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A B S T R A C T

Knowledge Graphs are used in various domains to represent knowledge about entities and their relations. In
the vast majority of cases, they capture what is known to be true about those entities, i.e., positive statements,
while the Open World Assumption implicitly states that everything not expressed in the graph may or may not
be true. This makes it difficult and less frequent to capture information explicitly known not to be true, i.e.,
negative statements. Moreover, while those negative statements could bear the potential to learn more useful
representations in knowledge graph embeddings, that direction has been explored only rarely. However, in
many domains, negative information is particularly interesting, for example, in recommender systems, where
negative associations of users and items can help in learning better user representations, or in the biomedical
domain, where the knowledge that a patient does exhibit a specific symptom can be crucial for accurate disease
diagnosis.

In this paper, we argue that negative statements should be given more attention in knowledge graph
embeddings. Moreover, we investigate how they can be used in knowledge graph embedding methods,
highlighting their potential in some interesting use cases. We discuss some existing works and preliminary
results that incorporate explicitly declared negative statements in walk-based knowledge graph embedding
methods. Finally, we outline promising avenues for future research in this area.
1. Introduction

Knowledge Graphs (KGs) capture information about real-world enti-
ties and their relationships in a structured format that is understandable
by both machines and humans [1]. Over the years, several KGs have
been developed, both freely accessible and commercially available.
Popular examples include the Google Knowledge Graph [2], DBpe-
dia [3], and Wikidata [4]. As KGs have gained popularity, various
KG embedding methods have emerged and have been successfully
applied across numerous fields [5]. These methods project KGs into
low-dimensional spaces while preserving the KG’s structural or seman-
tic characteristics, allowing embeddings to serve as features in machine
learning tasks or to assess semantic similarity between entities [5–
7]. The impact of KG embeddings is growing alongside the increasing
volume and complexity of data in KGs.

KGs predominantly represent facts as positive statements across
diverse domains. For example, a fact might express that Albert Einstein
was awarded a Nobel Prize in Physics. While less common, KGs can also
represent facts as negative statements. In [8], two types of negative
statements, grounded and universal, are distinguished. Grounded nega-
tive statements assert that a specific relationship does not exist between
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two entities, such as stating that Stephen Hawking was not awarded
the Nobel Prize in Physics, expressed as ¬(Stephen Hawking, awarded,
Nobel Prize in Physics). Therefore, a grounded negative statement
¬(𝑠, 𝑝, 𝑜) is satisfied if (𝑠, 𝑝, 𝑜) ∉ 𝐾 𝐺. In OWL [9], such statements are
represented using a class restriction applied to a single individual, or,
since OWL2, using negative object property assertions, which state that
an entity is not connected by a specific object property expression to
another entity [10]. In contrast, universally negative statements convey
negation at the level of a specific subject and predicate, indicating
that a particular entity does not have any relationship of that type.
For instance, stating that Isaac Newton was never married, expressed
as ¬∃𝑜 ∶ (Isaac Newton,married, 𝑜). A universally negative statement
¬∃𝑜 ∶ (𝑠, 𝑝, 𝑜) is satisfied if there exists no 𝑜 such that (𝑠, 𝑝, 𝑜) ∈ 𝐾 𝐺.

Most real-world KGs operate under the Open World Assumption,
where non-stated facts may represent missing/unknown facts or true
negative statements. In contrast, many AI systems are designed to
operate under the Closed World assumption or, in certain cases, under
the Local Closed World assumption [11], also known as the Partial
Completeness assumption [12]. According to the Local Closed World
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assumption, if there exists a triple (𝑠, 𝑝, 𝑜), then the KG is assumed to
contain all objects for any statements of the form (𝑠, 𝑝, ?). Although
this is well-suited for relationships where there is only one object
(e.g., birthIn or diedIn), this assumption can break down when the
relationships associate multiple objects with each subject (e.g., has-
Friend or worksAt), which is common for most relationships [12]. This
dichotomy creates challenges when integrating AI systems with KGs as
assumptions diverge.

