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Abstract

This work addresses the convergence behaviour of first-order optimization methods in the
context of reinforcement learning. Specifically, we analyse the vanilla Policy Gradient (PG)
method under softmax parametrization. Initially, we focus on Markov Decision Processes (MDPs)
with finite-time horizons, demonstrating that the convergence rate of vanilla PG exhibits an
unfavorable and imprecisely determinable dependence on the time horizon. To resolve this issue,
we introduce a combination of dynamic programming and policy gradient called finite-time
dynamic policy gradient. The use of the dynamic approach much better exploits the structure of
the Markovian problem which is reflected in an improved, explicit dependence of the convergence
rate on all relevant model parameters.
In the second part of this thesis, we extend this concept to discounted MDPs with an infinite-time
horizon, where the convergence rate in vanilla PG cannot be explicitly determined with respect to
the effective horizon. For the transferred dynamic PG method, we once again establish improved
and explicit convergence guarantees.
In the third part of this thesis, we analyze the convergence of stochastic gradient methods
independently of reinforcement learning. Under the assumption of (weak) gradient domination,
we derive almost sure convergence rates in both the global and local settings. The new results
find applications in the optimization of analytical neural networks, as well as in the previously
discussed classical and dynamical PG methods under softmax parametrization.

Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Konvergenzverhalten von Gradientenverfahren erster
Ordnung im Kontext von Reinforcement Learning. Dazu wird das klassische Policy-Gradient
(PG) Verfahren unter Softmax-Parametrisierung analysiert. Zunächst betrachten wir Markov-
Entscheidungsprobleme (MDPs) mit endlichem Zeithorizont und zeigen, dass die Konvergenzrate
des PG-Verfahrens eine ungünstige, nicht genau zu bestimmende Abhängigkeit vom Zeithorizont
aufweist. Zur Lösung wird Dynamic Programming in das bestehende Verfahren integriert. Der
dynamische Ansatz nutz die Markovsche Struktur des MDPs aus und liefert eine verbesserte,
explizite Abhängigkeit der Konvergenzrate von allen beteiligten Modellparametern.
Im zweiten Teil der Arbeit wird dieses Konzept auf MDPs mit unendlichem Zeithorizont übertra-
gen. Statt des deterministischen Zeithorizonts spielt der erwartete Zeithorizont des unendlichen
Problems, abhängig vom Diskontierungsfaktor, eine analoge Rolle. Für das dynamische PG-
Verfahren werden erneut bessere und explizite Konvergenzgarantien bewiesen.
Im dritten Teil der Arbeit analysieren wir die Konvergenz stochastischer Gradientenmethoden
losgelöst vom Reinforcement Learning. Unter der Annahme (schwach) dominierter Gradienten
werden fast sichere Konvergenzraten im globalen und lokalen Setting hergeleitet. Die neuen
Resultate finden Anwendung in der Optimierung analytischer neuronaler Netze sowie in den
zuvor diskutierten klassischen und dynamischen PG-Verfahren unter Softmax-Parametrisierung.
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Introduction

1Reinforcement learning is applied to so-called Markov decision processes (MDPs), which
mathematically formalize the interaction between a learning agent and its environment,

with the objective of maximizing observable rewards. Algorithms that train an agent (or a
policy) for an MDP are collectively referred to under the broader term of reinforcement learning
(RL). Although MDPs have been known since the 1950s, computer scientists only achieved a
breakthrough in the application of RL to video games in the past decade, garnering worldwide
attention. Motivated by this success, researchers across various fields began applying RL to
real-world problems. Virtually any control problem can be framed as an MDP and addressed
using RL.
In this work, we distinguish between two classes of MDPs. The first class includes discounted
infinite-time horizon MDPs, where decisions in the distant future become progressively less
significant due to discounting, as they are further removed from the present. The second
class includes finite-time horizon MDPs, which have a fixed, deterministic endpoint, where
discounting may be applied but is not necessarily required. Typical infinite-time horizon problems
are commonly found in robotics, video games, or scenarios where the endpoint is random and
uncertain. Conversely, typical finite-time horizon MDPs include supply chain problems or optimal
stopping problems in finance.
The ongoing AI hype and the increasing integration of RL into everyday applications have
amplified concerns regarding the safety and interpretability of these algorithms’ behavior. Still,
the theoretical guarantees are limited. In this dissertation, we focus on a specific class of RL
algorithms, namely the policy gradient (PG) algorithm. The goal is to analyze the convergence
and convergence rate of this method to develop a deeper understanding of the causes of potential
misbehavior. Our primary interest lies in the convergence towards the global optimum, ensuring
that no sub-optimal decisions are made. When analysing the classical PG methods, we obtain
limitations in the speed of convergence with respect to some model parameters and develop
dynamic approaches for PG in finite-time and infinite-time MDPs to overcome these dependencies.
Naturally, RL algorithms are divided into value-based or policy-based approaches. In value-
based methods, the optimal state-action function is learned, from which the optimal policy can
be derived. In policy-based methods, however, the goal is to directly search for the optimal
policy. PG belongs to the class of policy-based methods, and it trains a parameterized policy
by maximizing the value function using first-order optimization methods such as (stochastic)
gradient descent (GD/SGD).
Since the optimization problem of PG is non-convex, we quickly encounter limitations regarding
convergence. In order to perform a complete theoretical analysis, certain assumptions are
necessary. In this thesis, we will primarily assume that all policies are softmax-parameterized, an
assumption that has become increasingly common in recent years. This serves as a preliminary
step towards a full understanding of PG methods. In infinite-time horizon problems, vanilla soft-
max PG has already been analyzed by Mei et al. [Mei+20]. For the softmax-parameterized value
function, a gradient domination property along the gradient ascent trajectory was demonstrated,
which guarantees convergence to the global optimum under the exact gradient assumption, and
a convergence rate for deterministic softmax PG was derived.
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2 Chapter 1. Introduction

However, in the finite-time setting, there have been no results on the convergence or convergence
rate of PG, even under the assumption of exact gradients and softmax parametrization. In
parts, this may be due to the fact that the finite-time case is more complex, in the sense that a
non-stationary optimal policy is required. Hence, the first research question we address in this
thesis is:

RQ1: Does softmax PG converge for finite-time MDPs, and if so, how quickly does it converge?

In the first project of this work, we initially demonstrate that the finite-time value function under
softmax parametrization also satisfies a gradient domination property along the gradient ascent
scheme, through which we derive a convergence rate under the exact gradient assumption.
While the proof structure and ideas are inspired by the result for infinite-time horizon PG, they
cannot be directly extended from the infinite-time case due to the non-stationary policy required
in the finite-time setting. The classical finite-time PG variant simultaneously trains the policies
for all time epochs at once, which is why we refer to this algorithm as finite-time simultaneous
policy gradient (FT-SimPG).
We observe that, although convergence can be guaranteed, an unknown model-dependent
constant appears in the convergence rate. An analogous constant was also found by [Mei+20]
in the infinite-time horizon case. This constant can become arbitrarily small and may depend
on factors such as the time horizon or the number of states in the MDP. This prevents us from
providing a satisfactory answer to the question of how quickly the algorithm converges. This
leads us to the second research question:

RQ2: Can we guarantee an explicit convergence rate for finite-time softmax PG?

We provide an answer to this question by introducing finite-time dynamic policy gradient (FT-
DynPG). The idea for this algorithm emerged as follows. PG is a gradient-based method aimed
at maximizing the value function, but it overlooks the inherent structure of an MDP which can
be leveraged to solve the problem more efficiently. Under perfect information, finite-time MDPs
are typically solved using backward induction. The optimal policy for the last time epoch is
determined first and then decisions are made progressively backward to the first epoch where
the future optimal actions are already known. This approach is referred to as finite-time dynamic
programming (DP). DP relies on the Markov property, a fundamental characteristic of MDPs
and in interpretive terms it means that today’s best action is independent of past decisions. By
combining DP with finite-time PG we introduce the FT-DynPG algorithm, a dynamic approach
to PG for solving finite-time MDPs. The non-stationary policy is parameterized such that each
time epoch has its own parameterized policy. These policies are then solved by policy gradient
backward in time, following the DP principle. Since we explicitly exploit the structure of the
problem, we are able to derive a convergence rate with all constants explicitly specified.
We observe that the constants, such as those related to the time horizon, are significantly more
favorable in FT-DynPG compared to FT-SimPG, even when ignoring the unknown constant in
FT-SimPG. It is important to note that, while the actual rate in terms of gradient steps is O(1/n)
for both algorithms, constants play a crucial role in the slow convergence rate.
Thus far, in our discussion of convergence, we have assumed that the gradient method can be
executed exactly—that is, we have assumed access to the true gradients of the value function
with respect to the policy parameters. However, in practice, this is not feasible, as the MDP is
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typically a black box from which we can only generate samples. Given a state at a particular
time, an action is executed, and we observe a reward for that state-action pair. Using these
samples and the so-called Policy Gradient Theorem, the gradients of the value function can be
easily estimated. This makes the algorithm particularly appealing in practical applications. When
sampled (i.e. stochastic) gradients are used in PG, we refer to these algorithms as stochastic
policy gradient (SPG). This leads us to the third research question:

RQ3: Can we guarantee convergence for stochastic FT-SimPG and stochastic FT-DynPG under softmax
parametrization, and how fast is the convergence?

The answer to the first part of the question is yes. In both cases, convergence to the global
optimum can be guaranteed with high probability. A complexity analysis is derived, where we
obtain again that FT-DynPG has a favorable dependence on the problem parameters compared
to FT-SimPG. However, our proof technique (in both approaches) requires a very large batch size
during gradient sampling to ensure that the stochastic gradient trajectories remain close to the
deterministic ones. We want this to hold as the gradient domination property is only fulfilled
along the exact gradient path.
Since the required batch sizes in both cases depend unfavorably on parameters such as the time
horizon of the problem, we do not expect this result to yield practical insights. Nevertheless, we
demonstrate for the first time that an SPG Algorithm, without additional regularization, can
converge to the global optimum. In the final project of this thesis, we revisit the convergence
properties of SPG methods and obtain the convergence without large batch sizes is still possible.
For now, we conclude the section on convergence of PG in finite-time MDPs and move on to
discounted infinite-time horizon MDPs.

In the second project of this work we consider discounted infinite-time horizon MDPs. As
previously mentioned, Mei et al. [Mei+20] were the first to establish a convergence rate for
vanilla PG under softmax parametrization. We have also noted that, similar to FT-SimPG,
an unknown model-dependent constant appears in their analysis. By integrating dynamic
programming into finite-time PG, we effectively eliminated the unknown constant. On a higher
level, we have gained a new perspective on RL algorithms:
Rather than adhering to the traditional separation between value-based and policy-based methods,
we distinguish between algorithms that leverage the model’s structure and those that do not.
The first class exploits the dynamic programming principle, as seen in value iteration, policy
iteration, or Q-learning. These algorithms essentially optimize single-step problems, using a
single reward feedback in the update process and future payoffs are estimated through evaluation.
The second class approaches the entire multi-step problem at once and solves it using classical
optimization techniques, as seen in traditional PG methods.
Over time, hybrid approaches that integrate both methodologies, such as Actor-Critic (AC)
methods, have consistently demonstrated superior performance in practical applications even
though dynamic programming is rather indirectly used. In AC, the critic provides a baseline by
estimating either the value function or the action-value function. DP becomes crucial during
the critic’s update process, as it effectively reduces the variance in gradient estimation. The
essence of employing DP lies in the fact that parameter updates are not solely dependent on
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sampling new trajectories; rather, new information is bootstrapped. The collective efforts of a
broad research community have contributed to the remarkable success of AC-type algorithms
(such as Natural Policy Gradient (NPG), Trust Region Policy Optimization (TRPO), and Proximal
Policy Optimization (PPO) [Kak01; Sch+15b; Sch+17]), although these methods have yet to be
sufficiently supported by a comprehensive theoretical understanding.
With FT-DynPG, we also developed a hybrid approach where dynamic programming (DP) is
directly, rather than indirectly, embedded within the algorithm. This integration led to an
improved convergence rate with explicit constants for finite-time MDPs. This brings us to the
following two research questions:

RQ4: To what extent can the Markovian property of an infinite-time MDP be exploited more directly
to improve the convergence behavior of PG methods?

RQ5: How much improvement is gained compared to vanilla PG?

To address these questions, we introduce the dynamic policy gradient (DynPG) algorithm. Similar
to FT-DynPG, dynamic programming (this time for infinite-time MDPs) is combined with vanilla
PG. DynPG can be viewed as a hybrid RL algorithm that utilizes policy gradient to optimize a
sequence of contextual bandits. In each iteration, the algorithm extends the horizon of the MDP
by adding an additional epoch at the beginning and shifting trained policies to the future. We
will see that adding a new epoch is analog to the application of the Bellman operator. A policy
for the newly added epoch at time step 0 is trained using policy gradient, while the already
trained policies are employed to determine the future actions. DynPG trains a (non-statioary)
sequence of policies, which would solve a corresponding finite-time MDP. Nevertheless, we
will see how finitely many steps are sufficient to result at the stationary optimal policy for
the infinite-time problem. Note that DynPG is not an AC method. The algorithm minimizes
the variance in the gradient estimation as much as possible by utilizing previously trained and
therefore fixed policies to generate trajectories. This results in stable Q-value estimates and
improved convergence behavior.
We first present a general error analysis for DynPG, which is theoretically compatible with any
optimization scheme capable of solving a contextual bandit problem. This includes not only PG,
but also NPG or Policy Mirror Descent (PMD). Following this, we focus on PG and the softmax
parametrization to derive an explicit convergence rate for DynPG. Compared to vanilla PG, this
approach eliminates the unknown constant and addresses a lower-bound example in which
vanilla PG exhibits an exponentially poor dependence on the discount factor.
The theoretical results for DynPG are all with respect to the exact gradient assumption. We
have briefly discussed that the convergence analysis for FT-DynPG is particularly challenging
with stochastic gradients due to the absence of a global gradient domination property. Since
the convergence rates obtained for FT-DynPG are not tight, we did not carry out the analogous
analysis for DynPG.

In the third and final project of this dissertation, we return to stochastic gradient methods where
the gradient can just be accessed though a first order oracle. We address the convergence of
gradient methods under weak gradient domination and also look into the case where gradient
domination is only locally fulfilled. We focus on almost sure convergence, the strongest type of
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convergence for stochastic algorithms, where each individual run of the algorithm converges.
This project was motivated by improving the convergence rates known for SPG, but it can also
stand on its own as a contribution in the field of non-convex first order optimization.
In the first part, we consider the case where the weak gradient domination (WGD) is globally
satisfied.

RQ6: Is WGD sufficient to ensure almost sure convergence of stochastic gradient methods and can
we derive a rate of convergence?

We derive asymptotic convergence rates almost surely and in expectation for stochastic gradient
descent (SGD) and stochastic Heavy Ball (SHB). For SGD, the almost sure convergence rate we
obtain is arbitrarily close to the one obtained in expecation under WGD in [FBD21; Fat+22]. For
SHB, convergence in expectation and almost sure convergence under WGD are new contributions.
In the second part, we relax the weak gradient domination property and assume that the gradient
domination property is only locally fulfilled.

RQ7: Can we still assure convergence of SGD when WGD is only locally fulfilled?

We distinguish between WGD locally around a stationary point or locally around the global
minimum. In both cases we prove that SGD, initialized in the local region, remains within the
gradient dominated region with high probability, given a small enough step size. Conditioned
on this event we provide converges rates almost surely and in expectation towards the local or
global minimum respectively with the same convergence speed as in the global case.
The local gradient domination around stationary points is applicable to the training of neural
networks (NNs) with supervised learning. All analytical functions, and thereby NNs with
analytical activation functions, satisfy this assumption.
The case of local gradient domination around the global minimum applies to stochastic softmax
policy gradient algorithms. In the case of infinite-time horizon MDPs, we show that the local
WGD is satisfied under softmax parametrization for both vanilla PG and entropy-regularized PG.
If the initialization is close to the global optimum, almost sure convergence is guaranteed. The
convergence holds without requiring a batch size, meaning only a simple gradient estimator is
needed, which represents a significant improvement over previous stochastic results. In finite-
time MDPs, we show similarly that each individual optimization step converges almost surely to
the global optimum under good initialization and sufficient small step size. In all cases, we can
theoretically characterize the local regions for initialization.
We cannot make a direct comparison between vanilla PG and DynPG or between FT-SimPG
and FT-DynPG, as the almost sure convergence rates are asymptotic and do not provide explicit
constants for comparison. It should be noted that the asymptotic convergence rates of the
respective algorithms are equivalent.
To conclude this introduction, we provide a brief overview of the outline. As three projects are
consolidated in this thesis we clarify which parts of the dissertation are the author’s original
contributions and which parts are contributed by co-authors.

1. The Chapters 2 and 3 are background chapters where we cover the basics on first order
gradient methods and introduce MDPs and the PG framework.
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2. In Chapter 4, we address the research questions RQ1-RQ3 regarding finite-time MDPs. The
results in this chapter are already published at ICLR 2024 under the title “Beyond Station-
arity: Convergence Analysis of Stochastic Softmax Policy Gradient Methods” [KWD24].
This project is joint work with Simon Weissmann and Leif Döring.
The project idea, as well as the theorems and proofs were carried out by the author of this
thesis and supervised by the co-authors.

3. Chapter 5 covers the research questions RQ4 and RQ5. This project is a preprint titled
“Structure Matters: Dynamic Policy Gradient” [Kle+24] and joint work with Xiangyuan
Zhang, Tamer Başar, Simon Weissmann and Leif Döring.
The project idea, as well as the theorems and proofs were carried out by the author of this
thesis and supervised by Leif Döring, Simon Weissmann and Tamer Başar. Figure 5.1 and
the foundation of the Python code used in the example in Section 5.4.2 was established by
Xiangyuan Zhang.

4. In Chapter 6, we discuss the research questions RQ6 and RQ7, concerning the almost sure
convergence of stochastic gradient methods. This project is also published as a preprint
titled “On Almost Sure Convergence Rates for Stochastic Gradient Methods under Gradient
Domination” [Wei+24].
The project idea, as well as the proof concept for Lemma 6.1, the example in Section 6.4, and
the application to neural networks in Section 6.6 were derived by Simon Weissmann. The idea
for the proof of Lemma 6.10 was contributed by Waïss Azizian. All other results and proofs in
this project, especially the idea to apply the results in RL, were carried out by the author of
this thesis.



Preliminaries: First Order Optimization

2In this chapter, we cover the basic convergence results of first order methods where we aim
to solve the problem

min
𝑥∈ℝ𝑑

𝑓 (𝑥). (2.1)

Throughout this chapter we assume that the objective function 𝑓 : ℝ𝑑 → ℝ is bounded from
below by 𝑓 ∗ = inf𝑥∈ℝ𝑑 𝑓 (𝑥) > −∞ and we denote by ∥·∥ the euclidean norm on ℝ𝑑 induced by
the standard euclidean scalar product ⟨𝑥, 𝑦⟩ = 𝑥𝑇𝑦.

2.1 Gradient Descent

As a first step, we recall the deterministic iterative update generated by gradient descent with
constant step size 𝛼 > 0, i.e.

𝑥𝑛+1 = 𝑥𝑛 − 𝛼∇ 𝑓 (𝑥𝑛), 𝑥0 ∈ ℝ𝑑 . (GD)

before we cover the stochastic version in the final section of this chapter.
We are interested in the convergence behavior of the sequence (𝑥𝑛)𝑛∈ℕ and specify the following
sets of interesting limit points:

• 𝑥 ∈ ℝ𝑑 is called a stationary point if ∇ 𝑓 (𝑥) = 0.

• 𝑥 ∈ ℝ𝑑 is called a local minimum if there exists 𝑟 > 0 such that 𝑓 (𝑥) ≤ 𝑓 (𝑦) for all
𝑦 ∈ 𝑈𝑟 (𝑥) := {𝑦 ∈ ℝ𝑑 : | |𝑥 − 𝑦 | | < 𝑟}.

• 𝑥 ∈ ℝ𝑑 is called a global minimum if 𝑓 (𝑥) ≤ 𝑓 (𝑦) for all 𝑦 ∈ ℝ𝑑 .

• 𝑥 ∈ ℝ𝑑 is called a saddle point if 𝑥 is a stationary point but neither a (local) minimum of 𝑓
nor a (local) minimum of − 𝑓 .

All global minima are local minima and all local minima are stationary points. In order to
derive convergence of (𝑥𝑛)𝑛∈ℕ towards stationary points, the objective 𝑓 is assumed to satisfy
the classical smoothness assumption:

Assumption 2.1. The objective function 𝑓 : ℝ𝑑 → ℝ is differentiable and 𝐿-smooth, i.e the
corresponding gradient ∇ 𝑓 is assumed to be 𝐿-Lipschitz continuous:

∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥ ≤ 𝐿∥𝑥 − 𝑦∥, for all 𝑥, 𝑦 ∈ ℝ𝑑 . (2.2)

From 𝐿-smoothness, the descent lemma is deduced. It is a fundamental instrument to analyze
first order optimization methods.

Lemma 2.2. [Bec17, Lem. 5.7] Let 𝑓 : ℝ𝑑 → ℝ fulfill Assumption 2.1, then for every 𝑥, 𝑦 ∈ ℝ𝑑 we
have

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝐿
2
∥𝑦 − 𝑥∥2. (2.3)

7
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Applying the descent lemma to the iteration scheme equation (GD) with 𝑦 = 𝑥𝑛+1, 𝑥 = 𝑥𝑛 and
step size 0 < 𝛼 ≤ 1

𝐿
yields the following iterative descent property

[ 𝑓 (𝑥𝑛+1) − 𝑓 ∗] ≤ [ 𝑓 (𝑥𝑛) − 𝑓 ∗] − 𝛼
2
∥∇ 𝑓 (𝑥𝑛)∥2 , (2.4)

where 𝑓 ∗ is subtracted on both sides of the inequality.
Rearranging this inequality and summing over the the iterations results in the following upper
bound on the sum of the gradients

𝑁∑︁
𝑛=1
∥∇ 𝑓 (𝑥𝑛)∥2 ≤

2
𝛼
[ 𝑓 (𝑥1) − 𝑓 (𝑥𝑁+1)] ≤

2
𝛼
[ 𝑓 (𝑥1) − 𝑓 ∗].

We deduce directly that lim𝑛→∞ ∥∇ 𝑓 (𝑥𝑛)∥2 → 0 for 𝑛→∞ which proves the following theorem.

Theorem 2.3. Let 𝑓 : ℝ𝑑 → ℝ fulfill Assumption 2.1. Then, every accumulation point of the
gradient descent scheme (𝑥𝑛)𝑛∈ℕ defined in equation (GD) with step size 0 < 𝛼 ≤ 1

𝐿
is a stationary

point of 𝑓 .
Convergence towards stationary points is not what we originally aimed for. Instead we wish
to converge towards global minima of 𝑓 . To derive such a result from the descent inequality,
equation (2.4), the term ∥∇ 𝑓 (𝑥𝑛)∥2 has to be controlled. In the following subsections we will
get to know two sufficient conditions to ensure convergence towards global minima of 𝑓 .

2.1.1 Convergence of GD under strong convexity
The classical assumption to ensure that GD converges to a global minimum at a linear rate is the
strong convexity assumption:

Definition 2.4. A differentiable function 𝑓 : ℝ𝑑 → ℝ is strongly convex if there exists 𝜇 > 0
such that for every 𝑥, 𝑦 ∈ ℝ𝑑 it holds that

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝜇
2
∥𝑦 − 𝑥∥2. (2.5)

Note here, that strong convexity implies a unique global minimum 𝑥∗ ∈ ℝ𝑑 such that 𝑓 ∗ = 𝑓 (𝑥∗).
Minimizing equation (2.5) in 𝑦, we obtain that

𝑓 ∗ ≥ 𝑓 (𝑥) − 1
2𝜇
∥∇ 𝑓 (𝑥)∥2.

Rearranging the terms reveals that strong convexity implies the so called Polyak-Łojasiewicz
(PL) inequality [Pol63]:

∥∇ 𝑓 (𝑥)∥2 ≥ 2𝜇( 𝑓 (𝑥) − 𝑓 ∗). (PL)

Remark 2.5. If a function 𝑓 : ℝ𝑑 → ℝ is 𝐿-smooth and 𝜇-strongly convex, then is has to hold
that 𝐿 ≥ 𝜇. Combining equation (2.2) and equation (2.5) leads to

𝑓 (𝑥) + ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝐿
2
∥𝑦 − 𝑥∥2 ≥ 𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝜇

2
∥𝑦 − 𝑥∥2

which induces that 𝐿 ≥ 𝜇 holds true.
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Applying this property in the descent inequality, equation (2.4), results in the following conver-
gence theorem.

Theorem 2.6. Let 𝑓 : ℝ𝑑 → ℝ fulfill Assumption 2.1 and be 𝜇-strongly-convex. Let (𝑥𝑛)𝑛∈ℕ be
the GD scheme from equation (GD) with step size 0 < 𝛼 < min{ 1

𝐿
, 1
𝜇
} ≡ 1

𝐿
. Then (𝑥𝑛)𝑛∈ℕ (and

( 𝑓 (𝑥𝑛))𝑛∈ℕ, respectively) converges towards the unique global minimum 𝑥∗ ( 𝑓 ∗, respectively), at a
linear rate. More precisely, it holds that

𝜇

2
∥𝑥𝑛+1 − 𝑥∗∥2 ≤ 𝑓 (𝑥𝑛+1) − 𝑓 (𝑥∗) ≤ (1 − 𝛼𝜇)𝑛 [ 𝑓 (𝑥1) − 𝑓 (𝑥∗)].

Proof. First recall that 𝑓 (𝑥∗) = 𝑓 ∗ by the unique global minimum under strong convexity. The first
inequality follows directly from the fact that ∇ 𝑓 (𝑥∗) = 0 and the definition of 𝜇-strong-convexity
in equation (2.5). We obtain

𝜇

2
∥𝑥𝑛+1 − 𝑥∗∥2 = ⟨∇ 𝑓 (𝑥∗), 𝑥𝑛+1 − 𝑥∗⟩ +

𝜇

2
∥𝑥𝑛+1 − 𝑥∗∥2 ≤ 𝑓 (𝑥𝑛+1) − 𝑓 (𝑥∗). (2.6)

Next, we apply equation (PL) to the descent inequality, equation (2.4), which results in

[ 𝑓 (𝑥𝑛+1) − 𝑓 ∗] ≤ [ 𝑓 (𝑥𝑛) − 𝑓 ∗] − 𝛼𝜇 [ 𝑓 (𝑥𝑛) − 𝑓 ∗]
= (1 − 𝛼𝜇) [ 𝑓 (𝑥𝑛) − 𝑓 ∗].

We can iterate this inequality to deduce that

[ 𝑓 (𝑥𝑛+1) − 𝑓 ∗] ≤ (1 − 𝛼𝜇)𝑛 [ 𝑓 (𝑥1) − 𝑓 ∗].

As (1 − 𝛼𝜇) ∈ (0, 1) we conclude that 𝑓 (𝑥𝑛) → 𝑓 ∗ for 𝑛→∞ at a linear rate. ■

The proof demonstrates that strong convexity is only required to ensure the convergence of 𝑥𝑛
to 𝑥∗. In contrast, the convergence of 𝑓 (𝑥𝑛) is derived solely from the PL-inequality, which was
itself a consequence of strong convexity (see also [KNS16, Thm. 1]).
It is noteworthy that convexity, and particularly strong convexity, is often not satisfied in practical
applications. However, weaker gradient domination properties like the PL inequality are more
readily met and can be established in certain ML and RL contexts which will be evidenced
repeatedly throughout this thesis. Thus, in the subsequent section, we analyze the fundamental
convergence properties of gradient descent under the weaker assumption of gradient domination
and establish the convergence of 𝑓 (𝑥𝑛) towards global optima.

2.1.2 Convergence of GD under Gradient Domination
In order to derive a convergence rate without assuming (strong) convexity of 𝑓 one can use
dominating relations of the gradient ∇ 𝑓 (𝑥) with respect to the optimality gap 𝑓 (𝑥) − 𝑓 ∗.

Definition 2.7. Let 𝑓 : ℝ𝑑 → ℝ be continuously differentiable with 𝑓 ∗ = inf𝑥∈ℝ𝑑 𝑓 (𝑥) > −∞.
We say that 𝑓 satisfies the global gradient domination property with parameter 𝛽 ∈ [ 12 , 1] if
there exists 𝑐 > 0 such that for all 𝑥 ∈ ℝ𝑑 it holds true that

∥∇ 𝑓 (𝑥)∥ ≥ 𝑐( 𝑓 (𝑥) − 𝑓 ∗)𝛽 .
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When the exponent 𝛽 = 1/2 we recover the PL-inequality from equation (PL). If 𝛽 = 1
2 , we will

call the gradient domination strong since it is implied by strong convexity. In contrast, we call
the gradient domination weak for 𝛽 ∈ ( 12 , 1].
Remark 2.8. Note here, that gradient domination for some 𝛽 ∈ [ 12 , 1] implies gradient domination
for any weaker 𝛽′ ∈ [𝛽, 1].
In [Fat+22; Att+10; BST14; ZWL18] examples of functions are discussed that fulfill the (weak)
gradient domination property. For instance, one-dimensional monomials 𝑓 (𝑥) = |𝑥 |𝑝, 𝑝 ≥ 2,
satisfy the weak global gradient domination property with 𝛽 =

𝑝−1
𝑝
. We refer to [Fat+22, App.

A] for a longer list of globally gradient dominated functions including convex and non-convex
functions.
For 𝛽 = 1

2 we already obtained linear convergence in Theorem 2.6. In the following result, we
obtain sub-linear convergence under the weakest form of gradient domination with 𝛽 = 1. Note,
that the same upper bound on the convergence rate holds also for any 𝛽 ∈ [ 12 , 1] by Remark 2.8.
The convergence relies on the following auxiliary lemma, which demonstrates the convergence
of a deterministic sequence under the condition that a specific descent inequality is satisfied.

Lemma 2.9. [KWD24, Lem. B.7] Let (𝑑𝑛)𝑛∈ℕ be a positive sequence, such that 𝑑𝑛+1 ≤ 𝑑𝑛 − 𝑞𝑑2𝑛 for
some 𝑞 > 0, then 𝑑𝑛 ≤ 1

(𝑛−1)𝑞 . If in addition 𝑑1 < 1
𝑞
, then 𝑑𝑛 ≤ 1

𝑞𝑛
.

Proof. We use an argument similar to Nesterov [Nes13, Thm. 2.1.14]. It holds

1
𝑑𝑛+1

≥ 1
𝑑𝑛
+ 𝑞𝑑𝑛

𝑑𝑛+1
≥ 1
𝑑𝑛
+ 𝑞,

where the first inequality is due to dividing by 𝑑𝑛𝑑𝑛+1 and the second inequality follows by
monotonicity. Using a telescope-sum argument we obtain

1
𝑑𝑛

=
1
𝑑1
+
𝑛−1∑︁
𝑘=1

1
𝑑𝑘+1
− 1
𝑑𝑘
≥ 1
𝑑1
+ (𝑛 − 1)𝑞.

Finally,

𝑑𝑛 ≤
1

(𝑛 − 1)𝑞 + 1
𝑑0

≤ 1
(𝑛 − 1)𝑞 .

and if 𝑑1 < 1
𝑞
, then

𝑑𝑛 ≤
1

(𝑛 − 1)𝑞 + 1
𝑑1

≤ 1
𝑞𝑛
.

■

Theorem 2.10. Let 𝑓 : ℝ𝑑 → ℝ fulfill Assumption 2.1 and the weak gradient domination property
with 𝑐 > 0 and 𝛽 = 1. Let (𝑥𝑛)𝑛∈ℕ be the GD scheme from equation (GD) with step size 0 < 𝛼 ≤ 1

𝐿
.

Then ( 𝑓 (𝑥𝑛))𝑛∈ℕ converges towards the global minimum 𝑓 ∗ at a sub-linear rate, i.e.

𝑓 (𝑥𝑛) − 𝑓 (𝑥∗) ≤ 2
𝑛𝛼𝑐

.
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Proof. Applying the general gradient domination property for 𝛽 = 1 in the recursive descent
property, equation (2.4) reads as

[ 𝑓 (𝑥𝑛+1) − 𝑓 ∗] ≤ [ 𝑓 (𝑥𝑛) − 𝑓 ∗] − 𝛼𝑐
2
[ 𝑓 (𝑥𝑛) − 𝑓 ∗]2.

We can apply Lemma 2.9 with 𝑑𝑛 = 𝑓 (𝑥𝑛) − 𝑓 ∗ and define 𝑞 = 𝛼𝑐
2 , to deduce that

𝑓 (𝑥𝑛+1) − 𝑓 ∗ ≤ 2
𝑛𝛼𝑐

.

■

We formulate the following stronger version of the theorem where it is sufficient that the
gradient domination is fulfilled only along the gradient trajectory. We apply this result in the RL
applications in Chapter 4.

Theorem 2.11. Let 𝑓 : ℝ𝑑 → ℝ fulfill Assumption 2.1 and denote by (𝑥𝑛)𝑛∈ℕ is the GD scheme
with step size 0 < 𝛼 ≤ 1

𝐿
. For 𝑥1 ∈ ℝ𝑑 assume that 𝑓 (𝑥1) − 𝑓 ∗ ≤ 2

𝛼𝑏
and additionally the gradient

domination property ∥∇ 𝑓 (𝑥𝑛)∥2 ≥ 𝑏( 𝑓 ∗ − 𝑓 (𝑥𝑛))2 holds for every 𝑛 ∈ ℕ. Then, for any 𝑛 ∈ ℕ,

𝑓 (𝑥𝑛) − 𝑓 ∗ ≤ 2
𝛼𝑏𝑛

.

Proof. We deduce from 𝐿-smoothness and the descent inequality in equation (2.4) that

[ 𝑓 (𝑥𝑛+1) − 𝑓 ∗] ≤ [ 𝑓 (𝑥𝑛) − 𝑓 ∗] − 𝛼
2
∥∇ 𝑓 (𝑥𝑛)∥2.

Together with the gradient domination assumption we obtain

[ 𝑓 (𝑥𝑛+1) − 𝑓 ∗] ≤ [ 𝑓 (𝑥𝑛) − 𝑓 ∗] − 𝛼𝑏[ 𝑓 (𝑥𝑛) − 𝑓 ∗]2.

Applying Lemma 2.9 with the initial condition 𝑓 (𝑥1) − 𝑓 ∗ ≤ 2
𝛼𝑏

results in the claim. ■

2.2 Stochastic Gradient Descent

In this section, we will drop the assumption of access to the exact gradient ∇ 𝑓 . Instead we
consider access to a stochastic fist order oracle which provides us with unbiased samples of the
gradient in any point.1

2.2.1 Assumptions on the Stochastic First Order Oracle
Let (Ω,F,ℙ) be an underlying probability space. We assume that we can estimate the exact
gradient ∇ 𝑓 (𝑥) at any 𝑥 ∈ ℝ𝑑 through a stochastic first order oracle 𝑉 : ℝ𝑑 × 𝑀 → ℝ𝑑 defined
by

𝑉 (𝑥, 𝑚) = ∇ 𝑓 (𝑥) + 𝑍(𝑥, 𝑚), 𝑥 ∈ ℝ𝑑 , 𝑚 ∈ 𝑀 , (2.7)

where (𝑀,M) is a measurable space, 𝑍 : ℝ𝑑 ×𝑀 → ℝ𝑑 is a state dependent B(ℝ𝑑) ⊗M/B(ℝ𝑑)-
measurable mapping describing the error to the exact gradient ∇ 𝑓 . The stochastic gradient
evaluation is then modelled through 𝑉 (𝑥, 𝜁), where the random variable 𝜁 : Ω→ 𝑀 is indepen-
dent of the state 𝑥. We make the following unbiasedness and second moment assumption:

1Section 2.2 is an extended version of [Wei+24, Sec. 2].



12 Chapter 2. Preliminaries: First Order Optimization

Assumption 2.12. We assume that for each 𝑥 ∈ ℝ𝑑 it holds that

𝔼[𝑍(𝑥, 𝜁)] :=
∫
Ω
𝑍(𝑥, 𝜁(𝜔))dℙ(𝜔) = 0

and there exist non-negative constants 𝐴, 𝐵 and 𝐶 such that for all 𝑥 ∈ ℝ𝑑 it holds that

𝔼[∥𝑉 (𝑥, 𝜁)∥2] ≤ 𝐴( 𝑓 (𝑥) − 𝑓 ∗) + 𝐵∥∇ 𝑓 (𝑥)∥2 + 𝐶 . (ABC)

It is worth noting that the (ABC) assumption is a generalization of the bounded variance
assumption that appears for 𝐴 = 𝐵 = 0. It was introduced by Khaled and Richtárik [KR23] as
expected smoothness condition and shown to be the weakest assumption among many others.
We describe the stochastic gradient descent scheme as discrete time stochastic processes (𝑋𝑛)
driven by noisy gradient evaluations in equation (2.7). In each iteration, we assume that the
stochastic first order oracle is accessed through the evaluation of 𝜁𝑛+1 which is a copy of 𝜁
independent from the current state 𝑋𝑛.
The stochastic gradient descent (SGD) scheme is given by the stochastic update

𝑋𝑛+1 = 𝑋𝑛 − 𝛼𝑛 𝑉 (𝑋𝑛, 𝜁𝑛+1) ,

where 𝑋0 is a ℝ𝑑-valued random vector which denotes the initial state. To keep the notation
simple, we will introduce 𝑉𝑛+1(𝑋𝑛) := 𝑉 (𝑋𝑛, 𝜁𝑛+1) suppressing the explicit noise representation
through (𝜁𝑛) in the following. The iterative update formula then reads as

𝑋𝑛+1 = 𝑋𝑛 − 𝛼𝑛 𝑉𝑛+1(𝑋𝑛). (SGD)

Here, (𝛼𝑛) denotes a sequence of positive step sizes and we denote by (F𝑛)𝑛∈ℕ the natural
filtration induced by the process (𝑋𝑛)𝑛∈ℕ.
Example 2.13 (Expected risk minimization). In order to give more insights into the considered
setting we formulate a stochastic first order oracle based on expected risk minimization. In
expected risk minimization we are interested in minimizing an objective function of the form

𝑓 (𝑥) = 𝔼[𝐹(𝑥, 𝜁)] =
∫
Ω
𝐹(𝑥, 𝜁(𝜔)) 𝑑ℙ(𝜔)

where 𝐹 : ℝ𝑑 × 𝑀 → ℝ is B(ℝ𝑑) ⊗M/B(ℝ)-measurable. In our notation the stochastic first
order oracle then takes the form

𝑉 (𝑥, 𝜁) = ∇ 𝑓 (𝑥) + (∇𝑥𝐹(𝑥, 𝜁) − ∇ 𝑓 (𝑥)) = ∇𝑥𝐹(𝑥, 𝜁)

and the iterative update of SGD reads as

𝑋𝑛+1 = 𝑋𝑛 − 𝛼𝑛∇𝑥𝐹(𝑋𝑛, 𝜁𝑛+1)

with a sequence of independent and identically distributed (𝜁𝑛). Note that this scenario also
includes empirical risk minimization where the objective function takes a finite sum form

𝑓 (𝑥) = 1
𝑁

𝑁∑︁
𝑖=1

𝐹(𝑥, 𝑖) = 𝔼[𝐹(𝑥, 𝜁)] ,

with 𝜁 ∼ U({1, . . . , 𝑁}).
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2.2.2 Types of Convergence
As in the deterministic scheme we are again interested in the convergence behaviour of the
stochastic processes (𝑋𝑛)𝑛∈ℕ or ( 𝑓 (𝑋𝑛))𝑛∈ℕ. Thereby we distinguish between the following two
types of convergence:

• We say the stochastic process (𝑋𝑛)𝑛∈ℕ with values in ℝ𝑑 convergences in expectation (or
in 𝐿2) towards a point 𝑥 ∈ ℝ𝑑, if 𝔼[∥𝑋𝑛 − 𝑥∥2] → 0 for 𝑛 → ∞. Respectively, we say
( 𝑓 (𝑋𝑛))𝑛∈ℕ convergence in expectation (or in 𝐿1) against a level 𝑙 ∈ ℝ if 𝔼[| 𝑓 (𝑋𝑛) − 𝑙 |] → 0
for 𝑛→∞.

• We say the stochastic process (𝑋𝑛)𝑛∈ℕ with values inℝ𝑑 convergences almost surely towards
a point 𝑥 ∈ ℝ𝑑 , if there exists 𝐴 ∈ F with ℙ(𝐴) = 1 and 𝑋𝑛(𝜔) → 𝑥 for 𝑛→∞ and every
𝜔 ∈ 𝐴. Respectively, we say ( 𝑓 (𝑋𝑛))𝑛∈ℕ convergence almost surely against a level 𝑙 ∈ ℝ if
there exists 𝐴 ∈ F with ℙ(𝐴) = 1 and 𝑓 (𝑋𝑛(𝜔)) → 𝑙 for 𝑛→∞ and every 𝜔 ∈ 𝐴.

It is worth noting that are also other types of convergences, e.g. 𝐿𝑝-convergence for 𝑝 ∈ (0,∞]
or convergence with high probability, which will not be discussed in the scope of this work.
In the first part of this thesis we will mainly focus on convergence in expectation. In the final
chapter we move on to almost sure convergence, the strongest convergence type for stochastic
processes.

2.2.3 Typical Steps to Derive Convergence Results
We now outline the standard procedure for convergence analysis of stochastic gradient descent
(SGD) to establish convergence in expectation. The analysis begins by leveraging the smoothness
of the function 𝑓 by applying the descent inequality in equation (2.3) to the iterative scheme,

𝑓 (𝑋𝑛+1) ≤ 𝑓 (𝑋𝑛) − ⟨∇ 𝑓 (𝑋𝑛), 𝑋𝑛+1 − 𝑋𝑛⟩ +
𝐿

2
∥𝑋𝑛+1 − 𝑋𝑛∥2

= 𝑓 (𝑋𝑛) − 𝛼𝑛⟨∇ 𝑓 (𝑋𝑛), 𝑉𝑛+1(𝑋𝑛)⟩ +
𝐿𝛼2𝑛
2
∥𝑉𝑛+1(𝑋𝑛)∥2

and subsequently taking conditional expectations,

𝔼[ 𝑓 (𝑋𝑛+1) | F𝑛] ≤ 𝑓 (𝑋𝑛) − 𝛼𝑛∥∇ 𝑓 (𝑋𝑛)∥2 +
𝐿𝛼2𝑛
2

𝔼[∥𝑉𝑛+1(𝑋𝑛)∥2 | F𝑛].

Next, 𝑓 ∗ is subtracted on both sides and the gradient domination variance term of the stochastic
gradient is controlled through the (ABC) assumption,

𝔼[ 𝑓 (𝑋𝑛+1) − 𝑓 ∗ | F𝑛] ≤
(
1 + 𝐿𝐴𝛼

2
𝑛

2

)
( 𝑓 (𝑋𝑛) − 𝑓 ∗) −

(
𝛼𝑛 −

𝐵𝐿𝛼2𝑛
2

)
∥∇ 𝑓 (𝑋𝑛)∥2 +

𝐿𝐶𝛼2𝑛
2

. (2.8)

Without further assumptions this inequality can now be used to show that the gradient ∇ 𝑓 (𝑋𝑛)
converges to zero almost surely and in expectation. In order to obtain convergence towards
a global optimum additional assumptions, like convexity or gradient domination, are needed
(similar to the deterministic case). For instance, incorporating the global gradient domination
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property defined in Definition 2.7 yields an iterative inequality of the form

𝔼[ 𝑓 (𝑋𝑛+1) − 𝑓 ∗ | F𝑛]

≤
(
1 + 𝐿𝐴𝛼

2
𝑛

2

)
( 𝑓 (𝑋𝑛) − 𝑓 ∗) −

(
𝛼𝑛 −

𝐵𝐿𝛼2𝑛
2

)
𝑐2( 𝑓 (𝑋𝑛) − 𝑓 ∗)2𝛽 + 𝐿𝐶𝛼

2
𝑛

2
.

(2.9)

Now, taking the expectation on both sides of the inequality one can derive a sub-linear conver-
gence rate in expectation by working with recursive inequalities [Fat+22; FBD21]. In Chapter 6
we push the argument further. We combine smoothness and gradient domination with a variant
of the Robbins-Siegmund Theorem to derive almost sure convergence rates in the (weak) gradient
dominated case.
We will refrain from delving further into the details at this point and instead direct the reader to
Chapter 6 for an in-depth review of the relevant literature on the convergence properties of SGD.

2.3 Variants of Robbins-Siegmund Theorem

In the following section, we provide two specific convergence theorems used to prove almost
sure convergence (Lemma 2.15) as well as convergence in expectation (Lemma 2.16). The
former one is a direct consequence of the well-known Robbins-Siegmund theorem, provided
here for completeness2.

Theorem 2.14 (Theorem 1 in [RS71]). Let (Ω,F, (F𝑛)𝑛∈ℕ,ℙ) be a filtered probability space,
(𝑍𝑛)𝑛∈ℕ, (𝐴𝑛)𝑛∈ℕ, (𝐵𝑛)𝑛∈ℕ and (𝐶𝑛)𝑛∈ℕ be non-negative and adapted stochastic processes with

∞∑︁
𝑛=1

𝐴𝑛 < ∞ and
∞∑︁
𝑛=1

𝐵𝑛 < ∞

almost surely. Suppose that for each 𝑛 ∈ ℕ the recursion

𝔼[𝑍𝑛+1 | F𝑛] ≤ (1 + 𝐴𝑛)𝑍𝑛 + 𝐵𝑛 − 𝐶𝑛

is satisfied, then (i) there exists an almost surely finite random variable 𝑍∞ such that 𝑍𝑛 → 𝑍∞
almost surely as 𝑛→∞ and (ii) ∑∞

𝑛=1 𝐶𝑛 < ∞ almost surely.

Lemma 2.15. Let (Ω,F, (F𝑛)𝑛∈ℕ,ℙ) be a filtered probability space, (𝑌𝑛)𝑛∈ℕ, (𝑎𝑛)𝑛∈ℕ, (𝑏𝑛)𝑛∈ℕ and
(𝑟𝑛)𝑛∈ℕ be non-negative and adapted stochastic processes with

∞∑︁
𝑛=1

𝑎𝑛 = ∞,
∞∑︁
𝑛=1

𝑏𝑛 < ∞ and 𝑟𝑛 > 0

almost surely. Suppose that for each 𝑛 ∈ ℕ the recursion

𝔼[𝑟𝑛+1𝑌𝑛+1 | F𝑛] ≤ (1 − 𝑎𝑛)𝑟𝑛𝑌𝑛 + 𝑏𝑛

is satisfied, then we have 𝑟𝑛𝑌𝑛 → 0 almost surely as 𝑛→∞.
2The results presented in this subsection are needed in Chapter 6 for the almost sure convergence analysis of

SGD under gradient domination and this section is part of the preprint Weissmann et al. [Wei+24, Appendix A.4.]
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Proof. We define 𝑍𝑛 := 𝑟𝑛𝑌𝑛, 𝐵𝑛 := 𝑏𝑛 and 𝐶𝑛 := 𝑎𝑛𝑟𝑛𝑌𝑛 such that

𝔼[𝑍𝑛+1 | F𝑛] ≤ 𝑍𝑛 − 𝐶𝑛 + 𝐵𝑛

for 𝑛 ∈ ℕ. Using Theorem 2.14 we observe that there exists 𝑍∞ almost surely finite such that
𝑍𝑛 = 𝑟𝑛𝑌𝑛 → 𝑍∞ almost surely as 𝑛 → ∞. Recall that all sequences are positive and suppose
that 𝑍∞ > 0 with positive probability. Then, for all 𝜔 ∈ Ω with 𝑍∞ > 0 choose 𝑚 ∈ ℕ such that
𝑍𝑛(𝜔) > 𝜖 for all 𝑛 ≥ 𝑚 such that

∞∑︁
𝑛=1

𝑎𝑛𝑟𝑛𝑌𝑛(𝜔) ≥
∞∑︁
𝑛=𝑚

𝑎𝑛𝑟𝑛𝑌𝑛(𝜔) ≥ 𝜖
∞∑︁
𝑛=𝑚

𝑎𝑛 = ∞.

This contradicts that
∞∑︁
𝑛=1

𝐶𝑛 =

∞∑︁
𝑛=1

𝑎𝑛𝑟𝑛𝑌𝑛 < ∞

almost surely by Theorem 2.14 (ii). We conclude that

lim
𝑛→∞

𝑟𝑛𝑌𝑛 = 0

almost surely has to hold. ■

The following Lemma will be applied to prove convergence in expectation.

Lemma 2.16. Let (𝑤𝑛)𝑛∈ℕ be a non-negative sequence, such that 𝑤𝑛+1 ≤ (1 − 𝑎𝑛)𝑤𝑛 + 𝑏𝑛, where
(𝑎𝑛)𝑛∈ℕ and (𝑏𝑛)𝑛∈ℕ are non-negative sequences satisfying

∞∑︁
𝑛=1

𝑎𝑛 = ∞ and
∞∑︁
𝑛=1

𝑏𝑛 < ∞.

Then, lim𝑛→∞𝑤𝑛 = 0.

Proof. W.l.o.g we assume that 𝑤𝑛+1 = (1 − 𝑎𝑛)𝑤𝑛 + 𝑏𝑛, otherwise we could just increase 𝑎𝑛 or
decrease 𝑏𝑛 which would have no effect on the summation tests. We obtain

−𝑤1 ≤ 𝑤𝑛 − 𝑤1 =

𝑛−1∑︁
𝑘=1
(𝑤𝑘+1 − 𝑤𝑘) =

𝑛−1∑︁
𝑘=1

𝑏𝑘 −
𝑛−1∑︁
𝑘=1

𝑤𝑘𝑎𝑘.

Since 𝑤𝑛 −𝑤1 is bounded below and
∑∞
𝑘=1 𝑏𝑘 < ∞, we deduce that

∑𝑛
𝑘=1𝑤𝑘𝑎𝑘 is bounded. Since

all summands are positive, the infinite sum converges. Thus, as a difference of two converging
series also (𝑤𝑛)𝑛∈ℕ converges. Finally, the convergence of

∑∞
𝑘=1𝑤𝑘𝑎𝑘 implies lim inf𝑛→∞𝑤𝑛 = 0

which, by the convergence of (𝑤𝑛)𝑛∈ℕ, implies lim𝑛𝑤𝑛 = lim inf𝑛𝑤𝑛 = 0. ■





Preliminaries: Markov Decision Processes and Policy
Gradient

3In this chapter, we formally introduce Markov decision processes (MDPs) as a framework for
modeling reinforcement learning (RL) problems and provide the necessary preliminaries on

the policy gradient (PG) algorithm. We begin by focusing on discounted infinite-time horizon
MDPs and subsequently address the distinct challenges and differences encountered in finite-time
horizon problems. The definitions and results discussed here are well-established in standard
MDP literature and can be found, for example, in [Put05; SB18].

3.1 Discounted infinite-time horizon MDPs

We denote by Δ(E) the probability simplex over a finite set E and for a function 𝑓 : E→ ℝ or a
point 𝑥 ∈ ℝ𝑑 , we denote its supremum norm by ∥ 𝑓 ∥∞ = max𝑥∈E | 𝑓 (𝑥) | or ∥𝑥∥∞ = max𝑖=1,...,𝑑 |𝑥𝑖 |,
respectively. Just ∥·∥ always denotes the euclidean norm in ℝ𝑑 for 𝑑 ≥ 1.

Definition 3.1 (Discounted Markov decision process). The quintet (S,𝒜, 𝛾, 𝑝, 𝑟) given by

• the finite state space S,

• the finite action space 𝒜,

• the discount factor 𝛾 ∈ [0, 1),

• the transition function 𝑝 : S × 𝒜→ Δ(𝒜) and

• the reward function 𝑟 : S × 𝒜→ ℝ

is called (discounted) Markov decision process (MDP). We write 𝑝(𝑠′ |𝑠, 𝑎) for the transition
probability of state 𝑠′ ∈ S given that we a currently in state 𝑠 ∈ S and played action 𝑎 ∈ 𝒜 and
denote by 𝑟(𝑠, 𝑎) the reward of playing action 𝑎 ∈ 𝒜 in state 𝑠 ∈ S.

A MDP is a mathematical framework to model the sequential decision making of an agent in an
(unknown) environment. This is to say, the transition probabilities 𝑝 are in general unknown
to the agent. We model the agent through a so called policy, a function which determines the
probability distribution over the action space.

Definition 3.2 (Policy). Let (S,𝒜, 𝛾, 𝑝, 𝑟) be a MDP.

(i) A policy 𝜋 : S → Δ(𝒜) is a mapping from a state 𝑠 ∈ S to a distribution over the action
space, i.e 𝜋(·|𝑠) ∈ Δ(𝒜). The set of all policies is denoted by Π.

(ii) A policy 𝜋 ∈ Π is deterministic if for every 𝑠 ∈ S there exists 𝑎 ∈ 𝒜 such that 𝜋(𝑎|𝑠) = 1.
Otherwise we call a policy stochastic.

(iii) A sequence of policies is denoted by ℼ = (𝜋𝑡)∞𝑡=0 in Π∞ and we call ℼ a policy of an MDP.

17
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(iv) A sequence of policies ℼ ∈ Π∞ is stationary if 𝜋𝑡 = 𝜋 for all 𝑡 ≥ 0 and we write just 𝜋
instead of ℼ.

For the remainder of this section we assume an underlying discounted MDP (S,𝒜, 𝛾, 𝑝, 𝑟) with
infinite-time horizon and 𝛾 ∈ [0, 1) and let ℼ = (𝜋𝑡)∞𝑡=0 ∈ Π∞ be a policy of the MDP.
The general goal in infinite-time horizon RL is to find a policy which maximizes the discounted
sum of expected rewards. The quantity of interest in this optimization problem is called value
function and defined in the following.

Definition 3.3 (Discounted value, state-action value and advantage function).

(i) We define the value function 𝑉ℼ : S→ ℝ under policy ℼ in state 𝑠 ∈ S by

𝑉ℼ(𝑠) = 𝔼ℼ
𝑠

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]
, (3.1)

where 𝔼ℼ
𝑠 denotes the expectation regarding the probability measure ℙℼ

𝑠 induced by 𝑆0 = 𝑠,
𝐴𝑡 ∼ 𝜋𝑡 (·|𝑆𝑡) and 𝑆𝑡+1 ∼ 𝑝(·|𝑆𝑡, 𝐴𝑡) for all 𝑡 ≥ 0.

(ii) For an initial state distribution 𝜇 over the state space S we define 𝑉ℼ(𝜇) := 𝔼𝑆∼𝜇 [𝑉ℼ(𝑆)].
We replace 𝑠 with 𝜇 in the underlying probability measure and write ℙℼ

𝜇 instead of ℙℼ
𝑠 .

(iii) The state-action value function (or Q-function) 𝑄ℼ : S × 𝒜 → ℝ under policy ℼ in a
state-action pair (𝑠, 𝑎) ∈ S × 𝒜 is defined by

𝑄ℼ(𝑠, 𝑎) = 𝔼ℼ
𝑠,𝑎

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]
, (3.2)

where 𝔼ℼ
𝑠,𝑎 denotes the expectation regarding the probability measure ℙℼ

𝑠,𝑎 induced by
𝑆0 = 𝑠, 𝐴0 = 𝑎, 𝐴𝑡 ∼ 𝜋𝑡 (·|𝑆𝑡) and 𝑆𝑡 ∼ 𝑝(·|𝑆𝑡−1, 𝐴𝑡−1) for all 𝑡 ≥ 1.

(iv) We define the advantage function 𝐴ℼ : S × 𝒜→ ℝ under policy ℼ in a state-action pair
(𝑠, 𝑎) ∈ S × 𝒜 by

𝐴ℼ(𝑠, 𝑎) = 𝑄ℼ(𝑠, 𝑎) − 𝑉ℼ(𝑠).

Remark 3.4. Note that every discounted MDP with 𝛾 = 0 indirectly implies a time horizon of
length 1 as all factors 𝛾𝑡 in the value function are equal 0 besides when 𝑡 = 0. We refer to this
special case as contextual bandit problem, where the state 𝑠 represents the context and the goal
is to take an optimal action (arm) for every possible context.
In addition, we obtain from the definition of the value function the necessity of the discount
factor 𝛾 ∈ [0, 1). The finite state and action space ensures that the absolute values of the
reward function are bounded by some 𝑅max ∈ ℝ+ due to finitely many values. Thus, the value,
state-action value and advantage function are well defined due to the discount factor 𝛾 < 1 and
we have that

𝑉ℼ(𝑠) = 𝔼ℼ
𝑠

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]
≤ 𝑅max

∞∑︁
𝑡=0

𝛾𝑡 =
𝑅max

1 − 𝛾 .
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Definition 3.5 (Optimal value and state-action value function and optimal policy).

(i) The optimal value function is defined by 𝑉∗(𝑠) = supℼ∈Π∞ 𝑉ℼ(𝑠) for all 𝑠 ∈ S.

(ii) The optimal state action value function is defined by 𝑄∗(𝑠, 𝑎) = supℼ∈Π∞ 𝑄ℼ(𝑠, 𝑎) for all
𝑠 ∈ S, 𝑎 ∈ 𝒜.

(iii) Policies ℼ ∈ Π∞ which satisfy 𝑉ℼ(𝑠) = 𝑉∗(𝑠) are called optimal policies and denoted by ℼ∗.

It is a well-established result that stationary policies are sufficient for solving discounted MDPs.

Proposition 3.6. [Put05, Thm. 6.2.7] Suppose a discounted MDP (S,𝒜, 𝛾, 𝑝, 𝑟). Then it holds
that

𝑉∗(𝜇) = sup
ℼ∈Π∞

𝑉ℼ(𝜇) = sup
𝜋∈Π

𝑉𝜋(𝜇).

As a consequence of this result, the problem of solving discounted MDPs is typically reduced to
identifying an optimal stationary policy 𝜋∗ ∈ Π. Accordingly, we use the superscript 𝜋 in 𝑉𝜋, 𝑄𝜋

or 𝐴𝜋 to denote the (state-action) value function under a stationary policy.

Remark 3.7. Note that optimal policies do not need to be unique. Moreover, it can be shown
that, due to the finite state and action space, at least one deterministic optimal policy exists
[Put05, Thm. 6.2.10].

Next, we define the state visitation measure induced by a policy 𝜋, which quantifies the frequency
or likelihood of visiting different states under a particular policy.

Definition 3.8 (State visitation measure and distribution).

(i) For an initial state distribution 𝜇 the state visitation measure under policy 𝜋 ∈ Π is defined
by

𝜌𝜋𝜇 (𝑠) =
∞∑︁
𝑡=0

𝛾𝑡ℙ𝜋
𝜇 (𝑆𝑡 = 𝑠).

(ii) The corresponding state visitation distribution is the defined by the induced probability
measure

𝑑𝜋𝜇 (𝑠) = (1 − 𝛾)𝜌𝜋𝜇 (𝑠).

The performance difference lemma is a useful identity to compare policies. It turns out to be
very useful to prove convergence of policy gradient methods [Aga+21].

Lemma 3.9. [KL02, Lem. 6.1 ] For any two policies 𝜋, 𝜋′ ∈ Π and any initial state distribution 𝜇 it
holds that

𝑉𝜋
′ (𝜇) − 𝑉𝜋(𝜇) = 1

1 − 𝛾𝔼𝑆∼𝑑𝜋
′

𝜇 ,𝐴∼𝜋′ ( · |𝑠) [𝐴
𝜋(𝑆, 𝐴)]
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3.1.1 Dynamic programming principle
Finding the optimal solution to an MDP under prefect information, i.e. when the transition
functions are known, can be done using the dynamic programming (DP) principle.
Therefore we derive the following fix point relations for the value and state-action value function.

Proposition 3.10. For any policy 𝜋 ∈ Π and 𝑠 ∈ S it holds that

𝑉𝜋(𝑠) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
(
𝑟(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉𝜋(𝑠′)
)
.

And similar for the state action value function, for any policy 𝜋 ∈ Π and 𝑠 ∈ S, 𝑎 ∈ 𝒜 it holds that

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾
∑︁

𝑠′∈S,𝑎′∈𝒜
𝑝(𝑠′ |𝑠, 𝑎)𝜋(𝑎′ |𝑠′)𝑄𝜋(𝑠′, 𝑎′).

Proof. First of all, note that by definition

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋𝑠,𝑎 [
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)] = 𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝔼𝜋𝑠′ [
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)].

Moreover, we have

𝑉𝜋(𝑠) = 𝔼𝜋𝑠 [
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)]

= 𝔼𝜋𝑠 [𝑟(𝑆0, 𝐴0) + 𝛾
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡+1, 𝐴𝑡+1)]

=
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
(
𝑟(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝔼𝜋𝑠′,𝑎′ [
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)]

=
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)

=
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
(
𝑟(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉𝜋(𝑠′)
)
.

On the other hand we obtain for 𝑄 that

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝔼𝜋𝑠′ [
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)]

= 𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉𝜋(𝑠′)

= 𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)
∑︁
𝑎′∈𝒜

𝜋(𝑎′ |𝑠′)𝑄𝜋(𝑠′, 𝑎′).

■

We define the Bellman operator and the Bellman optimality operator for the state value function
based on these equations:
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Definition 3.11. For any function 𝑉 : S→ ℝ we define

(i) the Bellman operator 𝑇𝜋 : ℝ |S | → ℝ |S | by

𝑇𝜋(𝑉) (𝑠) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
(
𝑟(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉 (𝑠′)
)
, ∀𝑠 ∈ S. (3.3)

(ii) the Bellman optimality operator 𝑇∗ : ℝ |S | → ℝ |S | by

𝑇∗(𝑉) (𝑠) = max
𝑎∈𝒜

{
𝑟(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉 (𝑠′)
}
, ∀𝑠 ∈ S. (3.4)

Remark 3.12. To define the Bellman operators we interpreted the functions 𝑉 : S→ ℝ as vectors
in ℝ |S | . We will interchangeably employ both interpretations throughout the thesis, depending
on convenience and context.
Both operators are 𝛾-contractions [Put05, Thm 6.2.4], and that 𝑉𝜋 and 𝑉∗ are unique fixed
points of 𝑇𝜋 and 𝑇∗ respectively [Put05, Thm 6.2.5]. We deduce that a policy 𝜋∗ is optimal if
and only if 𝑉𝜋∗ = 𝑇∗𝑉𝜋∗ [Put05, Thm. 6.2.6].
As 𝑉∗ is the unique fixed point of 𝑇∗, the Banach fixed-point Theorem (see Banach [Ban22, Thm.
6]) states that we can approximate 𝑉∗ by iteratively applying the operator 𝑇∗. Thus, for any
function 𝑉 : |S| → ℝ it holds that [Put05, Thm. 6.2.3]

lim
𝑛→∞
(𝑇∗)𝑛(𝑉) = 𝑉∗.

For completeness, we should mention that analogously Bellman operators for the Q-function
can be defined. As we will not need them throughout the thesis, they will not be introduced.
Remark 3.13. As 𝑉∗ is a unique fixed point of 𝑇∗ we deduce the relation

𝑉∗(𝑠) = max
𝑎∈𝒜

{
𝑟(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉∗(𝑠′)
}
, ∀𝑠 ∈ S.

Further, we already know that deterministic optimal policies exists, such that for all 𝑠 ∈ S,

𝑉∗(𝑠) = sup
𝜋
𝑉𝜋(𝑠)

= sup
(𝜋𝑡 )𝑡≥1

sup
𝜋0

𝑉 (𝜋𝑡 )𝑡≥0 (𝑠)

= sup
(𝜋𝑡 )𝑡≥1

sup
𝜋0

∑︁
𝑎∈𝒜

𝜋0(𝑎|𝑠)𝑄 (𝜋𝑡 )𝑡≥1 (𝑠, 𝑎)

= sup
(𝜋𝑡 )𝑡≥1

max
𝑎∈𝒜

𝑄 (𝜋𝑡 )𝑡≥1 (𝑠, 𝑎)

= max
𝑎∈𝒜

sup
(𝜋𝑡 )𝑡≥1

𝑄 (𝜋𝑡 )𝑡≥1 (𝑠, 𝑎)

= max
𝑎∈𝒜

𝑄∗(𝑠, 𝑎).

From 𝑉∗(𝑠) = max𝑎∈𝒜 𝑄∗(𝑠, 𝑎) we can deduce an optimal deterministic policy from the optimal
Q-function. For every 𝑠 ∈ S the optimal action is given by 𝑎∗ = argmax𝑎𝑄(𝑠, 𝑎)1 and we set
𝜋∗(𝑎∗ |𝑠) = 1 to identify an optimal stationary deterministic policy.

1When multiple actions are equally optimal, we select an arbitrary one among them.
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Definition 3.14 (Greedy Policy). For 𝑉 : S → ℝ, a greedy policy 𝜋𝑉 chooses the arbitrary
action that maximizes the 𝑄-matrix:

𝑄𝑉 (𝑠, 𝑎) := 𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉 (𝑠′), 𝑠 ∈ S, 𝑎 ∈ 𝒜.

3.1.2 Policy Gradient
In practice, we do not have direct access to the Bellman operator, as the transition dynamics
𝑝 are unknown. Consequently, the MDP is treated as a black-box model: in a given state, an
action is taken, and a reward is observed from the underlying system. A reinforcement learning
algorithm seeks to learn an optimal policy using these state-action-reward samples. Algorithms
trained solely on such data are referred to as model-free as they make no assumptions about
the underlying system. A prominent model-free approach is the policy gradient (PG) algorithm
where the policy is parametrized by 𝜋𝜃, with 𝜃 ∈ ℝ𝑑 . The indirectly parametrized value function
𝑉𝜋

𝜃 is maximized via (stochastic) gradient ascent.
For any differential parametrization (𝜋𝜃)𝜃∈ℝ𝑑 , i.e. the mappings 𝜃 ↦→ 𝜋𝜃(𝑠, 𝑎), 𝜃 ∈ ℝ𝑑 are
differentiable for all (𝑠, 𝑎) ∈ S × 𝒜. We use the following notation for the objective function,

𝐽𝜇 : ℝ𝑑 → ℝ, 𝜃 ↦→ 𝐽𝜇 (𝜃) = 𝑉𝜋
𝜃 (𝜇).

We treat 𝐽𝜇 as the objective 𝑓 from Chapter 2 and aim to maximize the function with gradient
ascent. All results regarding gradient descent also apply to gradient ascent by replacing the
objective 𝑓 with − 𝑓 . The optimum 𝐽∗𝜇 := sup𝜃 𝐽𝜇 (𝜃) is finite due to the finite rewards induced
by the finite state and action space.
Let us for now assume that we can access the exact gradient ∇𝐽𝜇 (𝜃) for all 𝜃 ∈ ℝ𝑑. Then, the
gradient ascent algorithm for this problem is called (deterministic) vanilla policy gradient and
summarized in Algorithm 1.

Algorithm 1: Deterministic Policy Gradient
Result: Approximation 𝜋∗ on the optimal policy 𝜋∗.
Input: Initial state distribution 𝜇 and class of policies (𝜋𝜃)𝜃∈ℝ𝑑 .
Initialize 𝜃0 ∈ ℝ𝑑;
Choose step size 𝛼 > 0 and set 𝑛 = 0;
while Convergence criterion not met do

𝜃𝑛+1 = 𝜃𝑛 + 𝛼∇𝐽𝜇 (𝜃);
𝑛 = 𝑛 + 1;

end
Set 𝜋∗ = 𝜋𝜃𝑛−1;

The original motivation for PG was to develop a data-driven algorithm capable of finding the
optimal policy. Thus, we need a stochastic first order oracle for the gradient and perform
stochastic gradient ascent instead. The policy gradient theorem, first derived in [Sut+99], forms
the foundation for constructing an effective gradient estimator.
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Theorem 3.15 (Policy Gradient Theorem [Sut+99]). Let (𝜋𝜃)𝜃∈ℝ𝑑 be a differential class of
policies. Then, it holds that

∇𝐽𝜇 (𝜃) =
∑︁
𝑠∈S

𝜌𝜋
𝜃

𝜇 (𝑠)
∑︁
𝑎∈𝒜
∇𝜋𝜃(𝑎|𝑠)𝑄𝜋𝜃 (𝑠, 𝑎) (3.5)

= 𝔼𝜋
𝜃

𝜇

[ ∞∑︁
𝑡=0

𝛾𝑡∇ log(𝜋𝜃(𝐴𝑡 |𝑆𝑡)𝑄𝜋𝜃 (𝑆𝑡, 𝐴𝑡)
]
. (3.6)

Proof. The first equality is Theorem 1 in [Sut+99].
The second equality follows from the definition of the state visitation measure in Definition 3.8
and the score function trick, i.e. ∇𝜋𝜃(𝑎|𝑠) = 𝜋𝜃(𝑎|𝑠)∇ log(𝜋𝜃(𝑎|𝑠)). ■

Remark 3.16. It is noteworthy that due to this theorem, we can deduce the differentiability of
the objective function 𝐽𝜇 (𝜃) from the differentiability of underlying policy parametrization.
The following variants of the PG Theorem can be derived:

∇𝐽𝜇 (𝜃) = 𝔼𝜋
𝜃

𝜇

[ ∞∑︁
𝑡=0

𝛾𝑡∇ log(𝜋𝜃(𝐴𝑡 |𝑆𝑡)
∞∑︁
𝑘=0

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)
]

(3.7)

= 𝔼𝜋
𝜃

𝜇

[ ∞∑︁
𝑡=0

𝛾𝑡∇ log(𝜋𝜃(𝐴𝑡 |𝑆𝑡)
∞∑︁
𝑘=𝑡

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)
]

(3.8)

= 𝔼𝜋
𝜃

𝜇

[ ∞∑︁
𝑡=0

𝛾𝑡∇ log(𝜋𝜃(𝐴𝑡 |𝑆𝑡) 𝐴𝜋
𝜃 (𝑆𝑡, 𝐴𝑡)

]
. (3.9)

The typical approach to sample the gradient is to estimate one of the above expectations via a
Monte Carlo estimator. The simplest estimator is the REINFORCE estimator introduced in [Wil92],
where the infinite sum is truncated at a deterministic time: Let 𝑇 ∈ ℕ and (𝑠0, 𝑎0, 𝑠1, . . . , 𝑠𝑇 , 𝐴𝑇 )
be a trajectory of length 𝑇 sampled from the MDP under the measure ℙ𝜋𝜃

𝜇 . Then the REINFORCE
estimator for the gradient, ∇𝐽𝜇 (𝜃), is given by

𝐺REINFORCE
𝑇 =

𝑇∑︁
𝑡=0

𝛾𝑡∇ log(𝜋𝜃(𝑎𝑡 |𝑠𝑡)
𝑇∑︁
𝑘=0

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘), 𝑇 ∈ ℕ. (3.10)

As the infinite sums in equation (3.7) are truncated by 𝑇 ∈ ℕ, this estimator is biased and cannot
fulfill the first order oracle conditions discussed in Section 2.2.1. Due to the bias, convergence
towards the global optimum using this estimator in PG cannot be guaranteed.
The authors in [Zha+20] introduced a simple trick where independent geometric random
variables are used to derive an unbiased estimator of the gradient. The trick is based on the
following observation.
Remark 3.17. A discounted MDP can be seen as an undiscounted MDP stopped at an independent
geometric random variable with mean (1−𝛾)−1. It follows that for 𝑇 ∼ 𝐺𝑒𝑜𝑚(1−𝛾) independent
of the MDP it holds that

𝜌𝜋𝜇 (𝑠) =
∞∑︁
𝑡=0

𝛾𝑡ℙ𝜋
𝜇 (𝑆𝑡 = 𝑠) =

∞∑︁
𝑡=0

𝛾𝑡𝔼𝜋𝜇 [1𝑆𝑡=𝑠] =
∞∑︁
𝑡=0

ℙ(𝑡 ≤ 𝑇)𝔼𝜋𝜇 [1𝑆𝑡=𝑠]
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= 𝔼𝜋𝜇

[ ∞∑︁
𝑡=0

1𝑡≤𝑇1𝑆𝑡=𝑠
]
= 𝔼𝜋𝜇

[ 𝑇∑︁
𝑡=0

1𝑆𝑡=𝑠
]
.

We deduce from the same trick that 𝑉𝜋𝜃 (𝜇) = 𝔼𝜋
𝜃

𝜇

[ ∑𝑇
𝑡=0 𝛾

𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]
.

Therefore, we call 𝔼[𝑇] = 1
1−𝛾 the effective or expected horizon of a discounted MDP.

In order to derive an unbiased estimator for the gradient, the trick can be applied twice in
equation (3.8). Let 𝑇 ∼ 𝐺𝑒𝑜𝑚(1 − 𝛾) and 𝑇 ′ ∼ 𝐺𝑒𝑜𝑚(1 − 𝛾 1

2 ) independent of each other and of
the MDP, then a trajectory of the MDP with length 𝑇 + 𝑇 ′, (𝑠0, 𝑎0, 𝑠1, . . . , 𝑠𝑇+𝑇 ′ , 𝐴𝑇+𝑇 ′), can be
used to define an unbiased estimator [Zha+20, Thm. 3.4. ]

𝐺REINFORCE-UB =
1

1 − 𝛾∇ log(𝜋
𝜃(𝑎𝑇 |𝑠𝑇 )

𝑇+𝑇 ′∑︁
𝑡=𝑇

𝛾 (𝑡−𝑇 )/2𝑟(𝑠𝑡, 𝑎𝑡). (3.11)

This gradient estimator is unbiased and aligns with the framework introduced in Section 2.2.1.
However, the (ABC) condition in Assumption 2.12 does not universally hold for all parametriza-
tions and the variance of the estimator must be controlled on a case-by-case basis. See for
example [Zha+20, Ass. 3.1 (ii)] for sufficient conditions on the parametrization class which
ensure almost surely bounded (estimated) gradients [Zha+20, Thm. 3.4]. To summarize we
state the stochastic policy gradient (SPG) in Algorithm 2.

