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A NONLOCAL TRAFFIC FLOW MODEL WITH STOCHASTIC VELOCITY

Timo Böhme, Simone Göttlich* and Andreas Neuenkirch

Abstract. In this paper, we investigate a nonlocal traffic flow model based on a scalar conservation
law, where a stochastic velocity function is assumed. In addition to the modeling, theoretical properties
of the stochastic nonlocal model are provided, also addressing the question of well-posedness. A de-
tailed numerical analysis offers insights how the stochasticity affects the evolution of densities. Finally,
numerical examples illustrate the mean behavior of solutions and the influence of parameters for a large
number of realizations.
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1. Introduction

Macroscopic traffic models that incorporate hyperbolic conservation laws have been intensively studied in
the last decades. For a comprehensive overview we refer to [14, 15]. These models have undergone numerous
iterations and given rise to various offspring models. An especially novel and actively researched class are
nonlocal traffic flow models, see e.g. [3–5, 7–9, 12, 18, 20] for different directions. This type of model allows not
only the inclusion of local traffic but also the integration of information from traffic on the visible road ahead
into the driving behavior. From a practical perspective, the motivation of nonlocal traffic models might be that
self-driving vehicles do not only rely on their own sensory data but also include remotely obtained data on
the traffic situation down the whole road. Hence, in order to save resources and possibly travel time, a smart
self-driving vehicle will reduce its speed anticipatory, even if congestions are further away.

However, it is well known that traffic as a whole is subject to stochastic influences and two major interpre-
tations of such influence exist. First, this influence can be truly stochastic, as for example a human driver can
only estimate the velocities of the other vehicles ahead or a self-driving vehicle may be prone to measurement
errors. Second, this can be understood as an imperfection to our knowledge, regarding the true behavior of
the vehicles for a perceived traffic situation. In this view, vehicles behave deterministically, but our lack of
knowledge regarding hidden variables prevents us from accurately predicting their behavior. As empirical data
indicates that deterministic relations fail especially for crowded roads, many stochastic extensions to local traffic
models have been proposed, see e.g. [19,23,28]. In a broader sense, those models belong to the class of stochastic
conservation laws with random fluxes, see e.g. [2, 16, 25, 27]. Inspired by the approach proposed in [23], we aim
to investigate how stochasticity may be treated within the framework of nonlocal traffic models that have been
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only considered deterministically so far. The stochastic model in [23] assumes the fundamental diagram to be
a random function, with an error term affecting the maximum velocity. While the multiplicative influence of
the random variable ensures smoothness of the flux, it is slightly more restrictive than the additive approach
we will be proposing. However, this approach poses the implicit benefit that a noise term with a high enough
lower bound will already lead to non-negative velocities at all times. Further, this implicitly enables the model
to behave on average similarly to its deterministic basis.

For our investigations, we focus on a scalar nonlocal model depending on the downstream traffic velocity
as originally presented in [12]. Our stochastic extension includes a perturbed velocity function, introducing
uncertainty into the flux function. The overall aim of this paper is to introduce a stochastic nonlocal traffic
model and additionally examine its mathematical properties, thereby contributing to the active research of
nonlocal models and stochastic traffic flow in general. The work program is as follows: In Section 2 we revisit
the traffic model with nonlocal velocity from [12] and address the most important assumptions. Following this,
in Section 3 we construct a theoretically and practically well suited error term such that the error does not
overwhelmingly affect the model, but remains close to being realistic for modeling any noise. With such an error
term established, we proceed to propose our stochastic model and conduct an analysis of random velocities
from a theoretical point of view. Throughout these proofs, our goal is to demonstrate how the incorporation
of stochastic elements and the thoughtful construction of the error term change the deterministic approaches.
Having established and implemented suitable numerical schemes in Section 4, we continue to rigorously prove
the existence and uniqueness of solutions to the underlying model, as well as other central properties, as for
example the validity of a maximum principle in Section 5. The model’s behavior is examined numerically in
Section 6, demonstrating its reaction to different traffic situations and the impact of parameter choices on the
solution, both averaged over a large number of realizations.

2. Nonlocal velocity model (NV)

In this section, we briefly recall the original deterministic nonlocal velocity model introduced in [12]. While
local models like the Lighthill–Whitham–Richards model [24, 26] consider a flux 𝑓(𝜌) = 𝜌𝑣(𝜌), dependent only
on 𝜌 = 𝜌(𝑡, 𝑥) for 𝑡 ∈ (0, 𝑇 ] and 𝑥 ∈ R, nonlocal models consider a weighted mean of the downstream traffic,
resulting in a pathwise dependent flux. Model-wise, one can understand this behavior as a limit of a nonlocal
Follow-the-Leader model, where a vehicle adapts its velocity dependent on a fixed amount of multiple leaders
and their respective distances or their corresponding velocities [6]. This idea was originally developed based
upon the downstream density [3]. However, we focus on the velocity function and thus the downstream velocity.
Besides important results in terms of well-posedness and the inheritance of the maximum principle, the NV
model shows a more natural behavior in the dispersion of congestions [11]. Moreover, it is capable of modeling
whole networks [13], making it a candidate for traffic flow optimization. As such, this model will become our
main access point to stochastic nonlocal models.

In the NV model a vehicle positioned at 𝑥0 ∈ R evaluates the velocity over the interval [𝑥0, 𝑥0 + 𝜂], where
𝜂 > 0 is the nonlocal range, i.e. the distance a driver or a self-driving vehicle is capable to assess. The dynamics
can be described by the conservation law

𝜕𝑡𝜌 + 𝜕𝑥(𝜌(𝑊𝜂 * 𝑣(𝜌))) = 0, (NV)

where

(𝑊𝜂 * 𝑣(𝜌))(𝑡, 𝑥) :=
∫︁ 𝑥+𝜂

𝑥

𝑊𝜂(𝑦 − 𝑥)𝑣(𝜌(𝑡, 𝑦)) d𝑦, 𝜂 > 0,

and the Cauchy problem is equipped with initial conditions of the form

𝜌(0, 𝑥) = 𝜌0(𝑥) ∈ (𝐿1 ∩ BV)(R; [0, 𝜌max]) (1)
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for 𝜌max > 0 given. Here, 𝑊𝜂 is a kernel function denoting how the velocities are weighted with respect to the
distance of an evaluating vehicle. We need to make the following assumptions on 𝑊𝜂 to obtain meaningful and
stable solutions.

Remark 2.1. Given 𝜂 > 0, we assume that

𝑊𝜂 ∈ 𝐶1([0, 𝜂]; R+) with 𝑊 ′
𝜂 ≤ 0,

∫︁ 𝜂

0

𝑊𝜂(𝑥) d𝑥 = 𝑊0, lim
𝜂→∞

𝑊𝜂(0) = 0.

More insights on how to interpret these assumptions and counterexamples proving their necessity can be found
in [5,11]. We remark that for the numerical experiments presented in this paper, we restrict to a concave kernel
𝑊 𝑐𝑜𝑛𝑐.

𝜂 (𝑥) = 3(𝜂2 − 𝑥2) 1
2𝜂3 , assigning higher weights to the velocities directly ahead of each vehicle compared

to distant ones.

Regarding the velocity function, the following assumptions, comparable to the ones of the LWR model, need
to be made.

Remark 2.2. Given 𝜌max > 0, we assume for the velocity 𝑣(𝜌) :

𝑣 ∈ 𝐶2([0, 𝜌max]; R+) with 𝑣′ ≤ 0, 𝑣(0) = 𝑣max > 0.

We do not need to assume 𝑣(𝜌max) = 0 and it is apparent that 𝑣(𝜌) ≤ 𝑣max holds.

A major section of [12] and the cornerstone for our central Theorem 5.8 lies in establishing the existence
and uniqueness of weak entropy solutions for the Cauchy Problem. Due to the flux being pathwise dependent
on the spatial domain some nonlocal theory has to be established to firstly define such solutions. Referring to
Definition 1 of [3] for a generalized definition of nonlocal weak solutions, we note that for entropy solutions in
the sense of Kružkov [22], attention must also be paid to the partial derivatives of 𝑓(𝑡, 𝑥, 𝜌) := 𝜌(𝑊𝜂 *𝑣(𝜌))(𝑡, 𝑥)
with respect to 𝑥. As a special case of Definition 2 of [3] and thus as in Definition 2.11 of [11], we define them
as follows.

Definition 2.3 (Nonlocal weak entropy solution). A function 𝜌 ∈ 𝐶([0, 𝑇 ]; 𝐿1(R)) with 𝜌(𝑡, ·) ∈ BV(R; R) is a
weak entropy solution to (NV) with (1), i.e. the Cauchy problem, if∫︁ 𝑇

0

∫︁ ∞

−∞
|𝜌− 𝑐|𝜕𝑡𝜑 + sign(𝜌− 𝑐)(𝑓(𝑡, 𝑥, 𝜌)− 𝑓(𝑡, 𝑥, 𝑐))𝜕𝑥𝜑− sign(𝜌− 𝑐)𝜕𝑥𝑓(𝑡, 𝑥, 𝑐)𝜑 d𝑥 d𝑡

+
∫︁ ∞

−∞
|𝜌0(𝑥)− 𝑐|𝜑(0, 𝑥) d𝑥 ≥ 0

holds for all non-negative test-functions 𝜑 ∈ 𝐶1
0 ([0, 𝑇 ] × R; R+) and any constant 𝑐 ∈ R. This reduces to

Definition 1 of [3] for bounded 𝜌 and special choices of 𝜑 and 𝑐 ([11], 2.12).

Remark 2.4. The condition on the solution to (NV) being an entropy one, to be unique can be dropped as
discussed in 2.2, 2.3 of [11]. The proof as done in 2.3.2 of [11], employs a fixed-point approach whilst showing that
the characteristics do not cross. Yet, our approach maintains the entropy condition for the stochastic model to
accommodate traditional proof techniques, while also indicating the potential for relaxing the entropy condition
in our specific model as well.

3. Modeling of stochastic nonlocal velocity

We now derive our main model and present central results, while sketching how adding noise influences the
comparable deterministic proofs. In particular, we will encounter technical challenges when adding noise. The
proposed model can be categorized as a nonlocal velocity model whose flux is subject to a random perturbation.
From now on, we will work on a suitable underlying probability space (Ω,𝒜, P).
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3.1. Derivation

We adopt a model-driven approach, adding a noise term to the considered quantity. In the case of the NV
model, our approach is consequently, to add noise to the velocity

𝜕𝑡𝜌 + 𝜕𝑥(𝜌(𝑊𝜂 * (𝑣(𝜌) + 𝜖))) = 0,

where 𝜖 = {𝜖(𝑡), 𝑡 ∈ [0, 𝑇 ]} is a stochastic processes with suitable properties. We aim to add noise that induces
meaningful and interpretable perturbations of the deterministic model. As hinted, the reasons for adding noise
include:

(1) Noise as an imperfection to the measured velocities: Either humans or autonomous vehicles might be prone
to measurement errors. For this, it is reasonable to assume that the noise has mean zero and is bounded.

(2) Noise as an uncertainty on the flux: Related to the idea in [23], we might assume that the data is in
fact correctly perceived, but the fundamental diagram, i.e. the flux-density relationship, is not given by
a single relationship but is subject to random fluctuations. This would imply that the same driver reacts
differently and not deterministically to the same data. Especially for high densities, empirical data indicate
([30], Fig. 1) that a single flux-density relationship is not capable to represent the reality. This leads to
the same assumptions on 𝜖 as before, since an unbounded biased error would indicate a wrong underlying
deterministic fundamental diagram.

The time-dependence of the error is connected to the aforementioned concepts in that each observation of
the entire road, made over a specified period, is assumed to exhibit its own error in these time-dependent
measurements. In comparison to the local stochastic model in [23], we also build our model on a stochastic
velocity function. However, besides using a nonlocal base-model, we do not restrict the stochastic influence to
𝑣max, but imply a general disturbance on the perceived velocities themselves. While this approach allows us
more flexibility in modelling, it necessitates careful consideration of the preservation of non-negativity of the
fluxes.

Non-negativity of the fluxes

Due to the above considerations we will assume that

sup
𝑡∈[0,𝑇 ]

sup
𝜔∈Ω

|𝜖(𝑡, 𝜔)| ≤ 𝜏

for some 𝜏 < 𝑣max with 𝑣max as in Remark 2.2 as well as

𝜖(0) ≡ 0, E[𝜖(𝑡)] = 0, 𝑡 ∈ (0, 𝑇 ].

Now, for 𝜌 large enough 𝑣(𝜌) becomes sufficiently small such that 𝑣(𝜌)− 𝜏 < 0 and therefore

P
(︀
𝑣(𝜌(𝑡, 𝑥)) + 𝜖(𝑡) < 0

)︀
> 0.

In order to obtain meaningful velocities we have to employ a limiter in the form of

𝑣𝜖(𝜌, 𝑡) = 𝑣𝜖(𝑡)(𝜌(𝑡, 𝑥), 𝑡) := max{0, 𝑣(𝜌(𝑡, 𝑥)) + 𝜖(𝑡)}, (2)

which consequently perturbs the mean dynamics of the system for high densities, i.e. low velocities. Obviously
for low densities, i.e. high velocities, 𝑣𝜖(𝜌, 𝑡) ≤ 𝑣max does not hold in general. However, we have 0 ≤ 𝑣𝜖(𝜌, 𝑡) ≤
𝑣max + 𝜏 ≤ 2𝑣max which is still consistent with the assumption of a deterministic maximal velocity.
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Modeling of the noise

Additionally to the natural assumptions (a) mean zero and (b) uniformly bounded (by 𝑣max), we build on the
concept of white noise, which is used in mathematical modeling across various fields, including electronics engi-
neering, acoustics, and earthquake simulations [1]. In our context, considering the aforementioned rationale for
introducing noise, we assume that sensor-based measurements can generally be decomposed into a signal com-
ponent and an error component ([29], Tab. 2). Focusing on measurements from road-side sensors, autonomous
vehicles, or the stochastic human perception, we treat measurement noise as the primary source of error, which
is often modeled as either white noise or colored noise [31]. Hence, one would ideally like to add the properties

(c) independent and identically distributed (i.i.d.) in time,
(d) optional dependence of the variance on 𝜂.

A first choice for 𝜖 would be to directly use uniformly distributed white noise, that is to assume that

𝜖(𝑡) ∼ 𝒰(−𝜏, 𝜏), 𝑡 ∈ (0, 𝑇 ],

where 𝒰(−𝜏, 𝜏) denotes the uniform distribution over [−𝜏, 𝜏 ], and that

𝜖(𝑡1), 𝜖(𝑡2) are (stochastically) independent for all 𝑡1 ̸= 𝑡2 ∈ (0, 𝑇 ]. (3)

However, it is a classical result, that such a process does not have a measurable realization as a map from (Ω,𝒜)
to (R[0,𝑇 ],ℬ(R[0,𝑇 ])), and objects as

∫︀ 𝑇

0
𝜖(𝑠, 𝜔) d𝑠 are consequently not well defined. See, e.g. 4.2 of [21] for an

analogous result for Gaussian white noise; the reasoning for the Gaussian case can be easily adapted. Hence, it
becomes necessary to relax the third criterion.

We opt for a discrete-time error process that reasonably satisfies condition (c) and approximates white noise,
while maintaining the meaningfulness of our results.

Given a fixed hyper-parameter 𝛿𝑅 > 0 and with 𝑡𝑘 = 𝑘𝛿𝑅, 𝑅𝑇 = ⌊𝑇/𝛿𝑅⌋ we use

𝜖(𝑡) =
𝑅𝑇∑︁
𝑘=1

𝜖𝑘𝜒[𝑡𝑘,𝑡𝑘+1)(𝑡), 𝑡 ∈ [0, 𝑇 ], (4)

where 𝜖1, . . . , 𝜖𝑅𝑇 are i.i.d. 𝒰(−𝜏, 𝜏)-distributed. Thus, our noise will not not change instantaneously in time,
but at a fixed time-grid. Due to this discrete time construction, the map 𝜖 : (Ω,𝒜) → (R[0,𝑇 ],ℬ(R[0,𝑇 ])) is
measurable and the realizations 𝑡 ↦→ 𝜖(𝑡, 𝜔) are in particular bounded, integrable and BV. Clearly, we loose
property (c) for all 𝑡1 ̸= 𝑡2. We now have for any 𝑡1, 𝑡2 ∈ [0, 𝑇 ] with 𝑡1 ∈ [𝑡𝑘1 , 𝑡𝑘1+1), 𝑡2 ∈ [𝑡𝑘2 , 𝑡𝑘2+1) that

𝜖(𝑡1), 𝜖(𝑡2) are (stochastically) independent if 𝑘1 ̸= 𝑘2, (5)

and 𝜖(𝑡1) = 𝜖(𝑡2) if 𝑘1 = 𝑘2. In particular, we obtain independence of 𝜖(𝑡1) and 𝜖(𝑡2) if |𝑡1 − 𝑡2| > 𝛿𝑅. In the
following, we treat the parameters 𝛿𝑅 and 𝑅𝑇 as fixed, rather than tunable for altering the model’s behavior.
Specifically, assuming that 𝛿𝑅 is sufficiently small such that the correlation between consecutive observations can
be neglected, we generally set 𝛿𝑅 ≤ ∆𝑡 in our simulations. This ensures that we simulate as in the independent
case, given by (5). However, this assumption stems purely from the concept of a white noise approximate and
does not affect the proofs of the theoretical properties, whereas the bound 𝜏 does. Thus, the results also apply
to various forms of persistent or correlated noise. A comparison between two numerical time meshes with grid
size ∆𝑡 and our noise time mesh with 𝛿𝑅 is visualized in Figure 1.

