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1. Introduction and main result

Consider the scalar non-autonomous stochastic differential equation (SDE)
dXt = a(t,Xt)dt + C(t,Xt)th, te [O,T], XO =29 € R, (1)

where W' = (W})cjo,7) is a Brownian motion and the drift and diffusion coefficients a,c : [0,T] x R — R
satisfy suitable assumptions. Explicit solutions of such SDEs are rarely known and a simple and popular
numerical method for this equation is the Euler scheme. For an equidistant discretization with N € N time

steps, i.e.,
T
ti=ky, k=0...N,
the equidistant Euler scheme for (1) is given by x,(cN) = xj, with
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Tht1 :mk—l—a(tk,xk)(tkﬂ —tk)+c(tk,$k)(wtk+l —Wtk), k=0,...,N —1. (2)

It is well known that the Euler scheme (2) for SDE (1) has strong convergence order 1/2, i.e., one has

lim sup N1/2 sup E ‘th — x,(CN)‘ < 00,
N—oo k=0,...,N

if the drift and diffusion coefficient satisfy the following standard assumptions (HLG) and (L).
Assumption 1.1. We will use the following assumptions on functions f : [0, T]xR — R, which are measurable.
(HLG) There exists a constant K > 0 such that

[f(t2) = f(s,2)] < K(L+|a])]t s/

for all s,t € [0,7] and all z € R.
(L) There exists a constant K > 0 such that

[f(t,2) = ft,y)| < K|z -y

for all t € [0,7] and all z,y € R.
(P) We have

f(t,z) =0
for all t € [0,T] and all z € R.

In recent years, the analysis of numerical methods for SDEs under non-standard assumptions has become
a very active research field, see Subsection 1.1 for an overview. In this article, we consider SDEs where the
drift coefficient satisfies the standard assumptions, but the diffusion coefficient is a fractional power of a
standard diffusion coefficient. More precisely, we will study the SDE

dX; = a(t,Xt)dt + O'(t, Xt)gth, te [0, T}, Xo=x9 € R, (3)

where a,0 : [0,7] x R — R satisfy (HLG) and (L), o satisfies additionally (P) and we have g € [1/2,1).
Since a and 09 are continuous and of linear growth, the existence of a weak solution to Equation (3) follows
from the works of Skorokhod (see [43,44] and also [25]). Since moreover

|lo(t,2)? —o(t,y)?] < K|z —y|®

for all t € [0,7] and all 2,y € R and

13
/x*QQd:p = 00
0

for all € > 0, we have strong uniqueness and consequently existence of a unique strong solution to Equation
(3) by the results of Yamada and Watanabe (see, e.g., Proposition 2.13 and Corollary 3.23 in Chapter V of
[23)).

Typical examples for SDE (3) are the non-autonomous Cox-Ingersoll-Ross (CIR) process (see, e.g., [3],
and also [6] for the original autonomous CIR process with constant functions &, A, )
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dX; = k(t) (A\(t) — X¢) dt + 0(t)\/ X, dWy,
the non-autonomous Chan-Karolyi-Longstaff-Sanders (CKLS) process (see, e.g., [4] for the original version)
dX, = k(t) (A(t) = Xy)dt + 0(t) (X;7)° dW,

with g € (1/2,1) and the non-autonomous Wright-Fisher (WF) process (see, e.g., [12] for the original

version)
dX; = k() (A(t) — X¢) dt + 0()/ (X (1 — X)) TdW,

with k, A, 0 : [0,T] — [0,00). These SDEs have applications in various fields, e.g., in biology and finance, to
mention a few.

To formulate our main result, we will need the following assumption:

Assumption 1.2. Assume that a, o satisfy (HLG) and (L) and that o additionally satisfies (P). Moreover let
g € [1/2,1) and assume that there exists s € [0,1 — g] such that

/T]E [a(s, XS)2(9+5_1)] ds < oo. (4)

Our main result reads then as follows:

Theorem 1.3. Let g € [1/2,1) be given and assume that Assumption 1.2 holds for a fized s € [0,1 — g].
Moreover, let X = (Xt)ie(o,1) be the solution of (3) and let (x,(CN))kZO N be given by the Euler scheme (2)

.....

with diffusion coefficient ¢ = 09. Then we have

limsup N* sup E X, —xéN)’ =0

N —o0 k=0,...,N
forall A\ <1/2 —s.

How to interpret condition (4)? For this note first that the irregularity of the diffusion coefficient o9
arises from the set

I, = {(t,z) € [0,T] x R : o(t,x) = 0}.
For (t.,z.) € Z, and a neighbourhood U, of (t.,z.) the map U, > (¢,z) — o(t,x)? € [0, 00) is only Holder
continuous of order g and not Lipschitz continuous. Moreover, since g+ s < 1 the exponent in condition (4)

is zero or negative. Thus, this condition is a weighted measure, how much the solution X takes values in or
close to the set Z,. In the case s = 0, that is

T
/]E [O’(S,XS)2972] ds < o0,
0

the process X is sufficiently apart from the set Z, and we have directly convergence order 1/2 — ¢ for all
e > 0. If on the other hand
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T
/]E [o(s, X5)?97?] ds = oo,
0

the process X is too close to the set Z, and we need a compensation factor s and obtain convergence order
1/2 —s—e.
Finally, let us comment on three limiting cases:

(i) For g = 1 condition (4) would be trivially satisfied for s = 0 and we would (formally) obtain convergence
order 1/2 — ¢ in accordance with the classic result for the Euler scheme.
(ii) If o is uniformly elliptic, i.e.,

inf o(t,z) >0,
(t,2)€[0,T] xR

then condition (4) is trivially satisfied for s = 0 and we obtain convergence order 1/2 —e. This is again
in accordance with the classic result for the Euler scheme, since ¢ satisfies (HLG) and (L), if o is
uniformly elliptic.

