contextualized representations of the same term obtained from different Wikipedia
contexts. This raises an obvious question of a sufficient number of contexts needed
for a reliable (static) term embedding. Figure 5.5 shows the AOC results depending
on the number of contexts used to induce the term vectors (cf. τ in Section 5.2).
The AOC performance seems to plateau rather early – at around 30 and 40 contexts
for mBERT and XLM, respectively. Encoding more than 60 contexts (as we do in
our main experiments) would therefore bring only negligible performance gains.

Input Sequence Length. Multilingual encoders have a limited input length and
they, unlike CLIR models operating on static embeddings (Proc-B, as well as our
AOC and ISO variants), effectively truncate long documents. This limitation was,
in part, also the motivation for localized relevance matching approaches in the pre-
vious section. In our main experiments we truncated the documents to first 128
word pieces. Now we quantify (Table 5.6) if and to which extent this has a detri-
mental effect on document-level CLIR performance. Somewhat counterintuitively,
encoding a longer chunk of documents (256 word pieces) yields a minor perfor-
mance deterioration (compared to the length of 128) for all multilingual encoders.
We suspect that this is a combination of two effects: (1) it is more difficult to se-
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Figure 5.5: CLIR performance of AOC variants (mBERT and XLM) w.r.t. the
number of contexts used to obtain the term embeddings.

Length SEMBmBERT SEMBXLM DISTuse DISTXLM-R DISTDmBERT mUSE LaBSE LASER

64 .104 .128 .235 .167 .237 .254 .127 .089
128 .137 .178 .258 .162 .280 .247 .125 .068
256 .117 .158 .230 .146 .250 .197 .096 .027

Table 5.6: Document-level unsupervised CLIR results w.r.t. the input text length.
Scores averaged over all language pairs not involving Finnish.

mantically accurately encode a longer portion of text, which leads to semantically
less precise embeddings of 256-token sequences; and (2) for documents in which
the query-relevant content is not within the first 128 tokens, that content might of-
ten also appear beyond the first 256 tokens, rendering the increase in input length
inconsequential to the recognition of such documents as relevant. These results,
combined with gains obtained from localized relevance matching in the previous
section render localized matching (i.e., document relevance pooled from segment-
or sentence-level relevance scores) as a more promising strategy for retrieving long
documents than attempts to increase the input length of multilingual Transformers.
Our findings from localized relevance matching seem to indicate that the relevance
signal is highly localized: in such a setting, aggregating representations of very
many tokens (i.e., across the whole document), e.g., with long-input Transformers
(Beltagy et al., 2020; Zaheer et al., 2020), is prone to produce semantically fuzzier
(i.e., less precise) representations, from which it is harder to judge the document
relevance for the query.

5.5.5 Few-shot CLIR Results

We now consider a common scenario in which a limited annotation budget ex-
ists. That is, we study the performance under a limited amount of “in-domain”
relevance judgments that can be leveraged for fine-tuning of text encoders (as op-
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Figure 5.6: The effects of “in-domain” fine-tuning: comparison of CLIR per-
formance with DISTILDmBERT on the CLEF CLIR collections: (a) without any
fine-tuning (i.e., an unsupervised CLIR approach; see Section 5.5.1) and (b) after
in-domain fine-tuning on English CLEF data via contrastive metric-based learning
(see Section 5.3.2): here we have only zero-shot language transfer, but no domain
transfer (as was the case with L2R models from the previous section).

posed to a large amount of “out-of-domain” training data sufficient to train su-
pervised ranking models, which is the focus of Chapter 6). To this end, we use
the relevance judgments in the English portion of the CLEF collection to fine-tune
our best-performing multilingual encoder (DISTILDmBERT), using the contrastive
metric-based learning objective (Section 5.5.1) to refine the representation space of
the encoder. We carry out fine-tuning and evaluation in a 10-fold cross-validation
setup (i.e., we carry out fine-tuning 10 different times, each time training on dif-
ferent nine-tenths of the queries and evaluating on the remaining one-tenth) in or-
der to prevent any information leakage between languages: in the CLEF collec-
tion, queries in languages other than English are simply translations of the English
queries. This resulted (in each fold) with a fine-tuning training set consisting of
merely 800-900 positive instances (in English). We trained in batches of 16 positive
instances and for each of them created all possible in-batch negatives9 for the Mul-
tiple Negative Ranking Loss objective (see Section 5.3.2). With cross-validation
in place, for each language pair, we obtain predictions for all queries without any
information leakage, which makes the results of contrastive fine-tuning fully com-
parable with all previous results.

The CLIR results with the contrastively fine-tuned DISTILDmBERT results are
shown in Figure 5.6. On average, few-shot fine-tuning improves CLIR results by
2.5 MAP. The largest improvement is obtained for EN-RU (+5.1 MAP points)
and the smallest improvement is obtained for EN-DE (+0.1 MAP points). Un-
like re-ranking with full-blown pointwise learning-to-rank models (L2R; see Chap-
ter 6), contrastive in-domain reshaping of the representation space of the multi-

9This means at most 15 in-batch negatives created from the other query-document pairs in the
batch; there is less than 15 negatives only if there are other positive instances for the same query in
the batch.
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lingual encoder yields performance gains for all language pairs (2.5 MAP points
on average). It is important to emphasize that – because contrastive metric-based
fine-tuning only updates the parameters of the original multilingual Transformer
(DISTILDmBERT) and introduces no additional parameters (i.e., no classification
head on top of the encoder, as in the case of L2R models) – we can, in exactly the
same manner as with the base model before fine-tuning, fully rank the entire docu-
ment collection for a given query, instead of restricting ourselves to re-ranking the
top results of a first-stage ranker.

5.6 Conclusion

Pre-trained multilingual encoders have been shown to be widely useful in natural
language understanding (NLU) tasks; their utility as general-purpose text encoders
in unsupervised settings, such as the ad-hoc cross-lingual IR, has been less in-
vestigated. In this chapter, we systematically validated the suitability of a wide
spectrum of multilingual encoders for document- and sentence-level CLIR across
diverse languages. We first profiled the popular self-supervised multilingual en-
coders (mBERT and XLM) as well as the multilingual encoders specialized for
semantic text matching on semantic similarity datasets and parallel data as text
encoders for unsupervised CLIR. Our empirical results show that self-supervised
multilingual encoders (mBERT and XLM), without exposure to task supervision,
generally fail to outperform CLIR models based on static cross-lingual word em-
beddings (CLWEs). Semantically specialized multilingual sentence encoders, on
the other hand, do outperform CLWEs; the gains, however, are pronounced only
in sentence retrieval, while being much more modest in document retrieval. Ac-
knowledging that sentence-specialized multilingual encoders are not designed for
encoding long documents, we proposed to exploit their strength – precise semantic
encoding of short texts – in document retrieval too, by means of localized rele-
vance matching, where we compare the query with individual document segments
or sentences and max-pool the relevance scores; we showed that such localized
relevance matching with sentence-specialized multilingual encoders yields sub-
stantial document-level CLIR gains. While multilingual text encoders excel in
so many seemingly more complex language understanding tasks, our work renders
ad-hoc CLIR in general and document-level CLIR in particular a serious challenge
for these models. Furthermore, we investigated alternative supervised approach,
based on contrastive metric-based learning and few-shot learning, designed for
fine-tuning the representation space of a multilingual encoder when only a lim-
ited amount of “in-domain” relevance judgments is available. We show that such
small-scale in-domain fine-tuning of multilingual encoders yields consistent im-
provements over their unsupervised counterparts. We make our code and resources
available at: https://github.com/rlitschk/EncoderCLIR

https://github.com/rlitschk/EncoderCLIR
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Chapter 6

Zero-shot Language and Domain
Transfer of Rerankers

1In Part II Resource-Lean Transfer of Bi-Encoders, we focused on static and con-
textual cross-lingual word representations and their effectiveness on cross-lingual
information retrieval (CLIR), following the bi-encoder paradigm. We investigated
fully unsupervised CLIR methods and resource-lean setups, which rely on minimal
cross-lingual supervision in the form of bilingual dictionaries (Chapters 4 and 5).
We also investigated few-shot CLIR where we assumed access to some in-domain
training data, i.e. CLIR task supervision (Section 5.5.5).

In Part III Resource-Lean Transfer of Cross-Encoders (Chapters 6 to 8), we
now focus on the common setup where we have access to large-scale monolingual
training data (i.e. IR task supervision) in English and investigate zero-shot cross-
lingual transfer (ZS-XLT) of cross-encoder reranking models. In this chapter, fol-
lowing the pointwise learning-to-rank approach (Liu, 2009), we leverage existing
rankers based on multilingual text encoders and evaluate their performance when
applied on CLIR. We specifically compare two ranking models trained on different
English out-of-domain training data. That is, we investigate their transfer perfor-
mance where the languages and domains are different between the training and test
dataset. We further quantify the performance gap between zero-shot transfer into
a cross-lingual setup (ZS-XLT into CLIR) and zero-shot transfer into a monolin-
gual information retrieval setup (ZS-XLT into MoIR). Our results show that mod-
els trained on English MoIR data transfer substantially better into MoIR than into
CLIR. We refer to the underlying phenomenon as “monolingual overfitting” and
propose a way to regularize it in the next chapter (Chapter 7).

1This chapter is adapted from: (1) Robert Litschko, Ivan Vulic, Simone Paolo Ponzetto, and
Goran Glavaš. 2022. On cross-lingual retrieval with multilingual text encoders. Information Re-
trieval Journal 25.2, pages 149–183; (2) Robert Litschko, Ivan Vulic, and Goran Glavaš. 2022.
Parameter-efficient neural reranking for cross-lingual and multilingual retrieval. In Proceedings
of the 29th International Conference on Computational Linguistics (COLING), pages 1071–1082,
Gyeongju, Republic of Korea.
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6.1 Introduction

In this chapter, the focus is on multilingual cross-encoder rerankers applied in a
multi-stage retrieval framework (Nogueira et al., 2019b). Multi-stage retrieval
breaks the retrieval task down into first-stage retrieval, in which a fast preranker
is applied to obtain an initial ranking, and second-stage reranking, where the top-k
documents are reranked with a more powerful but slower reranker. We further fo-
cus on the ZS-XLT paradigm (Liang et al., 2020; Hu et al., 2020; Ponti et al., 2020),
which is commonly adopted in natural language processing (NLP) tasks to transfer
models from high-resource to low-resource languages. However, characteristic to
CLIR and different from most NLP tasks is that in CLIR models are transferred
into a setup where the input is written in two different languages. More precisely,
consider a ZS-XLT scenario where a model is transferred into the query-document
pair L1-L2. We distinguish between ZS-XLT into CLIR where L1 ‰ L2 and ZS-
XLT into a monolingual information retrieval task (MoIR) where L1 and L2 are
the same language (and different from the training language). We emphasize the
distinction between CLIR and MoIR as two different tasks. The standard approach
of training zero-shot models on English data results into MoIR ranking models
(MacAvaney et al., 2019; Shi and Lin, 2019; Shi et al., 2020; Jiang et al., 2020b).
At test time, these models can then either be applied on a MoIR task, which we
refer to as same task transfer (MoIRÑMoIR), or on a CLIR task, i.e. cross-task
transfer (MoIRÑCLIR). We find large performance differences between the two
transfer setups (Section 6.4.2) and argue that MoIR is a suboptimal source task,
because rerankers “overfit” to features that do not transfer well to CLIR.

ZS-XLT is enabled by multilingual pre-trained language models (mPLM) which
encode different languages in a shared multilingual representation space (see Sec-
tion 2.3.3). In the context of retrieval, MacAvaney et al. (2019) focus on ZS-XLT
for MoIR and train a cross-encoder based on mBERT (Devlin et al., 2019) on the
English news retrieval dataset TREC Robust04 (Voorhees, 2004). The authors eval-
uate their model on in-domain data in three target languages and show that it gener-
ally outperforms BM25 with substantial gains. Similar findings were made by Shi
et al. (2020) who trained an mBERT-based reranker on out-of-domain data. We
instead consider the more challenging setup and additionally evaluate the cross-
task transfer performance of rerankers (MoIRÑCLIR). We further investigate to
what extent domain differences between the training and test set distributions af-
fect the transfer performance. In this regard, our work is most similar to (Shi and
Lin, 2019), who also perform ZS-XLT into MoIR and CLIR, and also consider
domain differences between the training data and test data. Their ranking model, a
cross-encoder based on mBERT, is trained on English tweets and applied on news
retrieval datasets in different languages. Their results show that, despite the train-
test domain differences, their model consistently outperforms BM25 in MoIR and
BM25 combined with query translation in CLIR. However, all target language pairs
used in their CLIR evaluation involve English on the query-side or document-side.
This might lead to overly optimistic estimates of the transfer performance because
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(1) English represents the largest share in mBERT’s pre-training corpus (Conneau
et al., 2020) and (2) each target language pair partially overlaps with the training
language. In our experiments we evaluate models on nine cross-lingual language
pairs where five pairs do not include English. Lastly, Jiang et al. (2020b) use paral-
lel data to derive weak supervision for CLIR. This is different from our work, since
we only assume availability of monolingual retrieval supervision.

As mentioned above, in addition to comparing task differences, i.e. zero-shot
transfer into CLIR vs. MoIR, we also study domain mismatches between train-
ing and test data. Domain effects have been extensively studied in NLP tasks
(Plank and van Noord, 2011; Müller et al., 2020; Glavaš et al., 2020, inter alia)
and retrieval tasks (Akkalyoncu Yilmaz et al., 2019; Albalak et al., 2023), where
they have been shown to impair the performance in transfer learning setups (Ruder
et al., 2019). In Section 5.5.5, we showed that fine-tuning models on in-domain
data (few-shot CLIR) consistently leads to improved retrieval results. In this chap-
ter, we compare the performance of two off-the-shelf reranking models trained
on the out-of-domain MS MARCO dataset (Nguyen et al., 2016) and in-domain
TREC Robust04 dataset (Voorhees, 2004). We evaluate both models on the CLEF
2003 news retrieval dataset (Braschler, 2004) (see Section 3.3).

Contributions. Our key contributions are summarized as follows:

(1) We show that, on average, supervised neural rerankers (based on multilingual
Transformers such as mBERT) trained on English relevance judgments from
different collections (i.e., zero-shot language and domain transfer) do not sur-
pass the best performing unsupervised CLIR approach based on multilingual
sentence encoders (Section 6.4.1).

(2) We show that fine-tuning supervised CLIR models based on multilingual Trans-
formers on monolingual (English) data leads to a type of “overfitting” to mono-
lingual retrieval (Section 6.4.2): such models transfer much better to monolin-
gual retrieval tasks in unseen target languages (same task transfer) than to
cross-lingual retrieval tasks (cross-task transfer).

Resource-Lean Transfer. In this chapter, we study zero-shot cross-lingual trans-
fer of cross-encoder rerankers. To train reranking models, we only require access
to monolingual supervision, which allows for a resource-lean transfer from high-
resource languages (e.g., English) to target language pairs for which we have no
training data available (cf. Chapter 1, Figure 1.4). Arguably, monolingual task
supervision is easier to obtain than cross-lingual supervision because it (1) poses
fewer requirements on human annotators and (2) can be automated by discretizing
lexical relevance scores into labels (Sun and Duh, 2020).
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Figure 6.1: Overview of the multi-stage ranking approach to ad-hoc retrieval.
Stage 1 - Preranking: We rank the document collection C by (a) running sparse
BM25 retrieval on translated queries, or (b) according to the cosine similarity be-
tween dense query and document representations yielding an initial ranking R0.
Stage 2 - Reranking: We refine R0 by reranking the top-k documents according
to relevance scores predicted by a Cross-Encoder, yielding the refined ranking R1.

6.2 Methodology

In the Chapters 6 to 8, we rely on the multi-stage ranking paradigm (Nogueira et al.,
2019b) to evaluate cross-encoders (Nogueira and Cho, 2019) for zero-shot cross-
lingual transfer for CLIR. We briefly review the basic components of multi-stage
ranking systems and discuss how we adopt this paradigm for CLIR. As discussed
in Section 3.4, pre-trained Transformers like BERT (Devlin et al., 2019) are often
used as Cross-Encoder (CE) scoring models: the Transformer encodes a query-
document concatenation fed as input to the model, and the encoding is then fed to a
dense layer that predicts the relevance score (MacAvaney et al., 2020b; Jiang et al.,
2020a; Nogueira et al., 2019b). Due to the quadratic complexity of the multi-head
attention mechanism, computing scores for all query-documents pairs with Cross-
Encoders is too slow for practical IR applications: they are thus primarily used
as rerankers in a multi-stage ranking approach (MacAvaney et al., 2020b; Geigle
et al., 2022). Figure 6.1 illustrates our multi-stage CLIR workflow.2

First-Stage Retrieval. Preranking, based on a fast and efficient ranking method,
is applied to every document from the document collection in order to provide a
good initial ranking, targeting high recall. Let ql1 be a query in language l1 and

2In this chapter, we use multilingual bi-encoders (CLIR) and BM25 (MoIR) as first-stage rankers.
In Chapter 8 we additionally investigate BM25 together with neural machine translation (NMT).
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Cl2 “ tdiu
n
i“1 be a document collection containing n documents in language l2.

Associating and ranking documents w.r.t. relevance scores si we obtain an initial
ranking

R0 “ rpd1, s1q, pd2, s2q . . . pdn, snqs, (6.1)

where s1 ą s2 ą . . . sn. We transfer our rerankers based on multilingual pre-
trained languages models – and trained on English relevance judgments – to (i)
CLIR tasks as well as to (ii) monolingual IR tasks in target languages, termed
MoIR. In MoIR, we opt for a lexical preranker and score documents with sbm25 “

BM25pq, dq. A widely used approach in CLIR is to machine translate the query
(Bonifacio et al., 2021; Lawrie et al., 2022): this process effectively translates
CLIR into a noisy variant of MoIR. We study first stage retrievers based on query
translation in the next chapter. In this chapter, we experiment with a representation-
based approach based on pre-trained multilingual Bi-Encoders (BE): here, we em-
bed the query and documents independently, and then use the cosine similarity
between their embeddings sbe “ cospBEpqq, BEpdqq. In the preranking stage,
unlike later in reranking, we use the encoders merely as general-purpose text en-
coders, without any additional retrieval-specific training. To compare our results to
previous bi-encoder experiments (Chapter 5) we use the rankings produced by the
first-stage retrievers (i.e., multilingual sentence encoders) from Section 5.3.1.

Second-Stage Reranking. This stage refines the initial ranking obtained via pre-
ranking. It relies on a CE model which captures fine-grained (but more costly to
model and run) semantic interactions between queries and documents. The ranking
is then:

R1 “ rpd1, s
ce
1 q, pd2, s

ce
2 q . . . pdk, s

ce
k qs (6.2)

To this end, we rely on multilingual CEs to compute the binary relevance score sce

on the concatenation of query and document pairs:

sce “ CE p[CLS]q[SEP]di[SEP]q (6.3)

Reranking the top k documents with CEs yields the final ranking R1, common
choices for k include k “ 100 (MacAvaney et al., 2019; Craswell et al., 2020b;
Naseri et al., 2021) and k “ 1, 000 (Nguyen et al., 2016; Khattab and Zaharia,
2020). In this chapter, we experiment with two existing rerankers. The first model3

was trained on the large-scale MS MARCO passage retrieval dataset (Nguyen et al.,
2016), consisting of approx. 400M tuples, each consisting of a query, a relevant
passage and a non-relevant passage. Transferring rankers trained on MS MARCO
to various ad-hoc IR settings (i.e., domains) has been shown successful (Li et al.,
2023a; MacAvaney et al., 2020a; Craswell et al., 2021b). Here, we investigate the

3https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco
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performance of this supervised ranker trained on MS MARCO in simultaneous do-
main and language transfer. The second multilingual pointwise ranker (MacAvaney
et al., 2019) is trained on TREC Robust04 dataset (Voorhees, 2004). Although this
dataset is substantially smaller than MS MARCO (528K documents and 311K rel-
evance judgments), by covering newswire documents it is domain-wise closer to
our target CLEF test collection.

6.3 Experimental Setup

Evaluation Datasets and Prerankers. We adopt our standard experimental setup
for document-level retrieval introduced in Section 3.3 and use the CLEF 2003
benchmark (Braschler, 2004). That is, for MoIR we evaluate our rerankers on
English (EN), Finnish (FI), German (DE), Italian (IT) and Russian (RU). Here,
we experiment with two prerankers. Our first preranker, query likelihood model
(QLM), is a lexical model described in Section 3.3. Our second preranker uses fast-
Text embeddings (Bojanowski et al., 2017a), which are described in Section 2.1,
and follows the BoW-Agg-IDF approach explained in Section 4.2.

For CLIR, we reuse the same language pairs as in the previous chapter: EN-
{FI, IT, RU, DE}, DE-{FI,IT,RU} and FI-{IT, RU}. For first-stage retrieval, we
reuse the rankings produced by cross-lingual bi-encoder models: DISTIL (Reimers
and Gurevych, 2020), mUSE (Yang et al., 2020b), LaBSE (Feng et al., 2022),
and LASER (Artetxe and Schwenk, 2019a), we refer the reader to Section 5.2 for
details. For completeness, we also include our BoW-Agg-IDF model based on
cross-lingual word embeddings (Proc-B) from Chapter 4 as a preranker.

Reranking Model Details. Transferring (re-)rankers across domains and/or lan-
guages is a promising method when in-language and in-domain fine-tuning data is
scarce (MacAvaney et al., 2019). As mentioned above, for second-stage reranking,
we experiment with two pointwise rankers, both based on mBERT, pre-trained on
English relevance data. The first model is made available on HuggingFace (Wolf
et al., 2020)4 and was trained on the large-scale MS MARCO passage retrieval
dataset (Nguyen et al., 2016). Transferring rankers trained on MS MARCO to
various ad-hoc IR settings (i.e., domains) has been shown successful (Li et al.,
2023a; MacAvaney et al., 2020a; Craswell et al., 2021b). Here, we investigate
the performance of this supervised ranker trained on MS MARCO in simultaneous
domain and language transfer. The second multilingual pointwise ranker (MacA-
vaney et al., 2020b) is trained on TREC 2004 Robust dataset (Voorhees, 2004).
While this dataset is much smaller, it is also much closer to the target domain (i.e.
in-domain transfer). Both models are used to rerank the top k “ 100 pre-ranked
documents, yielding the final ranking R1.

