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1 Introduction

Process mining is a family of techniques that aims to extract knowledge on business processes
from event logs, which contain records of executions of process instances [72]. One sub-field in
process mining is process discovery, which analyzes an event log to construct a process model
that accurately describes the executed process [75]. Since its inception more than two decades
ago [16, 17], process discovery has gained widespread practical adoption, partially because tools
and techniques are able to handle the complexity of real-life process data [23]. Process discovery
has its roots in theoretical computer science and automata theory [75], where the main objective
is to design algorithms that exhibit certain formal properties, such as producing deadlock-free
models [71]. With the increasing availability of large-scale real-life event logs, process discovery
has shifted towards a data-oriented research discipline, where the main goal is to design algorithms
that are applicable and useful in practice [72].

Showing the applicability and usefulness of an algorithm in new settings requires a different
approach. For such empirical properties, methods stemming from theoretical computing sciences
are no longer sufficient. Instead researchers turn to empirical research methods to provide the
necessary evidence for their respective claims. The advantage of formal properties is their “universal
truth”: a property is proven to always hold if its premises are fulfilled. For empirical properties,
this is more complicated: it is very hard to formulate empirical properties that can be generalized
to a different context. For example, the required premises for such properties are implicit or even
unknown.

As an example, consider an analyst or researcher who wants to learn about the state-of-the-art
on process discovery on infrequent behavior. They look into the process discovery literature to
find out which algorithm is the most suitable for their discovery task. Table 1 shows four papers
that provide potential solutions. Based on [7], they may infer that split miner (SM) “outperforms”
Fodina [82]. Comparing the conclusions of HybridILPMiner [81] and SM [7], both compare to
Inductive Miner Infrequent [45]. As HybridILPMiner performs comparably, and SM outperforms
the Inductive Miner Infrequent in terms of F-score, they may infer that SM is the most suitable
algorithm for their situation. However, there are two problems with this inference. First, research
has shown that the measures on which the conclusions of these papers are based have a problem
with validity [35, 36, 70]. As the premises used in the papers are violated, it is unclear how to
interpret the original results of the four papers. Second, even if the results of the individual papers
hold, it is questionable whether they can be compared, as a recent study showed that the results of
process discovery algorithms have a problem with reliability: small variations in the event log can
give totally different results [76].

This example illustrates a current problem of process discovery research. Currently, research
contributions are made in isolation, as shown in Figure 1(a). In each paper, researchers conduct
an experiment to show that they have moved the field forward, e.g., by showing that their newly
designed algorithm outperforms the current state-of-the-art in a specific aspect. Although each
experimental setup makes sense in the context of the respective paper, the above example shows
that there are problems in interpreting their results because of a lack of reliability and validity in
the field. As a consequence, new situations require a new experiment, as it is not possible to infer
any general statements about the state of the art of the process discovery field as a whole. This
generalization, or causal inference, of experimental results is a collective necessity of any research
discipline: being able to infer results from different studies to draw conclusions for the field as a
whole [67]. This idea is shown in Figure 1(b): experiments in individual papers provide general
insights that allow for inferences to new settings. The above problems illustrate that currently
causal inference in process discovery is challenging, at the least.
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Fig. 1. Current research leads to individual insights, thus requiring to conduct new experiments in new
contexts (a), whereas causal inference would lead to global insights that can be applied in new contexts (b).

We argue that one reason for the identified problems is the lack of conventions or standards for
experimental design in process discovery. As we show in Table 1, researchers develop their own
experimental designs, which involve many specific design decisions. This proliferation of ad-hoc
research methods obfuscates the actual problem of causal inference, as many premises remain
implicit. Instead of considering the reliability and validity of experiments in isolation, conventions
in the form of research methodology help to (1) to design experiments more systematically, thus
reducing the risks of reliability and validity issues, and (2) to explicate premises, so that we know
whether or not causal inferences are possible. The goal of this article is to raise awareness of this
problem in the process discovery discipline and to suggest a first step towards addressing it: “If we
understand better what we’re doing, we might be able to do it better” [24].

In this article, we advocate that a systematic approach for process discovery experiments is an
essential next step towards developing process mining into a “normal science” as defined by Kuhn
[42]. We argue that a commonly accepted research methodology would support researchers in their
scientific inquiry by explicating the design choices and rationale behind designing and executing
their experiments. To this end, we propose “process discovery engineering (PDE)” as a research
methodology for process discovery based on algorithm engineering (AE) [22, 66], with a specific
focus on experimentation. This methodology fulfils two purposes: it guides researchers in their own
experimentation, and it structures the communication of their research results. In particular, we:

—Discuss what problems the field of process discovery has with the principles of scientific
inquiry (Section 2);

—Propose AE as a suitable foundation for developing a research methodology for process
discovery (Section 3);

—Develop a research methodology for process discovery experimentation that consists of a
shared terminology and a checklist for conducting experiments (Section 4);

—Demonstrate the applicability of this research methodology through an example experiment
(Section 5).

Rather than being prescriptive, we aim to initiate a discussion about how to perform experiments
systematically and rigorously, in order to advance the field as a whole.
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Fig. 2. Reliability and validity as basic principles of scientific inquiry.

2 Process Discovery and Scientific Inquiry

The problem of process discovery entails three major entities: process,! log, and model. A (business)
process P refers to “a set of activities that are performed in coordination in an organizational and
technical environment and jointly realize a business goal” [88]. Systems that support a process can
capture and store records of its execution, such that they can be extracted as an (event) log L [13].
The goal of process discovery is to use the information from L to construct a (process) model M to
represent P [76].

Over the last two decades, more than 100 discovery algorithms have been proposed [69, 72]. Initial
algorithms, such as alpha miner [75], ILP miner [77] and Inductive Miner [45] come with formal
guarantees, but without an experimental evaluation. Table 1 shows four exemplary papers that
both introduce and experimentally evaluate discovery algorithms. These algorithms are well-cited,
widely accepted and frequently used in the process discovery community. They cover different
families of discovery algorithms developed by different research groups over the last ten years.

As exemplified in Table 1, most authors follow a similar approach for their evaluation: they
choose one or multiple event logs and apply an implementation of their algorithm to these logs.
Sometimes, other algorithms are also applied to the same logs for comparison. From the obtained
results, propositions are inferred about the algorithms and their quality. Once published, the
community uses these propositions in decision-making: practitioners decide whether the algorithm
is applicable in their context, and scientists decide which problems to address in their own research.
Such decision-making is an example of causal inference, i.e., extending a causal relationship across
or beyond the studied conditions [67]. However, whether and under which circumstances such an
inference of published evaluations is justified remains an open question.

Studying such questions is meta-research [24]: a critical evaluation of how research is conducted
and inferences are made. In essence, most qualities meant to evaluate research can be reduced to
reliability and validity [68]. Reliability relates to the consistency and stability of the results, whereas
validity concerns the integrity of the conclusions and the absence of random and systematic errors
[68]. In the remainder of this section, we apply these principles to the field of process discovery, as
illustrated in Figure 2. We consider experimentation to be the process of conducting experiments.
Results are the outcome of experimentation, i.e., inferences based on experimentation.

2.1 Reliability

The first principle, reliability, is the degree to which a measure of a concept is stable [68]. Reliability
considers both repeatability, i.e., whether the results are stable over time, and internal reliability, i.e.,
whether the measures are consistent and replicable. Repeatability is often referred to as test-retest
reliability or stability and expresses to what degree the same researchers obtain similar results

This entity is sometimes called “system” [13] but we consider in our context the term “process” to be more tangible [36, 76].
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Table 2. Exemplary Analysis of Open and Mitigated Threats to Reliability
Repeatability Direct replicability Conceptual replicability

D' Mitig. Event logs are randomly modified, but ~ Algorithm implementation and event ~ No evidence against it
;‘ only once, i.e., for each alpha, there is  logs are made available
= only one lo;
5 y 8
-§ Open  Algorithm is non-deterministic, which ~ Parameters of contestant algorithms are ~ No evidence for it
= is not accounted for not provided

Mitig. Event logs are constructed in a random-  Algorithm implementation and experi- No evidence against it
) ized way, but the evaluation always re- mental logs are made available
= lies on the same logs
=}
;"g Open HM is not deterministic in nature, so ~ Conversion procedure of HM is not  No evidence for it
= the authors might encounter different  made available

results when repeating the experiment

Mitig. No random elements, so repeatability ~ Algorithm implementation is made No evidence against it
= is given. Execution times are repeated  available, only public logs are used
E five times to counteract random effects
%]

Open None Optimized parameters for contestants ~ No evidence for it

are not provided

Mitig. There does not seem to be any random  Algorithm implementation is made No evidence against it
vy elements to the evaluation, so repeata-  available
= bility is given
& Open None The authors do not specify how the No evidence for it

“80% models” are achieved for the con-
testing miners

when they redo the experiment. Replicability, also called internal reliability [68], is the ultimate
standard by which scientific claims are judged [56]. Following [31], we distinguish two types of
replicability: direct replicability and conceptual replicability. An experiment is directly replicable if
independent researchers can repeat the experiment with the same experiment setup on the same
data and obtain similar results. Conceptual replicability of an experiment refers to whether similar
results are obtained when conducted on other data or with a different setup: “this type of replication
is often linked by commentators to the goal of generalizing a finding or of testing its robustness,
rather than assessing its reliability” [31].