(iii) If g > 1/2 we can choose s = 1 — g. Then condition (4) is satisfied, since g+ s — 1 = 0, and we obtain
convergence order g — 1/2 — e. This recovers in our setup the results of [45] and [16] for autonomous
SDEs.

How to verify condition (4)? For this we present two approaches in Subsection 2.1 and Subsection 2.2.

The remainder of this article is structured as follows: In the next two subsections, we give an overview
of previous results in the literature and outline our notation. Section 2 applies our main result to several
SDEs, in particular to the above mentioned CIR, CKLS and WF processes. Section 3 is devoted to the
proof of our main result, while in the Appendix we collect some general auxiliary results.

1.1. Overview of previous results

Since we have g € [1/2, 1), the diffusion coefficient of (3) is not globally Lipschitz continuous and therefore
standard convergence results for the Euler scheme do not apply. Following the pioneering articles [15,17,
21,24,45], the strong approximation of the Euler scheme for SDEs with non-standard coefficients has been
extensively studied.?

In the case of an irregular drift coefficient, there has been a series of articles including [1,8,9,14,26,29,35,
36,39-41] that has culminated so far in the works [32] and [7], which established under mild assumptions
on the drift coefficient the classical convergence order 1/2 for the Euler scheme. More precisely, for scalar
autonomous SDEs with piecewise Lipschitz drift and a globally Lipschitz diffusion coefficient, which does
not vanish in the discontinuity points of the drift, an LP-error of order 1/2 is obtained in [32], while in
the multi-dimensional case for a bounded drift and an elliptic, bounded Cg—diﬂusion coefficient the same
classical convergence order is obtained in [7].

Furthermore, the strong approximation by other schemes than the Euler scheme has been analyzed, e.g.,
in [13,27,28,33,34,46], and corresponding lower error bounds for the strong approximation of SDEs with
(possibly) discontinuous drift coefficient have been studied in [19], [34] and [11].

The case of a general SDE with a non-Lipschitz diffusion coefficient has received less attention. While
the works [39-41] also allow weaker assumptions on the diffusion coefficient, the strongest results so far are
due to [45] and [16].

2 To improve the readability, we will slightly abuse notation and write in this overview convergence order X also for results which
established convergence order A\ — e for all € > 0 for a given XA > 0.
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In [45] the following Hoélder- and Lipschitz-continuity assumptions on the coefficients are used: There
exist K > 0,01, 02 € (0,1],g € (1/2,1] such that

la(t,z) —a(s,y)| S K (Jt— sl + |z —yl),  le(t,z) —c(s,9)| < K (jt = 5|7 + |z —y|%)

for all s,t € [0,T],2,y € R. Then, Theorem 4.1 in [45] gives for the Euler scheme (2) the L!-convergence
order min{f1,9 — 1/2,(2 —1/g)B2} in the discretization points.
The article [16] analyses the Euler-type polygonal approximation

dY; = a(t, Yo )dt + ct, Yy)dWs, te[0,T],  Yy=umz€R, (5)

where n(t) = max{tx € {to,t1,....,tn} : tx < t}. For autonomous SDEs this approximation coincides in the
discretization points with the Euler scheme (2), while for general non-autonomous coefficients this scheme
is typically not implementable. The assumptions in [16] are as follows: We have a = b + f, where for all
t € [0, 7] the function f(¢,-) is monotonically decreasing,

sup ([b(t,0)] + [c(t,0)]) < o0
te[0,T]

and there exists K > 0,83 € (0,1],g € [1/2,1] such that
|b(t,x)—b(s,y)| §K|x_y" |c(t,x)—c(s,y)| §K\x—y|g, |f(tvx)_f(svy)‘ SI(|x_Z/|'B3

for all t € [0,7],z,y € R. Under these assumptions, Theorem 2.1 in [16] gives that the L!-error of (5) is
bounded by C/log(N) for a constant C' > 0 if g = 1/2 and is of order min{g — 1/2, 83/2} for g € (1/2,1].

On the other hand, the classical autonomous CIR process has a Holder-1/2-diffusion coeflicient and has
received a lot of attention in recent years, see, e.g., [18,20,31] and the references therein. In particular, it
turned out that Euler schemes attain for this SDE L'-convergence order 1/2, if the Feller index v := 2;—;‘
satisfies v > 1, see [31]. In this case our Assumption 1.2 is satisfied with s = 0. Remarkably, this is a much
better decay of the error than the logarithmic one provided in [16]. Similarly, for CKLS-type SDEs with
g € (1/2,1) and a symmetrized Euler scheme the work [2] also establishes convergence order 1/2.

