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Traditional compilers, designed for optimizing low-level code, fall short when dealing with modern,
computation-heavy applications like image processing, machine learning, or numerical simulations. Op-
timizations should understand the primitive operations of the specific application domain and thus happen on
that level.

Domain-specific languages (DSLs) fulfill these requirements. However, DSL compilers reinvent the wheel
over and over again as standard optimizations, code generators, and general infrastructure & boilerplate code
must be reimplemented for each DSL compiler.

This paper presents MimIR, an extensible, higher-order intermediate representation. At its core, MimIR is a
pure type system and, hence, a form of a typed lambda calculus. Developers can declare the signatures of new
(domain-specific) operations, called axioms. An axiom can be the declaration of a function, a type constructor,
or any other entity with a possibly polymorphic, polytypic, and/or dependent type. This way, developers can
extend MimIR at any low or high level and bundle them in a plugin. Plugins extend the compiler and take care
of optimizing and lowering the plugins’ axioms.

We show the expressiveness and effectiveness of MimIR in three case studies: Low-level plugins that operate
at the same level of abstraction as LLVM, a regular-expression matching plugin, and plugins for linear algebra
and automatic differentiation. We show that in all three studies, MimIR produces code that has state-of-the-art
performance.
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1 Introduction

Dennard scaling enabled the continuous growth of single-thread performance of legacy code for
decades. After its decline in the early 2000s, domain-specific languages (DSLs) have received a lot
of attention in the effort to harvest as much performance as possible in a productive way. DSLs
offer specialized abstractions tailored to specific problem domains enhancing the programmer’s
productivity on one side and enabling the generation of high-performance code on the other side.
To generate actual code, DSL compilers typically resort to existing compiler frameworks such as
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LLVM [32]. However, there is a significant gap in the abstractions DSLs provide and the low-level
nature of these compiler frameworks which often leads to the situation that DSL compilers have an
additional, more high-level intermediate representation (IR) that bridges the gap between the DSL
and the back-end compiler.
This more high-level IR is often designed and implemented for each new DSL from scratch.

Current research in high-level IRs, most notably MLIR [33], seeks to provide a least common
denominator for the basis of such an IR to facilitate the reuse of core data structures and algorithms
across different DSLs but not much more. While MLIR provides extensibility to host domain-specific
dialects, it is still low-level in several aspects. First, it relies on control-flow graphs (CFGs), thereby
relying on multiple concepts to represent control flow including functions, basic blocks, instructions,
and so-called regions to delineate code for high-level transformations. Second, MLIR does not
provide a type system that is expressive enough to host the type systems of DSLs. It relies on the
dialects to implement their own type systems in C++. This causes more implementation effort for
the DSL implementer and an unclear notion of well-typedness when multiple dialects interact.
Finally, because MLIR is designed with “little builtin, everything customizable” [33, p. 3], it is by
design impossible to give a formal account of its static and dynamic semantics that would encompass
all DSLs.

In this paper, we want to go one step further and present MimIR, a higher-order IR that provides
a type system that sets out to be expressive enough to host a wide range of DSLs. Consider the
following DSL interface for a tensor plugin in MimIR’s surface language Mim—the textual interface
of MimIR:
axm %tensor.Mat: {n m: Nat , T: *} � *; // n × m matrix with element type T
axm %tensor.zip: {n m: Nat , T: *} [f: [T, T] � T] [a b: %tensor.Mat (n, m, T)]

� %tensor.Mat (n, m, T);

The so-called axiom %tensor.Mat is a type constructor that expects two dimensions n and m and
an element type T to construct a matrix. The %tensor.zip axiom is polymorphic in the arguments’
dimensions and element type (whose values will be inferred at a call-site as the curly braces mark
this parameter group as implicit) and computes a new matrix by applying f in pairs to all elements
of both inputs. Axioms are declarations of entities that do not have an implementation in MimIR
per se. Instead, DSL designers define a plugin that consists of an interface (see above) and a C++
implementation that provides domain-specific program transformations and code generators to
lower the axioms into the language of lower-level MimIR plugins or to generate target code directly.
IRs like LLVM are not flexible enough to express types like %tensor.Mat at all. In MLIR, the

designers of plugins (there called dialects) need to manually implement the type system in C++ for
each dialect operation. But even this has many severe limitations as MLIR does neither directly
support higher-order functions nor polymorphism. For example, vector.reduction from the
MLIR vector dialect hard-codes a set of predefined reduction operations. In MimIR we can define a
reduce function that works on any array and appropriate function. For example, here we create a
matrix addition with %tensor.zip elem_add that we use to reduce an array_of_matrices to a
single res_matrix:
let res_mat = reduce (%tensor.zip elem_add) (init , array_of_matrices );

Note that %tensor.Mat’s type is an ordinary function type and, yet, it is a type operator. Fur-
thermore, note that the types of %tensor.zip’s arguments a and b depend on the type variable T
(polymorphism) and the term variables n and m which makes %tensor.Mat (n, m, T) a dependent
type. This is possible because at its core MimIR is a minimal, typed 𝜆-calculus that is based upon
the 𝜆-cube [7], the Calculus of Constructions (CC) [16], and pure type system (PTS) [8]. This makes
MimIR not only very expressive but also simplifies the compiler design in many ways because

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 4. Publication date: January 2025.

https://mlir.llvm.org/docs/Dialects/Vector/#vectorreduction-vectorreductionop


MimIR: An Extensible and Type-Safe Intermediate Representation for the DSL Age 4:3

MimIR only knows a single syntactic category: expressions. However, Mim supports syntactic sugar
that Mim translates into its minimal, graph-based representation MimIR.

Contributions. In summary, this paper makes the following contributions:

• We introduce the intermediate representation MimIR that allows, through its plugin architecture,
to modularly extend theMimIR compiler with custom, domain-specific operations, types, and type
operators, as well as domain-specific code transformations—in particular so-called normalizations
that are eagerly applied by MimIR (Section 2).
• We formally introduce MimIR’s semantics and its sound type system which allows for a type-safe

composition of plugins. MimIR’s expressive type system is rooted in the Calculus of Constructions
and, hence, features dependent-types. These are mainly used in proof assistants and associated
with writing complex proof terms. MimIR, however, features full recursive functions and depen-
dent types without the hassle of writing complex proof expressions. This is possible because
MimIR’s type checker tightly interacts with normalizations and a partial evaluator which allows
for a novel way to type-check dependent types (Section 3).
• Code transformations are implemented in C++ by manipulating MimIR’s program graph. This
is a “sea of nodes”-style [13] IR for a higher-order, PTS-style language. As MimIR only knows
expressions, the program graph is also very simple: Each node represents an expression and has
outgoing edges to each of its operands and the type it inhabits—which is again an expression.
Besides an internal hash set that hash-conses all nodes, MimIR does not need any other auxiliary
data structures such as instruction lists, basic blocks, CFGs, or special regions (Section 4).
• MimIR performs type checking, inference, and normalization on-the-fly during program con-

struction. This way, a plugin/compiler developer can resort to type inference, normalization, and
(partial) evaluation upon creating an expression—regardless of whether they use Mim or MimIR’s
C++ interface. MimIR will immediately report any typing errors (Section 5).
• Section 6 presents case studies that show MimIR’s versatility and ability to host DSLs and
generate high-performance code. These include a set of low-level, LLVM-like plugins, that we
show to perform just as well as if directly using LLVM, a plugin for matching regular expressions
(RegExes) which outperforms other popular RegEx engines, a plugin for tensor computations,
and a plugin for automatic differentiation with state-of-the-art performance at a tenth of the
complexity.

2 Overview

The core of MimIR is a minimal, typed 𝜆-calculus with strong semantics based on the 𝜆-cube, PTS,
and CC.We describe the core calculus’ syntax and semantics in more detail in Section 3. What makes
MimIR an attractive target for DSLs is its extensibility through plugins. These plugins can define
intrinsic operations (in MimIR called “axioms”) on various abstraction levels. Furthermore, plugins
can provide transformations and lowering passes to perform (domain-specific) optimizations on
each abstraction level and to convert between the levels. There are several ways how a DSL or a
general-purpose language can target MimIR. The most important ones are: an embedded DSL or a
DSL compiler may use MimIR’s API to construct the IR. Alternatively, a compiler can communicate
with MimIR textually through its surface language Mim. MimIR itself comes with a backend that
emits textual LLVM IR. This IR can be further processed by LLVM tools to obtain an executable.
Thereby, MimIR currently targets any CPU supported by LLVM. Since plugins are essential to
MimIR’s design, we will use the example of a plugin for matching RegExes to present MimIR’s
components.
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1let Char = I8;
2lam Str (n: Nat): * = %mem.Ptr «n; Char»;
3lam Res (n: Nat): * = [%mem.M , Bool , Idx n];
4let RegEx = {n: Nat} [%mem.M , Str n, Idx n] � Res n;
5
6axm %regex.any: RegEx;
7axm %regex.conj: {i: Nat} [«i; RegEx»] � RegEx , normalize_conj , 2;
8axm %regex.disj: {i: Nat} [«i; RegEx»] � RegEx , normalize_disj , 2;
9axm %regex.range: «2; Char» � RegEx , normalize_range , 1;
10axm %regex.not: RegEx � RegEx , normalize_not , 1;
11axm %regex.quant(optional ,star ,plus): RegEx � RegEx , normalize_quant , 1;
12
13lam %regex.lit(val: Char) = %regex.range (val , val);
14let %regex.cls.d = %regex.range ('0', '9'); // similar: %regex.cls.w , %regex.cls.W ,
15let %regex.cls.D = %regex.not %regex.cls.d; // %regex.cls.s , %regex.cls.S

Listing 1. RegEx plugin declaration file regex.mim

plugin regex; // parse "regex.mim" and load "libmim.so"
let pattern = %regex.conj (%regex.quant.plus %regex.cls.w , // '\w+\.[a-z]+'

%regex.lit '.', %regex.quant.plus (%regex.range ('a','z')));

Listing 2. Mim code that constructs RegEx pattern ˆ\w+\.[a-z]+$ (simple top-level domains)

if (auto star_outer = match(regex::quant::star , r))
if (auto star_inner = match(regex::quant::star , star_outer ->arg ())) return star_inner;

Listing 3. C++ code that matches 𝑟** and yields 𝑟*

world.call <regex::range >(Defs{a, b}, Defs{mem , str , pos})

Listing 4. C++ code that constructs a curried call %regex.range (a, b) (mem, str, pos)

2.1 Plugin Architecture

A plugin consists of two parts: A *.mim file that contains declarations in Mim of what the plugin
exports and code transformations implemented in C++. The %regex plugin declares its operations
in regex.mim (Listing 1). All names prefixed with %regex are called annexes. Before building the
plugin’s C++ sources, MimIR bootstraps the plugin by parsing regex.mim and generating a C++
header file that declares all annexes as C++ enums. This process does not involve a “compilation” of
the annexes to C++ in any way. The purpose of this is that the C++ part of the plugin can reference
an annex via a C++ name instead of a string (see below). Then, the build system compiles the
plugin’s sources with the help of the generated header into a shared object libmim_regex.so. Now,
other MimIR code can use the plugin (see Listing 2): The plugin regex directive instructs MimIR
to parse regex.mim. In doing so, MimIR will know the names of all %regex annexes and their
types. In addition, MimIR will dynamically load libmim_regex.so to incorporate the plugin’s code
transformations into the MimIR compiler. Now that the plugin has been loaded, the let-expression
binds the variable pattern to a MimIR expression that represents the RegEx ^\w+\.[a-z]+$ (which
matches simple top-level domains).

