
Göttlich et al. Journal of Mathematics in Industry (2025) 15:1
https://doi.org/10.1186/s13362-024-00166-5

R E S E A R C H Open Access

Using low-discrepancy points for data
compression in machine learning: an
experimental comparison
S. Göttlich1* , J. Heieck1 and A. Neuenkirch1

*Correspondence:
goettlich@math.uni-mannheim.de
1Department of Mathematics,
University of Mannheim, 68131
Mannheim, Germany

Abstract
Low-discrepancy points (also called Quasi-Monte Carlo points) are deterministically
and cleverly chosen point sets in the unit cube, which provide an approximation of
the uniform distribution. We explore two methods based on such low-discrepancy
points to reduce large data sets in order to train neural networks. The first one is the
method of Dick and Feischl (J Complex 67:101587, 2021), which relies on digital nets
and an averaging procedure. Motivated by our experimental findings, we construct a
second method, which again uses digital nets, but Voronoi clustering instead of
averaging. Both methods are compared to the supercompress approach of (Stat Anal
Data Min ASA Data Sci J 14:217–229, 2021), which is a variant of the K-means
clustering algorithm. The comparison is done in terms of the compression error for
different objective functions and the accuracy of the training of a neural network.

Mathematics Subject Classification: 41A99; 65C05; 65D15; 68T07

Keywords: Data reduction; Low-discrepancy points; Quasi-Monte Carlo; Digital nets;
K-means algorithm; Neural networks

1 Introduction
Data reduction is a classical technique that reduces the size of a dataset while still preserv-
ing the most important information. Concepts and methods in this field include Core-
Sets [7], support points [19] and random subsampling [18], to mention a few. However,
low-discrepancy points and quasi Monte Carlo-techniques seem to have received little
attention in this context so far. They were used to create training data points for learn-
ing surrogate models in urban traffic by [4] and also similarly in [17, 20] for a variety of
applications, including several types of partial differential equations. Dick and Feischl [5]
proceeded differently, namely by using low-discrepancy points to compress known data
for the training of neural networks. This work was the starting point of our study.

We assume that the original data, denoted by X , is a set of N points in [0, 1)s. The cor-
responding responses, denoted by Y , are a set of N points in R. The objective is to predict
the relationship between the s attributes of the data points from X and the single attribute
of the responses in Y . This is achieved through the use of a parametrized predictor func-
tion fθ : [0, 1)s →R where θ ∈ � ⊆R

p. The quality of the predictor function fθ is measured

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13362-024-00166-5
https://crossmark.crossref.org/dialog/?doi=10.1186/s13362-024-00166-5&domain=pdf
https://orcid.org/0000-0002-8512-4525
mailto:goettlich@math.uni-mannheim.de
http://creativecommons.org/licenses/by/4.0/

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 2 of 24

by the ℓ2-distance between the predicted value fθ (xn) and the actual value yn for each in-
stance n = 1, . . . , N , which is a classical approach for such regression problems. Hence, the
error of the predictor fθ is defined as

err
(
fθ
)

:=
1
N

N∑

n=1

(
fθ (xn) – yn

)2 . (1.1)

To identify an optimal value for θ , which can be chosen from the set �, it may be nec-
essary to evaluate the error function (or potentially its derivatives ∇m

θ err
(
fθ
)
, for values of

m ∈N) on a number of occasions, resulting in a cost that is proportional to

#optimisation steps × #data points
︸ ︷︷ ︸

=N

.

To reduce this cost, one can use a compressed data set, denoted by P = {z1, . . . , zL} ⊂
[0, 1)s with L � N , in combination with an approximation of the quadratic loss function
(1.1).

In the case of P resulting from the supercompress method from [14] or the QMC-
Voronoi-method, each compressed data point will be assigned to a corresponding (ap-
proximate) response, denoted by W = {w1, . . . , wL}. The approximation of the quadratic
loss function is then given by

err(fθ) ≈ appclst
L (fθ) :=

1
L

L∑

l=1

(
fθ (zl) – wl

)2 . (1.2)

Both approaches rely on clustering, hence we use the label clst for the approximate error
function.

The approach of Dick and Feischl [5] proceeds in a different way. Here, for the reduced
set of responses P, weights

{
WX ,P,ν,l

}L
l=1 and

{
WX ,Y ,P,ν,l

}L
l=1 ⊂ R are computed and the

approximation of the loss is given by

err(fθ) ≈ appavg
L (fθ) :=

L∑

l=1

f 2
θ (zl)WX ,P,ν,l – 2

L∑

l=1

fθ (zl)WX ,Y ,P,ν,l +
1
N

N∑

n=1

y2
n. (1.3)

Here ν is a parameter, which will be explained later on. Since the calculation of the weights
relies on an averaging procedure, we use the label avg for the approximate error function.

The reduced points sets, approximate responses and weights are all independent of θ ,
which implies that they can be calculated once at the outset and subsequently reused
throughout the optimization process. Since L � N , the cost is now proportional to

#optimisation steps × #compressed data points
︸ ︷︷ ︸

=L

.

In order to compare the approaches, we will first apply them to some given and fixed
functions f instead of fθ , see Sect. 4.1, and will study the error of the approximate loss
functions.

In a second step, we will compare the performance of the methods, when used for fitting
neural networks. To this end, we will train a neural network with the original data X and

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 3 of 24

Y and then compare the prediction accuracy of the original data with that of the neural
network trained with the compressed set. This will be done for the MNIST data set [16],
as proposed in [5]. Our experiments support the hypothesis that for the studied problems
the adaptive clustering from the supercompress approach is superior to the QMC-Voronoi
method, which again performs better than the QMC-averaging approach.

The remainder of this manuscript is structured as follows: In the next section, we will
give a short motivation, why low-discrepancy point sets could be beneficial for data re-
duction in regression problems. In Sect. 3 we describe the different data compression ap-
proaches, while Sect. 4 contains our numerical experiments. Our detailed findings and
conclusion can be found in Sect. 5.

2 Low-discrepancy point sets and regression
We start by introducing the concept of low-discrepancy point sets and some correspond-
ing results. See, e.g. Chap. 2 in [22] for further information. Let P = {x1, . . . , xN } ⊂ [0, 1)s

and

A ([a, b),P) =
N∑

n=1

1[a,b) (xn) ,

where 1[a,b) is the characteristic function of the interval [a, b) =
∏s

i=1[ai, bi). Hence,
A ([a, b),P) is the number of the points of P , which belong to [a, b). The discrepancy
DN of the point set P is then defined as

DN (P) = sup
a,b∈[0,1]s

a≤b

∣
∣∣∣
A([a, b),P)

N
– λs([a, b))

∣
∣∣∣

and measures the deviation of the empirical distribution of the points in P from the uni-
form distribution λs. A related quantity is the so-called star-discrepancy

D∗
N (P) = sup

a∈[0,1]s

∣∣
∣∣
A([0, a),P)

N
– λs([0, a))

∣∣
∣∣ .

Point sets P with small (star-)discrepancy are suitable for the numerical integration of
functions g : [0, 1]s →R. In particular, if g is continuous we have the error bound

∣∣
∣∣
∣

1
N

N∑

i=1

g(xi) –
∫

[0,1]s
g(u) du

∣∣
∣∣
∣
≤ 4w(g;D∗

N (x1, . . . , xN)1/s)

with the modulus of continuity

w(g; δ) = sup
u,v∈[0,1]s
‖u–v‖∞≤δ

|g(u) – g(v)|, δ > 0.

Moreover, the famous Koksma-Hlawka inequality reads as

∣
∣∣∣
∣

1
N

N∑

i=1

g(xi) –
∫

[0,1]s
g(u) du

∣
∣∣∣
∣
≤ V (g)D∗

N (x1, . . . , xN). (2.1)

Here and in the following V (g) is the Hardy-Krause variation of g .