4amberoad/bert-multilingual-passage-reranking-msmarco
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6.4 Results and Discussion

In this section, we investigate ZS-XLT from two perspectives. We first evaluate
simultaneous domain and language transfer of rerankers trained on large-scale En-
glish retrieval data (MoIR) (Section 6.4.1). In Section 6.4.2, we then compare the
difference between transferring reranking models into monolingual (ZS-XLT into
MoIR) versus cross-lingual settings (ZS-XLT into CLIR).

6.4.1 Domain and Language Transfer Effects

Language Transfer Effects. In Table 6.1 we summarize the results of domain and
language transfer experiments with the two pointwise mBERT-based rerankers. For
clarity, at the top of the table, we repeat the unsupervised CLIR results from Ta-
ble 5.1, which we obtained with similarity-specialized multilingual encoders (i.e.,
without any re-ranking). Intuitively, re-ranking – both with the MS MARCO-
trained model and TREC-trained model – brings the largest gains for the weak-
est unsupervised rankers: mUSE, LaBSE, and LASER (cf. Section 5.5.1). The
gains are somewhat larger when transferring the model trained on MS MARCO.
Comparing the overall average performance, re-ranking the results of the best-
performing unsupervised ranker – DISTILDmBERT – brings no performance gains;
in fact, re-ranking with the TREC-trained model reduces the quality of the base
ranking by 7 MAP points. A possible explanation for this could be that stronger
prerankers also introduce more challenging false positives (Gao et al., 2021b).

Upon closer inspection, we find that the transfer performance of the better-
performing MS MARCO re-ranker depends on the performance of the first-stage
retriever and the target language pair. For example, under the best-performing first-
stage retriever, DISTILDmBERT, the re-ranker improves the performance in five out
of nine language pairs. Notably, three out of the remaining four language pairs
({EN, DE, FI}ÑRU and FIÑIT) involve Russian. We hypothesize that this is
because (1) training rerankers on MoIR data does not expose models to query-
document pairs written in different scripts and (2) Russian, similar to Finnish, is
typologically distant from the training language (English). For transfer setups in-
volving the same script (i.e., Latin script), rerankers trained on MS MARCO con-
sistently improve first-stage rankings from all prerankers.5 These results suggest
that, assuming a strong multilingual bi-encoder as the first-stage retriever, super-
vised re-ranking models do not transfer well to distant language pairs compared
to languages from the same family. Unsurprisingly, we obtain better reranking re-
sults for language pairs involving English queries, suggesting that limiting CLIR
evaluation to EN on the query-side or document-side (Shi and Lin, 2019) is not a
reliable measure of the true ZS-XLT abilities of multilingual cross-encoders.

5The only exception to this is FI-IT with DISTILDmBERT as a preranker.
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ENÑX DEÑX FIÑX

FI IT RU DE FI IT RU IT RU AVG ∆ AVG

No re-ranking (reference)

Proc-B .258 .265 .166 .288 .294 .230 .155 .136 .216 .223 –

DISTDmBERT .294 .290 .313 .247 .300 .267 .284 .221 .302 .280 –
DISTXLM-R .219 .191 .149 .148 .215 .179 .142 .167 .125 .170 –
DISTUSE .141 .346 .182 .258 .139 .324 .179 .104 .111 .198 –

mUSE .077 .313 .186 .262 .077 .293 .183 .053 .092 .171 –
LaBSE .191 .163 .136 .087 .172 .136 .103 .117 .140 .138 –
LASER .146 .092 .060 .039 .153 .089 .062 .117 .076 .093 –

Re-ranker trained on MS MARCO

Proc-B .327 .330 .191 .321 .321 .230 .212 .160 .149 .246 `2.30 (8)

DISTDmBERT .340 .335 .219 .288 .339 .284 .245 .217 .160 .270 ´1.02 (5)
DISTXLM-R .310 .252 .137 .232 .370 .219 .165 .183 .062 .270 `3.74 (7)
DISTUSE .215 .354 .224 .295 .219 .310 .236 .133 .075 .229 `3.10 (7)

mUSE .170 .348 .235 .314 .162 .301 .253 .110 .093 .220 `4.95 (9)
LaBSE .300 .275 .169 .170 .360 .240 .138 .166 .190 .240 `6.60 (9)
LASER .258 .166 .089 .092 .228 .151 .114 .127 .160 .148 `5.49 (9)

Re-ranker trained on TREC Robust04

Proc-B .290 .292 .141 .310 .278 .214 .148 .108 .103 .209 ´1.40 (3)

DISTDmBERT .284 .283 .153 .274 .252 .246 .130 .147 .119 .210 ´7.00 (1)
DISTXLM-R .270 .227 .093 .242 .226 .200 .079 .129 .069 .170 `0.00 (5)
DISTUSE .195 .321 .119 .309 .194 .287 .113 .113 .117 .196 ´0.20 (5)

mUSE .143 .330 .129 .313 .139 .261 .131 .086 .079 .179 `0.80 (4)
LaBSE .275 .234 .086 .158 .245 .180 .076 .115 .077 .161 `2.30 (5)
LASER .201 .164 .121 .095 .171 .137 .118 .111 .093 .135 `4.20 (9)

Table 6.1: Document-level CLIR results on the CLEF collection obtained by lan-
guage and domain transfer of supervised re-ranking models. For each query, we
re-rank the top 100 results produced by the base multilingual ranker with two
mBERT-based L2R models trained on English data: MS MARCO (Nguyen et al.,
2016) (middle part of the table) and TREC Robust04 (bottom third of the table)
(Voorhees, 2004; MacAvaney et al., 2020b). Bold: the best performance for each
language pair and the average. ∆: performance difference compared to preranker
and the number of language pairs for which reranking improved the results.

Domain Transfer Effects. We now analyze domain differences between the fine-
tuning and test datasets. Recall that the first reranker, as shown in the middle part
of Table 5.1, is trained on the MS MARCO dataset (Nguyen et al., 2016), which
is based on web search data, and the second model (bottom half) is trained on
the TREC Robust04 dataset (Voorhees, 2004), which is based on news retrieval
data. Despite its lower domain similarity, we find that MS MARCO appears to be
the better source task. This is somewhat counterintuitive and might be explained
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EN FI DE IT RU AVG ∆ AVG

No re-ranking (reference)

QLM .471 .376 .400 .463 .325 .407 –
FastText .310 .327 .314 .314 .214 .296 –

Re-ranker trained on MS MARCO

QLM .520 .469 .424 .488 .359 .452 `4.53
FastText .434 .430 .384 .468 .359 .415 `11.90

Re-ranker trained on TREC Robust04

QLM .481 .520 .420 .454 .303 .436 `1.98
FastText .375 .462 .367 .429 .299 .386 `8.76

Table 6.2: Cross-lingual zero-shot transfer for monolingual retrieval: results on
the monolingual CLEF portions. Base rankers (top third of the table) – QLM
with Dirichlet Smoothing and aggregation of static monolingual word embeddings
(fastText) and re-ranking with pointwise mBERT-based models trained on English
MS MARCO (middle third) and TREC Robust04 data (bottom third), respectively.

by the fact that it is trained on a much larger dataset. Notably, our results in Sec-
tion 5.5.5 allow us to compare the difference between few in-domain data in the tar-
get language (few-shot CLIR) against large-scale training data in a different source
language (zero-shot CLIR). While the former setup yields consistent performance
gains on all target language pairs, we find that the latter performs worse. In this
regard, our results are in line with Craswell et al. (2021b), who conclude that in-
domain data, in addition to MS MARCO, is crucial to successfully transfer ranking
models. However, it is important to note that in our comparison both approaches
use different encoder models (mBERT vs. DmBERT) and retrieval paradigms (bi-
encoder vs. cross-encoder). In future work, we plan to investigate whether few-
shot CLIR models still outperform zero-shot CLIR models when both follow the
same setting. In summary, our results suggest that, at least in ZS-XLT for CLIR,
(1) the size of the training dataset plays a crucial role and (2) domain similarity
alone is insufficient for a successful transfer. Next, we control for train-test task
differences by transferring both rerankers to a monolingual target (MoIRÑMoIR).

6.4.2 Same Task vs. Cross-Task Transfer

At first glance, our CLIR results for the mBERT-based pointwise L2R rankers
(Section 6.4.1) – i.e., the fact that using them for re-ranking does not improve
the performance of our best-performing unsupervised ranker (DISTILDmBERT) –
seem at odds with their solid cross-lingual transfer results reported in previous
work (MacAvaney et al., 2020b). It is, however, important to notice the fundamen-
tal difference between the two evaluation settings: what was previously evaluated
(MacAvaney et al., 2020b) was the effectiveness of (zero-shot) cross-lingual trans-
fer of a monolingual retrieval model, trained on English data and transferred to
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a set of target languages. In other words, both in training and at inference time,
the models deal with queries and documents written in the same language. Our
work here, instead, focuses on a fundamentally different scenario of cross-lingual
retrieval, where the language of the query is different from the language of doc-
ument collection. We argue that, in a supervised setting, in which one trains on
monolingual English data only, the latter (i.e., CLIR) represents a more difficult
transfer setup.

To validate the above assumption, we additionally evaluate the two mBERT-
based re-rankers from Section 6.4.1 trained on MS MARCO and TREC Robust04,
respectively, on monolingual portions of the CLEF collection. We use them to re-
rank two strong monolingual baselines: (1) Query Likelihood Model (QLM, based
on unigrams) (Ponte and Croft, 1998) with Dirichlet smoothing (Zhai and Laf-
ferty, 2004), which we also used for the machine-translation baseline (MT-IR) in
our previous evaluation (see Section 5.4); and (2) a retrieval model based on aggre-
gation of IDF-scaled static word embeddings (see Section 2.2).6 For the latter, we
used the monolingual fastText embeddings trained on Wikipedias of the respective
languages,7 with vocabularies limited to the 200K most frequent terms.

The results of mBERT-based re-rankers in cross-lingual transfer for monolin-
gual retrieval are summarized in Table 6.2. We see that, unlike in CLIR (see Ta-
ble 6.1), mBERT-based re-rankers do substantially and consistently improve the
performance of the base retrieval models, even though the base performance of the
monolingual baselines (QLM and fastText) is significantly above the best CLIR
performance obtained with unsupervised rankers (see DISTILDmBERT in Table 6.1;
MAP: 0.280). This is in line with the findings from (MacAvaney et al., 2020b):
multilingual encoders (e.g., mBERT) do seem to be a viable solution for (zero-
shot) cross-lingual transfer of learning-to-rank models for monolingual retrieval
(i.e., MoIRÑMoIR). But why are they not as effective when transferred to CLIR
settings (as shown in Section 6.4.1)? We hypothesize that monolingual English
training on large-scale datasets leads to a sort of “overfitting” to monolingual re-
trieval (e.g., the model may implicitly learn to assign a lot of importance to exact
term matches) – such (latent) features will, in principle, transfer reasonably well
to other monolingual retrieval settings, regardless of the target language. However,
CLIR instances are likely to generate out-of-training-distribution values for these
latent features (e.g., if the model learned to value exact matches during training, at
predict time in CLIR settings, it would need to recognize word-level translations
between the two languages), confusing the pointwise classifier.

6This corresponds to the Proc-B baseline in CLIR evaluations; only here we use monolingual
embeddings of the target language (instead of a bilingual word embedding space, as in CLIR).

7https://fasttext.cc/docs/en/pretrained-vectors.html

https://fasttext.cc/docs/en/pretrained-vectors.html
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6.5 Conclusion

In this chapter, we investigated the effectiveness of supervised (re-)rankers, based
on multilingual encoders, in zero-shot cross-lingual transfer for ad-hoc document-
level CLIR evaluation setups. Summarizing the results from this chapter and our
few-shot CLIR experiments in Section 5.5.5, it appears that – at least when it comes
to zero-shot language transfer for cross-lingual document retrieval – specializing
the representation space of a multilingual encoder with few(er) in-domain rele-
vance judgments is more effective than employing a neural L2R ranker trained on
large amounts of “out-of-domain” data.

We further show that, while rankers trained monolingually on large-scale En-
glish datasets can be successfully transferred to monolingual retrieval tasks in other
languages, their transfer to CLIR setups, in which the query language differs from
the language of the document collection, is much less successful. Our findings in-
dicate that, during monolingual fine-tuning cross-encoders “overfit” to features that
do not transfer well to CLIR tasks. In the next chapter, we systematically dissect
this phenomenon, which we refer to as “monolingual overfitting”. We show that
this type of overfitting can be effectively regularized by training cross-encoders on
artificially code-switched data.
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Chapter 7

Regularizing Monolingual
Overfitting

1In this chapter, we build on our observation that the effectiveness of zero-shot
rerankers, trained on monolingual data, diminishes when they are transferred into
a setup where queries and documents are in different languages (cf. Section 6.4.2).
Motivated by this, we propose to train ranking models on artificially code-switched
data instead, which we generate by utilizing bilingual lexicons. We experiment
with lexicons induced from (1) cross-lingual word embeddings and (2) parallel
Wikipedia page titles. We use the multilingual MARCO dataset (mMARCO)
(Bonifacio et al., 2021) to extensively evaluate reranking models on 36 language
pairs spanning Monolingual IR (MoIR), Cross-lingual IR (CLIR), and Multilingual
IR (MLIR). We choose mMARCO because, contrary to CLEF 2003 (Braschler,
2004) used in previous chapters, it consists of parallel queries and documents and
also contains large training datasets. Our results show that code-switching can
yield consistent and substantial gains of 5.1 MRR@10 in CLIR and 3.9 MRR@10
in MLIR, while maintaining stable performance in MoIR. Encouragingly, the gains
are especially pronounced for distant languages (up to 2x absolute gain). We fur-
ther show that our approach is robust towards the ratio of code-switched tokens
and also extends to unseen languages. Our results demonstrate that training on
code-switched data is a cheap and effective way of generalizing zero-shot rankers
for cross-lingual and multilingual retrieval.

7.1 Introduction

Cross-lingual Information Retrieval (CLIR) is the task of retrieving relevant docu-
ments written in a language different from a query language. The large number of

1This Chapter is adapted from: Robert Litschko, Ekaterina Artemova, Barbara Plank. 2023.
Boosting Zero-shot Cross-lingual Retrieval by Training on Artificially Code-Switched Data. In Find-
ings of the Association for Computational Linguistics (Findings of ACL), pages 3096–3108, Toronto,
Canada.

115



116 7. Regularizing Monolingual Overfitting

languages and limited amounts of training data pose a serious challenge for train-
ing ranking models. Previous work address this issue by using machine translation
(MT), effectively casting CLIR into a noisy variant of monolingual retrieval (Li
and Cheng, 2018; Shi et al., 2020, 2021; Moraes et al., 2021). MT systems are
used to either train ranking models on translated training data (translate train), or
by translating queries into the document language at retrieval time (translate test).
However, CLIR approaches relying on MT systems are limited by their language
coverage. Because training MT models is bounded by the availability of parallel
data, it does not scale well to a large number of languages. In Section 8.4 we further
show that using MT for IR is prone to propagation of unwanted translation artifacts
such as topic shifts, repetition, hallucinations and lexical ambiguity (Artetxe et al.,
2020; Li et al., 2022). In this chapter, we propose a resource-lean MT alternative
to bridge the language gap and propose to use artificially code-switched data.

We focus on zero-shot cross-encoder (CE) models for reranking (MacAvaney
et al., 2020b; Shi and Lin, 2019; Jiang et al., 2020b). Our study is motivated by
the observation that the performance of CEs diminishes when they are transferred
into CLIR as opposed to MoIR (see Section 6.4.1). In this chapter, we confirm
our findings on the multilingual passage retrieval dataset, mMARCO (Bonifacio
et al., 2021), and broaden our analysis to also include multilingual IR (MLIR). We
provide an in-depth analysis of “monolingual overfitting” where the ranker learns
features, such as exact keyword matches, which are useful in MoIR but do not
transfer well to CLIR and MLIR due to the lack of lexical overlap (Section 6.4.2).
Our work is in line with Roy et al. (2020), who show for bi-encoders that represen-
tations from zero-shot models are weakly aligned between languages, i.e., models
prefer non-relevant documents in the same language over relevant documents in a
different language. To address this problem, we propose to use code-switching as
an inductive bias to regularize monolingual overfitting in CEs.

Generation of synthetic code-switched data has served as a way to augment
data in cross-lingual setups in a number of NLP tasks (Singh et al., 2019; Einol-
ghozati et al., 2021; Tan and Joty, 2021). They utilize substitution techniques rang-
ing from simplistic re-writing in the target script (Gautam et al., 2021), looking up
bilingual lexicons (Tan and Joty, 2021) to MT (Tarunesh et al., 2021). Previous
work on improving zero-shot transfer for IR includes weak supervision (Shi et al.,
2021), tuning the pivot language (Turc et al., 2021), multilingual query expan-
sion (Blloshmi et al., 2021) and cross-lingual pre-training (Yang et al., 2020a; Yu
et al., 2021a; Yang et al., 2022a; Lee et al., 2023). In this regard, code-switching
is complementary to existing approaches. Our work is most similar to Shi et al.
(2020), who use bilingual lexicons for full term-by-term translation to improve
MoIR. Concurrent to our work, Huang et al. (2023) showed that code-switching
improves the retrieval performance on low-resource languages, however, their fo-
cus lies on CLIR with English documents. As argued in Section 6.4.1, evaluating
zero-shot rankers trained on English data on target language pairs that also involve
English is not truly reflective of their zero-shot transfer capabilities and leads to
overestimating retrieval performance. To the best of our knowledge, we are the first
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to systematically investigate (1) artificial code-switching to train CEs and (2) the
interaction between MoIR, CLIR and MLIR.

Contributions. Our key contributions and findings are summarized as follows:

(1) We validate our previous findings on ad-hoc document-level retrieval (Sec-
tion 6.4.2) on a different CLIR task (answer passage retrieval) and show that
training zero-shot rankers on monolingual data indeed leads to monolingual
overfitting. That is, we empirically show that rankers trained on English data
exhibit a better performance when transferred to a monolingual setup and
worse performance when transferred to a cross-lingual setup (Section 7.4).

(2) We show that training on artificially code-switched data is an effective way
to regularize monolingual overfitting and improve the transfer performance of
zero-shot cross-lingual and multilingual rankers (Section 7.4). Our findings
reveal that the gains are largest for difficult queries that have no lexical overlap
with their relevant documents. The performance on queries that share a signif-
icant portion of tokens with their relevant documents is not negatively affected
by our code switching.

(3) We demonstrate that our approach is robust towards different ratios of code-
switched tokens and consistently improves the performance when models are
transferred into a cross-lingual setup. Our results on MLIR further show that
code-switching improves the effectiveness in generalizing to unseen languages.

Resource-Lean Transfer. We follow the same method as in the previous chap-
ter and focus on zero-shot cross-lingual transfer of rerankers. This approach is
resource-lean as it relies only monolingual task supervision and little cross-lingual
supervision in the form of bilingual dictionaries, which can be obtained in a fully
unsupervised fashion (see Section 2.2.3). Our goal is to use bilingual dictionar-
ies to improve the generalization performance of CEs for CLIR and MLIR. Most
importantly, and contrary to resource-intensive approaches, we do not rely on any
large-scale parallel resources (see Taxonomy in Chapter 1, Figure 1.4).

7.2 Methodology

Reranking with Cross-Encoders. We follow the standard cross-encoder rerank-
ing approach (CE) proposed by Nogueira and Cho (2019), which formulates rele-
vance prediction as a sequence pair (query-document pair) classification task. CEs
are composed of an encoder model and a relevance prediction model. The en-
coder is a pre-trained language model (Devlin et al., 2019) that transforms the con-
catenated input [CLS] Q [SEP] D [SEP] into a joint query-document fea-
ture representation, from which the classification head predicts relevance. Finally,
documents are reranked according to their predicted relevance. We argue that fine-
tuning CEs on monolingual data biases the encoder towards encoding features that
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Algorithm 1 Multilingual Code Switching
Input: Language pool L, dictionaries DEN )X, transl. probability p, tokenized sequence s

1: for every position i “ 1 . . . |s| do
2: pcs „ Up0, 1q Ź Sample CS probability (uniform random).
3: if pcs ă p then
4: l2 „ UpLq Ź Sample target language l2 from L.
5: si Ð DEN )l2psiq
6: end if
7: end for
8: return perturbed sequence s

are only useful when the target setup is MoIR. To mitigate this bias, we propose to
perturb the training data with code-switching, as described next.

Artificial Code-Switching. While previous work has studied code-switching (CS)
as a natural phenomenon where speakers borrow words from other languages (e.g.
anglicism) (Ganguly et al., 2016; Wang and Komlodi, 2018), we here refer to code-
switching as a method to artificially modify monolingual training data. In the
following we assume availability of English (EN–EN) training data. The goal is to
improve the zero-shot transfer of ranking models into cross-lingual language pairs
X–Y by training on code-switched data ENX–ENY instead, which we obtain by
exploiting bilingual lexicons similar to Tan and Joty (2021). We now describe two
CS approaches based on lexicons: one derived from word embeddings and one
from Wikipedia page titles (see examples in Table 7.1).

Code-Switching with Word Embeddings. We rely on bilingual dictionaries D in-
duced from cross-lingual word embeddings (Mikolov et al., 2013b; Heyman et al.,
2017b) and compute for each EN term its nearest (cosine) cross-lingual neighbor.
In order to generate ENX–ENY we then use DEN )X and DEN )Y to code-switch
query and document terms from EN into the languages X and Y, each with prob-
ability p. This approach, dubbed Bilingual CS (BL-CS), allows a ranker to learn
inter-lingual semantics between EN, X and Y. In our second approach, Multilin-
gual CS (ML-CS), we additionally sample for each term a different target language
into which it gets translated; we refer to the pool of available languages as seen
languages (see Algorithm 1).

Code-Switching with Wikipedia Titles. Our third approach, Wiki-CS, follows
(Lan et al., 2020; Fetahu et al., 2021) and uses bilingual lexicons derived from
parallel Wikipedia page titles obtained from inter-language links. We first extract
word n-grams from queries and documents with different sliding window of sizes
n P t1, 2, 3u. Longer n-gram are favored over shorter ones in order to account
for multi-term expressions, which are commonly observed in named entities. In
Wiki-CS we create a single multilingual dataset where queries and documents
from different training instances are code-switched into different languages.
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Approach Query Document

Zero-Shot What is an affinity credit
card program?

Use your PayPal Plus credit card to deposit funds. If
you have a PayPal Plus credit card, you are able to in-
stantly transfer money from it to your account. This is a
credit card offered by PayPal for which you must qual-
ify.

Fine-tuning Was ist ein Affinity-
Kreditkartenprogramm?