2.2 Plugin Declaration

The %regex plugin declares the so-called axioms %regexconj, %regex.disj, etc. Line 11 declares
the RegEx quantifiers %regex.quant.optional, %regex.quant.star, %regex.quant.plus. In
addition to axioms, plugins can provide supplementary definitions (variables, functions, . . . ) that are
entirely defined in Mim. For example, the digit character class %regex.cls.d is just let-bound to
%regex.range (’0’, ’9’). Axioms that inhabit a function type, are usable like ordinary functions.
However, axioms do not provide an implementation in MimIR per se. Their purpose is to denote
domain-specific language constructs that the plugin’s code transformations refine. For example, the
C++ code in Listing 3 matches %regex.quant.star (%regex.quant.star regex) and peels off
the superfluous outer quantifier. Note that regex::quant::star stems from the auto-generated
header and references %regex.quant.star from regex.mim. Similarly, plugin developers can
access or call annexes from C++ (Listing 4).
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2.3 Types

One of MimIR’s most prominent features is that it does not have a special syntactic category for
types. Instead, types are also expressions. This has several advantages as we will outline in the
following.

First, MimIR does not need special constructs to declare type aliases or type-level functions. An
ordinary let-binding (line 1 in Listing 1) defines the alias Char for the 8-bit-wide integer type I8.
Str is also a normal function. It expects a size n of type Nat and returns *: the type of all types.
Thus, the type of Str is Nat → *. Here, Str yields a pointer to an array of size n and element type
Char. The pointer type constructor is an axiom from the %mem plugin: axm %mem.Ptr: * → *
(Section 6.1.3). The expression «e𝑛; T» introduces an array type while both e𝑛 and T are again
expressions. We just use the metavariable T to suggest that this is a type expression. In particular,
the size e𝑛 can be an arbitrarily complex expression and may not necessarily be a compile-time
constant as opposed to n in C++’s std::array<T, n>. For this reason, «e𝑛; T» is called a dependent
type, as the type depends on a value. A common misconception is to think of «e𝑛; T» as a pair
consisting of the size e𝑛 and the “actual” array. This is not the case. It is just an array which “tracks”
its size e𝑛 . Dependent types are mostly known from theorem provers such as Coq or Lean. However,
in MimIR we are not concerned about proofs. We are using dependent types to abstract from
the size of integer operations or arrays which in turn allows for type-safe variadic functions and
polymorphism over array rank while tracking this dependency in the type system (Section 6).
The expression (e0, . . ., e𝑛−1) forms a tuple value while [T0, . . ., T𝑛−1] forms a tuple type.

Hence, the function Res returns a tuple type which models the result type of a RegEx match. The
first element type %mem.M stems again from the %mem plugin and abstracts from the machine state;
any operation that potentially has a side-effect such as memory accesses consumes a machine state,
i.e. a value of type %mem.M, and produces a new one. This is similar to the IO monad in Haskell.
The second element type Bool indicates the success or failure of a match. The last element type
Idx n is an integer within the range 0𝑛 , . . . , (n-1)𝑛 and keeps track of the current position within
the string to match. Note that this index type guarantees to access the string in bounds.
The type RegEx of a RegEx matcher is a dependent function type. Mim allows for convenient

specification of curried function typeswith complex dependencies via d · · · d → T: Each domain d
constitutes a curried domain and may as well as the final codomain T depend on the value of the
preceding domains. Here, the second domain and the codomain Res n depend on n which is a
value of the first domain Nat. This dependency makes the first domain deducible when calling a
function of type RegEx. This is why first the domain is put within curly braces which marks it as
implicit: MimIR will automatically infer this argument when calling a function of type RegEx. The
second domain constitutes the “actual” parameters of the matcher: a machine state, a string, and
the current position within this string.

The RegEx constructors yieldmatchers of type RegExwhile potentially composing othermatchers.
For example, %regex.not expects another matcher to negate and %regex.range a range given by
two Chars as showcased in Listing 4: It creates a range pattern and matches it on a string. Note
that the size argument n is implicit and inferred in both MimIR’s textual representation as well as
the C++ code. The junctions %regex.conj and %regex.disj demonstrate how dependent arrays
allow for variadic functions as they expect i-many RegEx matchers as inputs.
The %regex plugin does not have to provide any kind of additional validators as would be

necessary in MLIR. All declared annexes have a proper type and MimIR type-checks expressions
containing annexes just like any other expression.
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2.4 Normalization

Whenever MimIR creates an expression, it is immediately normalized (Section 3.1.1). For example,
the tuple extraction (0, 1, 2)#23 is right away resolved to 2. In addition, MimIR consistently
removes 1-tuples and 1-tuple types. Hence, it does not matter whether a function is specified as
lam Str(n: Nat) or lam Str n: Nat and whether it is invoked with Str n or Str (n).

Normalizations are the backbone of MimIR’s optimizer but also influence type checking. MimIR
handles tuples and arrays in a uniform way by normalizing a tuple type [Nat, Nat] to an array
«2; Nat». This is why MimIR does not need different introduction and elimination constructs for
tuples and arrays: The type of (0, 1) is «2; Nat» and of (0, ff) is [Nat, Bool]; extraction e#e𝑖
works regardless of whether e is an array or a tuple (Section 3.1.3). Thus, %regexconj (re1, re2,
re3) types fine: MimIR infers 3 for i, types the argument as «3; RegEx», and removes superfluous
1-tuple types from %regex.conj’s domains. Additionally, less syntax also implies fewer patterns to
match when writing program analyses.

Finally, all expressions are hash-consed: Whenever an expression is created, MimIR first checks
whether a syntactically equal expression already exists. If this is the case, MimIR will reuse this
existing expression. This has the effect that in the C++ implementation two pointers to MimIR
expressions enjoy pointer equality if they are syntactically equal.

Axioms can provide their own normalizers: local transformations that are considered generally
useful. The %regex plugin, for instance, merges quantifiers—r*?, r?*, r+?, r?+, r*+, r+* all normal-
ize to r*—and removes idempotence—r?? results in r?, ditto for * and +. As the axiom declaration
indicates (line 11), the C++ function normalize_quant, which is part of libmim_regex.so, is the
normalizer of this axiom and implements this logic. The actual implementation consists of ∼20
lines of C++ code and involves a few matches and building new calls similar to Listing 3 and 4.
The %regex plugin implements similar normalizations for the other axioms to compute a (pseudo)
normal form for RegExes.
By default, MimIR fires the specified normalizer when the last curried argument is applied to

an axiom and this is in most cases the desired behavior. However, plugin designers can override
this behavior and specify when exactly normalization should happen. The %regex plugin is an
exception to the default behavior as it wants to normalize, for example, a quantifier as soon as
its matcher is applied: %regex.quant.star regex. If we waited until all curried arguments were
passed, we would entirely miss normalization in some instances or be too late for others:
%regex.quant.star (%regex.quant.star regex /*miss*/) (mem , str , pos) /*too late*/

To this end, the axiom demands normalization when the first argument is passed to the axiom (last
part of line 11). The same counting mechanism applies when matching curried axiom calls in C++
and is the reason why Listing 3 works as intended. Other plugins implement constant folding and
various peephole optimizations such as x+0 ⊲ x via normalizers.

2.5 Lowering

Since axioms are opaque entities without implementation, plugins must somehow provide an
implementation. The %mem plugin contains an LLVM backend that additionally understands the
%core plugin (for integer operations) and %math plugin (for floating-point operations). Unless
other plugins want to ship their own or extend the existing LLVM backend, they need a phase
that substitutes axioms unknown to the LLVM backend to low-level code known to the backend
(i.e., only using operations from %mem, %core, and %math). What is more, many plugins want to
apply domain-specific transformations on the code in addition to normalizations before lowering
its domain-specific axioms. To this end, MimIR provides a sophisticated optimizer and a flexible,
modular pass manager. Even compilation phases are exposed as axioms with the help of the
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%compile plugin. This allows users to compose their own compilation pipeline as a MimIR program.
However, the details of the optimizer are beyond the scope of this paper.

As outlined above, the %regex plugin applies various normalizations to given RegExes. Addition-
ally, the plugin provides a pass written in C++ that constructs a nondeterministic finite automaton
(NFA) from a pattern, makes it deterministic, and minimizes it. Finally, the pass will generate
low-level code that implements the minimized deterministic finite automaton (DFA) and replaces
the axiom calls with it. This code is amenable to the LLVM backend. We discuss the performance
of the plugin in Section 6.2.

2.6 Discussion: MimIR vs. Thorin and MLIR

MimIR’s code base was initially derived from Thorin [35] but MimIR is now entirely different
from its predecessor: Thorin uses continuation-passing style (CPS) for all of its functions. MimIR
on the other hand, supports both direct style and CPS by giving a continuation the type 𝑇 →
⊥ (see Section 3.1.5). MimIR adds (higher-order) polymorphism and dependent types with local
type inference. Thorin has a set of hard-coded, second-class built-ins in direct style (much like
instructions in LLVM) that MimIR completely removes. Instead, MimIR provides a plugin system
that allows developers to declare not only custom operations but also custom types and type
constructors through first-class axioms with a possibly polymorphic, polytypic, and/or dependent
type. In addition, MimIR introduces the Mim language, which allows developers to specify the
plugin interface or complete programs directly in Mim. MimIR’s core calculus is now so different
from Thorin’s, and MimIR’s sources hardly contain any Thorin-derived code anymore, that we
have renamed the project rather than bumping Thorin’s version number.

While MLIR [33] and MimIR are both extensible compiler frameworks and pursue similar goals,
MLIR only provides a basic infrastructure for hosting languages that has “little builtin, everything
customizable” [33, p. 3]. MimIR, on the other hand, aims to provide a general base language with an
expressive type system. Similarly to MimIR’s plugins, MLIR offers extensibility through so-called
dialects. Dialects enhance MLIR’s parser and type checker because MLIR lacks polymorphism
or dependent types. This raises the question of how the different type-systems of the individual
dialects interact and integrate. There are even dialects such as CIRCT [69] that violate basic SSA
invariants (no cycles in the data dependence graph).

Additionally, MLIR has only limited support for higher-order functions: Ops in MLIR do not have
a function type and cannot be passed to other functions as first-class citizens. Custom functions
cannot have free variables—like in C. Nor are regions true functions as regions do not even have
a type per se. They can be syntactically passed to Ops that are specifically designed to expect
regions. Then, the C++ validator checks whether the passed region is used correctly in this specific
spot. But you cannot capture this closure as value and pass it around in MLIR out of the box. The
lp dialect [9] uses this feature to implement full closure support but lp works on a type-erased
representation. For example, the types of all higher-order arguments have been erased to !lp.t—a
boxed heap value.

3 Semantics

In the following, we first present the formal definition of MimIR including its syntax, semantics,
and normalization rules (Figure 1). Mim supports syntactic sugar, which Mim translates into the
core syntax (Figure 2). In order to keep this presentation as concise as possible, we leave out a few
details and full recursion which we will discuss afterward. Then, we introduce MimIR’s partial
evaluator that tightly interacts with type checking and normalization. Finally, we present MimIR’s
type safety.
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3.1 Syntax, Typing & Normalization

Preliminaries. Since MimIR is based on PTS, it uses the same syntax for terms, types, and kinds.
However, we usually use the metavariable e to evoke a term expression and T or U to evoke a type
expression. MimIR uses a stratified, countably infinite hierarchy of sorts which are organized in a
predicative way (Rule Sort). This avoids well-known paradoxes (like Girard’s paradox) associated
with self-referential definitions. As syntactic sugar we write * for Sort 0: the type of all types.
Type constructors such as * → * are of type Sort 1 etc.

MimIR knows several binders. These are expressions that introduce a variable of the form x:e.
We follow Barendregt’s convention: No variable is both free and bound; every bound variable is
bound exactly once. While Mim supports lexical scoping, MimIR’s graph representation (Section 4)
actually ensures Barendregt’s convention.

We call a binder parametric, if the introduced variable occurs free in any subsequent expression of
the binder. Otherwise, we call the binder non-parametric. There is syntactic sugar for non-parametric
binders available which omits the variable altogether (Figure 2).

3.1.1 Normalization. Whenever MimIR builds an expression, it will immediately normalize it
according to e ⊲ e. Normalization rules play not only an important role in MimIR’s optimizer but
also in its type checker. First, types themselves are normalized. Second, a normalized expression
may appear as an argument to another type constructor. In particular in the case of dependent
types, checking for type equality requires checking for program equivalence (see also Section 3.3).

