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Abstract
Multinomial processing tree (MPT) models are a broad class of statistical models used to test sophisticated psychological
theories. The research questions derived from these theories often gobeyond simple condition effects onparameters and involve
ordinal expectations (e.g., the same-direction effect on the memory parameter is stronger in one experimental condition than
another) or disordinal expectations (e.g., the effect reverses in one experimental condition). Here, we argue that by refining
common modeling practices, Bayesian hierarchical models are well suited to estimate and test these expectations. Concretely,
we show that the default priors proposed in the literature lead to nonsensical predictions for individuals and the population
distribution, leading to problems not only in model comparison but also in parameter estimation. Rather than relying on these
priors, we argue that MPT modelers should determine priors that are consistent with their theoretical knowledge. In addition,
we demonstrate how Bayesian model comparison may be used to test ordinal and disordinal interactions by means of Bayes
factors. We apply the techniques discussed to empirical data from Bell et al. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 41, 456–472 (2015).

Keywords Bayes factors · MPT models · Inequality constraints

Introduction

Multinomial processing tree (MPT) models are a broad class
of statistical models to estimate probabilities of latent cog-
nitive processes underlying observed behavior (Riefer &
Batchelder, 1988; Batchelder & Riefer, 1999). In psychol-
ogy, MPT models are used to test sophisticated theories
of memory, judgement and decision-making, and reason-
ing (for a review on the literature, see Erdfelder et al.,
2009). These sophisticated theories make predictions for
data from experimental tasks and in many cases these pre-
dictions are very specific. For instance, based on aging
theories, researchers may predict that memory retrieval is
more affected by an experimental manipulation for older
adults than for younger adults. This prediction is a specific
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ordinal interaction, however, specifying a statistical model
for this prediction is not entirely trivial. We argue that while
hierarchical BayesianMPTmodeling is well suited to testing
these nontrivial predictions, current Bayesian MPT model-
ing practices leave room for refinement. In particular, we
will argue that Bayesian model comparison may be used to
easily test specific ordinal interactions, and that the most
commonly used priors (Klauer, 2010; Matzke et al., 2015)
are simultaneously too vague and too informative for most
applications.Wewill elaborate these arguments using aMPT
model that instantiates a psychological theory of source
memory, namely the 2-High-Threshold Source Monitoring
(2HTSM) model.

Source memory captures the ability to remember contex-
tual details that accompanied a piece of learned information
(Johnson et al., 1993), such as the face of the person describ-
ing directions to the bus stop. A typical paradigm to study
source memory consists of a study phase and a test phase
(e.g., Batchelder and Riefer, 1990; Johnson et al., 1993). In
the study phase, participants are presented with items stem-
ming from one of several sources (e.g., words spoken by a
female or male voice). In the test phase, participants are pre-
sented with the learned items again along with new items.
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Participants must then decide for each item whether it is a
new item or has been presented before, and if so, by what
source.

While the source memory paradigm is fairly simple, mul-
tiple psychological processes aremost likely at play. Suppose
someone correctly identified an itemas old, and also correctly
identified the source of the item. Then this correct identifi-
cation could be due to actual mnemonic information about
the item and the source, or it could be due to guessing. Note
that two guessing processes – about the item and the source
– might be at play here. The interlocking of guessing and
memory processes on several levels is the reason why MPT
modeling is so popular in sourcememory research (Erdfelder
et al., 2009).

Traditionally, MPT models are specified in the classi-
cal frequentist framework. However, Bayesian modeling has
increasingly become the tool of choice in theMPT literature,
since it facilitates the specification of complex models. For
instance, it is reasonable to assume that cognitive processes
such as guessing vary across individuals, an assumption that
can easily be implemented in the Bayesian framework by
extending MPT models as hierarchical models (Rouder &
Lu, 2005; Rouder et al., 2017; see Schmidt et al., 2022 for a
tutorial on Bayesian MPT models).