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 4 of 24

Now, let X be a random vector with values in [0, 1]s, Y be a random variable and fθ :
[0, 1]s → R with θ ∈ � ⊆ R

p. Finding the parameter θ , which minimizes the expected
prediction error

L(θ) = E|fθ (X) – Y |2,

is the classical L2-regression problem. The loss function (1.1), i.e.

err
(
fθ
)

:=
1
N

N∑

n=1

(
fθ (xn) – yn

)2 ,

can be seen as the empirical variant of the expected prediction error by assuming that
(xn, yn), n = 1, . . . , N , are independent and identically distributed realizations of (X, Y). If
(X, Y) has a joint Lebesgue-density ϕ : [0, 1]s × R → [0,∞) with marginal densities ϕX :
[0, 1]s → [0,∞) and ϕY : R → [0,∞), then we have

L(θ) =
∫

[0,1]s×R

|fθ (x) – y|2ϕ(x, y)d(x, y)

=
∫

[0,1]s
fθ (x)2ϕX(x)dx – 2

∫

[0,1]s×R

fθ (x)yϕ(x, y)d(x, y) +
∫

R

y2ϕY (y)dy.

Now using low-discrepancy points as the compressed data points P = {z1, . . . , zL} ⊂ [0, 1)s

for the dx-integration and the data from Y for the dy-integration, one obtains an approx-
imation of the form (1.3), i.e.

L(θ) ≈ appavg
L (fθ) =

L∑

l=1

f 2
θ (zl)WX ,P,ν,l – 2

L∑

l=1

fθ (zl)WX ,Y ,P,ν,l +
1
N

N∑

n=1

y2
n.

Thus, if the empirical loss function (1.1) is close to the expected prediction error L(θ),
which is reasonable if N is large, then appavg

L (fθ) should provide a good approximation of
(1.1).

3 Data compression methods
In this section we present the different compression algorithms and provide the principal
ideas of their implementation.

3.1 Quasi-Monte Carlo compression
Here we present the algorithm and results of [5], where digital nets, which are particular
(tα , m, s)-nets, are used as low-discrepancy sets. In the following, we assume that α ≥ 1 is
an integer and that b ≥ 2 is prime. For a vector d, |d| denotes its ℓ1-norm, while for a set
A, the notation |A| denotes its cardinality.

Definition 3.1 (e.g., p.5, [5]) For d ∈ N
s
0 we set Kd :=

{
a = (a1, . . . , as)

ᵀ ∈N
s
0 : aj < bdj

}
. A

point set P = {z1, . . . , zL} ⊂ [0, 1)s consisting of L = bm points is called a (tα , m, s)-net in base
b of order α, if every elementary interval Ia,d =

∏s
j=1

[
aj

bdj
, aj+1

bdj

)
with |d| = m – tα and a ∈ Kd

contains exactly btα points.

The idea behind such nets is to identify a set of points that is evenly distributed within
the unit cube [0, 1)s. It is essential that each elementary interval of size b–(m–tα) contains

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 5 of 24

Figure 1 (0, 4, 2)-net in base 2 (blue points)

an identical number of points. Figure 1 shows an example of a first order (0, 4, 2)-net in
base b = 2. The point set is well distributed for every partition of the unit square into
elementary intervals of size b–4 = 1

16 . This means that every interval contains the same
number of points.

For each (tα , m, s)-net P in base b of order α and for each ν ≤ m – tα , d ∈N
s
0 and a ∈ Kd ,

it can be shown that
∣∣Pa,d

∣∣ = bm–ν+q, where Pa,d denotes the set P intersected with Ia,d and
|d| = ν –q for q ∈ {0, . . . , min(s–1,ν)}. As mentioned in Chap. 2 of [5], this is a consequence
of Definition 3.1 and will be important for deriving the weights.

We need to introduce further notations. For y ∈ [0, 1)s, Id(y) describes the elementary
interval Ia,d , which contains y. We define the set of points that lie within the given elemen-
tary interval as follows:

Xa,d := X ∩ Ia,d , Xd(y) := X ∩ Id(y) and Pd(y) := P ∩ Id(y).

Furthermore, we define the set Kν as the union of all Kd for which d ∈ N
s
0 and |d| = ν .

The volume of each elementary interval is determined by the value of ν , which is used to
calculate the weights.

With these notations in hand, we state a Lemma, which will be used to calculate the
weights by an averaging procedure, and allows us to work with Kν . This is done in order
to include every partition of the unit cube, for which the elementary intervals exhibit the
same volume.

Lemma 3.2 (Lemma 1, [5]) Let ν ≥ 0 be an integer. For all a ∈N
s
0 the combination princi-

ple

1Kν (a) =
min(s–1,ν)∑

q=0

(–1)q
(

s – 1
q

) ∑

d∈Ns
0|d|=ν–q

1Kd (a)

holds. Here, 1A denotes the indicator function for an arbitrary set A.

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 6 of 24

Lemma 3.2 can be exploited to find an expression for the weights
{

WX ,P,ν,l
}L

l=1. In the
following, we assume that our data set is given by X = {x1, . . . , xN }, our responses by Y =
{

y1, . . . , yN
}

, our compressed data set by P = {z1, . . . , zL}, and that ν is fixed.
Firstly, we consider a fixed d ∈ N

s
0, which represents a fixed partition of the unit cube.

This allows us to derive the following approximation:

1
N

N∑

n=1

f 2
θ (xn) ≈

L∑

l=1

f 2
θ (zl)

|Xd (zl)|
N

1
|Pd (zl)| .

If the function fθ is constant on each of the elementary intervals provided by the fixed par-
tition, equality is achieved, since |Xd (zl)| is the number of data points from X , which are
in Id(zl), and |Pd (zl)| is the number of compressed data points from P, which are in Id(zl).
Consequently, dividing by this number removes multiple counting. For regular functions,
the approximation should perform well. Conversely, the greater the variation in function
values on each interval, the worse the approximation will be.

Rather than focusing on a single partition, [5] considers all partitions with volume b–ν .
Therefore, we must average over all partitions d ∈N

s
0 with |d| = ν and apply Lemma 3.2:

1
N

N∑

n=1

f 2
θ (xn) ≈

L∑

l=1

f 2
θ (zl)

min(s–1,ν)∑

q=0

(–1)q
(

s – 1
q

) ∑

d∈Ns
0|d|=ν–q

|Xd (zl)|
N

1
|Pd (zl)|

︸ ︷︷ ︸
=WX ,P,ν,l

.

The quality of this approximation depends strongly on P and ν , and its efficacy will be
evaluated at a later stage. For the time being, we merely motivate the selection of weights.
In the above equation the ratio

∣
∣Xd

(
zl
)∣∣

∣
∣Pd
(

zl
)∣∣ reflects the relevance of zl . The greater the number

of points in the set X that fall within the same elementary interval as the point zl for a
multitude of partitions, the higher the weight assigned to zl . Consequently, the quantity
f 2
θ (zl) will be of greater significance in the approximation.

Assuming that P is a (tα , m, s)-net in base b of order α, we can exploit the (tα , m, s)-net
property, namely the fact that

∣
∣Pa,d

∣
∣ = bm–ν+q, where |d| = ν – q for q ∈ {0, . . . , min(s – 1,ν)}.

This simplifies the weights to the following expression given in [5]:

WX ,P,ν,l =
bν–m

N

min(s–1,ν)∑

q=0

(–1)q
(

s – 1
q

)
1
bq

∑

d∈Ns
0|d|=ν–q

|Xd (zl)| . (3.1)

Note that in order to use this representation of the weights, it is necessary to ensure that
m – tα ≥ ν .

The derivation of the weights
{

WX ,Y ,P,ν,l
}L

l=1 is analogous. Once again, we consider a
fixed partition d ∈N

s
0 first and obtain an approximation:

1
N

N∑

n=1

ynfθ (xn) ≈
L∑

l=1

fθ (zl)
1
N

1
|Pd (zl)|

N∑

n=1
xn∈Id

(
zl
)

yn.

