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Abstract
Pre-trained language models are now ubiquitous in natural language processing, being successfully applied for many different
tasks and in several real-world applications.However, even though there is awealth of high-qualitywrittenmaterials on surgery,
and the scientific community has shown a growing interest in the application of natural language processing techniques in
surgery, a pre-trained language model specific to the surgical domain is still missing. The creation and public release of such
a model would serve numerous useful clinical applications. For example, it could enhance existing surgical knowledge bases
employed for task automation, or assist medical students in summarizing complex surgical descriptions. For this reason, in
this paper, we introduce SurgicBERTa, a pre-trained language model specific for the English surgical language, i.e., the
language used in the surgical domain. SurgicBERTa has been obtained from RoBERTa through continued pre-training
with the Masked language modeling objective on 300 k sentences taken from English surgical books and papers, for a total of
7 million words. By publicly releasing SurgicBERTa, we make available a resource built from the content collected in many
high-quality surgical books, online textual resources, and academic papers. We performed several assessments in order to
evaluate SurgicBERTa, comparing it with the general domain RoBERTa. First, we intrinsically assessed the model in terms
of perplexity, accuracy, and evaluation loss resulting from the continual training according to the masked language modeling
task. Then, we extrinsically evaluated SurgicBERTa on several downstream tasks, namely (i) procedural sentence detection,
(ii) procedural knowledge extraction, (iii) ontological information discovery, and (iv) surgical terminology acquisition. Finally,
we conducted some qualitative analysis on SurgicBERTa, showing that it contains a lot of surgical knowledge that could
be useful to enrich existing state-of-the-art surgical knowledge bases or to extract surgical knowledge. All the assessments
show that SurgicBERTa better deals with surgical language than a general-purpose pre-trained language model such as
RoBERTa, and therefore can be effectively exploited in many computer-assisted applications in the surgical domain.

Keywords Transformers · Language models · Natural language processing · Medicine

1 Introduction

The field of artificial intelligence known as natural language
processing (NLP) allows for automated processing and anal-
ysis of everyday language. In the past two decades, NLP has
rapidly expanded across all information technology domains
and is now being utilized more frequently in medicine. Its
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applications include enhancing the use of unstructured elec-
tronic health records, aiding communication with patients,
conducting consultations, and finding pertinent information
in papers [21]. Most cutting-edge NLP techniques rely on
statistical language modeling, which involves representing
words as numerical vectors that capture their probability dis-
tribution in a sentence structure [12]. These vectors, also
known asword embeddings, are numerical representations of
words and are frequently generated through self-supervised
machine learning methods applied to large, unlabeled textual
datasets.More advanced languagemodels create distinct rep-
resentations for a word based on its context, allowing them
to accurately capture polysemous terms that have multiple
meanings. Contextual language models based on Trans-
former architectures, such as BERT [8] or RoBERTa [20], are
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trained using a deep neural network with a masked language
modeling (MLM) objective [33]. Thesemodels use a bidirec-
tional self-attention mechanism [34] to associate each word
with its context, or the words surrounding it in the sentence.
These features enable contextual language models to outper-
form non-contextual ones in variousNLP tasks [8]. Although
trained on enormous digital corpora consisting of billions of
words, language models trained on general text frequently
do not work effectively in very specialized domains such as
scientific ones. As a result, several recent NLP studies have
concentrated on retraining or fine-tuning language models
for very specialized domains using domain-specific text (as
explained in detail in Sect. 2).

While a large number of domain-specific language mod-
els have been developed to improve the understanding of the
semantic information in their field of expertise, to the best
of our knowledge a specialized model for surgical language
does not exist yet, even if the scientific community has shown
growing interest in the application of NLP in surgery [19, 28,
38–40]. There is an abundance of high-quality resources in
the surgical literature, including books, online materials, and
academic papers that are adopted and utilized by universi-
ties around the globe. The vast quantity of this high-quality
available information can be a valuable resource for vari-
ous clinical applications, involving both humans and smart
robotics systems, if automatically processed via NLP tech-
niques. For instance, one possible application of using the
content extracted from textual resources is for building or
extending the knowledge bases exploited by surgical robots,
which they can use to make informed decisions in real-life
intervention situations. Similarly, as reported in recent stud-
ies focusing on the clinical field [30, 42], humans can also
benefit from this information in question-answering appli-
cations. These systems could be useful for medical students
during their early training phase, or to provide a summary or
simplified version of surgical descriptions.

