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A B S T R A C T

Modern business processes are subject to an increasing number of external and internal regulations. Compliance
with these regulations is crucial for the success of organizations. To ensure this compliance, process managers
can identify and mitigate deviations between the predefined process behavior and the executed process
instances by means of conformance checking techniques. However, these techniques are inherently reactive,
meaning that they can only detect deviations after they have occurred. It would be desirable to detect and
mitigate deviations before they occur, enabling managers to proactively ensure compliance of running process
instances. In this paper, we propose Business Process Deviation Prediction (BPDP), a novel predictive approach
that relies on a supervised machine learning model to predict which deviations can be expected in the future of
running process instances. BPDP is able to predict individual deviations as well as deviation patterns. Further,
it provides the user with a list of potential reasons for predicted deviations. Our evaluation shows that BPDP
outperforms existing methods for deviation prediction. Following the idea of action-oriented process mining,
BPDP thus enables process managers to prevent deviations in early stages of running process instances.
1. Introduction

Modern business processes are subject to an increasing number of
external and internal regulations, which, for example, ensure the pro-
tection of customer data [1], prevent fraud in internal transactions [2],
or reduce accidents through human error [3]. Maintaining compliance
with these regulations fosters trust among organizational stakeholders
and mitigates risks, such as legal liabilities and reputational dam-
age [4,5]. Furthermore, it increases operational efficiency by ensuring
efficient process execution and resource allocation [6]. Thus, effective
mechanisms for monitoring and enforcing compliance are essential for
successful business process management.

One approach to ensure process compliance is by means of con-
formance checking [7], a well-established sub-discipline of process
mining [8]. Conformance checking compares actual process execu-
tions, captured in the form of event logs, with predefined normative
process models. By detecting inconsistencies, so-called deviations, be-
tween observed and expected process behavior, it provides valuable
insights into process compliance [9]. This automated approach to
compliance checking enables process managers to identify deviations
quickly and comprehensively, facilitating prompt corrective actions to
realign operations with the respective regulations.
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However, the nature of current conformance checking techniques
makes compliance checking inherently reactive [10]: The deviation,
and the ensuing loss of compliance, must occur to be detected by
a conformance checking technique. This limits a process manager’s
ability to detect and address compliance issues in real-time [11]. Online
conformance checking [12] and anomaly detection [13] techniques
can analyze process instances at runtime, which reduces the time span
between the occurrence of a deviation and the notification of the
process manager about that occurrence. Nevertheless, these techniques
can also only identify deviations after they have occurred.

To ensure the compliance of the process, however, it would be
better if conformance checking techniques were proactive, i.e., able to
identify deviations before they actually occur. If a process manager is
informed about an impending deviation in a running process instance,
they can take the necessary actions to prevent the deviation or at least
mitigate its impact [11]. To obtain this information, we can leverage
predictive process monitoring (PPM) to predict which deviations will
occur in a running process instance. PPM is a branch of process mining
that aims to enable proactive management of business processes by
predicting future behavior of incomplete process traces [14]. Although
proactive compliance management is often mentioned as an important
benefit of PPM [15], existing PPM approaches have not focused on this
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application [14], instead predicting, e.g., the next event in a trace [15]
or the process outcome [16]. The few existing approaches that are
capable of predicting the occurrence of deviations either lack the
ability to predict which activity will deviate and to do this sufficiently
early [10] or cannot deal with the imbalanced nature of this task [11].

To advance proactive conformance checking, this paper introduces
a novel PPM approach that can predict which deviations will occur in
the future of a running process instance. This approach, called Business
rocess Deviation Prediction (BPDP), uses a supervised machine learning
ML) model to predict, in an early process state, whether an instance
ill deviate and to which specific activities the deviations will relate.
PDP is designed to tackle the specific challenges of deviation predic-
ion, which include the need to consider explicit process knowledge
s well as context attributes, a high imbalance of deviations in the
raining data, and the frequent co-occurrence of certain deviation types.
n addition, it is equipped with multiple features that support the
roactive management of potentially deviating process instances, such
s a list of potential reasons for predicted deviations.

This paper is an extended and revised version of our original con-
erence publication [17]. It extends the previous paper in three main
spects:

(1) Deviation Pattern Prediction: Whereas the original BPDP could only
predict individual deviating activities, this version can also predict
deviation patterns, i.e., frequently co-occurring individual devia-
tions.

(2) Prediction Model Design: To ensure optimal performance, we exper-
imentally assess how different designs impact BPDP’s predictive
strength:

(a) We compare the separate classifiers from the original BPDP
with two learning architectures that predict all deviations
collectively.

(b) We compare the feed-forward network from the original
BPDP with a more sophisticated LSTM model.

(3) Prediction GUI: To illustrate how BPDP can support process man-
agers in practice, we provide a prototypical graphical user inter-
face.

The paper is structured as follows: In Section 2, we illustrate the
hallenges of deviation prediction. We discuss related work in Sec-
ion 3. The BPDP approach is introduced in Section 4. Section 5
xperimentally determines the best learning strategy of the approach.
e benchmark its predictive strength in Section 6 and evaluate its

uitability to the use case in Section 7. After discussing the evaluation
esults in Section 8, we conclude the paper in Section 9.

. Problem illustration

Approaches for deviation prediction must address the specific chal-
enges of this task. To illustrate these challenges, consider the loan
pplication process in Fig. 1. It is a subset of the to-be process model
or the BPI Challenge 2012, including only activities starting with A_
BPIC12 A). In this process, deviations from the to-be model occur.
ach deviation is the manifestation of a deviation type, characterized
s an erroneous or missing activity within a trace, as per the to-be
2 
model. Multiple deviation types can co-occur in the same trace, forming
a deviation pattern. Deviation patterns often originate from the same
underlying issue, such as the swapping of two activities.

Now consider the traces 𝑡1 and 𝑡2 in Figs. 2(a) and 2(b), extracted
rom the BPIC12 A event log. 𝑡1 consists of eight activities executed
y three different resources (Elsa, Olaf, and Anna) and handles a loan
ith a requested amount of 25,000 e. 𝑡2 also consists of eight activities
xecuted by two resources (Anna and Olaf) and handles a requested
mount of 10,000 e.
𝑡2 conforms to the model, so there are no deviations. In 𝑡1,

_APPROVED and A_REGISTERED are swapped, which results in two
eviation types:

𝑑1 : A_APPROVED is missing from its model-prescribed position
𝑑2 : A_APPROVED is executed at a wrong position in the trace

To illustrate the prediction of these deviations, consider the predic-
ions for trace prefixes of 𝑡1 and 𝑡2 in Figs. 2(c) and 2(d). 𝑡2 conforms
o the to-be model, so no deviation should be predicted for any of
ts prefixes. In 𝑡1, 𝑑1 occurs at position 6 and should therefore be
redicted for each prefix up to length 5. 𝑑2 occurs after the execution of
_REGISTERED at position 7. Thus, it should be predicted for each pre-

ix of 𝑡1 up to length 6. However, correctly predicting those deviations
oses multiple challenges.

1: Explicit Process Knowledge. By definition, the identification of de-
viations in an event log depends on the availability of a predefined
to-be process, documented, e.g., as a process model. For instance,
we need to know that A_APPROVED is supposed to be executed
before A_REGISTERED and that not doing so results in a deviation
(𝑑1 in this case). Thus, deviation prediction requires explicit knowl-
edge about the expected process behavior to define the deviation
types that serve as prediction targets. This consideration of explicit
process knowledge, instead of, e.g., statistical information on un-
usual behavior as done in anomaly detection [13], also enables us
to clearly distinguish between deviating and infrequent behavior.

2: Deviation Patterns. Deviation types are defined on the activity
level, so we consider each deviating activity separately. However,
the same underlying behavior of the process can cause several
deviation types to simultaneously occur in the process instance.
For example, in 𝑡1, A_APPROVED and A_REGISTERED have been
swapped, which leads to the occurrence of both 𝑑1 and 𝑑2. We refer
to such a set of co-occurring deviation types as a deviation pattern.
A predictive approach should be able to predict complete deviation
patterns to fully capture the underlying process behavior.

3: Prediction Targets. From the perspective of supervised ML, pre-
dicting deviations and deviation patterns is challenging due to its
multi-label, imbalanced, and dynamic nature.

C3.1: Multi-label Targets. A trace may deviate from the predefined
behavior in more than one way. For example, 𝑡1 deviates in
𝑑1 and 𝑑2. Similarly, multiple deviation patterns can occur in
one trace. Thus, for one running process instance, a classifier
has to make separate (binary) predictions per deviation type
and per deviation pattern.
Fig. 1. Deviation prediction running example.
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Fig. 2. Exemplary Traces 𝑡1 and 𝑡2 with Correct Predictions.
C3.2: Imbalanced Targets. Overall, the frequency of deviating traces
in a log is low. Also, different deviation types and deviation
patterns have different frequencies, leading to highly imbal-
anced prediction targets. A predictive approach should be
able to correctly predict the occurrence of all deviations in
imbalanced data.

C3.3: Dynamic Targets. The prediction labels change throughout the
progression of a trace: once a deviation (pattern) has occurred
in the trace, it should no longer be predicted, e.g. not after
position 7 in 𝑡1.

4: Context Importance. Up to the sixth event, 𝑡1 and 𝑡2 share the same
control-flow. Nevertheless, 𝑑1 and 𝑑2 should be predicted for all
preceding prefixes of 𝑡1 but not for those of 𝑡2. Thus, a predictive
approach must consider trace attributes other than the control-
flow. These so-called context attributes can relate to the resources
perspective, like the executing resources, or the case perspective,
like the requested amount, as shown in Figs. 2(a) and 2(b)). Includ-
ing context attributes of the running process instance in addition
to the control flow increases the likelihood of correctly predicting
deviations, because it allows for a more detailed differentiation
between prefixes.

5: Action Orientation. To ensure process compliance, deviating pro-
cess instances are more relevant than conforming ones. For exam-
ple, accurately predicting the deviations of 𝑡1 alerts the process
manager about future problems, such that they can take pre-
ventive actions to avoid or mitigate non-conformance. Therefore,
early recognition of upcoming deviations is more important than
early recognition of conforming behavior. This means that the
trained ML model must value a high recall (correctly recognizing
all deviations) over a high precision (not misclassifying conforming
instances).

3. Related work

In this section, we elaborate on related work and explain why
existing approaches for deviation prediction do not comprehensively
address the challenges from Section 2.