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 7 of 24

Considering all possible partitions with a volume of b–ν , the following result is obtained:

1
N

N∑

n=1

ynfθ (xn) ≈
L∑

l=1

fθ (zl)

min(s–1,ν)∑

q=0

(–1)q
(

s – 1
q

) ∑

d∈Ns
0|d|=ν–q

1
N

1
|Pd (zl)|

N∑

n=1
xn∈Id

(
zl
)

yn

︸ ︷︷ ︸
=WX ,Y ,P,ν,l

.

Once more, the quantity 1∣
∣Pd
(

zl
)∣∣
∑N

n=1,xn∈Id
(

zl
) yn represents the relevance of zl in the same

manner as previously. Concurrently, it shall approximate yn. The greater the number of
points in the same elementary interval as zl and the larger the response values yn, the
greater the influence of fθ (zl) in the approximation.

Again, if P is a (tα , m, s)-net in base b of order α and if m – tα ≥ ν , then the weights
simplify to

WX ,Y ,P,ν,l =
bν–m

N

min(s–1,ν)∑

q=0

(–1)q
(

s – 1
q

)
1
bq

∑

d∈Ns
0|d|=ν–q

N∑

n=1
xn∈Id

(
zl
)

yn. (3.2)

Figure 2 is a modified version of Fig. 1. The red crosses represent X , the blue points P.
For a given blue point, the ratio of points in X to points in P for that elementary interval is
calculated, which contains the blue point. It is necessary to consider all possible partitions,
as the ratio in question can vary considerably depending on the partition. This is illustrated
in Fig. 2.

3.1.1 Construction of digital nets
In this subsection, we will give a brief outline for the construction of the aforementioned
(tα , m, s)-nets. If constructed by the following methodology going back to Niederreiter’s
work [21], they are referred to as digital nets. We define the finite field with b elements,

Figure 2 (0, 4, 2)-net in base 2 (blue points) with point set X (red crosses)

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 8 of 24

denoted by Zb, as the set {0, 1, . . . , b – 1}. The addition and multiplication operations are
performed modulo b for which we use the notation x (mod b).

We start with the construction of (t1, m, s)-nets. Let C1, . . . , Cs ∈ Z
m×m
b be quadratic ma-

trices of size m, which will determine the (t1, m, s)-net. Then the j-th component zl,j of the
l-th point of the net is given as follows: Assume that the b-adic expansion of l – 1 is given
by
∑m–1

i=0 λibi and define the vector �λ := (λ0, . . . ,λm–1)
ᵀ ∈ Z

m
b . Furthermore, let the vector

�zl,j :=
(
zl,j,1, . . . , zl,j,m

)ᵀ ∈ Z
m
b be given by �zl,j ≡ Cj�λ (mod b). The final zl,j then is

zl,j =
zl,j,1

b
+ · · · +

zl,j,m

bm =
m∑

i=1

zl,j,i

bi .

The determining matrices C1, . . . , Cs must have suitable properties in order to obtain
(tα , m, s)-nets. An illustrative example is the case of the Faure matrices, which are defined
as follows:

Cj :=

⎛

⎜⎜⎜
⎜
⎝

(1
1
)
j1–1 (2

1
)
j2–1 (3

1
)
j3–1 · · · (m

1
)
jm–1

(1
2
)
j1–2 (2

2
)
j2–2 (3

2
)
j3–2 · · · (m

2
)
jm–2

...
...

...
...

...
(1

m
)
j1–m (2

m
)
j2–m (3

m
)
j3–m · · · (m

m
)
jm–m

⎞

⎟⎟⎟
⎟
⎠

(mod b).

Since
(n

k
)

= 0 for k > n, these are upper triangular matrices with ones on the diagonal.
Based on the determining matrices of (t1, m,αs)-nets, we can construct (tα , m, s)-nets

for α ≥ 2 in the following way. Let C1, . . . , Cαs ∈ Z
m×m
b be αs-many quadratic matrices

of size m, which determine a (t1, m,αs)-net. For the v-th row of Cu we will write (Cu)v,
where u = 1, . . . ,αs and v = 1, . . . , m. We then construct the matrices Dj, that determine a
(tα , m, s)-net, as

Dj :=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

(C(j–1)α+1)1
...

(Cjα)1
...

(C(j–1)α+1)m
...

(Cjα)m

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

, j = 1, . . . , s.

Similarly to the previous case, for each integer l ∈ {1, . . . , bm}, we define the vector �zl,j :=
Dj�λ (mod b), with �λ := (λ0, . . . ,λm–1)

ᵀ ∈ Z
m
b consisting of the coefficients of the b-adic ex-

pansion l – 1 =
∑m–1

i=0 λibi. Using �zl,j =
(
zl,j,1, . . . , zl,j,αm

)ᵀ ∈ Z
m
b , we finally obtain

zl,j =
zl,j,1

b
+ · · · +

zl,j,αm

bαm =
αm∑

i=1

zl,j,i

bi .

In the following we will use (t1, m, s)-nets generated by Sobol or Niederreiter-Xing ma-
trices [15, 23].

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 9 of 24

3.1.2 Error bounds
While the formulas (3.1) and (3.2) for the weights look computationally heavy, an advan-
tage of the QMC-averaging method is the availability of a rigorous (determinstic) error
bound.

To state these bounds, we need to introduce the following norms:

Definition 3.3 (p.12, p.14, [5])
(i) For a continuous function g : [0, 1]s →R, which is λs-almost everywhere once

partially differentiable with respect to each component, we define

‖g‖ :=
∑

u⊆{1,...,s}

∫

[0,1]|u|

∣∣∂zu g (zu, 1–u)
∣∣ dzu.

Here, ∂zu g (zu, 1–u) denotes the partial mixed derivative of order one for
components in u. The vector (zu, 1–u) for an arbitrary u ⊆ {1, . . . , s} is zj in its j-th
component, if j ∈ u, and 1 otherwise.

(ii) Let α ≥ 2 and 1 ≤ p < ∞ be integer. The p, α-norm of a function g : [0, 1]s →R,
which is α-times partially differentiable with respect to each component, is given by

∥∥g
∥∥p

p,α :=
∑

u⊆{1,...,s}

∑

v⊆u

∑

τ∈{1,...,α–1}|u\v|

∫

[0,1]|v|

∣∣
∣∣
∣∣

∫

[0,1]s–|v|

⎛

⎝
∏

j∈v

∂α
zj

∏

j∈u\v

∂
τj
zj

⎞

⎠ g (z)dz{1,...,s}\v

∣∣
∣∣
∣∣

p

× dzv.

Here,
(∏

j∈v ∂α
zj

∏
j∈u\v ∂

τj
zj

)
g(z) denotes the partial mixed derivative of order α or τj

in the j-th coordinate.

Both norms appear naturally when dealing with Quasi-Monte Carlo integration, see e.g.
[6, 22].

In [5] several error bounds are given. Their proofs are based on the Koksma-Hlawka
inequality (2.1) and on a Walsh-series analysis (Appendix A in [6]). Optimizing the choice
of ν with respect to m and tα yields the following bounds (see Sect. 4.2 in [5]):

Theorem 3.4 (Corollary 12, [5]) Let P = {z1, . . . , zL} be a digital (t1, m, s)-net in base b with
L = bm and let ν = m

2 . Moreover, define ymax := maxn=1,...,N
∣∣yn
∣∣. Then, there exists a constant

Cs,b,t1,ymax > 0 such that

∣
∣err
(
fθ
)

– appavg
L
(
fθ
)∣∣

≤ Cs,b,t1,ymax

(∥
∥f 2

θ

∥
∥ +
∥
∥fθ
∥
∥ +
∥
∥f 2

θ

∥
∥

2,2 +
∥
∥fθ
∥
∥

2,2

)
logb(L)2s–1L– 1

2 . (3.3)

We now turn our attention to the case in which the order α is at least 2.