Table 2 illustrates the principles of reliability, with examples of potential threats to reliability for
each of the four discovery papers of Table 1. Some of the potential threats have been mentioned in
the respective papers: they were explicated and the experimental setup was adapted to mitigate
them. Other potential threats were not explicated in the papers and hence remain open: we do
not know whether they were accounted for in the experimental setup, or whether they affect the
results of the experiments.

Repeatability. In process discovery, most experiments are conducted in an automated way,
which ensures repeatability. However, threats to repeatability can occur e.g., when the experiment
includes randomization or when the algorithms contain non-deterministic computations. As shown
in Table 2, some experiments rely on randomly modified event logs but use the same logs for all
experiments, such that the randomization does not interfere with the results. Experiments that rely
on algorithms that are non-deterministic by nature should account for this in their experimental
setup. For example, ILP miner [77] relies on solving a set of ILP problems such that results of one
step influence the ILP problem in the next step. When algorithms are used in an experiment that
relies on such non-deterministic steps, e.g., [81, 82], stability of the results is not ensured, and thus

2 Also referred to as reproducibility; although replicability and reproducibility are closely related, there is no consensus on
their definition [31].
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a threat the experimental setup needs to address is to study whether the reported results are stable
when repeated, and not “just” a single outlier.

Direct Replicability. In process discovery, direct replicability has always been a core value,
witnessed by publicly available implementations of many process discovery algorithms in open
source frameworks (e.g., [10, 79]), as well as publicly available event logs® and evaluation frameworks
[6]. As Table 2 shows, all papers have made their algorithms publicly available. However, it is not
always possible to replicate the experiments from the described experimental setup, as, for example,
most papers do not explicate the exact parameter settings of the algorithms used in the experiment.
As a consequence, it cannot be checked whether obtaining the reported results requires optimizing
parameter settings or whether the default settings suffice.

Conceptual Replicability. In process discovery, conceptual replicability directly addresses real-life
challenges: given a new, non-studied event log, will the application of the algorithm be consistent
with previously obtained results? Achieving conceptual replicability for process discovery is an
inherently difficult problem to address, as any experimentation using a limited set of event logs
typically disallows broader conclusions beyond the boundaries of the used data [59, p49]. Indeed,
current experimentations with process discovery algorithms only assess the applicability, feasibility
and performance of the algorithm (see Table 1). Although necessary, these experimentations do
not achieve conceptual replicability [57, 76].

None of the algorithms presented in Table 1 provides evidence whether and to what extent the
experimental results can be transferred to a new context, i.e., how the algorithm would behave on
other event logs. For example, two papers [81, 82] use event logs generated from known models
but do not compare the outcomes of the experiment with the original models. Similarly, the other
two papers [7, 45] only use real event logs, for which the underlying processes are unknown. This
means that the relation between input and output data is not studied. Thus, it is unclear whether
the results are caused by properties of the original model or by the algorithm. As such, there is
no evidence for conceptual replicability. On the other hand, these papers also do not provide any
evidence against conceptual replicability, i.e., design choices which suggest that the algorithms
cannot be applied in a different setting. For example, all papers use several different logs in their
experiments, for which the results are consistent.

One way to provide evidence for conceptual replicability would be to establish a relation between
the input (e.g., properties of the event log, such as size, variability, etc.) and the output (e.g., the
quality of the discovered model) [76]. For example, a paper could experimentally show that when
we add up to 5% infrequent behavior to the log, the model quality does not change significantly.
This could be achieved in a controlled experiment with synthetically generated models and logs by
adding infrequent behavior in 1% increments and statistically assessing the changes in model quality.
Although this sounds like a simple task, it is far from trivial: A recent study [76] has shown that
small variations in the input event log can significantly impact the quality of the resulting process
model, both positively and negatively, i.e., that such a relation has not yet been established. As a
consequence, the best discovery algorithm for a given event log is typically determined empirically
on a case-by-case basis [62].

2.2 Validity

If results are reliable, they are not necessarily also valid [68]: “validity describes whether our
operationalizations and collected data share the true meaning of the constructs we set out to
measure” [59]. In other words, the research propositions should be free from random and systematic

Shttps://www.tf-pm.org/
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errors [68]. Different types of validity have been identified, of which conclusion validity, construct
validity, internal validity, and external validity are the most frequently used [67].

Conclusion validity refers to the validity of inferences about the correlation between treatment
and outcome [67]. Internal validity means that effects observed in an experiment can be causally
attributed to the applied treatment [67]. Construct validity refers to the validity of inferences
about the constructs that represent an experimental treatment and outcome [67]. Here, construct
denotes a measurable operationalization of a real-world phenomenon [59]. Finally, external validity
concerns the generalizability of the results. It considers to what extent we can assume the results
of an experiment to hold “beyond the sample or domain that the researcher observes” [44].

To explain the types of validity, consider Table 3. It provides examples of potential threats to
validity for the four papers in Table 1. Similar to Table 2, some of the potential threats to validity
have been explicated and mitigated, while others were not explicated and thus remain open.

Conclusion Validity. In process discovery, conclusion validity relates to the claimed properties of
an algorithm. It concerns the extent to which the experimentation results allow for the conclusion of
these properties [51]. One such property, which is frequently claimed by new discovery algorithms
is that they outperform existing contesting algorithms in terms of model quality. This property
is typically assessed by applying the algorithms on the same set of event logs and comparing
their quality measurements. However, such a comparison can be unfair towards the contesting
algorithms if they are not allowed to perform at their best ability, e.g., if their parameters are not
optimized for the given setting. This threat can be mitigated by optimizing the parameters of the
contesting algorithms individually (see Table 3). Other potential threats to conclusion validity are a
mismatch between claim and experiment (i.e., a paper might claim an algorithmic property, which
is not or not completely shown) or a lack of experimental data (i.e., the paper does not report on all
experimental results, meaning that nothing can be concluded from the experiment).

Construct Validity. In process discovery, construct validity determines “whether a measure of a
construct sufficiently measures the intended property” [51]. Because process discovery constructs
typically relate to a system of formal definitions, theorems and algorithms, we argue that soundness
and completeness are necessary prerequisites [28] for construct validity. Shadish et al. [67] list the
inadequate explication of constructs and the incompleteness of construct definitions (referred to as
“construct confoundness”) as two major threats to construct validity. Hence, an important aspect in
addressing construct validity is to ensure the adequate explication of constructs and approximation
of measures [67].

The most obvious constructs that we deal with in process discovery are event logs, process
models and quality measures. However, as the examples in Table 3 show, these constructs are
sometimes neither sufficiently well defined nor operationalized, and thus a potential threat to
validity. Additionally, Table 1 shows no indiviual measure is used in all four papers. In other words, it
is hard to compare the results between the papers. These observations are part of a larger discussion
on the properties of quality measures, like precision, generalization and F-score. Compared to
other disciplines, process discovery cannot rely on uncontested measures to judge the quality of its
results. Research has shown that these measures often do not measure what they intent to measure
(cf. [5, 35, 57, 70]). For example, precision is not well-defined as a construct [70], so it is challenging
to measure [35]. Another problematic measure is the F-score, which is often used to capture the
quality of models because it claims to balance fitness and precision, but “there are substantial
negative correlations between fitness metrics and precision metrics. As such, models with a good
fitness typically have a low precision, and vice versa” [35], implying that such a balance does not
exist, or at least requires a better definition [90].

Internal Validity. In process discovery, internal validity entails whether the observed properties
of a discovered model can be attributed to the applied algorithm, as “a research design is internally

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 1, Article 3. Publication date: December 2024.