Deviation Prediction. As of now, only two existing approaches explic-
itly address the prediction of deviations for running process instances.
The first approach predicts whether the next activity in a trace will
be a log or model move, thus detecting deviations from the to-be
model [10]. For that purpose, the authors train two specialized clas-
sifiers, one for log and one for model moves. However, this approach
3 
does not predict which specific deviation or deviation pattern happens
(C2 and C3.1). Furthermore, it cannot handle imbalanced data (C3.2),
considers only the control-flow and no context attributes (C4), and
predicts deviations only for the next event, thus not enabling early
detection of deviations (C5).

The second existing approach for deviation predictions predicts
specific deviations in the future of traces by means of a statistical tech-
nique called Subjective Logic [11]. The authors create process states for
incomplete instances and compare frequencies of past deviating and
conforming behavior for each state. Based on those frequencies, they
form a so-called belief that a specific deviation type will occur in an
ongoing process instance. The predictions per trace are then derived
from the beliefs. Prediction targets can be derived using explicit pro-
cess knowledge (C1) and are allowed to be multi-label targets (C3.1),
dynamic targets (C3.3), and also deviation patterns that are known to
exist (C2). A limited number of context attributes can be included for
prediction (C4), but this is restricted to few attributes that are known to
be related to the deviations. However, in their evaluation, the authors
use synthetic data with four deviation types that each occur in 20%
of the behavior, which are far more deviations than in our real-life
scenarios (thus not addressing C3.2). Further, the predictive model does
not put specific focus on the deviating class (thus not addressing C5).

In addition to these two approaches, there is a general framework on
how to predict process behavior, which includes conformance checking
results such as fitness [18]. However, this framework has not been
shown to detect deviations in advance. It can therefore be seen more
as a conceptual foundation for proactive conformance checking than a
concrete approach.

Deviation Patterns. Multiple works have addressed the issue that
individual deviations can have the same underlying reason and hence
co-occur in the form of deviation patterns. Depaire et al. have proposed
a general framework to categorize combinations of deviations as devia-
tion patterns [19]. They stress that these patterns can be formed based
on skipped and inserted activities but do not propose an approach to
discover them. For that purpose, two approaches exist. The first one
conducts a conformance check based on log-level event structures [20],
which allows for general observations about the differences between
the executed and the prescribed process behavior. Thereby, connections
between individual deviation types are detected. The second approach
discovers sets of strongly correlated deviation types and transforms
them into deviation patterns [21].

Alternatively, deviation patterns that are known and expected to
occur can be included in a process model and detected by so-called
‘‘break-the-glass’’ alignments [22]. As a further alternative, these de-
viation patterns can also be detected by means of token-replay [23].



M. Grohs et al.

l
a
e
l
t
T
c
c

a
w
i
g
w
a
m
d
a
p
c
p
b
b

P
f
t
a
p

[
s
c
s
s
p
t
c

a
o
e
r
T
r
t

A
m
i
w
t
s
a
p
o
a
m
a
o
a

c
i
c
𝐵
(
c
i
a
b

i
b
t
b
b
t
a
s
e
f
o
s
a
a
t
⟨

4

a
d
p
w
d

I
l
f

a
s
e
𝑎
e
w
T
I
(
a
o
{

Information Systems 127 (2025) 102461 
Last, so-called workarounds are related to deviation patterns. These
workarounds can be detected semi-automatically [24] or automati-
cally [25]. Although they differ conceptually from deviation patterns,
specific workaround types resemble the occurrence of multiple devi-
ation types as found by conformance checking techniques in the same
trace. Whereas these approaches conceptually address the identification
of deviation patterns, they are not able to predict their appearance.

Anomaly Detection. As mentioned above, deviations are closely re-
ated to anomalies in process behavior. The main difference is that
nomalies are statistically infrequent, whereas deviations are based on
xplicit process knowledge. Hence, deviations can manifest as anoma-
ies, but this is not guaranteed. Existing approaches for anomaly detec-
ion in an event log typically leverage unsupervised machine learning.
hey train a model to represent the normal, i.e., most frequent pro-
ess behavior, which is then used to detect anomalous behavior in a
oncrete trace [13].

Like deviation prediction, anomaly detection is also a highly imbal-
nced task. To address this, one approach constructs multiple classifiers
hich are trained with a weighted loss function to account for label

mbalance [26]. The prediction of these classifiers are then aggre-
ated with different strategies from the field of ensemble learning,
hich allow the approach to classify (prefixes of) traces as normal or
nomalies under this consideration. However, this approach requires
anual labeling from experts and does not predict which type of
eviating behavior will occur. One approach is also able to generate
lignments between the observed process execution and the ‘‘to-be’’
rocess model [27] in an unsupervised way. However, this approach
annot predict that a deviation will occur in the future of a running
rocess instance, as they require to compare predicted with observed
ehavior. This means they can detect a deviation as soon as it happens
ut not in advance.

redictive Process Monitoring. The goal of PPM is to predict the
uture behavior of a running process instance, thereby enabling proac-
ive process management [28]. Trained on historic event log data, PPM
pproaches can be clustered into three big groups, depending on their
rediction target [14].

The first group of approaches predict the next event in the trace
15]. Applied consecutively, they can also predict a complete trace
uffix. Because they do not consider external process knowledge, they
annot explicitly predict deviations from a to-be model. Nevertheless,
uffix prediction can be used for deviation prediction if the predicted
uffixes are aligned with a to-be model. This approach to deviation
rediction does not account for label imbalance (C3.2) and is not
rained with specific focus on the deviating class (C5). Still, we will
onsider it as a benchmark for deviation prediction.

Second, approaches for outcome prediction predict the end state of
running process instance, e.g., whether a loan application is accepted
r rejected. Outcome prediction is related to deviation prediction as
xceptional process outcomes, such as error states, can be seen as
ule violations [16], but it does not concern individual deviations.
he third group of approaches predict numerical characteristics of
unning instances, such as runtime [14], which is not directly related
o conformance.

ction-Oriented Process Mining. Finally, action-oriented process
ining is a relatively new research stream [29]. It describes the general

dea to automatically generate actions in case of constraint violations,
hich can be detected using conformance checking and are supposed

o enable process managers to prevent deviation occurrences. Based on
uch constraint violations and their temporal dependencies, complete
ction plans can be derived [30]. These constraint violations can also be
redictive in nature [29]. In our context, these approaches for action-
riented process mining are closely related to challenge C5 which
cknowledges that deviation predictions are only helpful if process
anagers can take preventive actions. However, there is no known

pproach in this research stream that is able to actually predict the
ccurrence of deviations and recommend corresponding preventive
ctions.
 s

4 
4. Approach

In this section, we introduce our novel approach for deviation
prediction, called Business Process Deviation Prediction (BPDP). BPDP
predicts which, if any, deviation types and deviation patterns will
occur in the future of an ongoing process instance, thereby tackling
the challenges of deviation prediction, presented in Section 2. In the
following, we present the approach step-by-step.

4.1. Overall design

The BPDP approach, illustrated in Fig. 3, is split into an offline
omponent, in which the models are trained, and an online component,
n which they are used. In the following, we focus on the offline
omponent and explain its steps. As input, BPDP receives a to-be model

of a given process and a corresponding event log 𝐿. After labeling
Section 4.2) and encoding (Section 4.3) each trace prefix, we train a
lassifier, called Individual Deviation Predictor (IDP), that can predict
ndividual deviations for ongoing traces (Section 4.4). Then, we train
n additional classifier, called Deviation Pattern Predictor (DPP), that
uilds upon IDP to predict deviation patterns (Section 4.5).

For presenting the approach steps, we require the following prelim-
naries. The to-be model 𝐵 defines the desired execution dependencies
etween the activities of a process. For our purposes, it is sufficient
o abstract from specific process modeling languages and focus on the
ehavior defined by a model. That is, given a set of activities, a to-
e model 𝐵 defines a set of desired execution sequences that lead
he process from an initial to a final state. The event log 𝐿 contains

collection of traces. A trace 𝑡 ∈ 𝐿 is a chronologically ordered
equence of events ⟨𝑒1, 𝑒2,… , 𝑒𝑛⟩ of length 𝑛. An event 𝑒 denotes the
xecution of a certain activity. It is represented as a tuple of attributes
rom which two, activity and traceID, are mandatory and others are
ptional, e.g., timestamp, resource, cost. All events in one trace have the
ame traceID. A trace represents one execution of the process, called
process instance. Similar to events, traces can also have additional

ttributes, e.g., a loan amount. Running instances are represented by
race prefixes. A prefix of trace 𝑡 of length 𝑝 is defined as a subsequence
𝑒1,… , 𝑒𝑝⟩, with 1 ≤ 𝑝 ≤ 𝑛.

.2. Labeling

We approach deviation prediction as a supervised ML task, sep-
rated into predicting individual deviations with IDP and predicting
eviation patterns with DPP. Both require target labels for each trace
refix, which are later used to train the classifiers. In the following,
e explain how we assign target labels for individual deviations and
eviation patterns.

ndividual Deviations. First, we determine the set of possible target
abels 𝐷𝐿,𝐵 as all deviations that can occur between 𝐿 and 𝐵. Therefore,
or each trace 𝑡 ∈ 𝐿, we compute the trace alignment [7] between 𝑡 and
𝐵, using the pm4py alignment algorithm [31]. In a trace alignment,

log move (𝑎𝑐,≫) indicates that an activity 𝑎𝑐 executed in the trace
hould not have been executed according to the model (e.g., wrong
xecution 𝑑2 in Fig. 2(a)). A model move (≫, 𝑎𝑐) indicates that activity
𝑐 is prescribed by the model, but missing from the trace (e.g., missing
xecution 𝑑1 in Fig. 2(a)). If an executed activity in the trace conforms
ith the model, the alignment contains a synchronous move (𝑎𝑐, 𝑎𝑐).
able 1 shows an example of an alignment, with one move per column.1
t contains synchronous moves on activities W and X ((𝑊 ,𝑊 ) and
𝑋,𝑋)), a model move on activity Y ((≫,𝑌 )), and a log move on
ctivity Z ((𝑍,≫)). The set of model and log moves in the alignments
f all traces in an event log defines the set of deviation types 𝐷𝐿,𝐵 =
𝑑1,… , 𝑑𝑚}, where 𝑚 is the total number of deviation types.

1 In this paper, alignment visualizations place the trace above the model
equence.
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Fig. 3. Overview of the BPDP approach.
Table 1
Exemplary alignment.

Table 2
Two optimal alignments of 𝑡1.

(a) One optimal alignment of 𝑡1

(b) Alternative optimal alignment of 𝑡1

SUB = A_SUBMITTED; PAR = A_PARTLY SUBMITTED; PRE = A_PREACCEPTED;
ACC = A_ACCEPTED; FIN = A_FINALIZED; REG = A_REGISTERED;
APP = A_APPROVED; ACT = A_ACTIVATED.

