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1 Introduction

Dormancy in biological populations refers to the ability of an organism to enter a
reversible state of metabolic inactivity. It appears in many guises, the most obvi-
ous being plants that produce seeds. In their seed-form they can remain inactive in
the ground for years, even decades, and withstand adverse conditions before finally
germinating again. Resuscitating from dormancy re-introduces old genetic material
into the present time population thus leading to an increase in genetic variability.
Dormancy, however, is much more widespread and appears under different names
and with varying mechanisms also in microbial communities as well as in cancer
cells or neurological systems, leading to a variety of phenomena that are of practi-
cal relevance e.g. in medicine, and of theoretical interest e.g. in understanding the
mechanisms of evolution [58].
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Modelling complex stochastic interacting systems with dormancy is a relatively
recent field that started with models from population genetics [7, 52, 55], and soon
sparked interest within the community of probabilists working on stochastic mod-
els of population genetics (including coalescent models), population dynamics (e.g.
adaptive dynamics and branching processes), S(P)DEs (e.g. the stochastic F-KPP
equation) and interacting particle systems (e.g. exclusion process). It turns out that
including dormancy into mathematical (individual based) stochastic models leads to
interesting and sometimes astonishing effects such as particle flows against the gra-
dient direction [33].

As such, dormancy is also an example of how a biological motivation can drive
the development of theoretical results beyond the original field and we would thus
like to showcase this phenomenon and the resulting recent developments to a broader
audience through this review.

We focus on the historic origin of the modelling of dormancy in population ge-
netics as the most accessible of the models thereby giving the interested reader an
understanding of the effects of dormancy and at the same time an overview of typical
problems, objects and techniques used in population genetics in general. Two further
examples – spatial modelling through the Fisher-KPP equation and the effect of ran-
dom environment – are also presented with some detail while further developments
will only be briefly outlined. In general, we omit proofs (but give references) and
focus on the results and their explanations, except in the cases where the proofs are
short and of explanatory value.

We start with a gentle introduction into classical stochastic population genetics
models in Sect. 2.1, and then present an extension of this framework that includes
dormancy in Sect. 2.2. We analyse this model to show the effect of dormancy in
Sect. 2.2.4 (fixation/extinction). We then extend the model to include coordinated
switching, i.e. when several individuals move in or out of dormancy simultaneously
and discuss another effect of dormancy within this framework (coming down from
infinity - or not) in Sect. 2.3. We discuss some aspects of spatial models including
the stochastic F-KPP equation and branching Brownian Motion with dormancy in
Sect. 3 and present a framework to study different dormancy strategies in a random
environment in Sect. 4. Finally, in Sect. 5, we outline some further developments in
related fields for the interested reader. The sections are largely independent of each
other and can thus be read in order of most interest to the reader.

2 The Original Motivation: Dormancy in Population Genetics

Population genetics as a field of applied mathematics has a long tradition that goes
back to the early 20th century and works by Fisher, Wright and Haldane. At the
centre of this were models for the evolution forward in time of the frequency of an al-
lele in a population subject to different evolutionary forces. Their analysis also drove
general theory in stochastic analysis leading for example to Feller’s one-dimensional
diffusion theory and boundary classification [2]. The introduction of the opposite
viewpoint backward in time, i.e. the study of genealogies, by Kingman in the 80s
paved the way for the mathematical methods of modern statistical data analysis. The



Dormancy in Stochastic Population Models 251

parents

offspring

Fig. 1 Illustration of one generation in the Wright-Fisher model for N = 6: each individual in the offspring
generation chooses independently, uniformly at random an individual from the parental generation

stochastic duality between the forward and the backward processes added a pow-
erful tool for the analysis of the systems. The framework has been extended under
numerous aspects, and the methods used range from Markov chains, coalescent the-
ory, measure valued stochastic processes and stochastic partial differential equations
(SPDEs) to statistics and data analysis.

Before we start to mathematically model dormancy, we give an introduction to the
Wright-Fisher framework, that will provide the foundation of our modelling of dor-
mancy in Sect. 2.2. Readers familiar with this field may want to skip this subsection.

2.1 A Classic Model from Population Genetics

Models in population genetics often start out from an individual based model describ-
ing the mechanism of reproduction to be studied, then takes into account the large
population size and long evolutionary time-scales to obtain suitable limiting objects
with distinguished characteristics. The most classic model – the Wright-Fisher model
with the Wright-Fisher diffusion and the Kingman coalescent as scaling limits – is
still the prevalent null-model up to today, and has been extended to incorporate many
evolutionary forces such as mutation, selection, recombination, geographic space,
random environments or dormancy, to name just a few. Most importantly, it should
be noted that already the very basic model of reproduction is probabilistic, since the
mechanisms driving reproduction and thus the genetic variability even of a large pop-
ulation are intrinsically stochastic. The content of this section is standard and can be
found for example in [29].

The Wright-Fisher model describes the dynamics of a neutral, haploid population
of constant size N evolving in discrete time steps (called generations) indexed by
r ∈N0. “Neutral” means that each individual has the same reproductive strength, i.e.
there is no selection, no individual (or type) is fitter than the other. “Haploid” means
that there is only one copy of each chromosome and thus each individual has only
one parent. This assumption is not as abstract as it may seem, but rather realistic
in particular if “individuals” are single genes. Likewise the assumption of constant
population size N is typically sufficiently satisfied on the time-scales considered. The
population of generation r +1 consists of N individuals that are the children of the N

individuals from the previous generation r . To model the constant population size, we
may think that each child “chooses” its parent uniformly at random from the popula-
tion, independently of each other, see Fig. 1. As a result, the joint distribution of the
number of offspring of all individuals in generation r is symmetric multinomial, un-
derlining the assumption of “neutrality”. This mechanism is repeated independently
for all generations.
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Fig. 2 Illustration of the
evolution of types in the
Wright-Fisher model
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Based on this model, two processes can be studied to describe the evolution of the
population. Historically the first one was that of going forward in time. We assume
our individuals are one of (for simplicity only) two alleles (genetic types) which we
call a and A and which are inherited by the children from their parent. The quantity
of interest is then XN

r , the proportion or frequency of individuals with type a in the
population at generation r . By the above description of the model, (XN

r )r∈N0 is a
Markov chain with state space {0,1/N, . . . ,1} and transition probabilities

P

[
XN

r+1 = i

N
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N
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i

)(
j
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)i (
1 − j

N

)N−i

,

where i, j ∈ {0, . . . ,N}, i.e. N · XN
r+1 is a binomial random variable with parame-

ters N and XN
r . The stochastic process (XN

r )r∈N0 is called the frequency process of
the Wright-Fisher model and illustrated in Fig. 2. Notice that the states 0 and 1 are
absorbing, i.e. if reached, the process will remain in them forever.

It is easy to calculate that

E
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.

Hence, (XN
r )r∈N0 is a martingale with respect to the natural filtration, i.e. a “fair

game” from the point of view of the two allelic types in the population, which again
reflects the desired neutrality of the model. In particular, a straightforward application
of Doob’s stopping theorem for martingales shows that the probability that type a

fixates in the population (or equivalently, that type A becomes extinct), i.e. that the
process is absorbed in 1 and not in 0, is given exactly by the initial frequency XN

0 of
this type. Moreover, the term for the variance reflects that the order of the strength of
the randomness in each generation is 1/N and hence we will have to scale time with
N in order to retain the randomness in a scaling limit.
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Fig. 3 Illustration of the
genealogy of a sample of n = 4
individuals in the Wright-Fisher
model. In generation r the
sample finds their most recent
common ancestor
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Indeed, the central result in this field is that the time-rescaled stochastic process
(XN

�Nt�)t≥0 converges weakly as N → ∞ to the solution (Xt )t≥0 of the stochastic
differential equation

dXt = √
Xt(1 − Xt)dBt (2.1)

called the Wright-Fisher diffusion. Here, (Bt )t≥0 denotes a standard Brownian mo-
tion. It shares many properties with its discrete origin, although it is, of course a much
more complex object: It is also a Markov process and a Martingale. 0 and 1 are ab-
sorbing states and the Wright-Fisher diffusion will indeed reach one of these in finite
time (P-almost surely), where the probability of being absorbed in 1 is again given
by the initial frequency X0.