On Process Discovery Experimentation

3:9

Table 3. Exemplary Analysis of Open and Mitigated Threats to Validity

Conclusion validity Construct validity Internal validity External validity
Soundness Completeness
Mitig. All evaluation datais  “Infrequent be-  The algorithm is com- The modifications of  The algorithm is com-
provided as supple- haviour” is oper- pletely specified the event logs are ex-  pared against both the
—_ mental material ationalized as a plicated and justified  original ILP, which is
12 filtering  function, to be improved, and
A whose exact defini- a state-of-the-art algo-
3 tion is left to the user rithm (IMi)
-
S Open The authors conclude  Precision measure is  “Exceptional” behav- It is unknown how The authors advise
= that their approach de-  imprecise (problem ior (non-compliant) much infrequent be- to use lower thresh-
livers “more expected” was not known/ is not distinguished havior the event logs old values to yield
results but do not ex-  published at the time from “infrequent”  originally contained, less complex models,
plicate those expecta-  [70]) behavior (compliant, so this effect might be  however, this is not
tions but rare) observed in the exper-  grounded in the exper-
iment iment
Mitig. Contestant parame- The authors conduct Process models are de-  All evaluation dataare  Selection of event
ters are justified (most  and justify a “robust-  fined as Causal Nets, presented, if measures  logs is justified and
relaxed parameters to  ness check,” which is  all returned models are missing, the rea- fits the purpose of the
_ ensure fairness) a fitness evaluation adhere to this defini- son is provided evaluation  (robust-
B adapted to the repre- tion ness check)
E sentational bias of a
;g modelling language
= Open The claim they make Fl-score is used to  “Noise” and “robust- The modified conver- The evaluation is only
is not the one they compare discovery ness” (as a derivative) sion procedurein case relative to HM and
evaluate (absolute vs  algorithms (problem are never defined of HM is not expli- FHM, which were not
relative) was not known/pub- cated or justified state-of-the-art, even
lished at this time at the time of publica-
[35]) tion
Mitig. Parameters are opti- All measures are de- An event log is de- The experimental ~ All  state-of-the-art
mized for all contes- fined and explicated fined conceptually  design is comprehen- miners were chosen
tants and formally. All sively explicated as contestants; a large
_ logs adhere to this collection of available
= definition (XES) real-life logs is used
E Open Many values are miss- F1 score is used to  The overall objective =~ Models are translated ~ Some logs are pre-
ing in the results table  compare discovery  of the experiment is between Petri nets filtered before discov-
(likely due to unsound  algorithms (problem  not stated and BPMN to be ery, whichimpactsthe
models), but the po- was published at the measured, which  results of all miners.
tential impacts are not  time [35]) might impact the This means we can-
discussed results not conclude anything
about logs with infre-
quent behavior
Mitig. The authors take mul- ~ All resulting models The experiments re- All dataisreportedon All state-of-the-art
tiple actions to ensure  are converted into late to all claims of (including the reasons  miners (of that time)
measurability of con- Petri Nets and com- the paper (fast, sound, for missing values) were chosen as con-
5 testing results pared on that basis higher quality) testants
g Open Many values are The time required for The concept of an HM and ETM do  All miners (including

missing in the ta-
ble (likely due to
missing  alignment
computations), but
the potential impacts
are not discussed

model conversions is
included in the overall
computation time, so
some miners are put at
a disadvantage

“80% model” is not
specified or defined

not produce process
trees, so the results
are translated. Po-
tential errors in the
conversion are not
accounted for

IM and IMi) appear
to not perform well
on larger logs (e.g.,
BPI11 and BPI'12).
This is not discussed
anywhere

valid when its manipulation is causally responsible for an observed effect” [51]. As shown in Table 3,
multiple pre- and postprocessing steps can be applied to the event logs before and after discovery.
These steps can include modifications to the event log, such as filtering out traces and/or event
types, or modifications to the process models, such as conversions between different formalisms. As
these steps can influence the results both positively and negatively, their effects must be accounted
for when evaluating the results.
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Another important example of a threat to internal validity in process discovery experimentation
is sampling, which may have a large influence on the discovered models [40]: sampling may skew
or invalidate conclusions. On the one hand, if a sample is taken from a well-structured event log,
i.e., a log with many frequent and only very few infrequent traces, sampling prior to discovery
will yield a comparable model quality with a lower runtime [8, 25]. If an experiment only contains
such logs, a positive correlation can be found between sample size and model quality. On the other
hand, for logs containing mostly infrequent traces, sampling has a negative influence on the quality
of the discovered models. Unfortunately, there are currently no proper measures to evaluate or
compare samples of event logs [76]. Consequently, the properties of the event logs selected for an
evaluation can have a major influence on the observed results and should therefore be considered
in designing the experiment.

External Validity. In process discovery, external validity amounts to the capability of an algorithm
to discover the “true process” for any given event log. The external validity of the discovered model
then relates to the degree to which it reproduces this ground truth. However, this is mainly a
theoretical consideration because this ideal setting may not always be possible [30]. Even if it is, it
is hardly achievable in practice. Such a ground truth only exists in a lab setting with synthetically
generated process models, assuming there is a one-to-one correspondence between process and
model [37, 76]). One example is the recently started Process Discovery Contest, where the results of
discovery algorithms on a given set of event logs are compared with the ground truth model from
which the event logs where generated. In such cases, the degree of reproduction can be assessed by
means of model similarity measures, such as trace equivalence or bisimulation, but they suffer from
representational bias, among other issues, and only work for models with a formal foundation,
which severely limits their applicability.

In field settings using real-world event logs, the true process is usually unknown. Therefore,
external validity has to be assessed in a different way. As shown in Table 3, the “ground truth”
model is approximated by a model that scores high in the quality dimensions that the algorithm
targets (e.g., fitness and precision). Even though these quality dimensions provide some level of
confidence in the algorithm itself, the above-mentioned problems (see the discussion on conclusion
validity) imply that tradeoffs between these quality dimensions have to be made, either by the
algorithm itself or by the analyst. However, it is unknown whether these tradeoffs bring you closer
or further from the ground truth model. Besides, it is not clear how the quality dimensions relate
to the ground truth model. Research has shown that the quality dimensions assess the relation
between model and log, not between process and log [35, 36, 61, 76], i.e., there currently is no
evidence whether the discovered model resembles the process well.

Random sampling simplifies external validity inferences because it eliminates possible interac-
tions between the causal relationship and the studied samples [67]. However, this is rarely feasible
in process discovery evaluations. Instead, as shown in Table 3, researchers often evaluate their
process discovery algorithms on specific sets of real-life event logs, assuming that these logs cover
at least parts of the variability that can be expected in other logs [51]. However, it is unknown
whether this is a valid assumption. Therefore, evaluating on real-life logs does not allow for general
propositions about external validity [51, 59]. To mitigate this issue, researchers have only recently
started to study what needs to be done to ensure external validity in process discovery [35, 38, 76].

3 Process Discovery and Research Methodology

One way to ensure reliability and validity is to apply rigorous research methods. Developing
such methods is the focus of the field of research methodology, i.e., the study of methods [26].
Stemming from theoretical computer science, early process discovery did not have the need for
explicit and agreed-upon research methods. However, the shift towards a practical, data-driven
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discipline warrants such methods [42]. In this section, we explicate the research methods of the
process discovery field and demonstrate that the field already follows a research methodology,
though implicitly. The explication allows us to reflect on our research methods to address the
reliability and validity problems discussed in the previous section.

3.1 PDE

Methodology describes strategies of inquiry in a certain field [59]. Strategies of inquiry are types
of research method designs that provide specific direction for procedures in a research design [19].
In other research fields, these include empirical strategies [59], such as quantitative and qualitative
methods. However, for algorithmic research this is less straightforward.

One strategy of inquiry that is commonly used for the design of artifacts in Information Systems
research is Design Science [33, 55, 89]. However, Design Science Research provides mainly methods
and techniques to study artifacts in context. For example, Hevner’s three-cycle framework [32]
introduces the relevance cycle to study how an artifact can be applied in a given socio-technical
environment to solve a concrete problem. Similarly, the rigor cycle focuses on the “selection and
application of appropriate theories and methods for constructing and evaluating the artifact” in the
socio-technical environment [32]. Although process discovery algorithms can be seen as artifacts,
an algorithm should work in any context, provided that its preconditions are met [18]. Thus,
algorithm designers want to make claims about an algorithm that is independent from the context
of its use.

A research methodology that studies algorithms independent of their context is AE [66], which
encompasses both theoretical and empirical strategies. It is the discipline concerned with the design,
analysis, implementation, tuning, debugging and experimental evaluation of computer programs
for solving algorithmic problems [66]. AE integrates algorithm theory with the principles of
experimental validation coined in Popper’s scientific method [58]. Instead of considering algorithm
design and analysis on the one hand and implementation and experimentation on the other hand,
AE prescribes a feedback loop of design, analysis, implementation and experimentation that leads
to new design ideas [66].