Thus, Theorem 1.3 provides a unifying framework and also a criterion, i.e., condition (1.2), which explains
and unites these different error bounds for the Euler scheme.

1.2. Notation

As already mentioned, we will work with an equidistant discretization
tr =kAt, k=0,...,N,

with At = T'/N and N € N. Furthermore, we define n(t) := max{k € {0,..., N} : t, <t} and n(t) := t,).
Constants whose values depend only on x¢, T, a,0, g will be denoted in the following by C, regardless of
their value. Other dependencies will be denoted by subscripts, i.e., C, means that this constant depends
additionally on the parameter p. Moreover, the value of all these constants can change from line to line.
We will work on a filtered probability space (£, F, (Ft)epo,], P) where the filtration satisfies the usual
conditions, and (in-)equalities between random variables or random processes are understood P-a.s. unless
mentioned otherwise.

Finally, for p € N we denote by CP(M;R) the set of p-times continuously differentiable functions from the
set M to R and by Cj (M;R) the set of continuously differentiable functions from M to R, whose derivatives
are bounded. Moreover, for v € (0, 1), we denote by C¥(M;R) the set of v-Hélder continuous functions from
M to R.
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2. Examples

Condition (4) from Assumption 1.2 gives structural insight in the convergence behaviour of the Euler
scheme, but how to verify it? Here we present two approaches. The first one is based on the Feller test and
Ito’s lemma. The second one is based on a time change and the comparison lemma for SDEs.

2.1. Autonomous SDEs on domains
Here we consider the autonomous equation

dX; = a(X3)dt + o(Xy)%dWy, te€]0,T], Xo = x, (6)
and we assume that a € C} (R;R) and o € CZ(R; [0, 00)). To apply Itd’s lemma to derive an explicit criterion
for condition (4) we need that ¢? is differentiable on the support of X. To this end, we assume that there
exists I = (I,r) with —oo <1 < r < oo such that

Veel: o(x)>0,
as well as
P(X, eI, tel0,T]) =1.

The latter condition can be checked, e.g., by the Feller test, see Theorem A.1 in the Appendix.

Under these assumptions it is well known that the Euler scheme has convergence order 1/2 in law, that
is

lim N2 sup |th — w,iN) £ max |Uel,
N—oo k=0, ..., te[0,T]
where the limiting process U is the solution of the SDE
dU; = a' (Xy)Updt + go® ' (X¢)o! (X)) Upd Wy + %U(Xt)nglgl(Xt)dBt’ Uy =0, (7)

with another Brownian motion B = (B)¢cjo,7] Which is independent of W. See [38] and [42]. Thus it is
reasonable to expect that in this case the Euler scheme has also strong convergence order 1/2. The limiting
SDE (7) also illustrates that the bottleneck is the error propagation and not the local error, since we have
the exponent g — 1 in the error propagation term and the less restrictive exponent 2g — 1 in the local error
term.

Proposition 2.1. Let g € [1,2,1), a € C}(R;R) and o € CZ(R;[0,00)). Moreover let I = (I,r),—00 <1 <
r < oo, and assume that the unique solution of the SDE

dX; = (I(Xt>dt + ()'(AXVt)ngVt7 te [0, TL Xo=x9 €1,
satisfies
P(X,el, tel0,T])=1

as well as
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Veel: o(zx)>0.

Finally, assume that

o (@alz)  10"(x)o(x)?e 3\ (o' (x))%c(z)?®
f b _° - 8
vel o(x) 2 o(x) e 2 o(x)? - (®)
Then we have
limsup N* sup E Xi, — x,(CN)’ =0
N —o0 k=0,...,N

for all X < 1/2.

Proof. Let k € N such that k& > o(20)?9~Y and set
e = inf{t € [0,T]: o(X;)2¢ D >k}

with the convention inf () = T'. An application of Ito’s lemma and the martingale property of the Ito integral

give
tATE
8 (01X )X00) = 0000V E [ hog(X)ds
0
with

R (@) = (29 — 2)o ()2

y (J'(I)Jl(os)a(:c) + (g - ;’) o (2)252(o" (2))? + ;U(x)zgla/'(x)> .

Assumption (8) now yields the existence of a constant C' > 0, which is in particular independent of &, such
that

ha,sg(x) < Co(z)*9~

for all z € I. Gronwall’s lemma gives then the existence of another constant C' > 0, which is in particular
independent of k, such that

sup E (U(Xt/\m)ﬂg*l)) <C.
t€[0,T]

Assumption (4) with s = 0 now follows by taking k¥ — co. O

A combination of a and o which satisfies the assumptions of the above proposition with I = (0, 00) is for
example given by
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2.2. Prototype SDEs
In this subsection we consider the SDEs
dX: = a(t, X¢)dt + ¢;(t, X¢)dWy, t € 10,7, (9)
for i = 1,2, 3, where
ci(t, z) = 0(t)hi(x)
with 6 € C1/2(]0,T); (0,00)) and
h(z) =Vat,  ha(z) = V@ —a)F,  ha(z) = ("),
where g € (1/2,1).

Theses SDEs are extensions of the classical CIR, CKLS and WF processes. For verifying Assumption 1.2,
the following time change procedure will be helpful. So, let

Then O is strictly increasing and has an inverse A := ©~!. Now consider the time-changed process
X, = Xa(t); te [0, A7Y(T)].