Later on, we also discuss another technical challenge of adding a noise term; namely the well-definedness of
an entropy solution as a random variable.
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Figure 1. Realization of 𝜖 as constructed in (4) with 𝜏 = 1 and numerical evaluations.

3.2. The stochastic nonlocal velocity model (sNV)

The dynamics of the stochatic NV model are described by the following conservation law

𝜕𝑡𝜌 + 𝜕𝑥(𝜌(𝑊𝜂 * 𝑣𝜖(𝜌, 𝑡))) = 0. (sNV)

Here, the convolution is given by

(𝑊𝜂 * 𝑣𝜖(𝜌, ·))(𝑡, 𝑥) :=
∫︁ 𝑥+𝜂

𝑥

𝑊𝜂(𝑦 − 𝑥)𝑣𝜖(𝜌(𝑡, 𝑦), 𝑡) d𝑦, 𝜂 > 0.

The Cauchy problem is equipped with the initial conditions as in the deterministic model, cf. equation (1), with
𝜌max > 0 given and 𝑣𝜖 defined as in (2), where 𝜖 is given by (4) with 𝛿𝑅 > 0 and 0 ≤ 𝜏 < 𝑣max. In order to
obtain a compact notation we abbreviate the convolution of random velocities similar as in (NV) and write

𝑉𝜖(𝑡, 𝑥) := (𝑊𝜂 * 𝑣𝜖(𝜌, ·))(𝑡, 𝑥) and 𝑓𝜖(𝑡, 𝑥, 𝜌) := 𝜌𝑉𝜖(𝑡, 𝑥).

For the the rest of this paper we fix without loss of generality 𝑊0 = 1 and all of our simulations will be carried
out for velocity functions satisfying 𝑣max = 𝜌max = 1.

In addition to useful properties, we prove a central existence and uniqueness result to (sNV) over the course of
Section 5. We demonstrate, how the proofs rely upon the well-posedness of our stochastic velocity function along
its associated error term. Key factors include time integrability, the almost everywhere existing derivative of 𝑣𝜖

and its bounds alongside a presented numerical scheme with a suitable CFL condition. Notably, the (pseudo)
independence of the noise process is dispensable, enhancing the model’s flexibility.

3.3. Analysis of random velocities

Prior to presenting our findings on the behavior and attributes of the sNV model, we discuss essential
properties of the almost everywhere existing derivative of 𝑣𝜖 alongside an appropriate norm. For now we assume
a fixed time 𝑡 ∈ (0, 𝑇 ] and analyze the behavior of 𝑣𝜖(·, 𝑡), which we abbreviate as 𝑣𝜖(𝜌) := 𝑣𝜖(𝜌, 𝑡). The mapping

[0,∞) ∋ 𝑥 ↦→ (𝑥 + 𝑐)+ ∈ [0,∞)
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is Lipschitz continuous with Lipschitz-constant one and satisfies

(𝑥 + 𝑐)+ − (𝑦 + 𝑐)+ =
∫︁ 𝑥

𝑦

𝜒(0,∞)(𝑧 + 𝑐) d𝑧, 𝑥, 𝑦 ∈ R.

Consequently, the mapping

[0, 𝜌max] ∋ 𝑥 ↦→ (𝑣(𝑥) + 𝑐)+ ∈ [0,∞)

is Lipschitz continuous with constant ‖𝑣′‖∞ and of bounded total variation. Further, we have

(𝑣(𝑥) + 𝑐)+ − (𝑣(𝑦) + 𝑐)+ =
∫︁ 𝑥

𝑦

𝑣′(𝑧)𝜒(0,∞)(𝑣(𝑧) + 𝑐) d𝑧. (6)

Definition 3.1. Upon this consideration, we define

𝑣′𝜖(𝜌) := 𝑣′(𝜌)𝜒(0,∞)(𝑣(𝜌) + 𝜖).

While the actual derivative of 𝑣𝜖 coincides everywhere for 𝜖 ≥ 0 with Definition 3.1, such that we retrieve
𝑣𝜖 ∈ 𝐶2([0, 𝜌max]; R) again, it is not well defined at 𝜌* = 𝑣−1(−𝜖) for 𝜖 < 0. For the latter case, the zero-set gap
between the actual but undefined derivative and our definition is negligible. This is due to the fact that given
𝑣 ∈ 𝐶2([0, 𝜌max]; R+) and 𝜒(0,∞) ≥ 0, we can invoke the mean value theorem for integrals to obtain for 𝑥 ̸= 𝑦:

(𝑣(𝑥) + 𝑐)+ − (𝑣(𝑦) + 𝑐)+ =
∫︁ 𝑥

𝑦

𝑣′(𝑧)𝜒(0,∞)(𝑣(𝑧) + 𝑐) d𝑧

= 𝑣′(𝜉) Π(𝑥, 𝑦)(𝑥− 𝑦), (7)

for some 𝜉 ∈ [𝑥, 𝑦] with

Π(𝑥, 𝑦) :=
1

𝑥− 𝑦
·
∫︁ 𝑥

𝑦

𝜒(0,∞)(𝑣(𝑧) + 𝑐) ∈ (0, 1] d𝑧. (8)

Thus, mean value theorem arguments can be applied to 𝑣𝜖. By the assumptions on the velocity function,
sup𝜌∈[0,𝜌max]|𝑣′𝜖(𝜌)| is obtained on {𝜌 : 𝑣(𝜌) + 𝜖 > 0} and it follows immediately that

sup
𝜌∈[0,𝜌max]

|𝑣′𝜖(𝜌)| ≤ sup
𝜌∈[0,𝜌max]

|𝑣′(𝜌)| ∀𝜖 ∈ [−𝜏, 𝜏 ]. (9)

This analysis can now be transferred for variable 𝑡 ∈ (0, 𝑇 ] and 𝜔 ∈ Ω. Here, Definition 3.1 translates in
notation to

𝑣′𝜖(𝜌(𝑡, 𝑥), 𝑡) = 𝑣′(𝜌(𝑡, 𝑥))𝜒(0,∞)(𝑣(𝜌(𝑡, 𝑥)) + 𝜖(𝑡)).

As we are only interested in the spatial application of the mean value theorem and hence the spatial derivatives,
we do not need an assessment of 𝜕𝑡𝑣𝜖(𝜌, 𝑡), but must expand (9) to allow 𝑣𝜖 to be dependent on density and
time. We start by defining an appropriate norm.

Definition 3.2. For any 𝜔 ∈ Ω we define the random variables

‖𝑣𝜖‖(𝜔) := sup
𝑡∈[0,𝑇 ]

sup
𝜌∈[0,𝜌max]

|𝑣𝜖(𝜌, 𝑡)(𝜔)| and ‖𝑣′𝜖‖(𝜔) := sup
𝑡∈[0,𝑇 ]

sup
𝜌∈[0,𝜌max]

|𝑣′𝜖(𝜌, 𝑡)(𝜔)|,

while keeping the notation of ‖·‖ := ‖·‖∞ for the one dimensional case, as before.
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Now (9) adapts to the case of variable 𝑡 as the estimates hold independently of time, and we can add the
notation with respect to 𝑡 and 𝜖(𝑡, 𝜔) to both sides. Thereby we can apply sup𝑡∈[0,𝑇 ] to (9) and obtain

‖𝑣′𝜖‖(𝜔) ≤ ‖𝑣′‖ ∀𝜔 ∈ Ω. (10)

Hence, we have derived a deterministic bound on the spatial derivative of our random velocities. For completeness
regarding 𝑣𝜖, it immediately holds

𝑣max = ‖𝑣‖ ≤ ‖𝑣𝜖‖(𝜔) ≤ 𝑣max + 𝜏 < 2𝑣max ∀𝜔 ∈ Ω. (11)

3.4. Mean and variance of random velocities

Next, we briefly analyze the mean and variance of 𝑣𝜖 and 𝑉𝜖 to gain insight into the anticipated behavior of
the sNV model itself. We again fix any 𝑡 ∈ (0, 𝑇 ], an admissible density 𝜌 and abbreviate 𝑣𝜖(𝜌)(𝜔) := 𝑣𝜖(𝜌, 𝑡)(𝜔).
Further, let the standard assumptions on 𝑣 and 𝑊𝜂 in Remarks 2.1 and 2.2 hold. For a fixed 𝑡, the noise of (4)
fulfills

E[𝜖(𝑡)] = 0, V(𝜖(𝑡)) =
1
3
𝜏2. (12)

Straightforward calculations give:

Lemma 3.3. Let the Remarks 2.1, 2.2 hold, then

E[𝑣𝜖](𝜌) =
1
4𝜏

(︁
(𝜏 + 𝑣(𝜌))2 −max{0, 𝑣(𝜌)− 𝜏}2

)︁
,

V(𝑣𝜖)(𝜌) =
1
6𝜏

(︁
(𝜏 + 𝑣(𝜌))3 −max{0, 𝑣(𝜌)− 𝜏}3

)︁
− E[𝑣𝜖]2(𝜌).

Since
max{0, 𝑣(𝜌(𝑡, 𝑥)) + 𝜖(𝑡)} ≥ 𝑣(𝜌(𝑡, 𝑥)) + 𝜖(𝑡),

we have

E[𝑣𝜖](𝜌) ≥ 𝑣(𝜌) = E[𝑣 + 𝜖](𝜌). (13)

Moreover, since
(max{0, 𝑣(𝜌(𝑡, 𝑥)) + 𝜖(𝑡)})2 ≤ (𝑣(𝜌(𝑡, 𝑥)) + 𝜖(𝑡))2,

it follows that

V(𝑣𝜖)(𝜌) ≤ V(𝜖) = V(𝑣(𝜌) + 𝜖). (14)

Thus, adding the noise leads to an increase in the mean velocity, while the variance of the velocity is bounded
by the variance of the noise. Finally, note that for large velocities, i.e. 𝑣(𝜌) > 𝜏 , the limiter is not active and
we have

E[𝑣𝜖](𝜌) = 𝑣(𝜌), V(𝑣𝜖)(𝜌) = V(𝜖).

These observations are visualized in Figure 2, where the upper and lower bounds of 𝑣𝜖(𝜌), i.e. max{0, 𝑣(𝜌)±𝜏},
are displayed by the black lines and the area where the limiter can become active, i.e. to the left and right of
𝜌* = 𝑣−1(𝜏), by the vertical lines.

Regarding the actual velocity of interest, 𝑉𝜖, the behavior of 𝑣𝜖 translates but is additionally influenced by
𝑊𝜂 and 𝜂. Due to 𝑊𝜂, 𝑣𝜖 ≥ 0, Fubini’s Theorem, Lemma 3.3 and the monotonicity of 𝑊𝜂, it holds

E[𝑉𝜖(𝑡, 𝑥)](𝜌) = (𝑊𝜂 * E[𝑣𝜖])(𝑡, 𝑥)(𝜌) ≥ (𝑊𝜂 * 𝑣)(𝑡, 𝑥)(𝜌) = 𝑉 (𝑡, 𝑥)(𝜌). (15)

Especially the deviation of E[𝑉𝜖] from 𝑉 is not only obtained for 𝜌 ≥ 𝜌* but already for 𝜌 ≥ 𝜌*−𝜂. However, due
to the nature of the kernel function with respect to 𝜂 and the proportionality of the velocities in the convolution,
the strength of the deviation in the area [𝜌* − 𝜂, 𝜌*] can be rather weak. Lastly we define for further reference

𝑣𝜖(𝜌) := E[𝑣𝜖](𝜌) and 𝑉 𝜖(𝑡, 𝑥)(𝜌) := E[𝑉𝜖(𝑡, 𝑥)](𝜌).
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Figure 2. 𝑣(𝜌) = 1− 𝜌2, the expectation (𝑣𝜖) of 𝑣𝜖 and its variance, given 𝜏 = 0.8.

3.5. Characteristics

Next, we initiate the examination of the model’s behavior through its characteristics. More precisely, we
provide empirical evidence that the characteristics do not cross, show how the noise changes the behavior of
(NV) and how the average behaviour may be captured. Here we combine the notation of 1.1 from [17] with
Definition 2.3.2 from [11].

Definition 3.4 (Characteristics of (sNV)). Let

𝑉𝜖[𝜌](𝑡, 𝑥) := (𝑊𝜂 * 𝑣𝜖(𝜌, ·))(𝑡, 𝑥)

and for any given 𝜔 ∈ Ω, let 𝜌 = 𝜌(𝜔), be a weak solution to (sNV). Then the characteristics 𝑋𝜌,𝜖 : (0, 𝑇 )×R×
(0, 𝑇 ) → R are the solutions to the integral equation

𝑋𝜌,𝜖[𝑡0, 𝑥0](𝑡) := 𝑥0 +
∫︁ 𝑡

𝑡0

𝑉𝜖[𝜌](𝑠, 𝑋𝜌,𝜖[𝑡0, 𝑥0](𝑠)) d𝑠, 𝑡 ∈ [𝑡0, 𝑇 ],

with (𝑡0, 𝑥0) ∈ [0, 𝑇 ]× R. Thus, they are the solution to the ODE

d
d𝑡

𝑋𝜌,𝜖[𝑡0, 𝑥0](𝑡) = 𝑉𝜖[𝜌](𝑡, 𝑋𝜌,𝜖[𝑡0, 𝑥0](𝑡)), 𝑡 ∈ [𝑡0, 𝑇 ], (16)

𝑋𝜌,𝜖[𝑡0, 𝑥0](𝑡0) = 𝑥0.

The well-posedness of (16) is ensured by 2.34 of [11], as the proof directly translates due to the spatial
differentiability of 𝑉𝜖 with slightly different bound 𝒱∞𝜖 , which can be found in the appendix as equation (A.23).

In order to evaluate (16) numerically, we draw one realization of 𝜖 and approximate (sNV) for ∆𝑥 = 10−2

with the scheme (21) and ∆𝑡 satisfying (23). Hence, we obtain the time and space dependent velocities 𝑉𝜖[𝜌]
and densities 𝜌. Next, we choose any (𝑡0, 𝑥0) ∈ {0} × R and invoke explicit Euler time-marching (e.g. [17], 1.1)
with the same time mesh as before. Doing this, we approximate the evaluation of 𝑉𝜖 in the spatial coordinate
at 𝑋𝜌,𝜖[𝑡0, 𝑥0](𝑡) by the closest known evaluation on the grid defined by ∆𝑥. For comparability, we choose the
same data as in 2.33 of [11], i.e. the initial data 𝜌0 from Example 3.5 with nonlocal range 𝜂 = 0.1.
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Figure 3. Characteristics of Example 3.5 to (sNV).

Example 3.5. We consider the initial data

𝜌0 =

{︃
1, if 𝑥 ∈

[︀
1
3 , 2

3

]︀
1
3 , else

and velocity function 𝑣(𝜌) = 1− 𝜌, convoluted with a concave kernel 𝑊 𝑐𝑜𝑛𝑐.
𝜂 .

The results are plotted in Figure 3. To demonstrate the impact of the error term, we implied low disturbances
(𝜏 = 0.2) on the left and high disturbances (𝜏 = 0.9) in the right graphs.

As mentioned, the characteristics do not cross, since at every time evaluation with stepsize max{∆𝑡, 𝛿𝑅} the
slope of the characteristics changes everywhere on the spatial domain by the same degree. The maximal and
average slope-change is determined by the distribution of 𝜖, or rather 𝑣𝜖, and thereby dependent on 𝜏 . This does
not hold in general, if the error term becomes spatially dependent.

We repeat our experiments on some slightly changed example, where the area of high initial density has been
expanded for better visualization.