Theorem 3.5 (Corollary 14, [5]) Let P = {z1, . . . , zL} be a digital (tα , m, s)-net in base b of
order α ≥ 2. Moreover, let L = bm and ν = α

α+1 m and define ymax := maxn=1,...,N
∣
∣yn
∣
∣. Then,

there exists a constant Cα,s,b,tα ,ymax > 0 such that

∣∣err
(
fθ
)

– appavg
L
(
fθ
)∣∣≤ Cα,s,b,tα ,ymax

(∥∥f 2
θ

∥∥
2,α +

∥∥fθ
∥∥

2,α

)
logb(L)αsL– α

α+1 . (3.4)

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 10 of 24

The convergence order in the case of t1-nets is similar to Monte Carlo subsampling with
order 1/2, but the error bound has the advantage of being non-random in comparison
to Monte Carlo subsampling. For α ≥ 2 one even obtains the better convergence order
α/(1 + α) (up to logarithmic terms).

3.1.3 Implementation
The most complex part of the implementation is clearly to calculate the weights (3.1) and
(3.2). Here the quantities |Xd (zl)| and

∑N
n=1,xn∈Id

(
zl
) yn have to be computed for each el-

ementary interval with |d| = ν – q. In total, there are
(
ν–q+s–1

s–1
)

different vectors d, that
satisfy this property. Thus, for every value of l between 1 and bm and for each value of
0 ≤ q ≤ min (ν, s – 1), we need to determine the quantities Sr(zl) and Tr(zl) defined by

Sr(zl) :=
∑

d∈Ns
0|d|=r

|Xd (zl)| , Tr(zl) :=
∑

d∈Ns
0|d|=r

N∑

n=1

yn1Id
(

zl
) (xn) ,

where r = ν – q. In fact, if yn = 1 for n = 1, . . . , N , then the sum of indicator functions
∑N

n=1 1Id
(

zl
) counts the number of original data points, which are in the same elementary

interval as zl and we obtain Sr(z).
The following algorithm computes Tr(zl). In order to obtain Sr(zl), one just sets yn = 1

for n = 1, . . . , N .
The choice ij = 0 in line 4 will occur if none of the coefficients of the b-adic expan-

sions of zj and (xn)j are identical. The objective of Algorithm (W) is to identify the small-
est s-dimensional elementary interval, which has a length of at least b–r for each one-
dimensional elementary interval contained within it, and which includes z. This is accom-
plished for each data point xn. Given a specific xn, we count the number of vectors d ∈N

s
0

with |d| = r, such that xn is part of Id (zl). The numbers Nr,i := #
{

d ∈N
s
0 : |d| = r, d ≤ i

}

are universal, i.e. independent of the data and regression function, and can be computed
in advance. See [5] for a particular algorithm for this task, which leads to a total cost of
O(rsN) for Algorithm (W) with a storage space of order O(max(s, r)).

In order to calculate the weights, the following equation must be used:

WX ,Y ,P,ν,l =
bν–m

N

min(s–1,ν)∑

q=0

(–1)q
(

s – 1
q

)
1
bq Tν–q(zl).

Choosing Sν–q(zl) instead of Tν–q(zl) results in the weights WX ,P,ν,l . The cost of computing
all weights is of order O(bmms2N).

Algorithm (W) Calculation of Sr(z) and Tr(z) [5]

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 11 of 24

As we mentioned in the beginning, the weights are independent of θ . Therefore, if X , Y
and P remain constant throughout the optimization process, it is sufficient to calculate the
weights once at the outset. The procedure for fitting the neural network merely requires
updating

appavg
L (fθ) =

L–1∑

l=0

f 2
θ (zl)WX ,P,ν,l – 2

L–1∑

l=0

fθ (zl)WX ,Y ,P,ν,l +
1
N

N∑

n=1

y2
n (3.5)

in each optimization step. Assuming that f 2
θ and fθ can be evaluated with cost O(s), we

end up with cost of order O(Ls), rather than O(Ns), which is the cost if we use err
(
fθ
)
. We

require additional storage of O(L) for the weights and
∑N

n=1 y2
n. This suggests that training

the neural network with the compressed data set will be faster. However, it is not yet clear
how much time will be saved in the whole optimization procedure, due to the additional
effort required at the outset.

3.2 Supercompress method
A classical approach to deal with regression problems are K-nearest neighbors algorithms,
which in their simplest form estimate the regression function at a point z by averaging
the responses yi of the K data points xi, which are the K nearest points to z. See e.g. [3]
Chaps. 2 and 14 in [10]. These algorithms are not data reduction methods themselves.
However, data reduction can be achieved by incorporating clustering, which leads, e.g. to
the supercompress method proposed by [14].

The aim of the supercompress method is again to find a compressed point set P =
{z1, . . . , zK }, but instead of weights, one obtains the corresponding (approximate) re-
sponses W = {w1, . . . , wK }. This is achieved through a specific K-means clustering, which
does not employ a conventional clustering approach on the input space, but utilizes the re-
sponses Y . More precisely, the supercompress method aims to find the points {z1, . . . , zK }
such that the loss function

L =
K∑

j=1

Lj =
K∑

j=1

∑

i∈Ij

(
yi – wj

)2 (3.6)

with the approximate responses

wj =
1
∣∣Ij
∣∣
∑

i∈Ij

yi, j = 1, . . . , K , (3.7)

and the Voronoi-clusters

Ij =
{

i ∈ {1, . . . , N} :
∥
∥zj – xi

∥
∥

2 ≤ ∥∥zj′ – xi
∥
∥

2 for all j′ �= j
}

, j = 1, . . . , K , (3.8)

is minimized. In contrast, the classical K-means algorithm on the input space would find
the data points

{
z′

1, . . . , z′
K
}

and Voronoi-clusters I ′
1, . . . , I ′

K , which minimize the loss

L′ =
K∑

j=1

L′
j =

K∑

j=1

∑

i∈I′j

∥
∥z′

i – xi
∥
∥2 .

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 12 of 24

Algorithm (S) Calculation of supercompress data compression [14]

Although clustering on the input space is already known to be a NP-hard problem, see e.g.
[1], many fast algorithm exist, which converge at least to a local minimum. See e.g. [2]. For
practical implementation of the supercompress method, the authors of [14] propose the
following iterative K-means algorithm (see Algorithm (S)).

The initial step involves partitioning the input space X into two clusters using a K-
means approach. The loss for each cluster is then calculated according to the formula
Lj =

∑
i∈Ij

(
yi – wj

)2. The cluster with the higher loss is divided into two clusters based
on K-means on the input space once more. This results in two new clusters, each with a
center and a corresponding response. These two new clusters replace the old cluster with
the highest loss. The losses Lj for the two new clusters are updated. Then, the cluster with
the greatest loss is divided into two clusters in the same way as before. This procedure is
repeated until K clusters have been obtained. Each cluster has a center point, denoted by
zk , which is part of the compressed data, and a corresponding response, denoted by wk ,
which is contained in W .

In [14] the authors propose another, more robust algorithm by taking the convex com-
bination

L̃ = λ

K∑

j=1

∑

i∈Ij

∥∥zj – xi
∥∥2

2 + (1 – λ)
K∑

j=1

∑

i∈Ij

(
yi – wj

)2 . (3.9)

Here λ ∈ [0, 1] is a weight parameter quantifying the trade-off between the two terms.
When λ = 0, we return to the case of the original supercompress algorithm. If λ = 1, the
problem reduces to the traditional K-means problem. One can interpret this modified
criterion as a trade-off between a fully supervised reduction strategy (λ = 0), which fully
incorporates response information for data reduction, and a fully robust reduction strat-
egy (λ = 1), which reduces the data using only the input feature information. In particular,
a default choice of λ = 1/(s + 1) is suggested in [14]. This is motivated by the observation
that the objective function L̃ then becomes proportional to

K∑

j=1

∑

i∈Ij

1
s
∥
∥zj – xi

∥
∥2

2 +
K∑

j=1

∑

i∈Ij

(
yi – wj

)2 .

In order to optimize the new loss function L̃, it is possible to use Algorithm (S) with a
slight modification. This involves changing the yi’s to ỹi = yi

√
(1 – λ)/λ, and exchanging

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 13 of 24

the loss functions Lj with

L̃j =
∑

i∈Ij

(∥
∥zj – xi

∥
∥2

2 +
(
ỹi – wj

)2) .