Algorithm 2: Stochastic Policy Gradient
Result: Approximation 𝜋∗ on the optimal policy 𝜋∗.
Input: Initial state distribution 𝜇 and class of policies (𝜋𝜃)𝜃∈ℝ𝑑 .
Initialize 𝜃0 ∈ ℝ𝑑;
Choose step size 𝛼 > 0 and set 𝑛 = 0;
while Convergence criterion not met do

Sample the gradient 𝐺𝑛 as in equation (3.10) or equation (3.11) under policy 𝜋𝜃𝑛;
𝜃𝑛+1 = 𝜃𝑛 + 𝛼∇𝐺𝑛;
𝑛 = 𝑛 + 1;

end
Set 𝜋∗ = 𝜋𝜃𝑛−1;

Tabular Softmax Policy. A policy for which we can guarantee both the (ABC) condition (even
with A=B=0) and a gradient domination property is the tabular softmax policy. We introduce
the logit function 𝜃 : S × 𝒜→ ℝ and the softmax policy parametrized by 𝜃 ∈ ℝ |S | |𝒜 | as

𝜋𝜃(𝑎|𝑠) = exp(𝜃(𝑠, 𝑎))∑
𝑎′∈𝒜 exp(𝜃(𝑠, 𝑎′)) , 𝑠 ∈ S, 𝑎 ∈ 𝒜. (3.12)

The tabular softmax policy can approximate any deterministic policy arbitrarily close and is
therefore suitable to converge to the optimal deterministic policy, whereas other parametrizations
such as neural networks may induce an approximation error. This error needs to be considered
in the convergence analysis for different parametrizations.
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Due to the policy gradient theorem we compute the derivative of the log-softmax policy for every
𝑠 ∈ S and 𝑎 ∈ 𝒜, with parameter 𝜃 ∈ ℝ |S | |𝒜 | ,

𝜕 log(𝜋𝜃(𝑎|𝑠))
𝜕𝜃(𝑎′, 𝑠′) = 1{𝑠=𝑠′ } (1{𝑎=𝑎′} − 𝜋𝜃(𝑎′ |𝑠′)),

and obtain the score-function,

∇ log(𝜋𝜃(𝑎|𝑠)) =
(
1{𝑠=𝑠′} (1{𝑎=𝑎′} − 𝜋𝜃(𝑎′ |𝑠′))

)
𝑠′∈S,𝑎′∈𝒜

∈ ℝ |S | |𝒜 | . (3.13)

Using equation (3.9) we arrive at the following form of the gradient.

Lemma 3.18. [Aga+21, Lem C.1] The gradient of the objective under the softmax policy parametriza-
tion has the form

𝜕𝐽𝜇 (𝜃)
𝜕𝜃(𝑠, 𝑎) = 𝜌𝜋

𝜃

𝜇 (𝑠)𝜋𝜃(𝑠, 𝑎)𝐴𝜋
𝜃 (𝑠, 𝑎).

In Agarwal et al. [Aga+21], the global asymptotic convergence of PG is demonstrated under
tabular softmax parametrization, and convergence rates are derived using log-barrier regulari-
sation and natural policy gradient. Building upon this work, Mei et al. [Mei+20] showed the
first convergence rates for PG under softmax parametrization. The authors exploited that the
smoothness property is globally fulfilled and a weak gradient domination property holds along
the gradient ascent trajectory.

Lemma 3.19.

(i) [YGL22, Lem. E.1] The objective function 𝐽𝜇 (𝜃) is 𝐿-smooth under the tabular softmax
parametrization with 𝐿 = 𝑅∗

(1−𝛾)2
(
2 − 1

|𝒜 |
) .

(ii) [Mei+20, Lem. 8] Assume that 𝜇(𝑠) > 0 for every 𝑠 ∈ S. Under the tabular softmax
parametrization it holds that

∥∇𝐽𝜇 (𝜃)∥ ≥
min𝑠∈S 𝜋𝜃(𝑎∗(𝑠) |𝑠)√︁

|S| (1 − 𝛾)




𝑑𝜋∗𝜇
𝜇




−1
∞
[𝐽∗𝜇 − 𝐽𝜇 (𝜃), ]

where 𝜋∗ is a fixed deterministic stationary optimal policy and 𝑎∗(𝑠) is the action under 𝜋∗ in
state 𝑠.

(iii) [Mei+20, Lem. 9] Using the gradient ascent scheme 𝜃𝑛+1 = 𝜃𝑛 +𝛼∇𝐽𝜇 (𝜃) |𝜃=𝜃𝑛 with arbitrary
𝜃1 ∈ ℝ |S | |𝒜 | and tabular softmax parametrization. It holds that

𝑐𝛾 := inf
𝑛≥1

min
𝑠∈S

𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠) > 0.

Thus, ∥∇𝐽𝜇 (𝜃)∥ ≥ 𝑐𝛾√
|S | (1−𝛾)



 𝑑𝜋∗𝜇
𝜇



−1
∞ [𝐽

∗
𝜇 − 𝐽𝜇 (𝜃).
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Remark 3.20. In Lemma 3.19 (ii) a so-called non uniform gradient domination property
([Mei+21]) is shown for tabular softmax parametrization, where the factor min𝑠∈S 𝜋𝜃(𝑎∗(𝑠) |𝑠)
depends on the current parameter 𝜃. The term



 𝑑𝜋∗𝜇
𝜇




∞ denotes the so-called distribution mis-

match coefficient introduced in [Aga+21]. In (iii), it is verified, that along the trajectory of
gradient ascent the function 𝜃 ↦→ min𝑠∈S 𝜋𝜃(𝑎∗(𝑠) |𝑠) stays strictly positive. This gives us a weak
gradient domination property with 𝛽 = 1 as exploited in Theorem 2.11. We can now use this
result to obtain convergence.

Theorem 3.21. Assume that 𝜇(𝑠) > 0 for every 𝑠 ∈ S. Let 𝜃𝑛+1 = 𝜃𝑛+𝛼∇𝐽𝜇 (𝜃) |𝜃=𝜃𝑛 be the gradient
ascent scheme with arbitrary 𝜃1 ∈ ℝ |S | |𝒜 | and choose 𝛼 =

(1−𝛾)2
𝑅∗ (2− 1

|𝒜| )
. Then,

𝐽∗𝜇 − 𝐽𝜇 (𝜃𝑛) ≥
16𝑅∗

(
2 − 1

|𝒜 |
)
|S|

𝑐2𝛾 (1 − 𝛾)4𝑛




𝑑𝜋∗𝜇
𝜇




2
∞
.

Proof. Proof is given by the application of Theorem 2.11 or can be obtained using the same proof
as in [Mei+20, Thm. 4], but with tighter smoothness constant from [YGL22, Lem. E.1]. ■

Remark 3.22. It is important to highlight that the constant 𝑐 appearing in the convergence
rate corresponds to the one from Lemma 3.19 (iii). This constant is typically unknown and
may depend on 𝛾 or other model parameters, making the interpretation of the convergence
rate challenging. In Chapter 5, we will explore the potential issues this presents and discuss a
modification of the PG algorithm to derive tighter upper bounds on the convergence rate.
So, SPG can be applied in the tabular setting where each state-action pair is considered separately.
Although the tabular setting is not used in practical applications, it is the most tractable setting
for a complete mathematical analysis and sheds light on general principles. We will mainly deal
with this parametrization throughout the thesis to ensure and compare convergence behaviour
of different algorithms.

Convergence of PG and related Literature. Due to their high flexibility and model-free nature
PG methods enjoy a great popularity in practice. But from the optimization perspective it is
natural to ask for convergence guarantees of the algorithm. Despite the far-reaching history of
PG [Wil92; Sut+99; KT99; Kak01], there were no proofs for the global convergence of these
algorithms for a long time. Nevertheless, they have been very successful in many applications,
which is why numerous variants have been developed in the last few decades, whose convergence
analysis, if available, was mostly limited to convergence to stationary points [PRB13; Sch+15b;
Pap+18; Cla+18; She+19; XGG20a; Hua+20; XGG20b; HGH22]. In finite state and action
MDPs the smoothness property (Assumption 2.1) can often be easily justified due to bounded
rewards, such that convergence (almost surely and in expectation) towards stationary points is
directly implied. For convergence towards global optima, properties like convexity or gradient
domination are required as discussed in Section 2.2.3. We have seen in the previous paragraph
that such properties heavily depend on the choice of parametrization. Especially in deep learning
scenarios, where neural networks are used to parameterize the policy, the objective function
𝐽𝜇 (𝜃) is highly non-convex and does not fulfills such properties globally. Nevertheless, for specific
parametrizations a (weak) gradient domination property can be derived:
First, the authors in [Faz+18] exploited gradient domination in the case of linear quadratic
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regulator problems to derive convergence rates of (stochastic) PG methods in this specific reward
setting. Notably, [Aga+21] were the first to show global convergence of PG in the general MDP
setting under softmax parametrization but without relying on gradient domination. Their result
is therefore without a rate. Further, the authors analyze the log-barrier regularized softmax PG
with a gradient domination argument and for natural policy gradient (NPG) a convergence rate
is derived even in the stochastic setting. Next to the vanilla PG method discussed in this section
[Mei+20] also considered the entropy-regularized PG method under softmax parametrization.
Under regularization the stronger PL-condition can be verified which leads to a linear convergence
under exact gradients.
A growing community deals with the convergence of variants of PG methods like policy mirror
descent (PMD) or natural policy gradient (NPG), where convergence is also partly due to gradient
domination properties. Under exact gradients we refer the interested reader to [BR21; BR22;
Cen+22] and in the stochastic case to [DZL22; Xia22; AR23; YGL22; Fat+23; JPBR23]. We
want to point out, that all stochastic results consider regularized PG or variants like PMD or NPG
and not much in known about vanilla SPG. This is partly due to the fact that regularization leads
to nicer optimization problems which satisfy stronger regularity properties like the PL-condition
under entropy regularization in [Mei+20]. The analysis of NPG or PMD differs from the gradient
domination setting used for SGD methods and usually requires additional assumptions. See for
example [Aga+21, Ass. 6.1], [Xia22, Ass. 11] and [JPBR23, Ass. 4.1].
In this thesis we mainly focus on deriving convergence rates for vanilla (softmax) PG in the
stochastic and exact gradient setting without the need of regularization or additional assumptions.

3.1.3 Other RL Algorithms
Finally, we want to mention for completeness that there are multiple other RL algorithms besides
the PG Method. We have seen from the dynamic programming principle, that it suffice to learn
an optimal Q-function and that we can deduce an optimal policy from 𝑄∗ (Remark 3.13). Other
very popular methods besides PG are Q-Learning, Temporal Difference Learning or Actor-Critic
methods where Q-Learning and PG is combined.

3.2 Finite-time horizon MDPs

As the name suggests finite-time MDPs are MDPs over a deterministic finite-time horizon.
Therefore, discounting is no longer necessary (but still possible) to assure a well-defined problem.
In addition, we want to allow for a more general context, where the state space can change over
time and the action space can depend on the state. Formally, we define the following.

Definition 3.23 (Finite-time MDP). The sextuplet (H, S,𝒜, 𝛾, 𝑝, 𝑟) given by

• the time index set H = {0, . . . , 𝐻 − 1} ⊂ ℕ

• the finite state spaces S = S0 ∪ · · · ∪ S𝐻−1,

• the finite action space 𝒜 =
⋃

𝑠∈S 𝒜𝑠,

• the discount factor 𝛾 ∈ [0, 1],
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• the transition function 𝑝 : S × 𝒜→ Δ(S), s.t. 𝑝(Sℎ+1 |𝑠, 𝑎) = 1, for every ℎ < 𝐻 − 1, 𝑠 ∈ Sℎ,
𝑎 ∈ 𝒜𝑠.

• the reward function 𝑟 : S × 𝒜→ ℝ

is called a finite-time MDP. When 𝛾 = 1, we just write (H, S,𝒜, 𝑝, 𝑟) for an undiscounted
finite-time MDP.

First, note that the state spaces S0, . . . , S𝐻−1 can and often does (partly) coincide and we recover
the stationary state space scenario from discounted MDPs when Sℎ = S for all ℎ ∈ H. Moreover,
the transition function 𝑝 is time-independent by definition given the domain S × 𝒜, where S is
the set of all possible states in the MDP. Hence, if state 𝑠 is in S𝑡1 and in S𝑡2 , then the transition
probabilities under action 𝑎 are the same for both time points.

Remark 3.24. The discount factor in finite-time MDPs is not necessary for a well-defined problem
and can be incorporated into a time-dependent reward function. It should be noted that all
results derived in this thesis for finite-time MDPs can be straightforwardly generalized to a
time-dependent reward function, allowing discounting to be optional rather than required.

Definition 3.25. [Finite-time Policy] Let (H, S,𝒜, 𝛾, 𝑝, 𝑟) be a finite-time MDP.

(i) A policy 𝜋 : S → Δ(𝒜) is a mapping from state 𝑠 ∈ S to a distribution over the possible
action space, i.e. 𝜋(·|𝑠) ∈ Δ(𝒜𝑠). The set of all policies is still denoted by Π.

(ii) A finite sequence of policies is denoted by ℼ𝐻 = (𝜋ℎ)𝐻−1ℎ=0 ∈ Π𝐻 , where 𝜋ℎ : Sℎ → Δ(𝒜) is
the policy in decision epoch ℎ ∈ H and 𝜋ℎ(𝒜𝑠 |𝑠) = 1 for every 𝑠 ∈ Sℎ.

(iii) We denote by ℼ(ℎ) := (𝜋𝑡)𝐻−1𝑡=ℎ
∈ Π𝐻−ℎ sub-sequences from ℎ to 𝐻 − 1 of ℼ𝐻 .

It is well-known that in contrast to discounted infinite-time horizon MDPs non-stationary policies
are needed to optimize finite-time MDPs. An optimal policy in time point ℎ depends on the time
horizon until the end of the problem (see for example Puterman [Put05]).
Given the pre-specified time horizon we definite the value function and analog the state-action
value function as the (discounted) sum of expected rewards up to time 𝐻 − 1.

Definition 3.26 (Finite-time value and state-action value function, Advantage function). Sup-
pose a finite-time MDP (H, S,𝒜, 𝛾, 𝑝, 𝑟) and let ℼ𝐻 = (𝜋ℎ)𝐻−1ℎ=0 ∈ Π𝐻 be a policy.

(i) The epoch-dependent value functions over the time horizon {ℎ, . . . , 𝐻−1} using the policy
ℼ(ℎ) are defined by

𝑉
ℼ(ℎ)
ℎ
(𝑠) = 𝔼

ℼ(ℎ)
𝑆ℎ=𝑠

[ 𝐻−1∑︁
𝑡=ℎ

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]
, ∀𝑠 ∈ Sℎ. (3.14)

We define 𝑉ℼ𝐻 ≡ 𝑉
ℼ𝐻

0 as the value function of the finite-time MDP under policy ℼ𝐻 =

(𝜋ℎ)𝐻−1ℎ=0 ∈ Π𝐻 .

(ii) For any initial distribution 𝜇ℎ over Sℎ we write 𝑉ℼ(ℎ)
ℎ
(𝜇ℎ) = 𝔼𝑆ℎ∼𝜇ℎ [𝑉

ℼ(ℎ)
ℎ
(𝑆ℎ)].



3.2. Finite-time horizon MDPs 29

(iii) The ℎ-state-action value function is defined by

𝑄
ℼ(ℎ+1)
ℎ
(𝑠, 𝑎) = 𝔼

ℼ(ℎ+1)
𝑆ℎ=𝑠,𝐴ℎ=𝑎

[ 𝐻−1∑︁
𝑡=ℎ

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]
, ∀𝑠 ∈ Sℎ, 𝑎 ∈ 𝒜𝑠. (3.15)

(iv) The ℎ-state-action advantage function is defined by

𝐴
ℼ(ℎ)
ℎ
(𝑠, 𝑎) := 𝑄

ℼ(ℎ+1)
ℎ
(𝑠, 𝑎) − 𝑉ℼ(ℎ)

ℎ
(𝑠), 𝑠 ∈ Sℎ, 𝑎 ∈ 𝒜𝑠. (3.16)

Remark 3.27. Note that 𝑄ℎ is independent of policy 𝜋ℎ as the action in the initial time ℎ is
already determined by the input of the function. For 𝐻 −1, this leads to 𝑄𝐻−1(𝑠, 𝑎) = 𝛾𝐻−1𝑟(𝑠, 𝑎)
deterministic and independent of any policy.

Definition 3.28 (Optimal value, epoch-depended value and state-action value function).

(i) The optimal value function is defined by 𝑉∗(𝑠) = supℼ𝐻 ∈Π𝐻 𝑉
ℼ𝐻

0 (𝑠) for all 𝑠 ∈ S0.

(ii) The optimal epoch dependent value functions are defined by 𝑉∗
ℎ
(𝑠) = supℼ(ℎ) ∈Π𝐻−ℎ 𝑉

ℼ(ℎ)
ℎ
(𝑠)

for all 𝑠 ∈ Sℎ.

(iii) The optimal state-action value function is defined by 𝑄∗(𝑠) = supℼ𝐻 ∈Π𝐻 𝑉
ℼ𝐻

0 (𝑠) for all
𝑠 ∈ S0.

Definition 3.29 (Optimal Policy). Policies ℼ𝐻 ∈ Π𝐻 which satisfy 𝑉ℼ𝐻

0 (𝑠) = 𝑉
∗(𝑠) for all 𝑠 ∈ S0

are called optimal policies and denoted by ℼ∗𝐻 .

Remark 3.30. The optimal policies determined by the optimal value functions are consistent
such that ℼ∗𝐻 restricted to the last 𝐻 − ℎ time-points, i.e. ℼ∗(ℎ) , is an optimal policy for 𝑉ℎ. This
can be deduced from the Markovian structure of the MDP and the resulting backward inductive
solution which will be discussed in the following subsection.
In the remainder of this thesis we will drop the subscript in ℼ𝐻 or ℼ(ℎ) , when the horizon is
clear from the indices in 𝑉ℎ, 𝑄ℎ and 𝐴ℎ.

Definition 3.31.

(i) For an initial state distribution 𝜇 on S0 the state visitation measure under policy ℼ ∈ Π𝐻

is defined by

𝜌ℼ𝜇 (𝑠) =
𝐻−1∑︁
ℎ=0

𝛾ℎℙℼ
𝜇 (𝑆ℎ = 𝑠).

(ii) If 𝛾 ∈ [0, 1), then 𝑑ℼ𝜇 (𝑠) =
1−𝛾
1−𝛾𝐻 𝜌

ℼ
𝜇 (𝑠) is the normalized state-visitation distribution and

when 𝛾 = 1 (no discounting), then 𝑑ℼ𝜇 (𝑠) = 1
𝐻
𝜌ℼ𝜇 (𝑠).

For finite-time MDPs we obtain the following version of the performance difference lemma.

Lemma 3.32. [KWD24, Lem. A.3] For any ℎ ∈ H and for any pair of policies ℼ and ℼ′ ∈ Π𝐻 the
following holds true for every 𝑠 ∈ Sℎ:

𝑉ℼ
ℎ (𝑠) − 𝑉

ℼ′

ℎ (𝑠) =
𝐻−1∑︁
𝑘=ℎ

𝔼ℼ
𝑆ℎ=𝑠

[
𝐴ℼ
′

𝑘 (𝑆𝑘, 𝐴𝑘)
]
.
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Proof. We derive

𝑉ℼ
ℎ (𝑠) − 𝑉

ℼ′

ℎ (𝑠) = 𝔼
ℼ(ℎ)
𝑆ℎ=𝑠

[ 𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)
]
− 𝑉ℼ′

ℎ (𝑠)

= 𝔼
ℼ(ℎ)
𝑆ℎ=𝑠

[ 𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘) +
𝐻−1∑︁
𝑘=ℎ

𝑉ℼ′

𝑘 (𝑆𝑘) −
𝐻−1∑︁
𝑘=ℎ

𝑉ℼ′

𝑘 (𝑆𝑘)
]
− 𝑉ℼ′

ℎ (𝑠)

= 𝔼
ℼ(ℎ)
𝑆ℎ=𝑠

[ 𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘) +
𝐻−1∑︁
𝑘=ℎ+1

𝑉ℼ′

𝑘 (𝑆𝑘) −
𝐻−1∑︁
𝑘=ℎ

𝑉ℼ′

𝑘 (𝑆𝑘)
]

= 𝔼
ℼ(ℎ)
𝑆ℎ=𝑠

[ 𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘) +
𝐻−2∑︁
𝑘=ℎ

𝑉ℼ′

𝑘+1(𝑆𝑘+1) −
𝐻−1∑︁
𝑘=ℎ

𝑉ℼ′

𝑘 (𝑆𝑘)
]

= 𝔼
ℼ(ℎ)
𝑆ℎ=𝑠

[ 𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘) +
𝐻−2∑︁
𝑘=ℎ

𝑉ℼ′

𝑘 (𝑆𝑘+1) −
𝐻−1∑︁
𝑘=ℎ

𝑉ℼ′

𝑘 (𝑆𝑘)
]

= 𝔼
ℼ(ℎ)
𝑆ℎ=𝑠

[ 𝐻−1∑︁
𝑘=ℎ

(
𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘) + 𝑉ℼ′

𝑘+1(𝑆𝑘+1) − 𝑉
ℼ′

𝑘 (𝑆𝑘)
) ]

= 𝔼
ℼ(ℎ)
𝑆ℎ=𝑠

[ 𝐻−1∑︁
𝑘=ℎ

𝐴ℼ
′

𝑘 (𝑆𝑘, 𝐴𝑘)
]

=

𝐻−1∑︁
𝑘=ℎ

𝔼
ℼ(ℎ)
𝑆ℎ=𝑠

[
𝐴ℼ
′

𝑘 (𝑆𝑘, 𝐴𝑘)
]
,

where we have used that 𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘) + 𝑉ℼ′

𝑘+1(𝑆𝑘+1) = 𝑄ℼ′

𝑘
(𝑆𝑘, 𝐴𝑘). In the fifth equation we used

the notation 𝑉𝐻 ≡ 0 and note that 𝑄𝐻−1 ≡ 𝛾𝐻−1𝑟 independent of any policy. ■

3.2.1 Finite-time Dynamic Programming
In contrast to discounted MDPs we can no longer derive fixed-point equations to optimally
solve the finite-time MDPs under perfect information. Instead, the optimal solution is derived
by backward induction over the finite-time horizon. In fact, this leverages from the following
relation between the value and state-action value functions.

Proposition 3.33. Let ℼ ∈ Π𝐻 , then for any ℎ ≤ 𝐻 − 1 and 𝑠 ∈ Sℎ it holds that

𝑉
ℼ(ℎ)
ℎ
(𝑠) =

∑︁
𝑎∈𝒜𝑠

𝜋ℎ(𝑎|𝑠)𝑄
ℼ(ℎ+1)
ℎ

=
∑︁
𝑎∈𝒜𝑠

𝜋ℎ(𝑎|𝑠) (𝛾ℎ𝑟(𝑠, 𝑎) +
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉ℼ(ℎ+1)
ℎ+1 (𝑠

′)),

and for any ℎ ≤ 𝐻 − 1, 𝑠 ∈ Sℎ and 𝑎 ∈ 𝒜𝑠 it holds that

𝑄
ℼ(ℎ+1)
ℎ
(𝑠, 𝑎) = 𝛾ℎ𝑟(𝑠, 𝑎) +

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉ℼ(ℎ+1)
ℎ+1 (𝑠

′)

= 𝛾ℎ𝑟(𝑠, 𝑎) +
∑︁

𝑠′∈S,𝑎′∈𝒜𝑠′

𝑝(𝑠′ |𝑠, 𝑎)𝜋ℎ+1(𝑎′ |𝑠′)𝑄
ℼ(ℎ+2)
ℎ+1 (𝑠

′, 𝑎′),
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where we introduce the convention 𝑉𝐻 ≡ 0.
Proof. By definition, similar to the discounted case. ■

First, it is important to notice that, due to the time dependence in 𝑉 and 𝑄, the equations in
Proposition 3.33 are not fixed point equations. Instead they induce a backward inductive scheme,
where we can derive 𝑉ℼ

0 by starting with 𝑉𝐻 ≡ 0 and iteratively apply the operators 𝑇𝜋ℎ
ℎ

from
ℎ = 𝐻 − 1, . . . , 0 backwards in time. The operators are defined by

𝑇
𝜋ℎ
ℎ
(𝑉ℎ+1) (𝑠) :=

∑︁
𝑎∈𝒜𝑠

𝜋ℎ(𝑎|𝑠) (𝛾ℎ𝑟(𝑠, 𝑎) +
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉ℎ+1(𝑠′)), ∀𝑠 ∈ Sℎ. (3.17)

We can deduce the following optimality relations from Proposition 3.33,

𝑉∗ℎ (𝑠) = max
𝑎∈𝒜𝑠

𝑄∗ℎ(𝑠, 𝑎), ∀ℎ ≤ 𝐻 − 1, 𝑠 ∈ Sℎ

and

𝑄∗ℎ(𝑠, 𝑎) = 𝛾ℎ𝑟(𝑠, 𝑎) +
∑︁

𝑠′∈Sℎ+1
𝑉∗ℎ+1(𝑠

′), ∀ℎ ≤ 𝐻 − 1, 𝑠 ∈ Sℎ, 𝑎 ∈ 𝒜𝑠.

So for finite-time MDPs we have the following optimality operators

𝑇∗ℎ (𝑉ℎ+1) (𝑠) := max
𝑎∈𝒜𝑠

(𝛾ℎ𝑟(𝑠, 𝑎) +
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉ℎ+1(𝑠′)), ∀𝑠 ∈ Sℎ. (3.18)

Remark 3.34. From the relation 𝑉∗
ℎ
(𝑠) = max𝑎∈𝒜 𝑄∗ℎ(𝑠, 𝑎), we can derive an optimal determin-

istic policy using the optimal Q-functions. Specifically, for every 𝑠 ∈ Sℎ the optimal action is
determined by 𝑎∗

ℎ
(𝑠) = argmax𝑎𝑄ℎ(𝑠, 𝑎). Once this optimal action is identified, we can define a

non-stationary deterministic optimal policy by 𝜋∗
ℎ
(𝑎∗

ℎ
|𝑠) = 1.

However, compared to the case of discounted MDPs, the policy 𝜋ℎ is not necessarily optimal
at step ℎ if 𝑇𝜋ℎ

ℎ
(𝑉ℼ(ℎ+1)

ℎ+1 ) = 𝑇∗
ℎ
(𝑉ℼ(ℎ+1)

ℎ+1 ). This condition holds only if the policy sequence ℼ(ℎ+1)
contains the optimal policies from step ℎ + 1 to the final time step 𝐻 − 1. In other words, 𝜋ℎ is
an optimal policy for the current epoch ℎ, if and only if 𝑇𝜋ℎ

ℎ
(𝑉∗

ℎ+1) = 𝑇
∗
ℎ
(𝑉∗

ℎ+1). This implies that
the policy 𝜋ℎ must not only maximize the immediate reward but also depends on the decisions
in the subsequent epochs. On the other hand, it is also straight forward to see and important to
notice that the optimal policy of epoch ℎ does not depend on the past, i.e. on decision which
lead up to time point ℎ. Thus, 𝜋∗

ℎ
is independent of 𝜋∗

𝑙
for ℎ > 𝑙 but not vice versa.

With the convention 𝑉𝐻 ≡ 0, we can solve for the optimal policy by using the dynamic program-
ming algorithm in Algorithm 3. For more details on how to use backwards induction in learning
algorithms we refer for instance to Bertsekas and Tsitsiklis [BT96b, Sec. 6.5].

3.2.2 Finite-time Policy Gradient
How to perform policy gradient in finite-time MDP is the first major questions in this thesis and
will be discussed in detail in Chapter 4. We use this section to introduce the state-of-the-art
algorithm mainly considered in practice (and theory) and provide references for further reading.
Finite-time MDPs differ from discounted infinite-time MDPs in that the optimal policies are
not stationary, i.e. optimal actions depend on the epochs. This requires a time-dependent
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Algorithm 3: Dynamic Programming for finite-time MDPs
Result: Non-stationary optimal policy ℼ∗𝐻 .
Set 𝑉𝐻 ≡ 0;
for ℎ = 𝐻 − 1, . . . , 0 do

for 𝑠 ∈ Sℎ do
for 𝑎 ∈ 𝒜𝑠 do

𝑄ℎ(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾∑
𝑠′∈S 𝑉

∗
ℎ+1(𝑠

′);
end
𝑉ℎ(𝑠) = max𝑎∈𝒜 𝑄ℎ(𝑠, 𝑎);

end
Set 𝜋∗

ℎ
(·|𝑠) = 1argmax𝑎𝑄ℎ (𝑠,𝑎) ;

end
Return ℼ∗𝐻 = (𝜋∗

ℎ
)𝐻−1
ℎ=0 ;

parametrization of the policy when considering the policy gradient method. In fact, one can also
consider PG algorithms that train stationary policies for finite-time MDPs. However, this violates
the intrinsic nature of finite-time MDPs as optimal policies will only be stationary in trivial cases.
One way to introduce time dependence to the parametrized policy class is to enlarge the state
space.

Definition 3.35 (Enlarged state-space). In comparison to S, we define the enlarged state space,
S[H] , which encompasses all possible states across all epochs. Therefore initially, states are
associated with their respective epochs, resulting in disjoint state spaces between epochs, which
are subsequently fused into a single comprehensive state space S[H] . Formally, this means that
for every state space Sℎ = {𝑠1, . . . , 𝑠𝐿ℎ} one constructs disjoint sets Dℎ = Sℎ × {ℎ} = {𝑠1ℎ, . . . , 𝑠

𝐿ℎ
ℎ
}

for ℎ = 0, . . . , 𝐻 − 1. Then, S[H] := D0 ⊎ · · · ⊎D𝐻−1 contains all possible states associated with
their epoch.

Now, we can consider artificially stationary policies on the enlarged state space, 𝜋 : S[H] → Δ(𝒜),
which can decide epoch dependent in states due to the time horizon added to the state space.
We write 𝜋 ∈ ΠS[H] to denote stationary policies on the enlarged state space.

Remark 3.36. Any policy ℼ = (𝜋ℎ)𝐻−1ℎ=0 can be reinterpreted an artificial stationary policy
𝜋 ∈ ΠS[H] by

𝜋(𝑎|𝑠ℎ) =
𝐻−1∑︁
ℎ=0

1𝑠ℎ∈Dℎ
𝜋ℎ(𝑎|𝑠ℎ).

Considering parametrized policies, 𝜋ℎ = 𝜋𝜃ℎ , leads to artificial stationary parametrized policies
𝜋Θ with Θ = [𝜃0, . . . , 𝜃𝐻−1]𝑇 . But also other arbitrary parametrizations on the enlarged state
space like neural networks can be considered. Seeing finite-time MDPs as artificial stationary
MDPs leads to a training procedure in which parameters for all epochs are trained simultaneously,
see for instance Guin and Bhatnagar [GB23]. Therefore, we call this approach the finite-time
simultaneous PG (FT-SimPG) algorithm. Due to artificial stationary, the same PG algorithm as
for discounted MDPs can be used and the objective function for a parametrized class of policies
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(𝜋Θ)Θ∈ℝ𝑑 , with 𝜋Θ ∈ ΠS[H] , is given by

𝐽 (·, 𝜇) : ℝ𝑑 → ℝ, Θ ↦→ 𝐽 (Θ, 𝜇) = 𝑉𝜋Θ

0 (𝜇).

We give a more detailed description of FT-SimPG including a policy gradient theorem for sample-
based implementation and discuss convergence bounds for exact and inexact gradients under
softmax parametrization in Chapter 4. While there are practical reasons to train all parameters
jointly, we will also see that ignoring the structure of the problem yields worse convergence
bounds.

Convergence and Literature for finite-time horizon PG. There are some recent articles
studying PG of finite-time horizon MDPs. E.g. in [GHZ22] complexity bounds for finite-time
MDPs are derived by considering a fictitious discounted algorithm and the stationary policy from
the fictitious discounted problem is used as solution to the finite-time MDP. As non-stationary
policies are required to obtain optimal solutions, this approach is biased. In [HXY21; HXY23]
finite-time linear quadratic control problems are solved with (natural) policy gradient. A non-
stationary policy is trained simultaneously, i.e. the policies in different time epochs are trained
jointly. In comparison to these works, in [Zha+23; ZHB23; ZB23] the optimal control for
finite-time linear quadratic regulator problems is derived in a backward inductive manner. The
dynamic policy gradient algorithm, which we introduce in the following chapter, is based on a
similar idea.





Policy Gradient for finite-time MDPs

4Within this chapter we discuss how to solve finite-time MDPs by policy gradient. Firstly,
we analyse the finite-time simultaneous PG (FT-SimPG) algorithm which was already

partly introduced in Section 3.2.2. In FT-SimPG all parameters on the enlarged state space
are trained jointly. This approach is usually considered in practical applications when a non
stationary policy is searched. Secondly, we introduce finite-time dynamic policy gradient (FT-
DynPG), a new approach where the dynamic programming structure is exploited. We view the
MDP as a nested sequence of contextual bandits. Essentially, FT-DynPG performs a sequence
of PG algorithms backwards in time with carefully chosen epoch dependent training steps.
The algorithm can bee seen as a concrete policy search by dynamic programming (PSDP)
algorithm, where policy gradient is used to solve the one-step MDP [Bag+03; Sch14]. We focus
on theoretical convergence guarantees and compare both algorithms in the exact and stochastic
gradient case.
In the exact gradient case in Section 4.2, the analysis goes along the gradient domination
arguments for discounted MDPs discussed in Section 3.1.2. For FT-SimPG, we extend the
results in [Aga+21; Mei+20] to non-stationary finite-time MDPs and for FT-DynPG we combine
this analysis with the backward inductive dynamic programming approach. The unspecified
dependence on the effective horizon (1 − 𝛾)−1 in infinite-time horizon MDPs (cf. Section 3.1.2)
transfers for finite-time MDPs in a dependence on the deterministic time horizon 𝐻 (compare to
Remark 3.17). Through careful analysis, we establish upper bounds involving 𝐻5 for FT-SimPG,
contrasting with 𝐻3 for FT-DynPG. Essentially, FT-DynPG offers a clear advantage. Examining
the PG theorem for finite-time MDPs reveals that early epochs should be trained less if policies
for later epochs are still sub-optimal. A badly learned 𝑄-function-to-go leads to badly directed
gradients in early epochs. Thus, simultaneous training yields ineffective early epoch training,
addressed by our dynamic algorithm, optimizing policies backward in time with more training
steps. To illustrate this phenomenon we implemented a simple toy example in Section 4.3 where
the advantage of FT-DynPG becomes visible.
In the stochastic analysis in Section 4.4, we abandon the assumption that the exact gradient
is known and focus on the model-free stochastic PG method. For vanilla PG very little is
known about convergence to global optima even in the discounted case (cf. final paragraph
in Section 3.1.2). The authors in [DZL22] derive complexity bounds for entropy-regularized
stochastic softmax PG. They use a well-chosen stopping time which measures the distance to
the set of optimal parameters, and simultaneously guarantees convergence to the regularized
optimum prior to the occurrence of the stopping time by using a small enough step size and
large enough batch size. As we are interested in convergence to the unregularized optimum, we
consider stochastic softmax PG without regularization. Similar to the previous idea, we construct
a different stopping time, which allows us to derive complexity bounds for an approximation
arbitrarily close to the global optimum that does not require a set of optimal parameters. This is
relevant when considering softmax parametrization.

35
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4.1 Simultaneous and Dynamic Policy Gradient

Throughout the chapter we assume a finite-time MDP (H, S,𝒜, 𝛾, 𝑝, 𝑟). In the following we will
discuss two approaches to solve this MDP with PG:

• Finite-time Simultaneous PG (FT-SimPG): An algorithm that is often used in practice, where
parametrized policies are trained simultaneously, i.e. the parameters for 𝜋0, ..., 𝜋𝐻−1 are
trained at once using the objective 𝑉0 (cf. Section 3.2.2).

• Finite-time dynamic PG (FT-DynPG): A new algorithm that trains the parameters sequen-
tially starting at the last epoch. We call this scheme finite-time dynamic policy gradient
because it combines dynamic programming (backwards induction) and PG.

In order to carry out a complete theoretical analysis, we will assume that all policies are softmax
parametrized. It is a first step towards a full understanding and already indicates why PG
methods should use the dynamic programming structure inherent in finite-time MDPs. The
evaluations in this section should not be seen as limited to the softmax case, but more like a
kick-off to analyse a new approach which is beneficial in many scenarios.

Finite-time Simultaneous Policy Gradient. Recall, that the action spaces may depend on the
current state and we denote the numbers of possible actions in epoch ℎ by 𝑑ℎ :=

∑
𝑠∈Sℎ |𝒜𝑠 |. To

perform a PG algorithm the artificial stationary policy 𝜋 ∈ ΠS[H] must be parametrized. While
the algorithm does not require a particular policy we will analyse the artificial stationary tabular
softmax parametrization on the enlarged state space (cf. Definition 3.35) 𝜋Θ ∈ ΠS[H] ,

𝜋Θ (𝑎|𝑠) = exp(𝜃(𝑠, 𝑎))∑
𝑎′ exp(𝜃(𝑠, 𝑎′))

, Θ = (𝜃(𝑠, 𝑎))𝑠∈S[H] ,𝑎∈𝒜𝑠
∈ ℝ

∑
ℎ 𝑑ℎ . (4.1)

The tabular softmax parametrization uses a single parameter for each possible state-action pair
at all epochs. Other parametrized policies, e.g. neural networks, take states from all epochs,
i.e. from the enlarged state space S[H] , as input variables. FT-SimPG trains all parameters at
once and solves the optimization problem (to maximize the state value function at time 0) by
gradient ascent over all parameters (all epochs) simultaneously.

Algorithm 4: Finite-time Simultaneous Policy Gradient (FT-SimPG)
Result: Approximate policy 𝜋∗ ≈ ℼ∗.
Input: Initial state distribution 𝜇 and class of policies (𝜋Θ)Θ∈ℝ𝑑 .
Initialize Θ (1) ∈ ℝ

∑
ℎ 𝑑ℎ;

Choose fixed step sizes 𝛼 > 0 and number of training steps 𝑁;
for 𝑛 = 1, . . . , 𝑁 − 1 do

Θ (𝑛+1) = Θ (𝑛) + 𝛼∇Θ𝑉
𝜋Θ (𝑛)

0 (𝜇)
��
Θ (𝑛) ;

end
Set 𝜋∗ = 𝜋Θ (𝑁 ) ;

Most importantly, the algorithm does not treat epochs differently, the same training effort goes
into all epochs. Further, recall the objective function in the simultaneous approach without
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discounting for any parametrization 𝜋Θ ∈ ΠS[H]

𝐽 (Θ, 𝜇) := 𝑉𝜋Θ

0 (𝜇) = 𝔼𝜋
Θ

𝜇

[ 𝐻−1∑︁
ℎ=0

𝛾ℎ𝑟(𝑆ℎ, 𝐴ℎ)
]
. (4.2)

We denote by 𝐽∗(𝜇) = supΘ 𝐽 (Θ, 𝜇) the optimal value of the objective function and note that
𝐽∗(𝜇) = 𝑉∗0 (𝜇) = supℼ∈Π𝐻 𝑉ℼ

0 (𝜇) under the tabular softmax parametrization, as an optimal policy
can be approximated arbitrarily well.

Definition 4.1 (State visitation measure and distribution on the enlarged state space).

(i) The state visitation measure on the enlarged state space is defined by

𝜌̃𝜋
Θ

𝜇 (𝑠) :=
𝐻−1∑︁
ℎ=0

𝛾ℎℙ𝜋Θ

𝜇 (𝑆ℎ = 𝑠), 𝑠 ∈ S[H] . (4.3)

(ii) If 𝛾 ∈ [0, 1), then 𝑑̃𝜋
Θ

𝜇 =
1−𝛾
1−𝛾𝐻 𝜌̃

𝜋Θ

𝜇 is the normalized state visitation distribution on S[𝐻 ]

and if 𝛾 = 1, then 𝑑̃𝜋Θ

𝜇 = 1
𝐻
𝜌̃𝜋

Θ

𝜇 .

We derive the following version of the policy gradient theorem.

Theorem 4.2 (Policy Gradient Theorem for (FT-SimPG)). Consider any parametrization 𝜋Θ on
the enlarged state space S[H] , then the gradient of the 𝐽 (Θ, 𝜇) defined in equation (4.2) is given by

∇𝐽 (Θ, 𝜇) = 𝔼𝜋
Θ

𝜇

[ 𝐻∑︁
ℎ=0
∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))𝑄𝜋Θ

ℎ (𝑆ℎ, 𝐴ℎ)
]

=
∑︁

𝑠∈S[H]
𝜌̃𝜋

Θ

𝜇 (𝑠)
∑︁
𝑎∈𝒜𝑠

𝜋Θ (𝑎|𝑠)∇ log(𝜋Θ (𝑎|𝑠))𝑄𝜋Θ

ℎ (𝑠, 𝑎).

Proof. The second equality follows directly from the definition of the state visitation measure in
equation (4.3).
For the first equality consider the probability of a trajectory 𝜏 = (𝑠0, 𝑎0, . . . , 𝑠𝐻−1, 𝑎𝐻−1) under
the policy 𝜋Θ and initial state distribution 𝜇, i.e.

𝑝𝜋
Θ

𝜇 (𝜏) = 𝜇(𝑠ℎ)𝜋Θ (𝑎0 |𝑠0)
𝐻−1∏
𝑘=1

𝑝(𝑠𝑘 |𝑠𝑘−1, 𝑎𝑘−1)𝜋Θ (𝑎𝑘 |𝑠𝑘).

Then,

∇ log(𝑝𝜋Θ

𝜇 (𝜏)) = ∇
(
log(𝜇(𝑠ℎ)) + log(𝜋Θ (𝑎0 |𝑠0))

+
𝐻−1∑︁
𝑘=1

log(𝑝(𝑠𝑘 |𝑠𝑘−1, 𝑎𝑘−1)) + log(𝜋Θ (𝑎𝑘 |𝑠𝑘))
)

= ∇
𝐻−1∑︁
𝑘=0

log(𝜋Θ (𝑎𝑘 |𝑠𝑘)),
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which is known as the log-trick. Let W be the set of all trajectories from 0 to 𝐻 − 1. Note that W
is finite due to the assumption that state and action space is finite. Then,

∇𝐽 (Θ, 𝜇) = ∇
∑︁
𝜏∈W

𝑝𝜋
Θ

𝜇 (𝜏)
𝐻−1∑︁
𝑘=0

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘)

=
∑︁
𝜏∈W

𝑝𝜋
Θ

𝜇 (𝜏)∇ log(𝑝𝜋
Θ

𝜇 (𝜏))
𝐻−1∑︁
𝑘=0

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘)

=
∑︁
𝜏∈W

𝑝𝜋
Θ

𝜇 (𝜏)
𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝑎ℎ |𝑠ℎ))

𝐻−1∑︁
𝑘=0

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘)

=
∑︁
𝜏∈W

𝑝𝜋
Θ

𝜇 (𝜏)
𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝑎ℎ |𝑠ℎ))

𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘)

= 𝔼𝜋
Θ

𝜇

[ 𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))

𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)
]

= 𝔼𝜋
Θ

𝜇

[ 𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))𝔼𝜋

Θ

𝑆ℎ

[ 𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)
��𝑆ℎ, 𝐴ℎ] ]

= 𝔼𝜋
Θ

𝜇

[ 𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ)) 𝑄𝜋Θ

ℎ (𝑆ℎ, 𝐴ℎ)
]
.

In the forth equation we have used that for every 𝑘 < ℎ it holds

𝔼𝜋
Θ

𝜇

[
∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)

]
= 𝔼𝜋

Θ

𝜇

[
𝔼𝜋

Θ

𝜇

[
∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))

���𝑆0, 𝐴0, . . . 𝑆ℎ−1, 𝐴ℎ−1, 𝑆ℎ]𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)] = 0,

because

𝔼𝜋
Θ

𝜇

[
∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))

���𝑆0, 𝐴0, . . . 𝑆ℎ−1, 𝐴ℎ−1, 𝑆ℎ]
= 𝔼𝜋

Θ

𝜇

[
∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))

���𝑆ℎ]
=

∑︁
𝑎∈𝒜𝑆ℎ

𝜋Θ (𝑎|𝑆ℎ)∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))

= ∇
( ∑︁
𝑎∈𝒜𝑆ℎ

𝜋Θ (𝑎|𝑆ℎ)
)
= 0.

■

In finite-time unbiased estimators of the gradient can be easily obtained using trajectories of
finite-time length in a Monte-Carlo estimator.

Finite-time Dynamic Policy Gradient. First of all, recall that the inherent structure of finite-
time MDPs is a backwards induction principle (dynamic programming), see Section 3.2.1. In
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a way, finite-time MDPs can be viewed as nested contextual bandits. The FT-DynPG approach
suggested in this article builds upon this intrinsic structure and sets on top a PG scheme. We
have discussed in Remark 3.36 how an artificial stationary policy relates to a sequence of policies
and for the dynamic approach, we consider the sequence (𝜋𝜃ℎ)𝐻−1

ℎ=0 such that the policy in epoch
ℎ depends only on the parameter 𝜃ℎ ∈ ℝ𝑑ℎ . Thus, the tabular softmax parametrization we
consider for FT-DynPG is formulated slightly differently than above: For each decision epoch
ℎ ∈ H the tabular softmax parametrization is given by

𝜋𝜃ℎ (𝑎|𝑠) = exp(𝜃ℎ(𝑠, 𝑎))∑
𝑎′∈𝒜 exp(𝜃ℎ(𝑠, 𝑎′))

, 𝜃ℎ = (𝜃ℎ(𝑠, 𝑎))𝑠∈Sℎ,𝑎∈𝒜𝑠
∈ ℝ𝑑ℎ . (4.4)

The total dimension of the parameter tensor [𝜃0, . . . , 𝜃𝐻−1]𝑇 equals the one of Θ. The only
difference lies in the notation and the epoch dependence is made more explicit in equation (4.4).
The main idea of FT-DynPG is as follows. The dynamic programming perspective suggests to
learn policies backwards in time. Thus, we start by training the last parameter vector 𝜃𝐻−1 on
the sub-problem 𝑉𝐻−1, a one-step MDP which can be viewed as contextual bandit problem. After
convergence up to some termination condition, it is known how to act near optimality in the last
epoch and one can proceed to train the parameter vector from previous epochs by exploiting the
knowledge of acting near optimal in the future. This is what the proposed FT-DynPG algorithm
does. A policy is trained up to some termination condition and then used to optimize the earlier
epochs.

Algorithm 5: Finite-time Dynamic Policy Gradient (FT-DynPG)
Result: Approximate policy ℼ̂∗ ≈ ℼ∗.
Input: Initial state distributions (𝜇ℎ)∞ℎ=0 and class of policies (ℼΘ).
Initialize 𝜃(1) = (𝜃(1)0 , . . . , 𝜃

(1)
𝐻−1) ∈ ℝ

∑
ℎ 𝑑ℎ;

for ℎ = 𝐻 − 1, . . . , 0 do
Choose fixed step size 𝛼ℎ and number of training steps 𝑁ℎ;
for 𝑛 = 1, . . . , 𝑁ℎ − 1 do

𝜃
(𝑛+1)
ℎ

= 𝜃
(𝑛)
ℎ
+ 𝛼ℎ∇𝜃ℎ𝑉

(𝜋𝜃ℎ ,ℼ̂∗(ℎ+1) )
ℎ

(𝜇ℎ)
��
𝜃
(𝑛)
ℎ

;
end

Set 𝜋∗
ℎ
= 𝜋𝜃

(𝑁ℎ )
ℎ ;

end

Remark 4.3. Suppose that we have trained the first ℎ + 1 policies such that 𝜋∗
𝑘
≈ 𝜋∗

𝑘
for 𝑘 = ℎ +

1, . . . , 𝐻−1 and 𝑉
ℼ∗(ℎ+1)
ℎ+1 ≈ 𝑉∗

ℎ
. In order to train parameter 𝜃ℎ, we have to optimize 𝑉

(𝜋𝜃ℎ ,ℼ̂∗(ℎ+1) )
ℎ

(𝜇ℎ)
and by the dynamic programming principle (cf. equation (3.17)), it holds that

𝑉
(𝜋𝜃ℎ ,ℼ̂∗(ℎ+1) )
ℎ

(𝜇ℎ) =
∑︁
𝑠∈Sℎ

𝜇ℎ(𝑠)
∑︁
𝑎∈𝒜𝑠

𝜋𝜃ℎ (𝑎|𝑠)𝛾ℎ𝑟(𝑠, 𝑎) +
∑︁

𝑠′∈Sℎ+1
𝑉
ℼ̂∗(ℎ+1)
ℎ+1 (𝑠

′)

= 𝑇𝜋
𝜃ℎ

ℎ (𝑉
ℼ̂∗(ℎ+1)
ℎ+1 ).
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Hence, we train the next policy such that approximately 𝑇𝜋𝜃ℎ
ℎ
(𝑉

ℼ∗(ℎ+1)
ℎ+1 ) ≈ 𝑇

∗
ℎ
(𝑉

ℼ∗(ℎ+1)
ℎ+1 ). Note that

the algorithm is just working fine when convergence close to the optimal policy is guaranteed in
ever optimization step (cf. Remark 3.34).

A bit of notation is needed to analyse this approach. Given any fixed policy ℼ̃ ∈ Π𝐻 , the objective
function 𝐽ℎ in epoch ℎ is defined to be the ℎ-state value function in state under the extended
policy (𝜋𝜃ℎ , ℼ̃(ℎ+1) ) := (𝜋𝜃ℎ , ℼ̃ℎ+1, . . . , ℼ̃𝐻−1),

𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ) := 𝑉
(𝜋𝜃ℎ ,ℼ̃(ℎ+1) )
ℎ

(𝜇ℎ) = 𝔼
(𝜋𝜃ℎ ,ℼ̃(ℎ+1) )
𝜇ℎ

[ 𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)
]
. (4.5)

While the notation is a bit heavy the intuition behind is easy to understand. If the policy
after epoch ℎ is already trained (this is ℼ̃(ℎ+1)) then 𝐽ℎ as a function of 𝜃ℎ is the parametrized
dependence of the value function when only the policy for epoch ℎ is changed. Gradient ascent
is then used to find a parameter 𝜃∗

ℎ
that maximizes 𝐽ℎ(·, ℼ̃(ℎ+1) , 𝛿𝑠), for all 𝑠 ∈ Sℎ, where 𝛿𝑠 the

dirac measure on 𝑠. Note that 𝜃∗
ℎ
depends on the fixed future policy ℼ̃(ℎ+1) and to train 𝜃ℎ one

chooses ℼ̃(ℎ+1) = ℼ̂∗(ℎ+1) in Algorithm 5. We define 𝐽∗
ℎ
(ℼ̃(ℎ+1) , 𝜇ℎ) := sup𝜃ℎ 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ).

Theorem 4.4 (Policy Gradient Theorem for (FT-DynPG)). For a fixed policy ℼ̃ and ℎ ∈ H the
gradient of 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝛿𝑠) defined in equation (4.5) is given by

∇𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝛿𝑠) = 𝔼𝑆ℎ=𝑠,𝐴ℎ∼𝜋𝜃ℎ ( · |𝑠) [∇ log(𝜋
𝜃ℎ (𝐴ℎ |𝑆ℎ))𝑄ℼ̃

ℎ (𝑆ℎ, 𝐴ℎ)].

Proof. The probability of a trajectory 𝜏 = (𝑠ℎ, 𝑎ℎ, . . . , 𝑠𝐻−1, 𝑎𝐻−1) under the policy (𝜋𝜃, ℼ̃(ℎ+1) ) =
(𝜋𝜃, ℼ̃ℎ+1, . . . , ℼ̃𝐻−1) and initial state distribution 𝛿𝑠 is given by

𝑝
(𝜋𝜃,ℼ̃(ℎ+1) )
𝑠 (𝜏) = 𝛿𝑠 (𝑠ℎ)𝜋𝜃(𝑎ℎ |𝑠ℎ)

𝐻−1∏
𝑘=ℎ+1

𝑝(𝑠𝑘 |𝑠𝑘−1, 𝑎𝑘−1)ℼ̃𝑘 (𝑎𝑘 |𝑠𝑘).

Then,

∇ log(𝑝(𝜋
𝜃,ℼ̃(ℎ+1) )

𝑠 (𝜏)) = ∇
(
log(𝛿𝑠 (𝑠ℎ)) + log(𝜋𝜃(𝑎ℎ |𝑠ℎ))

+
𝐻−1∑︁
𝑘=ℎ+1

log(𝑝(𝑠𝑘 |𝑠𝑘−1, 𝑎𝑘−1)) + log(ℼ̃𝑘 (𝑎𝑘 |𝑠𝑘))
)

= ∇ log(𝜋𝜃(𝑎ℎ |𝑠ℎ)),

which is known as the log-trick. Let W be the set of all trajectories from ℎ to 𝐻 − 1. Note that W
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is finite due to the assumption that state and action space is finite. Then for 𝑠 ∈ Sℎ

∇𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝛿𝑠) = ∇
∑︁
𝜏∈W

𝑝
(𝜋𝜃,ℼ̃(ℎ+1) )
𝑠 (𝜏)

𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘)

=
∑︁
𝜏∈W

𝑝
(𝜋𝜃,ℼ̃(ℎ+1) )
𝑠 (𝜏)∇ log(𝑝(𝜋

𝜃,ℼ̃(ℎ+1) )
𝑠 (𝜏))

𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘)

=
∑︁
𝜏∈W

𝑝
(𝜋𝜃,ℼ̃(ℎ+1) )
𝑠 (𝜏)∇ log(𝜋𝜃(𝑎ℎ |𝑠ℎ))

𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘)

= 𝔼
(𝜋𝜃,ℼ̃(ℎ+1) )
𝑆ℎ=𝑠

[
∇ log(𝜋𝜃(𝐴ℎ |𝑆ℎ))

𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)
]

= 𝔼
(𝜋𝜃,ℼ̃(ℎ+1) )
𝑆ℎ=𝑠

[
∇ log(𝜋𝜃(𝐴ℎ |𝑆ℎ))𝔼ℼ̃

𝑆ℎ

[ 𝐻−1∑︁
𝑘=ℎ

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)
��𝑆ℎ, 𝐴ℎ] ]

= 𝔼𝑆ℎ=𝑠,𝐴ℎ∼𝜋𝜃 ( · |𝑠)

[
∇ log(𝜋𝜃(𝐴ℎ |𝑆ℎ)) 𝑄ℼ̃

ℎ (𝑆ℎ, 𝐴ℎ)
]
.

■

A priori it is not clear if simultaneous or dynamic programming inspired training is more
efficient. FT-DynPG has an additional loop but trains less parameters at once. We give a detailed
analysis for the tabular softmax parametrization but want to give a heuristic argument why
simultaneous training is not favorable. The policy gradient theorem in the simultaneous approach
(Theorem 4.2) states that

∇𝐽 (Θ, 𝜇) =
∑︁

𝑠∈S[H]
𝜌̃𝜋

Θ

𝜇 (𝑠)
∑︁
𝑎∈𝒜𝑠

𝜋Θ (𝑎|𝑠)∇ log(𝜋Θ (𝑎|𝑠))𝑄𝜋Θ

ℎ (𝑠, 𝑎).

It implies that training policies at earlier epochs are massively influenced by estimation errors
of 𝑄𝜋Θ

ℎ
. Reasonable training of optimal decisions is only possible if all later epochs have been

trained well, i.e. 𝑄𝜋Θ

ℎ
≈ 𝑄∗

ℎ
. This may lead to inefficiency in earlier epochs when training all

epochs simultaneously. It is important to note that the policy gradient formula is independent
of the parametrization. While our precise analysis is only carried out for tabular softmax
parametrizations this general heuristic remains valid for all classes of policies.
For the rest of this chapter we assume undiscounted finite-time MDPs with positive finite rewards:

Assumption 4.5. We assume that 𝛾 = 1 and the rewards are bounded in [0, 𝑅∗], for some 𝑅∗ > 0.
Remark 4.6. Note that the assumption 𝛾 = 1 can be relaxed to 𝛾 ∈ [0, 1] as discounting is not
relevant in finite-time MDPs (see also Remark 3.24). More precisely, we always upper bound∑𝐻−1
ℎ=0 𝑟(𝑆ℎ, 𝐴ℎ) ≤ 𝐻𝑅∗ (a.s.) and this upper bound holds also with a modified reward function

including discounting as 𝛾ℎ𝑟(𝑆ℎ, 𝐴ℎ) ≤ 𝑟(𝑆ℎ, 𝐴ℎ) (a.s.) for any ℎ ∈ {0, . . . , 𝐻 − 1}. Moreover, the
positivity assumption on the rewards is no restriction of generality, bounded negative rewards
can be shifted using the base-line trick, and boundedness can always be assumed by the finite
state and action space.
In what follows we will always assume the tabular softmax parametrization and analyse both
PG schemes. First under the assumption of exact gradients, then with sampled gradients à la
REINFORCE.
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4.2 Convergence of Softmax Policy Gradient with exact gradients

In the following, we analyse the convergence behavior of the simultaneous as well as the dynamic
approach under the assumption to have access to exact gradient computation. The presented
convergence analysis in both settings is inspired from the discounted setting considered recently
in Agarwal et al. [Aga+21] and Mei et al. [Mei+20]. In both scenarios the global convergence
in based on smoothness of the objective (Lipschitz continuous gradients) and a (weak) gradient
domination property.
In a maximization problem for a differential function 𝑓 : ℝ𝑑 → ℝ with 𝑓 ∗ = sup𝑥 𝑓 (𝑥) < ∞, the
weak gradient domination (𝛽 = 1 in Definition 2.7) is globally satisfied when 𝑐 > 0 exists, such
that

∥∇ 𝑓 (𝑥)∥ ≥ 𝑐( 𝑓 ∗ − 𝑓 (𝑥)), ∀𝑥 ∈ ℝ𝑑 .

This assumption is weaker then convexity but, combined with smoothness, still ensures con-
vergence of 𝑓 (𝑥𝑛) → 𝑓 ∗ in a gradient ascent scheme (cf. Theorem 2.10). In the following
subsections, we will first derive a so called non-uniform gradient domination property, where 𝑐
is not a constant, but a function 𝑐(𝑥). In a second step, we ensure that inf𝑛 𝑐(𝑥𝑛) ≥ 𝑐 bounded
away from 0 along the gradient ascent trajectory. Finally, we derive convergence from these
results.
Before we deal with the two approaches separately, we formulate the performance difference
lemma for the two objectives 𝐽 (Θ, 𝜇) and 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ). We will use these to derive the
non-uniform gradient domination properties.

Corollary 4.7. For the objective 𝐽 (Θ, 𝜇) defined in equation (4.2) and 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ) defined
in equation (4.5) it holds

𝐽∗(𝜇) − 𝐽 (Θ, 𝜇) = 𝔼𝜋
∗

𝜇

[ 𝐻−1∑︁
ℎ=0

𝐴𝜋
Θ

ℎ (𝑆ℎ, 𝐴ℎ)
]
=

∑︁
𝑠∈S[H]

𝜌̃𝜋
∗

𝜇 (𝑠)𝐴𝜋
Θ

ℎ (𝑠, 𝑎
∗(𝑠))

and

𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇) − 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ) = 𝔼ℼ∗
𝜇

[
𝐴
(𝜋𝜃,ℼ̃(ℎ+1) )
ℎ

(𝑆ℎ, 𝐴ℎ)
]
.

Proof. The first claim follows directly from Lemma 3.32 and the definition of the state visitation
measure on S[H] in equation (4.3).
For the second claim, we proof a more general result: For any ℎ ∈ H and two policies 𝜋 and 𝜋′:
If ℼ(ℎ+1) = ℼ′(ℎ+1) , it holds that

𝑉ℼ
ℎ (𝑠) − 𝑉

ℼ′

ℎ (𝑠) = 𝔼
ℼ(ℎ)
𝑆ℎ=𝑠

[
𝐴ℼ
′

ℎ (𝑆ℎ, 𝐴ℎ)
]
.

To see this, let 𝑘 > ℎ, then

𝔼
ℼ(ℎ)
𝑆ℎ=𝑠

[
𝐴ℼ
′

𝑘 (𝑆𝑘, 𝐴𝑘)
]
=

∑︁
𝑎∈𝒜

𝜋ℎ(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝔼ℼ(ℎ+1)
𝑆ℎ+1=𝑠′

[
𝑄ℼ′

𝑘 (𝑆𝑘, 𝐴𝑘) − 𝑉
ℼ′

𝑘 (𝑆𝑘)
]

=
∑︁
𝑎∈𝒜

𝜋ℎ(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝔼
ℼ′(ℎ+1)
𝑆ℎ+1=𝑠′

[
𝑄ℼ′

𝑘 (𝑆𝑘, 𝐴𝑘) − 𝑉
ℼ′

𝑘 (𝑆𝑘)
]
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=
∑︁
𝑎∈𝒜

𝜋ℎ(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)
(
𝔼
ℼ′(ℎ+1)
𝑆ℎ+1=𝑠′

[
𝔼ℼ′
𝑆𝑘
[𝑄ℼ′

𝑘 (𝑆𝑘, 𝐴𝑘)]
]
− 𝔼

ℼ′(ℎ+1)
𝑆ℎ+1=𝑠′

[
𝑉ℼ′

𝑘 (𝑆𝑘)
] )

=
∑︁
𝑎∈𝒜

𝜋ℎ(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)
(
𝔼
ℼ′(ℎ+1)
𝑆ℎ+1=𝑠′

[
𝑉ℼ′

𝑘 (𝑆𝑘)
]
− 𝔼

ℼ′(ℎ+1)
𝑆ℎ+1=𝑠′

[
𝑉ℼ′

𝑘 (𝑆𝑘)
] )

= 0.

The claim follows with Lemma 3.32. ■

4.2.1 Finite-time Simultaneous Policy Gradient
To prove convergence in the simultaneous approach we will interpret the finite-time MDP as an
undiscounted stationary problem with state-space S[𝐻 ] and deterministic absorption time 𝐻. This
MDP is undiscounted but terminates in finite-time. Building upon [Aga+21; Mei+20; YGL22],
we prove that the objective function defined in equation (4.2) is 𝐿-smooth with parameter
𝐿 = 𝐻2𝑅∗(2 − 1

|𝒜 | ) and satisfies a non-uniform weak gradient domination with 𝛽 = 1.
Remark 4.8. Note that we can drop the subscript ℎ in the value function, state-action value
function or advantage function, when we define them on the enlarged state-space S[H] . Then,
𝑉 is a vector of dimension |S[H] | and 𝑄 and 𝐴 are matrices of dimension |S[H] | × |𝒜|. More
precisely, using a state 𝑠 ∈ S[H] then 𝑠 is assigned to one specific epoch ℎ ∈ H and we introduce
the value function on S[H] by 𝑉𝜋Θ (𝑠) = ∑𝐻−1

ℎ=0 1𝑠 belongs to epoch ℎ 𝑉
𝜋Θ

ℎ
(𝑠). Similar also for 𝑄 and 𝐴.

Smoothness. To derive the smoothness of the objective function we have to prove that ∇𝐽 is
𝐿-Lipschitz. Therefore we use the explicit formula of the gradient under softmax parametrization.

Lemma 4.9. The partial derivative of the objective defined in equation (4.2) under softmax
parametrization is given by:

𝜕𝐽 (Θ, 𝜇)
𝜕𝜃(𝑠, 𝑎) = 𝜌̃𝜋

Θ

𝜇 (𝑠)𝜋Θ (𝑎|𝑠)𝐴𝜋Θ (𝑠, 𝑎),

for every 𝑠 ∈ S[H] and 𝑎 ∈ 𝒜𝑠.
Proof. Let 𝑠 ∈ S[H] and 𝑎 ∈ 𝒜𝑠. Using Theorem 4.2, it holds that

𝜕𝐽 (Θ, 𝜇)
𝜕𝜃(𝑠, 𝑎) = 𝔼𝜋

Θ

𝜇

[ 𝐻−1∑︁
ℎ=0

𝜕

𝜕𝜃(𝑠, 𝑎) log(𝜋
Θ (𝐴ℎ |𝑆ℎ))𝑄𝜋Θ

ℎ (𝑆ℎ, 𝐴ℎ)
]

= 𝔼𝜋
Θ

𝜇

[ 𝐻−1∑︁
ℎ=0

1{𝑆ℎ=𝑠}
(
1{𝐴ℎ=𝑎} − 𝜋Θ (𝑎|𝑠)

)
𝑄𝜋Θ

ℎ (𝑆ℎ, 𝐴ℎ)
]

=

𝐻−1∑︁
ℎ=0

ℙ𝜋Θ

𝜇 (𝑆ℎ = 𝑠)
∑︁
𝑎′
𝜋Θ (𝑎′ |𝑠)

(
1{𝑎′=𝑎} − 𝜋Θ (𝑎|𝑠)

)
𝑄𝜋Θ

ℎ (𝑠, 𝑎
′)

= 𝜌̃𝜋
Θ

𝜇 (𝑠)
(
𝜋Θ (𝑎|𝑠)𝑄𝜋Θ (𝑠, 𝑎) −

∑︁
𝑎′
𝜋Θ (𝑎′ |𝑠)𝜋Θ (𝑎|𝑠)𝑄𝜋Θ (𝑠, 𝑎′)

)
= 𝜌̃𝜋

Θ

𝜇 (𝑠)𝜋Θ (𝑎|𝑠)𝐴𝜋Θ (𝑠, 𝑎).

■
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We deduce the smoothness directly from this result.

Lemma 4.10. The objective 𝐽 (Θ, 𝜇) from equation (4.2) under softmax parametrization is smooth
in Θ with parameter 𝐿 = 𝐻2𝑅∗(2 − 1

|𝒜 | ).

Proof. We are going to bound the norm of the hessian. Therefore, we first calculate the first and
second derivative of 𝐽 for finite-time horizon stationaryMDPs. So, let 𝜏 = (𝑠0, 𝑎0, 𝑠1, . . . , 𝑠𝐻−1, 𝑎𝐻−1)
be a trajectory of the MDP under policy 𝜋Θ and denote by 𝑝Θ𝜇 the discrete probability density.
Then,

∇𝐽 (Θ, 𝜇) = ∇
(∑︁

𝜏

𝑝Θ𝜇 (𝜏)
𝐻−1∑︁
ℎ=0

𝑟(𝑠ℎ, 𝑎ℎ)
)

=
∑︁
𝜏

𝑝Θ𝜇 (𝜏)
( 𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝑎ℎ |𝑠ℎ))

𝐻−1∑︁
ℎ=0

𝑟(𝑠ℎ, 𝑎ℎ)
)

= 𝔼𝜋
Θ

𝜇

[ 𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝑎ℎ |𝑠ℎ))

𝐻−1∑︁
ℎ=0

𝑟(𝑠ℎ, 𝑎ℎ)
]
.

For the second derivative we have

∇2𝐽 (Θ, 𝜇) = ∇
(∑︁

𝜏

𝑝Θ𝜇 (𝜏)
( 𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝑎ℎ |𝑠ℎ))

𝐻−1∑︁
ℎ=0

𝑟(𝑠ℎ, 𝑎ℎ)
) )

=
∑︁
𝜏

𝑝Θ𝜇 (𝜏)
( ( 𝐻−1∑︁

ℎ=0
∇ log(𝜋Θ (𝑎ℎ |𝑠ℎ))

) ( 𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝑎ℎ |𝑠ℎ))

)𝑇 𝐻−1∑︁
ℎ=0

𝑟(𝑠ℎ, 𝑎ℎ)
)

︸                                                                                             ︷︷                                                                                             ︸
(1)

+
∑︁
𝜏

𝑝Θ𝜇 (𝜏)
( 𝐻−1∑︁
ℎ=0
∇2 log(𝜋Θ (𝑎ℎ |𝑠ℎ))

𝐻−1∑︁
ℎ=0

𝑟(𝑠ℎ, 𝑎ℎ)
)

︸                                                          ︷︷                                                          ︸
(2)

.

Using the bounded reward assumption we get for the second term, that

| | (2) | | ≤ 𝔼𝜋
Θ

𝜇

[ 𝐻−1∑︁
ℎ=0
∥∇2 log(𝜋Θ (𝑎ℎ |𝑠ℎ))∥

]
𝐻𝑅∗ = 𝐻𝑅∗

𝐻−1∑︁
ℎ=0

𝔼𝜋
Θ

𝜇

[
∥∇2 log(𝜋Θ (𝑎ℎ |𝑠ℎ))∥

]
.

By [YGL22, Lem. 4.8], we have for the softmax parametrization that𝔼𝜋Θ

𝜇

[
∥∇2 log(𝜋Θ (𝑎ℎ |𝑠ℎ))∥

]
≤

1. Hence, | | (2) | | ≤ 𝐻2𝑅∗.
Next for the first term,

| | (1) | | ≤ 𝔼𝜋
Θ

𝜇

[
∥
𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝑎ℎ |𝑠ℎ))∥2

]
𝐻𝑅∗

= 𝐻𝑅∗
𝐻−1∑︁
ℎ=0

𝔼𝜋
𝜃

𝜇

[
∥∇ log(𝜋Θ (𝑎ℎ |𝑠ℎ))∥2

]
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≤ 𝐻2𝑅∗
(
1 − 1
|𝒜|

)
,

where we first used the bounded reward assumption, then Lemma 3.6 and again Lemma 4.8
from Yuan, Gower, and Lazaric [YGL22]. Finally, we obtain that

∥∇2𝐽 (Θ, 𝜇)∥ ≤ 𝐻2𝑅∗
(
2 − 1
|𝒜|

)
.

■

We can compare this result to the smoothness of a discounted MDP under softmax parametriza-
tion, where 𝐿 = 𝑅∗

(1−𝛾)2
(
2 − 1

|𝒜 |
)
(Lemma 3.19 (i)). We obtain that 1

1−𝛾 , the expectation of a
geometric r.v. and the expected length of a discounted MDP, is replaced by 𝐻, the expected
length of the finite-time MDP.

Weak gradient domination. In the following let 𝜋∗ ∈ ΠS[H] be the reinterpretation of a fixed
but arbitrary deterministic optimal policy ℼ∗ = (𝜋∗

ℎ
)𝐻−1
ℎ=0 ∈ Π𝐻 . Then 𝑎∗(𝑠) = argmax𝑎∈𝒜𝑠

𝜋∗(𝑎|𝑠)
is an arbitrary and fixed best action in state 𝑠 ∈ S[H] (compare to Remark 3.34).

Lemma 4.11. Under softmax parametrization, it holds that

∥∇𝐽 (Θ, 𝜇)∥2 ≥
min𝑠∈S[H] 𝜋Θ (𝑎∗(𝑠) |𝑠)√︁

|S[H] |




 𝑑𝜋∗𝜇
𝑑𝜋

Θ

𝜇




−1
∞
(𝐽∗(𝜇) − 𝐽 (Θ, 𝜇)).

Proof. The idea of the proof follows the outline of Mei et al. [Mei+20, Lem. 8] from the
discounted setting. It holds

∥∇𝐽 (Θ, 𝜇)∥2 =
[ ∑︁
𝑠∈S[H]

∑︁
𝑎

(𝜕𝑉𝜋Θ

0 (𝜇)
𝜕𝜃(𝑠, 𝑎)

)2]1/2
≥

[ ∑︁
𝑠∈S[H]

( 𝜕𝑉𝜋
Θ

0 (𝜇)
𝜕𝜃(𝑠, 𝑎∗(𝑠))

)2]1/2
≥ 1√︁
|S[H] |

∑︁
𝑠∈S[H]

��� 𝜕𝑉𝜋
Θ

0 (𝜇)
𝜕𝜃(𝑠, 𝑎∗(𝑠))

���
=

1√︁
|S[H] |

∑︁
𝑠∈S[H]

𝜌̃𝜋
Θ

𝜇 (𝑠)𝜋Θ (𝑎∗(𝑠) |𝑠) |𝐴𝜋Θ (𝑠, 𝑎∗(𝑠)) |

≥
min𝑠∈S[H] 𝜋Θ (𝑎∗(𝑠) |𝑠)√︁

|S[H] |

∑︁
𝑠∈S[H]

𝜌̃𝜋
∗

𝜇 (𝑠)



 𝑑𝜋∗𝜇
𝑑𝜋

Θ

𝜇




−1
∞
𝐴𝜋

Θ (𝑠, 𝑎∗(𝑠))

=
min𝑠∈S[H] 𝜋Θ (𝑎∗(𝑠) |𝑠)√︁

|S[H] |




 𝑑𝜋∗𝜇
𝑑𝜋

Θ

𝜇




−1
∞

∑︁
𝑠∈S[H]

𝜌𝜋
∗

𝜇 (𝑠)𝐴𝜋
Θ (𝑠, 𝑎∗(𝑠))︸                           ︷︷                           ︸

=𝔼𝜋
∗

𝜇 [
∑𝐻−1
ℎ=0 𝐴𝜋

Θ
ℎ
(𝑆ℎ,𝐴ℎ ) ]

=
min𝑠∈S[H] 𝜋Θ (𝑎∗(𝑠) |𝑠)√︁

| |S[H] |




 𝑑𝜋∗𝜇
𝑑𝜋

Θ

𝜇




−1
∞
(𝐽∗(𝜇) − 𝐽 (Θ, 𝜇)).
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The third line is due to Cauchy-Schwarz, afterwards we used the derivative of the objective

function from Lemma 4.9 and that



 𝜌̃𝜋∗𝜇
𝜌̃𝜋

𝜃
𝜇





∞
=




 𝑑𝜋∗𝜇
𝑑𝜋

𝜃
𝜇





∞
by definition of the state visitation measures

and the reinterpretation of measures. Finally, the last equation is due to Corollary 4.7 from the
performance difference lemma. ■

The term 


 𝑑ℼ∗𝜇
𝑑𝜋

Θ

𝜇





∞
:= max

𝑠∈S

𝑑𝜋
∗

𝜇 (𝑠)
𝑑𝜋

Θ

𝜇 (𝑠)
(4.6)

is again the distribution mismatch coefficient similar to the discounted case (cf. Lemma 3.19).
To ensure that the distribution mismatch coefficient can be bounded from below uniformly in 𝜃
we make the following assumption.

Assumption 4.12. For FT-SimPG we assume that the state space is constant over all epochs, i.e.
Sℎ = S for all epochs.

Remark 4.13. Under Assumption 4.12 it holds 𝑑𝜋Θ

𝜇 (𝑠) ≥ 1
𝐻
𝜇(𝑠) by definition for any policy 𝜋Θ

on the enlarged state space, since

𝑑𝜋
Θ

𝜇 (𝑠) =
1
𝐻

𝐻−1∑︁
ℎ=0

ℙ𝜋Θ

𝜇 (𝑆ℎ = 𝑠) ≥ 1
𝐻
𝜇(𝑠).

Hence, we obtain that

∥∇𝐽 (Θ, 𝜇)∥2 ≥
min𝑠∈S[H] 𝜋Θ (𝑎∗(𝑠) |𝑠)

𝐻
√︁
|S|𝐻




𝑑𝜋∗𝜇
𝜇




−1
∞
(𝐽∗(𝜇) − 𝐽 (Θ, 𝜇)).