On the other hand, one can describe the evolution of a population by going back-
wards in time and tracing the genealogy of a sample of n < N individuals in the
Wright-Fisher model, as described in Fig. 3. This gives a rather simple Markov chain
that can only see lineages coalesce and will thus eventually end up with only one
lineage. The first time this happens we speak of the most recent common ancestor
of the sample. Note that two fixed individuals in the same generation will find their
common ancestor in the previous generation with probability 1/N . Since we assumed
independence of the generations, the number of generations one needs to go back in
time to find the common ancestor of two fixed individuals is geometrically distributed
with success parameter 1/N and therefore converges to an exponential random vari-
able with parameter 1 if we rescale time by N as we did before. The probability that
three or more individuals find their common ancestor in the previous generation or
that two or more pairs of individuals find their respective common ancestors is of
order smaller than 1/N2 and hence disappears under the same time-rescaling. Hence,
rescaling time to �tN�, we should see pairs of lineages in the genealogy coalesce at
rate 1 independently of each other, with no other possible transitions.
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This is indeed the case and if we only trace the number of ancestors of the sample,
we obtain in the limit N → ∞ on the time-scale �tN� a continuous time Markov
chain (Nt )t≥0 with values in N, initial value N0 = n the sample size, and transition
rate given by

n �−→ n − 1 at rate

(
n

2

)
,

i.e. a Markov chain that decreases by one at a rate given by the number of possible
pairs of lineages. We call (Nt )t≥0 the block counting process of the Kingman coales-
cent. Indeed, instead of just the number of lineages one can also consider the whole
genealogy encoded as partitions of {1, . . . , n} where each block contains the labels of
the individuals in the original sample that have merged into the current line. This is
the famous Kingman coalescent [53], which is crucial for modern-day genome-based
statistical methods.

The Wright-Fisher diffusion and the Kingman coalescent thus describe the evo-
lution of the same population once forward and once backward in time. Their close
interrelation can also be expressed mathematically: The Wright-Fisher diffusion and
the block-counting process of the Kingman coalescent are moment-duals, i.e. for any
n ∈N, x ∈ [0,1] and t ≥ 0

Ex

[
Xn

t

] = En

[
xNt

]
, (2.2)

where Ex is the expectation conditioned on the initial value X0 = x, and E
n is the

expectation given N0 = n. This duality is one of the main mathematical tools in the
analysis of the processes and we will illustrate its use below for the model including
dormancy.

2.2 Introducing Dormancy

A first step to incorporate dormancy in a Wright-Fisher-model was taken in [52].
Here, individuals choose their ancestor not from the previous generation, but from
a generation sampled at random from the past. As long as this range has a finite
expectation, the resulting coalescent will still be a Kingman coalescent, but stretched,
cf. [5], hence this effect is referred to as weak seed bank effect. It is tailored to the
backwards-in-time point and thus amenable to inference methods [68, 71].

It is also possible to incorporate dormancy and develop the full framework we
saw in the previous section. Since the resulting objects will differ significantly from
the model without dormancy, this is referred to the strong seed bank effect. It was
introduced in [7], where most of the content of this section is taken from.

We consider our population to now consist of two sub-populations: In addition
to the N individuals forming the active population, there are M ∈ N dormant indi-
viduals, forming a seed bank. Again, the sizes N and M of the active and dormant
populations are fixed, and the population evolves in discrete generations with each
individual having only one parent. Fix now a number c ≤ min{N,M}. The dynamics
of the Wright-Fisher-model with dormancy is given as follows:

At each time step, all N active individuals reproduce by multinomial sampling to
produce N offspring. Among those offspring, c chosen uniformly at random without
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Fig. 4 Illustration of the sampling mechanism in the seed bank model for N = 6 active individuals, M = 4
dormant individuals and an exchange of c = 1 individual per generation. Active individuals in the parent
generation reproduce by multinomial sampling, i.e. are chosen uniformly at random with replacement by
N − c active and c dormant offspring. Dormant parents simply copy themselves into the next generation
with M − c copies in the seed bank and c in the active generation

replacement become dormant. At the same time, c individuals chosen uniformly at
random without replacement from the dormant population germinate, while the other
M − c individuals remain inactive in the seed bank. This is corresponds to saying
that N − c active offspring and c dormant offspring choose their parent indepen-
dently uniformly with replacement from the active parent generation, while M − c

dormant offspring and c active offspring choose a parent without replacement from
the dormant parent generation, as illustrated in Fig. 4.

The interpretation of active and dormant population in this model is thus straight-
forward: Only active individuals may reproduce at random, while dormant individu-
als simply have one copy of themselves in the next generation. Moreover, there is an
exchange between active and dormant population such that both parts of the popula-
tion retain constant size. As before, we can trace two processes on this structure.

2.2.1 Forward in Time Seed Bank Model

Again, each individual has a type a or A, and types are passed on to the offspring,
resp. kept while the individual is dormant, see Fig. 5. We label the individuals of the
active population by i ∈ {1, . . . ,N} and in the dormant population by j ∈ {1, . . . ,M}.
The object of interest is now the two-dimensional Markov chain (XN

r ,YM
r )r∈N0 with

XN
r = 1

N

N∑
i=1

1{ind. i in gen. r is of type a} and YM
r = 1

M

M∑
j=1

1{ind. j in gen. r is of type a}

counting the proportion of individuals of type a in the active, resp. in the dormant
part of the population. The state space of this process is given by {0,1/N, . . . ,1} ×
{0,1/M, . . . ,1} ⊂ [0,1]2. The above dynamics can clearly be formalised into transi-
tion probabilities for (XN

r ,YM
r )r∈N0 :

Lemma 2.1 (Proposition 2.2 in [7]) Assume X0 = x, Y0 = y. Let U , V , W be in-
dependent random variables, where U is binomial with parameters N − c, x, V

is binomial with parameters c and x and W is hypergeometric with parameters
M , yM and c. Then, the distribution of (X1, Y1) is the same as the distribution of(
(U + W)/N,y + (V − W)/M

)
.
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Fig. 5 Illustration of the evolution of types in the Wright-Fisher model with seed bank

Proof The proof is a straightforward from the interpretation of the random variables
involved. Note that U is the number of active offspring with active parents. V on
the other hand is the number of dormant offspring with active parents. And W is the
number of active offspring with dormant parents. The number of dormant offspring
with dormant parents is thus yM − W and the claim follows. �

If we assume that c does not depend on the overall population size, i.e. that the
fraction of active individuals going dormant is always c/N , and that the active and
dormant population sizes are of the same order, using generator calculations based
on Ethier and Kurtz [30] we again obtain a limit when scaling time with the size of
the active population N :

Theorem 2.1 (Corollary 2.5 in [7]) Assume that there exists K > 0 such that M =
N/K . If XN

0 → x ∈ [0,1] and YN
0 → y ∈ [0,1] as N → ∞, P-a.s., we have that

(XN
�Nt�, YM�Nt�)t≥0 converges weakly in D[0,∞)([0,1]2) to the solution (Xt , Yt )t≥0 of

dXt = c(Yt − Xt)dt + √
Xt(1 − Xt)dBt

dYt = cK(Xt − Yt )dt.
(2.3)

Here, (Bt )t≥0 is a standard one-dimensional Brownian motion, and D[0,∞)([0,1]2)

denotes the space of càdlàg functions from [0,∞) to [0,1]2 endowed with the Sko-
rokhod topology.