Example 3.6. We consider the initial data

𝜌0 =

{︃
1, if 𝑥 ∈ [0, 1]
1
3 , else

and velocity function 𝑣(𝜌) = 1− 𝜌2, convoluted with a concave kernel 𝑊 𝑐𝑜𝑛𝑐.
𝜂 .

Considering the analytical setup 𝜂 = 0.2, 𝜏 = 0.8, we then proceed as before to obtain the characteristics.
Instead of plotting only one realization of 𝜔 ∈ Ω, we now simulate multiple (𝑁 = 30) realizations of the
characteristics and compare them to the deterministic ones of (NV), in Figure 4.

Notice that vehicles, which always travel in an area of low downstream densities, i.e. right of 𝑥0 = 1, behave
on average like (NV). However, vehicles entering an area of high downstream density behave differently. For
example, a vehicle placed at 𝑥0 = −0.5 moves initially in an area of low downstream density but then enters
a congested area. Hence, whilst being mean consistent at first, this changes as the evaluation ahead (𝜂 = 0.2)
picks up the congestion. Vehicles of (sNV) move faster in these areas, which is observable by the on average
flatter characteristics and is backed up, by our previous assessment of the expected velocities (15).
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Figure 4. Characteristics of Example 3.6 to (sNV) in grey and (NV) in blue.

Figure 5. Characteristics of Example 3.6 to (sNV) in grey and (NV) using 𝑣𝜖 in green.

Next, we repeat the previous experiment in Figure 5, but compare the characteristics of 30 (sNV)-realizations
with (NV) where we used the expected velocity function 𝑣𝜖 instead of 𝑣 in the latter. We observe that the
resulting characteristics empirically align with the mean behavior of (sNV). This observation, alongside further
extensive Monte Carlo experiments conducted on the density level, leads to the conjecture that the mean
density of (sNV) coincides, or can at least be adequately captured, by (NV) using 𝑣𝜖. We intend to validate this
hypothesis through additional numerical experiments and to-be-developed analytical methods in the future.

4. Numerical scheme for the sNV model

We now enhance a deterministic nonlocal Godunov type scheme ([12], 3.1) to additionally incorporate the
noise of the sNV model. Hence, the following coincides with the deterministic scheme by formally setting 𝜖 ≡ 0.
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Assume an equidistant spatial grid, with cell centers 𝑥𝑗 , cell interfaces 𝑥𝑗−1/2 and cell length ∆𝑥 = 𝑥𝑗+1/2−
𝑥𝑗−1/2 ∀𝑗 ∈ Z. Further, we set the time mesh by 𝑡𝑛 = 𝑛∆𝑡 for 𝑛 = 0, . . . , 𝑁𝑇 with 𝑁𝑇 := ⌊𝑇/∆𝑡⌋. Let as usual
𝜌𝑛

𝑗 := 𝜌(𝑡𝑛, 𝑥𝑗) and define the piecewise constant function

𝜌Δ𝑥(𝑡, 𝑥) = 𝜌𝑛
𝑗 for (𝑡, 𝑥) ∈ [𝑡𝑛, 𝑡𝑛+1)× [𝑥𝑗−1/2, 𝑥𝑗+1/2). (17)

Then, the deterministic initial density 𝜌0 is discretized by cell averages with respect to (17):

𝜌0
𝑗 =

1
∆𝑥

∫︁ 𝑥𝑗+1/2

𝑥𝑗−1/2

𝜌0(𝑥) d𝑥, 𝑗 ∈ Z.

In each time step the Riemann problems arising at the discontinuities between the numerical densities 𝜌𝑛
𝑗 , 𝑗 ∈

Z are then solved exactly until the first shocks collide. Thus, the update of the cells densities is calculated as

𝜌𝑛+1
𝑗 = 𝜌𝑛

𝑗 +
∆𝑡

∆𝑥

(︁
𝐹𝑛

𝑗+1/2

(︀
𝜌𝑛

𝑗

)︀
− 𝐹𝑛

𝑗−1/2

(︀
𝜌𝑛

𝑗−1

)︀)︁
,

where the numerical flux 𝐹𝑛
𝑗+1/2 is based on the solution to the Riemann problems at the cell interfaces and the

actual flux. To incorporate the error process, we use the technical simplification 𝛿𝑅 ≤ ∆𝑡 and draw a numerical
evaluation of 𝜖(𝑡, 𝜔), 𝑡 ∈ [0, 𝑇 ], by sampling 𝑁𝑇 − 1 observations according to (4):

𝜖𝑛 := 𝜖(𝑡𝑛) iid∼ 𝑈(−𝜏, 𝜏), 𝑛 = 1, . . . , 𝑁𝑇

and fix 𝜖0 = 0. We extend the discrete notation of 𝑣𝜖 to allow for the time dependency, introduced by 𝜖𝑛.
Therefore, we define

𝑣𝑛
𝜖

(︀
𝜌𝑛

𝑗

)︀
:= 𝑣𝜖

(︀
𝜌𝑛

𝑗 , 𝑡𝑛
)︀

= max
{︀

0, 𝑣
(︀
𝜌𝑛

𝑗

)︀
+ 𝜖𝑛

}︀
, (18)

dropping the index of 𝜖𝑛 with respect to 𝑛 on the left-hand side of the equation for a cleaner notation. This
allows us to employ the numerical flux

𝐹𝑛
𝑗+1/2

(︀
𝜌𝑛

𝑗

)︀
= 𝜌𝑛

𝑗 𝑉 𝑛
𝜖,𝑗 , with 𝑉 𝑛

𝜖,𝑗 =
𝑁𝜂−1∑︁
𝑘=0

𝛾𝑘𝑣𝑛
𝜖

(︀
𝜌𝑛

𝑗+𝑘+1

)︀
, 𝑁𝜂 = ⌊𝜂/∆𝑥⌋, (19)

given the kernel evaluation

𝛾𝑘 =
∫︁ (𝑘+1)Δ𝑥

𝑘Δ𝑥

𝑊𝜂(𝑥) d𝑥, 𝑘 = 0, . . . , 𝑁𝜂 − 1. (20)

Thus, our time step update reads as

𝜌𝑛+1
𝑗 = 𝜌𝑛

𝑗 − 𝜆
(︀
𝜌𝑛

𝑗 𝑉 𝑛
𝜖,𝑗 − 𝜌𝑛

𝑗−1𝑉
𝑛
𝜖,𝑗−1

)︀
, 𝜆 :=

∆𝑡

∆𝑥
· (21)

Simultaneously as for the continuous case, the influence of stochastic transfers to 𝐹𝑛
𝑗+1/2 and 𝜌𝑛

𝑗 . Yet, notation
with respect to 𝜖 of both shall be omitted. Due to the presumed accurate calculation of 𝛾𝑘 ≥ 0 and our
construction of 𝑣𝜖 we obtain

0 ≤ 𝑉 𝑛
𝜖,𝑗 ≤ 𝑣max + 𝜏 ∀𝑗 ∈ 𝑍, ∀𝜔 ∈ Ω, ∀𝑛 = 0, . . . , 𝑁𝑇 , (22)

such that the Riemann problems are correctly solved by (19). Next, we develop a fitting CFL condition and
derive its deterministic bounds. By definition of the norm ‖𝑣𝜖‖ (Def. 3.2) for all 𝜔 ∈ Ω it holds that

‖𝑣𝑛
𝜖 ‖∞(𝜔) = sup

𝜌∈[0,𝜌max]

𝑣𝜖(𝜌, 𝑡𝑛)(𝜔) ≤ sup
𝑡∈[0,𝑇 ]

sup
𝜌∈[0,𝜌max]

𝑣𝜖(𝜌, 𝑡)(𝜔) = ‖𝑣𝜖‖(𝜔)
(11)

≤ 𝑣max + 𝜏
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and analogous

‖𝑣𝑛
𝜖
′‖∞(𝜔) ≤ ‖𝑣𝜖

′‖(𝜔)
(10)

≤ ‖𝑣′‖

Hence, proposing the following CFL condition for (sNV)

𝜆 ≤ 1
𝛾0‖𝑣′‖𝜌max + ‖𝑣𝜖‖(𝜔)

, (23)

we obtain the following bounds

1
𝛾0‖𝑣′‖𝜌max + 𝑣max + 𝜏

≤ 1
𝛾0‖𝑣′‖𝜌max + ‖𝑣𝜖‖(𝜔)

≤ 1
𝛾0‖𝑣𝑛

𝜖
′‖(𝜔)𝜌max + ‖𝑣𝑛

𝜖 ‖(𝜔)
·

Remark 4.1.

– The first inequality allows us to use a little more restrictive condition, without actually analyzing the
occurring velocities to obtain a deterministic and easy to implement version of our CFL condition. The
second inequality provides initial information on the validity of this condition, as it effectively bounds the
velocity and its derivative in every time step.

– Due to (11), equation (23) is more restrictive than its deterministic counterpart

𝜆 ≤ 1
𝛾0‖𝑣′‖𝜌max + ‖𝑣‖

, (CFL)

whereas both coincide for 𝜏 = 0. Counterexamples that (CFL) is not sufficient for (sNV) can easily be made.

Remark 4.2. By construction, the discretizations as given by the maps

Ω ∋ 𝜔 ↦→ 𝜌𝑛
𝑗 (𝜔) ∈ [0,∞), Ω ∋ 𝜔 ↦→ 𝑉 𝑛

𝑗 (𝜔) ∈ [0,∞)

are measurable from (Ω,𝒜) to ([0,∞),ℬ([0,∞))) for all 𝑛 = 0, . . . , 𝑁𝑇 , 𝑗 ∈ Z, since they are constructed
as measurable transformations of the random variables 𝜖(𝑡𝑛), 𝑛 = 0, . . . , 𝑁𝑇 . Thus, quantities as E[𝜌𝑛

𝑗 (𝜔)] or
quantiles of their distribution are well defined.

5. Properties, existence and uniqueness

Relying on the numerical scheme, we derive our central theorem regarding the existence and uniqueness of
solutions to the Cauchy problem as well as necessary and helpful properties of the sNV model. To this end, we
outline how the argumentation for the NV model transfers to the sNV model, derive which modifications to the
proofs are to be made and what any stochastic velocity function and its noise terms need to fulfill. Since most
of the proofs are rather technical, they are fully given in the appendix.

5.1. Properties of the sNV model

Lemma 5.1 (Discrete maximum principle). Let the assumptions on 𝑊𝜂 and 𝑣 hold. Further, let the random
variables 𝜌𝑛

𝑗 be constructed by the scheme (21) with the CFL condition (23). Then, the following holds

inf
𝑗∈Z

𝜌0
𝑗 ≤ 𝜌𝑛

𝑗 ≤ sup
𝑗∈Z

𝜌0
𝑗 ∀𝑗 ∈ Z, 𝑛 ∈ N. (*)

Proof. As in 3.3 of [12], we prove the claim by induction in time, whilst applying our findings on 𝑣𝜖 and 𝑣′𝜖 from
Section 3.3. The adaptation of the proof for the NV model is threefold. First, the discretization 𝑣𝑛

𝜖 must still
be monotone decreasing for any realization of 𝜖, which is given as we have seen before. Second, our analysis of
𝑣′𝜖 and thus (𝑣𝑛

𝜖 )′ as in (6) allows us to invoke a mean value theorem argumentation. Last, the adapted CFL
condition provides the final inequality. Further note, that the bounds are in fact independent of the realization
of the random velocities. The full proof is provided in Section A.1.1. �
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From the maximum principle we obtain the positivity of solutions as 0 ≤ 𝜌0(𝑥) implies 0 ≤ 𝜌𝑛
𝑗 (𝜔) for all

realizations of the random variable. Hence, one can show as for the NV model that the numerical scheme
preserves the 𝐿1(R) norm.

Corollary 5.2. Let 𝜌0(𝑥) as in (1) and the usual assumptions on 𝑊𝜂 and 𝑣 hold. If 𝜌𝑛
𝑗 is constructed by the

scheme (21) with the CFL condition (23), then

∆𝑥
∑︁
𝑗∈Z

|𝜌𝑛
𝑗 (𝜔)| = ‖𝜌0‖𝐿1(R), ∀𝑛 ∈ {0, . . . , 𝑁𝑇 }, ∀𝜔 ∈ Ω.

Proof. Due to the fact that we only perturb the velocities but not the quantities, the conservation of mass still
applies in every time step. As we have further proven the maximum principle, the claim can now be easily shown
by induction, as in 2.19 of [11], where only changes in notation apply. �

Next, we show that the densities obtained by the scheme are of bounded total variation. To do this, we
backtrack from 𝜌𝑛

𝑗 to the initial densities 𝜌0
𝑗 , which are of bounded variation by assumption, mainly combining

the proofs 2.20, 2.22 of [11] and 3.4, 3.5 of [12]. Note, that the naive construction of 𝜖 as done in (3) does not
only raise issues with respect to the measurability of the realizations, but also can not lead to bounded variation
of the densities, as 𝜖 /∈ BV((0, 𝑇 ]) in that case. In the following we derive 𝜖-dependent as well as additional
𝜖-independent bounds, to decouple the influence of the stochastic velocities from the BV estimates.

Lemma 5.3 (BV estimate in space). Let 𝜌0(𝑥) as in (1) and 𝜖(𝑡, 𝜔) as in (4). Further, let the usual assumptions
on 𝑊𝜂 and 𝑣 hold. If 𝜌Δ𝑥, resp. 𝜌𝑛

𝑗 , is constructed by (21) with the CFL condition (23), then for all 𝑇 > 0 we
have the 𝜖-dependent discrete space BV estimate:

TV
(︀
𝜌Δ𝑥(𝑇, ·); R

)︀
≤ exp

(︀
𝑇𝐶

)︀
TV(𝜌0; R)

with 𝐶(𝑊𝜂, 𝑣, 𝑝max, 𝜖) = 𝑊𝜂(0)(‖𝑣𝜖‖+ ‖𝑣𝜖
′‖)‖𝜌‖.

Proof. For the usage of approach ([12], Thm. 3.4) the crucial prerequisites, any stochastic velocity need to fulfill,
is the existence of an at least almost everywhere existing, non increasing derivative. Further, in order to derive
mean-value-theorem-based equalities, the Lipschitz continuity must hold and the zero-sets on which a derivative
might not exist needs to be excluded. For our specific velocity function the relevant prerequisites are defined
and discussed in Section 3.3. The full proof is provided in appendix as Section A.1.2. �

Remark 5.4. Independently to the above, we can derive an 𝜖-independent bound as it holds

TV
(︀
𝜌Δ𝑥(𝑇, ·); R

)︀
≤ exp

⎛⎜⎝𝑇 2𝑊𝜂(0)‖𝑣′‖‖𝜌‖⏟  ⏞  
=: 𝐶(𝑊𝜂,𝑣,𝜌max)

⎞⎟⎠TV(𝜌0; R).

For details on the derivation of this bound, see the extended Remark A.2 of Section A.1.2.

Given Lemma 5.3 or optionally Remark 5.4, we now present the TV bound in space and time.

Lemma 5.5 (BV estimate in space and time). Let 𝜌0(𝑥) as in (1) and 𝜖(𝑡, 𝜔) as in (4). Further, let the usual
assumptions on 𝑊𝜂 and 𝑣 hold. If 𝜌Δ𝑥, resp. 𝜌𝑛

𝑗 , is constructed by (21) with the CFL condition (23), then for
all 𝑇 > 0 we have the 𝜖-dependent discrete space and time BV estimate:

TV
(︀
𝜌Δ𝑥; R× [0, 𝑇 ]

)︀
≤ 𝑇 exp

(︀
𝑇𝐶

)︀
(1 + 𝑊𝜂(0)‖𝑣′‖‖𝜌‖+ ‖𝑣𝜖‖)TV(𝜌0; R),

with 𝐶(𝑊𝜂, 𝑣, 𝑝max, 𝜖) as in Lemma 5.3 or 𝐶(𝑊𝜂, 𝑣, 𝜌max) as in Remark 5.4.
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Proof. We once again rely on the redefined derivative for the possibly only pointwise existing derivative of 𝑣𝜖.
For the estimate it is crucial that for any stochastic velocity function, neither the derivative nor its numerical
discretization surpasses the absolute value of 𝑣′. The same must hold true for the convolution itself, i.e. |𝑉 𝑛

𝜖,𝑗 | ≤
‖𝑣𝑛

𝜖 ‖. We present the full proof in Section A.1.2. �

With the above, we have everything at hand to show the existence of some convergent subsequence of 𝜌Δ𝑥

by Helly’s Theorem ([10], 5.6, [11], 2.19). Yet, it is left to show that this limit is the weak entropy solution. We
introduce the notations 𝑎 ∧ 𝑏 := max{𝑎, 𝑏}, 𝑎 ∨ 𝑏 := min{𝑎, 𝑏} and show that the stochastic numerical densities
𝜌𝑛

𝑗 satisfy a discrete entropy inequality.