We will refer to this more robust algorithm, which optimizes L̃, as robust supercompress.
Error estimates for this supercompress method in terms of the number K of compressed

points seem to be unknown. One can consider the standard K-means clustering as a sub-
optimal solution of a discrete quantization problem. For the latter the error of the optimal
quantization decays as o(K–1/d). See e.g. Chapter II.6 in [9]. Thus, we can expect at best a
similar behavior for the approximation of

err
(
fθ
)

:=
1
N

N∑

n=1

(
fθ (xn) – yn

)2

by

appclst
L (fθ) :=

1
K

K∑

k=1

(
fθ (zk) – wk

)2 .

3.3 QMC-Voronoi method
While testing the Quasi-Monte Carlo compression approach, we observed several phe-
nomena. To understand their source, in particular whether they are caused by the weights
or the digital nets, we tried a method which combines (unsupervised) clustering and the
use of digital nets. We call this method QMC-Voronoi method.

To construct the compressed data set for the QMC-Voronoi method, we start with a
digital net. Instead of calculating complex weights, we form clusters by using the Voronoi
diagram, see e.g. Section I.1 in [9], on the digital net. This implies that for each data point
x, the closest point z of the digital net P is identified based on the Euclidean distance, and
x is assigned to the Voronoi region of z. Hence, P represents the compressed set. For each
compressed point z, the corresponding response w is found by taking the average of the
corresponding responses of the data points x, which are in the Voronoi region of z. Conse-
quently, as for the supercompress method the error err(fθ) can therefore be approximated
by appclst

L (fθ). The above procedure is summarized in Algorithm (V), where we take K = bm

points for the compressed data set.

Algorithm (V) Calculation of QMC-Voronoi data compression

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 14 of 24

This method can be seen as a specific clustering on the input space X with prescribed
centers of the clusters, so we expect a behavior of the error similar or worse than for the
(robust) supercompression method.

4 Numerical results
Finally, we undertake a numerical comparison of the methods. We start by considering
three fixed functions f and compare err(f) with appavg

L (fθ) and appclst
L (fθ), respectively. Sub-

sequently, we train a neural network using the MNIST dataset [16] and compare the accu-
racy achieved with the different compression methods. All implementations can be found
in our Git repository [11].

4.1 Test functions
The following functions are taken from the virtual library [24]. For an input point x =
(x1, . . . , xs) ∈ [0, 1)s and vectors a = (a1, . . . , as) ∈R

s and u = (u1, . . . , us) ∈ [0, 1)s we define

f1 (x) := exp

(

–
s∑

i=1

ai |xi – ui|
)

. (4.1)

This function satisfies ‖f1‖ < ∞ as well as V (f1) < ∞, but has no higher regularity w.r.t.
‖ · ‖p.α for α ≥ 2, due to the involved absolute values. The second test function is given by

f2 (x) :=

⎧
⎨

⎩
0 if x1 > u1 or x2 > u2,

exp
(∑s

i=1 aixi
)

otherwise.
(4.2)

This function is discontinuous, so it has no regularity w.r.t. ‖ · ‖p,α and ‖ · ‖, but still has
finite Hardy-Krause variation, i.e. V (f2) < ∞. Finally, the so-called Zhou function is given
by

f3 (x) :=
10s

2

(
φ

(
10x –

10
3

)
+ φ

(
10x –

20
3

))
, (4.3)

where

φ (x) =
1

(2π)
s
2

exp

(
–

‖x‖2

2

)
.

This function satisfies V (f3) < ∞, ‖f3‖ < ∞ as well as ‖f3‖p,α < ∞ for any p ≥ 1 and α ≥ 2.
Note that these functions have different scales. For example, for s = 2 the second func-

tion attains values between zero and max{1, exp(a1u1)}max{1, exp(a2u2)}, while the first
one takes values between zero and one only. Finally, Zhou’s function contains values be-
tween zero and at most 7.9579. In the following we will choose u1 = · · · = us = 0.5 so that f1

is symmetric around the center of the unit cube and the discontinuity of f2 appears at the
same position. Furthermore we set a1 = · · · = as = 5. Thus the maximum value of f2 for s = 2
is (exp(2.5))2 ≈ 148.41, which is much larger than that of f1 and f3. For more information
and illustrations of these functions, see [24].

For evaluating the different compression methods, a total of N = 3000 uniformly dis-
tributed points are sampled in the interval [0, 1)s. For each point, the function is evalu-
ated and an independent perturbation from the N (0, 0.02)-distribution is added. Subse-
quently, the compressed point set P is generated with L = K points, where L is selected

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 15 of 24

Table 1 average error (top row supercompress, bottom row QMC-averaging)

Compression rate N s K f1 f2 f3

1% 3000 2 25 3, 1054 · 10–4 2, 2135 · 104 4, 86 · 10–2
2, 24 · 10–2 4, 4712 · 104 3, 5859 · 100

4% 3000 2 27 3, 3239 · 10–4 1, 2331 · 103 2, 5 · 10–3
1, 37 · 10–2 2, 0453 · 104 2, 0974 · 100

9% 3000 2 28 2, 5366 · 10–4 2, 9351 · 102 5, 98 · 10–4
1, 9 · 10–3 6, 9552 · 103 1, 1437 · 100

17% 3000 2 29 1, 7051 · 10–4 8, 7618 · 101 1, 2786 · 10–4
1, 9 · 10–3 6, 4545 · 103 1, 1702 · 100

34% 3000 2 210 1, 0473 · 10–4 1, 9970 · 101 1, 5783 · 10–5
2 · 10–3 8, 2950 · 103 4, 878 · 10–1

Table 2 average error for f2 for differently scaled function values

Compression rate N s K No scale Scale 1

9% 3000 2 28 2, 9351 · 102 1, 3326 · 10–2
6, 9552 · 103 3, 1577 · 10–1

17% 3000 2 29 8, 7618 · 101 3, 9779 · 10–3
6, 4545 · 103 2, 9304 · 10–1

from the set {25, 26, 27, 28, 29, 210}. Finally, in Table 1 we compare the approximation er-
ror

∣∣err(f) – appclst
K (f)

∣∣ of the supercompress method to the one of the QMC-averaging
method, i.e.

∣∣err(f) – appavg
L (f)

∣∣, for different compression rates K/N . This is repeated 100
times and the observed values are averaged in order to enhance the robustness of the re-
sult. For the QMC-averaging method we use the “Magic Point Shop” [15, 23] to construct
the set P. In fact, we utilize Niederreiter-Xing matrices of order 1, as presented in [15, 23].

Table 1 illustrates the results for the dimension s = 2. The top row expresses the av-
erage error of the supercompress algorithm, while the bottom row refers to that of the
QMC-averaging method. It can be observed that the supercompress algorithm performs
better for each function. Only for the discontinuous function f2 and high compression
rates, i.e. small K , both methods perform equally bad. Since f2([0, 1]2) = [0, exp(5)], and
exp(5) ≈ 148, 4132, the observed behavior might be a consequence of the lack of scaling.
To analyze this, we repeated the procedure for γ f2/‖f2‖∞ with different scales γ . In Table 2
we see, that both methods yield a smaller error for γ = 1, which corresponds to standard-
ized test functions. Thus, both methods behave similar for all test functions when the latter
are properly scaled; the supercompress method seems to be always the superior choice.
Interestingly, the regularity of the test functions does not seem to have a big influence on
the performance of the QMC-averaging method. You can find a scaled version with γ = 1
of all tables regarding the error analysis in the Appendix (Table 8, Table 9, Table 10).

We also performed the same numerical experiment without adding noisy perturbations.
The results are found to be consistent with those above, indicating that adding noise does
not significantly influence the comparison. In fact, as long as the noise level of the data is
reasonably low, the effects of the above analysis remain the same.