Since X satisfies

t t
X =z —|—/ (s, Xs)ds —I—/G(S)hl(Xs)dWs, t € 10,7,
0 0
we have
A(t) A(t)
X, =z + (s, Xs)ds + [ 0(s)hi(Xs)dW,,  te€0,T]
0 0
Now set
A(t)
W,= [ 6(s)dw,, tel[0,A~(T)]
0

Then W is a Brownian motion on [0, A=Y(T)] and the rules for the time change for Riemann and Ito
integrals, see Proposition A.2 in the Appendix, yield that
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This enables us to exploit the classical bounds for the inverse moments of the CIR, CKLS and WF processes.
See Subsection A.3 in the Appendix.
For ¢; and co we obtain the following result:

Proposition 2.2. (i) Let zo > 0 and 6 € CY%([0,T];(0,00)). Assume that the drift coefficient a satisfies
(HLG), (L) and assume furthermore that

t
= min a( ’0)

—— > 0.
telo,T] 6(t)? ”

Then the unique strong solution of

dXt = a(t,Xt)dt + 0(15)\/ X;_th, te [O,T], XO = X,
satisfies P(Xy > 0,t € [0,T]) =1 and we have

limsup N* sup E Xy, —x,(CN)‘ =0

N—o0 k=0,...,.N

for all
A < min{1/2, uo}.

(ii) Let xg € (0,1) and 6 € C*/2([0,T); (0,00)). Assume that the drift coefficient a satisfies (HLG), (L) and
assume furthermore that

o= B T >0 O
Then the unique strong solution of
dX: = a(t, Xp)dt + 0(t)\/ (X (1 — X)) TdW,, t€][0,T], Xo = o,
satisfies P(X, € [0,1],t € [0,T]) = 1 and we have
limsup N* sup E X, f:c,(CN)‘ =0
N—oo k=0,...,.N

for all

A< min{l/Qa ,LLo,[Ll}-

Proof. (1) Let us first check the assumptions (HLG) and (L) on @ and o for both equations. For the drift
coefficient there is nothing to verify.
For the diffusion coefficient in (i) note that o is given by o(t,x) = 6(t)?zT. So clearly, we have

lo(t,z) —o(t,y)| < ( max |9(T)|2> 2 =yt < [10]3% | — vl
T€[0,T]

with

0| := ot
16l = pmas 6(6)] < oc



10 A. Mickel, A. Neuenkirch / J. Math. Anal. Appl. 542 (2025) 128788

and
oty 2) — o(s,a)] < 2 ( max 9<T>) 6(6) — 6(s) ||
T€[0,T]
< 200lloclOl1 jolt — s/
with
0(t) — 0(5)]
9 = —_—— < 0
10111/2 ogigggT It — s|1/2

For (ii) note that o(¢,2) = 8(t)?(x(1 — x))T. In this case we have

lo(t,2) — o(t,y)] < (Tgl[g% 9<T>|2) (@1~ 2)* — (y(1 - )t < [6]%]a — o

and
o (t, ) — o(s,2)] < 20|10 |61 /2]t — s/,

(2) Thus it remains to relate the inverse moment condition to the quantities po and p1. We start with
assertion (i). First note that

0 < min 0(t) < max 6(t) < co.
t€[0,T] te[0,T]

Using this and the time change described above we have that

sup E [(9(1&)\/;:)]9] <oo <= sup E [f(f/g} <00

te[0,7) t€[0,A=1(T)]

for p € R, where

Recall that

t,0
0 := min a(t,0)

>0
tef0,1] 6(t)?

and note that

min a(t,0) _ . a(A(t),0)

i€lor) 002 oA i) O(A)2

Define

1
ep(5,) = o — K s ) o 10
aep(8,) = pio qu{ﬂa}?m] G(A(T))Q) x (10)

where K is the Lipschitz constant of a with respect to  from assumption (L). Since



A. Mickel, A. Neuenkirch / J. Math. Anal. Appl. 542 (2025) 128788 11

a(A(s),z) = a(A(s),0) + a(A(s), z) — a(A(s),0)
we now have that

a(A(s), =)

m > acp(s, x), s€[0,A7HT)], ze€R.

Therefore, the comparison result for SDEs, see Proposition A.4 in the Appendix, yields that
P(X, > Z, t€[0,A7/(T)]) =1

)

where Z is given by the SDE

¢ ¢
Zy = x0 + /acp(s, Zs)ds + / V ZEdW, t €0, A71(T)].
0 0

We have
P(Zy>0,te0,A"Y(T)]) =1
and

sup E[Zf]<oco  for  p> —2uo,

te[0,A=1(T)]
see Lemma A.3(i). Since
. T
—/E[stfl]dt < sup E[)Z'fsfl] < sup E[Z77Y],
T ) te[0,A=1(T)] te[0,A=1(T)]

condition (1.2) with g = 1/2, that is

T
]E/ (0(t)2X,)** " dt < oo,
0

now holds if

s+ g > 1/2.