Lemma 5.6 (Discrete entropy inequality). Let 𝜖(𝑡, 𝜔) as in (4). Further, let the usual assumptions on 𝑊𝜂 and
𝑣 hold. If 𝜌Δ𝑥, resp. 𝜌𝑛

𝑗 , is constructed by (21) with the CFL condition (23), then, for any 𝑐 ∈ R and for all
𝑛 ∈ {0, . . . , 𝑁𝑇 }, 𝑗 ∈ Z, the following discrete entropy inequality holds true⃒⃒

𝜌𝑛+1
𝑗 − 𝑐

⃒⃒
≤

⃒⃒
𝜌𝑛

𝑗 − 𝑐
⃒⃒
− 𝜆

(︁
𝐻𝑛

𝑗+1/2

(︀
𝜌𝑛

𝑗

)︀
−𝐻𝑛

𝑗−1/2

(︀
𝜌𝑛

𝑗−1

)︀)︁
− 𝜆 sign

(︀
𝜌𝑛+1

𝑗 − 𝑐
)︀(︁

𝐹𝑛
𝑗+1/2(𝑐)− 𝐹𝑛

𝑗−1/2(𝑐)
)︁
, (24)

where

𝐻𝑛
𝑗+1/2(𝑢) := 𝐹𝑛

𝑗+1/2(𝑢 ∧ 𝑐)− 𝐹𝑛
𝑗+1/2(𝑢 ∨ 𝑐).

Proof. Adapting from 2.25 of [11], we initially require the non-negativity of 𝑣𝜖 for all possible 𝜖 values, as ensured
by the maximum. Further, this proof relies on the spatial differentiability of the numerical flux 𝐹𝑛

𝑗+1/2(𝜌) at each
time step 𝑛. We have ensured this, by constructing our error term 𝜖(𝑡𝑛, 𝜔) constant in the spatial dimension.
The detailed proof can be found in Section A.1.3. �

It rests to examine the limiting behavior of the derived discrete entropy inequality (24). Given the non-
local nature of our scheme, the classical argumentation regarding the numerical limit of (∆𝑡, ∆𝑥) → 0, via the
Lax-Wendroff Theorem becomes inadequate. Consequently, employing nonlocal theory, the time integrability of
the stochastic flux function becomes crucial in the presented approach.

Lemma 5.7 (Convergence to entropy solution). Fix any 𝜔 ∈ Ω and assume that 𝜌 = 𝜌(𝑡, 𝑥)(𝜔) with 𝜌(𝑡, ·)(𝜔) ∈
BV(R) for some 𝑡 ∈ [0, 𝑇 ] is the 𝐿1

𝑙𝑜𝑐-limit (as in Helly’s Theorem e.g. [10], 5.6) of 𝜌Δ𝑥, constructed by (21), and
exists. Let the assumptions on 𝑊𝜂 (Rem. 2.1) and 𝑣 (Rem. 2.2) hold. Then for any 𝑐 ∈ R, 𝜑 ∈ 𝐶1

0 ([0, 𝑇 )×R; R+)
𝜌 is a weak entropy solution in the sense of Definition 2.3.

Proof. As we adapt the proof of 2.2.6 from [11], we ensure that the occurring integrals, especially∫︁ 𝑇

0

∫︁
R

sign(𝜌− 𝑐)(𝑓𝜖(𝑡, 𝑥, 𝜌)− 𝑓𝜖(𝑡, 𝑥, 𝑐)) d𝑥 d𝑡,

are well posed. As discussed, we achieve this by using the piecewise constant error term 𝜖(𝑡, 𝜔), with parameter
𝛿𝑅. Furthermore, we must address the time dependence of 𝑣𝑛

𝜖 , which we solve by additionally bounding the
occurring terms in time, leveraging the Lipschitz-continuity and the fact that 𝜖 is of bounded total variation.
The complete proof is given in Section A.1.4. �

5.2. Existence and Uniqueness of the sNV model

We now have established all prerequisities for the main theorem on the existence of solutions to the sNV
model. All our findings, including the yet-to-be-shown uniqueness, are encapsulated in the central theorem of
this contribution.
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Theorem 5.8 (Existence, uniqueness and properties of (sNV)). Fix any 𝜔 ∈ Ω and let 𝜌0(𝑥), 𝜖(𝑡, 𝜔) as in
(1), (4). Further, let the usual assumptions on 𝑊𝜂 and 𝑣 hold. Then, for any 𝑇 > 0 a weak entropy solution
𝜌(𝑡, 𝑥)(𝜔), in the sense of Definition 2.3, to the Cauchy Problem of (sNV), i.e.{︃

𝜕𝑡𝜌(𝑡, 𝑥) + 𝜕𝑥𝑓𝜖(𝑡, 𝑥, 𝜌(𝑡, 𝑥)) = 0, (𝑡, 𝑥) ∈ (0, 𝑇 ]× R,

𝜌(0, 𝑥) = 𝜌0, 𝑥 ∈ R,

with 𝑓𝜖(𝑡, 𝑥, 𝜌) = 𝜌
(︀
𝑊𝜂 * 𝑣𝜖(𝜌, ·)

)︀
(𝑡, 𝑥), exists and is unique.

Further, it holds for all 𝜔 ∈ Ω:

(1) Maximum principle:

0 ≤ inf
𝑥∈R

𝜌0(𝑥) ≤ 𝜌(𝑡, 𝑥)(𝜔) ≤ sup
𝑥∈R

𝜌0(𝑥) ≤ 𝜌max ∀ 𝑡 ∈ [0, 𝑇 ].

(2) 𝐿1-conservation:

‖(𝜌(𝑡, ·))(𝜔)‖𝐿1(R) = ‖𝜌0‖𝐿1(R) ∀ 𝑡 ∈ [0, 𝑇 ].

(3) TV bounds:

TV(𝜌(𝑇, ·); R) ≤ exp(𝑇𝐶(𝑊𝜂, 𝑣, 𝜌max, 𝜖))TV(𝜌0; R), 𝑇 > 0

TV(𝜌(𝑇, ·); R) ≤ exp
(︁
𝑇𝐶(𝑊𝜂, 𝑣, 𝜌max)

)︁
TV(𝜌0; R), 𝑇 > 0

TV(𝜌; R× [0, 𝑇 ]) ≤ 𝑇 exp
(︀
𝑇𝐶

)︀
(1 + 𝑊𝜂(0)‖𝑣′‖‖𝜌‖+ ‖𝑣𝜖‖)TV(𝜌0; R), 𝑇 > 0.

Proof. We commence by showing that the prerequisites for Helly’s Theorem are satisfied. Due to the discrete
maximum principle (Lem. 5.1) we obtain a 𝐿∞(R) bound, given by 𝜌0, as well as an TV bound in space and
time by Lemma 5.5. As we fix 𝜌(𝑡, 𝑥) := 𝜌0 ∀𝑡 < 0 numerically, it is sufficient to show a TV estimate over
[0, 𝑇 )× R instead of (−𝑇, 𝑇 )× R, since

TV(𝜌; (−𝑇, 𝑇 )× R) ≤ 𝐾𝑇 + 𝑇 · TV(𝜌0; R) =: �̃�𝑇 ,

assuming 𝐾𝑇 is the TV estimate over [0, 𝑇 )×R from Lemma 5.5. Hence, we can restrict to [0, 𝑇 )×R to apply
Helly’s Theorem, whilst keeping the possibly higher TV estimate in mind. Therefore the assumptions on Helly’s
Theorem are valid, such that we obtain for any fixed 𝜔 ∈ Ω the existence of a sub-sequence of 𝜌Δ𝑥 converging
to some limiting density 𝜌(𝑡, 𝑥)(𝜔). Due to the assumptions on 𝜌0 and the discrete 𝐿1-conservation (Cor. 5.2),
it additionally holds that

𝜌(·, ·)(𝜔) ∈ 𝐿1([0, 𝑇 )× R; R), ∀𝜔 ∈ Ω.

Next, by our assessment regarding the convergence of our numerical scheme (Lem. 5.7), 𝜌 is not only some
𝐿1

𝑙𝑜𝑐-limit of 𝜌Δ𝑥 but satisfies the weak entropy condition in the sense of Definition 2.3. Thereby a weak entropy
solution to the sNV model exists for every realization of the random velocities and is unique as we show in the
following Theorem 5.10.

The additional claims (1.-3.) then follow from their discrete counterparts, i.e. Lemmas 5.1, 5.3, 5.5, Corol-
lary 5.2, Remark 5.4, and the proven convergence of the numerical scheme itself. �

Remark 5.9. Additionally, due to equation (A.11) it holds that

𝜌(·, 𝑥)(𝜔) ∈ 𝐶([0, 𝑇 ]; R) ∀𝑥 ∈ R, ∀𝜔 ∈ Ω,

despite the fact that the velocities 𝑣𝜖(𝜌, 𝑡) are not only time-dependent, but also lack continuity over time, as
𝜖(𝑡, 𝜔) does not possess it.
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Note, that every realization of 𝜖(𝑡, 𝜔) leads to a different solution 𝜌(𝑡, 𝑥)(𝜔). Hence, the uniqueness contained
in our central result, has to be understood per given state 𝜔 of the world. The missing piece for Theorem 5.8 is
then as follows.

Theorem 5.10 (Uniqueness of entropy solutions to (sNV)). Let the assumptions on 𝑣 and 𝑊𝜂 hold. Let 𝜌, 𝜎
be two weak entropy solutions to (sNV) with initial data 𝜌0, 𝜎0 respectively. Then, for any 𝑇 > 0, it holds⃦⃦(︀

𝜌(𝑡, ·)− 𝜎(𝑡, ·)
)︀
(𝜔)

⃦⃦
𝐿1(R)

≤ exp(𝐾𝜖(𝜔)𝑇 )‖𝜌0 − 𝜎0‖𝐿1(R) ∀𝑡 ∈ [0, 𝑇 ], ∀𝜔 ∈ Ω,

with 0 ≤ 𝐾𝜖(𝜔) ≤ 𝐾 ∀𝜔 ∈ Ω given in Section A.1.5.

Proof. In order to translate the ideas from the respective concepts of the NV model (see e.g. [12], 2.4), our
proof relies on the bounds of 𝑣𝜖 in the norm derived in Section 3.4 as well as on the properties of its derivative
discussed in Section 3.3. The complete proof is provided in Section A.1.5. �

The above relies on the classical entropy condition to filter the unique solution to (sNV). However, as we
have seen, numerical evidence indicates that the characteristics do not cross, which gives hope that a stronger
uniqueness results might hold true as well.

Remark 5.11. Since our proof is done for fixed but arbitrary 𝜔 ∈ Ω, only the measurability and boundedness
of the noise process are relevant. However, by using Helly’s Theorem for a fixed 𝜔 ∈ Ω, the measurability of the
map

𝜌 : Ω → 𝐶
(︀
[0, 𝑇 ]; 𝐿1(R)

)︀
,

remains open, and we will address this problem in our future research. Thus, quantities as E[𝜌(𝑡, 𝑥)] are a-priori
not well-defined. Yet, this does not affect the Monte-Carlo simulations in our work, since on the one hand they
rely on a discrete approximation scheme, whose quantities are well-defined random variables by construction,
see Remark 4.2 in Section 4, and on the other hand they depend on the used pseudo random number generator,
which corresponds (at best) to a discrete approximation of the uniform distribution. See also the following
Remark 5.12.

Remark 5.12. If we replace the continuous uniform distribution on [−𝜏, 𝜏 ] by a discrete uniform distribution,
e.g. with the uniform distribution on

ℳ =
{︂

𝜏
𝑖

𝑀
: 𝑖 = −𝑀, . . . , 𝑀

}︂
,

then we can work on a finite-dimensional probability space and the map

𝜌 : (Ω,𝒜) → 𝐶
(︀
[0, 𝑇 ]; 𝐿1(R)

)︀
,

would be trivially measurable for 𝒜 = P(Ω).

Remark 5.13. In [25] a top-down approach is used by considering

𝜕𝑡𝑢(𝜔; 𝑥, 𝑡) = 𝜕𝑥𝑓(𝜔; 𝑢(𝜔; 𝑥, 𝑡)), 𝑢(𝜔; 𝑥, 0) = 𝑢0(𝜔; 𝑥), 𝑡 > 0, 𝑥 ∈ R𝑑.

Here the random flux 𝑓 : Ω → 𝐶1(R𝑑; R) is assumed to be bounded and measurable, and the randomness is
incorporated via a Karhunen–Loève expansion. Hence, similar to our approach, the noise is introduced via a
countable set of random variables. Yet, our bottom-up approach does not fit into the given framework, since
our model incorporates a time-dependent random flux function 𝑓𝜖(𝑡, 𝑥, 𝜌).
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6. Numerical results

Having established the existence and uniqueness of solutions, we proceed to present numerical results for
the sNV model. In doing so, we emphasize the key properties of the proposed model, compare them to its
deterministic base (NV) and comment on the exhibited behavior from a modeling perspective. To conduct our
analysis, we employ our numerical scheme (21), given the velocity function 𝑣(𝜌) = 1−𝜌2 and the kernel 𝑊 𝑐𝑜𝑛𝑐.

𝜂 .
Further, we set ∆𝑥 = 0.3 · 10−2 and calculate ∆𝑡 according to the CFL condition (23), depending on 𝜂 and 𝜏 .
While presenting some actual realizations in grey, our focus lies on the mean behavior of the sNV model. In the
following, we determine this key quantity and its empirical quantiles in accordance with Remark 5.11, i.e. by
Monte-Carlo simulations.

6.1. Probabilistic densities and their mean behavior

We start our numerical assessment with an example where a low initial congestion with respect to 𝜏 and 𝜂
is chosen, such that

𝜌0(𝑥) < 𝑣−1(𝜏)− 𝜂 =
√

1− 0.5− 0.2 ∀𝑥 ∈ R

holds. Due to 𝜖(0) = 0 we have

E[𝑉𝜖(0, 𝑥)](𝜌0(𝑥)) = 𝑉 (0, 𝑥)(𝜌0(𝑥)) ∀𝑥 ∈ R

and by the maximum principle (Lem. 5.1) and Lemma 3.3 it follows

E[𝑉𝜖(𝑡, 𝑥)](𝜌(𝑡, 𝑥)) = 𝑉 (𝑡, 𝑥)(𝜌(𝑡, 𝑥)) ∀(𝑡, 𝑥) ∈ [0, 𝑇 ]× R.

Given these initial conditions, our numerical results, as depicted in Figure 6a and Table 1, indicate that the
missing bias of the velocity function does translate to the mean behavior of (sNV). Hence, given this sufficiently
small congestion, the sNV model empirically achieves mean consistency with its deterministic basis (NV) at
least up to an error term.

Figure 6. Mean of 𝑁 = 104 (sNV) realizations compared to (NV) for 𝜏 = 0.5. The pointwise
5% and 95% quantiles are given by the dotted lines. In the magnification some realizations of
(sNV) are given in grey. (a) Low initial density, time horizon 𝑡 = 1. (b) High initial density,
time horizon 𝑡 = 2.
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Table 1. Distances between the mean of (sNV) and (NV) of Figure 6a.

𝑁 = 103 𝑁 = 104 𝑁 = 5 · 104

Δ𝑥 = 0.3 · 10−2 𝐿1-dist. 0.046717 0.040547 0.040294
𝐿2-dist. 0.000011 0.000008 0.000008
𝐿∞-dist. 0.000553 0.000496 0.000489

Δ𝑥 = 10−3 𝐿1-dist. 0.075139 0.075888 0.063205
𝐿2-dist. 0.000018 0.000018 0.000011
𝐿∞-dist 0.000711 0.000711 0.000524

This behavior is further emphasized by the fact that every probabilistic realization is not only well posed
(Thm. 5.8) but also admits a similar behavior as (NV), i.e. they are smooth to the same degree, they have a
comparable height, and they have moved similarly over the spatial domain. Therefore our proposed model allows
us to fit the deterministic basis to the mean of given empirical data and tweak the stochastic parameters to
explain observations further offside the observed mean. A rigorous proof for the illustrated behaviour alongside
the development of an understanding how the expectation of such SCL is to be understood analytically, is
planned for future research.