Without Assumption 4.12 for 𝑠 ∈ S and 𝑠 ∉ S0 we cannot bound
∑𝐻−1
ℎ=0 ℙ𝜋Θ

𝜇 (𝑆ℎ = 𝑠) with 𝜇, as 𝜇
is only defined on S0.
As already pointed out in Mei et al. [Mei+20] one key challenge in providing global convergence
is to bound the term min𝑠∈S 𝜋Θ (𝑎∗

ℎ
(𝑠) |𝑠) from below uniformly in Θ appearing in the gradient

ascent updates. Techniques introduced in Agarwal et al. [Aga+21] can be extended to the
finite-horizon setting to prove asymptotic convergence towards global optima (see Appendix A).
This will be used to bound 𝑐 = 𝑐(Θ (1) ) = inf𝑛min𝑠∈S 𝜋Θ (𝑛) (𝑎∗

ℎ
(𝑠) |𝑠) > 0.

Lemma 4.14. Let 𝜇 be a probability measure such that 𝜇(𝑠) > 0 for all 𝑠 ∈ S, let Assumption 4.12
holds true and let 0 < 𝛼 ≤ 1

5𝐻2𝑅∗
. Consider the sequence (Θ (𝑛) ) generated by FT-SimPG (Algo-

rithm 4) under softmax parametrization with arbitrary Θ (1) ∈ ℛ
∑
ℎ 𝑑ℎ . Then, 𝑐 = 𝑐(𝜃(1) ) =

inf𝑛min𝑠∈S[H] 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) > 0.

Proof. The proof is adapted from the discounted setting in Mei et al. [Mei+20, Lem. 9] to the
finite-time horizon setting.
We will drop the 𝜇 in 𝐽 (Θ, 𝜇) for the rest of the proof to save notation.
Define for all 𝑠 ∈ S[H] ,

Δ∗(𝑠) = 𝑄∞(𝑠, 𝑎∗ℎ(𝑠)) − max
𝑎≠𝑎∗ (𝑠)

𝑄∞(𝑠, 𝑎) > 0, and Δ∗ = min
𝑠∈S[H]

Δ∗(𝑠) > 0,
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where 𝑄∞ is the optimal 𝑄-function on the enlarged state space from Lemma A.2.
Now consider for any 𝑠 ∈ S[H] the following sets

ℛ1(𝑠) =
{
Θ :

𝜕𝐽 (Θ)
𝜕𝜃(𝑠, 𝑎∗(𝑠)) ≥

𝜕𝐽 (Θ)
𝜕𝜃(𝑠, 𝑎) , for all 𝑎 ≠ 𝑎∗(𝑠)

}
,

ℛ2(𝑠) =
{
Θ : 𝑄𝜋Θ (𝑠, 𝑎∗(𝑠)) ≥ 𝑄∞(𝑠, 𝑎∗(𝑠)) − Δ∗(𝑠)

2

}
,

ℛ3(𝑠) =
{
Θ (𝑛) : 𝑉𝜋

Θ (𝑛) (𝑠) ≥ 𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) − Δ∗(𝑠)
2

, for all 𝑛 ≥ 1 large enough
}
.

Furthermore, for any 𝑠 ∈ S[H] we define 𝑐(𝑠) = |𝒜 |𝐻𝑅
∗

Δ∗ (𝑠) − 1 and

𝑁𝑐 (𝑠) =
{
Θ : 𝜋Θ (𝑎∗(𝑠) |𝑠) ≥ 𝑐(𝑠)

𝑐(𝑠) + 1

}
.

We divide the proof into the following Claims:

1. ℛ(𝑠) = ℛ1(𝑠) ∩ℛ2(𝑠) ∩ℛ3(𝑠) is a nice region, i.e.

(i) Θ (𝑛) ∈ ℛ(𝑠) ⇒ Θ (𝑛+1) ∈ ℛ(𝑠).
(ii) 𝜋Θ (𝑛+1) (𝑎∗(𝑠) |𝑠) ≥ 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠).

2. N𝑐 (𝑠) ∩ℛ2(𝑠) ∩ℛ3(𝑠) ⊂ ℛ1(𝑠) ∩ℛ2(𝑠) ∩ℛ3(𝑠).

3. For every 𝑠 ∈ S[H] , there exists a finite-time 𝑛0(𝑠) ≥ 1, such that

𝜃(𝑛0 (𝑠) ) ∈ N𝑐 (𝑠) ∩ℛ2(𝑠) ∩ℛ3(𝑠) ⊂ ℛ1(𝑠) ∩ℛ2(𝑠) ∩ℛ3(𝑠)

and thus
inf
𝑛≥1

𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) = min
1≤𝑛≤𝑛0 (𝑠)

𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠)

.

If all three claims hold true, we can finally define 𝑛0 = max𝑠∈S[H] 𝑛0(𝑠), such that

inf
𝑛≥1

min
𝑠∈S[H]

𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) = min
1≤𝑛≤𝑛0

min
𝑠∈S[H]

𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) > 0.

Due to the positiveness of the softmax parametrization the assertion follows.
Claim 1. We first prove (i). Let Θ (𝑛) ∈ ℛ(𝑠) and 𝑎 ≠ 𝑎∗(𝑠). Then Θ (𝑛+1) ∈ ℛ3(𝑠) by definition
of ℛ3(𝑠). To see that Θ (𝑛+1) ∈ ℛ2(𝑠) assume that 𝑠 belongs to the epoch ℎ such that

𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎∗(𝑠)) = 𝑄𝜋Θ (𝑛+1)

ℎ (𝑠, 𝑎∗(𝑠))

= 𝑄𝜋Θ (𝑛)

ℎ (𝑠, 𝑎∗(𝑠)) + 𝑄𝜋Θ (𝑛+1)

ℎ (𝑠, 𝑎∗(𝑠)) − 𝑄𝜋Θ (𝑛)

ℎ (𝑠, 𝑎∗(𝑠))

= 𝑄𝜋Θ (𝑛)

ℎ (𝑠, 𝑎∗(𝑠)) + 𝑟(𝑠, 𝑎∗(𝑠)) +
∑︁
𝑠′S[H]

𝑝(𝑠′ |𝑠, 𝑎∗(𝑠))𝑉𝜋Θ (𝑛+1)

ℎ+1 (𝑠′)

− 𝑟(𝑠, 𝑎∗(𝑠)) −
∑︁
𝑠′S[H]

𝑝(𝑠′ |𝑠, 𝑎∗(𝑠))𝑉𝜋Θ (𝑛)

ℎ+1 (𝑠
′)
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= 𝑄𝜋Θ (𝑛)

ℎ (𝑠, 𝑎∗(𝑠)) +
∑︁
𝑠′S[H]

𝑝(𝑠′ |𝑠, 𝑎∗(𝑠))
(
𝑉𝜋

Θ (𝑛+1)

ℎ+1 (𝑠′) − 𝑉𝜋Θ (𝑛)

ℎ+1 (𝑠
′)
)

≥ 𝑄𝜋Θ (𝑛)

ℎ (𝑠, 𝑎∗(𝑠)) = 𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠))

≥ 𝑄∞(𝑠, 𝑎∗(𝑠)) − Δ∗(𝑠)
2

,

where the first inequality is due to monotonicity of 𝑉𝜋Θ (𝑛+1) (𝑠′) in 𝑛 for every 𝑠′ ∈ S[H] and the
last inequality follows from Θ (𝑛) ∈ ℛ2(𝑠).
Next we show Θ (𝑛+1) ∈ ℛ1(𝑠). Therefore we first show that

𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) − 𝑄𝜋Θ (𝑛) (𝑠, 𝑎) ≥ Δ∗(𝑠)
2

, (4.7)

for all 𝑎 ≠ 𝑎∗(𝑠). This holds true, because

𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) − 𝑄𝜋Θ (𝑛) (𝑠, 𝑎)

= 𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) − 𝑄∞(𝑠, 𝑎∗(𝑠)) + 𝑄∞(𝑠, 𝑎∗(𝑠)) − 𝑄𝜋Θ (𝑛) (𝑠, 𝑎)

≥ −Δ
∗(𝑠)
2
+ 𝑄∞(𝑠, 𝑎∗(𝑠)) − 𝑄∞(𝑠, 𝑎) + 𝑄∞(𝑠, 𝑎) − 𝑄𝜋Θ (𝑛) (𝑠, 𝑎)

≥ −Δ
∗(𝑠)
2
+ Δ∗(𝑠) +

∑︁
𝑠′∈S[H]

𝑝(𝑠′ |𝑠, 𝑎) (𝑉∞(𝑠′) − 𝑉𝜋Θ (𝑛) (𝑠′))

≥ Δ∗(𝑠)
2

.

The first inequality follows from Θ (𝑛) ∈ ℛ2(𝑠), second by the definition of Δ∗(𝑠) and the last
from mononicity of 𝑉𝜋Θ (𝑛) (𝑠′) for every 𝑠′ and 𝑉∞ beeing the limit. Using Lemma 4.9 we obtain
for any 𝑎 ≠ 𝑎∗(𝑠) that

𝜕𝐽 (Θ (𝑛) )
𝜕𝜃(𝑠, 𝑎∗(𝑠)) ≥

𝜕𝐽 (Θ (𝑛) )
𝜕𝜃(𝑠, 𝑎)

⇔ 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠)
(
𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) − 𝑉𝜋Θ (𝑛) (𝑠)

)
≥ 𝜋Θ (𝑛) (𝑎|𝑠)

(
𝑄𝜋Θ (𝑛) (𝑠, 𝑎) − 𝑉𝜋Θ (𝑛) (𝑠)

)
.

(4.8)

We divide into two cases:

a) 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) ≥ 𝜋Θ (𝑛) (𝑎|𝑠),

b) 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) < 𝜋Θ (𝑛) (𝑎|𝑠).

In 𝑎) the assumption 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) ≥ 𝜋Θ (𝑛) (𝑎|𝑠) implies 𝜃(𝑛) (𝑠, 𝑎∗(𝑠)) ≥ 𝜃(𝑛) (𝑠, 𝑎). Thus,

𝜃(𝑛+1) (𝑠, 𝑎∗(𝑠)) = 𝜃(𝑛) (𝑠, 𝑎∗(𝑠)) + 𝜂 𝜕𝐽 (Θ (𝑛) )
𝜕𝜃(𝑛) (𝑠, 𝑎∗(𝑠))

≥ 𝜃(𝑛) (𝑠, 𝑎) + 𝜂 𝜕𝐽 (Θ (𝑛) )
𝜕𝜃(𝑛) (𝑠, 𝑎)

= 𝜃(𝑛+1) (𝑠, 𝑎),
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which implies 𝜋Θ (𝑛+1) (𝑎∗(𝑠) |𝑠) ≥ 𝜋Θ (𝑛+1) (𝑎|𝑠). Moreover, we have

𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎∗(𝑠)) − 𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎) ≥ Δ∗(𝑠)
2
≥ 0,

𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎∗(𝑠)) − 𝑉𝜋Θ (𝑛+1) (𝑠) ≥ 𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎) − 𝑉𝜋Θ (𝑛+1) (𝑠).

Thus, both together yields

𝜋Θ (𝑛+1) (𝑎∗(𝑠) |𝑠)
(
𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎∗(𝑠)) − 𝑉𝜋Θ (𝑛+1) (𝑠)

)
≥ 𝜋Θ (𝑛+1) (𝑎|𝑠)

(
𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎) − 𝑉𝜋Θ (𝑛+1) (𝑠)

)
,

which is by equation (4.8) equivalent to

𝜕𝐽 (Θ (𝑛+1) )
𝜕𝜃(𝑛+1) (𝑠, 𝑎∗(𝑠))

≥ 𝜕𝐽 (Θ (𝑛+1) )
𝜕𝜃(𝑛+1) (𝑠, 𝑎)

.

Hence, Θ (𝑛+1) ∈ ℛ1(𝑠).
In 𝑏) assume now that 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) < 𝜋Θ (𝑛) (𝑎|𝑠). As Θ (𝑛) ∈ ℛ1(𝑠), equation (4.8) is also true
in this case and rearranging of terms gives

𝜕𝐽 (Θ (𝑛) )
𝜕𝜃(𝑛) (𝑠, 𝑎∗(𝑠))

≥ 𝜕𝐽 (Θ (𝑛) )
𝜕𝜃(𝑛) (𝑠, 𝑎)

⇔ 𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) − 𝑄𝜋Θ (𝑛) (𝑠, 𝑎) ≥
(
1 − 𝜋

Θ (𝑛) (𝑎∗(𝑠) |𝑠)
𝜋Θ (𝑛) (𝑎|𝑠)

) (
𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) − 𝑉𝜋Θ (𝑛) (𝑠)

)
⇔ 𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) − 𝑄𝜋Θ (𝑛) (𝑠, 𝑎) ≥

(
1 − exp(𝜃(𝑛) (𝑠, 𝑎∗(𝑠)) − 𝜃(𝑛) (𝑠, 𝑎)

) (
𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) − 𝑉𝜋Θ (𝑛) (𝑠)

)
.

(4.9)

Note next that by Θ (𝑛) ∈ ℛ1(𝑠) and definition of ℛ1(𝑠) we have

𝜃(𝑛+1) (𝑠, 𝑎∗(𝑠)) − 𝜃(𝑛+1) (𝑠, 𝑎)

= 𝜃(𝑛) (𝑠, 𝑎∗(𝑠)) + 𝜂 𝜕𝐽 (Θ (𝑛) )
𝜕𝜃(𝑛) (𝑠, 𝑎∗(𝑠))

− 𝜃(𝑛) (𝑠, 𝑎) − 𝜂 𝜕𝐽 (Θ (𝑛) )
𝜕𝜃(𝑛) (𝑠, 𝑎)

≥ 𝜃(𝑛) (𝑠, 𝑎∗(𝑠)) − 𝜃(𝑛) (𝑠, 𝑎)

and is follows
(
1−exp(𝜃(𝑛+1) (𝑠, 𝑎∗(𝑠)) −𝜃(𝑛+1) (𝑠, 𝑎))

)
≤

(
1−exp(𝜃(𝑛) (𝑠, 𝑎∗(𝑠)) −𝜃(𝑛) (𝑠, 𝑎))

)
< 1

by assumption 𝑏). We already knowΘ (𝑛+1) ∈ ℛ3(𝑠) and therefore𝑉𝜋Θ (𝑛+1) (𝑠) ≥ 𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎∗(𝑠))−
Δ∗ (𝑠)
2 . This leads to

𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎∗(𝑠)) − 𝑉𝜋Θ (𝑛+1) (𝑠) ≤ Δ∗(𝑠)
2
≤ 𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎∗(𝑠)) − 𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎),

where the last inequality is due to equation (4.7). Combining everything leads to(
1 − exp(𝜃(𝑛+1) (𝑠, 𝑎∗(𝑠)) − 𝜃(𝑛+1) (𝑠, 𝑎))

) [
𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎∗(𝑠)) − 𝑉𝜋Θ (𝑛+1) (𝑠)

]
≤ 𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎∗(𝑠)) − 𝑄𝜋Θ (𝑛+1) (𝑠, 𝑎),
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which is by equation (4.9) equivalent to Θ (𝑛+1) ∈ ℛ1(𝑠).
Now we come to Claim (ii).

𝜋Θ (𝑛+1) (𝑎∗(𝑠) |𝑠)

=
exp(𝜃(𝑛+1) (𝑠, 𝑎∗(𝑠)))∑
𝑎∈𝒜

exp(𝜃(𝑛+1) (𝑠, 𝑎))

=
exp(𝜃(𝑛) (𝑠, 𝑎∗(𝑠)) + 𝜂 𝜕𝐽 (Θ (𝑛) )

𝜕𝜃(𝑛) (𝑠,𝑎∗ (𝑠) ) )∑
𝑎∈𝒜

exp(𝜃(𝑛) (𝑠, 𝑎) + 𝜂 𝜕𝐽 (Θ (𝑛) )
𝜕𝜃(𝑛) (𝑠,𝑎) )

≥
exp(𝜃(𝑛) (𝑠, 𝑎∗(𝑠))) exp(𝜂 𝜕𝐽 (Θ (𝑛) )

𝜕𝜃(𝑛) (𝑠,𝑎∗ (𝑠) ) )∑
𝑎∈𝒜

exp(𝜃(𝑛) (𝑠, 𝑎)) exp(𝜂 𝜕𝐽 (Θ (𝑛) )
𝜕𝜃(𝑛) (𝑠,𝑎∗ (𝑠) ) )

= 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠),

where the inequality follows by Θ (𝑛) ∈ ℛ1(𝑠).
Claim 2. Assume Θ ∈ N𝑐 (𝑠) ∩ℛ2(𝑠) ∩ℛ3(𝑠) and divide again in two cases. If 𝑎) 𝜋Θ (𝑎∗(𝑠) |𝑠) ≥
max
𝑎∈𝒜

𝜋Θ (𝑎|𝑠), then for all 𝑎 ≠ 𝑎∗(𝑠) we have

𝜕𝐽 (Θ)
𝜕𝜃(𝑠, 𝑎∗(𝑠))
= 𝜌̃𝜋

Θ

𝜇 (𝑠)𝜋Θ (𝑎∗(𝑠) |𝑠)𝐴𝜋Θ (𝑠, 𝑎∗(𝑠))

≥ 𝜌̃𝜋
Θ

𝜇 (𝑠)𝜋Θ (𝑎|𝑠)𝐴𝜋Θ (𝑠, 𝑎)

=
𝜕𝐽 (Θ)
𝜕𝜃(𝑠, 𝑎) .

Where the inequality follows from 𝐴𝜋
Θ (𝑠, 𝑎∗(𝑠))−𝐴𝜋Θ (𝑠, 𝑎) = 𝑄𝜋Θ (𝑠, 𝑎∗(𝑠))−𝑄𝜋Θ (𝑠, 𝑎) ≥ Δ∗ (𝑠)

2 > 0
by equation (4.7). Hence, Θ ∈ ℛ1(𝑠).
The case 𝑏) where 𝜋Θ (𝑎∗(𝑠) |𝑠) < max

𝑎∈𝒜
𝜋Θ (𝑎|𝑠) is not possible for Θ ∈ N𝑐 (𝑠). Assume there exists

𝑎 ≠ 𝑎∗(𝑠) such that 𝜋Θ (𝑎∗(𝑠) |𝑠) < 𝜋Θ (𝑎|𝑠). Then

𝜋Θ (𝑎∗(𝑠) |𝑠) + 𝜋Θ (𝑎|𝑠) > 2𝑐(𝑠)
𝑐(𝑠) + 1 =

2 |𝒜 |𝐻𝑅∗
Δ∗ (𝑠) − 2
|𝒜 |𝐻𝑅∗
Δ∗ (𝑠)

= 2 − 2Δ∗(𝑠)
|𝒜|𝐻𝑅∗ ≥ 2 − 2

|𝒜| ≥ 1,

because Δ∗(𝑠) ≤ 𝐻𝑅∗ by definition and |𝒜| ≥ 2. This is a contradiction as 𝜋Θ is a probability
distribution and Claim 2 is proven.
Claim 3. By the asymptotic convergence in Theorem A.1, we have that 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) → 1 for
𝑛→∞. Thus, there exists an 𝑁0(𝑠) > 0, such that 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) ≥ 𝑐(𝑠)

𝑐(𝑠)+1 for all 𝑛 ≥ 𝑁0(𝑠), i.e.
Θ (𝑛) ∈ 𝑁𝑐 (𝑠) for all 𝑛 ≥ 𝑁0(𝑠).
Furthermore, as 𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) → 𝑄∞(𝑠, 𝑎∗(𝑠)) for 𝑛→∞ there exists 𝑁1(𝑠) such that Θ (𝑛) ∈
ℛ2(𝑠) for all 𝑛 ≥ 𝑁1(𝑠).
Moreover, as 𝑄𝜋Θ (𝑛) (𝑠, 𝑎∗(𝑠)) → 𝑄∞(𝑠, 𝑎∗(𝑠)) = 𝑉∞(𝑠) and 𝑉𝜋Θ (𝑛) (𝑠) → 𝑉∞(𝑠) for 𝑛→ ∞ there
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exists 𝑁2(𝑠) such that Θ (𝑛) ∈ ℛ3(𝑠) for all 𝑛 ≥ 𝑁2(𝑠).
We choose 𝑛0(𝑠) = max{𝑁0(𝑠), 𝑁1(𝑠), 𝑁2(𝑠)} which proves Claim 3.

■

Global convergence. Combining smoothness and the gradient domination property results in
the following global convergence result.

Theorem 4.15. Under Assumption 4.12, let 𝜇 be a probability measure such that 𝜇(𝑠) > 0 for
all 𝑠 ∈ S, let 𝛼 = 1

5𝐻2𝑅∗
and consider the sequence (Θ (𝑛) ) generated by FT-SimPG (Algorithm 4)

under softmax parametrization with arbitrary initialization Θ (1) . For 𝜖 > 0 choose the number of
training steps as 𝑁 =

10𝐻5𝑅∗ |S |
𝑐2𝜖




 𝑑𝜋∗𝜇𝜇 


2
∞
. Then it holds that

𝑉∗0 (𝜇) − 𝑉𝜋
Θ (𝑁 )

0 (𝜇) ≤ 𝜖.
Proof. We will show that

𝐽∗(𝜇) − 𝐽 (Θ (𝑛) , 𝜇) = 𝑉∗0 (𝜇) − 𝑉𝜋
Θ (𝑛)

0 (𝜇) ≤ 10𝐻5𝑅∗ |S|
𝑐2𝑛




𝑑𝜋∗𝜇
𝜇




2
∞
,

then the claim follows immediately from this.

We apply Theorem 2.11 with 𝑓 = 𝐽 (·, 𝜇), 𝛼 = 5𝐻2𝑅∗ and 𝑏 = 𝑐2

|S |𝐻3 ∥
𝑑𝜋
∗

𝜇

𝜇
∥−2. Note for 𝑏 the

evaluations in Remark 4.13.
It remains to check that for any Θ (1) we have

𝐽∗(𝜇) − 𝐽 (Θ (1) , 𝜇) ≤ 2𝐻2𝑅∗5𝐻2𝐻 |S|
𝑐2




𝑑𝜋∗𝜇
𝜇




2
∞
.

This is directly given by the bounded rewards in Assumption 4.5 and the fact that 𝑐 < 1 (𝜋 is a

probability kernel) and



 𝑑𝜋∗𝜇𝜇 


2

∞
> 1. Thus, we yield the claim

𝐽∗(𝜇) − 𝐽 (Θ (𝑛) , 𝜇) ≤ 10𝐻5𝑅∗ |S|
𝑐2𝑛




𝑑𝜋∗𝜇
𝜇




2
∞
.

■

Remark 4.16. One can compare this result to Theorem 3.21 for discounted infinite-time horizon
MDPs. A discounted MDP can be seen as an undiscounted MDP stopped at an independent
geometric random variable with mean (1− 𝛾)−1 (cf. Remark 3.17). Thus, it comes as no surprise
that algorithms with deterministic absorption time 𝐻 have analogous estimates with 𝐻 instead
of (1 − 𝛾)−1.
In the discounted setting we obtained the factor (1 − 𝛾)−4, where a power of 2 is due to the
smoothness constant and a power of 2 is due to the distribution mismatch coefficient from the
gradient domination property. Comparing to our results for FT-SimPG, the smoothness of order
𝐻2𝑅∗ leads to a 𝐻2 in the convergence rate, then the distribution mismatch coefficient adds
another 𝐻2 and the additional 𝐻 comes from the enlarged state space, as the cardinality of the
enlarged state space under Assumption 4.12 is |S[H] | = |S|𝐻.
Moreover, it cannot be proven that 𝑐 is independent of 𝐻. We omitted this dependency when we
compare to the discounted case because the model dependent constant there could also depend
on 𝛾 in the same sense.
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4.2.2 Finite-time Dynamic Policy Gradient
We now come to the first main contribution of this thesis, an improved convergence bound for the
FT-DynPG algorithm. The optimization objectives 𝐽ℎ are defined in equation (4.5). The structure
of proving convergence is as follows. For each fixed ℎ ∈ H we provide global convergence given
that the policy after ℎ is fixed and denoted by ℼ̃. After having established bounds for each
decision epoch, we apply backwards induction to derive complexity bounds on the total error
accumulated over all decision epochs. The 𝐿-smoothness for different 𝐽ℎ is then reflected in
different training steps for different epochs. The backwards induction setting can be described
as a nested sequence of contextual bandits (one-step MDPs) and thus, can be analysed using
results from the discounted setting by choosing 𝛾 = 0.

Smoothness. Parallel to the simultaneous approach we start with the explicit derivative of the
objective under softmax parametrization.

Lemma 4.17. For fix ℎ ∈ H, the partial derivative of the objective under softmax parametrization
defined in equation (4.5) is given by:

𝜕𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ)
𝜕𝜃ℎ(𝑠, 𝑎)

= 𝜇ℎ(𝑠)𝜋𝜃ℎ (𝑎|𝑠)𝐴
(𝜋𝜃ℎ ,ℼ̃(ℎ+1) )
ℎ

(𝑠, 𝑎),

for every 𝑠 ∈ Sℎ and 𝑎 ∈ 𝒜𝑠

Proof. By the policy gradient Theorem 4.4,

∇𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ) = ∇𝔼𝑠∼𝜇ℎ [𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝛿𝑠)]
=

∑︁
𝑠∈S

𝜇ℎ(𝑠)∇𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝛿𝑠)

=
∑︁
𝑠∈S

𝜇ℎ(𝑠)𝔼𝑆ℎ=𝑠,𝐴ℎ∼𝜋𝜃ℎ ( · |𝑠) [∇ log(𝜋
𝜃ℎ (𝐴ℎ |𝑆ℎ))𝑄ℼ̃

ℎ (𝑆ℎ, 𝐴ℎ)].

Next we plug in the derivative of the softmax parametrization, i.e. equation (3.13), and obtain

∇𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ)

=
∑︁
𝑠∈S

𝜇ℎ(𝑠)𝔼𝑆ℎ=𝑠,𝐴ℎ∼𝜋𝜃ℎ ( · |𝑠)
[(
1{𝑆ℎ=𝑠′ } (1{𝐴ℎ=𝑎′ } − 𝜋𝜃ℎ (𝑎′ |𝑠′))

)
𝑠′∈Sℎ,𝑎′∈𝒜𝑠′

𝑄ℼ̃
ℎ (𝑆ℎ, 𝐴ℎ)

]
=

(∑︁
𝑠∈S

𝜇ℎ(𝑠)
∑︁
𝑎∈𝒜𝑠

𝜋𝜃ℎ (𝑎|𝑠)1{𝑠=𝑠′} (1{𝑎=𝑎′} − 𝜋𝜃ℎ (𝑎′ |𝑠′))𝑄ℼ̃
ℎ (𝑠, 𝑎)

)
𝑠′∈Sℎ,𝑎′∈𝒜𝑠′

=

(
𝜇ℎ(𝑠′)𝜋𝜃ℎ (𝑎′ |𝑠′)𝑄ℼ̃

ℎ (𝑠
′, 𝑎′) − 𝜇ℎ(𝑠′)𝜋𝜃ℎ (𝑎′ |𝑠′)

∑︁
𝑎∈𝒜𝑠′

𝜋𝜃(𝑎|𝑠′)𝑄ℼ̃
ℎ (𝑠
′, 𝑎)

)
𝑠′∈Sℎ,𝑎′∈𝒜𝑠′

=

(
𝜇ℎ(𝑠′)𝜋𝜃ℎ (𝑎′ |𝑠′) (𝑄ℼ̃

ℎ (𝑠
′, 𝑎′) − 𝑉 (𝜋

𝜃ℎ ,ℼ̃(ℎ+1) )
ℎ

(𝑠′))
)
𝑠′∈Sℎ,𝑎′∈𝒜𝑠′

=

(
𝜇ℎ(𝑠′)𝜋𝜃ℎ (𝑎′ |𝑠′)𝐴

(𝜋𝜃ℎ ,ℼ̃(ℎ+1) )
ℎ

(𝑠′, 𝑎′)
)
𝑠′∈Sℎ,𝑎′∈𝒜𝑠′

,

where we used that
∑
𝑎∈𝒜𝑠′ 𝜋

𝜃ℎ (𝑎|𝑠′)𝑄ℼ̃
ℎ
(𝑠′, 𝑎) = 𝑉 (𝜋

𝜃,ℼ̃(ℎ+1) )
ℎ

(𝑠′) = 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝛿𝑠′). ■
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We deduce directly, that each objective 𝐽ℎ from equation (4.5) is a smooth function in 𝜃ℎ.

Lemma 4.18. Let ℎ ∈ H, then the objective 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ) under softmax parametrization from
equation (4.5) is smooth in 𝜃ℎ with parameter 𝐿ℎ = 2(𝐻 − ℎ)𝑅∗.

Proof. Note that we can interpret the objective function 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ) as a value function of
a one-step discounted MDP with 𝛾 = 0 and bounded rewards between [0, 𝑅∗(𝐻 − ℎ)]. Hence, we
can use Yuan, Gower, and Lazaric [YGL22, Lem 4.4 and 4.8] to obtain that the softmax policy
𝜋𝜃ℎ fulfills the desired properties with

𝔼𝐴∼𝜋𝜃ℎ

[
| |∇ log𝜋𝜃ℎ (𝐴|𝑠) | |22

]
≤ 1 − 1

|𝒜𝑠 |
≤ 1 ∀𝑠 ∈ S

𝔼𝐴∼𝜋𝜃ℎ

[
| |∇2 log𝜋𝜃ℎ (𝐴|𝑠) | |2

]
≤ 1,

which leads to a smoothness constant 𝐿ℎ = 2(𝐻 − ℎ)𝑅∗ for the objective function 𝐽ℎ. ■

It is crucial to keep in mind that classical theory from non-convex optimization tells us that less
smooth (large 𝐿) functions must be trained with more gradient steps as they require a smaller
step size (cf. Theorem 2.10). It becomes clear that the FT-DynPG algorithm should spend less
training effort on later epochs (earlier in the algorithm) and more training effort on earlier
epochs (later in the algorithm). In fact, we make use of this observation by applying backwards
induction in order to improve the convergence behavior depending on 𝐻 (see Theorem 4.24).

Weak gradient domination. In the following let ℼ∗ = (𝜋∗
ℎ
)𝐻−1
ℎ=0 ∈ Π𝐻 be a fixed but arbitrary

deterministic optimal policy, such that 𝑎∗
ℎ
(𝑠) = argmax𝑎∈𝒜𝑠

𝜋∗
ℎ
(𝑎|𝑠) is an arbitrary fixed best

action in state 𝑠 ∈ Sℎ (compare to Remark 3.34). We derive the following non-uniform gradient
domination property for any ℎ ∈ H.

Lemma 4.19. Under softmax parametrization, it holds that

∥∇𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ)∥2 ≥ min
𝑠∈Sℎ

𝜋𝜃ℎ (𝑎∗ℎ(𝑠) |𝑠) (𝐽
∗
ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ)).

Proof. First note that by the definition of 𝜋∗
ℎ
, we have 𝐽∗

ℎ
(ℼ̃(ℎ+1) , 𝜇ℎ) = 𝑉

(𝜋∗
ℎ
,ℼ̃(ℎ+1) )

ℎ
(𝜇ℎ), because

the tabular softmax parametrization can approximate any deterministic policy arbitrarily well.
Using the performance difference lemma in the dynamic setting from Corollary 4.7 and the
derivative of the objective given in Lemma 4.17, we obtain


𝜕𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ)

𝜕𝜃ℎ





2

=




 ∑︁
𝑠∈Sℎ

𝜇ℎ(𝑠)
𝜕𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝛿𝑠)

𝜕𝜃ℎ





2

=

[ ∑︁
𝑠′∈Sℎ

∑︁
𝑎′∈𝒜𝑠′

( ∑︁
𝑠∈Sℎ

𝜇ℎ(𝑠)
𝜕𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝛿𝑠)

𝜕𝜃ℎ(𝑠′, 𝑎′)

)2] 1
2

≥
∑︁
𝑠∈Sℎ

𝜇ℎ(𝑠)
���𝜕𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝛿𝑠)

𝜕𝜃ℎ(𝑠, 𝑎∗ℎ(𝑠))

���



54 Chapter 4. Policy Gradient for finite-time MDPs

=
∑︁
𝑠∈Sℎ

𝜇ℎ(𝑠)𝜋𝜃ℎ (𝑎∗ℎ(𝑠) |𝑠)𝐴
(𝜋𝜃ℎ ,ℼ̃(ℎ+1) )
ℎ

(𝑠, 𝑎∗ℎ(𝑠))

=
∑︁
𝑠∈Sℎ

𝜇ℎ(𝑠)𝜋𝜃ℎ (𝑎∗ℎ(𝑠) |𝑠)
(
𝐽∗ℎ (ℼ̃(ℎ+1) , 𝛿𝑠) − 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝛿𝑠)

)
≥ min

𝑠∈Sℎ
𝜋𝜃ℎ (𝑎∗ℎ(𝑠) |𝑠)

(
𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ)

)
.

The first inequality is due to the non-negativity of all other terms, and we just drop them. ■

The main challenge is again to bound min𝑠∈S 𝜋𝜃ℎ (𝑎∗ℎ(𝑠) |𝑠) from below uniformly in 𝜃ℎ appearing
in the gradient ascent updates from Algorithm 5. In this setting the required asymptotic
convergence follows directly from the one-step MDP viewpoint using 𝛾 = 0 obtained in Agarwal
et al. [Aga+21, Thm 5] and it holds 𝑐ℎ = inf𝑛∈ℕmin𝑠∈Sℎ 𝜋

𝜃
(𝑛)
ℎ (𝑎∗

ℎ
(𝑠) |𝑠) > 0.

Lemma 4.20. Let 𝜇ℎ be a probability measure such that 𝜇ℎ(𝑠) > 0 for all 𝑠 ∈ Sℎ and let
0 < 𝛼ℎ ≤ 1

2(𝐻−ℎ)𝑅∗ . Consider the sequence (𝜃(𝑛)
ℎ
)𝑛∈ℕ generated by FT-DynPG (Algorithm 5)

under softmax parametrization for arbitrary 𝜃
(1)
ℎ
∈ ℛ𝑑ℎ and future policies ℼ̃. Then, 𝑐ℎ =

inf𝑛∈ℕmin𝑠∈Sℎ 𝜋
𝜃
(𝑛)
ℎ (𝑎∗

ℎ
(𝑠) |𝑠) > 0.

Proof. The idea of the proof is based on Mei et al. [Mei+20, Lemma 5] for bandits and extended
to the contextual bandit case.
Throughout the proof we change notation as follows:

• As we consider a fixed time point ℎ we will only write 𝜃𝑛 instead of 𝜃(𝑛)
ℎ

.

• We denote the objective function by 𝐽ℎ(𝜃) instead of 𝐽ℎ(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ) for a fixed policy ℼ̃
and start distribution 𝜇ℎ. Furthermore, we will just write 𝐽∗

ℎ
instead of 𝐽∗

ℎ
(ℼ̃(ℎ+1) , 𝜇ℎ).

• We will write 𝐽ℎ,𝑠 (𝜃) for the objective function which starts almost surly in 𝑠 ∈ Sℎ, i.e.
𝐽ℎ,𝑠 (𝜃) = 𝐽ℎ(𝜃, ℼ̃(ℎ+1) , 𝛿𝑠).

First note that

𝐽ℎ,𝑠 (𝜃) =
∑︁
𝑎∈𝒜𝑠

𝜋𝜃(𝑎|𝑠)𝑄ℼ̃
ℎ (𝑠, 𝑎),

where 𝑄ℼ̃
ℎ
(𝑠, 𝑎) is independent of 𝜃. We will drop the subscript ℼ̃ in 𝑄ℎ for the rest of the proof

and define for all 𝑠 ∈ Sℎ,

Δ∗(𝑠) = 𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − max
𝑎≠𝑎∗

ℎ
(𝑠)
𝑄ℎ(𝑠, 𝑎) > 0, and Δ∗ = min

𝑠∈Sℎ
Δ∗(𝑠) > 0.

Consider the following sets

ℛ1
ℎ (𝑠) = {𝜃 :

𝜕𝐽ℎ,𝑠 (𝜃)
𝜕𝜃(𝑠, 𝑎∗

ℎ
(𝑠)) ≥

𝜕𝐽ℎ,𝑠 (𝜃)
𝜕𝜃(𝑠, 𝑎) ∀𝑎 ≠ 𝑎∗ℎ(𝑠)}

ℛ2
ℎ (𝑠) = {𝜃 : 𝜋𝜃(𝑎∗ℎ(𝑠) |𝑠) ≥ 𝜋

𝜃(𝑎|𝑠)∀𝑎 ≠ 𝑎∗ℎ(𝑠)}
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Nℎ(𝑠) = {𝜃 : 𝜋𝜃(𝑎∗ℎ(𝑠) |𝑠) ≥
𝑐ℎ(𝑠)

𝑐ℎ(𝑠) + 1
},

for 𝑐ℎ(𝑠) = |𝒜 | (𝐻−ℎ)𝑅
∗

Δ∗
ℎ
(𝑠) −1 and Δ∗

ℎ
(𝑠) = 𝑄ℎ(𝑠, 𝑎∗(𝑠))−max𝑎≠𝑎∗ 𝑄ℎ(𝑠, 𝑎). Then consider the following

Claims:

1. 𝜃𝑛 ∈ ℛ1
ℎ
(𝑠) ⇒ 𝜃𝑛+1 ∈ ℛ1

ℎ
(𝑠),

2. If 𝜃𝑛 ∈ ℛ1
ℎ
(𝑠), then 𝜋𝜃𝑛+1 (𝑎∗

ℎ
(𝑠) |𝑠) ≥ 𝜋𝜃𝑛 (𝑎∗

ℎ
(𝑠) |𝑠),

3. Nℎ(𝑠) ⊂ ℛ2
ℎ
(𝑠) ⊂ ℛ1

ℎ
(𝑠).

Claim 1. Let 𝜃𝑛 ∈ ℛ1
ℎ
(𝑠) and 𝑎 ≠ 𝑎∗

ℎ
(𝑠). Using the derivative of the value function we obtain

𝜕𝐽ℎ,𝑠 (𝜃𝑛)
𝜕𝜃(𝑠, 𝑎∗

ℎ
(𝑠)) ≥

𝜕𝐽ℎ,𝑠 (𝜃𝑛)
𝜕𝜃(𝑠, 𝑎)

⇔ 𝜋𝜃𝑛 (𝑎∗ℎ(𝑠) |𝑠)
(
𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝐽ℎ,𝑠 (𝜃𝑛)

)
≥ 𝜋𝜃𝑛 (𝑎|𝑠)

(
𝑄ℎ(𝑠, 𝑎) − 𝐽ℎ,𝑠 (𝜃𝑛)

)
.

(4.10)

We divide into two cases:

a) 𝜋𝜃𝑛 (𝑎∗
ℎ
(𝑠) |𝑠) ≥ 𝜋𝜃𝑛 (𝑎|𝑠),

b) 𝜋𝜃𝑛 (𝑎∗
ℎ
(𝑠) |𝑠) < 𝜋𝜃𝑛 (𝑎|𝑠).

In 𝑎) the assumption 𝜋𝜃𝑛 (𝑎∗
ℎ
(𝑠) |𝑠) ≥ 𝜋𝜃𝑛 (𝑎|𝑠) implies 𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠)) ≥ 𝜃𝑛(𝑠, 𝑎). Thus,

𝜃𝑛+1(𝑠, 𝑎∗ℎ(𝑠)) = 𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠)) + 𝜂ℎ𝜇ℎ(𝑠)
𝜕𝐽ℎ,𝑠 (𝜃𝑛)

𝜕𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠))

≥ 𝜃𝑛(𝑠, 𝑎) + 𝜂ℎ𝜇ℎ(𝑠)
𝜕𝐽ℎ,𝑠 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

= 𝜃𝑛+1(𝑠, 𝑎),

which implies 𝜋𝜃𝑛+1 (𝑎∗
ℎ
(𝑠) |𝑠) ≥ 𝜋𝜃𝑛+1 (𝑎|𝑠). By the optimality of 𝑎∗

ℎ
(𝑠) we follow

𝜋
𝜃𝑛+1
𝑡 (𝑎∗ℎ(𝑠) |𝑠)

(
𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝐽ℎ,𝑠 (𝜃𝑛+1)

)
≥ 𝜋𝜃𝑛+1𝑡 (𝑎|𝑠)

(
𝑄ℎ(𝑠, 𝑎) − 𝐽ℎ,𝑠 (𝜃𝑛+1)

)
,

which is by equation (4.10) equivalent to

𝜕𝐽ℎ,𝑠 (𝜃𝑛+1)
𝜕𝜃𝑛+1(𝑠, 𝑎∗ℎ(𝑠))

≥
𝜕𝐽ℎ,𝑠 (𝜃𝑛+1)
𝜕𝜃𝑛+1(𝑠, 𝑎)

.

Hence, 𝜃𝑛+1 ∈ ℛ1
ℎ
(𝑠).

In 𝑏) assume now that 𝜋𝜃𝑛 (𝑎∗
ℎ
(𝑠) |𝑠) < 𝜋𝜃𝑛 (𝑎|𝑠). As 𝜃𝑛 ∈ ℛ1

ℎ
(𝑠), equation (4.10) is also true in

this case and rearranging of terms gives

𝜕𝐽ℎ,𝑠 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠))

≥
𝜕𝐽ℎ,𝑠 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

⇔ 𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝑄ℎ(𝑠, 𝑎) ≥
(
1 −

𝜋𝜃𝑛 (𝑎∗
ℎ
(𝑠) |𝑠)

𝜋𝜃𝑛 (𝑎|𝑠)

) (
𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝐽ℎ,𝑠 (𝜃𝑛)

)
⇔ 𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝑄ℎ(𝑠, 𝑎) ≥

(
1 − exp(𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠)) − 𝜃𝑛(𝑠, 𝑎)

) (
𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝐽ℎ,𝑠 (𝜃𝑛)

)
.

(4.11)
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Note next that by 𝜃(𝑛) ∈ ℛ1
ℎ
(𝑠) and definition of ℛ1

ℎ
(𝑠) we have

𝜃𝑛+1(𝑠, 𝑎∗ℎ(𝑠)) − 𝜃𝑛+1(𝑠, 𝑎)

= 𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠)) + 𝜂ℎ𝜇ℎ(𝑠)
𝜕𝐽ℎ,𝑠 (𝜃𝑛)

𝜕𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠))
− 𝜃𝑛(𝑠, 𝑎) − 𝜂ℎ𝜇ℎ(𝑠)

𝜕𝐽ℎ,𝑠 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

≥ 𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠)) − 𝜃𝑛(𝑠, 𝑎)

and is follows
(
1 − exp(𝜃𝑛+1(𝑠, 𝑎∗ℎ(𝑠)) − 𝜃𝑛+1(𝑠, 𝑎))

)
≤

(
1 − exp(𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠)) − 𝜃𝑛(𝑠, 𝑎))

)
< 1 by

assumption 𝑏). By the ascent lemma for smooth functions we get monotonicity in the objective
function, so

𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝐽ℎ,𝑠 (𝜃𝑛+1) ≤ 𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝐽ℎ,𝑠 (𝜃𝑛),

where the last inequality is due to the definition of Δ∗(𝑠). Combining everything leads to(
1 − exp(𝜃𝑛+1(𝑠, 𝑎∗ℎ(𝑠)) − 𝜃𝑛+1(𝑠, 𝑎))

) [
𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝐽ℎ,𝑠 (𝜃𝑛+1)

]
≤

(
1 − exp(𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠)) − 𝜃𝑛(𝑠, 𝑎))

) [
𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝐽ℎ,𝑠 (𝜃𝑛)

]
≤ 𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝑄ℎ(𝑠, 𝑎),

which is by equation (4.11) equivalent to 𝜃𝑛+1 ∈ ℛ1(𝑠).

Claim 2. If 𝜃𝑛 ∈ ℛ1
ℎ
(𝑠), then

𝜋𝜃𝑛+1 (𝑎∗ℎ(𝑠) |𝑠)

=
exp(𝜃𝑛+1(𝑠, 𝑎∗ℎ(𝑠)))∑
𝑎∈𝒜

exp(𝜃𝑛+1(𝑠, 𝑎))

=

exp(𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠)) + 𝜂ℎ𝜇ℎ(𝑠)
𝜕𝐽ℎ,𝑠 (𝜃𝑛 )

𝜕𝜃𝑛 (𝑠,𝑎∗ℎ (𝑠) )
)∑

𝑎∈𝒜𝑠

exp(𝜃𝑛(𝑠, 𝑎) + 𝜂ℎ𝜇ℎ(𝑠) 𝜕𝐽ℎ,𝑠 (𝜃𝑛 )𝜕𝜃𝑛 (𝑠,𝑎) )

≥
exp(𝜃𝑛(𝑠, 𝑎∗ℎ(𝑠))) exp(𝜂ℎ𝜇ℎ(𝑠)

𝜕𝐽ℎ,𝑠 (𝜃𝑛 )
𝜕𝜃𝑛 (𝑠,𝑎∗ℎ (𝑠) )

)∑
𝑎∈𝒜𝑠

exp(𝜃𝑛(𝑠, 𝑎)) exp(𝜂ℎ𝜇ℎ(𝑠) 𝜕𝐽ℎ,𝑠 (𝜃𝑛 )
𝜕𝜃𝑛 (𝑠,𝑎∗ℎ (𝑠) )

)

= 𝜋𝜃𝑛 (𝑎∗ℎ(𝑠) |𝑠),

where the inequality follows by 𝜃𝑛 ∈ ℛ1
ℎ
(𝑠).

Claim 3. Let 𝜃𝑛 ∈ ℛ2
ℎ
(𝑠), then by the optimality of 𝑎∗(𝑠),

𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠) (𝑄ℎ(𝑠, 𝑎∗ℎ(𝑠)) − 𝐽ℎ,𝑠 (𝜃𝑛)) ≥ 𝜋
𝜃𝑛 (𝑎|𝑠) (𝑄ℎ(𝑠, 𝑎) − 𝐽ℎ,𝑠 (𝜃𝑛)) (4.12)

⇔
𝜕𝐽ℎ,𝑠 (𝜃𝑛)

𝜕𝜃𝑛(𝑠, 𝑎∗(𝑠))
≥
𝜕𝐽ℎ,𝑠 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

. (4.13)
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Hence, 𝜃𝑛 ∈ ℛ1
ℎ
(𝑠).

On the other hand, let 𝜃𝑛 ∈ Nℎ(𝑠), then assume there exists 𝑎 ≠ 𝑎∗
ℎ
(𝑠) such that 𝜋𝜃(𝑎∗

ℎ
(𝑠) |𝑠) <

𝜋𝜃(𝑎|𝑠). Then

𝜋𝜃(𝑎∗ℎ(𝑠) |𝑠) + 𝜋
𝜃(𝑎|𝑠) > 2𝑐(𝑠)

𝑐(𝑠) + 1 =

2 |𝒜 | (𝐻−ℎ)𝑅∗
Δ∗
ℎ
(𝑠) − 2

|𝒜 | (𝐻−ℎ)𝑅∗
Δ∗
ℎ
(𝑠)

= 2 −
2Δ∗

ℎ
(𝑠)

|𝒜| (𝐻 − ℎ)𝑅∗ ≥ 2 − 2
|𝒜| ≥ 1,

because Δ∗(𝑠) ≤ (𝐻−ℎ)𝑅∗ by definition and |𝒜| ≥ 2. This is a contradiction as 𝜋𝜃 is a probability
distribution and Claim 3 is proven.
To follow the claim of the lemma from the claims 1, 2 and 3, we need asymptotic convergence
to the global optimum. This is given by Agarwal et al. [Aga+21, Theorem 5], since we can
interpret the objective 𝐽ℎ as a one-step MDP with 𝛾 = 0. Then, assuring that the step size is
smaller than one over the smoothness parameter is enough to use the same proof as provided in
Agarwal et al. [Aga+21]. So, there exists a time 𝑡0 ≥ 1 such that 𝜃 ∈ Nℎ(𝑠) for all 𝑠 ∈ S. Finally,

inf
𝑛
min
𝑠
𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠) = min

1≤𝑛≤𝑡0
min
𝑠
𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠) > 0.

■

There is another subtle advantage in the backwards induction point of view. The contextual
bandit interpretation allows using refinements of estimates for the special case of contextual
bandits. A slight generalization of work of Mei et al. [Mei+20] for stochastic bandits shows that
the unpleasant unknown constants 𝑐ℎ simplify if the PG algorithm is uniformly initialized:

Proposition 4.21. For fixed ℎ ∈ H, let 𝜇ℎ be a probability measure such that 𝜇ℎ(𝑠) > 0 for
all 𝑠 ∈ Sℎ and let 0 < 𝛼ℎ ≤ 1

2(𝐻−ℎ)𝑅∗ . Consider the sequence (𝜃
(𝑛)
ℎ
)𝑛∈ℕ generated in epoch ℎ by

FT-DynPG (Algorithm 5) under softmax parametrization for arbitrary future policies ℼ̃. Further,
let 𝜃(1)

ℎ
∈ ℛ𝑑ℎ be an initialization such that the initial policy is a uniform distribution, then

𝑐ℎ = inf𝑛∈ℕmin𝑠∈Sℎ 𝜋
𝜃
(𝑛)
ℎ (𝑎∗

ℎ
(𝑠) |𝑠) = 1

|𝒜 | .

Proof. From the proof of the previous Lemma 4.20, we obtain that a uniform initialization,
implies that 𝜃(1)

ℎ
∈ ℛ2

ℎ
(𝑠) for all 𝑠 ∈ Sℎ . Therefore, 𝜃(𝑛)ℎ

∈ ℛ1
ℎ
(𝑠) for all 𝑛 ≥ 1 and from Claim 2

we have

𝑐ℎ = inf
𝑛
min
𝑠
𝜋𝜃
(𝑛)
ℎ (𝑎∗(𝑠) |𝑠) = min

𝑠
𝜋𝜃
(1)
ℎ (𝑎∗(𝑠) |𝑠) = 1

|𝒜| .

■

Remark 4.22. This property is in sharp contrast to the simultaneous approach, where to the best
of our knowledge it is not known how to lower bound 𝑐 explicitly. Comparing the proofs of 𝑐 > 0
and 𝑐ℎ > 0 one can see that this advantage comes from the backward inductive approach and is
due to fixed future policies which are not changing during training.

Global convergence. For fixed decision epoch ℎ combining 𝐿-smoothness and weak gradient
domination yields the following global convergence result for the FT-DynPG.
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Lemma 4.23. For fixed ℎ ∈ H, let 𝜇ℎ be a probability measure such that 𝜇ℎ(𝑠) > 0 for all 𝑠 ∈ Sℎ,
let 𝛼ℎ = 1

2(𝐻−ℎ)𝑅∗ and consider the sequence (𝜃(𝑛)
ℎ
) generated by FT-DynPG (Algorithm 5) under

softmax parametrization with arbitrary initialization 𝜃(1)
ℎ

and future policies ℼ̃. For 𝜖 > 0 choose
the number of training steps as 𝑁ℎ = 4(𝐻−ℎ)𝑅∗

𝑐2
ℎ
𝜖

. Then, it holds that

𝑉
(𝜋∗

ℎ
,ℼ̃(ℎ+1) )

ℎ
(𝜇ℎ) − 𝑉

(𝜋𝜃
(𝑁ℎ )
ℎ ,ℼ̃(ℎ+1) )

ℎ
(𝜇ℎ) ≤ 𝜖

Moreover, if 𝜃(1)
ℎ

initializes the uniform distribution the constants 𝑐ℎ can be replaced by 1
|A | .

Proof. First, note that𝑉 (𝜋
∗
ℎ
,ℼ̃(ℎ+1) )

ℎ
(𝜇ℎ) = 𝐽∗

ℎ
(ℼ̃(ℎ+1) , 𝜇ℎ) and𝑉

(𝜋𝜃
(𝑛)
ℎ ,ℼ̃(ℎ+1) )

ℎ
(𝜇ℎ) = 𝐽ℎ(𝜃(𝑛)ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ)
by definition of 𝐽ℎ and choice of 𝜋∗

ℎ
. We will proof

𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃
(𝑛)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ) ≤

4(𝐻 − ℎ)𝑅∗

𝑐2
ℎ
𝑛

,

Then the claim follows directly from this.
We use the same arguments as in the proof of Theorem 4.15 and apply Theorem 2.11, with
objective function 𝑓 = 𝐽ℎ(·, ℼ̃(ℎ+1) , 𝜇ℎ) and step size 𝛼 = 𝛼ℎ. By 𝐿 = 1

𝛼ℎ
smoothness and weak

gradient domination with 𝑏 = 𝑐ℎ along the gradient trajectory, we only need to assure that

𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃
(1)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ) ≤

2
𝛼𝑏2

.

It holds that

𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃
(1)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ) ≤ (𝐻 − ℎ)𝑅∗ ≤

4(𝐻 − ℎ)𝑅∗

𝑐2
ℎ

=
2𝐿ℎ
𝑐2
ℎ

=
2
𝛼𝑏2

and the claim follows. ■

The error bound depends on the time horizon up to the last time point, meaning intuitively that
an optimal policy for earlier time points in the MDP (smaller ℎ) is harder to achieve and requires
a longer learning period then later time points (ℎ near to 𝐻). We remark that the assumption on
𝜇ℎ is not a sharp restriction and can be achieved by using a strictly positive start distribution 𝜇
on S0 followed by a uniformly distributed policy. Note that assuming a positive start distribution
is common in the literature and Mei et al. [Mei+20] showed the necessity of this assumption.
Accumulating errors over time we can now derive the analogous estimates to the simultaneous
PG approach. We obtain a linear accumulation such that an 𝜖

𝐻
-error in each time point ℎ results

in an overall error of 𝜖 which appears naturally from the dynamic programming structure of the
algorithm.

Theorem 4.24. For all ℎ ∈ H, let 𝜇ℎ be probability measures such that 𝜇ℎ(𝑠) > 0 for all 𝑠 ∈ Sℎ,
let 𝛼ℎ = 1

2(𝐻−ℎ)𝑅∗ . For 𝜖 > 0 choose the number of training steps as 𝑁ℎ =
4(𝐻−ℎ)𝐻𝑅∗

𝑐2
ℎ
𝜖



 1
𝜇ℎ




∞.

Then for the final policy generated by FT-DynPG (Algorithm 5) under softmax parametrization,
ℼ̂∗ = (𝜋𝜃

(𝑁0 )
0 , . . . , 𝜋𝜃

(𝑁𝐻−1 )
𝐻−1 ), it holds for all 𝑠 ∈ S0 that

𝑉∗0 (𝑠) − 𝑉 ℼ̂∗
0 (𝑠) ≤ 𝜖.

If 𝜃(1)
ℎ

initializes the uniform distribution the constants 𝑐ℎ can be replaced by 1
|A | .
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Proof. First note that by our choice of the future policy ℼ̃ = ℼ̂∗ we have

𝐽ℎ(𝜃(𝑁ℎ )ℎ
, ℼ̃(ℎ+1) , 𝛿𝑠) = 𝑉 ℼ̂∗

ℎ (𝑠). (4.14)

By Lemma 4.23 we obtain

𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃
(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ) ≤
4(𝐻 − ℎ)𝑅∗

𝑐2
ℎ
𝑁ℎ

.

For every 𝑠 ∈ Sℎ,

𝐽∗ℎ (ℼ̃(ℎ+1) , 𝛿𝑠) − 𝐽ℎ(𝜃
(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝛿𝑠) =
∑︁
𝑠′∈Sℎ

𝜇ℎ(𝑠′)
𝛿𝑠 (𝑠′)
𝜇ℎ(𝑠′)

𝐽∗ℎ (ℼ̃(ℎ+1) , 𝛿𝑠) − 𝐽ℎ,𝑠 (𝜃
(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝛿𝑠)

≤



 1
𝜇ℎ





∞

(
𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ)
)

≤ 4(𝐻 − ℎ)𝑅∗

𝑐2
ℎ
𝑁ℎ




 1
𝜇ℎ





∞
,

(4.15)

where



 1
𝜇ℎ





∞
= max𝑠∈Sℎ

1
𝜇ℎ (𝑠) > 0 by assumption. As 𝑁ℎ = 4(𝐻−ℎ)𝐻𝑅∗

𝑐2
ℎ
𝜖




 1
𝜇ℎ





∞
, it holds that

𝐽∗ℎ (ℼ̃(ℎ+1) , 𝛿𝑠) − 𝐽ℎ(𝜃
(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝛿𝑠) ≤
𝜖

𝐻
(4.16)

for every 𝑠 ∈ Sℎ. For ℎ = 𝐻 − 1 it follows directly by equation (4.14) and the specialty of the last
time point that for all 𝑠 ∈ S𝐻−1,

𝑉∗𝐻−1(𝑠) − 𝑉 ℼ̂∗
𝐻−1(𝑠) = 𝐽∗𝐻−1(𝛿𝑠) − 𝐽𝐻−1(𝜃

(𝑁𝐻−1 )
𝐻−1 , 𝛿𝑠) ≤

𝜖

𝐻
.

Note that the last epoch is independent of ℼ̃. Assume now that for all 𝑠 ∈ Sℎ,

𝑉∗ℎ (𝑠) − 𝑉
ℼ̂∗

ℎ (𝑠) ≤
𝜖(𝐻 − ℎ)

𝐻
.

Then it holds for all 𝑠 ∈ Sℎ−1 that,

𝐽∗ℎ−1(ℼ̃(ℎ) , 𝛿𝑠) = max
𝑎∈𝒜𝑠

(
𝑟(𝑠, 𝑎) +

∑︁
𝑠′∈Sℎ

𝑝(𝑠′ |𝑠, 𝑎)𝑉∗ℎ (𝑠) −
∑︁
𝑠′∈Sℎ

𝑝(𝑠′ |𝑠, 𝑎) (𝑉∗ℎ (𝑠) − 𝑉
ℼ̂∗

ℎ (𝑠))
)

≥ max
𝑎∈𝒜𝑠

(
𝑟(𝑠, 𝑎) +

∑︁
𝑠′∈Sℎ

𝑝(𝑠′ |𝑠, 𝑎)𝑉∗ℎ (𝑠)
)
− 𝜖(𝐻 − ℎ)

𝐻

= 𝑉∗ℎ−1(𝑠) −
𝜖(𝐻 − ℎ)

𝐻
,

(4.17)

by the Bellman expectation equation for finite-time MDPs ([Put05]). We close the backward
induction using equation (4.14) such that for all 𝑠 ∈ Sℎ−1,

𝑉∗ℎ−1(𝑠) − 𝑉
ℼ̂∗

ℎ−1(𝑠) = 𝑉
∗
ℎ−1(𝑠) − 𝐽

∗
ℎ−1(ℼ̃(ℎ) , 𝛿𝑠) + 𝐽

∗
ℎ−1(ℼ̃(ℎ) , 𝛿𝑠) − 𝑉

ℼ̂∗

ℎ−1(𝑠)

≤ 𝜖(𝐻 − ℎ)
𝐻

+ 𝜖

𝐻

=
𝜖(𝐻 − (ℎ − 1))

𝐻
.

(4.18)
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Finally, it holds for ℎ = 0 and all 𝑠 ∈ S0 that

𝑉∗0 (𝑠) − 𝑉 ℼ̂∗
0 (𝑠) ≤ 𝜖.

■

4.2.3 Comparison of the algorithms
Comparing the convergence rate for FT-DynPG in Theorem 4.24 to the convergence rate for
FT-SimPG in Theorem 4.15, we first highlight that the constant 𝑐ℎ in the dynamic approach
can be explicitly computed under uniform initialization. This has not yet been established in
FT-SimPG (see Remark 4.22) and especially it cannot be guaranteed that 𝑐 is independent of
the time horizon. Second, we compare the overall dependence of the training steps on the time
horizon. In the dynamic approach

∑
ℎ 𝑁ℎ scales with 𝐻3 in comparison to 𝐻5 in the convergence

rate for the simultaneous approach. In particular for large time horizons the theoretical analysis
shows that reaching a given accuracy is more costly for simultaneous training of parameters. In
FT-DynPG the powers are due to the smoothness constant, the 𝜖

𝐻
error which we have to achieve

in every epoch and finally the sum over all epochs. In comparison to FT-SimPG, the smoothness
constant is a power of 1 better and the gradient domination property does not depend on 𝐻 at
all.
Note that we just compare upper bounds. However, in the next section we provide a toy example
visualising that the rate of convergence in both approaches is of order O( 1

𝑛
) and the constants in

the dynamic approach are indeed better then for the simultaneous approach.

4.3 Numerical Example under Exact Gradients

We enclose a numerical toy example of a very simple MDP problem of optimally stopping when
throwing a dice 𝐻 = 5 times. This is a non-trivial example for which exact policy gradients can
be computed. The simulations visualize that the theoretical results (in the exact gradient setup)
are sharp up to constants.
The finite-time undiscounted MDP corresponding to this example is defined as follows:

• H = {0, 1, 2, 3, 4}

• a constant state space over the epochs S = {1, . . . , 6, Δ} containing all sides of the dice
1, . . . , 6 and a terminal state Δ,

• a constant action space 𝒜 = {0, 1}, where 1 indicates stopping and jumping into the
terminal state and 0 indicates continuing to the next epoch,

• a transition function 𝑝

𝑝(𝑠′
�� 𝑠, 𝑎) = ℙ(𝑆ℎ+1 = 𝑠′

�� 𝑆ℎ = 𝑎, 𝐴ℎ = 𝑎)

=


1
6 , if 𝑠′, 𝑠 ∈ {0, 1 . . . , 6}, 𝑎 = 0,
1, if 𝑠′ = Δ, 𝑠 ∈ S, 𝑎 = 1 or 𝑠′ = 𝑠 = Δ, 𝑎 = 0,
0, otherwise.

Thus, we throw the dice iid until stopping for the first time, then we jump into the terminal
state and stay there for the rest of the game.
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• a reward function 𝑟

𝑟(𝑠, 𝑎) =
{
𝑠, if 𝑠 ∈ {0, 1 . . . , 6}, 𝑎 = 1,
0, otherwise.

We only observe a reward when we choose action 1 to top the game and the reward equals
the number on the dice.

Having this model with known transition probabilities allows us to implement the simultaneous
and FT-DynPG under the exact gradient assumption. In the simulation we always initialized the
parameters equal to 0 to obtain a uniform initial distribution. Furthermore we chose the suggested
learning rates from Theorem 4.15 in the simultaneous approach and from Theorem 4.24 in the
dynamic approach.

a) b)

Figure 4.1: (a) shows the behavior of 𝑉𝜋𝜃
(𝑛)

0 during the training steps over all epochs. (b) shows
the log-log plot of the same simulation visualizing the convergence rate towards 𝑉∗0 .

The dotted red line in Figure 4.1 (a) shows the target: 𝑉∗0 . On the 𝑥-axis we count the number
of gradient computations in the algorithms, a way of measuring the computational complexity.
The dashed magenta curve shows the evolution of the estimated value function trained with
the simultaneous training of all parameters. As 𝑐 is unknown for the approach, we trained
the parameters until an error of 0.1 was achieved. The blue curves show the evolution of
the estimated value function trained with our algorithm backwards. Note that the number
of gradient steps varies for different epochs, as suggested by Theorem 4.24, less training for
later epochs. This can be seen in the plot by the different lengths of the plateaus of the blue
lines. One plateau shows the training of one parameter. Just when the last parameter 𝜃0 is
trained, the value function 𝑉𝜋𝜃0 finally converges towards the target. In this simulation we chose
𝜖 = 5, 1, 0.5, 0.25, 0.12 to define the length of the training steps according to Theorem 4.24. Note
that the uniform initialization leads to 𝑐ℎ = 0.5 such that 𝑁ℎ could be explicitly calculated. From
light to dark blue 𝜖 decreases. It can be seen that the final error is better than the chosen epsilon,
indicating that the rate of convergence from the dynamic approach is tight up to constants.
In Figure 4.1 (b) for comparison the red line is a constant times 1

𝑛
. The dashed magenta line is

the optimal value minus the dashed magenta curve from (a) of the simultaneous approach. Also,
the blue curves are the optimal value minus the blue curves from (a). The dotted blue line is the
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linear interpolation of the end points of the blue lines. As the dotted blue line, the magenta line
and the red line have the same slop, this shows the 1

𝑛
-convergence rate in the accuracy level 𝜖.

The larger difference from the dashed magenta line to the red line in comparison the dotted
blue line to the red line indicates the larger constant in the rate of convergence.
Both plots show that the FT-DynPG algorithm converges faster than the simultaneous one. As
suggested by the upper bounds the effect gets much stronger for larger 𝐻.

4.4 Convergence of Stochastic Softmax Policy Gradient

In the previous sections, we have derived global convergence guarantees for solving a finite-time
MDP via FT-SimPG as well as FT-DynPG with exact gradient computation. However, in practical
scenarios assuming access to exact gradients is not feasible, since the transition function 𝑝 of
the underlying MDP is unknown. In the following section, we want to relax this assumption
by replacing the exact gradient by a stochastic approximation. To be more precise, we view a
model-free setting where we are only able to generate trajectories of the finite-time MDP. These
trajectories are used to formulate the stochastic PG method for training the parameters in both
the simultaneous and dynamic approach.
Although in both approaches we are able to guarantee almost sure asymptotic convergence
similar to the exact PG scheme, we are no longer able to control the constants 𝑐 and 𝑐ℎ respectively
along trajectories of the stochastic PG scheme due to the randomness in our iterations. Therefore,
the derived lower bound in the weak gradient domination may degenerate in general. In order
to derive complexity bounds in the stochastic scenario, we make use of the crucial property
that 𝑐 (and 𝑐ℎ respectively) remain strictly positive along the trajectory of the exact PG scheme.
To do so, we introduce the stopping times 𝜏 and 𝜏ℎ stopping the scheme when the stochastic
PG trajectory is too far away from the exact PG trajectory (under same initialization). Hence,
conditioning on {𝜏 ≥ 𝑛} (and {𝜏ℎ ≥ 𝑛} respectively) forces the stochastic PG to remain close to
the exact PG scheme and hence, guarantees non-degenerated weak gradient domination. The
proof structure in the stochastic setting is then two-fold:

1. We derive a rate of convergence of the stochastic PG scheme under non-degenerated weak
gradient domination on the event {𝜏 ≥ 𝑛}. Since we consider a constant step size, the
batch size needs to be increased sufficiently fast for controlling the variance occurring
through the stochastic approximation scheme.

2. We introduce a second rule for increasing the batch size depending on a tolerance 𝛿 > 0
leading to ℙ(𝜏 ≤ 𝑛) < 𝛿. This means, that one forces the stochastic PG to remain close to
the exact PG with high probability.

A similar proof strategy has been introduced in Ding, Zhang, and Lavaei [DZL22] for proving
convergence of entropy-regularized stochastic PG in infinite-time horizon MDPs. Their analysis
heavily depends on the existence of an optimal parameter which is due to regularization. In
the unregularized problem this is not the case since the softmax parameters usually diverge to
+/−∞ in order to approximate a deterministic optimal solution. Consequently, their analysis
does not carry over straightforwardly to the unregularized setting. One of the main challenges
in our proof is to construct a different stopping time, independent of optimal parameters, such
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that the stopping time still occurs with small probability given a large enough batch size. We
again first discuss the simultaneous approach followed by the dynamic approach.

4.4.1 Simultaneous stochastic policy gradient
We assume throughout this section that Assumption 4.12 holds true. Due to the finite-time hori-
zon, it is not a challenge to define an unbiased estimator for the gradient compared to discounted
MDPs (see Section 3.1.2). Using a mini-batch Monte-Carlo estimator in the representation of
the gradient by the policy gradient theorem (Theorem 4.2) results in an unbiased estimator for
which we can also guarantee bounded variance.

Unbiased gradient estimator. Consider 𝐾 trajectories (𝑠𝑖
ℎ
, 𝑎𝑖

ℎ
)𝐻−1
ℎ=0 , for 𝑖 = 1, . . . , 𝐾, generated

by 𝑠𝑖0 ∼ 𝜇, 𝑎𝑖
ℎ
∼ 𝜋Θ (·|𝑠𝑖

ℎ
) and 𝑠𝑖

ℎ
∼ 𝑝(·|𝑠𝑖

ℎ−1, 𝑎
𝑖
ℎ−1) for 0 ≤ ℎ < 𝐻. The gradient estimator is

defined by

∇̂𝐽𝐾 (Θ, 𝜇) = 1
𝐾

𝐾∑︁
𝑖=1

𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝑎𝑖ℎ |𝑠

𝑖
ℎ))𝑅̂

𝑖
ℎ, (4.19)

where 𝑅̂𝑖
ℎ
=

∑𝐻−1
𝑘=ℎ 𝑟(𝑠𝑖

𝑘
, 𝑎𝑖

𝑘
) is an unbiased estimator of the ℎ-state-action value function in (𝑠𝑖

ℎ
, 𝑎𝑖

ℎ
)

under policy 𝜋Θ. The number of trajectories 𝐾 is often called batch size of the estimator.
The stochastic PG updates are given by

Θ̄ (𝑛+1) = Θ̄ (𝑛) + 𝛼∇̂𝐽𝐾 (Θ̄ (𝑛) , 𝜇). (4.20)

We first proof that the gradient estimator is unbiased (independent of the parametrization class)
and has bounded variance (under tabular softmax parametrization in equation (4.1)).

Lemma 4.25. Consider the estimator from equation (4.19). For any 𝐾 > 0 and parametrization
(𝜋Θ)Θ∈ℝ𝑑 it holds that

𝔼𝜋
Θ

𝜇 [∇̂𝐽𝐾 (Θ, 𝜇)] = ∇𝐽 (Θ, 𝜇).

If (𝜋Θ)Θ∈ℝ𝑑 the tabular softmax parametrization in equation (4.1), then

𝔼𝜋
Θ

𝜇 [∥∇̂𝐽𝐾 (Θ, 𝜇) − ∇𝐽 (Θ, 𝜇)∥2] ≤
3𝐻4 max{𝑅∗, 1}4

𝐾
=:

𝜉

𝐾

Proof. By the definition of ∇̂𝐽𝐾 we have

𝔼𝜋
Θ

𝜇 [∇̂𝐽𝐾 (Θ, 𝜇)] = 𝔼𝜋
Θ

𝜇

[ 1
𝐾

𝐾∑︁
𝑖=1

𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝐴𝑖ℎ |𝑆

𝑖
ℎ))𝑅̂

𝑖
ℎ

]
= 𝔼𝜋

Θ

𝜇

[ 𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))𝑅̂ℎ

]
= 𝔼𝜋

Θ

𝜇

[ 𝐻−1∑︁
ℎ=0
∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))

𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)
]
,
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where we used that we consider independent samples for 𝑖 = 1, . . . , 𝐾. From the proof of the PG
theorem (cf. Theorem 4.2), we deduce that

𝔼𝜋
Θ

𝜇 [∇̂𝐽𝐾 (Θ, 𝜇)] = ∇𝐽 (Θ, 𝜇).

For the second claim, we first obtain that

∥∇𝐽 (Θ, 𝜇)∥ =
( ∑︁
𝑠∈S[H]

∑︁
𝑎∈𝒜
(𝐻𝑑𝜋Θ

𝜇 (𝑠)𝜋𝜃(𝑎|𝑠)𝐴𝜋
Θ (𝑠, 𝑎))2

) 1
2

≤ 𝐻2𝑅∗
( ∑︁
𝑠∈S[H]

∑︁
𝑎∈𝒜
(𝑑𝜋Θ

𝜇 (𝑠)𝜋Θ (𝑎|𝑠))2
) 1

2

≤ 𝐻2(𝑅∗)2,

because 𝜋Θ (·|𝑠) ≤ 1 and 𝑑𝜋Θ

𝜇 (𝑠) ≤ 1, as both are probability distributions.
Next,

𝔼𝜋
Θ

𝜇 [∥∇̂𝐽1(Θ, 𝜇)∥] ≤ 𝔼𝜋
Θ

𝜇

[ 𝐻−1∑︁
ℎ=0
∥∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))∥ |𝑅̂ℎ |

]
≤ 𝐻2𝑅∗𝔼𝜋

Θ

𝜇

[
∥∇ log(𝜋Θ (𝐴ℎ |𝑆ℎ))∥

]
≤ 𝐻2𝑅∗,

where the last inequality follows with by Yuan, Gower, and Lazaric [YGL22, Lem 4.8] and
Jensen’s inequality. Thus,

𝔼𝜋
Θ

𝜇 [∥∇̂𝐽𝐾 (Θ, 𝜇) − ∇𝐽 (Θ, 𝜇)∥2] ≤
1
𝐾
𝔼𝜋

Θ

𝜇

[
∥∇̂𝐽1(Θ, 𝜇) − ∇𝐽 (Θ, 𝜇)∥2

]
≤ 1
𝐾
𝔼𝜋

Θ

𝜇

[
∥∇̂𝐽1(Θ)∥2 + 2∥∇̂𝐽1(Θ, 𝜇)∥∥∇𝐽 (Θ)∥ + ∥∇𝐽 (Θ, 𝜇)∥2

]
≤ 1
𝐾

[
𝐻4(𝑅∗)2 + 𝐻4(𝑅∗)2 + 𝐻4(𝑅∗)4

]
.

We define 𝜉 = 3𝐻4 max{𝑅∗, 1}4 ≥ 𝐻4(𝑅∗)2 + 𝐻4(𝑅∗)2 + 𝐻4(𝑅∗)4 to prove the claim. ■

Define the stopping time. We assume again the tabular softmax parametrization on the
enlarged state space in equation (4.1) and denote by (Θ (𝑛) )𝑛∈ℕ the deterministic sequence
generated by Algorithm 4 under exact gradients and by (Θ̄ (𝑛) )𝑛∈ℕ the stochastic sequence
in equation (4.20). We assume that the initial parameter agree, i.e. Θ (1) = Θ̄ (1) , and the
step size 𝛼 is the same for both processes. The natural filtration of the stochastic process
(Θ̄ (𝑛)

ℎ
)𝑛∈ℕ is denoted by (F (𝑛) )𝑛∈ℕ. Recall that for the deterministic scheme we could assure

that 𝑐 = inf𝑛min𝑠∈S[H] 𝜋Θ𝑛 (𝑎∗(𝑠) |𝑠) is bounded away from 0 by Lemma 4.14. This cannot be
guaranteed for the stochastic trajectory. The idea of the convergence analysis for stochastic
softmax PG is now to define the following stopping time

𝜏 := min{𝑛 ≥ 1 : ∥Θ (𝑛) − Θ̄ (𝑛) ∥2 ≥
𝑐

4
}.
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This means, 𝜏 is the first time when the stochastic process (Θ̄ (𝑛) )𝑛∈ℕ is too far away from the
PG trajectory (Θ (𝑛) )𝑛∈ℕ. Hence, all challenges encountered in the deterministic case transfer to
the stochastic context, indicating that the model dependent constant 𝑐 naturally appears in the
error bounds of the stochastic case. We emphasize that 𝜏 is a stopping time with respect to the
filtration (F (𝑛) )𝑛∈ℕ by construction.

Event {𝑛 ≤ 𝜏}. First, consider the event {𝑛 ≤ 𝜏}, i.e. ∥Θ (𝑛) − Θ̄ (𝑛) ∥2 ≤ 𝑐
4 . Then, it follows from

the
√
2-Lipschitz continuity of Θ ↦→ 𝜋Θ (𝑎∗(𝑠) |𝑠) that min0≤𝑛≤𝜏min𝑠∈S 𝜋Θ̄ (𝑛) (𝑎∗(𝑠) |𝑠) ≥ 𝑐

2 > 0.