Within the Bayesian framework, the specification of an
MPT model requires three steps. The first step is routine
for most MPT modelers: specifying the MPT model equa-
tions within one experimental condition. These equations
formalize assumptions about the cascade of distinct cog-
nitive processes that contribute to the behavior of interest.
Each process is associated with a model parameter that con-
trols the probabilitywithwhich the process is engaged. These
equations are often communicated as tree-like diagrams, as
illustrated in Fig. 1. The second step is to specify the statisti-
cal model on parameters within one experimental condition.
This step includes the formulation of general model assump-
tions, such as how variability of items or participants are
modeled, but also the specification of adequate prior dis-
tributions on the MPT parameters. The third step concerns
the expected effects on the model parameters across exper-
imental conditions. In most cases, this step corresponds to
the specification of the main research question as competing
statistical models. Here, wewill focus on steps two and three.

Specifying informative prior distributions

The choice of prior distributions for model parameters often
sparks a philosophical debate between objective Bayesians
and subjective Bayesians (see Berger (2004) and Aczel et al.
(2020) for perspectives on this topic). Objective Bayesians
construct prior distributions such that the prior or result-
ing inference has mathematical properties deemed desirable.
Objective prior distributions may be chosen for their invari-

ance under model reparameterization (Bernardo, 1979), for
assigning in the absence of other information equal proba-
bility to all possible parameter values (Keynes, 1921, i.e.,
indifference principle), or for maximizing uncertainty while
satisfying model constraints (Jaynes, 2016; Shannon, 1948).
Common to all objective priors is that they do not incorporate
prior domain knowledge and yield results that are informed
largely by the likelihood function and align closely with
results from frequentist statistics – they let the data speak
for themselves. What is often disregarded, however, is that
when priors do not align with theoretical expectations, it may
result in nonsensical predictions and thus compromisemodel
comparison using Bayes factors, which relies on the pre-
dictive accuracy of the models under consideration (Lee &
Vanpaemel, 2018, but see Moreno & Pericchi, 2014.

Following objective Bayesian philosophy, the prior dis-
tributions for hierarchical latent-trait MPT models proposed
by Matzke et al. (2015) (based on Klauer, 2010) and imple-
mented in theR packageTreeBUGS (Heck et al., 2018)were
intentionally designed not to embody any psychological the-
ory, resulting in diffuse distributions with a broad range on
the latent space. However, these seemingly vague and unin-
formative prior distributions on the group-level have serious
consequences about individual-level parameter values and
response rates: they imply highly informative and nonsensi-
cal predictions.

Using the 2HTSM model (Bayen et al., 1996) we will
demonstrate that prior predictions made from models with
diffuse priors on the group-level parameters – even if they
feature sophisticatedmodel equations – are at oddswith theo-
retical expectations. We argue that these priors are therefore,
despite their wide use in the MPT literature, inappropriate
for testing theory, and may under some conditions even be
problematic for parameter estimation.1 Note that in the fol-
lowing, when discussing Matzke–Klauer priors, we refer to
their most constrained version, that is, the default implemen-
tation in TreeBUGS.

To ensure that model predictions align with theoretical
expectations, we therefore advocate for more subjectivity
in Bayesian inference. Subjective Bayesians view the con-
struction of prior distributions implemented in step two as
akin to formulating the model equation, an integral part of
model development. Since the model parameters correspond
to psychological variables, it is crucial for their prior distribu-
tions to capture values that are permissible, likely, unlikely,
or non-permissible based on the underlying theory (Lee &
Vanpaemel, 2018).

1 Certain literature combines subjective and objective Bayesian
approaches, acknowledging that not all parameters require informative
prior distributions. For instance, Voormann et al. (2021) and Gronau
et al. (2019) exclusively assign informative priors to test-relevant param-
eters and non-informative priors to the remaining parameters.
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Possible concerns in the construction of informative priors

Researchers are often reluctant to utilize their own expertise
in determining prior distributions. They may choose default
priors for convenience, or may be unaware of how uninfor-
mative priors can impact their models. They may fear that
informative priors could spoil their model evaluation (Kass
& Raftery, 1995), or invite criticism from other researchers.
For this reason, researchers may tend to adopt the default pri-
ors discussed in the literature and implemented in software
without any adjustments, assuming that less information –
and thus subjectivity – will lead to the most valid results.
Rather than viewing prior specification as a burden or a nec-
essary evil, many Bayesians have been advocating a change
in perspective: when researchers work with quantitatively
instantiated theories – which MPT models undoubtedly are
– prior distributions along with model equations, are an
opportunity to fully describe all aspects captured by theory
(e.g., Dienes, 2011; Rouder et al., 2016; Vanpaemel, 2010;
Vanpaemel & Lee, 2012).