AE provides a research cycle subdivided into two parts: Design and analysis constitute the
formal part of AE, which corresponds to the theory building in Poppers scientific method [58, 66].
Implementation and experimentation constitute the empirical part of AE, which corresponds to
the experimental validation in Popper’s scientific method [58, 66]. In process discovery, the same
research activities can be identified. Therefore, we apply AE to process discovery, resulting in PDE,
depicted in Figure 3. PDE is the discipline concerned with the design and analysis (coloured orange
in Figure 3) as well as with implementation and experimentation (coloured blue in Figure 3) of
process discovery algorithms to study properties of these algorithms independent of their context.

3.2 Explicating PDE in Process Discovery Research

Process discovery has its roots in theoretical computer science, which focuses on the design and
analysis of algorithms, the first two activities in PDE. For example, the main goal of the first process
discovery algorithm, a-miner, was to theoretically show that under certain conditions, the original
model that generated the event log is rediscoverable, i.e., that the algorithm returns an isomorphic
model [75]. As such, the field has a strong background in showing formal properties of process
discovery algorithms, which in PDE are part of the activities of design and analysis.

As shown in Table 4, the included papers implicitly follow the line of reasoning from PDE: they
motivate the need of a new algorithm by generalizing observations from realistic contexts. For
example, HybridILPMiner [81] observes that many realistic contexts have to deal with infrequent
behavior and takes this a starting point to improve ILP Miner [77]. SM [7] was developed from a
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Fig. 3. PDE: AE [66] applied to the field of process discovery.

different observation from realistic contexts: that block-structured models over-generalize behavior.
Based on these observations, the authors then design algorithms that address the identified problems.

Algorithms can be extensions of existing discovery techniques or be completely new approaches
to process discovery. The algorithm designs are typically presented formally, in the form of mathe-
matical formulas and pseudo-code, which enables the analysis of these algorithms and provides
formal guarantees by means of proofs. These guarantees may range from properties of the results of
the algorithm to properties of the algorithm itself. For example, the SM algorithm is accompanied
by two formal guarantees: its worst-case runtime complexity and deadlock-freedom of the resulting
models (see Table 4). Table 4 also shows that there is some variety to how researchers approach the
analysis step, and whether it is included at all. In some cases, the analysis is separated from the
experimentation (see below), and the results are published separately.

With the growing maturity of discovery techniques and the increased availability of event log
data (real event logs), process mining has shifted from a formal to a more practical data-driven
discipline [72]. This means that the field has developed a strong emphasis on the implementation of
and the experimentation with algorithms. As Table 4 exemplifies, nearly all discovery algorithms
come with an implementation in one or more frameworks, such as ProM [79] or PM4Py [10].
Through experimentation, the authors show the feasibility of their newly designed algorithms, as
elaborated in Table 1. As the examples in Table 4 show, process discovery research follows the
activities in PDE, though this is typically not explicated.

3.3 Current Problems in Experimentation

As shown in the previous section, process discovery research already implicitly follows PDE.
The first three activities, design, analysis and implementation, are established from the field of
theoretical computer science and engineering. However, for experimentation, we have shown
in Section 2 that the existing research methods do not sufficiently ensure reliability and validity,
particularly with regard to conceptual replicability and external validity. In the following, we review
the main research methods currently used for process discovery experimentation and discuss their
shortcomings.

Case Studies. In process discovery, case studies aim to obtain knowledge on e.g., applicability,
studying “contemporary phenomena” (business processes) in their “natural context” (organizations)
[65]. To help guide the planning and execution of single-case experimental designs, multiple
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Table 4. Exemplary Comparison of the Experiments from Three State-of-the-Art
Process Discovery Contributions

HybridILPMiner [81]

Fodina [82]

SM[7]

Inductive Miner infre-
quent [46]

Realistic Section 1: Because of Section 1: Heuristic miners Section  1:  Tradeoffs Section 1: No process dis-
Context low-frequent behavior, ILP- have multiple issues that between four quality covery technique can dis-
based process discovery negatively impact their re- dimensions have proved cover a sound 80% model
often yields unsatisfactory liability. elusive; block-structured  fast and filter infrequent be-
results. models overgeneralize  havior.
behavior in the event log.
Design Section 4: Discovery of re-  Section 4: Robust and flex-  Section 3: SM algorithm Section 3: Extension of the
laxed sound workflow nets, ible discovery algorithm original inductive miner
Section 5: Extend discov- based on the heuristic miner with filtering capabilities for
ery algorithm by a prun- infrequent behavior
ing approach to handle
low-frequent behavior
Analysis Section 4: Semantic prop- None Section 3.8: Complexity  Proof of properties of IM in
erties of discovered model analysis, Section 4: Seman-  a different paper [45]
(Theorem 2) tic properties of discovered
model (Theorem 4.8)
Formal Discovered models are re- None SM has complexity O(E + IMi returns block-
Guarantees  laxed sound Aﬁ), where E is the number  structured models (thus
of events in the log and A  sound)
is the number of activities,
Soundness of acyclic BPMN
models and deadlock free-
dom of cyclic BPMN models
Implemen- Section 6: Code provided via ~ Section 4.1: Code provided  Section 5: Code providedvia ~ Section 1: Code provided
tation GitHub & SVN via website website through library
Libraries ProM, RapidProM ProM Apromore ProM
Falsifiable Nonexistent (only claim) Nonexistent (only claim) Nonexistent (only claim) Nonexistent (only claim)
Hypotheses
Experimen-  Section 6: See Table 1 Section 5: See Table 1 Section 5: See Table 1 Section 4: See Table 1
tation
Real Event Simulated logs [49], Road 46 synthetic logs [53], 4 real- BPIC 2012-15,17 [78], Road ~ BPIC 2011-12 [78], WABO 1-
Logs Traffic Fines [20], SEPSIS life logs Traffic Fines [20], SEPSIS 5 (non-public)

[48]

[48]

authors suggested methods for process mining projects [11, 72, 80]. However, these methods focus
on properties of the results of the algorithms, rather than on properties of the algorithms themselves.
Following a method does not ensure external validity [23]: if two process discovery algorithms
are shown to be applicable in a real-world setting, but the respective contexts are fundamentally
different from one another, no knowledge about the relation between the two algorithms can be
obtained [41]. Even though such case studies provide valuable information about the feasibility of
the algorithm, their results do not allow to infer conclusions about the field as a whole.
Comparative Experiments. In process discovery, comparative experiments demonstrate how a new
algorithm advances the state-of-the-art with regard to a specific aspect or quality measure (cf. [81,
82]). The algorithms can be applied “in vitro” to synthetic logs generated from known ground truth
models [37] or “in vivo” to an available set of event logs, for which no ground truth model exists [6].
As we have shown in Table 1, different comparative experiments employ different experimental
setups, which leads to incomparable results [6, 76]. To ensure the validity of such a comparison,
there is a need for a commonly accepted and scientifically valid framework for the systematic
evaluation of different process discovery approaches and measures [36]. Multiple attempts have
been made to provide such a framework [63, 64, 83, 85], but these frameworks do not provide
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the guidance, level of detail or adaptability necessary to ensure reliability and validity of process
discovery experiments [23, 36, 57, 60, 76]. Hence, it cannot be established how the outcomes of
such experiments contribute to the field as a whole.

Benchmarks. In process discovery, benchmarks provide standardized settings to compare different
algorithms experimentally. The first benchmark evaluation of discovery algorithms concluded
that particularly complex event logs were still challenging for the state-of-the-art algorithms of
2012 [21]. The second one, 7 years later, concluded that algorithms had become more mature but
still struggled to find appropriate tradeoffs between quality dimensions [6]. From a methodical
viewpoint, a benchmark is a first step towards increased reliability as it examines algorithms in a
common setting. Although competitive testing provides knowledge about which algorithm is better
with respect to specific accuracy metrics, it provides limited understanding of why [34] and does
not solve the problems of validity. It shifts the responsibility of ensuring reliability and validity of
an experiment from the individual paper to the benchmark method, but it does not address the
discussed issues themselves. For example, the discussion on the validity of measures is independent
of how the evaluation is performed. Although benchmarks are a valuable addition to the field, they
do not solve the discussed problems.

As this discussion shows, the current problems of reliability and validity mainly stem from the in-
adequacies of the currently available research methods for experimentation in process discovery. In
the next section, we argue that for empirical process discovery, each individual research work needs
to proactively establish its own claims in such a way that it can be understood how they contribute
to the field as a whole. The field of process discovery requires new methods to achieve that goal.