Lemma 4.26. The softmax policy on the enlarged state space and analogously every softmax policy
for FT-DynPG is

√
2-Lipschitz with respect to Θ or 𝜃ℎ respectively.

Proof. We consider a general softmax policy 𝜋𝜃 with parameter (𝜃(𝑠, 𝑎))𝑠∈S,𝑎∈𝒜 of a finite state
and action space such that

𝜋𝜃(𝑎|𝑠) = exp(𝜃(𝑠, 𝑎))∑
𝑎′∈𝒜 exp(𝜃(𝑠, 𝑎′)) .

The derivative of the softmax function is

𝜕𝜋𝜃(𝑎|𝑠)
𝜕Θ(𝑠′, 𝑎′) = 1𝑠′=𝑠

[1𝑎′=𝑎 exp(𝜃(𝑠, 𝑎)) ( ∑𝑎̃∈𝒜𝑠
exp(𝜃(𝑠, 𝑎̃))

)
− exp(𝜃(𝑠, 𝑎)) exp(𝜃(𝑠, 𝑎′))( ∑

𝑎̃∈𝒜𝑠
exp(𝜃(𝑠, 𝑎̃))

)2 ]
= 1𝑠′=𝑠

[
1𝑎′=𝑎𝜋𝜃(𝑎|𝑠) − 𝜋𝜃(𝑎|𝑠)𝜋𝜃(𝑎′ |𝑠)

]
.

Therefore,

∥∇𝜋𝜃(𝑎|𝑠)∥2 =
√︄∑︁

𝑎̃∈𝒜𝑠

(
1𝑎′=𝑎𝜋Θ (𝑎|𝑠) − 𝜋𝜃(𝑎|𝑠)𝜋𝜃(𝑎′ |𝑠)

)2
≤

√︄
𝜋𝜃(𝑎|𝑠)2 − 2𝜋𝜃(𝑎|𝑠)3 +

∑︁
𝑎̃∈𝒜𝑠

𝜋𝜃(𝑎′ |𝑠)2𝜋𝜃(𝑎|𝑠)2 ≤
√
2.

■

Lemma 4.27. Let 𝜇 be a probability measure such that 𝜇(𝑠) > 0 for all 𝑠 ∈ S and consider
the sequence (Θ̄ (𝑛) )𝑛∈ℕ generated by the stochastic recursion in equation (4.20) under softmax
parametrization. Then, it holds almost surely that min0≤𝑛≤𝜏min𝑠∈Sℎ 𝜋Θ̄ (𝑛) (𝑎∗(𝑠) |𝑠) ≥ 𝑐

2 is strictly
positive.

Proof. For every 𝑛 ≤ 𝜏 we obtain by the
√
2-Lipschitz continuity of softmax in Lemma 4.26 that

𝜋Θ̄ (𝑛) (𝑎∗(𝑠) |𝑠) ≥ 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) − |𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) − 𝜋Θ̄ (𝑛) (𝑎∗(𝑠) |𝑠) |

≥ 𝜋Θ (𝑛) (𝑎∗(𝑠) |𝑠) −
√
2∥Θ̄ (𝑛) − Θ (𝑛) ∥2

>
𝑐

2
> 0,

holds almost surely. The claim follows directly. ■
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This allows us to use the weak gradient domination of Lemma 4.11 to derive a convergence rate
on the event {𝑛 ≤ 𝜏} in the following sense:

Lemma 4.28. Under Assumption 4.12, let 𝜇 be a probability measure such that 𝜇(𝑠) > 0 for all
𝑠 ∈ S and consider the sequence (Θ̄ (𝑛) )𝑛∈ℕ generated by the stochastic recursion in equation (4.20)
under softmax parametrization. Suppose that

(i) the batch size 𝐾 (𝑛) ≥ 9
8
𝑐2 max{𝑅∗,1}2 (1− 1

2
√
𝑁
)

𝑁3/2 |S |𝐻19




 𝑑𝜋∗𝜇𝜇 


−2
∞
𝑛2 is increasing for fix 𝑁 ≥ 1 and

(ii) the step size 𝛼 = 1
5𝐻2𝑅∗

√
𝑁
.

Then, it holds true that

𝔼
[
(𝐽∗(𝜇) − 𝐽 (Θ̄ (𝑛) , 𝜇))1{𝑛≤𝜏}

]
≤ 20|S|𝐻5𝑅∗

𝑐2 1√
𝑁
(1 − 1

2
√
𝑁
)𝑛




𝑑𝜋∗𝜇
𝜇




2
∞
.

Proof. Throughout the proof we drop the 𝜇 in 𝐽 and 𝐽∗.
First, we deduce from the 𝐿-smoothness of 𝐽, as in the proof of Theorem 4.15 that almost surely

𝐽 (Θ̄ (𝑛+1) ) ≥ 𝐽 (Θ̄ (𝑛) ) +
(
∇𝐽 (Θ̄ (𝑛) )

)𝑇 (Θ̄ (𝑛+1) − Θ̄ (𝑛) ) − 𝐿

2
∥Θ̄ (𝑛+1) − Θ̄ (𝑛) ∥2.

We continue with

𝐽 (Θ̄ (𝑛+1) ) ≥ 𝐽 (Θ̄ (𝑛) ) + 𝛼
(
∇𝐽 (Θ̄ (𝑛) )

)𝑇 ∇̂𝐽𝐾 (Θ̄ (𝑛) ) − 𝐿𝛼2

2
∥∇̂𝐽𝐾 (Θ̄ (𝑛) )∥2

= 𝐽 (Θ̄ (𝑛) ) + 𝛼
(
∇𝐽 (Θ̄ (𝑛) )

)𝑇∇𝐽 (Θ̄ (𝑛) ) + 𝛼(
∇𝐽 (Θ̄ (𝑛) )

)𝑇 (∇̂𝐽𝐾 (Θ̄ (𝑛) ) − ∇𝐽 (Θ̄ (𝑛) ))
− 𝐿𝛼2

2
∥
(
∇̂𝐽𝐾 (Θ̄ (𝑛) ) − ∇𝐽 (Θ̄ (𝑛) )

)
+ ∇𝐽 (Θ̄ (𝑛) )∥2.

Thus,

𝐽 (Θ̄ (𝑛+1) ) ≥ 𝐽 (Θ̄ (𝑛) , ) +
(
𝛼 − 𝐿𝛼2

2
)
∥∇𝐽 (Θ̄ (𝑛) )∥2 +

(
𝛼 − 𝐿𝛼2

)
⟨∇𝐽 (Θ̄ (𝑛) ), 𝜙𝑛⟩ −

𝐿𝛼2

2
∥𝜙𝑛∥2,

where 𝜙𝑛 := ∇̂𝐽𝐾 (Θ̄ (𝑛) ) − ∇𝐽 (Θ̄ (𝑛) ). Next we take the conditional expectation on F𝑛. Then by
Lemma 4.25 we obtain

𝐸
[
𝐽 (Θ̄ (𝑛+1) ) |F𝑛

]
≥ 𝐽 (Θ̄ (𝑛) ) +

(
𝛼 − 𝐿𝛼2

2

)
∥∇𝐽 (Θ̄ (𝑛) )∥2 − 𝐿𝛼2𝜉

2𝐾𝑛
.

Subtracting this equation form 𝐽∗ and taking the expectation under the event {𝑛+ 1 ≤ 𝜏} results
in:

𝔼
[
(𝐽∗ − 𝐽 (Θ̄ (𝑛+1) ))1{𝑛+1≤𝜏}

]
= 𝔼

[
𝔼
[
(𝐽∗ − 𝐽 (Θ̄ (𝑛+1) )) |F𝑛

]
1{𝑛+1≤𝜏}

]
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≤ 𝔼
[(
𝐽∗ − 𝔼

[
𝐽 (Θ̄ (𝑛+1) ) |F𝑛

] )
1{𝑛≤𝜏}

]
≤ 𝔼

[
(𝐽∗ − 𝐽 (Θ̄ (𝑛) ))1{𝑛≤𝜏}

]
−

(
𝛼 − 𝐿𝛼2

2

)
𝔼
[
∥∇𝐽 (Θ̄ (𝑛) )∥21{𝑛≤𝜏}

]
+ 𝐿𝛼

2𝜉

2𝐾𝑛

≤ 𝔼
[
(𝐽∗ − 𝐽 (Θ̄ (𝑛) ))1{𝑛≤𝜏}

]
− 𝛼(1 − 1

2
√
𝑁
)𝔼

[
∥∇𝐽 (Θ̄ (𝑛) )∥21{𝑛≤𝜏}

]
+ 𝐿𝛼

2𝜉

2𝐾𝑛
,

where we used that {𝑛 + 1 ≤ 𝜏} = {𝜏 ≤ 𝑛}𝐶 is F𝑛-measurable and that 1{𝑛+1≤𝜏} ≤ 1{𝑛≤𝜏} a.s.
With the gradient domination property in Lemma 4.11 and min1≤𝑛≤𝜏min𝑠∈S 𝜋Θ̄ (𝑛) (𝑎∗(𝑠) |𝑠) ≥ 𝑐

2
by Lemma 4.27 we deduce

𝔼
[
(𝐽∗ − 𝐽 (Θ̄ (𝑛+1) ))1{𝑛+1≤𝜏}

]
≤ 𝔼

[
(𝐽∗ − 𝐽 (Θ̄ (𝑛) ))1{𝑛≤𝜏}

]
− 𝛼(1 − 1

2
√
𝑁
) 𝑐2

|S|𝐻




𝑑𝜋∗𝜇
𝑑𝜋

𝜃

𝜇




−2
∞
𝔼
[
(𝐽∗ − 𝐽 (Θ̄ (𝑛) ))1{𝑛≤𝜏}

]2
+ 𝐿𝛼

2𝜉

2𝐾𝑛

≤ 𝔼
[
(𝐽∗ − 𝐽 (Θ̄ (𝑛) ))1{𝑛≤𝜏}

]
− 𝛼(1 − 1

2
√
𝑁
) 𝑐2

|S|𝐻3




𝑑𝜋∗𝜇
𝜇




−2
∞
𝔼
[
(𝐽∗ − 𝐽 (Θ̄ (𝑛) ))1{𝑛≤𝜏}

]2
+ 𝐿𝛼

2𝜉

2𝐾𝑛
,

where we used in the last inequality that Assumption 4.12 implies 𝑑𝜋Θ

𝜇 (𝑠) ≥ 1
𝐻
𝜇(𝑠) (see Re-

mark 4.13). For 𝑑𝑛 := 𝔼
[
(𝐽∗ − 𝐽 (Θ̄ (𝑛) ))1{𝑛≤𝜏}

]
we obtain the recursive inequality

𝑑𝑛+1 ≤ 𝑑𝑛 − 𝛼(1 −
1

2
√
𝑁
) 𝑐2

|S|𝐻3




𝑑𝜋∗𝜇
𝜇




−2
∞
𝑑2𝑛 +

𝐿𝛼2𝜉

2𝐾𝑛
.

We define 𝑤 := 𝛼(1 − 1
2
√
𝑁
) 𝑐2

|S |𝐻3




 𝑑𝜋∗𝜇𝜇 


−2
∞

and 𝐵 =
𝐿𝛼2𝜉
2 > 0 such that

𝑑𝑛+1 ≤ 𝑑𝑛(1 − 𝑤𝑑𝑛) +
𝐵

𝐾𝑛
.

Note that 𝑤 > 0 by the assumption 𝜇(𝑠) > 0 for all 𝑠 ∈ S. Then by our choice of 𝐾𝑛 it holds that

9
4
𝑤𝐵𝑛2 =

9
8

𝑐2𝛼3𝐿(1 − 1
2
√
𝑁
)𝜉

|S|𝐻3




𝑑𝜋∗𝜇
𝜇




−2
∞
𝑛2

≤ 9
8

𝑐2𝛼2(1 − 1
2
√
𝑁
)𝜉

√
𝑁 |S|𝐻3




𝑑𝜋∗𝜇
𝜇




−2
∞
𝑛2 ≤ 9

8

𝑐2 max{𝑅∗, 1}2(1 − 1
2
√
𝑁
)

𝑁3/2 |S|𝐻19




𝑑𝜋∗𝜇
𝜇




−2
∞
𝑛2 ≤ 𝐾𝑛.

Furthermore, we have for 𝛼 = 1
5𝐻2𝑅∗

√
𝑁
that

4
3𝑤

=
4|S|𝐻3

3𝛼(1 − 1
2
√
𝑁
)𝑐2




𝑑𝜋∗𝜇
𝜇




2
∞
=

20|S|𝐻5𝑅∗

𝑐2 1√
𝑁
(1 − 1

2
√
𝑁
)




𝑑𝜋∗𝜇
𝜇




2
∞
.

We obtain that

𝑑1 ≤ 𝐻𝑅∗ ≤ 4
3𝑤
≤ 4

3𝑤 · 1 ,
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because 𝑐 ≤ 1,



 𝑑𝜋∗𝜇𝜇 


2

∞
≥ 1 and 1√

𝑁
(1 − 1

2
√
𝑁
) < 1 for all 𝑁 ≥ 1.

Suppose the induction assumption 𝑑𝑛 ≤ 4
3𝑤𝑛 holds true. First, recall the recursive inequality

𝑑𝑛+1 ≤ 𝑑𝑛 − 𝑤𝑑2𝑛 +
𝐵

𝐾𝑛
.

The function 𝑓 (𝑥) = 𝑥 −𝑤𝑥2 is monotonically increasing in [0, 1
2𝑤 ], and by induction assumption

𝑑𝑛 ≤ 1
4𝑤𝑛 ≤

1
2𝑤 . Thus,

𝑑𝑛+1 ≤ 𝑑𝑛 − 𝑤𝑑2𝑛 +
𝐵

𝐾𝑛
≤ 4

3𝑤𝑛
− 16

9𝑤𝑛2
+ 𝐵

𝐾𝑛

≤ 4
3𝑤𝑛

− 16
9𝑤𝑛2

+ 4𝐵
9𝑤𝐵𝑛2

=
4

3𝑤𝑛
− 12

9𝑤𝑛2
=

4
3𝑤

(1
𝑛
− 1
𝑛2

)
≤ 4

3𝑤𝑛
,

by the choice of 𝐾𝑛 ≥ 9
4𝑤𝐵𝑛

2. We deduce the claim

𝑑𝑛 ≤
4

3𝑤𝑛
=

20|S|𝐻5𝑅∗

𝑐2 1√
𝑁
(1 − 1

2
√
𝑁
)𝑛




𝑑𝜋∗𝜇
𝜇




2
∞
.

■

Event {𝜏 ≤ 𝑛}. Secondly, consider the complementary event {𝜏 ≤ 𝑛}. We can bound the
probability of this event by 𝛿 for a large enough batch size 𝐾. The proof is inspired by a
similar result obtained by Ding, Zhang, and Lavaei [DZL22, Lem. 6.3] for infinite-time horizon
discounted MDPs.

Lemma 4.29. Let 𝜇 be a probability measure such that 𝜇(𝑠) > 0 for all 𝑠 ∈ S and consider
the sequence (Θ̄ (𝑛) )𝑛∈ℕ generated by the stochastic recursion in equation (4.20) under softmax
parametrization. For any 𝛿 > 0, suppose that

(i) the batch size 𝐾 ≥ 10max{𝑅∗,1}2𝑛3
𝑐2𝛿2

and

(ii) the step size 𝛼 = 1√
𝑛5𝐻2𝑅∗

.

Then, it holds true that ℙ(𝜏 ≤ 𝑛) < 𝛿.

Proof. By the definition of 𝜏 we have

ℙ(𝜏 ≤ 𝑛) = ℙ(max
1≤𝑡≤𝑛

∥Θ (𝑡) − Θ̄ (𝑡) ∥ ≥ 𝑐ℎ

4
),

so we first study ∥Θ (𝑡) − Θ̄ (𝑡) ∥. We emphasize that [DZL22, Lemma 6.3] established a similar
recursive inequality.

∥Θ̄ (𝑡) − Θ (𝑡) ∥ = ∥Θ̄ (1) +
𝑡−1∑︁
𝑘=1

𝛼∇̂𝐽𝐾 (Θ̄ (𝑘) , 𝜇) − (Θ (1) +
𝑡−1∑︁
𝑘=1

𝛼∇𝐽 (Θ (𝑘) , 𝜇))∥
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≤
𝑡−1∑︁
𝑘=1

𝛼∥∇̂𝐽𝐾 (Θ̄ (𝑘) , 𝜇) − ∇𝐽 (Θ (𝑘) , 𝜇)∥

≤ 𝛼
𝑡−1∑︁
𝑘=1
(∥∇̂𝐽𝐾 (Θ̄ (𝑘) , 𝜇) − ∇𝐽 (Θ̄ (𝑘) , 𝜇)∥ + ∥∇𝐽 (Θ̄ (𝑘) , 𝜇) − ∇𝐽 (Θ (𝑘) , 𝜇)∥).

We define again 𝜙𝐾
𝑘
= ∇̂𝐽𝐾 (Θ̄ (𝑘) , 𝜇) − ∇𝐽 (Θ̄ (𝑘) , 𝜇) and continue using the 𝐿-Lipschitz continuity

of ∇𝐽 (Θ) such that

∥Θ (𝑡) − Θ̄ (𝑡) ∥ ≤ 𝛼
𝑡−1∑︁
𝑘=1
(∥𝜙𝐾

𝑘 ∥ + 𝐿∥Θ
(𝑘) − Θ̄ (𝑘) ∥) = 𝛼

𝑡−1∑︁
𝑘=1
∥𝜙𝐾

𝑘 ∥ + 𝛼𝐿
𝑡−1∑︁
𝑘=1
∥Θ (𝑘) − Θ̄ (𝑘) ∥.

Using this inequality sequentially leads to

∥Θ (𝑡) − Θ̄ (𝑡) ∥ ≤ 𝛼
𝑡−1∑︁
𝑘=1
∥𝜙𝐾

𝑘 ∥ + 𝛼𝐿
𝑡−1∑︁
𝑘=1
∥Θ (𝑘) − Θ̄ (𝑘) ∥

≤ 𝛼
𝑡−1∑︁
𝑘=1
∥𝜙𝐾

𝑘 ∥ + 𝛼𝐿
𝑡−2∑︁
𝑘=1
∥Θ (𝑘) − Θ̄ (𝑘) ∥ + 𝛼𝐿

(
𝛼

𝑡−2∑︁
𝑘=1
∥𝜙𝐾

𝑘 ∥ + 𝛼𝐿
𝑡−2∑︁
𝑘=1
∥Θ (𝑘) − Θ̄ (𝑘) ∥

)
= 𝛼

𝑡−1∑︁
𝑘=1
∥𝜙𝐾

𝑘 ∥ + 𝛼
2𝐿

𝑡−2∑︁
𝑘=1
∥𝜙𝐾

𝑘 ∥ + (1 + 𝛼𝐿)𝛼𝐿
𝑡−2∑︁
𝑘=1
∥Θ (𝑘) − Θ̄ (𝑘) ∥

= 𝛼∥𝜙𝐾
𝑡−1∥ + 𝛼(1 + 𝛼𝐿)

𝑡−2∑︁
𝑘=1
∥𝜙𝐾

𝑘 ∥ + (1 + 𝛼𝐿)𝛼𝐿
𝑡−2∑︁
𝑘=1
∥Θ (𝑘) − Θ̄ (𝑘) ∥

≤
𝑡−1∑︁
𝑘=1

𝛼(1 + 𝛼𝐿)𝑡−𝑘−1∥𝜙𝐾
𝑘 ∥.

Applying Markov’s inequality results in

ℙ(𝜏 ≤ 𝑛) = ℙ(max
1≤𝑡≤𝑛

∥𝜃(𝑡) − 𝜃(𝑡) ∥ ≥ 𝑐

4
)

≤ ℙ(
𝑛−1∑︁
𝑘=1

𝛼(1 + 𝛼𝐿)𝑛−𝑘−1∥𝜙𝐾
𝑘 ∥ ≥

𝑐ℎ

4
)

≤
4
∑𝑛−1
𝑘=1 𝛼(1 + 𝛼𝐿)𝑛−𝑘−1𝔼[∥𝜙𝐾

𝑘
∥]

𝑐

≤
4𝑛𝛼(1 + 𝛼𝐿)𝑛−1

√︃
𝜉

𝐾

𝑐
,

where in the last inequality𝔼[∥𝜙𝐾
𝑘
∥] ≤

√︃
𝔼[∥𝜙𝐾

𝑘
∥2] ≤

√︃
𝜉

𝐾
by Jensen’s inequality and Lemma 4.25.

Now we plug in the choice of 𝛼 = 1√
𝑛5𝐻2𝑅∗

< 1√
𝑛𝐿
,

ℙ(𝜏 ≤ 𝑛) ≤
4𝑛 1√

𝑛5𝐻2𝑅∗
(1 + 1√

𝑛𝐿
𝐿)𝑛−1

√︃
𝜉

𝐾

𝑐
=

4
√
𝑛(1 + 1√

𝑛
)𝑛−1
√
𝐶ℎ

5𝐻2𝑅∗𝑐
√
𝐾

≤
4
√
𝑛𝑛

√︁
𝜉

5𝐻2𝑅∗𝑐
√
𝐾
,
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where the last step is due to 𝑓 (𝑥) = (1+ 1√
𝑥
)𝑥−1 ≤ 𝑥 for all 𝑥 ≥ 1. We follow that ℙ(𝜏 < 𝑛) < 𝛿 if

16𝑛3𝜉
25𝐻4(𝑅∗)2𝑐2𝛿2 =

16𝑛3𝐻4 max{𝑅∗, 1}43
25𝐻4(𝑅∗)2𝑐2𝛿2 ≤ 48max{𝑅∗, 1}2𝑛3

5𝑐2𝛿2
≤ 10max{𝑅∗, 1}2𝑛3

𝑐2𝛿2
= 𝐾.

■

Convergence result. Our main result for stochastic FT-SimPG is stated in the following.

Theorem 4.30. Under Assumption 4.12, let 𝜇 be a probability measure such that 𝜇(𝑠) > 0 for all
𝑠 ∈ S. Consider the final policy using Algorithm 4 with stochastic updates from equation (4.20)
under softmax parametrization. Denote the final policy by 𝜋∗ = 𝜋Θ̄ (𝑁 ) . Moreover, for any 𝛿, 𝜖 > 0
assume that

(i) the number of training steps satisfies 𝑁 ≥ ( 21 |S |𝐻5𝑅∗

𝜖𝛿𝑐2

)2


 𝑑𝜋∗𝜇𝜇 


4
∞
,

(ii) the step size 𝛼 = 1
5𝐻2𝑅∗

√
𝑁
and

(iii) the batch size 𝐾 ≥ 10max{𝑅∗,1}2𝑁3

𝑐2𝛿2
.

Then, it holds true that
ℙ
(
𝑉∗0 (𝜇) − 𝑉𝜋

∗
0 (𝜇) < 𝜖

)
> 1 − 𝛿 .

Proof. First note again, that by definition 𝐽∗(𝜇) = 𝑉∗0 (𝜇) and 𝐽 (Θ̄ (𝑁 ) , 𝜇) = 𝑉𝜋
Θ̄ (𝑁 )

0 (𝜇). We
separate the probability using the stopping time 𝜏 and obtain

ℙ
(
(𝐽∗(𝜇) − 𝐽 (Θ̄ (𝑁 ) , 𝜇)) ≥ 𝜖

)
≤ ℙ

(
{𝜏 ≥ 𝑁} ∩ {(𝐽∗(𝜇) − 𝐽 (Θ̄ (𝑁 ) , 𝜇)) ≥ 𝜖}

)
+ ℙ

(
{𝜏 ≤ 𝑁} ∩ {(𝐽∗(𝜇) − 𝐽 (Θ̄ (𝑁 ) , 𝜇)) ≥ 𝜖}

)
≤

𝔼
[
(𝐽∗(𝜇) − 𝐽 (Θ̄ (𝑁 ) , 𝜇))1{𝜏≥𝑁 }

]
𝜖

+ ℙ(𝜏 ≤ 𝑁)

≤ 1
𝜖

20|S|𝐻5𝑅∗

𝑐2 1√
𝑁
(1 − 1

2
√
𝑁
)𝑁




𝑑𝜋∗𝜇
𝜇




2
∞
+ 𝛿
2

≤ 𝛿

2
+ 𝛿
2

= 𝛿,

where the second inequality holds due to Lemma 4.28 and Lemma 4.29. The last inequality
follows by our choice of 𝑁:

20|S|𝐻5𝑅∗

𝑐2
√
𝑁 (1 − 1

2
√
𝑁
)




𝑑𝜋∗𝜇
𝜇




2
∞
≤ 𝛿

2
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if and only if 𝑁 ≥
( 20 |S |𝐻5𝑅∗

𝜖𝛿𝑐2




 𝑑𝜋∗𝜇𝜇 


2
∞
+ 1

2
)2, which is satisfied if 𝑁 ≥

( 21 |S |𝐻5𝑅∗

𝜖𝛿𝑐2

)2


 𝑑𝜋∗𝜇𝜇 


4
∞
. Note that

we can use Lemma 4.28 in the equation above with a constant batch size, because by our choice
of 𝛼

max
{9
8

𝑐2 max{𝑅∗, 1}2(1 − 1
2
√
𝑁
)

𝑁3/2 |S|𝐻19




𝑑𝜋∗𝜇
𝜇




−2
∞
𝑛2,

10max{𝑅∗, 1}2𝑁3

𝑐2𝛿2

}
=

10max{𝑅∗, 1}2𝑁3

𝑐2𝛿2
,

for all 𝑛 ≤ 𝑁. The last equality holds, as 𝑐 < 1,



 𝑑𝜋∗𝜇𝜇 


−2

∞
< 1. ■

4.4.2 Dynamic stochastic policy gradient
Unbiased gradient estimator: For fixed ℎ consider 𝐾ℎ trajectories (𝑠𝑖𝑘, 𝑎

𝑖
𝑘
)𝐻−1
𝑘=ℎ

, for 𝑖 = 1, . . . , 𝐾ℎ,
generated by 𝑠𝑖

ℎ
∼ 𝜇ℎ, 𝑎𝑖ℎ ∼ 𝜋

𝜃ℎ and 𝑎𝑖
𝑘
∼ 𝜋𝑘 for ℎ < 𝑘 < 𝐻. The estimator is defined by

∇̂𝐽𝐾ℎ (𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ) =
1
𝐾ℎ

𝐾ℎ∑︁
𝑖=1
∇ log(𝜋𝜃ℎ (𝑎𝑖ℎ |𝑠

𝑖
ℎ))𝑅̂

𝑖
ℎ, (4.21)

where 𝑅̂𝑖
ℎ
=

∑𝐻−1
𝑘=ℎ 𝑟(𝑠𝑖

𝑘
, 𝑎𝑖

𝑘
) is an unbiased estimator of the ℎ-state-action value function in (𝑠𝑖

ℎ
, 𝑎𝑖

ℎ
)

under future policy ℼ̃. Then the stochastic PG update for training the parameter 𝜃ℎ is given by

𝜃
(𝑛+1)
ℎ

= 𝜃
(𝑛)
ℎ
+ 𝛼ℎ∇̂𝐽𝐾ℎℎ (𝜃

(𝑛)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ). (4.22)

We start again by showing that the gradient estimator is unbiased and has bounded variance,
independent of the chosen parametrization class.

Lemma 4.31. For any ℎ ∈ H consider the estimator in equation (4.21). Let 𝐾ℎ > 0, then for any
parametrization (𝜋𝜃ℎ)𝜃ℎ∈ℝ𝑑 it holds that

𝔼
(𝜋𝜃ℎ ,(ℼ̃) (ℎ+1) )
𝜇ℎ [∇̂𝐽𝐾ℎ

ℎ
(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ)] = ∇𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ).

If (𝜋𝜃ℎ)𝜃ℎ∈ℝ𝑑ℎ the tabular softmax parametrization in equation (4.4), then

𝔼
(𝜋𝜃ℎ ,(ℼ̃) (ℎ+1) )
𝜇ℎ [∥∇̂𝐽𝐾ℎ

ℎ
(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ) − ∇𝐽ℎ(𝜃ℎ, ℼ̃(ℎ+1) , 𝜇ℎ)∥2] ≤

5(𝐻 − ℎ)2(𝑅∗)2
𝐾ℎ

=:
𝜓ℎ

𝐾
.

Proof. We drop the subscript ℎ in 𝜃ℎ for this proof.
By the definition of ∇̂𝐽𝐾

ℎ
we have

𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ [∇̂𝐽𝐾ℎ

ℎ
(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ)] = 𝔼

(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[ 1
𝐾ℎ

𝐾ℎ∑︁
𝑖=1
∇ log(𝜋𝜃(𝐴𝑖𝑡 |𝑆𝑖𝑡))𝑅̂𝑖ℎ

]
= 𝔼

(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[
∇ log(𝜋𝜃(𝐴1ℎ |𝑆

1
ℎ))𝑅̂

1
ℎ

]
= 𝔼

(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[
∇ log(𝜋𝜃(𝐴ℎ |𝑆ℎ))

𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)
]
,
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where we used that we consider independent samples for 𝑖 = 1, . . . , 𝐾ℎ. From the proof of the
dynamical PG theorem (Theorem 4.4), we obtain that

𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ [∇̂𝐽𝐾ℎ

ℎ
(𝜃, ℼ̃(ℎ+1) , 𝜇)]

= 𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[
∇ log(𝜋𝜃(𝐴1 |𝑆ℎ))

𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)
]

= ∇𝐽ℎ(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ).

For the second claim, we have

𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[
∥∇̂𝐽𝐾ℎ

ℎ
(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ) − ∇𝐽ℎ(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ)∥2

]
≤ 1
𝐾ℎ

𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[
∥∇ log(𝜋𝜃(𝐴ℎ |𝑆ℎ))𝑄ℎ(𝑆ℎ, 𝐴ℎ) − ∇𝐽ℎ(𝜃)∥2

]
=

1
𝐾ℎ

𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[ ∑︁
𝑠∈Sℎ

∑︁
𝑎∈𝒜𝑠

(
1𝑠=𝑆ℎ (1𝑎=𝐴ℎ − 𝜋𝜃(𝑎|𝑠))

𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)

− 𝜇ℎ(𝑠)𝜋𝜃(𝑎|𝑠)𝐴
(𝜋𝜃,(ℼ̃) (ℎ+1) )
ℎ

(𝑠, 𝑎)
)2]

,

by the definition of ∇̂𝐽𝐾ℎ
ℎ
(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ) and the derivative of ∇𝐽ℎ(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ) for the softmax

parametrization. Further,

𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[
∥∇̂𝐽𝐾ℎ

ℎ
(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ) − ∇𝐽ℎ(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ)∥2

]
≤ 1
𝐾ℎ

𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[ ∑︁
𝑎∈𝒜𝑠

(1𝑎=𝐴ℎ − 𝜋𝜃(𝑎|𝑆ℎ))2
( 𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)
)2

− 2
∑︁
𝑎∈𝒜𝑠

(1𝑎=𝐴ℎ − 𝜋𝜃(𝑎|𝑆ℎ))
𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)𝜇ℎ(𝑠)𝜋𝜃(𝑎|𝑆ℎ)𝐴
(𝜋𝜃,(ℼ̃) (ℎ+1) )
ℎ

(𝑆ℎ, 𝑎)

+
∑︁
𝑠∈Sℎ

∑︁
𝑎∈𝒜𝑠

𝜇ℎ(𝑠)2𝜋𝜃(𝑎|𝑠)2𝐴
(𝜋𝜃,(ℼ̃) (ℎ+1) )
ℎ

(𝑠, 𝑎)2
]
.

We consider all three terms separately. For the first term we have

𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[ ∑︁
𝑎∈𝒜𝑠

(1𝑎=𝐴ℎ − 𝜋𝜃(𝑎|𝑆ℎ))2
( 𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)
)2]

= 𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[ ( 𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)
)2]
− 2𝔼(𝜋

𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[
𝜋𝜃(𝐴ℎ |𝑆ℎ)

( 𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)
)2]

+ 𝔼(𝜋
𝜃,(ℼ̃) (ℎ+1) )

𝜇ℎ

[ ∑︁
𝑎∈𝒜𝑠

𝜋𝜃(𝑎|𝑆ℎ)2
( 𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)
)2]

≤ ((𝐻 − ℎ)𝑅∗)2 − 0 + ((𝐻 − ℎ)𝑅∗)2 = 2((𝐻 − ℎ)𝑅∗)2,
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by bounded reward assumption and the fact that 𝜋𝜃 is a probability distribution. For the second
term, we note that 𝐴(𝜋

𝜃,(ℼ̃) (ℎ+1) )
ℎ

(𝑆ℎ, 𝑎) can be negative, therefore we consider the absolute value
and obtain

2𝔼(𝜋
𝜃,(ℼ̃) (ℎ+1) )

𝜇ℎ

[ ∑︁
𝑎∈𝒜𝑠

(1𝑎=𝐴ℎ − 𝜋𝜃(𝑎|𝑆ℎ))
𝐻−1∑︁
𝑘=ℎ

𝑟(𝑆𝑘, 𝐴𝑘)𝜇ℎ(𝑠)𝜋𝜃(𝑎|𝑆ℎ)
��𝐴(𝜋𝜃,(ℼ̃) (ℎ+1) )

ℎ
(𝑆ℎ, 𝑎)

��]
≤ 2𝔼(𝜋

𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[ ∑︁
𝑎∈𝒜𝑠

1 · (𝐻 − ℎ)𝑅∗ · 1 · 𝜋𝜃(𝑎|𝑆ℎ) · (𝐻 − ℎ)𝑅∗
]

= 2((𝐻 − ℎ)𝑅∗)2.

For the last term we have

𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[ ∑︁
𝑠∈Sℎ

∑︁
𝑎∈𝒜𝑠

𝜇ℎ(𝑠)2𝜋𝜃(𝑎|𝑠)2𝐴
(𝜋𝜃,(ℼ̃) (ℎ+1) )
ℎ

(𝑠, 𝑎)2
]
≤ ((𝐻 − ℎ)𝑅∗)2.

In total, it holds that

𝔼
(𝜋𝜃,(ℼ̃) (ℎ+1) )
𝜇ℎ

[
∥∇̂𝐽𝐾ℎ

ℎ
(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ) − ∇𝐽ℎ(𝜃, ℼ̃(ℎ+1) , 𝜇ℎ)∥2

]
≤ 5((𝐻 − ℎ)𝑅∗)2

𝐾ℎ
.

■

Define the stopping time. Let (𝜃(𝑛)
ℎ
)𝑛∈ℕ be the stochastic process from equation (4.22) and

let (𝜃(𝑛)
ℎ
)𝑛∈ℕ be the deterministic sequence generated by FT-DynPG with exact gradients,

𝜃
(𝑛+1)
ℎ

= 𝜃
(𝑛)
ℎ
+ 𝛼ℎ∇𝐽ℎ(𝜃(𝑛)ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ)

such that the initial parameter agree, i.e. 𝜃(1)
ℎ

= 𝜃
(1)
ℎ

, and the step size 𝛼ℎ is the same for both
processes. The natural filtration of (𝜃(𝑛)

ℎ
)𝑛∈ℕ is denoted by (F (𝑛)

ℎ
)𝑛∈ℕ.

For the deterministic scheme we could assure that 𝑐ℎ = min𝑛∈ℕmin𝑠∈S 𝜋𝜃
(𝑛)
ℎ (𝑎∗(𝑠) |𝑠) is bounded

away from 0 by Lemma 4.20. As for the simultaneous PG this cannot be guaranteed for the
stochastic trajectory. Define for every epoch the following stopping time

𝜏ℎ := min{𝑛 ≥ 1 : ∥𝜃(𝑛)
ℎ
− 𝜃(𝑛)

ℎ
∥2 ≥

𝑐ℎ

4
}.

We emphasize that 𝜏ℎ is a stopping time with respect to the filtration (F (𝑛)
ℎ
)𝑛∈ℕ by construction.

Event {𝑛 ≤ 𝜏ℎ}. It follows again by the
√
2-Lipschitz continuity of the softmax policies

(Lemma 4.26) that min0≤𝑛≤𝜏ℎ min𝑠∈S 𝜋𝜃
(𝑛)
ℎ (𝑎∗(𝑠) |𝑠) ≥ 𝑐ℎ

2 > 0.

Lemma 4.32. Let 𝜇ℎ be probability measures such that 𝜇ℎ(𝑠) > 0 for all 𝑠 ∈ Sℎ and consider the
stochastic sequence (𝜃(𝑛)

ℎ
)𝑛∈ℕ generated by equation (4.22) under softmax parametrization. Then,

it holds almost surely that min0≤𝑛≤𝜏ℎ min𝑠∈Sℎ 𝜋
𝜃
(𝑛)
ℎ (𝑎∗(𝑠) |𝑠) ≥ 𝑐ℎ

2 is strictly positive.
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Proof. For every 𝑛 ≤ 𝜏ℎ we obtain by the
√
2-Lipschitz continuity in Lemma 4.26 that

𝜋𝜃
(𝑛)
ℎ (𝑎∗(𝑠) |𝑠) ≥ 𝜋𝜃

(𝑛)
ℎ (𝑎∗(𝑠) |𝑠) − |𝜋𝜃

(𝑛)
ℎ (𝑎∗(𝑠) |𝑠) − 𝜋𝜃

(𝑛)
ℎ (𝑎∗(𝑠) |𝑠) |

≥ 𝜋𝜃
(𝑛)
ℎ (𝑎∗(𝑠) |𝑠) −

√
2∥𝜃(𝑛)

ℎ
− 𝜃(𝑛)

ℎ
∥2 >

𝑐ℎ

2
> 0,

holds almost surely. The claim follows directly. ■

We derive a convergence rate on the event {𝑛 ≤ 𝜏ℎ} in the following sense:

Lemma 4.33. Let 𝜇ℎ be probability measures such that 𝜇ℎ(𝑠) > 0 for all 𝑠 ∈ Sℎ and consider
the stochastic sequence (𝜃(𝑛)

ℎ
)𝑛∈ℕ generated by equation (4.22) under softmax parametrization.

Suppose that

(i) the batch size 𝐾 (𝑛)
ℎ
≥ 45𝑐2

ℎ

64𝑁
3
2
ℎ

(1 − 1
2
√
𝑁ℎ
)𝑛2 is increasing for some 𝑁ℎ ≥ 1 and

(ii) the step size 𝛼ℎ = 1
2(𝐻−ℎ)𝑅∗

√
𝑁ℎ
.

Then, it holds true that

𝔼
[
(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ))1{𝑛≤𝜏ℎ}

]
≤ 32

√
𝑁ℎ(𝐻 − ℎ)𝑅∗

3(1 − 1
2
√
𝑁ℎ
)𝑐2
ℎ
𝑛
.

Proof. As in the proof of Theorem 4.30 we deduce from the 𝐿ℎ-smoothness and Lemma 4.31,
that

𝔼
[
𝐽 (𝜃(𝑛+1)

ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ) |F (𝑛)ℎ

]
≥ 𝐽 (𝜃(𝑛)

ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ) +

(
𝛼ℎ −

𝐿ℎ𝛼
2
ℎ

2

)
∥∇𝐽 (𝜃(𝑛)

ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ)∥2 −

𝐿ℎ𝛼
2
ℎ
𝜓ℎ

2𝐾 (𝑛)
ℎ

.

We take the expectation of this inequality on both sides under the event {𝑛 + 1 ≤ 𝜏ℎ}. Note that
{𝑛 + 1 ≤ 𝜏ℎ} = {𝜏ℎ ≤ 𝑛}𝐶 is F𝑛-measurable and that 1{𝑛+1≤𝜏ℎ} ≤ 1{𝑛≤𝜏ℎ} a.s., thus

𝔼
[
(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛+1)
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ))1{𝑛+1≤𝜏ℎ}
]

= 𝔼
[
𝔼
[
(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛+1)
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ)) |F (𝑛)ℎ

]
1{𝑛+1≤𝜏ℎ}

]
≤ 𝔼

[(
𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝔼

[
𝐽ℎ(𝜃(𝑛+1)ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ) |F (𝑛)ℎ

] )
1{𝑛≤𝜏ℎ}

]
≤ 𝔼

[
(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ))1{𝑛≤𝜏ℎ}

]
−

(
𝛼ℎ −

𝐿ℎ𝛼
2
ℎ

2

)
𝔼
[
∥∇𝐽ℎ(𝜃(𝑛)ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ)∥21{𝑛≤𝜏ℎ}
]
+
𝐿ℎ𝛼

2
ℎ
𝜓ℎ

2𝐾 (𝑛)
ℎ

= 𝔼
[
(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ))1{𝑛≤𝜏ℎ}

]
− 𝛼ℎ

(
1 − 1

2
√
𝑁ℎ

)
𝔼
[
∥∇𝐽ℎ(𝜃(𝑛)ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ)∥21{𝑛≤𝜏ℎ}
]
+ 5(𝐻 − ℎ)𝑅∗

2𝐾 (𝑛)
ℎ

𝑁ℎ
.
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By Lemma 4.19 we have that

∥∇𝐽ℎ(𝜃(𝑛)ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ)∥2 ≥ min

𝑠∈S
𝜋𝜃
(𝑛)
ℎ (𝑎∗(𝑠|𝑠))2(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ))2

almost surely, and by Lemma 4.32 we have that min1≤𝑛≤𝜏ℎ min𝑠∈S 𝜋𝜃
(𝑛)
ℎ (𝑎∗(𝑠|𝑠))2 ≥ 𝑐ℎ

2 > 0 almost
surly. Therefore,

𝔼
[
(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛+1)
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ)1{𝑛+1≤𝜏ℎ}
]

≤ 𝔼
[
(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ))1{𝑛≤𝜏ℎ}

]
− 𝛼ℎ

(
1 − 1

2
√
𝑁ℎ

)
𝔼
[
min
𝑠∈S

𝜋𝜃
(𝑛)
ℎ (𝑎∗(𝑠|𝑠))2(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ))21{𝑛≤𝜏ℎ}

]
+ 5(𝐻 − ℎ)𝑅∗

2𝐾 (𝑛)
ℎ

𝑁ℎ
,

≤ 𝔼
[
(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ))1{𝑛≤𝜏ℎ}

]
− 𝛼ℎ

(
1 − 1

2
√
𝑁ℎ

) 𝑐2
ℎ

4
𝔼
[
(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑛)
ℎ
, ℼ̃(ℎ+1) , 𝜇ℎ))1{𝑛≤𝜏ℎ}

]2
+ 5(𝐻 − ℎ)𝑅∗

2𝐾 (𝑛)
ℎ

𝑁ℎ
,

where we used Jensen’s inequality in the last step.
For 𝑑𝑛 := 𝔼

[
(𝐽∗

ℎ
(ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃(𝑛)ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ))1{𝑛≤𝜏ℎ}
]
we imply the recursive inequality

𝑑𝑛+1 ≤ 𝑑𝑛 − 𝛼ℎ
(
1 − 1

2
√
𝑁ℎ

) 𝑐2
ℎ

4
𝑑2𝑛 +

5(𝐻 − ℎ)𝑅∗

2𝐾 (𝑛)
ℎ

𝑁ℎ
.

Define 𝑤 := 𝛼ℎ

(
1 − 1

2
√
𝑁ℎ

)
𝑐2
ℎ

4 > 0 and 𝐵 =
5(𝐻−ℎ)𝑅∗

2𝑁ℎ > 0, then

𝑑𝑛+1 ≤ 𝑑𝑛(1 − 𝑤𝑑𝑛) +
𝐵

𝐾
(𝑛)
ℎ

and by our choice of 𝛼ℎ,

𝐾
(𝑛)
ℎ
≥

45𝑐2
ℎ

64𝑁
3
2
ℎ

(1 − 1
2
√
𝑁ℎ
)𝑛2 = 9

4
𝑤𝐵𝑛2,

Moreover, it holds that

𝑑1 ≤ (𝐻 − ℎ)𝑅∗ ≤
1
𝛼ℎ
≤ 4

3𝑤
≤ 4

3𝑤 · 1 ,

because 𝑐ℎ ≤ 1 and 1√
𝑁ℎ
(1 − 1

2
√
𝑁ℎ
) < 1 for all 𝑁ℎ ≥ 1. Suppose the induction assumption

𝑑𝑛 ≤ 4
3𝑤𝑛 holds true, then for 𝑑𝑛+1,

𝑑𝑛+1 ≤ 𝑑𝑛 − 𝑤𝑑2𝑛 +
𝐵

𝐾
(𝑛)
ℎ

.
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The function 𝑓 (𝑥) = 𝑥 −𝑤𝑥2 is monotonically increasing in [0, 1
2𝑤 ] and by induction assumption

𝑑𝑛 ≤ 1
4𝑤𝑛 ≤

1
2𝑤 . So 𝑑𝑛 − 𝑤𝑑

2
𝑛 ≤ 4

3𝑤𝑛 which implies

𝑑𝑛+1 ≤ 𝑑𝑛 − 𝑤𝑑2𝑛 +
𝐵

𝐾
(𝑛)
ℎ

≤ 4
3𝑤𝑛

− 16
9𝑤𝑛2

+ 𝐵

𝐾𝑛

≤ 4
3𝑤𝑛

− 16
9𝑤𝑛2

+ 4𝐵
9𝑤𝐵𝑛2

=
4

3𝑤𝑛
− 12

9𝑤𝑛2
=

4
3𝑤

(1
𝑛
− 1
𝑛2

)
≤ 4

3𝑤(𝑛 + 1) ,

where we used that 𝐾 (𝑛)
ℎ
≥ 9

4𝑤𝐵𝑛
2. We deduce the claim

𝑑𝑛 ≤
4

3𝑤𝑛
=

32
√
𝑁ℎ(𝐻 − ℎ)𝑅∗

3(1 − 1
2
√
𝑁ℎ
)𝑐2
ℎ
𝑛
.

■

Event {𝜏ℎ ≤ 𝑛}. Secondly, consider the complementary event {𝜏ℎ ≤ 𝑛}. We can bound the
probability of this event by 𝛿 for a large enough batch size 𝐾ℎ. The proof is again inspired by
similar results obtained in Ding, Zhang, and Lavaei [DZL22, Lem. 6.3] for discounted MDPs.

Lemma 4.34. Let 𝜇ℎ be probability measures such that 𝜇ℎ(𝑠) > 0 for all 𝑠 ∈ Sℎ and consider the
stochastic sequence (𝜃(𝑛)

ℎ
)𝑛∈ℕ generated by equation (4.22) under softmax parametrization. For

any 𝛿 > 0, suppose that
(i) the batch size 𝐾ℎ ≥ 5𝑛3

𝑐2
ℎ
𝛿2

(ii) the step size 𝛼ℎ = 1√
𝑛𝐿ℎ

.

Then, it holds true that ℙ(𝜏ℎ ≤ 𝑛) < 𝛿.
Proof. The proof follows line by line the one of Lemma 4.29. One obtains

ℙ(𝜏ℎ ≤ 𝑛) = ℙ(max
1≤𝑡≤𝑛

∥𝜃(𝑡)
ℎ
− 𝜃(𝑡)

ℎ
∥ ≥ 𝑐ℎ

4
) ≤

4𝑛𝛼ℎ(1 + 𝛼ℎ𝐿ℎ)𝑛−1
√︃

𝜓ℎ
𝐾ℎ

𝑐ℎ
,

where 𝜓ℎ from Lemma 4.31. Now we plug in the choice of 𝛼ℎ = 1√
𝑛𝐿ℎ

= 1
2(𝐻−ℎ)𝑅∗

√
𝑛
,

ℙ(𝜏ℎ ≤ 𝑛) ≤
4𝑛 1√

𝑛𝐿ℎ
(1 + 1√

𝑛𝐿ℎ
𝐿ℎ)𝑛−1

√︃
𝜉ℎ
𝐾ℎ

𝑐ℎ

=
4
√
𝑛(1 + 1√

𝑛
)𝑛−1

√︁
𝜓ℎ

𝐿ℎ𝑐ℎ
√
𝐾ℎ

≤
2𝑛
√
𝑛
√︁
𝜓ℎ

𝐿ℎ𝑐ℎ
√
𝐾ℎ

=
𝑛
√
5𝑛

𝑐ℎ
√
𝐾ℎ
,

where the last step is due to 𝑓 (𝑥) = (1+ 1√
𝑥
)𝑥−1 ≤ 𝑥 for all 𝑥 ≥ 1. We conclude thatℙ(𝜏ℎ < 𝑛) < 𝛿

if 𝐾ℎ ≥ 5𝑛3
𝑐2
ℎ
𝛿2
. ■
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Convergence result. We are now ready to proof the epoch wise statement.

Lemma 4.35. Let 𝜇ℎ be probability measures such that 𝜇ℎ(𝑠) > 0 for all 𝑠 ∈ Sℎ and consider
the stochastic sequence (𝜃(𝑛)

ℎ
)𝑛∈ℕ generated by equation (4.22) under softmax parametrization.

Moreover, for any 𝛿, 𝜖 > 0, assume that

(i) the number of training steps 𝑁ℎ ≥
( 12(𝐻−ℎ)𝑅∗

𝜖𝛿𝑐2
ℎ

)2,
(ii) the step size 𝛼ℎ = 1

2(𝐻−ℎ)𝑅∗
√
𝑁ℎ

and

(iii) the batch size 𝐾ℎ = 5𝑁3
ℎ

𝑐2
ℎ
𝛿2
.

Then, it holds true that ℙ(
𝐽∗
ℎ
(ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃(𝑁ℎ )ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ) ≥ 𝜖
)
≤ 𝛿.

Proof. We separate the probability using the stopping time 𝜏ℎ and obtain

ℙ
(
𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ) ≥ 𝜖
)

≤ ℙ
(
{𝜏ℎ ≥ 𝑁ℎ} ∩ {𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ) ≥ 𝜖}
)

+ ℙ
(
{𝜏ℎ ≤ 𝑁ℎ} ∩ {𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ) ≥ 𝜖}
)

≤
𝔼
[
(𝐽∗

ℎ
(ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃(𝑁ℎ )ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ))1{𝜏ℎ≥𝑁ℎ}
]

𝜖
+ ℙ(𝜏ℎ ≤ 𝑁ℎ)

≤ 1
𝜖

32
√
𝑁ℎ(𝐻 − ℎ)𝑅∗

3(1 − 1
2
√
𝑁ℎ
)𝑐2
ℎ
𝑛
+ 𝛿
2

≤ 𝛿

2
+ 𝛿
2

= 𝛿,

where the second inequality it due to Lemma 4.33 and Lemma 4.34. The last inequality follows
by our choice of 𝑁ℎ:

32
√
𝑁ℎ(𝐻 − ℎ)𝑅∗

3𝜖(1 − 1
2
√
𝑁ℎ
)𝑐2
ℎ
𝑛
≤ 11

√
𝑁ℎ(𝐻 − ℎ)𝑅∗

𝜖(1 − 1
2
√
𝑁ℎ
)𝑐2
ℎ
𝑛
≤ 𝛿

2

for 𝑁ℎ ≥
( 11(𝐻−ℎ)𝑅∗

𝜖𝛿𝑐2
ℎ

+ 1
2
)2, which is satisfied for 𝑁ℎ ≥

( 12(𝐻−ℎ)𝑅∗
𝜖𝛿𝑐2

ℎ

)2. Note further that we could
use Lemma 4.33 in the equation above with a constant batch size 𝐾ℎ, because

max
{ 45𝑐2

ℎ

64𝑁
3
2
ℎ

(1 − 1
2
√
𝑁ℎ
)𝑛2,

5𝑁3
ℎ

𝑐2
ℎ
𝛿2

}
=

5𝑁3
ℎ

𝑐2
ℎ
𝛿2
,

for all 𝑛 ≤ 𝑁ℎ, as (1 − 1
2
√
𝑁ℎ
) < 1 and 𝑐ℎ < 1. ■

Our main result for the dynamic stochastic PG scheme is given as follows.
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Theorem 4.36. For all ℎ ∈ H, let 𝜇ℎ be probability measures such that 𝜇ℎ(𝑠) > 0 for all ℎ ∈ H,
𝑠 ∈ Sℎ. Consider the final policy using Algorithm 5 with stochastic updates from equation (4.22)
under softmax parametrization and denote by ℼ̂∗ = (𝜋𝜃

(𝑁0 )
0 , . . . , 𝜋𝜃

(𝑁𝐻−1 )
𝐻−1 ) the final policy. Moreover,

for any 𝛿, 𝜖 > 0 assume that

(i) the numbers of training steps satisfy 𝑁ℎ ≥
( 12(𝐻−ℎ)𝑅∗𝐻2



 1
𝜇ℎ




∞

𝛿𝑐2
ℎ
𝜖

)2
,

(ii) the step size 𝛼ℎ = 1
2(𝐻−ℎ)𝑅∗

√
𝑁ℎ

and

(iii) the batch size 𝐾ℎ ≥ 5𝑁3
ℎ
𝐻2

𝑐2
ℎ
𝛿2

.

Then, it holds true that
ℙ
(
∀𝑠 ∈ S0 : 𝑉∗0 (𝑠) − 𝑉 ℼ̂∗

0 (𝑠) < 𝜖
)
> 1 − 𝛿.

Proof. As in the proof of the exact gradient case (Theorem 4.24, equation (4.14)) we have by
our choice of the future policy ℼ̃ = ℼ̂∗ that

𝐽ℎ(𝜃(𝑁ℎ )ℎ
, ℼ̃(ℎ+1) , 𝛿𝑠) = 𝑉 ℼ̂∗

ℎ (𝑠). (4.23)

By Lemma 4.35 we have that

ℙ
(
𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ) ≥
𝜖

𝐻




 1
𝜇ℎ





∞

)
≤ 𝛿

𝐻
,

by our choice of 𝑁ℎ, 𝛼ℎ and 𝐾ℎ.
For every 𝑠 ∈ Sℎ, denote by 𝛿𝑠 the dirac measure on state 𝑠, then as in equation (4.15)

𝐽∗ℎ (ℼ̃(ℎ+1) , 𝛿𝑠) − 𝐽ℎ(𝜃
(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝛿𝑠) ≤



 1
𝜇ℎ





∞
(𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ)) a.s.

Thus, for all ℎ ∈ H it holds that

ℙ
(
∃𝑠 ∈ Sℎ : 𝐽∗ℎ (ℼ̃(ℎ+1) , 𝛿𝑠) − 𝐽ℎ(𝜃

(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝛿𝑠) ≥
𝜖

𝐻

)
≤ ℙ

(
𝐽∗ℎ (ℼ̃(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝜃

(𝑁ℎ )
ℎ

, ℼ̃(ℎ+1) , 𝜇ℎ) ≥
𝜖

𝐻




 1
𝜇ℎ





∞

)
≤ 𝛿

𝐻
.

(4.24)

Define the event 𝐴ℎ := {𝐽∗
ℎ
(ℼ̃(ℎ+1) , 𝛿𝑠)−𝐽ℎ(𝜃(𝑁ℎ )ℎ

, ℼ̃(ℎ+1) , 𝛿𝑠) < 𝜖
𝐻
, ∀𝑠 ∈ Sℎ}. Then equation (4.24)

states that ℙ(𝐴𝐶
ℎ
) ≤ 𝛿

𝐻
. For ℎ = 𝐻 − 1 it follows directly with equation (4.23) and the special

property of the last time point that

ℙ
(
∃𝑠 ∈ Sℎ : 𝑉∗𝐻−1(𝑠) − 𝑉 ℼ̂∗

𝐻−1(𝑠) ≥
𝜖

𝐻

)
= ℙ

(
∃𝑠 ∈ Sℎ : 𝐽∗𝐻−1(𝛿𝑠) − 𝐽𝐻−1(𝜃

(𝑁ℎ )
ℎ

, 𝛿𝑠) ≥
𝜖

𝐻

)
≤ 𝛿

𝐻
.
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We close the proof by induction. Assume for some 0 < ℎ < 𝐻 that

ℙ
(
∃𝑠 ∈ Sℎ : 𝑉∗ℎ (𝑠) − 𝑉

ℼ̂∗

ℎ (𝑠) ≥
𝜖(𝐻 − ℎ)

𝐻

)
≤ 𝛿(𝐻 − ℎ)

𝐻
. (4.25)

Define 𝐵ℎ := {𝑉∗ℎ (𝑠) − 𝑉
ℼ̂∗

ℎ
(𝑠) < 𝜖(𝐻−ℎ)

𝐻
,∀𝑠 ∈ Sℎ}. Similar to equation (4.17), on the event 𝐵ℎ it

holds that

𝐽∗ℎ−1(ℼ̃(ℎ) , 𝛿𝑠) = max
𝑎∈𝒜𝑠

(
𝑟(𝑠, 𝑎) +

∑︁
𝑠′∈Sℎ

𝑝(𝑠′ |𝑠, 𝑎)𝑉∗ℎ (𝑠) −
∑︁
𝑠′∈Sℎ

𝑝(𝑠′ |𝑠, 𝑎) (𝑉∗ℎ (𝑠) − 𝑉
ℼ̂∗

ℎ (𝑠))
)

> max
𝑎∈𝒜𝑠

(
𝑟(𝑠, 𝑎) +

∑︁
𝑠′∈Sℎ

𝑝(𝑠′ |𝑠, 𝑎)𝑉∗ℎ (𝑠)
)
− 𝜖(𝐻 − ℎ)

𝐻

= 𝑉∗ℎ−1(𝑠) −
𝜖(𝐻 − ℎ)

𝐻
.

We obtain on the event 𝐴ℎ−1 ∩ 𝐵ℎ that (compare to equation (4.18))

𝑉∗ℎ−1(𝑠) − 𝑉
ℼ̂∗

ℎ−1(𝑠) = 𝑉
∗
ℎ−1(𝑠) − 𝐽

∗
ℎ−1(ℼ̃(ℎ) , 𝛿𝑠) + 𝐽

∗
ℎ−1(ℼ̃(ℎ) , 𝛿𝑠) − 𝑉

ℼ̂∗

ℎ−1(𝑠)

<
𝜖(𝐻 − ℎ)

𝐻
+ 𝜖

𝐻

=
𝜖(𝐻 − (ℎ − 1))

𝐻
,

for every 𝑠 ∈ Sℎ−1. Hence, 𝐴ℎ−1 ∩ 𝐵ℎ ⊂ 𝐵ℎ−1. Finally, we close the induction by

ℙ
(
∃𝑠 ∈ Sℎ−1 : 𝑉∗ℎ−1(𝑠) − 𝑉

ℼ̂∗

ℎ−1(𝑠) ≥
𝜖(𝐻 − (ℎ − 1))

𝐻

)
= 1 − ℙ(𝐵ℎ−1) ≤ 1 − ℙ(𝐴ℎ−1 ∩ 𝐵ℎ) = ℙ(𝐴𝐶ℎ−1 ∪ 𝐵

𝐶
ℎ) ≤ ℙ(𝐴𝐶ℎ−1) + ℙ(𝐵

𝐶
ℎ)

= ℙ
(
∃𝑠 ∈ Sℎ−1 : 𝐽∗ℎ−1(ℼ̃(ℎ) , 𝛿𝑠) − 𝐽ℎ−1(𝜃

(𝑁ℎ−1)
ℎ−1 , ℼ̃(ℎ) , 𝛿𝑠) ≥

𝜖

𝐻

)
+ ℙ

(
∃𝑠 ∈ Sℎ : 𝑉∗ℎ (𝑠) − 𝑉

ℼ̂∗

ℎ (𝑠) ≥
𝜖(𝐻 − ℎ)

𝐻

)
≤ 𝛿

𝐻
+ 𝛿(𝐻 − ℎ)

𝐻

=
𝛿(𝐻 − (ℎ − 1))

𝐻
.

Finally, for ℎ = 0 we have shown the assertion ℙ
(
∃𝑠 ∈ S0 : 𝑉∗0 (𝑠) − 𝑉 ℼ̂∗

0 (𝑠) ≥ 𝜖
)
≤ 𝛿. ■

4.4.3 Comparison
In both scenarios the derived complexity bounds for the stochastic algorithms use a very large
batch size and small step size and we do not expect these rates to be tight. Similar large batch
size and step size is also needed to prove convergence in entropy regularized infinite-time
horizon SPG [DZL22]. It should also be noted that the choice of step size and batch size are
closely connected and both strongly depend on the number of training steps 𝑁. Specifically, as
𝑁 increases, the batch size increases, while the step size tends to decrease to prevent exceeding
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the stopping time with high probability. However, it is possible to increase the batch size even
further and simultaneously benefit from choosing a larger step size, or vice versa.
An advantage of the dynamic approach is that 𝑐ℎ can be explicitly known for uniform initialization.
Hence, the complexity bounds for the dynamic approach results in a practicable algorithm, while
𝑐 is unknown and possibly arbitrarily small for the simultaneous approach such that we can not
determine 𝐾.
Finally, we compare the complexity with respect to the time horizon. For the simultaneous
approach the number of training steps scales with 𝐻10, and the batch size with 𝐻30, while in the
dynamic approach the overall number of training steps scale with 𝐻7 and the batch size with 𝐻20.
We are aware that these bounds are far from tight and irrelevant for practical implementations.
Nevertheless, these bounds highlight once more the advantage of the dynamic approach in
comparison to the simultaneous approach and show (the non-trivial fact) that the algorithms
can be made to converge without knowledge of exact gradients and without regularization.



Dynamic Policy Gradient for discounted MDPs

5In the previous chapter we discussed a dynamic approach for policy gradient to tackle finite-time
MDPs. The motivation to utilize dynamic programming stemmed from seeking non-stationary

optimal policies in finite-time horizons. In this chapter however, our objective is the discounted
infinite-time horizon MDP and we aim to identify a stationary optimal policy. Nevertheless,
we explain in the following why dynamic policy gradient (DynPG), a combination of dynamic
programming and PG, is sometimes a good idea also for discounted MDPs.
The discount factor 𝛾 ∈ [0, 1) plays an essential role in the convergence behavior of RL algorithms,
as convergence explicitly depends on the contraction property of the Bellman operator. The closer
𝛾 to one, the slower the Bellman operator contracts. Similarly, the convergence of PG methods
also heavily depends on 𝛾 but establishing a clear dependence is generally challenging due to
the non-convex optimization landscape. In Section 3.1.2, we obtained a sub-linear convergence
rate for vanilla softmax PG such that dependencies on other salient but essential parameters of
the MDP crucially affect the overall convergence behavior of PG methods. Recall, that a model-
dependent and unknown constant 𝑐𝑔𝑔 appeared in the convergence rate (cf. Theorem 3.21),
which can in general depend on 𝛾 and other model-dependent parameters. Notably, [Li+23a]
constructed a counterexample such that vanilla PG could take an exponential time with respect
to (1 − 𝛾)−1 to converge. Although the optimal solution can be reached in just |S| steps of exact
value iteration in the counter example, vanilla softmax PG is very inefficient by not leveraging
the inherent structure of the MDP.
We tackle this issue by introducing DynPG. The algorithm is motivated by FT-DynPG and modified
to the infinite-time horizon. The idea is based on two observations: First recall that (1 − 𝛾)−1,
the expected horizon of infinite-time problems, correlates with the deterministic time horizon 𝐻

in finite-time MDPs (Remark 3.17). Second recall that we could delineate the dependence on
the unknown parameter 𝑐 under uniform initialization in softmax FT-DynPG and established an
explicit dependency on the finite-time horizon 𝐻 (Remark 4.22). We will see in this chapter that
the convergence rate of DynPG scales with (1 − 𝛾)−4 up to logarithmic factors and the unknown
model-dependent constant in the rate of vanilla softmax PG can be omitted. As a result, DynPG
can efficiently address the counterexample of [Li+23a]; see Section 5.4.1. We summarize the
complexity bounds for softmax PG and softmax DynPG in Table 5.1.

algorithm complexity bounds reference

softmax PG upper bound 𝑂
(
𝑐𝛾 (1 − 𝛾)−4𝜖−1

)
Theorem 3.21

softmax PG lower bound |S|2Ω ( (1−𝛾)
−1 ) gradient steps for 𝜖 = 0.15 [Li+23a, Thm. 1]

softmax DynPG upper bound 𝑂
(
(1 − 𝛾)−4𝜖−1 log((1 − 𝛾)−2𝜖−1)

)
[new Thm. 5.19]

Table 5.1: Comparison of convergence rate under exact gradients

81
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The main contributions in this chapter are three-fold:

1. In Section 5.2, we introduce the algorithm DynPG that directly combines dynamic pro-
gramming and policy gradient. The algorithm (provably) circumvents recent worst case
lower bound problems for standard PG.

2. In Section 5.3, we provide a detailed error decomposition to outline the convergence
behavior of DynPG in general frameworks. Afterwards, we derive rigorous upper bounds
on the convergence rate under tabular softmax parametrization. The 𝛾-dependence is
explicit and turns out to be more suitable compared to vanilla PG.

3. In Section 5.4, we discuss the application of DynPG in the the lower bound example
constructed in [Li+23a] and provide a numerical toy example to verify the performance
of DynPG in stochastic settings. Afterwards, we discuss the limitations and modifications
of DynPG for practical usage and finally compare the performance of DynPG to NPG.

As a final remark, we want to point out that the idea of using dynamic programming in searching
the optimal policy is not new and dates back to the early 2000s, having been revisited several
times in recent decades. Policy search by dynamic programming (PSDP) [Bag+03; Kak03;
Sch14] is most closely related to DynPG and searches for optimal policies in a restricted policy
class without explicitly using gradient ascent to find the optimal policy. There is a line of
similar algorithms like approximate policy iteration (API), gradient temporal difference, policy
dynamic programming and numerous other variations [BT96a; SMS08; Sut+09; AGK12; KL02;
Sch+15a]. In these works, however, PG was not used as policy optimization step.

5.1 Preliminaries and Notation

In the following we consider an infinite-time horizon MDP, (S,𝒜, 𝛾, 𝑝, 𝑟), as introduced in
Section 3.1. Due to a finite state and action space we can assume bounded rewards, more precisely
we assume 𝑟(𝑠, 𝑎) ∈ [−𝑅∗, 𝑅∗] for all (𝑠, 𝑎) ∈ S × 𝒜. In Section 3.1.1, we discussed dynamic
programming in discounted MDPs and we have seen that applying the Bellman optimality
operator infinitely often to any function leads to converge towards the optimal value function,
i.e. lim𝑛→∞ 𝑇∗(𝑉) = 𝑉∗. In comparison for finite-time MDPs, we need to apply the operators 𝑇∗

ℎ

for ℎ = 𝐻 − 1, . . . , 0 backwards in time to an initial 𝑉𝐻 ≡ 0 (cf. Section 3.2.1).
The idea for FT-DynPG was to approximate these optimal operators by policy gradient in a
backward inductive manner (cf. Remark 4.3). The idea of DynPG for discounted MDPs is to
train a sequence of policies (𝜋𝜃𝑡 )∞

𝑡=0 forward in time (from 𝑡 = 0, 1, . . . ) such that at time point 𝑡,

𝜃∗𝑡 ≈ argmax𝜃𝑇𝜋
𝜃

𝑇𝜋
𝜃∗
𝑡−1 · · ·𝑇𝜋

𝜃∗0 (V0) with the convention V0 ≡ 0. As the training of a new policy
happens by adding an additional Bellman operator, we can interpret the procedure as a forward
dynamic programming principle, which adds a new time step at the beginning. We will explain
this in more detail in Section 5.2.
To analyze this forward inductive procedure, we introduce time dependent non-stationary policies
with time-horizon ℎ, denoted by ℼℎ := (𝜋ℎ−1, . . . , 𝜋0) ∈ Πℎ. Note that the time-indexing is
reversed compared to Definition 3.25. From now on, we always consider this reverse ordering
and refer to ℎ ∈ ℕ as the deterministic finite-time horizon, where the case ℎ = ∞ corresponds to
the standard infinite-time horizon MDP.
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Definition 5.1. Let 𝜇 be an initial state distribution on S. Define V0 ≡ 0 and for all ℎ > 0 ,ℎ = ∞
allowed, we define the truncated ℎ-step value function under the policies ℼℎ = (𝜋ℎ−1, . . . , 𝜋0) ∈
Πℎ as

V
ℼℎ

ℎ
(𝜇) = V

(𝜋ℎ−1,...,𝜋0 )
ℎ

(𝜇) := 𝔼
𝑆0∼𝜇,𝐴𝑡∼𝜋ℎ−𝑡−1 ( · |𝑆𝑡 )

𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ℎ−1∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]
. (5.1)

When 𝜇 is a Dirac measure at 𝑠 we let Vℼℎ

ℎ
(𝑠) := V

ℼℎ

ℎ
(𝛿𝑠).

Similar as for the infinite-time horizon MDP, we use V𝜋
ℎ
(𝜇) to denote the value function of the

stationary policy 𝜋 ∈ Π being applied ℎ times in a row. Note that V∞ equals the originally defined
value function 𝑉 in Definition 3.3. To be consistent, we will always use V∞ in the following. We
use the calligraphic notation to distinguish from the finite-time value function in Definition 3.26.
Remark 5.2. The finite-time value function 𝑉𝐻−ℎ defined in Definition 3.26, where ℎ time steps
from 𝐻 − ℎ to 𝐻 −1 are considered, differs from Vℎ in Definition 5.1 by an index-shift in the time
space and therefore also different discounting. More precisely, if the state space S is stationary
in a finite-time MDP and a policy ℼℎ = (𝜋ℎ−1, . . . , 𝜋0) ∈ Πℎ for discounted MDPs and a policy
ℼ̃(𝐻−ℎ) = (𝜋𝐻−ℎ, . . . , 𝜋𝐻−1) for finite-time MDPs agree, i.e. 𝜋 𝑗 = 𝜋𝐻−1− 𝑗, then the value function
V
ℼℎ

ℎ
(𝜇) defined in Definition 5.1 is equal to 𝛾ℎ−𝐻𝑉 ℼ̃(𝐻−ℎ)

𝐻−ℎ (𝜇) defined in Definition 3.26. Thus, the
functions only differ by a constant which is due to the different discounting.
Recall from Section 3.1, that for ℎ = ∞ the resulting infinite-time horizon discounted MDP
admits a stationary optimal policy. We define V∗∞(𝜇) := sup𝜋∈Π V𝜋∞(𝜇) and use 𝜋∗ to denote
a stationary policy that achieves V𝜋

∗
∞ (𝜇) = V∗∞(𝜇). In contrast, when ℎ is finite, the finite-

horizon MDP optimization problem needs non-stationary optimal policies; thus, we define
V∗
ℎ
(𝜇) := supℼℎ∈Πℎ V

ℼℎ

ℎ
(𝜇) and use ℼ∗

ℎ
:= (𝜋∗

ℎ−1, . . . , 𝜋
∗
0) ∈ Πℎ to denote a sequence of policies

that achieves Vℼ∗
ℎ

ℎ
(𝜇) = V∗

ℎ
(𝜇).

Recall the dynamic programming principle for discounted MDPs described in Section 3.1.1,
where we established that V∞ can be approximated by applying the Bellman optimality operator
𝑇∗ iteratively. In addition, the optimal ℎ-step value functions V∗

ℎ
can also be obtained by applying

𝑇∗ ℎ-times to V0 ≡ 0 and as ℎ→∞, V∗
ℎ
converges to V∗∞.

Lemma 5.3. For any ℎ ≥ 1, it holds that

(i) V∗
ℎ
(𝑠) = 𝑇∗(V∗

ℎ−1) (𝑠), for all 𝑠 ∈ S,

(ii) ∥V∗∞ − V∗
ℎ
∥∞ ≤ 𝛾ℎ

1−𝛾𝑅
∗.

Proof. The claim and proof is similar to [Ber01, Prop. 1.2.1].
The first claim, follows directly from the definition of the Bellman optimality operator (Defini-
tion 3.11)

V∗ℎ(𝑠) = sup
ℼℎ∈Πℎ

∑︁
𝑎∈𝒜

𝜋0(𝑎|𝑠)
(
𝑟(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)Vℼℎ−1
ℎ−1 (𝑠

′)
)

= max
𝑎∈𝒜

(
𝑟(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎) sup
ℼℎ−1∈Πℎ−1

V
ℼℎ−1
ℎ−1 (𝑠

′)
)
= 𝑇∗(V∗ℎ−1) (𝑠).
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For the second part, we fix ℎ ≥ 0. Recall that 𝜋∗ ∈ Π denotes a stationary optimal policy for the
infinite-time problem and ℼ∗

ℎ
∈ Πℎ an optimal non-stationary policy.

We divide the proof of the second claim into two cases.
Case 1: Assume that V∗∞(𝑠) − V∗ℎ(𝑠) ≤ 0 for all 𝑠 ∈ S. Note that V∗∞(𝑠) ≥ V

(ℼ∗
ℎ
)∞

∞ (𝑠), where (ℼ∗
ℎ
)∞

denotes that we apply the finite time policy ℼ∗
ℎ
in a loop for the infinite time problem. We have

V
ℼ∗
ℎ

ℎ
(𝑠) − V∗∞(𝑠) ≤ V

ℼ∗
ℎ

ℎ
(𝑠) − V

(ℼ∗
ℎ
)∞

∞ (𝑠)

= − 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋ℎ−(𝑡 mod ℎ)−1 ( · |𝑆𝑡 )

𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ∞∑︁
𝑡=ℎ

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]

≤
∞∑︁
𝑡=ℎ

𝛾𝑡𝑅∗ =
𝛾ℎ

1 − 𝛾 𝑅
∗,

where 𝑅∗ bounds the absolute value of rewards.
Case 2: Assume that V∗(𝑠) − V∗

ℎ
(𝑠) > 0 for all 𝑠 ∈ S. Note that Vℼ∗

ℎ

ℎ
(𝑠) ≥ V𝜋

∗

ℎ
(𝑠) due to the

optimality of ℼ∗
ℎ
over the finite-time horizon. Further, by the definition of V∗∞(𝑠) = V𝜋

∗
∞ (𝑠), we

have

V∗∞(𝑠) − V
ℼ∗
ℎ

ℎ
(𝑠) ≤ V𝜋

∗
∞ (𝑠) − V𝜋

∗

ℎ (𝑠)

= 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋∗ ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ∞∑︁
𝑡=ℎ

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]

≤
∞∑︁
𝑡=ℎ

𝛾𝑡𝑅∗ =
𝛾ℎ

1 − 𝛾 𝑅
∗.

Hence, we arrive at

∥V∗∞ − V
𝜋∗
ℎ

ℎ
∥∞ = max

𝑠∈S
|V∗∞(𝑠) − V

𝜋∗
ℎ

ℎ
(𝑠) | ≤ 𝛾ℎ

1 − 𝛾 𝑅
∗.

■

Further, we define for any ℎ ≥ 1 the truncated state-action value under policy ℼℎ−1 ∈ Πℎ−1 for
every 𝑠 ∈ S, 𝑎 ∈ 𝒜 by

Q
ℼℎ−1
ℎ
(𝑠, 𝑎) := 𝔼

𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )
𝐴𝑡∼𝜋ℎ−𝑡−1 ( · |𝑆𝑡 )

[ ℎ−1∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
���𝑆0 = 𝑠, 𝐴0 = 𝑎

]
= 𝑟(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)Vℼℎ−1
ℎ−1 (𝑠

′).