We believe that MPT modelers possess the necessary
expertise to refine their models in line with domain knowl-
edge, which is evident in their thoughtful considerations of
model parameters and their interaction when constructing
MPT model equations. Importantly, their expertise encom-
passes expectations about typical data patterns and the
heterogeneity of the sample. Researchers can thus construct
informative priors based on their own expertise, prior lit-
erature, consensus knowledge through expert elicitation or
systematic parameter reviews (Vanpaemel, 2010; Lee, 2018;
Lee&Vanpaemel, 2018; Stefan et al., 2020; Tran et al., 2021;
Stefan et al., 2022; O’Hagan et al., 2006). Additionally, MPT
models are typically based on a solid empirical foundation
that offers valuable insights into the shape of parameter dis-
tributions, such as expected values and variances in memory
parameters across different age groups, or (dis)ordinal inter-
actions between experimental conditions. Hence, empirical
data can also partially inform the choice of priors (e.g., Gu
et al., 2018; O’Hagan, 1995).

Model comparison for Bayesian hierarchical MPT
models

Theories that are tested with MPT models are often quite
sophisticated, thus requiring complex experimental designs.
In turn, MPT models need to be specified to account for a
rich set of predictions of experimental effects on cognitive
parameters. These predictions often concern ordinal expec-
tations (e.g., bias is higher in one condition than in another)
or disordinal expectations (e.g., the effect reverses in one
experimental condition) of multiple interaction effects.

In step three of model specification, these predictions are
implemented. Traditionally, competing models are imple-

mented in the frequentist framework, and an encompassing
model is tested against a model with constraints on param-
eters across experimental conditions. In this framework,
ordinal constraints are implemented by changing the like-
lihood of the model, for instance, by reparameterization
(Knapp & Batchelder, 2004; Klauer et al., 2015; Kuhlmann
et al., 2019). Reparametrization is used to reformulate ordinal
constraints for different experimental conditions such that an
effect in one condition is represented by a shrinkage factor of
another condition. For instance, it is equivalent to reformulate
the ordinal constraint g1 < g2 on guessing parameters in two
conditions as g1 = a × g2. The ordering of the parameters
is implemented by restricting the shrinkage factor a to val-
ues between 0 and 1. Reparametrization provides an elegant
solution to the problem of testing ordinal hypotheses, and
ensures that the effects are in the same direction across scale
transformations, but also complicates the formulation of the
model equations and the interpretation of the MPT param-
eters, especially when the ordinal constraint spans multiple
experimental conditions.

More recently, Bayesian model comparison using Bayes
factors has also gained traction in MPT modeling, mainly
due to computational progress (e.g., Gronau et al., 2019).
However, Bayes factor model comparison is not yet com-
mon practice, in part because it is challenging to specify
MPT models that correspond to specific hypotheses and to
evaluate to what extent they are supported by the data. The
success of this endeavor depends entirely on how well the
researcher succeeds in building their mathematical model.
Here, we provide a simple solution to incorporate a set of
equality and ordinal constraints on parameters across exper-
imental conditions, and to test these constraints using Bayes
factors.

The structure of the paper is as follows. First, we introduce
the Bayesian implementation of the hierarchical 2HTSM
model. Second, we describe how predictions from the
2HTSM model aid model specification, including the selec-
tion of appropriate prior distributions. Third, we show how
to compare MPT models by means of the Bayes factor. The
models under consideration include predictions about the
order of the size of the MPT parameters across experimen-
tal conditions, that is, ordinal and disordinal interactions.
We show that instead of reparameterizing the models to
implement the constraints (i.e., modify their likelihood) the
constraints can be implemented directly in the prior distribu-
tions. Finally, we illustrate our methods with one case study
using empirical data from Bell et al. (2015).