The sensitivity of both methods in terms of the dimension is presented in Table 3. For
f1, the size of the problem does not affect the accuracy of our methods. However, it can
be observed that there is a deterioration in accuracy for the other functions. In particular,
the error increases significantly in higher dimensions when considering f2. Note that for
the largest dimension s = 10, QMC-averaging leads to smaller errors for f1 and f3 than

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 16 of 24

Table 3 average error (top row supercompress, bottom row QMC-averaging)

Compression rate N s K f1 f2 f3

9% 3000 2 28 2, 5366 · 10–4 2, 9352 · 102 5, 98 · 10–4
1, 9 · 10–3 6, 9552 · 103 1, 1437 · 100

9% 3000 3 28 2, 6782 · 10–4 3, 8841 · 106 5, 03 · 10–2
1, 9 · 10–3 7, 2364 · 107 7, 7694 · 100

9% 3000 5 28 3, 286 · 10–4 4, 3730 · 1013 1, 4568 · 101
2, 3514 · 10–4 6, 8260 · 1014 8, 9822 · 101

9% 3000 10 28 3, 5688 · 10–4 1, 0240 · 1029 2, 9730 · 105
5, 0307 · 10–8 8, 2610 · 1031 7, 4510 · 103

Table 4 average error (top row QMC-averaging, bottom row QMC-Voronoi)

Compression rate N s K f1 f2 f3

4% 3000 2 27 1, 37 · 10–2 2, 0453 · 104 2, 0974 · 100
4, 4655 · 10–4 2, 6420 · 103 6, 92 · 10–2

9% 3000 2 28 1, 9 · 10–3 6, 9552 · 103 1, 1437 · 100
7, 0245 · 10–5 4, 6737 · 102 3, 36 · 10–2

17% 3000 2 29 1, 9 · 10–3 6, 4545 · 103 1, 1702 · 100
1, 7547 · 10–4 1, 3446 · 103 2, 41 · 10–2

supercompress. We do not have a mathematical explanation at hand and did not explore
this phenomenon further due to the very high running time of QMC-averaging for larger
s; see also Table 5.

In order to gain further insight into the behavior of QMC-averaging, we designed the
QMC-Voronoi method and conducted a comparison between its performance and that
of the QMC-averaging method of [5]. The results can be seen in Table 4. The upper row
displays the results for the QMC-averaging method, while the bottom row presents the
average error regarding the QMC-Voronoi method. The setup of this experiment is the
same as the one for the comparison of QMC-averaging and supercompress.

The results of QMC-Voronoi consistently outperform those of the QMC-averaging
method in all scenarios. In fact, its performance is not too far away from the one of the
supercompress method. This indicates that clustering algorithms are more effective for
the considered problem.

Additionally, a significant drawback of the QMC-averaging method is its complex cal-
culation. In order to include all partitions of the unit cube into elementary intervals, we
use alternating sums with binomial weights, which may result in significant numerical in-
stability. At the same time, we perform an approximation for every partition, which leads
to a possible accumulation of errors. The QMC-Voronoi approach considers only one par-
tition of the unit cube, which is more flexible than the one based on elementary intervals.

To underline this observation, we evaluated the running time required to compute the
compressed data sets. A total of N = 10,000 data points are sampled uniformly at random
from the interval [0, 1)s. The corresponding responses are determined by the function f2

given by (4.2). This procedure is repeated 20 times and the mean is taken. The results are
presented in Table 5. The dimension s of the space is varied in the first column and the
number of compressed points K is varied in the first row.

Although the supercompress algorithm performs the best, it does not take the most
time. In fact, it is the fastest algorithm for low K . We observe that the QMC-averaging
algorithm takes the most time. As previously indicated, this is caused by the calculation of

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 17 of 24

Table 5 average running time for data compression in seconds (top row supercompress, middle row
QMC-averaging, bottom row QMC-Voronoi)

s\K 26 28 210 212

2 5, 7 · 10–3 1, 69 · 10–2 5, 35 · 10–2 1, 980 · 10–1
1, 813 · 10–1 8, 122 · 10–1 3, 2312 · 100 1, 3529 · 101
5, 53 · 10–2 6, 34 · 10–2 7, 36 · 10–2 7, 97 · 10–2

3 6, 3 · 10–3 1, 85 · 10–2 5, 39 · 10–2 1, 957 · 10–1
3, 257 · 10–1 1, 5233 · 100 6, 1759 · 100 2, 5003 · 101
5, 47 · 10–2 5, 87 · 10–2 6, 49 · 10–2 8, 10 · 10–2

5 5, 6 · 10–3 1, 71 · 10–2 5, 44 · 10–2 1, 979 · 10–1
5, 735 · 10–1 3, 0826 · 100 1, 2265 · 101 5, 3843 · 101
5, 56 · 10–2 6, 42 · 10–2 7, 53 · 10–2 9, 23 · 10–2

Figure 3 visualization of the precompressed data

the weights, which averages over many different partitions. Additionally, the supercom-
press and QMC-Voronoi algorithms are more robust regarding the dimension. Even for
a slight increase in s, the QMC-averaging algorithm doubles its running time. For large
values of K , the QMC-Voronoi method is computed at a faster rate than the supercom-
press method. Furthermore, the cost of the QMC-Voronoi method does not increase at
the same rate as the supercompress method in relation to K .

4.2 Neural networks
Thus far, we have considered only uniformly random data and a rather simple connection
between data points and responses. However, in general this is not the case. To illustrate
this, we will now examine the MNIST data set, which can be found in [16]. This data set
contains 6 ·104 grey-scale images of handwritten numbers between 0 and 9. Each image is
represented by a matrix of dimensions (28×28), with entries from 0 to 1. The value of each
entry indicates the darkness of the corresponding pixel. By concatenating all the pixels in
a given image, we obtain the image of the handwritten number. Consequently, the set X
contains the pixel sets,1 while the set Y contains the corresponding handwritten numbers.
Figure 3 illustrates 16 examples of such pixel sets. In the case of an entry of 0, the pixel is
depicted as black.

Our aim is to train a neural network with the data in question. To compare the different
methods, the accuracies of the trained neural networks will be evaluated on a test data set,
which is part of the MNIST data set.

It should be noted that the dimension of a matrix with dimensions (28 × 28) is much
larger than the dimensions of the points that have been considered thus far. In order to

1Here we identify 1 as 1–eps, where eps is the machine accuracy. Thus, we can still work with the assumption X ⊂ [0, 1)s .

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 18 of 24

reduce the running time, particularly that required for calculating the weights, we imple-
ment a precompression strategy. Initially, we limit our consideration to the first N = 104

grey-scale images. Additionally, we reduce the dimension by transforming each (28×28)-
matrix to a (14 × 14)-matrix. This results in a reduction of the dimension from s = 784
to s = 196. The idea is to take a submatrix of a pixel set with dimensions of two by two
and represent it by its average value. Figure 3 illustrates the impact of this precompres-
sion on the data. On the left, we have examples of the original data. In the middle, the
(2 × 2)-submatrices are exchanged by their average value, while the same process occurs
for (4 × 4)-submatrices on the right.

It can be observed that, despite the increased pixelation, the (14 × 14)-matrices can
still be read, at least to some extent. Further compression of the data to (7 × 7)-matrices
renders it more challenging for the human eye to discern the individual values. This is the
reason why we opted to train the network with (14 × 14)-matrices.

After these preparations, the neural network can be trained. We start by compressing
the data in accordance with the compression algorithms established in Sect. 3. Afterwards,
the neural network is trained with the compressed set. In order to have a broad overview,
we will use the QMC-averaging method, the (robust) supercompress method, the QMC-
Voronoi method and the traditional K-means clustering. In fact, K-means and (robust)
supercompress appear to be similar in many respects. However, there is a key difference
between them in the way they consider the image space. K-means clusters solely based on
the x-space, whereas robust supercompress attempts to combine clustering based on the
input space and the y-space. The normal supercompress algorithm is focused on finding
clusters based on the output space.

In this instance, the dimension of the input data is too large to utilise Niederreiter-Xing
matrices. Consequently, Sobol matrices [15, 23] are employed as the construction matri-
ces of the digital net, with ν set to 2. The design of the neural network and its training
are based on [13] with 100 epochs. For clustering algorithms, this procedure can be em-
ployed without modification. The QMC-averaging method requires adjustments to the
neural network, as it must be trained based on points and weights instead of points and
corresponding responses.