For ℎ ≥ 1 and ℼℎ ∈ Πℎ we also define the truncated advantage functions

𝒜ℼℎ

ℎ
(𝑠, 𝑎) := Q

ℼℎ−1
ℎ
(𝑠, 𝑎) − V

ℼℎ

ℎ
(𝑠),∀𝑠 ∈ S, 𝑎 ∈ 𝒜. (5.2)

We derive the following performance difference lemma for the truncated discounted value
functions.
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Lemma 5.4. Let ℼℎ+1,ℼ′ℎ+1 ∈ Πℎ+1, then it holds that

(𝑖) V
ℼℎ+1
ℎ+1 (𝑠) − V

ℼ′
ℎ+1

ℎ+1 (𝑠) = 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ℎ∑︁
𝑡=0

𝛾𝑡𝒜
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡, 𝐴𝑡)
]
.

(ii) If both policies only differ in the first policy, i.e. ℼℎ = ℼ′
ℎ
, then the above equation simplifies to

V
ℼℎ+1
ℎ+1 (𝑠) − V

ℼ′
ℎ+1

ℎ+1 (𝑠) = 𝔼
𝑆0=𝑠,𝐴0∼𝜋ℎ ( · |𝑆0 )

[
𝒜
ℼ′
ℎ+1

ℎ+1 (𝑆0, 𝐴0)
]
. (5.3)

Proof. The proof is similar to Lemma 3.32. However, we need to adapt to the time shift (see
Remark 5.2). First, let ℼℎ+1,ℼ′ℎ+1 ∈ Πℎ+1 be two arbitrary policies. We have

V
ℼℎ+1
ℎ+1 (𝑠) − V

ℼ′
ℎ+1

ℎ+1 (𝑠)

= 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ℎ∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]
− V

ℼ′
ℎ+1

ℎ+1 (𝑠)

= 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ℎ∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡) +
ℎ∑︁
𝑡=0

𝛾𝑡V
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡) −
ℎ∑︁
𝑡=0

𝛾𝑡V
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡)
]
− V

ℼ′
ℎ+1

ℎ+1 (𝑠)

= 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ℎ∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡) +
ℎ∑︁
𝑡=1

𝛾𝑡V
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡) −
ℎ∑︁
𝑡=0

𝛾𝑡V
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡)
]

= 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ℎ∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡) +
ℎ−1∑︁
𝑡=0

𝛾𝑡+1V
ℼ′
ℎ−𝑡

ℎ−𝑡 (𝑆𝑡+1) −
ℎ∑︁
𝑡=0

𝛾𝑡V
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡)
]

= 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ℎ∑︁
𝑡=0

𝛾𝑡
(
𝑟(𝑆𝑡, 𝐴𝑡) + 𝛾V

ℼ′
ℎ−𝑡

ℎ−𝑡 (𝑆𝑡+1) − V
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡)
)]

= 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ℎ∑︁
𝑡=0

𝛾𝑡
(
Q
ℼ′
ℎ−𝑡

ℎ+1−𝑡 (𝑆𝑡, 𝐴𝑡) − V
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡)
)]

= 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ℎ∑︁
𝑡=0

𝛾𝑡𝒜
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡, 𝐴𝑡)
]
,

where in the fifth equation we used the convention V0 ≡ 0, in the sixth equation the definition
of the Q-function, and in the last equation the definition of the advantage function. Second,
suppose that ℼℎ+1 and ℼ′

ℎ+1 agree on all policies besides 𝜋ℎ, i.e. ℼℎ = ℼ′
ℎ
. Then, for any 𝑡 > 0, it

holds that

𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[
𝒜
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡, 𝐴𝑡)
]

=
∑︁
𝑎∈𝒜

𝜋ℎ(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎) 𝔼
𝑆0=𝑠

′,𝐴𝑡∼𝜋ℎ−𝑡−1 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[
𝒜
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡, 𝐴𝑡)
]
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=
∑︁
𝑎∈𝒜

𝜋ℎ(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)
©­­« 𝔼
𝑆0=𝑠

′,𝐴𝑡∼𝜋′ℎ−𝑡−1 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[
Q
ℼ′
ℎ−𝑡

ℎ+1−𝑡 (𝑆𝑡, 𝐴𝑡) − V
ℼ′
ℎ+1−𝑡

ℎ+1−𝑡 (𝑆𝑡)
]ª®®¬

= 0.

This proves the claim. ■

Policy Search Framework. Inspired by dynamic programming, [Bag+03; Kak03] proposed
policy search by dynamic programming (PSDP) to search policies (𝜋𝐻−1, · · · , 𝜋0) ∈ Π̃𝐻 , where 𝐻
is the problem horizon given as an input to the algorithm and Π̃ ⊂ Π is the set of all deterministic
policies. Formally, given 𝐻 and Π̃, PSDP computes

𝜋∗ℎ = argmax𝜋ℎ∈Π̃ V
(𝜋ℎ,ℼ̃∗ℎ )
ℎ+1 (𝜇) = argmax𝜋ℎ∈Π̃ V

(𝜋ℎ,𝜋∗ℎ−1,· · · ,𝜋
∗
0 )

ℎ+1 (𝜇), (5.4)

for ℎ = 0, . . . , 𝐻 − 1. PSDP solves an (ℎ + 1)-step MDP initialized at an 𝑆0 ∼ 𝜇 in the iteration
indexed by ℎ. Specifically, it finds the optimal deterministic policy for selecting the first action
𝐴0, denoted by 𝜋∗

ℎ
, but then all the remaining actions in the episode {𝐴1, · · · , 𝐴ℎ−1} are selected

according to the sequence of deterministic policies ℼ̃∗
ℎ
:= (𝜋∗

ℎ−1, · · · , 𝜋
∗
0). Note that for all ℎ,

ℼ̃∗
ℎ
have been computed in previous iterations and are kept fixed. Compared to vanilla PG,

PDSP exploits the Markovian property of the environment, rendering each iteration into solving
a contextual bandit problem. While considering deterministic policies may suffice in tabular
MDPs, no explicit computational procedures have been provided in [Bag+03; Kak03] to solve
the optimization problem in equation (5.4). Further, determining the policy to be applied post-
training is not immediately evident. In [Sch14] the author proposes to apply the non-stationary
policy ℼ̃∗𝐻 in a loop. Still, to solve the discussed infinite horizon MDP, a stationary policy is
sufficient. We provide answers to these issues using DynPG.

5.2 The DynPG Algorithm

DynPG starts by solving a one-step contextual bandit problem and then incrementally extends
the problem horizon by one in each iteration, which is done by appending the new decision
epoch in front of the current problem horizon (see Algorithm 6 and the illustration in Figure
5.1).
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Algorithm 6: DynPG for discounted MDPs
Result: Approximation of 𝜋∗, denoted as 𝜋∗.
Input: Initial state distribution 𝜇 and class

of policies (𝜋𝜃)𝜃∈ℝ𝑑 .

Set ℎ = 0 and initialize Λ = [];
while Convergence criterion not met do

Initialize 𝜃0 (e.g., 𝜃0 ≡ 0);
Choose 𝛼ℎ and 𝑁ℎ (cf., Remark 5.11);
for 𝑛 = 0, . . . , 𝑁ℎ − 1 do

Sample 𝐺 ≈ ∇𝜃𝑛V
(𝜋𝜃,Λ)
ℎ+1 (𝜇);

Update 𝜃𝑛+1 = 𝜃𝑛 + 𝛼ℎ𝐺;
end
Set 𝜋∗

ℎ
= 𝜋𝜃𝑁ℎ ;

Attach 𝜋∗
ℎ
at the beginning of Λ;

Set ℎ = ℎ + 1;
end
Return 𝜋∗ = 𝜋∗

ℎ−1 (the first element of Λ);

̂π*H

t0 πθ

1

h

2
⋮
H ⋯

1 2 3 H + 1

πθ ̂π*0

πθ ̂π*1 ̂π*0

πθ ̂π*H−1 ̂π*H−2 ̂π*0

⋱ ⋱ ⋱

⋯̂π*H ⋯

∞

: optimization variable
: stored previous policies
: DynPG output

Output: ̂π*H ̂π*H ̂π*H

Figure 5.1: DynPG solves a sequence of
contextual bandit problems, iteratively
storing the convergent policies to memory
and applying them accordingly as fixed
policies in later iterations.

In each iteration, the parametrized (stochastic) policy responsible for sampling action 𝐴0 from
the newly-added epoch is optimized using gradient ascent. In subsequent time steps, DynPG
applies the previous convergent policies to sample actions. Upon convergence of the current
iteration, the policy is stored in a designated memory location, which will be utilized in future
iterations. We define ℼ̂∗

ℎ
:= (𝜋∗

ℎ−1, · · · , 𝜋
∗
0) ∈ Πℎ with convention ℼ̂∗0 = ∅ to denote the learned

policies. DynPG returns the first policy in Λ when certain user-defined convergence criteria
have been met. For example, this is the case if the relative value improvements between two
consecutive DynPG iterations are small i.e., ∥Vℼ̂∗

ℎ+1
ℎ+1 − V

ℼ̂∗
ℎ

ℎ
∥∞ ≤ 𝜖.

Recall the definition of V0 ≡ 0, then the construction of DynPG implies

V
ℼ̂∗
ℎ+1

ℎ+1 (𝑠) = 𝑇
𝜋∗
ℎ (Vℼ̂∗

ℎ

ℎ
) (𝑠) = · · · = (𝑇𝜋∗ℎ ◦ · · · ◦ 𝑇𝜋∗0) (Vℼ̂∗0

0 ) (𝑠), 𝑠 ∈ S, (5.5)

which will be employed in the analyzes of the convergence rate.
Remark 5.5. Lets discuss the similarities and differences of DynPG to FT-DynPG, Algorithm 5,
proposed in Chapter 4.

1. FT-DynPG has a prefixed time horizon 𝐻 and trains policy backwards in time. In contrast,
DynPG adds arbitrarily many policies in the beginning and can therefore be applied without
prefixed 𝐻.

2. Given a fixed time horizon 𝐻, FT-DynPG returns a non-stationary policy ℼ̂∗𝐻 for an 𝐻-step
MDP but with 𝛾 = 1, so without discounting. When DynPG is run for the same fixed
number of iterations 𝐻 as FT-DynPG and we include the discount factor in the rewards of
FT-DynPG (cf. Remark 3.24 and Remark 4.6), then DynPG only differs by the time shift
discussed in Remark 5.2.

In order to sample the gradient 𝐺 ≈ ∇𝜃𝑛V
(𝜋𝜃,Λ)
ℎ+1 (𝜇) we use the following modified version of the

policy gradient theorem.
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Theorem 5.6. Suppose that ℼℎ ∈ Πℎ is fixed for some ℎ ≥ 0, with the convention ℼ0 = ∅. Then
for any differentiable parametrized family, say (𝜋𝜃)𝜃∈ℝ𝑑 , it holds that

∇𝜃V(𝜋
𝜃,ℼℎ )

ℎ+1 (𝑠) = 𝔼
𝑆=𝑠,𝐴∼𝜋𝜃 ( · |𝑆)

[
∇𝜃 log(𝜋𝜃(𝐴|𝑆))Qℼℎ

ℎ+1(𝑆, 𝐴)
]
.

Proof. The proof is the same as for dynamic policy gradient in finite-time horizon MDPs (Theo-
rem 4.4). However, we will need an index shift and additionally to consider the discount factor
𝛾 and thus go throuth the arguments again.
An (ℎ + 1)-step trajectory 𝜏ℎ+1 = (𝑠0, 𝑎0, . . . , 𝑠ℎ, 𝑎ℎ) under policy (𝜋𝜃,ℼℎ) and initial state
distribution 𝛿𝑠 occurs with probability

𝑝
(𝜋𝜃,ℼℎ )
𝑠 (𝜏ℎ) = 𝛿𝑠 (𝑠0)𝜋𝜃(𝑎0 |𝑠0)

ℎ∏
𝑘=1

𝑝(𝑠𝑘 |𝑠𝑘−1, 𝑎𝑘−1)𝜋ℎ−𝑘 (𝑎𝑘 |𝑠𝑘).

Then, the log trick yields that

∇𝜃 log(𝑝(𝜋
𝜃,ℼℎ )

𝑠 (𝜏ℎ))

= ∇𝜃
(
log(𝛿𝑠 (𝑠0)) + log(𝜋𝜃(𝑎0 |𝑠0)) +

ℎ∑︁
𝑘=1

log(𝑝(𝑠𝑘 |𝑠𝑘−1, 𝑎𝑘−1)) + log(𝜋ℎ−𝑘 (𝑎𝑘 |𝑠𝑘))
)

= ∇𝜃 log(𝜋𝜃(𝑎0 |𝑠0)).

Let Wℎ+1 be the set of all trajectories from 0 to ℎ. Then, the set Wℎ+1 is finite due to the
assumption that state and action space are finite. For 𝑠 ∈ S we have

∇𝜃V(𝜋
𝜃,ℼℎ )

ℎ+1 (𝑠)

= ∇𝜃
∑︁

𝜏ℎ+1∈Wℎ+1

𝑝
(𝜋𝜃,ℼℎ )
𝑠 (𝜏ℎ+1)

ℎ∑︁
𝑘=0

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘)

=
∑︁

𝜏ℎ+1∈Wℎ+1

𝑝
(𝜋𝜃,ℼℎ )
𝑠 (𝜏ℎ)∇𝜃 log(𝑝(𝜋

𝜃,ℼℎ )
𝑠 (𝜏ℎ+1))

ℎ∑︁
𝑘=0

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘)

=
∑︁

𝜏ℎ+1∈Wℎ+1

𝑝
(𝜋𝜃,ℼℎ )
𝑠 (𝜏ℎ+1)∇𝜃 log(𝜋𝜃(𝑎0 |𝑠0))

ℎ∑︁
𝑘=0

𝛾𝑘𝑟(𝑠𝑘, 𝑎𝑘)

= 𝔼
𝑆0=𝑠,𝐴0∼𝜋𝜃 ( · |𝑆)

𝑆𝑡+1∼𝑝( · |𝐴𝑡 ,𝑆𝑡 ) ,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )

[
∇𝜃 log(𝜋𝜃(𝐴0 |𝑆0))

ℎ∑︁
𝑘=0

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)
]

= 𝔼
𝑆0=𝑠,𝐴0∼𝜋𝜃 ( · |𝑆)

[
∇𝜃 log(𝜋𝜃(𝐴0 |𝑆0)) 𝔼

𝑆𝑡+1∼𝑝( · |𝐴𝑡 ,𝑆𝑡 ) ,𝐴𝑡∼𝜋ℎ−𝑡 ( · |𝑆𝑡 )

[ ℎ∑︁
𝑘=0

𝛾𝑘𝑟(𝑆𝑘, 𝐴𝑘)
��𝑆0, 𝐴0] ]

= 𝔼
𝑆=𝑠,𝐴∼𝜋𝜃 ( · |𝑆)

[
∇𝜃 log(𝜋𝜃(𝐴|𝑆))Qℼℎ

ℎ+1(𝑆, 𝐴)
]
.

■
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Compared to vanilla PG, which performs rollouts up to a geometric time horizon or until termi-
nation to ensure an unbiased gradient estimate (Section 3.1.2), DynPG dynamically adjusts the
episode horizon during the execution of the algorithm. This results in three notable advantages.
First, we observe that DynPG effectively reduces the variance in gradient estimation through the
utilization of non-changing future policies. In contrast, the estimation of the gradient in vanilla
PG involves assessing Q-values based on the stationary policy 𝜋𝜃, which changes during training.
Second, DynPG requires significantly fewer samples, a topic we discuss in detail at the end of
this section. Moreover, each DynPG iteration has more benign optimization landscapes, as they
are essentially contextual bandit problems. Specifically, analysing the convergence behaviour
of DynPG in the next section reveals that DynPG under softmax parametrization has a smaller
smoothness constant, enabling the selection of a more aggressive step size, 𝛼ℎ, to enhance
convergence. Third, DynPG is less likely to suffer from committal behaviour, more exploration
in the policy space is achieved by consistent re-initialization of the newly added policy.
In contrast to PSDP, we specify the set of policies Π̃ to be a parameterized class of differentiable
policies and a computational procedure, namely PG, for the inner loop. Hence, using deep
networks with great approximation behavior works in DynPG and non-tabular MDPs can be
considered in general. This preserves the model-free optimization characteristic of gradient
methods, while still exploiting the underlying structure of MDPs by dynamic programming.
DynPG can be further modified with additional enhancements such as regularization, natural
policy gradient or policy mirror descent in ever optimization epoch. In addition, we show that
applying the policy of the last training epoch as stationary policy is sufficient. This is a non-trivial
result and our analysis in Section 5.3 reveals that in general it requires additional training to
obtain a good stationary policy compared to using the non-stationary policy ℼ̂∗𝐻 in a loop as
proposed in [Sch14]. In the tabular softmax case we specify these additional computational cost
explicitly.

On the total sample complexity. For each gradient step in vanilla policy gradient, one must
run the MDP until termination or up to a stochastic horizon 𝐻 ∼ Geom(1 − 𝛾) to obtain an
unbiased sample of the gradient (see Remark 3.17). DynPG, on the other hand, only requires ℎ
interactions with the environment to sample an unbiased estimator of the gradient in epoch
ℎ. Thus, comparing other policy gradient methods to DynPG solely based on the number of
gradient steps is inadequate. Instead, for fairness, the number of samples (interactions with the
environment) should be compared in practical implementations. For DynPG the total sample
complexity is given by

∑𝐻−1
ℎ=0 (ℎ + 1)𝑁ℎ. This results in a trade-off between increasing samples

required for estimation and more accurate training to obtain convergence (cf. Section 5.3.1).

5.3 Convergence Analysis of DynPG

We analyze the convergence of DynPG under the tabular softmax parametrization. Specifically,
Section 5.3.1 introduces four different layers of approximations that DynPG employed in solving
the infinite-time horizon discounted MDP. These results are general and do not require a specific
parametrization. Based on this we present the asymptotic global convergence of DynPG under
the assumption of small enough optimization errors and rich enough parametrization class.
Section 5.3.2 establishes the non-asymptotic global convergence rate of DynPG under the softmax
parametrization and provides suitable parameters that achieve the theoretical limit.
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5.3.1 Error Decomposition and General Convergence
To show the error decomposition we need the following Lemma to establish validation of applying
the last policy trained in DynPG as stationary policy. The result is inspired by error bounds
presented in [Ber01, Sec. 1.3].

Lemma 5.7. For any 𝑉 ∈ ℝ |S | and policy 𝜋 ∈ Π it holds that

∥𝑉 − V𝜋∞∥∞ ≤
∥𝑇𝜋(𝑉) − 𝑉 ∥∞

1 − 𝛾 .

Proof. Consider any state 𝑠 ∈ S. Since V𝜋∞ is the unique fixed point of the operator 𝑇𝜋, we have

V𝜋∞(𝑠) = 𝑇𝜋(V𝜋∞) (𝑠) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)V𝜋∞(𝑠′).

This implies that

V𝜋∞(𝑠) − 𝑉 (𝑠)
=

∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)V𝜋∞(𝑠′) − 𝑉 (𝑠)

=
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎) (V𝜋∞(𝑠′) − 𝑉 (𝑠′) + 𝑉 (𝑠′)) − 𝑉 (𝑠)

=
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉 (𝑠′)

+ 𝛾
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎) (V𝜋∞(𝑠′) − 𝑉 (𝑠′)) − 𝑉 (𝑠)

= 𝑇𝜋(𝑉) (𝑠) − 𝑉 (𝑠) + 𝛾
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎) (V𝜋∞(𝑠′) − 𝑉 (𝑠′)) ,

for any 𝑠 ∈ S. We define the mappings 𝑠 ↦→ 𝑔𝜋(𝑠) = 𝑇𝜋(𝑉) (𝑠)−𝑉 (𝑠) and 𝑠 ↦→ 𝐽𝜋(𝑠) = V𝜋∞(𝑠)−𝑉 (𝑠),
𝑠 ∈ S. Then, the above equation simplifies to

𝐽𝜋(𝑠) = 𝑔𝜋(𝑠) + 𝛾
∑︁
𝑎∈𝒜

∑︁
𝑠′∈S

𝜋(𝑎|𝑠)𝑝(𝑠′ |𝑠, 𝑎)𝐽𝜋(𝑠′).

By definition 𝐽𝜋 satisfies

𝐽𝜋(𝑠) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)
(
𝑔𝜋(𝑠) + 𝛾

∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝐽𝜋(𝑠′)
)

for all 𝑠 ∈ S, and therefore is a solution of the Bellman equation with an auxiliary reward function
(𝑠, 𝑎) ↦→ 𝑟̃(𝑠, 𝑎) = 𝑔𝜋(𝑠). Note that this reward function is also bounded and by the uniqueness
of the solution of the Bellman equation it has to hold that

𝐽𝜋(𝑠) = 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[
∞∑︁
𝑘=0

𝛾𝑘𝑔𝜋(𝑆𝑘)] = 𝑔𝜋(𝑠) +
∞∑︁
𝑘=1

𝛾𝑘 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[𝑔𝜋(𝑆𝑘)].
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Define 𝛽 = min𝑠∈S 𝑔𝜋(𝑠) and 𝛽 = max𝑠∈S 𝑔𝜋(𝑠). Then,

𝛽

1 − 𝛾 ≤ 𝑔𝜋(𝑠) +
𝛾𝛽

1 − 𝛾 ≤ 𝐽𝜋(𝑠) ≤ 𝑔𝜋(𝑠) +
𝛾𝛽

1 − 𝛾 ≤
𝛽

1 − 𝛾 .

It follows that for any 𝑠 ∈ S,
|𝐽𝜋(𝑠) | ≤

max𝑠∈S |𝑔𝜋(𝑠) |
1 − 𝛾 .

By definition of 𝑔𝜋 and 𝐽𝜋 this yields the claim. ■

DynPG employs four different layers of approximations, including

1. adopting parametrizations incapable of modeling the optimal policy perfectly (approxima-
tion error),

2. truncating the infinite problem horizon to a finite time window (truncation error),

3. utilizing a finite number of gradient updates to approximately solve each optimization
problem (accumulated optimization error), and

4. applying the first policy of ℼ̂ℎ as a stationary one in solving finite-horizon MDP, where
non-stationary policies are required for optimality (stationary policy error).

We formally quantify these errors in the following lemma where the terms on the right-hand
side of equation (5.6) correspond to the aforementioned errors, respectively.

Proposition 5.8. The overall error of DynPG after 𝐻 iterations can be decomposed as follows

∥V∗∞ − V
𝜋∗𝐻
∞ ∥∞ ≤




V∗∞ − sup
𝜃

V𝜋
𝜃

∞





∞
+




 sup
𝜃

V𝜋
𝜃

∞ − sup
𝜃0,...,𝜃𝐻−1

V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻





∞

+



 sup
𝜃0,...,𝜃𝐻−1

V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻 − V

ℼ̂∗𝐻
𝐻





∞
+ ∥Vℼ̂∗𝐻

𝐻 − V
𝜋∗𝐻
∞ ∥∞

≤



V∗∞ − sup

𝜃

V𝜋
𝜃

∞





∞
+ 𝛾

𝐻𝑅∗

1 − 𝛾

+
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1



 sup

𝜃

𝑇𝜋
𝜃 (Vℼ̂∗

ℎ

ℎ
) − V

ℼ̂∗
ℎ+1

ℎ+1





∞
+ 1
1 − 𝛾 ∥V

ℼ̂∗
𝐻+1

𝐻+1 − V
ℼ̂∗𝐻
𝐻 ∥∞.

(5.6)

Proof. The first inequality follows directly from the triangle inequality of the supremum norm.
Note here that we cannot simplify the first error further as it will depend on the chosen
parametrization. Before we prove the second inequality, note that for 𝑓 , 𝑔 : ℝ𝑑 → ℝ��� sup

𝜃

𝑓 (𝜃) − sup
𝜃

𝑔(𝜃)
��� ≤ sup

𝜃

| 𝑓 (𝜃) − 𝑔(𝜃) |

for any two functions 𝑓 , 𝑔 : ℝ𝑑 → ℝ. If sup𝜃 𝑓 (𝜃) − sup𝜃 𝑔(𝜃) ≥ 0, then��� sup
𝜃

𝑓 (𝜃) − sup
𝜃

𝑔(𝜃)
��� = sup

𝜃

𝑓 (𝜃) − sup
𝜃

𝑔(𝜃) ≤ sup
𝜃

( 𝑓 (𝜃) − 𝑔(𝜃)) ≤ sup
𝜃

| 𝑓 (𝜃) − 𝑔(𝜃) |.
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If sup𝜃 𝑓 (𝜃) − sup𝜃 𝑔(𝜃) < 0, then the role of 𝑓 and 𝑔 are swapped. Thus, for 𝑉, 𝐺 ∈ ℝ |S | we
deduce that

∥sup
𝜃

𝑇𝜋
𝜃 (𝑉) − sup

𝜃

𝑇𝜋
𝜃 (𝐺)∥∞ ≤ ∥sup

𝜃

(
𝑇𝜋

𝜃 (𝑉) − 𝑇𝜋𝜃 (𝐺)
)
∥∞ ≤ 𝛾∥𝑉 − 𝐺∥∞. (5.7)

We treat the second, third and fourth terms separately.
For the second term: We prove that




 sup𝜃 V𝜋𝜃∞ − sup𝜃0,...,𝜃𝐻−1 V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻





∞
≤ 𝛾𝐻𝑅∗

1−𝛾 similar to

Lemma 5.3. Let 𝑠 ∈ S be arbitrary but fixed. If sup𝜃 V𝜋
𝜃

∞ (𝑠) − sup𝜃0,...,𝜃𝐻−1 V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻 (𝑠) ≥ 0,

then

sup
𝜃

V𝜋
𝜃

∞ (𝑠) − sup
𝜃0,...,𝜃𝐻−1

V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻 (𝑠) ≤ sup

𝜃

V𝜋
𝜃

∞ (𝑠) − sup
𝜃

V𝜋
𝜃

𝐻 (𝑠)

≤ sup
𝜃

(V𝜋𝜃∞ (𝑠) − V𝜋
𝜃

𝐻 (𝑠))

= sup
𝜃

𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋𝜃 ( · |𝑆𝑡 )
𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ∞∑︁
𝑡=𝐻

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]

≤
∞∑︁
𝑡=𝐻

𝛾𝑡𝑅∗ =
𝛾𝐻

1 − 𝛾 𝑅
∗,

where we used equation (5.7) in the second inequality.
On the other hand, if sup𝜃 V𝜋

𝜃

∞ (𝑠) − sup𝜃0,...,𝜃𝐻−1 V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻 (𝑠) < 0, then

sup
𝜃0,...,𝜃𝐻−1

V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻 (𝑠) − sup

𝜃

V𝜋
𝜃

∞ (𝑠)

≤ sup
𝜃0,...,𝜃𝐻−1

V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻 (𝑠) − sup

𝜃0,...,𝜃𝐻−1
V
( (𝜋𝜃𝐻−1 ,...𝜋𝜃0 ) )∞
∞ (𝑠)

≤ sup
𝜃0,...,𝜃𝐻−1

(
V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻 (𝑠) − V

( (𝜋𝜃𝐻−1 ,...𝜋𝜃0 ) )∞
∞ (𝑠)

)
= sup

𝜃0,...,𝜃𝐻−1
− 𝔼
𝑆0=𝑠,𝐴𝑡∼𝜋𝜃𝐻−(𝑡 mod 𝐻)−1 ( · |𝑆𝑡 )

𝑆𝑡+1∼𝑝( · |𝑆𝑡 ,𝐴𝑡 )

[ ∞∑︁
𝑡=𝐻

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]

≤
∞∑︁
𝑡=𝐻

𝛾𝑡𝑅∗ =
𝛾𝐻

1 − 𝛾 𝑅
∗.

Collecting these together, we obtain that



 sup𝜃 V𝜋𝜃∞ − sup𝜃0,...,𝜃𝐻−1 V

(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻





∞
≤ 𝛾𝐻𝑅∗

1−𝛾 , since
𝑠 ∈ S was chosen arbitrary.
For the third term: We show that

∥ sup
𝜃0,...,𝜃𝐻−1

V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻 − V

ℼ̂∗𝐻
𝐻 ∥∞ ≤

𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1∥sup
𝜃

𝑇𝜋
𝜃 (Vℼ̂∗

ℎ

ℎ
) − 𝑇𝜋∗ℎ (Vℼ̂∗

ℎ

ℎ
)∥∞ (5.8)

holds for all 𝐻 ≥ 1 by induction. For 𝐻 = 1 we have by equation (5.5) that

∥sup
𝜃

V𝜋
𝜃

1 − V
ℼ̂∗1
1 ∥∞ =




 sup
𝜃

𝑇𝜋
𝜃 (Vℼ̂∗0

0 ) − 𝑇
𝜋∗0 (Vℼ̂∗0

0 )




∞
,
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with the convention V0 ≡ 0 and ℼ̂∗0 = ∅. So assume that equation (5.8) holds for some 𝐻 ≥ 1;
then for 𝐻 + 1 we have


 sup

𝜃0,...,𝜃𝐻

V
{𝜋𝜃𝐻 ,...𝜋𝜃0 }
𝐻+1 − V

ℼ̂∗
𝐻+1

𝐻+1





∞

=




 sup
𝜃𝐻

𝑇𝜋𝜃𝐻
(

sup
𝜃0,...,𝜃𝐻−1

V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻

)
− 𝑇𝜋∗𝐻 (Vℼ̂∗𝐻

𝐻 )




∞

≤



 sup

𝜃𝐻

𝑇𝜋𝜃𝐻
(

sup
𝜃0,...,𝜃𝐻−1

V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻

)
− sup

𝜃𝐻

𝑇𝜋𝜃𝐻 (Vℼ̂∗𝐻
𝐻 )





∞

+



 sup

𝜃𝐻

𝑇𝜋𝜃𝐻 (Vℼ̂∗𝐻
ℎ
) − 𝑇𝜋∗𝐻 (Vℼ̂∗𝐻

𝐻 )




∞

≤ 𝛾



 sup
𝜃0,...,𝜃𝐻−1

V
(𝜋𝜃𝐻−1 ,...𝜋𝜃0 )
𝐻 − V

ℼ̂∗𝐻
𝐻





∞
+




 sup
𝜃𝐻

𝑇𝜋𝜃𝐻 (Vℼ̂∗𝐻
𝐻 ) − 𝑇

𝜋∗𝐻 (Vℼ̂∗𝐻
𝐻 )





∞

≤ 𝛾
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1∥sup
𝜃

𝑇𝜋
𝜃 (Vℼ̂∗

ℎ

ℎ
) − 𝑇𝜋∗ℎ (Vℼ̂∗

ℎ

ℎ
)∥∞ +




 sup
𝜃

𝑇𝜋
𝜃 (Vℼ̂∗𝐻

𝐻 ) − 𝑇
𝜋∗𝐻 (Vℼ̂∗𝐻

𝐻 )




∞

=

𝐻∑︁
ℎ=0

𝛾𝐻−ℎ∥sup
𝜃

𝑇𝜋
𝜃 (Vℼ̂∗

ℎ

ℎ
) − 𝑇𝜋∗ℎ (Vℼ̂∗

ℎ

ℎ
)∥∞,

where we used equation (5.5), as well as equation (5.7), and the induction assumption. This
yields the desired claim in equation (5.8) for all 𝐻 ≥ 1.
For the fourth error term: We have to deal with the error of applying the final policy as stationary
policy. We use Lemma 5.7 to arrive at

∥Vℼ̂∗𝐻
𝐻 − V

𝜋∗𝐻
∞ ∥∞ ≤

1
1 − 𝛾 ∥𝑇

𝜋∗𝐻 (Vℼ̂∗𝐻
𝐻 ) − V

ℼ̂∗𝐻
𝐻 ∥∞

=
1

1 − 𝛾 ∥V
ℼ̂∗
𝐻+1

𝐻+1 − V
ℼ̂∗𝐻
𝐻 ∥∞,

where we used again equation (5.5) in the last line. ■

The error decomposition gives clear insights into algorithm design, for which it is necessary to
discuss the practical implications of the four summands.

1. To control the approximation error a rich enough policy parametrization is required.

2. To keep the truncation error small, DynPG should run more than 𝐻 ≈ log(1−𝛾)
log(𝛾) rounds.

3. The third summand shows that approximation errors in earlier iterations are discounted
more than approximation errors in later iterations. To achieve optimal training efficiency,
we will thus require a geometrically decreasing optimization error across the iterations of
DynPG. Recall the sample complexity discussion at the end of Section 5.2 to note that a
trade-off between more accurate training and increasing samples required for estimating
the gradient must be made to obtain the best performance of DynPG.

4. DynPG approximates the value function by truncation at a fixed time 𝐻 and then replaces
the optimal time-dependent policy by a stationary policy. As mentioned for PSDP, one could
also apply the non-stationary policy ℼ̂∗

ℎ
to approximate the value function. This would cause
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the fourth error term to vanish. Thus, in what follows, we distinguish between the overall
error in equation (5.6) and the value function error:

∥V∗∞ − V
ℼ̂∗𝐻
𝐻 ∥∞ ≤



V∗∞ − sup
𝜃∈ℝ𝑑

V𝜋
𝜃

∞



∞ +

𝛾𝐻𝑅∗

1 − 𝛾 +
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1


 sup
𝜃∈ℝ𝑑

𝑇𝜋
𝜃 (Vℼ̂∗

ℎ

ℎ
) − V

ℼ̂∗
ℎ+1

ℎ+1



∞. (5.9)

It is important to note that the factor (1 − 𝛾)−1 in the stationary policy error causes an
additional dependence on the effective horizon in the complexity bounds for softmax DynPG.

General convergence result. For the remainder of this section, we will proceed under the
assumption of zero approximation error stemming from the parametrization. This condition
generally holds true when the class of policies (𝜋𝜃) can effectively approximate all deterministic
policies, such as achieved through tabular softmax. Under this circumstance, it follows that
𝑇∗ = sup𝜃 𝑇𝜋

𝜃 and ∥V∗∞−sup𝜃 V𝜋
𝜃

∞ ∥∞ = 0. Subsequently, we demonstrate that a certain reduction
in the optimization error is adequate for achieving global convergence within the parametrized
policy space.

Assumption 5.9. The class (𝜋𝜃) has zero approximation error and there exists a positive sequence
𝜖ℎ such that

• ∑𝐻−1
𝑡=0 𝛾𝐻−ℎ−1𝜖ℎ → 0 for 𝐻 →∞,

• the policies obtained by DynPG satisfy ∥𝑇∗(Vℼ̂∗
ℎ

ℎ
) − V

ℼ̂∗
ℎ+1

ℎ+1 ∥∞ ≤ 𝜖ℎ for all ℎ ≥ 0.

As an example for such a sequence one might think of 𝜖ℎ = 𝑐𝛾ℎ for some 𝑐 > 0. The second
condition in the assumption holds true, when each contextual bandit problem can be sufficiently
well addressed. We deduce convergence directly from the error decomposition in Proposition 5.8.

Corollary 5.10. Let Assumption 5.9 hold. Then Algorithm 6 generates a sequence of non-stationary
policies ℼ̂∗𝐻 ∈ Π𝐻 that satisfy

∥V∗∞ − V
ℼ̂∗𝐻
𝐻 ∥∞ → 0 for 𝐻 →∞.

Furthermore, the overall error vanishes in the limit:

∥V∗∞ − V
𝜋∗𝐻
∞ ∥∞ → 0 for 𝐻 →∞.

Proof. Adjusting equation (5.9) to zero approximation error and exploiting Assumption 5.9 we
obtain

∥V∗∞ − V
ℼ̂∗𝐻
𝐻 ∥∞ ≤

𝛾𝐻𝑅∗

1 − 𝛾 +
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ → 0 for 𝐻 →∞.

For the second part of the theorem note that Vℼ∗𝐻
𝐻 converges in the supremum norm to V∗∞ by

the first part. This implies that Vℼ∗𝐻
𝐻 is a Cauchy sequence with respect to the supremum norm,

i.e. ∥Vℼ∗
𝐻+1

𝐻+1 − V
ℼ∗𝐻
𝐻 ∥∞ → 0 for 𝐻 →∞. The claim follows directly from Proposition 5.8. ■
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Remark 5.11. The condition
∑𝐻−1
ℎ=0 𝛾𝐻−ℎ−1𝜖ℎ → 0 for 𝐻 →∞ implies that the optimization error

must decrease with increasing ℎ to guarantee convergence. Hence, training must become more
precise over time. It is therefore advisable to increase the number of gradient steps 𝑁ℎ and
decrease the step size 𝛼ℎ when ℎ increases. In FT-DynPG, the error accumulated linearly over
time and an accuracy of 𝜖

𝐻
in every optimization epoch lead to an overall error of 𝜖. In DynPG

the error is discounted over time, by adding new epochs in the beginning.

5.3.2 Convergence Rates under Tabular Softmax Parametrization
One might inquire whether Assumption 5.9 is reasonable and whether there are situations in
which the condition on the algorithm holds. Indeed, we will show that this is the case for the
softmax class of policies. More precisely, for any 𝜖ℎ > 0, we can specify a step size 𝛼ℎ and a
number of gradient steps 𝑁ℎ such that Assumption 5.9 is satisfied. In a second step, we optimize
𝐻 and the error sequence (𝜖ℎ) to obtain the optimal sample complexity for DynPG under softmax
parametrization, where we distinguish again between the value function error and the overall
error.

Assumption 5.12. Suppose that 𝜇(𝑠) > 0 for all 𝑠 ∈ S. Furthermore, the parametrization in
DynPG (𝜋𝜃)𝜃∈ℝ|S| |𝒜| is chosen to be the tabular softmax parametrization introduced in equation
(3.12). We assume further that 𝜃0 in Algorithm 6 is initialized such that the softmax policy forms a
uniform distribution over the action space and the gradient can be accessed exactly.

The proof will be similar to the ones presented in Section 4.2 and relies on the smoothness and
gradient domination property. Before we come to the results, recall the differences of DynPG
and FT-DynPG discussed in Remark 5.5. We have to adapt the proofs in Section 4.2.2 to an
additional discount factor. Note, that we cannot apply [Mei+20, Thm. 2] for bandits, as we
consider contextual bandits. Further, we cannot apply the proof of [Mei+20, Thm. 4] with 𝛾 = 0
as they just consider positive rewards in [0, 1] which is inconvenient for our contextual bandit
setting where the maximal rewards grows when we add a new time-epoch in the beginning.
Therefore, we have to adapt the proofs in [Mei+20] and Section 4.2.2 to our setting.

Smoothness. First, we derive the smoothness of our objective functions.

Lemma 5.13. Let (𝜋𝜃)𝜃∈ℝ|S| |𝒜| be the softmax parametrization. Then, for arbitrary ℼℎ ∈ Πℎ and
𝜇 ∈ Δ(S), the function 𝜃 ↦→ V

(𝜋𝜃,ℼℎ )
ℎ+1 (𝜇) is 𝐿ℎ-smooth with 𝐿ℎ = 2𝑅∗ (1−𝛾ℎ+1 )

(1−𝛾) .

Proof. The proof is similar to the one in Lemma 4.18. Note that we can interpret V(𝜋
𝜃,ℼℎ )

ℎ+1 (𝜇) as
a contextual bandit problem, i.e. a discounted (infinite-time) MDP with discount factor 𝛾 = 0.
The reward of the contextual bandit problem is almost surely bounded in [−1−𝛾ℎ+1

1−𝛾 𝑅∗, 1−𝛾
ℎ+1

1−𝛾 𝑅∗],
because

ℎ∑︁
𝑡=0

𝛾𝑡𝑅∗ =
1 − 𝛾ℎ+1
1 − 𝛾 𝑅∗.

We can apply [YGL22, Lem. 4.4 and Lem. 4.8] with 𝑅max =
1−𝛾ℎ+1
1−𝛾 𝑅∗, 𝐺2 = 1− 1

|𝒜 | ≤ 1 and 𝐹 = 1

to obtain the smoothness constant 𝐿ℎ = 2𝑅∗ (1−𝛾ℎ+1 )
(1−𝛾) . ■
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Weak gradient domination. Second, we obtain the following non-uniform gradient domination
property.

Lemma 5.14. Under Assumption 5.12 it holds for any ℼℎ ∈ Πℎ that

∥∇𝜃V(𝜋
𝜃,ℼℎ )

ℎ+1 (𝜇)∥∞ ≤ min
𝑠∈S

𝜋𝜃(𝑎∗(𝑠) |𝑠)
(
𝑇∗(Vℼℎ

ℎ
) (𝜇) − V

(𝜋𝜃,ℼℎ )
ℎ+1 (𝜇)

)
,

where 𝑎∗(𝑠) denotes the (unique) action taken after the greedy policy 𝜋V
ℼℎ
ℎ .

Remark 5.15. As for finite-time MDPs we assume again, without loss of generality, that the action
𝑎∗(𝑠) is unique for any fixed future policy ℼℎ.

Proof. First note from Theorem 5.6 that under the tabular softmax parametrization we have

∇𝜃V(𝜋
𝜃,ℼℎ )

ℎ+1 (𝜇) =
∑︁
𝑠∈S

𝜇(𝑠) 𝔼
𝑆=𝑠,𝐴∼𝜋𝜃 ( · |𝑆)

[
∇𝜃 log(𝜋𝜃(𝐴|𝑆))Qℼℎ

ℎ+1(𝑆, 𝐴)
]
.

Hence, with the derivative of the softmax function, equation (3.13)

𝜕 log(𝜋𝜃(𝑎|𝑠))
𝜕𝜃(𝑠′, 𝑎′) = 1{𝑠=𝑠′}

(
1{𝑎=𝑎′} − 𝜋𝜃(𝑎′ |𝑠)

)
,

it holds that

𝜕V
(𝜋𝜃,ℼℎ )
ℎ+1 (𝑠)
𝜕𝜃(𝑠′, 𝑎′) = 1{𝑠=𝑠′} 𝔼

𝑆=𝑠′,𝐴∼𝜋𝜃 ( · |𝑆)

[(
1{𝐴=𝑎′ } − 𝜋𝜃(𝑎′ |𝑠′)

)
Q
ℼℎ

ℎ+1(𝑆, 𝐴)
]

= 1{𝑠=𝑠′}
(
𝜋𝜃(𝑎′ |𝑠′)Qℼℎ

ℎ+1(𝑠
′, 𝑎′) − 𝜋𝜃(𝑎′ |𝑠′) 𝔼

𝑆=𝑠′,𝐴∼𝜋𝜃 ( · |𝑆)

[
Q
ℼℎ

ℎ+1(𝑆, 𝐴)
] )

= 1{𝑠=𝑠′}𝜋𝜃(𝑎′ |𝑠′)
(
Q
ℼℎ

ℎ+1(𝑠
′, 𝑎′) − V

(𝜋𝜃,ℼℎ )
ℎ+1 (𝑠′)

)
= 1{𝑠=𝑠′}𝜋𝜃(𝑎′ |𝑠′)𝒜(𝜋

𝜃,ℼℎ )
ℎ+1 (𝑠′, 𝑎′).

(5.10)

We deduce from Lemma 5.4, equation (5.3), that

𝑇∗(Vℼℎ

ℎ
) (𝑠) − 𝑇𝜋ℎ (Vℼℎ

ℎ
) (𝑠) = 𝔼

𝑆0=𝑠,𝐴0∼𝜋∗ℎ ( · |𝑆0 )

[
𝒜ℼℎ+1
ℎ+1 (𝑆0, 𝐴0)

]
.

Finally we can derive that

∥∇𝜃V(𝜋
𝜃,ℼℎ )

ℎ+1 (𝜇)∥2 =



∑︁
𝑠∈S

𝜇(𝑠)
𝜕V
(𝜋𝜃,ℼℎ )
ℎ+1 (𝑠)
𝜕𝜃





2

=

[ ∑︁
𝑠′∈S

∑︁
𝑎′∈𝒜

©­«
∑︁
𝑠∈S

𝜇(𝑠)
𝜕V
(𝜋𝜃,ℼℎ )
ℎ+1 (𝑠)
𝜕𝜃(𝑠′, 𝑎′)

ª®¬
2]2

=

[ ∑︁
𝑎′∈𝒜

(∑︁
𝑠∈S

𝜇(𝑠)𝜋𝜃(𝑎′ |𝑠)𝒜(𝜋
𝜃,ℼℎ )

ℎ+1 (𝑠, 𝑎′)
)2]2
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≥
���∑︁
𝑠∈S

𝜇(𝑠)𝜋𝜃(𝑎∗(𝑠) |𝑠)𝒜(𝜋
𝜃,ℼℎ )

ℎ+1 (𝑠, 𝑎∗(𝑠))
���

=

���∑︁
𝑠∈S

𝜇(𝑠)𝜋𝜃(𝑎∗(𝑠) |𝑠) 𝔼

𝑆=𝑠,𝐴∼𝜋V
ℼℎ
ℎ ( · |𝑠)

[
𝒜(𝜋

𝜃,ℼℎ )
ℎ+1 (𝑆, 𝐴)

] ���
=

∑︁
𝑠∈S

𝜇(𝑠)𝜋𝜃(𝑎∗(𝑠) |𝑠)
(
𝑇∗(Vℼℎ

ℎ
) (𝑠) − 𝑇𝜋𝜃 (Vℼℎ

ℎ
) (𝑠)

)
≥ min

𝑠∈S
𝜋𝜃(𝑎∗(𝑠) |𝑠)

(
𝑇∗(Vℼℎ

ℎ
) (𝜇) − 𝑇𝜋𝜃 (Vℼℎ

ℎ
) (𝜇)

)
,

where 𝑎∗(𝑠) denotes the action taken after the greedy policy 𝜋V
ℼℎ
ℎ (cf. Remark 5.15). ■

The next step is to show that the term min𝑠∈S 𝜋𝜃(𝑎∗(𝑠) |𝑠) can be bounded (uniformly in 𝑠 ∈ S)
from below by 1

|𝒜 | along the gradient ascent trajectory, when softmax is initialized uniformly.

Lemma 5.16. Let Assumption 5.12 hold and denote by (𝜃𝑛)𝑛≥0 the gradient ascent sequence in
epoch ℎ ≥ 0 of DynPG under the fixed future policy ℼ̂∗

ℎ
∈ Πℎ. Suppose further that the step size

𝛼ℎ =
1−𝛾

2𝑅∗ (1−𝛾ℎ+1 ) , then for any 𝑠 ∈ S it holds that

min
𝑛≥0

𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠) = 1
|𝒜| .

where 𝑎∗(𝑠) denotes the (unique) action taken after the greedy policy 𝜋V
ℼ̂∗
ℎ

ℎ .

Proof. The proof is adapted from [Mei+20, Lem. 5] and Lemma 4.20.
First, we define the sets

ℛ1(𝑠) = {𝜃 : 𝜋𝜃(𝑎∗(𝑠) |𝑠) ≥ 𝜋𝜃(𝑎|𝑠)∀𝑎 ≠ 𝑎∗(𝑠)}

ℛ2(𝑠) =
{
𝜃 :

𝜕𝑉
(𝜋𝜃,ℼ̂∗

ℎ
)

ℎ+1 (𝑠)
𝜕𝜃(𝑠, 𝑎∗(𝑠) ≥

𝜕𝑉
(𝜋𝜃,ℼ̂∗

ℎ
)

ℎ+1 (𝑠)
𝜕𝜃(𝑠, 𝑎∗(𝑠) ∀𝑎 ≠ 𝑎∗(𝑠)

}
.

Claim 1: It holds that 𝜃𝑛 ∈ ℛ2 =⇒ 𝜃𝑛+1 ∈ ℛ2.
To prove this claim, we first deduce from equation (5.10) that

𝜕V
(𝜋𝜃,ℼ̂∗

ℎ
)

ℎ+1 (𝑠)
𝜕𝜃(𝑠, 𝑎∗(𝑠)) ≥

𝜕V
(𝜋𝜃,ℼ̂∗

ℎ
)

ℎ+1 (𝑠)
𝜕𝜃(𝑠, 𝑎∗(𝑠))

⇐⇒ 𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠)𝒜
(𝜋𝜃,ℼ̂∗

ℎ
)

ℎ+1 (𝑠, 𝑎∗(𝑠)) ≥ 𝜋𝜃𝑛 (𝑎|𝑠)𝒜
(𝜋𝜃,ℼ̂∗

ℎ
)

ℎ+1 (𝑠, 𝑎).

(5.11)

Let 𝑎 ≠ 𝑎∗(𝑠) be arbitrary. We consider two cases to proof claim 1:

1. Suppose that 𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠) ≥ 𝜋𝜃𝑛 (𝑎|𝑠) for any 𝑎 ≠ 𝑎∗(𝑠). Then, is holds that 𝜃𝑛(𝑠, 𝑎∗(𝑠)) ≥
𝜃𝑛(𝑠, 𝑎) by the definition of softmax. Next, as 𝜃𝑛 ∈ ℛ∗2, we derive

𝜃𝑛+1(𝑠, 𝑎∗(𝑠)) = 𝜃𝑛(𝑠, 𝑎∗(𝑠)) + 𝜂ℎ𝜇ℎ(𝑠)
𝜕V
(𝜋𝜃𝑛 ,ℼ̂∗ℎ )
ℎ+1 (𝑠)

𝜕𝜃𝑛(𝑠, 𝑎∗(𝑠))
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≥ 𝜃𝑛(𝑠, 𝑎) + 𝜂ℎ𝜇ℎ(𝑠)
𝜕V
(𝜋𝜃,ℼ̂∗

ℎ
)

ℎ+1 (𝑠)
𝜕𝜃(𝑠, 𝑎∗(𝑠))

= 𝜃𝑛(𝑠, 𝑎).

Thus, by the definition of the softmax function, 𝜋𝜃𝑛+1 (𝑎∗(𝑠) |𝑠) ≥ 𝜋𝜃𝑛+1 (𝑎|𝑠) for any 𝑎 ≠ 𝑎∗(𝑠).
Further, because 𝑎∗(𝑠) is the greedy action, we arrive at

𝜋𝜃𝑛+1 (𝑎∗(𝑠) |𝑠)𝒜
(𝜋𝜃𝑛+1 ,ℼ̂

∗
ℎ
)

ℎ+1 (𝑠, 𝑎∗(𝑠)) ≥ 𝜋𝜃𝑛 (𝑎|𝑠)𝒜
(𝜋𝜃𝑛+1 ,ℼ̂

∗
ℎ
)

ℎ+1 (𝑠, 𝑎),

such that 𝜃𝑛+1 ∈ ℛ2(𝑠) by equation (5.11).

2. Suppose that 𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠) < 𝜋𝜃𝑛 (𝑎|𝑠) for any 𝑎 ≠ 𝑎∗(𝑠). Then, 𝜃𝑛(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛(𝑠, 𝑎) < 0
by definition of the softmax function. As 𝜃𝑛 ∈ ℛ2(𝑠), it holds that

𝜃𝑛+1(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛+1(𝑠, 𝑎)

≥ 𝜃𝑛(𝑠, 𝑎∗(𝑠)) + 𝜂ℎ𝜇(𝑠)
𝜕V
(𝜋𝜃,ℼ̂∗

ℎ
)

ℎ+1 (𝑠)
𝜕𝜃(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛(𝑠, 𝑎) − 𝜂ℎ𝜇(𝑠)

𝜕V
(𝜋𝜃,ℼ̂∗

ℎ
)

ℎ+1 (𝑠)
𝜕𝜃(𝑠, 𝑎)

≥ 𝜃𝑛(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛(𝑠, 𝑎).

Thus, we obtain

(1 − exp(𝜃𝑛+1(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛+1(𝑠, 𝑎))) ≤ (1 − exp(𝜃𝑛(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛(𝑠, 𝑎))) < 1.

By the ascent lemma for smooth functions [Mei+20, Lem. 18] it follows monotonicity
in the objective function (due to small enough step size 𝜂ℎ = 1

𝛽ℎ
with 𝛽ℎ the smoothness

constant in Lemma 5.13) such that V(𝜋𝜃𝑛+1 ,ℼ̂
∗
ℎ
)

ℎ+1 (𝑠) ≥ V
(𝜋𝜃𝑛 ,ℼ̂∗ℎ )
ℎ+1 (𝑠). So,

(1 − exp(𝜃𝑛+1(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛+1(𝑠, 𝑎)))
(
Q
ℼ̂∗
ℎ

ℎ+1(𝑠, 𝑎
∗(𝑠)) − V

(𝜋𝜃𝑛+1 ,ℼ̂
∗
ℎ
)

ℎ+1 (𝑠)
)

≤ (1 − exp(𝜃𝑛(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛(𝑠, 𝑎)))
(
Q
ℼ̂∗
ℎ

ℎ+1(𝑠, 𝑎
∗(𝑠)) − V

(𝜋𝜃𝑛 ,ℼ̂∗ℎ )
ℎ+1 (𝑠)

)
We rearrange equation (5.11) and obtain that 𝜃 ∈ ℛ2(𝑠) is equivalent to

Q
ℼ̂∗
ℎ

ℎ+1(𝑠, 𝑎
∗(𝑠)) − Q

ℼ̂∗
ℎ

ℎ+1(𝑠, 𝑎) ≥ (1 − exp(𝜃𝑛(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛(𝑠, 𝑎)))𝒜
{𝜋𝜃,ℼ̂∗ℎ}
ℎ+1 (𝑠, 𝑎∗(𝑠)).

We deduce by 𝜃𝑛 ∈ ℛ2(𝑠) that

(1 − exp(𝜃𝑛+1(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛+1(𝑠, 𝑎)))
(
Q
ℼ̂∗
ℎ

ℎ+1(𝑠, 𝑎
∗(𝑠)) − V

(𝜋𝜃𝑛+1 ,ℼ̂
∗
ℎ
)

ℎ+1 (𝑠)
)

≤ (1 − exp(𝜃𝑛(𝑠, 𝑎∗(𝑠)) − 𝜃𝑛(𝑠, 𝑎)))
(
Q
ℼ̂∗
ℎ

ℎ+1(𝑠, 𝑎
∗(𝑠)) − V

(𝜋𝜃𝑛 ,ℼ̂∗ℎ )
ℎ+1 (𝑠)

)
≤ Q

ℼ̂∗
ℎ

ℎ+1(𝑠, 𝑎
∗(𝑠)) − Q

ℼ̂∗
ℎ

ℎ+1(𝑠, 𝑎),

and thus 𝜃𝑛+1 ∈ ℛ2(𝑠).
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This proves claim 1.
Claim 2: If 𝜃𝑛 ∈ ℛ2(𝑠), then it holds that 𝜋𝜃𝑛+1 (𝑎∗(𝑠) |𝑠) ≥ 𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠).
To see this we compute

𝜋𝜃𝑛+1 (𝑠, 𝑎∗(𝑠)) =
exp(𝜃𝑛+1(𝑠, 𝑎∗(𝑠))∑
𝑎′∈𝒜 exp(𝜃𝑛+1(𝑠, 𝑎′)

=

exp(𝜃𝑛(𝑠, 𝑎∗(𝑠)) exp
(
𝜂ℎ𝜇(𝑠)

𝜕V
(𝜋𝜃𝑛 ,ℼ̂

∗
ℎ
)

ℎ+1 (𝑠)
𝜕𝜃𝑛 (𝑠,𝑎∗ (𝑠) )

)
∑
𝑎′∈𝒜 exp(𝜃𝑛(𝑠, 𝑎′) exp

(
𝜂ℎ𝜇(𝑠)

𝜕V
(𝜋𝜃𝑛 ,ℼ̂

∗
ℎ
)

ℎ+1 (𝑠)
𝜕𝜃𝑛 (𝑠,𝑎′ )

)
≥

exp(𝜃𝑛(𝑠, 𝑎∗(𝑠)) exp
(
𝜂ℎ𝜇(𝑠)

𝜕V
(𝜋𝜃𝑛 ,ℼ̂

∗
ℎ
)

ℎ+1 (𝑠)
𝜕𝜃𝑛 (𝑠,𝑎∗ (𝑠) )

)
∑
𝑎′∈𝒜 exp(𝜃𝑛(𝑠, 𝑎′) exp

(
𝜂ℎ𝜇(𝑠)

𝜕V
(𝜋𝜃𝑛 ,ℼ̂

∗
ℎ
)

ℎ+1 (𝑠)
𝜕𝜃𝑛 (𝑠,𝑎∗ (𝑠) )

)
= 𝜋𝜃𝑛 (𝑠, 𝑎∗(𝑠)).

Claim 3: It holds that 𝜃𝑛 ∈ ℛ1(𝑠) =⇒ 𝜃𝑛 ∈ ℛ2(𝑠).
Let 𝜃𝑛 ∈ ℛ1(𝑠). As 𝑎∗(𝑠) is optimal we have for any 𝑎 ≠ 𝑎∗(𝑠) that

𝒜
(𝜋𝜃𝑛 ,ℼ̂∗ℎ )
ℎ+1 (𝑠, 𝑎∗(𝑠)) ≥ 𝒜

(𝜋𝜃𝑛 ,ℼ̂∗ℎ )
ℎ+1 (𝑠, 𝑎).

Further by 𝜃𝑛 ∈ ℛ1(𝑠) it holds

𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠)𝒜
(𝜋𝜃𝑛 ,ℼ̂∗ℎ )
ℎ+1 (𝑠, 𝑎∗(𝑠)) ≥ 𝜋𝜃𝑛 (𝑎|𝑠)𝒜

(𝜋𝜃𝑛 ,ℼ̂∗ℎ )
ℎ+1 (𝑠, 𝑎).

Hence, by equation (5.10), we deduce that 𝜃𝑛 ∈ ℛ2(𝑠).
Conclusion of the proof by combining claim 1 to 3:
Since 𝜃0 is initialized such that softmax is the uniform distribution, we have that 𝜃0 ∈ ℛ1(𝑠) for
all 𝑠 ∈ S. By claim 3, we have that 𝜃0 ∈ ℛ2(𝑠) and by claim 1 it follows that 𝜃𝑛 ∈ ℛ2(𝑠) for all
𝑛 ≥ 0 and all 𝑠 ∈ S. Finally, by claim 2, it follows that min𝑛≥0 𝜋𝜃𝑛 (𝑠, 𝑎∗(𝑠)) = 𝜋𝜃0 (𝑠, 𝑎∗(𝑠)) = 1

|𝒜 |
for any 𝑠 ∈ S. ■

Remark 5.17. When the softmax policy is not uniformly initialized, we suffer, as in vanilla PG,
from the existence of an unknown constant 𝑐𝛾. The constant can depend on 𝛾 as well as on other
MDP parameters like the size of the state and action space.

Global convergence. Finally we combine all results and derive the global convergence of
DynPG in every optimization step under exact gradients and softmax parametrization.
By Corollary 5.10, we obtain from Theorem 5.18 convergence for softmax DynPG by choosing a
sufficient decreasing error sequence (𝜖ℎ).

Theorem 5.18. Let Assumption 5.12 hold. Let ℎ ≥ 0, 𝜖ℎ > 0 and Λ = ℼ̂∗
ℎ
∈ Πℎ be a collection of ℎ ar-

bitrary policies. Then, using step size 𝛼ℎ = 1−𝛾
2𝑅∗ (1−𝛾ℎ+1 ) and gradient steps 𝑁ℎ =

⌈4𝑅∗ (1−𝛾ℎ+1 ) |𝒜 |2
(1−𝛾)𝜖ℎ



 1
𝜇




∞
⌉

in DynPG (Algorithm 6) guarantees that the policy 𝜋∗
ℎ
of iteration ℎ achieves

∥𝑇∗(Vℼ̂∗
ℎ

ℎ
) − V

ℼ̂∗
ℎ+1

ℎ+1 ∥∞ ≤ 𝜖ℎ.
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Proof. First, recall that the tabular softmax parametrization can approximate any deterministic
policy arbitrarily well. As optimal policies in finite horizon MDPs are deterministic, we have
that sup𝜃∈ℝ|S| |𝒜| V

{𝜋𝜃,ℼ̂∗ℎ}
ℎ+1 (𝑠) = 𝑇∗(Vℼ̂∗

ℎ

ℎ
) (𝑠) for all 𝑠 ∈ S (zero approximation error induced by the

parametrization). Moreover, for any 𝑠 ∈ S

𝑇∗(Vℼ̂∗
ℎ

ℎ
) (𝑠) − 𝑇𝜋∗ℎ (Vℼ̂∗

ℎ

ℎ
) (𝑠) =

∑︁
𝑠′∈S

𝜇(𝑠′) 1𝑠
′=𝑠

𝜇(𝑠′)

(
𝑇∗(Vℼ̂∗

ℎ

ℎ
) (𝑠′) − 𝑇𝜋∗ℎ (Vℼ̂∗

ℎ

ℎ
) (𝑠′)

)
≤




1
𝜇





∞

(
𝑇∗(Vℼ̂∗

ℎ

ℎ
) (𝜇) − 𝑇𝜋∗ℎ (Vℼ̂∗

ℎ

ℎ
) (𝜇)

)
.

By Lemma 5.13 the function 𝜃 ↦→ V
{𝜋𝜃,ℼ̂∗ℎ}
ℎ+1 (𝜇) is 𝐿ℎ-smooth and fulfills the weak gradient domina-

tion property along the gradient ascent steps with constant 1
|𝒜 | (Lemma 5.14 and Lemma 5.16).

Moreover, for any 𝜃 ∈ ℝ𝑑 it holds that

𝑇∗(Vℼ̂∗
ℎ

ℎ
) (𝑠) − 𝑇𝜋𝜃 (Vℼ̂∗

ℎ

ℎ
) (𝑠) ≤ 2

1 − 𝛾ℎ+1
1 − 𝛾 𝑅∗ = 𝐿ℎ ≤

2|𝒜|2
𝛼

.

Hence, we can apply Theorem 2.11 with 𝑏 = 1
|𝒜 | , 𝛼 = 𝛼ℎ =

1−𝛾
2𝑅∗ (1−𝛾ℎ+1 ) and 𝑘 = 𝑁ℎ, so

𝑇∗(Vℼ̂∗
ℎ

ℎ
) (𝜇) − 𝑇𝜋𝜃𝑁ℎ (Vℼ̂∗

ℎ

ℎ
) (𝜇) ≤ 4|𝒜|2𝑅∗(1 − 𝛾ℎ+1)

(1 − 𝛾)𝑁ℎ
.

By the choice of 𝑁ℎ we deduce for any 𝑠 ∈ S

𝑇∗(Vℼ̂∗
ℎ

ℎ
) (𝑠) − 𝑇𝜋∗ℎ (Vℼ̂∗

ℎ

ℎ
) (𝑠) ≤




1
𝜇





∞

(
𝑇∗(Vℼ̂∗

ℎ

ℎ
) (𝜇) − 𝑇𝜋𝜃𝑁ℎ (Vℼ̂∗

ℎ

ℎ
) (𝜇)

)
≤ 𝜖ℎ,

which proves the claim. ■

5.3.3 Complexity bounds for Softmax DynPG
In order to obtain complexity bounds from Theorem 5.18 for a given accuracy 𝜖 we optimize the
total number of gradient steps

∑𝐻
ℎ=0 𝑁ℎ(𝜖ℎ) with respect to 𝐻 and (𝜖ℎ) under the constraint that

the overall error in equation (5.6) or the value function error in equation (5.9) is bounded by 𝜖.
We summarize the complexity bounds for both error types in the following and then deal
with both case separately to provide detailed proof with explicit selections for 𝐻, (𝑁ℎ)𝐻ℎ=0, and
(𝛼ℎ)𝐻ℎ=0..

Theorem 5.19. [cf. Theorem 5.22 and Theorem 5.24 for detailed versions]
Let Assumption 5.12 hold and choose 𝜖 > 0.

1. Overall error: We can specify 𝐻, (𝑁ℎ)𝐻ℎ=0 and (𝛼ℎ)𝐻ℎ=0 such that,
𝐻∑︁
ℎ=0

𝑁ℎ =
⌈24𝑅∗ |𝒜|2
(1 − 𝛾)2𝜖




1
𝜇





∞

⌉⌈ log(6𝑅∗(1 − 𝛾)−2𝜖−1)
log(𝛾−1)

⌉2
+

⌈24𝑅∗(1 − 𝛾𝐻+1) |𝒜|2
(1 − 𝛾)3𝜖




1
𝜇





∞

⌉
accumulated gradient steps are required to achieve ∥V∗∞ − V

𝜋∗𝐻
∞ ∥∞ ≤ 𝜖.
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2. Value function error: We can specify 𝐻, (𝑁ℎ)𝐻−1ℎ=0 and (𝛼ℎ)𝐻−1ℎ=0 such that,

𝐻−1∑︁
ℎ=0

𝑁ℎ =
⌈ 8𝑅∗ |𝒜|2
(1 − 𝛾)𝜖




1
𝜇





∞

⌉⌈ log(2𝑅∗(1 − 𝛾)−1𝜖−1)
log(𝛾−1)

⌉2
accumulated gradient steps are required to achieve ∥V∗∞ − V

ℼ̂∗𝐻
𝐻 ∥∞ ≤ 𝜖.

To obtain the convergence behavior of DynPG in terms of 𝛾 close to 1, we derive in the following
asymptotic equivalency.

Lemma 5.20. The term log
(
𝛾−1

)
= − log(𝛾) is asymptotically equivalent to (1 − 𝛾) for 𝛾 ↑ 1.

Proof. By the definition of asymptotic equivalence for two functions 𝑓 and 𝑔 we have to show
that

lim
𝑥↑1

𝑓 (𝑥)
𝑔(𝑥) = 1.

It holds by L’Hospital rule that

lim
𝛾↑1

− log(𝛾)
(1 − 𝛾) = lim

𝛾↑1

−𝛾−1
−1 = 1.

■

Combined with Theorem 5.19, we find that the required gradient steps for 𝛾 close to 1 behave
like {

𝑂
(
(1 − 𝛾)−4𝜖−1 log((1 − 𝛾)−2𝜖−1)

)
, for the overall error,

𝑂
(
(1 − 𝛾)−3𝜖−1 log((1 − 𝛾)−1𝜖−1)

)
, for the value function error.

(5.12)

Note for the overall error that the first summand is the dominating term in terms of 𝛾 → 1.
Compared to softmax PG, we observe an additional log(𝜖−1) factor in the convergence and
future research could explore the possibility of eliminating the log-factor. In terms of 𝛾, however,
DynPG offers a resilient upper bound, which, in comparison to vanilla PG, remains at most
polynomial in the effective horizon.
We prove the two claims in Theorem 5.19 separately.

Value function error. Note that under the tabular softmax parametrization we have zero
approximation error and the upper bound in equation (5.9) simplifies to

∥V∗∞ − V
ℼ̂∗𝐻
𝐻 ∥∞ ≤

𝛾𝐻𝑅∗

1 − 𝛾 +
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ,

where 𝜖ℎ are upper bounds on one step optimization errors


 sup𝜃∈ℝ𝑑 𝑇𝜋𝜃 (Vℼ̂∗

ℎ

ℎ
) − V

ℼ̂∗
ℎ+1

ℎ+1



∞. In

order to minimize the accumulated number of gradient steps
∑𝐻−1
ℎ=0 𝑁ℎ, recall that the gradient
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steps in epoch ℎ are given by 𝑁ℎ =
⌈4𝑅∗ (1−𝛾ℎ+1 ) |𝒜 |2

(1−𝛾)𝜖ℎ



 1
𝜇




∞
⌉
in Theorem 5.18. To optimize, we can

drop the gaussian brackets and minimize

4𝑅∗ |𝒜|2
(1 − 𝛾)



1
𝜇




∞

𝐻−1∑︁
ℎ=0

(1 − 𝛾ℎ+1)
𝜖ℎ

with respect to 𝐻 and (𝜖ℎ)𝐻−1ℎ=0 . The resulting optimization problem has the form:

min
𝐻,(𝜖ℎ )𝐻−1ℎ=0 ,𝜖ℎ>0

𝐻−1∑︁
ℎ=0

(1 − 𝛾ℎ+1)
𝜖ℎ

subject to
𝛾𝐻𝑅∗

1 − 𝛾 +
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ ≤ 𝜖.
(5.13)

In [WWZ22, Sec. 3.2] a similar optimization problem is considered and it is shown that
asymptotically (as 𝜖→ 0) it suffices to bound both error terms in the constraint by 𝜖

2 . The first
condition, i.e. 𝛾𝐻𝑅∗

1−𝛾 ≤
𝜖
2 , leads to the criterion 𝐻 ≥ log𝛾

( (1−𝛾)𝜖
2𝑅∗

)
. To minimize the number of

gradient steps we fix 𝐻 =
⌈
log𝛾

( (1−𝛾)𝜖
2𝑅∗

)⌉
. It remains to solve the following optimization problem

min
(𝜖ℎ )𝐻−1ℎ=0 ,𝜖ℎ>0

𝐻−1∑︁
ℎ=0

𝑎ℎ𝜖
−1
ℎ subject to

𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ ≤
𝜖

2
, (5.14)

with 𝑎ℎ = (1 − 𝛾ℎ+1).
We provide a solution of this optimization problem by solving the following more general one:

Lemma 5.21. Fix 𝐻 > 0. Let (𝑎ℎ)𝐻−1ℎ=0 and (𝑏ℎ)𝐻−1ℎ=0 be strictly positive sequences. For any 𝑑 > 0 the
optimization problem

min
(𝑐ℎ )𝐻−1ℎ=0

𝐻−1∑︁
ℎ=0

𝑎ℎ𝑐
−1
ℎ subject to

𝐻−1∑︁
ℎ=0

𝑏ℎ𝑐ℎ ≤ 𝑑,

is optimally solved for 𝑐ℎ = 𝐶𝑑,𝐻

(
𝑏ℎ
𝑎ℎ

)− 1
2 , with 𝐶𝐻,𝑑 = 𝑑

( ∑𝐻−1
ℎ=0 (𝑎ℎ𝑏ℎ)

1
2

)−1
.

Hence, the minimum of the optimization problem is given by 1
𝑑

(∑𝐻−1
ℎ=0 (𝑎ℎ𝑏ℎ)

1
2

)2
.

Proof. The result and the proof is inspired by [WWZ22, Lem. 3.8].
We solve the constrained optimization problem by employing the Lagrange method, i.e

min
𝜆,(𝑐ℎ )𝐻−1ℎ=0

𝐻−1∑︁
ℎ=0

𝑎ℎ𝑐
−1
ℎ + 𝜆

(
𝐻−1∑︁
ℎ=0

𝑏ℎ𝑐ℎ − 𝑑
)
.

The first order conditions are given by

−𝑎ℎ𝑐−2ℎ + 𝜆𝑏ℎ = 0 ∀ℎ = 0, . . . , 𝐻 − 1, and
𝐻−1∑︁
ℎ=0

𝑏ℎ𝑐ℎ − 𝑑 = 0.
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We deduce from the first equations, that there exists a constant 𝐶𝐻,𝑑 such that 𝑐ℎ = 𝐶𝐻,𝑑

(
𝑏ℎ
𝑎ℎ

)− 1
2

for all ℎ = 0, . . . , 𝐻 − 1. Using this in the second equation we can solve for the constant

𝐶𝐻,𝑑 = 𝑑
( 𝐻−1∑︁
ℎ=0

𝑏
1
2
ℎ
𝑎

1
2
ℎ

)−1
.

Using the minima 𝑐ℎ = 𝐶𝐻,𝑑

(
𝑏ℎ
𝑎ℎ

)− 1
2 in the optimization function

∑𝐻−1
ℎ=0 𝑎ℎ𝑐

−1
ℎ
, we obtain the

minimum

𝐻−1∑︁
ℎ=0

𝑎ℎ𝑐
−1
ℎ =

𝐻−1∑︁
ℎ=0

𝑎ℎ𝐶
−1
𝐻,𝑑

(
𝑏ℎ

𝑎ℎ

) 1
2

= 𝐶−1𝐻,𝜖

𝐻−1∑︁
ℎ=0
(𝑎ℎ𝑏ℎ)

1
2 =

1
𝑑

(
𝐻−1∑︁
ℎ=0
(𝑎ℎ𝑏ℎ)

1
2

)2
.

■

Finally, we are ready to state the detailed version of Theorem 5.19 (2.) for the value function
error.

Theorem 5.22. [Detailed version of Theorem 5.19 (2.)]
Let Assumption 5.12 hold and choose 𝜖 > 0. Set

𝐻 =

⌈
log𝛾

( (1 − 𝛾)𝜖
2𝑅∗

)⌉
,

𝜖ℎ =
𝜖

2

( 𝐻−1∑︁
𝑡=0
((1 − 𝛾𝑡+1)𝛾𝐻−𝑡−1) 12

)−1 ( 𝛾𝐻−ℎ−1

(1 − 𝛾ℎ+1)

)− 1
2
,

𝛼ℎ =
1 − 𝛾

2𝑅∗(1 − 𝛾ℎ+1)
,

𝑁ℎ =
⌈4𝑅∗(1 − 𝛾ℎ+1) |𝒜|2

(1 − 𝛾)𝜖ℎ


1
𝜇




∞

⌉
,

for ℎ = 0, . . . 𝐻 − 1. Then, the non-stationary policy ℼ̂∗𝐻 obtained by DynPG under exact gradients
achieves ∥V∗∞ − V

ℼ̂∗𝐻
𝐻 ∥∞ ≤ 𝜖. The total number of gradient steps are given by

𝐻−1∑︁
ℎ=0

𝑁ℎ =
⌈ 8𝑅∗ |𝒜|2
(1 − 𝛾)𝜖




1
𝜇





∞

⌉⌈ log(2𝑅∗(1 − 𝛾)−1𝜖−1)
log(𝛾−1)

⌉2
.

Proof. First, note that the choice of 𝜖ℎ in the theorem is the solution of the optimization problem

min
(𝜖ℎ )

4𝑅∗ |𝒜|2
(1 − 𝛾)




1
𝜇





∞

𝐻−1∑︁
ℎ=0

(1 − 𝛾ℎ+1)
𝜖ℎ

subject to
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ ≤
𝜖

2
.

To see this, choose 𝑎ℎ = (1 − 𝛾ℎ+1), 𝑏ℎ = 𝛾𝐻−ℎ−1, 𝑐ℎ = 𝜖ℎ and 𝑑 = 𝜖
2 in Lemma 5.21, where we

excluded the constant 4𝑅∗ |𝒜 |2
(1−𝛾)




 1
𝜇





∞
. Then,

𝜖ℎ = 𝐶𝐻,𝑑

(
𝑏ℎ

𝑎ℎ

)− 1
2

=
𝜖

2

( 𝐻−1∑︁
𝑡=0
((1 − 𝛾𝑡+1)𝛾𝐻−𝑡−1) 12

)−1 ( 𝛾𝐻−ℎ−1

(1 − 𝛾ℎ+1)

)− 1
2
,
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is the optimal solution to this problem. For 𝐻 = ⌈ log(
(1−𝛾)𝜖
2𝑅∗ )

log(𝛾) ⌉ we have that 𝛾𝐻𝑅∗

1−𝛾 ≤
𝜖
2 .