Consequently, explicitly declared negative statements are then in-
creasingly recognized as valuable in KGs, with a growing recognition
of their importance for knowledge representation [13]. Several ap-
proaches have been developed to enrich KGs by incorporating inter-
esting and meaningful negative statements. Since the set of correct
negative statements is near-infinite, the interesting and meaningful
negative statements are those that are expected or believed to be true
but later turn out to be false. For instance, within the context of the
Nobel Prize, one could theoretically add negative statements for all
individuals who lack a positive statement about winning a Nobel Prize,
regardless of their field or background. However, such negative state-
ments become more interesting and meaningful when they challenge
expectations. For example, the negative statement stating that Stephen
Hawking was not awarded the Nobel Prize in Physics contrasts with the
widespread expectation that this renowned theoretical physicist would
have received such recognition. These approaches have been applied
not only to general-purpose KGs like Wikidata [14], but also in the
biomedical context [15,16].

Despite the advancements in enriching KGs with meaningful nega-
tive statements, the importance of exploring this type of information in
KG embedding methods is still in the early stages. Most existing embed-
ding methods do not explore and integrate explicitly declared negative
statements into their frameworks, often overlooking the underlying
ontological implications. This gap in handling negative information
leads to less accurate entity representations, potentially limiting the
embeddings’ effectiveness in downstream applications. To address these
limitations, future research must prioritize the exploration of negative
statements into embedding techniques, potentially leading to richer and
more robust representations.

In this paper, we argue that negative statements can strengthen KG
embedding methods and identify several key use cases that reinforce
the value of such statements in KGs. We also conduct a comprehensive
analysis of existing approaches. Through this analysis, we identify
limitations in current methods, and we propose actionable directions
for future research.

2. Embedding spaces with negative statements

KG embedding models aim to represent entities and relationships as
low-dimensional vectors that capture the semantics and relationships
within the KG. Most KG embedding methods involve generating a set
of triples that are expected to have a low probability of truth and
using these as negative examples to model training. The Local Closed
World assumption is inherently applied in the generation of negative
samples, when modifying the object in a statement (𝑠, 𝑝, 𝑜) to create
(𝑠, 𝑝, 𝑜′), the new triple is considered a negative example if it does not
exist in the KG. In an ideal scenario, these latent representations would
encode meaningful semantics: entities that share similar attributes or
relationships are positioned close together in the vector space, while
entities with distinct attributes or relationships are located farther
apart. For example, entities like Stephen Hawking and Albert Einstein and
J. Robert Oppenheimer should have embeddings close together in vector
space because they share similar attributes, such as being prominent
scientists. In contrast, an entity like James Stewart, an actor, should have
an embedding positioned farther away from these scientists.

In a KG that contains both positive and meaningful negative state-
ments, effective KG embedding models also need to capture the nega-
tive semantics. Entities with similar negative statements (e.g., entities
2 
Fig. 1. A simple example motivating the negative statements challenge.

known for lacking certain attributes) should also be close in the vec-
tor space. Moreover, if two pairs of entities share the same positive
attributes, but the second pair also has contradictory attributes, they
should be farther apart than the first pair. Using the previous example,
both Stephen Hawking and J. Robert Oppenheimer surprisingly never re-
ceived a Nobel Prize in Physics, a shared negative statement. In contrast,
Albert Einstein was awarded the Nobel Prize in Physics in 1921. This
should be reflected in their embeddings: Stephen Hawking and J. Robert
Oppenheimer should be closer to each other and more distant from
Albert Einstein in the embedding space, capturing their shared attribute
of non-award status and distinguishing them from Einstein’s positive
statement in this context. Fig. 1 illustrates this example.

Additionally, when working with ontology-rich KGs, additional
challenges arise. In such ontology-rich KGs, very common in the
biomedical domain, an ontology is used to provide rich descriptions of
real-world entities rather than focusing on the relationships between
entities themselves, resulting in a very rich TBox, with a comparatively
simpler ABox. When real-world entities in these KGs are described
through both positive and negative statements, a key distinction be-
tween these two types of statements lies in the inheritance of properties
from the superclasses or subclasses associated with the assigned on-
tology class. For example, considering an ontology describing awards,
a hierarchical class structure might define the Nobel Prize in Physics
as a subclass of Nobel Prize, which in turn is a subclass of Award. A
positive statement asserting that Albert Einstein received the Nobel Prize
in Physics implies that he also received an Award, as class assignments
propagate up through the superclass hierarchy. Conversely, a negative
statement indicating that Sigmund Freud did not receive the Nobel Prize
- despite being nominated for both the Nobel Prize in Physiology or
Medicine and the Nobel Prize in Literature - would imply that he did
not receive the Nobel Prize in Physics or any other Nobel Prize in a
different field, as the negation would propagate down the subclass
hierarchy. This cascading effect of negation means that a negative
assertion about a class also applies to all its subclasses, while a positive
assertion about a class applies to all its superclasses.