Используйте свою кредитную карту PayPal Plus
для внесения средств. Если у вас есть кредит-
ная карта PayPal Plus, вы можете мгновенно пе-
реводить деньги с нее на свой счет. Это кредит-
ная карта, предлагаемая PayPal, на которую вы
должны претендовать.

BL-CS Denn is einem affinity
credit card programms?

Использовать your PayPal плюс кредита билет
попытаться депозиты funds. если you have a Pay-
Pal плюс credit билет, скажите are able to instantly
переход денег from it попытаться ваши account.
This is a credit билет offered by paypal for причём
you может qualify.

ML-CS What is это affinità credit
card program?

Use jouw PayPal Plus credit geheugenkaarten to de-
positi funds. @

	
X @


you хотя ein 	
àAÒ

�
J

KB@ aggiunta credit

card, you are попытаться quindi sofort transfer geld
from questo úÍ@


deine account. Это является a кре-

дита card offerto by paypal voor which you devono
Éë


A
�
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Wiki-CS What is an affinity Kred-
itkarte program?

Use your PayPal Plus carta di credito to deposit funds.
If you have a PayPal Plus carta di credito, you are able
to instantly transfer denaro from it to your account. This
is a carta di credito offered by PayPal for which you
mosto qualify.

Table 7.1: Different Code-Switching strategies on a single training instance for the
target language pair DE–RU (Query ID: 711253, Document ID: 867890, label: 0).
Zero-shot: Train a single zero-shot ranker on the original EN–EN MS MARCO
instances (Bajaj et al., 2016). Fine-tuning: Fine-tune ranker directly on DE–
RU, we use translations (Google Translate) provided by the mMARCO dataset
Bonifacio et al. (2021). Bilingual Code-Switching (BL-CS): Translate randomly
selected EN query tokens into DE and randomly selected EN document tokens
into RU, each token is translated with probability p “ 0.5; Multilingual Code-
Switching (ML-CS): Same as BL-CS but additionally sample for each token its
target language uniformly at random. Wiki-CS: Translate n-grams extracted with
a sliding window. Tokens within a single query/document are code-switched with
a single language; across training instances languages are randomly mixed. We
use the following language pool of “seen languages”: English, German, Russian,
Italian, Dutch, Arabic.
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7.3 Experimental Setup

Models and Dictionaries. We follow Bonifacio et al. (2021) and initialize rankers
with the multilingual encoder mMiniLM provided by Reimers and Gurevych (2020)
on HuggingFace (Wolf et al., 2020).2 The maximum sequence length corresponds
to 512 and we train our ranking models for a fixed number of 200,000 steps with
a learning rate of 2e-5 and a batch size of 64. Following prior work by Reimers
and Gurevych (2020), we extract negative samples from training triplets provided
by MS MARCO (Bajaj et al., 2016) with a positive to negative ratio of 1:4. In
the passage re-ranking task we rank for 6980 queries 1,000 passages respectively
(qrels.dev.small). For BL-CS and ML-CS we use off-the-shelf multilingual MUSE
embeddings3 to induce bilingual lexicons (Lample et al., 2018), which have been
aligned with initial seed dictionaries of 5k word translation pairs. We set the trans-
lation probability p “ 0.5. For Wiki-CS, we use the lexicons provided by the
linguatools project.4

Baselines. To compare whether training on CS’ed data ENX–ENY improves the
transfer into CLIR setups, we include the zero-shot ranker trained on EN–EN
as our main baseline (henceforth, Zero-shot). Our upper-bound reference,
dubbed Fine-tuning, refers to ranking models that are directly trained on the
target language pair X–Y, i.e. no zero-shot transfer. Following Roy et al. (2020),
we adopt the translate test baseline and translate any test data into EN using
our bilingual lexicons induced from word embeddings. On this data we evaluate
both the Zero-shot baseline (Zero-shotTranslate Test) and our ML-CS model
(ML-CSTranslate Test).

Datasets and Evaluation. We use the publicly available multilingual MARCO
(mMARCO) dataset (Bonifacio et al., 2021), which includes fourteen different lan-
guages. We group those into six seen languages (EN, DE, RU, AR, NL, IT) and
eight unseen languages (HI, ID, IT, JP, PT, ES, VT, FR) and construct a total of
36 language pairs.5 Out of those, we construct setups where we have documents
in different languages (EN–X), queries in different languages (X–EN), and both
in different languages (X–X). Specifically, for each document ID (query ID) we
sample the content from one of the available languages. For evaluation, we use the
official evaluation metric MRR@10.6 All models re-rank the top 1,000 passages
provided for the passage re-ranking task. We report all results as averages over
three random seeds.

2nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large
3https://github.com/facebookresearch/MUSE
4https://linguatools.org/wikipedia-parallel-titles
5Due to computational limitations we don’t exhaustively evaluate on all possible language pairs.
6We use the implementation provided by the ir-measures package (MacAvaney et al., 2022).

https://github.com/facebookresearch/MUSE
https://linguatools.org/tools/corpora/wikipedia-parallel-titles-corpora/
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EN DE RU AR NL IT AVG ∆ZS

Zero-shot 35.0 25.9 23.8 23.9 27.2 26.9 25.5 -
Fine-tuning 35.0 30.3* 28.5* 27.2* 30.8* 30.9* 29.5 +4.0
Zero-shotTranslate Test - 22.5* 18.2* 17.7* 24.7* 23.3* 21.3 -4.2
ML-CSTranslate Test - 22.8* 18.6* 17.7* 24.7* 24.5* 21.7 -3.8
BL-CS - 26.0 25.5 23.0 27.5 27.2 25.8 +0.3
ML-CS 34.0 25.9 24.7 21.3 27.2 26.9 25.2 -0.3
Wiki-CS 33.8* 25.6 24.1 20.5* 27.0 25.5* 24.5 -1.0

Table 7.2: MoIR: Monolingual results on mMARCO languages and averaged over
all languages (excluding EN) in terms of MRR@10. Bold: Best zero-shot per-
formance for each language. ∆ZS: Absolute difference to Zero-shot. Results
significantly different from Zero-shot are marked with * (paired t-test, Bonfer-
roni correction, p ă 0.05).7

7.4 Results and Discussion

We observe that code-switching improves cross-lingual and multilingual re-ranking,
while not impeding monolingual setups, as shown next.

Transfer into MoIR vs. CLIR. We first quantify the performance drop when
transferring models trained on EN–EN to MoIR as opposed to CLIR and MLIR.
Our analysis is comparable to our experimental setup described in Section 6.4.2
where we refer to the former as same-task transfer (MoIRÑMoIR) and to the latter
as cross-task transfer (MoIRÑCLIR). Comparing Zero-shot results between
different settings we find that the average MoIR performance of 25.5 MRR@10
(Table 7.2) is substantially higher than CLIR with 15.7 MRR@10 (Table 7.3)
and MLIR with 16.6 MRR@10 (Table 7.4). The transfer performance greatly
varies with the language proximity, in CLIR the drop is larger for setups involv-
ing typologically distant languages (AR–IT, AR–RU), to a lesser extent the same
observation holds for MoIR (AR–AR, RU–RU). This is consistent with previ-
ous findings made in other syntactic and semantic NLP tasks (He et al., 2019;
Lauscher et al., 2020). It is also consistent with two key observations made in
Section 6.4.2: (1) Cross-task transfer performs substantially worse than same-task
transfer, and (2) the performance drops are largest when non-Latin scripts are in-
volved. Furthermore, the performance gap to Fine-tuning on translated data
is much smaller in MoIR (+4 MRR@10) than in CLIR (+11.1 MRR@10) and
MLIR (+8.3 MRR@10). Our aim to is close this gap between zero-shot and full
fine-tuning in a resource-lean way by training on code-switched queries and docu-
ments.

Code-Switching Results. Training on code-switched data consistently outperforms
zero-shot models in CLIR and MLIR (Table 7.3 and Table 7.4). In AR–IT and



122 7. Regularizing Monolingual Overfitting

ENÑX DEÑX ARÑX

DE IT AR RU IT NL RU IT RU AVG ∆ZS

Zero-Shot 24.0 23.0 14.0 18.3 15.0 19.7 12.9 7.7 7.1 15.7 -
Fine-tuning 29.7* 30.5* 26.5* 28.0* 26.9* 27.9* 25.5* 23.9* 22.7* 26.8 +11.1
ZSTranslate Test 22.8 23.2 16.4 17.0 15.8 17.5 11.8 9.8 8.7 15.9 +0.2
ML-CSTranslate Test 24.9 24.6 17.9* 19.5 17.6 19.3* 14.3 12.2* 10.6* 17.9 +2.2
BL-CS 26.9* 27.3* 19.3* 22.8* 20.4* 22.8* 17.8* 15.6* 14.1* 20.8 +5.1
ML-CS 26.5* 26.4* 18.1* 22.1* 19.8* 22.8* 17.8* 15.3* 14.2* 20.3 +4.6
Wiki-CS 26.2* 26.4* 19.4* 22.9* 19.4* 22.4* 18.3* 14.4* 14.1* 20.4 +4.7

Table 7.3: CLIR: Cross-lingual results on mMARCO in terms of MRR@10.

Seen Languages All Languages

X–EN EN–X X–X AVGseen ∆seen X–EN EN–X X–X AVGall ∆all

Zero-shot 19.0 23.5 16.3 19.6 - 16.5 20.8 12.9 16.6 -
Fine-tuning 24.8* 26.4* 21.1* 24.1 +4.5 26.5* 26.5* 21.9* 25.0 +8.3
ML-CS 24.2* 25.9* 21.1* 23.7 +4.1 21.6* 23.2* 17.0* 20.6 +3.9
Wiki-CS 23.6* 26.0* 20.6* 23.4 +3.8 21.3* 23.8* 17.1* 20.7 +4.0

Table 7.4: MLIR: Multilingual results on mMARCO in terms of MRR@10. Left:
Six seen languages for which we used bilingual lexicons to code-switch training
data. Right: All fourteen languages included in mMARCO.

AR–RU we see improvements from 7.7 and 7.1 MRR@10 up to 15.6 and 14.1
MRR@10, rendering our approach particularly effective for distant languages.
Encouragingly, Table 7.2 shows that the differences between both of our CS ap-
proaches (BL-CS and ML-CS) versus Zero-shot is not statistically significant,
showing that gains can be obtained without impairing MoIR performance. Ta-
ble 7.3 shows that specializing one zero-shot model for multiple CLIR language
pairs (ML-CS, Wiki-CS) performs almost on par with specializing one model for
each language pair (BL-CS). The results of Wiki-CS are slightly worse in MoIR
and on par with ML-CS on MLIR and CLIR.

Translate Test vs. Code-Switch Train. In monolingual retrieval results presented
in Table 7.2 both Zero-shotTranslate Test and ML-CSTranslate Test underperform com-
pared to other approaches. This shows that zero-shot rankers work better on clean
monolingual data in the target language than noisy monolingual data in English.
In CLIR, where Translate Test bridges the language gap between X and Y, we ob-
serve slight improvements of +0.2 and +2.2 MRR@10 (Table 7.3). However, in
both MoIR and CLIR Translate Test consistently falls behind code-switching at
training time.

Ablation: Translation Probability. The translation probability p allows us to
control the ratio of code-switched tokens to original tokens, with p “ 0.0 we
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Figure 7.1: Retrieval performance in terms of mean average precision (MAP)
for different translation probabilities, averaged across all language pairs (cf. Ap-
pendix C). ∆MoIR and ∆CLIR are computed on average results before rounding.

default back to the Zero-shot baseline, with p “ 1.0 we attempt to code-switch
every token. 8 Figure 7.1 (right) shows that code-switching a smaller portion of
tokens is already beneficial for the zero-shot transfer into CLIR. The gains are ro-
bust towards different values for p. The best results are achieved with p “ 0.5 and
p “ 0.75 for BL-CS and ML-CS, respectively. Figure 7.1 (left) shows that the
absolute differences to Zero-shot are much smaller in MoIR.

Monolingual Overfitting. Exact matches between query and document keywords
are strong relevance signals in MoIR but do not transfer well to CLIR and MLIR
due to mismatching vocabularies. Training zero-shot rankers on monolingual data
biases rankers towards learning features that cannot be exploited at test time. Code-
Switching reduces this bias by replacing exact matches with translation pairs,9

steering model training towards learning interlingual semantics instead. To in-
vestigate this, we group queries by their average token overlap with their relevant
documents and evaluate each group separately on MLIR.10 The results are shown
in Table 7.5. Unsurprisingly, rankers work best when there is significant overlap
between query and document tokens. However, the performance gains resulting
from training on code-switched data (ML-CS) are most pronounced for queries

8Due to out-of-vocabulary tokens the percentage of translated tokens is slightly lower: 23% for
p “ 0.25, 45% for p “ 0.5, 68% for p “ 0.75 and 92% for p “ 1.0. In Wiki CS 90% of queries
and documents contain at least one translated n-gram, leading to 20% of translated tokens overall.

9We analyzed a sample of 1M positive training instances and found a total of 4,409,974 over-
lapping tokens before and 3,039,750 overlapping tokens after code-switching (ML-CS, p “ 0.5), a
reduction rate of ~31%.

10We use the model’s SentencePiece tokenizer (Kudo and Richardson, 2018) and ignore the special
tokens <s>, </s>, <pad>, <unk> and <mask>.
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EN–X X–EN X–X

No Code Switching (Zero-Shot)

No overlap 12.2 11.0 7.4
Some overlap 29.7 22.4 19.9
Significant overlap 44.6 36.4 45.5
All queries 23.5 19.0 16.3

Multilingual Code Switching (ML-CS)

No overlap 15.5 (+3.3) 17.8 (+6.8) 13.0 (+5.6)
Some overlap 31.7 (+2.0) 27.2 (+4.8) 25.3 (+5.4)
Significant overlap 44.7 (+0.2) 37.8 (+1.4) 45.1 (-0.5)

All queries 25.9 (+2.4) 24.2 (+5.3) 21.1 (+4.8)

Table 7.5: MLIR results on seen languages (MRR@10) broken down into queries
that share no common tokens (no overlap), between one and three tokens (some
overlap) and more than three tokens (significant overlap) with their relevant doc-
uments. Gains of ML-CS are shown in brackets. EN–X has 3,116 queries with
no overlap, 3,095 with some overlap and 769 with significant overlap. X–EN has
3,147 queries with no overlap, 2,972 with some overlap and 861 with significant
overlap. X–X has 3,671 queries with no overlap, 2,502 with some overlap and 807
with significant overlap.

Unseen QL Unseen DL

FR–EN ID–NL EN–PT DE–VT IT–ZH

Zero-shot 18.3 13.7 23.2 10.9 9.4
Fine-tuning 30.0* 27.2* 30.8* 24.8* 25.0*
ML-CS 21.4* 18.3* 25.9* 15.5* 14.8*
Wiki-CS 21.0* 17.2* 26.2* 15.4* 15.0*

Unseen Both

ES–FR FR–PT ID–VT PT–ZH AVG ∆ZS

Zero-shot 19.0 18.7 11.8 9.6 15.0 -
Fine-tuning 29.0* 29.0* 25.8* 25.4* 27.4 +12.2
ML-CS 22.7* 21.9* 16.4* 14.7* 19.1 +4.1
Wiki-CS 21.9* 20.5* 15.3* 14.8* 18.6 +3.4

Table 7.6: CLIR results on unseen mMARCO languages in terms of MRR@10.
Results include unseen query languages (QL), unseen document languages (DL)
and unseen languages on both sides.

with some token overlap (up to +5.4 MRR@10) and no token overlap (up to +6.8
MRR@10). On the other hand, the gains are much lower for queries with more than
three overlapping tokens and range from -0.5 to +1.4 MRR@10. This supports our
hypothesis that code-switching indeed regularizes monolingual overfitting.
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FR ID ES PT ZH VT AVG ∆ZS

BM25 15.5 14.9 15.8 15.2 11.6 13.6 14.3 -12.0
Zero-shot 27.2 26.8 28.2 27.9 24.8 22.8 26.3 -
Fine-tuning 30.5* 30.6* 31.5* 31.2* 29.1* 28.6* 30.3 +4.0
ML-CS 26.4 26.7 27.6 27.3 22.3 23.1* 25.6 -0.7
Wiki-CS 25.8* 25.5* 27.1* 26.5* 22.2* 21.8* 24.8 -1.8

Table 7.7: MoIR: Monolingual results on unseen mMARCO languages in terms
of MRR@10.

Multilingual Retrieval and Unseen Languages. Here we compare how code-
switching fares against Zero-shot on languages to which neither model has
been exposed to at training time. Table 7.4 shows the gains remain virtually un-
changed when moving from six seen (+4.1 MRR@10 / +3.8 MRR@10) to fourteen
languages including eight unseen languages (+3.9 MRR@10 / +4.0 MRR@10).
Results in Table 7.6 and Table 7.7 confirm that this holds for unseen languages
on the query, document and both sides, suggesting that the best pivot language for
zero-shot transfer (Turc et al., 2021) may not be monolingual but a code-switched
language. On seen languages ML-CS is close to MT (Fine-tuning).

7.5 Conclusion

We propose a simple and effective method to improve zero-shot rankers: training
on artificially code-switched data. We empirically test our approach on 36 lan-
guage pairs, spanning monolingual, cross-lingual, and multilingual setups. Our
method outperforms zero-shot models trained only monolingually and provides a
resource-lean alternative to MT for CLIR. Importantly, training zero-shot rankers
on code-switched training queries and documents yields largest gains for those
queries that have no token overlap to their relevant documents while maintaining
stable performance in other setups. These results suggest that our approach is ef-
fective in narrowing the gap between zero-shot reranking and full fine-tuning, i.e.
regularizing monolingual overfitting. In MLIR our approach can match MT per-
formance in some setups while relying only on bilingual dictionaries. To the best
of our knowledge, this work is the first to propose artificial code-switched train-
ing data for cross-lingual and multilingual IR. We make our code and resources
publicly available at: https://github.com/MaiNLP/CodeSwitchCLIR

https://github.com/MaiNLP/CodeSwitchCLIR




Chapter 8

Parameter-Efficient
Cross-Lingual Transfer

1In this chapter, we follow the same retrieval paradigm as in the previous two
chapters, i.e., we transfer cross-encoder rerankers trained on English retrieval data
to monolingual retrieval tasks other languages (MoIR) as well as cross-lingual re-
trieval tasks (CLIR) in a zero-shot fashion. As discussed in Section 2.3.3, zero-shot
cross-lingual transfer (ZS-XLT) is facilitated by multilingual pre-trained language
models (mPLM). We show that two parameter-efficient approaches for cross-lingual
transfer, Sparse Fine-Tuning Masks (SFTMs) (Ansell et al., 2022) and Adapters
(Pfeiffer et al., 2020), allow for a more lightweight and more effective zero-shot
transfer compared to the standard approach solely based on mPLMs. We first train
language adapters (or SFTMs) via Masked Language Modelling and then train re-
trieval (i.e., reranking) adapters (SFTMs) stacked on top, while keeping all other
parameters frozen. This modular design allows us to compose rerankers at infer-
ence time by applying the ranking adapter (or SFTM) trained with source language
data together with the language adapter (or SFTM) of a target language. We eval-
uate our models on the CLEF 2003 and HC4 benchmarks and, as another contri-
bution, extend the former with queries in three new languages: Kyrgyz, Uyghur
and Turkish. The proposed parameter-efficient methods for CLIR outperform the
standard zero-shot transfer approach with full mPLM fine-tuning, while being
more modular and reducing training times. The gains are particularly pronounced
for low-resource languages, where our approaches also substantially outperform
(i.e. improve the first-stage ranking of) the competitive machine translation-based
rankers.

1This chapter is adapted from: Robert Litschko, Ivan Vulić, and Goran Glavaš. 2022. Parameter-
efficient neural reranking for cross-lingual and multilingual retrieval. In Proceedings of the 29th
International Conference on Computational Linguistics (COLING), pages 1071–1082, Gyeongju,
Republic of Korea.
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8.1 Introduction

Fine-tuning cross-encoders based on mPLMs on English data enables, in principle,
downstream zero-shot cross-lingual transfer (ZS-XLT) to any language seen by the
mPLM during pre-training (e.g., for mBERT, 104 languages). However, in lan-
guage understanding tasks (Hu et al., 2020), massive performance drops have been
observed when models are transferred to low-resource languages and languages
that typologically distant from English (i.e., languages which are underrepresented
during LM pre-training) (Lauscher et al., 2020). These findings are in line with
our results presented in Section 6.4 and Section 7.4, where we show that ZS-XLT
exhibits substantially worse performance when rerankers are transferred from En-
glish into the typologically distant languages Finnish and Russian.

Underrepresented languages suffer from the so-called curse of multilinguality
(Conneau et al., 2020): sharing mPLM parameters (i.e., its fixed parameter bud-
get/capacity) between an increasing number of languages at some point deterio-
rates the quality of text representations. Chang et al. (2024) find that low-resource
languages initially benefit from multilingual data, however, only up to a certain
point. In ZS-XLT, full fine-tuning on large-scale source language data (typically
English) is prone to forgetting and interference effects (McCloskey and Cohen,
1989; Mirzadeh et al., 2020), which can also harm the quality of the multilingual
representation space. Besides the standard zero-shot cross-lingual transfer (MacA-
vaney et al., 2020b; Huang et al., 2021a), other cross-lingual transfer approaches
have been applied in CLIR. They include training data translation (Shi et al., 2020),
leveraging external word-level alignments (Huang et al., 2021b), and distant super-
vision for pretraining CLIR models (Yu et al., 2021b). While approaches based on
translation have shown competitive for high-resource languages, they are not appli-
cable for low-resource languages for which reliable MT models are missing. Also,
translation-based cross-lingual transfer has been shown to suffer from unwanted
artifacts such as “translationese” (Zhao et al., 2020b).

Even if one would have sufficient amounts of labeled data in target languages,
training language- or language-pair specific neural rerankers for all languages and
language pairs would be prohibitively computationally expensive and unsustain-
able (Strubell et al., 2019). In this chapter, we propose to compose rerankers at
retrieval time in a modular way, which enables a more sustainable cross-lingual
transfer for CLIR. To this end, we introduce neural reranking models based on pa-
rameter efficient fine-tuning (Han et al., 2024). Specifically, our rerankers are based
on two styles of modular components: 1) Adapters (Rebuffi et al., 2017; Houlsby
et al., 2019; Pfeiffer et al., 2020) and 2) Sparse Fine-Tuning Masks (SFTMs)
(Ansell et al., 2022). When integrated into the architecture of a mPLM, both
allow for (1) the pre-trained multilingual knowledge to be fully preserved, alle-
viating the negative interference and forgetting effects, and (2) offer additional
language-specific model capacity which is used to improve the models’ internal
representations for target languages, thus remedying for the curse of multilingual-
ity. To the best of our knowledge, we are the first to investigate the effectiveness of
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parameter-efficient transfer methods on CLIR. We provide an extensive evaluation
of both approaches in zero-shot transfer for monolingual retrieval (MoIR) and on
two standard CLIR benchmarks (Braschler, 2004; Lawrie et al., 2022).