In this paper, we follow this line of research and intro-
duce a new pre-trained languagemodel trained on procedural
surgical language, named SurgicBERTa. The main, novel
contributions1 presented in this paper are:

1. The development of SurgicBERTa, a pre-trained lan-
guage model specific for the understanding of procedural
surgical language;

2. The intrinsic evaluation of SurgicBERTa with respect
to the general-purpose model RoBERTa;

3. The extrinsic evaluation of SurgicBERTawith respect to
RoBERTa, that is, the comparison of their performances
when employed on four different downstream tasks;

1 All the materials and results presented in this paper are novel, except
the experiments described in Sect. 4.3, which were first presented in [4].

4. The public release of SurgicBERTa to the research com-
munity: https://gitlab.com/altairLab/surgicberta.

The quantitative assessments are complemented with qual-
itative analysis on SurgicBERTa, showing that it contains
a lot of surgical domain knowledge that could be use-
ful to enrich existing state-of-the-art surgical knowledge
bases. The evaluation indicates that SurgicBERTa better
deals with surgical language than a state-of-the-art yet open-
domain and general-purpose model such as RoBERTa, and
therefore can be effectively exploited in many computer-
assisted applications, specifically in the surgical domain.

The paper is organized as follows: Sect. 2 revises rel-
evant works in this area. Then, SurgicBERTa is pre-
sented in Sect. 3. The required textual data is collected,
extracted, pre-processed and used for the continuous train-
ing of RoBERTa on the MLM task with domain-specific
text. Section4 presents the intrinsic metrics and tasks used
to evaluate SurgicBERTa. In particular, metrics for the
intrinsic evaluation of SurgicBERTa (i.e., perplexity, accu-
racy, and evaluation loss of the MLM task) are presented in
Sect. 4.1, while Sects. 4.2–4.5 present the downstream tasks
used to compare SurgicBERTa with RoBERTa, namely,
(i) procedural sentences detection, (ii) procedural knowl-
edge extraction, (iii) ontological information discovery, and
(iv) surgical terminology acquisition. Section4.6 reports and
qualitatively discusses some examples of surgical domain
knowledge contained in SurgicBERTa. Finally, Sect. 5
summarizes obtained results and proposes future works.

2 Related works

2.1 Transformers and pre-trained languagemodels

Transformers are deep-learning models widely used in NLP
[34] and computer vision [9]. In particular, they have fun-
damentally changed the landscape of NLP by gradually
replacing recurrent neural networks across the board. The
core innovative part of these architectures is the self-attention
mechanism [34]. Since oneword can have differentmeanings
in different contexts, self-attention allows the model to look
at other positions in the input sequence for clues that can help
lead to a better encoding for the current word. Moreover, the
creation of large-scale, Transformer-based pre-trained lan-
guagemodels such asBERTorRoBERTahas revolutionized
the NLP domain. These models only use the encoder part of
the Transformer (in contrast, e.g., to denoising autoencoders
such as BART [16]). Such pre-trained large models are pre-
trained once in an unsupervised way, e.g., on a language
model objective, and can be fine-tuned for a large number of
NLP tasks with a modest amount of training data, achieving
state-of-the-art results on many of them, such as sentiment
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analysis, textual entailment, and natural language inference,
crucially also across languages [15].

2.2 Pre-trained languagemodels in biomedicine

Transformer-based pre-trained language models have also
been fine-tuned for different tasks in the biomedical domain.
However, they were originally built for general English,
and thus they may miss some domain words or expres-
sions. To overcome this limit, there is the possibility to train
from scratch a model specific to a given domain of interest,
such as in [42] where a large model specific to the clini-
cal domain using > 90 billion words of text is proposed.
Developing such a model from scratch is very expensive for
the computational resources and the training time required.
For this reason, domain adaptation techniques, such as the
MLM described in Sect. 3, have been proposed and widely
used in biomedicine with fine-tuning for various downstream
tasks. In [44], domain adaptation is used to obtain a cancer
domain-specific language model for effectively extracting
breast cancer phenotypes from electronic health records.

In [37], the authors utilize pre-trained neural models to
classify patients as either seizure-free or not, as well as to
extract text from clinical notes that contains their seizure fre-
quency and the date of their last seizure. The first step of
this pipeline is the unsupervised domain adaptation, using
progress notes that were not selected for annotation. The
obtained model has been fine-tuned for the classification
and extraction tasks. Also, [41] adopted a domain adaptation
technique on clinical notes from the Medical Information
Mart for Intensive Care III database [14] to extract clinically
relevant information. In [18], causal precedence relations
are recognized among the chemical interactions in the
biomedical literature to understand the underlying biological
mechanisms.However, detecting such causal relations can be
challenging because annotating such causal relation detec-
tion datasets requires considerable expert knowledge and
effort. To overcome this limitation, in-domain pre-training
of neural models with knowledge distillation techniques has
been adopted, showing that the neural models outperform
previous baselines even with a small number of annotated
data. In [7], a domain adaptation strategy is adopted to
encourage the model to learn features from the context to
curate all validated antibiotic resistance genres, i.e., the abil-
ity of bacteria to survive and propagate in the presence of
antibiotics, from scientific papers. In [30], a domain adapta-
tion technique has been used to align large language models
to new medical domains, showing that, after a proper adap-
tation step, they encode some clinical knowledge usable in
question-answering applications. Finally, a domain adap-
tation technique has been adopted for biomedical domain
adaptation in languages different than English, such as Span-

ish [6] and Chinese [43] showing the same improvement
trend when compared to the corresponding base models.