Since OWL ontologies primarily define taxonomies through subclass
relationships, typical KG embedding methods struggle to capture re-
verse paths that would better capture negative assertions. For instance,
in path-based embedding methods like RDF2vec [17], the path Albert
Einstein → awarded → Nobel Prize in Physics → subClassOf → Nobel Prize
→ subClassOf → Award and the path Stephen Hawking → not awarded →

Nobel Prize in Physics→ subClassOf→ Nobel Prize→ subClassOf→ Award
appear almost identical. Without a robust way to differentiate between
the awarded and not awarded properties, these paths may lead to
similar embeddings, undermining the KG’s ability to represent negative
information accurately. To address these challenges, KG embedding
methods that can recognize and properly encode the semantics of
negative statements are essential.
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Fig. 2. Subgraph of a biomedical KG that represents proteins on the functions
they perform and do not perform. In this example, three proteins (P1, P2, P3) are
represented. Proteins P1 and P2 demonstrate high semantic similarity as they share both
positive functional annotations (performing metal ion binding) and negative annotations
(not performing ferric ion binding). This dual perspective enhances the understanding
of their biological roles and highlights a higher likelihood of functional interaction.

3. Use cases and benchmarks

The inability to differentiate between a statement being false or
unknown creates significant challenges for knowledge representation
across different fields. In this section, we focus particularly on three
use cases involving biomedical KGs [18], KGs for news recommen-
dation [19], and food KGs [20], where incorporating the negative
statements into embedding generation could have a significant impact.

In biomedical KGs, entities such as genes, proteins, and diseases
are characterized through statements linking them to ontology classes,
often referred to as annotations. A well-known example is the Gene On-
tology (GO) KG [21], where a positive statement can denote that a gene
product performs a function as described by the GO, while a negative
statement can indicate that a gene product does not perform a specific
function that is typically performed by its homologs [15] (Fig. 2). Some
studies have already shown the importance of considering negative
statements in GO KG. For instance, [15] showed that a balance be-
tween positive and negative annotations for proteins results in a more
robust evaluation of protein function prediction using orthology-based
methods. Similarly, [16] reported that the incorporation of negative
statements enhances the prediction performance of protein functions
using a Gaussian random field-based label propagation algorithm. How-
ever, most approaches that generate KG embeddings and then use them
to train machine learning models to predict associations between genes
and diseases or interactions between proteins [7,22–24] rely solely on
positive statements from GO KG. Recent work by [18] introduced a
collection of datasets for various biomedical tasks – such as protein-
protein interaction prediction, disease prediction, and gene-disease
association prediction – that include KGs with both positive and nega-
tive statements. Their study compared the impact of using KG with only
positive statements versus both positive and negative statements on
the proposed datasets, employing two popular KG embedding methods.
The results revealed that the added information given by negative
statements does not always improve the performance of biomedical
tasks. These findings suggest that, while negative information is useful,
embedding methods must be designed to effectively capture both what
proteins and genes can and what they cannot. Such methods should
capture a more accurate measure of similarity, potentially leading to
improved prediction performance.

Beyond biomedical applications, another compelling use case of
negative statements is recommender systems, an area where KG em-
bedding methods have attracted considerable attention [25–27]. When
3 
Fig. 3. Subgraph containing associations between users and newspaper articles, incor-
porating both positive (articles clicked) and negative (articles not clicked) associations.
By examining these two types of associations for each user, we can gain insights into
their preferences. For instance, User 1 and User 3 exhibit similar taste profiles. Based
on this, we can recommend Article C, which User 3 positively engaged with, to User
1.

based on a KG, the edges connecting a user to an item can be positive
(user viewed/liked an item) or negative (user viewed/did not like an
item), as shown in Fig. 3. Besides the positive clicks, unclicked articles
may offer critical information about content that users actively avoid,
potentially indicating deeper biases or political leanings. Therefore,
user embeddings should accurately reflect both positive and negative
associations between a user and an item. One example dataset con-
taining such positive and negative edges is the NeMig KG [19]. The
NeMig KG integrates data from news articles, metadata, linked Wiki-
data entities, and user interaction data collected through online studies.
These studies captured user demographics, political views, and explicit
click feedback on a selection of articles. While previous experiments on
the dataset have shown that recommendations on the KG can lead to
very good results, and, at the same time, mitigate biases in pure text-
based news recommendation [28], the algorithm utilized in the paper,
i.e., RippleNet [29], like most recommender algorithms, does not distin-
guish between unrated and negatively rated items. Here, representation
learning algorithms can learn more expressive user models.