Example 3.1. Consider the function:
𝜆 (a: «%core.nat.add (0, n); T»): U = body

The %core plugin (Section 6.1) normalizes the addition and, hence, simplifies the function to:
𝜆 (a: «n; T»): U = body

This allows a caller to pass a value of type «n; T» to this function. This would be ill-typed without
normalization.

Most dependently typed languages suffer from artifacts such as f (n + 0) types in some context
whereas f (0 + n) does not. MimIR’s extensible normalization framework is able to mitigate such
issues.

Example 3.2. The %core plugin normalizes both

f (%core.nat.add (0, n)) and f (%core.nat.add (n, 0)) to f n .

We underline an expression e to denote that it might not be normalized. A non-underlined
expression e denotes that it is already normalized. Non-normalized expressions only exist in
Mim which is compiled into MimIR’s internal graph form early in the compilation pipeline. Mim
translates an expression to MimIR by first recursively translating all subexpressions into the
desugared, normalized MimIR graph representation, and then desugaring the current expression
and assembling it via the ⊲-relation. Therefore, only normalized expressions exist within MimIR
itself. For this reason, the normalization rules do not include premises to normalize subexpressions
as MimIR will only need to assemble expressions from subexpressions that are already normalized.
Mim only performs rudimentary semantic checks such as name analysis. Type checking happens
on MimIR’s normalized graph representation.

Example 3.3. MimIR will never need to normalize ((e)). As soon as Mim translates (e) to its
internal graph, Rule N-Tup1 fires and yields e. Then, the outer parentheses form (e) again. This
will fire N-Tup1 once more and yield e.
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Γ F · | Γ, x : T Typing Environment
e, T, U F Sort s | ⊥ | Nat | Idx | n | in Sort / Bottom / Nat / Idx / Literal

| x | let x = e; e | axm x:T; e Var / Let / Axiom i, n, s ∈ N
| [x:T] → U | 𝜆x:T@e:U = e | e e Pi / Lam / App i < n
| [x:T] | (e) | «x:e; T» | ‹x:e; e› | e#e Sigma / Tuple / Array / Pack / Extract

e→ e Cong
e→ e’

E[e] → E[e’]
Beta

(𝜆 x:T@e:U = e𝑏) e𝑎 → e𝑏 [e𝑎/x]
E[ · ] F axm x:T; · | axm x:·; e | [..., ·, ...] | (..., ·, ...) | «x:·; e» | «x:e; ·» | ‹x:·; e› | ‹x:e; ·› Evaluation

| · e | e · | · #e | e# · | [x:·] → U | [x:T] → · | 𝜆x:· @e:U = e | 𝜆x:T@e:· = e | 𝜆x:T@e:U = · Context

Γ ⊢ e : T Sort
n’ = n + 1

Γ ⊢ Sort n : Sort n’
Bot

Γ ⊢ ⊥ : *
Nat

Γ ⊢ Nat : *
Idx

Γ ⊢ Idx : Nat → *

Lit-N
Γ ⊢ n : Nat

Lit-I
i < n

Γ ⊢ i𝑛 : Idx n
Var

x : T ∈ Γ

Γ ⊢ x : T
Ax

Γ ⊢ T : Sort s Γ, x : T ⊢ e : U
Γ ⊢ axm x : T; e : U

Pi
Γ ⊢ T : Sort s𝑡 Γ, x : T ⊢ U : Sort s𝑢

Γ ⊢ [x:T] → U : Sort max{s𝑡 , s𝑢 }
Lam

Γ, x : T ⊢ e𝑓 : Bool Γ, x : T ⊢ U← e Γ ⊢ [x:T] → U : Sort s

Γ ⊢ 𝜆 x:T@e𝑓 : U = e : [x:T] → U

App
Γ ⊢ e : [x:T] → U Γ ⊢ T← e𝑇

Γ ⊢ e e𝑇 : U[e𝑇 /x]
Sig

Γ ⊢ T0 : Sort s0 · · · Γ, x0 : T0, . . . , x𝑛−2 : T𝑛−2 ⊢ T𝑛−1 : Sort s𝑛−1

Γ ⊢ [x0:T0,...,x𝑛−1:T𝑛−1] : Sort max{s0, . . ., s𝑛−1 }

Tup

Γ ⊢ e0 : T0 · · · Γ ⊢ e𝑛−1 : T𝑛−1
[T0,...,T𝑛−1] ⊲ T Γ ⊢ T : Sort s

Γ ⊢ (e0,...,e𝑛−1) : T
Arr

Γ ⊢ e𝑛 : Nat
Γ, x : Idx e𝑛 ⊢ T : Sort s

Γ ⊢ «x: e𝑛; T» : Sort s
Pack

Γ ⊢ e𝑛 : Nat Γ, x : Idx e𝑛 ⊢ e : T
«x: e𝑛; T» ⊲ U Γ ⊢ U : Sort s

Γ ⊢ ‹x: e𝑛; e› : U

Ex-S𝐿
Γ ⊢ e : [x0:T0,...,x𝑛−1:T𝑛−1] i < n

Γ ⊢ e#i𝑛 : T𝑖 [e#0𝑛/x0 ] · · · [e#(i-1)𝑛/x𝑖−1 ]

Ex-S𝑖

Γ ⊢ e𝑖 : Idx n Γ ⊢ e : [x0:T0,...,x𝑛−1:T𝑛−1] ∀1≤𝑖<𝑛 .Γ ⊢ T𝑖 : Sort s
T𝑗 ’ = T𝑗 [e#0𝑛/x0 ] · · · [e#(j-1)𝑛/x𝑗−1 ] (T0’,...,T𝑛−1’) ⊲ T T#e𝑖 ⊲ U

Γ ⊢ e#e𝑖 : U
Ex-A

Γ ⊢ e : «x:e𝑛;T»
Γ ⊢ e𝑖 : Idx e𝑛

Γ ⊢ e#e𝑖 : T[e𝑖/x]

Γ ⊢ T← e A-T
Γ ⊢ e : T
Γ ⊢ T← e

A-Tup
Γ ⊢ T0 ← e#0𝑛 ∀1≤𝑖<𝑛 .Γ ⊢ T𝑖 [e#0𝑛/x0 ] · · · [e#(i-1)𝑛/x𝑖−1 ] ← e#i𝑛

Γ ⊢ [x0:T0,...,x𝑛−1:T𝑛−1]← e

e ⊲ e N-Let
let x = e; e’ ⊲ e’[e/x] N-Ex1

e#01 ⊲ e
N-Tup1

(e) ⊲ e
N-Sig1

[T] ⊲ T
N-Pack1

‹1; e› ⊲ e

N-Arr1
«1;T» ⊲ T

N-Tup𝛽
(e0,...,e𝑛−1)#i𝑛 ⊲ e𝑖

N-Pack𝛽
‹n; e›#e𝑖 ⊲ e

N-Tup𝜂
(e#0𝑛,...,e#(n-1)𝑛) ⊲ e

N-PackTup
n > 1

( e,...,e︸  ︷︷  ︸
n times

) ⊲ ‹n;e›
N-ArrSig

n > 1
[ T,...,T︸  ︷︷  ︸

n times

] ⊲ «n;T»
N-𝛽

e𝑓 [e𝑎/x] ≡ tt

(𝜆 x:T@e𝑓 :U = e𝑏) e𝑎 ⊲ e𝑏 [e𝑎/x]

N-TupPack
n ∈ N x ∈ FV {e}

‹x:n;e› ⊲ (e[0𝑛/x],...,e[(n-1)𝑛/x])
N-SigArr

n ∈ N x ∈ FV {e}
«x:n;T» ⊲ [T[0𝑛/x],...,T[(n-1)𝑛/x]]

N-Id
otherwise

e ⊲ e

Fig. 1. Syntax, 𝛽-Reduction, Typing, & Normalization. e might not be normalized; e is normalized.

Sort/Integer Bool non-parametric binders function/continuation type
* := Sort 0 Bool := Idx 2 [. . .,T,. . .] := [. . .,_:T,. . .] T → U := [_:T] → U

I8 := Idx 0x100 ff := 02 «e𝑛;T» := «_:e𝑛;T» Cn T := T → ⊥
I16 := Idx 0x10000 etc. tt := 12 ‹e𝑛;e› := ‹_:e𝑛;e› Fn T → U := Cn [T, Cn U]

where e where let x1 = ...; · · · let xn = ...; end := let x1 = ...; · · · let xn = ...; e
anonymous function/continuation named function/continuation

𝜆 x:T :U = e := 𝜆 x:T@tt:U = e lam f x:T :U = e := let f = 𝜆 x:T :U = e

cn x:T = e := 𝜆 x:T@ff:⊥ = e con f x:T = e := let f = cn x:T = e
fn x:T :U = e := cn (x:T, return:Cn U) = e fun f x:T :U = e := let f = fn x:T :U = e

(a) Simple syntactic sugar

𝜆 (T: *) ((x y: T), return: T � ⊥): ⊥ = return x
cn (T: *) ((x y: T), return: Cn T) = return x
fn (T: *) (x y: T): T = return x
𝜆 T: * @tt: [_: [[T, T], [_: T] � ⊥]] � ⊥ =

𝜆 xyr: [[T, T], [_: T] � ⊥]@ff: ⊥ = xyr#12 xyr#02#02

(b) Curried functions/continuations

[T: *] [[T, T], T � ⊥] � ⊥
Cn [T: *] [[T, T], Cn T]
Fn [T: *] [T, T] � T

[T:*] � [_:[[T, T], [_:T] � ⊥]] � ⊥

(c) Curried function/continuation types

Fig. 2. Syntactic sugar (excerpt). All functions in 1b are equivalent. The type can be expressed by any expression

in 1c—they are equivalent, too. The last respective item depicts the completely desugared version. Similar

sugar is available for lam, con, fun. In addition, lam/con/fun allow for recursion (Section 3.2).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 4. Publication date: January 2025.



4:10 Roland Leißa, Marcel Ullrich, Joachim Meyer, and Sebastian Hack

Example 3.4. Consider let x = 3; x. Rule N-Let will immediately normalize this expression to 3.
In fact, let-expressions only exist in Mim as N-Let will eliminate them outright. For this reason,
there is neither a typing nor an evaluation rule for a let-expression. Note that all expressions
are hash-consed (Section 4) and, thus, appear exactly once in the program graph. In fact, the
implementation does not really perform a substitution here. The front-end just memorizes that x
refers to a certain subgraph and all uses of x will be wired to that subgraph.

Plugins have the opportunity to extend normalizations (see Section 2.4) by adding rules of
the form: %myaxmiom e1 · · · e𝑛 ⊲ esomething . Typical examples include constant folding or various
identities like x+0 ⊲ x.
Normalizations must be deterministic and cycle-free. Cyclic rules such as x + x ⊲ 2 · x and

2 · x ⊲ x + x can cause MimIR to diverge as it may endlessly oscillate between these two rules.
Determinism is achieved automatically since rules are implemented in C++ which is executed
deterministically. However, in the future, we would like to permit the plugin designer to directly
specify rewrite rules in Mim. This would allow plugin designers to specify nondeterministic rules
but MimIR could also issue warnings or errors in the case of potentially nondeterministic or cyclic
rules.

Substitution. Substitution e[e𝑏/e𝑎] = e𝑠 where e𝑎 is recursively replaced with e𝑏 within e is
defined in the usual manner with the following extension: All expressions created along the way are
also normalized. Thus, the resulting expression e𝑠 is again normalized. Note that e, e𝑏 , and e𝑎 are
also normalized.

Example 3.5. The substitution e#x[01/x] directly yields e as N-Ex1 removes the superfluous
extraction when the substitution assembles all substituted subexpressions.