4 A Methodology for Experimentation

In this section, we provide methodical support for the fourth phase of PDE: experimentation. Any
evaluation that is not an analysis of the algorithm is an experiment and should thus be critically
assessed on the reliability and validity of its results and inferences. Consequently, most of the
experiments in process discovery can be classified as quasi-experiments [67]. As for any valid and
reliable experiment, causal inferences from any quasi experiment must meet the basic requirements
for all causal relationships: that cause precedes effect, that cause co-varies with effect, and that
alternative explanations for the causal relationship are implausible [67]. This requires a thorough
design and assessment of the experiment as a research method in process discovery. Following
[26], a research method consists of (i) a terminology including terms to characterize the underlying
ontological and epistemological position and generic notions of research and (ii) a corresponding
process. In this section, we propose a terminology for research methods in PDE in Section 4.1 and
provide a checklist to assist in ensuring the quality of the used research method in Section 4.2.

4.1 A Shared Terminology

A common terminology already exists for the foundational entities of process discovery, such as
log, model and process [14]. However, this terminology is not sufficient to argue about research
methods, which refers to generic notions of research, such as “hypothesis” or “experiment.” To
serve as a foundation for PDE, we extend the terminology, as shown in Figure 4, which consists of
three parts: formal (in orange), empirical (in blue), and generic notions of research (in white).
Setting the Context. In process discovery, a PROCEss [88] refers to the unknown entity that is
the ultimate study subject of process mining projects. A MoDEL describes one or more processes.
An EVENT LogG is a dataset describing the execution of a process. An ALGORITHM is a well-defined
sequence of computational steps that transforms some input into some output [18]. An ALGORITHM
IMPLEMENTATION is an instantiation of the algorithm in a specific library [66]. For PDE, event logs
are (part of) the input, and discovered models (part of) the output. Because the exact definitions
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Fig. 4. Terminology for process discovery experimentation.

of models and event logs depend on the design of the discovery algorithm, we leave them to the
individual authors.

Building the Hypotheses. A CLAIM is an alleged proposition about one or more algorithms.
Validating a claim contributes to scientific knowledge. The objective of scientific experimentation
is to provide a sufficient amount of evidence for validating a claim. A THEOREM is a type of claim
that can be validated by a formal ProoF, resulting in a formal guarantee. A HYPOTHESIS is a type of
claim that cannot be validated by a formal proof, but is formulated in such a way that it can be
tested statistically or empirically in an experiment [58].

A CoNcEePT “describes an abstract idea that is inferred or derived from instances that we perceive
in the real world, that is, mental representations that we develop, typically based on experience”
[59]. Concepts provide a mechanism to describe a claim in natural language: a concept gives
an intuitive understanding of an idea, rather than a mathematical definition. To evaluate the
claims, these concepts have to be specified. A CONSTRUCT “is an operationalization of a concept
in such a way that we can define it by measuring the construct against data” [59]. The process of
operationalizing concepts into constructs allows to formulate claims as theorems or hypotheses.
Therefore, constructs should be specified as precisely as possible [43, 59]. Ideally, this is achieved
by providing a mathematical definition for each construct. However, many concepts cannot be
specified in terms of fully formal constructs.

The terms concept and construct often cause confusion in the field of process mining. We often
use the word concept (e.g., in conceptual modelling), whereas in research terminology, these are
actually constructs, as the conceptual model operationalizes the abstract ideas of the concepts.
Concepts and constructs can have complex interrelations if, for example, the same concept is
operationalized by multiple constructs or vice versa.

Conducting the Experiment. If building a claim results in a testable hypothesis, an experiment
needs to be conducted that allows to test the hypotheses. An EXPERIMENT is a research design to
study a deliberate action followed by systematic observations of what occurred [67]. For example,
the execution of a process discovery algorithm is a deliberate action whose effects can be observed
and studied in an experiment. Experiments range from controlled experiments to field studies,
including case studies, comparative experiments, and benchmarks as described in Section 3.

A MEASURE is a function that assigns a non-negative real value to an input. In our context,
this input can be a log, a model, an action, or a combination thereof. Conceptually, measures are
used to observe these effects: we consider a measure to be an empirical indicator that allows us to
approximate the underlying constructs [59]. The experiment design should include a specification
of how the measures are obtained and analyzed to draw conclusions about the hypotheses, for
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example, by explicating which statistical tests will be used. Executing the experiment results in
actual values for each of the defined measures. Those values need to be further analyzed to either
reject or accept the hypotheses. To ensure the (construct) validity of measures, they need to be
properly operationalized in the experiment design, which is far from a trivial task. For a thorough
discussion on this matter, we refer the reader to [27].

4.2 A Checklist for Experiments

The purpose of research methods is to assist the researcher in obtaining reliable and valid results. As
shown in Section 3, a plethora of research methods is used for process discovery experimentation.
It is impossible to exhaustively list all methods that ensure valid and reliable results. Instead, we
propose a checklist for the experimentation phase of PDE, shown in Figure 5. This checklist is
intended to help researchers to validate their research method against the principles of scientific
inquiry and justify why executing their research will result in reliable and valid conclusions for the
field as a whole. Following the checklist contributes to transparency of the experiments and the
results and therefore helps to increase the validity and reliability of the results.

When conducting an experiment, there are three major steps to take: (1) devise one or more
hypotheses to be validated, (2) design and execute a method that is capable of validating or falsifying
these hypotheses, (3) discuss the implications and conclusions that follow from the results. Following
this distinction, the checklist is divided into three major parts. Each part contains those elements
(entities and relations) from Figure 4 that are relevant to this step in the experiment. Note that two
elements (the entity claim and the relation between hypothesis and experiment) are repeated in
the checklist, as these are relevant to two steps in the experiment: the claim should be stated in the
beginning to motivate the experiment and then discussed again at the end, after its validity has or
has not been established. Similarly, the hypotheses require a careful experiment design to achieve
sufficient reliability and validity, and, once the results are obtained, a scrupulous examination to
establish whether and how conclusions can be drawn, reviewing the principles of scientific inquiry.
As this article is focused on the empirical part of PDE, we only consider the elements concerning
generic notions of research (in white) and the empirical part (in blue).

For each element, the checklist provides questions to assess the research against the principles
of scientific inquiry, as discussed in Section 2. Each question is annotated with the corresponding
principle of scientific inquiry. To derive these questions, we assessed how each element may impact
the principles of scientific enquiry (cf. Figure 2), and how and to what extent PDE researchers can
ensure these principles in their experimentation. As a result, the generality of the questions varies.
Some questions are concrete and easy to verify, such as “Is the construct ‘event log’ well-defined?”.
Others are more generic, such as “Is the rationale for the experiment design explicated?”. Such
questions are more difficult to check, as they require a justifying rationale. The varying degree
of concreteness provides researchers the freedom to design their research method based on the
requirements and context of their experimentation.

The structure of the checklist is generic: It needs to be adapted to the context of each individual
experiment. For example, parameters or algorithm implementations can become part of the hy-
pothesis building when studying an algorithm and the effects of its parameters. Also, the checklist
is not exhaustive: each research method is unique. Instead, the generic nature of the questions in
the checklist allows researchers to reflect on how the principles of scientific inquiry influence their
experimentation and how they can be used to conduct high-quality research.

5 An Example Experimentation

In this section, we illustrate the applicability of the checklist. The checklist in itself does not
guarantee validity and reliability of an experiment, which need to be established through review.
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— 1. Hypotheses Building

CLAaM HyPOTHESIS

m]

Are all claims related to the experimentation explicated? (Com- 0 Are all evaluated hypotheses explicated? (Completeness)
pleteness) O Are all evaluated hypotheses testable? (Soundness)

O Are all these claims used consistently? (Soundness) HYPOTHESIS & CLAIM

Conceet - O Are all claims operationalised into hypotheses? (Completeness)
O Are all relevant concepts explicated? (Completeness) O Is there a rationale for the operationalisation? (Soundness)
Cramv & CONCEPT O Are all assumptions in the operationalisation explicit and appli-

cable? (internal validity)
O Can the claims be substantiated using the hypotheses? (conclu-
sion validity)

O Do the claims use concepts correctly? (Soundness)
O Do the claims use only explicated concepts? (Completeness)

CONSTRUCT

HyproTHESIS & CONSTRUCT

O Are all constructs sufficiently specific? (Soundness)
O Are all constructs in the hypotheses explicated? (Completeness)

CoNCEPT & CONSTRUCT
- O Do the hypotheses use constructs correctly? (Soundness)

[m]

Are all concepts operationalised as constructs? (Completeness)
Is there a rationale for each operationalisation? (Soundness)
Are all assumptions in the operationalisations explicit and ap- O Is the relation between claims and algorithm(s) explicated and,
plicable? (soundness) if necessary, justified?