However, due to the syntactic, semantic, and terminolog-
ical differences between domains, it is often difficult to use
these models to gain benefits outside the domain they were
trained on. It is generally accepted that model performance
may degrade when evaluated on data with a different dis-
tribution [31]. Consequently, domain adaptation on relevant
domain data is essential to improve performance in very spe-
cialized domains [1], and despite the availability of several
biomedical language models, to the best of our knowledge, a
pre-trained surgical languagemodel ismissing. Such amodel
is essential for mining surgical procedural knowledge from
text and developing intelligent surgical systems.

3 A languagemodel for the surgical domain:
SURGICBERTA

This section describes the development of Surgic-
BERTa, the pre-trained language model for the surgical
domain that we contribute. SurgicBERTa has been devel-
oped on top of RoBERTa, an already available pre-trained
language model for English for the general domain. Specif-
ically, the roberta-base version of the HuggingFace
Transformer library has been adopted. Therefore, the eval-
uation (presented in Sect. 4) will compare these two models
along several dimensions.

RoBERTa [20] is a Transformer model that adopts the
same encoder–decoder architecture made popular by BERT
[8],while being trainedon a larger quantity of data, consisting
in a combination of datasets totaling around 160 GB of raw
text: namely, texts fromBookCorpus and EnglishWikipedia,
data from the English portion of the CommonCrawl News,
from OpenWebText, and some stories from CommonCrawl
data. RoBERTa has been trained via MLM with dynamic
masking: i.e., each time a sequence is input to the model, a
newmasking pattern is created. Differently fromBERT,Ro-
BERTa was not trained also on next sentence prediction, as
this training task did not contribute a significant improvement
of the performance in downstream tasks [20].

Leveraging RoBERTa as a starting point, we devel-
oped a new model that is tailored to the surgical domain.
This involved the continuous training of RoBERTa on
a large corpus of surgical text for the MLM unsuper-
vised task. In the MLM task, a token wt is replaced with
〈mask〉 and predicted using all past and future tokens
W\t := (w1, . . . ,wt−1,wt+1, . . . ,w|W |). Figure1 illus-
trates the MLM task used to derive SurgicBERTa.

In more detail, to obtain a surgical model as general as
possible, we collected 300 K sentences (7M million words)
from surgery books covering several heterogeneous surgi-
cal domains, including, for instance, orthopedics, abdominal
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SurgicBERTa masked language model

Sentence:

Input: [s] radical prostatectomy is the surgical removal

radical prostatectomy is the surgical removal of the <mask>.

of the <mask> [\s]

[s] radical prostatectomy is the surgical removal of the [\s]

1. prostate
2. tumor
3. specimen
4. …

Output:

The token “pprostate” has the highest probability

Fig. 1 MLM task used for adapting SurgicBERTa to the surgical domain. s and \s are special tokens denoting the sentence’s beginning and end,
respectively

surgery, and eye surgery.We searched for surgery bookswrit-
ten in English on the web pages of several publishing houses.
As keywords, we used the name of the surgical macro-
areas (e.g., general surgery, abdominal surgery, gynecology
surgery, eye surgery, etc.). From the results, we downloaded
the digital version only of the texts to which our universities
have proper free legitimate access.2 A very minimal pre-
processing of the sentences was performed, mainly to clean
the text from bibliographic references and URLs. In more
detail, 15% of tokens are selected for possible replacement.
Among those selected tokens, 80% are replaced with the
special 〈mask〉 token, 10% are left unchanged and 10% are
replaced by a random token. The model is then trained to
predict the initial masked tokens using cross-entropy loss.
Following the RoBERTa approach, tokens are dynamically
masked instead of fixing them statically for the whole dataset
during pre-processing. This improves variability and makes
the model more robust when training for multiple epochs.
SurgicBERTa is computed using one NVIDIARTXA6000

2 By choosing only the texts to which we have free access thanks to
our institutions’ agreement, we have probably excluded some resources
which, if used in the training phase, would have allowed us to increase
the trainingmaterial and therefore probably also the performance. How-
ever, given the high diversity of the resources made available by our
institutions and used for the training material, we do not believe that
this choice has too much impact on performance.

GPU, with 48 GB of GPUmemory.We trained for 30 epochs
with a learning rate of 5e−06 and a batch size of 32. The
Adam optimizer has been used. The implementation is based
on PyTorch and Transformers libraries. The entire training
required about 8 hours to be completed.