3.1.2 Nat & Idx. MimIR has a builtin type Nat inhabited by 0, 1, 2, . . . . Given e of type Nat, the
type Idx e represents integers within the range 0𝑒 , . . . , (e-1)𝑒 (Nat/Idx/Lit-N/Lit-I). For example,
type Idx 3 has three inhabitants: 03, 13, 23. For convenience, Bool is an alias for Idx 2, as this
type has exactly two inhabitants, for whom appropriate aliases are available, too: ff := 02 (false)
and tt := 12 (true). In addition, there is I8, I16, . . . available for Idx 0x100, Idx 0x10000, . . . . We
use these types for bootstrapping axioms, but they also play an important role within MimIR itself:
The arity, i.e. the number of elements of a tuple/array, is a value of type Nat, whereas a value of
type Idx e addresses a specific element of a tuple/array with arity e.

3.1.3 Tuples, Packs, Arrays & Σ-Types. Most languages distinguish between array and tuple terms
as well as their types. Albeit MimIR does have different syntax, this distinction does not matter
much because MimIR normalizes between both representations.

MimIR generalizes dependent pair types to n-ary dependent tuple types (Σ-types) where the type
of an element may depend on the value of any preceding element (Sig). A dependent pair—denoted
by Σ x:T.U in literature—is written as [x: T, U] in MimIR. However, MimIR allows for more
complex dependent Σ-types:
let Num = [T: *, add: [T, T] � T, mul: [T, T] � T, _0: T, _1: T];

The expression «x:e𝑛; T» forms an array type with e𝑛-many elements and element type T. The
arity e𝑛 must be of type Nat and may introduce a variable x whose type is Idx e𝑛 and may be
used inside the body T (Arr). Rule N-ArrSig expands parametric arrays of constant arity to tuple
types whereas Rule N-SigArr compresses homogeneous tuple types to arrays. This compression is
not strictly necessary but makes the implementation more efficient. In particular, huge arrays like
«1000000; T» are not expanded at all.
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The term (e0, ..., e𝑛−1) introduces a tuple while ‹x:e𝑛; e› introduces a pack. Think of a
pack as a compressed tuple. Both terms either inhabit a Σ-type or an array. Tuples and packs work
analogously to tuple types and arrays but on term level (Tup/Pack/N-TupPack/N-PackTup).

Example 3.6. Due to normalization MimIR considers both the non-normalized as well as the
normalized expressions as equal:

[Nat, Nat] ⊲ «2;Nat» «i:2; F i» ⊲ [F 02, F 12]

(0, 0) ⊲ ‹2;0› ‹i:2; f i› ⊲ (f 02, f 12)

The term e#e𝑖 extracts from e the element with index e𝑖 . This index must type as Idx e𝑛 . If e
types as array with e𝑛-many elements, the type of the extraction is the body of the array while
substituting the array’s variable with the given index e𝑖 (Ex-A). If e types as Σ-type with e𝑛-many
elements, there are two subcases. Ex-S𝐿 picks the ith element type (while substituting all preceding
variables x𝑗 with e#j𝑛), if the index is a literal i𝑛 .

Example 3.7. Suppose nmx has type [n: Nat, m: Nat, x: F n m]. Then, nmx#23 has type
F nmx#03 nmx#13.

Table 1. Typing examples

Expression Type

(0, 1, 2) «3; Nat»
(0, 1, 2)#i Nat
(0, tt) [Nat, Bool]
(0, tt)#02 Nat
(0, tt)#i (Nat, Bool)#i
(Nat, Bool)#i ‹2; *›#i ⊲ *
(0, Bool)#i  

If the index is not a literal, Ex-S𝑖 types the extraction as
another extraction from a tuple “one level up”. Each element
of this tuple contains the corresponding element type of the Σ-
type (while substituting all preceding variables x𝑗 with e#j𝑛).
This is only allowed, if all involved element types agree on
the same sort (see Example 3.8).

Rule N-𝛽 eliminates a tuple extraction with a known index
while N-Pack𝛽 eliminates an extraction—no matter the index—
from a non-parametric pack. Rule N-Tup𝜂 resolves a tuple
comprised of a sequence of extractions from the same entity with increasing indices. Finally, MimIR
consistently removes 1-tuples/packs (N-Tup1, N-Pack1), 1-tuple types/arrays (N-Sig1, N-Arr1), and
extractions with 01 (N-Ex1).

Example 3.8. Note that most languages need different syntax to introduce a tuple or an array
term such as (0, 1, 2) vs. [0, 1, 2] in Rust. MimIR does not need this distinction. As Table 1
showcases, tuples with homogeneous element types are typed as array. This makes them amendable
for extractions with an unknown index. However, tuples with inhomogeneous element types are
typed as Σ-type. Extraction with a known index yields the corresponding element type as expected.
However, extraction with an unknown index yields a type computation as another extraction (third
last row). This again yields a type computation as another extraction (second last row). If Rule Ex-S𝑖
would not prohibit extraction with an unknown index for a tuple whose elements do not agree on
their sort, the type of the expression in the last row would be (Nat, Sort 0)#i of type (Sort 0,
Sort 1)#i etc., leading to an infinite typing derivation.

Example 6.1 and Section 6.3.1 demonstrate the interplay between tuples/packs/Σ-types/arrays,
their normalizations, and dependent types.

MimIR also provides an insert (e𝑡, e𝑖, e𝑣) operation, that we elided in the formal presentation.
It non-destructively creates a new tuple where the element at index e𝑖 has been replaced with e𝑣 .
From a semantic point of view, insertion is a mix of term elimination and introduction as, for
instance, insert (e𝑡, 13, e𝑣) is the same as (e𝑡#03, e𝑣, e𝑡#23).

3.1.4 Assignable. Consider (Nat, %core.ncmp.l) of type [*, [Nat, Nat] → Bool]. However,
we can also type it as
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let Cmp = [T: *, [T, T] � Bool]

which is similar to a trait in Rust or type class in Haskell. Most systems featuring existential or
Σ-types require tuples to be ascribed such as (Nat, %core.ncmp.l):Cmp. In MimIR, tuples are
not ascribed. Instead, whenever an expression e is assigned to a variable x:T, MimIR checks via
Γ ⊢ e ← T whether this assignment actually makes sense. This is trivially the case, if e’s type
is T (A-T). Otherwise, A-Tup recursively checks whether all elements of a tuple are assignable
while successively resolving the dependencies the Σ-type T may introduce (similar to Ex-S𝐿/Ex-S𝑖
discussed above).

Example 3.9. In the following code the type checker allows passing (Nat, %core.ncmp.l) to
f, although it expects an instance of Cmp: Rule Lam asks Rule A-Tup whether the given pair is
assignable to Cmp, which it is in fact.
lam f(T: *, less: [T, T] � Bool)(x: T): Bool = less (x, x);
f (Nat , %core.ncmp.l) 23

3.1.5 Functions. A function 𝜆x:T@e𝑓 :U = e has a dependent function type [x:T] → U (Lam)—
written as Π x:T.U in literature. This means that the type of the function’s codomain U may
depend on the value of the argument x which in turn must inhabit the domain T. The callee e of an
application e e𝑇 must type as a Π-type and the given argument e𝑇 must be assignable (see above)
to the domain; the type of the application is resolved by substituting x with the argument in the
codomain U (App). The Boolean term @e𝑓 is the so-called filter and is used for partial evaluation
(Section 3.3).

CPS. Continuations are functions that never return. MimIR models them as functions whose
codomain is ⊥ (Bot)—a type without inhabitants—and Mim provides syntactic sugar (Figure 1a) for
continuations (cn/con) and their types (Cn). Continuations bridge the gap between CFGs and the
𝜆-calculus, as continuations are akin to basic blocks.

Example 3.10. Consider the “if diamond” in Figure 3b. The expression (F, T)#cond () first
selects either the F or T continuation. This works because cond is of type Bool—an alias for Idx 2.
The result of the extraction is of type Cn [] (see Ex-S𝑖 and N-Pack𝛽 ) which allows us to apply the
selected continuation to () to continue execution there. The T case invokes N 42 while the F case
invokes N 23. In static single assignment (SSA) form, f, F, T, and N would be basic blocks and N
would need a 𝜙-function to select either 23 or 42. In CPS the 𝜙-function becomes the parameter
phi of continuation N while the operands of the 𝜙-function become arguments to the appropriate
continuation call [5, 28]. See also Example 4.2.

Continuations may be used (mutually) recursive (Section 3.2) to model arbitrary, unstructured
control flow. Note that f in Figure 3b is a continuation and the return point is explicit by passing
it to f as another continuation. This idiom is so common that Mim introduces fn/fun/Fn as sugar
(Figure 1a). For example, in Figure 3b we can instead write:
fun f(cond: Bool): Nat = /*...*/;

Finally, Mim provides syntactic sugar for curried functions & continuations (Figure 1b-c). Note that
all curried function groups except the last one are in direct style in the case of curried continuations.

3.2 Full Recursion

Named functions (Figure 1a) are in fact more powerful than ordinary let bindings, as they allow
for (mutual) recursion and, hence, are more like letrec in other languages.
lam forever(x: Nat): Nat = forever x;
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This is an extension of the calculus presented so far. Internally, the recursive function forever is
represented as a cyclic graph (Section 4). MimIR allows recursion in both direct style (Example 3.12)
and CPS:

Example 3.11. The following loop counts from 0 to 42. If its parameter i (the “𝜙-function”) is
less than 42, i is incremented and loop recurses. Otherwise, it exits.
con loop(i: Nat) = // i = 𝜙 (0, i + 1)

(exit , body )#( %core.ncmp.l (i, 42)) () where // if i < 42 then body() else exit()
con body() = loop (%core.nat.add (i, 1)); // recurse
con exit() = next i; // pass last instance of i = 42 to next

end;
loop 0; // loop entry

3.3 Partial Evaluation & 𝛽-Equivalence

The so-called filter @e𝑓 of a function is used for partial evaluation and is a Boolean expression that
may depend on the function’s parameter (N-𝛽). For each call-site, MimIR instantiates the filter by
substituting the function’s variable with the call-site’s argument. Remember that substitution also
normalizes. If this syntactically yields tt, MimIR will 𝛽-reduce this call-site—potentially recursively
inlining more function calls. This mechanism allows for compile-time specialization.
Since MimIR has a dependent type system featuring full recursion (Section 3.2), type-checking

becomes undecidable in general since checking for 𝛽-equivalence is. This is arguably the most con-
cerning issue for picking up dependent types in more mainstream programming languages. MimIR
tackles this issue by (partially) evaluating functions according to the filters during normalization.

Example 3.12. The following recursive function pow, will be recursively 𝛽-reduced, if the exponent
b is a compile-time constant. Note that f’s parameter x has a dependent type.
lam pow(a b: Nat)@%core.pe.known b: Nat =

(%core.nat.mul (a, pow(a, %core.nat.sub (b, 1))), 1)#( %core.ncmp.e (b, 0));

lam f(n: Nat , x: «%core.nat.mul (n, %core.nat.mul (n, n)); Nat»): [] = ();
lam g(m: Nat , y: «pow (m, 3); Nat»): [] = f (m, y);

As g calls f with (m, y), MimIR has to check whether y’s type is assignable to g’s domain (Pi).
Rule N-𝛽 determines that pow’s filter evaluates to tt with the given argument (m, 3). This causes
MimIR to immediately 𝛽-reduce pow (m, 3) which will result in a call-site pow (m, 2). Rule N-𝛽
determines again that the filter yields tt, causing another 𝛽-reduction. The type checker now sees
y’s type as
«%core.nat.mul (m, %core.nat.mul (m, m)); Nat»

which is assignable to g’s domain. Using a ff filter for pow would result in a type error, as x’s type
is different from «pow (m, 3); Nat». Using a tt filter for pow is dangerous: While the example
above would still work, a call-site like pow (i, j), where j is not a compile-time constant, would
cause MimIR to diverge, as it would endlessly 𝛽-reduce new calls to pow. However, this termination
behavior is not random and completely transparent to the programmer. It depends on the specified
filters as well as how they are used—as stated by the programmer.

Coupling partial evaluation with normalization that in turn interacts with type checking is a
novel approach to dependent type checking. Moreover, partial evaluation filters clearly determine
which parts of a program are evaluated at compile time and which ones remain in the compiled
program. This distinction is somewhat unclear in many dependently typed languages—Idris 2 is an
exception (see Section 7).
Note that the rules in Figure 1 do not contain a conversion rule that states that two terms are

equal modulo 𝛽-equivalence. The typing rules are syntax-directed and deterministic similar to
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Pollack and Poll [52]. The normalization rules unambiguously state where normalization and, in
particular, 𝛽-reduction happens during type checking.