CLAIM & ALGORITHM

oo

— 2. Method Design and Execution

EXPERIMENT EVENT LoG & PROCESS

m]

Is the experiment design described such that the experiment O Is there a rationale on how the traces were collected from the
can be repeated? (Direct and Conceptual replicability) process, and is this way suitable to validate the hypotheses?
O Is the rationale for the experiment design explicated? (Internal ~ (Construct validity)
validity) EXPERIMENT < EVENT LoG
Are the effects of missing experiment data discussed? (Conclu-
sion validity)

Are other potential threats to reliability and validity described
and mitigated if possible?

a

O Are potential changes to the event logs explicated and justified,
and are the implications of these changes discussed? (Internal
validity)

O Are the effects of missing data discussed? (Conclusion validity)

m]

HyYPOTHESIS & EXPERIMENT

MoDEL

[m]

Does the experiments’ design allow to test the hypotheses? (In-
a

ternal validity) Is the construct “model” well-defined? (Completeness)

O Do all models adhere to their definition? (Soundness)
ALGORITHM IMPLEMENTATION

MODEL & PROCESS

O Is there a rationale for the algorithm implementation selection?

(Internal validity) O Are potential representational biases and other limitations ex-
O Is the implementation publicly available, or is the replicability plicated? (Conclusion validity)

of the implementation ensured? (Direct replicability) EXPERIMENT < MODEL

ALGORITHM & ALGORITHM IMPLEMENTATION — [0 Is comparability of the models ensured? (Conclusion validity)
O Is the implementation of the algorithm correct? (Conclusion O Are the effects of model transformation discussed? (Internal

validity) validity)

ALGORITHM IMPLEMENTATION & EXPERIMENT O Are the effects of missing model data discussed? (Conclusion

s s
validity)

[m]

Is the computational environment specified? (Repeatability)
Are the implications of the implementation on the hypotheses
addressed? (Internal validity) O Does the design explicate the measures and describe how the

Are the parameters for the algorithms described? (Repeatability) ~ values were obtained? (Direct and Conceptual replicability)

MEASURE

[m]

a

O Is there a rationale for these parameters? (Conclusion validity) O Are the premises of the measures met? (Construct validity)
ProcESS MEASURE & CONSTRUCT

O Is the concept “process” explicated? (Completeness) O Does each measure approximate the intended construct? (Con-

O Is there a rationale for the selection of processes? (External va-  struct validity)
lidity) O Are all necessary constructs covered by the measures? (Internal
EVENT Lo validity)

O Is the construct “event log” well-defined? (Completeness) EXPERIMENT & MEASURE

O Do all event logs adhere to their definition? (Soundness) O Are all values for all measures presented? (Internal validity)

O Is there a rationale for the selection of event logs, and a discus- O Are the effects of missing values discussed? (Conclusion valid-
sion of its implications? (External validity) ity)

— 3. Conclusion and Discussion
HyPOTHESIS & EXPERIMENT

O Does acceptance or rejection of the hypotheses follow from the experiments’ results? (Conclusion validity)

O Do the conclusions drawn from the experiment generalise beyond the experimental setting? (External validity)
O Are remaining non-mitigated threats to reliability and validity discussed?

O Are limitations of the experimental set-up discussed?

CLAamM

O Are implications of the claims discussed?

Fig. 5. The process discovery experimentation checklist.
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However, using the checklist contributes to the transparency of experimentation, by promoting
that they include enough detail to enable thorough review. As such, describing all relevant aspects
in sufficient detail—as encouraged by the checklist—is a necessary though not sufficient condition
for a reliable and valid result. To this end, in this section, we conduct an example experimentation
using the checklist. That is, we follow the structure of the checklist and cover every item explicitly.
First, we describe the context of the experiment by building the hypothesis in Section 5.1, after
which we describe the design and execution of the experiment in Section 5.2. We finish with a
conclusion and discussion of the experimental results in Section 5.3.

5.1 Hypotheses Building

o Cramm. Directly follows miner (DFM) [47] is less sensitive to noise than SM [7].

& CONCEPT. A process is defined as above [88]. An event log is a recording of executions of a
process. Noise is recordings in an event log that do not (fully) correspond to behavior of the process
the log was recorded from. Sensitivity to noise is the degree to which the result of an algorithm is
influenced by noise in a recorded event log. We say an algorithm is not sensitive to noise if it can,
independently of any noise, discover the process that is recorded in the event log. The quality of an
algorithm’s result is the degree to which this result fulfils a particular desirable property.

& Cramv & ConceptT. Our claim only uses the concept of sensitivity to noise, which along with
the auxiliary concepts (process, event log) required by it has been defined.

o ConsTRUCT. We define an event as a record of an observation of the execution of an atomic
process step, a trace as a totally ordered sequence of events, and an event log as a multiset of traces.
For our purposes, a model is a workflow net [74]. We operationalize the quality of an algorithm’s
result in several model quality properties, each of which takes a model and perhaps an event log
and returns a value indicating a particular quality aspect of that model. Traces are noise if they are
contained in the event log, but cannot be replayed by the model that represents the process. As
this model is unknown, we instead mimic noise as traces or events that are added to or removed
from an event log after its recording. Sensitivity to noise is defined with respect to a model quality
property: a process discovery technique is less sensitive to noise than another one if the quality is
changing less for the technique than for the other technique under increasing noise levels.

o ConcePT & CoNsTRUCT. We assume that the traces that we generate during noise generation
are not actually part of the process, as we do not know the processes involved in this experiment
(threat to validity). We assume that the events as provided in the event log are totally ordered, as
we lack knowledge of extraction procedures of publicly available data. The quality of a process
discovery algorithm’s result is often operationalized using standard quality constructs such as
fitness, precision, generalization and simplicity. Our claim and hypothesis do not depend on these,
thus we can abstract from these constructs here.

& HypoTHEsIS. SM is less or equally sensitive to noise than DFM. This hypothesis could logically
be disproved by a single counterexample, however will be addressed using statistical methods to
obtain generality.

& Hyrotugsis & Cramm. Our goal is to test the hypothesis. Therefore, we formulate one null
hypothesis HO, which is derived from the claim: DFM is less sensitive to noise than SM. For testing,
we use the counter hypothesis, which negates the claim. This means that if our hypothesis is
falsified by statistical methods, we can conclude that the claim must hold. The hypothesis does not
make any additional assumptions.

& HyrotuEsis & ConsTRUCT. Our hypothesis uses only the construct of sensitivity to noise,
which has been defined, along with the required auxiliary constructs.

o Cramm & ArgoriTuM. Our claim explicates the evaluated algorithms and does not generalize
beyond these.
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Fig. 6. Visual representation of our experimental trial setup. Annotated edges in black indicate how many
combinations result, and in red indicate how many of these were errors.

5.2 Method Design and Execution

& EXPERIMENT.

> Algorithm selection. The hypothesis concerns two algorithms (SM and DFM), which are included
in the experiment. A baseline is not necessary to validate the hypothesis but is included to position
and interpret the results. That is, we include a flower model (FM), which allows for any possible
behavior of the activities in the event log, as long as these activities do not overlap in time.
An alternative baseline would be a model iterating all traces of the event log, which would be
prohibitively expensive for measures.

> Design. To test the sensitivity of algorithms to noise, we create a sample of noise levels (system-
atic) and quality criteria (convenience). Figure 6 shows an overview of the experiment setup. By
generating noise using 20 levels of noise, we obtain 13,500 event logs. To each log, we apply the 3
discovery algorithms. Each model discovered model is assessed with respect to the original event
log using 4 measures. We refer to the process of obtaining one measure as an experimental trial;
there are 162,000 such trials.