A third example use case pertains to food KGs. As poor dietary
habits are linked to various health conditions, there has been grow-
ing interest in structuring knowledge about food and its ingredients.
Consequently, several ontologies and KGs [20,30,31] have been pro-
posed, and KG embedding methods are being applied to tasks such as
food recommendation or ingredient substitution [32–34]. FoodKG [20]
exemplifies a KG that provides information about recipes, their in-
gredients, and the nutritional content of individual food items. Such
KGs can be further enriched with negative statements, such as details
about ingredients that are explicitly excluded from a recipe or are not
associated with a particular food item (Fig. 4). Incorporating this type
of information can be particularly valuable for improving recommen-
dations or suggesting substitute ingredients according to food allergy
restrictions or dietary preferences, such as vegan or gluten-free diets.
However, all the works discussed above for recipe recommendation
and ingredient substitution use algorithms incapable of utilizing such
negative statements. With those algorithms, the recommendations will
always underperform when taking negative information into account.
For example, with a standard KG embedding algorithm, two vegan
recipes with dissimilar ingredients will always be far away in the vector
space, while two recipes with similar ingredients, where one is vegan,
and one is not (e.g., vegan curry and chicken curry) will be close in the
vector space. Depending on the use case at hand, this is an undesirable
property. In particular, users following a vegan diet will be unsatisfied
with such a system.
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Fig. 4. Subgraph within the food domain where different types of butter are described
based on nutrients richness and whether or not they contain nuts. These negative
statements are particularly useful in scenarios like identifying suitable butter substitutes
for individuals with nut allergies. By incorporating the negative statements into
embedding generation, nut-based butter can be effectively distinguished from nut-free
alternatives in a latent vector space, enabling models to prioritize and recommend
substitutes that align with specific dietary constraints.

4. Existing approaches and limitations

Numerous KG embedding models have been proposed in recent
years [5,35]. Two main research directions have emerged in this
field [36].

The first focuses on link prediction, by learning embeddings that
assign lower scores to valid triples compared to invalid ones. In these
approaches, the embedding model is able to distinguish correct triples
from incorrect ones by optimizing for a scoring function that reflects the
plausibility of each triple. KG embedding methods belonging to the first
research direction primarily differ in three core components: represen-
tation space, encoding model, and loss function. These differences lead
to different families of approaches: translational distance models [37–
40], geometric models [23,41], semantic matching models [42–46],
and deep learning-based models [47,48].

The second direction focuses on embedding entities in the KG for
use in downstream tasks. In this second direction, walk-based methods
are especially prominent. The majority of these approaches rely on
generating entity sequences by performing walks on the graph, creating
a corpus of sequences analogous to a collection of word sentences.
Then, these sequences are fed into a neural language model, which
learns a latent low-dimensional representation for each entity within
the sequence corpus. The second research direction includes embedding
methods like RDF2Vec [17], OWL2Vec* [49] and OPA2Vec [24]. More
recently, a novel approach called TrueWalks [50] was introduced to
incorporate negative statements into the KG representation learning
process.

TrueWalks is, to the best of our knowledge, the only approach
to consider a graph that contains explicitly declared negative state-
ments and their semantic implications. This is fundamentally different
from other KG embedding methods that produce negative examples
by negative random sampling strategies to train representations based
on positive examples that bring the representations of nodes that are
linked closer while distancing them from the negative examples. While
these methods can handle negative statements in a KG, they treat them
as any other type of statement. Additionally, TrueWalks is distinct from
approaches that consider weighted KGs [46,51–54] where each triple
is associated with a confidence score that reflects its plausibility. While
weighted KGs account for uncertainty, the lower end of their range of
weights (usually 0) reflects minimum plausibility, which is equivalent
to a non-existing statement in a KG under open world semantics.
4 
However, this is different from those meaningful negative statements,
which explicitly refer to triples that are known to be false.