Using these (𝜖ℎ)𝐻−1ℎ=0 in Theorem 5.18 results in a value function error for DynPG bounded by

∥V∗∞ − V
ℼ̂∗𝐻
𝐻 ∥∞ ≤

𝛾𝐻𝑅∗

1 − 𝛾 +
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ ≤
𝜖

2
+ 𝜖
2
= 𝜖. (5.15)

For the optimal complexity bound we derive

𝐻−1∑︁
ℎ=0

𝑁ℎ =

𝐻−1∑︁
ℎ=0

⌈4𝑅∗(1 − 𝛾ℎ+1) |𝒜|2
(1 − 𝛾)𝜖ℎ



1
𝜇




∞

⌉
=

𝐻−1∑︁
ℎ=0

⌈8𝑅∗ |𝒜|2 ( ∑𝐻−1
𝑡=0 ((1 − 𝛾𝑡+1)𝛾𝐻−𝑡−1)

1
2
)

(1 − 𝛾)𝜖




1
𝜇





∞
((1 − 𝛾ℎ+1)𝛾𝐻−ℎ−1) 12

⌉
≤

⌈ 8𝑅∗ |𝒜|2
(1 − 𝛾)𝜖




1
𝜇





∞

⌉( 𝐻−1∑︁
ℎ=0
⌈((1 − 𝛾𝑡+1)𝛾𝐻−𝑡−1) 12 ⌉

)2
.

As ((1 − 𝛾𝑡+1)𝛾𝐻−𝑡−1) 12 ≤ 1 for any 𝛾 ∈ (0, 1) we have

𝐻−1∑︁
ℎ=0

𝑁ℎ ≤
⌈ 8𝑅∗ |𝒜|2
(1 − 𝛾)𝜖




1
𝜇





∞

⌉
𝐻2.

Finally, note that we can rewrite 𝐻 to be

𝐻 =

⌈
log𝛾

( (1 − 𝛾)𝜖
2𝑅∗

)⌉
=

⌈ log (
(1−𝛾)𝜖
2𝑅∗

)
log(𝛾)

⌉
=

⌈ log((1 − 𝛾)−1𝜖−12𝑅∗)
log(𝛾−1)

⌉
.

■

Overall error. To deal with the overall error, we first derive the following upper bound.

Lemma 5.23. Assume zero approximation error, i.e. 𝑇∗ = sup𝜃 𝑇𝜋𝜃 . Further, suppose bounded opti-
mization errors ∥𝑇∗(Vℼ̂∗

ℎ

ℎ
) −𝑇𝜋∗ℎ (Vℼ̂∗

ℎ

ℎ
)∥∞ ≤ 𝜖ℎ for all ℎ = 0, . . . , 𝐻. If 𝜖𝐻 ≤ (1− 𝛾)

∑𝐻−1
ℎ=0 𝛾𝐻−ℎ−1𝜖ℎ,

then the overall error of DynPG is bounded by

∥V∗∞ − V
𝜋∗𝐻
∞ ∥∞ ≤

3
1 − 𝛾

( 𝛾𝐻𝑅∗
1 − 𝛾 +

𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ
)
.

Proof. First we have by triangle inequality, that

∥Vℼ̂∗
𝐻+1

𝐻+1 − V
ℼ̂∗𝐻
𝐻 ∥∞ ≤ ∥V

ℼ̂∗
𝐻+1

𝐻+1 − V∗∞∥∞ + ∥V∗∞ − V
ℼ̂∗𝐻
𝐻 ∥∞.

By Proposition 5.8 we obtain under zero approximation error that

∥Vℼ̂∗
𝐻+1

𝐻+1 − V∗∞∥∞ + ∥V∗∞ − V
ℼ̂∗𝐻
𝐻 ∥∞ ≤

𝛾𝐻+1𝑅∗

1 − 𝛾 +
𝐻∑︁
ℎ=0

𝛾𝐻−ℎ𝜖ℎ +
𝛾𝐻𝑅∗

1 − 𝛾 +
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ.
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By the assumption 𝜖𝐻 ≤ (1 − 𝛾)
∑𝐻−1
ℎ=0 𝛾𝐻−ℎ−1𝜖ℎ it holds further that

𝐻∑︁
ℎ=0

𝛾𝐻−ℎ𝜖ℎ ≤ 𝛾
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ + 𝜖𝐻 ≤
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ.

We obtain

∥Vℼ̂∗
𝐻+1

𝐻+1 − V
ℼ̂∗𝐻
𝐻 ∥∞ ≤

2𝛾𝐻𝑅∗

1 − 𝛾 + 2
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ.

We deduce for the overall error (by Proposition 5.8 and under zero approximation error) that

∥V∗∞ − V
𝜋∗𝐻
∞ ∥∞ ≤

𝛾𝐻𝑅∗

1 − 𝛾 +
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ +
1

1 − 𝛾

(
2𝛾𝐻𝑅∗

1 − 𝛾 + 2
𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ

)
≤ 3

1 − 𝛾

( 𝛾𝐻𝑅∗
1 − 𝛾 +

𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ
)
.

■

It is important to notice that the overall error is upper bounded by the same error terms,
𝛾𝐻𝑅∗

1−𝛾 +
∑𝐻−1
ℎ=0 𝛾𝐻−ℎ−1𝜖ℎ, as the value function error (under zero approximation error) up to the

constant 3
1−𝛾 . Thus, we can obtain the result for the overall error by substituting 𝜖 with (1−𝛾)𝜖3 in

the result for the value function error:

Theorem 5.24. [Detailed version of Theorem 5.19 (1.)]
Let Assumption 5.12 hold and choose 𝜖 > 0. Set

𝐻 =
⌈
log𝛾

( (1 − 𝛾)2𝜖
6𝑅∗

)⌉
,

𝜖ℎ =
𝜖(1 − 𝛾)

6

( 𝐻−1∑︁
ℎ=0
(((1 − 𝛾ℎ+1)𝛾𝐻−ℎ−1) 12

)−1 ( 𝛾𝐻−ℎ−1

(1 − 𝛾ℎ+1)

)− 1
2
, ∀ℎ = 0 . . . , 𝐻 − 1,

𝜖𝐻 =
(1 − 𝛾)2𝜖

6
,

𝛼ℎ =
1 − 𝛾

2𝑅∗(1 − 𝛾ℎ+1)
, ∀ℎ = 0 . . . , 𝐻,

𝑁ℎ =
⌈4𝑅∗(1 − 𝛾ℎ+1) |𝒜|2

(1 − 𝛾)𝜖ℎ




1
𝜇





∞

⌉
, ∀ℎ = 0 . . . , 𝐻.

Then, the stationary policy 𝜋∗𝐻 obtained by DynPG under exact gradients achieves
∥V∗∞ − V

𝜋∗𝐻
∞ ∥∞ ≤ 𝜖. The total number of gradient steps are given by
𝐻∑︁
ℎ=0

𝑁ℎ =
⌈24𝑅∗ |𝒜|2
(1 − 𝛾)2𝜖




1
𝜇





∞

⌉⌈ log(6𝑅∗(1 − 𝛾)−2𝜖−1)
log(𝛾−1)

⌉2
+

⌈24𝑅∗(1 − 𝛾𝐻+1) |𝒜|2
(1 − 𝛾)3𝜖




1
𝜇





∞

⌉
.
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Proof. The optimization procedure is the same as for the value function error by substituting 𝜖
with (1−𝛾)𝜖3 . Moreover, note that

𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖ℎ =
𝜖(1 − 𝛾)

6
.

Thus, 𝜖𝐻 ≤ (1−𝛾)
2𝜖

6 is enough for Lemma 5.23 to hold and we obtain that using the (𝜖ℎ)’s defined
in the claim results in an overall error for DynPG given by

∥V∗∞ − V
𝜋∗𝐻
∞ ∥∞ ≤

3
1 − 𝛾

( 𝛾𝐻𝑅∗
1 − 𝛾 +

𝐻−1∑︁
ℎ=0

𝛾𝐻−ℎ−1𝜖𝑡
)
≤ 3

1 − 𝛾
𝜖(1 − 𝛾)

3
= 𝜖.

Note that we can again rewrite 𝐻 to be

𝐻 =

⌈
log𝛾

( (1 − 𝛾)2𝜖
6𝑅∗

)⌉
=

⌈ log((1 − 𝛾)−2𝜖−16𝑅∗)
log(𝛾−1)

⌉
.

Thus, the complexity bounds for the optimization epochs ℎ = 0, . . . , 𝐻 are given by

𝐻∑︁
ℎ=0

𝑁ℎ =

𝐻−1∑︁
ℎ=0

𝑁ℎ + 𝑁𝐻

≤
⌈24𝑅∗ |𝒜|2
(1 − 𝛾)2𝜖




1
𝜇





∞

⌉⌈ log(6𝑅∗(1 − 𝛾)−2𝜖−1)
log(𝛾−1)

⌉2
+

⌈4𝑅∗(1 − 𝛾𝐻+1) |𝒜|2
(1 − 𝛾)𝜖𝐻




1
𝜇





∞

⌉
≤

⌈24𝑅∗ |𝒜|2
(1 − 𝛾)2𝜖




1
𝜇





∞

⌉⌈ log(6𝑅∗(1 − 𝛾)−2𝜖−1)
log(𝛾−1)

⌉2
+

⌈24𝑅∗(1 − 𝛾𝐻+1) |𝒜|2
(1 − 𝛾)3𝜖




1
𝜇





∞

⌉
,

where we used the calculations in the proof of Theorem 5.22 and substituted 𝜖 by (1−𝛾)𝜖3 in the
first inequality. In the second inequality we used 𝜖𝐻 =

(1−𝛾)2𝜖
6 . ■

5.4 Advantages and Limitations of DynPG

5.4.1 Breaking the lower bound example with DynPG
In [Li+23a] a lower bound example was given for which softmax PG takes exponential time in
the expected horizon (1 − 𝛾)−1 to converge. More precisely, it is shown that at least |S|2Ω ( (1−𝛾)

−1 )

gradient steps are required to approximate the optimal value function with 𝜖 = 0.15 accuracy.
The constructed MDP is designed such that the unknown constant 𝑐𝛾 in the upper bound on
softmax PG (see Table 5.1) is exponential in the effective time horizon (1 − 𝛾)−1. To understand
this behavior, we take a closer look at the definition of 𝑐𝛾 =

(
min𝑠∈S inf𝑛≥1 𝜋𝜃𝑛 (𝑎∗(𝑠) |𝑠)

)−1 in
Lemma 3.19, where 𝑎∗(𝑠) denotes the optimal action in state 𝑠. To ensure small 𝑐𝛾 the probability
of choosing the best action should not get close to 0 during training. But by construction in
[Li+23a], finding the best action in state 𝑠 decreases as long as the probability of choosing the
best action in a previous state 𝑠′ < 𝑠 is not close enough to 1. This results in the phenomenon that
the gradient steps required to converge towards 𝑎∗(𝑠) grows at least geometrically as 𝑠 increases.
However, using DP one can solve the MDP within |S| steps of exact value iteration [Li+23a, Lem.
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1]. This already implies that DynPG easily circumvents this exponential convergence time by
employing DP. As future actions are determined by the previously trained policies, DynPG can
evaluate the MDP under a non-stationary policy during training and thereby avoid the above
described phenomenon.
The upper bound on the complexity of softmax DynPG in Theorem 5.19 provides a theoretical
proof that the needed gradient steps scale at most with (1 − 𝛾)−4 up to logarithmic factors.

5.4.2 Numerical Example of DynPG
To further demonstrate DynPG’s effectiveness in the more general sampled-based gradient
setting, we present a numerical study of a canonical example that has a similar flavor as the
counterexample in [Li+23a]. This example is an extension of Example 6.7 in [SB18], which has
been used to compare different variants of Q-learning algorithms, as it suffers from overestimation
of the Q-values. Since the overestimation problem in Q-learning and the committal behavior
problem in policy gradient are closely related [FHM18], we decided to use this example. The
example is certainly artificial, as the number of actions and the rewards in the MDP are chosen to
trap policy gradient from convergence. If we vary the MDP parameters from the current setting,
DynPG consistently performs well but the advantage over vanilla PG will become less significant.
The MDP is defined as follows:

• The state space is given by S := {0, . . . , 6}; States 0, 3, 6 are the terminal states and states
1, 2, 4, 5 are the initial states. We sample 𝑠0 uniformly from {1, 2, 4, 5}.

• The action space is given by A := {0, . . . , 299}.

• The state transitions and state-dependent actions are visualized in Figure 5.2. Each node
represents a state, with squared ones being terminal states and elliptical ones being initial
states. Each arrow represents an action that deterministically transits from one state
to another. From state 1 to state 0, there are a total of 300 possible actions, succinctly
visualized using the dots.

2 1

4

3

0...

5

6

Figure 5.2: Visualization of the MDP state transitions.
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• Taking any 𝑎 ∈ A from state 1 reaches state 0 and receives a reward of 𝑟(1, 𝑎) ∼
N(−0.3, 10).

• Taking any of the 5 possible actions from state 4 reaches state 5 and receives the reward
of 𝑟(4, 𝑎) ∼ N(1.25, 1.25).

• Taking any of the 5 possible actions from state 5 reaches state 6 and receives the reward
of 𝑟(5, 𝑎) ∼ N(1.25, 1.25).

• Taking any of the 3 possible actions from state 2 receives the reward of 𝑟(2, 𝑎) = 0.

Experimental setup: We evaluated the performance of (stochastic) vanilla PG and (stochastic)
DynPG under two different discount factors, 𝛾 = 0.9 and 𝛾 = 0.99. We used the tabular softmax
parametrization studied in the convergence analysis for both algorithms. In DynPG, we used the
1-batch Monte-Carlo estimator to sample the gradient according to Theorem A.3. In vanilla PG,
we chose the classical REINFORCE 1-batch estimator with truncation horizon 3 (cf. equation
(3.10)), such that the estimator is also unbiased due to the episodic setting (the maximum
episode length in our example is 3).
In DynPG, we chose the step size 𝜂ℎ and number of training steps 𝑁ℎ according to Theorem 5.22
and Theorem 5.24 and only fine-tuned the constants 2 and 45:

𝜂ℎ = 2
1 − 𝛾
1 − 𝛾ℎ

, 𝑁ℎ =
⌈
45

1 − 𝛾ℎ+1
1 − 𝛾

⌉
.

We want to emphasize that the choices of 𝜂ℎ and 𝑁ℎ consistently perform well under different
choices of 𝛾, which underscores that the algorithmic parameters developed in our theory also
provide good guidance in practice. For a fair comparison, we fine-tuned 𝜂 = 2 1−𝛾

1−𝛾6 for stochastic
vanilla PG, which is much larger than the pessimistic 𝜂 = 𝑐 ∗ (1− 𝛾)2 suggested in Theorem 3.21.
In Figure 5.3, we plotted the success probability in 2000 individual runs of the algorithm that
achieves the overall value function error of less than 𝜖 = 0.01 from the optimal, with the x-axis
being the number of interactions with the environment. We observe that vanilla PG had a
hard time solving this MDP, suffering from the high variance in the rewards from state 1 to
state 0. The sample-based algorithm tends to concentrate on large rewards samples. DynPG
circumvented this committal behaviour by more accurate estimated of the future Q-values.
For the case of 𝛾 = 0.9 presented in Figure 5.3 (a), we observe that the performance of DynPG
and vanilla PG are similar for the first 400 interactions with the environment. However, vanilla
PG fails to converge to the optimal policy and can only reach the success probability of around
0.8 under the given training budget. DynPG is shown to converge much faster and can solve the
MDP with a probability of nearly 1 after 1200 samples. In Figure 5.3 (b), where we presented
the case of 𝛾 = 0.99, one can observe a similar performance gain from DynPG compared to
vanilla PG. DynPG converges consistently and faster, while vanilla PG fails to converge. These
experiments support the theoretical findings from the previous section.

5.4.3 Limitations and Modifications
In the previous subsections we have seen reasonable examples, where DynPG outperforms vanilla
PG. Still, there are examples, where vanilla PG already performs quite well and does not suffer
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(a) (b)

Figure 5.3: For 𝛾 = 0.9 (a) and 𝛾 = 0.99 (b), we show the success probability of achieving the
sub-optimality gap of 𝜖 = 0.01 in the overall error. The x-axis is the number of interactions with
the environment used by both sample-based vanilla PG and sample-based DynPG. The success
probability is calculated by executing each algorithm 2000 times with randomly sampled initial
states.

.

from committal behavior or high variance in the Q-value estimation, such that using DynPG as a
more complex algorithm cannot surpass vanilla PG. We want to emphasize that DynPG should
be kept in mind for cases where vanilla PG is particularly slow or even fails to converge.
In the following, we aim to discuss a challenge that may arise when applying DynPG in practice.
In very complex MDPs, where the policy parametrization needs to be rich, the classical DynPG
approach in Algorithm 6 can suffer from a storage problem. The number of policy parameters
that need to be stored for future decisions scale linearly with the number of training steps. In
order to circumvent this problem we introduce an actor-critic based modification of DynPG.

Dynamic Actor-Critic (DynAC). The general idea behind actor-critic in vanilla PG is to intro-
duce a so called critic, a second parametrized class of function (𝑄𝑤)𝑤∈ℝ𝑙 , which approximates
the Q-function 𝑄𝜋𝜃 in the classical PG Theorem (Theorem 3.15). Using the critic as estimator
of the Q-values no more roll-outs are needed to estimate the rewards-to-go; compare to the
(unbiased) REINFORCE estimator discussed in Section 3.1.2. For further reading regarding the
classical actor-critic algorithm we refer the interested reader to [SB18, Sec. 13.5].
In the actor-critic variant of DynPG, we include an additional training procedure after optimizing
policy 𝜋∗

ℎ
to update the critic, 𝑄𝑤ℎ+1 ≈ 𝑄𝜋∗

ℎ
,...,𝜋∗0

ℎ+1 , based on the old critic, 𝑄𝑤ℎ ≈ Q
𝜋∗
ℎ−1,...,𝜋

∗
0

ℎ
, and

the newly trained policy, 𝜋∗
ℎ
, using the relation:

𝑄
𝜋∗
ℎ
,...,𝜋∗0

ℎ+1 (𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑠′
𝑝(𝑠′ |𝑠, 𝑎)

∑︁
𝑎′
𝜋∗ℎ(𝑎

′ |𝑠′)Q𝜋
∗
ℎ−1,...,𝜋

∗
0

ℎ
. (5.16)

The critic is used in the policy gradient theorem as an estimator for 𝑄ℼℎ

ℎ+1 such that the new
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gradient in DynAC is given by

𝐺Dyn-AC = ∇𝜃 log(𝜋𝜃(𝐴|𝑆))𝑄𝑤ℎ+1 (𝑆, 𝐴), (5.17)

where 𝑆 ∼ 𝜇 and 𝐴 ∼ 𝜋𝜃(·|𝑠) and 𝜋𝜃 is the policy we are currently training for epoch ℎ + 1.
In this case, we do no longer have to store all trained policies and just store the currently trained
policy and the current critic. For applications where the performance of vanilla PG is poor
and the parametrized policy needs to be very rich such that storing many policies might cause
storage issues, we emphasize to keep this modification in mind. We call this approach DynAC
for dynamic actor-critic and summarize the steps in Algorithm 7.
Algorithm 7: DynAC for discounted MDPs
Result: Approximation of 𝜋∗, denoted as 𝜋∗.
Input: Initial state distribution 𝜇, class of policies (𝜋𝜃)𝜃∈ℝ𝑑 , class of parametrization for

the critic (𝑄𝑤)𝑤∈ℝ𝑙 .

Set ℎ = 0;
Train 𝑄𝑤1 to approximate the reward function 𝑟;
while Convergence criterion not met do

Initialize 𝜃0 (e.g., 𝜃0 ≡ 0);
Choose 𝛼ℎ and 𝑁ℎ (cf., Remark 5.11);
for 𝑛 = 0, . . . , 𝑁ℎ − 1 do

Sample 𝐺Dyn-AC = ∇𝜃 log(𝜋𝜃(𝐴|𝑆))𝑄𝑤ℎ+1 (𝑆, 𝐴) with 𝑆 ∼ 𝜇 and 𝐴 ∼ 𝜋𝜃(·|𝑆);
Update 𝜃𝑛+1 = 𝜃𝑛 + 𝛼ℎ𝐺;

end
Set 𝜋∗

ℎ
= 𝜋𝜃𝑁ℎ ;

Train 𝑤ℎ+2 s.t. 𝑄𝑤ℎ+2 (𝑠, 𝑎) ≈ 𝔼𝑆∼𝑝( · |𝑠,𝑎) ,𝐴∼𝜋∗
ℎ
( · |𝑆) [𝑟(𝑠, 𝑎) + 𝛾𝑄𝑤ℎ+1 (𝑆, 𝐴)] for all 𝑠, 𝑎;

Set ℎ = ℎ + 1;
end
Return 𝜋∗ = 𝜋∗

ℎ−1;

A theoretical analysis of this approach would require an assumption on the approximation error
to train the Q-functions. As the gradients are no longer unbiased, convergence towards the
global optimum cannot be theoretically guaranteed and the bias errors will appear in the overall
error. We leave further investigations to analyze this approach in practise and theory to future
work.

5.4.4 Comparison to NPG
Finally, we compare the theoretical performance of DynPG to Natural Policy Gradient (NPG).
NPG is a version of PG where the natural gradient of the objective function is used in gradient
ascent instead of the gradient. In [Aga+21] it is shown that softmax NPG has a convergence rate
𝑂((1− 𝛾)−2𝜖−1) and so the algorithm achieves a dependency in the number of required gradient
steps which is also explicit and even better in terms of the effective horizon compared to DynPG.
Thus, in the exact gradient setting softmax DynPG cannot compete with softmax NPG. However,
in the sample based setting it is noteworthy that it requires much more computational power
to estimate the natural gradient compared to the gradient used in DynPG. DynPG reduces the
variance in the gradient estimation by using fixed future policies (cf. Theorem 5.6). Additionally,
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fewer samples are required in DynPG compared to PG and even more so compared to NPG. NPG
is a quasi second order method, such that implementation is expensive. Thus, it is plausible that
DynPG will outperform NPG in sample based settings.

Remark 5.25. We do not carry out an analysis in the stochastic setting as we did in Section 4.4,
because the results rely on unrealistic very large batch sizes and we cannot expect that a compar-
ison gives a realistic inside to the sample based setting. Instead a sample based implementation
on a range of bench mark problems can give a more realistic comparison. As this thesis is of
theoretical nature, we leave it as future work to examine this research question.

It is natural to check how the upper bounds change when vanilla PG is replaced by NPG in
dynamic policy gradient. Replacing the sample of the gradient in Algorithm 6 with a sample
of the natural gradient results in the DynNPG Algorithm and there is no need to restate the
algorithm here. In the following, we will verify that the upper bounds on the performance of
softmax DynPG and softmax DynNPG are the same.
By [Aga+21, Lem. 5.1] with 𝛾 = 0 (contextual bandit interpretation of V{𝜋𝜃,Λ}

ℎ+1 ) we can obtain
that the natural gradient is given by 𝒜{𝜋𝜃,Λ}

ℎ+1 , where 𝒜ℎ+1 ∈ ℝ |S | |𝒜 | is the advantage function
defined in equation (5.2). Under exact gradient assumption the natural gradient update for
softmax DynNPG to train policy 𝜋∗

ℎ
is therefore given by

𝜃𝑛+1 = 𝜃𝑛 + 𝛼𝒜{𝜋𝜃,Λ}ℎ+1 .

We suppose throughout this section that the following assumption holds.

Assumption 5.26. Suppose that 𝜇(𝑠) > 0 for all 𝑠 ∈ S. Furthermore, the parametrization in
DynNPG (𝜋𝜃)𝜃∈ℝ|S| |𝒜| is chosen to be the tabular softmax parametrization introduced in equation
(3.12). We assume further that the natural gradient can be accessed exactly.

We obtain the following theorem for the optimization error in every iteration of DynNPG. This is
the corresponding result to Theorem 5.18 of softmax DynPG.

Theorem 5.27. Let Assumption 5.26 hold. Let ℎ ≥ 0, 𝜖ℎ > 0 and Λ = ℼ̂∗
ℎ
∈ Πℎ be a

collection of ℎ arbitrary policies. Then, using step size 𝛼ℎ =
(1−𝛾) log( |𝒜 | )
(1−𝛾ℎ+1 )𝑅∗ and gradient steps

𝑁ℎ =
2𝑅∗ (1−𝛾ℎ+1 ) log( |𝒜 | )

(1−𝛾)𝜖ℎ



 1
𝜇




∞ in DynNPG guarantees that the policy 𝜋∗

ℎ
of iteration ℎ achieves

∥𝑇∗(Vℼ̂∗
ℎ

ℎ
) − V

ℼ̂∗
ℎ+1

ℎ+1 ∥∞ ≤ 𝜖ℎ.

Sketch of Proof. The proof follows by adapting the convergence result [Aga+21, Thm. 5.3] for
softmax NPG to contextual bandits with bounded rewards. Although in [Aga+21] rewards in
[0, 1] are assumed, the proof of [Aga+21, Thm. 5.3] can be generalized to the more general
reward assumption 𝑟 ∈ [−r, r] by changing the upper bound used on the value functions in the
final inequality of the proof, i.e.

𝑉 (𝑇 ) − 𝑉 (0) ≤ (1 − 𝛾)−1

to be
𝑉 (𝑇 ) − 𝑉 (0) ≤ 2r(1 − 𝛾)−1.
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For MDPs with rewards in [−r, r] we obtain the global convergence of NPG

V
𝜋𝜃𝑛
∞ ≥ V∗∞ −

log( |𝒜|)
𝛼𝑛

− 2r
(1 − 𝛾)2𝑛

directly from [Aga+21, Thm. 5.3]. For contextual bandit (ℎ = 0 and 𝛾 = 0) with rewards in
[−r, r] we obtain that

V
𝜋𝜃𝑛
0 ≥ V∗0 −

log( |𝒜|)
𝛼𝑛

− 2r
𝑛
.

We apply this result to the contextual bandit with value function V
{𝜋𝜃,Λ}
ℎ+1 , the objective func-

tion we aim to optimize in epoch ℎ. Note that the rewards in our setting are bounded in
[− 𝑅

∗ (1−𝛾ℎ+1 )
1−𝛾 ,

𝑅∗ (1−𝛾ℎ+1 )
1−𝛾 ] (cf. Lemma 5.13). Thus, we get

V
{𝜋𝜃𝑛 ,ℼ̂∗ℎ}
ℎ+1 ≥ 𝑇∗(Vℼ̂∗

ℎ

ℎ
) − log( |𝒜|)

𝛼ℎ𝑛
− 2𝑅∗(1 − 𝛾ℎ+1)

(1 − 𝛾)𝑛

and still obtain a dependence on (1−𝛾)−1 steaming from the horizon of the ℎ-step value function.
Choosing 𝛼ℎ = (1−𝛾) log( |𝒜 | )(1−𝛾ℎ+1 )𝑅∗ , we have that

𝑇∗(Vℼ̂∗
ℎ

ℎ
) − V

{𝜋𝜃𝑛 ,ℼ̂∗ℎ}
ℎ+1 ≤ 3𝑅∗(1 − 𝛾ℎ+1)

(1 − 𝛾)𝑛 .

For 𝑁ℎ = 3𝑅∗ (1−𝛾ℎ+1 )
(1−𝛾)𝜖ℎ and 𝜋∗

ℎ
= 𝜋𝜃𝑁ℎ we arrive at the theorem. ■

We note directly that the gradient step 𝑁ℎ and the step size 𝛼ℎ agrees in terms of 𝜖ℎ and 𝛾 with
the ones obtained in Theorem 5.18 for softmax DynPG. Thus, optimizing over (𝜖ℎ) and 𝐻 as in
Section 5.3.2 would results in the same complexity bounds for DynNPG as for DynPG.
Although no improvement of bounds is obtained in DynNPG under exact gradients we leave it to
future work to compare the convergence behavior of DynPG and DynNPG/NPG in sample based
settings.



Almost Sure Convergence Rates under Gradient Domination

6Until now, the thesis focused on convergence rates for different variants of policy gradient
methods in RL. Considering the practically used stochastic versions of the algorithms,

the results regarding convergence are very rare and unsatisfying, compare to Remark 5.25, as
unrealistic large batch sizes are required. This is due to the non-uniform gradient domination
property (cf. Lemma 3.19, Lemma 4.11, Lemma 4.19) which can just be controlled through large
batch sizes or small step sizes (cf. Section 4.4). Nevertheless, in practical applications we often
observe strictly better performance of these algorithms even when different parametrizations
like neural networks are considered. The settings examined in this chapter (especially the local
setting) are motivated by the aim of gaining a deeper understanding of this practical behavior.
After a brief literature review in Section 6.1, where we classify the contributions in this chapter,
we dive into a preliminary discussion on a super-martingale convergence result in Section 6.2.
The first contribution, in Section 6.3, focuses on almost sure convergence rates for the error
𝑓 (𝑋𝑛) − 𝑓 ∗ in stochastic gradient schemes under (weak) gradient domination with parameter
𝛽 ∈ [ 12 , 1] (Definition 2.7). We prove that stochastic gradient descent (SGD) and stochastic heavy
ball (SHB) converge almost surely and in expectation towards the global optimum with rate
arbitrarily close to 𝑜(𝑛−

1
4𝛽−1 ). The rate of convergence that we obtain (a.s. and in expectation)

depends on the gradient domination parameter 𝛽 and is the same for both algorithms and
convergence types. For SGD this rate is arbitrarily close to the tight upper bound known in
expectation [Fat+22], while the almost sure convergence rate is new for the (weak) gradient
domination assumption (see Theorem 6.2 and discussion afterwards). To the best of our
knowledge for SHB this is the first convergence result towards global optima under (weak)
gradient domination, for both the almost sure convergence and convergence in expectation (see
Theorem 6.3).
Second, in Section 6.5,we assume that the gradient domination property is only locally fulfilled,
where we distinguish between locally around a stationary point or locally around the global
minimum. In both cases we prove that SGD remains within the good local region with high
probability, given a small enough step size. Conditioned on this event we provide converges
rates almost surely and in expectation towards the local or global minimum respectively with
the same convergence speed as in the global case (see Theorem 6.7).
The local setting around stationary points is especially of interest for machine learning appli-
cations with (deep) neural networks, as they fulfill this property [DK21]. In particular, we
demonstrate in Section 6.6 that it encompasses the training task of deep neural networks with
analytic activation functions in supervised learning. Our result illustrates that the iterates of
SGD are likely to become trapped in areas of local minima when the step size is is small. We
verify under mild conditions, that SGD converges to local minima with given convergence speed
(see Corollary 6.20).
Finally in Section 6.7, we apply the results obtained in the local setting around the global
minimum to policy gradient training in reinforcement learning. For infinite-time horizon MDPs,
we verify the local gradient domination around the global optimum for softmax vanilla PG and
entropy-regularized softmax PG. In both cases, we prove that the local rate of convergence under
local gradient domination applies to stochastic (regularized) softmax PG (see Corollary 6.23

113
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𝛽 Step size Rate Dom. Algo. Conv. Ref.

1
2 Θ

(
𝑛−1+𝜖

)
𝑜
(
𝑛−1+𝜖

)
global

SGD
a.s. Thm. 6.2 (i); e.g. [LY22, Thm. 1]

𝔼 Thm. 6.2 (ii); e.g. [KR23, Thm. 3]

SHB
a.s Thm. 6.3 (i); e.g. [LY22, Thm. 2]

𝔼 Thm. 6.3 (ii); e.g. [LLX23, Thm. 4.3]

local* SGD

a.s. Thm. 6.7 (ii); Thm. 6.16 (ii)

𝔼
Thm. 6.7 (iii); Thm. 6.16 (iii);

e.g. [Mer+20, Thm. 4]

( 12 , 1] Θ
(
𝑛
− 2𝛽

4𝛽−1
)
𝑜
(
𝑛
− 1

4𝛽−1+𝜖
) global

SGD
a.s. Thm. 6.2 (i)

𝔼 Thm. 6.2 (ii); e.g. [Fat+22, Cor. 1]

SHB
a.s. Thm. 6.3 (i)

𝔼 Thm. 6.3 (ii)

local* SGD
a.s. Thm. 6.7 (ii); Thm. 6.16 (ii)

𝔼 Thm. 6.7 (iii); Thm. 6.16 (iii)

Table 6.1: Summary of known and new results. Table presents convergence rates for tuned
step size (𝜖 > 0 arbitrarily small). Dom.: gradient domination holds locally or globally; local*:
additional assumption on 𝛼1 required and results holds only locally. a.s.: almost surely; 𝔼: in
expectation. Ref.: for some cited results minor adjustments are necessary.

and Corollary 6.25). For finite-time horizon MDPs, we verify the local gradient domination
around the global optimum for every optimization step in FT-DynPG. We obtain almost sure
convergence under good initialization (Corollary 6.27) and improve upon the very large batch
sizes required in Theorem 4.36. Although these rates hold only under good initialization, we
can characterize the initialization regions for the infinite- and finite-time cases explicitly.
We summarize the contributions of this chapter in Table 6.1. These findings are also illustrated
in a numerical toy experiment in Section 6.4, where the performance of SGD and SHB for
monomials with increasing degree is implemented.

6.1 Literature Review and Classification of the Contribution

The roots of stochastic gradient methods trace back to Robbins and Monro [RM51]. Since then,
various variants of SGD have been established as fundamental algorithms for optimizing complex
models in the realm of machine learning. We refer to Bottou, Curtis, and Nocedal [BCN18] and
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Garrigos and Gower [GG24] for a detailed overview.
We start the review with the literature deriving convergence rates in expectation for SGD. Under
the assumptions of smoothness and (strong) convexity Polyak [Pol87], Moulines and Bach
[MB11], Nguyen et al. [Ngu+18], Wang et al. [Wan+21], and Liu et al. [Liu+23] studied
convergence rates towards global optima. Moreover, many articles additionally analyze the
non-convex case and prove convergence rates for the gradient norm towards zero [GL13; Li+23b;
Liu+23; Ngu+23].
Notably, several other results regarding convergence of SGD towards global optima have been
established under the gradient domination setting [KNS16]. Bassily, Belkin, and Ma [BBM18]
demonstrate exponential convergence rates in expectation in the overparameterized setting under
strong gradient domination. See also Madden, Dall’Anese, and Becker [MDB21] and Liu, Zhu,
and Belkin [LZB22], who show convergence rates of order 𝑂( 1

𝑛
) for neural networks using the

(strong) gradient domination property. Scaman, Malherbe, and Santos [SMS22] provide high-
probability bounds on the approximation error under a generalized gradient domination property,
the so-called Separable-Łojasiewicz assumption, fulfilled by smooth neural networks. Lei et al.
[Lei+20] also assume strong gradient domination and weaken the smoothness assumption
through 𝛼-Hölder continuity, achieving a rate of 𝑂( 1

𝑛𝛼
) in expectation. Khaled and Richtárik

[KR23] introduce the (ABC) condition and show 𝑂( 1
𝑛
) convergence under strong gradient

domination. Furthermore, Fatkhullin et al. [Fat+22] and Fontaine, Bortoli, and Durmus [FBD21]
consider generalizations of gradient domination that include our definition as a special case.
They derive convergence rates in expectation which we encompass with our result and extend
to almost sure convergence (see also the discussion behind Theorem 6.2).
All the results mentioned so far consider convergence in expectation or high-probability bounds,
although originally, motivated by Robbins and Siegmund [RS71], research commenced with the
quest for almost sure convergence rates for gradient methods. In recent years, Sebbouh, Gower,
and Defazio [SGD21] and, building upon it, Liu and Yuan [LY22] derive almost sure convergence
rates towards global optima under strong convexity. Sebbouh, Gower, and Defazio [SGD21] also
analyzed almost sure convergence rates for SHB but under the assumption of convexity and Liu
and Yuan [LY22] study SHB under (strong) convexity and in a non-convex setting. Returning the
attention back to SGD with respect to gradient domination also some almost sure convergence
results have been established. As an extension to the PL-type gradient domination, Chouzenoux,
Fest, and Repetti [CFR23] assume the so-called KL property, which contains gradient domination
as a special case. The authors demonstrate almost sure convergence to a critical point, though
without a rate. To conclude, to the best of our knowledge the derived almost sure convergence
rate under gradient domination in Theorem 6.2 is novel.
Next, we want to provide further insights to the literature regarding SHB. In the realm of
momentum methods, Polyak’s Heavy-Ball Method (HBM) [Pol64] and Nesterov’s accelerated
gradient method [Nes83] stand out as a foundational contribution. The authors of [GPS18]
provide a detailed description of the stochastic formulation of HBM and establish almost sure
convergence but without giving a rate. In Yang, Lin, and Li [YLL16], Orvieto, Kohler, and
Lucchi [OKL20], Yan et al. [Yan+18], Mai and Johansson [MJ20], and Zhou et al. [Zho+20]
convergence rates in expectation are shown in (strongly) convex and non-convex settings, where
the non-convex analysis covers convergence of the norm of the gradient. Gess and Kassing [GK23]
show convergence of momentum methods under the strong gradient domination property and
prove linear convergence due to an overparametrized machine learning setting. In [LLX23] the
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authors determine 𝑂( 1
𝑛
) convergence rate for SHB under strong gradient domination. Our main

result for SHB presented in Theorem 6.3 describes almost sure convergence and convergence in
expectation under global gradient domination. Both result are quantified with a given rate of
convergence.
Finally, we aim to differentiate the present article from existing results on the convergence of SGD
under the assumption of local gradient domination. Dereich and Kassing [DK21] demonstrate
almost sure convergence of SGD to a stationary point under the local gradient domination
(for 𝑥∗), provided that the process (𝑋𝑛) remains local, albeit without a rate. Fehrman, Gess,
and Jentzen [FGJ20] present a local analysis of SGD towards minima without any gradient
domination assumption. Instead, a rank assumption is imposed on the Hessian, and mini-batches,
along with resampling, are leveraged to ensure convergence to the global optimum with high
probability. The resulting rate does not converge to zero and requires an increasing batch size.
Mertikopoulos et al. [Mer+20] demonstrate, under the global Lipschitz assumption on the
objective, that SGD almost surely converges to a stationary point and the authors derive a local
convergence analysis under local strong convexity. Our analysis in Section 6.5 builds upon
Mertikopoulos et al. [Mer+20] and generalizes their results to the local gradient domination
property. In our analysis we distinguish the cases where the local gradient domination property
holds in a neighbourhood of a local minimum or in the neighbourhood of the global optimum
respectively. Finally, we would like to acknowledge that related results have been independently
obtained in the recent preprint [QMM24].
For the application in the training of DNNs, it is worth noting that local convergence of SGD
has been analyzed under stronger variants of gradient domination [Woj23]; [AL24]. Due to
the stronger form of gradient domination, specific sub-classes of DNNs need to be considered to
verify these assumptions whereas our result is only constrained to analytic activation functions.
Under the machine learning noise conditions in [Woj23], convergence toward zero loss with
high probability is shown, provided that the initial loss is sufficiently small. In contrast, [AL24]
demonstrate convergence towards zero loss under initialization in a local (strong) Łojasiewicz
region. Indeed, one can construct DNNs satisfying the latter condition [Cha22].
For the application in reinforcement learning, we have seen in Section 3.1.2, Chapter 4 and
Chapter 5 that choosing the tabular softmax parametrization in PG algorithms results in objective
functions which fulfill a non-uniform gradient domination property. The convergence of PG
for exact gradients is quite well understood, but convergence rates for stochastic PG are rare
and mostly require very large batch sizes (see [DZL22] and Theorem 4.36). In Section 6.7,
we consider both the unregularized and entropy regularized setting and observe that one can
also achieve convergence arbitrarily close to 𝑜( 1

𝑛
) without the need for an increasing batch size.

Moreover, the local convergence occurs almost surely on an event with high probability. It is
noteworthy that a similar local analysis for stochastic policy gradient under entropy regularization
is presented in [DZL23]. Their local result is also based on [Mer+20], but requires an increasing
batch size sequence to obtain 𝑂( 1

𝑛
)-convergence towards the regularized optimum with high

probability. In contrast, we consider both the unregularized and entropy regularized setting and
observe that one can also achieve convergence arbitrarily close to 𝑜( 1

𝑛
) without the need for an

increasing batch size. Moreover, the local convergence occurs almost surely on an event with
high probability.
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6.2 Preliminary Discussion on Super-Martingale Convergence Rates

Let 𝑓 : ℝ𝑑 → ℝ be a differentiable and 𝐿-smooth function, i.e. 𝑓 fulfills Assumption 2.1. In
Section 2.2.3, we have sketched how to combine the global gradient domination property with
smoothness to derive a recursive inequality of the form

𝔼[𝑌𝑛+1 | F𝑛] ≤ (1 + 𝑐1𝛼𝑛)𝑌𝑛 − 𝑐2𝛼𝑛𝑌2𝛽
𝑛 + 𝑐3𝛼2𝑛 ,

where 𝑌𝑛 := 𝑓 (𝑋𝑛) − 𝑓 ∗ (cf. equation (2.9)). For analysing these inequalities, we must deal
separately with the strong gradient domination case (𝛽 = 1

2) and the weak gradient domination
case (𝛽 > 1

2) to avoid divisions by zero. For the former case the recursive inequality simplifies,
whereas a more complex analysis is required for the latter. To establish almost sure convergence
rates we employ convergence lemmas for super-martingales based on the Robbins-Sigmund
Theorem. This methodology has been introduced in [SGD21] and further utilized in [LY22] to
analyze SGD and SHB under (strong) convexity. In the following, we illustrate how to extend the
arguments to convergence under the global gradient domination property. While the extension
to the strong gradient domination case is straightforward, we have to invest more work in the
weak case.
Here is our super-martingale result that also encompasses [LY22, Lem. 1] when 𝛽 = 1

2 for
completeness:

Lemma 6.1. Let (𝑌𝑛)𝑛∈ℕ be a sequence of non-negative random variables on an underlying probability
space (Ω,F,ℙ) with natural filtration (F𝑛)𝑛∈ℕ and suppose there exists 𝛽 ∈ [ 12 , 1], 𝑐1, 𝑐3 ≥ 0 and
𝑐2 > 0 such that

𝔼[𝑌𝑛+1 | F𝑛] ≤ (1 + 𝑐1𝛼2𝑛)𝑌𝑛 − 𝑐2𝛼𝑛𝑌
2𝛽
𝑛 + 𝑐3𝛼2𝑛 ,

for all 𝑛 ≥ 1, where 𝛼𝑛 = Θ( 1
𝑛𝜃
) for some fixed 𝜃 ∈ ( 1

2 , 1
) . Then, for any

𝜂 ∈
{(

max{2 − 2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1
)

: 𝛽 ∈ ( 12 , 1]
(2 − 2𝜃, 1) : 𝛽 = 1

2

,

(𝑌𝑛)𝑛∈ℕ vanishes almost surely with 𝑌𝑛 ∈ 𝑜
(

1
𝑛1−𝜂

)
.

Proof. In the following, we treat both cases 𝛽 = 1
2 and 𝛽 ∈ ( 12 , 1] separately.

𝛽 = 1
2 : In this case, the inequality reduces to

𝔼[𝑌𝑛+1 | F𝑛] ≤ (1 + 𝑐1𝛼2𝑛 − 𝑐2𝛼𝑛)𝑌𝑛 + 𝑐3𝛼2𝑛.

By the choice of 𝛼𝑛, there exists some 𝑁 > 0 and 𝑐̃1 > 0 such that 𝑐2𝛼𝑛 − 𝑐1𝛼2𝑛 ≥ 𝑐̃1𝛼𝑛 for all
𝑛 ≥ 𝑁. Hence, for all 𝑛 ≥ 𝑁

𝔼[𝑌𝑛+1 | F𝑛] ≤ (1 − 𝑐̃1𝛼𝑛)𝑌𝑛 + 𝑐3𝛼2𝑛

such that the claim follows by [LY22, Lem. 1].
𝛽 ∈ ( 12 , 1]: The proof uses the elementary inequality

(𝑛 + 1)1−𝜂 ≤ 𝑛1−𝜂 + (1 − 𝜂)𝑛−𝜂, (6.1)
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which was also applied and proved in [LY22, Lem. 1]. The aim is to apply the Robbins-Siegmund
corollary, lemma 2.15, in order to derive the almost sure convergence rate. Let 1 ≤ 𝑞 < 2 be
arbitrary for now. The key step of the proof is the following computation

𝔼[𝑌𝑛+1 | F𝑛] ≤ (1 + 𝑐1𝛼2𝑛)𝑌𝑛 − 𝑐2𝛼𝑛𝑌
2𝛽
𝑛 + 𝑐3𝛼2𝑛

= (1 + 𝑐1𝛼2𝑛)𝑌𝑛 − 𝑐2𝛼
𝑞
𝑛𝑌𝑛 + 𝑐2𝛼𝑞𝑛𝑌𝑛 − 𝑐2𝛼𝑛𝑌2𝛽

𝑛 + 𝑐3𝛼2𝑛
= (1 + 𝑐1𝛼2𝑛 − 𝑐2𝛼

𝑞
𝑛)𝑌𝑛 + 𝑐2𝛼𝑛

(
𝛼
𝑞−1
𝑛 𝑌𝑛 − 𝑌2𝛽

𝑛

)
+ 𝑐3𝛼2𝑛.

(6.2)

Similar to the case 𝛽 = 1
2 there exists some 𝑁 > 0 and 𝑐̃1 > 0 such that 𝑐2𝛼𝑞𝑛 − 𝑐1𝛼2𝑛 ≥ 𝑐̃1𝛼

𝑞
𝑛 for

all 𝑛 ≥ 𝑁. Hence, for all 𝑛 ≥ 𝑁 we obtain the iterative inequality of the form

𝔼[𝑌𝑛+1 | F𝑛] ≤ (1 − 𝑐̃1𝛼𝑞𝑛)𝑌𝑛 + 𝑐2𝛼𝑛
(
𝛼
𝑞−1
𝑛 𝑌𝑛 − 𝑌2𝛽

𝑛

)
+ 𝑐3𝛼2𝑛. (6.3)

The function 𝑥 ↦→ 𝑎𝑥 − 𝑏𝑥2𝛽 takes it maximum at 𝑥 =

(
𝑎

2𝑏𝛽

) 1
2𝛽−1 such that

𝛼𝑛(𝛼𝑞−1𝑛 𝑌𝑛 − 𝑌2𝛽
𝑛 ) ≤

𝛼
𝑞+ 𝑞−1

2𝛽−1
𝑛

(2𝛽)
1

2𝛽−1
− 𝛼

1+ (𝑞−1)2𝛽2𝛽−1
𝑛

(2𝛽)
2𝛽

2𝛽−1

=
1

(2𝛽)
1

2𝛽−1
𝛼

2𝑞𝛽−1
2𝛽−1
𝑛 − 1

(2𝛽)
2𝛽

2𝛽−1
𝛼

2𝑞𝛽−1
2𝛽−1
𝑛

= (2𝛽)−
1

2𝛽−1 (1 − 1
2𝛽
)𝛼

2𝑞𝛽−1
2𝛽−1
𝑛

(6.4)

holds almost surely. We define 𝑐̃2 = 𝑐2(2𝛽)−
1

2𝛽−1 (1 − 1
2𝛽 ) ∈ (0,∞) for 𝛽 ∈ (

1
2 , 1) and proceed

with

𝔼[𝑌𝑛+1 | F𝑛] ≤ (1 − 𝑐̃1𝛼𝑞𝑛)𝑌𝑛 + 𝑐̃2𝛼
2𝛽𝑞−1
2𝛽−1
𝑛 + 𝑐3𝛼2𝑛. (6.5)

Next, we apply the elementary inequality, equation (6.1), and choose 𝑞 such that 1
2 < 𝜃 ≤ 1

𝑞
≤ 1.

Moreover by the choice of 𝛼𝑛, there exists some 𝑐4 > 0 such that 𝑐̃1𝛼𝑞𝑛 ≥ 𝑐4
𝑡𝑞𝜃

for all 𝑛 ≥ 𝑁. It
follows that for all 𝑛 ≥ 𝑁

𝔼[(𝑛 + 1)1−𝜂𝑌𝑛+1 | F𝑛]

≤ (𝑛 + 1)1−𝜂 (1 − 𝑐̃1𝛼𝑞𝑛)𝑌𝑛 + (𝑛 + 1)1−𝜂 𝑐̃2𝛼
2𝛽𝑞−1
2𝛽−1
𝑛 + (𝑛 + 1)1−𝜂𝑐3𝛼2𝑛

≤ (𝑛1−𝜂 + (1 − 𝜂)𝑛−𝜂) (1 − 𝑐4

𝑛𝑞𝜃
)𝑌𝑛 + (𝑛 + 1)1−𝜂 𝑐̃2𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + (𝑛 + 1)1−𝜂𝑐3𝛼2𝑛

=

(
1 + 1 − 𝜂

𝑛
− 𝑐4

𝑛𝑞𝜃
− 𝑐4(1 − 𝜂)

𝑛𝑞𝜃+1

)
𝑛1−𝜂𝑌𝑛 + (𝑛 + 1)1−𝜂 𝑐̃2𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + (𝑛 + 1)1−𝜂𝑐3𝛼2𝑛.

We set 𝑐̃3 = max{𝑐̃2, 𝑐3} such that for all 𝑛 ≥ 𝑁

𝔼[(𝑛 + 1)1−𝜂𝑌𝑛+1 | F𝑛]

≤
(
1 + 1 − 𝜂

𝑛
− 𝑐4

𝑛𝑞𝜃
− 𝑐4(1 − 𝜂)

𝑛𝑞𝜃+1

)
𝑛1−𝜂𝑌𝑛 + 𝑐̃3(𝑛 + 1)1−𝜂 (𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛).
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Observe that 𝑞𝜃 ≤ 1 by condition 𝜃 ≤ 1
𝑞
. Hence, there exists 𝑐̃4 > 0 and 𝑁 > 𝑁for sufficiently

large 𝑁 ≥ 𝑁 such that for all 𝑛 ≥ 𝑁 we have

𝔼[(𝑛 + 1)1−𝜂𝑌𝑛+1 | F𝑛] ≤ (1 − 𝑐̃4
1
𝑛𝑞𝜃
)𝑛1−𝜂𝑌𝑛 + 𝑐3(𝑛 + 1)1−𝜂 (𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛) (6.6)

In order to apply Robbins-Siegmund, more precisely Lemma 2.15, we are going to verify the
following three sufficient conditions:

∞∑︁
𝑛=𝑁

1
𝑛𝑞𝜃

= ∞, (6.7)

∞∑︁
𝑛=𝑁

𝑛1−𝜂−2𝜃 < ∞, (6.8)

∞∑︁
𝑛=𝑁

𝑛
1−𝜂− 𝜃(2𝛽𝑞−1)

2𝛽−1 < ∞. (6.9)

Then, 𝑌𝑛 ∈ 𝑜
(

1
𝑛1−𝜂

)
almost surely.

The first condition, equation (6.7), is obviously satisfied, since we assume 𝜃 ≤ 1
𝑞
. For the second

condition, equation (6.8), we may choose 𝜃 > 1− 𝜂

2 such that 1−𝜂−2𝜃 < −1. The third condition,
equation (6.9), gives 1 − 𝜂 − 𝜃(2𝛽𝑞−1)

2𝛽−1 < −1 which leads to the condition 𝜃 > (2−𝜂) (2𝛽−1)2𝛽𝑞−1 . Hence,
all together we obtain the sufficient condition

𝜃 ∈
(
max

{
(2 − 𝜂) (2𝛽 − 1)

2𝛽𝑞 − 1
, 1 − 𝜂

2

}
,
1
𝑞

]
.

In the following, we consider the two cases separately that correspond to the maximum being
either 1 − 𝜂

2 or (2−𝜂) (2𝛽−1)2𝛽𝑞−1 . The first case occurs precisely for 1
𝑞
≤ 2𝛽

4𝛽−1 , the latter one for
1
𝑞
≥ 2𝛽

4𝛽−1 .
Firstly, let 1

𝑞
≤ 2𝛽

4𝛽−1 . In this situation the sufficient condition on 𝜃 simplifies to

𝜃 ∈
(
1 − 𝜂

2
,
1
𝑞

]
.

The interval is non-empty for 1
𝑞
>

2−𝜂
2 , which requires 𝜂 ∈ ( 4𝛽−24𝛽−1 , 1).

Secondly, let 1
𝑞
≥ 2𝛽

4𝛽−1 . In this situation the sufficient condition on 𝜃 simplifies to

𝜃 ∈
(
(2 − 𝜂) (2𝛽 − 1)

2𝛽𝑞 − 1
,
1
𝑞

]
,

the interval is non-empty for 1
𝑞
< 2𝛽𝜂 − 2𝛽 + 2 − 𝜂. Hence, 1

𝑞
∈ ( 2𝛽

4𝛽−1 , 2𝛽𝜂 − 2𝛽 + 2 − 𝜂) which
requires the condition 𝜂 ∈ ( 4𝛽−24𝛽−1 , 1).
Either case yields sufficient conditions on 𝜃 and 𝜂 (depending on the auxiliary variable 𝑞) under
which 𝑌𝑛 ∈ 𝑜

(
1

𝑛1−𝜂

)
holds almost surely. We will now utilize the free variable 𝑞 to prove the claim.
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• Let 𝜃 ∈ ( 12 ,
2𝛽

4𝛽−1 ): We set 𝑞 =
4𝛽−1
2𝛽 and use the first case. The assumption 𝜂 > 2 − 2𝜃 =

max{2 − 2𝜃, 𝜃+2𝛽−22𝛽−1 } implies 𝜃 ∈
(
1 − 𝜂

2 ,
1
𝑞

]
. (Note that 𝜂 > 4𝛽−2

4𝛽−1 is automatically fulfilled

by 2 − 2𝜃 > 4𝛽−2
4𝛽−1 for this choice of 𝜃.)

• Let 𝜃 ∈ [ 2𝛽
4𝛽−1 , 1): By assumption we have 𝜂 > 𝜃+2𝛽−2

2𝛽−1 = max{2 − 2𝜃, 𝜃+2𝛽−22𝛽−1 }. We choose
some 1

𝑞
∈ (𝜃, 2𝛽𝜂 − 2𝛽 + 2 − 𝜂) and use the second case. (Note that 𝜂 >

4𝛽−2
4𝛽−1 again is

automatically fulfilled by 𝜃+2𝛽−2
2𝛽−1 >

4𝛽−2
4𝛽−1 for this choice of 𝜃.)

All in all we have proved that 𝜃 ∈ ( 12 , 2) implies 𝑌𝑛 ∈ 𝑜
(

1
𝑛1−𝜂

)
almost surely for all 𝜂 ∈ (max{2 −

2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1). ■

6.3 Almost Sure Convergence under Global Gradient Domination

6.3.1 Convergence Rates for SGD
Combining the recursive inequality in equation (2.9) with the super-martingale convergence
result from Lemma 6.1 leads to the following theorem, which to the best of our knowledge
our theorem presents the first convergence rate for SGD under weak gradient domination with
respect to almost sure convergence. This is in contrast to [LY22; SGD21] where the authors
derive almost sure convergence rates in non-convex settings but only for the gradient norm to
zero.

Theorem 6.2. Suppose Assumption 2.1 and Assumption 2.12 are fulfilled and let 𝑓 satisfy the
global gradient domination property from Definition 2.7 with 𝛽 ∈ [ 12 , 1]. Denote by (𝑋𝑛) the
sequence generated by equation (SGD) using a step size 𝛼𝑛 = Θ( 1

𝑛𝜃
) with 𝜃 ∈ ( 1

2 , 1
) . For any

𝜂 ∈
{(

max{2 − 2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1
)

: 𝛽 ∈ ( 12 , 1]
(2 − 2𝜃, 1) : 𝛽 = 1

2

it holds that

(i) 𝑓 (𝑋𝑛) − 𝑓 ∗ ∈ 𝑜
(

1
𝑛1−𝜂

)
, almost surely, and

(ii) 𝔼[ 𝑓 (𝑋𝑛) − 𝑓 ∗] ∈ 𝑜
(

1
𝑛1−𝜂

)
.

Proof. Recall, in Section 2.2 we derived equation (2.9),

𝔼[ 𝑓 (𝑋𝑛+1) − 𝑓 ∗ | F𝑛]

≤
(
1 + 𝐿𝐴𝛼

2
𝑛

2

)
( 𝑓 (𝑋𝑛) − 𝑓 ∗) −

(
𝛼𝑛 −

𝐵𝐿𝛼2𝑛
2

)
𝑐2( 𝑓 (𝑥) − 𝑓 ∗)2𝛽 + 𝐿𝐶𝛼

2
𝑛

2
,

which will be the basis of the proof.
We treat again both cases for 𝛽 = 1

2 and 𝛽 ∈ ( 12 , 1] separately:
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𝛽 = 1
2 : In this case, equation (2.9) results in the super-martingale inequality

𝔼[𝑌𝑛+1 | F𝑛] ≤
(
1 + 𝐿𝐴𝛼

2
𝑛

2
− 𝛼𝑛𝑐2 +

𝐵𝐿𝑐2𝛼2𝑛
2

)
𝑌𝑛 +

𝐿𝐶𝛼2𝑛
2

,

with 𝑌𝑛 = 𝑓 (𝑋𝑛) − 𝑓 ∗. By the choice of 𝛼𝑛 there exists 𝑁 > 0 and a constant 𝑐̃ > 0 such that
𝛼𝑛𝑐

2 − 𝐿𝐴𝛼2𝑛
2 −

𝐵𝐿𝑐2𝛼2𝑛
2 ≥ 𝑐̃𝛼𝑛 for all 𝑛 ≥ 𝑁. Thus,

𝔼[𝑌𝑛+1 | F𝑛] ≤
(
1 − 𝑐̃𝛼𝑛

)
𝑌𝑛 +

𝐿𝐶𝛼2𝑛
2

,

for all 𝑛 ≥ 𝑁. Then, claim (i) follows by applying Lemma 6.1 with 𝑐1 = 0, 𝑐2 = 𝑐̃, 𝑐3 = 𝐿𝐶
2 and

𝛽 = 1
2 .

To prove claim (ii) we multiply (𝑛 + 1)1−𝜂 on both sides and take the expectation. It follows that

𝔼[(𝑛 + 1) (1−𝜂)𝑌𝑛+1] ≤ (1 − 𝑐̃𝛼𝑛) (𝑛 + 1)1−𝜂𝔼[𝑌𝑛] +
𝐿𝐶

2
(𝑛 + 1)1−𝜂𝛼2𝑛

≤ (1 − 𝑐̃𝛼𝑛) (𝑛1−𝜂 + (1 − 𝜂)𝑛−𝜂)𝔼[𝑌𝑛] +
𝐿𝐶

2
(𝑛 + 1)1−𝜂𝛼2𝑛

=

(
1 − 𝑐̃𝛼𝑛 +

1 − 𝜂
𝑛
− 𝑐̃(1 − 𝜂)𝛼𝑛

𝑛

)
𝑛1−𝜂𝔼[𝑌𝑛] +

𝐿𝐶

2
(𝑛 + 1)1−𝜂𝛼2𝑛.

As 𝜃𝑛 ∈ Θ( 1
𝑛𝜃
) we obtain that 𝑐̃𝛼𝑛 is the dominating term. Hence, there exists a constant 𝑐̃1 > 0

and 𝑁 > 𝑁 such that 𝑐̃𝛼𝑛 − 1−𝜂
𝑛
+ 𝑐̃(1−𝜂)𝛼𝑛

𝑛
≥ 𝑐̃1𝛼𝑛 for all 𝑛 ≥ 𝑁. Thus, for all 𝑛 ≥ 𝑁

𝔼[(𝑛 + 1) (1−𝜂)𝑌𝑛+1] ≤ (1 − 𝑐̃1𝛼𝑛)𝑛1−𝜂𝔼[𝑌𝑛] +
𝐿𝐶

2
(𝑛 + 1)1−𝜂𝛼2𝑛.

We apply Lemma 2.16 with 𝑤𝑛 = 𝑛1−𝜂𝔼[𝑌𝑛], 𝑎𝑛 = 𝑐̃1𝛼𝑛 and 𝑏𝑛 = (𝑛 + 1)1−𝜂𝛼2𝑛 and obtain that
𝑛1−𝜂𝔼[𝑌𝑛] → 0 for 𝑛→ ∞ which yields claim (ii). Note that

∑
𝑛 𝑏𝑛 < ∞ as 1 − 𝜂 < 2𝜃 − 1 for

𝜂 ∈ (2 − 2𝜃, 1).
𝛽 ∈ ( 12 , 1]: In this case, equation (2.9) results in the super-martingale inequality

𝔼[𝑌𝑛+1 | F𝑛] ≤
(
1 + 𝐿𝐴𝛼

2
𝑛

2

)
𝑌𝑛 −

(
𝛼𝑛 −

𝐵𝐿𝛼2𝑛
2

)
𝑐2𝑌

2𝛽
𝑛 +

𝐿𝐶𝛼2𝑛
2

,

with 𝑌𝑛 = 𝑓 (𝑋𝑛) − 𝑓 ∗. By the choice of 𝛼𝑛 there exists 𝑐2 > 0 and 𝑁1 > 0 such that 𝑐2𝛼𝑛− 𝐵𝐿𝑐2𝛼2𝑛
2 ≥

𝑐2𝛼𝑛 for all 𝑛 ≥ 𝑁1,

𝔼[𝑌𝑛+1 | F𝑛] ≤
(
1 + 𝐿𝐴𝛼

2
𝑛

2

)
𝑌𝑛 − 𝑐2𝛼𝑛𝑌2𝛽

𝑛 +
𝐿𝐶𝛼2𝑛
2

.

We deduce claim (i) from Lemma 6.1 with 𝑐1 = 𝐿𝐴
2 , 𝑐2 = 𝑐2, 𝑐3 =

𝐿𝐶
2 and 𝛽 ∈ ( 12 , 1].

For claim (𝑖𝑖) we firstly proceed as in the proof of Lemma 6.1. Therefore, one can choose the
auxiliary parameter 1 < 𝑞 ≤ 1

𝜃
and find constants 𝑐4, 𝑐3, 𝑁1 > 0 such that for all 𝑛 ≥ 𝑁1 by

equation (6.6) we have

𝔼[(𝑛 + 1)1−𝜂𝑌𝑛+1 | F𝑛] ≤ 𝑛1−𝜂𝑌𝑛 − 𝑐4
1
𝑛𝑞𝜃

𝑛1−𝜂𝑌𝑛 + 𝑐3(𝑛 + 1)1−𝜂 (𝛼
2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛) .
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Next, we take the expectation to obtain

𝔼[(𝑛 + 1)1−𝜂𝑌𝑛+1] ≤ (1 − 𝑐4
1
𝑛𝑞𝜃
)𝔼[𝑛1−𝜂𝑌𝑛] + 𝑐3(𝑛 + 1)1−𝜂 (𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛)

for all 𝑛 ≥ 𝑁1, implying that 𝑤𝑛 = 𝔼[𝑛1−𝜂𝑌𝑛] → 0 as 𝑛 → ∞ by Lemma 2.16. Note that we

have chosen 𝜃, 𝜂 and 𝑞 as in Lemma 6.1, such that
∑
𝑛

1
𝑛𝑞𝜃

= ∞, ∑𝑛(𝑛 + 1)1−𝜂𝛼
2𝛽𝑞−1
2𝛽−1
𝑛 < ∞, and∑

𝑛(𝑛 + 1)1−𝜂𝛼2𝑛 < ∞ (see equation (6.7), equation (6.8) and equation (6.9)). Therefore, the
assumptions of Lemma 2.16 are met. ■

It is natural to ask which 𝜃 leads to the best convergence rate. First, it is important to notice,
that is not possible for 𝜂 to approach 0 for fixed 𝛽 ∈ ( 12 , 1]. Optimising for 𝜂 yields an optimal
choice 𝜃 =

2𝛽
4𝛽−1 to achieve the best possible rate of convergence. This specific choice yields a

lower bound of the interval given by 2 − 2𝜃 =
𝜃+2𝛽−2
2𝛽−1 = 1 − 1

4𝛽−1 and therefore an almost sure
convergence of the form 𝑜( 1

𝑛𝑝
) where 𝑝 is arbitrarily close to 1

4𝛽−1 (see also table 6.1).
Roughly speaking, our result guarantees a faster convergence rate for "stronger" gradient domi-
nation properties (i.e. for smaller 𝛽). Indeed, as 2 − 2𝜃 > 𝜃+2𝛽−2

2𝛽−1 for 𝛽 sufficiently close to 1
2 our

result is consistent to the one presented in [LY22, Thm. 1] by replacing the 𝜇-strongly convex
assumption with the strong gradient domination property with 𝛽 = 1

2 .
Note that the global gradient domination property using 𝛽 = 1

2 mirrors the strongly convex case
and is also covered in [LY22, Theorem 1] by replacing the 𝜇-strongly convex assumption by the
weaker global gradient domination property with 𝛽 = 1

2 . We emphasize that the rate we obtain
is arbitrarily close to the one obtained in [FBD21; Fat+22] in expectation and is tight according
to [Fat+22, Prop. 2]. With respect to almost sure convergence, we get arbitrarily close to the
rates obtained in [SGD21] in the convex setting.

6.3.2 Convergence Rates for SHB
The following section deals with the stochastic heavy ball (SHB) scheme, where a momentum
term is added to the classical optimization algorithm. Recall the noisy gradient evaluations in
equation (2.7), where we still assume that the stochastic first order oracle is accessed through
the evaluation of 𝜁𝑛+1 which is a copy of 𝜁 independent from the current state 𝑋𝑛.
The iterative scheme of stochastic heavy ball (SHB) is defined by

𝑋𝑛+1 = 𝑋𝑛 − 𝛼𝑛𝑉𝑛+1(𝑋𝑛) + 𝜈(𝑋𝑛 − 𝑋𝑛−1) , (SHB)

with initial ℝ𝑑-valued random vector 𝑋0. The additional summand is called the momentum
term with momentum parameter 𝜈 ∈ [0, 1). Similar arguments as for SGD can be used to derive
almost sure convergence rates for SHB under global gradient domination:

Theorem 6.3. Suppose Assumption 2.1 and Assumption 2.12 are fulfilled and let 𝑓 satisfy the
global gradient domination property from Definition 2.7 with 𝛽 ∈ [ 12 , 1]. Denote by (𝑋𝑛)𝑛∈ℕ the
sequence generated by equation (SHB) using a step size 𝛼𝑛 = Θ( 1

𝑛𝜃
) for 𝜃 ∈ ( 12 , 1). For any

𝜂 ∈
{(

max{2 − 2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1
)

: 𝛽 ∈ ( 12 , 1]
(2 − 2𝜃, 1) : 𝛽 = 1

2

it holds that
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(i) 𝑓 (𝑋𝑛) − 𝑓 ∗ ∈ 𝑜
(

1
𝑛1−𝜂

)
, almost surely, and

(ii) 𝔼[ 𝑓 (𝑋𝑛) − 𝑓 ∗] ∈ 𝑜
(

1
𝑛1−𝜂

)
.

To proof this result, we rewrite the iteration scheme in equation (SHB) by using the definitions

𝑍𝑛 := 𝑋𝑛 +
𝜈

1 − 𝜈𝑊𝑛, and 𝑊𝑛 := 𝑋𝑛 − 𝑋𝑛−1. (6.10)

We derive the following iterative evolution from SHB

𝑊𝑛+1 = 𝜈𝑊𝑛 − 𝛼𝑛𝑉 (𝑋𝑛) (6.11)

𝑍𝑛+1 = 𝑍𝑛 −
𝛼𝑛

1 − 𝜈𝑉 (𝑋𝑛). (6.12)

We will utilize these auxiliary variables in the proof.

Proof. The proof begins as in the proof of [LY22, Thm. 2]. Using only 𝐿-smoothness and
assumption (ABC), they show that for any 𝑐3 ∈ (0, 1

1−𝜈 ), 𝜆 ∈ (𝜈, 1) there exist constants
𝑐1, 𝑐2, 𝑐4 > 0 such that choosing step size 𝛼𝑛 ∼ 1

𝑛𝜃
, for some 𝜃 ∈ ( 12 , 1) results in [LY22, eq. (21)]

𝔼[ 𝑓 (𝑍𝑛+1) − 𝑓 ∗ + ∥𝑊𝑛+1∥2 | F𝑛]
≤ (1 + 𝑐1𝛼2𝑛) ( 𝑓 (𝑍𝑛) − 𝑓 ∗) + (𝜆 + 𝑐2𝛼2𝑛)∥𝑊𝑛∥2 − 𝑐3𝛼𝑛∥∇ 𝑓 (𝑍𝑛)∥2 + 𝑐4𝛼2𝑛

(6.13)

for all 𝑛 ≥ 𝑁 and some 𝑁 > 0 sufficiently large. Next, we apply the global gradient domination
property for any 𝛽 ∈ [ 12 , 1] to derive

𝔼[ 𝑓 (𝑍𝑛+1) − 𝑓 ∗ + ∥𝑊𝑛+1∥2 | F𝑛]
≤ (1 + 𝑐1𝛼2𝑛) ( 𝑓 (𝑍𝑛) − 𝑓 ∗) − 𝑐𝑐3𝛼𝑛( 𝑓 (𝑍𝑛) − 𝑓 ∗)2𝛽 + (𝜆 + 𝑐2𝛼2𝑛)∥𝑊𝑛∥2 + 𝑐4𝛼2𝑛.

(6.14)

For the remaining proof, we denote 𝑄𝑛 := 𝑓 (𝑍𝑛) − 𝑓 ∗. Similar as before, we treat both cases for
𝛽 = 1

2 and 𝛽 ∈ ( 12 , 1] separately:
𝛽 = 1

2 : Instead of 𝜇-strong convexity we use the gradient domination inequality ∥∇ 𝑓 (𝑥)∥2 ≥
𝑐( 𝑓 ∗ − 𝑓 (𝑥)), as the same inequality is implied by strong convexity using 𝑐 = 𝜇. Then, Claim (i)
follows using the same proof as [LY22, Thm. 2b)]. Note that the inequality

1
2𝐿
∥∇ 𝑓 (𝑥)∥2 ≤ 𝑓 (𝑥) − 𝑓 ∗, (6.15)

used in the last step only requires the 𝐿-smoothness assumption [Nes13, Sec. 1.2.3].
For Claim (ii) we consider equation (6.14) which simplifies for 𝛽 = 1

2 to

𝔼[𝑄𝑛+1 + ∥𝑊𝑛+1∥2 | F𝑛] ≤ (1 + 𝑐1𝛼2𝑛 − 𝑐𝑐3𝛼𝑛)𝑄𝑛 + (𝜆 + 𝑐2𝛼2𝑛)∥𝑊𝑛∥2 + 𝑐4𝛼2𝑛.

By the choice of 𝛼𝑛 there exists 𝑁 > 0 and 𝑐̃1, 𝑐̃2 > 0, such that 𝑐𝑐3𝛼𝑛 − 𝑐1𝛼2𝑛 ≥ 𝑐̃1𝛼𝑛 and
𝜆 + 𝑐2𝛼2𝑛 ≤ 𝑐̃2𝛼𝑛 for all 𝑛 ≥ 𝑁. Hence, for 𝑛 ≥ 𝑁

𝔼[𝑄𝑛+1 + ∥𝑊𝑛+1∥2 | F𝑛] ≤ (1 − 𝑐̃1𝛼𝑛)𝑄𝑛 + (1 − 𝑐̃2𝛼𝑛)∥𝑊𝑛∥2 + 𝑐4𝛼2𝑛
≤ (1 −min{𝑐̃1, 𝑐̃2})

(
𝑄𝑛 + ∥𝑊𝑛∥2

)
+ 𝑐4𝛼2𝑛.
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Let 𝑐5 = min{𝑐̃1, 𝑐̃2}, multiply by (𝑛 + 1)1−𝜂 on both sides and use equation (6.1) to obtain for
𝑛 ≥ 𝑁

𝔼[(𝑛 + 1)1−𝜂
(
𝑄𝑛+1 + ∥𝑊𝑛+1∥2

)
| F𝑛]

≤ (𝑛 + 1)1−𝜂 (1 − 𝑐5𝛼𝑛)
(
𝑄𝑛 + ∥𝑊𝑛∥2

)
+ 𝑐4𝛼2𝑛(𝑛 + 1)1−𝜂

≤ (𝑛1−𝜂 + (1 − 𝜂)𝑛−𝜂) (1 − 𝑐5)
(
𝑄𝑛 + ∥𝑊𝑛∥2

)
+ 𝑐4𝛼2𝑛(𝑛 + 1)1−𝜂

=

(
1 − 𝑐5𝛼𝑛 +

1 − 𝜂
𝑛
− 𝑐5(1 − 𝜂)𝛼𝑛

𝑛

)
𝑛1−𝜂

(
𝑄𝑛 + ∥𝑊𝑛∥2

)
+ 𝑐4𝛼2𝑛(𝑛 + 1)1−𝜂.

Taking expectation and using that there exists 𝑐̃5 > 0 and 𝑁 > 𝑁 such that 𝑐5𝛼𝑛− 1−𝜂
𝑛
+ 𝑐5 (1−𝜂)𝛼𝑛

𝑛
≥

𝑐̃5𝛼𝑛, we have for all 𝑛 ≥ 𝑁

𝔼[(𝑛 + 1)1−𝜂
(
𝑄𝑛+1 + ∥𝑊𝑛+1∥2

)
]

≤ (1 − 𝑐̃5𝛼𝑛)𝔼
[
𝑛1−𝜂

(
𝑄𝑛 + ∥𝑊𝑛∥2

)]
+ 𝑐4𝛼2𝑛(𝑛 + 1)1−𝜂.

Note that
∑
𝑛 𝛼

2
𝑛(𝑛 + 1)1−𝜂 < ∞ because 𝜂 ∈ (2 − 2𝜃, 1) implies 1 − 𝜂 < 2𝜃 − 1. We can apply

Lemma 2.16 which yields that 𝔼
[
𝑛1−𝜂

(
𝑄𝑛 + ∥𝑊𝑛∥2

) ]
→ 0. Hence, 𝔼[

(
𝑄𝑛 + ∥𝑊𝑛∥2

)
] ∈ 𝑜( 1

𝑛1−𝜂
).