Availability of data and code

Readers can access the R code to reproduce all analyses
(including the prior simulation study and the creation of all
figures in our OSF folder at: https://osf.io/bpgc5/. The OSF
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folder also features a TreeBUGS implementation of our case
study with similar but not exactly identical priors. The data
needed to run the reanalysis from Bell et al. (2015) were
kindly provided by the authors and can be accessed in our
OSF folder.

The two-high thresholdmodel for source
monitoring

We start with the first step MPT modelers go through to
express their theory by a mathematical model. This step
concerns the formulation of the model equation and the
formulation of general model assumptions. In its most parsi-
monious version (submodel 4), the 2HTSMmodel proposed
by Bayen et al. (1996) assumes four independent cognitive
processes to contribute to a response in a source memory
paradigm. According to the model, participants need to cross
two thresholds to be able to fully remember a previously
presented (old) item and its source. If participants cross the
first threshold, they remember an item as old. The probabil-
ity of crossing this item recognition threshold is represented
by the parameter D. Participants who also cross the sec-
ond threshold remember an item’s source. The probability of

crossing this source recognition threshold is represented by
parameter d. For old items, if either of these thresholds is not
crossed, guessing processes will partially or fully determine
the response behavior. Parameter b describes the probability
of guessing that an itemwas part of the study list (item guess-
ing), and parameter g describes the probability of guessing
that the itemstems fromaparticular source (source guessing).
For new items, there is a third threshold for distractor detec-
tion that is assumed to be crossedwith the same probability as
for item recognition (i.e., parameter D); if this threshold is not
crossed, the response behavior is again determined by guess-
ing processes. In Fig. 1, we illustrate the tree architecture
of the 2HTSM model. Note, however, that the architecture
is typically adapted to the specific experimental paradigms
used in a study (e.g., using the graphical model builder by
Moshagen, 2010).

Specification of the statistical model

The second step of model specification involves the spec-
ification of the statistical model within one experimental
condition. This specification concerns the treatment of par-
ticipants and items. Arguably, when experimental materials
are standardized and validated in pilot studies, item hetero-

Fig. 1 Tree architecture for a paradigm of the 2HTSMmodel in itsmost
parsimonious version. In a source memory task, participants are pre-
sented with items that they have previously learned and that either stem
from source A, source B (top two trees), or are new items (bottom tree).
They then have to distinguish previously learned items from new items

and must decide for the previously learned items from which source
they originate. The 2HTSMmodel assumes that participants responses’
depend on four cognitive processes: item memory D, source memory
d, item guessing b, and source guessing g
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geneity can be well controlled, justifying aggregation across
items. The assumption of homogeneity of individuals on the
other hand is more problematic (e.g., Rouder and Lu, 2005;
Rouder et al., 2008; Webb and Lee, 2004, but see Matzke
et al., 2015 and Smith and Batchelder, 2008). Since MPT
parameters reflect psychological processes (e.g., memory
performance), which depend on individual participant char-
acteristics (e.g., age, response biases, stereotypes), it is useful
to allow for individual differences in the model. Within the
Bayesian framework, two model classes have been estab-
lished to account for individual differences, the beta-MPT
model (Smith&Batchelder, 2010), and the latent-trait model
(Klauer, 2010).

The beta-MPT model assumes that individual-level MPT
parameters stem from independent group-level beta distri-
butions. As MPT parameters are modeled in the probability
space on the individual level and the group level, prior selec-
tion is intuitive. In contrast, the latent-trait model transforms
the parameter space to a latent continuous space. The benefit
of a latent continuous space is that intuitions from gener-
alized linear models are appropriate here, simplifying the
development of regression models on specific parameters. In
addition, the latent-trait model allows for the specification of
a covariance matrix that models the correlation across par-
ticipants and allows for more hierarchical shrinkage. Since
hierarchical shrinkage is necessary to avoid overestimating
individual differences, wewill focus on the latent-trait model
in the remainder of the paper. The full mathematical specifi-
cation of the latent-trait models discussed in this manuscript
are provided in Appendix A.