Default Filter Policy. Since our goal is high-performance code, we want to specialize type variables
at compile time [63]—similar to C++ templates, Rust generics, polymorphism in MLton [56] but
unlike Java generics. For this reason, Mim defaults to tt for elided partial evaluation filters except
for the final continuation in a (curried) cn/con/fn/fun function. The filter of this final continuation
defaults to ff (Figure 2). This has the desired effect that the actual computations are deferred to
runtime while other abstractions such as type abstractions are specialized. However, programmers
can override the default behavior by explicitly specifying a filter as in Example 3.12.

3.4 Type Safety

In order to argue about MimIR’s soundness, we present a nondeterministic 𝛽-reduction relation
e → e that steps a normalized expression—possibly by descending into a subexpression via
Cong—into another normalized expression by performing a single 𝛽-reduction (Beta). Rule Cong
introduces nondeterminism as the evaluation context E comprises all possible evaluations for
expressions. This provides the flexibility during optimization, for instance, to either descend into
the callee or the argument of an application—or directly apply Beta, if possible.

We have formalized the rule system in the proof assistant Coq and the following lemmas establish
MimIR’s type safety (recall once again that all expressions are normalized):
Lemma 3.13 (Progress). If Γ ⊢ e : T, then e is a value or there exists an e’ such that e→ e’.

Lemma 3.14 (Preservation). If Γ ⊢𝛽 e : T, and e→ e’, then Γ ⊢𝛽 e’ : T.
Since dependent types may depend on variables introduced by lambdas, a Beta-step may change

the type of an expression. For this reason, MimIR does not guarantee strong preservation, as the
resulting type after a step may differ from the original one. However, the preservation is stronger
than weak preservation since the type of the expression after a step is not arbitrary but evolves
from the old one by zero or more→-steps. To model this, we introduce 𝛽-equivalence on type level
as indicated in the typing rule ⊢𝛽 . This is a technical addition to prove preservation as seen in other
models of CC.
For a proper evaluation semantics you can choose any deterministic subset of → such as a

strict, left-to-right evaluation order as in MimIR’s LLVM backend. However, the nondeterministic
relation→ also establishes type safety for reductions that happen a priori. For example, many
optimizations such as copy propagation or scalarization are implemented on top of 𝛽-reductions.

3.4.1 Composition of Plugins. Custom axioms/normalizers, however, could violate progress or
preservation. Violation of preservation is a bug in the plugin that will trigger a type error as
soon as the erroneous normalization fires. For example, the nonsensical normalization 3 + 5 ⊲ ()
changes the type from Nat to []. MimIR will catch such errors after applying a non-type-preserving
rewrite, as this will lead to an ill-typed program. Specifying rewrite rules directly in Mim (see end
of Section 3.1.1) would allow us to directly type-check rules for preservation even before firing
them.

In addition, an axiom may violate progress, if the function it represents is not total. This means
that the axiom’s normalizer (or the translation of the axiom into another program) cannot cope
with all possible inputs. For example, %mem.loading from a dangling pointer or %core.bitcasting
45 to Idx 4 are such unsafe instances and lead to undefined behavior. Violating progress is not
necessarily bad per se. For example, if you want to compile an unsafe language like C, you obviously
need an unsafe language to model this behavior. If you want your axioms to be type safe, you must
guarantee that they do not violate progress.
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Even though axioms do not provide an implementation by themselves, they are treated and, in
particular, type-checked like any other value in MimIR. As long as the axioms’ implementations
obey preservation and progress, Lemma 3.13 and 3.14 guarantee a type-safe composition which in
turn enables a type-safe composition of plugins. Even if an axiom violates progress, it is merely
a problem inherent to that axiom, and does not arise from interactions with other axioms. In
addition, axioms are in contrast to instructions in MLIR, LLVM, or Thorin first-class citizens. This
means, for instance, that an axiom or a partial application of it can be passed as an argument to
another function or higher-order axiom. See %tensor.reduce in Section 6.3.1 for an example and
Section 6.4 for our practical experience with composing plugins.

3.4.2 Type-Safe Code Transformations. Oftentimes, code transformations are expressible as special-
izations. For example, suppose we want to create several unrolled loops—each time with a different
body and differently typed induction variables. Mim allows us to directly specify a polymorphic
loop and partially evaluate it to generate the unrolled, specialized version. The following function
iter invokes n times body and jumps to exit afterwards. The parameter body expects another
continuation as argument which is the continue point within iter. In order to allow for arbitrary
induction variables, iter is polymorphic in its accumulator type A that the other continuations use
to communicate between different iterations.
con iter {A: *} (n: Nat) (body: Cn [Cn A][A]) (exit: Cn A) (acc: A)@tt =

head(0, acc) where
con head (i: Nat , acc: A)@%core.pe.known n =

let cond = %core.ncmp.l (i, n);
(f, t)#cond () where

con t() = body continue acc where
con continue(acc: A) = head (( %core.nat.add (i, 1)), acc);

end
con f() = exit acc;

end;
end;

Now, if we invoke
iter n body exit (0, 1)
where

con body (yield: Cn [Nat , Nat]) (a b: Nat) = yield (b, %core.nat.add (a, b));
con exit (a _: Nat) = return a;

end

we essentially construct a while loop that uses in addition to the loop counter i two Nats as
accumulator (the loop’s “𝜙”-functions—see Example 3.10) and computes the nth Fibonacci number.
If we change the call to use 12 instead of n, the filter of head recursively becomes tt which causes
a complete unrolling of the loop and results in a cascade of 12 continuations. This will also happen,
if calling iter from C++ (see Section 5.3). After a standard set of optimizations the result is just
return 144—the 12th Fibonacci number.

Note that in IRs like MLIR or LLVM we would write C++ code, instead, that generates an unrolled
loop specialized for the desired type (two Nats in our example). This C++ "generator"-code is
significantly more complex because writing code that emits code is inherently more verbose. In
addition, we have to “look through” the API calls and picture in our minds how the generated
program will look like. Furthermore, this generator code is also significantly more error-prone
because we may very well accidentally construct ill-typed IR. This cannot happen, if our starting
point is already well-typed Mim as above.

4 Graph Representation

MimIR’s implementation is based upon the “sea of nodes” concept [13]. This means that MimIR’s
internal representation is a data dependence graph where each node in the graph represents an
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let a = %core.wrap.add 0 (x,1I8);
let b = %core.wrap.add 0 (x,2I8);

(a) Two additions in Mim

con f(cond: Bool , ret: Cn Nat) =
(F,T)#cond () where

con F() = N 23;
con T() = N 42;
con N(phi: Nat) = ret phi;

end;

(b) “If diamond” w/ “phi” in Mim

256 0%core.wrap.add

App

App

App App

Tuple Tuple

x 1 2

(c) MimIR graph for 3a

con f(cond: Bool, return: Cn Nat)

(F, T)#cond ()con F() con T()

N 23 N 42con N(phi: Nat)

return phi

(d) Condensed MimIR graph for 3b

Fig. 3. Mim vs. MimIR. Type edges are elided. Immutables are in blue, mutables in orange.

expression. If e𝑠 is a subexpression/operand of an expression e, the graph contains an edge e e𝑠 .
For example, an App has two operands—the callee and argument—and, hence, two outgoing edges
while a Σ-type with three element types has three operands and, hence, three outgoing edges. In
addition, every expression e has exactly one type T it inhabits. This relation is modeled with another
edge e _ T in the program graph. Note once again that T is an expression. Hence, there is only one
graph that contains both terms and types as well as any dependencies between them via edges;
in particular, we may have types that depend on terms due to dependent types. Furthermore, this
graph is complete. This means that this graph comprises the whole semantics of a MimIR program
and—apart from an internal hash set to hash-cons all nodes (Section 2.4)—MimIR does not rely
on any other auxiliary data structures like instruction lists, basic blocks, special regions, or CFGs.
let-expressions and even explicit function nesting only exist in Mim. Thus, a MimIR graph solely
consists of a large number of nodes that “float” in a complex network, resembling a sea—hence the
term “sea of nodes”.

Example 4.1. Figure 3c depicts the MimIR graph of the Mim program in Figure 3a. Note that
the let-expressions in Mim are absent in MimIR and the curried call %core.wrap.add /*256*/ 0,
where the inferred implicit argument is now explicit, is shared by both additions. In fact, all 8-bit
wide additions with mode 0 (Section 6.1.1) will reuse this subgraph. Similarly, x is shared by both
argument tuples of the additions. What is not shown in Figure 3c are the type edges. For example,
the bottom Apps and the literals 1 and 2 point to a subgraph that constitutes Idx 256.

Table 2. Immutable vs. mutable nodes

Immutable Mutable

build operands first, build the node first,
then the actual node then set the operands
operands form a DAG operands may be cyclic
hash-consed each new entity is fresh
non-parametric may be parametric

Immutables vs. Mutables. So far, we have dis-
cussed expressions that we create by first building
their operands, and then the actual nodes. MimIR
calls these expressions immutable: Once constructed,
they cannot be changed later on. Hence, immuta-
bles form a directed acyclic graph (DAG). In order
to allow for recursion, we have to somehow form a
cyclic graph. For this reason, there are also mutable
expressions (Table 2). For mutables, we first build the node and set its operands later on. This
enables us to form a cyclic graph and therefore enables recursion. Mutables also allow changing
their operands later on—hence their name. This also means that a mutable will not be hash-consed
as opposed to immutables. But MimIR will check mutables for 𝛼-equivalence, if necessary. Finally,
all expressions (both on term and type level) that introduce variables are also modeled as mutables.

Example 4.2. Consider the MimIR graph in Figure 3d of Figure 3b. Note how this graph resembles
a classic CFG. In order to access f’s and N’s variables, these continuations are mutables. In fact, most
of the time we build functions as mutables even though F and T could be modeled as immutables in
this particular case, as they are neither used recursively nor are their variables accessed.
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5 Type Checking, Inference, and Normalization On-The-Fly

MimIR’s implementation performs normalization, type checking, and inference of implicits as
soon as a new expression is constructed. This eagerness has the advantage that a compiler/plugin
developer will immediately notice, if they incorrectly plugged together some expressions that are
ill-typed.

5.1 𝛼-Equivalence

This means that type checking, inference, and normalization must also work on open terms, i.e.,
in the presence of free variables. The implementation boils down to checking for 𝛼-equivalence
modulo free variables inside of the assignable relation. Here we know that either two expressions
must be 𝛼-equivalent or there is a type error. For this reason, MimIR optimistically assumes during
type checking that any free variables are 𝛼-equivalent. Eventually, all terms will be closed where
any remaining issues will be found.

Example 5.1. During type checking MimIR considers the following expressions as 𝛼-equivalent:

𝜆(a: Nat): Nat = b and 𝜆(x: Nat): Nat = y .

Example 5.2. For normalization, however, this assumption is unsound. N-PackTup cannot simply
normalize the following expression as b and y may be bound differently:

(𝜆(a: Nat): Nat = b, 𝜆(x: Nat): Nat = y) ⋫‹2; 𝜆(a: Nat): Nat = b›

As discussed in Section 4, pointer equality of two MimIR expressions implies normalized, syn-
tactic equivalence. Both expressions refer to the same object. However, pointer equality does not
necessarily imply 𝛼-equivalence when free variables are involved. For this reason, MimIR only
resorts to pointer equality when checking for 𝛼-equivalence in the absence of free variables.

Example 5.3. Although the bodies of the following functions enjoy pointer equality, these func-
tions are not 𝛼-equivalent as x is bound in the first function and free in the second one:

𝜆(x: Nat): Nat = x and 𝜆(y: Nat): Nat = x

5.2 Type Inference

Whenever a function with an implicit argument is invoked, the function will first be applied with a
placeholder.