Computing alignments is a non-deterministic optimization problem,
which can cause problems when training and evaluating an ML model
to predict individual deviations. As an example, consider Table 2.
which shows two optimal alignments for the trace 𝑡1 with deviation
types 𝑑1 and 𝑑2. In the first alignment (Table 2a), the algorithm found
a model and a log move on APP. In the second alignment (Table 2b), the
algorithm found a log and a model move on REG. Both alignments are
optimal under the standard cost function. If the same deviation types
occur in different traces, it can therefore happen that the alignments
for these traces contain two different sets of moves. This can lead to
situations where the same trace prefix has two different deviation type
target labels, which confuses the model during training and negatively
impacts its performance during evaluation. Thus, we want the set 𝐷𝐿,𝐵
to contain the same set of moves for the same deviation types across
traces. This can be achieved heuristically by minimizing the log-wide
number of deviation types in 𝐷𝐿,𝐵 . Then, for example, only two rather
than four moves are used for 𝑑1 and 𝑑2 in all traces. We calculate
the log-wide alignments 100 times and fix the results with the fewest
deviation types in 𝐷𝐿,𝐵 across traces, also ensuring reproducibility.

For each deviation type 𝑑 ∈ 𝐷𝐿,𝐵 , we then individually label each
prefix with either 1 or 0. If 𝑑 occurs in the future of the prefix, we
label this prefix with 1.2 Once 𝑑 no longer occurs in the future of the
prefix, the remaining prefixes of this trace are all labeled with 0. This
dynamic labeling addresses C3.3. If 𝑑 does not occur in a trace, all
prefixes are labeled with 0. Thus, if 𝑑 occurs (the last time) at position
𝑗 of a complete trace 𝑡 of length 𝑛, we will obtain 𝑗 −1 prefixes labeled

2 Note that a deviation can occur multiple times in the same prefix.
5 
with 1 and 𝑛−(𝑗 −1) prefixes labeled with 0 where 1 < 𝑗 ≤ 𝑛. Note that
a model move can still occur after the trace has ended. Thus, we also
consider the full trace as its own prefix, which might be labeled with 1.
As an example, Table 3 shows the labels of all trace prefixes of 𝑡1 with
respect to 𝑑1 and 𝑑2.

Deviation Patterns. To predict deviation patterns, we construct new
target labels from the set of deviation types. Deviation patterns are
defined as sets of frequently co-occurring deviation types. To find
those patterns, we rely on the pairwise correlation coefficients of the
deviation types. Concretely, two deviations are frequently co-occurring
if their pairwise correlation coefficient is higher than a given threshold
𝑡ℎ𝑠𝑐𝑜𝑟𝑟. Because a deviation pattern can consist of more than two devi-
ation types, we consider the pairwise correlation coefficients between
all deviation types and construct maximal sets of deviations, such that
each pairwise correlation coefficient exceeds 𝑡ℎ𝑠𝑐𝑜𝑟𝑟. Through that, we
ensure that all correlated deviation types are summarized in one large
deviation pattern instead of multiple smaller ones. We set the default
value of 𝑡ℎ𝑠𝑐𝑜𝑟𝑟 to 0.5 as this is a commonly used threshold to determine
highly correlated variables [32]. However, we allow the user to adjust
𝑡ℎ𝑠𝑐𝑜𝑟𝑟 if the process at hand requires a different threshold.

Following this procedure, we obtain a set 𝐶𝐿,𝐵 = {𝑐1,… , 𝑐𝑘}, where
each element 𝑐𝑖 ⊆ 𝐷𝐿,𝐵 is a set of individual deviation types. More
concretely, deviation patterns are defined as non-empty, non-singleton
subsets of the power set of 𝐷𝐿,𝐵 , i.e., {𝑐𝑖 ∈ 2𝐷𝐿,𝐵 ∶ |𝑐𝑖| ≥ 2}. Labels
are assigned analogously to the individual deviation labels: We label a
prefix with 1 for a deviation pattern 𝑐𝑖 ∈ 𝐶𝐿,𝐵 as long as all deviations
that make up the pattern occur in the future of the prefix, and 0
otherwise. As an example, consider the deviation pattern 𝑐1 = {𝑑1, 𝑑2}
and all prefixes of 𝑡1 in Table 3.

4.3. Encoding

Incorporating contextual information is highly important for devi-
ation prediction (C4). Therefore, we must encode the available con-
textual information of the trace prefix to feed it into the ML model.
Whereas we experimented with different encoding approaches in the
previous version of the paper [17], we decided to stay with the complex
index-based encoding (CIBE) [33], as it turned out to work best. In this
encoding method, a feature vector is created based on trace and event
attributes. This vector contains trace features to represent all available
trace attributes. Further, it contains event features to represent the
executed activity, executing resource, and temporal features for each
event in the trace.

4.4. Predicting individual deviations

In this section, we define the prediction model IDP that predicts
whether individual deviations will occur in the future of an ongoing
process instance. IDP is realized as a neural network trained with
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Table 3
Labels of individual deviation types 𝑑1 and 𝑑2 as well as of deviation pattern 𝑐1 for prefixes of 𝑡1.

Trace prefix Labels

Individual deviations Deviation patterns

d1 ∶ (≫,APP) d2 ∶ (APP,≫) c1 ∶ {d1 , d2}

⟨SUB⟩ 1 1 1
⟨SUB, PAR⟩ 1 1 1
⟨SUB, PAR, PRE⟩ 1 1 1
⟨SUB, PAR, PRE, ACC⟩ 1 1 1
⟨SUB, PAR, PRE, ACC, FIN⟩ 1 1 1
⟨SUB, PAR, PRE, ACC, FIN, REG⟩ 0 1 0
⟨SUB, PAR, PRE, ACC, FIN, REG, APP⟩ 0 0 0
⟨SUB, PAR, PRE, ACC, FIN, REG, APP, ACT⟩ 0 0 0

SUB = A_SUBMITTED; PAR = A_PARTLY SUBMITTED;
PRE = A_PREACCEPTED; ACC = A_ACCEPTED; FIN = A_FINALIZED;
REG = A_REGISTERED; APP = A_APPROVED; ACT = A_ACTIVATED.
ncoded and labeled prefixes. It has a network architecture with con-
ected layers of neurons and undersamples the training set to cope with
abel imbalance (C3.2). Finally, IDP uses a specific loss function to pay
ttention to the deviating class (C5). In the following, we elaborate on
hese three aspects.

etwork Architecture. The neural network architecture consists of
n input layer with a number of neurons dependent on the number
f encoded features in CIBE. These inputs are fed into hidden layers
nd finally into one classification layer to predict the deviation types.
he result is one class probability per deviation type 𝑑𝑖 from which the

predictions can be inferred. As usual for deep learning networks, there
are several possibilities to construct hidden layers, each with potential
advantages to cope with the challenges of deviation prediction. To de-
termine which designs is suited best, we conduct empirical experiments
with different network implementations for IDP in combination with
hyperparameter optimization in Section 5.

Undersampling. Because the majority of process behavior typically
conforms with the predefined process [10,34], we encounter a high
imbalance of labels in the data used for training IDP . For example,
in the BPIC12 A log, deviation types 𝑑1 and 𝑑2 only occur in 9% of
cases and a third deviation type (≫,𝐴_𝐷𝐸𝐶𝐿𝐼𝑁𝐸𝐷) occurs only in
3% of cases. To cope with this imbalance, we apply undersampling to
the majority class, which tends to be repetitive due to similarities of
many conforming traces. Concretely, we apply the one-sided selection
algorithm, which overcomes limitations from other undersampling ap-
proaches [35]. This algorithm does not completely balance the training
set, but retains important information from the majority class.

Loss Function. To achieve high recall of predicted deviations, we
must ensure that IDP correctly recognizes all deviating instances, at the
risk of misclassifying some conforming ones. We address this by using
a weighted cross-entropy loss (WCEL) function, which allows setting
higher weights on the deviating class to prioritize its prediction.

We train the network with the undersampled training set and WCEL,
imposing early stopping. We do not undersample our test set.

4.5. Predicting deviation patterns

In the final step, we focus on predicting deviation patterns. Thus,
we train DPP, which addresses C2 by using the output of IDP to predict
the deviation pattern(s) in the future of ongoing process instances.

Network Architecture. The DPP classifier is based on the IDP classi-
fier. Following the concept of ensemble learning [36], the IDP classifier
is used as Level-0 classifier, whose output is then used in a Level-1
classifier capable of predicting all deviation patterns 𝐶𝐿,𝐵 , as defined in
Section 4.2. In particular, the output of IDP is one class probability per
deviation type 𝑑𝑖, stored in one vector of class probabilities 𝑃𝐷. Thus,
the input layer of DPP consists of one neuron for each deviation type
trained in the previous step and is fed with the vectors 𝑃 . This input
𝐷 1

6 
layer is connected to hidden layers and an output layer with 𝑘 neurons,
i.e., the number of deviation patterns in 𝐶𝐿,𝐵 .

Undersampling & Loss Function. We follow the idea of IDP and
undersample the training set for DPP, which consists of the output of
IDP as features and the labels for all deviation patterns as prediction
targets. On this training set, we apply one-sided selection to address
the imbalance in the prediction targets, which is even stronger for
deviation patterns as fewer prefixes will be labeled 1 when consider-
ing multiple deviation type labels simultaneously. Again, we do not
undersample our test set. Further, we also apply a WCEL loss function
during training to focus on the deviating class(es). As output of this
step, our approach predicts which deviation patterns will occur in the
future of running instances, allowing the user to completely depict the
underlying non-conformity.

To determine the best implementation of our approach that ad-
dresses the challenges of the deviation prediction task, we experimen-
tally assess different network designs in the next section.

5. Experimental selection of BPDP’s best network architecture

Whereas the input for the deviation prediction network is deter-
mined by the CIBE encoding, the hidden architecture and the classifi-
cation layers of BPDP could utilize different designs. More specifically,
the task can be interpreted with structurally different ML models. To
determine which design best tackles the challenges of deviation predic-
tion, we empirically assess different implementations of our approach.
In the following, we introduce the experimental setup and the investi-
gated network implementations before assessing their performance and
concluding with the best model architecture. All resources to reproduce
our results can be found online.3

5.1. Experimental setup

To conduct the experiments, we evaluate the performance of the
respective experimental versions on seven public event logs. We split
the traces in the log randomly into train ( 23 ) and test ( 13 ) set. Note that
deviation types, that occur in one trace only, have to be removed from
the deviation types that we predict. Otherwise, they would either be
part of the training or test split, resulting in situations where we either
cannot learn or evaluate them. Thus, we use all deviation types that
occur in at least two traces and ensure that both the training and test
set contain at least one deviating trace.