To emphasize the influence of the initial data to the behavior of the model, we increase the height and domain
of 𝜌0’s maxima and plot the results in Figure 6b. Given such data, the sNV model exhibits a notably distinct
mean behavior than the NV model. By our assessment of the stochastic velocity function in Section 3.4, we
attribute this phenomenon to the altered velocity of the interacting vehicles. Compared to (NV), vehicles detect-
ing a congestion ahead, employ an on average higher velocity, resulting in a slower dissipation of the congestion.
Once the downstream densities are low enough or have dissolved appropriately, (sNV) smoothly transitions
back to becoming mean consistent as before. This mean deviation, aligns well with empirical observations pre-
sented in Figure 1 of [30], where the authors state, that a deterministic density-velocity relation seems to break
down especially for high densities. Thus, our proposed model successfully replicates such deviations, including
increased uncertainty at high densities, while maintaining consistency in regions of low density.

Remark 6.1. During our assessment of the characteristics, it was observable that for any given initial density
the mean appears to be well captured by the NV model when utilizing the expected velocity 𝑣. As initial
numerical experiments have shown, this does translate to the densities as well. While such result would allow
us to capture the expected behavior for any given initial density, further research is necessary to validate this
claim.

6.2. Influence of parameters

Having seen the significance of the initial densities alongside the overall model behavior, we now proceed to
demonstrate the modeling capabilities by varying the two central parameters 𝜏 and 𝜂.

Alternating 𝜏 in Figure 7 (left), we note a nonlinear coupling of (sNV)’s mean with respect to the strength
of the error term. Furthermore, the behavior is monotone with the increase or decrease of 𝜏 , and as 𝜏 → 0 we
empirically observe convergence of (sNV) to (NV).

Considering a fixed error strength 𝜏 and varying the look ahead distance 𝜂 in Figure 7 (right), the sNV
model exhibits a comparable behavior as the NV model (see e.g. [11], 2.4). Especially for the extreme cases of
𝜂 → 0 and 𝜂 →∞, Figure 7 alongside additional experiments suggest the convergence to the solution of a LWR
model, using 𝑣, as well as to a Transport Problem, with a different characteristic speed as for (NV). However,
in comparison to the results of 2.4 from [11] our preliminary results need additional theory on the convergence
obtained on non-compact supports and once again rely on the role of the expected velocity 𝑣 with respect to
the overall behavior.
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Figure 7. Mean of 𝑁 = 104 (sNV) realizations for each 𝜏 , (𝜂 = 0.2) and each 𝜂, (𝜏 = 0.5), at
𝑡 = 2, given high initial density.

7. Conclusion and outlook

In this work, we proposed a novel traffic flow model incorporating stochastic nonlocal velocities and analyzed
it from both theoretical and numerical perspectives. We rigorously proved the existence and uniqueness of weak
entropy solutions and developed an effective numerical scheme as well as an implementation of the model. Our
analysis revealed that the introduced noise does not significantly destabilize the system, making the proposed
model a promising candidate for real-world applications. Furthermore, we investigated the conditions under
which the mean dynamics of the perturbed system align with the deterministic base model, emphasizing the
influence of both nonlocal and stochastic parameters in relation to the initial density. We specifically demon-
strated that the mean behavior of the stochastic model deviates from the deterministic model, particularly
during periods of high traffic densities. This observation is consistent with empirical data, suggesting that a
deterministic relationship between density and velocity may not adequately describe traffic under congested
conditions. Additionally, we introduced and provided initial results supporting a novel theory on how the mean
behavior could be captured for any set of initial conditions.

For future research, we suggest further developing and integrating the proposed model into a comprehensive
theoretical framework, especially defining how expected solutions and the variance of scalar conservation laws
with stochastic fluxes are to be understood. Inspired by Huang and Du [18], further theoretical studies will also
conduct a stability analysis of the sNV model.
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[13] J. Friedrich, S. Göttlich and M. Osztfalk, Network models for nonlocal traffic flow. ESAIM: Math. Modell. Numer.
Anal. 56 (2022) 213–235.

[14] M. Garavello and B. Piccoli, Traffic Flow on Networks. Vol. 1 of AIMS Series on Applied Mathematics. American
Institute of Mathematical Sciences (AIMS), Springfield, MO (2006).

[15] M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks. Vol. 9 of AIMS Series on Applied
Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2016).

[16] J. Garnier, G. Papanicolaou and T.-W. Yang, Anomalous shock displacement probabilities for a perturbed scalar
conservation law. Multiscale Model. Simul. 11 (2013) 1000–1032.

[17] H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws. Springer Berlin Heidelberg (2015).

[18] K. Huang and Q. Du, Stability of a nonlocal traffic flow model for connected vehicles. SIAM J. Appl. Math. 82
(2022) 221–243.

[19] S.E. Jabari and H.X. Liu, A stochastic model of traffic flow: theoretical foundations. Transp. Res. Part B: Methodol.
46 (2012) 156–174.

[20] A. Keimer, L. Pflug and M. Spinola, Nonlocal scalar conservation laws on bounded domains and applications in
traffic flow. SIAM J. Math. Anal. 50 (2018) 6271–6306.

[21] H. Korezlioglu, White noise theory of prediction, filtering and smoothing. Stoch. Stoch. Rep. 40 (1992) 117–123.
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Appendix A.

A.1. Detailed proofs

To emphasise the stochastic influence alongside the time dependence of 𝑣𝜖, necessary changes and adjustments to the

proofs of the NV model are highlighted in blue color.

A.1.1. Discrete maximum principle

The detailed proof regarding Lemma 5.1 is as follows.

Proof. As in 3.3 of [12], we prove the claim by induction in time, whilst applying our findings on 𝑣𝜖 and 𝑣′𝜖 from Section 3.3.

– For 𝑛 = 0 the claim is trivial.
– Suppose (*) holds for a fixed but arbitrary 𝑛 ∈ N.
– Now, if we apply the definition of the discrete convolution, it holds

𝑉 𝑛
𝜖,𝑗−1 − 𝑉 𝑛

𝜖,𝑗 =

𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘 − 𝛾𝑘−1)⏟  ⏞  
≤0

𝑣𝑛
𝜖

(︀
𝜌𝑛

𝑗+𝑘

)︀
−𝛾𝑁𝜂−1⏟  ⏞  

<0

𝑣𝑛
𝜖

(︀
𝜌𝑛

𝑗+𝑁𝜂

)︀
+ 𝛾0𝑣

𝑛
𝜖 (𝜌𝑛

𝑗 ) (A.1)

≤
𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘 − 𝛾𝑘−1)𝑣
𝑛
𝜖

(︂
sup
𝑗∈Z

𝜌0
𝑗

)︂
− 𝛾𝑁𝜂−1𝑣

𝑛
𝜖

(︂
sup
𝑗∈Z

𝜌0
𝑗

)︂
+ 𝛾0𝑣

𝑛
𝜖

(︀
𝜌𝑛

𝑗

)︀

= 𝛾0

(︂
𝑣𝑛

𝜖

(︀
𝜌𝑛

𝑗

)︀
− 𝑣𝑛

𝜖

(︂
sup
𝑗∈Z

𝜌0
𝑗

)︂)︂

≤ 𝛾0‖𝑣𝑛
𝜖
′‖𝐿∞

⎛

⎜⎜⎜⎝
sup
𝑗∈Z

𝜌0
𝑗 − 𝜌𝑛

𝑗

⏟  ⏞  
≥0

⎞

⎟⎟⎟⎠
, (A.2)

using the monotonicity on 𝑣𝑛
𝜖 , i.e. (𝑣𝑛

𝜖 )′ ≤ 0, along with the induction hypothesis. The second equality then follows
from a telescoping sum argument. Lastly we used the Lipschitz-continuity of 𝑣𝑛

𝜖 . If we multiply this by sup𝑗∈Z 𝜌0
𝑗 ,

subtract 𝑉 𝑛
𝜖,𝑗𝜌

𝑛
𝑗 on both sides and rearrange the equations, we derive

𝑉 𝑛
𝜖,𝑗−1 sup

𝑗∈Z
𝜌0

𝑗 − 𝑉 𝑛
𝜖,𝑗𝜌

𝑛
𝑗 ≤

(︂
𝛾0‖𝑣𝑛

𝜖
′‖ sup

𝑗∈Z
𝜌0

𝑗 + 𝑉 𝑛
𝜖,𝑗

)︂(︂
sup
𝑗∈Z

𝜌0
𝑗 − 𝜌𝑛

𝑗

)︂

≤
(︀
𝛾0‖𝑣𝑛

𝜖
′‖𝜌max + ‖𝑣𝑛

𝜖 ‖
)︀(︂

sup
𝑗∈Z

𝜌0
𝑗 − 𝜌𝑛

𝑗

)︂
(A.3)

and thus, by the definition of the scheme and again the induction hypothesis (IH)

𝜌𝑛+1
𝑗 = 𝜌𝑛

𝑗 + 𝜆
(︀
𝐹 𝑛

𝑗−1/2(𝜌
𝑛
𝑗−1)− 𝐹 𝑛

𝑗+1/2(𝜌
𝑛
𝑗 )
)︀
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(IH)

≤ 𝜌𝑛
𝑗 + 𝜆

(︂
𝑉 𝑛

𝜖,𝑗−1 sup
𝑗∈Z

𝜌0
𝑗 − 𝑉 𝑛

𝜖,𝑗𝜌
𝑛
𝑗

)︂

(𝐴.3)

≤ 𝜌𝑛
𝑗 + 𝜆

(︀
𝛾0‖𝑣𝑛

𝜖
′‖𝜌max + ‖𝑣𝑛

𝜖 ‖
)︀

⏟  ⏞  
=:Λ

(︂
sup
𝑗∈Z

𝜌0
𝑗 − 𝜌𝑛

𝑗

)︂

= (1− Λ)𝜌𝑛
𝑗 + Λ sup

𝑗∈Z
𝜌0

𝑗 ≤ sup
𝑗∈Z

𝜌0
𝑗 ,

since 1− Λ > 0 due to the adapted CFL condition.
For the left inequality in (*) we can proceed as above, changing multiple signs to get to

𝜌𝑛+1
𝑗 ≥ 𝜌𝑛

𝑗 + Λ

(︂
inf
𝑗∈Z

𝜌0
𝑗 − 𝜌𝑛

𝑗

)︂
≥ inf

𝑗∈Z
𝜌0

𝑗 .

�

Remark A.1. We can show a different, on Δ𝑥 dependent, upper bound of the differences (A.1) by using 𝛾𝑘 ≤
𝑊𝜂(0)Δ𝑥, ∀𝑘 = 0, . . . , 𝑁𝜂 − 1:

|𝑉 𝑛
𝜖,𝑗 − 𝑉 𝑛

𝜖,𝑗−1| =

⃒⃒
⃒⃒
⃒⃒

𝑁𝜂−1∑︁

𝑘=0

𝛾𝑘𝑣𝑛
𝜖 (𝜌𝑛

𝑗+𝑘+1)−
𝑁𝜂−1∑︁

𝑘=0

𝛾𝑘𝑣𝑛
𝜖 (𝜌𝑛

𝑗+𝑘)

⃒⃒
⃒⃒
⃒⃒

≤ 𝑊𝜂(0)Δ𝑥

⎛

⎝
𝑁𝜂−1∑︁

𝑘=0

⃒⃒
𝑣𝑛

𝜖 (𝜌𝑛
𝑗+𝑘+1)− 𝑣𝑛

𝜖 (𝜌𝑛
𝑗+𝑘)

⃒⃒
⎞

⎠

≤ 𝑊𝜂(0)Δ𝑥

⎛

⎝
𝑁𝜂−1∑︁

𝑘=0

‖𝑣𝜖‖‖𝜌‖Δ𝑥

⎞

⎠

= 𝑊𝜂(0)Δ𝑥(⌊𝜂/Δ𝑥⌋‖𝑣𝜖‖‖𝜌‖Δ𝑥)

≤ Δ𝑥𝑊𝜂(0)𝜂‖𝑣𝜖‖‖𝜌‖. (A.4)

A.1.2. BV estimates

To prove the spatial bound of the total variation, i.e. Lemma 5.3, we proceed as follows.

Proof. We use the method described in 3.4 from [12] and define Δ𝑛
𝑗+𝑘− 1

2
:= 𝜌𝑛

𝑗+𝑘 − 𝜌𝑛
𝑗+𝑘−1.

Then, if we apply the scheme twice

Δ𝑛+1

𝑗+ 1
2

= 𝜌𝑛+1
𝑗+1 − 𝜌𝑛+1

𝑗

= 𝜌𝑛
𝑗+1 − 𝜌𝑛

𝑗 − 𝜆
(︁
𝐹 𝑛

𝑗+ 3
2
(𝜌𝑛

𝑗+1)− 𝐹 𝑛
𝑗+ 1

2
(𝜌𝑛

𝑗 )
)︁

+ 𝜆
(︁
𝐹 𝑛

𝑗+ 1
2
(𝜌𝑛

𝑗 )− 𝐹 𝑛
𝑗− 1

2
(𝜌𝑛

𝑗−1)
)︁

= Δ𝑛
𝑗+ 1

2
− 𝜆

(︀
𝑉 𝑛

𝜖,𝑗+1𝜌
𝑛
𝑗+1 − 2𝑉 𝑛

𝜖,𝑗𝜌
𝑛
𝑗 + 𝑉 𝑛

𝜖,𝑗−1𝜌
𝑛
𝑗−1

)︀

±0
= Δ𝑛

𝑗+ 1
2
− 𝜆

⎡

⎢⎣𝑉 𝑛
𝜖,𝑗+1(𝜌

𝑛
𝑗+1 − 𝜌𝑛

𝑗 )− 𝑉 𝑛
𝜖,𝑗−1(𝜌

𝑛
𝑗 − 𝜌𝑛

𝑗−1) + 𝜌𝑛
𝑗

⎛

⎜⎝𝑉 𝑛
𝜖,𝑗+1 − 2𝑉 𝑛

𝜖,𝑗 + 𝑉 𝑛
𝜖,𝑗−1⏟  ⏞  

=:(*)

⎞

⎟⎠

⎤

⎥⎦.

Now we can use (A.1) twice to obtain

(*) = −
(︀
𝑉 𝑛

𝜖,𝑗 − 𝑉 𝑛
𝜖,𝑗+1

)︀
+
(︀
𝑉 𝑛

𝜖,𝑗−1 − 𝑉 𝑛
𝜖,𝑗

)︀

= −𝛾0𝑣
𝑛
𝜖

(︀
𝜌𝑛

𝑗+1

)︀
−

𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘 − 𝛾𝑘−1)𝑣
𝑛
𝜖

(︀
𝜌𝑛

𝑗+1+𝑘

)︀
+ 𝛾𝑁𝜂−1𝑣

𝑛
𝜖

(︀
𝜌𝑛

𝑗+1+𝑁𝜂

)︀

+ 𝛾0𝑣
𝑛
𝜖

(︀
𝜌𝑛

𝑗

)︀
+

𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘 − 𝛾𝑘−1)𝑣
𝑛
𝜖

(︀
𝜌𝑛

𝑗+𝑘

)︀
− 𝛾𝑁𝜂−1𝑣

𝑛
𝜖

(︀
𝜌𝑛

𝑗+𝑁𝜂

)︀
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= −𝛾0(𝑣
𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2

)︁
Π
(︀
𝜌𝑛

𝑗+1, 𝜌
𝑛
𝑗

)︀
Δ𝑛

𝑗+ 1
2

−
𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘 − 𝛾𝑘−1)(𝑣
𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2+𝑘

)︁
Π
(︀
𝜌𝑛

𝑗+1+𝑘, 𝜌𝑛
𝑗+𝑘

)︀
Δ𝑛

𝑗+ 1
2+𝑘

+ 𝛾𝑁𝜂−1(𝑣
𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2+𝑁𝜂

)︁
Π
(︀
𝜌𝑛

𝑗+1+𝑁𝜂
, 𝜌𝑛

𝑗+𝑁𝜂

)︀
Δ𝑛

𝑗+ 1
2+𝑁𝜂

.