4 Evaluation

This section presents the intrinsic evaluation (Sect. 4.1) and
the four downstream tasks that we use to evaluate Surgic-
BERTa in Sect. 4.2 through 4.5, namely: procedural/non-
procedural surgical sentence classification, surgical infor-
mation extraction, ontological information discovery, and
surgical terminology acquisition.

4.1 Intrinsically evaluating the quality of language
modeling

4.1.1 Evaluation metrics

Perplexity is one of the most common metrics for evaluating
language models and measures the degree of uncertainty of a
language model to generate a new token, averaged over very
long sequences [27]. Thismeans that the lower the perplexity,
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calculated as the exponentiated average negative log likeli-
hood of a sequence, the better the language model is able to
predict a given text. While perplexity can be computed out of
the box for traditional language models trained on guessing
the next word given the previous context, i.e., autoregres-
sive or causal language models, it is not well defined for
language models like BERT or RoBERTa trained with the
masked language modeling technique. For these models, we
can compute instead the perplexity from their pseudo-log
likelihood scores (PPL) [36], which corresponds to the sum
of conditional log probabilities of each sentence token [29].
Formally, the pseudo-log likelihood scores (PPL) of a sen-
tence W = (w1, . . . , w|W |) under a language model with
parameters � is defined as:

PPL(W) :=
|W |∑

t=1

log PMLM(wt |W\t ;�)

where PMLM(wt |W\t ;�) is the conditional probability
of token wt given all past and future tokens W\t :=
(w1, . . . , wt−1, wt+1, . . . , w|W |).

The (pseudo) perplexity PP of a masked language model
[27] on a corpus of sentences W is then computed as:

PP(W) := exp

(
− 1

N

∑

w∈W
PPL(W)

)

where N is the number of tokens in the corpus. By computing
PP on a test corpus for bothRoBERTa and SurgicBERTa,
we are evaluating the model’s ability to predict the unseen
text from the corpus and take this as an intrinsic evaluation
metric of the quality of the two models.3

Other intrinsic metrics used to evaluate RoBERTa and
SurgicBERTa on the surgical domain in this paper are the
accuracy of MLM computed on the masked tokens during
the evaluation step and the evaluation loss. Accuracy mea-
sures how well our model predicts the masked words by
comparing the model predictions with the proper values in
terms of percentage. Instead, the loss is a value that repre-
sents the summation of errors in a model. It measures how
well or badly the model is performing. If the errors are high,
the loss will be high, and then the model will not perform
well.

Generally, the higher the accuracy in the evaluation dataset
and the lower the evaluation loss, the better the model will
perform.

3 Our comparison is fair in that RoBERTa and SurgicBERTa share
the same tokenizer and the same vocabulary.

Table 1 Perplexity, accuracy, and evaluation loss

Pre-trained model Perplexity Accuracy Evaluation loss

RoBERTa 15.410 0.546 2.735

SurgicBERTa 4.300 0.699 1.458

Bold values mark the better scores for each metric

4.1.2 Results and discussion

Table 1 reports perplexity, accuracy, and loss values of Ro-
BERTa and SurgicBERTa obtained during the evaluation
of the MLM tasks as described in Sect. 4.1. SurgicBERTa
has lower perplexity (−11.11), greater accuracy (+15.30%),
and lower evaluation loss (−1.277) than RoBERTa. All
obtained results intrinsically confirm that SurgicBERTa
better deals with surgical language than RoBERTa.

4.2 Extrinsic evaluation: task A—procedural content
detection

4.2.1 Task definition

The detection of procedural content consists of a binary
classification task where the aim is to classify each sen-
tence of a corpus into two different classes (procedural and
non-procedural) This task is generally a preliminary and
essential step for the business or robotic process automation
starting from procedural content stored in textual materials
because it allows models to deal with only those sentences
that are important for the extraction of a workflow [26]. In
the case of the surgical domain, the two classes are defined
in [2]:

• Procedural sentences describe a specific action per-
formed by either the robot or the human surgeon (e.g.,
an intervention on the body, the positioning of the robot).
An example of a procedural sentence is “The colon is
reflected medially over the kidney along the white line of
Toldt.”;

• Non-procedural sentences do not contain any indication
of a specific surgeon action, but rather describe general,
complementary information or anatomical features, not
necessarily specific to perform a particular step of the
intervention. An example of a non-procedural sentence
is “This permits greater range of camera movement infe-
riorly within the retroperitoneum.”

As training and testingmaterial, we exploit the latest avail-
able version (v1.1) of the SPKS dataset,4 containing 2250

4 https://gitlab.com/altairLab/spks-dataset.
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sentences manually annotated as procedural (approx. 68%)
and non-procedural (approx. 32%).