To finish the proof, one can derive

𝑓 (𝑋𝑛) − 𝑓 ∗ ≤ 𝑄𝑛 +
1
2
∥∇ 𝑓 (𝑋𝑛)∥2 +

𝜈2 + 𝐿𝜈2
1(1 − 𝜈)2 ∥𝑊𝑛∥2 (6.16)

see [LY22, eq. (19)] for more details. Using inequality (6.15), we get almost surely(
1 − 1

4𝐿

)
𝑓 (𝑋𝑛) − 𝑓 ∗ ≤ 𝑄𝑛 +

𝜈2 + 𝐿𝜈2
1(1 − 𝜈)2 ∥𝑊𝑛∥2. (6.17)

implying that 𝔼[( 𝑓 (𝑋𝑛) − 𝑓 ∗)] ∈ 𝑜( 1
𝑛1−𝜂
) which proves Claim (ii).

𝛽 ∈ ( 12 , 1]: For Claim (i), note that in equation (6.14) 𝜆 < 1, such that

𝔼[𝑄𝑛+1 + ∥𝑊𝑛+1∥2 | F𝑛]
≤ (1 + 𝑐1𝛼2𝑛)𝑄𝑛 + (1 + 𝑐2𝛼2𝑛)∥𝑊𝑛∥2 + 𝑐𝑐3𝛼𝑛𝑄2𝛽

𝑛 + 𝑐4𝛼2𝑛
≤ (1 +max{𝑐1, 𝑐2}𝛼2𝑛) (𝑄𝑛 + ∥𝑊𝑛∥2) + 𝑐𝑐3𝛼𝑛(𝑄𝑛 + ∥𝑊𝑛∥2)2𝛽 + 𝑐4𝛼2𝑛.

By Lemma 6.1 we obtain that 𝑄𝑛 + ∥𝑊𝑛∥2 = 𝑓 (𝑍𝑛) − 𝑓 ∗ + ∥𝑊𝑛∥2 ∈ 𝑜
(

1
𝑛1−𝜂

)
for all 𝜂 ∈(

max{2 − 2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1
)
. We apply the inequality in equation (6.17) to conclude that also

𝑓 (𝑋𝑛) − 𝑓 ∗ ∈ 𝑜
(

1
𝑛1−𝜂

)
for all 𝜂 ∈

(
max{2 − 2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1

)
. This proves Claim (i).

For Claim (ii), we again use the 𝑞-trick from Lemma 6.1 in equation (6.14). For 1 < 𝑞 < 1
𝜃
< 2

we have that

𝔼[𝑄𝑛+1 + ∥𝑊𝑛+1∥2 | F𝑛]

≤ (1 + 𝑐1𝛼2𝑛 − 𝑐𝑐3𝛼
𝑞
𝑛)𝑄𝑛 + 𝑐𝑐3𝛼𝑛

(
𝛼
𝑞−1
𝑛 𝑄𝑛 − 𝑄2𝛽

𝑛

)
+ (𝜆 + 𝑐2𝛼2𝑛)∥𝑊𝑛∥2 + 𝑐4𝛼2𝑛.
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Now with equation (6.4) in Lemma 6.1 there exists 𝑐̃3 ≥ 0 such that

𝔼[𝑄𝑛+1 + ∥𝑊𝑛+1∥2 | F𝑛] ≤ (1 + 𝑐1𝛼2𝑛 − 𝑐𝑐3𝛼
𝑞
𝑛)𝑄𝑛 + 𝑐̃3𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + (𝜆 + 𝑐2𝛼2𝑛)∥𝑊𝑛∥2 + 𝑐4𝛼2𝑛.

By the choice of 𝛼𝑛 there exists 𝑐̃1 > 0 and 𝑁 > 0 such that 𝑐1𝛼2𝑛−𝑐𝑐3𝛼
𝑞
𝑛 ≥ 𝑐̃1𝛼𝑞𝑛 and 𝜆+𝑐2𝛼2𝑛 ≤ 𝑐̃1𝛼

𝑞
𝑛

for all 𝑛 ≥ 𝑁. Thus, for all 𝑛 ≥ 𝑁,

𝔼[𝑄𝑛+1 + ∥𝑊𝑛+1∥2 | F𝑛] ≤ (1 − 𝑐̃1𝛼𝑞𝑛) (𝑄𝑛 + ∥𝑊𝑛∥2) +max{𝑐̃3, 𝑐4}
(
𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛

)
.

For max{𝑐̃3, 𝑐4} =: 𝑐̃2, we multiply on both sides with (𝑛 + 1)1−𝜂 and take the expectation to
obtain for 𝑛 ≥ 𝑁

𝔼[(𝑛 + 1)1−𝜂
(
𝑄𝑛+1 + ∥𝑊𝑛+1∥2

)
]

≤ (𝑛 + 1)1−𝜂 (1 − 𝑐̃1𝛼𝑞𝑛)𝔼[(𝑄𝑛 + ∥𝑊𝑛∥2)] + 𝑐̃2(𝑛 + 1)1−𝜂
(
𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛

)
≤ (𝑛1−𝜂 + (1 − 𝜂)𝑛−𝜂) (1 − 𝑐̃1𝛼𝑞𝑛)𝔼[(𝑄𝑛 + ∥𝑊𝑛∥2)] + 𝑐̃2(𝑛 + 1)1−𝜂

(
𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛

)
=

(
1 − 𝑐̃1𝛼𝑞𝑛 +

1 − 𝜂
𝑛
− 𝑐̃1(1 − 𝜂)𝛼𝑞𝑛

𝑛

)
𝔼[𝑛1−𝜂 (𝑄𝑛 + ∥𝑊𝑛∥2)]

+ 𝑐̃2(𝑛 + 1)1−𝜂
(
𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛

)
.

Next, there exists 𝑁 > 𝑁 and 𝑐̃5 > 0 such that for all 𝑛 ≥ 𝑁

𝔼[(𝑛 + 1)1−𝜂
(
𝑄𝑛+1 + ∥𝑊𝑛+1∥2

)
]

≤
(
1 − 𝑐̃5𝛼𝑞𝑛

)
𝔼[𝑛1−𝜂 (𝑄𝑛 + ∥𝑊𝑛∥2)] + 𝑐̃2(𝑛 + 1)1−𝜂

(
𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛

)
.

From the proof of Lemma 6.1, we choose the auxiliary parameter 𝑞 such that
∑
𝑛(𝑛+1)1−𝜂

(
𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛

)
<

∞ (see equation (6.8) and equation (6.9)). By applying again Lemma 2.16we obtain𝔼[𝑛1−𝜂 (𝑄𝑛+
∥𝑊𝑛∥2)] → 0, i.e. 𝔼[𝑄𝑛 + ∥𝑊𝑛∥2] ∈ 𝑜( 1

𝑛1−𝜂
). Finally, Claim (ii) follows again by equation

(6.17). ■

To the best of our knowledge, our result gives the first convergence proof of SHB to global optima
under weak gradient domination, with rates for almost sure convergence and convergence of
expectations. The resulting convergence rate using the optimized step size are summarized
in Table 6.1. In the strong gradient domination setting our rate in expectation gets arbitrarily
close to the 𝑂( 1

𝑛
) convergence obtained in Liang, Liu, and Xu [LLX23]. It is noteworthy that the

utilization of SHB in our analysis does not yield a superior convergence rate compared to SGD.
This arises from the proof technique and aligns with the findings in Liu and Yuan [LY22] and
Sebbouh, Gower, and Defazio [SGD21] where the authors similarly achieve no acceleration. In
general, for deterministic settings acceleration of gradient methods can achieve improvements
of convergence rates [WMW19]. Although in the special case of gradient domination with
𝛽 = 1

2 , Yue, Fang, and Lin [YFL23] showed that HB as well as Nesterov cannot accelerate in the
deterministic setting.
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6.4 Numerical experiment - Toy example

We have implemented the same toy example similar to Fatkhullin et al. [Fat+22] to test our
theoretical findings. In our implementation, we consider both SGD and SHB applied to the
objective function 𝑓𝑝(𝑥) = |𝑥 |𝑝, where 𝑥 ∈ ℝ, for various choices of 𝑝 ≥ 2. It is straightforward
to verify that 𝑓𝑝 satisfies the global gradient domination with parameter 𝛽(𝑝) = 𝑝−1

𝑝
. It is

noteworthy that for 𝑝 = 2, the 𝑓𝑝 obviously satisfies the PL condition with 𝛽 = 1
2 , whereas for

increasing 𝑝→∞, we move towards 𝛽(𝑝) → 1. We have used the step size schedule Θ(𝑛−
2𝛽 (𝑝)

4𝛽 (𝑝)−1 )
discussed in Table 6.1 and observed the almost sure convergence rates 𝑛−

1
4𝛽 (𝑝)−1 as suggested by

Theorem 6.2 and Theorem 6.3. Note that our derived rates are arbitrarily close to the sharp
upper bound known in expectation [Fat+22].

Figure 6.1: Pathwise error ( 𝑓𝑝(𝑋𝑛))𝑛=1,...,𝑁 of SGD and SHB for various choices of 𝛽. For each
setting we have simulated 100 runs of length , 𝑁 = 105. The black dash-dotted line corresponds
to the theoretical rate 𝑛−

1
4𝛽−1 .
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Details of the implementation: Both algorithms have been implemented by hand using
MATLAB. We have initialized both SGD and SHB with the initial state 𝑋1 ∼ 1

2U( [1.5, 2.5]) +
1
2U( [−2.5, 1.5]) to force initials which are not close to the actual minimum 𝑥∗ = 0. The initial
step sizes 𝛼1(𝛽) for both algorithms are chosen as

𝛼1(0.5) = 0.2, 𝛼1(0.67) = 0.13, 𝛼1(0.83) = 0.004, 𝛼1(0.92) = 10−6

through which we counteract the decreasing smoothness for 𝛽 → 1. The momentum parameter
for SHB is fixed for all 𝛽 as 𝜈 = 0.5. The exact gradients ∇ 𝑓𝑝 are perturbed by independent
additive noise following a standard normal distribution N(0, 1).

6.5 Almost Sure Convergence under Local Gradient Domination

6.5.1 Local Smoothness and Local Gradient Domination
From now on we will relax the assumption of smoothness and gradient domination to hold only
locally.

Assumption 6.4. The objective function 𝑓 : ℝ𝑑 → ℝ is differentiable and the gradient ∇ 𝑓 is
locally 𝐿-Lipschitz continuous, i.e. for all 𝑅 > 0 there exists 𝐿(𝑅) > 0 such that ∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥ ≤
𝐿(𝑅)∥𝑥 − 𝑦∥ for all 𝑥, 𝑦 ∈ ℝ𝑑 with |𝑥 |, |𝑦 | ≤ 𝑅.

We collect the following types of local gradient domination properties.

Definition 6.5. Let 𝑓 : ℝ𝑑 → ℝ be continuously differentiable with 𝑓 ∗ = inf𝑥∈ℝ𝑑 𝑓 (𝑥) > −∞.

(i) Let 𝑥∗ ∈ ℝ𝑑 be a stationary point, i.e. ∇ 𝑓 (𝑥∗) = 0. We say that 𝑓 satisfies a local gradient
domination property in 𝑥∗ with parameter 𝛽𝑥∗ ∈ [ 12 , 1] if there exist a radius 𝑟𝑥∗ > 0 and a
constant 𝑐𝑥∗ > 0 such that

∥∇ 𝑓 (𝑥)∥ ≥ 𝑐𝑥∗ | 𝑓 (𝑥) − 𝑓 (𝑥∗) |𝛽𝑥∗

for all 𝑥 ∈ B𝑟𝑥∗ (𝑥∗) = {𝑦 ∈ ℝ𝑑 : ∥𝑥∗ − 𝑦∥ ≤ 𝑟𝑥∗}.

(ii) We say that 𝑓 satisfies a local gradient domination property in 𝑓 ∗ with parameter 𝛽 ∈ [ 12 , 1]
if there exist a radius 𝑟 > 0 and a constant 𝑐 > 0 such that

∥∇ 𝑓 (𝑥)∥ ≥ 𝑐( 𝑓 (𝑥) − 𝑓 ∗)𝛽

for all 𝑥 ∈ B∗𝑟 = {𝑦 ∈ ℝ𝑑 : 𝑓 (𝑦) − 𝑓 ∗ ≤ 𝑟}.

Remark 6.6. Moreover, note that for the local gradient domination property in 𝑥∗ the parameters
𝑟 and 𝑐 may depend on 𝑥∗. Furthermore, we emphasize that for the definition of the local
gradient domination in 𝑓 ∗ we do not require the existence of 𝑥∗ ∈ argmin𝑥∈ℝ𝑑 𝑓 (𝑥).
In fact, there are many works analyzing (stochastic) first order methods under the weaker
Łojasiewicz condition [Loj65] formulated in (local) areas around stationary points 𝑥∗ and ex-
ponents 𝛽 ∈ [1/2, 1] [Lee+16]; [Fat+22]; [SMS22]; [WMW19]. Lojasiewicz [Loj65] has
demonstrated that all analytic functions satisfy the local gradient domination property, empha-
sizing the particular significance of the local case. Further, Liu, Zhu, and Belkin [LZB22] proved
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that all overparametrized neural networks fulfill the local gradient domination property. See
also Madden, Dall’Anese, and Becker [MDB21], Dereich and Kassing [DK21], and Frei and Gu
[FG21] and references therein for the application of (strong) gradient domination to (deep)
neural networks.
Notably, we have seen in previous chapters that the tabular softmax parametrization in RL leads
to a parametrized value function that satisfies the so-called "non-uniform" gradient domination
property. In Section 6.7, we will show how this non-uniform gradient domination implies local
gradient domination for 𝑓 ∗. This renders the local analysis of stochastic gradient methods specif-
ically applicable in RL. As mentioned earlier, since every analytic function already satisfies local
gradient domination, we expect that the local analysis can encompass further parametrizations
for the policies, such as neural networks.
Recently, there has been a lot of effort to derive local convergence guarantees for stochastic first
order methods (see Section 6.1). Especially, Mertikopoulos et al. [Mer+20] showed that, subject
to certain assumptions on the objective function 𝑓 , the SGD scheme converges almost surely
towards a local minimum. By assuming strong convexity within a neighbourhood U of a local
minimum 𝑥∗, they further established a local convergence rate for ∥𝑋𝑛 − 𝑥∗∥2 conditioning on
the event of remaining in this neighbourhood. Additionally, they proved that the SGD scheme
remains within U with high probability once it achieved sufficient closeness. In this section,
we want to generalize this analysis under the weaker local gradient domination property for
different cases of 𝛽. In this section, we extend the analysis in [Mer+20] under local strong
convexity to the weaker local gradient domination property for different cases of 𝛽.
The contributions and differences of our results under less restricted assumptions are the
following:

• We show that SGD still remains in the gradient dominated region with high probability by
only assuming local gradient domination instead of local strong convexity. Especially in
the case of a local minimum 𝑥∗ this is a challenging task, as we have to ensure that the
SGD scheme (𝑋𝑛) remains close to 𝑥∗ without exploiting convexity. We can guarantee this
whenever 𝑥∗ is a local minimum in a connected compact set of local minima and obtain
Theorem 6.7.

• Additionally to convergence in expectation, we prove almost sure convergence conditioned
on the "good event".

• Due to the weaker gradient domination assumption, one cannot expect the convergence of
𝑋𝑛 to 𝑥∗, instead we focus on convergence of 𝑓 (𝑋𝑛) to 𝑓 (𝑥∗). Liu and Zhou [LZ23] delve
into the rationale behind considering this as a more robust metric.

We consider the two cases of local gradient domination separately.

6.5.2 Local gradient domination in stationary points
Theorem 6.7. Fix some tolerance level 𝛿 > 0 and let X∗ ⊂ ℝ𝑑 be an isolated compact connected
set of local minima with level 𝑙 = 𝑓 (𝑥∗) for all 𝑥∗ ∈ X∗. Suppose that 𝑓 satisfy the local gradient
domination property in each 𝑥∗ ∈ X∗, 𝑓 is locally𝐺-Lipschitz continuous and satisfies Assumption 6.4.
Moreover, suppose Assumption 2.12 hold true. Denote by (𝑋𝑛)𝑛∈ℕ the sequence generated by equation
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(SGD) using a step size 𝛼𝑛 = Θ( 1
𝑛𝜃
) for 𝜃 ∈ ( 12 , 1) and suppose that 𝛼𝑛 ≤ 𝛼1 for 𝛼1 small enough

(dependent on 𝛿). Then, the following holds:

(𝑖) There exist subsets U and U1 of ℝ𝑑 such that, if 𝑋1 ∈ U1 the event ΩU = {𝑋𝑛 ∈ U for all 𝑛 =

1, 2, . . . } has probability at least 1 − 𝛿.

Moreover, there exists 𝛽 ∈ [ 12 , 1] such that for any

𝜂 ∈
{(

max{2 − 2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1
)

: 𝛽 ∈ ( 12 , 1]
(2 − 2𝜃, 1) : 𝛽 = 1

2

it holds that

(𝑖𝑖) | 𝑓 (𝑋𝑛) − 𝑙 |1ΩU
∈ 𝑜

(
1

𝑛1−𝜂

)
, a.s., and (𝑖𝑖𝑖) 𝔼[| 𝑓 (𝑋𝑛) − 𝑙 |1ΩU

] ∈ 𝑜
(

1
𝑛1−𝜂

)
.

To prove the theorem a few preliminary results are necessary. Therefore, suppose that the
assumptions of Theorem 6.7 hold throughout this section.
In contrast to the global gradient domination analysis we may assume w.l.o.g. the uniform second
moment bounds, i.e. 𝐴 = 𝐵 = 0, instead of the more general (ABC) condition. Choosing 𝐴, 𝐵 > 0
would imply the bounded variance assumption of the gradient estimator. Note therefore, that
the first term 𝐴( 𝑓 (𝑥) − 𝑓 (𝑥∗)) and the second term 𝐵∥∇ 𝑓 (𝑥)∥2 are both locally bounded by the
local Lipschitz assumptions on 𝑓 and ∇ 𝑓 .
Note that every isolated local minimum {𝑥∗} is a special case of an isolated compact connected
set of local minima. In this case it holds that 𝛽 = 𝛽𝑥∗ . If X∗ contains more then one point, we
can unify the gradient domination property in a neighbourhood of X∗ due to compactness. The
set X∗ has to be connected to assure that all local minima are on the same level 𝑙.
The outline of the proof is structured as follows:

• First, we unify the gradient domination property around the set of local minima X∗ and
obtain a radius 𝑟 such that the unified gradient domination property is fulfilled in all open
balls with radius 𝑟 around 𝑥∗ ∈ X∗ (Lemma 6.8).

• Based on this we construct sets U, U1 ⊂ ℝ𝑑 and the events Ω𝑛 ∈ Ω (see equation (6.18),
equation (6.19) and equation (6.20)), such that ΩU =

⋂
𝑛 Ω𝑛 occurs with high probability.

To be precise, U1 and U are neighborhoods of X∗ constructed such that the gradient
domination property holds within this region, and when starting in U1 the gradient
trajectory does remain in U for all gradient steps with high probability. Then, Ω𝑛 describes
the event that 𝑋𝑘 ∈ U for all 𝑘 ≤ 𝑛.

• All following Lemmata before the proof of Theorem 6.7 are devoted to show that ℙ(Ω𝑛) ≥
1 − 𝛿 for all 𝑛 ∈ ℕ. This then proves Claim (i) of the Theorem. Claim (ii) and (iii) will be
shown directly in the proof of Theorem 6.7 at the end of this subsection.

• In order to show ℙ(Ω𝑛) ≥ 1 − 𝛿 we construct set 𝐶𝑛 and 𝐸𝑛 defined in equation (6.21)
and equation (6.26) such that 𝐸𝑛 ∩ 𝐶𝑛 ⊂ Ω𝑛+1 (Lemma 6.13) while Lemma 6.12 is used
to prove this claim.
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• The sets 𝐸𝑛 are such that 𝑓 (𝑋𝑛) remains close to 𝑓 ∗. We exploit the unified gradient domi-
nation property to construct the sets 𝐸𝑛 (Lemma 6.11) and derive a recursive inequality in
Lemma 6.13 c) to prove that this event occurs with high probability (Lemma 6.14).

• The sets 𝐶𝑛 are such that 𝑋𝑛+1 remains close to 𝑋𝑛 and we exploit the finite variance
assumption to show that these events occur with high probability (Lemma 6.15).

We denote by
B̃𝑟 (𝑥) = {𝑦 ∈ ℝ𝑑 : | |𝑥 − 𝑦 | | < 𝑟}

the open ball with radius 𝑟 > 0 around 𝑥 ∈ ℝ𝑑 and by

B𝑟 (𝑥) = {𝑦 ∈ ℝ𝑑 : | |𝑥 − 𝑦 | | ≤ 𝑟}

the closed ball with radius 𝑟 > 0 around 𝑥 ∈ ℝ𝑑 .
In the following Lemma we unify the gradient domination property around the set of local
minima X∗ ⊂ ℝ𝑑 .

Lemma 6.8. . There exists 𝑟 > 0, 𝛽 ∈ [ 12 , 1] and 𝑐 > 0, such that for all 𝑥 ∈ ⋃
𝑥∗∈X∗ B̃𝑟 (𝑥∗) it holds

that
𝑓 (𝑥) > 𝑙 for 𝑥 ∉ X∗ and | |∇ 𝑓 (𝑥) | | ≥ 𝑐( 𝑓 (𝑥) − 𝑙)𝛽 .

Proof. By the local gradient domination property, for every 𝑥∗ ∈ X∗ there exist 𝑟𝑥∗ > 0, 𝛽𝑥∗ ∈
[ 12 , 1] and 𝑐𝑥∗ > 0 such that

| |∇ 𝑓 (𝑥) | | ≥ 𝑐𝑥∗ | 𝑓 (𝑥) − 𝑙 |𝛽𝑥∗ , ∀𝑥 ∈ B𝑟𝑥∗ (𝑥
∗).

Moreover, w.l.o.g we can assume that 𝑓 (𝑥) > 𝑙 for all 𝑥 ∈ B𝑟𝑥∗ (𝑥∗) \ X∗, as X∗ is an isolated
compact connected set of local minima (otherwise choose 𝑟𝑥∗ small enough).
By the compactness of X∗ we can find a finite subset Y∗ ⊂ X∗, such that

Ũ :=
⋃
𝑦∗∈Y∗

B̃𝑟𝑦∗ (𝑦
∗) ⊃ X∗.

Then, we define 𝛽 = max𝑦∗∈Y∗ 𝛽𝑦∗ and 𝑐 = min𝑦∗∈Y∗ 𝑐𝑦∗ . For any 𝑥 ∈ Ũ there exits 𝑦∗ ∈ Y∗ such
that

| |∇ 𝑓 (𝑥) | | ≥ 𝑐𝑦∗ ( 𝑓 (𝑥) − 𝑙)𝛽𝑦∗ ≥ 𝑐( 𝑓 (𝑥) − 𝑙)𝛽 .

Thus, there exists an open neighbourhood Ũ of X∗ and 𝛽 ∈ [ 12 , 1], 𝑐 > 0, such that for all 𝑥 ∈ Ũ
it holds that

𝑓 (𝑥) > 𝑙 for 𝑥 ∉ X∗ and | |∇ 𝑓 (𝑥) | | ≥ 𝑐( 𝑓 (𝑥) − 𝑙)𝛽 .

As Ũ is open by definition and X∗ ⊂ Ũ, we can find a radius 𝑟 > 0, such that
⋃

𝑥∗∈X∗ B̃𝑟 (𝑥∗) ⊂ Ũ.

This proves the claim. ■

Remark 6.9. It is noteworthy that the unified gradient domination property obtained in the
previous Lemma does not require an absolute value, as 𝑓 (𝑥) ≥ 𝑙 for all 𝑥 ∈ ⋃

𝑥∗∈X∗ B̃𝑟 (𝑥∗). This
is crucial to obtain the recursive inequalities in Lemma 6.11 and we will exploit this also in the
proof of Theorem 6.7 to obtain the convergence rates.
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In the following let r > 0, 𝑐 > 0 and 𝛽 ∈ [ 12 , 1] chosen as in the previous Lemma, such that the
unified gradient domination property holds for all 𝑥 ∈ ⋃

𝑥∗∈X∗ B̃r(𝑥∗). Further define

𝑠 = inf

{
𝑓 (𝑥) − 𝑙 : 𝑥 ∈

⋃
𝑥∗∈X∗

B 3r
4
(𝑥∗) \

⋃
𝑥∗∈X∗

B̃ r
2
(𝑥∗)

}
.

Lemma 6.10. It holds that 𝑠 > 0.
Proof. If 𝑠 = 0, then there exists a sequence (𝑥𝑛) ∈

⋃
𝑥∗∈X∗ B 3r

4
(𝑥∗) \ ⋃

𝑥∗∈X∗ B̃ r
2
(𝑥∗) with

𝑓 (𝑥𝑛) → 𝑙 for 𝑛 → ∞. By definition of the set and compactness (boundedness) of X∗, the
sequence 𝑥𝑛 is bounded:

| |𝑥𝑛 | | ≤
3r
4
+ sup
𝑥∗∈X∗

| |𝑥∗ | | < ∞.

Hence, there is a convergent sub-sequence (𝑥𝑛𝑘) with 𝑥𝑛𝑘 → 𝑥 for 𝑘→∞ and by continuity of 𝑓
it holds that 𝑓 (𝑥) = 𝑙. Further, it holds for all 𝑥∗ ∈ X∗ that | |𝑥𝑛 − 𝑥∗ | | ≥ r

2 for all 𝑛 ∈ ℕ such that
inf𝑥∗∈X∗ | |𝑥 − 𝑥∗ | | ≥ r

2 .

On the other hand, by construction we have that 𝑥 ∈ ⋃
𝑥∗∈X∗ B 3r

4
(𝑥∗) \⋃𝑥∗∈X∗ B̃

r
2 (𝑥∗) ⊂⋃

𝑥∗∈X∗ B 3r
4
(𝑥∗) ⊂ ⋃

𝑥∗∈X∗ B̃r(𝑥∗). And as 𝑓 (𝑦) > 𝑙 for all 𝑦 ∈ B̃r(𝑥∗) \ X∗ we deduce from
𝑓 (𝑥) = 𝑙 that 𝑥 ∈ X∗. This is a contradiction to inf𝑥∗∈X∗ | |𝑥 − 𝑥∗ | | ≥ r

2 . ■

We choose 𝜖 > 0, such that 2𝜖 +
√
𝜖 < 𝑠. We define the sets

U1 = {𝑥 ∈ ℝ𝑑 : inf
𝑥∗∈X∗

| |𝑥 − 𝑥∗ | | < r
2
, 𝑓 (𝑥) − 𝑙 ≤ 𝜖

2
} (6.18)

U = {𝑥 ∈ ℝ𝑑 : inf
𝑥∗∈X∗

| |𝑥 − 𝑥∗ | | < r
2
} (6.19)

which are subsets of ℝ𝑑 and the decreasing sequence of events

Ω𝑛 = {𝑋𝑘 ∈ U for all 𝑘 ≤ 𝑛} (6.20)

𝐶𝑛 = {| |𝑋𝑘+1 − 𝑋𝑘 | | ≤
r
4
for all 𝑘 ≤ 𝑛}, (6.21)

and 𝐶0 = Ω, which are measurable sets in (Ω,F,ℙ).
In order to prove Theorem 6.7 we will show that Ω𝑛 has probability at least 1 − 𝛿 for all 𝑛 ∈ ℕ.
To do this, we construct another sequence of events ( 𝐸̂𝑛) with 𝐸̂𝑛 ⊂ Ω𝑛 which occurs with
probability at least 1 − 𝛿 for any 𝑛 ∈ ℕ.
Therefore, we fix the notation 𝐷𝑛 := 𝑓 (𝑋𝑛) − 𝑙 and recall that 1𝒜 denoted the indicator function
for a measurable set 𝒜 in (Ω,F,ℙ), i.e. 1𝒜(𝜔) = 1 if 𝜔 ∈ 𝒜 and 1𝒜(𝜔) = 0 if 𝜔 ∉ 𝒜. We prove
the following (recursive) inequalities.

Lemma 6.11. If 𝛽 = 1
2 , then it holds that

𝐷𝑛+11Ω𝑛
≤ (1 − 𝛼𝑛𝑐2)𝐷𝑛1Ω𝑛

+ 𝛼𝑛𝜉𝑛+11Ω𝑛
+ 𝐿𝛼

2
𝑛

2
1Ω𝑛
∥𝑉𝑛+1(𝑋𝑛)∥2,

≤ 𝐷1

𝑛∏
𝑘=1
(1 − 𝛼𝑘𝑐2)1Ω𝑛

+
𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼 𝑗𝑐2)ª®¬𝛼𝑘𝜉𝑘+11Ω𝑛

+ 𝐿
2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘)∥
21Ω𝑛

.

(6.22)
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If 𝛽 ∈ ( 12 , 1], for any 1 ≤ 𝑞 < 2, it holds that

𝐷𝑛+11Ω𝑛
≤ (1 − 𝛼𝑞𝑛𝑐2)𝐷𝑛1Ω𝑛

+ (2𝛽)−
1

2𝛽−1 (1 − 1
2𝛽
)𝑐2𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼𝑛𝜉𝑛+11Ω𝑛

+ 𝐿𝛼
2
𝑛

2
∥𝑉𝑛+1(𝑋𝑛)∥21Ω𝑛

≤ 𝐷̃1

𝑛∏
𝑘=1
(1 − 𝛼𝑞

𝑘
𝑐2) + 𝑐̃

𝑛∑︁
𝑘=1

𝛼
2𝛽𝑞−1
2𝛽−1
𝑘
+

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑗
𝑐2)ª®¬𝛼𝑘𝜉𝑘+11Ω𝑛

+ 𝐿
2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘)∥
21Ω𝑛

,

(6.23)

for 𝑐̃ = (2𝛽)− 1
2𝛽−1 (1 − 1

2𝛽 )𝑐
2.

Proof. From 𝐿-smoothness we can deduce that

𝐷𝑛+1 ≤ 𝐷𝑛 − 𝛼𝑛⟨∇ 𝑓 (𝑋𝑛), 𝑉𝑛+1(𝑋𝑛)⟩ +
𝐿𝛼2𝑛
2
∥𝑉𝑛+1(𝑋𝑛)∥2

= 𝐷𝑛 − 𝛼𝑛∥∇ 𝑓 (𝑋𝑛)∥2 − 𝛼𝑛⟨∇ 𝑓 (𝑋𝑛), 𝑍(𝑋𝑛, 𝜁𝑛+1)⟩ +
𝐿𝛼2𝑛
2
∥𝑉𝑛+1(𝑋𝑛)∥2

= 𝐷𝑛 − 𝛼𝑛∥∇ 𝑓 (𝑋𝑛)∥2 + 𝛼𝑛𝜉𝑛+1 +
𝐿𝛼2𝑛
2
∥𝑉𝑛+1(𝑋𝑛)∥2

for 𝑍(𝑋𝑛, 𝜁𝑛+1) from Assumption 2.12 and 𝜉𝑛+1 = −⟨∇ 𝑓 (𝑋𝑛), 𝑍(𝑋𝑛, 𝜁𝑛+1)⟩.
We separate the two cases of 𝛽:
𝛽 = 1

2 : Iterating this inequality and using 1Ω𝑛+1 ≤ 1Ω𝑛
it follows that

𝐷𝑛+11Ω𝑛
≤ 𝐷𝑛1Ω𝑛

− 𝛼𝑛1Ω𝑛
∥∇ 𝑓 (𝑋𝑛)∥2 + 𝛼𝑛1Ω𝑛

𝜉𝑛+1 +
𝐿𝛼2𝑛
2

1Ω𝑛
∥𝑉𝑛+1(𝑋𝑛)∥2

≤ 𝐷𝑛1Ω𝑛
− 𝛼𝑛𝑐2( 𝑓 (𝑋𝑛) − 𝑙)1Ω𝑛

+ 𝛼𝑛1Ω𝑛
𝜉𝑛+1 +

𝐿𝛼2𝑛
2

1Ω𝑛
∥𝑉𝑛+1(𝑋𝑛)∥2

= (1 − 𝛼𝑛𝑐2)𝐷𝑛1Ω𝑛
+ 𝛼𝑛𝜉𝑛+11Ω𝑛

+ 𝐿𝛼
2
𝑛

2
1Ω𝑛
∥𝑉𝑛+1(𝑋𝑛)∥2,

≤ 𝐷1

𝑛∏
𝑘=1
(1 − 𝛼𝑘𝑐2) +

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼 𝑗𝑐2)ª®¬𝛼𝑘𝜉𝑘+11Ω𝑛

+ 𝐿
2

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼 𝑗𝑐2)
ª®¬𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘)∥21Ω𝑛

≤ 𝐷1

𝑛∏
𝑘=1
(1 − 𝛼𝑘𝑐2) +

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼 𝑗𝑐2)ª®¬𝛼𝑘𝜉𝑘+11Ω𝑛

+ 𝐿
2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘)∥
21Ω𝑛

,

(6.24)

where we used that the unified gradient domination property holds for all 𝑋𝑘, 𝑘 ≤ 𝑛 on the event
Ω𝑛.
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𝛽 ∈ ( 12 , 1]: Similarly, the unified gradient domination property yields the claimed inequality for
any 1 ≤ 𝑞 < 2:

𝐷𝑛+11Ω𝑛
≤ 𝐷𝑛1Ω𝑛

− 𝛼𝑛1Ω𝑛
∥∇ 𝑓 (𝑋𝑛)∥2 + 𝛼𝑛1Ω𝑛

𝜉𝑛+1 +
𝐿𝛼2𝑛
2

1Ω𝑛
∥𝑉𝑛+1(𝑋𝑛)∥2

≤ 𝐷𝑛1Ω𝑛
− 𝛼𝑛𝑐2( 𝑓 (𝑋𝑛) − 𝑙)2𝛽1Ω𝑛

+ 𝛼𝑛1Ω𝑛
𝜉𝑛+1 +

𝐿𝛼2𝑛
2

1Ω𝑛
∥𝑉𝑛+1(𝑋𝑛)∥2

= 𝐷𝑛1Ω𝑛
− 𝛼𝑛𝑐2𝐷2𝛽

𝑛 1Ω𝑛
+ 𝛼𝑛𝜉𝑛+11Ω𝑛

+ 𝐿𝛼
2
𝑛

2
1Ω𝑛
∥𝑉𝑛+1(𝑋𝑛)∥2,

= (1 − 𝛼𝑞𝑛𝑐2)𝐷𝑛1Ω𝑛
+ 𝛼𝑛𝑐2(𝛼1−𝑞𝑛 𝐷𝑛 − 𝐷2𝛽

𝑛 )1Ω𝑛
+ 𝛼𝑛𝜉𝑛+11Ω𝑛

+ 𝐿𝛼
2
𝑛

2
∥𝑉𝑛+1(𝑋𝑛)∥21Ω𝑛

≤ (1 − 𝛼𝑞𝑛𝑐2)𝐷𝑛1Ω𝑛
+ (2𝛽)−

1
2𝛽−1 (1 − 1

2𝛽
)𝑐2𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼𝑛𝜉𝑛+11Ω𝑛

+ 𝐿𝛼
2
𝑛

2
∥𝑉𝑛+1(𝑋𝑛)∥21Ω𝑛

≤ 𝐷1

𝑛∏
𝑘=1
(1 − 𝛼𝑞

𝑘
𝑐2)1Ω𝑛

+ 𝑐̃
𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑗
𝑐2)ª®¬𝛼

2𝛽𝑞−1
2𝛽−1
𝑘

+
𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑗
𝑐2)ª®¬𝛼𝑘𝜉𝑘+11Ω𝑛

+ 𝐿
2

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑗
𝑐2)ª®¬𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘)∥21Ω𝑛

≤ 𝐷1

𝑛∏
𝑘=1
(1 − 𝛼𝑞

𝑘
𝑐2)1Ω𝑛

+ 𝑐̃
𝑛∑︁
𝑘=1

𝛼
2𝛽𝑞−1
2𝛽−1
𝑘
+

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑗
𝑐2)ª®¬𝛼𝑘𝜉𝑘+11Ω𝑛

+ 𝐿
2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘)∥
21Ω𝑛

,

(6.25)

for 𝑐̃ = (2𝛽)−
1

2𝛽−1 (1 − 1
2𝛽 )𝑐

2 from the function trick eq. (6.4) which we applied in the forth
inequality. We also used that the unified gradient domination property holds for all 𝑋𝑘, 𝑘 ≤ 𝑛 on
the event Ω𝑛 . ■

For 𝛽 ∈ ( 12 , 1] we know from the proof of Lemma 6.1 that we can choose the auxiliary parameter

𝑞 from the previous lemma in such a way, that
∑∞
𝑛=1 𝑛

1−𝜂𝛼
2𝛽𝑞−1
2𝛽−1
𝑛 is convergent for all 𝜂 ∈ (max{2−

2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1) (Condition (iii) to apply Lemma 2.15). As 𝜂 < 1, it follows that
∑∞
𝑛=1 𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 < ∞

holds true for all these choices of 𝑞. Now define

𝑀𝑛 =

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼 𝑗𝑐2)ª®¬𝛼𝑘𝜉𝑘+11Ω𝑘
, 𝑀

(𝑞)
𝑛 =

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑗
𝑐2)ª®¬𝛼𝑘𝜉𝑘+11Ω𝑘

and 𝑆𝑛 =
𝐿

2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘)∥
21Ω𝑘

.

Then, (𝑀𝑛) and (𝑀 (𝑞)𝑛 ) are (F𝑛+1)-martingales with zeromean and (𝑆𝑛) is a (F𝑛+1)-sub-martingale
by Assumption 2.12. Note that by the choice of 𝛼𝑛 we have that

∑
𝑛 𝛼

2
𝑛 < ∞ and hence 𝔼[𝑆𝑛] < ∞

for all 𝑛 ∈ ℕ.
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Next, define 𝑅𝑛 = 𝑀2
𝑛 + 𝑆𝑛 and 𝑅𝑛 = (𝑀

(𝑞)
𝑛 )2 + 𝑆𝑛 respectively (with some abuse of notation), for

every 𝑛 ∈ ℕ. Moreover, let
𝐸𝑛 = {𝑅𝑘 < 𝜖 for all 𝑘 ≤ 𝑛}. (6.26)

which is an F𝑛+1-measurable event on (Ω,F,ℙ). We define 𝑅0 = 0 such that 𝐸0 = Ω.
Now let 𝐸̂𝑛 = 𝐸𝑛 ∩𝐶𝑛, then we will first show, that 𝐸̂𝑛 fulfills the property 𝐸̂𝑛 ⊂ Ω𝑛+1 for all 𝑛 ∈ ℕ
in Lemma 6.13 and then that 𝐸̂𝑛 occurs with probability at least 1 − 𝛿 in Lemma 6.15.
To prove that 𝐸̂𝑛 ⊂ Ω𝑛+1 we need one more auxiliary result.

Lemma 6.12. Suppose 𝑥, 𝑦 ∈ ℝ𝑑 such that

1. inf𝑥∗∈X∗ | |𝑥 − 𝑥∗ | | < r
2 ,

2. 𝑓 (𝑦) − 𝑙 < 𝑠,

3. | |𝑥 − 𝑦 | | ≤ r
4 .

Then it holds that inf𝑥∗∈X∗ | |𝑦 − 𝑥∗ | | < r
2 .

Proof. By triangle inequality we have that inf𝑥∗∈X∗ | |𝑦 − 𝑥∗ | | ≤ 3r
4 , i.e there exists 𝑥∗ ∈ X∗ such

that | |𝑦−𝑥∗ | | ≤ 3r
4 . Suppose now, that inf𝑥∗∈X∗ | |𝑦−𝑥

∗ | | ≥ r
2 , this means that 𝑦 ∈ ⋃

𝑥∗∈X∗ B 3𝑟
4
(𝑥∗)\⋃

𝑥∗∈X∗ B̃ r
2
(𝑥∗). By the definition of 𝑠 = inf

{
𝑓 (𝑧) − 𝑙 : 𝑧 ∈ ⋃

𝑥∗∈X∗ B 3r
4
(𝑥∗) \⋃𝑥∗∈X∗ B̃ r

2
(𝑥∗)

}
this

contradicts the second assumption 𝑓 (𝑦) − 𝑙 < 𝑠. ■

We deduce the following relations on the constructed sets:

Lemma 6.13. For 𝛽 ∈ ( 12 , 1] let 𝛼𝑛 ≤ 𝛼1 be sufficiently small such that ∑∞𝑛=1 𝛼 2𝛽𝑞−1
2𝛽−1
𝑛 < 𝜖

2̃𝑐 , and for
𝛽 = 1

2 let 𝛼1 > 0 be arbitrary. Furthermore, assume that the initial 𝑋1 ∈ U1 almost surely. Then,

a) 𝐸𝑛+1 ⊂ 𝐸𝑛, 𝐸̂𝑛+1 ⊂ 𝐸̂𝑛 and Ω𝑛+1 ⊂ Ω𝑛

b) 𝐸̂𝑛 ⊂ Ω𝑛+1

c) Define the events 𝐸̃𝑛 = 𝐸𝑛−1 \ 𝐸𝑛 = 𝐸𝑛−1 ∪ {𝑅𝑛 ≥ 𝜖}. Then, for 𝑅̃𝑛 = 𝑅𝑛1𝐸𝑛−1 , there exists a
𝐶 > 0 such that

𝔼[𝑅̃𝑛] ≤ 𝔼[𝑅̃𝑛−1] + 𝛾2𝑛 [𝐺2𝐶2 + 𝐺2 + 𝐶] − 𝜖ℙ( 𝐸̃𝑛−1).

Proof. a) Follows by definition of the events.
b) Note that 𝐸̂0 = Ω = Ω1 because

𝑋1 ∈ U1 = {𝑥 : inf
𝑥∗∈X∗

| |𝑥 − 𝑥∗ | | < r
2
, 𝑓 (𝑥) − 𝑙 ≤ 𝜖

2
} ⊂ {𝑥 : inf

𝑥∗∈X∗
| |𝑥 − 𝑥∗ | | < r

2
} = Ω1

almost surely. We prove the assertion by induction. Let 𝜔 ∈ 𝐸̂𝑛. Since 𝐸̂𝑛 ⊂ 𝐸̂𝑛−1 ⊂ Ω𝑛 by
induction assumption, we have 𝜔 ∈ Ω𝑛 and thus 𝜔 ∈ Ω𝑘 for all 𝑘 ≤ 𝑛. We will apply Lemma 6.12
with 𝑥 = 𝑋𝑛(𝜔) and 𝑦 = 𝑋𝑛+1(𝜔). By definition it holds that 𝜔 ∈ 𝐸̂𝑛 implies condition 3. and
𝜔 ∈ Ω𝑛 implies condition 1. of Lemma 6.12. It remains to show condition 2., then it follows that
inf𝑥∗∈X∗ | |𝑋𝑛+1(𝜔) − 𝑥∗ | | < r

2 , i.e. 𝑋𝑛+1(𝜔) ∈ U and by 𝜔 ∈ Ω𝑛 we deduce 𝜔 ∈ Ω𝑛+1.
To Prove condition 2. we separate both cases for 𝛽:
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𝛽 = 1
2 : The inequality eq. (6.22) and the induction hypothesis yield

𝐷𝑛+1(𝜔) = 𝐷𝑛+1(𝜔)1Ω𝑛
(𝜔)

≤ 𝐷1(𝜔)
𝑛∏
𝑘=1
(1 − 𝛼𝑘𝑐2) +

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼 𝑗𝑐2)ª®¬𝛼𝑘𝜉𝑘+1(𝜔)1Ω𝑛
(𝜔)

+ 𝐿
2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘 (𝜔))∥
21Ω𝑛
(𝜔)

= 𝐷1(𝜔)
𝑛∏
𝑘=1
(1 − 𝛼𝑘𝑐2) +

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼 𝑗𝑐2)ª®¬𝛼𝑘𝜉𝑘+1(𝜔)1Ω𝑘
(𝜔)

+ 𝐿
2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘 (𝜔))∥
21Ω𝑘
(𝜔)

≤ 𝜖

2
+

√︁
𝑅𝑛(𝜔) + 𝑅𝑛(𝜔)

≤ 2𝜖 +
√
𝜖 < 𝑠,

where the equation in the third line is due to 𝜔 ∈ Ω𝑘 for all 𝑘 ≤ 𝑛 by induction.
𝛽 ∈ ( 12 , 1]: Similarly, we obtain from eq. (6.37)

𝐷𝑛+1(𝜔) = 𝐷𝑛+1(𝜔)1Ω𝑛
(𝜔)

≤ 𝐷1(𝜔)1Ω𝑛
(𝜔)

𝑛∏
𝑘=1
(1 − 𝛼𝑞

𝑘
𝑐2) + 𝑐̃

𝑛∑︁
𝑘=1

𝛼
2𝛽𝑞−1
2𝛽−1
𝑘
+

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑗
𝑐2)ª®¬𝛼𝑘𝜉𝑘+1(𝜔)1Ω𝑛

(𝜔)

+ 𝐿
2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘 (𝜔))∥
21Ω𝑛
(𝜔)

= 𝐷1(𝜔)
𝑛∏
𝑘=1
(1 − 𝛼𝑞

𝑘
𝑐) +

𝑛∑︁
𝑘=1

©­«
𝑛∏
𝑗=𝑘

(1 − 𝛼 𝑗𝑐2)
ª®¬𝛼𝑘𝜉𝑘+1(𝜔)1Ω𝑘

(𝜔)

+ 𝐿
2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘 (𝜔))∥
21Ω𝑘
(𝜔)

≤ 𝜖

2
+ 𝜖
2
+

√︁
𝑅𝑛(𝜔) + 𝑅𝑛(𝜔)

≤ 2𝜖 +
√
𝜖 < 𝑠.

We used in both cases that that
∏𝑛

𝑘=1(1 − 𝛼
𝑞

𝑘
𝑐) ≤ 1 and the choice of 𝜖 such that 2𝜖 +

√
𝜖 < 𝑠.

This proves that condition 2. in Lemma 6.12 is also satisfied which concludes the induction.
c) Without loss of generality we consider the case 𝛽 = 1/2. The computations for 𝛽 ∈ (1/2, 1]
follow in line by replacing 𝑀𝑛 with 𝑀

(𝑞)
𝑛 . By definition it holds that 𝐸𝑛 = 𝐸𝑛−1 \ (𝐸𝑛−1 \ 𝐸𝑛) =

𝐸𝑛−1 \ 𝐸̃𝑛. Then we have

𝑅̃𝑛 = 𝑅𝑛1𝐸𝑛−1
= 𝑅𝑛−11𝐸𝑛−1 + (𝑅𝑛 − 𝑅𝑛−1)1𝐸𝑛−1
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= 𝑅𝑛−11𝐸𝑛−2 − 𝑅𝑛−11𝐸̃𝑛−1 + (𝑅𝑛 − 𝑅𝑛−1)1𝐸𝑛−1
= 𝑅̃𝑛−1 − 𝑅𝑛−11𝐸̃𝑛−1 + (𝑅𝑛 − 𝑅𝑛−1)1𝐸𝑛−1

and for the last term

𝑅𝑛 − 𝑅𝑛−1 = 𝑀2
𝑛 − 𝑀2

𝑛−1 + 𝑆𝑛 − 𝑆𝑛−1

= 𝛾2𝑛 (1 − 𝛾𝑛𝑐2)2𝜉2𝑛+11Ω𝑛
+ 2𝛾𝑛(1 − 𝛾𝑛𝑐)𝜉𝑛+11Ω𝑛

𝑀𝑛−1 + 𝛾2𝑛
𝐿

2
∥𝑉𝑛+1(𝑋𝑛)∥21Ω𝑛

.

We treat each of the summands on the RHS seperately. It follows from the 𝐺-Lipschitz continuity
and bounded variance assumption in Theorem 6.7, that

𝔼[𝜉2𝑛+11Ω𝑛
] = 𝔼[⟨∇ 𝑓 (𝑋𝑛), 𝑉𝑛+1(𝑋𝑛) − ∇ 𝑓 (𝑋𝑛)⟩21Ω𝑛

]
≤ 𝔼[∥∇ 𝑓 (𝑋𝑛)∥2(∥𝑉𝑛+1(𝑋𝑛)∥2 + 1)1Ω𝑛

] ≤ 𝐺2(𝐶2 + 1),
𝔼[𝜉𝑛+1(1 − 𝛾𝑛𝑐)𝑀𝑛−11Ω𝑛

] = 𝔼[𝔼[𝜉𝑛+1 |F𝑛]𝑀𝑛−11Ω𝑛
] = 0,

𝔼[∥𝑉𝑛+1(𝑋𝑛)∥21Ω𝑛
] ≤ 𝐶. (6.27)

For the term 𝑅𝑛−11𝐸̃𝑛−1 we have

𝔼[𝑅𝑛−11𝐸̃𝑛−1] ≥ 𝜖ℙ( 𝐸̃𝑛−1).

Using (1 − 𝛾𝑛𝑐) < 1 and putting all together we obtain the claim

𝔼[𝑅̃𝑛] ≤ 𝔼[𝑅̃𝑛−1] + 𝛾2𝑛 [𝐺2𝐶2 + 𝐺2 + 𝐶] − 𝜖ℙ( 𝐸̃𝑛−1).

■

Lemma 6.14. Let 𝛿 > 0 be a tolerance level and 𝛼𝑛 ≤ 𝛼1 be sufficiently small such that ∑∞𝑛=1 𝛼2𝑛 <
𝛿𝜖

2(𝐺2𝐶2+𝐺2+𝐶) and the condition in Lemma 6.13 is fulfilled. Then, we have

ℙ(𝐸𝑛) ≥ 1 − 𝛿
2
.

Proof. The proof is along the lines of the proof of Proposition D2 in [Mer+20]. For completeness
we repeat the arguments. First, observe that

ℙ( 𝐸̃𝑛−1) = ℙ(𝐸𝑛−1 \ 𝐸𝑛) = ℙ(𝐸𝑛−1 ∩ {𝑅𝑛 ≥ 𝜖}) = 𝔼[1𝐸𝑛−11{𝑅𝑛>𝜖}] ≤ 𝔼[1𝐸𝑛−1
𝑅𝑛

𝜖
] = 𝔼[𝑅̃𝑛]

𝜖
.

On the other hand it follows from Lemma 6.18 that

𝜖ℙ( 𝐸̃𝑛) ≤ 𝔼[𝑅̃𝑛] ≤ 𝔼[𝑅̃0] + [𝐺2𝐶2 + 𝐺2 + 𝐶]
𝑛∑︁
𝑘=1

𝛼2𝑘 − 𝜖
𝑛∑︁
𝑘=0

ℙ( 𝐸̃𝑘−1). (6.28)

Rearranging everything yields

𝑛∑︁
𝑘=0

ℙ( 𝐸̃𝑘) ≤
[𝐺2𝐶2 + 𝐺2 + 𝐶]Γ

𝜖
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with Γ =
∑∞
𝑛=1 𝛼

2
𝑛. By the assumption on the step size [𝐺

2𝐶2+𝐺2+𝐶 ]Γ
𝜖

< 𝛿
2 and moreover since the

events 𝐸̃𝑛 are disjoint we obtain

ℙ(
𝑛⋃
𝑘=0

𝐸̃𝑘) =
𝑛∑︁
𝑘=0

ℙ( 𝐸̃𝑘) ≤
𝛿

2
(6.29)

implying that

ℙ(𝐸𝑛) = ℙ(
𝑛⋂
𝑘=0

𝐸̃𝑐𝑘) ≥ 1 − 𝛿
2
. (6.30)

■

Lemma 6.15. Let 𝛿 > 0 be a tolerance level and 𝛼𝑛 ≤ 𝛼1 be sufficiently small such that the condition
in Lemma 6.13 and Lemma 6.14 are fulfilled. Moreover, we suppose 𝛼1 small enough such that
4𝐶
r2

∑𝑛
𝑘=1 𝛼

2
𝑘
≤ 𝛿

2 . Then, we have

ℙ( 𝐸̂𝑛) ≥ 1 − 𝛿.

Proof. By Lemma 6.15, we have ℙ(𝐸𝑛) ≥ 1− 𝛿
2 . Moreover, by the additional step size assumption

and Markov’s inequality we deduce that

ℙ(𝐶𝑛) = ℙ(∀𝑘 ≤ 𝑛 : | |𝑋𝑘+1 − 𝑋𝑘 | | ≤
r
2
)

≥ 1 −
𝑛∑︁
𝑘=1

ℙ( | |𝑋𝑘+1 − 𝑋𝑘 | | >
r
2
)

= 1 −
𝑛∑︁
𝑘=1

ℙ( | |𝑉𝑘+1(𝑋𝑘) | | >
r

2𝛼𝑘
)

≥ 1 −
𝑛∑︁
𝑘=1

𝔼[| |𝑉𝑘+1(𝑋𝑘) | |2]
4𝛼2

𝑘

r2

≥ 1 − 4𝐶
r2

𝑛∑︁
𝑘=1

𝛼2𝑘

≥ 1 − 𝛿
2
.

Together we obtain that ℙ( 𝐸̂𝑛) = 1 − ℙ( 𝐸̂𝑐𝑛) ≥ 1 − (ℙ(𝐸𝑐𝑛) + ℙ(𝐶𝑐𝑛)) ≥ 1 − 𝛿. ■

Finally, we are ready to prove the main result in the local setting for the set of local minima X∗.

Proof of Theorem 6.7. (i): Recall the definitions of U1 and U above. Then it holds that

ΩU =

∞⋂
𝑛=1

Ω𝑛.

Hence, using Lemma 6.15 we obtain

ℙ(ΩU) = inf
𝑛
ℙ(Ω𝑛) ≥ inf

𝑛
ℙ( 𝐸̂𝑛) ≥ 1 − 𝛿.
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(ii): We define 𝐷̃𝑛 := 𝐷𝑛1Ω𝑛
and prove that 𝐷̃𝑛 ∈ 𝑜(1/𝑛1−𝜂). Then the claim follows since

1ΩU
≤ 1Ω𝑛

almost surely.
From the proof of Lemma 6.11 we have

𝐷̃𝑛+1 ≤ 𝐷̃𝑛 − 𝛼𝑛𝑐𝐷̃2𝛽
𝑛 + 𝛼𝑛𝜉𝑛1Ω𝑛

+ 𝐿𝛼
2
𝑛

2
∥𝑉𝑛∥21Ω𝑛

.

Hence, taking the conditional expectation gives

𝔼[𝐷̃𝑛+1 |F𝑛] ≤ 𝐷̃𝑛 − 𝛼𝑛𝑐𝐷̃2𝛽
𝑛 + 𝛼𝑛𝔼[𝜉𝑛+1 |F𝑛]1Ω𝑛

+ 𝐿𝛼
2
𝑛

2
𝔼[∥𝑉𝑛+1(𝑋𝑛)∥2 |F𝑛]1Ω𝑛

≤ 𝐷̃𝑛 − 𝛼𝑛𝑐𝐷̃2𝛽
𝑛 + 𝐿𝐶𝛼2𝑛,

where we have used that 𝐷𝑛 and 1Ω𝑛
are F𝑛-measurable and 𝐸[∥𝑉𝑛+1(𝑋𝑛)∥2 |F𝑛] ≤ 𝐶 from equa-

tion (ABC) with 𝐴 = 𝐵 = 0. By our step size choice we can apply Lemma 6.1 to obtain Claim
(ii).
(iii): In the following, we again separate between the two cases of 𝛽.
𝛽 = 1

2 : We have from Lemma 6.11 equation (6.37) that

𝐷̃𝑛+1 ≤ (1 − 𝛼𝑛𝑐2) 𝐷̃𝑛 + 𝛼𝑛𝜉𝑛1Ω𝑛
+ 𝐿𝛼

2
𝑛

2
∥𝑉𝑛+1(𝑋𝑛)∥2.

Taking expectations and multiplying by (𝑛 + 1)1−𝜂 leads to

𝔼[𝐷̃𝑛+1(𝑛 + 1)1−𝜂]

≤ (𝑛 + 1)1−𝜂 (1 − 𝛼𝑛𝑐2)𝔼[𝐷̃𝑛] + (𝑛 + 1)1−𝜂
𝐿𝐶𝛼2𝑛
2

≤
(
𝑛1−𝜂 + (1 − 𝜂)𝑛−𝜂

)
(1 − 𝛼𝑛𝑐2)𝔼[𝐷̃𝑛] + (𝑛 + 1)1−𝜂

𝐿𝐶𝛼2𝑛
2

=

(
𝑛1−𝜂 + (1 − 𝜂)𝑛−𝜂 − 𝑛1−𝜂𝛼𝑛𝑐2 − (1 − 𝜂)𝑛−𝜂𝛼𝑛𝑐2𝑥∗

)
𝔼[𝐷̃𝑛] + (𝑛 + 1)1−𝜂𝛼2𝑛

𝐿𝐶

2

=

(
1 + 1 − 𝜂

𝑛
− 𝛼𝑛𝑐2 −

(1 − 𝜂)𝛼𝑛𝑐2
𝑛

)
𝑛1−𝜂𝔼[𝐷̃𝑛] + (𝑛 + 1)1−𝜂𝛼2𝑛

𝐿𝐶

2
,

where we used equation (6.27) in the first inequality. By our choice of 𝛼𝑛 there exists 𝑐̃ > 0 and
𝑁 > 0 such that 𝛼𝑛𝑐2 − 1−𝜂

𝑛
+ (1−𝜂)𝛼𝑛𝑐

2

𝑛
≥ 𝑐̃𝛼𝑛 for all 𝑛 ≥ 𝑁. Thus, for all 𝑛 ≥ 𝑁

𝑤𝑛+1 ≤ (1 − 𝑐̃𝛼𝑛)𝑤𝑛 + (𝑛 + 1)1−𝜂𝛼2𝑛
𝐿𝐶

2
,

where 𝑤𝑛 = 𝔼[𝑛1−𝜂 𝐷̃𝑛]. Define 𝑎𝑛 = 𝑐̃𝛼𝑛 and 𝑏𝑛 = (𝑛 + 1)1−𝜂𝛼2𝑛 𝐿𝐶2 . Since 𝛼𝑛 = Θ( 1
𝑛𝜃
), we have∑

𝑛 𝑎𝑛 = 𝑐̃
∑
𝑛 𝛼𝑛 = ∞ and ∑︁

𝑛

𝑏𝑛 =
𝐿𝐶

2

∑︁
𝑛

(𝑛 + 1)1−𝜂𝛼2𝑛 < ∞,

by equation (6.8) in Lemma 6.1 Hence, we apply Lemma 2.16 to prove that lim𝑛→∞𝑤𝑛 = 0. By
the definition of 𝑤𝑛 we have verified that 𝔼[( 𝑓 (𝑋𝑛) − 𝑙)1ΩU

] ≤ 𝔼[𝐷̃𝑛] ∈ 𝑜( 1
𝑛1−𝜂
)
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𝛽 ∈ ( 12 , 1]: From Lemma 6.11 equation (6.37) we have

𝐷̃𝑛+1 ≤ (1 − 𝛼𝑞𝑛𝑐2) 𝐷̃𝑛 + 𝑐̃𝛼
2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼𝑛𝜉𝑛1Ω𝑛

+ 𝐿𝛼
2
𝑛

2
∥𝑉𝑛+1(𝑋𝑛)∥2,

for 𝑐̃ = (2𝛽)−
1

2𝛽−1 (1 − 1
2𝛽 )𝑐

2. Next we multiply with (𝑛 + 1)1−𝜂 and use equation (6.1) to obtain

𝔼[𝐷̃𝑛+1(𝑛 + 1)1−𝜂]

≤ (𝑛 + 1)1−𝜂 (1 − 𝛼𝑞𝑛𝑐2)𝔼[𝐷̃𝑛] + (𝑛 + 1)1−𝜂 𝑐̃𝛼
2𝛽𝑞−1
2𝛽−1
𝑛 + (𝑛 + 1)1−𝜂𝐿𝐶𝛼2𝑛

≤
(
𝑛1−𝜂 + (1 − 𝜂)𝑛−𝜂

) (
1 − 𝛼𝑞𝑛𝑐2

)
𝔼[𝐷̃𝑛] + 𝑐1(𝑛 + 1)1−𝜂 (𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛)

=

(
𝑛1−𝜂 + (1 − 𝜂)𝑛−𝜂 − 𝛼𝑞𝑛𝑐2𝑛1−𝜂 − (1 − 𝜂)𝛼𝑞𝑛𝑐2𝑛−𝜂

)
𝔼[𝐷̃𝑛]

+ 𝑐1(𝑛 + 1)1−𝜂 (𝛼
2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛)

= 𝔼[𝐷̃𝑛𝑛1−𝜂]
(
1 + 1 − 𝜂

𝑛
− 𝛼𝑞𝑛𝑐2 −

(1 − 𝜂)𝛼𝑞𝑛𝑐2
𝑛

)
+ 𝑐1(𝑛 + 1)1−𝜂 (𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛),

for some 𝑐1 > 0. By our choice of 𝛼𝑛 and as 𝑞 ≥ 1, there exists a 𝑐2 > 0 and 𝑁 > 0 such that
𝛼
𝑞
𝑛𝑐

2 − 1−𝜂
𝑛
+ (1−𝜂)𝛼

𝑞
𝑛𝑐

2

𝑛
≥ 𝑐2𝛼𝑞𝑛 for all 𝑛 ≥ 𝑁. Thus, for 𝑛 ≥ 𝑁

𝔼[𝐷̃𝑛+1(𝑛 + 1)1−𝜂] ≤ 𝔼[𝐷̃𝑛𝑛1−𝜂]
(
1 − 𝑐2𝛼𝑞𝑛

)
+ 𝑐1(𝑛 + 1)1−𝜂 (𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛).

Define 𝑤𝑛 = 𝔼[𝐷̃𝑛𝑛1−𝜂], 𝑎𝑛 = 𝑐2𝛼
𝑞
𝑛 and 𝑏𝑛 = 𝑐1(𝑛 + 1)1−𝜂 (𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛). We will again apply

Lemma 2.16. By the step size choice 𝛼𝑛 = Θ( 1
𝑛𝜃
) we have

∑
𝑛 𝑎𝑛 = 𝑐2

∑
𝑛 𝛼

𝑞
𝑛 = ∞, because 𝑞 ≤ 1

𝜃
.

Further, ∑︁
𝑛

𝑏𝑛 = 𝑐1
∑︁
𝑛

(𝑛 + 1)1−𝜂 (𝛼
2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼2𝑛) < ∞,

because we choose the auxiliary parameter 𝑞 as in the proof of Lemma 6.1 where we showed in
equation (6.8) and equation (6.9) that

∞∑︁
𝑛=𝑁

𝑛1−𝜂−2𝜃 < ∞ and
∞∑︁
𝑛=𝑁

𝑛
1−𝜂− 𝜃(2𝛽𝑞−1)

2𝛽−1 < ∞

All together we deduce that 𝑤𝑛 vanishes at infinity. Again, by the definition of 𝑤𝑛 we have that
𝔼[( 𝑓 (𝑋𝑛) − 𝑙)1ΩU

] ≤ 𝔼[𝐷̃𝑛] ∈ 𝑜( 1
𝑛1−𝜂
) ■

6.5.3 Local gradient domination in 𝑓 ∗

The main result concerning local gradient domination in 𝑓 ∗ is presented below and does not
necessitate the existence of a local minimum or any stationary point. It is worth noting that the
definition of local gradient domination in 𝑓 ∗ guarantees the gradient domination property for
any 𝑥 with 𝑓 (𝑥) close to 𝑓 ∗. Consequently, this definition ensures that functions satisfying this
property cannot possess local minima or saddle points within this region.
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Theorem 6.16. Fix some tolerance level 𝛿 > 0. Suppose 𝑓 satisfies the local gradient domination
property in 𝑓 ∗ from Definition 6.5 with 𝛽 ∈ [ 12 , 1] and B∗𝑟 ⊂ ℝ𝑑. Moreover, suppose within B∗𝑟 𝑓
is 𝐺-Lipschitz continuous, Assumption 2.1 and Assumption 2.12 hold true. Denote by (𝑋𝑛)𝑛∈ℕ the
sequence generated by equation (SGD) using a step size 𝛼𝑛 = Θ( 1

𝑛𝜃
) for 𝜃 ∈ ( 12 , 1) and suppose that

𝛼𝑛 ≤ 𝛼1 for 𝛼1 small enough (dependent on 𝛿). Then, the following holds:
(i) There exist subsets U and U1 of ℝ𝑑 such that, if 𝑋1 ∈ U1 the event ΩU = {𝑋𝑛 ∈ U for all 𝑛 =

1, 2, . . . } has probability at least 1 − 𝛿.
Moreover, for any

𝜂 ∈
{(

max{2 − 2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1
)

: 𝛽 ∈ ( 12 , 1]
(2 − 2𝜃, 1) : 𝛽 = 1

2

it holds that

(𝑖𝑖) ( 𝑓 (𝑋𝑛) − 𝑓 ∗)1ΩU
∈ 𝑜

(
1

𝑛1−𝜂

)
, a.s., and (𝑖𝑖𝑖) 𝔼[( 𝑓 (𝑋𝑛) − 𝑓 ∗)1ΩU

] ∈ 𝑜
(

1
𝑛1−𝜂

)
.

Suppose throughout this section that the assumptions in Theorem 6.16 are satisfied.
The proof will be similar to the previous section. Instead of assuring that (𝑋𝑛) remains close to
the set where we could guarantee the unified gradient domination property, it is now sufficient
that 𝑓 (𝑋𝑛) remains close to 𝑓 ∗ by the different definition of gradient domination definition in 𝑓 ∗.
This will simplify the proof. Moreover, we may again assume w.l.o.g. the uniform second moment
bounds, i.e. 𝐴 = 𝐵 = 0, instead of the more general (ABC) condition by the same argument as
above but on the level sets.
Recall the notation

B∗𝑟 = {𝑥 ∈ ℝ𝑑 : 𝑓 (𝑥) − 𝑓 ∗ ≤ 𝑟}.
and let 𝑟 > 0 be the radius of the gradient domination property in 𝑓 ∗, then there exists 𝜖 > 0,
such that 2𝜖 +

√
𝜖 < 𝑟, i.e

U := B∗2𝜖+
√
𝜖
⊂ B∗𝑟 . (6.31)

Moreover, we define the set

U1 := B∗𝜖
2

(6.32)

and the measurable subsets
Ω𝑛 = {𝑋𝑘 ∈ U, for all 𝑘 ≤ 𝑛}

in (Ω,F,ℙ).
The proof of Theorem 6.16 is again based on a series of auxiliary lemmas. The goal of these is to
prove that with high probability we do not leave the gradient dominated region, i.e. Claim (i) in
Theorem 6.16.
In the following, we fix the notation 𝐷𝑛 := 𝑓 (𝑋𝑛)− 𝑓 ∗ and obtain the parallel result to Lemma 6.11.

Lemma 6.17. If 𝛽 = 1
2 , it holds that

𝐷𝑛+11Ω𝑛
(6.33)

≤ (1 − 𝛼𝑛𝑐2)𝐷𝑛1Ω𝑛
+ 𝛼𝑛𝜉𝑛1Ω𝑛

+ 𝐿𝛼
2
𝑛

2
1Ω𝑛
∥𝑉𝑛+1(𝑋𝑛)∥2, (6.34)
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≤ 𝐷11Ω𝑛

𝑛∏
𝑘=1
(1 − 𝛼𝑘𝑐2) +

𝑛∑︁
𝑘=1

𝑛∏
𝑗=𝑘

(1 − 𝛼𝑘𝑐)𝛼𝑘𝜉𝑘1Ω𝑛
+ 𝐿
2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘)∥
21Ω𝑛

. (6.35)

If 𝛽 ∈ ( 12 , 1], for any 1 ≤ 𝑞 ≤ 2, it holds that

𝐷𝑛+11Ω𝑛
(6.36)

≤ (1 − 𝛼𝑞𝑛𝑐2)𝐷𝑛1Ω𝑛
+ (2𝛽)−

1
2𝛽−1 (1 − 1

2𝛽
)𝑐2𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 + 𝛼𝑛𝜉𝑛1Ω𝑛

+ 𝐿𝛼
2
𝑛

2
∥𝑉𝑛+1(𝑋𝑛)∥21Ω𝑛

(6.37)

≤ 𝐷11Ω𝑛

𝑛∏
𝑘=1
(1 − 𝛼𝑞

𝑘
𝑐2) + 𝑐̃

𝑛∑︁
𝑘=1

𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑗
𝑐2)𝛼

2𝛽𝑞−1
2𝛽−1
𝑘

(6.38)

+
𝑛∑︁
𝑘=1

𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑗
𝑐2)𝛼𝑘𝜉𝑘1Ω𝑛

+ 𝐿
2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘)∥
21Ω𝑛

, (6.39)

for 𝑐̃ = (2𝛽)− 1
2𝛽−1 (1 − 1

2𝛽 )𝑐
2.

Proof. The proof follows line for line as in Lemma 6.11 by replacing 𝑙 with 𝑓 ∗ and taking the
different definition of Ω𝑛 into account. ■

We continue as in the previous section:
For 𝛽 > 1

2 we know from the proof of Lemma 6.1 that we can choose the auxiliary parameter 𝑞

from the previous lemma in such a way, that
∑∞
𝑛=1 𝑛

1−𝜂𝛼
2𝛽𝑞−1
2𝛽−1
𝑛 is convergent for all 𝜂 ∈ (max{2 −

2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1) (Condition (iii) to apply Lemma 2.15). As 𝜂 < 1, it follows that
∑∞
𝑛=1 𝛼

2𝛽𝑞−1
2𝛽−1
𝑛 < ∞

holds true for all these choices of 𝑞. Now define

𝑀𝑛 =

𝑛∑︁
𝑘=1

𝑛∏
𝑗=𝑘

(1 − 𝛼 𝑗𝑐2)𝛼𝑘𝜉𝑘+11Ω𝑘
, 𝑀

(𝑞)
𝑛 =

𝑛∑︁
𝑘=1

𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑗
𝑐2)𝛼𝑘𝜉𝑘+11Ω𝑘

and

𝑆𝑛 =
𝐿

2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘)∥
21Ω𝑘

.

Then, (𝑀𝑛)𝑛∈ℕ and (𝑀 (𝑞)𝑛 )𝑛∈ℕ is a (F𝑛+1)-martingale with zero mean and (𝑆𝑛)𝑛∈ℕ is a (F𝑛+1)-
sub-martingale by Assumption 2.12. Note that by the choice of 𝛼𝑛 we have that

∑
𝑛 𝛼

2
𝑛 < ∞ and

hence 𝔼[𝑆𝑛] < ∞ for all 𝑛 ∈ ℕ.
Next, define 𝑅𝑛 = 𝑀2

𝑛 + 𝑆𝑛 and 𝑅𝑛 = (𝑀
(𝑞)
𝑛 )2 + 𝑆𝑛 (with sight abuse of notation) for every 𝑛 ∈ ℕ.

Moreover, let
𝐸𝑛 = {𝑅𝑘 < 𝜖 for all 𝑘 ≤ 𝑛}.

which is an F𝑛+1-measurable event on (Ω,F,ℙ). We define 𝑅0 = 0 such that 𝐸0 = Ω.
With these definitions we can directly prove a parallel result to Lemma 6.13 without the auxiliary
result in Lemma 6.12.

Lemma 6.18. For 𝛽 ∈ ( 12 , 1] let 𝛼𝑛 ≤ 𝛼1 be sufficiently small such that ∑∞𝑛=1 𝛼 2𝛽𝑞−1
2𝛽−1
𝑛 < 𝜖

2̃𝑐 , and for
𝛽 = 1

2 let 𝛼1 > 0 be arbitrary. Furthermore, assume that the initial 𝑋1 ∈ U1 = {𝑥 : 𝑓 (𝑥) − 𝑓 (𝑥∗) ≤
𝜖
2 } almost surely. Then,
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a) 𝐸𝑛+1 ⊂ 𝐸𝑛 and Ω𝑛+1 ⊂ Ω𝑛

b) 𝐸𝑛 ⊂ Ω𝑛+1

c) Define the events 𝐸̃𝑛 = 𝐸𝑛−1 \ 𝐸𝑛 = 𝐸𝑛−1 ∪ {𝑅𝑛 ≥ 𝜖}. Then, for 𝑅̃𝑛 = 𝑅𝑛1𝐸𝑛−1 , there exists a
𝐶 > 0 such that

𝔼[𝑅̃𝑛] ≤ 𝔼[𝑅̃𝑛−1] + 𝛼2𝑛 [𝐺2𝐶2 + 𝐺2 + 𝐶] − 𝜖ℙ( 𝐸̃𝑛−1).

Proof. a) Follows by definition.
b) Note that 𝐸0 = Ω = Ω1 because 𝑋1 ∈ U1 almost surely by assumption. We prove the assertion
by induction. Let 𝜔 ∈ 𝐸𝑛. Since 𝐸𝑛 ⊂ 𝐸𝑛−1 ⊂ Ω𝑛 by induction assumption, we have 𝜔 ∈ Ω𝑛 and
thus 𝜔 ∈ Ω𝑘 for all 𝑘 ≤ 𝑛. It remains to show that 𝑋𝑛+1(𝜔) ∈ U to prove that 𝜔 ∈ Ω𝑛+1. We
separate both cases for 𝛽:
𝛽 = 1

2 : The inequality (6.34) and the induction hypothesis yield

𝐷𝑛+1(𝜔)

≤ 𝐷1(𝜔)
𝑛∏
𝑘=1
(1 − 𝛼𝑘𝑐) +

𝑛∑︁
𝑘=1

𝑛∏
𝑗=𝑘

(1 − 𝛼𝑘𝑐)𝛼𝑘𝜉𝑘+1(𝜔)1Ω𝑘
(𝜔) + 𝐿

2

𝑛∑︁
𝑘=1

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘 (𝜔))∥
21Ω𝑘

≤ 𝜖

2
+

√︁
𝑅𝑛(𝜔) + 𝑅𝑛(𝜔)

≤ 2𝜖 +
√
𝜖.

Hence, 𝑋𝑛+1(𝜔) ∈ U by definition of U.
𝛽 ∈ ( 12 , 1]: Similarly, we obtain from equation (6.37)

𝐷𝑛+1(𝜔)

≤ 𝐷1(𝜔)
𝑛∏
𝑘=1
(1 − 𝛼𝑞

𝑘
𝑐) + 𝑐̃

𝑛∑︁
𝑘=1

𝛼
2𝛽𝑞−1
2𝛽−1
𝑘

+
𝑛∑︁
𝑘=1

𝑛∏
𝑗=𝑘

(1 − 𝛼𝑞
𝑘
𝑐)𝛼𝑘𝜉𝑘+1(𝜔)1Ω𝑘

(𝜔) + 𝐿
2

𝑛∑︁
𝑘=0

𝛼2𝑘 ∥𝑉𝑘+1(𝑋𝑘 (𝜔))∥
21Ω𝑘

≤ 𝜖

2
+ 𝜖
2
+

√︁
𝑅𝑛(𝜔) + 𝑅𝑛(𝜔)

≤ 2𝜖 +
√
𝜖,

where we used that
∏𝑛

𝑘=1(1 − 𝛼
𝑞

𝑘
𝑐∗) < 1. Hence, it holds again that 𝑋𝑛+1(𝜔) ∈ U.