To test our hypothesis, we apply the bootstrap method to these experimental trials: we take 10,000
re-samples with replacement and measure which algorithm is less sensitive on the
re-sample. We reject our hypothesis if DFM is less sensitive in « * 10,000 re-samples, with o = 0.05.
We correct for multiple tests being performed, that is, one test for each quality measure, using
the Benjamini-Hochberg method [9]. The bootstrap method poses no assumptions on either the
data or the computations; outliers need no special consideration. Applying the bootstrap method
provides a quantification of the uncertainty present in the results and allows for a clear cut-off
grounded in statistical theory. It is neither necessary to use test and training logs, nor to use k-fold
cross-validation, as we do not compare the measures of the discovery algorithms with one another.
> Missing data. Not all experimental trials will be complete, due to empty event logs, missing
models or missing measured values. As our noise-sensitivity measure is robust to missing trials,
their number is rather low, and they will be shown to be well balanced over logs and models, we
simply exclude those incomplete trials from the experiment.
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> Mitigated threats to reliability and validity. We chose three different strategies for noise
introduction, as these strategies might introduce bias. Each experimental trial was repeated three
times, as noise introduction strategies are random and measures (precision) are conceptually not
deterministic. Cryptographically secure randomness is not necessary, however a fixed seed was
used for reproducibility reasons. Due to the reduced logs procedure (see below), the seven largest
logs would contribute 10 times as much to the result as the other logs, so the experimental trials of
the not-reduced logs were included 10 times in the experiments.
& HyrorHEsis & ExPERIMENT. The experiment design allows to test our hypothesis given
a set of measures, a set of noise insertion strategies and set of event logs; randomization,
repetition and the statistical test in the experiment otherwise increase generalizability. Even
though the chosen measures are often used together in literature [12], the experiment does not
provide for a way to generalize over the used measures; the hypothesis will be addressed for each
measure individually. Nevertheless, we conjecture that the results hold validity beyond the used
logs.
& ALGORITHM IMPLEMENTATION. We assume the implementations for which links are provided in
[47] (DFM) and [7] (SM). FM is a straightforward implementation.
& ALGORITHM & ALGORITHM IMPLEMENTATION. We used publicly available implementations
[7, 47], thus the implementations are correct if and only if they were correct in the papers where
these algorithms were introduced.
& ALGORITHM IMPLEMENTATION & EXPERIMENT. The experimental setup does not include compu-
tation time and no time-out was used for discovery techniques, thus a specification of computing
hardware is not necessary.

The algorithms have parameters that may influence their handling of noise. Testing the algorithms’
sensitivity to these parameters is not part of this experiment.
o Process. The organizations from which the logs were extracted cover several industries,
including financial institutions, manufacturers, and insurance companies. The set of logs is a
convenience sample from all possible event logs from all processes in all possible organizations.
The nature of the processes plays no further role in this experiment.
o EVENT LoG.
> Selection. We include all XES event logs published by the IEEE Task Force on Process Mining* as
of 12 May 2021. These are BPIC2011, BPIC2013 closed problems, BPIC2013 open problems, BPIC2013
incidents, BPIC2015_1, BPIC2015_2, BPIC2015_3, BPIC2015_4, BPIC2015_5, BPIC2017, BPIC2018,
BPIC2019. BPIC2016 was excluded as it involves UI data, which differs from process data in key
characteristics and therefore is ill-suited for existing discovery algorithms.
> Operationalization. The obtained logs follow the XES-standard [1]. They were transformed into
the conceptual definition used in this experiment using the concept:name attribute classifier.
As a consequence, all activity instances are atomic and thus seen as to not overlap in time.
o EveNT LoG < Procgss. The relation between log and process does not matter for this experi-
mentation; knowledge of log extraction procedures is not necessary.
& ExPERIMENT & EVENT LoG. The seven largest logs overwhelm model quality measures. Therefore,
without further domain knowledge, these seven logs have been sampled by selecting a random
group of 10% of the activities, and removing all events not related to these activities. Although this
step limits the validity of the conclusions to smaller logs, the logs might have been filtered before
publication.

4https://www.tf-pm.org/resources/logs
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The noise introduction levels range from 0% to 95% in increments of 5%. The noise introduction
strategies are: (1) insert event (of an activity randomly selected from a pool of 50 unused activities)
in a trace; (2) delete event from a trace; (3) swap the order of two consecutive events. For each
strategy, a separate log was constructed by applying the noise introduction to or after each event
with the given likelihood independently. To mitigate random effects, each noise generation is
repeated three times as part of the overall experiment design. If the activity sampling returned an
empty log, the sampling was repeated. If the noise generation removed all events from a trace, the
trace would still be valid and does not require adjustment.

& MoDEL. SM returns models that are a subset of Business Process Model and Notation
(BPMN) [54] models and can be translated to extended Petri nets [39], which establishes the formal
semantics of this BPMN subset. DFM returns Directly Follows [47] models, which are formally
defined in [47]. We assume all models returned by SM and DFM adhere to the definitions given
in [7, 47).

& MobEL & Process. The logs are derived from real-life processes, which might not fit the
representational biases of the algorithms. These mis-fits might make algorithms more susceptible
to noise and potentially influence different algorithms differently. For this field-type experiment,
we cannot mitigate this threat to validity.

& EXPERIMENT & MODEL. To enable comparisons, all discovered models are transformed into
extended workflow nets [71] before being measured. For DFM, this transformation [47] is guar-
anteed, and the transformed models are sound (that is, one can execute every part and one can
always reach the final state [74]). The subset of BPMN models returned by SM can be translated to
extended Petri nets [39], by applying the ProM plug-in BPMN2PetriNetConverter and repair the
final marking to ensure it consists of one token on the only place without outgoing transitions.
There is no guarantee that these transformed nets are extended workflow nets nor that these models
can reach their final marking. The model-quality measures require that each model is easy sound,
i.e., the final marking can be reached [74]; all models in our experimentation were easy sound.

Missing data occurs if the discovery technique could fail to produce a model due to conceptual
mismatches or program exceptions. For a failed discovery technique, we exclude the corresponding
value for that measure (trial).

& MEASURE. There are two layers of measures: a sensitivity-to-noise measure and 4 model-quality
measures.

> Sensitivity to noise. The hypothesis will be assessed using the sensitivity-to-noise measure, which
is the absolute value of the slope of the linear model that best fits the measured quality values. This
measure is deterministic.

> Model quality. To measure the quality of discovered models, we use four well-established measures:
alignment-based fitness [4], ETC-precision [73], ETC-generalization [73], and “density” [50], adapted
for Petri nets: 1 — a/(p = t * 2), where a, p, t are the numbers of arcs, places and transitions. It
indicates the fraction of present over potential edges.

For our measures, we use alignments, whose computation requires the model to be able to
terminate. As DFM guarantees soundness, all DFM models are conceptually compatible with
alignments. Some SM models might be unsound; they are guaranteed to be deadlock-free but may
have livelocks. If a model cannot terminate, the alighment computation simply times out, resulting
in a missing experimental trial. The measures we use have no further restrictions and we treat
them as black boxes.

The model quality measures are repeated three times as part of the overall experimental trial
repetition. A time-out of 3 days was applied for each model quality measure; measures exceeding
this were treated as missing experimental trials.
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Fig. 7. Scatter density plots of our experiment on SM, DFM and Flower Miner; x-axis: noise level; y-axis:
measure; red line: simple linear regression model; using the Viridis colour map (lighter colors indicate higher
density).

& MEASURE & CoNnsTRUCT. The sensitivity-to-noise measure is the slope of a fitted linear model to
all experimental trials for a model quality measure and a discovery technique. The closer this slope
is to 0, the less sensitive the technique is to noise. A linear relation might not be the most applicable
relation between the level of noise and a model quality measure. However, it allows us to isolate
the slope from the y-intercept easily, corresponding to sensitivity rather than absolute value. A
visual inspection was performed to exclude obvious non-linear cases (Figure 7). The model quality
measures have been shown to be associated with the quality of process models [12]. We chose a
different simplicity measure than [12] as we require a normalized measure for the noise-sensitivity
measure.

o EXPERIMENT & MEASURE.

> Presentation. The results are shown in Figure 7. The discarded measures have not been included.
For illustrative purposes, red lines indicate the result of a simple linear regression overall data
(without bootstrapping).

> Missing values of measures. For the measures, reasons for failure could be lack of models (due to
errors in discovery), insufficient memory, unforeseen excessive run time, non-terminating models
or program exceptions. For a failed measure, a tradeoff needs to be made: ideally, each log with
at least one incomplete trial would need to be excluded from the results to avoid measuring the
discovery algorithms on different data sets. However, removing such logs would introduce a bias
towards the less complex logs (where complex may be different for each algorithm), thus reducing
generalizability. In the experiment, 42 of the 75 sample logs had at least one missing measure. Of
the 40,500 models, for 401 models not all measures could be computed, and a total of 1,825 measures
is missing. The log with the highest number of missing measures had 194 measures missing (of
2,160, 4%). Therefore, we decided to keep the incomplete logs and accept that as a threat to validity,
some values of measures are missing. All of the missing models were from SM—where DFM and
flower discovered all of their models—and generally from the more complex sample logs.
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5.3 Conclusion and Discussion

& HyPOTHESIS < EXPERIMENT.