In order to fine-tune RoBERTa and SurgicBERTa for
procedural sentence classification, these pre-trained mod-
els have been extended to produce a classification output
(procedural/non-procedural) by adding a softmax-activated
classification layer on the pre-trained language models, and
then by fine-tuning them on the SPKS dataset. A standard
cross-entropy loss function has been adopted for classifica-
tion. Due to the reduced size of the dataset, we utilized the
classical 10-fold cross-validation protocol, which involves
dividing the dataset into ten sets. In each iteration, one set is
used for testing the classifier, while the remaining nine sets
are used for training and hyperparameter tuning. This process
is repeated ten times, and the classification performance is
evaluated by computing the average of the evaluationmetrics
over the ten iterations.

Standard metrics for classification tasks, namely preci-
sion (P), recall (R), and F1-score, are used to compute
performance. The metrics are calculated for each class
(procedural/non-procedural) and we report for each of them
the macro average, i.e., the mean of the considered metric
on the two classes. In addition, we also compute Accuracy
(Acc), i.e., the ratio between the correctly predicted classes,
divided over the test set size, that in the case of binary classifi-
cation, coincides with the micro average of P, R, and F1. For
testing the statistical significance, we computed the p value
applying the McNemar’s test with significance threshold α

of 0.05, as implemented in [10].

4.2.2 Results and discussion

Results of the procedural sentence detection task described
in Sect. 4.2 have been reported in Table 2. SurgicBERTa
improves all the performance metrics when compared to
RoBERTa on both procedural and non-procedural classes.
Overall, averaging theperformances onboth classes,Surgic-
BERTa improves the accuracy of 0.014, and Macro-F1
of 0.015, confirming the benefit of having a domain-
specific language for surgical-related text classification. The
observed performance difference of the two systems is sta-
tistically confirmed by the considered significance test.

4.3 Extrinsic evaluation: task B—procedural
knowledge extraction

4.3.1 Task definition5

The purpose of this task is the extraction of procedural
information from texts using semantic role labeling (SRL)

5 This section summarizes findings and content previous presented in
[4]. Ta
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techniques. Given a sentence, the SRL task aims at label-
ing the semantic arguments of the sentence predicates in
order to extract Who does What to Whom, How, When, and
Where. In this paper, we adopt the PropBank [23] approach
for SRL, leveraging the catalog of semantic roles and predi-
cate meanings codified in the Robotic-Surgery Propositional
Framebank (RSPF) [3].

SRL can be organized in two complementary subtasks:
(i) predicate disambiguation, i.e., the understanding of the
correct meaning of a word describing an action (a.k.a., a
predicate), and (ii) semantic arguments identification and
classification, i.e., the detection of the argument spans of a
predicate, and the assignment of them to the correct semantic
role labels from RSPF. For example, given the sentence:

The colon is reflected medially over the kidney along
the white line of Toldt.

with task (i) the method should recognize that reflect has in
this context the RSPF’s meaning of reflect.03, i.e., to bend
or fold back, and not for example the RSPF’s meaning of
reflect.02, i.e., think about or reflect.01, i.e., cast an image
back, casting back an image. Then, given this meaning, the
method has to solve the task (ii), i.e., to tokenize and classify
the arguments in the sentence as follows:

[Arg.1: The colon] is [V: reflected] [Arg.2: over the
kidney] [Arg.3: along the white line of Toldt].

where Arg.1, Arg.2 and Arg.3 indicate (a) the thing reflected,
(b) its location, and (c) other spatial useful indications,
respectively.

Modern SRL methods rely on neural architectures that
require annotated data to learn the language in a supervised
way [11, 17]. To train, validate, and test the models, we used
two different manually annotated textual datasets for seman-
tic role labeling: CoNLL-2012 [25] and a smaller dataset
specific to robotic surgery [5]. CoNLL-2012 is a large-scale
general-English corpuswith 318 k annotated predicates, cov-
ering multiple genres. We used this dataset to teach the
common neural architecture the basic knowledge about the
SRL task. The smaller dataset is instead domain-specific,
containing 1559 SRL-annotated sentences regarding robotic
surgery procedures, thus including both traditional surgical
actions and specific robot operations. We used this smaller
dataset to specialize themodels, helping them to better under-
stand surgical language and perform the SRL task more
effectively in the given domain. The train, test, and valida-
tion splits already provided with the smaller dataset are used
for the training, tuning, and evaluation of the performances.
Specifically, 80% of the sentences are utilized for training
(with 10% of them being set aside for validation), while the
remaining 20% are dedicated to the test dataset. Moreover,
for comparing the two languagemodels on this task, the same
metrics adopted for the procedural content detection task are

Table 3 Performance (overall) on theSRL task (ExtrinsicEvaluation—
Task B). The best scores are highlighted in bold

Predicates Arguments
Pre-trained model Accuracy Precision Recall F1

RoBERTa 0.907 0.771 0.752 0.762

SurgicBERTa 0.925 0.778 0.768 0.773

used (cf. Sect. 4.2). For testing the statistical significance, we
applied the Bootstrap test on the accuracy of the label (predi-
cates and arguments) predictions with significance threshold
α of 0.05 and using the implementation of [10].