This prove that 𝜔 ∈ Ω𝑛+1 and closes the induction.
c) Follows line by line as in Lemma 6.13 part c). ■

Lemma 6.19. Let 𝛿 > 0 be a tolerance level and 𝛼𝑛 ≤ 𝛼1 be sufficiently small such that ∑∞𝑛=1 𝛼2𝑛 <
𝛿𝜖

2(𝐺2𝐶2+𝐺2+𝐶) and the condition in Lemma 6.18 is fulfilled. Then, we have

ℙ(𝐸𝑛) ≥ 1 − 𝛿.

Proof. Line by line as in Lemma 6.14. ■
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Finally, we are ready to prove the main result in the local setting for 𝑓 ∗.

Proof of Theorem 6.16. (i): Recall the definition of U1 and U above. Then it holds that

ΩU =

∞⋂
𝑛=1

Ω𝑛.

Hence, using Lemma 6.19 we obtain

ℙ(ΩU) = inf
𝑛
ℙ(Ω𝑛) ≥ inf

𝑛
ℙ(𝐸𝑛) ≥ 1 − 𝛿.

The proof of Claim (ii) and (iii) follows line by line as in the proof of Theorem 6.7 by replacing 𝑙
with 𝑓 ∗ and taking the different definitions of 𝐷𝑛 and Ω𝑛 into account. ■

6.6 Application in the training of neural networks

In supervised learning one aims to approximate an unknown model 𝜑 : ℝ𝑑𝑧 → ℝ𝑑𝑦 by a
parametrized function 𝑔𝑤 : ℝ𝑑𝑧 → ℝ𝑑𝑦 with parameter 𝑤 ∈ ℝ𝑑𝑤 . Given a family of training data
((𝑍 (𝑚) , 𝑌 (𝑚) ))𝑚∈ℕ generated as i.i.d. samples from an unknown distribution 𝜇 (𝑍,𝑌 ) one usually
chooses the parameter 𝑤 ∈ ℝ𝑑𝑤 by solving

min
𝑤∈ℝ𝑑𝑤

𝔼𝜇 (𝑍,𝑌 ) [Φ(𝑔𝑤(𝑍), 𝑌 )] ,

where Φ : ℝ𝑑𝑦×ℝ𝑑𝑦 → ℝ+ is a user specific data discrepancy. One popular choice of parametriza-
tions are DNNs. We define a neural network of depth 𝐿 ∈ ℕ by the recursion

𝑧0 := 𝑧, 𝑧ℓ = 𝜎⊗𝑑ℓ (𝐴ℓ𝑧ℓ−1 + 𝑏ℓ), ℓ = 1, . . . , 𝐿 − 1, 𝑔𝑤(𝑧) := 𝐴𝐿𝑧𝐿−1 + 𝑏𝐿 .

The weights ((𝐴ℓ, 𝑏ℓ))𝐿ℓ=1 of the DNN are collected in 𝑤 ∈ W := ×𝐿
ℓ=1(ℝ

𝑑ℓ×𝑑ℓ−1 ×ℝ𝑑ℓ) ≃ ℝ𝑑𝑤 , and
𝜎⊗𝑑 : ℝ𝑑 → ℝ𝑑 describes the component-wise application of the activation function 𝜎 : ℝ→ ℝ.
Provided that 𝜎 and Φ are analytic, and (𝑍, 𝑌 ) are compactly supported ℝ𝑑𝑧 × ℝ𝑑𝑦 -valued
random variables, then 𝑓DNN : ℝ𝑑𝑤 → ℝ+ defined by 𝑤 ↦→ 𝔼𝜇 (𝑍,𝑌 ) [Φ(𝑔𝑤(𝑍), 𝑌 )] is analytic
[DK21, Thm. 5.2] and therefore satisfies local gradient domination in any stationary point 𝑤∗
[Loj65].
In our notation, the stochastic first order oracle in Section 2.2.1 takes the form

𝑉 (𝑤, (𝑍, 𝑌 )) = ∇𝑤 𝑓DNN(𝑤) + (∇𝑤Φ(𝑔𝑤(𝑍), 𝑌 ) − ∇𝑤 𝑓DNN(𝑤)) ,

where we denote 𝜁 = (𝑍, 𝑌 ) and the iterative SGD then reads as

𝑊𝑛+1 =𝑊𝑛 − 𝛼𝑛∇𝑤Φ(𝑔𝑊𝑛
(𝑍𝑛+1), 𝑌𝑛+1)

with 𝜁𝑛 = (𝑍𝑛, 𝑌𝑛) independent and identical distributed. The iterative scheme of SHB can
be written similarly. Note that this scenario also includes the empirical risk minimization of
1
𝑀

∑𝑀
𝑚=1 Φ(𝑔𝑤(𝑧 (𝑚) ), 𝑦 (𝑚) ) when 𝜁 = (𝑍, 𝑌 ) ∼ 1

𝑀

∑𝑀
𝑚=1 𝛿(𝑧 (𝑚) ,𝑦 (𝑚) ) , see Example 2.13 for more

details. The following local convergence is a direct consequence of Theorem 6.7.
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Corollary 6.20. Let 𝛿 > 0. Denote by (𝑊𝑛)𝑛∈ℕ the sequence generated by SGD with 𝑤 ↦→
∇𝑤 𝑓DNN(𝑤) as objective function, step size 𝛼𝑛 ∈ Θ(𝑛−𝜃) for 𝜃 ∈ ( 12 , 1), and assume that 𝑓DNN is
analytic. LetW∗ be an isolated compact set of local minima with level 𝑙 = 𝑓DNN(𝑤∗) for all 𝑤∗ ∈ W∗
and suppose Assumption 2.12 is satisfied within W∗. Suppose that 𝛼𝑛 ≤ 𝛼1 for sufficiently small
𝛼1 (depending on 𝛿), then there exist two subsets U,U1 of ℝ𝑑𝑤 such that𝑊1 ∈ U1 implies that the
event ΩU = {𝑊𝑛 ∈ U, for all 𝑛 ≥ 1} has probability at least 1− 𝛿. Moreover, there exists 𝛽 ∈ [ 12 , 1]
such that for any

𝜂 ∈
{(

max{2 − 2𝜃, 𝜃+2𝛽−22𝛽−1 }, 1
)

: 𝛽 ∈ ( 12 , 1]
(2 − 2𝜃, 1) : 𝛽 = 1

2

it holds that | 𝑓DNN(𝑊𝑛) − 𝑙 |1Ω ∈ 𝑜
(
𝑛𝜂−1

) almost surely and in expectation.
In words: If the iterates of SGD reach a certain area around a local minimum, they are likely to
become trapped in that region with high probability, provided that the step size is sufficiently
small. This results shows that, under very general conditions, SGD converges to local minima
and furthermore quantifies the convergence speed.
Remark 6.21. One may similarly apply Theorem 6.16 in the training of DNNs to derive conver-
gence towards a global minimum with high probability provided that the initial loss 𝑓DNN(𝑋1)
and initial step size 𝛼1 are sufficiently small.

6.7 Application in Policy Gradient

We will see in this section how the non-uniform gradient domination property for tabular softmax
PG implies a local gradient domination property around the global optimum. We consider the
case of infinite-horizon discounted MDPs with and without entropy regularization and in the
case of finite-time MDPs.

Infinite-time horizon discounted MDPs. Let (S,𝒜, 𝛾, 𝑟, 𝑝) be a discounted MDP with finite
state and action space and discount factor 𝛾 ∈ [0, 1). Further, we assume that the rewards are
bounded in [0, 1]. Consider the stationary tabular softmax policy for parameter 𝑤 ∈ ℝ |S | |𝒜 | 1,
i.e.

𝜋𝑤(𝑎|𝑠) =
exp(𝑤(𝑠, 𝑎))∑

𝑎′∈𝒜𝑠
exp(𝑤(𝑠, 𝑎′)) , ∀𝑠 ∈ S, 𝑎 ∈ 𝒜.

Then, for an initial state distribution 𝜇, recall that the value function under this parametrization
is given by

𝑉𝜋𝑤 (𝜇) = 𝔼
𝜋𝑤
𝜇

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑆𝑡, 𝐴𝑡)
]

and the optimal value function is denoted by 𝑉∗(𝜇) . In order to maximize the objective we use
stochastic gradient ascent as in Algorithm 2, with unbiased gradient estimator in equation (3.11).
Note that this stochastic first order oracle meets the conditions required in Assumption 2.12
with 𝐴 = 𝐵 = 0 [Zha+20, see]. Moreover, the following non-uniform weak gradient domination
property holds for this optimization problem [Lemma 3.19]: For every 𝑤 ∈ ℝ |S |× |𝒜 | it holds that

∥∇𝑤𝑉𝜋𝑤 (𝜇)∥2 ≥ 𝑐(𝑤) (𝑉∗(𝜇) − 𝑉𝜋𝑤 (𝜇))),
1We use parameter 𝑤 instead of 𝜃 in this section, as 𝜃 is already used in the step size schedule.
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with non-constant 𝑐(𝑤) = min𝑠∈S 𝜋𝑤 (𝑎∗ (𝑠) |𝑠)√
|S | (1−𝛾)




 𝑑𝜋∗𝜇𝜇 


−1
∞
, where 𝑎∗(𝑠) denotes the (w.l.o.g. unique)

best possible action in state 𝑠.
We prove that this non-uniform weak gradient domination property implies local gradient
domination with 𝛽 = 1.

Lemma 6.22. There exists 𝑟, 𝑐 > 0 such that for all 𝑤 ∈ B∗𝑟 = {𝑤 : 𝑉∗(𝜇) − 𝑉𝜋𝑤 (𝜇) ≤ 𝑟} it holds
that 𝑐(𝑤) ≥ 𝑐.

Proof. Define the optimal reward gap in every state 𝑠 ∈ S by

Δ∗(𝑠) = 𝑄∗(𝑠, 𝑎∗(𝑠)) − max
𝑎≠𝑎∗ (𝑠)

𝑄∗(𝑠, 𝑎) > 0,

where 𝑎∗(𝑠) denotes the best possible action in state 𝑠 and 𝑄∗ : S × 𝒜→ ℝ denotes the optimal
Q-function defined by 𝑄∗(𝑠, 𝑎) = 𝔼𝜋

∗
𝜇 [

∑∞
𝑡=0 𝛾

−𝑡𝑟(𝑆𝑡, 𝐴𝑡) |𝐴0 = 𝑎]. W.l.o.g. we assume that 𝑎∗(𝑠) is
unique. Similarly let 𝑄𝜋𝑤 (𝑠, 𝑎) = 𝔼

𝜋𝑤
𝜇 [

∑∞
𝑡=0 𝛾

−𝑡𝑟(𝑆𝑡, 𝐴𝑡) |𝐴0 = 𝑎] be the Q-function for policy 𝜋𝑤.
For any 0 < 𝛼 < 1 choose 𝑟 = min𝑠∈S 𝜇(𝑠)min𝑠∈S Δ∗(𝑠) (1 − 𝛼) and assume that 𝑤 ∈ B∗𝑟 , i.e.
𝑉∗(𝜇) − 𝑉𝜋𝑤 (𝜇) ≤ 𝑟. Then, we have for every 𝑠 ∈ S that

𝑉∗(𝛿𝑠) − 𝑉𝜋𝑤 (𝛿𝑠) ≤
𝑟

min𝑠∈S 𝜇(𝑠)
.

It follows for every 𝑠 ∈ S that
𝑟

min𝑠∈S 𝜇(𝑠)
≥ 𝑉∗(𝛿𝑠) − 𝑉𝜋𝑤 (𝛿𝑠)

= 𝑄∗(𝑠, 𝑎∗(𝑠)) −
∑︁
𝑎∈𝒜𝑠

𝜋𝑤(𝑎|𝑠)𝑄𝜋𝑤 (𝑠, 𝑎)

≥
∑︁
𝑎∈𝒜𝑠

𝜋𝑤(𝑎|𝑠) (𝑄∗(𝑠, 𝑎∗(𝑠)) − 𝑄∗(𝑠, 𝑎))

=
∑︁

𝑎≠𝑎∗ (𝑠)
𝜋𝑤(𝑎|𝑠) (𝑄∗(𝑠, 𝑎∗(𝑠)) − 𝑄∗(𝑠, 𝑎))

≥ (1 − 𝜋𝑤(𝑎∗(𝑠) |𝑠)min
𝑠

Δ∗(𝑠).

Rearranging results in

𝜋𝑤(𝑎∗(𝑠) |𝑠) ≥ 1 − 𝑟

min𝑠∈S 𝜇(𝑠)min𝑠∈S Δ∗(𝑠)
= 𝛼.

Hence, for all 𝑤 ∈ B∗𝑟 we can bound 𝑐(𝑤) by

𝑐(𝑤) ≥ 𝛼√︁
|S| (1 − 𝛾)




𝑑𝜋∗𝜇
𝜇




−1
∞

> 0.

Thus, setting 𝑐 = 𝛼√
|S | (1−𝛾)




 𝑑𝜋∗𝜇𝜇 


−1
∞

proves the claim. ■

As the objective function 𝑤 ↦→ 𝑉𝜋𝑤 (𝜇) is smooth and moreover Lipschitz on ℝ |S | |𝒜 | [YGL22, Lem.
E.1], all assumptions in Theorem 6.16 are satisfied and we obtain the following result.
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Corollary 6.23. Let 𝛿 > 0. Denote by (𝑤𝑛) the sequence generated by SGD with 𝑤 ↦→ −𝑉𝜋𝑤 (𝜇)
as objective function, step size 𝛼𝑛 ∈ Θ(𝑛−𝜃) for 𝜃 ∈ ( 12 , 1) and suppose 𝛼𝑛 ≤ 𝛼0 for sufficiently
small 𝛼0 (depending on 𝛿). Then, there exist two subsets U,U1 of ℝ |S | |𝒜 | such that 𝑤0 ∈ U1
implies that the event ΩU = {𝑤𝑛 ∈ U, for all 𝑛 ≥ 0} has probability at least 1 − 𝛿. Moreover, for
any 𝜂 ∈ (max{2 − 2𝜃, 𝜃}, 1) it holds that (𝑉∗(𝜇) − 𝑉𝜋𝑤𝑛 (𝜇))1Ω ∈ 𝑜

(
𝑛𝜂−1

) almost surely and in
expectation.

To the best of our knowledge, Corollary 6.23 present the first local analysis for stochastic policy
gradient without regularization.
In words: If the stochastic policy gradient algorithm is started close enough to the optimum a
nearly 𝑜(𝑛− 1

3 ) almost sure rate of convergence can be obtained by choosing 𝜃 = 2
3 (in contrast to

𝑜(𝑛−1) in policy gradient with access to exact gradients).

Infinite-time horizon discounted MDPs with entropy regularization. In the following, we
apply Theorem 6.16 also to the entropy regularized setting, with regularization parameter 𝜆 > 0.
We will see that one can also achieve convergence arbitrarily close to 𝑜( 1

𝑛
) without the need for

an increasing batch size. Moreover, the local convergence occurs almost surely on an event with
high probability. Consider the regularized objective

𝑉
𝜋𝑤
𝜆
(𝜇) = 𝑉𝜋𝑤 (𝜇) − 𝜆𝔼𝜋𝑤𝜇

[ ∞∑︁
𝑡=0

𝛾𝑡 log(𝜋𝑤(𝐴𝑡 |𝑆𝑡)
]

(6.40)

and denote by 𝑉∗
𝜆
(𝜇) the global optimum. Due to regularization there exists a continuum of

optimal parameters 𝑤∗, such that 𝑉𝜋𝑤∗
𝜆
(𝜇) = 𝑉∗

𝜆
(𝜇). We will write 𝜋∗ = 𝜋𝑤∗ .

Ding, Zhang, and Lavaei [DZL23] present in Equation (4) a stochastic gradient estimator that
satisfies Assumption 2.12 with 𝐴 = 𝐵 = 0. Moreover, the following stronger non-uniform
PL-inequality holds [Mei+20, Lem. 15]: For every 𝑤 ∈ ℝ |S |× |𝒜 | it holds that

∥∇𝑤𝑉𝜋𝑤𝜆 (𝜇)∥2 ≥ 𝑐(𝑤)
1
2
[
𝑉∗𝜆 (𝜇) − 𝑉

𝜋𝑤
𝜆
(𝜇)

] 1
2 ,

with 𝑐(𝑤) = 2𝜆
|S | (1−𝛾) min𝑠 𝜇(𝑠)min𝑠,𝑎 𝜋𝑤(𝑎|𝑠)2




 𝑑𝜋∗𝜇𝜇 


−1
∞
. We prove that this implies a local strong

gradient domination property with 𝛽 = 1
2 in the following sense.

Lemma 6.24. There exists 𝑟, 𝑐 > 0 such that for all 𝑤 ∈ B∗
𝑟,𝜆

= {𝑤 : 𝑉∗
𝜆
(𝜇) − 𝑉𝜋𝑤

𝜆
(𝜇) ≤ 𝑟} it holds

that 𝑐(𝑤) ≥ 𝑐.

Proof. For any 𝛼 ∈ (0, 1) choose 𝑟 = 𝛼2 exp
(
−1
(1−𝛾)𝜆

)2
𝜆min𝑠 𝜇 (𝑠)

2ln2 and assume that 𝑤 ∈ B∗
𝑟,𝜆
. By

Ding, Zhang, and Lavaei [DZL23, Lem. 12] we have

|𝜋𝑤(𝑎|𝑠) − 𝜋∗(𝑎|𝑠) | ≤

√︄
2(𝑉∗

𝜆
(𝜇) − 𝑉𝜋𝑤

𝜆
(𝜇))ln2

𝜆min𝑠 𝜇(𝑠)

≤

√︄
2𝑟ln2

𝜆min𝑠 𝜇(𝑠)
= 𝛼 exp

(
−1

(1 − 𝛾)𝜆

)
≤ 𝛼min

𝑠,𝑎
𝜋∗(𝑎|𝑠).
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where the last inequality is due to Nachum et al. [Nac+17, Thm. 1]. It follows directly that

min
𝑠,𝑎

𝜋𝑤(𝑠, 𝑎) ≥ (1 − 𝛼)min
𝑠,𝑎

𝜋∗(𝑠, 𝑎) > 0.

Hence, we can bound 𝑐(𝑤) uniformly for all 𝑤 ∈ B∗
𝑟,𝜆

by

𝑐(𝑤) ≥ 2𝜆
|S| (1 − 𝛾) min

𝑠
𝜇(𝑠) (1 − 𝛼)2 min

𝑠,𝑎
𝜋∗(𝑎|𝑠)2




𝑑𝜋∗𝜇
𝜇




−1
∞
. (6.41)

Thus, setting 𝑐 = 2𝜆
|S | (1−𝛾) min𝑠 𝜇(𝑠) (1 − 𝛼)2 min𝑠,𝑎 𝜋∗(𝑎|𝑠)2




 𝑑𝜋∗𝜇𝜇 


−1
∞

proves the claim. ■

As 𝑤 ↦→ 𝑉
𝜋𝑤
𝜆

is also smooth and globally Lipschitz [DZL23] we deduce the convergence corollary.

Corollary 6.25. Let 𝛿 > 0. Denote by (𝑤𝑛) the sequence generated by SGD with 𝑤 ↦→ −𝑉𝜋𝑤
𝜆
(𝜇) as

objective function, step size 𝛼𝑛 ∈ Θ(𝑛−𝜃) for 𝜃 ∈ ( 12 , 1) and suppose 𝛼𝑛 ≤ 𝛼1 for sufficiently small
𝛼1 (depending on 𝛿). Then, there exist two subsets U,U1 of ℝ𝐻 |S | |𝒜 | such that 𝑤1 ∈ U1 implies
that the event ΩU = {𝑤𝑛 ∈ U, for all 𝑛 ≥ 0} has probability at least 1 − 𝛿. Moreover, for any
𝜂 ∈ (2 − 2𝜃, 1) it holds that (𝑉∗

𝜆
(𝜇) − 𝑉𝜋𝑤𝑛

𝜆
(𝜇))1Ω ∈ 𝑜

(
𝑛𝜂−1

) almost surely and in expectation.

In words: If the regularized stochastic policy gradient algorithm is started close enough to the
optimum a nearly 𝑜(𝑛−1) almost sure rate of convergence can be obtained by choosing 𝜃 close
to 1 (in contrast to linear convergence known in regularized policy gradient with access to exact
gradients).

Finite-time horizonMDPs. A similar result holds also for finite-time horizonMDPs, (H, S,𝒜, 𝑝, 𝑟),
with S, 𝒜, 𝑝, 𝑟 as before, but finite decision epochs H = {0, . . . , 𝐻 − 1} and no discounting
(𝛾 = 1). We consider the dynamic policy gradient algorithm in finite time (FT-DynPG) from
Chapter 4. Then, recall that the value function is given by

𝑉𝜋
W

0 (𝜇) = 𝔼𝜋
W

𝜇

[ 𝐻−1∑︁
ℎ=0

𝑟(𝑆ℎ, 𝐴ℎ)
]
,

where 𝜋W = (𝜋𝑤ℎ)𝐻−1
ℎ=0 the non-stationary tabular softmax parametrization, i.e. 𝑤ℎ ∈ ℝ |S |× |𝒜 |

𝜋𝑤ℎ (𝑎|𝑠) = exp(𝑤ℎ(𝑠, 𝑎))∑
𝑎′∈𝒜𝑠ℎ

exp(𝑤ℎ(𝑠, 𝑎′))
, ∀𝑠 ∈ S, 𝑎 ∈ 𝒜.

The objective functions

𝐽ℎ(𝑤ℎ, 𝜋(ℎ+1) , 𝜇ℎ) = 𝔼
(𝜋𝑤ℎ ,𝜋(ℎ+1) )
𝜇ℎ [

𝐻−1∑︁
𝑙=ℎ

𝑟(𝑆𝑙, 𝐴𝑙)]

are optimized backwards in time, given the already optimized fixed future policy 𝜋(ℎ+1) =
(𝜋ℎ)𝐻−1ℎ=ℎ+1. Let 𝐽

∗
ℎ
(𝜋(ℎ+1) , 𝜇ℎ) be the optimal value function given that the policy after ℎ is fixed
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by 𝜋(ℎ+1) . Then, the following non-uniform weak gradient domination holds for this optimization
problem (see Lemma 4.19): For all 𝑤ℎ ∈ ℝ |S |× |𝒜 | holds that

∥∇𝑤ℎ
𝐽ℎ(𝑤ℎ, 𝜋(ℎ+1) , 𝜇ℎ)∥2 ≥

min
𝑠∈S

𝜋𝑤ℎ (𝑎∗(𝑠) |𝑠) (𝐽∗ℎ (𝜋(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝑤ℎ, 𝜋(ℎ+1) , 𝜇ℎ)),

where 𝑎∗(𝑠) denotes the best possible action in state 𝑠 and is dependent on the fixed future
policy 𝜋(ℎ+1) . Again, w.l.o.g. 𝑎∗(𝑠) is unique and the following Lemma shows how 𝑐(𝑤ℎ) =
min𝑠∈S 𝜋𝜃ℎ (𝑎∗ |𝑠) can be bounded away from zero from below around the global optimum.

Lemma 6.26. Fix ℎ ∈ {0, . . . , 𝐻 − 1}. There exists 𝑐, 𝑟 > 0 such that for all 𝑤ℎ ∈ B∗
𝑟,ℎ

:= {𝑤ℎ :
𝐽∗
ℎ
(𝜋(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝑤ℎ, 𝜋(ℎ+1) , 𝜇ℎ) ≤ 𝑟} it holds that 𝑐(𝑤ℎ) ≥ 𝑐.

Proof. Define the optimal reward gap in every state 𝑠 ∈ S of epoch ℎ (given the fixed future
policies) by

Δ∗ℎ(𝑠) = 𝑄
𝜋(ℎ+1)
ℎ
(𝑠, 𝑎∗(𝑠)) − max

𝑎≠𝑎∗ (𝑠)
𝑄
𝜋(ℎ+1)
ℎ
(𝑠, 𝑎) > 0,

where 𝑎∗(𝑠) denotes the best possible action in state 𝑠 (given the fixed future policy). W.l.o.g.
we assume that this action is unique.
For any 0 < 𝛼 < 1, choose 𝑟 = min𝑠∈S 𝜇ℎ(𝑠)min𝑠∈S Δ∗ℎ(𝑠) (1 − 𝛼). Then, for 𝑤ℎ ∈ B∗

𝑟,ℎ
with

𝐽∗
ℎ
(𝜋(ℎ+1) , 𝜇ℎ) − 𝐽ℎ(𝑤ℎ, 𝜋(ℎ+1) , 𝜇ℎ) ≤ 𝑟 we have for every 𝑠 ∈ S that

𝐽∗ℎ (𝜋(ℎ+1) , 𝛿𝑠) − 𝐽ℎ(𝜃ℎ, 𝜋(ℎ+1) , 𝛿𝑠) ≤
𝑟

𝜇ℎ(𝑠)
≤ 𝑟

min𝑠∈S 𝜇ℎ(𝑠)
.

It follows for every 𝑠 ∈ S that

𝑟

min𝑠∈S 𝜇ℎ(𝑠)
≥ 𝐽∗ℎ (𝜋(ℎ+1) , 𝛿𝑠) − 𝐽ℎ(𝜃ℎ, 𝜋(ℎ+1) , 𝛿𝑠)

=

(
𝑄
𝜋(ℎ+1)
ℎ
(𝑠, 𝑎∗(𝑠)) −

∑︁
𝑎∈𝒜𝑠

𝜋𝜃ℎ (𝑎|𝑠)𝑄𝜋(ℎ+1)
ℎ
(𝑠, 𝑎)

)
=

∑︁
𝑎∈𝒜𝑠

𝜋𝜃ℎ (𝑎|𝑠)
(
𝑄
𝜋(ℎ+1)
ℎ
(𝑠, 𝑎∗(𝑠)) − 𝑄𝜋(ℎ+1)

ℎ
(𝑠, 𝑎)

)
=

∑︁
𝑎≠𝑎∗ (𝑠)

𝜋𝜃ℎ (𝑎|𝑠)
(
𝑄
𝜋(ℎ+1)
ℎ
(𝑠, 𝑎∗(𝑠)) − 𝑄𝜋(ℎ+1)

ℎ
(𝑠, 𝑎)

)
≥

∑︁
𝑎≠𝑎∗ (𝑠)

𝜋𝜃ℎ (𝑎|𝑠)Δ∗ℎ(𝑠)

=
(
1 − 𝜋𝜃ℎ (𝑎∗(𝑠) |𝑠)

)
Δ∗ℎ(𝑠)

≥
(
1 − 𝜋𝜃ℎ (𝑎∗(𝑠) |𝑠)

)
min
𝑠∈S

Δ∗ℎ(𝑠).

Rearranging results in

𝜋𝜃ℎ (𝑎∗(𝑠) |𝑠) ≥ 1 − 𝑟

min𝑠∈S 𝜇ℎ(𝑠)min𝑠∈S Δ∗ℎ(𝑠)
= 𝛼, ∀𝑠 ∈ S.
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Hence, for all 𝑤ℎ ∈ B∗𝑟,ℎ we can bound 𝑐(𝑤ℎ) by

𝑐(𝑤ℎ) ≥ 𝛼 > 0.

Thus, setting 𝑐 = 𝛼 proves the claim. ■

We deduce the following convergence result.

Corollary 6.27. Let 𝛿 > 0. Denote by (𝑤(𝑛)
ℎ
) the sequence generated by SGD with 𝑤ℎ ↦→

−𝐽ℎ(𝑤, 𝜋(ℎ+1) , 𝜇ℎ) as objective function, step size 𝛼(𝑛)
ℎ
∈ Θ(𝑛−𝜃) for 𝜃 ∈ ( 12 , 1) and suppose

𝛼
(𝑛)
ℎ

< 𝛼
(1)
ℎ

for sufficiently small 𝛼(1)
ℎ

(depending on 𝛿). Then, there exist two sets U,U1 ∈ 𝑅 |S | |𝒜 |

such that 𝑤(1)
ℎ
∈ U1 implies that ΩU = {𝑤(𝑛)

ℎ
∈ U, for all 𝑛 ≥ 0} occurs with probability at

least 1 − 𝛿. Moreover, for any 𝜂 ∈ (max{2 − 2𝜃, 𝜃}, 1) it holds that (𝐽ℎ(𝑤(𝑛)ℎ
, 𝜋(ℎ+1) , 𝜇ℎ) −

𝐽∗
ℎ
(𝜋(ℎ+1) , 𝜇ℎ))1Ω𝑛

∈ 𝑜
(
𝑛𝜂−1

) almost surely and in expectation.

In words: In every optimization loop of stochastic FT-DynPG, we converge almost surely to the
global optimum with rate 𝑜

(
𝑛−

1
3+𝜖

)
, when the initialization condition is fulfilled and the step

size schedule is chosen with 𝜃 = 2
3 .

Take aways. In all three cases we obtain almost sure convergence with high probability, without
the need of a large batch size.
Note also, that in all cases we obtain from the proofs of Lemma 6.22, Lemma 6.24 and
Lemma 6.26 that 𝑟 and 𝑐 can be explicitly chosen (depending on 𝛼). Hence, one can choose
the neighbourhoods U and U1 w.r.t. 𝑟 in Lemma 6.18 as in equation (6.31) and equation (6.32).
We obtain an explicit characterization of the neighbourhood U1 as condition for initialization.





Conclusion and Future Work

7We close this thesis by summarizing the discussed methods and giving a brief overview on
interesting future work.

Chapter 4

In Chapter 4, we have presented two PG methods for finite-time horizon MDPs and derived a
convergence analysis of under the tabular softmax parametrization. Assuming exact gradients
we have obtained an O(1/𝑛)-convergence rate for both approaches where the behavior regarding
the time horizon and the model-dependent constant 𝑐 is better in the dynamic approach than in
the simultaneous approach. In the model-free setting with estimated gradients, we have derived
complexity bounds to approximate the error to global optima with high probability. It would be
desirable to derive tighter bounds in the stochastic setting, using for example adaptive step sizes
or variance reduction methods that lead to more realistic batch sizes and step sizes. To partly
answer this question, we refer to Section 6.7, where we presented a local convergence analysis
without the need of a batch size.
Similar to many recent results, the presented analysis relied on the tabular parametrization.
However, the heuristic intuition from the policy gradient theorem does not, and the dynamic
programming perspective suggests that parameters should be trained backwards in time. It
would be interesting future work to see how this theoretical insight can be implemented in lower
dimensional parametrizations using for instance neural networks.

Chapter 5

We continued the thesis in Chapter 5 by transferring the observed results for finite-time MDPs
in the previous chapter to infinite-time horizon MDPs. As in this scenario a stationary optimal
policy is sufficient, it is not straight forwards to see if a dynamic approach can improve the
convergence behaviour of vanilla PG. We introduced DynPG, carried out a convergence analysis
and derived a sample complexity result under tabular softmax parametrization. It became clear
that indeed the model-dependent constant of vanilla PG can be omitted. We also discussed the
challenges when applying DynPG in practise and introduced DynAC and DynNPG as possible
modifications.
A natural extension of this work would be to examine the practical performance of DynPG or its
modifications. As in the finite-time horizon setting, it would be interesting to investigate how
DynPG works under different, more complex parametrizations and also in non-tabular MDPs.

Chapter 6

In Chapter 6, we zoomed out and considered the stochastic gradient descent method independent
of RL. We derived almost sure convergence rates under the global and local gradient domination
assumption. Finally, we concluded by applying the local results to supervised learning with
neural networks and to the previously analyzed PG methods.
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Asymptotic convergence of FT-SimPG

AWe prove asymptotic convergence of FT-SimPG under softmax parametrization towards the
global optimum. This result is used in the proof of Lemma 4.14.1

We use the extended notation of the state value, state-action value and advantage function
introduced in Remark 4.8. For the rest of the section, we will write 𝜃 instead of Θ, 𝜃𝑛 = Θ (𝑛)

and further 𝐽 (𝜃) or 𝐽∗ instead of 𝐽 (𝜃, 𝜇) or 𝐽∗(𝜇) to save notation.

Theorem A.1. Let 𝜇 be a probability measure such that 𝜇(𝑠) > 0 for all 𝑠 ∈ S and let 0 < 𝜂 ≤ 1
5𝐻2𝑅∗

.
Consider the sequence (𝜃(𝑛) ) generated by Algorithm 4 for arbitrary 𝜃(0) ∈ ℛ

∑
ℎ 𝑑ℎ . Then, for all

𝑠 ∈ S[H] we have 𝑉𝜋𝜃
(𝑛)
(𝑠) → 𝑉∗(𝑠) as 𝑛 → ∞. Especially we have 𝑉𝜋𝜃

(𝑛)

0 (𝑠) → 𝑉∗0 (𝑠) as 𝑛 → ∞
for all 𝑠 ∈ S0.
Before we can proof this result we have to prove a row of lemmata. The outline follows the proof
of Agarwal et al. [Aga+21, Theorem 5].

Lemma A.2 (Monotonicity). If the learning rate satisfies 0 < 𝜂 ≤ 1
𝐻2𝑅∗5 ≤

1
𝐻2𝑅∗

(
2− 1
|𝒜|

) = 1
𝛽
then

𝑉𝜋
𝜃𝑛+1 (𝑠) ≥ 𝑉𝜋

𝜃𝑛 (𝑠) and 𝑄𝜋𝜃𝑛+1 (𝑠, 𝑎) ≥ 𝑄𝜋𝜃𝑛 (𝑠, 𝑎) for all 𝑠 ∈ S[H] and all 𝑎 ∈ 𝒜. Furthermore,
there exist limits 𝑉∞(𝑠) and 𝑄∞(𝑠, 𝑎) such that

lim
𝑛→∞

𝑉𝜋
𝜃𝑛 (𝑠) = 𝑉∞(𝑠) < ∞.

lim
𝑛→∞

𝑄𝜋𝜃𝑛 (𝑠, 𝑎) = 𝑄∞(𝑠, 𝑎) < ∞.

Proof. We will show that 𝑉𝜋𝜃𝑛
ℎ
(𝑠) ≤ 𝑉𝜋

𝜃𝑛+1
ℎ
(𝑠) for each state 𝑠 ∈ S (in the not enlarged state

space) and each epoch ℎ. Then by the bounded reward assumption there exists 𝑉∞
ℎ
(𝑠) such

that 𝑉𝜋𝜃𝑛
ℎ
(𝑠) → 𝑉∞

ℎ
for 𝑛→∞. If this holds true we see the mononicity and convergence of the

Q-functions from the relation

𝑄𝜋𝜃

ℎ (𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +
∑︁
𝑠′∈S

𝑝(𝑠′ |𝑠, 𝑎)𝑉𝜋𝜃ℎ+1(𝑠
′),

with 𝑉𝐻 ≡ 0.
In order to show the claim we first see from the performance difference lemma, that

𝑉𝜋
𝜃𝑛+1

ℎ (𝑠) − 𝑉𝜋𝜃𝑛ℎ (𝑠) = 𝔼𝜋
𝜃𝑛+1

𝑆ℎ=𝑠

[ 𝐻−1∑︁
𝑡=ℎ

𝐴𝜋
𝜃𝑛

𝑡 (𝑆𝑡, 𝐴𝑡)
]

=
∑︁

𝑠𝑙∈S[H]
𝜌̃𝜋

𝜃𝑛+1
𝑠,ℎ (𝑠𝑙)

∑︁
𝑎∈𝒜

𝜋𝜃𝑛+1 (𝑎|𝑠𝑙)𝐴𝜋
𝜃𝑛 (𝑠𝑙, 𝑎),

where 𝜌̃𝜋𝜃𝑛+1
𝑠,ℎ
(𝑠𝑙) :=

∑𝐻−1
𝑡=ℎ ℙ𝜋𝜃𝑛+1

𝑆ℎ=𝑠
(𝑆𝑡 = 𝑠𝑙) the state visitation measure from epoch ℎ to 𝐻 − 1 on

the enlarged state space S[H] . Note that 𝜌̃𝜋𝜃𝑛+1
𝑠,ℎ
(𝑠𝑙) = 0 for 𝑙 < ℎ, as we cannot visit states from

previous epochs.
1This chapter contains the results in [KWD24, App. C].
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164 Appendix A. Asymptotic convergence of FT-SimPG

We will prove that
∑
𝑎∈𝒜 𝜋

𝜃𝑛+1 (𝑎|𝑠)𝐴𝜋𝜃𝑛 (𝑠, 𝑎) ≥ ∑
𝑎∈𝒜 𝜋

𝜃𝑛 (𝑎|𝑠)𝐴𝜋𝜃𝑛 (𝑠, 𝑎), for any 𝑠 ∈ S[H] . Then
the fact that

∑
𝑎∈𝒜 𝜋

𝜃𝑛 (𝑎|𝑠)𝐴𝜋𝜃𝑛 (𝑠, 𝑎) = 0 leads to the desired result.
Therefore, we consider the function

𝐹𝑠 (𝜃𝑠) :=
∑︁
𝑎∈𝒜

𝜋𝜃
𝑠 (𝑎|𝑠)𝑐(𝑠, 𝑎) 𝑠 ∈ S[H] ,

for 𝜃𝑠 = (𝜃(𝑠, 𝑎))𝑎∈𝒜 ∈ ℝ |𝒜 | . We will set 𝑐(𝑠, 𝑎) = 𝐴𝜋
𝜃𝑛

ℎ
(𝑠, 𝑎), but for 𝜃𝑛 fix, i.e. the following

derivatives with respect to 𝜃𝑠 of 𝐹 are independent of 𝐴𝜋𝜃𝑛 . From [Aga+21] Lemma C.2 we
know that

𝜕𝐹𝑠 (𝜃𝑠)
𝜕𝜃(𝑠, 𝑎)

���
𝜃𝑠𝑛

= 𝜋𝜃
(𝑛)
𝑠 (𝑎|𝑠)𝐴𝜋𝜃𝑛ℎ (𝑠, 𝑎). (A.1)

Furthermore, 𝐹𝑠 (𝜃𝑠) is 5𝐻𝑅∗-smooth for every 𝑠 by Lemma D.1 in [Aga+21] and the bounded
reward assumption. Considering our gradient ascent updates from simultaneous training we get

𝜃𝑛+1(𝑠, 𝑎) = 𝜃𝑛(𝑠, 𝑎) + 𝜂
𝜕𝑉𝜋

𝜃𝑛 (𝜇)
𝜕𝜃𝑛(𝑠, 𝑎)

(A.2)

= 𝜃𝑛(𝑠, 𝑎) + 𝜂𝜌̃𝜋
𝜃𝑛

𝜇 (𝑠)𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜋
𝜃𝑛 (𝑠, 𝑎) (A.3)

= 𝜃𝑛(𝑠, 𝑎) + 𝜂𝜌̃𝜋
𝜃𝑛

𝜇 (𝑠)
𝜕𝐹𝑠 (𝜃𝑠)
𝜕𝜃𝑛(𝑠, 𝑎)

���
𝜃𝑠𝑛

. (A.4)

As 𝜂𝜌̃𝜋𝜃𝑛𝜇 (𝑠) = 𝜂𝐻𝑑𝜋
𝜃𝑛

𝜇 (𝑠) and 𝑑𝜋
𝜃𝑛

𝜇 (𝑠) a probability measure we see that 𝜂𝜌̃𝜋𝜃𝑛𝜇 (𝑠) ≤ 1
5𝐻𝑅∗ by our

choice of 𝜂 ≤ 1
𝐻2𝑅∗5 . Then the descent lemma for the 5𝐻𝑅∗-smooth function 𝐹𝑠 gives the desired

inequality ∑︁
𝑎∈𝒜

𝜋𝜃𝑛+1 (𝑎|𝑠)𝐴𝜋𝜃𝑛 (𝑠, 𝑎) ≥
∑︁
𝑎∈𝒜

𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜋𝜃𝑛 (𝑠, 𝑎).

■

Remark A.3. We want to point out that the proof of Lemma A.2 is crucial for the choice of the
step size in the convergence analysis of the simultaneous PG algorithm. As we can only use
the descent lemma for a step size 0 < 𝜂 ≤ 1

5𝐻2𝑅∗
, we can only achieve asymptotic convergence

towards global minima under this assumption. Hence, we also need this step size requirement
in the convergence analysis.
We introduce the following definitions:

Δ = min
{ (𝑠,𝑎) ∈S[H]×𝒜 : 𝐴∞ (𝑠,𝑎)≠0}

|𝐴∞(𝑠, 𝑎) |

where 𝐴∞(𝑠, 𝑎) = 𝑄∞(𝑠, 𝑎) − 𝑉∞(𝑠).
We define the sets for each 𝑠 ∈ S[H]:

𝐼𝑠0 = {𝑎 ∈ 𝒜 | 𝑄
∞(𝑠, 𝑎) = 𝑉∞(𝑠)},

𝐼𝑠+ = {𝑎 ∈ 𝒜 | 𝑄∞(𝑠, 𝑎) > 𝑉∞(𝑠)},
𝐼𝑠− = {𝑎 ∈ 𝒜 | 𝑄∞(𝑠, 𝑎) < 𝑉∞(𝑠)}.

We aim to prove that 𝐼𝑠+ is an empty set, then 𝑉∞(𝑠) = 𝑉∗(𝑠) the optimal value function (epoch
wise true).
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Lemma A.4. There exists a time 𝑁1 > 0 such that for all 𝑛 > 𝑁1, and 𝑠 ∈ S[H] , we have

𝐴𝜃𝑛 (𝑠, 𝑎) < −Δ
4
for 𝑎 ∈ 𝐼𝑠−; 𝐴𝜃𝑛 (𝑠, 𝑎) > Δ

4
for 𝑎 ∈ 𝐼𝑠+.

Proof. Fix 𝑠 ∈ S[H] arbitrarily. As 𝑉𝜋𝜃𝑛 (𝑠) → 𝑉∞(𝑠) for 𝑛→∞ and S is finite, we have that there
exists 𝑁1 > 0 such that for all 𝑛 > 𝑁1 and 𝑠 ∈ S[H] ,

𝑉𝜋
𝜃𝑛 (𝑠) > 𝑉∞(𝑠) − Δ

4
.

It follows for all 𝑛 > 𝑁1, 𝑠 ∈ S[H] and 𝑎 ∈ 𝐼𝑠− by the definition of Δ:

𝐴𝜃𝑛 (𝑠, 𝑎) = 𝑄𝜃𝑛 (𝑠, 𝑎) − 𝑉𝜋𝜃𝑛 (𝑠) ≤ 𝑄∞(𝑠, 𝑎) − 𝑉∞(𝑠) + Δ

4
≤ −Δ + Δ

4
< −Δ

4
.

Similarly, for all 𝑛 > 𝑁1, 𝑠 ∈ S[H] and 𝑎 ∈ 𝐼𝑠+ we obtain from monotonicity Lemma A.2 and the
definition of Δ,

𝐴
𝜃𝑛
ℎ
(𝑠, 𝑎) = 𝑄𝜃𝑛 (𝑠, 𝑎) − 𝑉𝜋𝜃𝑛 (𝑠) ≥ 𝑄∞(𝑠, 𝑎) − Δ

4
− 𝑉∞(𝑠) ≥ Δ − Δ

4
>

Δ

4
.

■

Lemma A.5. It holds that 𝜕𝐽 (𝜃𝑛 )
𝜕𝜃𝑛 (𝑠,𝑎) → 0 as 𝑛 → ∞ for all 𝑠 ∈ S[H] , 𝑎 ∈ 𝒜𝑠. This implies that for

𝑎 ∈ 𝐼𝑠+ ∪ 𝐼𝑠−, 𝜋𝜃𝑛 (𝑎|𝑠) → 0 and that ∑𝑎∈ 𝐼𝑠0 𝜋
𝜃𝑛 (𝑎|𝑠) → 1 for 𝑛→∞.

Proof. From [Bec17, Theorem 10.15] we deduce for any 𝛽-smooth function 𝑓 : ℝ𝑑 → ℝ, that
∥∇ 𝑓 (𝑥𝑘)∥ → 0 for 𝑘 → ∞, if 𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇ 𝑓 (𝑥𝑘), when 𝜂 < 1

𝛽
. By Lemma 4.10 𝐽 (·) is

𝐻2𝑅∗(2 − 1
|𝒜 | )-smooth. It follows by our choice of 𝜂 < 1

5𝐻2𝑅∗
that 𝜕𝐽 (𝜃𝑛 )

𝜕𝜃𝑛 (𝑠,𝑎) → 0 as 𝑛→∞ for all
𝑠 ∈ S[H] , 𝑎 ∈ 𝒜𝑠. Now remember the derivative of the softmax parametrization in the stationary
case

𝜕𝐽 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

= 𝜌̃𝜋
𝜃𝑛

𝜇 (𝑠)𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛 (𝑠, 𝑎),

and by Lemma A.4 |𝐴𝜃𝑛 (𝑠, 𝑎) | > Δ
4 for all 𝑛 > 𝑁1 and 𝑎 ∈ 𝐼𝑠+ ∪ 𝐼𝑠−. As 𝜌̃𝜋

𝜃𝑛

𝜇 (𝑠) > 0 by assumption
on 𝜇 and the positivity of the softmax parametrization. It follows that 𝜋𝜃𝑛 (𝑎|𝑠) → 0 for 𝑛→∞
for all 𝑎 ∈ 𝐼𝑠+ ∪ 𝐼𝑠− from 𝜕𝐽 (𝜃𝑛 )

𝜕𝜃𝑛 (𝑠,𝑎) → 0 as 𝑛→∞.
The last claim,

∑
𝑎∈ 𝐼𝑠0 𝜋

𝜃𝑛 (𝑎|𝑠) → 1 for 𝑛→∞, follows immediately from
∑
𝑎∈𝒜𝑠

𝜋𝜃𝑛 (𝑎|𝑠) = 1 by:

lim
𝑛→∞

∑︁
𝑎∈ 𝐼𝑠0

𝜋𝜃𝑛 (𝑎|𝑠) = lim
𝑛→∞

(∑︁
𝑎∈𝒜

𝜋𝜃𝑛 (𝑎|𝑠) −
∑︁

𝑎∈ 𝐼𝑠+∪𝐼𝑠−

𝜋𝜃𝑛 (𝑎|𝑠)
)

= 1 −
∑︁

𝑎∈ 𝐼𝑠+∪𝐼𝑠−

lim
𝑛→∞

𝜋𝜃𝑛 (𝑎|𝑠)

= 1.

■
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Lemma A.6. For 𝑎 ∈ 𝐼𝑠+, the sequence (𝜃𝑛(𝑠, 𝑎))𝑛≥0 is strictly increasing for 𝑛 > 𝑁1 and for 𝑎 ∈ 𝐼𝑠−,
the sequence (𝜃𝑛(𝑠, 𝑎))𝑛≥0 is strictly decreasing for 𝑛 > 𝑁1.

Proof. With Lemma A.4 we know that for 𝑛 > 𝑁1

𝐴
𝜃𝑛
ℎ
(𝑠, 𝑎) > 0 for 𝑎 ∈ 𝐼𝑠+; 𝐴

𝜃𝑛
ℎ
(𝑠, 𝑎) < 0 for 𝑎 ∈ 𝐼𝑠−,

and by the derivative of the value function

𝜕𝐽 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

= 𝜌̃𝜋
𝜃𝑛

𝜇 (𝑠)𝜋𝜃𝑛 (𝑎|𝑠)𝐴
𝜃𝑛
ℎ
(𝑠, 𝑎).

As 𝜌̃𝜋𝜃𝑛𝜇 (𝑠) > 0 by the assumption 𝜇(𝑠) > 0 and the positivity of the softmax parametrization, we
have for all 𝑛 > 𝑁1

𝜕𝐽 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

> 0 for 𝑎 ∈ 𝐼𝑠+;
𝜕𝐽 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

< 0 for 𝑎 ∈ 𝐼𝑠− .

This implies for 𝑎 ∈ 𝐼𝑠+,
𝜃𝑛+1(𝑠, 𝑎) − 𝜃𝑛(𝑠, 𝑎) = 𝜂

𝜕𝐽 (𝜃𝑛)
𝜕𝜃(𝑠, 𝑎) > 0,

i.e. (𝜃𝑛(𝑠, 𝑎))𝑛≥0 is strictly increasing for 𝑛 > 𝑁1 and similar for 𝑎 ∈ 𝐼𝑠−,

𝜃𝑛+1(𝑠, 𝑎) − 𝜃𝑛(𝑠, 𝑎) = 𝜂
𝜕𝐽 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

< 0,

i.e. (𝜃𝑛(𝑠, 𝑎))𝑛≥0 is strictly decreasing for 𝑛 > 𝑁1. ■

Lemma A.7. For all 𝑠 ∈ S[H] where 𝐼𝑠+ ≠ ∅, we have that

max
𝑎∈ 𝐼𝑠0

𝜃𝑛(𝑠, 𝑎) → ∞ and min
𝑎∈𝒜

𝜃𝑛(𝑠, 𝑎) → −∞ for 𝑛→∞.

Proof. By assumption 𝐼𝑠+ ≠ ∅ there exists an 𝑎+ ∈ 𝐼𝑠+ and by Lemma A.5 we have 𝜋𝜃𝑛 (𝑎+ |𝑠) → 0,
as 𝑛→∞. Hence, by softmax parametrization this is equivalent to

exp(𝜃𝑛(𝑠, 𝑎+))∑
𝑎∈𝒜

exp(𝜃𝑛(𝑠, 𝑎))
→ 0, for 𝑛→∞.

Using Lemma A.6, i.e. 𝜃𝑛(𝑠, 𝑎+) is strictly increasing for 𝑛 > 𝑁1, we imply that exp(𝜃𝑛(𝑠, 𝑎+)) is
strictly increasing for 𝑛 > 𝑁1. This implies that∑︁

𝑎∈𝒜
exp(𝜃𝑛(𝑠, 𝑎)) → ∞, for 𝑛→∞.

Again by Lemma A.5 we know that∑︁
𝑎∈ 𝐼𝑠0

𝜋𝜃𝑛 (𝑎|𝑠) → 1, for 𝑛→∞,
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i.e. by definition ∑︁
𝑎∈ 𝐼𝑠0

exp(𝜃𝑛(𝑠, 𝑎))∑
𝑎′∈𝒜

exp(𝜃𝑛(𝑠, 𝑎′))
→ 1, for 𝑛→∞.

As
∑
𝑎′∈𝒜

exp(𝜃𝑛(𝑠, 𝑎′)) → ∞ it follows that∑︁
𝑎∈ 𝐼𝑠0

exp(𝜃𝑛(𝑠, 𝑎)) → ∞, for 𝑛→∞

implying

max
𝑎∈ 𝐼𝑠0

𝜃𝑛(𝑠, 𝑎) → ∞, for 𝑛→∞.

For the second claim it holds that∑︁
𝑎∈𝒜

𝜕𝐽 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

= 𝜌̃𝜋
𝜃𝑛

𝜇 (𝑠)
∑︁
𝑎∈𝒜

𝜋𝜃𝑛 (𝑎|𝑠) (𝑄𝜋𝜃𝑛

ℎ (𝑠, 𝑎) − 𝑉
𝜋𝜃𝑛

ℎ (𝑠))

= 𝜌̃𝜋
𝜃𝑛

𝜇 (𝑠) (𝔼𝜋
𝜃𝑛

𝑆ℎ=𝑠
[𝑄𝜋𝜃𝑛

ℎ (𝑠, 𝑎)] − 𝑉
𝜋𝜃𝑛

ℎ (𝑠))

= 𝜌̃𝜋
𝜃𝑛

𝜇 (𝑠) (𝑉𝜋
𝜃𝑛

ℎ (𝑠) − 𝑉
𝜋𝜃𝑛

ℎ (𝑠))
= 0.

By induction, we obtain
∑
𝑎∈𝒜 𝜃𝑛(𝑠, 𝑎) =

∑
𝑎∈𝒜 𝜃0(𝑠, 𝑎) := 𝑐 for every 𝑛 > 0 and hence

min
𝑎∈𝒜

𝜃𝑛(𝑠, 𝑎) <
∑︁
𝑎∈𝒜

𝜃𝑛(𝑠, 𝑎) −max
𝑎∈𝒜

𝜃𝑛(𝑠, 𝑎) = −max
𝑎∈𝒜

𝜃𝑛(𝑠, 𝑎) + 𝑐.

Since max𝑎∈𝒜 𝜃𝑛(𝑠, 𝑎) → ∞, because max𝑎∈ 𝐼𝑠0 𝜃𝑛(𝑠, 𝑎) → ∞, we conclude min𝑎∈𝒜 𝜃𝑛(𝑠, 𝑎) → −∞
for 𝑛→∞. ■

Lemma A.8. Suppose 𝑎+ ∈ 𝐼𝑠+. If there exists 𝑎 ∈ 𝐼𝑠0 such that for some 𝑛 > 𝑁1, 𝜋𝜃𝑛 (𝑎|𝑠) ≤ 𝜋𝜃𝑛 (𝑎+ |𝑠),
then for all 𝑚 > 𝑛 it holds that 𝜋𝜃𝑚 (𝑎|𝑠) ≤ 𝜋𝜃𝑚 (𝑎+ |𝑠).
Proof. Suppose there exists 𝑎 ∈ 𝐼𝑠0 such that for an 𝑛 > 0, 𝜋𝜃𝑛 (𝑎|𝑠) ≤ 𝜋𝜃𝑛 (𝑎+ |𝑠). We show that
𝜋𝜃𝑛+1 (𝑎|𝑠) ≤ 𝜋𝜃𝑛+1 (𝑎+ |𝑠), then the claim follows by induction. We have

𝜕𝐽ℎ(𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

= 𝜌̃𝜋
𝜃𝑛

𝜇 (𝑠)𝜋𝜃𝑛 (𝑎|𝑠) (𝑄𝜋𝜃𝑛

ℎ (𝑠, 𝑎) − 𝑉
𝜋𝜃𝑛

ℎ (𝑠))

≤ 𝜌̃𝜋
𝜃𝑛

𝜇 (𝑠)𝜋𝜃𝑛 (𝑎+ |𝑠) (𝑄𝜋𝜃𝑛

ℎ (𝑠, 𝑎+) − 𝑉
𝜋𝜃𝑛

ℎ (𝑠))

=
𝜕𝐽 (𝜃𝑛)

𝜕𝜃𝑛(𝑠, 𝑎+)
,

where the inequality follows with

𝑄𝜋𝜃𝑛

ℎ (𝑠, 𝑎+) ≥ 𝑄
∞
ℎ (𝑠, 𝑎+) −

Δ

4

≥ 𝑄∞ℎ (𝑠, 𝑎) + Δ −
Δ

4
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> 𝑄𝜋𝜃𝑛

ℎ (𝑠, 𝑎).

The first inequaility is due to Lemma A.4 and the second by the definition of Δ and 𝑎 ∈ 𝐼𝑠0. Now
by assumption we have 𝜋𝜃𝑛 (𝑎|𝑠) ≤ 𝜋𝜃𝑛 (𝑎+ |𝑠) and thus 𝜃𝑛(𝑠, 𝑎) ≤ 𝜃𝑛(𝑠, 𝑎+). It follows

𝜃𝑛+1(𝑠, 𝑎) = 𝜃𝑛(𝑠, 𝑎) + 𝜂
𝜕𝐽 (𝜃𝑛)
𝜕𝜃𝑛(𝑠, 𝑎)

≤ 𝜃(𝑠, 𝑎+) + 𝜂
𝜕𝐽 (𝜃𝑛)

𝜕𝜃𝑛(𝑠, 𝑎+)
= 𝜃𝑛+1(𝑠, 𝑎+).

■

Now define for every 𝑎+ ∈ 𝐼𝑠+ the set

𝐵𝑠0(𝑎+) = {𝑎 ∈ 𝐼
𝑠
0 |𝜋

𝜃𝑛 (𝑎+ |𝑠) ≤ 𝜋𝜃𝑛 (𝑎|𝑠) for all 𝑙 > 0}

and denote its complement in 𝐼𝑠0 as 𝐵𝑠0(𝑎+) = 𝐼𝑠0 \ 𝐵
𝑠
0(𝑎+).

Lemma A.9. Suppose 𝐼𝑠+ ≠ ∅. For all 𝑎+ ∈ 𝐼𝑠+, we have that 𝐵𝑠0(𝑎+) ≠ ∅ and∑︁
𝑎∈𝐵𝑠0 (𝑎+ )

𝜋𝜃𝑛 (𝑎|𝑠) → 1, as 𝑛→∞.

This implies:

max
𝑎∈𝐵𝑠0 (𝑎+ )

𝜃𝑛(𝑠, 𝑎) → ∞, for 𝑛→∞.

Proof. Let 𝑎+ ∈ 𝐼𝑠+ and consider 𝑎 ∈ 𝐵𝑠0(𝑎+). Then by definition of 𝐵𝑠0(𝑎+) there exists 𝑛
′ > 𝑁1 such

that 𝜋𝜃𝑛′ (𝑎+ |𝑠) ≥ 𝜋𝜃𝑛′ (𝑎|𝑠). Hence, by Lemma A.8 for all 𝑛 ≥ 𝑛′ we have 𝜋𝜃𝑛 (𝑎+ |𝑠) ≥ 𝜋𝜃𝑛 (𝑎|𝑠).
As 𝜋𝜃𝑛 (𝑎+ |𝑠) → 0 for 𝑛 → ∞. We obtain 𝜋𝜃𝑛 (𝑎|𝑠) → 0 for 𝑛 → ∞, for all 𝑎 ∈ 𝐵𝑠0(𝑎+).
Since by Lemma A.5

∑
𝑎∈ 𝐼𝑠0 𝜋

𝜃𝑛 (𝑎|𝑠) → 1 for 𝑛 → ∞, we have that 𝐵𝑠0(𝑎+) ≠ ∅ and that∑
𝑎∈𝐵𝑠0 (𝑎+ ) 𝜋

𝜃𝑛 (𝑎|𝑠) → 1, as 𝑛→∞. The second claim follows from this as in Lemma A.7. ■

Lemma A.10. Consider 𝑠 ∈ S ×H such that 𝐼𝑠+ ≠ ∅. Then, for any 𝑎+ ∈ 𝐼𝑠+, there exists an 𝑁𝑎+ such
that for all 𝑛 > 𝑁𝑎+ we have

𝜋𝜃𝑛 (𝑎+ |𝑠) > 𝜋𝜃𝑛 (𝑎|𝑠) for all 𝑎 ∈ 𝐵𝑠0(𝑎+).

Proof. For every 𝑎 ∈ 𝐵𝑠0(𝑎+) exists time 𝑛𝑎 such that

𝜋𝜃𝑛 (𝑎+ |𝑠) > 𝜋𝜃𝑛 (𝑎|𝑠) for all 𝑎 ∈ 𝐵𝑠0(𝑎+)

for all 𝑛 > 𝑛𝑎 by definition. Set 𝑁𝑎+ = max𝑎∈𝐵𝑠0 (𝑎+ ) 𝑛𝑎 and the proof is completed. ■

Lemma A.11. Assume again 𝐼𝑠+ ≠ ∅. For all actions 𝑎 ∈ 𝐼𝑠+, we have that 𝜃𝑛(𝑠, 𝑎) is bounded from
below as 𝑛→∞. And for all 𝑎 ∈ 𝐼𝑠−, we have that 𝜃𝑛(𝑠, 𝑎) → −∞ as 𝑛→∞.

Proof. The first claim follows directly with Lemma A.6 as 𝜃𝑛(𝑠, 𝑎) is strictly increasing for all
𝑎 ∈ 𝐼𝑠+, 𝑛 > 𝑁1, and thus for all 𝑛 > 𝑁1 we have 𝜃𝑛(𝑠, 𝑎) ≥ 𝜃𝑁1 (𝑠, 𝑎). Now suppose 𝑎 ∈ 𝐼𝑠−, then
by Lemma A.6 we have that 𝜃𝑛(𝑠, 𝑎) is strictly decreasing for 𝑛 > 𝑁1. Assume there exists 𝑏 such
that lim

𝑛→∞
𝜃𝑛(𝑠, 𝑎) = 𝑏, then 𝜃𝑛(𝑠, 𝑎) > 𝑏 for all 𝑛 > 𝑁1. By Lemma A.7 there exists an action
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𝑎′ ∈ 𝒜 such that 𝜃𝑛(𝑠, 𝑎′) → −∞ for 𝑛→∞. Consider 𝛿 > 0 such that 𝜃𝑁1 (𝑠, 𝑎′) ≥ 𝑏− 𝛿. Define
for all 𝑛 > 𝑁1

𝜏(𝑛) = max{𝑘 ∈ (𝑁1, 𝑛] : 𝜃𝑘 (𝑠, 𝑎′) ≥ 𝑏 − 𝛿}.

Define also

T (𝑛) =
{
𝜏(𝑛) < 𝑛′ < 𝑛 :

𝜕𝐽 (𝜃𝑛′)
𝜕𝜃𝑛′ (𝑠, 𝑎′)

≤ 0
}
,

as the set of all indices 𝑛′ in (𝜏(𝑛), 𝑛), where 𝜃𝑛′ (𝑠, 𝑎′) is decreasing. Next we define 𝑍𝑛 :=∑
𝑛′∈T (𝑛)

𝜕𝐽 (𝜃𝑛′ )
𝜕𝜃𝑛′ (𝑠,𝑎′ ) , then it holds that

𝑍𝑛 =
∑︁

𝑛′∈T (𝑛)

𝜕𝐽 (𝜃𝑛′)
𝜕𝜃𝑛′ (𝑠, 𝑎′)

≤
𝑛−1∑︁

𝑛′=𝜏(𝑛)+1

𝜕𝐽 (𝜃𝑛′)
𝜕𝜃𝑛′ (𝑠, 𝑎′)

≤
𝑛−1∑︁

𝑛′=𝜏(𝑛)

𝜕𝐽 (𝜃𝑛′)
𝜕𝜃𝑛′ (𝑠, 𝑎′)

+
��� 𝜕𝐽 (𝜃𝜏(𝑛) )
𝜕𝜃𝜏(𝑛) (𝑠, 𝑎′)

���.
By Lemma 4.9 and the bounded reward assumption we have��� 𝜕𝐽 (𝜃𝜏(𝑛) )

𝜕𝜃𝜏(𝑛) (𝑠, 𝑎′)

��� = 𝜌̃𝜋
𝜃𝜏(𝑛)

𝜇 (𝑠)𝜋𝜃𝜏(𝑛) (𝑎′ |𝑠) |𝐴𝜃𝜏(𝑛)
ℎ
(𝑠, 𝑎′) | ≤ 𝐻2𝑅∗.

Hence,

𝑍𝑛 ≤
𝑛−1∑︁

𝑛′=𝜏(𝑛)

𝜕𝐽 (𝜃𝑛′)
𝜕𝜃𝑛′ (𝑠, 𝑎′)

+ 𝐻2𝑅∗

=
1
𝜂
(𝜃𝑛(𝑠, 𝑎′) − 𝜃𝜏(𝑛) (𝑠, 𝑎′)) + 𝐻2𝑅∗

≤ 1
𝜂
(𝜃𝑛(𝑠, 𝑎′) − 𝑏 + 𝛿) + 𝐻2𝑅∗.

Then 𝜃𝑛(𝑠, 𝑎′) → −∞ for 𝑛→∞ implies that 𝑍𝑛 → −∞ for 𝑛→∞. As we chose 𝑎 ∈ 𝐼𝑠− it holds
that |𝐴𝜃𝑛

ℎ
(𝑠, 𝑎) | ≥ Δ

4 for 𝑛 > 𝑁1 with Lemma A.4 and so for all 𝑛′ ∈ T (𝑛) :����� 𝜕𝐽 (𝜃𝑛′ )
𝜕𝜃𝑛′ (𝑠,𝑎)
𝜕𝐽 (𝜃𝑛′ )
𝜕𝜃𝑛′ (𝑠,𝑎′ )

����� =
����� 𝜋𝜃𝑛′ (𝑎|𝑠)𝐴𝜃𝑛′ℎ

(𝑠, 𝑎)

𝜋𝜃𝑛′ (𝑎′ |𝑠)𝐴𝜃𝑛′
ℎ
(𝑠, 𝑎′)

�����
≥ 𝜋𝜃𝑛′ (𝑎|𝑠)
𝜋𝜃𝑛′ (𝑎′ |𝑠)

Δ

4𝐻𝑅∗

= exp(𝜃𝑛′ (𝑠, 𝑎) − 𝜃𝑛′ (𝑠, 𝑎′))
Δ

4𝐻𝑅∗
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≥ exp(𝑏 − (𝑏 − 𝛿)) Δ

4𝐻𝑅∗

= exp(𝛿) Δ

4𝐻𝑅∗
,

where we used in the last inequality that 𝜃𝑛′ (𝑠, 𝑎′) ≤ 𝑏 − 𝛿 for all 𝑛′ > 𝜏(𝑛) and 𝜃𝑛′ (𝑠, 𝑎) > 𝑏 for
all 𝑛′ > 𝑁1. By the definition of T (𝑛) these inequalities holds especially for all 𝑛′ ∈ T (𝑛) . Using
this we can imply that for all 𝑛 > 𝑁1 with T (𝑛) ≠ ∅,

1
𝜂

(
𝜃𝑁1 (𝑠, 𝑎) − 𝜃𝑛(𝑠, 𝑎)

)
=

𝑛−1∑︁
𝑛′=𝑁1+1

𝜕𝐽 (𝜃𝑛′)
𝜕𝜃𝑛′ (𝑠, 𝑎)

≤
∑︁

𝑛′∈T (𝑛)

𝜕𝐽 (𝜃𝑛′)
𝜕𝜃𝑛′ (𝑠, 𝑎)

≤ exp(𝛿) Δ

4𝐻𝑅∗
∑︁

𝑛′∈T (𝑛)

𝜕𝐽 (𝜃𝑛′)
𝜕𝜃𝑛′ (𝑠, 𝑎′)

= exp(𝛿) Δ

4𝐻𝑅∗
𝑍𝑛,

where the first inequality holds because 𝜃𝑛′ (𝑠, 𝑎) is strictly decreasing for 𝑛′ > 𝑁1, i.e.
𝜕𝐽 (𝜃𝑛′ )
𝜕𝜃𝑛′ (𝑠,𝑎) < 0

for all 𝑛′ ∈ {𝑁1 + 1, . . . , 𝑛 − 1}. In the second inequality we used����� 𝜕𝐽 (𝜃𝑛′ )
𝜕𝜃𝑛′ (𝑠,𝑎)
𝜕𝐽 (𝜃𝑛′ )
𝜕𝜃𝑛′ (𝑠,𝑎′ )

����� ≥ exp(𝛿) Δ

4𝐻𝑅∗
.

Note that 𝜕𝐽 (𝜃𝑛′ )
𝜕𝜃𝑛′ (𝑠,𝑎) < 0 and 𝜕𝐽 (𝜃𝑛′ )

𝜕𝜃𝑛′ (𝑠,𝑎′ ) < 0 for 𝑛′ ∈ T (𝑛) so that the sign of the inequality reverses.
Finally, we deduce from 𝑍𝑛 → −∞ that 𝜃𝑛(𝑠, 𝑎) → ∞ for 𝑛 → ∞, which is a contradiction to
𝜃𝑛(𝑠, 𝑎) strictly decreasing for all 𝑛 > 𝑁1. ■

Lemma A.12. Consider 𝑠 ∈ S[H] such that 𝐼𝑠+ ≠ ∅. Then for any 𝑎+ ∈ 𝐼𝑠+ it holds that∑︁
𝑎∈𝐵𝑠0 (𝑎+ )

𝜃𝑛(𝑠, 𝑎) → ∞, for 𝑛→∞.

Proof. Let 𝑎+ ∈ 𝐼𝑠+ and 𝑎 ∈ 𝐵𝑠0(𝑎+). Then by definition of 𝐵𝑠0(𝑎+) we have

𝜋𝜃𝑛 (𝑎+ |𝑠) ≤ 𝜋𝜃𝑛 (𝑎|𝑠)

for all 𝑛 > 0 and hence by softmax parametrization 𝜃𝑛(𝑠, 𝑎+) ≤ 𝜃𝑛(𝑠, 𝑎) for all 𝑛 > 0. By
Lemma A.11 we have that 𝜃𝑛(𝑠, 𝑎+) and thus also 𝜃𝑛(𝑠, 𝑎) is bounded from below for 𝑛→ ∞.
Together with

max
{𝑎∈𝐵𝑠0 (𝑎+ ) }

𝜃𝑛(𝑠, 𝑎) → ∞, for 𝑛→∞

by Lemma A.9 we deduce the claim. ■
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Finally, we are ready to prove the asymptotic convergence of simultaneous PG with tabular
softmax parametrization.

Proof of Theorem A.1. We have to show that 𝐼𝑠+ = ∅ for all 𝑠 ∈ S[H] . So assume there exists
𝑠 ∈ S[H] such that 𝐼𝑠+ ≠ ∅ and let 𝑎+ ∈ 𝐼𝑠+. Then by Lemma A.12 we have∑︁

𝑎∈𝐵𝑠0 (𝑎+ )
𝜃𝑛(𝑠, 𝑎) → ∞, for 𝑛→∞. (A.5)

For any 𝑎 ∈ 𝐼𝑠− we have by Lemma A.11 that

𝜋𝜃𝑛 (𝑎|𝑠)
𝜋𝜃𝑛 (𝑎+ |𝑠)

= exp(𝜃𝑛(𝑠, 𝑎)︸  ︷︷  ︸
→−∞

− 𝜃𝑛(𝑠, 𝑎+)︸    ︷︷    ︸
bounded from below

) → 0, 𝑛→∞.

Hence, there exists 𝑁2 > 𝑁1 such that for all 𝑛 > 𝑁2

𝜋𝜃𝑛 (𝑎|𝑠)
𝜋𝜃𝑛 (𝑎+ |𝑠)

<
Δ

16|𝒜|𝐻𝑅∗ ,

which leads for 𝑛 > 𝑁2 to

−𝐻𝑅∗
∑︁
𝑎∈ 𝐼𝑠−

𝜋𝜃𝑛 (𝑎|𝑠) > − Δ

16
𝜋𝜃𝑛 (𝑎+ |𝑠). (A.6)

Note that if 𝐼𝑠− = ∅ we can just ignore this sum later on.
Next consider 𝑎 ∈ 𝐵𝑠0(𝑎+) ⊂ 𝐼𝑠0. By the definition of 𝐼𝑠0 we have that 𝐴𝜃𝑛

ℎ
(𝑠, 𝑎) → 𝐴∞

ℎ
(𝑠, 𝑎) = 0 for

𝑛→∞. By Lemma A.10 we have for 𝑛 ≥ 𝑁𝑎+

1 <
𝜋𝜃𝑛 (𝑎+ |𝑠)
𝜋𝜃𝑛 (𝑎|𝑠)

.

Thus, there exists 𝑁3 > max{𝑁2, 𝑁𝑎+} such that for all 𝑛 ≥ 𝑁3

|𝐴𝜃𝑛
ℎ
(𝑠, 𝑎) | < 𝜋𝜃𝑛 (𝑎+ |𝑠)

𝜋𝜃𝑛 (𝑎|𝑠)
Δ

16|𝒜| .

This implies ∑︁
𝑎∈𝐵𝑠0 (𝑎+ )

𝜋𝜃𝑛 (𝑎|𝑠) |𝐴𝜃𝑛
ℎ
(𝑠, 𝑎) | < 𝜋𝜃𝑛 (𝑎+ |𝑠)

Δ

16

and so

−𝜋𝜃𝑛 (𝑎+ |𝑠)
Δ

16
<

∑︁
𝑎∈𝐵𝑠0 (𝑎+ )

𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛
ℎ
(𝑠, 𝑎) < 𝜋𝜃𝑛 (𝑎+ |𝑠)

Δ

16
, (A.7)

for all 𝑛 > 𝑁3. We can conclude again for 𝑛 > 𝑁3,

0 =
∑︁
𝑎∈𝒜

𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛
ℎ
(𝑠, 𝑎)
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=
∑︁

𝑎∈𝐵𝑠0 (𝑎+ )
𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛

ℎ
(𝑠, 𝑎) +

∑︁
𝑎∈𝐵𝑠0 (𝑎+ )

𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛
ℎ
(𝑠, 𝑎)

+
∑︁
𝑎∈ 𝐼𝑠+

𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛
ℎ
(𝑠, 𝑎) +

∑︁
𝑎∈ 𝐼𝑠−

𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛
ℎ
(𝑠, 𝑎)

>
∑︁

𝑎∈𝐵𝑠0 (𝑎+ )
𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛

ℎ
(𝑠, 𝑎) − 𝜋𝜃𝑛 (𝑎+ |𝑠)

Δ

16
+ 𝜋𝜃𝑛 (𝑎+ |𝑠)

Δ

4
− 𝐻𝑅∗

∑︁
𝑎∈ 𝐼𝑠−

𝜋𝜃𝑛 (𝑎|𝑠)

≥
∑︁

𝑎∈𝐵𝑠0 (𝑎+ )
𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛

ℎ
(𝑠, 𝑎) − 𝜋𝜃𝑛 (𝑎+ |𝑠)

Δ

16
+ 𝜋𝜃𝑛 (𝑎+ |𝑠)

Δ

4
− Δ

16
𝜋𝜃𝑛 (𝑎+ |𝑠)

>
∑︁

𝑎∈𝐵𝑠0 (𝑎+ )
𝜋𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛

ℎ
(𝑠, 𝑎),

where we used (A.7) and Lemma A.4 in the first inequality and (A.6) in the second inequality.
Finally, by our assumption and (A.5) for 𝑛 > 𝑁3,

∞ 𝑛→∞←−
∑︁

𝑎∈𝐵𝑠0 (𝑎+ )
(𝜃𝑛(𝑠, 𝑎) − 𝜃𝑁3 (𝑠, 𝑎))

= 𝜂

𝑛∑︁
𝑛′=𝑁3

∑︁
𝑎∈𝐵𝑠0 (𝑎+ )

𝜕𝐽 (𝜃𝑛′)
𝜕𝜃𝑛′ (𝑠, 𝑎)

= 𝜂

𝑛∑︁
𝑛′=𝑁3

𝜌̃𝜋
𝜃𝑛′

𝜇 (𝑠)
∑︁

𝑎∈𝐵𝑠0 (𝑎+ )
𝜋𝜃𝑛′ (𝑎|𝑠)𝐴𝜃𝑛′

ℎ
(𝑠, 𝑎),

which contradicts
∑
𝑎∈𝐵𝑠0 (𝑎+ ) 𝜋

𝜃𝑛 (𝑎|𝑠)𝐴𝜃𝑛
ℎ
(𝑠, 𝑎) < 0 for all 𝑛 > 𝑁3. ■
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