TrueWalks proposes a novel walk-generation method that distin-
guishes between positive and negative statements while also capturing
the semantic implications of negation, especially in ontology-rich KGs.
It generates biased walks in the KG: a positive statement implies that
whenever a subclass edge is found, it is traversed from subclass to su-
perclass, whereas a negative statement results in a traversal of subclass
edges in the opposite direction. This way, this approach effectively
splits walks into two sets, one for positive and another for negative
statements, enabling the model to learn dual latent representations,
separately capturing the positive and the negative aspects. TrueWalks
was extensively evaluated on established benchmarks and compared
with several KG embedding methods across two different experiments.
In the first, KG embedding methods were applied to a KG containing
only positive statements. In the second, a KG with both positive and
negative statements was used, with negative statements declared as an
object property so that embedding methods distinguish the two types
of statements as two distinct types of relation. The results showed
that incorporating the negative statements, even as any other type
of statement, generally improved the performance of most KG em-
bedding methods. However, TrueWalks outperformed all others, likely
due to its unique capability to account for the semantic implications
of inheritance. TrueWalks still has some limitations that need to be
addressed. For instance, it is primarily effective for KGs supported
by rich ontologies, as the biased walks rely on the assumption that
entities are linked to ontology classes that have well-defined subclass
and superclass relationships. Additionally, TrueWalks does not account
for how contradictory statements might affect the dissimilarity between
entities since it learns a dual representation.

While not directly tackling the negative statement statements di-
rectly, semantic information has been progressively incorporated into
several KG embedding methods over recent years, particularly through
modifications in the loss function [40,55–57] or through regularization
techniques that enforce the embedding space [58,59]. All of these
existing approaches showed promising results in embedding semantic
information effectively. Therefore, this represents a fertile area for
future research, as these techniques could potentially be adapted to
dealing with negative property assertions or manipulate the embedding
space to separate entities with contradictory statements.

Another promising area of research focuses on enhancing negative
sampling techniques, which play a critical role in the training of KG
embedding methods [60,61]. Negative sampling involves generating
a set of triples that are expected to have a low probability of truth
and using these as negative examples. The meaningful negative state-
ments contrast with these negative examples that are essential for
effective model training. However, as demonstrated in [61], exploring
semantically valid and invalid negative examples can be beneficial and
treating these two types of negative examples within the loss function
has shown promise. This opens further opportunities to investigate
how meaningful statements can be considered as an additional type of
negative example and integrated into the loss function.

5. Conclusions

KGs with negative statements have been increasingly recognized as
valuable [8]. As a result, several KGs containing meaningful negative
statements are now available [14], along with established benchmarks
for evaluating tasks on these KGs [18]. This provides a solid foundation
for further research and experimentation. Furthermore, some works
have already shown the advantage of including negative statements
in KG embedding-based applications [50]. By explicitly considering
negative statements, we can learn more accurate and expressive entity
representations, which in turn leads to better performance in tasks
such as link prediction and recommendation systems. However, the use
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of such statements within KG embedding approaches remains largely
nexplored, and there is a pressing need for novel approaches.

In this paper, we have shown three exemplary use cases from
ifferent domains where we argue that respecting negative information

in KG embeddings will bring advantages. Research questions for such
embedding methods include, but are not limited to:

1. Which representation mechanism of negative statements can be
best exploited by KG embedding methods?

2. What characteristics do different settings of negative statements
have (e.g., fraction of positive and negative statements in a KG,
contradicting vs. contradiction-free statements, distribution of
negative statements)?

3. Out of the exploitation strategies discussed above (e.g., adapting
the loss function, changing negative sampling strategies, adapt-
ing walk strategies in walk-based embedding approaches), which
ones work best in those settings?

4. How can negative statements help a reasoner in the loop of the
embedding process?

5. When considering the link prediction task, can we build models
that simultaneously predict positive and negative links? Can the
two tasks benefit from each other?

These questions open a vast world of opportunities, whether by
xtending existing methods to consider negative statements, reusing

some existing paradigms or proposing completely novel approaches
hat are designed specifically for KGs containing both positive and
egative statements. Ultimately, these advancements have the potential
o significantly leverage the utility of KGs in a wide range of real-world
cenarios.
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