4.3.2 Results and discussion

Table 3 reports the performance of the procedural knowl-
edge extraction task described in Sect. 4.3. SurgicBERTa
substantially improves the predicated disambiguation task
accuracy of 0.018 when compared to RoBERTa. Moreover,
SurgicBERTa outperforms RoBERTa in all evaluation
metrics related to the arguments disambiguation task. In par-
ticular, it improves the precision of 0.007, recall of 0.016,
and F1 of 0.011. The improvement is confirmed to be sta-
tistically significant by the performed Bootstrap test. These
results extrinsically demonstrate the benefit of having spe-
cialized RoBERTa in the surgical domain for the accurate
extraction of actions and related information from surgical
text.6

4.4 Extrinsic evaluation: task C—ontological
information about the surgery and anatomical
target

4.4.1 Task definition

The purpose of this task is to associate the name of the sur-
gical procedure with the corresponding anatomical target or
relevant feature to verify if the language models have learned
this type of knowledge during training. For example, the
prostatectomy has to be associated with prostate, nephrec-
tomy with kidney, and mastectomy with breast. To evaluate
our models on this task, we built a dataset consisting of the
definition of 20 different surgical procedures. In particular,
surgical procedures that can be performed with the aid of
a robot have been chosen, together with other very frequent
laparoscopic ones. The definitions are retrieved from the web
or surgical manuals not used during the training of the lan-
guage models. From them, the name of the corresponding

6 Amore fine-grained assessment of the application of SurgicBERTa
for SRL on the surgical domain is provided in [4], where different com-
plementary analyses and comparisons (e.g., zero-shot learning, few-shot
learning) are performed.
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anatomical target has been removed, and themodels are asked
to guess it. As evaluation metrics, we consider the ranking
of the correct target word with respect to the others returned
by the model, the reciprocal rank (RR), and the mean recip-
rocal rank (MRR) [35]. We have chosen these metrics and
not others primarily with “accuracy" because we have a finite
list of candidates in output that we want to be able to scroll
through. MRR is a metric used to assess the performance
of systems that provide a ranked list of answers in response
to user queries. In the case of this task, answers are words
returned to fill the 〈mask〉 , i.e., the anatomical part corre-
sponding to the procedure description, and queries are the
sentences describing the procedure. In more detail, for a sin-
gle query, theRR is defined as 1

rank ,where rank is the position
of the correct answer among the ones (sorted by probability,
from the highest to the lowest) predicted by the model. For
multiple queries |Q|, the MRR is the mean of the |Q| RRs,
i.e.,

MRR = 1

|Q|
|Q|∑

i=1

1

ranki
= 1

|Q|
|Q|∑

i=1

RRi (1)

The vocabulary has not been restricted, i.e., a list of possible
candidates to choose from has not been used so that models
can return any word belonging to the vocabulary.

To better clarify with an example, consider the following
sentence (i.e., query):

a sacrocolpopexy is a surgical procedure used to treat
〈mask〉 organ prolapse.

Models are asked to fill in the missing word with the correct
one which in the above example is pelvic. They will propose
a list of possible candidates sorted by probability. For exam-
ple, for the above sentence, RoBERTa and SurgicBERTa
return the correct word pelvic in the third and first position,
thus obtaining an RR of 0.33 and 1.0 with a log likelihood
probability of 0.043 and 1.0 respectively. For testing the
statistical significance, we applied the Bootstrap test on the
RRs of the corrected predictions, using the same α threshold
and implementation of the other tasks.

4.4.2 Results and discussion

This section summarizes the results of the above-described
task, i.e., that of predicting the anatomical target given the
name and a brief definition of the surgical intervention related
to that anatomical target. On average, the correct target is
returned by RoBERTa in position 2.35, while Surgic-
BERTa outperforms RoBERTa proposing the correct target
in position 1.35. TheMRRof RoBERTa is 0.731, while that
of SurgicBERTa is 0.902. In more detail, 30% of the times
SurgicBERTa performs better than RoBERTa in terms of

Fig. 2 Reciprocal rank of the predicted word in the task of predict-
ing the anatomical target given the information of a surgical procedure
(Extrinsic Evaluation—Task C)