At the end of each training, the final loss and the required time (including compression
and training) are observed. Additionally, we test the neural network to obtain the accuracy
(the relative number of times it predicts the correct number) and a confusion chart. In or-
der to assess the efficacy of the compression method, we initially train the neural network
with the uncompressed data. The resulting confusion chart is presented in Fig. 4.

If our prediction is accurate, the result will be on the diagonal. The number indicates
the number of times the neural network predicts the class on the x-axis, while the class on
the y-axis is the correct one. For example, 1 is predicted correctly 1101 times. The least
accurate combination is 9 and 4. The neural network predicts 52 times a 9, despite the real
written number being a 4. It is evident that the objective is to maximize the numbers on
the diagonal.

A comparison of the performance of the compression algorithms with that of the un-
compressed training is presented in Table 6. The table shows the accuracy, the required
time (i.e. 12 : 34 corresponds to 12 minutes and 34 seconds), and the final loss, with the
exception of the QMC-averaging method, for which the complex input structure (weights
instead of corresponding responses) does not allow a comparable loss value. The num-

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 19 of 24

Figure 4 confusion chart of the neural network without compression

Table 6 comparison of the different compression methods for the training of a neural network

Method Compression rate Accuracy Time [min] Loss

no compression – 92, 13% 13 : 00 0,0215
supercompress 5% 55, 15% 0 : 57 0,3533

10% 72, 68% 1 : 26 0,2799
20% 88, 16% 2 : 45 0,164
40% 91, 98% 6 : 47 0,1126

robust supercompress 5% 53, 45% 0 : 44 0,2748
10% 55, 33% 1 : 24 0,2389
20% 61, 51% 2 : 46 0,1678
40% 64, 89% 5 : 23 0,1165

QMC 5% 8, 92% 14 : 28 –
10% 10, 28% 29 : 08 –
20% 10, 09% 59 : 02 –

K-means 5% 11, 01% 1 : 57 0,4367
10% 9, 2% 3 : 58 0,4457
20% 11, 22% 7 : 37 0,4513

ber of compressed points L = K is varied for values in the set {29, 210, 211, 212}. We have
dropped the results of QMC-averaging and K-means for L = K = 212, due to no significant
improvement in accuracy.

In general, supercompress performs the best. Its normal version is more accurate than
the robust one, though it takes a bit longer. QMC-averaging and K-means are very poor.
It seems that they are as poor as guessing. Additionally, they take longer, especially QMC-
averaging. This is caused by the high effort for precalculating the weights. Consequently,
they are not suitable for this compression problem. Why is that so?

We observed a striking phenomenon about the weights. As previously stated in Sect. 3.1,
the weights serve to indicate the relative importance of each point within the digital net.
It is notable that for all compression rates, the weights associated with the first two points
(of which one is always the zero vector) are considerably higher than those of the remain-
ing points. Indeed, the latter are largely approximately zero. This implies that the majority
of the points are located within the same elementary interval as the first two points for a
significant number of partitions. Consequently, the QMC-averaging point set is not an ac-

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 20 of 24

curate representation of the data set X . This is primarily due to particular structure of X .
Since a substantial number of pixels are completely black (have a 0-entry), it is understand-
able that a large proportion of points is close to the 0-vector. Therefore, a representative
set that is well distributed on the unit cube, is not a good choice for our data. In fact,
this behavior can be even more drastically observed when attempting to use the QMC-
Voronoi algorithm to train the network. It is noteworthy that all points from the set X
are assigned to only two points (in fact, the first two points) in the set P. Consequently,
these points are the only points for which a corresponding response exists and, therefore,
the only points to train the neural network with. Given that two points are insufficient for
training a neural network, this method could not be included in Table 6.

The reason why K-means clustering is not performing well may be attributed to the
clustering based on the x-space. This causes many clusters to contain points with different
corresponding responses. This is not a problem for a cluster like {2, 2, 2, 2, 2, 2, 2, 4, 4}, since
the rounded cluster mean response is still 2. Though, clusters such as {2, 2, 2, 2, 4, 4, 4, 4}
correspond to a response of 3, which is not even a response within the cluster. Therefore
incorporating the y-space into the clustering method appears to be a logical approach. This
could also explain why the robust version performs less effectively in this instance. It in-
corporates the x-space into the loss function instead of just the y-space. As a result, for this
discrete y-space problem, a clustering approach based on the output space, performs the
best. One potential solution to this issue is to employ a different rounding method. Instead
of taking the average of the responses, we could select the response that appears the most
frequently. However, this does not address the fundamental challenge that methods pri-
marily using the x-space to cluster can produce clusters with a multitude of corresponding
responses.

To gain further insight, we examine the confusion matrix of each method for a compres-
sion rate of 20%. This is depicted in Fig. 5.

The supercompress is the only method that predicts every number (with a certain degree
of accuracy). The robust version fails to predict zeros. Consequently, it overpredicts other
numbers, particularly high numbers such as 7 and 8. This is the primary reason for the
lower accuracy compared to the normal supercompress. The K-means clustering method
drastically overestimates 2 and 3 to be the correct numbers. This systematic error high-
lights the ineffectiveness of this method in this context. The most unsatisfactory result
is produced by QMC-averaging, which predicts only one number. This is not surprising,
given that only two points have notable weights and therefore dominate the loss function.
The reason for the absence of certain classes in the prediction can be explained by Table 7,
which shows the distribution of the corresponding responses among the original and com-
pressed data sets. It should be noted that due to rounding, the percentages may not sum
to 100. Additionally, there is a greater concentration of mass around high numbers. This
is a consequence of the fact that many clusters contain two points. If the average value has
a 0.5 part, the response is rounded up, for example, the response corresponding to the set
{8, 9} is 9.

Clearly, a neural network trained with a non-representative data set will be not useful
for prediction.

At the end of this section, we present a comparison of the results obtained for different
compression rates for the most effective method, namely supercompress. Figure 6 shows
the confusion charts.

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 21 of 24

Figure 5 confusion charts for different methods with a compression rate of 20%

Table 7 distribution of the handwritten numbers for a compression rate of 20%

Method 0 1 2 3 4 5 6 7 8 9

no compression 10% 11% 10% 10% 10% 9% 10% 10% 9% 10%
supercompress 7% 6% 8% 11% 13% 8% 7% 9% 15% 15%
robust supercompress 1% 2% 3% 6% 7% 11% 15% 18% 19% 20%
K-means 10% 4% 14% 11% 11% 11% 12% 10% 12% 6%

The supercompress neural network encounters difficulties in predicting 9 when the
compression rate is low. Instead, it assumes that the value is 8. However, this misclas-
sification disappears as the number of compressed data points increases. In fact, the re-
sult for a compression rate of 20% is already close to the uncompressed prediction. The
time required is reduced by approximately 80%, while the accuracy only decreases by 4%.
Perhaps even more impressive is the result for 40%. Here, we require approximately half
the time, yet the accuracy differs by less than 0.2%. This suggests that the supercompress
method is a suitable alternative for training the neural network with a smaller set, while
maintaining a high level of prediction accuracy.

5 Conclusion
In this experimental study we compared two QMC-based data reduction approaches with
the supercompress methods from [14]. While supercompress performs well for the clas-
sical MNIST data set, both QMC-methods drastically fail for this data set. A reduced data
set given by QMC-points is not able to recapture the original data adequately, neither in
combination with an averaging procedure and appropriate weights as proposed in [5] nor

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 22 of 24

Figure 6 confusion charts for supercompress with different rates

in combination with clustering in the x-space as in the QMC-Voronoi method. For simpler
test functions, i.e. more regular problems, the QMC-Voronoi method performs compara-
bly well to the supercompress method, while the QMC-averaging method also performs
badly here, in view of both error and running time. The high running time in comparison
to the other methods is a direct consequence of the averaging procedure, and this proce-
dure might also explain the bad error behavior: alternating averaging procedures, which
even involve binomial coefficients, are prone to possible numerical instabilities; see e.g.
[8, 12].