Contributions. The main contributions presented in this chapter are three-fold:

(1) We introduce modular cross-encoder (CE) re-rankers based on Adapters and
Sparse Fine-tuning Masks (SFTMs). By introducing language and task specific
adapters (SFTMs) we modularize CEs and decouple specializing rankers for
target language semantics from learning to rank.

(2) As an additional contribution, we expand the CLEF dataset (Braschler, 2004)
and release three new query languages from the Turkic family (Turkish, Kyr-
gyz, and Uyghur, the latter two being low-resource languages), which are ty-
pologically and etymologically distant from Indo-European languages.2

(3) Our results on CLIR and MoIR show that modular neural rerankers are not
only faster to train, but they can also outperform standard ZS-XLT based on
fully fine-tuning all mPLM parameters, and especially so in retrieval tasks that
involve linguistically distant and low-resource languages. Our rerankers also
generally outperform a strong preranker that utilizes machine translation (MT).

Resource-Lean Transfer. In this chapter, we investigate ZS-XLT for CLIR (and
MoIR) and decompose the retrieval task into two subtasks: learning retrieval-
specific features (i.e., learning-to-rank) and learning language-specific features (i.e.,
language acquisition). For the first subtask, we only use monolingual task super-
vision to train task adapters (SFTMs). The second task relies on self-supervised
learning and requires unlabeled monolingual data in the target language(s) to train
language adapters (SFTMs). Both types of resources are easier to obtain than
large-scale parallel data (required to train machine translation models) or large-
scale CLIR training data, i.e. direct supervision in the target language pair (see
Figure 1.4 in Chapter 1).

8.2 Methodology

In this chapter, we follow the multi-stage ranking paradigm discussed in Sec-
tion 6.2. That is, we focus on transferring cross-encoder reranking models. In this
context, we introduce adapters and sparse fine-tuning masks (SFTMs), and present
how to leverage them as crucial vehicles of the parameter-efficient cross-lingual
transfer of the reranking component.

2In this manner, our work addresses the calls for more linguistic diversity in NLP and IR research
(Bender, 2011; Joshi et al., 2020a; Ponti et al., 2020; Ruder et al., 2021).
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Figure 8.1: Overview of parameter-efficient transfer learning for neural
(re)ranking with adapters.: A reranker is composed by stacking a pre-trained target
Language Adapter (LA) and a Ranking Adapter (RA; trained with source language
data) on top of original Transformer layers of an mPLM such as, e.g., multilingual
BERT (Devlin et al., 2019).

Parameter-Efficient Cross-Lingual Ranker Transfer. We now describe our pro-
posed modular and parameter-efficient framework that allows faster training and
more effective cross-lingual transfer of neural rerankers, which we apply on both
ZS-XLT for CLIR and MoIR. We first learn language-specific Adapters (LAs) or
Sparse Fine-Tuning Masks (SFTMs) via Masked Language Modelling (MLM) on
unannotated monolingual corpora of respective languages, while keeping the origi-
nal mPLM parameters intact. We then train Ranking Adapters (or Ranking SFTMs)
using source-language data on top of the source-language LAs (language SFTMs),
while keeping all other parameters frozen. At inference time, for a given IR (MoIR
or CLIR) task, we compose our reranker by placing the Ranking Adapters (Rank-
ing SFTMs) on top of the LAs (language SFTMs) of the query and/or document
languages of that concrete retrieval task.

Adapters. Figure 8.1 illustrates our cross-encoder architecture based on Adapters.
We train Ranking Adapters (RA) and Language Adapters (LA) based on the ar-
chitecture of Pfeiffer et al. (2020). In the Transformer architecture, each layer l
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consists of a multi-head attention block (i.e., sub-layer) and a feed-forward net-
work (FFN), both followed by a residual connection and layer normalization. We
refer the reader to Section 2.3 for more details. We denote the residual connection
(output of FFN) with rl and the hidden state after the layer norm with hl.

LAphl, rlq “ UlpψpDlphlqq ` rl (8.1)

RAphl, rlq “ UlpψpDlpLAlqqq ` rl (8.2)

Adapters are parameterized by the down-projection matrix D P Rhˆd and the up-
projection matrix U P Rdˆh, where h and d denote the hidden size of the Trans-
former and the bottleneck dimension of the adapter. The ratio between h and d is
also called reduction factor and corresponds to the level of parameter compression
(i.e., how many times fewer parameters are updated if we train adapters instead of
updating all Transformer parameters). The forward pass of a Language Adapter
consists of a down-projection of hl, a non-linear activation function ψp¨q and an
up-projection. Ranking Adapters are stacked on top of LAs and process their out-
put. Both adapters have residual connections to the output of the FFN.3 We train
LAs using the standard MLM objective (Devlin et al., 2019), and we train RAs
together with the dense scoring layer using the binary cross-entropy loss.

In CLIR tasks, queries and documents are in different languages. It is thus, in
principle, possible to stack the RA on top of (i) the query language adapter LAQ,
(ii) document language adapter LAD, or by using split adapters LAS: here, we
encode query tokens up to the separator token ([SEP]) and the other half with the
LA of the respective language (see Figure 8.1).

Sparse Fine-Tuning Masks. Like adapters, SFTMs (Ansell et al., 2022) aim to
decouple task knowledge from language knowledge, but instead of introducing ad-
ditional parameters, the idea is to directly update only small subsets of mPLM’s
original parameters (see Figure 8.2). Sparse Fine-Tuning (SFT) consists of two
phases. In Phase 1 we fine-tune all mBERT’s parameters θp0q, resulting in updated
parameter values θp1q. We then select the top K parameters with the largest value
change, i.e., those with the largest |θ

p0q

i ´ θ
p1q

i | values. We then construct a binary
mask: the selected K parameters remain trainable, whereas all other parameters
are frozen. In Phase 2 all parameters are reset to θp0q and training restarts, but this
time only the selected parameters of the mask are updated, yielding θp2q. The final
update (i.e., the SFTM) is then obtained as the difference vector M “ θp2q ´ θp0q.
As is the case with Language Adapters, we obtain the Language Masks (LM) by
means of (additional) masked language modeling (MLM) training on language-
specific corpora; whereas the Ranking Mask (i.e., the mask for the ranking task,
RM) is learned via binary cross-entropy objective on source-language (English)

3To alleviate the mismatch between the multilingual vocabulary of the mPLM and the target
language vocabulary, Pfeiffer et al. (2020) also additionally place invertible adapters INV on top of
the embedding layer along with their inverses INV´1 placed before the output layer. For more details
we refer the reader to (Pfeiffer et al., 2020). In our experiments we adopt this variant.
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Figure 8.2: Overview of parameter-efficient transfer learning for neural
(re)ranking with SFTMs: Sparse fine-tuning of a Ranking Mask (RM) and a Lan-
guage Mask (LM) from mBERT parameters; rerankers are composed by adding
the RM and LM values to original mBERT parameters.

relevance judgments. At inference, the reranker is composed as θp0q ` RM ` LM
(cf., Figure 8.2). In our CLIR settings (Section 8.3), we explore using (i) the query
language mask (LMQ), (ii) document language mask (LMD) or (iii) the combi-
nation of both masks (LMB “ LMQ ` LMD). Note that SFTMs represent a more
computationally efficient solutions at inference time, because, unlike adapters, they
do not change (i.e., deepen) the Transformer architecture itself.

8.3 Experimental Setup

Adapter and SFTM Training. We train adapters following the recommendations
from Pfeiffer et al. (2020). Unless noted otherwise, we train LAs with the reduction
factor of 2 (i.e., h{d “ 2) on Wikipedias of respective languages, for 250K steps
with batch size 64 and learning rate of 1e-4. For RA we report the results with a
reduction factor of 16 (Section 8.4.1). RM and LM have a reduction factor of 2.
In Section 8.4.2, we ablate the robustness towards different reduction factors: 1,
2, 4, 8, 16, and 32. Following Ansell et al. (2022), for fair comparisons between
adapters and SFTMs, we set the mask size K for SFTMs to the same number of
parameters that adapters with a certain reduction factor have (see Appendix D.1).
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Reranking Training. We train mBERT-based4 rerankers on relevance annotations
from MS MARCO (Craswell et al., 2021b), with a linear warm-up over the first 5K
updates, in batches of 32 instances with a maximum sequence length of 512 and
using a learning rate of 2e-5. We evaluate the model on the validation data every
25K updates and choose the checkpoint with the best validation performance. Once
trained, our cross-encoder models rerank top k “ 100 documents returned by our
prerankers (described below). Finally, we also study ensembling the preranker’s
and reranker’s ranked lists via simple rank averaging (ENS) (cf. Section 4.4.1).

Evaluation Data. In this chapter, we extend our standard evaluation outlined in
Section 3.3. We additionally experiment on the recently introduced HC4 bench-
mark (Lawrie et al., 2022). HC4 comprises queries and document collections
in three languages: Persian (FA), Russian (RU) and Chinese (ZH). Compared to
CLEF 2003, HC4 collections are much larger, spanning 646K, 486K and 4.72M
documents per each respective language, associated with 50 test queries in English
and each target language respectively. Consistent with our approach for CLEF,
and following (Lawrie et al., 2022), we use title and description fields as queries.
We further evaluate our models in CLIR tasks with CLEF queries posed in lower-
resource languages. To this end, (i) we leverage Swahili (SW) and Somali (SO)
queries (Bonab et al., 2019), where the queries were obtained via manual trans-
lation of English queries; (ii) we create another set of translated CLEF queries in
three languages: Turkish (TR), Kyrgyz (KG), and Uyghur (UG). The new set cov-
ers one high-resource and two low-resource languages and is intended to facilitate
and diversify evaluation of CLIR with low-resource languages in future work. The
queries were constructed via the standard post-editing procedure borrowed from
other data collection tasks (Glavaš et al., 2020; Ding et al., 2022, e.g.): we had
native speakers post-edit query translations obtained from Google Translate.

Baseline Models. The primary baseline for our Adapter- and SFTM-based transfer
is the standard zero-shot transfer approach discussed in Chapter 6. That is, we use
cross-encoders and fine-tune all its parameters by training on MS MARCO. For
CLIR experiments, we continue to opt for DISTILDmBERT as our best bi-encoder
preranker (PR) on the CLEF dataset (see results presented in Section 5.5). We
also couple a state-of-the-art neural MT system of (Fan et al., 2021a) (FAIR-MT),
which we use to translate queries to the document language, with the BM25 ranker
in the target language.5 For Kyrgyz and Uyghur, we use another NMT model,
provided by the Turkic Interlingua (TIL) community6 (Mirzakhalov et al., 2021)
since we failed to obtain meaningful {KG, UG}Ñ l2 translations with FAIR-MT.

4Pre-trained bert-base-multilingual-uncased weights from the HuggingFace Trans-
formers library (Wolf et al., 2020) are used.

5We used the pyserini implementation of BM25 (Lin et al., 2021a) with the suggested default
parameter configuration.

6https://turkic-interlingua.org

https://turkic-interlingua.org
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TRÑ X DEÑX

Model EN IT DE FI RU FI IT RU

DISTDmBERT (PR) .183 .251 .190 .252 .260 .300 .267 .284
MonoBERT .235 .197 .208 .285 .217 .329 .270 .246

`RA `LASplit .269 .253 .252* .362 .186 .329 .300 .223
`RA `LADoc .252 .234 .222 .267 .267 .350 .302 .315
`RA `LAQuery .270 .243 .242 .293 .191 .325 .279 .223

`RM `LMboth .229 .228 .197 .244* .168 .309 .302 .191*
`RM `LMDoc .231 .226 .229 .317 .149* .376 .304 .187
`RM `LMQuery .239 .252 .232 .316 .162* .391 .323* .195

ENÑX FIÑX

Model FI IT RU DE IT RU AVG ENS

DISTDmBERT (PR) .294 .290 .313 .247 .221 .302 .261 -
MonoBERT .339 .315 .254 .295 .197 .174 .254 .274

`RA `LASplit .363 .352 .197 .317* .266 .207 .277 .287
`RA `LADoc .366* .366* .248 .314* .220 .234 .283 .298
`RA `LAQuery .370 .355 .189 .318 .247 .182 .266 .285

`RM `LMboth .299 .344 .181* .303 .206 .108* .236 .269
`RM `LMDoc .394* .359 .173* .321* .239 .166* .262 .279
`RM `LMQuery .359 .349 .191 .310* .255* .160 .267 .280

Table 8.1: CLIR results (Mean Average Precision, MAP) with DISTDmBERT as
preranker. Bold: Best neural retrieval model for each language pair. *: significance
tested against MonoBERT at p ď 0.05, computed via paired two-tailed t-test. We
report average results (AVG) and averaged ensemble (ENS) results.

8.4 Results and Discussion

We first discuss our main retrieval results for CLIR and MoIR in Section 8.4.1.
In Section 8.4.2, we further analyze (i) the trade-off between retrieval speed and
retrieval effectiveness in Adapter-based models, and (ii) the impact of different re-
duction factors for Adapters and SFTMs. In the following, we use superscripts over
LAs and LMs denote query language (Q), document language (D), split adapters
(S) for LAs, and ‘(B)oth masks’ for LMs (see Section 8.2).

8.4.1 Document-Level CLIR and MoIR

Cross-Lingual Retrieval (CLIR). Tables 8.1 and 8.2 show the CLIR results,
for fourteen language pairs from the augmented CLEF 2003 benchmark7 using
DISTILDmBERT and NMT+BM25 as first-stage retrievers, respectively. With our

7We add TR-* pairs to the evaluation, enabled by our ENÑTR translations of the queries.
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TRÑX DEÑX

Model EN IT DE FI RU FI IT RU

NMT+BM25 (PR) .392 .353 .308 .307 .227 .367 .385 .272
MonoBERT .415 .375 .339 .345 .307 .409 .38 .322
+RA +LA .448 .408 .353 .371 .327 .413 .405 .348
+RM +LM .447 .414 .356 .386 .336 .468 .407 .363

ENÑX FIÑX

Model FI IT RU DE IT RU AVG ENS

NMT+BM25 (PR) .378 .446 .285 .355 .364 .271 .326 -
MonoBERT .386 .411 .351 .371 .367 .34 .362 .360
+RA +LA .388 .435 .367 .385 .381 .365 .384 .360
+RM +LM .413 .429 .345 .390 .395 .364 .397 .374

Table 8.2: CLIR results (Mean Average Precision, MAP) with NMT+BM25
as Stage 1 preranker. For modular rerankers, we report the numbers with the
best-performing configurations from CLEF experiments: `RA `LAD and `RM
`LMQ; see also the caption of Table 8.1.

preranker DISTILDmBERT (Table 8.1), Adapter- and SFTM-based rerankers consis-
tently improve the initial preranking results, with gains of up to 2.7 MAP points
and EN-RU as the only exception. Compared to full fine-tuning (MonoBERT), our
modular reranking variants bring gains between 1 and 4 MAP points on average,
across all language pairs. Interestingly, the best adapter configuration (RA `LAD,
in which at inference we stack the RA on top of the LA of the document collec-
tion language) outperforms the best SFTM-based reranker (RM `LMQ and RM
`LMD) by 1.6 MAP points. Somewhat surprisingly, adapting only to the language
of the document collection (LAD; LMD) yields better performance than adapting
to both the query and collection language of the target task (LAS; LMB).

The language pairs in Tables 8.1 and 8.2 consist of high-resource languages
for which large parallel corpora and, consequently, reliable NMT models exist.
However, even when starting from a more competitive translation-based preranker
(NMT+BM25; Table 8.2), our modular cross-lingual transfer of the reranker yields
performance gains. In fact, with this stronger preranker, the gains from modu-
lar reranking are even more pronounced: +5/+6 MAP points for Adapters and
SFTMs, respectively, compared to preranker and +2/+3 compared to MonoBERT.
This could explain why interpolating between the preranking and reranking (ENS,
last column) yields further gains with DISTILDmBERT as the preranker (Table 8.1),
but not when we prerank with NMT+BM25 (Table 8.2).

Table 8.3 shows the CLIR results for (a) language pairs from extended CLEF
with queries written in low-resource languages – Swahili and Somali queries cre-
ated by (Bonab et al., 2019), as well as our newly introduced query languages
Kyrgyz and Uyghur; and (b) three cross-lingual pairs of arguably distant languages
(EN-{Farsi, Chinese, Russian}) from the HC4 benchmark (Lawrie et al., 2022).
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XÑEN ENÑX

Model SW SO KG UG FA ZH RU AVG ENS

NMT+BM25 (PR) .325 .157 .228 .091 .183 .113 .186 .183 -
MonoBERT .362 .158 .255 .157 .246 .172 .218 .224 .216

`RA ` LADoc .407 .166 .305 .155 .259 .189 .234 .245 .228
`RM ` LMDoc .389 .161 .311 .165 .267 .196 .241 .247 .225

Table 8.3: CLIR results on extended CLEF pairs with low-resource query lan-
guages (Swahili, Somali, Kyrgyz, and Uyghur) and three language pairs from the
HC4 benchmark.

CLEF 2003 HC4

Model EN FI DE IT RU FA ZH RU AVG ENS

BM25 (PR) .480 .505 .434 .494 .361 .279 .196 .228 .372 -
MonoBERT .464 .528 .444 .463 .363 .356 .283 .245 .393 .402

`RA ` LA .512 .537 .457 .495 .389 .372 .284 .261 .413 .410
`RM ` LM .515 .564 .459 .502 .379 .398 .307 .264 .423 .417

Table 8.4: Results of zero-shot cross-lingual transfer for monolingual retrieval
(MoIR) on CLEF 2003 and HC4 datasets. Results with reduction factors of 16 and
2 for Adapters and SFTMs, respectively.

The gains that our SFTM- and Adapter-based modular rerankers bring for lan-
guage pairs involving low-resource languages, over the MT-based preranker and
the full fine-tuning (MonoBERT), are generally more substantial than those for
high-resource language pairs: e.g., +8 and +4 MAP points (w.r.t. NMT+BM25 and
MonoBERT, respectively) for SW-EN, +8 and +5 points for KG-EN. The gains
are similarly prominent for more distant language pairs from the HC4 dataset (+8
MAP points over the NMT+BM25 preranker for EN-FA and EN-ZH). With such
prominent gains of the modular reranking over the preranker, it is no surprise that
averaging the preranking and reranking document ranks (ENS) reduces the perfor-
mance of the reranker. We believe that these results in particular emphasize the
effectiveness of modular cross-lingual transfer that allows to increase the capacity
of mPLMs for individual languages, by means of LMs or LAs. The representations
of low-resource languages for which mPLMs have seen little in pre-training, par-
ticularly suffer from the curse of multilinguality (Conneau et al., 2020; Lauscher
et al., 2020) – this is why, we believe, we generally see particularly prominent gains
for those languages when we increase the mPLMs capacity for their representation
via LMs or LAs.

Cross-Lingual Transfer for Monolingual Retrieval (MoIR). Table 8.4 displays
the results of monolingual retrieval with our best-performing modular rerankers for
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Layer CLIR MoIR AVG Latency ∆ Speed-Up ∆ MAP

None .282 .418 .331 34.6 ms - -

1-2 .295 .412 .337 33.7 ms `2.6% `.006
1-4 .269 .395 .314 32.8 ms `5.0% ´.017
1-6 .229 .375 .281 31.9 ms `7.7% ´.050
1-8 .134 .284 .187 31.0 ms `10.4% ´.143
1-10 .086 .210 .130 30.0 ms `12.9% ´.200
1-12 .086 .208 .129 29.5 ms `14.2% ´.201

Table 8.5: Trade-off between efficiency and effectiveness when dropping adapters
in `RA ` LAD. Average over all CLIR/MoIR setups and all reduction factors.

EN (as the source language) and four target languages (DE, IT, FI, RU).8 Unlike
the fully fine-tuned reranker (MonoBERT), our modular Adapter- and SFTM-based
rerankers consistently improve the initial rankings produced by BM25. These re-
sults strengthen the finding that our modular rerankers are not just more parameter-
efficient (i.e., faster to train), but also lead to better cross-lingual transfer due to de-
coupling of language- and ranking-specific knowledge. In MoIR tasks the SFTM-
based transfer outperforms its Adapter-based counterpart, same as in the case of
CLIR with NMT+BM25 preranking (Table 8.1). Also, as in the case of the latter
CLIR results (Tables 8.1 and 8.3), interpolating between preranking and reranking
results does not bring any gains.

It is worth noting that all MoIR scores are substantially higher than CLIR re-
sults from Tables 8.1 and 8.2. This is expected and consistent with our findings
in Chapter 6 and 7, and it reflects the fact that matching representations within a
language – where models can still rely on exact lexical matches between queries
and documents – is easier than aligning text representations across languages.

8.4.2 Further Analysis

Effectiveness vs Efficiency. Adapters increase query latency because they deepen
the Transformer (cf. Section 2.3.1). Rücklé et al. (2021) show that one can drop
adapters from lower layers with little effect on performance. Table 8.5 shows the
results of a similar analysis, where we drop the adapters from the first N layers at
inference. Dropping adapters from only the first two layers (row 1-2) only slightly
decreases the MoIR performance whereas it even slightly increases the CLIR re-
sults. Dropping adapters from more layers, however, substantially reduces the re-
trieval performance: e.g., removing adapters from the first 10 layers reduces CLIR
performance by almost 20 MAP points, while reducing the query latency by only
13%. While Adapters and SFTMs yield comparable performance in our experi-

8Note that in MoIR, the actual reranking is always monolingual (albeit in the target language).
Both queries and documents are thus encoded with the same target language LA/LM.
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Figure 8.3: Retrieval performance at different parameter reduction factors; average
MAP performance for MoIR (left, PR: BM25) and CLIR (right, PR: DISTDmBERT).

ments, these observations favor SFTMs: for the same query latency,9 SFTMs will
yield better performance.