> Acceptance of the hypothesis. Based on the bootstrap tests, we reject the hypothesis for fitness:
DFM is less sensitive to noise than SM. For the measures precision, generalization and simplicity,
the experiment did not allow rejecting the hypothesis. However, from Figure 7, it is clear that for
these measures, SM is less sensitive to noise than DFM.

The bootstrap tests were unanimous: the results were the same for all samples. Still, we argue

that our approach is methodically necessary for conclusion validity: if one considered simple linear
regression slopes directly (without repeated sampling in the bootstrap method), one could not
establish whether two measured slopes are different “enough” to reach a conclusion. To put this
into perspective: using the straightforward approach, the FM miner would have been the most
stable for every measure except for generalization. This illustrates the inherent limitation of the
generalization measure, as the FM is intuitively the most general model.
> Generalization. Generalization addresses external validity. In this experiment, we examined the
claim with respect to different noise levels, meaning that we can generalize our findings to all
noise levels in the examined logs. However, we did not systematically examine different log sizes
or different levels of complexity. Therefore, we cannot claim any generalization for other logs.
Obviously, the results do not generalize to other process discovery algorithms.
> Remaining threats to reliability and validity. We chose all currently publicly available data sets,
as the choice of event logs might introduce bias; results may not generalize to all processes of all
organizations. Missing values have been discussed before. Representational biases of the individual
algorithms (see above) could be mitigated in a lab setting, but this would introduce other threats to
validity. Noise introduction strategies might introduce changes that are not noise according to the
(unknown) process behind a log, however the probability of this happening is presumably low.
> Limitations. The experimental setup did not include the seven largest logs, but reduced versions of
these, as measures proved infeasible on these logs. Thus, the claim has effectively only been shown
for smaller event logs. A sound hypothesis does not imply meaningful or watertight hypothesis: in
this experiment, a constant insensible model would be correctly identified as insensitive to noise.
That is, we did not test whether an algorithm was better, just whether it was more stable. The
algorithms are instantiated with their default parameters; this might limit generalizability.
o Cram. This experiment might inform future process mining research and contribute to the
ongoing discussion on evaluations in the field: rather than considering absolute values of model-
quality measures, their sensitivity can be considered. Furthermore, it may inform end users in
choosing discovery techniques, in case some knowledge on the noise level in an event log is
available.

6 Discussion

In this section, we briefly discuss its contributions, limitations and (remaining) threats to validity
of our research.

6.1 Contributions

This article is the result of long and careful deliberation, based on seminal literature and the
existing principles of scientific enquiry. It contributes to process discovery research in theoretical
(epistemological) and practical (methodical) respect. From a theoretical perspective, it establishes an
understanding of process discovery as an empirical science in need of empirical research methods.
By relating existing principles of scientific enquiry to existing process discovery research, we point
out epistemological challenges in process discovery, such as the operationalization of constructs
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and the generalizability of results. Furthermore, the paper introduces a general terminological
framework to be used as a shared vocabulary in developing research methods.

From a practical perspective, the paper provides concrete guidelines for researchers. Authors
could consider the checklist as a guideline for conducting valid and reliable process discovery
experiments. If checklist items are answered with more than yes or no, they may provide structure
to ensure that each item has been sufficiently addressed. In addition, reviewers can use the checklist
as a guideline for their assessment of the quality of the experiments in submitted papers. Using the
checklist, it becomes easier to judge reliability and validity of the submission.

6.2 Limitations

Generalizability. In this article, we have shown the applicability of our research methodology in an
exemplary experimentation, where we discuss how it guided the experimental design, execution
and conclusion. However, this was only one example, meant to demonstrate and illustrate the
applicability of the methodology. It does not show that the methodology is generalizable. Therefore,
it needs to be applied for different experiments in different context, ideally by other researchers.

Evaluation. The demonstration of the methodology in an exemplary experiment also does not
constitute a full evaluation. For that, we would need to show that the methodology fulfils its
intended purpose: serving as a guideline for other researchers in conducting process discovery
experiments. This aspect can only be evaluated by means of practical application in the field,
conducted by researchers other than ourselves. Therefore, we invite the community to apply the
methodology in their experiments and thereby to evaluate and advance it.

Completeness. The checklist does not claim to be complete. Given the practically endless options
for conducting experiments, it would be impossible to list all potentially relevant questions. Instead,
we consider the checklist to be a generic guideline, which allows researchers to reflect on how the
quality and the contributions of research. When conducting an experiment, they need to adapt and
potentially extend the checklist to fit their respective objectives.

6.3 Threats to Reliability and Validity

Usability. Our research methodology mainly consists of informal definitions and relations. The
items of the checklist can only be addressed by careful scientific arguments in prose. As an example,
consider the question “Do the claims use concepts correctly?”. Authors may be tempted to answer
this question with “yes” and move on. However, as we saw in our own experiment, answering this
question requires a careful design of both the concept and the claim. In our exemplary evaluation,
it took multiple iterations to grasp and operationalize the concept of “sensitivity to noise” in a way
that it was specific enough to support our claim but general enough to apply to any model quality
property. Especially for an inherently technical and traditionally formal research discipline like
process discovery, this unusual way of conducting research might limit the practical usability of
the methodology.

The usability of our methodology is also threatened by the page limitations of publication outlets,
such as most conferences. As shown in Section 5, explicating all checklist items can become lengthy.
However, all elements of the checklist are required to achieve sufficient reliability and validity of
experimental evaluations. Therefore, it is not feasible to only consider a fraction of the checklist
items. Instead, we propose authors to use the checklist to guide the design and execution of their
experiment. This means that at least for themselves, they should have a good answer to each posed
question and write it down in a separate document, which is provided, e.g., in a separate repository
together with the implementation and the detailed results. For the actual publication, it then suffices
to provide a brief synopsis, i.e., to write down the most important aspects of the experimental
design and execution.
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Guarantees. As we mention throughout the paper, our methodology is meant to support
researchers in designing and conducting process discovery experiments. However, it cannot provide
any guarantees about the quality of the research outcome. Even if researchers apply it to the best
of their abilities, the resulting experiments might be unreliable or invalid. This is both a threat to
reliability and to validity, just as the preceding one, originating from the practical aspirations of
the experiments and can therefore not be fully mitigated.

Potential Bias. The design of the methodology is based on scientific argumentation. After drafting a
first initial version of the terminology, the checklist, and the setting of the example experimentation,
we described the exemplary evaluation through the lens of the checklist items, revising and refining
all three parts in conjunction. We had long and intensive discussions that required us to reflect on
our own research process, explicate our assumptions, and revise our understanding of what we
thought was common knowledge. Therefore, this research approach can be subject to potential
biases of the individual researchers. We mitigated these biases by including a set of researchers
from different backgrounds and establishing a consensus amongst ourselves.

7 Conclusion

Process discovery algorithms aim to construct process models from event logs, such that these
models can be analyzed to assist organizations in process optimization. In this article, we introduce
a novel research methodology for process discovery: PDE. Having observed that a systematic
approach for experimenting with process discovery algorithms is needed to develop process
discovery into an empirical discipline, we applied the principles of scientific enquiry to the process
discovery field. Based on our findings, we developed the methodology of PDE, which consists of
a shared terminology and a checklist for experimentation. We demonstrated its applicability by
means of an exemplary evaluation. The proposed methodology helps researchers to explicate the
reliability and validity of experiments and to study the effects of these threats on the results of
process discovery. We encourage the field to study the effect of other sources of potential threats to
reliability and validity, such as ecological validity, i.e., the degree to which experimental results can
be generalized to a real-world setting.

Many aspects of PDE may also be applicable to other process mining disciplines or research
methods. For instance, elements of the shared terminology can also be found in conformance
checking, which implies that the corresponding checklist items can be leveraged. Furthermore,
other research methods, such as case studies, could benefit from our methodology. Examining and
extending the applicability of PDE to other process mining disciplines and other research methods
should therefore be a focus of future work.

The overall goal of our research is to improve reliability and validity of experimental results
in process discovery. With the introduction of PDE, we propose a next step towards this goal.
Given the complexities and idiosyncrasies of the process discovery field, it remains unclear whether
external validity and conceptual replicability are realistically achievable for all experiments in the
field. They might remain a scientific holy grail. However, this does not mean that we should not
strive to achieve them. Only if our experiments are sufficiently reliable and valid, we can get closer
to the ultimate goal of process discovery: to discover the true process.
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