In the latent-trait approach, assuming item homogene-
ity, participant responses are aggregated over items in
each experimental condition. The category frequencies are
assumed to follow a multinomial distribution with the under-
lying category probabilities resulting from the MPT model
equation. In thismodel, all parameters are probit-transformed
to a latent space. In this unbounded (latent) parameter space,
the individual differences in the MPT parameters are then
modeled. Specifically, it is assumed that the transformed
parameters are normally distributed and may be correlated
with other parameters (i.e., transformed parameters follow
a multivariate normal distribution). The means of the mul-
tivariate distribution represent group-level parameters. The
variance–covariance matrix determines the magnitude of
individuals’ deviations around said group-level parameters
and their correlation, thus determining the extent to which
individuals can differ from one another. To capture both
within-subject dynamics and independent between-subject
effects, the relationships between model parameters for each
individual were modeled using a covariance structure, while
between-subject effects were modeled independently.

The problemwith default MPT priors

After establishing the model equation and the statistical
model, we now turn to determining adequate prior dis-
tributions for the model priors. Priors are needed on the
group-level parameters as well as the variance–covariance
matrix. When translating source memory theory into MPT
models, the priors we place on the multivariate normal dis-
tribution (i.e., means, variances, and covariances) deserve
careful consideration. These parameters determine which
MPT parameter values are deemed plausible both at the
group level and the individual level. Thus, carefully chosen
prior distributions should (1) be theoretically justified, (2)
faithfully reflect expectations about group- and individual-
level parameters in their original probability scale, and
by extension (3) imply sensible predictions of group- and
individual-level response rates.

Let us consider the Matzke–Klauer prior on the group-
level means of the MPT parameters – a standard normal
distribution. This prior is popular since it translates to a uni-
form distribution on the probability space implying that all
values are equally likely a priori. However, since specific
prior distributions can be derived from many psychologi-
cal theories, the standard normal distribution is not ideal
for many cases. For instance, if sources appeared equally
often and were randomly assigned to items, source guessing
g is most likely to be at or near chance level (i.e., .5) rather
than strongly biased towards one source. The same applies to
source memory d which is recollection based and difficult,
thus not likely to be near 1 but also not likely to be at 0 for
healthy adults.

A less obvious problem is a vague prior on the variance–
covariance matrix. It seems natural to assume that vague
priors on the group-level means in combination with high
participant variability will lead to vague priors at the indi-
vidual level. Yet, when moving from the latent space to the
probability space, these vague group-level priors combine to
highly informative priors for individual participants.

The left panel in Fig. 2 illustrates the individual-level
predictions of a participants’ source memory parameter and
source guessing parameter as well as the predicted category
probabilities to answer “A”, “B”, or “New” given that the
correct source was Source A. These predictions indicate that
the Matzke–Klauer priors place an outsized amount of prior
probability mass on implausible extreme values, a perhaps
unexpected result formany users of thesemodels (Lee (2018)
illustrated a similar case in the field of psychophysics). The
prior distribution on individual-level g parameters posits that
a participant is most likely to either always guess correctly
or to never guess correctly. Similarly, the prior distribution
on individual-level d parameters posits that a participant is
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Fig. 2 The 2HTSMmodel with Matzke–Klauer priors as implemented
in TreeBUGS on the group-level leads to nonsensical and extreme pre-
dictions on the individual level (left panel; purple). The right panel
shows (in green) predictions of the 2HTSM model with informative
prior distributions. The top row shows for one participant prior predic-

tions for the source guessing and sourcememory parameter. The bottom
row depicts for one participant the prior predictions of the probabilities
of responding that an item from source A stemmed from source A (left),
source B (middle), or is a new item (right). Predictions were generated
by drawing prior samples from the model

most likely to either have perfect sourcememory or no source
memory at all. Based on these priors, any plausible group-
level parameter values may correspond to (symmetric or
asymmetric) bimodal distributions of individual participant
parameters. These priors clearly do not express theoretically
sensible expectations about individual participants’ behav-
ior.2

Moreover, these priors are at odds with typical assump-
tions about the population distribution. A key motivation for
using hierarchical models, such as the latent-trait model, is
that they assume that participants belong to a relatively homo-
geneous population and that therefore the estimates of any
one participant partially inform estimates of all other partic-
ipants from the same population. In the original probability
scale, the prior predictions of theMatzke–Klauer priors, how-
ever, implement an assumption that is antithetical to the
assumption of a common population: a mixture of several
different populations. The composition of this mixture is
illustrated in Fig. 3. The figure shows the multivariate prior