Hence, Theorem 1.3 yields convergence order A for all A < 1/2, if ug > 1/2. Otherwise, i.e., if pg < 1/2,
Theorem 1.3 yields convergence order A for all A < .
(3) For assertion (ii) note that

tes[%%]]E [(Q(t) (Xe(1 = Xt))+)p] <0 = te[oil_pl(T)]IE [()N(t(l — )?t))p/z} < 00

for p € R where
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t

¢ s [UAOK) T L
Xt = 0+/ 0(A(s))2 d +0/ (Xs(1 — X5))TdWs, tel0,A”(T)].

0

(a) Proceeding analogously as for case (i) we obtain that
P(X;>Z;>0,te0,A"Y(T)]) =1,

where Z is given by the SDE

Zt:m0+/acp(s7Zs)ds+/\/(Zs(1—ZS))+dWS7 te 0, AT,
0 0

with ap as in (10) and

sup E[ZF] < for p> —2pu,
t€[0,A=1(T)]

see Lemma A.3(ii), which yields that
T
2 25—1
E [ (0(t)°X:)"  dt < oo
0

holds if
s+ o > 1/2.

Here we have used again

1

T
?/E[stfl]dt <  sup E[)?fsfl] < sup E[zF7).
0

te[0,A=1(T)] te[0,A=1(T)]

(b) Now we need to establish that

T
E [ (6(t)°(1—X,)* " dt < 0
/

holds if
s+pup >1/2
where
a(t,1)
M= g 02

This can be done, e.g., by using the reflected process )?{ = 1 — X,, which satisfies the SDE
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oy [aAWL-XD [ e
X =1 / S s+ / V&= Xyram,

where W is a Brownian motion given by
W) =-W,,  telo,AY(T)).

Now set

1
ep\S) &) = - K 0(A(7))? .
acp(8, ) = (re[or,r}&a}i(T)] 9(A<T))2) ‘

Here K is again the Lipschitz constant of a with respect to  from assumption (L). Since

clo,A!

a(A(s),1 —z) = a(A(s),1) + a(A(s),1 — x) — a(A(s), 1)

we have that

_a(A(s),1 —x)
0(A(s))?

>aep(s,x), se[0,ATN(T)], zeR.

13

Therefore, another application of the comparison result for SDEs, see Proposition A.4 in the Appendix,

yields that
P(X] > 2, >0,te[0,A7(T))) =1,

where Z is given by the SDE

t
Zt:xo—i—/acp(sZ ds—l—/\/ (1-2Z dWT
0

Now we have

sup E[Z]] < o0 for p>—2u,
te[0,A—1(T)]

see Lemma A.3(ii), which yields that

T
]E/ 2(1— X)) dt < o0,
0

if
s+ p > 1/2.

(c) Since

((x(l _ x))+)25—1 < 21—25 ((x+)25_1]]-{r§1/2} + ((1 _ x)+)25

S 21—25 ((l‘+)25_1 + ((1 _ .’IJ)+)2S_1) ;

€ [0, A7Y(T))].

“Mesayy)
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we obtain from (a), (b) and the Minkowski inequality that

25—1

T
E [ (00t)°X,(1-X,))" " dt <oo
/

if s + p; > 1/2 for ¢ = 0, 1. Assertion (ii) now follows from Theorem 1.3. O

Thus, the relative strength of the upward and downward drift, respectively, with respect to 6 at the
boundaries of the domain of the SDE influences the convergence rate for these prototype equations with a
square root diffusion coefficient.

However, for c3 already o > 0 is sufficient to obtain convergence order 1/2 — ¢.

Proposition 2.3. Let xq > 0, g € (1/2,1) and 0 € C/2([0,T];(0,00)). Assume that the drift coefficient a
satisfies (HLG), (L) and assume furthermore that

= 0 ae((té)g) =0
Then the unique strong solution of
dX; = a(t, X,)dt +0(t) (X)) dW,, t€[0,T],  Xo= o,

satisfies P(Xy > 0,t € [0,T]) =1 and we have

limsup N* sup E X, —x,(CN)‘ =0

N—oo k=0,...,.N
for all

A< 1/2.

Proof. The proof can be done along the same lines as the proof of case (i) of the previous proposition.
The only and crucial difference is, that Lemma A.3(iii) gives us the existence off all inverse moments of the
CKLS process. Thus we can take always s = 0 in Theorem 1.3. O

3. Proof of Theorem 1.3
3.1. Preliminaries

Before we start with the proof of our main result, we will present some results that will help us later.
First, we define a time-continuous version of the Euler scheme by ng) = x; with

B = By + a((E), Bag) (£ — (1)) + 0 (1), Ty N(We = Wy), £ € [0,T). (11)
Here, we denote 7(t) = max{t; € {to,t1,....,tn} : tx < t}. Clearly, we have x, =Ty, for k=0,...,N.

Note that (HLG) and (L) imply that a and o satisfy a linear growth condition, that is there exists C' > 0
such that

la(t, )| + |o(t, z)| < C(1+ |z|) for all ¢te€0,T], x € R.
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Since
9 <1+=x for all x € [0, 00),
also o? satisfies a linear growth condition. Thus, we obtain the following result by standard computations.