Data. We apply our approach to event logs from the BPI Challenge
20124 (BPIC 12; sub-processes with A_ and O_ activities only) the

3 https://gitlab.uni-mannheim.de/jpmac/bpdp.
4 https://doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E9

F.
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Table 4
Descriptive statistics for event logs used for experiments.

Log 𝐿 Traces Events Trace Attr. Trace length Dev. Types Dev. Occurrences Dev. Patterns

min. avg. max. min. avg. max.

BPIC 12 A 13,087 60,849 1 3 4.7 8 3 399 927 1191 1
O 5,015 31,244 1 3 6.2 30 8 20 984 1761 1

BPIC 20

Dom. 10,500 56,437 4 1 5.4 24 19 1 252 254 2
Int. 6,449 72,151 17 3 11.2 27 46 1 292 1701 7
RfP 6,886 36,796 8 1 5.3 20 23 1 116 1027 3
Prep. 2,099 18,246 16 1 8.7 21 41 1 64 530 8

MobIS 3,354 55,809 1 11 16.6 49 21 1 182 1011 6
BPI Challenge 20205 (BPIC 20; Domestic Declarations (Dom.), Inter-
ational Declarations (Int.), Request for Payment (RfP), and Prepaid
ravel Costs (Prep.) processes) and the MobIS Challenge6 (MobIS; only
omplete cases). To-be models for BPIC 12 and MobIS are provided; for
PIC 20, they were taken from [34]. We use these logs as they differ in
ize, attributes, trace length, deviation types, class imbalance, and devi-
tion patterns as shown in Table 4. Each pattern consists of two or more
eviation types. For example, the deviation pattern in BPIC12 A is the
wap of the activities A_APPROVED and A_REGISTERED, corresponding
o the deviation types 𝑑1 and 𝑑2 shown in Section 2.

etrics. To evaluate whether the investigated versions of our approach
orrectly predict both deviations and conformity in running instances,
e measure prediction quality on prefix level using precision, recall,
nd AUCROC (area under curve for the receiver operating characteris-
ic). Given true positive (TP), true negative (TN), false positive (FP),
nd false negative (FN) predictions, precision (Prec.) and recall (Rec.)
re defined in Eq. (1).

𝑟𝑒𝑐. = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐. = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(1)

We calculate precision and recall for the deviating (Dev) and no-
eviating class (No Dev) separately to get a detailed quality assessment.
his differentiation is important because classes are imbalanced and
high Dev recall is of particular interest (see C5). For imbalanced

ata, a low Dev precision does not necessarily indicate a low No Dev
ecall. To account for this data imbalance, we consider AUCROC, which
s commonly used in tasks with imbalanced target labels. AUCROC
easures the predictive strength by comparing the TP rate to the FP

ate. It quantifies this strength between 0 and 1. A value above 0.7 is
onsidered acceptable, anything above 0.8 is excellent [37]. To assign
ach deviation type equal importance, regardless of class imbalance, we
eport the macro average (i.e., unweighted average over all deviation
ypes) of precision, recall, and AUCROC.

.2. Investigated Network Implementations of IDP

To assess which neural network implementation of our approach
s suited best for deviation prediction, we adapt the architecture of
he individual deviation predictor IDP . Two are based on separate
lassifiers for each deviation type (IDP-separate) and two are predicting
ll deviation types collectively (IDP-collective ). Thus, we test four
etwork architecture designs of IDP:

(1) IDP-separateFFN : multiple separate feed-forward (FF) classifiers,
each specialized to predict one deviation type individually

(2) IDP-separateLSTM: specialized classifiers as in IDP-separateFFN but
based on Long Short-Term Memory (LSTM) models

(3) IDP-collectiveFFN : single feed-forward classifier to predict all de-
viation types collectively

(4) IDP-collectiveLSTM: collective classifier as in IDP-collectiveFFN but
based on LSTMs

5 https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51.
6 https://doi.org/10.13140/RG.2.2.11870.28487.
7 
Each of these IDP designs can potentially address the challenges
of deviation prediction. The specialized classifiers of IDP-separate can
be trained for each deviation type individually, possibly best coping
with high label imbalance, which differs between deviation types. In
contrast, predicting all deviations at once trains the model to learn de-
pendencies between deviations, e.g., in the form of deviation patterns.
This could improve the performance of the collective prediction in IDP-
collective compared to IDP-separate . We also investigate whether a
LSTM model design for IDP-separate and IDP-collective is performing
better than feed-forward models. Compared to FF models, LSTMs are
generally better suited to handle sequential data, e.g., traces in event
logs [38]. However, given the importance of context for deviation
prediction (see C4), we cannot consider only (sequential) traces, but
also have to include non-sequential contextual data, such as trace
attributes. Hence, we experimentally assess both architectures.

In the following, we illustrate the specific network architecture
of the four IDP-designs and the consequences for undersampling and
WCEL function.

5.2.1. IDP-separateFFN
This design consists of multiple FF classifiers, each specialized to

predict one deviation type 𝑑𝑖. The input layer of each classifier has
a number of neurons equal to the number of encoded features in
CIBE. It is connected to two hidden layers of 256 neurons each. The
second hidden layer is connected to one output layer with two neurons
activated by a Softmax function that returns a class probability for 𝑑𝑖,
performing binary classification. The architecture is illustrated in Fig. 4.

Undersampling. In this design, we can undersample each deviation
type individually by applying one-sided selection per deviation type
to balance the training set. The algorithm deletes majority samples
depending on the label distribution of only one deviation type in the
event log at once.

Loss Function. As the output layer of all classifiers consists of two
neurons per deviation type activated with a Softmax function, we
apply the weighted loss function for each deviation type separately.
Concretely, we use weight 𝛼𝐷𝐶 = 16 for the deviating class and 𝛼𝐶𝐶 = 1
for the conforming class.

Hyperparameter Optimization. For the determination of hyperparam-
eters, we applied a grid search strategy. This method searches through
a specified subset of hyperparameters, allowing us to evaluate the per-
formance of the model for each possible combination. Although high on
computation time, we chose this strategy because it does not overlook
potentially optimal combinations, unlike random search or heuristic
methods which might miss critical parameter interactions [39]. We
determined the hidden layers, the weight 𝛼𝐷𝐶 , and dropout rate tho-
rugh a hyperparameter optimization. Concretely, we used the following
hyperparameters, boldness indicating the final choice:

∙ Hidden layer structure: [32 × 32; 64 × 64; 256 × 256; 512 ×
256 × 256]

∙ 𝛼𝐷𝐶 : [4; 8; 16; 24; 32]
∙ Dropout: [0.0; 0.1; 0.2]
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Fig. 4. Network architecture of IDP-separateFFN.
Fig. 5. Network architecture of IDP-separateLSTM.
5.2.2. IDP-separateLSTM
We now introduce a Long Short-Term Memory (LSTM) model design

for IDP-separate. In particular, we adapt the hidden layer structures as
proposed in [40], maintaining the architecture of multiple specialized
classifiers for each deviation type. Concretely, instead of the feed-
forward model, we use three LSTMs in combination with an embedding
layer and a feed-forward layer as illustrated in Fig. 5, where each LSTM
is dedicated to one event attribute encoded in CIBE (i.e., activities, re-
sources, or month). To incorporate trace attributes in a non-sequential
manner, we use a dedicated feed-forward layer for them. A concate-
nated representation of all layers is then fed into an output layer with
two neurons to perform binary classification for one deviation type.

Undersampling & Loss Function. As for IDP-separateFFN , we under-
sample the training set for each deviation type individually. We also
apply the WCEL per deviation type with weight 𝛼𝐷𝐶 = 16.

Hyperparameter Optimization. Again, we conducted a grid search
with the following parameters, boldness indicating the final choice:

∙ Embedding dimension per event attribute: [8; 16; 32; 64]
∙ LSTM layer size per event attribute: [8; 16; 32; 64; 128; 256]
∙ 𝛼𝐷𝐶 : [4; 8; 16; 24; 32]
∙ Dropout: [0.0; 0.1; 0.2]
8 
5.2.3. IDP-collectiveFFN
This design consists of a single classifier to predict all deviation

types collectively. Similar to IDP-separateFFN , it uses a feed-forward
model with an input layer of size equal to the number of encoded
features in CIBE. IDP-collectiveFFN has two larger hidden layers of
2048 and 1024 neurons to acknowledge the difficulty of collective
prediction. These hidden layers are connected to an output layer with
a number of neurons equal to the number of deviation types 𝑚 in the
log, activated by a Sigmoid function. This Sigmoid function returns the
class probabilities of all deviation types collectively in one vector 𝑃𝐷.
The architecture is illustrated in Fig. 6.

Undersampling. For design, we have to undersample all deviation
types collectively as this is how they are learned and predicted. Thus,
we apply one-sided selection to all multi-label targets. This ensures that
we do not reduce the number of deviating traces for any deviation type.

This undersampling strategy constitutes a difference in contrast to
IDP-separate which manifests in the training data. Fig. 8 illustrates the
effects on the training data for BPIC12 A. We see that before undersam-
pling, the number of deviating traces is much smaller than the number
of conforming traces. Applying one-sided selection per deviation type in
IDP-separate reduces the number of conforming traces much more than
collective undersampling, leading to more equal distribution. Especially
for very imbalanced deviation types like (≫,𝐴_𝐷𝐸𝐶𝐿𝐼𝑁𝐸𝐷), this
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Fig. 6. Network architecture of IDP-collectiveFFN.
Fig. 7. Network architecture of IDP-collectiveLSTM.
effect is strong. Hence, the resulting training sets for IDP-separate
are more balanced between conforming and deviating traces than the
training sets for IDP-collective.

Loss Function. The output layer consists of 𝑚 neurons activated with
a Sigmoid function, so we apply the WCEL for all deviation types si-
multaneously. Concretely, we calculate the label imbalance ratio 𝐿𝐼𝑅𝑑 ,
defined as the ratio of conforming traces 𝐶𝐶(𝑑) and deviating traces
𝐷𝐶(𝑑) for each 𝑑 ∈ 𝐷𝐿,𝐵 . The collective weights are then determined as
a vector of size 𝑚 where each entry refers to one deviation type. Given
𝐿𝐼𝑅𝑑 , the weight for type 𝑑 is determined as 𝛽𝑑 = 16

1
2×𝑒+𝑙𝑜𝑔(𝐿𝐼𝑅𝑑 ). This

way, the weights account for label imbalance within all deviation types,
assigning higher weights to more imbalanced ones.