2 Even though theU-shape on the individual-level parameters displayed

in Fig. 2 may resemble Jeffreys’ Beta(
1

2
,
1

2
) prior, they are not the

equivalent. Jeffreys’ prior on probability parameters was proposed for
single-parameter models and which do not readily generalize to com-
plex hierarchical MPT models. The U-shape on the individual-level
parameters may instead introduce some level of bias or add informa-
tion that is not appropriate for the specific modeling problem.

distribution for the individual-level g and d parameters of
the 2HTSM model. The left panel shows the distribution for
Matzke–Klauer priors. Here, the density is localized in the
corners of the plot implying four populations of participants:
(1) perfect source memory and never guessing “Old”; (2)
perfect source memory and always guessing “Old”; (3) no
source memory and never guessing “Old”; and (4) no source
memory and always guessing “Old”. (In general, the model
will predict a mixture of 2k populations, where k is the num-
ber of parameters.) This pattern seems undesirable; after all,
priors in linewithMPT-modelers’ expectationswould spread
prior mass more evenly across all combinations of the two
parameters instead of the extremes. Thus, theMatzke–Klauer
priors neither yield sensible predictions for any single indi-
vidual nor for the population distribution.

This problem becomes more serious the more vague the
prior distributions are, which is why the original priors pro-
posed by Klauer (2010) have been increasingly constrained
over the years. While the original specification in Klauer
(2010) allowed for the most participant variability, Matzke
et al. (2015) proposed priors that were slightly more con-
strained. Heck et al. (2018) implemented in TreeBUGS the
model proposed byMatzke et al. (2015), but constrained par-
ticipant variability even further.

The predicted mixture distribution reduces hierarchical
shrinkage of individual parameter estimates (i.e., partial
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Fig. 3 Illustration of the bivariate population distribution of partici-
pants for the source memory (d) and source guessing (g) parameters
of the 2HTSM model with Matzke–Klauer priors as implemented in
TreeBUGS (left panel; purple) and informative priors (right panel;
green). Darker colors indicate a higher density. When assigning

Matzke–Klauer priors, the model predicts a mixture of four popula-
tions. Each population realizes one extreme combination of guessing
and source memory. In contrast, informative priors cover the space of
possible values for d and g more evenly, that is, extreme values are
favored less

pooling) relative to a more informed prior and can result in
more extreme estimates. As a result, the peaked and extreme
prior distributions requires more data to be overpowered. In
fields such as memory research, the problemmay be particu-
larly serious asmemory capacity is limited and therefore only
a limited number of items can be presented to the participants
(which is one reason why data in this field are often aggre-
gated; Chechile (2009)). In such a scarce data environment,
extreme priors may influence posterior estimates, especially
the individual estimates.

Refinement No. 1: Determine informative parameter
priors

To prevent parameter priors from jeopardizing the modeling
process, researchers need to pay due attention to their speci-
fication (Barnard et al., 2000; Lee &Vanpaemel, 2018). This
concept can also be found in the TreeBUGS manual: Heck
et al. (2018) encourage users to develop customize default
priors, for instance, for the source guessing parameter g.
Part of the model specification should be to place appro-
priate theory-based restrictions on the priors for group-level
MPT parameters and on the variability between participants
encoded in the covariance matrix. Importantly, our aim is not
to advertise any particular alternative default priors. As Van-
paemel (2010, p. 495) states: “No formal guidelines about
how to capture theory into a prior exist, just like there are
no formal guidelines about how to capture theory into a
model equation. Model building crucially depends on the
skill and the creativity of the modeler and cannot be auto-
mated.” Instead of proposing default priors, we advise using

visualizations of prior predictions at the group and individual
level to guide the development of appropriate models (Gabry
et al., 2019; Schad et al., 2021; Wagenmakers et al., 2021).
An example for this practice in MPT research can be found,
for instance, in Gronau et al. (2019).