The supercompress method performs best both for regular and irregular data. The rea-
son for this seems to be its particular focus on the y-space for the clustering; in contrast to
it robust version, which uses also the x-space, or the QMC-Voronoi method, which only
uses the x-space.

Although a general judgment on the applicability of QMC points in date reduction might
be premature, our observations underline the importance of two pieces of wisdom from
applied mathematics’ folklore: Regular problems can be solved with non-adaptive meth-
ods, while irregular problems require adaptive methods. Moreover, in practical applica-
tions, heuristic algorithms can be superior to theoretically well-understood methods.

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 23 of 24

Appendix

Table 8 scaled average error (top row supercompress, bottom row QMC-averaging)

Compression rate N s K f1 f2 f3

1% 3000 2 25 3, 1054 · 10–4 1, 0049 · 100 4, 6801 · 10–2
2, 24 · 10–2 2, 0299 · 100 3, 5859 · 100

4% 3000 2 27 3, 3239 · 10–4 5, 5982 · 10–2 3, 993 · 10–5
1, 37 · 10–2 9, 2858 · 10–1 3, 3122 · 10–2

9% 3000 2 28 2, 5366 · 10–4 1, 3326 · 10–2 9, 4435 · 10–6
1, 9 · 10–3 3, 1577 · 10–1 1, 8061 · 10–2

17% 3000 2 29 1, 7051 · 10–4 3, 9779 · 10–3 2, 0192 · 10–6
1, 9 · 10–3 2, 9304 · 10–1 1, 848 · 10–2

34% 3000 2 210 1, 0473 · 10–4 9, 0664 · 10–4 2, 4926 · 10–7
2 · 10–3 3, 7659 · 10–1 7, 7036 · 10–3

Table 9 scaled average error (top row supercompress, bottom row QMC-averaging)

Compression rate N s K f1 f2 f3

9% 3000 2 28 2, 5366 · 10–4 1, 3326 · 10–2 9, 4435 · 10–6
1, 9 · 10–3 3, 1577 · 10–1 1, 8061 · 10–2

9% 3000 5 28 3, 286 · 10–4 6, 0731 · 102 5, 7063 · 10–5
2, 3514 · 10–4 9, 4799 · 103 3, 5184 · 10–4

9% 3000 10 28 3, 5688 · 10–4 1, 975 · 107 5, 822 · 10–1
5, 0307 · 10–8 3, 1688 · 1020 2, 8581 · 10–8

Table 10 scaled average error (top row QMC-averaging, bottom row QMC-Voronoi)

Compression rate N s K f1 f2 f3

4% 3000 2 27 1, 37 · 10–2 9, 2858 · 10–1 3, 3122 · 10–2
4, 4655 · 10–4 1, 1997 · 10–1 1, 0932 · 10–3

9% 3000 2 28 1, 9 · 10–3 3, 1577 · 10–1 1, 8061 · 10–2
7, 0245 · 10–5 2, 1219 · 10–2 5, 299 · 10–4

17% 3000 2 29 1, 9 · 10–3 2, 9304 · 10–1 1, 848 · 10–2
1, 7547 · 10–4 6, 1046 · 10–2 3, 7982 · 10–4

Abbreviations
QMC, Quasi-Monte Carlo; NP, complexity class; MNIST, Modified National Institute of Standards and Technology.

Author contributions
AN and JH worked on the theoretical contribution. The numerical simulation is provided by JH while SG contributed to
the interpretation of the resulting data. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. The publication of this article was funded by the Ministry
of Science, Research and the Arts Baden-Württemberg and the University of Mannheim. This work was financially
supported by the DFG Projects GO1920/11-1 and 12-1.

Availability of data and materials
Relevant data is cited or drawn randomly.

Göttlich et al. Journal of Mathematics in Industry (2025) 15:1 Page 24 of 24

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 11 July 2024 Accepted: 13 December 2024

References
1. Aloise D, Deshpande A, Hansen P, et al. NP-hardness of Euclidean sum-of-squares clustering. Mach Learn.

2009;75:245–8.
2. Beygelzimer A, Kakadet S, Langford J, Arya S, Mount D, Li S. FNN: “Fast nearest neighbor search algorithms and

applications”. R 1.1.3. 2019. Available at https://CRAN.R-project.org/package=FNN.
3. Biau G, Devroye L. Lectures on the nearest neighbor method. Berlin: Springer; 2015.
4. Cervellera C, Macciò D, Rebora F. Deep learning and low-discrepancy sampling for surrogate modeling with an

application to urban traffic simulation. In: 2021 International Joint Conference on Neural Networks (IJCNN),
Shenzhen, China; 2021. p. 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533357.

5. Dick J, Feischl M. A quasi-Monte Carlo data compression algorithm for machine learning. J Complex. 2021;67:101587.
6. Dick J, Pillichshammer F. Digital nets and sequences. Cambridge: Cambridge University Press.
7. Feldman D. Introduction to core-sets: an updated survey. WIREs Data Min Knowl Discov. 2020;10:e1335.
8. Goldberg D. What every computer scientist should know about floating-point arithmetic. ACM Comput Surv.

1991;23:5–48.
9. Graf S, Luschgy H. Foundations of quantization for probability distributions. Lecture notes in mathematics. Berlin:

Springer; 2007.
10. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. 2nd

ed. New York: Springer; 2009.
11. Heieck J. Data compression for machine learning and applications. GitHub, 01.02.2024. https://github.com/jaheieck/

data-compression-for-machine-learning-and-applications.
12. Higham NJ. The accuracy of floating point summation. SIAM J Sci Comput. 1993;14(4):783–99.
13. Inc M. Train Network Using Custom Training Loop. 2019.
14. Joseph RV, Mak S. Supervised compression of big data. Stat Anal Data Min ASA Data Sci J. 2021;14:217–29.
15. Kuo FY, Nuyens D. Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients - a

survey of analysis and implementation. Found Comput Math. 2016;16(6):1631–96.
16. LeCun Y, Cortes C, Burges CJC. The MNIST Database of Handwritten Digits. http://yann.lecun.com/exdb/mnist/.
17. Longo M, et al. Higher-order quasi-Monte Carlo training of deep neural networks. SIAM J Sci Comput.

2021;43(6):3938–66.
18. Ma P, Mahoney MW, Yu B. A statistical perspective on algorithmic leveraging. J Mach Learn Res. 2015;16:861–911.
19. Mak S, Joseph RV. Support points. Ann Stat. 2018;46(6A):2562–92.
20. Mishra S, Rusch TK. Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences.

SIAM J Numer Anal. 2021;59(3):1811–34.
21. Niederreiter H. Point sets and sequences with small discrepancy. Monatshefte Math. 1987;104:273–337.
22. Niederreiter H. Random number generation and quasi-Monte Carlo methods. Philadelphia: SIAM; 1992.
23. Nuyens D. The “Magic Point Shop” of QMC point generators and generating vectors. 14.12.2017. https://people.cs.

kuleuven.be/~dirk.nuyens/qmc-generators/.
24. Surjanovic S, Bingham D. Virtual Library of Simulation Experiments. 2013. https://www.sfu.ca/~ssurjano/zhou98.html.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://CRAN.R-project.org/package=FNN
https://doi.org/10.1109/IJCNN52387.2021.9533357
https://github.com/jaheieck/data-compression-for-machine-learning-and-applications
https://github.com/jaheieck/data-compression-for-machine-learning-and-applications
http://yann.lecun.com/exdb/mnist/
https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/
https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/
https://www.sfu.ca/~ssurjano/zhou98.html

	Using low-discrepancy points for data compression in machine learning: an experimental comparison
	Abstract
	Mathematics Subject Classification
	Keywords

	Introduction
	Low-discrepancy point sets and regression
	Data compression methods
	Quasi-Monte Carlo compression
	Construction of digital nets
	Error bounds
	Implementation

	Supercompress method
	QMC-Voronoi method

	Numerical results
	Test functions
	Neural networks

	Conclusion
	Appendix
	References