Lemma 3.1. Let p > 1 and Assumption 1.1 hold. Then, there exist constants C, > 0 such that

+ sup E

E| sup [X,[?
0<s<t<T

{IXt — X, [P
t€[0,T]

TP ] =G

and

=(N) _ =(N)p
N)‘p +sup sup E [w] < C,.
NeN 0<s<t<T

sup E | sup \:EE
NeN  |te[o,T)

The next lemma gives us a bound for the expected local time in zero of a semimartingale. It is taken
from [9)].

Lemma 3.2. For any ¢ € (0,1) and any real-valued, continuous semimartingale Y = (Yi)cp0,1), we have

t

Ys
E [LY(Y)] <46 —2E / (ﬂ{nem,a)} + Ly, >5pe' ) dYs
0
t

E /ﬂ{yoa}el_%d(Y)s ; t €[0,7).
0

+

ST

Here (LY(Y))sejo,r is the local time of Y in & = 0. For almost all w € Q the map [0,7] > t —
[LY(Y)](w) € R is continuous and non-decreasing with L3(Y") = 0. For more background on local times see,
e.g., Chapter IIL.7 in [23]. For our purposes, it suffices to mention the Tanaka-Meyer formula for continuous
semimartingales of the form

t t

Yi—wo+ [ytds+ [ylaw,  te o)
0 0

where (yf)te[o,T] and (yM )telo, 7] are continuous, square-integrable and adapted processes and yo € R. Then
the Tanaka-Meyer formula, see, e.g., Equation 7.9 in Chapter III in [23], states that

t t
Yl = lyol + / sign(Y.)ylds + / sign(Ya)yMdW, + LO(Y),  te[0,T]. (12)
0 0

Finally, the following inequality will be very useful in our computations. Similar estimates were used in
Equation 2.69 in [5] for g = 1/2 and in Equation 20 of [30] for general g.

Lemma 3.3. Let g € [1/2,1) and 3 € (0,1]. Then, we have

|29 — 9| < 2~ (1-08 |5 — o FHe(1=R) forall x>0,y>0. (13)
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Proof. (i) We first prove the assertion
|2 —yf] (2170 +y' %) < 202y, (14)

from which inequality (13) directly follows in the case 8 = 1. For = y as well as for y = 0, the statement
holds trivially. Without loss of generality, we can assume that = > y and prove the assertion

(2% —y?) (2170 +y'79) < 2(z —y).

o= ((2) ) ((2) )
(G )(6) "),

Now set z := i Notice that z > 1. Therefore, it remains to show that

We start with

(28 —1) (2179 +1)<2(z-1) (15)
for z > 1. Next, we define
fz)=2(z—1)— (29 —1) (2" 9+1).

We have f(1) = 0 and if we are able to show that f is increasing for all z > 1, then Equation (15) follows.
We have

fl2)=1-gz"" +(1~-g)2®
and consequently
f(z)>21-g>0

for all z > 1. This concludes the proof of (15) and also of (14).
(ii) Now note that

28 —y®| < |w —yl®
by concavity. Equation (13) follows then from
28 — 8| = |2® — 32 |P|2® — 20 < |2® — 9P|z — y|g(1—6)
and the first step. O

3.2. Proof of Theorem 1.3

Theorem 1.3 is a direct consequence of the following Theorem 3.4 with

o1y o)
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and € > 0 arbitrarily small. The strategy of the proof of Theorem 3.4 is taylormade® for the L'-error and
based on the strategy of [31], which in turn was inspired by [9].

Theorem 3.4. Let T be given as in (11) and let Assumption 1.1 be fulfilled. Moreover, assume that there
exists B € (0,1] and € > 0 such that

E /O’ Ae=DF=2(s| < 0. (16)
0
Then, we have
limsup N* sup E |X, —actN)‘ =0
N—oo te[0,T]

forallx<g—1/2+ 5(1—g).

Proof. Define the error process R = (Rt):eo,1) by Rt = X¢ — 4.
(i) The Tanaka-Meyer formula, see Equation (12), yields

E[|R:|] = sign(R )dR, | +E [LY(R)]

I
&= &=
o\ \ﬁ
w0
0’
:
:
=

+E /sign(Ru) (o(u, X0)® — o(n(u), Tp(u))®) dWy | + E [L?(R)] .
0

We have

t

E /sign(Ru) (o(u, Xu)® — o(n(w), Zyew))®) dWu | =0
0

due to Lemma 3.1, the linear growth of the diffusion coefficient and the martingale property of the Ito
integral. Looking at the first term, we have

t

E /sign(Ru) (a(u, Xy) — a(n(u), Z,))) du
0

_ / sign(Ra) (a(u, Xu) — alu, 7)) du
0

+E / sign(Ra) (a(u, 74) — a(n(u), 7)) du
0

3 In our opinion, it can not be adapted to obtain sharp L'-sup- or LP-estimates.
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+E /sign(Ru) (a(n(u), zu) — a(n(u), Tyw)) du

t

t t
<c /]E[|Ru|] du+(At)1/2/1E[1+|:zuH du+/]E[|3‘3u—:En(u)|] du
0 0 0

using (HLG) and (L). Lemma 3.1 now implies

t
sup E[|R,|] < C(At)? +C/ sup E[|R,|]du+E [LY(R)]. (18)
u€|0,t] ve[0,u]