Based on the above considerations, we have made the
following adjustments to the Matzke–Klauer priors for the
2HTSM model. First, we replaced the uniform prior distri-
bution for the guessing parameter with a prior distribution
that mildly favors values around the nominal guessing level.
Additionally, to counteract the extreme predictions about the
population distribution, we placed stronger constraints on
the participant variability encoded in the covariance matrix.
To determine the exact prior distribution for the covari-
ance matrix, we proceeded as follows. First, we explored
a set of prior distributions on parameters describing indi-
viduals’ deviations around the group-level mean and their
correlation, which adequately implemented our assumption
that participants are relatively similar. This resulted in a
total of 48 plausible prior settings. Then, we conducted a
small simulation study in which we visualized the predic-
tions for data from these priors. We settled on priors that
yielded individual-level predictions that were uninformative
and had little bimodality. The set of priors that resulted in
the best model predictions is the one depicted on the right
panel in Figs. 2 and 3. In this model, small deviations from
the group-level means are favored over large ones, resulting
in a more homogeneous population. In addition, our priors
favor moderate-to-low correlations between MPT parame-
ters in the range of [−0.5, 0.5] over anything more extreme.
The constraints aim to reduce but not completely eliminate
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the likelihood of extreme parameter values. By imposing
these restrictions, the model now makes moderate predic-
tions, which are better in line with our basic intuitions and
theoretical expectations.

Testing informative ordinal predictions

The previous section outlined the role of informative prior
distributions for the general model specification. This section
explains how to make use of informative prior distributions
for model comparisons in the context of a particular study
design. That is, we further adjusted parameter priors across
experimental conditions so that they conform to informative
hypotheses. In particular, we focus on hypotheses on specific
orderings of parameters across conditions, that is, ordinal or
disordinal interactions.

A disordinal interaction was predicted, for instance, in
Bell et al.’s study on biases. Specifically, the authors inves-
tigated how appearance-based biases would affect person
memory. The authors were interested in a directional model,
which predicted that unexpected information should be
remembered easier than expected information. Furthermore,
the effect should differ across two experimental conditions.
That is, the effect should be larger if the unexpected infor-
mation was positive than if the unexpected information was
negative. An example of ordinal interactions that extend over
several experimental conditions can be found in the study
by Symeonidou and Kuhlmann (2021). Symeonidou &
Kuhlmann (2021) proposed a test which measures source
recognition and thus ismore sensitive to source storagemani-
pulations than the commonly used test. The authors predicted
therefore that their test would outperform the standard test. In
addition, they predicted that this addedbenefitwas influenced
by how often subjects were presented with the source–item
pair and by the types of sources used. Overall, then, predic-
tionsweremade about the ordinal relations between onemain
effect and two interactions (i.e., the benefits of the novel test
should be larger in one condition than another).

Frequentist approaches test ordinal and disordinal inter-
actions through reparametrization of the MPT parameters
(Knapp&Batchelder, 2004) but so far have only been applied
for non-hierarchical models and interactions between no
more than two factors (e.g., Kuhlmann et al., 2019; Mosha-
gen, 2010; see Klauer et al., 2015 for an application to
confidence or Likert scales). In principle,within theBayesian
framework disordinal interactions can also be implemented
through reparametrization. However, this technique adds
a layer of complexity to the assignment of appropriate
prior distributions, since the reparameterized model requires
adjusted priors that are coherent on the original scale (Heck
& Wagenmakers, 2016). Moreover, so far the literature on
Bayesian MPT models has focused primarily on parameter

estimation methods but not on model comparison by means
of the Bayes factor (Jeffreys, 1935; Kass & Raftery, 1995).