Here 𝜉𝑛
𝑗+1/2 is a value between 𝜌𝑛

𝑗 and 𝜌𝑛
𝑗+1 and Π(𝑥, 𝑦) as in (8). Now, we plug (*) back in and receive

Δ𝑛+1

𝑗+ 1
2

=
(︁
1− 𝜆

(︁
𝑉 𝑛

𝜖,𝑗+1 − 𝛾0(𝑣
𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2

)︁
𝜌𝑛

𝑗

)︁)︁
Π
(︀
𝜌𝑛

𝑗+1, 𝜌
𝑛
𝑗

)︀
Δ𝑛

𝑗+ 1
2

(i)

+ 𝜆𝑉 𝑛
𝜖,𝑗−1Δ

𝑛
𝑗− 1

2
(ii)

+ 𝜆𝜌𝑛
𝑗

𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘 − 𝛾𝑘−1)(𝑣
𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2+𝑘

)︁
Π
(︀
𝜌𝑛

𝑗+1+𝑘, 𝜌𝑛
𝑗+𝑘

)︀
Δ𝑛

𝑗+ 1
2+𝑘 (iii)

− 𝜆𝜌𝑛
𝑗 𝛾𝑁𝜂−1(𝑣

𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2+𝑁𝜂

)︁
Π
(︀
𝜌𝑛

𝑗+1+𝑁𝜂
, 𝜌𝑛

𝑗+𝑁𝜂

)︀
Δ𝑛

𝑗+ 1
2+𝑁𝜂

. (iv)

Since

– 𝑉 𝑛
𝜖(𝜔),𝑗−1 ≥ 0 ∀𝑛 ∈ {0, . . . , 𝑁𝑇 }, ∀𝑗 ∈ Z, ∀𝜔 ∈ Ω (Eq. (22)),

– 𝛾𝑘 − 𝛾𝑘−1 ≤ 0 ∀𝑘 = 1, . . . , 𝑁𝜂 (Rem. 2.1 and Eq. (20)),
– (𝑣𝑛

𝜖 )′(𝜌) ≤ 0 ∀𝑛 ∈ {0, . . . , 𝑁𝑇 }, 𝜌 ∈ [0, 𝜌max] (Def. 3.1 and Eq. (18)),
– Π(𝑥, 𝑦) ∈ (0, 1] 𝑥 ̸= 𝑦 (Eq. (8)),

the terms (ii)–(iv) before the differences Δ𝑛
𝑗+1/2+(·) are positive. Due to the adapted CFL condition (23), we have

0 ≤ 𝜆
(︁
𝑉 𝑛

𝜖,𝑗+1 − 𝛾0(𝑣
𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2

)︁
𝜌𝑛

𝑗

)︁
≤ 𝜆

(︀
‖𝑣𝜖‖+ 𝛾0‖𝑣′𝜖‖‖𝜌‖

)︀
≤ 1.

Hence, the term (i) before Δ𝑛
𝑗+1/2 is positive as well. Using |Π(𝑥, 𝑦)| ≤ 1 and summing over Z, we obtain

∑︁

𝑗∈Z

⃒⃒
⃒Δ𝑛+1

𝑗+ 1
2

⃒⃒
⃒ ≤

∑︁

𝑗∈Z

(︁
1− 𝜆

(︁
𝑉 𝑛

𝜖,𝑗+1 − 𝛾0(𝑣
𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2

)︁
𝜌𝑛

𝑗

)︁)︁⃒⃒
⃒Δ𝑛

𝑗+ 1
2

⃒⃒
⃒

+ 𝜆
∑︁

𝑗∈Z

𝑉 𝑛
𝜖,𝑗−1

⃒⃒
⃒Δ𝑛

𝑗− 1
2

⃒⃒
⃒

+ 𝜆
∑︁

𝑗∈Z

𝜌𝑛
𝑗

𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘 − 𝛾𝑘−1)(𝑣
𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2+𝑘

)︁⃒⃒
⃒Δ𝑛

𝑗+ 1
2+𝑘

⃒⃒
⃒

− 𝜆
∑︁

𝑗∈Z

𝜌𝑛
𝑗 𝛾𝑁𝜂−1(𝑣

𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2+𝑁𝜂

)︁⃒⃒
⃒Δ𝑛

𝑗+ 1
2+𝑁𝜂

⃒⃒
⃒,

which can be written, due to the summation on the whole space, as

∑︁

𝑗∈Z

⃒⃒
⃒Δ𝑛+1

𝑗+ 1
2

⃒⃒
⃒ ≤

∑︁

𝑗∈Z

[︃

1− 𝜆
(︀
𝑉 𝑛

𝜖,𝑗+1 − 𝑉 𝑛
𝜖,𝑗

)︀

− (𝑣𝑛
𝜖 )′
(︁
𝜉𝑛

𝑗+ 1
2

)︁
𝜆

(︃

−𝛾0𝜌
𝑛
𝑗 +

𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘−1 − 𝛾𝑘)𝜌𝑛
𝑗−𝑘 + 𝛾𝑁𝜂−1𝜌

𝑛
𝑗−𝑁𝜂

)︃]︃⃒⃒
⃒Δ𝑛

𝑗+ 1
2

⃒⃒
⃒

≤
∑︁

𝑗∈Z

[︃

1− 𝜆
(︀
𝑉 𝑛

𝜖,𝑗+1 − 𝑉 𝑛
𝜖,𝑗

)︀
⏟  ⏞  

≤𝜆𝛾0‖𝑣𝑛
𝜖
′‖(sup𝑗{𝜌0

𝑗}−𝜌𝑛
𝑗 )≤𝜆𝛾0‖𝑣𝑛

𝜖 ‖‖𝜌‖ by (A.2)

+‖𝑣𝑛
𝜖
′‖𝜆𝛾0‖𝜌‖

]︃⃒⃒
⃒Δ𝑛

𝑗+ 1
2

⃒⃒
⃒, (A.5)

where we have used a telescoping argument for the series. We further reduce the above to

∑︁

𝑗∈Z

⃒⃒
⃒Δ𝑛+1

𝑗+ 1
2

⃒⃒
⃒ ≤

[︀
1 + 𝜆𝛾0

(︀
‖𝑣𝑛

𝜖 ‖+ ‖𝑣𝑛
𝜖
′‖
)︀
‖𝜌‖
]︀∑︁

𝑗∈Z

⃒⃒
⃒Δ𝑛

𝑗+ 1
2

⃒⃒
⃒
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≤
[︀
1 + Δ𝑡𝑊𝜂(0)

(︀
‖𝑣𝜖‖+ ‖𝑣𝜖

′‖
)︀
‖𝜌‖
]︀∑︁

𝑗∈Z

⃒⃒
⃒Δ𝑛

𝑗+ 1
2

⃒⃒
⃒.

By iterative repeating of the above and using

∑︁

𝑗∈Z

|𝜌0
𝑗+1 − 𝜌0

𝑗 | = TV
(︀
{𝜌0

𝑗}𝑗∈Z; R
)︀
≤ TV(𝜌0; R), (A.6)

we obtain

TV
(︁
𝜌Δ𝑥(𝑇, ·); R

)︁
≤
[︀
1 + Δ𝑡𝑊𝜂(0)

(︀
‖𝑣𝜖‖+ ‖𝑣𝜖

′‖
)︀
‖𝜌‖
]︀𝑇/Δ𝑡

TV
(︀
{𝜌0

𝑗}𝑗∈Z; R
)︀

≤ exp

⎛

⎜⎜⎝𝑇 𝑊𝜂(0)
(︀
‖𝑣𝜖‖+ ‖𝑣𝜖

′‖
)︀
‖𝜌‖

⏟  ⏞  
=: 𝐶(𝑊𝜂,𝑣,𝜌max,𝜖)

⎞

⎟⎟⎠TV(𝜌0; R). (A.7)

�

Remark A.2. Similar to (A.2) one can show that

−
(︀
𝑉 𝑛

𝜖,𝑗+1 − 𝑉 𝑛
𝜖,𝑗

)︀
≤ 𝛾0‖𝑣𝑛

𝜖
′‖
(︂

sup
𝑗
{𝜌𝑛

𝑗 } − 𝜌𝑛
𝑗

)︂
≤ 𝛾0‖𝑣𝑛

𝜖
′‖‖𝜌𝑛‖ ≤ 𝛾0‖𝑣′‖‖𝜌0‖,

due to our assessment of (𝑣𝑛
𝜖 )′ (Sec. 3.3) and the maximum principle. This implies the bound

(A.5) ≤
[︀
1 + Δ𝑡𝑊𝜂(0)2‖𝑣′‖‖𝜌‖

]︀∑︁

𝑗∈Z

⃒⃒
⃒Δ𝑛

𝑗+ 1
2

⃒⃒
⃒

and thus

TV
(︁
𝜌Δ𝑥(𝑇, ·); R

)︁
≤ exp

⎛

⎜⎜⎝𝑇 2𝑊𝜂(0)‖𝑣′‖‖𝜌‖⏟  ⏞  
=: �̃�(𝑊𝜂,𝑣,𝜌max)

⎞

⎟⎟⎠TV(𝜌0; R).

Using Lemma 5.3 or optionally Remark 5.4 we present the proof for Lemma 5.5.

Proof. The claim will only be shown for 𝐶, as for 𝐶 just a few estimates have to be exchanged. We adapt the proof from
3.5 of [12] and start by fixing any 𝑇 ≥ 0. Now we have

– If 𝑇 ≤ Δ𝑡, then TV(𝜌Δ𝑥; R× [0, 𝑇 ]) ≤ 𝑇 · TV(𝜌0; R) as no time step is necessary to calculate 𝜌(𝑡, 𝑥), ∀𝑡 ≤ 𝑇 .
– If 𝑇 > Δ𝑡, we fix the discrete time horizon 𝑁𝑇 ∈ N ∖ {0} such that 𝑁𝑇 Δ𝑡 < 𝑇 ≤ (𝑁𝑇 +1)Δ𝑡. Hence, by Definition of

the total variation in two dimensions and twice applying the first equality of (A.6), the total variation can be written
as

TV
(︁
𝜌Δ𝑥; R× [0, 𝑇 ]

)︁
=

𝑁𝑇−1∑︁

𝑛=0

∑︁

𝑗∈Z

Δ𝑡
⃒⃒
𝜌𝑛

𝑗+1 − 𝜌𝑛
𝑗

⃒⃒
+ (𝑇 −𝑁𝑇 Δ𝑡)

∑︁

𝑗∈Z

⃒⃒
⃒𝜌𝑁𝑇

𝑗+1 − 𝜌𝑁𝑇
𝑗

⃒⃒
⃒

⏟  ⏞  
≤𝑇 ·(exp(𝑇𝐶)TV(𝜌0;R))

+

𝑁𝑇−1∑︁

𝑛=0

∑︁

𝑗∈Z

Δ𝑥
⃒⃒
𝜌𝑛+1

𝑗 − 𝜌𝑛
𝑗

⃒⃒
. (A.8)

Therefore, we are left with bounding the last term. Considering our scheme, we derive

𝜌𝑛+1
𝑗 − 𝜌𝑛

𝑗 = 𝜆
(︀
𝑉 𝑛

𝜖,𝑗−1𝜌
𝑛
𝑗−1 − 𝑉 𝑛

𝜖,𝑗𝜌
𝑛
𝑗

)︀

±0
= 𝜆

(︀(︀
𝑉 𝑛

𝜖,𝑗−1 − 𝑉 𝑛
𝜖,𝑗

)︀
𝜌𝑛

𝑗−1 − 𝑉 𝑛
𝜖,𝑗

(︀
𝜌𝑛

𝑗 − 𝜌𝑛
𝑗−1

)︀)︀
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= 𝜆

⎛

⎝−𝜌𝑛
𝑗−1

⎛

⎝
𝑁𝜂−1∑︁

𝑘=0

𝛾𝑘

(︀
𝑣𝑛

𝜖

(︀
𝜌𝑛

𝑗+𝑘+1

)︀
− 𝑣𝑛

𝜖

(︀
𝜌𝑛

𝑗+𝑘

)︀)︀
⎞

⎠− 𝑉 𝑛
𝜖,𝑗

(︀
𝜌𝑛

𝑗 − 𝜌𝑛
𝑗−1

)︀
⎞

⎠

= 𝜆

⎛

⎝−𝜌𝑛
𝑗−1

⎛

⎝
𝑁𝜂−1∑︁

𝑘=0

𝛾𝑘(𝑣𝑛
𝜖 )′Π

(︀
𝜌𝑛

𝑗+𝑘+1, 𝜌
𝑛
𝑗+𝑘

)︀(︀
𝜌𝑛

𝑗+𝑘+1 − 𝜌𝑛
𝑗+𝑘

)︀
⎞

⎠− 𝑉 𝑛
𝜖,𝑗

(︀
𝜌𝑛

𝑗 − 𝜌𝑛
𝑗−1

)︀
⎞

⎠

where we added and subtracted 𝑉 𝑛
𝜖,𝑗𝜌

𝑛
𝑗−1, applied our scheme and lastly used our assessment of 𝑣′𝜖 as in Section 3.3.

Taking absolute values, applying ‖𝑣𝑛
𝜖
′‖ ≤ ‖𝑣𝜖

′‖ ≤ ‖𝑣′‖, |𝑉 𝑛
𝜖,𝑗 | ≤ ‖𝑣𝑛

𝜖 ‖ and |Π(𝑥, 𝑦)| ≤ 1 yields

⃒⃒
𝜌𝑛+1

𝑗 − 𝜌𝑛
𝑗

⃒⃒
≤ 𝜆

⎛

⎝‖𝜌‖‖𝑣′‖
𝑁𝜂−1∑︁

𝑘=0

𝛾𝑘

⃒⃒
𝜌𝑛

𝑗+𝑘+1 − 𝜌𝑛
𝑗+𝑘

⃒⃒
+ ‖𝑣𝑛

𝜖 ‖
⃒⃒
𝜌𝑛

𝑗 − 𝜌𝑛
𝑗−1

⃒⃒
⎞

⎠.

Summing over Z and applying (10) again, gives us

∑︁

𝑗∈Z

Δ𝑥|𝜌𝑛+1
𝑗 − 𝜌𝑛

𝑗 | ≤ Δ𝑥𝜆⏟ ⏞ 
Δ𝑡

∑︁

𝑗∈Z

|𝜌𝑛
𝑗 − 𝜌𝑛

𝑗−1|
(︀
𝑊𝜂(0)‖𝑣′‖‖𝜌‖+ ‖𝑣𝜖‖

)︀
. (A.9)

Finally, summing over the time steps

𝑁𝑇−1∑︁

𝑛=0

∑︁

𝑗∈Z

Δ𝑥|𝜌𝑛+1
𝑗 − 𝜌𝑛

𝑗 | ≤ 𝑇 ·
[︀
exp
(︀
𝑇𝐶(𝑊𝜂, 𝑣, 𝜌max, 𝜖)

)︀
TV(𝜌0; R)

·
(︀
𝑊𝜂(0)‖𝑣′‖‖𝜌‖+ ‖𝑣𝜖‖

)︀]︀

=: 𝑇 · 𝒦𝜖(𝑇 ), (A.10)

applying our knowledge on the spatial TV bound (Lem. 5.3). Altogether with (A.8) we obtain

TV
(︁
𝜌Δ𝑥; R× [0, 𝑇 ]

)︁
≤ 𝑇 exp(𝑇𝐶(𝑊𝜂, 𝑣, 𝜌max, 𝜖))

(︀
1 + 𝑊𝜂(0)‖𝑣′‖‖𝜌‖+ ‖𝑣𝜖‖

)︀
TV(𝜌0; R)

which is the claim.

�

Remark A.3. As in 2.24 of [11], from (A.9) it follows, analogous to (A.10) that

∑︁

𝑗∈Z

Δ𝑥|𝜌𝑛+1
𝑗 − 𝜌𝑛

𝑗 | ≤ Δ𝑡 · 𝒦𝜖(𝑇 ), (A.11)

which will become of use in Remark 5.9.

A.1.3. Discrete entropy inequality

For the proof of Lemma 5.6, we prove that under our assumptions on the error term, 𝑣𝜖 is an admissible velocity
function, although it neither satisfies the classical assumptions of 2.25 from [11] nor the NV model (Rem. 2.2), whilst
reducing the proof from a 1-to-1 case to our setting of a singular road. Additionally, we use the fact that 𝑉 𝑛

𝜖,𝑗 ≥ 0.

Proof. First note that, as pointed out in Section 4, the numerical flux is a random variable in every time step, thus
actually 𝐹 𝑛

𝑗+1/2 = 𝐹 𝑛
𝑗+1/2

(︀
𝜖(𝑡𝑛, 𝜔)

)︀
, 𝑗 ∈ Z, 𝜔 ∈ Ω. Yet, spatial differentiability is still given since 𝜖(𝑡𝑛, 𝜔) is constant in

the spatial dimension. Therefore, we omit the notation with respect to 𝜔 here as well. Let

𝐺𝑛
𝑗 (𝑢, 𝑤) := 𝑤 − 𝜆

(︀
𝐹 𝑛

𝑗+1/2(𝑤)− 𝐹 𝑛
𝑗−1/2(𝑢)

)︀
.