0

(ii) With Lemma 3.2 we can derive a bound for the expected local time of the error process R in zero.
Let 6 € (0,1), then

t

_Bs 1 _ Rs
(1{356(075)} +1{RSZ5}61 5 )dRS + =-E /1{R5>5}61 B d<R>S . (19)

E [LY(R)] < 46 — 5
0

o

We define Y, := (g c(0,5)} + 1{3525}61_% and look at the second term of (19), i.e.,

t t

E /stRs =E /Ys(a(s7Xs)—a(n(smn(‘e)))ds ;

0 0

where we already used the martingale property of the Ito integral. Since 0 < Y; < 1, we obtain proceeding
as above that

/ Y.dR,|| < c(ant +C / E [| R[] du. (20)

For the third term of Equation (19) note that

t

(R); = / (o(s, Xs)® — o(n(s),fn(s))g) ds, te[0,T].
0

Condition (16) implies that
P(o(x, X,) =0) =0
for all s € [0,T]. Thus, we can apply Lemma 3.3, i.e.,
28 — 8| < 9~ (1-8)8 |z — y|ﬂ+9(1—/3) 7 x>0, y>0,

and obtain
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_Rs _ 2
]I{RS>6}61 ° (U(S7Xs)g_U<77(S)axn(s))g) ds

Sl

t
1 _Bs
SE /1{R5>5}61 5d<R>S =-E
0

1 61_% 0(57 Xs) - 0(77(3)7 fn(s))|2ﬁ+29(1_ﬁ)
{Rs>0} o(s, X,)2(1-9)8

IN
SIS
&=

ds

/
/

Since
o+ [yl + 12| < Co (2l + [y]* + 12| forall z.y.2€R,
for « > 1 and
26 +29(1 - ) = 2(1 —9)B + 2g,

it follows that

¢ ¢
o(s,X,) — o(s, Ts)|2(1-9)8+20

el =R AR, | < 2205 | [ 1 1= 1205 d
1) {R>0}€ T8 {R.>0}€ o(s, X)2(-0)8 5
0 0

1 RS o(s,zs) — o(n(s), z,)|>(1-9)8+2a
{H>0} (s, X,)20-0)7

ds

ds

0'(3) XS)Q(l_B)ﬂ

t
C ,Ts) —  Tg) ) |2 0)6+20
| Coag /H{RW o ((s). Z5) = 0(1(s). T
LO

Moreover, exploiting (HLG) and (L) yields

/ C R RS|2(1*9)/3+29

1 1_ARs B, 1—Bs
0 0

t
+ —Cg’g (At)ﬁ(l_g)+g E / 1{R5>5}61_
0

re (14 |z,))2(1-9)8+28
5

U(S’Xs)Q(lfg)ﬁ ds

Ts— Ty(s) |2(1-9)5+2g

CB ~B8 1-Es
5 E /]l{RS>5}e 3 (5, X207 ds
0

2(1—g)B+e

Si—gp 0 the denominator and

Applying Lemma 3.1, condition (16) and Hoélder’s inequality with p =
q= p to the second and third term on the right side now gives

t

L Cs, T Cs.g, 1-
/IL{R se = Fd(R), | < 2oE /1{R5>6}e I ar i B e GO CY
0 0

(iif) It remains to study

t
Cho 1-Es
5 E /]l{RS>5}e s (s,XS) = g)ﬁd
0
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For this let a € (0,1). Since

swp E[RJ7] < C,
s€[0,T]

for all p > 1 due to our assumptions and Lemma 3.1, we have that
¢
1 |R,|2(1-9)8+2g s
SE /1{R3>6}6 * (s, X,)20-9)8
0

t

_1 1—Es
=5t | ) Hreworpe (s X, )05
0

t |R,[2(1-9)8+2g
I¢r, >sa1€ _%S—ds
{Ro=0} o (s, X,)20-0)B
0

2(1—-9)B

2 (8 ot - ma- )
0

t
< §(2(1-g)8+20)-1 / E [o(s, X,)720797| ds + Cp .0
0

by another application of the Holder inequality. Since

_ga-t
e g =0
for all p > 0, condition (16) now yields
1 / _r, |R,[?(1-9)8+20 - -
5E / Lig,~spe™ 0 st < Cp g 020 -0)A+20) 1 (22)

0

Summarizing the Equations (19) — (22) we have shown that
/ C
E [LO( )] <46 4+ C(At) %4-(]/[@ [|Rul] du+Cg,ga55°‘(2 (1-g)B+29)—1 | %(At)ﬁ(l—g)-ﬁ-g. (23)
0
(iv) Setting § = (At)1/2 gives

t
E [L)(R)] < C(AnY? +C / E [|Ru|] du + Cp g.oc(At)X =00 +0) =3 L 0y - (Ap)PU-0)+e—3
0

Note that

<

)

N —
N |

a(B(1 - 0) +0) ~ 5 < H(1—g) +a-

since we have o € (0,1) and S € (0, 1]. Consequently, we have

t

E [LI(R)] < c/m: ([Rul] dut + Cpg oo (A1) BU-0) 40~}

0

Combining this with Equation (18) yields
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t
1p B[Rl < (A0 4 [ sup B[Rl
u€l0,t] 0 v€E[0,u]

and the assertion follows by choosing o € (0, 1) sufficiently large and an application of Gronwall’s lemma. O
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Appendix A

For the sake of convenience, we collect here some general auxiliary results.
A.1. Feller test

Consider the autonomous SDE

dX; = a(Xy)dt + o(X)dWe, t€10,T], Xo = xo. (A.1)
We define
S:=inf{t>0: X, ¢ (I,7)}

as the exit time from I = (I,r) with —oo <1 < r < co. Now, Feller’s test for explosions (see Theorem 5.29
in Chapter V in [23]) gives necessary and sufficient conditions for the finiteness of S.