Parameter Efficiency. We now investigate the relation between various levels
of parameter efficiency and retrieval performance. Figure 8.3 shows the perfor-
mance of our modular rerankers for different (equivalent) parameter reduction fac-
tors.10 For completeness, we also show the average zero-shot results obtained with
MonoBERT on MoIR CLIR (Table 8.1) and (Table 8.4). We find that SFTMs ex-
hibit stronger performance with smaller reduction factors (2 and 4), i.e., when we
update a larger percentage of mBERT’s original parameters. SFTMs shift the pre-
trained values of mBERT’s parameters: this constrains the range of values that in-
dividual parameters can take, requiring the modification of the larger number of pa-
rameters for injecting complex language- and ranking-specific knowledge. In con-
trast, Adapters show better performance with higher reduction factor (8, 16, 32),
i.e., when we add a relatively smaller number of Adapter parameters. This could be
the consequence of the “unconstrained” initialization of the new Adapter parame-
ters, which allows the complementary language- and ranking-specific knowledge
to be compressed into a smaller number of parameters.

Impact of NMT on CLIR. In the cross-lingual setup the quality of retrieved
documents crucially depends on the quality of query translations when NMT is
used. This holds especially true in multi-stage retrieval, where the performance
of rerankers is directly related to the recall of first-stage retrievers. In Table 8.6
we show original English queries together with their respective translations from

9The query latency of an SFTM-based reranker is the same as that of MonoBERT as it does not
increase the number of total parameters in the mPLM.

10Appendix D.1 lists for each adapter reduction factor the equivalent reduction factor of SFTMs
(i.e. their degree of sparsity); detailed results can be found in in Table D.3 and Table D.2.
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QID English Query (original) NMT: Swahili Ñ English NMT: Somali Ñ English

151 Wonders of Ancient World
Look for information on the
existence and/or the discovery
of remains of the seven wonders
of the ancient world.

Search for information about
the existence and/or develop-
ment of the seventh universe of
the ancient world.

Thus, therefore, it is necessary
to bear in mind that the truth is
the truth, and that the truth is
the truth, and that the truth is the
truth.

172 1995 Athletics World Records
What new world records were
achieved during the 1995 ath-
letic world championships in
Gothenburg?

What new world records were
recorded at the 1995 World
Horses in Gothenburg?

The 1995 World Trade Orga-
nization (WTO) announced that
a new international trade agree-
ment has led to a global trade
agreement in Gothenburg.

187 Nuclear Transport in Germany
Find reports on the protests
against the transportation of ra-
dioactive waste with Castor
containers in Germany.

Nuclear Delivery in Germany
A report on the anti-trafficking
of radioactive pollutants
and Castor containers in
Germany.

The Nugleerka department of
Jarmalka Hel has been prepared
for the development of the Nu-
gleerka department of Castor
district in Jarmalka.

200 Flooding in Holland and Ger-
many Find statistics on flood
disasters in Holland and Ger-
many in 1995.

The floods in the Netherlands
and Germany have recorded
the floods in the Netherlands
and Germany in 1995.

The Netherlands Federation and
the United Nations have agreed
with the Netherlands Federation
and the Netherlands Federation
in 1995.

Table 8.6: Comparison between original CLEF queries and translations from
Swahili and Somali to English. Tokens that occur both in the original query and
translations are highlighted in bold (ignoring case, excluding stopwords). Color
highlights for different translation artifacts: hallucinations, topic shifts, slight lexi-
cal/semantic variations and copied source words.

Swahili and Somali. As expected, translations from Swahili are generally of higher
quality compared to Somali, which explains the big performance gap reported in
Table 8.3. In the best case the translation is semantically very close to the original
query (cf., SW�EN; QID:172), or it contains only slight lexical (flooding vs. floods)
and semantic variations, e.g., near-synonyms (Holland vs. Netherlands). In other
cases, error propagation from NMT impacts CLIR performance to different extents.
Those include, e.g., missing keywords (statistics; QID:200), topic shifts (sports vs.
business; SO�EN, QID:172) or queries consisting of unrelated text and repetitions
(i.e., ‘hallucinations’; SO�EN, QID:151, QID:200). Especially repetitions and hallu-
cinations11 are known unwanted artifacts in NMT (Fu et al., 2021; Raunak et al.,
2021) and can cause retrieval models to emphasize unrelated keywords by inflat-
ing their term frequency.12 Lastly, in cases where source words are copied instead
of translated, e.g., Nugleerka (Nuclear) or Jarmalka (Germany) in QID:187, neural
retrieval models need to rely on imperfect internal alignment of word translations
(Cao et al., 2020).

11This phenomenon has been reported to occur in low-resource and out-of-domain settings (Müller
et al., 2020). We confirm this finding as we find hallucinations appearing more often in EN�SO than
in EN�SW query translations.

12Further investigation of NMT+BM25 on SO�EN reveals that manually filtering out queries
containing more than two repetitions/hallucinations leaves us with 22 remaining queries on which
results improve from 0.157 to 0.280 MAP.
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8.5 Conclusion

In this chapter, we introduce a modular and parameter-efficient approach for the
zero-shot cross-lingual transfer of rerankers. Our models, based on Adapters and
Sparse Fine-Tuning Masks, allow for decoupling of language-specific and task-
specific (i.e., ranking) knowledge. We demonstrate that this leads to more effec-
tive transfer to cross-lingual IR setups as well as to better cross-lingual transfer
for monolingual retrieval in target languages with no relevance judgment improv-
ing over strong prerankers based on state-of-the-art NMT. Encouragingly, we ob-
serve particularly pronounced gains for low-resource languages included in our
evaluation. It is important to notice that the effectiveness of rerankers varies with
the degree of sparsity (reduction factor). We hope that our results will encourage
a broader investigation of parameter-efficient neural retrieval in monolingual and
cross-lingual setups. We make our code, adapters, SFTMs and query translations
available at: https://github.com/rlitschk/ModularCLIR.

https://github.com/rlitschk/ModularCLIR
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Chapter 9

Expert Model Selection (Proof of
Concept)

1In the previous chapters, we evaluate multilingual pre-trained language models
(mPLM) in the bi-encoder and cross-encoder paradigms for cross-lingual infor-
mation retrieval (CLIR). As discussed in (Conneau et al., 2020), these models are
pre-trained on imbalanced data where high-resource languages have a larger pres-
ence than low-resource languages. The authors further show that, consequently,
mPLMs are limited in the number of languages they can reliably encode, which
they refer to as “curse of multilinguality”. This means, for example, that text from
underrepresented languages is split into more subwords.2 Suboptimal tokenization
is known to adversely impact the representation quality (Hangya et al., 2022) and
downstream task performance for NLP tasks on low-resource languages and typo-
logically distant languages (Lauscher et al., 2020; Pfeiffer et al., 2021; Rust et al.,
2021). It also impacts processing long document in CLIR, where the effective
maximum sequence length, i.e. the maximum number of words a model encodes
relates to a languages’ presence in the pre-training corpus. In this chapter, we
aim to conceptually investigate the feasibility of (supervised) IR model selection
in the presence of multilingual training data (i.e., multiple monolingual training
data). Since training a single multi-source model on the concatenation of all source
languages would suffer from the curse of multilinguality we propose to separately
train multiple monolingual experts instead. A routing model then predicts (i.e.,
selects) the best expert model for each input instance (e.g., query). To do so, the
routing model is trained to estimate the experts’ performance, and then forwards
each input to the model(s) with the highest estimated performance.

1This chapter is adapted from: Robert Litschko, Ivan Vulić, Željko Agić, and Goran Glavaš.
2020. Towards Instance-Level Parser Selection for Cross-Lingual Transfer of Dependency Parsers.
In Proceedings of the 28th International Conference on Computational Linguistics (COLING), pages
3886–3898, Barcelona, Spain (Online).

2For example, Uyghur CLEF queries are on average 3.7ˆ longer when tokenized into subwords
instead of by whitespace (see Table 3.2 in Chapter 3). In contrast, English subword-tokenized queries
are only 1.2ˆ longer than whitespace-tokenized queries (see also Appendix B.2).
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At the time of writing, there existed no large-scale retrieval benchmark that
contains a large number of languages, including low-resource test languages. We
therefore present a proof of concept on the example task of delexicalized cross-
lingual transfer of dependency parsers. For this task, we train source parsers (ex-
perts) on 42 training languages from Universal Dependencies dataset (UD v2.3)
and evaluate them on 20 diverse and unseen low-resource test languages. In Sec-
tion 9.1, we describe the general model selection framework. In Section 9.4, we
propose a concrete implementation: instance-level parser selection (ILPS), where
we train a supervised regression model (i.e., routing model), to predict parser accu-
racies for individual part-of-speech sequences (i.e., POS-sequences). We compare
ILPS against two strong single-best parser selection baselines (SBPS) where we
select the best parser at the treebank level and apply it to all test instances.

9.1 Introduction

The imbalance of languages in (pre-)training corpora naturally lead to a scenario
where some languages are overrepresented while other languages are underrep-
resented. Conneau et al. (2020) find that multilingual pre-trained language mod-
els (mPLMs) suffer from the so-called curse of multilinguality. That is, language
models have a limited capacity in terms of the number of languages they can re-
liably encode. Consequently, their zero-shot cross-lingual transfer (ZS-XLT) per-
formance is substantially lower when the target language is typologically different
from English (Lauscher et al., 2020). This problem can be remedied, for example,
by adding language-specific model parameters such as language adapters (Chap-
ter 8; Pfeiffer et al., 2020, 2022), or by adjusting the vocabulary space of mPLMs
to account for underrepresented languages (Wang et al., 2019c; Chung et al., 2020;
Liang et al., 2023).

We take a different approach and combine multiple models for different lan-
guages. Here, each model is fine-tuned on a single language (or few related lan-
guages). We refer those models as expert models and train them independently,
thereby avoiding negative interference (Wang et al., 2020b) between high-resource
and low-resource languages. At test time, we select the model with the highest
expected performance among a pool of expert models. Estimating the expected
transfer performance for a given model and target task is a well-studied problem
known as model transferability estimation (Ding et al., 2024). In the following,
we reuse the notation and problem formulation from Ding et al. (2024). We de-
note a pool of nM source models ϕi and their respective training datasets DS

i

as M “ tϕi,Diu
nM
i“1 . Estimating the performance of a set of candidate models

on a given target dataset DT yields a set of corresponding transferability scores
S “ tsiu

nM
i , which capture how well each model is expected to transfer to DT .

We can then compute the true test set accuracies by evaluating each model on the
gold labels A “ tAccpϕi,DT qu

nM
i“1 . Finally, the performance of a transferabil-

ity estimation method is measured as the correlation between the estimated and
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Figure 9.1: General instance-based model retrieval framework.

the true transfer performance C “ CorpS,Aq. A reliable method for estimating
model transferability can be used to “probe” each model and select the best source
model for a given target dataset (Chen and Ritter, 2021).3 We refer to this type of
transfer as single-source transfer. In a different approach, the multi-source transfer
paradigm, a single multilingual model is trained on the concatenation of all datasets
from multiple source languages (Lim et al., 2024). In cross-lingual retrieval tasks,
instances (i.e. queries) can be written in different low-resource unseen languages
(ZS-XLT for CLIR). Motivated by this, we extend the above-described framework
to instance-level transfer with the goal of selecting the best source model (IR sys-
tem) for each instance (query). However, at the time of writing, there exists no IR
dataset with training splits in many languages (although this is expected to improve
over time), so we provide a proof-of-concept study on a task for which training data
does exist for many languages – syntactic parsing (see below).

Figure 9.1 illustrates the general framework. For a given set of source lan-
guages, we assume access to a set of monolingual expert models. We train a routing
model which forwards every input instance to the expert with the highest expected
performance. Suppose we have three expert models ϕDE and ϕEN, and ϕIT. We
generate training data for the routing model by measuring the performance of each
expert on every other expert’s training data (Step A). More precisely, we apply ϕDE
on the training data of ϕEN and record for each instance i the actual performance
si, and repeat this process for all language pair combinations. Next, in Step B,
we train a Transformer-based (Vaswani et al., 2017) regression model (router) to
predict si from a given input instance xi and a representation of the expert model

3Our work is similar to (Chen and Ritter, 2021). However, the authors assume English training
data and fine-tune multiple mBERT-based models (Devlin et al., 2019) under different hyperparam-
eters and random seeds, whereas we assume training data in multiple languages and train multiple
monolingual models. We additionally emphasize model selection on the instance-level.
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(language embedding). At inference time (Step C), the routing model first predicts
the expected performance of every expert (probing) and then selects the model with
the best performance estimate (model selection). In the ZS-XLT paradigm input
instances xi are written in unseen test languages. In this modular framework, we
train all models (experts, router) independently, which, in addition to mitigating
negative interference between languages, also allows us to integrate additional ex-
perts models (e.g., off-the-shelf models or external API-based models) while only
updating the routing model.

Proof of Concept. At the time of writing, there exists no retrieval dataset con-
taining a large number of high-resource languages (with sufficiently large training
splits) and low-resource test languages. We therefore present a proof of concept on
the example task of delexicalized dependency parsing where we use the Universal
Dependencies dataset (UDv2.3; Nivre et al., 2018). In this simplified setting, the
routing model and all parsers (expert models) operate on a shared delexicalized
input space: sequences of universal parts-of-speech tags (i.e., UPOS-sentences).
This way, and contrary to subword tokenization, we adopt an input space where
all languages are treated equally. In cross-lingual transfer of parsers one can either
(1) choose the best parser from a set of available parsers, trained on treebanks of
various resource-rich languages (single-best parser selection, SBPS), or (2) use a
parser trained on a mixture of treebanks of (ideally related) resource-rich languages
(multi-source parser transfer, MSP). Both SBPS and MSP rely on some measure
of structural alignment between languages in order to select either the single best
source language parser (SBPS) or a set of (syntactically related) source languages
(MSP). Existing solutions rely on measures like the Kullback–Leibler (KL) diver-
gence between source- and target-language distributions of POS trigrams (Rosa
and Žabokrtský, 2015), which can be unreliable for small target language corpora
or instance-level estimation. More recent approaches (Agić, 2017; Lin et al., 2019)
choose suitable source languages based on manually coded typological similarities
between languages available from databases such as WALS (Dryer and Haspel-
math, 2013) or URIEL (Littell et al., 2017). Unlike MSP and SBPS, the idea of
our proposed framework is to select the source-language parser for each target in-
stance, dubbed instance-level parser selection (ILPS), rather than to use the same
parser for all target language instances (as SBPS and MSP do). This is motivated
by a simple observation that different source parsers provide most accurate parses
for different target POS-sequences (Section 9.3). We empirically show that an or-
acle ILPS leads to major potential gains compared to an oracle single-best parser
selection at the treebank level (SBPS).

We perform a large-scale evaluation of delexicalized dependency parser trans-
fer, encompassing 42 source languages with large(r) treebanks, and 20 target (i.e.,
test) languages with small(er) treebanks from the Universal Dependencies (UD)
v2.3 collection (Nivre et al., 2018). We show that, averaged across all test tree-
banks, our simple ILPS model substantially outperforms strong SBPS baselines
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(Rosa and Žabokrtský, 2015; Lin et al., 2019). We further demonstrate that we can
easily aggregate instance-level predictions into an SBPS model, yielding improve-
ments over the existing SBPS baselines for 16/20 and 17/20 test languages. Finally,
we show that by ensembling the parses of few-best parsers according to the ILPS
model’s predictions we can outperform (1) the multi-source parser trained on the
treebanks of all 42 source languages and (2) even surpass the performance of an
oracle single-best treebank-level parser selection (i.e., oracle SBPS).

Contributions. The key contributions of this chapter are summarized as follows:

(1) We propose an instance-level (language) expert model selection framework
where a routing model estimates for each instance the performance of each
(independently trained) expert model and routes it to the expert(s) with the
largest predicted performance.

(2) On the example of delexicalized dependency parsing, we present a specific im-
plementation of the general framework: instance-level parser selection (ILPS).
Using oracle models we show that there is a large gap between selecting the
best parser at the treebank-level and instance-level.

(3) We provide a large-scale evaluation and compare ILPS against (i) a single best
parser selection (SBPS) baseline that selects the best parser based on syntactic
similarity, (ii) a SBPS baseline where the parser is selected based on POS n-
gram similarity, and (iii) a multi-source parser trained on the concatenation of
all treebanks.

Resource-Lean Transfer. In this chapter, we follow the ZS-XLT paradigm, i.e.
we do not assume any labeled data in the target languages. Different from previ-
ous chapters (Chapters 6 to 8), where we transferred a single multilingual model,
we now use multiple monolingual models. By training multiple expert models we
utilize monolingual training data in multiple languages without risking negative in-
terference between languages. This is a resource-lean approach since monolingual
training data is cheaper to obtain than cross-lingual task supervision. From a prac-
tical perspective, it allows us to integrate the large number of publicly available
retrieval models into a unified framework (cf. Figure 1.4 in Chapter 1) without
collecting any training data.

9.2 Related Work

In this section, we first discuss two lines of research related to model performance
prediction and model selection without access to labeled data. We then discuss
mixture-of-expert models originally proposed in (Jacobs et al., 1991) and prior
work related to our proof-of-concept task. The work presented in this chapter is
also closely related to the task of model transferability estimation, we refer the
reader to the recent survey by Ding et al. (2024).
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Query Performance prediction. A central component of our instance-level ex-
pert model selection framework is the routing model, which estimates the expected
performance of a model on a given instance. In IR, the task of estimating the
expected performance of a retrieval system is known as query performance pre-
diction (QPP) (Faggioli et al., 2023c,b). As discussed in (Carmel and Yom-Tov,
2010), QPP methods can be broadly distinguished between (i) pre-retrieval meth-
ods which predict the performance based on linguistic cues and corpus-level statis-
tics and (ii) post-retrieval QPP which predict the performance based on retrieved
documents. For example, BERT-QPPcross (Arabzadeh et al., 2021) concatenates
a given query with a list of top-k retrieved documents and predicts a score that
reflects ranking evaluation measures such as average prediction (cf. Section 3.3).
NQA-QPP (Arabzadeh et al., 2021) further includes the standard deviation of top-k
pointwise retrieval scores as an additional indicator of query performance. Fusion-
based QPP (Roitman, 2018) predicts the performance of ensemble rankings based
on the individual rankings to be fused. Our framework is conceptually similar to
pre–retrieval QPP, since we do not use the output of expert models to predict their
performance. In cross-lingual retrieval, early QPP methods (Kishida et al., 2004b;
Kishida, 2008) focus CLIR systems based on machine translation (MT) and train a
regression model to predict CLIR performance according to (i) the quality of query
translations and (ii) the level of difficulty of a search topic. Our work instead uses
semantic representations of the model input (input embeddings) and representa-
tions of expert models (e.g., parser embeddings).

Machine Translation Quality Estimation. Prior to the paradigm shift from lex-
ical to neural information retrieval, cross-lingual IR (CLIR) systems primarily re-
lied on machine translation (MT) to bridge the language gap between the query and
document language (Zhou et al., 2012). Consequently, related works study QPP for
CLIR through the lens of predicting the query translation (QT) quality (Kishida,
2008; Lee et al., 2010; Hefny et al., 2011). For example, Kettunen (2009) compares
different MT-based CLIR systems on the CLEF 2003 dataset (Braschler, 2004) and
finds that the retrieval system with the best results also achieved the highest ME-
TEOR scores (Banerjee and Lavie, 2005). Similarly, Lignos et al. (2019) show
on three CLIR tasks that the relationship between BLEU (Papineni et al., 2002)
and MAP is “approximately linear”. Today, QT, also known as the translate test
approach, is still commonly adopted in CLIR (Ture and Boschee, 2014; Saleh and
Pecina, 2020; Lawrie et al., 2022). For example, in Section 8.4.1 we discussed
how different MT errors categories such as topic shifts, source word copying and
hallucinations can propagate to CLIR and deteriorate its performance.

Standard MT evaluation metrics such as BLEU and METEOR cannot be used
in QPP because reference translations are not available at retrieval time. To this
end, reference-free MT quality estimation (QE) methods (Fonseca et al., 2019;
Zouhar et al., 2023) aim to predict translation quality without access to a correct
translation. As such, they are similar to post-retrieval QPP in the sense that they
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compare model input (source text) and output (translation) to predict a model’s
performance. Human-targeted Translation Edit Rate (HTER) (Snover et al., 2006)
is a widely used measure for evaluating reference-free MT QE methods. It in-
volves human post-editors and measures the number of edits required to obtain a
corrected translation. Reference-free MT QE can be framed as a supervised task.
For example, Uni+ (Yankovskaya et al., 2019) uses a regression model to directly
predict HTER scores from multilingual representations extracted from mBERT
(Devlin et al., 2019) and LASER (Artetxe and Schwenk, 2019a). MT-Ranker
(Moosa et al., 2024) frames reference-free MT QE as a pair-wise ranking prob-
lem. Here, the model concatenates a given source sentence with two translation
candidates and predicts a binary score indicating the superior translation. Unsuper-
vised reference-free MT QE approaches use for example MoverScore (Zhao et al.,
2020b), BERTScore (Zhang et al., 2020; Zhou et al., 2020; Song et al., 2021),
the cosine similarity between multilingual embeddings (Fonseca et al., 2019), or
large language models (Chen et al., 2023) to compare translations against source
sentences. Importantly, reference-free MT QE can only be employed for selecting
MT-based CLIR systems and cannot be used to estimate the performance of, e.g.,
multilingual bi-encoders.

Mixture-of-Expert Models. Our instance-level model selection framework is con-
ceptually related to Mixture-of-Expert (MoE) models (Jacobs et al., 1991; Shazeer
et al., 2017; Chen et al., 2019; Fedus et al., 2022; Zuo et al., 2022, inter alia), which
use gating mechanisms to route instances to internal sub-layers. Our work is most
similar to (Chen et al., 2019), who use adversarial training to learn a mixture of
language experts (i.e., encoder layers) and a shared language-agnostic feature ex-
tractor. Their model routes tokens of test instances to those language experts that
are closest to the test language. In another recent work, Cai et al. (2023) adopt
MoE for information retrieval. Their model first encodes its input with shared lay-
ers. The encoded sequence is forwarded to three types of expert models: a lexical
expert generates sparse bag-of-word representations (Formal et al., 2021) which
are used for lexical retrieval, a local expert computes relevance scores similar to
ColBERT (Khattab and Zaharia, 2020) and a global expert is implemented as a
bi-encoder model (Karpukhin et al., 2020). At retrieval time, each expert produces
a ranking which are then fused into a single ranking. Contrary to MoE models,
we do not train a single model in an end-to-end fashion, but instead maintain inde-
pendent experts. This allows for integrating closed-source models (Bubeck et al.,
2023; OpenAI, 2023) or external embedding APIs (Kamalloo et al., 2023).