The stochastic process (Xt , Yt )t≥0 defined as the unique strong solution to the
stochastic differential equation (2.3) is called the seed bank diffusion and can also be
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Fig. 6 Illustration of the genealogy of a sample of (n,m) = (4,0) individuals in the Wright-Fisher model
with seed bank. The ancestral lines can coalesce in the active population or migrate between the active and
the dormant population. In the r th generation the sample finds their most recent common ancestor

characterised by the generator of its Markov-semigroup

(Af )(x, y) = c(y − x)∂xf (x, y) + cK(x − y)∂yf (x, y) + 1

2
x(1 − x)∂xxf (x, y)

(2.4)

for suitably smooth functions f : [0,1]2 → R (cf. Prop. 2.4 and accompanying re-
marks). It is a two-dimensional diffusion process, where only the first component Xt

describing the evolution of the frequency of the a allele in the active population is
subject to a noise-term describing reproduction given by the Wright-Fisher diffusion.
In addition, there is an exchange between the two components in the form of a mi-
gration term. Clearly, (0,0) and (1,1) are again absorbing states, but the seed bank
diffusion differs in the absorption behaviour from the Wright-Fisher diffusion as we
will discuss below in Sect. 2.2.4.

2.2.2 Backward in Time Seed Bank Model

We can again change to the genealogical viewpoint, and consider the line counting
process of the genealogy. Starting with a sample of n < N active and m < M dormant
individuals, we trace a two-dimensional process counting the number of ancestors of
the initial sample that are active and dormant respectively, see Fig. 6. If we assume,
as in Theorem 2.1, that the active and dormant population sizes are of the same order
(given by a factor K) and that c is fixed, i.e. the number of individuals switching
into or out of dormancy is of order c/N , then scaling time to �tN� as before, in the
limit as N → ∞, we obtain the block-counting process of the seed bank coalescent,
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a Markov process (Nt ,Mt )t≥0 with transition rates

(n,m) �−→

⎧⎪⎨
⎪⎩

(n − 1,m + 1) at rate cn,

(n + 1,m − 1) at rate cKm,

(n − 1,m) at rate
(
n
2

)
,

(2.5)

see [7, Corollary 3.5] for the corresponding result for the full seed bank coalescent.
The possible transitions have clear interpretations: the first is a switch from active to
dormant by one of the lineages (i.e. backward in time); the second is a switch from
dormant to active; and the third is the coalescence of two lines in the active population
(corresponding to a reproduction in the forward picture). Note that dormant lineages
cannot coalesce, neither with an active nor another dormant line, as is expected since
dormant individuals cannot reproduce. This lack of coalescence in the dormant pop-
ulation has far-reaching consequences for the characteristics of the genealogy as we
will discuss in Sect. 2.3.2 below.

2.2.3 Duality

As mentioned, we obtain the full Wright-Fisher framework, including a duality
relation between the forward and backward in time processes, which generalises
(2.2). Again, denoting by Ex,y the expectation conditioned on the starting point
(X0, Y0) = (x, y) of the seed bank diffusion, and by E

n,m the expectation conditioned
on the starting point (N0,M0) = (n,m),

Theorem 2.2 (Thmeorem 2.8 in [7]) For every (x, y) ∈ [0,1]2, every n,m ∈ N0, and
every t ≥ 0

Ex,y

[
Xn

t Ym
t

] = E
n,m

[
xNt yMt

]
. (2.6)

Because the proof illustrates a standard approach in this field, we have decided to
include its key step that relies on the generator representation of the two processes.

Proof Recall the definition of the generator of the seed bank diffusion in (2.4) and
note that the rates given in (2.5) translate to the generator B of the block-counting
process of the seed bank coalescent acting on g : N2

0 → R as

(Bg)(n,m) = cn
(
g(n − 1,m + 1) − g(n,m)

) +
(

n

2

)(
g(n − 1,m) − g(n,m)

)

+ cKm
(
g(n + 1,m − 1) − g(n,m)

)
.

For any (x, y) ∈ [0,1]2 and (n,m) ∈N
2
0 set f n,m(x, y) := gx,y(n,m) := xnym. Then

we see that

(Af n,m)(x, y)

= c(y − x)nxn−1ym + 1

2
x(1 − x)n(n − 1)xn−2ym + cK(x − y)xnmym−1



Dormancy in Stochastic Population Models 259

= cn
(
xn−1ym+1 − xnym

) +
(

n

2

)(
xn−1ym − xnym

) + cKm
(
xn+1ym−1 − xnym

)

= (Bgx,y)(n,m).

Since (Nt ,Mt )t≥0 is Feller, the remainder of the proof follows from [48, Proposi-
tion 1.2]. �

Note that using the notation from the proof, the duality in (2.6) can be written
as Ex,y

[
h(Xt ,Yt , n,m)

] = E
n,m

[
h(x, y,Nt ,Mt)

]
and the proof in essence requires

that the generators fulfil a similar duality relation. Since h(x, y,n,m) = xnym are the
moments, this duality is called moment-duality. This is a powerful tool as it allows
one in particular to study the complex diffusion through the much simpler Markov
chain. This is possible, because the quantities in (2.6) uniquely determine the distribu-
tions in question: the left-hand-side characterises the distribution of (Xt , Yt ) through
the uniqueness of the Hausdorff-moment problem on [0,1]2; the right-hand side is
indeed the probability generating function of (Nt ,Mt). We give an example of an
application in the following section.

2.2.4 Fixation and Extinction Under Dormancy

As observed above, (0,0) and (1,1) are absorbing states for the seed bank diffusion
(Xt , Yt )t≥0 introduced in Sect. 2.2.1 in (2.3). They are also the only absorbing states,
since absence of drift requires x = y, and for the fluctuations to disappear, it is neces-
sary to have x ∈ {0,1}. The moment-duality from Theorem 2.2 will allow us to show
convergence and calculate the fixation probabilities for the seed bank diffusion. The
first step is to conclude that the limiting moments of the diffusion do not depend in
the exponents of the moments.

Lemma 2.2 (Proposition 2.9 in [7]) All mixed moments of (Xt , Yt )t≥0 converge to
the same finite limit depending only on x, y and K . More precisely, for each fixed
n,m ∈ N0, we have

lim
t→∞Ex,y

[
Xn

t Ym
t

] = y + xK

1 + K
. (2.7)

Proof Let (Nt ,Mt)t≥0 be the line counting process started in (n,m) ∈ N0 ×N0. De-
fine a stopping time

T := inf
{
t > 0 : Nt + Mt = 1

}
.

By duality (Theorem 2.2), we get

lim
t→∞Ex,y

[
Xn

t Ym
t

] = lim
n→∞E

n,m
[
xNt yMt

]

= lim
t→∞E

n,m
[
xNt yMt | T ≤ t

]
P

n,m
[
T ≤ t

]

+ lim
t→∞E

n,m
[
xNt yMt | T > t

]
P

n,m
[
T > t

]
.
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The second summand on the right hand side disappears, since E
n,m

[
xNt yMt | T >

t
] ≤ 1, and limt→∞ P

n,m
[
T > t

] = 0 because T has finite expectation if started at
finite (n,m) (Nt + Mt decreases after exponential waiting times). For T ≤ t there is
only one line left at time t , which switches between active and dormant, giving

lim
t→∞E

n,m
[
xNt yMt | T ≤ t

]
P

n,m
[
T ≤ t

]

= lim
t→∞

(
xPn,m

[
(Nt ,Mt) = (1,0), T ≤ t

] + yPn,m
[
(Nt ,Mt) = (0,1), T ≤ t

])

= lim
t→∞

(
xPn,m

[
(Nt ,Mt) = (1,0)

] + yPn,m
[
(Nt ,Mt ) = (0,1)

])

= xK

1 + K
+ y

1 + K
,

where the last equality holds by convergence to the invariant distribution of a single
particle, jumping between the two states ‘plant’ and ‘seed’ at rate c resp. cK , which
is given by (K/(1 + K),1/(1 + K)) and independent of the choice of n, m. �

Since the moments characterise a distribution by the Hausdorff-moment problem,
this observation is indeed sufficient to obtain the law of the limit of the seed bank
diffusion for t → ∞:

Corollary 2.1 (Corollary 2.10 in [7]) Given c, K , for any initial value (x, y) ∈
[0,1]2 the diffusion (Xt , Yt )t≥0 converges Px,y -almost surely as t → ∞ to a two-
dimensional random variable (X∞, Y∞), whose distribution is given by

L(x,y)

(
X∞, Y∞

) = y + xK

1 + K
δ(1,1) + 1 − y + (1 − x)K

1 + K
δ(0,0). (2.8)

Convergence in distribution follows from Proposition 2.2 together with the Port-
manteau (e.g. [30, Theorem 3.3.1]) and Stone-Weierstraß Theorem, since it is easy
to see that the distribution given in (2.8) is the only one for which all moments are
equal to (2.7) by the uniqueness of the Hausdorff-moment-problem on [0,1]2, cf.
[43]. Almost sure convergence follows with the observation that (KXt + Yt )t≥0 is a
martingale, see [69, Corollary 2.27] for details.