RR. The base model performs better than SurgicBERTa
only in one case (query 19), where the model is asked to
predict the anatomical part related to the “endarterectomy,”
that is the “artery.” Since RoBERTa performs only slightly
better than SurgicBERTa (the first returns “artery" in 4th
position while the latter in 5th), this is perhaps due to the
fact that the base model may have already seen a similar sen-
tence (or documents describing the “endarterectomy") during
its training phase. The violin plots of Fig. 2 summarize the
obtained RRs on each query sentence: the one for Surgic-
BERTa is very wide at the top and skinny in the middle and
at the bottom, while the one of RoBERTa, albeit having a
similar distribution, is much less wide at the top and has a
median weight lower than that of SurgicBERTa. The shape
of the distribution indicates that the RRs of SurgicBERTa
are highly concentrated around the first quartile, meaning
that the model is predicting very well the proper anatomical
target very well. In contrast, the RRs of RoBERTa are more
evenly distributed across the entire range, highlighting lower
scores. The computed p value (< 0.05) confirms the sta-
tistical significance of the observed performance difference,
and thus the benefit of having specialized RoBERTa for the
surgical language.

4.5 Extrinsic evaluation: task D—surgical
terminology acquisition

4.5.1 Task definition

This task is the same as the previous one but applied to a dif-
ferent dataset and therefore proposed for a different purpose:
to verify whether SurgicBERTa masters the surgical lan-
guage and can use it more appropriately than RoBERTa.
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In particular, a dataset of 50 surgical sentences was col-
lected from different sources, i.e., surgical books, academic
papers, and web pages not used during the MLM training.
The sentences were randomly chosen from those that met the
following requirements:

• The sentence has not been used to train SurgicBERTa;
• One of the following holds:

– The sentence contains an expression commonly used
in surgery. To define widely used expressions, we
have selected those typically abbreviated with an
acronym in papers. In the sentences included in the
dataset, the abbreviations have been substituted with
the original expression, and the language models are
asked to complete them correctly in the correspond-
ing context;

– The sentence contains a description of a surgical pro-
cedure. In the sentences inserted in the dataset, the
verb describing the action is masked, and the lan-
guage model is asked to guess it based on the context.

Since the task is the same as the previous one, we used
the same metrics adopted for it, i.e., the position in which the
correct solution is proposed, the RR and the MRR. We also
applied the same statistical significance test.

4.5.2 Results and discussion

Table 4 summarizes the obtained results for the task described
in Sect. 4.5. SurgicBERTa substantially improves all pro-
posed metrics: the mean position at which the word filling
correctly the masks is proposed by SurgicBERTa among
the list of returned ones is 19.19 times better than the
RoBERTa one. This means SurgicBERTa is much more
familiar with surgical terminology than RoBERTa. Conse-
quently, the MRR is improved by 0.396. 66% of the times
SurgicBERTa improves the RRs when compared to Ro-
BERTa. Only in two cases (out of 50) RoBERTa performs
better than SurgicBERTa: similarly to task C, it is difficult
to understand why this happens, and the same considera-
tions may apply. The violin plots of Fig. 3 illustrate the RRs
of the two language models for each query: while the one
for SurgicBERTa is wide at the top, the one for RoBERTa
is wide at the bottom. Furthermore, SurgicBERTa has a
median weight much higher than that of RoBERTa. This
highlights the best accuracy of SurgicBERTa in managing
surgical terminology, also confirmed by the significance test
performed (p value < 0.05). Hence, also this task confirms
that SurgicBERTa better captures the surgical language.

Table 4 Mean position and MRR on the task of surgical terminology
acquisition (Extrinsic Evaluation—Task D)

Pre-trained model Mean position MRR

RoBERTa 152.720 0.262

SurgicBERTa 7.960 0.658

Fig. 3 Reciprocal rank of the predicted word in the task of surgical
terminology acquisition (Extrinsic Evaluation—Task D)

4.6 Qualitative examples of surgical knowledge
available in pre-trained languagemodels

There is a lot of domain information implicit in pre-trained
language models [24]. Adapting the domain through con-
tinual learning with MLM helps to capture this kind of
knowledge. However, it is complicated to quantify this
domain knowledge objectively and exhaustively due to the
lack of any gold standard for the surgical domain. For this
reason, this section proposes a qualitative analysis, provid-
ing examples of domain information stored in pre-trained
language models.