Hyperparameter Optimization. We conducted a grid search with the
following hyperparameters, boldness indicating the final choice:

∙ Hidden layer structure: [256 × 256; 256 × 256 × 256; 1024 ×
1024;
2048 × 1024; 2048 × 1, 024 × 1024; 2048 × 2, 048 × 2048]

∙ 𝛽𝑑 : [8
1

2×𝑒+𝑙𝑜𝑔(𝐿𝐼𝑅𝑑 ); 𝟏𝟔
𝟏

𝟐×𝐞+𝐥𝐨𝐠(𝐋𝐈𝐑𝐝); 24
1

2×𝑒+𝑙𝑜𝑔(𝐿𝐼𝑅𝑑 ); 𝑙𝑜𝑔(𝐿𝐼𝑅𝑑 )]
∙ Dropout: [0.0; 0.1; 0.2]
9 
5.2.4. IDP-collectiveLSTM
This design, again, uses three LSTMs in combination with an embed-

ding layer and a feed-forward layer as illustrated in Fig. 7, following
the same logic as the LSTM-based IDP-separateLSTM . In contrast to
that design, the output layer does not perform binary classification
dedicated to one deviation type. Rather, it collectively predicts all 𝑚
deviation types like IDP-collectiveFFN.

Undersampling & Loss Function. As for IDP-collectiveFFN , we apply
undersampling in form of one-sided selection for all deviation types
simultaneously, treating each deviation type with equal importance.
Similar, we apply a collective WCEL with a vector based on the label
imbalance of the deviation type, determined with 𝛽𝑑 = 16

1
2×𝑒+𝑙𝑜𝑔(𝐿𝐼𝑅𝑑 ).

Hyperparameter Optimization. Again, we conducted a grid search
with the following parameters, boldness indicating the final choice:

∙ Embedding dimension per event attribute: [8; 16; 32; 64]
∙ LSTM layer size per event attribute: [8; 16; 32; 64; 128; 256]
∙ 𝛽𝑑 : [8

1
2×𝑒+𝑙𝑜𝑔(𝐿𝐼𝑅𝑑 ); 𝟏𝟔

𝟏
𝟐×𝐞+𝐥𝐨𝐠(𝐋𝐈𝐑𝐝); 24

1
2×𝑒+𝑙𝑜𝑔(𝐿𝐼𝑅𝑑 ); 𝑙𝑜𝑔(𝐿𝐼𝑅𝑑 )]

∙ Dropout: [0.0; 0.1; 0.2]
Fig. 8. Effect of undersampling in BPIC12A.
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Fig. 9. Network architecture of DPP.
5.3. Investigated Network Implementation of DPP

We use the same architecture of the deviation pattern predictor
DPP for all adaptions of IDP . We do so because the performance
of DPP largely depends on the output of IDP , i.e., a vector 𝑃𝐷 of
class probabilities, one probability per deviation type.7 Furthermore,
the same DPP-architecture for all IDP-versions is appropriate since the
vectors 𝑃𝐷 are low-dimensional, i.e., with 𝑚 values only.

As illustrated in Fig. 9, DPP has an input layer of 𝑚 neurons
which is fed with the class probability vector 𝑃𝐷. This input layer is
connected to two hidden layers with 512 and 128 neurons, respectively.
Finally, the output layer with 𝑘 neurons, i.e., the number of deviation
patterns in 𝐶𝐿,𝐵 , collectively predicts whether deviation patterns will
occur, resulting in a vector 𝑃𝐶 of class probabilities with size 𝑘. This
architecture is sufficiently large to capture dependencies within the
class probabilities but also suited to the low dimensionality of 𝑃𝐷.

Undersampling & Loss Function. We undersample the training data
by applying one-sided selection collectively to all deviation patterns.
Further, we apply a WCEL for all deviation patterns by determining a
vector of size 𝑘 where each entry represents the weight of one deviation
pattern 𝑐 dependent on its imbalance ratio 𝐿𝐼𝑅𝑐 , calculated by 𝛽𝑐 =
16

1
2×𝑒+𝑙𝑜𝑔(𝐿𝐼𝑅𝑐 ).
We did not conduct a separate, systematic hyperparameter opti-

mization for DPP due to the low dimensionality of its input, i.e., the 𝑚
class probabilities in 𝑃𝐷. Therefore, no complex network architecture
is required. Further, we noted that the performance of DPP was very
similar with different hyperparameters based on the same class proba-
bilities from any design of IDP on our experiments. Rather, we found
that the probability vector 𝑃𝐷 stemming from the Level-0 classifiers
impacts the performance of the Level-1 classifier DPP, which cannot be
influenced in an optimization of DPP.

5.4. Experimental results

Each network implementation of IDP is trained on the train set to
predict all individual deviation types 𝐷𝐿,𝐵 . Then, we use the train set
vectors of class probabilities 𝑃𝐷 of the IDP versions to train DPP for
all deviation patterns 𝐶𝐿,𝐵 . For all logs, we test the prediction quality
for individual deviation types and deviation patterns on the test set.
In the following, we present the performance of the different imple-
mentations on the used event logs. Thereby, we differentiate between
the performance in predicting individual deviations (Section 5.4.1) and
predicting deviation patterns (Section 5.4.2) since both tasks are of
importance for proactive conformance checking.

7 For IDP-separate, the individual class probabilities are concatenated into
𝑃 .
𝐷

10 
5.4.1. Predicting individual deviations
Table 5 shows the performance of the four network implementations

for the seven event logs. We see that IDP-collective performs worst
for all event logs, both as feed-forward version and LSTM version. For
all event logs, IDP-separate achieves the highest AUCROC. Except for
BPIC12 A, it also has the highest Dev recall. Thereby, we see that
IDP-separateLSTM has similar predictive strength as IDP-separateFFN .
However, Dev recall, which is of particular interest (C5), is lower for the
LSTM model in all but two logs. Further, in four out of seven logs, the
AUCROC is worse for the LSTM model, mainly caused by low precision
and recall for rare deviation types.

This issue is further illustrated in Fig. 10, which shows a scatter
plot depicting the relationship between AUCROC and the logarithm of
number of prefixes labeled as deviating for any deviation type across all
deviation types and event logs. We can see that IDP-separateLSTM has an
AUCROC of less than or equal to 0.5 for 18 deviation types with less than
100 deviating prefixes, whereas this is only true for 4 deviation types
in IDP-separateFFN . This means that the feed-forward model is much
better equipped to predict rarely occurring deviation types. We suspect
that this can be attributed to the better handling of trace attributes in
the feed-forward model, which are of major importance in predicting
these deviation types. Also, as illustrated in our repository, the LSTM
models had substantially longer training times, which further reduced
their practical applicability.

Fig. 10. AUCROC vs. support per deviation type in all logs; Color indicates AUCROC ≤
0.5 (red) or > 0.5 (blue).
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The results suggest that a separate model per deviation type leads
to best performance among the four designs. IDP-collective has the
same architecture as IDP-separate but cannot separately undersample
the training data, which shows that effective undersampling is required
for accurate predictions. Further, IDP-separate can be specialized per
deviation type whereas IDP-collective needs to balance predicting all
deviations at once. Also, given that IDP-separateFFN has the highest

Dev recall and AUCROC for the majority of logs, we conclude that a

11 
feed-forward architecture is best suited for deviation prediction, espe-
cially for highly imbalanced deviation types.

5.4.2. Predicting deviation patterns
Table 6 shows the performance of the DPP implementation building

on the four network implementations of IDP for the seven event logs.
We see that Dev recall for deviation patterns is higher when building

DPP on IDP-collective, either as FFN- or LSTM-version. However, this
Table 5
Performance of IDP-separate and IDP-collective for individual deviation prediction. Boldness indicates best score for this event log.

Log IDP-separate IDP-collective

IDP-separateFFN IDP-separateLSTM IDP-collectiveFFN IDP-collectiveLSTM

Dev No Dev Dev No Dev Dev No Dev Dev No Dev

BPIC12A
Prec. 0.1620 0.9669 0.1958 0.9691 0.0877 0.9410 0.0779 0.9432
Rec. 0.8084 0.6563 0.7980 0.7251 0.9251 0.1186 0.6377 0.3601

AUC 0.7324 0.7616 0.5218 0.4989

BPIC12O
Prec. 0.2019 0.9625 0.1942 0.9494 0.7619 0.8830 0.1433 0.9817
Rec. 0.7981 0.5348 0.6437 0.6195 0.1706 0.9959 0.6874 0.4308

AUC 0.6665 0.6316 0.5832 0.5591

Dom.
Prec. 0.1401 0.9982 0.1386 0.9987 0.7258 0.9934 0.0091 0.9953
Rec. 0.7619 0.8897 0.7975 0.8784 0.1575 0.9995 0.2904 0.7964

AUC 0.8258 0.8319 0.5784 0.4979

Int.
Prec. 0.0720 0.9938 0.1151 0.9976 0.3911 0.9849 0.0438 0.9945
Rec. 0.6333 0.8223 0.6345 0.8629 0.0005 1.0000 0.3131 0.8438

AUC 0.7270 0.7493 0.5002 0.5689

RfP
Prec. 0.0402 0.9979 0.1622 0.9988 0.2973 0.9952 0.0741 0.9972
Rec. 0.6888 0.8353 0.6318 0.8573 0.1083 0.9993 0.3745 0.7736

AUC 0.7620 0.7493 0.5537 0.5572

Prep.
Prec. 0.0457 0.9969 0.0609 0.9965 0.0294 0.9896 0.0174 0.9972
Rec. 0.5566 0.8514 0.4438 0.8652 0.0012 0.9996 0.3539 0.7486

AUC 0.7040 0.6547 0.5004 0.5339

MobIS
Prec. 0.0993 0.9748 0.1177 0.9935 0.0612 0.9615 0.0741 0.9972
Rec. 0.7162 0.5906 0.5455 0.7040 0.0035 0.9982 0.3745 0.7736

AUC 0.6534 0.6259 0.5007 0.5571
Table 6
Performance of DPP building on the different versions of IDP for deviation pattern prediction. Boldness indicates best score for this event log.