Remark 2.3 (How dormancy contributes to preserve genetic diversity.) We have
shown that the seed bank diffusion, like the Wright-Fisher diffusion from Sect. 2.1,
will in the limit be absorbed in the boundary points ((0,0) and (1,1), and 0 and 1,
respectively). The probability of fixation of allele a is given by (y + xK)/(1 + K)

which is just its initial frequency in the total population, preserving the neutrality of
the model.

Absorption in the boundary corresponds to almost sure extinction of one of the
types (and thus fixation of the other), i.e. a loss of genetic diversity in the population.
With dormancy, however, this loss is far less severe. In contrast to the Wright-Fisher
diffusion, the seed bank diffusion will not get absorbed in these boundary points in
finite time. Indeed, it is precisely the dormant population, that will never actually
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touch the boundary. This can easily be seen from the representation in (2.3): For
Y0 ∈ (0,1), we can sandwich the component (Yt )t≥0 describing the frequency of the
allele a in the dormant population between the solutions to two deterministic ODEs
by removing the effect of Xt . Consider dyt = −cKytdt which has maximal drift
towards 0 and dyt = cK(1 − yt )dt which has maximal drift towards 1. Then

∀ t ≥ 0 : 0 < exp(−cKt) = yt ≤ Yt ≤ yt = 1 − exp(−cKt) < 1

meaning that the boundary is indeed not reached for any t ≥ 0.
This is also reflected the dual phenomenon about the block-counting process of

the seed bank coalescent discussed below in Sect. 2.3.2.

2.3 Spontaneous vs. Simultaneous Switching

In the previous model there was a lot of independence in the behaviour of the indi-
viduals with respect to the decision of switching in and out of dormancy, as can best
be seen in the behaviour of the (block-counting process of the) seed bank coalescent,
where lineages decide independently to go dormant at rate cK or to awaken at rate c.
However, it is quite natural to observe coordinated or simultaneous behaviour, where
a large fraction of the population will go dormant or awaken at the same time, for
example in response to an external force such as a forest fire or treatment with an-
tibiotics. Of course, many other switching mechanisms are possible and we discuss
some more in Sect. 4, but we begin with the introduction of simultaneous switching
here, as was done in [10].

2.3.1 Seed Bank Model with Simultaneous Switches

In the large switching events that we model, a macroscopic fraction of the population
may switch at once from active to dormant or vice versa. In order for these large
events still to lead to a sensible limit in the same scaling as before, since they are
large, they have to be rare.

In order to model these events, we extend the set-up from Sect. 2.2, i.e. we start
with the individual-based model. We consider again a fixed population size of N

active and M dormant individuals. We have again a parameter c describing the inde-
pendent migration between the active and dormant population. In addition, we need
probability measures on [0,1] μN and νN . In each transition from discrete generation
r to r + 1 exactly one of the following type of events can occur:

(S) A reproductive event with a small scale switch as in Sect. 2.2:
N − c active individuals are created by multinomial sampling from active

parents, while c have dormant parents and M − c dormant individuals stay in
the seed bank, which is filled with c individuals with active parents, see Fig. 4.

(L1) A large scale switch from dormant to active: First, a random number z ∈ [0,1]
is sampled according to μN . Then, independently, �zN� out of the N active
individuals are replaced by copies of zN uniformly chosen dormant individuals.
The remaining N − �zN� active individuals stay as they are. The dormant part
remains as it is, see Fig. 7.
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Fig. 7 Illustration of the simultaneous sampling mechanism (L1) and (L2) in the seed bank model for
N = 6 active individuals, M = 4 dormant individuals and z = 1/2, w = 3/4

(L2) A large scale switch from active to dormant: First, a random number w ∈ [0,1]
is sampled from νN . Then, independently, �wM� out of the M dormant indi-
viduals are replaced by copies of �wM� uniformly chosen active individuals.
The remaining dormant individuals stay as they are. The active part of the pop-
ulation remains as it is, see Fig. 7.

The mechanism to decide which event occurs in each generation is simple: The a
large switch from dormant to active (L1) happens with some probability rN ∈ (0,1),
a large switch from active to dormant (L2) with probability sN ∈ (0,1), and a small
scale event with probability 1 − rN − sN and this decision is taken independently for
each generation. See [10] for a slightly different model and more details also on the
following results.

With a careful choice of parameters one can now repeat the same set-up from
Sects. 2.1 and 2.2. In particular, we obtain scaling limits forwards and backwards
in time with the following assumptions: As before, we assume c not depending on
N and N = KM for some K > 0. In addition, we assume that rN and sN converge
to 0 in such a manner that rNμN weakly converges as N → ∞ to some measure μ

on [0,1], and sNνN to a measure ν as N → ∞, which both satisfy the integrability
condition

∫

[0,1]
zμ(dz) < ∞, resp.

∫

[0,1]
wν(dw) < ∞.

The scaling limit forward in time is then given as in [10, Sect. 1.4]:

Theorem 2.4 Under the above assumptions, if XN
0 → x ∈ (0,1) and YN

0 → y ∈
(0,1) P-a.s. as N → ∞, we have that (XN

�Nt�, YM�Nt�)t≥0 converges weakly in
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D[0,∞)([0,1]2) to the solution (Xt , Yt )t≥0 of

dXt = c(Yt − Xt)dt +
∫

[0,1]
z(Yt− − Xt−)Nμ(dt,dz) + √

Xt(1 − Xt)dBt

dYt = cK(Xt − Yt )dt +
∫

[0,1]
w(Xt− − Yt−)N ν(dt,dw).

(2.9)

Here, (Bt )t≥0 is a standard one-dimensional Brownian motion, Nμ a Poisson process
with intensity measure λ(dt) ⊗ μ(dz), N ν a Poisson process with intensity measure
λ(dt)⊗ν(dz) (all independent of one another, λ is the Lebesgue measure on R+), and
D[0,∞)([0,1]2) denotes the space of càdlàg functions from [0,∞) to [0,1]2 endowed
with the Skorokhod topology. The integrals in (2.9) are taken with respect to dz resp.
dw.

In addition to the migration terms and the Wright-Fisher reproduction from The-
orem 2.1 we now also see large scale migration events in either direction, which are
given by the jump parts driven by Poisson processes. The conditions on the measures
μ and ν ensure that the large jumps arrive one by one in a Poissonian way.

As before, one can consider the genealogy, and show that the limiting line counting
process is given as a Markov chain on N

2
0 with transition rates

(n,m) �−→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(n − k,m + k) at rate

(
n

k

)(
c1{k=1} + ∫

[0,1] zk(1 − z)n−k μ(dz)
)
,

(n + l,m − l) at rate

(
n

l

)(
cK1{l=1} + ∫

[0,1] wl(1 − w)m−l ν(dw)
)
,

(n − 1,m) at rate

(
n

2

)
, n ≥ 2,

(2.10)

where in the first case k is running from 1 to n, and in the second line l is running
from 1 to m, with n,m ≥ 1. Assuming again

∫
[0,1] zμ(dz) < ∞ and analogously for

ν, this process is well defined. Very similarly to Theorem 2.2 one can prove moment
duality, see Sects. 1.5 in [10].