Cross-lingual Transfer of Dependency Parsers. Parsing languages with no train-
ing data has been a very active topic of research for nearly a decade since the piv-
otal works by (McDonald et al., 2011) and (Petrov et al., 2012). Many diverse
approaches are explored along the lines of model transfer, annotation projection,
machine translation (Täckström et al., 2013; Guo et al., 2015; Zhang and Barzi-



150 9. Expert Model Selection (Proof of Concept)

lay, 2015; Tiedemann and Agić, 2016; Rasooli and Collins, 2017), and selective
sharing based on language typology (Naseem et al., 2012) and structural similarity
(Ponti et al., 2018; Meng et al., 2019). However, the vast majority of prior work in-
volves bulk evaluation, whereby transfer parsers are validated by mean accuracy on
test data. Such evaluation protocols stand in contrast with the fact that languages
exhibit high variance in syntactic structure, which calls for a sensitive treatment
of every sentence. While an oracle single-source parser may be appropriate for
the majority of sentences in a given dataset, instance-based treatment closes the
gap to the best achievable result given an array of pre-trained parsers, as we also
show in Section 9.3. Prior work relied on existing manually curated resources such
as the URIEL database (Littell et al., 2017), using the KL-Divergence on POS-
trigrams (Rosa and Žabokrtský, 2015), or handcrafted features derived from the
datasets at hand. Our work is most similar to the recent work of (Lin et al., 2019):
they learn to score and rank languages in order to predict the top transfer languages.
However, contrary to their work, our approach does not employ a model to learn
the ranking but transforms the labels to directly reflect the ranking when we train
the scoring model. In addition, we stress the importance of instance-based learning
for cross-lingual parser transfer in particular. Another core difference is that our
approach does not rely on external resources. Instead, it relies on trainable parser
embeddings that encode the necessary features in a single representation.

9.3 Motivating Instance-Level Parser Selection

The idea behind instance-level parser selection is intuitive: given a set of parsers for
resource-rich source languages, it is unlikely that the same source-language parser
is the best choice for all instances (i.e., UPOS-sentences) of the target language.
Therefore, we first investigate the performance of an oracle model that would be
able to predict the best source-language parser for each individual POS-sentence
from the target-language treebank. To verify this, we rely on the well-known bi-
affine parser (Dozat and Manning, 2017; Dozat et al., 2017) and train it on delex-
icalized UD2.3 treebanks (Nivre et al., 2018) of 42 languages.4 We then parse
the delexicalized treebanks of the 20 low-resource languages with all 42 source
parsers, and measure their performance per each instance in each target treebank.
We compare the performance of two oracle parser selection strategies: (1) single-
best parser selection (SBPS), in which for each target test treebank we select the
parser that performs best on the entire treebank; and (2) instance-level parser selec-
tion strategy (ILPS), where for each UPOS-sentence from each test treebank, we
select the parser that produces the best parse for that UPOS-sentence.

The differences in Unlabeled Attachment Scores (UAS) between the two trans-
fer paradigms are shown in Figure 9.2. This clearly demonstrates a large gap in

4We selected 42 languages with largest treebanks as the training languages. For languages with
multiple treebanks (e.g., EN, CS), we finally chose the treebank for which the parser yielded the best
monolingual parsing accuracy.
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Figure 9.2: Comparison of UAS between oracle single-best (i.e., treebank-level)
parser selection (SBPS) and instance-level parser selection (ILPS) strategies for
cross-lingual transfer of delexicalized parsers for 20 low-resource languages from
UD2.3, used as test languages throughout the paper. Individual bars annotated with
potential gains when moving from SBPS to ILPS.

favor of ILPS: the average gain with ILPS is 14.5 UAS points, and it is promi-
nent for all languages. It suggests that large improvements may be obtained with a
model that can predict the best parser at the instance level, that is, for each UPOS-
sentence separately. However, these are still oracle scores and we pose the follow-
ing research questions in this paper: (Q1) Is it possible to learn an instance-level
prediction model to select the best parser given any UPOS-sentence, irrespective
to its “language of origin”?5 In addition, even with noisy automatic instance-
level predictions, one could still, by eliminating the noise through aggregation,
use them to inform treebank-level source parser selection. In other words, another
research question we pose is: (Q2) Can we improve single-best global parser se-
lection through aggregating instance-level parser predictions?

9.4 Instance-Level Parser Selection

We now describe a novel ILPS framework based on a supervised regression model
that predicts the parser accuracy for any UPOS-sentence. As such, it can be ap-
plied on UPOS-sequences of low-resource languages. In Section 9.4.1, we first
train a (biaffine) parser on delexicalized treebanks for each of the 42 resource-

5Note that in theory the oracle gaps in favor of ILPS may be out of reach for automatic ILPS
models, due to a potential parsing ambiguity introduced through delexicalization – i.e., the same
UPOS-sentence (corresponding to different lexicalized sentences) may appear in the same treebank
or across different treebanks with different gold parses. However, we have verified that this phe-
nomenon is rare: ambiguous parses are present only for 1.4% UPOS-sentences in the concatenation
of treebanks from 42 languages.
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Figure 9.3: Illustration of the ILPS framework (at inference time) with three steps
using an example sentence in Armenian (HY): (1) Probing – the ILPS regression
model predicts the parsing accuracy on a given test UPOS-sentence for each of the
42 parsers; (2) Ranking – rank the parsers w.r.t. parsing accuracy for the instance
and selects one or few best-performing parsers; (3) Reparsing – induce the final
tree for the UPOS-sentence by merging trees produced by parsers selected in the
previous step (only if more than one parser gets selected in step (2)).

rich languages from UD2.3,6 yielding 42 expert models. We then parse with each
parser the 41 treebanks of the other languages. This way we obtain the labels for
training the ILPS regression model. The data preparation step is further detailed
in Section 9.4.2, while the regression model itself is described in Section 9.4.3.
At inference time, the ILPS model predicts the accuracy of each of the 42 parsers
for each UPOS-sentence from delexicalized treebanks of the 20 test languages.
Note that this constitutes a minimal-resource and true zero-shot language transfer
setup: our ILPS regression model does not rely on any information about the test
languages nor their respective treebanks. Finally, in Sections 9.4.4 and 9.4.5 we
outline different strategies for merging the parse trees based on the predictions of
the ILPS regression model. The full ILPS framework is illustrated in Figure 9.3.

9.4.1 Biaffine Dependency Parsers

We now briefly describe the biaffine dependency parser model proposed by (Dozat
and Manning, 2017; Dozat et al., 2017). In delexicalized dependency parsing we
input layer we model with sequences of POS tag embeddings xi P X . A bi-
directional LSTM model (BiLSTM) (Graves et al., 2013) contextualizes the entire
sequence individual token representations R “ BiLSTMpXq. Biaffine parsers
generate dependency graphs in two steps. They first predict whether a dependency
relation exists for a pair of tokens, i.e. if an edge connects a pair of tokens. In the

6All language codes used throughout this paper are taken directly from the UD2.3 documentation
(Nivre et al., 2018).
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next step, they assign (i.e., predict) labels to edges to describe the type of gram-
matical relation. To score the likelihood of the ith token (dep) being a dependent of
the jth token (head), the parser first transforms input token representations ri and
rj into a head and dependent representation with feed forward networks:

h
(edge-dep)
i “ FNN(edge-dep)priq (9.1)

h
(edge-head)
j “ FNN(edge-head)prjq (9.2)

These are then used as inputs in a biaffine scoring function

s
(edge)
i,j “ Biaffphi, hjq “ hJ

i Uhj `W phi ‘ hjq ` b, (9.3)

which summarizes pairwise feature interactions into an edge score s(edge)
i,j P R.

Here, the ‘ symbol denotes concatenation, U and W are linear projection matri-
ces and b is a bias term. Finally, edge scores are transformed into binary edge
predictions based on their sign ŷ(edge)

i,j “ tsi,j ě 0u. The computation for edge
labelling follows a similar approach, two feed forward networks FFN(label-head) and
FFN(label-dep) project contextualized representation ri and rj into the feature vector
h(label-head) and h(label-dep). A biaffine scoring function Biaff(label) then produces for
each connected node pair k label scores. The predicted label is the label with the
largest score ŷ(label) “ argmaxk s

(label)
i,j .

9.4.2 Preparing ILPS Training Data

We first delexicalize all treebanks before training the parsers. After training a
parser for each of the |L| training languages, we measure how each of them per-
forms on treebanks of the other |L| ´ 1 languages. Let PARSERi denote the parser
of the i-th training language and let SENTj “ tPOSuNn“1 be an UPOS-sentence
of length N from the treebank of the j-th language. Next, we must quantify how
successful PARSERi is on some UPOS-sentence SENTj . To this end, we use the
number of correct dependency heads predicted by PARSERi on SENTj . Using a
raw number of correct heads as training labels for the ILPS regression model comes
with one disadvantage: such a label would only indicate the suitability of the parser
in isolation and not in comparison with other parsers. Therefore, we normalize the
number of correct heads for each parser (for any given UPOS-sentence) with the
average of the number of correctly predicted heads across all parsers. That is, the
label yi,j for PARSERi and SENTj is computed as follows:

yi,j “
#correct-headsi,j

1{|L| ¨
ř|L|

l“1#correct-headsl,j
(9.4)

The normalization step ensures the comparability across sentences irrespective to
their absolute length in tokens. Further, the treebanks of training languages greatly
vary in size. To account for the imbalanced treebank sizes, we up-sample all below-
average treebanks and down-sample all above-average treebanks.
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9.4.3 ILPS Regression Model

Our instance-level parser selection model is a regression model based on a Trans-
former architecture encoder (Vaswani et al., 2017) for UPOS-sentences. The en-
coding of the input UPOS-sentence is forwarded, together with the embedding
vector representing the parser language, to a multi-layer perceptron. It predicts the
score representing the prediction of the normalized number of correct heads that
the parser is expected to yield.

Parser and POS-tag embeddings. We learn |L| parser embeddings, tpiu
|L|

i“1, one
for each language (PARSERi) and K embedding vectors ttkuKk“1, one for each
UPOS-tag (Petrov et al., 2012). We initialize both parser and POS-tag embeddings
randomly. POS-tag embeddings are then updated during the pre-training of the
POS-sentence encoder.

UPOS-sentence encoder. We encode UPOS-sentences with the Transformer en-
coder (Vaswani et al., 2017). Let the UPOS-sentence SENTj “ ttj1, t

j
2, . . . , t

j
T u

be a sequence of T UPOS-tags. We encode each token tij (i P t1, . . . ,Ku, j P

t0, 1, . . . , T u) with a vector tij which is the concatenation of the UPOS-tag embed-
ding and a positional embedding for the position j.7 Let Transform denote the en-
coder stack of the Transformer model with NT layers, each coupling a multi-head
attention net with a feed-forward net (see Section 2.3 for more details). We then
apply Transform to the UPOS-tag sequence and obtain contextualized UPOS-tag
representations as follows:

tttiju
T
j“1 “ Transform

`

ttiju
T
j“1

˘

; (9.5)

Following Devlin et al. (2019), we pre-train the parameters of the Transform en-
coder and the UPOS-tag embeddings via the masked language modeling objective
on the concatenation of all training treebanks. As in the original work, we consider
15% of randomly selected tokens in each sentence (but no more than 20 tokens)
for replacement. In 80% of the cases, we replace the UPOS-tag with the [MASK]
token, in 10% of the cases we keep the original UPOS-tag, and in remaining 10%
of the cases we replace it with a randomly chosen tag.

We fine-tune the pre-train ed Transform encoder and the UPOS-tag embed-
dings on the main ILPS regression task. At this step, similar to (Devlin et al., 2019),
we prepend each UPOS-sentence with a special sentence start token tj0 “ [ss], with
the aim of using the transformed representation of that token as the sentence en-
coding.8 We take the transformed vector of the [ss] token, i.e., ttj0 as the final
fixed-size representation of the UPOS-sentence.

7We adopt the wavelength-based positional encoding from the original Transformer model
(Vaswani et al., 2017).

8This eliminates the need for an additional self-attention layer for aggregating transformed token
vectors into a sentence encoding. We omitted preprending the UPOS-sentences with the sentence
start token in pre-training due to the lack of any sentence-level pre-training objective.
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Feed-forward regressor and loss function. For any given training instance con-
sisting of the tuple pPARSERi,SENTj , yi,jq, we concatenate the parser’s embed-
ding pi and the UPOS-sentence encoding ttj0, and feed it to a feed-forward re-
gression network (i.e., a multi-layer perceptron, MLP), whose goal is to predict
yi,j :

ŷi,j “ MLPprpi; tt
j
0sq (9.6)

We define the loss function to be a simple root mean square error (RMSE) over the
examples in one mini-batch as follows:

L “

d

1

NB

ÿ

i,j

pyi,j ´ ŷi,jq
2 (9.7)

where NB is the number of instances in the batch.

9.4.4 Ranking and Ensembling

We can directly use the vector of scores ŷj “ tŷi,ju
|L|

i“1 to rank the |L| parsers
according to their (predicted) parsing accuracy for the UPOS-sentence SENT j

from some test treebank.

Pure ILPS. This local parser ranking, based only on the predicted parser perfor-
mance for the current UPOS-sentence SENT j , is used to select one or few best
parsers for that UPOS-sentence. If we select only a single best parser and only ac-
cording to the instance-level predictions, we refer to the pure instance-level parser
selection (ILPS) setup:

iILPSpjq“argmax
i

tŷi,j |i P t1, 2, . . . , |L|uu (9.8)

SBPS from ILPS predictions. ILPS predictions can be easily aggregated to pro-
duce a treebank-level estimate of the source parsers’ performance for a test lan-
guage. This brings the ILPS paradigm back into the single-best parser selection
(SBPS) realm, hopefully with SBPS estimates originating from our ILPS predic-
tions being more robust than competing SBPS metrics (Rosa and Žabokrtský, 2015;
Lin et al., 2019). For a treebank of an unseen test language consisting of M POS-
sentences, we get the global parser’s performance estimates ȳi simply by averaging
ILPS predictions for that parser, ŷi,j , over all M test POS-sentences:

ȳi “
1

M

M
ÿ

j“1

ŷi,j (9.9)

The best treebank-level parser is then selected as the one with the highest aggregate
score ȳj :

iSBPSILPS “ argmax
i

tȳi |i P t1, 2, . . . , |L|uu (9.10)
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Ensembling. It is often the case – both at the instance level and at the treebank
level – that two or more parsers yield similar performance. In such cases, one
would expect to benefit from aggregating the predictions made by those parsers.
We refer to the settings in which we consider more than one parser as ensembling
(Ens) settings. Note that ensembling is equally applicable to both the pure ILPS
setup as well as to the previously outlined SBPSILPS setup in which we aggregate
instance-level predictions to select the best “treebank-level” parser. In both cases,
we must determine a threshold τ P r0, 1s that defines the set of “good enough”
parsers, in relative terms w.r.t. the performance of the best parser. The sets of
parsers whose trees are to be merged are obtained as follows:

tiILPSuτ pjq “ ti|@i : ŷi,j ě maxpŷi,jq ¨ τu, (9.11)

tiSBPSILPSuτ “ ti |@i : ȳi ě maxpȳiq ¨ τu. (9.12)

where Eq (9.11) refers to the pure ILPS setting, and Eq. (9.12) refers to the SBPSILPS
setting.

9.4.5 Reparsing

After selecting multiple parsers in the ensemble settings, we need to merge their
produced parse trees into a final tree. Such a step is commonly referred to as repars-
ing (Sagae and Lavie, 2006). Here we resort to a standard reparsing procedure in
which we: (1) merge the trees produced by individual parsers into a weighted graph
G – the parser i contributes to an edge with the weightwi “ ŷi,j (for pure ILPS; for
SBPSILPS, wi “ ȳi) if the parser i predicted that edge, and with wi “ 0 otherwise;
(2) induce the Maximum Spanning Tree (MST) of G (Edmonds, 1967) as the final
parse of the input UPOS-sentence (see again Figure 9.3).

9.5 Experimental Setup

Evaluation Data. We perform all experiments on the UD v2.3 dataset,9 as it con-
tains a wide array of both resource-rich languages with large treebanks – split into
train, development, and test portions – and low-resource languages with small test
treebanks. For our experiments, we select 42 languages with the largest treebanks
as our resource-rich source languages for training, and a set of 20 typologically di-
verse low-resource languages for testing.10 Following established practice (Wang
and Eisner, 2018), at inference we use gold UPOS-tags of test treebanks for all
models in comparison.11 We evaluate parsing results in terms of Unlabeled At-
tachment Score (UAS), which is the percentage of correctly classified dependency
heads, ignoring the type of dependency relation.

9https://universaldependencies.org/
10We provide the full list of languages with the corresponding treebank sizes in Appendix E.
11While this does not affect the fairness of model comparisons (since all models, including base-

lines, are exposed to gold UPOS-tags), it does render reported results upper bounds w.r.t. the realistic
low-resource setting where one would resort to noisier, automatically induced UPOS-tags.

https://universaldependencies.org/
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ILPS Hyperparameters are optimized via fixed-split cross-validation on our train-
ing set (see Section 9.4.2). We set the embedding size for both parser embeddings
and UPOS-tag embeddings, as well as the hidden size of the feed-forward Trans-
former layers to 256. The Transformer encoder has NT “ 3 layers with 8 attention
heads in each layer. We update the model in mini-batches of 16 examples, using
Adam (Kingma and Ba, 2015) with the default parameters: β1 “ 0.9, β2 “ 0.999,
and ϵ “ 10´8, with an initial learning rate set to 10´4. The regression MLP has
2 hidden layers with 256 units each, plus a linear projection layer that compresses
the 256-dimensional vector into a single prediction score. We perform early stop-
ping based on the loss on the development set. For all ensembles, we set the parser
inclusion threshold τ to 0.9.

Oracle scores and baselines. In order to provide more context for the reported
ILPS scores, we also report the results of two oracle methods described in Sec-
tion 9.3: the oracle single-best parser selection (OR-SBPS), and the oracle instance-
level best parser selection (OR-ILPS). We compare to three competitive baselines:
(1) the standard multi-source parser (MSP) baseline which trains a single parser
model on the concatenation of all training treebanks (McDonald et al., 2011);12 and
two competitive SBPS baselines, (2) KL-SBPS – treebank-level parser selection
based on the Kullback-Leibler divergence between UPOS-tag trigram distributions
of the source and target language treebanks (Rosa and Žabokrtský, 2015) and (3)
L2V-SBPS – treebank-level parser selection based on the cosine similarity be-
tween the syntax-based vectors of the source and target language from WALS (Lin
et al., 2019).

Ensembles. We evaluate two ensembles based on the predictions of our ILPS-
based regression model, described in Section 9.4.4: (1) an instance-level ensemble
in which we merge the trees of the best parsers for each sentence (ENS-ILPS)
and (2) ENS-SBPSILPS – an ensemble merging the trees of treebank-level best
parsers, where the treebank-level estimates are aggregated from the instance-level
predictions. We evaluate comparable ensembles (i.e., with the same parser inclu-
sion performance threshold τ “ 0.9) for both SBPS baselines: ENS-KL-SBPS
and ENS-L2V-SBPS.

9.6 Results and Discussion

We first show the results for single-best parser selection models. We then proceed
to a more realistic ensemble setup in which the models are allowed to select more
than just one parser.

12We have run two variants of the multi-source model (MSP): a) balanced (trained on the treebanks
downsampled or upsampled to the average treebank size as done in Section 9.4.2); b) all (trained on
the concatenation of the full treebanks without any adjustment). For brevity, we report the results
only with the latter, as it produced stronger overall performance.
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Figure 9.4: Performance (UAS) for
single-parser selection models, micro-
and macro- averaged, respectively,
across 20 test languages.
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Figure 9.5: Performance (UAS) for en-
semble models (i.e., few-parser selec-
tion), micro- and macro- averaged, re-
spectively, across 20 test languages.

Single-parser selection. We report results (UAS) for all single-parser selection
methods (i.e., no ensembles) along with the oracle scores on all 20 test treebanks.
Table 9.1 provides performance per language, and Figure 9.4 shows the summary
of the results. Our pure instance-based parser selection model (ILPS) signifi-
cantly13 outperforms both SBPS baselines (KL-SBPS and L2V-SBPS) averaged
across all languages (see Figure 9.4). Individual instance-level predictions made
by ILPS, however, do seem to be rather noisy. This is supported by the obser-
vation that SBPSILPS significantly outperforms ILPS. Since SBPSILPS is a simple
treebank-level aggregation of ILPS sentence-level predictions, the gain can only
be explained as the product of noise elimination through aggregation. ILPS out-
performs KL-SBPS and L2V-SBPS on 13/20 and 14/20 test languages, respec-
tively, whereas SBPSILPS improves on 17/20 and 16/20 languages over the re-
spective baselines. This first set of results, the preliminary comparison with well-
established and competitive baselines for delexicalized parser transfer, validates
the viability of the instance-based parser selection paradigm.

ILPS and SBPSILPS still do not match the performance of the multi-source
parser (MSP) in this simple single-parser-selection setup. We find this somewhat
expected: ILPS and SBPSILPS are based on parsers trained on single treebanks,
whereas MSP is trained on the concatenation of all training treebanks. Therefore,
we include MSP as a baseline in our ensemble evaluation as well.

Ensemble evaluation results. We show the results for the ensemble models in Ta-
ble 9.2. A summary of results for this setup is provided in Figure 9.5. Allowing for
the selection of more than a single parser in cases in which our ILPS-based predic-
tions warrant so (i.e., when two or more parsers yield similarly good performance
for some low-resource language) allows SBPSILPS (i.e., its ensemble version, Ens-

13Significance tested with the Student’s two-tailed t-test at p “ 0.01 for sets of sentence-level
UAS scores.
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am be bm br bxr cop fo ga hsb hy kk

Oracles

OR-ILPS 79.7 87.3 82.8 83.1 74.2 86.3 71.9 76.8 86.1 75.2 81.2
OR-SBPS 62.1 77.4 66.9 61.3 54.5 76.3 52.1 65.2 74.8 62.8 64.4

Baselines

MSP 56.7 78.7 70.7 62.8 57.8 77.2 51.4 66.3 78.2 67.9 64.9
KL-SBPS 47.5 77.1 54.2 56.2 48.9 65.9 48.7 65.2 72.9 62.8 57.5
L2V-TLS 26.9 70.4 55.6 58.7 53.8 69.9 48.9 61.3 71.1 57.5 64.4

ILPS models (ours)

ILPS 57.1 75.3 60.2 60.5 53.5 70.9 49.5 62.2 72.5 56.4 58.6
SBPSILPS 62.1 77.4 62.7 60.5 54.5 75.3 48.6 61.4 72.9 62.8 64.1

lt mt myv sme ta te th yo yue Ma Mi

Oracles

OR-ILPS 74.7 85.9 83.5 79.3 73.8 94.8 70.3 71.7 78.0 79.8 79.3
OR-SBPS 65.9 74.2 67.1 58.5 63.6 83.2 57.6 60.2 58.2 65.4 62.8

Baselines

MSP 63.3 77.4 65.3 61.4 59.5 75.5 56.3 59.0 37.6 64.5 62.2
KL-SBPS 46.8 69.0 54.3 57.2 47.3 74.8 35.2 47.9 56.7 57.3 54.7
L2V-SBPS 49.9 70.4 67.1 57.2 54.5 83.2 47.6 45.2 41.7 57.8 55.7

ILPS models (ours)

ILPS 56.2 71.7 61.2 55.1 58.0 71.4 52.9 54.9 53.5 60.6 59.0
SBPSILPS 58.6 73.2 67.1 57.2 63.6 77.0 57.6 57.2 56.2 63.5 61.0

Table 9.1: Results for single-parser selection models. Results for 42 parsers (an
exception is the MSP model which trains a single parser on the concatenation of all
training treebanks) on 20 low-resource test languages. Ma & Mi: average perfor-
mance across 20 languages, macro- and micro-averaged scores, respectively. The
best result in each column, not considering oracle scores, is in bold.