Example 5.4. Consider the annex %core.minus that computes unary minus of its s-sized Idx
argument a (Figure 4a). Note that s is implicit. Furthermore, the operation expects a so-called
mode of type Nat (see Section 6.1 for details). As soon as we apply the first explicit argument
mode to %core.minus, MimIR will insert a fresh placeholder—let us say ?5—as implicit argument
in between:
%core.minus ?5 mode

This yields the type Idx ?5 � Idx ?5 (see App). When we apply 42256 as third argument, App
triggers the assignable relation. Rules A-T and A-Tup additionally match placeholders with the
provided argument and fill out any gaps. So here, we find: ?5 = 256:
%core.minus /*256*/ mode 42256

Due to the implicit tt filter, MimIR will 𝛽-reduce the application to:
%core.wrap.sub /*256*/ mode (%core.idx 256 mode 0, 42256)

This in turn will be normalized to 214256 (two’s complement of -42).
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5.3 C++ Interface

Type checking, inference, and normalization happens regardless of whether MimIR is used through
Mim or its C++ interface.

Example 5.5. To better bring the point across how MimIR behaves when controlling from C++,
reconsider Example 5.4. We can construct the same call using the C++-API:
const Def* res = world.call <core::minus >(mode , world.lit_idx (256, 42));

Now, type checking, inference, and normalization will happen as discussed above. Thus, the C++
variable res (of static type const Def* and dynamic type const Lit*) will point to a literal that
represents 244 of type Idx 256. In other words, creating MimIR expressions from C++ triggers the
usual normalization that may in turn cause a Turing-complete (partial) evaluation of the expression.

Example 5.6. When trying to construct an ill-typed MimIR program from C++, MimIR will throw
a C++ exception as in the following code that erroneously passes a Nat instead of an Idx literal to
%core.minus:
const Def* res = world.call <core::minus >(mode , world.lit_nat (42)); // %core.minus mode 42

6 Case Studies & Evaluation

Our case studies show dependent types as a useful tool in regards to safe guards, expressiveness,
and efficiency. Informative types prevent unwanted behavior and allow for more aggressive opti-
mizations. This section showcases MimIR’s flexibility by discussing some of the plugins we have
already developed and evaluating their performance. In particular, we want to show that MimIR is
able to achieve the same performance as other low-level approaches like C/LLVM, is able to fully
remove carefully crafted abstractions, and that designing code analyses/transformations in MimIR
is no more complicated than in traditional compiler IRs like LLVM.
If not mentioned otherwise, we ran all tests using a single thread on an AMD Ryzen 7 3700X

supported by 64GB of DDR4@2133MT/s RAM. We used LLVM/Clang 15.0.7 for the C sources as
well as the LLVM code emitted by MimIR. All MimIR programs compiled within a few seconds at
most.

6.1 Low-Level Plugins

In this section, we discuss the design of three low-level plugins, which are deliberately modeled on
LLVM: First of all, LLVM is a well-thought-out low-level IR; second, it allows for straightforward
mapping of axioms defined in these plugins to LLVM instructions in MimIR’s LLVM backend. This
backend also lives within a plugin. Other more high-level plugins eventually lower their axioms to
those of these low-level plugins. The %core plugin introduces integer operations, the %math plugin
a floating-point type operator and operations for it, and the %mem plugin side-effects, memory
operations, and pointer arithmetic.

6.1.1 The core Plugin. This plugin (Figure 4a) defines arithmetic operations (%core.nat) and
comparisons (%core.ncmp) for Nat and integer operations on values of type Idx s. All integer
operations abstract over the size s. Like in LLVM, it is up to the operation to decide whether a
specific Idx s-typed value is signed or unsigned. For example, the right-shift %core.shr comes
in two flavors: arithmetic (with sign extension), and logical (without sign extension). Integer
operations like %core.wrap.add take an overflow mode m. This mode dictates how overflow is
handled (wrap-around or undefined behavior for both signed and unsigned overflow). Along the
same lines, %core introduces all 4 unary (%core.bit1), all 16 binary bitwise (%core.bit2), as
well as the usual signed/unsigned comparison (%core.icmp) operations. The %core.conv axiom
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// Create literal of type Idx s from l while obeying mode m
axm %core.idx: [s: Nat] [m: Nat] [l: Nat] � Idx s;

axm %core.nat(add , sub , mul): [a b: Nat] � Nat;
axm %core.ncmp(/*...*/): [a b: Nat] � Bool;

axm %core.bit1(f, neg , id, t): {s: Nat} [m: Nat] [a : Idx s] � Idx s;
axm %core.bit2(/*...*/): {s: Nat} [m: Nat] [a b: Idx s] � Idx s;
axm %core.wrap(add , sub , mul , shl): {s: Nat} [m: Nat] [a b: Idx s] � Idx s;
axm %core.shr(a, l): {s: Nat} [a b: Idx s] � Idx s;
axm %core.icmp(/*...*/): {s: Nat} [a b: Idx s] � Bool;

axm %core.conv(s, u): {ss: Nat} [ds: Nat] [Idx ss] � Idx ds;
axm %core.bitcast: {S: *} [D: *] [S] � D;

lam %core.minus {s: Nat} (m: Nat) (a: Idx s): Idx s = %core.wrap.sub m (%core.idx s m 0, a);

(a) The %core plugin

axm %math.F: [p e: Nat] � *;
let %math.f64 = (52, 11); // similar: f16 , f32 , ...
let %math.F64 = %math.F %math.f64; // F16 , F32 , ...

axm %math.arith(add , sub , mul , div , rem):
{p e: Nat} [m: Nat] [a b: %math.F (p, e)] � %math.F (p, e);

axm %math.tri(/*...*/): {p e: Nat} [m: Nat] [a : %math.F (p, e)] � %math.F (p, e);
axm %math.cmp(/*...*/): {p e: Nat} [m: Nat] [a b: %math.F (p, e)] � Bool;

lam %math.minus .(p e: Nat) (m: Nat) (a: %math.F (p, e)): %math.F (p, e) =
%math.arith.sub m (0:( %math.F pe), a);

(b) The %math plugin

axm %mem.M: *;
axm %mem.Ptr: * � *;
axm %mem.alloc: [T: *] [%mem.M] � [%mem.M , %mem.Ptr T];
axm %mem.free: {T: *} [%mem.M , %mem.Ptr T] � %mem.M;
axm %mem.load: {T: *} [%mem.M , %mem.Ptr T] � [%mem.M , T];
axm %mem.store: {T: *} [%mem.M , %mem.Ptr T, T] � %mem.M;
axm %mem.slot: [T: *] [%mem.M , id: Nat] � [%mem.M , %mem.Ptr T];
axm %mem.lea: {n: Nat , Ts: «n; *»} [%mem.Ptr «j: n; Ts#j», i: Idx n] � %mem.Ptr Ts#i;

(c) The %mem plugin

axm %autodiff.AD: * � *; // marks type -level transformation
axm %autodiff.ad: [T: *] [T] � %autodiff.AD T; // marks term -level transformation

(d) The %autodiff plugin

Fig. 4. Selection of plugins we implemented (excerpts). Normalizer information has been elided.

converts between different-sized signed or unsigend values via truncation, zero-, or sign-extension
whereas %core.bitcast allows for arbitrary (potentially unsafe) casts.

For convenience, there is a function %core.minus available that builds a unary minus by sub-
tracting the given operand a from 0 (see also Section 5.2-5.3). This function will always be inlined
due to the default tt filter (Section 3.3). Note that in LLVM, MLIR, and similar IRs such helpers are
usually implemented as C++ code that directly emit the desired code snippet as their type systems
cannot express polymorphic/dependently typed functions. The MimIR function %core.minus on
the other hand can be called and passed around just like any other axiom.

6.1.2 The math Plugin. This plugin (Figure 4b) introduces a type operator %math.F that expects
the number of significant precision bits p and exponent bits e over which all %math operations
abstract. Additionally, most operations expect a mode m that fine-adjusts how strictly they should
obey the IEEE-754 standard for floating-point transformations. For example, you may choose
to allow reassociation of floating-point operations or ignore NaNs or infinity. The axioms for the
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actual operations such as %math.arithmetic, %math.trigonometric, or floating-point comparisons
(%math.cmp) and convenience wrappers like %math.minus are straightforward.

Table 3. Original C version vs. our Impala implementa-

tion that uses MimIR (lower is better)

Benchmark Input size C [s] Impala [s]

aobench – 0.667 ± 0.014 0.659 ± 0.004
fannkuch 12 27.709 ± 0.210 26.301 ± 0.186
fasta 25,000,000 0.711 ± 0.011 0.814 ± 0.013
mandelbrot 5,000 1.393 ± 0.011 1.390 ± 0.010
meteor 2,098 0.036 ± 0.001 0.036 ± 0.004
nbody 50,000,000 3.621 ± 0.031 2.825 ± 0.021
pidigits 10,000 0.371 ± 0.005 0.370 ± 0.004
spectral 5,500 1.387 ± 0.011 1.409 ± 0.014
regex – 4.101 ± 0.037 4.128 ± 0.044
reverse – 0.744 ± 0.025 0.714 ± 0.029

geom. speedup – 1 1.020

6.1.3 The mem Plugin. This plugin (Fig-
ure 4c) introduces a type %mem.M to abstract
from the machine state (Section 2.3). We ex-
pose axioms to allocate memory, load from,
and store values into previously allocated
pointers, and to index into pointers that point
to compound data types. Most axioms expect
amachine state and additional arguments like
the pointer to operate on, and return a mem-
ory instance together with the produced re-
sults like the loaded value. The %mem.lea1 ax-
iom performs pointer arithmetic. Since this
instruction does not have side effects as it
does not directly interact with memory, no
machine state is needed. The %mem.lea axiom takes a pointer to a tuple or array and the offset i in
which it wants to index. The result is the pointer to the i-th element.

Example 6.1. In the following listing, p1 points to a 3-tuple and %mem.lea indexes into the second
element (13). Then, %mem.lea computes the pointer to the ith element of an array of size n. Both i
and n are statically unknown. In particular, note how %mem.lea’s dependent type computes with
the help of the normalization rules the result type of the element pointers.
let p1/*: %mem.Ptr [Nat , I16 , Nat]*/ = /*...*/;
let q1/*: %mem.Ptr I16 */ = %mem.lea /*(3, (Nat , I16 , Nat)*/ (p1, 13);
let i /*: Idx n */ = /*...*/;
let p2/*: %mem.Ptr «n; Nat» */ = /*...*/;
let q2/*: %mem.Ptr Nat */ = %mem.lea /*(3, ‹n; Nat›)*/ (p2, i);

6.1.4 Evaluation. In this experiment, we want to confirm that the low-level plugins perform as
well as directly using LLVM. To this end, we ported the code generator of the research language
Impala [35] to MimIR 2. We ported the fastest available C implementations that were neither
manually vectorized nor parallelized from The Computer Language Benchmarks Game [62] to Impala.
In addition, we ported the publicly available aobench [22]. Table 3 shows that the performance is
as expected nearly identical to the original C versions (with two slight outliers—one for the better,
the other one for the worse). Note that the regex benchmark does not use the %regex plugin.

6.2 Regular Expressions

We have already discussed the %regex plugin in Section 2: The plugin defines a set of axioms
representing ranges of literals, consecutive elements (conjunction), alternative elements (disjunc-
tion), negation, and quantifiers. These are sufficient to define a useful set of compile-time regular
expressions. While we only test this plugin with Mim, one could easily integrate MimIR with this
plugin as a code generator into a RegEx parser and either generate code for a RegEx at compile
time or just-in-time (JIT)-compile at run time.
This showcase demonstrates that MimIR provides a powerful core whose extensibility indeed

makes implementing a DSL with intrinsic, normalizable expressions and domain-specific optimiza-
tions very straightforward. Our %regex plugin provides a legalization pass that is written in C++
1The name is inspired by the x86 assembly instruction and its semantics is similar to getelementptr in LLVM but arguably
more streamlined.
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and receives the normalized RegEx pattern in its opaque form. This allows the pass to use the
exhaustive understanding of the RegEx to generate an optimized matcher using finite automatons.
To do so, the pass first translates the RegEx into a NFA, further converts this to a DFA [67, 2.2], and
then minimizes it [27]. Finally, the minimal DFA is translated into low-level control flow in MimIR’s
IR that is purely based on integer comparisons as well as jumps between state continuations. The
generated code is put into action by the pass as it replaces the pattern application with a call to the
newly generated matcher function.