2.3.2 Coming down from Infinity

An important property of coalescents is the notion of whether they come down from
infinity or not. Coalescents such as we have introduced here are defined for any arbi-
trary number of initial sample size n (respectively (n,m) in two dimensions). They
satisfy a consistency property in this n an thus, using Kolmogorov’s extension the-
orem, one can easily let them start with countably infinitely many individuals. The
question is whether in this case, there will still be infinitely many individuals after
a finite positive time, or if the coalesce-mechanism has decreased it to a finite num-
ber. The notion of coming down from infinity was introduced my Pitmann [62] and
Schweinsberg [63] for exchangeable coalescents. We change their definition to say
that the block-counting process (Nt )t≥0 of a coalescent comes down from infinity in-
stantaneously, if P

[
Nt < ∞ | N0 = ∞] = 1 for all t ≥ 0, that it stays infinite forever,
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if P
[
Nt < ∞ | N0 = ∞] = 0 for all t ≥ 0, and that it comes down from infinity after

a positive time, otherwise. In [63] a criterion is given, showing in particular, that the
block-counting process of the Kingman coalescent from Sect. 2.1 does come down
from infinity.

It turns out, though, that dormancy drastically changes that behaviour:

Theorem 2.5 (Thmeorem 4.1 in [7]) The block-counting process (Nt ,Mt )t≥0 of the
seed bank coalescent does not come down from infinity. More precisely,

∀t ≥ 0 P
[
Mt = ∞ | N0 + M0 = ∞] = 1.

Heuristically, the explanation is as follows: The quadratic rate of the Kingman
mechanism will bring down from infinity any infinite active population. However,
simultaneously, the independent switching into dormancy also means that infinitely
many individuals make it into the seed bank instantaneously. Since the seed bank can
only be emptied at a linear rate by individuals independently waking up, although
infinitely many may leave, there will always be an infinite reservoir in the seed bank.
As mentioned in Sect. 2.2.4, this is tied through duality to the observation that the
seed bank diffusion does not reach the absorbing point in finite time and thus to the
idea that dormancy helps preserve genetic diversity.

The behaviour becomes even more interesting in the case where we add the simul-
taneous switching. Here we can observe all three possible regimens depending on the
choices of parameters and where the infinitely many initial particles are places. In
particular, we see a non-trivial example of the possibility to come down from infinity
after a random time only.

In order to formulate the theorem, we need � to be a measure on [0,1] satisfying

�[A] =
∫

A

zμ(dz)

for any Borel subset A of [0,1]. By the integrability assumption on μ we made be-
fore, � is a finite measure, and we can normalise it to a probability measure by setting
�̃ := [

�[0,1]]−1
�.

Theorem 2.6 (Theorem 2.7 in [10]) Consider the block-counting process (Nt ,Mt)t≥0

of the seed bank coalescent with simultaneous switching under the assumptions of
Theorem 2.4. Let Y be a random variable with distribution �̃.

(a) If ν[{1}] = 0, then the block-counting process started in (N0,M0) = (n,∞), n ∈
N0 ∪ {∞} will stay infinite for all times.

(b) If the block-counting process is started in (∞,m),m ∈ N0, then the process
comes down from infinity instantaneously if E

[− log(Y )
]

< ∞ and c = 0. If
E

[− log(Y )
] = ∞ or c > 0, it stays infinite for all times.

(c) If ν[{1}] > 0, c = 0 and E
[− log(Y )

]
< ∞, then the block-counting process

started from (n,∞), n ∈ N0 ∪ {∞} comes down from infinity after a finite time,
but not instantaneously.
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Note the asymmetry in the conditions on μ, the measure governing the movement
from active to dormant, and ν, the measure governing the movement from dormant
to active. Heuristically, the result can again easily be explained. In (a), the infinite
seed bank cannot be emptied by the spontaneous mechanism (by Theorem 2.5). The
mechanism of simultaneous switching will always move a positive fraction of the
population and thus an infinite number, but the remainder will always be infinite,
too, since we exclude the case where the fraction is 1. For (b), note that we already
know that the independent mechanism of migration from active to dormant is fast
enough to save infinitely many individuals into the seed bank before the Kingman
mechanism brings the numbers down from infinity, as seen in Theorem 2.5. The con-
dition on E

[− log(Y )
]

tells us what family of measures governing the simultaneous
switching mechanism are also sufficiently fast to save infinitely many individuals.
Interestingly, the result states that measure favouring smaller fractions are better at
competing against the Kingman mechanism, because although the others can move
larger fractions of he population, the events occur too rarely. In the case (c) where we
allow the measure governing the simultaneous switching from dormant to active to
have an atom in 1, we will see that instantaneously infinitely many active individuals
are saved into the seed bank, but this is emptied completely at once when the measure
finally chooses the atom one.

The proof of this result requires some amount of technicalities, in particular var-
ious couplings and approximations by truncated processes, and we refer to [10] for
details. The quantity E

[− log(Y )
]
, which may look slightly mysterious at first sight,

appears due to an analysis of the probabilities that at a given number of active indi-
viduals the next transition is a (possibly large) switch to dormancy before the next
coalescence. The method used in this analysis is based on an approach by Griffiths,
[41].

3 Dormancy and Diffusion: The F-KPP Equation with Dormancy

A currently very active area of research, motivated both from ecology and mathe-
matics, is the analysis of the interplay of dormancy and (spatial) migration. While
the latter describes dispersal in space, dormancy can be thought of as dispersal in
time. Interesting trade-offs appear when both act on comparable scales, as we will
indicate in this section. We will encounter a spatial extension of the classical duality
in 2.2, where this time the forward-in time population model is given by the F-KPP
equation with dormancy – and therefore deterministic. Due to the complexities of the
subject, we will only state the results and some of the basic arguments, and refer to
the literature for the (often long and intricate) proofs.

The F-KPP model, introduced independently by Fisher [31] and Kolmogorov,
Petrovski and Piscounov [54], is known as a classical reaction-diffusion equation.
However, Fishers original motivation was to describe the spread of a beneficial allele
in a spatial population (in dimension 1, inhabiting e.g. a shoreline), so that this model
ties in neatly with the population genetics considerations from the previous sections.
It is given as the following initial value problem consisting of the partial differential
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equation

∂tp(t, x) = �

2
p(t, x) + p(t, x)(1 − p(t, x)), (3.1)

in combination with an suitable initial condition p(0, x) = p0(x) ∈ B(R, [0,1]) (i.e.
a bounded measurable function from R to [0,1]). Here, we interpret a value of the
solution p(t, x) ∈ [0,1] as the proportion of the beneficial allele present in the popu-
lation at time t ≥ 0 in location x, thus generalising the frequency process of Sect. 2.2
to a spatial setup. Its dynamics is governed by the Laplacian, which models the spa-
tial movement of individuals, and the reaction term p(t, x)(1−p(t, y), which models
directional selection in the form of a fitness advantage of the beneficial allele (see e.g.
[29] for the corresponding theory and motivation of directional selection).

The above system (3.1) has been studied extensively for a long time, both from an
analytic as well as from a probabilistic angle. For example, it is well-known that for
each λ ≥ λ∗ := √

2, the system admits monotone travelling-wave solutions of speed
λ, taking the form

p(t, x) = w(x − λt),

where w is decreasing and satisfies

lim
x→−∞w(x) = 1 and lim

x→∞w(x) = 0. (3.2)

The critical wave speed λ∗ = √
2 emerges if one starts the system from a Heaviside

initial condition p0(x) = 1(−∞,0). For these (and many further) results we refer to
the seminal works [19, 20, 57, 60].

In the context of probability theory, it is common to consider the proportion of the
deleterious allele by defining

u(t, x) := 1 − p(t, x)

now solving the equivalent Cauchy problem

∂tu(t, x) = �

2
u(t, x) − u(t, x)(1 − u(t, x)), (3.3)

with u(0, x) = u0 = 1−p0. The reason for this transformation is that the new system
now has an interesting dual process, namely branching Brownian motion (BBM),
which is not available for the original system.

Branching Brownian motion can be viewed as a system of particles that move
independently according to a Brownian motion, and that branch (split into two) at
certain rates. The duality is a direct spatial extension of our moment duality from
Theorem 2.2 and has already appeared in [67] and [45–47], and subsequently popu-
larised and heavily used in [60] and [19]. For more general accounts on spatial dual-
ities, see e.g. [66] and [1]. We will discuss this duality, and BBM, in a more general
set-up below.