Theorem A.1. Assume that the coefficients a : I — R and c¢: I — R satisfy

Veel: c*z)>0

and
m+61
Ve el 36>0:/wdy<oo.
)

Define the scale function p by

y
p(x) == /exp —2/ Z((z) dz | dy, z=e€l,

for a fixed o € I and the function v by

x

v(z) == /p’(y)/ypl(z)ZCQ(z)dzdy, z el

o o

Let (X, W) be a weak solution of (A.1) in I with deterministic Xg = xg € I. Then, P(S =00) = 1 or
P (S =) <1 according to whether
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v(l+) = glll'll v(z) = lﬂgrrlv(x) =v(r—) =00

or not.
A.2. A deterministic time change

The following auxiliary result deals with deterministic time changes for Riemann and Ito integrals. For
this, let 8 € C([0,77]; (0,00)) and define

Since 6%(t) > 0 for all ¢t € [0,T], the function © is strictly increasing. Therefore its inverse function A =
©~1: D —[0,T] with D = ©([0,T]) exists. Then,

A(t)
Wt = / e(S)dWS7 t S [O7A_1(T)]7
0

is a Brownian motion adapted to the filtration (ft)te[o}A—l(T))] with ft = Fa)- See, e.g., Proposition 4.6
in Chapter III of [23]. Moreover, we have the following:

Proposition A.2. Consider a continuous and adapted process Y = (Yy)icjo,1) such that
T
/ E|Y,|?ds < oo
0

and let 8 € C([0,T7; (0,00)). Then, we have

A(t) t )

Yids = | Yy sr—d t AT P —a.s.
/ sas / A(T) 92(14(7')) T, € [07 ( )]a a.s.,
0 0

and

A(t) t
/ 0(s)YdW, = /YA(T)dWT, t e [O,Ail(T)], P —a.s..
0 0

Proof. The first statement is the classical substitution rule for Riemann integrals, while the second statement
follows from Proposition 4.8 in Chapter III of [23]. O

A.8. Moment bounds for CIR, WF and CKLS

Here we collect moment bounds for the CIR, WF and CKLS process. Note that under the assumptions
below the Feller test implies that with probability one the CIR and CKLS process are positive, i.e., take
values in [0, 00), while the WF process takes values in [0, 1].
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Lemma A.3.
(i) Consider the CIR process given by
dVi = (AN=Vy)dt + 0/ VidW,, te[0,T], Vo =wvo >0,

with kK, \,0 > 0. Then we have

2K\
sup E|Vi|P < oo for all 10>—i2
s€[0,T] 0

(ii) Consider the WF process given by
dVi =k (A=Vy)dt + 0/ V(1 — V)dWy, t€10,T], Vo =wvo € (0,1),

with £,0 > 0 and A € (0,1). Then we have

2K\
sup E|Vi|P <oo forall p> _Lz

s€[0,T] 0

and
2K
sup E[1 = V4P <oo forall p>——5(1—A).
s€[0,T] 0
(iii) Let g € (1/2,1). Consider the CKLS process given by
AV, = k(A — V) dt + OVEAW,, te[0,T], Vo= >0,

with k, \,0 > 0. Then we have

sup E|ViP <oo forall peR.
s€[0,T]

Proof. (i) This statement can be found, e.g., in Section 3 in [10] and Theorem 3.1 in [22], respectively.
(ii) This statement can be found, e.g., in Section 3.5 in [37]. (iii) This statement can be found, e.g., in
Section 3.4 in [37] and [2], respectively. O

A.4. Comparison result

Proposition 2.18 in Chapter V of [23] gives a comparison result for one-dimensional SDEs, which we use

in Section 2.

Proposition A.4. Consider two continuous, adapted processes X9 j = 1,2, such that

t t
xP = x +/aj(s,XS(J’))dH/c(s,Xgﬂ)dWS, t e [0,7),
0 0

holds P-a.s.. Assume that

(i) the coefficients c(t, x), a1(t,x), az(t, z) are continuous and real-valued functions on [0,T] x R,
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(ii) the diffusion coefficient c(t, x) satisfies

le(t, ) = c(t,y)| < Al —yl)
for every t € [0,T], z,y € R, where h: [0,00) — [0,00) is strictly increasing with h(0) =0 and

g
/h_z(u)du =00 forall >0,
0

(i) XV < x? P-a.s.,
(iv) a1(t,z) < aqz(t,x) for allt € [0,T] and all x € R,
(v) either ai(t,x) or ax(t,x) satisfies condition (L), i.e., is globally Lipschitz in x, uniformly in t.

Then, we have
p (Xt(” < X\? forall te [O,T]) —1.
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