Table 4. Comparison of RegEx engines

RegEx Compile Match
Engine LoC time [ms] time [µs]

CTRE 4,153 1,677 4,736
std::regex 4,874 2,207 10,151
pcre2 85,879 67 3,882
pcre2-jit 1,308
hand-written C 102 45 886
MimIR 941 145 640

In total, the RegEx plugin only encompasses 919
lines of C++ code and 22 lines of MimIR code.
We compare our RegEx implementation in MimIR
with Compile Time Regular Expression (CTRE) [19],
std::regex [21], as well as Perl-compatible Reg-
ular Expressions 2 (PCRE2) [26] in an interpreted
and a JIT compiled variant. From the lines of code
(LoC) numbers in Table 4 we observe that MimIR’s
implementation is at least one order of magnitude
less complex. Despite the rather low complexity, our engine outperforms state-of-the-art RegEx
engines. It is even 28% faster than a manually written, low-level matcher that we implemented in
C and matches only the specific pattern below. Most likely, our C implementation contains some
redundant checks, but spotting them is very hard in such low-level code that comes from manually
writing a complicated matcher.

The listed LoC include actual code lines exclusively.2 “Compile time” is the execution time of
clang++ and for MimIR the MimIR frontend and optimizer. All benchmarks test the following
RegEx on 10,215 E-Mail addresses that are matched by this pattern and 450 that are not [53]:
^[a-zA-Z0 -9](?:[a-zA-Z0 -9]*[._\-]+[a-zA-Z0 -9])*[a-zA-Z0 -9]*@[a-zA-Z0 -9](?:[a-zA-Z0 -9]*[_\-]+[a-zA-Z0 -9])*[a-

zA-Z0 -9]*\.(?:(?:[a-zA-Z0 -9]*[_\-]+[a-zA-Z0 -9])*[a-zA-Z0 -9]+\.)*[a-zA-Z][a-zA-Z]+$

We have also tested other regular expressions with similar results.

6.3 Machine Learning

6.3.1 Tensor Plugin. The %tensor plugin provides operations that abstract over the tensors’ rank,
shape, and element type. The rank and shape of involved tensors is tracked in their types across
operations. For instance, the matrix product takes two matrices of size 𝑙 ×𝑚 and𝑚 × 𝑛 returning
a matrix of size 𝑙 × 𝑛. Note that 𝑙 , 𝑛, and𝑚 do not necessarily have to be constants—a common
restriction in many other programming idioms/systems including XLA [24] or C++ templates.
Operations like getting the shape of a tensor are statically optimized away by directly accessing the
information of the type. Additionally, MimIR’s type system guarantees that read and write accesses
occur within bounds, eliminating the need for dynamic bound checks.

UsingMimIR’s expressive type system, the %tensor plugin defines a general map_reduce function
in the spirit of Numpy’s einsum function. The plugin eventually lowers all other tensor operations
into a map_reduce call. This significantly cuts the number of cases to check in optimizations. In
particular, many peephole optimizations like collapsing two consecutive transpositions into the
identity are handled automatically. Furthermore, the usage of high-level axioms also benefits other
plugins. For example, the %autodiff plugin (see below) directly operates on the high-level axioms
of the %tensor plugin.

As a non-trivial example that showcases many of MimIR’s features, consider the following axiom
in the spirit of XLA’s variadic reduction:

2LoC as reported by cloc, treating MimIR code as Rust

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 4. Publication date: January 2025.

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://openxla.org/xla/operation_semantics#variadic_reduce
https://github.com/AlDanial/cloc


4:22 Roland Leißa, Marcel Ullrich, Joachim Meyer, and Sebastian Hack

fun (x: T, y: T): T =
let z = x + y;
return (x * z);

fun ((x, x∗): [T, T � T], (y, y∗): [T, T � T]): [T, T � T] =
let z, z∗ = (x + y, fn (s: T): T = return (x∗(s) + y∗(s)));
return (x * z, fn (s: T): T = return (x∗(z*s) + z∗(x*s)));

Fig. 5. Each computation of the original program (left) is augmented with a backpropagator marked with
∗

(colored in blue, right). The differentiated function returns 𝑥 · (𝑥 +𝑦), 𝜆𝑠.𝑠 · (2𝑥 +𝑦, 𝑥). MimIR-like pseudocode.

axm %tensor.reduce: {r: Nat , s: «r; Nat», ni: Nat , Is: «ni; *»}
[f: «2; «i: ni; Is#i» » � «i: ni; Is#i»]
[is: «i: ni; «s; Is#i» », init: «i: ni; Is#i», dims: «r; Bool»]

� «i: ni; « ‹j: r; (s#j, 1)#( dims#j)›; Is#i» »;

This operation is polymorphic in the number of inputs ni, the rank r and the shape s of the
involved tensors, as well as their element types Is. The reduction function f expects a pair of
ni-tuples whose elements correspond to Is and yields again such an ni-tuple. The ni-tuple init
comprises the initial values of the reduction. The Boolean mask vector dims of size r selects for
each dimension whether it should be reduced. For this reason, the reduction yields ni arrays of
rank r whose shape is computed by either using the original dimension or 1, if the corresponding
element in the dims vector is tt: Since dimensions of arity 1 will collapse during normalization,
the resulting array will only exhibit dimensions that were not selected with dims. For example,
suppose a, b, and c are 𝑛 · 4 × 𝑛 matrices with element types I8, I16, and I32, respectively. Then,
the following expression
lam f (x y: [I8 , I16 , I32 ]): [I8 , I16 , I32] = /*...*/;
let n4 = %core.nat.mul (n, 4);
%tensor.reduce /*(2, (n4,n), 3, (I8,I16 ,I32))*/ f ((a, b, c) (0I32 , 0I16 , 0I32) (ff , tt))

has type [«n4; I8», «n4; I16» ,«n4; I32»]. Note that although the matrix dimensions are
not compile-time constants, the dependent types keep track of the information that the rows of the
input matrices as well as the lengths of the output vectors are of size n4. This information may be
useful during vectorization, for instance, to remove edge cases. You can match applications of this
axiom from within C++ for further analyses/optimizations:
if (auto reduce = match <tensor ::reduce >(e)) { auto [is, init , dims] = reduce ->args (); /*...*/ }

6.3.2 Autodiff Plugin. The %autodiff plugin implements reverse-mode automatic differentiation
(AD)—a prominent technique to compute the derivatives of code. These derivatives are used to
optimize parameters using gradient descent methods in, for example, machine learning frameworks.
A popular way to implement reverse-mode AD in functional languages is to use backpropaga-

tors [49]. Each function 𝑓 is augmented to return a function 𝑓 ∗, the backpropagator, in addition to
its original result (see Figure 5 for an example): 𝐷 𝑓 (𝑥, 𝑥∗) := (𝑓 (𝑥), 𝜆𝑎.𝑥∗ (𝑓 ′ (𝑥) · 𝑎)).
By this technique, AD effectively builds a list of backpropagators: The backpropagator of 𝑓

uses 𝑥∗ which is the backpropagator of the function that was used to compute the argument of 𝑓 .
In turn, 𝑓 ’s backpropagator is passed to all functions that take the value 𝑓 returned as an argument.
The derivative is then computed by invoking the backpropagator of the end result with 1.

The %autodiff plugin (Figure 4d) expresses this transformation as a set of local rewrite rules
that are applied in a bottom-up fashion to transform the original function into its derivative. Besides
simple functions, the %autodiff plugin handles a rich set of features including non-scalar types,
pointers, and higher-order, recursive functions. The advantage of the local-rewrite approach to AD
is that it is simple to implement and modular in the sense that AD of a compound language element
translates to differentiating its constituents. This modularity allows us to extend the implementation
at a high level by just specifying the derivative of another operation. For example, the %tensor
plugin specifies derivatives for common matrix operations without tainting the %autodiff plugin
with dependencies on the %tensor plugin. By doing so, the plugin computes the derivative of
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Fig. 6. Speedup 𝑡/𝑡mim of MimIR vs. Enzyme, and PyTorch

a matrix product using matrix products instead of low-level for-loops. The use of optimal code
generation for these high-level operations results in a significant speedup of the resulting program—
as demonstrated by Peng and Dubach [50].

The use of higher-order functions in the derivative computation makes it more challenging for
the compiler to produce efficient code. However, MimIR’s optimizer and partial evaluator are able to
remove this overhead entirely in the benchmarks that we considered as our evaluation below shows.
In particular, MimIR’s design resolves many practical implementation problems basically for free:
Most notably, hash-consing merges identical backpropagator invocations, and partially evaluating
backpropagators removes most of the boilerplate that is introduced by the newly introduced nested
function calls.
To show that MimIR is able to succinctly optimize the code that results from applying

backpropagator-based AD, we compare it against the state-of-the-art AD frameworks PyTorch [48]
and Enzyme [43]. PyTorch builds dynamic computation graphs via operator overloading in Python.
Enzyme differentiates LLVM code during compilation.

Setup. We evaluate the frameworks on Microsoft’s ADBench suite [57]. We use the Gaussian
mixture model (GMM), bounded analysis (BA), and a long short-term memory neural network
(LSTM) from the ADBench suite. Additionally, we compare the approaches on a network for the
MNIST classification task [17]. For a fair comparison to Enzyme, we instruct the %tensor plugin to
generate low-level, straightforward loop nests. Alternatively, the plugin could also employ highly
tuned BLAS [10] routines, instead. But we are interested in how well the %autodiff plugin copes
with low-level loop nests as this abstraction layer corresponds to the knowledge Enzyme obtains
via LLVM’s scalar evolution analyses.

6.3.3 Running Time. We ran the benchmarks using a single thread on an AMD Ryzen 7 5800X with
32 GB of DDR4@2400MT/s RAM. Figure 6 compares the speedup/slowdown of Enzyme/PyTorch
compared to %autodiff as baseline. For the MimIR implementations, we write the benchmarks in
Impala (Section 6.1.4) that compiles to MimIR and uses the %autodiff AD compiler pass. Finally,
MimIR emits an LLVM file that we feed to Clang to generate an executable. Enzyme is an LLVM
pass written in C++ while PyTorch is written in Python.
Our evaluation shows that Enzyme and %autodiff are comparable in performance. In some

cases like bounded analysis, Enzyme has a better caching/recomputation balance resulting in lower
runtime. In other cases like the GMM or LSTM benchmark, %autodiff is faster due to more caching.
Themain performance difference is due to caching or recomputation of intermediate results. Enzyme
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manages to better detect induction variables and recomputes them in the backward pass instead of
storing them. On the other hand, it sometimes stores additional unnecessary intermediate results
in the forward pass.

Table 5. LoC and cycl. complexity measure (lower is

better). We compute the measure per function; total
cyclomatic complexity refers to the sum over all files.

Cyclomatic complexity
LoC [k] total avg.

Enzyme w/ 58.9 13,793 10.9
w/o 49.4 11,857 12.8

%autodiff
w/ 4.7 704 1.6
w/o 1.3 141 1.8

w/: with extensions & plugins w/o: without extensions & plugins

In our evaluation, PyTorch is slower than
Enzyme and %autodiff. This is partly due to
the overhead of constructing the backward
graph at runtime, the overhead of the Python
interpreter, more memory usage, and missing
optimizations like inlining. PyTorch is ineffi-
cient in the bounded analysis benchmark result-
ing in a significantly longer running time. This
slowdown is caused by the deeply nested func-
tion calls and loops that contain conditionals
in the benchmark source code. The 𝐵𝐴2 test timed out, and thus, is not listed in Figure 6.