In much the same way as for the Wright-Fisher diffusion, the F-KPP equation can
now be extended to accommodate dormancy. This has recently been carried out in
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[13] and [14], where the proofs of the results stated here can be found. The approach
is similar to the one taken in Sect. 2.2 - individuals may switch into and out of dor-
mancy at constant rates. Note however that there are now at least two basic ways in
which dormancy, dispersal and selection can interact in the spatial set-up.

The perhaps most natural model assumes that individuals in the dormant state nei-
ther experience selective pressure nor move in space (think of plant seeds or microbial
cysts remaining static in soil). This leads to the following equation, which we call the
seed bank F-KPP equation [14, Def. 1.1]:

Definition 3.1 (F-KPP equation with dormancy, I: Seed bank model) The initial
value problem associated with the F-KPP equation with dormancy, variant I, is given
by the coupled system

∂tu(t, x) = �

2
u(t, x) + c

(
v(t, x) − u(t, x)

) + su(t, x)
(
u(t, x) − 1

)
,

∂t v(t, x) = c′(u(t, x) − v(t, x)
)
,

(3.4)

with initial conditions u0, v0 ∈ B(R, [0,1]), switching parameters c, c′ ≥ 0, and se-
lection strength s ≥ 0.

However, it is quite often the dormant form that moves – think of seeds transported
by a current in oceans (as already investigated extensively by Darwin in his Origin
of Species) – or spores being dispersed by the wind. This leads to the second model,
where the active individuals still experience selective pressure, but it is the dormant
forms that move [14, Def. 1.2]:

Definition 3.2 (F-KPP equation with dormancy, II: The spore model) The initial
value problem associated with the F-KPP equation with dormancy, variant II, is given
by the coupled system

∂t ũ(t, x) = c̃
(
ṽ(t, x) − ũ(t, x)

) + sũ(t, x)
(
ũ(t, x) − 1

)
,

∂t ṽ(t, x) = �

2
ṽ(t, x) + c̃′(ũ(t, x) − ṽ(t, x)

)
,

(3.5)

with initial conditions ũ0, ṽ0 ∈ B(R, [0,1]) switching parameters c̃, c̃′, and selection
strength s ≥ 0.

Note that the Laplacian in this model, which we also call the spore model, has thus
moved from the first to the second component.

Both of the above systems have interesting duals, which we subsume as on/off
branching Brownian motions (on/off BBM). However, the precise dynamics differ for
the two variants. We begin with the dual for variant I and give an informal description
to keep notation simple. Further details can again be found in [14].

On/off branching Brownian motion (variant I) is a branching Markov process, in
which we label each particle by a for active or d for dormant, so that it will take
values in � := ⋃

k∈N0

(
R× {a,d})k .
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Fig. 8 A simulation of ooBBM of variant I with parameters s = c = c′ = 0.5

Definition 3.3 (on/off BBM variant I, seed bank model) The on/off branching Brow-
nian motion corresponding to the system (3.4) is the unique Markov process (Mt)t≥0
with state space � evolving according to the following rules:

• Active particles (with flag a) move in R as independent Brownian motions.
• Each active particle branches at rate s into two active particles.
• Dormant particles (with flag d) neither move nor branch.
• Each active particle turns dormant at rate c, changing its flag from a to d .
• Each dormant particle turns active at rate c′, changing its flag from d to a.

All these transitions happen independently of each other and independently for dif-
ferent particles. See Fig. 8 for a simulation.

Given our prior knowledge about the duality of the transformed F-KPP equation
with branching Brownian motion, it is now not surprising that this process turns out
to be the dual to the solution of (3.4): The dispersal term given by the Laplacian just
reproduces in the dual, giving rise to the underlying Brownian motions. The switching
mechanism between active and dormant translates to the backward process like in the
non-spatial model in Sect. 2.2. The branching mechanism is a direct consequence of
the form of the selection term given by su(1 − u). Since duality is a recurrent theme
in this review, we provide the basic heuristic argument here: Recall the generator
calculation in the proof of Theorem 2.2 and observe that the term corresponding to
the selection in the generator of the Markov process corresponding to (3.4) applied
to monomials un (as for the moment duality) is given by

su(u − 1)
∂

∂u
un = sn

(
un+1 − un

)
.
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Fig. 9 A simulation of ooBBM of variant II with parameters s = c̃ = c̃′ = 0.5

Now the right-hand side is precisely the term appearing in the generator of a branch-
ing process where each particle splits into two independently at rate s (increasing the
number of particles from n to n + 1). Hence arguments similar to those of Sect. 2.2.3
apply, though this time in a spatial setup.

The form of the second variant of our on/off BBM – corresponding to the spore
model – is now not very surprising:

Definition 3.4 (on/off BBM variant II, spore model) The on/off branching Brown-
ian motion corresponding to the system (3.5) is the unique Markov process (M̃t )t≥0
evolving according to the following rules:

• Active particles (with flag a) do not move but independently branch at rate s each
into two active particles.

• Dormant particles (flag d) move in R as independent Brownian motions.
• Dormant particles do not reproduce.
• Each active particle turns dormant at rate c̃, changing its flag from a to d .
• Each dormant particle turns active at rate c̃′, changing its flag from d to a.

Again, all transitions happen independently of each other and independent for differ-
ent particles. See Fig. 9 for a simulation.

In order to formally state the duality result we require some additional notation for
on/off BBMs. Denote by Nt the total number of particles alive in an on/off BBM of
variant I at time t . Label the particles at any time t by some index set of cardinality
Nt . Denote by It the index set of the active particles at time t , and by Jt the index
set of the dormant particles at time t . Then, for each particle alive at time t , labelled
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by some γ ∈ It ∪ Jt , we denote its trajectory process in R by (M
γ
t )t≥0. For variant

II, we correspondingly use the notation Ĩt , J̃t and (M̃
γ
t )t≥0. For example, if for t ≥ 0

we have

Mt = (
(M1

t ,a), (M2
t ,d), (M3

t ,a), (M4
t ,d)

) ∈ (
R× {a,d})4 ⊂ �,

then It = {1,3}, Jt = {2,4}, and Nt = 4.
We are now ready to formally state the spatial duality for both models. Observe

that this duality is semi-probabilistic in the sense that the processes u(t, y) and v(t, x)

appearing on the left-hand side of the duality equations are deterministic.

Proposition 3.1 (Proposition 1.8 in [14]) Let (u, v) and (ũ, ṽ) be the solutions to
Equation (3.4) and (3.5) with initial conditions u0, v0 ∈ B(R, [0,1]) and ũ0, ṽ0 ∈
B(R, [0,1]), respectively. Further, let (Mt)t≥0 and (M̃t )t≥0 on/off BBMs of variant
I and variant II, respectively, with the same parameters. Then, for variant I it holds
that

u(t, x) = E(u0,v0)

[
u(t, x)1v(t, x)0

]
= E(x,a)

[∏
α∈It

u0
(
Mα

t

) ∏
β∈Jt

v0
(
M

β
t

)]
,

v(t, x) = E(u0,v0)

[
u(t, x)0v(t, x)1

]
= E(x,d)

[∏
α∈It

u0
(
Mα

t

) ∏
β∈Jt

v0
(
M

β
t

)
]
,

and similarly for variant II with u, v, M replaced by ũ, ṽ, M̃ .

With the help of these dual processes, a probabilistic representation of the solution
to the Cauchy problems can be given as follows. Indeed, starting in a Heaviside initial
condition, we obtain the (analogue of the classical) McKean representation for the
solution u:

Lemma 3.1 Let (Rt )t≥0 be the position of the rightmost particle of an on/off branch-
ing Brownian motion of variant I started at M0 = (0,a). Then the solution to (3.4)
started at u0(x) := v0(x) := 1[0,∞) is given by

u(t, x) = P(0,a)

[
Rt ≤ x

]
, t ≥ 0, x ∈R.

The analogous result holds for variant II.