Then 𝐺𝑗 is monotone with respect to both its arguments as

𝜕𝐺𝑛
𝑗

𝜕𝑤
= 1− 𝜆𝑉 𝑛

𝜖,𝑗 ≥ 0,
𝜕𝐺𝑛

𝑗

𝜕𝑢
= 𝜆𝑉 𝑛

𝜖,𝑗−1 ≥ 0,

due to the CFL condition (23), the assumptions on 𝜖 (4) and the non negativity of 𝑣𝜖.
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The monotonicity implies that

𝐺𝑛
𝑗

(︀
𝜌𝑛

𝑗−1 ∧ 𝑐, 𝜌𝑛
𝑗 ∧ 𝑐

)︀
≥ 𝐺𝑛

𝑗

(︀
𝜌𝑛

𝑗−1, 𝜌
𝑛
𝑗

)︀
∧𝐺𝑛

𝑗 (𝑐, 𝑐), (a)

𝐺𝑛
𝑗

(︀
𝜌𝑛

𝑗−1 ∨ 𝑐, 𝜌𝑛
𝑗 ∨ 𝑐

)︀
≤ 𝐺𝑛

𝑗

(︀
𝜌𝑛

𝑗−1, 𝜌
𝑛
𝑗

)︀
∨𝐺𝑛

𝑗 (𝑐, 𝑐). (b)

Subtracting (b) from (a), we obtain
⃒⃒
𝐺𝑛

𝑗

(︀
𝜌𝑛

𝑗−1, 𝜌
𝑛
𝑗

)︀
−𝐺𝑛

𝑗 (𝑐, 𝑐)
⃒⃒
≤ 𝐺𝑛

𝑗

(︀
𝜌𝑛

𝑗−1 ∧ 𝑐, 𝜌𝑛
𝑗 ∧ 𝑐

)︀
−𝐺𝑛

𝑗

(︀
𝜌𝑛

𝑗−1 ∨ 𝑐, 𝜌𝑛
𝑗 ∨ 𝑐

)︀

=
⃒⃒
𝜌𝑛

𝑗 − 𝑐
⃒⃒
− 𝜆

(︀
𝐻𝑛

𝑗+1/2

(︀
𝜌𝑛

𝑗

)︀
−𝐻𝑛

𝑗−1/2

(︀
𝜌𝑛

𝑗−1

)︀)︀
. (A.12)

Now we estimate the left side of (A.12) via
⃒⃒
𝐺𝑛

𝑗 (𝜌𝑛
𝑗−1, 𝜌

𝑛
𝑗 )−𝐺𝑛

𝑗 (𝑐, 𝑐)
⃒⃒
=
⃒⃒
𝜌𝑛+1

𝑗 − 𝑐 + 𝜆
(︀
𝐹 𝑛

𝑗+1/2(𝑐)− 𝐹 𝑛
𝑗−1/2(𝑐)

)︀⃒⃒

≥ sign(𝜌𝑛+1
𝑗 − 𝑐)

(︀
𝜌𝑛+1

𝑗 − 𝑐 + 𝜆
(︀
𝐹 𝑛

𝑗+1/2(𝑐)− 𝐹 𝑛
𝑗−1/2(𝑐)

)︀)︀

=
⃒⃒
𝜌𝑛+1

𝑗 − 𝑐
⃒⃒
+ 𝜆 sign(𝜌𝑛+1

𝑗 − 𝑐)
(︀
𝐹 𝑛

𝑗+1/2(𝑐)− 𝐹 𝑛
𝑗−1/2(𝑐)

)︀
, (A.13)

where we have used the definition of 𝐺𝑛
𝑗 and the properties of sign w.r.t. |·|. Lastly, combining (A.12) with (A.13) and

subtracting [𝜆 sign(𝜌𝑛+1
𝑗 − 𝑐)(𝐹 𝑛

𝑗+1/2(𝑐)− 𝐹 𝑛
𝑗−1/2(𝑐))] on both sides yields the desired claim. �

A.1.4. Convergence

The following proof concerns Lemma 5.7.

Proof. Let 𝜑 ∈ 𝐶1
0 ([0, 𝑇 ) × R; R+) and set 𝜑𝑛

𝑗 = 𝜑(𝑡𝑛, 𝑥𝑗) ∀𝑗 ∈ Z, 𝑛 ∈ N. We start by multiplying the discrete entropy
inequality (24) by 𝜑𝑛

𝑗 Δ𝑥 and sum over space and time, i.e. 𝑛 ∈ {0, . . . , 𝑁𝑇 − 1} and 𝑗 ∈ Z, using 𝜆 = Δ𝑡/Δ𝑥:

Δ𝑥Δ𝑡

𝑁𝑇−1∑︁

𝑛=0

∑︁

𝑗∈𝑍

−
(︀
|𝜌𝑛+1

𝑗 − 𝑐| − |𝜌𝑛
𝑗 − 𝑐|

)︀
𝜑𝑛

𝑗 /Δ𝑡

−
(︀
𝐻𝑛

𝑗+1/2(𝜌
𝑛
𝑗 )−𝐻𝑛

𝑗−1/2(𝜌
𝑛
𝑗−1)

)︀
𝜑𝑛

𝑗 /Δ𝑥

− sign(𝜌𝑛+1
𝑗 − 𝑐)

(︀
𝐹 𝑛

𝑗+1/2(𝑐)− 𝐹 𝑛
𝑗−1/2(𝑐)

)︀
𝜑𝑛

𝑗 /Δ𝑥 ≥ 0.

Our goal is to show that the limit of this expression satisfies the entropy inequality of Definition 2.3. To achieve this, we
will commence by breaking the above down into its main components using summation by parts to obtain the partial
derivatives 𝜕𝑥𝜑, 𝜕𝑡𝜑. We obtain

−Δ𝑥
∑︁

𝑗∈Z

|𝜌𝑁𝑇
𝑗 − 𝑐|𝜑𝑁𝑇

𝑗 (A.14)

+ Δ𝑥Δ𝑡

𝑁𝑇−1∑︁

𝑛=0

∑︁

𝑗∈𝑍

|𝜌𝑛+1
𝑗 − 𝑐|(𝜑𝑛+1

𝑗 − 𝜑𝑛
𝑗 )/Δ𝑡 + Δ𝑥

∑︁

𝑗∈𝑍

|𝜌0
𝑗 − 𝑐|𝜑0

𝑗 (A.15)

+ Δ𝑥Δ𝑡

𝑁𝑇−1∑︁

𝑛=0

∑︁

𝑗∈𝑍

𝐻𝑛
𝑗−1/2(𝜌

𝑛
𝑗−1)(𝜑

𝑛
𝑗 − 𝜑𝑛

𝑗−1)/Δ𝑥 (A.16)

−Δ𝑥Δ𝑡

𝑁𝑇−1∑︁

𝑛=0

∑︁

𝑗∈𝑍

sign
(︀
𝜌𝑛+1

𝑗 − 𝑐
)︀(︀

𝐹 𝑛
𝑗+1/2(𝑐)− 𝐹 𝑛

𝑗−1/2(𝑐)
)︀
𝜑𝑛

𝑗 /Δ𝑥 ≥ 0. (A.17)

We now analyze every term individually. Since 𝜑 ∈ 𝐶1
0 ([0, 𝑇 )× R; R+) and 𝜌Δ𝑥 → 𝜌, Δ𝑥 → 0 in 𝐿1

𝑙𝑜𝑐 by assumption, it
follows that

(A.14) → −
∫︁

R
|𝜌𝑇 (𝑥)− 𝑐|𝜑(𝑇, 𝑥) d𝑥 = 0, Δ𝑥 → 0.

As per assumption 𝜌Δ𝑥 → 𝜌, Δ𝑥 → 0 in 𝐿1
𝑙𝑜𝑐 and

𝜑𝑛+1
𝑗 − 𝜑𝑛

𝑗

Δ𝑡
→ 𝜕𝑡𝜑, Δ𝑡 → 0, we also obtain

(A.15) →
∫︁ 𝑇

0

∫︁

R
|𝜌− 𝑐|𝜕𝑡𝜑 d𝑥 d𝑡 +

∫︁

R
|𝜌0(𝑥)− 𝑐|𝜑(0, 𝑥) d𝑥, Δ𝑥 → 0.
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Next, by definition of 𝐻𝑛
𝑗−1/2 we have

𝐻𝑛
𝑗−1/2(𝜌

𝑛
𝑗−1) = 𝐹 𝑛

𝑗−1/2(𝜌
𝑛
𝑗−1 ∧ 𝑐)− 𝐹 𝑛

𝑗−1/2(𝜌
𝑛
𝑗−1 ∨ 𝑐)

= sign
(︀
𝜌𝑛

𝑗−1 − 𝑐
)︀(︀

𝐹 𝑛
𝑗−1/2(𝜌

𝑛
𝑗−1)− 𝐹 𝑛

𝑗−1/2(𝑐)
)︀
.

Further, as
𝜑𝑛

𝑗 −𝜑𝑛
𝑗−1

Δ𝑥
→ 𝜕𝑥𝜑, Δ𝑥 → 0 and per assumption

𝐹 𝑛
𝑗−1/2

(︀
𝜌𝑛

𝑗−1

)︀
→ 𝑓𝜖(𝑡, 𝑥, 𝜌), Δ𝑥 → 0 in 𝐿1

𝑙𝑜𝑐,

we can also conclude

(A.16) →
∫︁ 𝑇

0

∫︁

R
sign(𝜌− 𝑐)(𝑓𝜖(𝑡, 𝑥, 𝜌)− 𝑓𝜖(𝑡, 𝑥, 𝑐)) d𝑥 d𝑡, Δ𝑥 → 0,

due to our construction of a well-posed time integrable random process 𝜖(𝑡, 𝜔).
However, a more detailed evaluation is required for the last term. We apply the definition of the numerical flux,

introduce a zero term and then obtain

(A.17)
def.
= −Δ𝑥Δ𝑡

𝑁𝑇−1∑︁

𝑛=0

∑︁

𝑗∈𝑍

sign
(︀
𝜌𝑛+1

𝑗 − 𝑐
)︀(︂

𝑐
𝑉 𝑛

𝜖,𝑗 − 𝑉 𝑛
𝜖,𝑗−1

Δ𝑥

)︂
𝜑𝑛

𝑗

±0
= −Δ𝑥Δ𝑡

𝑁𝑇−1∑︁

𝑛=0

∑︁

𝑗∈𝑍

(︀
sign

(︀
𝜌𝑛+1

𝑗 − 𝑐
)︀
− sign(𝜌𝑛

𝑗 − 𝑐)
)︀(︂

𝑐
𝑉 𝑛

𝜖,𝑗 − 𝑉 𝑛
𝜖,𝑗−1

Δ𝑥

)︂
𝜑𝑛

𝑗 (A.18)

−Δ𝑥Δ𝑡

𝑁𝑇−1∑︁

𝑛=0

∑︁

𝑗∈𝑍

sign(𝜌𝑛
𝑗 − 𝑐)

(︂
𝑐
𝑉 𝑛

𝜖,𝑗 − 𝑉 𝑛
𝜖,𝑗−1

Δ𝑥

)︂
𝜑𝑛

𝑗 . (A.19)

Due to (A.4) it holds |𝑉 𝑛
𝜖,𝑗 −𝑉 𝑛

𝜖,𝑗−1| ≤ Δ𝑥𝑊𝜂(0)𝜂‖𝑣𝜖‖‖𝜌‖ = 𝒪(Δ𝑥), and we can bound the finite differences to obtain for
the second term

(A.19) → −
∫︁ 𝑇

0

∫︁

R
sign(𝜌− 𝑐)(𝑐𝜕𝑥𝑉𝜖)𝜑 d𝑥 d𝑡, Δ𝑥 → 0.

It remains to show, that the first term vanishes. To achieve this, we perform summation by parts, adding and subtracting
(𝑉 𝑛+1

𝜖,𝑗 − 𝑉 𝑛+1
𝜖,𝑗−1)𝜑

𝑛
𝑗 in the process and obtain

(A.18) = Δ𝑡

𝑁𝑇−2∑︁

𝑛=0

∑︁

𝑗∈𝑍

sign
(︀
𝜌𝑛+1

𝑗 − 𝑐
)︀
𝜑𝑛

𝑗 𝑐
[︀(︀

𝑉 𝑛+1
𝜖,𝑗 − 𝑉 𝑛+1

𝜖,𝑗−1

)︀
−
(︀
𝑉 𝑛

𝜖,𝑗 − 𝑉 𝑛
𝜖,𝑗−1

)︀]︀
(A.20)

+ Δ𝑡Δ𝑡Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

∑︁

𝑗∈𝑍

sign
(︀
𝜌𝑛+1

𝑗 − 𝑐
)︀
𝑐
𝑉 𝑛+1

𝜖,𝑗 − 𝑉 𝑛+1
𝜖,𝑗−1

Δ𝑥

𝜑𝑛+1
𝑗 − 𝜑𝑛

𝑗

Δ𝑡

+ Δ𝑡Δ𝑥
∑︁

𝑗∈𝑍

sign
(︀
𝜌0

𝑗 − 𝑐
)︀
𝜑0

𝑗𝑐
𝑉 0

𝜖,𝑗 − 𝑉 0
𝜖,𝑗−1

Δ𝑥

−Δ𝑡Δ𝑥
∑︁

𝑗∈𝑍

sign
(︁
𝜌𝑁𝑇−1

𝑗 − 𝑐
)︁
𝜑𝑁𝑇−1

𝑗 𝑐
𝑉 𝑁𝑇−1

𝜖,𝑗 − 𝑉 𝑁𝑇−1
𝜖,𝑗−1

Δ𝑥
·

The occurring differences can all be bounded by the same argument as above for |𝑉 𝑛
𝜖,𝑗 − 𝑉 𝑛

𝜖,𝑗−1| and therefore the last
three terms vanish as Δ𝑥 → 0 and Δ𝑡 → 0 respectively, further using the compactness of the test functions as e.g. in
(A.14). For the first term we derive as in (A.1)

(︀
𝑉 𝑛+1

𝜖,𝑗 − 𝑉 𝑛+1
𝜖,𝑗−1

)︀
−
(︀
𝑉 𝑛

𝜖,𝑗 − 𝑉 𝑛
𝜖,𝑗−1

)︀
=

𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘−1 − 𝛾𝑘)
(︀
𝑣𝑛+1

𝜖

(︀
𝜌𝑛+1

𝑗+𝑘

)︀
− 𝑣𝑛

𝜖

(︀
𝜌𝑛

𝑗+𝑘

)︀)︀
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+ 𝛾𝑁𝜂−1

(︁
𝑣𝑛+1

𝜖

(︁
𝜌𝑛+1

𝑗+𝑁𝜂

)︁
− 𝑣𝑛

𝜖

(︀
𝜌𝑛

𝑗+𝑁𝜂

)︀)︁

− 𝛾0

(︀
𝑣𝑛+1

𝜖

(︀
𝜌𝑛+1

𝑗

)︀
− 𝑣𝑛

𝜖

(︀
𝜌𝑛

𝑗

)︀)︀
. (A.21)

We once again use the compact support of 𝜑 in space and time, and notice, that there must exist an 𝑅, such that
𝜑(𝑡, 𝑥) = 0, ∀𝑡 > 0 and |𝑥| > 𝑅. For the discrete variant we choose the indices 𝑗0, 𝑗1 ∈ Z, such that−𝑅 ∈ (𝑥𝑗0−1/2, 𝑥𝑗0+1/2]

and 𝑅 ∈ (𝑥𝑗1−1/2, 𝑥𝑗1+1/2]. Then it follows that
∑︀

𝑗∈Z 𝜑𝑛
𝑗 =

∑︀𝑗1
𝑗=𝑗0

𝜑𝑛
𝑗 .

With the above, we can now plug (A.21) in (A.20), multiply by Δ𝑥/Δ𝑥 and use the obvious bound on 𝜑 to obtain

(A.20) ≤ Δ𝑡

Δ𝑥
‖𝜑‖𝐿∞([0,𝑇 ]×[−𝑅,𝑅])𝑐

⃒⃒
⃒⃒
⃒

𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘−1 − 𝛾𝑘) Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

𝑗1∑︁

𝑗=𝑗0

𝑣𝑛+1
𝜖

(︀
𝜌𝑛+1

𝑗+𝑘

)︀
− 𝑣𝑛

𝜖

(︀
𝜌𝑛

𝑗+𝑘

)︀

+ 𝛾𝑁𝜂−1 Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

𝑗1∑︁

𝑗=𝑗0

𝑣𝑛+1
𝜖

(︁
𝜌𝑛+1

𝑗+𝑁𝜂

)︁
− 𝑣𝑛

𝜖

(︀
𝜌𝑛

𝑗+𝑁𝜂

)︀

− 𝛾0 Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

𝑗1∑︁

𝑗=𝑗0

𝑣𝑛+1
𝜖

(︀
𝜌𝑛+1

𝑗

)︀
− 𝑣𝑛

𝜖

(︀
𝜌𝑛

𝑗

)︀
⃒⃒
⃒⃒
⃒.