TorchScript improves upon PyTorch by compiling parts of the code. The resulting speedup is
especially visible for very large input sizes where TorchScript becomes one of the best implementa-
tions as shown in Figure 7. PyTorch 2.0 further refines the TorchScript approach of ahead-of-time
compilation using TorchDynamo [3], TorchInductor, and AOTAutoGrad. For small inputs, the
remaining overhead of Python, not compiled functions, and communication overhead still causes
PyTorch 2.0 to be slower than Enzyme and %autodiff. One advantage of PyTorch is its support
for utilizing multiple cores. In Figure 7, the PyTorch 2.0 Multi-Core variant shows how this notably
helps PyTorch’s performance on large problem sizes. Enzyme and %autodiff both do not use
multiple cores yet.

6.3.4 Code Complexity. One major contribution of our approach to AD is its simplicity. In order to
verify this claim, we estimate the code complexity of %autodiff and Enzyme using code complexity
metrics. Table 5 summarizes the LoC and the cyclomatic complexity [39]. For Enzyme we measured
the source folder. For better comparability, we also measured the metrics for Enzyme without the
Clang plugin, the MLIR code, and without the different scalar evolution expander versions. The
numbers without extensions refer to the plugin without the special casing of pointer arguments.
Enzyme has roughly 10× more code than %autodiff. This does not necessarily give an indication
of which code is simpler. But as a rule of thumb the larger a code base gets, the harder it becomes
to debug and maintain. As a more profound code complexity metric, we also look at the cyclomatic
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complexity metrics3 of both implementations. Enzyme’s cyclomatic complexity is roughly an order
of magnitude larger than %autodiff’s.

6.4 Other Plugins, Composition of Plugins, and Practical Experience

In addition, we have also created the following plugins: %affine to represent affine loop nests,
%clos which implements a typed closure conversion [41], %direct which allows to invoke direct-
style functions as continuations and vice versa, %refly which allows for introspection & reflection,
%compile exposesMimIR’s optimization framework as axioms, and %optwhich implementsMimIR’s
standard optimization pipeline as a Mim program.
We have already described the interaction of the %autodiff and the %tensor plugin in Sec-

tion 6.3.2. In addition, the %autodiff plugin uses the %affine plugin for loops, the %clos plugin
to introduce and eliminate closures, and the %direct plugin to seamlessly switch between direct
style and CPS. The %core, %math, and %mem plugins use each other mutually and are used by all
other plugins that need to generate low-level code including the %regex, %tensor, and %autodiff
plugins.
During development, MimIR’s type system was instrumental in identifying and addressing

typical bugs such as incorrect wiring of expressions early in the implementation of our plugins
(see Section 5.3). In addition, MimIR’s support for polymorphism enabled a shift from C++ code
generating MimIR to directly working with polymorphic, type-safe Mim (see Section 3.4.2). For
example, many plugins implement small wrappers and glue code directly in Mim.

7 Related & Future Work

MimIR lies at the intersection of higher-order, dependent type theory and low-level compiler IRs and
is to the best of our knowledge the first of its kind in this regard. We have already discussed MimIR’s
relationship to Thorin and MLIR in Section 2.6. This section discusses work that influenced MimIR
and other related approaches.

Partial Evaluation & AnyDSL. Partial Evaluation filters were first introduced by SCHISM [15]
and are also used by the modern partial evaluation framework AnyDSL [34]. AnyDSL has been
successfully applied for high-performance applications such as sequence alignment [44, 45] or
ray tracing [51]. AnyDSL’s IR is Thorin [35] (see Section 2.6). AnyDSL relies on shallow DSL
embedding and partial evaluation to remove the overhead DSL interfaces impose. Like AnyDSL,
MimIR supports shallow DSL embedding but adds the possibility of deep embeddings via plugins
(Section 2). Furthermore, MimIR is to the best of our knowledge the first system that employs
filter-based partial evaluation to resolve 𝛽-equivalence during type-checking a dependently typed
language.

Sea of Nodes. While the idea of a “sea of nodes” goes back to Click and Paleczny [13], Thorin
pioneered this concept for higher-order languages. MimIR inherits this representation and simplifies
the graph even further: Due to MimIR’s roots in PTS, types—which are also just expressions—are
part of the normal program graph as well.

Since the arrival of graph-based IRs, a debate has arisen among compiler engineers as to whether
graph-based IRs or instruction lists are superior. Graph-based IRs are used, for example, in the
HotSpot JVM [47], GraalVM [18], and Google’s TurboFan compiler (part of V8). Graph-based IRs
enable several optimizations directly during IR construction, such as constant folding, various

3We used metrix++ for the measurement.
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arithmetic simplifications, or semi-global value numbering4 through hash-consing. With graph-
based IRs, operations track dependencies solely through data dependencies. This makes the graphs
invariant to code motion and allows analyses to avoid dead code by only following data dependence
edges. MimIR leverages these features for its normalization framework. Instruction lists, in contrast,
are simpler to understand and straightforward to traverse. Visualizing a graph-based IR (especially
if it is broken) requires external graph tools and specialized debugging infrastructure. In contrast,
dumping an instruction list is straightforward—even if the program is incomplete or contains errors.
When the original order of instructions is crucial (e.g., when handling side effects), graph-based IRs
must make these dependencies explicit. This can feel cumbersome, but it also more accurate (see
Section 2.3 and 6.1.3).

𝜆-Calculi & SSA. As a 𝜆-calculus, MimIR takes inspiration from and shares similarities with
many other 𝜆-calculi—most notably: CC, 𝜆-cube [7], PTS, Henk [40], and the zip calculus [65].
Since MimIR is based upon a predicative flavor of CC it also subsumes a predicative flavor of
System F [23, 54] and System F𝜔 . Rossberg et al. [55] have shown that ML’s module system can be
encoded in System F𝜔 . Apart from impredicative idioms, MimIR can thus encode ML modules as
well.

MimIR is also flexible enough to mimic various SSA flavors. We have already discussed in
Section 3.2 how CPS makes MimIR akin to an SSA representation [5, 28]. MimIR can also model
various extensions to SSA form such as (thin) gated SSA [25, 64], loop-closed SSA (LCSSA), or static
single information (SSI) form [2]. It just depends on where additional variables are placed.

Maziarz et al. [38] present an algorithm to hash expressionsmodulo𝛼-equivalence. This technique
does not work for MimIR, however, as MimIR’s program graph is mutable at very specific spots
(Section 4). Moreover, the assignable relation checks for compatible tuple types (Section 3.1.4)
and resolves implicits (Section 5.2) anyway. By doing this, the relation additionally checks for
𝛼-equivalence.

CPS vs. Direct Style. In the community for compilers of functional languages, there is a decades-
old debate about whether to use CPS [4, 29, 31] or direct style [20, 37]. On the one hand, many
optimizations such as simple rewrites like 𝑥 + 0 ⊲ 𝑥 are much easier to implement in direct-style. On
the other hand, we need CPS tomodel unstructured control flow and at the end of the day, a compiled
program consists of basic blocks with machine instructions that jump to each other—which is CPS.
Thus, we second the opinion of Cong et al. [14] that the question of whether to compile with or
without continuations is more a matter of what a compiler engineer/language designer wants to
achieve and the specific stage in the compilation pipeline. MimIR itself does not prioritize the use of
CPS or direct style, offering syntactic sugar to accommodate both styles. The MimIR plugin %direct
enables the invocation of direct-style functions as continuations and certain continuations as direct-
style functions. For example, given f of type Fn T � U, the expression %direct.cps2ds f has
type T � U. Here we noted similarities to negation in the work of Ostermann et al. [46]. In addition,
the %direct plugin CPS-converts direct-style function to CPS because MimIR’s LLVM backend
expects CPS. Cong et al. [14] present a calculus that differentiates between first- and second-class
continuations and a type system that ensures proper use. MimIR’s %clos plugin performs a similar
classification via static analysis, instead. This plugin transforms escaping continuations via typed
closure conversion [41] but is limited to non-dependent function types. Bowman and Ahmed [11]
present a technique to closure-convert dependently typed functions in CC.

Typed Assembly Language. Previous work on low-level types [42] enriched imperative assembly
languages with a type system. Building up on this work, Dependently Typed Assembly Language
4This is global in the sense that instructions float beyond basic block boundaries but local as hashing stops at 𝜙-functions.
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(DTAL) [68] adds dependent types that are limited to linear constraints on integers while MimIR
features full dependent types. DTAL uses an integer linear programming (ILP) solver to solve these
constraints whereas MimIR uses normalization and partial evaluation filters to decide dependent
type checking. These strategies are orthogonal to each other and in MimIR we could define a %dtal
plugin that captures DTAL-like constraints in an axiomatized dependent type and connect to an
ILP solver during normalization to find more program equivalences and, hence, emulate DTAL
constraints.

Dependent Types. Dependent types give more freedom in program construction and allow to
express semantic properties in the types of expressions. Although they have been mainly used in
proof assistants such as Coq, Agda, or Lean in the past, they have received some attention beyond
proof assistants in recent years: Dependent Haskell [66] is an extension of Haskell that allows
combining types and expressions while preserving backward compatibility with Haskell. Scala 3 is
based upon dependent object types (DOT) [1] which features path-dependent types. These are a
specific kind of dependent type where the dependent-upon value is a path.

Idris focuses on type-driven development but, if desired, properties of program behavior can be
formally stated and proven. MimIR similarly expresses semantics on the type-level using dependent-
types but differs in the focus on optimization instead of verification. Whereas Idris is a high-level
programming language, MimIR as an IR is much closer to the hardware. Idris 2 [12] introduces
Quantitative Type Theory (QTT) [6]. This not only allows to specify protocols as types but also to
tag which types should be erased to clearly state which parts of a program materializes at runtime.
MimIR on the other hand, uses partial evaluation filters to resolve 𝛽-equivalence and make this
distinction.

F* [60] combines automated theorem proving and interactive proving. The automation also aids
when using refinement types as utilized in length-annotated arrays. MimIR’s user experience is
similar as the normalization approach handles dependent types without further complications.
However, MimIR does not aim to be a theorem prover. Furthermore, MimIR uses general dependent
types instead of refinement types. This approach allows for more freedom as is exemplified in the
AD plugin that computes the result type at the type level. Furthermore, the developer can extend
the normalization approach to handle more complex cases. One possible rule could optimize a
double reversion rev (rev xs) directly to xs; a use case, many automatic systems have problems
with.

Future Work. In the future, we want to make it possible to specify normalizations directly as
rewrite rules in Mim. This further reduces boilerplate C++ code. Moreover, this opens the door
for additional sanity checks and nondeterministic rule sets that we could explore with rewrite
engines like equality saturation [61]. For example, map/reduce-style rewrite rules have already
been used with equality saturation to produce high-performance code [30]. We are also working on
support for singleton, union, and intersection types. Singleton and union types are useful in many
settings, e.g., we could replace the type of the mode arguments in the %core and %math dialect with
a proper union type instead of a Nat. Intersection types allow us to combine trait-like Σ-types such
as Cmp ∩ Num. We also want to add linear types or full QTT in order to validate by the type checker
whether values that are supposed to be used linearly are used correctly. For example, values of type
%mem.M—which track side-effects—must be used linearly, but this is right now not enforced by the
type system. Furthermore, we want to enable parallelization and accelerators, such as GPUs, to
enhance higher-level DSLs with these mechanisms. Finally, we want to reimplement existing DSLs
such as Lift [59] or RISE/Shine [58] in MimIR.
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8 Conclusion

In this paper, we presented MimIR, an extensible, higher-order intermediate representation. MimIR’s
extensibility allows for expressing and optimizing programs at any level of abstraction. MimIR’s
foundation in the Calculus of Constructions provides a general and common type system for
domain-specific languages to nest in. DSL authors benefit from reusing MimIR’s type system,
normalization, and optimization framework without having to provide manual type-checkers and
reimplementing standard optimizations for their custom operations. We have shown that using
MimIR, we can generate code with state-of-the-art performance for high-level, domain-specific
applications such as a RegEx matcher, automatic differentiation, as well as for low-level, imperative
code.

Data Availability

MimIR is available as open source on GitHub.5 All data used in Section 6 is available at Zenodo [36].
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