Proof This is again a direct application of duality:

u(t, x) = Eu0

[
u(t,M0)

] = Ex

[∏
β∈It

u
(
0,M

β
t

)] = Ex

[∏
β∈It

1[0,∞)

(
M

β
t

)]

= Px

[
min
β∈It

M
β
t ≥ 0

]
= P0

[
max
β∈It

M
β
t ≤ x

]
= P(0,a)

[
Rt ≤ x

]
,

for any t ≥ 0 and x ∈ R. �
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A question that can thus be approached via duality for both the classical F-KPP
equation as well as our two new model variants is that of the value of the critical
wave-speed when started in Heaviside initial conditions. Thanks to the probabilis-
tic representation, this directly translates into the asymptotic speed of the rightmost
particle in the corresponding dual on/off Branching Brownian motion.

Theorem 3.5 (Theorem 1.10 and Proposition 1.17 in [14]) For both variants of
ooBBM, the critical wave speed exists and agrees with the asymptotic speed

lim
t→∞

Rt

t
,

where (Rt )t≥0 is the position of the rightmost particle as in Lemma 3.1. Moreover,
denoting λI resp. λII this limit in variant I resp. variant II, we have

λII < λI < λ∗,

where λ∗ = √
2 is the critical wave speed of the classical F-KPP model, cf. (3.2).

This can be shown via martingale convergence arguments (see [14, 22]), and ex-
plicit values for given model parameters can be provided.

Biologically speaking, for each population model this wave speed corresponds to
the speed of invasion of a beneficial allele, that is, to the speed at which an advan-
tageous genetic variant takes over in an existing population in which both variants
were originally separated. Intuitively, given common biological understanding of dor-
mancy, seed banks should increase resilience of systems, i.e. in our case slow down
the speed of invasion. Indeed, this is true for both systems, and can be explicitly quan-
tified. Interestingly, the dormancy mechanism in variant II (spore model) seems to be
significantly more efficient in slowing down invasions that the dormancy strategy of
variant I (seed bank model), in particular for large selection strength s, see Fig. 10.

The systems exhibit further interesting (in particular, non-monotone) behaviour in
the model parameters, which seems to be hard to interpret analytically, but where the
dual process can provide valuable intuition. See the discussion section of [14], where
also several open research problems are proposed.

4 Dormancy and Random Environments

So far, we have investigated the effects of different dormancy mechanisms, in par-
ticular spontaneous and responsive switching, on coalescent structures in population
genetics (Sect. 2), as well as the interplay of spontaneous switching, spatial disper-
sal, and directional selection (Sect. 3). However, we have not yet paid attention to
the question as to why a certain dormancy strategy might emerge at all, and in par-
ticular which dormancy strategy might be most effective in a given type of random
environmental fluctuations, especially if dormancy comes with additional costs.

To do this, we follow [12] and consider a minimal two-type branching process
model that incorporates active and dormant types, and evolves in a randomly fluctu-
ating environment. The environment is assumed to realise only two different states
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Fig. 10 Comparison of the “effectiveness” of the two dormancy strategies: In the spore model, the effect
of dormancy on the wave speed is much more drastic than in the seed bank model, in particular for large
s. Black line: Critical wave speed of the classical F-KPP model depending on the selection parameter s,
dashed line: Variant I, dash-dotted line: Variant II

Fig. 11 Representation of the
random environment with
transition probabilities between
the two states “+” and “–” + −

s1

s0

1 − s1 1 − s0

{+,−}, where the state “+” denotes a healthy, and state “−” a harsh environment,
and evolves according to a discrete-time Markov chain whose transition probabilities
are depicted in Fig. 11.

Our goal is to incorporate and investigate the following two basic dynamics in the
branching process model:

• In the stochastic switching (bet-hedging) regime, while the overall expected repro-
ductive output may depend on the environment and should be smaller (sub-critical)
during harsh times than during (super-critical) healthy times, the proportion with
which active and dormant types are produced, as well as the wake-up probabilities
of the dormant type, should be independent of the state of the environment.

• In the responsive switching regime, the overall expected offspring numbers may
again depend (in a similar fashion as above) on the state of the environment, but
additionally, the reproductive policy should be affected: For example, the produc-
tion of dormant types should be favoured during harsh times (and wake-up proba-
bilities should be reduced), whereas during healthy times, more active types should
be produced (and wake-up probabilities should be increased).

Moreover, both of the above strategies should have a lower expected total offspring
number than a corresponding branching process without dormant types, in order to
reflect the costs of being capable to engage in dormancy.



Dormancy in Stochastic Population Models 273

We now turn these ideas into a concrete bi-type Bienaymé-Galton-Watson (BGW)
process in random environment.

Definition 4.1 (Environmental process) Let E = (En)n≥0 be the discrete time
{+,−}-valued Markov chain with transition probabilities s1 ∈ (0,1] (from + to
−) and s0 ∈ (0,1] (from − to +) as depicted in Fig. 11. This chain will be called the
environmental state process. We further assume stationarity, i.e. that E0 starts in its
unique stationary distribution.

Definition 4.2 (BGW process with dormancy in random environment) We define a
two-type BGW process conditional on the environment E as follows:

• Active offspring: Let (ξ+
n,i)n∈N,i∈N and (ξ−

n,i)n∈N,i∈N be two independent families
of pairs of independent and identically distributed discrete random variables, with
distributions

ξ±
1,1 = ((ξ±

1,1)1, (ξ
±
1,1)2) ∼ μ± ∈ M1(N0 ×N0).

Here, the superscripts “+” resp. “−” refer to the state of the environment, n should
be considered a generation, and i the index of an individual within this generation.
The two components 1 and 2 of ξ±

n,i correspond to active and dormant offspring

numbers, respectively. For example, ξ+
n,i denotes the number of active and dormant

offspring of an (active) individual i in generation n within a healthy environment.
We denote the corresponding expected values by

m±
j

:= E
[
(ξ±

1,1)j
]

for j ∈ {1,2},

and the variances by σ 2± := V
[
(ξ±

1,1)1 + (ξ±
1,1)2

]
< ∞.

• Dormant offspring: Let (ζ±
n,i)n∈N,i∈N denote a family of iid discrete random vari-

ables on {0,1}2 with distribution given by

P
[
ζ±

1,1 = (0,0)
] = d± ∈ [0,1 − w±], P

[
ζ±

1,1 = (1,0)
] = w± ∈ [0,1],

P
[
ζ±

1,1 = (0,1)
] = 1 − d± − w±, P

[
ζ±

1,1 = (1,1)
] = 0.

These random variables describe the resuscitation (via creation of one active in-
dividual, with probability w±), death (with probability d±), and persistence (with
probability 1 − d± −w±) of the dormant individuals in the process, again for each
given environmental state.

Then, the process (Zn)n≥0 on N0 ×N0 with Z0 = (1,0) and

Zn+1 := 1{En+1=“+”} ·
(

(Zn)1∑
i=1

ξ+
n,i +

(Zn)2∑
i=1

ζ+
n,i

)
+ 1{En+1=“–”} ·

(
(Zn)1∑
i=1

ξ−
n,i +

(Zn)2∑
i=1

ζ−
n,i

)

for n ≥ 0 is called a BGW process with dormancy in environment E = (En)n≥0.
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With these specifications, we can investigate the effects of the environment for the
long term growth and survival of our branching process with dormancy. Note that
while the offspring law of the dormant individuals is explicitly given, for the active
individuals, we will only be concerned with the expected offspring numbers that we
collect together in a mean matrix. More precisely, for each environmental state, we
consider the conditional offspring mean matrices:

M+ =
(

m+
1 m+

2

w+ 1 − w+ − d+

)
, M− =

(
m−

1 m−
2

w− 1 − w− − d−

)
,

and require that m+
1 + m+

2 > 1 in the healthy environmental state, and m−
1 + m−

2 < 1
in the harsh state.

To model responsive and stochastic switching strategies as outlined above, we may
for example choose in the responsive regime

M+ :=
(

m+ 0

w 0

)
, M− :=

(
0 m−

0 1 − d

)
.