A major difference to 2.2.6 of [11] is the appearance of the noise induced time dependency of the velocity function,
i.e. 𝑣𝑛+1

𝜖 , 𝑣𝑛
𝜖 . Therefore, we cannot simply apply the mean value theorem, but have bound to the differences of the noise.

By the Lipschitz-continuity of 𝑥 ↦→ 𝑥+ it holds that

𝑣𝑛+1
𝜖

(︀
𝜌𝑛+1

𝑗

)︀
− 𝑣𝑛

𝜖

(︀
𝜌𝑛

𝑗

)︀
=
(︀
𝑣
(︀
𝜌𝑛+1

𝑗

)︀
− 𝜖(𝑡𝑛+1)

)︀+ −
(︀
𝑣
(︀
𝜌𝑛

𝑗

)︀
− 𝜖(𝑡𝑛)

)︀+

=
(︀
𝑣
(︀
𝜌𝑛+1

𝑗

)︀
− 𝜖(𝑡𝑛) + 𝜖(𝑡𝑛)− 𝜖(𝑡𝑛+1)

)︀+ −
(︀
𝑣
(︀
𝜌𝑛

𝑗

)︀
− 𝜖(𝑡𝑛)

)︀+

≤ ‖𝑣′𝜖‖
(︀
|𝜌𝑛+1

𝑗 − 𝜌𝑛
𝑗 |+ |𝜖(𝑡𝑛+1)− 𝜖(𝑡𝑛)|

)︀
.

Hence, it follows by 𝛾𝑘−1 − 𝛾𝑘 ≥ 0 and the triangle inequality

(A.20) ≤ Δ𝑡

Δ𝑥
‖𝜑‖𝐿∞([0,𝑇 ]×[−𝑅,𝑅])𝑐

⃦⃦
𝑣′𝜖
⃦⃦

·

(︃𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘−1 − 𝛾𝑘) Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

𝑗1∑︁

𝑗=𝑗0

|𝜌𝑛+1
𝑗+𝑘 − 𝜌𝑛

𝑗+𝑘|+ |𝜖(𝑡𝑛+1)− 𝜖(𝑡𝑛)|

+ 𝛾𝑁𝜂−1 Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

𝑗1∑︁

𝑗=𝑗0

|𝜌𝑛+1
𝑗+𝑁𝜂

− 𝜌𝑛
𝑗+𝑁𝜂

|+ |𝜖(𝑡𝑛+1)− 𝜖(𝑡𝑛)|

+ 𝛾0 Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

𝑗1∑︁

𝑗=𝑗0

|𝜌𝑛+1
𝑗 − 𝜌𝑛

𝑗 |+ |𝜖(𝑡𝑛+1)− 𝜖(𝑡𝑛)|

)︃

.

The terms of the form Δ𝑥
∑︀𝑁𝑇−2

𝑛=0

∑︀𝑗1
𝑗=𝑗0

|𝜌𝑛+1
𝑗 − 𝜌𝑛

𝑗 | can be bounded as in (A.10), such that

(A.20) ≤ Δ𝑡

Δ𝑥
‖𝜑‖𝐿∞([0,𝑇 ]×[−𝑅,𝑅])𝑐

⃦⃦
𝑣′𝜖
⃦⃦
(︃

2𝛾0𝑇𝒦𝜖(𝑇 )

+

𝑁𝜂−1∑︁

𝑘=1

(𝛾𝑘−1 − 𝛾𝑘) Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

𝑗1∑︁

𝑗=𝑗0

|𝜖(𝑡𝑛+1)− 𝜖(𝑡𝑛)|

+𝛾𝑁𝜂−1 Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

𝑗1∑︁

𝑗=𝑗0

|𝜖(𝑡𝑛+1)− 𝜖(𝑡𝑛)|

+𝛾0 Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

𝑗1∑︁

𝑗=𝑗0

|𝜖(𝑡𝑛+1)− 𝜖(𝑡𝑛)|

)︃

.
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Since 𝜖 ∈ BV we may bound the differences by the respective norm, which gives

Δ𝑥

𝑁𝑇−2∑︁

𝑛=0

𝑗1∑︁

𝑗=𝑗0

|𝜖(𝑡𝑛+1)− 𝜖(𝑡𝑛)| ≤ Δ𝑥

𝑗1∑︁

𝑗=𝑗0

‖𝜖‖BV ≤ ‖𝜖‖BV 2𝑅.

Thus, we can conclude

(A.20) ≤ Δ𝑡

Δ𝑥
‖𝜑‖𝐿∞([0,𝑇 ]×[−𝑅,𝑅])𝑐

⃦⃦
𝑣′𝜖
⃦⃦(︀

2𝛾0

(︀
𝑇𝒦𝜖(𝑇 )+‖𝜖‖BV 2𝑅

)︀)︀

≤ 𝜆Δ𝑥‖𝜑‖𝐿∞([0,𝑇 ]×[−𝑅,𝑅])𝑐
⃦⃦
𝑣′𝜖
⃦⃦(︀

2𝑊𝜂(0)
(︀
𝑇𝒦𝜖(𝑇 )+‖𝜖‖BV 2𝑅

)︀)︀
,

using 𝜆 = Δ𝑡/Δ𝑥 and 𝛾0 ≤ 𝑊𝜂(0)/Δ𝑥. This estimate converges to zero as Δ𝑥 → 0, hence finishing the
proof. �

A.1.5. Uniqueness

We now present the detailed proof for Theorem 5.10.

Proof. The main work here is to show that 𝑣𝜖 is a valid substitute to 𝑣 as in the deterministic model (NV). As 𝜌, 𝜎 are
weak entropy solutions of

𝜕𝑡𝜌(𝑡, 𝑥) + 𝜕𝑥

(︀
𝜌(𝑡, 𝑥)𝑉𝜖(𝑡, 𝑥)

)︀
= 0, 𝑉𝜖 = 𝑊𝜂 * 𝑣𝜖(𝜌, 𝑡), 𝜌(0, 𝑥) = 𝜌0(𝑥),

𝜕𝑡𝜎(𝑡, 𝑥) + 𝜕𝑥

(︀
𝜎(𝑡, 𝑥)𝑈𝜖(𝑡, 𝑥)

)︀
= 0, 𝑈𝜖 = 𝑊𝜂 * 𝑣𝜖(𝜎, 𝑡), 𝜎(0, 𝑥) = 𝜎0(𝑥),

the following holds

(1) 0 ≤ 𝑉𝜖, 𝑈𝜖 ≤ 𝑣max+𝜏 , since 0 < 𝑊𝜂, 𝑊0 = 1 and 0 ≤ 𝑣𝜖 ≤ 𝑣max + 𝜏 by construction.
(2) |𝜕𝑥𝑉𝜖(𝑡, 𝑥)|, |𝜕𝑥𝑈𝜖(𝑡, 𝑥)| < ∞, since

|𝜕𝑥𝑉𝜖(𝑡, 𝑥)| =
⃒⃒
⃒⃒
∫︁ 𝑥+𝜂

𝑥

𝑊 ′
𝜂(𝑦 − 𝑥)𝑣𝜖(𝜌(𝑡, 𝑦), 𝑡) d𝑦

+ 𝑊𝜂(𝜂)𝑣𝜖(𝜌(𝑡, 𝑥 + 𝜂), 𝑡)−𝑊𝜂(0)𝑣𝜖(𝜌(𝑡, 𝑥), 𝑡)

⃒⃒
⃒⃒ (A.22)

≤ ‖𝑊 ′
𝜂‖‖𝑣𝜖‖𝜂 + 2‖𝑣𝜖‖𝑊𝜂(0)

≤ ‖𝑊 ′
𝜂‖(𝑣max+𝜏)𝜂 + 2(𝑣max+𝜏)𝑊𝜂(0)

⏟  ⏞  
=:𝒱∞𝜖

< ∞. (A.23)

Here we used the Leibniz-rule, the triangle inequality as well as our bound on 𝑣𝜖 (11). The same holds for 𝜕𝑥𝑈𝜖.
(3) 𝑉𝜖 and 𝑈𝜖 are Lipschitz continuous with respect to 𝑥, since as of 2. we have bounded first derivatives and by the

definition of nonlocal weak entropy solutions it follows 𝜌, 𝜎 ∈ 𝐶([0, 𝑇 ]; 𝐿1(R)) with 𝜌(𝑡, ·), 𝜎(𝑡, ·) ∈ BV(R; R).

By construction and considerations 1.-3. 𝑉𝜖 and 𝑈𝜖 satisfy the assumptions of Kružkov [22], allowing us to apply the
doubling of variables technique. Thus, as in [12] we obtain

‖𝜌(𝑡, ·)− 𝜎(𝑡, ·)‖𝐿1(R) ≤ ‖𝜌0 − 𝜎0‖𝐿1(R) +

∫︁ 𝑇

0

∫︁

R
|𝜕𝑥𝜌(𝑡, 𝑥)||𝑈𝜖(𝑡, 𝑥)− 𝑉𝜖(𝑡, 𝑥)|d𝑥 d𝑡

+

∫︁ 𝑇

0

∫︁

R
|𝜌(𝑡, 𝑥)||𝜕𝑥𝑈𝜖(𝑡, 𝑥)− 𝜕𝑥𝑉𝜖(𝑡, 𝑥)|d𝑥 d𝑡, (A.24)

where 𝜕𝑥𝜌 has to be understood in the sense of distributions. Next, we invoke the Lipschitz-continuity, which gives

|𝑈𝜖(𝑡, 𝑥)− 𝑉𝜖(𝑡, 𝑥)| =
∫︁ 𝑥+𝜂

𝑥

𝑊𝜂(𝑦 − 𝑥)(𝑣𝜖(𝜌(𝑡, 𝑦), 𝑡)− 𝑣𝜖(𝜎(𝑡, 𝑦), 𝑡)) d𝑦

≤ 𝑊𝜂(0)
⃦⃦
𝑣′𝜖
⃦⃦
‖𝜌(𝑡, ·)− 𝜎(𝑡, ·)‖𝐿1(R). (A.25)
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Note that the norm for ‖𝑣′𝜖‖ had to be defined and bounded for two dimensions, as we did in Definition 3.2 and equation
(10). For the derivatives we obtain analogous to (A.22)

|𝜕𝑥𝑈𝜖(𝑡, 𝑥)− 𝜕𝑥𝑉𝜖(𝑡, 𝑥)| ≤ ‖𝑊 ′
𝜂‖
⃦⃦
𝑣′𝜖
⃦⃦
‖𝜌(𝑡, ·)− 𝜎(𝑡, ·)‖𝐿1(R)

+ 𝑊𝜂(0)
⃦⃦
𝑣′𝜖
⃦⃦
(|𝜌− 𝜎|(𝑡, 𝑥 + 𝜂) + |𝜌− 𝜎|(𝑡, 𝑥)), (A.26)

where we once again used the Lipschitz-continuity of 𝑣𝜖 and by Remark 2.1: 𝑊𝜂(𝜂) ≤ 𝑊𝜂(0). Next we plug our bounds
(A.25) and (A.26) into (A.24) and obtain

‖𝜌(𝑡, ·)− 𝜎(𝑡, ·)‖𝐿1(R)

≤ ‖𝜌0 − 𝜎0‖𝐿1(R) + 𝑊𝜂(0)‖𝑣′𝜖‖
∫︁ 𝑇

0

‖𝜌(𝑡, ·)− 𝜎(𝑡, ·)‖𝐿1(R)

∫︁

R
|𝜕𝑥𝜌(𝑡, 𝑥)| d𝑥 d𝑡

+ ‖𝑊 ′
𝜂‖‖𝑣′𝜖‖

∫︁ 𝑇

0

‖𝜌(𝑡, ·)− 𝜎(𝑡, ·)‖𝐿1(R)

∫︁

R
|𝜌(𝑡, 𝑥)| d𝑥 d𝑡

+ 𝑊𝜂(0)‖𝑣′𝜖‖
∫︁ 𝑇

0

∫︁

R
(|𝜌− 𝜎|(𝑡, 𝑥 + 𝜂) + |𝜌− 𝜎|(𝑡, 𝑥))|𝜌(𝑡, 𝑥)| d𝑥 d𝑡

≤ ‖𝜌0 − 𝜎0‖𝐿1(R) + ‖𝑣′𝜖‖

⎛

⎜⎜⎜⎝

⎛

⎜⎜⎜⎝
𝑊𝜂(0) sup

𝑡∈[0,𝑇 ]

∫︁

R
|𝜕𝑥𝜌(𝑡, 𝑥)| d𝑥

⏟  ⏞  
(𝑎)

+‖𝑊 ′
𝜂‖ sup

𝑡∈[0,𝑇 ]

∫︁

R
|𝜌(𝑡, 𝑥)|d𝑥

⏟  ⏞  
(𝑏)

⎞

⎟⎟⎟⎠

·
∫︁ 𝑇

0

‖𝜌(𝑡, ·)− 𝜎(𝑡, ·)‖𝐿1(R) d𝑡

+ 𝑊𝜂(0)

∫︁ 𝑇

0

∫︁

R
(|𝜌− 𝜎|(𝑡, 𝑥 + 𝜂) + |𝜌− 𝜎|(𝑡, 𝑥)) d𝑥 d𝑡

⏟  ⏞  
(𝑐)

· sup
𝑡∈[0,𝑇 ]

∫︁

R
|𝜌(𝑡, 𝑥)| d𝑥

⏟  ⏞  
(𝑏)

⎞

⎟⎟⎟⎠
.

Now

(a) ≤ sup
𝑡∈[0,𝑇 ]

‖𝜌(𝑡, ·)‖BV(R), with ‖𝜌(𝑡, ·)‖BV(R) := TV(𝜌(𝑡, ·); R),

(b) = sup
𝑡∈[0,𝑇 ]

‖𝜌(𝑡, ·)‖𝐿1(R),

(c) = 2

∫︁ 𝑇

0

‖𝜌(𝑡, ·)− 𝜎(𝑡, ·)‖𝐿1(R) d𝑡,

and therefore

‖𝜌(𝑡, ·)− 𝜎(𝑡, ·)‖𝐿1(R) ≤ ‖𝜌0 − 𝜎0‖𝐿1(R) + 𝐾𝜖

∫︁ 𝑇

0

‖𝜌(𝑡, ·)− 𝜎(𝑡, ·)‖𝐿1(R) d𝑡,

with

𝐾𝜖 = ‖𝑣′𝜖‖

(︃

𝑊𝜂(0)

(︃

sup
𝑡∈[0,𝑇 ]

‖𝜌(𝑡, ·)‖BV(R) + 2 sup
𝑡∈[0,𝑇 ]

‖𝜌(𝑡, ·)‖𝐿1(R)

)︃

+ ‖𝑊 ′
𝜂‖ sup

𝑡∈[0,𝑇 ]

‖𝜌(𝑡, ·)‖𝐿1(R)

)︃

.

By Gronwall’s lemma we get the desired claim and for the choice of 𝜌0 = 𝜎0 the uniqueness of weak entropy solutions.
Further, note that this bound is still a random variable as ‖𝑣′𝜖‖ = ‖𝑣′𝜖‖(𝜔) (Def. 3.2), which we will address now.
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For the second claim we state the similar bound for (NV) as derived in 2.4 of [12]:

𝐾 = ‖𝑣′‖

(︃

𝑊𝜂(0)

(︃

sup
𝑡∈[0,𝑇 ]

‖𝜌(𝑡, ·)‖BV(R) + 2 sup
𝑡∈[0,𝑇 ]

‖𝜌(𝑡, ·)‖𝐿1(R)

)︃

+ ‖𝑊 ′
𝜂‖ sup

𝑡∈[0,𝑇 ]

‖𝜌(𝑡, ·)‖𝐿1(R)

)︃

.

Therefore, the deterministic bound is the same as for (sNV) except for ‖𝑣′𝜖‖(𝜔). As shown in (10) it holds that ‖𝑣′𝜖‖(𝜔) ≤
‖𝑣′‖ ∀𝜔 ∈ Ω. Thus, the actual bound 𝐾𝜖(𝜔) for our stochastic model might even be lower than for (NV). In any case we
obtain general uniqueness and can deterministically bound 𝐾𝜖(𝜔) by 𝐾. �
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