SBPSILPS) to significantly outperform the strong MSP baseline. The two SBPS
baseline methods in their ensemble variants (Ens-KL-SBPS and Ens-L2V-SBPS)
reduce the gap in comparison with the previous single-parser selection setup (see
Table 9.1 again). However, our treebank-level parser selection model based on
instance-level predictions (Ens-SBPSILPS) still significantly outperforms the en-
sembles of the other two SBPS methods.

Encouragingly, both Ens-ILPS and Ens-SBPSILPS outperform the oracle Ens-
Or-All, which merges parses produced by all training parsers, using their gold per-
formance on the test treebanks for weighting the individual parser contributions.
Furthermore, Ens-SBPSILPS also improves over the oracle single-parser selection
OR-SBPS reported in Table 9.1. In summary, we believe these results provide suf-
ficient evidence for the viability of the ILPS transfer paradigm and warrant further
research efforts in this direction.
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am be bm br bxr cop fo ga hsb hy kk

Oracle ensembles

ENS-OR-SBPS 62.9 79.2 70.3 64.2 62.1 78.9 50.5 68.6 78.5 66.3 69.2
ENS-OR-ALL 59.6 78.0 70.8 63.5 49.8 78.4 50.6 67.6 76.2 58.6 52.6

Baseline ensembles

MSP 56.7 78.7 70.7 62.8 57.8 77.2 51.4 66.3 78.2 67.9 64.9
ENS-ALL 59.2 77.1 70.5 63.0 45.6 78.2 50.3 67.2 75.4 57.4 47.5
ENS-KL-SBPS 60.7 79.2 71.2 63.5 56.6 78.1 50.6 67.7 76.0 57.2 58.6
ENS-L2V-SBPS 60.4 78.7 68.9 63.8 61.5 77.5 50.7 68.1 76.7 59.1 70.7

ILPS model-based ensembles (ours)

ENS-ILPS 59.6 78.7 68.2 62.8 56.1 77.9 50.8 67.2 76.5 60.8 61.7
ENS-SBPSILPS 60.0 78.7 70.8 63.8 61.0 78.4 50.5 68.2 77.5 58.9 68.1

lt mt myv sme ta te th yo yue Ma Mi

Oracle ensembles

ENS-OR-SBPS 65.9 78.3 66.8 64.3 65.3 83.9 61.8 62.8 61.7 68.1 65.6
ENS-OR-ALL 56.2 76.6 64.5 52.3 48.0 67.4 59.8 62.2 61.3 62.7 61.0

Baseline ensembles

MSP 63.3 77.4 65.3 61.4 59.5 75.5 56.3 59.0 37.6 64.5 62.2
ENS-ALL 56.0 76.2 64.1 52.0 38.4 66.2 58.3 61.6 61.6 61.3 59.8
ENS-KL-SBPS 53.5 76.5 65.3 53.2 58.8 68.4 57.4 62.2 61.1 63.8 62.1
ENS-L2V-SBPS 54.5 77.0 65.2 50.9 66.5 74.3 60.2 61.6 62.8 65.5 63.7

ILPS model-based ensembles (ours)

ENS-ILPS 60.6 76.5 63.4 56.5 61 72.8 57.4 60.0 57.4 64.3 62.0
ENS-SBPSILPS 62.9 76.7 66.8 53.6 65.3 78.5 60.5 62.0 60.1 66.1 63.9

Table 9.2: Results for ensemble-based parser selection models. Additional mod-
els: ENS-OR-ALL – merges parses by all 42 parsers, but uses oracle performance
as parser weights; ENS-ALL – ensembles all 42 parsers, with equal weights. An
exception is the MSP model which is not an ensemble model, but rather trains a
single parser on the concatenation of all training treebanks. Ma & Mi: average
performance across 20 languages, macro- and micro-averaged scores, respectively.
The best result in each column, not considering oracle scores, is in bold.

9.7 Conclusion

This chapter is motivated by the observation that multilingual models are effec-
tively limited in the number of languages they can encode (curse of multilingual-
ity). To overcome this limitation, we explore zero-shot transfer with multiple en-
coders. We present a proof of concept on the task of delexicalized dependency
parsing, which allows us to experiment on a large number of languages. On this
task, we demonstrate that there is a large disparity between mean test-set and per-
instance accuracy in cross-lingual parser transfer setups. We showed convincing
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evidence that one source parser is not the optimal choice for all target-language
sentences. Motivated by the analysis, we proposed a novel approach to close this
gap in this proof-of-concept study: instance-based parser selection. Our frame-
work provides competitive results, where in the ensemble setting, we outperform
all baselines, and markedly even the single-source oracle parser selection, while
using a simple thresholding heuristic to select the parsers.

We see the proposed framework as the first exploratory step in the direction
of robust instance-level model transfer, which opens several avenues for future re-
search. While this proof-of-concept work assumed the existence of gold POS tags,
we will also experiment with the same approach “in the wild”, with learned or
transferred POS taggers, and we will also extend the study to lexicalized parser
transfer following the latest developments in the domain of lexicalized multilin-
gual and cross-lingual parsing (Üstün et al., 2020; Glavaš and Vulić, 2021). In
Section 10.2, we outline possible directions for future work and discuss how the
instance-level model selection framework can be applied in information retrieval
tasks where queries are formulated in different (unseen) languages.
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Chapter 10

Conclusion

In this thesis, we study resource-lean cross-lingual transfer methods for cross-
lingual information retrieval (CLIR) as introduced in Section 1.1.2. We experi-
mented on a total of forty-seven language pairs including thirty-three cross-lingual
and fourteen monolingual retrieval setups. In this chapter, we first synthesize our
key insights and findings (Section 10.1) and then conclude with a discussion of
possible directions for future work (Section 10.2).

10.1 Summary of Findings

In this section, we synthesize our contributions into six key findings (A–F). We
first summarize Part II Resource-Learn Transfer of Bi-Encoders (Chapters 4 and
5) into three takeaways related to the role of context, contextualization and mul-
tilingual representation spaces (A–C). We then summarize our insights from Part
III Resource-Lean Transfer of Cross-Encoders (Chapters 6 to 8) and discuss two
main findings related to zero-shot cross-lingual transfer of rerankers (D–E). Fi-
nally, we discuss our insights from comparing the similarity between (i) the query
and document language and (ii) the training and test language (F).

A. Cross-lingual word embeddings are resource-lean and effective. In Chap-
ter 4, we proposed two CLIR models based on cross-lingual word embeddings
(CLWE). The first model, Term-by-Term Query Translation (TbT-QT) casts CLIR
into a noisy variant of monolingual IR (MoIR) by replacing query words with their
cross-lingual nearest neighbors, followed by lexical retrieval. The second model,
Bag-of-Words Aggregation (BoW-Agg) follows a non-parametric bi-encoder ap-
proach (see Section 4.1) and represents queries and documents as the (weighted)
sum of their constituent CLWEs. Both models are resource-lean since they do not
rely on any CLIR task supervision. All models outperform a purely lexical retrieval
baseline (query likelihood model, see Section 3.3). We also find that they perform
much worse than the resource-intensive CLIR approach based on machine transla-
tion (MT). While CLWEs seem to fall behind MT-based models and multilingual

163
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sentence encoders (Chapter 5), it is important to emphasize their minimal cross-
lingual supervision requirements (bilingual dictionaries). While mBERT and NMT
systems only cover 1% of the world’s over 7,000 languages (Wang et al., 2022a),
existing lexical resources such as the PanLex database (Kamholz et al., 2014) cover
thousands of languages and have been used in prior CLIR research (Vulić et al.,
2019; Jiang et al., 2020b). In fact, we showed that even fully unsupervised ap-
proaches, which induce CLWEs without any bilingual supervision perform com-
petitively to their supervised counterparts. As such, CLWEs are a resource-lean
alternative for scaling up CLIR to many languages. Furthermore, CLWEs obtained
from post-hoc alignment of monolingual embedding spaces do not suffer from the
“curse of multilinguality” (Conneau et al., 2020) because language-specific model
parameters remain distinct from another.

B. Weakly aligned contextual representations do not outperform cross-lingual
word embeddings. Weak alignment in multilingual pre-trained language mod-
els (mPLM) refers to the phenomenon where text embeddings from different lan-
guages form languages clusters (Cao et al., 2020; Roy et al., 2020; Wang et al.,
2022c), rather than exhibiting a strong cross-lingual semantic alignment. In line
with prior work, we find that this has a detrimental effect when we use off-the-shelf
mPLMs as bi-encoders in CLIR, where representations of queries and documents
need to be matched across different languages. Our document-level CLIR experi-
ments show that neither static nor dynamic representations extracted from mPLMs
manage to outperform CLWEs, even after controlling for the maximum sequence
length limitation of mPLMs. This demonstrates that multilingual masked language
modelling alone does not suffice to yield high quality representation spaces for
CLIR. We further find that specializing mPLMs for sentence-level similarity tasks,
i.e. multilingual sentence encoders can outperform CLWE-based approaches by a
large margin. However, to train such encoders we typically need access to parallel
data and labeled data in related tasks. Since this data could also be used to train
MT systems in the first place, one could argue that multilingual sentence encoders
are resource-intensive. In our experiments we used off-the-shelf models. In future
work, we plan to control for this aspect and conduct a fair side-by-side comparison
under fixed resource constraints.

C. Excessive context and insufficient context degrade the effectiveness of mul-
tilingual text encoders in unsupervised CLIR. In Chapter 5, we investigate mul-
tilingual text encoders including mPLMs and encoders specialized for sentence-
similarity (sentence encoders). Here, we focus on the importance of context for
unsupervised document-level CLIR. Due to their maximum sequence length con-
straint multilingual encoders can only process a limited number of tokens. When
relevant information appears outside this context window it cannot be encoded,
which, consequently, degrades performance in unsupervised CLIR (insufficient
context). In our experiments we also observe the opposite effect, where increasing



10.1. Summary of Findings 165

the input sequence length can harm the retrieval effectiveness due to “too much”
context (excessive context). This is expected for unsupervised CLIR where super-
fluous information may obfuscate relevance signals contained in documents. We
show that representing documents by multiple embeddings corresponding to dif-
ferent text segments (localized relevance matching) is an effective approach for
unsupervised CLIR with long documents. Lastly, we find that filtering stopwords
deprives sentence encoders of important syntactic context and causes their CLIR
performance to decrease (cf. DISTILFILTER in Section 5.5.1).

D. Monolingual overfitting negatively impacts zero-shot transfer for CLIR
and can be regularized with code switching. While there exist large-scale train-
ing data for English-to-English retrieval (EN–EN) we often lack equivalent training
resources for cross-lingual retrieval settings (X–Y). Throughout most part of this
thesis we used with the CLEF 2003 dataset a CLIR test collection, which does
not have sufficient data to train neural retrieval models from scratch (Section 3.3).
We investigated to what extent monolingual information retrieval (MoIR) train-
ing data can be used to obtain effective CLIR models. We specifically evaluated
the zero-shot transfer performance of two cross-encoder models trained on differ-
ent EN–EN retrieval datasets. Our results show larger gains when these models
are transferred into a monolingual setting (X–X) and smaller gains when they are
transferred into a cross-lingual setting (X–Y). This gap can largely be attributed
to what refer to as “monolingual overfitting” (Section 6.4.2). That is, supervised
reranking models trained on MoIR data are biased towards exact token matches,
which cannot be exploited at test time when the query and document language
are different from another, as it is the case in CLIR. We show that monolingual
overfitting can be regularized by code-switching query and document tokens into
different languages (Chapter 7). This approach reduces the importance of lexical
matches during training and requires minimal bilingual supervision. We find that
it consistently improves results in CLIR and maintains stable results in MoIR.

E. Decomposing CLIR into language acquisition and learning-to-rank is a re-
source-lean and effective way to improve zero-shot rerankers. Modular deep
learning (Pfeiffer et al., 2023) allows us to independently specialize models to-
wards different tasks (“skills”) while also mitigating task interference. We show
that training CLIR models can be decomposed into learning the retrieval task (rel-
evance matching) and learning the semantics of the query and document language
(language acquisition). Relevance matching is similar to semantic matching and
is characterized by the importance of exact matching signals, the importance of
query keywords, and diverse matching requirements1 (Guo et al., 2016; Rao et al.,
2019b). The task of specializing rankers towards semantics of the target language
pair is necessary to perform relevance matching across language boundaries. In

1Long documents covering a single topic can be matched globally against the query, and long
documents covering multiple topics should be matched locally (Guo et al., 2016, Section 5.5.3).
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Chapter 8, we study two parameter-efficient transfer methods to modularize CLIR
for zero-shot reranking: Adapters (Pfeiffer et al., 2020) and Sparse Fine-tuning
Masks (SFTMs) (Ansell et al., 2022). Specifically, we compose rerankers by com-
bining independently trained language adapters (SFTMs) with ranking adapters
(SFTMs). Our results on CLIR show consistent gains compared to the standard
zero-shot cross-lingual transfer approach, in which we train rerankers only on EN–
EN data.2 This shows that modularizing CLIR into its constituent tasks is an ef-
fective and resource-lean way to mitigate the requirement for direct CLIR supervi-
sion in cross-lingual reranking. However, it is important to note that a later study
by Yang et al. (2022b) found that adapters perform less well in CLIR with DPR
(Karpukhin et al., 2020) and ColBERT (Khattab and Zaharia, 2020).

F. The effectiveness of CLIR varies with language proximity. A common way
to measure linguistic similarity between languages is to compare their language
family (see Table 3.1 in Section 3.3). On unsupervised document-level CLIR with
CLWEs (Chapter 4) and multilingual text encoders (Chapter 5), we generally ob-
tain the best retrieval performance for the language pairs EN–{IT, DE} and DE–IT,
i.e. when both the query and document language are from the same family (Indo-
European). Exceptions to this are language pairs involving Finnish (Uralic), for
which most models yield better results than for language pairs involving Russian
(Indo-European). However, like most European languages, Finnish uses the Latin
script whereas Russian uses the Cyrillic script.3 A likely explanation is that lan-
guage pairs in different scripts have substantially fewer vocabulary tokens in com-
mon, if any. For example, named entities are oftentimes not translated between
languages that use the same script, but transliterated between different alphabets.
These findings suggest that script differences also play a crucial role in CLIR.

In our zero-shot cross-lingual transfer experiments (Chapters 6 to 8) we find
that the transfer performance is also impacted by the language proximity between
the training and test languages. In line with prior work by Lauscher et al. (2020),
we find for both CLIR and MoIR that the zero-shot transfer of rerankers (trained on
EN–EN retrieval data) is more effective when the query and document languages
are (i) well represented in the pre-training corpus of the underlying pre-trained
language model and (ii) typologically close to English. Our results show that zero-
shot cross-lingual transfer of rerankers performs worst on low-resource languages,
which do not meet those requirements (see Table 8.3 in Section 8.4.1).

2Note that we train models on MS MARCO (Nguyen et al., 2016) and evaluate them on the CLEF
2003 dataset (Braschler, 2004), i.e. we evaluate zero-shot cross-lingual and cross-domain transfer.
Also, the effectiveness of modular rerankers depends on the right level of sparsity.

3We observe similar performance drops with other language pairs written in different alphabets.
For example, our results on cross-lingual passage re-ranking reveal that EN–{AR, RU} performs
substantially worse than EN–{DE, IT}, DE–RU performs worse than DE–{IT, NL}, and AR–X
exhibits the worst performance overall (see Section 7.4).
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10.2 Future work

Machine translation is not all you need. As discussed in Section 3.2, there are
two widely used approaches of using machine translation (MT) in cross-lingual
retrieval: one can either use MT to translate queries at retrieval time (translate
test) or to translate training data typically from English into the query and docu-
ment language (translate train). In Chapters 4 to 5, we followed the translate test
approach and show that, when combined with lexical retrieval models, MT outper-
forms cross-lingual word embeddings, multilingual pre-trained language models,
and multilingual sentence encoders. In Chapters 7 and 8, we show for zero-shot
cross-lingual transfer of rerankers that also the translate-train approach outper-
forms CLIR models that do not rely on MT.4 At the same time, results on the
recent CLIR benchmarks XOR-QA (Asai et al., 2021b) and HC4 (Lawrie et al.,
2022) reveal that current state-of-the-art MT systems still underperform in com-
parison to human translation, highlighting further room for improvement. These
findings might suggest that MT is all you need, and that future work should focus
on improving translation systems as means to bridge the language gap (Artetxe
et al., 2023; Ebing and Glavaš, 2023). This raises the question, does MT replace
the need for cross-lingual transfer by means of multilingual representations?

Despite strong empirical results, MT-based CLIR has its limitations. First and
foremost, training MT models is a resource-intensive task requiring access to large-
scale parallel data. Our analysis on low-resource languages (Section 7) reveal that
recent MT models fail when this requirement is not met. We specifically find that
translation errors such as hallucinations, repetitions and topic shifts can propagate
to CLIR and cause a dramatic decrease in performance (see Table 8.1 in Chap-
ter 8). For these languages, obtaining bilingual lexicons is arguably a more cost-
effective alternative. In future work, we aim to compare CLWE-based methods
against MT-based methods in truly low-resource settings. Another limitation of
MT-based CLIR systems, as discussed in Section 3.2, is the cultural gap between
training and test data. Consequently, following the translate-train approach biases
ranking models towards domains and topics found in the source language but not
in the target languages. It is therefore crucial to involve native speakers in the de-
velopment of CLIR benchmarks (Zhang et al., 2023c) such that the data reflects
cultural diversity and local interests. Lastly, translating queries to different docu-
ment languages at test time is costly and increases the query latency (Moraes et al.,
2021), especially in multilingual retrieval with translations into multiple languages.

Query-level (re)ranker selection for cross-lingual and multilingual informa-
tion retrieval. In Chapter 9, we introduce a framework for (delexicalized) cross-
lingual transfer of dependency parsers. Our proof-of-concept work demonstrates
that our supervised routing model can outperform global model selection approaches

4In Chapter 7 we call this approach Fine-tuning due to the fact that the mMARCO dataset
(Bonifacio et al., 2021) is a machine translated dataset.
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based on typological language similarity (Littell et al., 2017; Lin et al., 2019). This
raises the research question of whether one can train a routing model (i.e. query
performance prediction model, QPP) to select for each query the best (re)ranking
model from a large pool of models specialized for different languages and language
families? And how does this compare to (i) training one multilingual (i.e., multi-
source) ranking model on the concatenation of each expert model’s training data
and (ii) selecting rankers based on language similarity?

In future work, we plan to apply our instance-level expert model selection
framework for CLIR, where instances are queries written in seen and unseen lan-
guages and expert models are retrieval systems specialized for different languages.
As a first step, we plan to adopt this framework for the multi-stage retrieval paradigm
(Nogueira et al., 2019b) and investigate to what extent a multilingual QPP model
can identify the best reranker on a query-level.5 In multi-stage retrieval, for some
queries, it might be preferable to route queries to multiple rankers (ensemble) or to
not rerank a first-stage result at all (Gao et al., 2021b). Query-level reranker selec-
tion is similar to cross-lingual query performance prediction (Kishida, 2008) and
extends it to multiple retrieval models specialized for a single language or a few re-
lated languages. Motivated by mitigating the “curse of multilinguality” (Conneau
et al., 2020) in multilingual models, we plan to compare our approach against a
single multilingual model, using the MIRACL dataset (Zhang et al., 2023c).

Parametric Information Asymmetry. Information asymmetry, as discussed in
Section 1.1.1, can be inspected in a transparent way by comparing the amount and
nature of information available in different languages. This is not possible with
large language models (LLM) such as GPT-4 (OpenAI, 2023) and Llama-3 (Meta,
2024), because their black-box nature obfuscates their internal knowledge (Mallen
et al., 2023). For example, Zhang et al. (2023b) show that LLMs exhibit varying
degrees of multilingual language understanding capabilities. However, it is unclear
how well LLMs can (1) cross-lingually retrieve internal knowledge when the orig-
inal data or the question is written in a low-resource language, and (2) how this
knowledge interacts with externally retrieved information (Lewis et al., 2020b).
That is, do LLMs, similar to weakly aligned bi-encoders (Roy et al., 2020), favor
information sources written in the same language as the prompt? Also, how do
LLMs respond to prompts when “multilingual parametric knowledge” stores con-
flicting information (Xu et al., 2024; Xie et al., 2024)? Shedding light on these
questions improves the interpretability of LLMs and our understanding how LLMs
“reason” under parametric information asymmetry, especially when this informa-
tion is originally written in low-resource languages.

5In single-stage retrieval, one could adopt the method proposed in (Cai et al., 2023) for CLIR by
incorporating multilingual dense retrievers (Izacard et al., 2021; Zhang et al., 2021) and MT-based
lexical retrievers.
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of syntactic structures in cross-lingual NLP. In Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1531–1542, Melbourne, Australia.



200 Bibliography

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

Potthast, M., Barrón-Cedeno, A., Stein, B., and Rosso, P. (2011). Cross-language
plagiarism detection. Language Resources and Evaluation, 45:45–62.

Qian, Y., Lee, J., Duddu, S. M. K., Dai, Z., Brahma, S., Naim, I., Lei, T., and
Zhao, V. Y. (2022). Multi-vector retrieval as sparse alignment. arXiv preprint
arXiv:2211.01267.

Qu, Y., Ding, Y., Liu, J., Liu, K., Ren, R., Zhao, W. X., Dong, D., Wu, H., and
Wang, H. (2021). RocketQA: An optimized training approach to dense passage
retrieval for open-domain question answering. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 5835–5847, Online.