In this somewhat extreme example, if the environment is in the healthy state, the
process produces only active offspring, and in the harsh state, produces only dormant
types.

In the stochastic regime, in each environmental state, both active and dormant
offspring can be produced, and their relative sizes should be independent of the
environmental state. One way to realise this could be as follows: Let α ∈ (0,1),
m1,m2,w > 0 and consider the conditional mean matrices

M+ :=
(

m1 m2

w 1 − w − d

)
, M− :=

(
αm1 αm2

w 1 − w − d

)
.

Here, the expected proportions of active and dormant offspring stay the same, even
if the overall expected offspring number of the active individuals is reduced by a
fraction of α during the harsh times. Wake-up and death probabilities are completely
independent of the environmental state.

To describe the long-term behaviour of our two-type branching process Z in envi-
ronment E, we consider its Lyapunov exponent, which can be defined in the stationary
and ergodic random environmental case as follows: Let

ϕZ := lim
n→∞

1

n
logE

[
(Zn)1 + (Zn)2 | (Ek)1≤k≤n

]

= lim
n→∞

1

n
log

∥∥∥(1,0) ·
n∏

k=1

(M+)1{Ek=“+”} · (M−)1{Ek=‘“–”}
∥∥∥

1
.

General theory tells us that this limit exists and is deterministic, and that long-term
survival, i.e. P

[
Zn → 0

]
< 1, is possible if and only if ϕZ > 0, see e.g. [42]. Note

that in the case of survival, a positive Lyapunov exponent can be interpreted as the
exponential growth rate of the underlying population, i.e. as a Malthusian parameter.
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Fig. 12 Optimality of switching strategies. The solid-filled areas indicate where a certain strategy is op-
timal in the sense that it is the only strategy with a positive Lyapunov exponent. In the shaded regions,
the corresponding strategy is still optimal, but not the only strategy with a positive Lyapunov exponent,
allowing long- term survival. The dark-grey regions correspond to the responsive switching regime, the
black regions to the stochastic switching regime, and the light-grey region to a branching process without
dormancy trait (but higher expected offspring number). Details can be found in [12].

Unfortunately, it is in general a notoriously hard problem to evaluate the asymp-
totics of the random matrix product appearing in ϕZ explicitly. However, for the
mean matrices in the above two special set-ups, the Lyapunov exponent can be
computed rather easily, at least for some parameter choices: In the responsive case,
both mean matrices are of rank 1, while in the stochastic case, we can exploit that
detM− = α detM+ and

(M+)1{Ek=“+”}(M−)1{Ek=“–”} =
(

α1{Ek=“–”}m1

w

)
· (1, m2

m1
) +

(
0

1

)
· (0, detM+

m1
),

which in combination with the additional assumption that the parameters ensure that
detM+ = 0, yields explicit results. Details of the analysis are carried out in [12].

We refrain from giving the concrete formulas for ϕZ (which can be found in [12]),
but instead provide a general picture in Fig. 12. The rough take-home message is the
following:

• Stochastic switching / bet hedging is often optimal in environments that change
frequently and ‘unpredictably’.

• Responsive switching is often optimal if changes are less frequent, and in particular
when harsh times are really bad.

• If the impact of the environment is not very severe, then developing a costly dor-
mancy trait may not be necessary.

The details of course depend on the specific of the strategies and the involved param-
eters. Related results for phenotypic switching can be found in [28], see also [51, 59].
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5 Further Work on Dormancy, and Areas for Future Research

The theory of dormancy in interacting (in particular, biological) systems is currently
quite quickly expanding, opening up several roads for research in both theoretical
and applied scenarios. Therefore, we conclude this article by highlighting further
developments and briefly indicate areas for potential future mathematical research.

The dormancy processes from Sect. 2.2 where studied in more detail e.g. in [8],
where the boundary behaviour of the seed bank diffusion is studied through polyno-
mial diffusions. The seed bank coalescent was also intensively studied with regards to
its shape [36], its use for statistical tools for seed bank detection in [9] and extended
to other reproductive mechanisms in [37]. The duality relation was strengthened by
the derivation of the important look down construction for the seed bank in [32].

One area that is rapidly expanding is that of spatially structured models in pop-
ulation biology. The interplay of dispersal and dormancy, and its consequences for
genetic-, species-, and community diversity, is an active area in ecology (see e.g.
Wisnoski et al. [70]). On the mathematical side, Greven, den Hollander and Oomen
[38–40], introduced a seed bank model on discrete (infinite) geographic space, where
each colony has its own local seed bank. A crucial innovation in this model is that
these local seed banks can also be structured into (countably many) layers. These lay-
ered seed banks then allow for heavy-tailed wake-up times, leading to new universal
scaling behaviour. In particular, the classical “coexistence vs. clustering dichotomy”
is shifted towards coexistence by deep seed banks, thus supporting the maintenance
of diversity.

Further recent work in this direction includes spatially inhomogeneous popula-
tions with seed banks, cf. [25, 26, 61], and models involving even a continuum of
seed banks (an idea suggested by Dario Spanò), see [49, 50], leading to new (con-
tinuum) multi-type coalescents. The interplay of the resulting heavy-tailed wake-up
times in other spatial systems, e.g. the F-KPP setup from the previous section, is
largely open, posing challenging future research questions.

In general, models with very old – or very deep – seed banks, such as [5, 6, 11, 44],
can lead to somewhat degenerate coalescents, or non-Markovian ancestral renewal
structures. It would in particular be interesting to discuss in how far such models can
give rise to a “fractional Wright-Fisher diffusion”.

Regarding stochastic adaptive dynamics (see e.g. [21, 34]), where populations
move in a trait space and undergo birth, death, competition and mutation in a
measure-valued process set-up, dormancy has been considered as an evolutionary
force only very recently. Here, it has been shown that dormancy traits can estab-
lish themselves despite additional reproductive costs if they in turn provide a higher
tolerance for competitive pressure [3], and may lead to new coexistence regimes in
the presence of horizontal gene transfer in models for bacterial populations [4, 17].
Beyond maintaining diversity, it has been shown that dormancy may even generate
diversity by enabling speciation, see [18] for a result in the sympatric speciation sce-
nario of Dieckmann and Doebeli [27]. A systematic analysis of its interplay with the
different scaling regimes for mutation rates, as well as for complex fitness landscapes
is again an area for future research.

Scenarios for population dynamics in random environments (or fluctuating selec-
tion) pose many technical challenges, and beyond the above-mentioned works [28]
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and [12] there seem to be few rigorous probabilistic works in truly random environ-
ments (but see [65]). This seems to be an important gap in the present probabilistic
theory, since dormancy often has evolved as a specific response to unpredictable en-
vironments. Future research is this direction, also incorporating spacial models or
complex trait spaces, will be required to get a grasp for the large variety of dormancy
mechanisms.

For seasonal environments, recent work by [23] shows that dormancy can lead
to non-classical genealogies, and even speciation may be caused by such temporally
fluctuating selection [24]. Note that this speciation mechanism is different from the
one mentioned above in [18], since the former rests on seasonal environments, while
the latter is a result of the interplay of competitive pressure and a certain (static)
fitness landscape.

Many diseases, in particular persistent infections and cancer (on the individual
level), or virus epidemics (on the population level) involve dormancy phenomena
in one form or the other (e.g. [15]). For example, in cancer, therapy failure due to
short-term dormancy, or relapses due to long-term metastatic latency, pose difficult
problems in current oncology (see e.g. [16, 35] and the references therein). Here,
future research will likely be highly interdisciplinary, and opens up many perspectives
for population dynamic modelling, simulation and analysis with dormancy.

In the above list, we have mainly focused on research motivated from biology /
the life sciences. But there are also interesting developments in the area of statistical
physics, where dormancy, or more generally, switching phenomena, on the micro-
level can lead to novel behaviour (such as uphill-diffusion) on the macro area, see
e.g. [33]. Also, dormancy and switching can be incorporated in classical systems of
interacting particles, such as the contact process [15, 56], or models from evolution-
ary game theory [64].

The topic will likely keep mathematicians (in particular probabilists) busy for
some years to come.
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