Log DPP building on

IDP-separate IDP-collective

IDP-separateFFN IDP-separateLSTM IDP-collectiveFFN IDP-collectiveLSTM

Dev No Dev Dev No Dev Dev No Dev Dev No Dev

BPIC12A
Prec. 0.2927 0.9692 0.1582 0.9829 0.1269 0.9976 0.1164 0.9135
Rec. 0.8765 0.5250 0.9265 0.4616 0.9945 0.2531 0.4725 0.6083

AUC 0.7507 0.6941 0.6238 0.5404

BPIC12O
Prec. 0.1859 0.9914 0.1869 0.9815 0.1836 0.9912 0.1710 0.9997
Rec. 0.9654 0.4849 0.9210 0.5117 0.9654 0.4768 0.9991 0.4098

AUC 0.7251 0.7164 0.7211 0.7044

Dom.
Prec. 0.0543 0.9993 0.0106 0.9993 0.0104 0.9992 0.0075 0.9992
Rec. 0.5490 0.9522 0.6961 0.4765 0.7215 0.5598 0.5333 0.6388

AUC 0.7387 0.5756 0.6004 0.4981

Int.
Prec. 0.0311 0.9986 0.0097 0.9995 0.0047 0.9993 0.0085 0.9995
Rec. 0.6322 0.8598 0.7037 0.6489 0.5546 0.6312 0.7383 0.6947

AUC 0.7265 0.6616 0.5408 0.6837

RfP
Prec. 0.0462 0.9996 0.0055 0.9993 0.0061 1.0000 0.0052 0.9995
Rec. 0.7292 0.8997 0.5817 0.4761 1.0000 0.4696 0.4902 0.5836

AUC 0.8013 0.4887 0.6898 0.4853

Prep.
Prec. 0.0619 0.9973 0.0103 0.9997 0.0129 0.9995 0.0074 0.9988
Rec. 0.6881 0.8668 0.7624 0.6674 0.8617 0.5980 0.7362 0.5932

AUC 0.7692 0.6952 0.7100 0.6554

MobIS
Prec. 0.1257 0.9724 0.1687 0.9556 0.0866 0.9762 0.1374 0.9964
Rec. 0.5458 0.7694 0.5854 0.7248 0.4729 0.6752 0.5285 0.7211

AUC 0.6576 0.6551 0.5740 0.6248
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comes at the cost of low Dev precision. For example, recall is 1 for DPP
building on IDP-collectiveFFN in RfP but precision is only 0.0061. This
indicates significant false alarms and is not practically helpful.

In contrast, Dev recall of DPP building on IDP-separateFFN is also
relatively high but is not accompanied by very low precision. This
leads to the highest AUCROC for this setting for all event logs. Thereby,
acceptable values are reached in all logs except MobIS. Consequently,
we can conclude that the best network implementation to build DPP
on is IDP-separateFFN , which already performed best in predicting
individual deviations.

5.5. Final learning architecture & ML model design

After conducting all experiments, we conclude that the most suited
design for IDP is one specialized feed-forward classifier per deviation
type and using undersampling and WCEL. The final design of IDP is
shown in Fig. 4. On this version of IDP, we build DPP as illustrated in
Fig. 9, also using undersampling and a WCEL to collectively predict all
deviation patterns. This final architecture of BPDP is used in the next
section for benchmarking.

6. Benchmark

After experimentally determining the best architecture for our ap-
proach, we now benchmark the predictive strength of BPDP by com-
paring it to existing methods and other machine learning approaches.
For that, we use the same seven event logs and metrics as in our
experiments, introduced in Section 5.1. We introduce the used baselines
in Section 6.1. We then evaluate the predictive strength for individual
deviation types (IDP) in Section 6.2 and for deviation patterns (DPP)
in Section 6.3.

6.1. Baselines

We want to illustrate how the previously determined best neural
network architecture performs in comparison to an existing technique
and other ML techniques. This is because the deep learning architecture
in combination with CIBE is not necessarily the best model for deviation
prediction. Other models, including alternative ML designs, could also
tackle the challenges of this task. Thus, we compare BPDP to four
other approaches: one baseline from an existing approach [11] and
three alternative ML approaches in form of CatBoost, MPPN, and suffix
prediction. In the following, we describe these baselines.8

6.1.1. Subjective logic [11]
To show how BPDP relates to non-ML approaches, we compare it to

an existing approach based on subjective logic [11].9

6.1.2. CatBoost
To show how BPDP relates to other ML techniques geared towards

learning from few examples, we compare it to CatBoost, a gradient
boosting technique that builds on decision trees [41]. We use the same
WCEL as for BPDP as well as the same architecture for deviation pattern
prediction consisting of several Level-0 and one Level-1 classifier. This
baseline is developed by us and not based on existing works.

8 Although the approach by Weinzierl et al. [10] also predicts deviations,
ts predictions only pertain to the very next event in a binary manner and not
er type. As this is a different task, a comparison is not adequate.

9 Note that we only compare this approach to IDP. Comparing it to DPP
ould require substantial changes, for which the approach is not intended.
12 
6.1.3. Multi-perspective Process Network (MPPN)
To show how BPDP relates to alternative neural network models,

we compare it to the MPPN model [42] - a versatile process prediction
model. In the previous version of the paper, we pre-trained the MPPN
on the next step prediction task and used its trace prefix embeddings
as alternative encodings (instead of CIBE) to BPDP. However, training
BPDP with CIBE outperformed training BPDP with MPPN embeddings.
In this paper, we train the MPPN model end-to-end on the task of de-
viation prediction. This design features a modular architecture of three
parts that can process any combination of attributes found in the event
log [42], making it a flexible process representation learning model.
Each attribute perspective is transformed into a Gramian Angular Field
(GAF) [43], a matrix of size 𝑛× 𝑛 for an attribute sequence of length 𝑛,
indicating the relation between each pair of attribute values. The first
part of the model is a single, pre-trained convolutional neural network
(CNN) that extracts features from each Gramian Angular Field. They are
processed in a central neural network that enables learning relations
between attributes. This central part consists of three fully-connected
layers with 128 neurons each. On top of that, a flexible number of
small networks, called heads, can be added for classification. We pre-
train the MPPN once per event log in predicting attribute values of the
next event to make it sensitive in learning general characteristics of
the process and dependencies between attributes. Afterward, we fine-
tune the model collectively for all 𝑚 deviation types, keeping the CNN
and fully connected part of the model but replacing the heads. Each
head consists of a single fully connected layer that performs binary
classification. During fine-tuning, the model should learn dependencies
in event attributes and deviation types that lead to non-conforming
behavior.

As this design predicts all deviation types collectively, it also un-
dersamples the prefixes collectively. Also, it applies WCEL with the
same weight for all deviation types per event log. As the strategy to
set the weights based on the imbalance per deviation type (as done
for IDP-collective) did not work well, we empirically assess the best
weighted loss 𝛼𝐷𝐶 per event log as a hyperparameter with the values
[16, 32, 64, 96]. Thus, MPPN is optimized for each event log, using
higher weights for logs with larger imbalance and lower values for logs
with smaller imbalance. This potentially overestimates its performance
in comparison to BPDP (which uses the same 𝛼𝐷𝐶 for all logs), which
we accept since it makes the benchmark more robust.

For deviation pattern prediction, we train MPPN end-to-end instead
of building a Level-1 MPPN on top of the Level-0 MPPN. This is
technically not possible as the MPPN requires GAFs as input which we
cannot transform the probability vector 𝑃𝐷 into. Therefore, we follow
the same procedure as deviation prediction and fine-tune the same pre-
trained MPPN on the deviation pattern labels. Again, we apply the same
undersampling strategy and use loss weight which worked best for the
event log.

6.1.4. Suffix prediction
An alternative to explicitly predicting deviations directly is to look

for deviations in the predicted continuation of a prefix. The idea
is that a next-step prediction approach is able to predict different
continuations for prefixes that will or will not deviate in the future,
thus implicitly predicting deviations. By aligning the predicted traces,
we can detect the deviating ones. Similar to the previous one, we
implemented this baseline ourselves. In particular, we used the pre-
trained MPPN [42], i.e., not fine-tuned for deviation prediction, to
obtain suffixes by predicting new events until the end activity has been
reached. We made use of MPPN’s ability to predict all next event’s
attribute values: iteratively, the attribute values of the next event 𝑒𝑛+1
are predicted, appended to the existing suffix, and used as input for
MPPN again. All complete suffixes are aligned to the process model 𝐵,
using the PM4Py implementation [31]. The same approach of fixing the
alignments with the fewest different log and model moves across 100

different alignment computations as applied in labeling (Section 4.2) is
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used here, too. We infer deviation ‘‘predictions’’ by collecting all model
or log moves found in the alignment result. If a deviation of type 𝑑𝑖 is
ound in the alignment after the current activity of the prefix, we say it
as predicted. Similarly, predictions for deviation patterns are inferred
y combining all individual predictions in the suffix, i.e., a deviation
attern 𝑐𝑖 is predicted if all deviation types 𝑑𝑖 ∈ 𝑐𝑖 are predicted.
ote that by predicting suffixes and aligning them, new model or log
oves can be found which do not match any existing deviation type
efined beforehand. This can happen if a trace suffix is predicted that
13 
has not been observed before. Such new alignments are ignored during
evaluation as no ground truth data to assess against exists.

6.2. Benchmark of individual deviation prediction

We now evaluate the predictive strength of BPDP for the prediction
of individual deviation types. Table 7 displays average precision, recall,
and AUCROC for the seven event logs and compares IDP to the four
baselines.
Table 7
Precision, Recall, and AUCROC for Individual deviation prediction for all event logs. Boldness indicates best score for this event log.

Log Baselines IDP

[11] CatBoost MPPN [42] Suffix Dev No Dev

Dev No Dev Dev No Dev Dev No Dev Dev No Dev

BPIC12A
Prec. 0.2136 0.9214 0.1694 0.9622 0.1040 0.9869 0.3766 0.9256 0.1620 0.9669
Rec. 0.0678 0.9654 0.7110 0.6797 0.9648 0.3021 0.0967 0.9895 0.8084 0.6563

AUC 0.5166 0.6954 0.6335 0.5431 0.7324

BPIC12O
Prec. 0.1462 0.8663 0.2277 0.9566 0.1627 0.9901 0.3282 0.8811 0.2019 0.9625
Rec. 0.1340 0.8403 0.6034 0.7148 0.8146 0.4240 0.2128 0.8504 0.7981 0.5348

AUC 0.4872 0.6591 0.6193 0.5316 0.6665

Dom.
Prec. 0.1961 0.7318 0.4035 0.9977 0.0688 0.9974 0.1934 0.9964 0.1401 0.9982
Rec. 0.2040 0.7205 0.5110 0.9930 0.3182 0.8982 0.2900 0.9868 0.7619 0.8897

AUC 0.6372 0.7511 0.6082 0.7023 0.8258

Int.
Prec. 0.1738 0.8823 0.3648 0.9955 0.0864 0.9981 0.1096 0.9911 0.0720 0.9938
Rec. 0.1648 0.8684 0.3866 0.9884 0.5367 0.8779 0.2652 0.9732 0.6333 0.8223

AUC 0.5796 0.6969 0.7073 0.6338 0.7270

RfP
Prec. 0.1480 0.7352 0.4630 0.9979 0.0686 0.9980 0.2259 0.9972 0.0402 0.9979
Rec. 0.1244 0.7273 0.3967 0.9965 0.3574 0.8878 0.2064 0.9908 0.6888 0.8353

AUC 0.5762 0.6961 0.6226 0.6335 0.7620

Prep.
Prec. 0.1475 0.8705 0.3032 0.9949 0.0811 0.9961 0.1373 0.9943 0.0457 0.9969
Rec. 0.1067 0.8629 0.2727 0.9946 0.2851 0.9284 0.2447 0.9804 0.5566 0.8514

AUC 0.5521 0.6333 0.6067 0.6284 0.7040

MobIS
Prec. 0.1211 0.8355 0.1363 0.9296 0.1555 0.9975 0.1176 0.9697 0.0993 0.9748
Rec. 0.1245 0.8415 0.2254 0.8907 0.4421 0.7617 0.2063 0.9599 0.7162 0.5906

AUC 0.5461 0.5729 0.6019 0.5958 0.6534
Table 8
Precision, Recall, and AUCROC for Deviation pattern predictions for all event logs. Boldness indicates best score for this event log.