Radlinski, F. and Craswell, N. (2013). Optimized interleaving for online retrieval
evaluation. In Proceedings of the sixth ACM international conference on Web
search and data mining, pages 245–254.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21(1).

Ram, O., Levine, Y., Dalmedigos, I., Muhlgay, D., Shashua, A., Leyton-Brown,
K., and Shoham, Y. (2023). In-Context Retrieval-Augmented Language Models.
Transactions of the Association for Computational Linguistics, 11:1316–1331.

Rao, J., Liu, L., Tay, Y., Yang, W., Shi, P., and Lin, J. (2019a). Bridging the
gap between relevance matching and semantic matching for short text similarity
modeling. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 5370–5381.

Rao, J., Liu, L., Tay, Y., Yang, W., Shi, P., and Lin, J. (2019b). Bridging the
gap between relevance matching and semantic matching for short text similarity
modeling. In Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), pages 5370–5381, Hong Kong,
China.

Rasooli, M. S. and Collins, M. (2017). Cross-lingual syntactic transfer with limited
resources. Transactions of the Association for Computational Linguistics, pages
279–293.

Raunak, V., Menezes, A., and Junczys-Dowmunt, M. (2021). The curious case of
hallucinations in neural machine translation. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1172–1183, Online.



Bibliography 201

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2017). Learning multiple visual domains
with residual adapters. In Advances in Neural Information Processing Systems,
volume 30.

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using
Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992,
Hong Kong, China.

Reimers, N. and Gurevych, I. (2020). Making monolingual sentence embeddings
multilingual using knowledge distillation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages
4512–4525, Online.

Reisinger, J. and Mooney, R. J. (2010). Multi-prototype vector-space models of
word meaning. In Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pages 109–117, Los Angeles, California.

Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M. M., and Gatford, M.
(1995). Okapi at trec-3. In Overview of the Third Text REtrieval Conference
(TREC-3), pages 109–126.

Robertson, S. E. and Walker, S. (1994). Some simple effective approximations
to the 2-poisson model for probabilistic weighted retrieval. In Proceeding of
SIGIR, pages 232–241.

Rocchio Jr, J. J. (1971). Relevance feedback in information retrieval. The SMART
retrieval system: experiments in automatic document processing.

Rogers, A., Kovaleva, O., and Rumshisky, A. (2020a). A primer in BERTology:
What we know about how BERT works. Transactions of the Association for
Computational Linguistics, 8:842–866.

Rogers, A., Kovaleva, O., and Rumshisky, A. (2020b). A primer in BERTology:
What we know about how BERT works. Transactions of the ACL.

Roitman, H. (2018). Enhanced performance prediction of fusion-based retrieval.
In Proceedings of the 2018 ACM SIGIR International Conference on Theory of
Information Retrieval, ICTIR ’18, page 195–198, New York, NY, USA.

Rosa, R. and Žabokrtský, Z. (2015). KLcpos3 - a language similarity measure
for delexicalized parser transfer. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), pages
243–249, Beijing, China.



202 Bibliography

Roy, D., Bhatia, S., and Jain, P. (2022). Information asymmetry in wikipedia across
different languages: A statistical analysis. Journal of the Association for Infor-
mation Science and Technology, 73(3):347–361.

Roy, D., Ganguly, D., Bhatia, S., Bedathur, S., and Mitra, M. (2018). Using word
embeddings for information retrieval: How collection and term normalization
choices affect performance. In Proceedings of the 27th ACM international con-
ference on information and knowledge management, pages 1835–1838.

Roy, D., Paul, D., Mitra, M., and Garain, U. (2016). Using word embeddings for
automatic query expansion. arXiv preprint arXiv:1606.07608.

Roy, U., Constant, N., Al-Rfou, R., Barua, A., Phillips, A., and Yang, Y. (2020).
LAReQA: Language-agnostic answer retrieval from a multilingual pool. In Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5919–5930, Online.

Rücklé, A., Geigle, G., Glockner, M., Beck, T., Pfeiffer, J., Reimers, N., and
Gurevych, I. (2021). AdapterDrop: On the efficiency of adapters in transform-
ers. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 7930–7946, Online and Punta Cana, Dominican
Republic.

Ruder, S. (2020). Why You Should Do NLP Beyond English. http://ruder.io/nlp-b
eyond-english. [Online; accessed 4-May-2024].

Ruder, S., Constant, N., Botha, J., Siddhant, A., Firat, O., Fu, J., Liu, P., Hu,
J., Garrette, D., Neubig, G., and Johnson, M. (2021). XTREME-R: Towards
more challenging and nuanced multilingual evaluation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pages
10215–10245, Online and Punta Cana, Dominican Republic.
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Vulić, I. and Moens, M.-F. (2016). Bilingual distributed word representations from
document-aligned comparable data. Journal of Artificial Intelligence Research,
55:953–994.
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Appendix A

Wikipedia over Time

Year EN EN % Top-10 Top-10 % Total

2023 6.8M 10.9% 30.4M 48.8% 62.3M
2022 6.6M 10.9% 29.7M 49.4% 60.2M
2021 6.4M 11.1% 29.2M 50.3% 58.0M
2020 6.2M 11.2% 28.4M 51.2% 55.5M
2019 6.0M 11.6% 27.8M 53.6% 51.7M
2018 5.8M 11.8% 27.2M 55.2% 49.3M
2017 5.5M 11.8% 26.0M 55.6% 46.8M
2016 5.3M 12.4% 23.6M 55.0% 42.9M
2015 5.0M 13.4% 19.5M 52.1% 37.4M
2014 4.7M 13.9% 17.9M 52.8% 33.9M
2013 4.4M 14.6% 16.2M 53.5% 30.2M
2012 4.1M 17.2% 13.5M 56.6% 23.8M
2011 3.7M 18.0% 12.1M 59.0% 20.6M
2010 3.4M 19.7% 10.5M 60.4% 17.3M
2009 3.0M 20.8% 9.0M 62.5% 14.4M
2008 2.5M 21.2% 7.5M 63.3% 11.8M
2007 2.0M 22.2% 5.9M 65.4% 9.0M
2006 1.4M 24.1% 4.1M 69.9% 5.8M
2005 827K 27.6% 2.3M 74.9% 3.0M
2004 419K 32.2% 1.0M 77.5% 1.3M
2003 184K 46.5% 359K 90.7% 396K
2002 98K 72.1% 135K 99.3% 136K
2001 17K 89.5% 19K 100% 19K

Table A.1: Distribution of number of Wikipedia articles over time. For each year,
we show the number of English Wikipedia articles (EN), the number of articles
belonging to the ten largest languages (Top-10) and the total number of articles.
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218 A. Wikipedia over Time

2023 2022 2021 2020 2019 2018 2017 2016
en 6.76M en 6.6M en 6.43M en 6.22M en 5.99M en 5.8M en 5.5M en 5.3M
ceb 6.12M ceb 6.13M ceb 6.09M ceb 5.46M ceb 5.38M ceb 5.4M ceb 5.4M sv 3.7M
de 2.87M de 2.76M sv 2.77M sv 3.46M sv 3.75M sv 3.8M sv 3.7M ceb 3.6M
fr 2.58M sv 2.56M de 2.65M de 2.52M de 2.38M de 2.3M de 2.1M de 2.0M
sv 2.57M fr 2.48M fr 2.39M fr 2.28M fr 2.17M fr 2.1M fr 1.9M nl 1.9M
nl 2.15M nl 2.11M nl 2.08M nl 2.04M nl 1.99M nl 2M nl 1.9M fr 1.8M
ru 1.96M ru 1.88M ru 1.78M ru 1.69M ru 1.59M ru 1.5M ru 1.4M ru 1.4M
es 1.92M es 1.83M es 1.74M it 1.66M it 1.57M es 1.5M es 1.4M es 1.3M
it 1.84M it 1.79M it 1.73M es 1.65M es 1.57M it 1.5M it 1.4M it 1.3M
arz 1.62M arz 1.62M arz 1.51M pl 1.45M pl 1.38M pl 1.3M pl 1.3M war 1.3M

2015 2014 2013 2012 2011 2010 2009 2008
en 5.0M en 4.7M en 4.4M en 4.1M en 3.7M en 3.4M en 3.0M en 2.5M
sv 2.4M sv 2.0M de 1.7M de 1.6M de 1.4M de 1.2M de 1.1M de 915K
de 1.9M de 1.8M nl 1.7M fr 1.3M fr 1.2M fr 1.0M fr 880K fr 733K
nl 1.8M nl 1.8M sv 1.6M nl 1.1M nl 997K it 756K pl 651K ja 551K
fr 1.7M fr 1.6M fr 1.5M it 981K it 869K pl 752K ja 643K pl 551K
ceb 1.7M war 1.3M ru 1.1M es 949K es 858K ja 725K it 640K it 520K
ru 1.3M ru 1.2M es 1.1M ru 937K pl 853K es 691K nl 569K nl 501K
war 1.3M it 1.2M it 1.1M pl 931K ru 795K nl 653K es 543K pt 428K
es 1.2M ceb 1.2M pl 1M ja 842K ja 787K pt 636K pt 509K es 425K
it 1.2M es 1.1M war 959K pt 733K pt 685K ru 633K ru 471K ru 342K

2007 2006 2005 2004 2003 2002
en 2.0M en 1.4M en 827K en 419K en 184K en 98K
de 747K de 568K de 354K de 189K de 45K de 11K
fr 588K fr 407K fr 211K ja 95K ja 25K pl 6.6K
ja 452K pl 323K ja 175K fr 70K fr 22K eo 4.3K
pl 443K ja 310K pl 153K sv 52K nl 18K nl 4.1K
nl 387K nl 256K it 123K pl 47K pl 17K fr 3.9K
it 381K it 223K nl 117K nl 46K sv 17K sv 3.9K
pt 329K pt 202K sv 117K es 35K es 13K es 2.4K
es 306K sv 188K pt 90K pt 28K eo 9.5K da 0.54K
sv 251K es 176K es 80K it 27K da 8.8K it 0.51K

Table A.2: For each year, we list the ten largest Wikipedia language editions (Top-
10) and their total number of articles.

For Figure 1.1 (Chapter 1), Table A.1 and Table A.2 we use data provided by dif-
ferent Wikimedia projects. We specifically use article counts from Dec 2002 until
Dec 2018 provided by Wikistats 1 (Zachte, 2019).1 Article counts from 2019 until
2023 are provided by (Wikimedia Meta-Wiki, 2019, 2020, 2021) and (Wikimedia
Commons, 2022, 2023). For those, we use article counts from Dec 31 of each year.

1https://stats.wikimedia.org/EN/TablesArticlesTotal.htm

https://stats.wikimedia.org/EN/TablesArticlesTotal.htm


Appendix B

Further Analysis of CLEF 2003

B.1 Information Asymmetry in CLEF

RU FR IT FI EN DE ES NL SV
Document Language

141

142

143

144

145

146

147

148

149

150

Qu
er

y 
ID

0 1 7 0 1 8 13 4 1

0 13 14 8 8 65 28 44 13

8 28 26 36 39 63 144 58 46

0 3 0 0 3 0 22 2 2

0 14 1 0 38 10 47 14 6

0 0 0 0 2 0 2 2 0

1 8 5 6 51 29 9 6 12

6 2 2 6 6 12 11 42 4

3 5 3 1 0 12 13 6 1

0 19 14 4 10 45 55 21 23
0

10

20

30

40

50

60

Figure B.1: Distribution of relevant documents across all nine CLEF document
languages on a sample of ten CLEF 2003 queries (Braschler, 2004). The high-
lighted query (QID: 141) and two of its relevant documents are shown in Sec-
tion 3.1.
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B.2 Query and Document Token Distribution
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Figure B.2: CLEF 2003 relative query length distribution based on whitespace to-
kenization and WordPiece tokenization (Wu et al., 2016) used by mBERT (Devlin
et al., 2019). The bottom five languages are not part of the original CLEF dataset
and have been contributed by us in Chapter 8 (Turkish, Kyrgyz, Uyghur) and by
Bonab et al. (2019) (Swahili, Somali).
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Figure B.3: CLEF 2003 relative document length distribution based on whitespace
tokenization and WordPiece tokenization (Wu et al., 2016) used by mBERT (De-
vlin et al., 2019). Documents are formed by concatenating title and body text. The
distribution for the BPE tokenizer is similar to WordPiece (Sennrich et al., 2016)
(used by XLM (Conneau and Lample, 2019)) and has been left out for brevity.



222 B. Further Analysis of CLEF 2003



Appendix C

Experimental Details for
Chapter 7

EN DE RU AR NL IT AVG

Zero-shot 35.4 25.5 25.5 22.6 28.1 27.3 25.8
Fine-tuning 35.4 30.8 29.6 27.8 31.5 31.5 30.2

Bilingual Code Switching

p “ 0.25 – 26.7 26.3 23.9 27.9 27.7 26.5
p “ 0.50 – 27.1 26.1 23.8 28.5 27.6 26.6
p “ 0.75 – 26.6 25.9 23.8 27.9 28.1 26.5
p “ 1.00 – 25.4 24.6 22.4 27.3 26.8 25.3

Multilingual Code Switching

p “ 0.25 35.1 27.1 25.1 21.8 28.2 27.7 26.0
p “ 0.50 34.6 26.7 25.4 22.0 27.8 27.4 25.8
p “ 0.75 33.9 26.1 25.4 22.2 27.7 27.2 25.7
p “ 1.00 31.7 25.8 25.3 21.8 26.9 26.5 25.3

Table C.1: Code Switching ablation results for different translation probabilities
p. We present the results on seen languages in terms of mean average precision.
The average is computed over all languages, excluding English.
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ENÑX DEÑX ARÑX

DE IT AR RU IT NL RU IT RU AVG

Zero-Shot 28.7 24.0 15.0 19.1 20.5 20.5 13.5 8.3 7.5 17.5
Fine-tuning 30.2 31.0 26.9 28.8 27.7 28.5 26.5 24.5 23.5 27.5

Bilingual Code Switching

p “ 0.25 26.9 26.9 19.0 22.7 21.5 23.6 18.6 16.2 14.9 21.1
p “ 0.50 27.4 27.9 23.5 23.5 21.1 23.6 18.7 16.5 15.1 21.9
p “ 0.75 27.4 28.6 20.7 23.5 21.4 23.3 18.5 16.7 15.3 21.7
p “ 1.00 26.3 27.8 20.1 23.1 20.1 22.4 17.9 14.5 13.8 20.7

Multilingual Code Switching

p “ 0.25 26.9 26.4 18.1 22.1 20.3 23.6 18.2 15.2 14.4 20.6
p “ 0.50 27.3 27.0 19.2 23.0 20.7 23.6 18.9 16.5 15.5 21.3
p “ 0.75 26.9 26.8 22.9 22.9 20.3 23.2 18.4 16.1 15.0 21.4
p “ 1.00 25.4 24.9 18.0 21.8 19.8 22.6 18.3 15.2 14.6 20.1

Table C.2: Code Switching ablation results for different translation probabilities
p. We present the results on seen cross-lingual language pairs in terms of mean
average precision (MAP).



Appendix D

Experimental Details for
Chapter 8

Reduction
factor

Bottleneck
dimension

Number of mPLM
Parameters

Equivalent Reduction
Factor (Sparsity)

1 768 14,174,208 8.47%
2 384 7,091,712 4.24%
4 192 3,550,464 2.12%
8 96 1,779,840 1.06%

16 48 894,528 0.53%
32 24 451,872 0.27%

Table D.1: Overview of (equivalent) reduction factors. The bottleneck dimension
is to the hidden size after down-projection.

D.1 Ablation study: Reduction factors

Complementary to our analysis in Section 8.4.2 (Figure 8.3), we now explain how
to calculate for a given adapter reduction factor the equivalent reduction factor
for Sparse Fine-Tuning Masks (SFTM). The equivalent reduction factor is based
on the size of the underlying pre-trained language model, mBERT1, which has
167,357,185 parameters, 12 layers and a hidden size of h “ 768. For example,
suppose an adapter uses a reduction factor of 16, resulting into a bottleneck di-
mension of d “ 768{16 “ 48. Consequently, each layer i is augmented by a
down-projection matrix Di P R768ˆ48, an up-projection matrix Ui P R48ˆ768 and
their respective bias vectors bd

i P R48 and bu
i P R768. The total number of train-

able adapter parameters is 12 ¨ p768 ¨ 48 ¨ 2q ` 12 ¨ p48 ` 768q “ 894, 528. The

1bert-base-uncased-multilingual
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226 D. Experimental Details for Chapter 8

TRÑX ENÑX DEÑX FIÑX

RF EN IT DE FI RU FI IT RU DE FI IT RU IT RU AVG

1 .210 .213 .203 .248 .160 .342 .334 .190 .299 .318 .288 .219 .186 .144 .240
2 .222 .200 .208 .271 .248 .346 .341 .209 .308 .317 .277 .252 .192 .167 .254
4 .241 .214 .220 .285 .231 .354 .351 .208 .316 .329 .276 .265 .220 .203 .265
8 .246 .245 .226 .283 .261 .362 .350 .236 .314 .366 .288 .300 .215 .222 .280

16 .252 .234 .222 .267 .267 .366 .366 .248 .314 .350 .302 .315 .220 .234 .283
32 .252 .236 .228 .278 .252 .362 .374 .222 .316 .347 .298 .275 .213 .215 .276
1 .213 .212 .217 .280 .153 .349 .327 .188 .299 .345 .291 .188 .230 .165 .247
2 .239 .252 .232 .316 .162 .359 .348 .191 .310 .391 .323 .195 .255 .160 .267
4 .228 .240 .208 .235 .131 .391 .356 .210 .314 .350 .295 .181 .233 .126 .250
8 .051 .098 .074 .063 .023 .399 .361 .235 .318 .107 .155 .043 .119 .036 .149

16 .048 .075 .070 .052 .023 .404 .353 .219 .317 .097 .144 .042 .093 .034 .141
32 .049 .061 .065 .051 .026 .382 .345 .194 .313 .095 .134 .042 .080 .034 .134

Table D.2: CLIR results w.r.t. different (equivalent) reduction factors (RF). The
top half shows results obtained with document language adapters (`RA ` LADoc),
the bottom half shows results obtained with query language masks (`RM `

LMQuery). For our cross-lingual retrieval experiments we use DISTDmBERT as a
first-stage retriever (cf. Section 5.3.1). We highlight the best performance in bold.

RF FA ZH RU EN FI DE IT RU AVG

1 .351 .291 .241 .506 .543 .462 .485 .356 .404
2 .350 .290 .250 .519 .544 .456 .482 .370 .408
4 .372 .284 .261 .521 .531 .465 .499 .402 .417
8 .365 .296 .260 .501 .548 .460 .502 .388 .415

16 .372 .290 .262 .519 .537 .457 .495 .389 .415
32 .361 .292 .265 .515 .540 .463 .500 .418 .419
1 .386 .295 .264 .512 .555 .464 .496 .381 .419
2 .398 .307 .264 .515 .564 .459 .502 .379 .424
4 .247 .235 .264 .509 .547 .457 .490 .337 .386
8 .058 .043 .212 .518 .320 .338 .416 .120 .253

16 .046 .035 .208 .513 .272 .319 .374 .107 .234
32 .043 .033 .200 .507 .236 .296 .344 .119 .222

Table D.3: Ablation results of zero-shot cross-lingual transfer for monolingual re-
trieval (MoIR) with respect to different (equivalent) reduction factors (RF). For our
monolingual experiments we use BM25 as a first-stage retriever (cf. Section 3.3).
We highlight the best performance in bold.

equivalent reduction factor for SFTMs, i.e. the mask size corresponds to 894K and
has a sparsity of 0.53% (894K{167M ).

In Table D.2 and Table D.3 we highlight the detailed results of our ablation
study presented in Section 8.4.2. We can see that the reduction factor leading
to the best performance (highlighted in bold) is highly dependent on the target
language(s). On both tasks, CLIR and MoIR, adapters are generally more robust
towards different reduction factors than SFTMs.



Appendix E

Train and Test Token Distribution

Test Language #sentences #tokens
Erzya (myv) 1550 15790
Faroese (fo) 1208 10002
Amharic (am) 1074 10010
Kazakh (kk) 1047 10007
Bambara (bm) 1026 13823
Thai (th) 1000 22322
Buryat (bxr) 908 10032
Breton (br) 888 10054
North Sami (sme) 865 10010
Cantonese (yue) 650 6264
Upper Sorbian (hsb) 623 10736
Maltese (mt) 518 11073
Armenian (hy) 470 11438
Irish (ga) 454 10138
Coptic (cop) 267 6541
Telugu (te) 146 721
Tamil (ta) 120 1989
Yoruba (yo) 100 2666
Belarusian (be) 68 1382
Lithuanian (lt) 55 1060
Average 1094 8802

Table E.1: List of 20 unseen test languages in the Universal Dependencies dataset
(v2.3 collection). Number of sentences (#sentences) and total token count (#to-
kens).
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Train Language #sentences #tokens
Estonian (et) 24384 341122
Korean (ko) 23010 296446
Latin (la) 16809 293306
Norwegian (no) 15696 243887
Finnish (fi) 14981 127602
French (fr) 14450 354699
Spanish (es) 14305 444617
German (de) 13814 263804
Polish (pl) 13774 104750
Hindi (hi) 13304 281057
Catalan (ca) 13123 417587
Italian (it) 13121 276019
English (en) 12543 204585
Dutch (nl) 12269 186046
Czech (cs) 10160 133637
Portuguese (pt) 9664 255755
Bulgarian (bg) 8907 124336
Slovak (sk) 8483 80575
Romanian (ro) 8043 185113
Latvian (lv) 7163 113405
Japanese (ja) 7133 160419
Croatian (hr) 6983 154055
Slovenian (sl) 6478 112530
Arabic (ar) 6075 223881
Basque (eu) 5396 72974
Ukrainian (uk) 5290 88043
Hebrew (he) 5241 137721
Persian (fa) 4798 121064
Indonesian (id) 4477 97531
Danish (da) 4383 80378
Swedish (sv) 4303 66645
Urdu (ur) 4043 108690
Chinese (zh) 3997 98608
Russian (ru) 3850 75964
Turkish (tr) 3685 37918
Serbian (sr) 2935 65764
Galician (gl) 2272 79327
Greek (el) 1662 42326
Uyghur (ug) 1656 19262
Vietnamese (vi) 1400 20285
Afrikaans (af) 1315 33894
Hungarian (hu) 910 20166
Average (avg) 8483 158233

Table E.2: List of 42 source languages on which we trained monolingual parsers.
Number of sentences (#sentences) and total token count (#tokens).
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