To start with, RoBERTa and SurgicBERTa are asked
to return the name of the most used surgical robot in the
operating room. In particular,RoBERTa andSurgicBERTa
are asked to substitute the 〈mask〉 in the following sentence
with the most appropriate five words, ranking them in order
of probability:

The most commonly used surgical robot is 〈mask〉 .
Results are reported in Table 5. While to the best of our
knowledge, none of the topfivewords returned byRoBERTa
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Table 5 RoBERTa and SurgicBERTa most probable words for the
most used surgical robots

RoBERTa SurgicBERTa
Rank Word Probability Word Probability

1 Braun 0.031 Zeus 0.261

2 Juno 0.027 Xi 0.111

3 Hawk 0.017 Si 0.055

4 Orion 0.016 robotic 0.035

5 MRI 0.016 S 0.030

Fig. 4 Illustration of the critical view of safety method during a chole-
cystectomy

is the name of a surgical robot, Zeus,7 Xi,8 and Si9 returned
by SurgicBERTa are instead examples of surgical robots
that have been used in operating theaters. This means that
the continual MLM learning with domain text has captured
this kind of information that now is available in the model.
Nonetheless, it is interesting to note how some of the words
returned by RoBERTa are sometimes related to the robotics
field: “Hawk,” “Orion,” “Juno” are also examples of (non-
surgical) robots. This observation may suggest that while the
general model tries to be correct, it lacks specific domain
knowledge.

As reported in Table 1, SurgicBERTa has a perplexity
substantially lower than RoBERTa in the MLM task when
applied to surgical literature. This intrinsically means that
SurgicBERTa has learned the surgical language and thus
also the composition of well-known surgical expressions.
Consider the following example highlights how Surgic-
BERTa has learned specialized domain terminology. In
surgery, the expression critical view of safety refers to a

7 https://en.wikipedia.org/wiki/ZEUS_robotic_surgical_system.
8 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193435/.
9 https://www.davincisurgerycommunity.com/Systems_I_A/
da_Vinci_Si_Si_e.

Fig. 5 Pfannenstiel incision to access the abdomen. This figure is
adapted from [13]

method of secure identification in open cholecystectomy in
which the cystic duct and artery are putatively identified, after
which the gallbladder is taken off the cystic plate so that the
gallbladder is attached only by the two cystic structures [32]
as shown by Fig. 4.

To verify if RoBERTa and SurgicBERTa know this
information, they are asked to complete the following sen-
tence:

During cholecystectomy, it is important to achieve the
critical view of 〈mask〉 .

SurgicBERTa returns the word safety as 1st result with
a probability of 0.3428, while RoBERTa returns it only at
47th position with the probability of 0.0032.

This section ends with another example of domain knowl-
edge available in SurgicBERTa. In surgery, a Pfannenstiel
incision is a type of surgical incision that allows access to the
abdomen (Fig. 5). The following test wants to investigate if
pre-trained language models know this information:

The Pfannenstiel is a type of surgical incision that
allows access to the 〈mask〉 .

The correct word is abdomen and is retrieved by Surgic-
BERTa at the 1st position with probability 0.1267 and by
RoBERTa at the 5th position with probability 0.0478, after
the words brain (0.1969), heart (0.1488), skin (0.0713), and
vagina (0.0542).

These qualitative examples show that in SurgicBERTa
there is a lot of surgical information that could be used,
for instance, to enrich and complement the one codified in
domain ontologies and knowledge bases.

Nevertheless, since themodel was fine-tuned on theMLM
task on surgical domain texts, SurgicBERTa could also
suffer from the problems that the models thus generated typ-
ically have. Among all, we underline the frequent risk of
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introducing bias into the models which in the case of a sur-
gical model could be that of making predictions of words
always considering a standard human anatomy, ignoring all
possible particular cases. Also, SurgicBERTawas obtained
by specializing RoBERTa on the surgical case, so some of
the known biases of the latter are likely to be replicated on
SurgicBERTa aswell. All of these problems can be reduced
by choosing better training materials or adapting de-biasing
techniques to the domain. Furthermore, the relevance of the
returned word could be low in domains not seen (enough)
during the training: using reinforcement learningwith human
feedback techniques [22] could help to reduce these prob-
lems.

5 Conclusions

This paper proposed SurgicBERTa, a pre-trained language
fine-tuned for capturing surgical language and knowledge,
i.e., the vocabulary and expertise provided in surgical books
and academic papers.

The building process has been described, and the model
has been evaluated both intrinsically, by considering per-
plexity, accuracy, and evaluation loss during the MLM task,
and extrinsically, by considering several downstream tasks,
namely (i) procedural sentences detection, (ii) procedural
knowledge extraction, (iii) ontological information discov-
ery, and (iv) surgical terminology learning. All the results
confirm that SurgicBERTa deals with surgical language
and knowledge more adequately than RoBERTa, a lan-
guage model targeting general-domain English. Moreover,
the potential of SurgicBERTa has been investigated qual-
itatively by showing several examples of surgical domain
knowledge available in the model, which could be used to
complement other knowledge sources, e.g., state-of-the-art
surgical knowledge bases. As future works, we will enrich
SurgicBERTa by continuously training it on a larger surgi-
cal dataset and extending it in a multilingual scenario.
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