Log Baselines DPP

CatBoost MPPN [42] Suffix Dev No Dev

Dev No Dev Dev No Dev Dev No Dev

BPIC12A
Prec. 0.1716 0.9177 0.1665 0.9531 0.0000 0.9012 0.2927 0.9692
Rec. 0.3145 0.8342 0.7413 0.5865 0.0000 0.9965 0.8765 0.5250

AUC 0.5743 0.6639 0.4983 0.7507

BPIC12O
Prec. 0.2120 0.9248 0.1870 0.9807 0.0228 0.8608 0.1859 0.9914
Rec. 0.4769 0.7840 0.8595 0.6559 0.0551 0.7122 0.9654 0.4849

AUC 0.6304 0.7577 0.3836 0.7251

Dom.
Prec. 0.2327 0.9951 0.0641 0.9989 0.1794 0.9991 0.0543 0.9993
Rec. 0.1988 0.9966 0.2976 0.9944 0.6703 0.9857 0.5490 0.9522

AUC 0.5977 0.6460 0.8245 0.7387

Int.
Prec. 0.4267 0.9974 0.0926 0.9993 0.0479 0.9979 0.0311 0.9986
Rec. 0.3736 0.9992 0.5004 0.9609 0.1799 0.9795 0.6322 0.8598

AUC 0.6863 0.7307 0.5762 0.7265

RfP
Prec. 0.2957 0.9963 0.0000 0.9993 0.0743 0.9992 0.0462 0.9996
Rec. 0.2801 0.9092 0.0000 1.0000 0.2923 0.9905 0.7292 0.8997

AUC 0.6588 0.5000 0.6398 0.8013

Prep.
Prec. 0.2957 0.9963 0.0549 0.9977 0.0435 0.8965 0.0619 0.9973
Rec. 0.2801 0.9092 0.2507 0.9723 0.1393 0.8875 0.6881 0.8668

AUC 0.6588 0.6115 0.5610 0.7692

MobIS
Prec. 0.2440 0.9539 0.1295 0.9982 0.2576 0.9490 0.1257 0.9724
Rec. 0.1715 0.9715 0.6038 0.7614 0.3440 0.9518 0.5458 0.7694

AUC 0.5715 0.6861 0.5119 0.6576
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As we see from the AUCROC of around 0.5, subjective logic [11]
erforms only slightly better than random guessing. This is most likely
aused by the high class imbalance in the data, which is much higher
han presumed in the original paper. Both CatBoost and suffix predic-
ion reach an acceptable AUCROC only for Dom., with CatBoost showing
etter Dev recall. MPPN reaches an acceptable AUCROC for the Int.
vent log and high Dev recall for the BPIC12 logs. This indicates that
ts sophisticated design and the pre-training allows to predict individual
eviation collectively in some logs. Thus, we can see that complex ML
odels can partially address the challenges of predicting deviations

ollectively. However, MPPN is outperformed by specialized models per
eviation type, i.e., CatBoost and IDP, that can deal better with strong
lass imbalance. For deviation types with strong class imbalance, MPPN
erforms considerably bad.

IDP outperforms all baselines and reaches mostly acceptable to
xcellent AUCROC values. The high Dev recall indicates that a majority
f future deviations are predicted in prefixes, which we aimed for to
ddress C5. We also see that the performance of IDP differs between
he logs, as shown by AUCROC. For BPIC12 A, Dom., Int., RfP, and
rep., AUCROC indicates (very) good predictive strength. For BPIC12O
nd MobIS, no approach reaches an acceptable AUCROC, which is likely
ue to long traces with differing control-flow in combination with few
race attributes.

With regard to prediction time, all approaches demonstrate rea-
onable performance with normal computational resources. As shown
n our repository, IDP performs comparable to CatBoost and Suffix
rediction.

.3. Benchmark of deviation pattern prediction

After assessing BPDP’s ability to predict individual deviations, we
ow evaluate its strength in predicting deviation patterns. Table 8
isplays average precision, recall, and AUCROC for the seven event
ogs and compares the performance of DPP to the three applicable
aselines CatBoost, MPPN, and suffix prediction. DPP achieves the best
UCROC for three event logs, MPPN also for three event logs, and suffix
rediction for one event log. However, DPP is the only approach that
oes not perform significantly worse in other logs, whereas both MPPN
nd suffix prediction show at least one log with AUCROC of 0.5 or
elow. Further, DPP achieves an acceptable AUCROC for all logs except
obIS, where IDP also did not reach an acceptable AUCROC. This shows

hat performance of DPP depends on the performance of IDP. The input
or pattern prediction is the output from the individual deviations,
eading to worse performance in case the Level-0 classifier does not
erform well. Finally, the high Dev recall again indicates that a majority
f future deviation patterns are predicted in prefixes, thus effectively
ddressing C5 for deviation patterns as well. Since DPP reaches the
est Dev recall in the majority of event logs and, as the only approach,
n acceptable AUCROC in six logs, we consider it as the overall best
erforming model.

. Use case evaluation

As we have found BPDP to outperform all baselines, we now further
valuate its performance with regard to the specifics of the context
n which deviation prediction is applied. This use case evaluation is
wofold:

(1) In real-life applications, BPDP should predict deviations sufficiently
early before they occur. Thus, we evaluate prediction earliness in
Section 7.1.

(2) To demonstrate that BPDP can support preventing deviations in
the sense of action-oriented process mining, we evaluate the feature
importance for action orientation in Section 7.2. From this analysis,
potentially deviation-causing characteristics can be derived.
 l
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Finally, we demonstrate how BPDP can be used in practice to supply
process managers with information about upcoming deviations in form
of a prediction GUI in Section 7.3. This includes all features of BPDP
introduced so far.

In this section, we evaluate IDP only. For earliness, early predictions
of individual deviations indicate early predictions of patterns as DPP
builds on the output of IDP . Consequently, an evaluation of IDP ’s
earliness suffices to show the use case value. Similarly, the feature im-
portance is useful only if the features contain information on potentially
deviation-causing attribute values, which is the case for IDP but not for
DPP. For all use case evaluations, we use the event logs from Table 4
and evaluate on the test set only.

7.1. Earliness

Earliness of IDP should indicate how soon before the deviation
occurrence a prefix is classified correctly. Existing outcome predic-
tion approaches define earliness based on the total trace length [16].
However, as deviations occur within traces, we altered the metric to
show how many events in advance a deviation is detected. We only
consider traces for which IDP predicted the deviation correctly. For one
trace and one deviation type, earliness 𝑒𝑎(𝑡, 𝑑) is defined in Eq. (2a).
It is based on prediction position 𝑝𝑝 and deviation position 𝑑𝑝. 𝑝𝑝
is the prefix length where the deviation was predicted first (without
any wrong prediction after). 𝑑𝑝 is the position in the trace where
the deviation occurred. The lower 𝑒𝑎(𝑡, 𝑑), the earlier a deviation is
detected.

To construct a baseline for the earliness, we define a theoretically
optimal earliness 𝑒𝑎𝑜𝑝𝑡(𝑡, 𝑑) in Eq. (2b). This lower bound 𝑒𝑎𝑜𝑝𝑡(𝑡, 𝑑)
shows the value of 𝑒𝑎 if the deviation would have been recognized
at length 1, i.e., 𝑝𝑝(𝑡, 𝑑) = 1. If a deviation happens at position 10,
𝑒𝑎𝑜𝑝𝑡(𝑡, 𝑑) is 0.1. The earlier the deviation occurs in the trace, the higher
the theoretically optimal earliness.

𝑒𝑎(𝑡, 𝑑) =
𝑝𝑝(𝑡, 𝑑)
𝑑𝑝(𝑡, 𝑑)

(2a)

𝑎𝑜𝑝𝑡(𝑡, 𝑑) = 1
𝑑𝑝(𝑡, 𝑑)

(2b)

Additionally, we define the reaction time (rt), which indicates the
umber of events between correct prediction and deviation, according
o Eq. (3).

𝑡(𝑡, 𝑑) = 𝑑𝑝(𝑡, 𝑑) − 𝑝𝑝(𝑡, 𝑑) (3)

The average values for 𝑒𝑎(𝑡, 𝑑) (also applicable to 𝑒𝑎𝑜𝑝𝑡(𝑡, 𝑑)) and 𝑟𝑡
or a log 𝐿 with |𝐿| traces and a corresponding to-be model 𝐵 are
efined in Eqs. (4) and (5).

𝑎𝐿,𝐵 = 1
|𝐷𝐿,𝐵| × |𝐿|

∑

𝑑∈𝐷𝐿,𝐵

∑

𝑡∈𝐿
𝑒𝑎(𝑡, 𝑑) (4)

𝑟𝑡𝐿,𝐵 = 1
|𝐷𝐿,𝐵| × |𝐿|

∑

𝑑∈𝐷𝐿,𝐵

∑

𝑡∈𝐿
𝑟𝑡(𝑡, 𝑑) (5)

Table 9 displays the earliness values, including averages (Avg.) and
tandard deviation (SD) for 𝑒𝑎𝐿,𝐵 as well as Avg. and Avg. - SD for
𝑡𝐿,𝐵 . For event logs where deviations tend to occur early (i.e., high
𝑎𝑜𝑝𝑡𝐿,𝐵), IDP predicts these deviations relatively early as well. This is
articularly apparent for Dom. and RfP. The SD indicates that the
pread of earliness values is narrow in relation to the average for all
ogs except for Int. and Prep., the two logs with the most different
eviation types. This is because the SD is rather high for many of
he highly imbalanced deviation types in these logs. For event logs
here deviations tend to occur later (i.e., low 𝑒𝑎𝑜𝑝𝑡𝐿,𝐵), the earliness is
orse, as seen in, e.g., the MobIS log. We suspect that deviations which
nly occur later in traces are harder to predict in earlier stages due
o strong similarities of prefixes in these earlier stages in the MobIS

og. Nevertheless, for all event logs, rt indicates that deviations are, on
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Table 9
Comparison of prediction earliness to optimal earliness. Portrayed are Averages (Avg.)
and Standard Deviation (SD). Lower earliness values 𝑒𝑎𝐿,𝐵 and higher reaction time
values 𝑟𝑡𝐿,𝐵 are preferable.

Log eaoptL,B dpL,B IDP

eaL,B rtL,B
Avg. SD Avg. Avg. - SD

BPIC12A 0.16 6.21 0.25 0.14 4.65 3.76
BPIC12O 0.18 5.62 0.36 0.14 3.60 2.82
Dom. 0.38 2.67 0.46 0.13 1.44 1.08
Int. 0.19 5.18 0.35 0.24 3.38 2.12
RfP 0.35 2.85 0.46 0.19 1.53 1.00
Prep. 0.22 4.65 0.37 0.21 2.91 1.93
MobIS 0.12 8.41 0.36 0.18 5.36 3.81

average, correctly predicted at least 1 event in advance, giving process
managers time to address upcoming deviations. This is still true when
deducting the standard deviation of rt from the average (Avg. - SD) for
all logs.

7.2. Feature importance for action orientation

To help managers in preventing deviations in the future, we analyze
potential reasons for their occurrence. Therefore, we use explainable
artificial intelligence (XAI), which can make the predictions of IDP
interpretable and identify process features that potentially cause de-
viations to occur [44]. Concretely, we compute the Shapley values of
the predictions [45], which indicate how much impact the value of
a certain input feature has on the prediction. In our case, a negative
Shapley value indicates that this specific feature value increases the
likelihood for not predicting a deviation. A positive Shapley value
indicates that the feature value increases the likelihood for predicting a
deviation. In general, the higher the absolute Shapley value, the higher
the impact of this feature value on the prediction. For IDP , we are
interested in features with high positive Shapley values as those indi-
cate deviation occurrences and should therefore be avoided. Features
with high negative Shapley values indicate conforming behavior and
can also be helpful.

Referring to the running example in Section 2, Fig. 11 shows the
Shapley values for the ten most important features to predict deviation
type 𝑑1. For the binary features, the color indicates their presence (red)
or absence (blue). For the numerical feature AMOUNT_REQUIRED, it
indicates high values (red) or low ones (blue). We see that a higher
amount increases the likelihood of a deviation prediction. The same
is true if the trace starts on a Tuesday or Saturday or if the first
event is executed in November. On the contrary, if the third event is
15 
executed by resource 112 or if this third event is executed in October,
the probability for predicting a deviation is significantly lower.

The Shapley values offer two interesting insights for the use case
evaluation. First, they make the predictions of the trained classifiers
interpretable. Second, they point towards those process features that
should be investigated when trying to prevent deviations from happen-
ing. In case of BPIC12 A, these process features are the loan amount
as well as the weekday and the month where the trace started. Addi-
tionally, using process knowledge of resource 112 could help to define
actions that prevent the deviation (≫, A_APPROVED). This information
cannot be obtained from classical conformance checking.

7.3. Prediction GUI

In Fig. 12, we combine all features of BPDP and illustrate how it
can support process managers in handling deviation predictions.

It shows a prototypical graphical user interface with the exemplary
prediction results for a running process instance of the BPIC12 A. The
interface is separated in four sections: (1) the to-be process model
(top), (2) descriptive features for the selected case, including trace
attributes and the current control-flow progress (middle), (3) individual
deviation predictions from IDP (also annotated in the model), including
the prediction probability on the left side as well as the top two features
with the highest Shapley values that lead to this prediction, and (4)
deviation pattern predictions from DPP for the top two deviation pat-
terns that occur in the process (bottom). The prediction probability of
each deviation indicates the models’ belief in how likely this deviation
will occur. We define this probability as the Softmax-activation of the
neuron in the output layer of the neural network that represents the
deviating class.

8. Discussion

The conducted experiments show that BPDP is well capable of pre-
dicting deviations. By tackling the five challenges of deviation predic-
tion with customized design choices, it outperforms the three baselines
for all event logs. In the following, we discuss our design choices and
potential limitations.

We found that separate classifiers per deviation type outperformed
the single classifiers that predict all deviation types collectively. This
contradicted our initial presumption that a collective classifier would
learn dependencies between deviation types and hence perform bet-
ter than separate classifiers. The observed differences in performance
can be attributed undersampling and weighted loss, which are more
effective for separate classifiers. Due to the highly unequal imbalance
between the deviation types, undersampling was less effective for col-
lective predictions, but worked very well for IDP-separate which could
Fig. 11. Shapley values for correct predictions of (≫, A_APPROVED) in BPIC12A.
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Fig. 12. The prediction GUI.
undersample the logs individually per deviation. The less effective
undersampling for IDP-collective also explains the much lower recall
of those models, resulting in a worse AUCROC. We noted that IDP-
collective could not predict the very rare deviation types at all or at
least in a sufficiently reliable manner. In contrast, IDP-separate was
much more accurate across almost all deviation types.

For logs with exceptionally high imbalance (BPIC12O and MobIS),
even separate classifiers plus undersampling were not enough to get
acceptable AUCROC values. This strategy also came at the cost of
lower precision than, e.g., CatBoost, resulting in many false positives.
These findings hold for the prediction of individual deviation types but
also for deviation patterns because the imbalance of patterns is, by
definition, equally high or higher than those of the individual deviation
types.

Another observation concerns the impact of additional context in
form of trace attributes on the prediction quality. The performance
of BPDP is better on the BPIC 20 logs with a high number of trace
attributes than on other logs with fewer attributes. We suspect that
more attributes lead to more accurate predictions for short prefixes as
additional context allows to better differentiate between them. This is
supported by our finding that the use of LSTM models to predict indi-
vidual deviation types does not improve predictive strength, indicating
that the ability to handle sequential data does not outweigh the ability
to handle static trace attributes.

One drawback of the current design choices is the resulting com-
plexity of the whole approach. For 𝑚 deviation types in 𝐷𝐿,𝐵 , we have
to train 𝑚 networks with individual undersampling and loss weighting.
In our experiments, we established that this model design best ad-
dresses the challenges at hand. Nevertheless, it would be advantageous
to have to train only a single model per log, as done with IDP-collective
and MPPN. Further, the current two-step approach to first predict
individual deviations with IDP and using a second model to predict the
patterns could be simplified to a model that predicts deviation types
and patterns in one.

Another limitation of BPDP stems from the inherent non-
determinism of alignments, which can make the prediction targets
non-deterministic as well. In our experiments, we ensured full re-
producibility by fixing the alignments per trace. When using BPDP
16 
in practice, however, training data might still be contradictory if
differing optimal alignments are returned for similar trace variants.
We addressed this problem by fixing the alignments with the smallest
number of deviation types to minimize the occurrence of different
types for similar deviations. This heuristic approach should rule out
non-determinism for most practical use cases.

Further, using oversampling and WCEL effectively led to good
recognition of deviating traces but also to many false positives as
indicated by low Dev-precision. While we choose this intentionally to
ensure that all deviations are handed over to managers, it might lead
to mistrust in practical applications, as many false alarms handed over
to the managers. Potentially, a heuristic based on current position of
the ongoing process instance, the prediction probability, and model cer-
tainty could be used to trigger manual trace inspection, thus reducing
the number of false alarms. Our GUI does provide managers with some
information for that, but a concrete heuristic would be preferable.

Lastly, we acknowledge that the usefulness of the Shapley values
is limited since it is based on the features generated in CIBE. Thus,
we can only refrain to Shapley values of features like ‘‘activity of third
event’’ or ‘‘resource of third event’’ but not of features like ‘‘resource
performs activity’’, which might be more relevant, especially in com-
plex processes. To improve the usefulness of the feature importance
of features for action orientation, we want to experiment with joint
Shapley values, i.e., Shapley values of a set of features [46]. This way,
we could provide the importance of features like ‘‘resource X performs
activity Y’’ or ‘‘activity Z is performed in September’’.

9. Conclusion

In this paper, we advance proactive conformance checking and
propose an approach for deviation prediction, called BPDP, which can
predict deviations that will occur in the future of running process
instances. We designed BPDP to explicitly consider external knowledge
on the to-be process behavior, cope with multiple deviations and devia-
tion patterns in one trace, incorporate context information in the trace,
and prioritize the detection of deviating behavior. BPDP outperforms
all baseline approaches and reaches acceptable to excellent prediction
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performance. The evaluations also show that it predicts deviations
sufficiently early, such that it can be used in practice.

In the future, we want to experiment with other types of con-
formance violations besides alignment-based deviations, such as rule
violations. This could also include conformance violations defined with
domain knowledge, in which case the prediction targets might be
closer aligned to what process managers actually want to monitor.
Related to that, we recently published an approach to detect devia-
tion patterns of the types insert, skip, repeat, replace, and swap within
race alignments [47]. These pattern types allow for a more concrete
ssessment of deviating behavior, for example by explicating whether
n activity is performed too early or too late in a trace (i.e., the activity
s swapped with another activity). We aim to investigate whether it is
ossible to utilize these patterns for predictive purposes. Additionally,
e aim to address action orientation by a heuristic which, dependent
n prefix prediction and earliness, triggers the manual trace inspection
y managers to reduce costs through false positives and a deviation
everity score, which shows users the most urgent problems in their
rocess. In the same vein, we not only want to predict whether a
eviation will occur, but also at what point in the future. For example,
e could predict the reaction time in form of events to react as defined

n Section 7.1, i.e., how many events will occur in the ongoing trace
efore a deviation occurs. We also want to investigate if the suffix
rediction can identify any new deviations which are not known so far
ut also meaningful. This could be used to warn the manager about un-
nown deviations that could potentially occur. Furthermore, although
PDP performs well, it can be improved in terms of encoding, network
rchitecture, and learning strategy. For instance, different encoding
pproaches could be tested instead of CIBE. While IDP with fully con-
ected layers performs better than with LSTM layers, most likely since
he LSTM cannot capture trace attributes adequately, a fully connected
rchitecture does not account for the processual characteristic of event
ata. An architecture that accounts for the processual nature of event
ata and trace attributes appropriately would be very advantageous.
urther, we aim to develop a complete front-end user interface based on
he mock-up shown in Fig. 12. In its current form, we have conceptually
eveloped this GUI but not connected it to the predictive model in the
ack-end, which would be desirable. Finally, the training strategy could
e improved. To better differentiate between conforming and non-
onforming traces, Contrastive training approaches like a triplet-loss
ould be tested.
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