Refinement No. 2: Specify ordinal expectations
as competing statistical models

Determining the Bayes factor for cognitive models is com-
putationally complicated. However, when expectations are
expressed in the parameter priors directly and they con-
cern either point null hypotheses or directional hypotheses
(e.g., interactions), the problem can be greatly simplified.
The methods discussed here have three important advan-
tages over the frequentist method. First, there is no need
to reparameterize the MPT parameters in order to repre-
sent interaction effects, which facilitates the interpretation
of the estimates and the assignment of prior distributions.
Second, the methods are suited for hierarchical models, thus
taking into account participant heterogeneity and hierarchi-
cal shrinkage. Third, the methods are able to test theories
directly. Interaction effects such as the ones predicted in
Bell et al. (2015) and Symeonidou and Kuhlmann (2021)
are typically tested in a traditional ANOVA approach. That
is, seeking to reject the null hypothesis that there is no inter-
action, which carries no information about the validity of
the model. Only when subsequently analyzing the contrasts
between the conditions does it become evident whether or
not the data adhere to the predicted pattern. To maximize
efficiency and theoretical information, however, it is desir-
able to test the predicted pattern simultaneously. The model
comparison method described here is able to do so.

For model comparisons between a point null and the
encompassing model (i.e., a model that imposes no con-
straints on the parameters), the Bayes factor simplifies to
the Savage–Dickey density ratio (Dickey & Lientz, 1970;
Dickey, 1971). Formodel comparisons between a directional
prediction and the encompassing model, the Bayes factor
simplifies to the unconditional encompassing Bayes factor
(Gelfand et al., 1992; Klugkist et al., 2005; Sedransk et al.,
1985).

Testing equality constraints

The Savage–Dickey Bayes factor is defined as the ratio of
prior and posterior density under the encompassing model
at the point of interest. To illustrate the approach, consider
Bell et al.’s null model predicting that source memory is
equal for unexpected and expected information in both exper-
imental conditions. In this case, for the two experimental
conditions, the point of interest is the zero point for the dif-
ference between the source memory parameters.

To test this prediction, for both experimental conditions
the height of the prior and posterior density at zero needs
to be computed. If the height of the density at zero is larger
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for the prior density than for the posterior density, it implies
evidence in favor of the encompassingmodel. In this case, the
data have caused more density to be allocated to a different
part of the distribution. If the height of the density at the
zero point is lower for the prior density than for the posterior
density, this is evidence in favor of the null model. In this
case, the data have caused values around the zero point to
become more likely.

In some cases (mostly for prior densities) the height of the
distribution at the point of interest is available in closed form
and can thus be computed directly. To illustrate, consider
the prior distribution of the difference between two group-
level source memory parameters depicted in the left panel of
Fig. 4. In Bell et al.’s study, each source memory parame-
ter was assigned a standard normal distribution on the probit
scale which translates to a uniform Beta(1, 1) distribution on
the probability scale. The distribution of the difference thus
translates to a difference between two uniform beta distribu-
tions, which has a triangular shape with density 1 at the zero
point.

In cases where the distributions cannot be obtained in
closed form (mostly posterior densities) the density at the
point of interest needs to be approximated using Markov
chain Monte Carlo (MCMC) samples. The approximated
density can then be calculated, for instance, using logspline
nonparametric density estimates (Stone et al., 1997; Kooper-
berg, 2020). The logspline method has the advantage that it
can approximate various forms of posterior distribution well,
including bi-modal or highly skewed distributions. Since

researchers can usually not predict the shape of the poste-
rior distribution of their parameters before data collection,
this is an advantage, especially if the aim is to receive the
most accurate estimates. However, this close approximation
to the posterior samples makes this method susceptible to
sampling uncertainty and thus produces Bayes factors that
are more variable.

As an alternative, modelers can opt to fitting a normal
distribution to the MCMC samples using the methods of
moments (Morey et al., 2011). To account for the inherent
boundaries of difference parameters, the normal density can
be truncated by setting lower and upper bounds at −1 and 1,
respectively. The (truncated) normal approximation method
generally yields more stable estimates since it requires only
the mean and standard deviation of the posterior samples.
This is a favorable property especially if the point of interest
is located in the tails of the distribution. Both approximation
methods are depicted on the right panel of Fig. 4. For our
case study, we conduct the main analysis using the logspline
approximation method but report, for completeness, also the
results obtained using the truncated normal approximation
method.

Note that computing the Savage–Dickey Bayes factor
requires that the point null model can be derived from trun-
cating the prior distribution of the encompassing model.
Moreover, the Savage–Dickey Bayes factor, as described
here, does not directly apply to testing the equality of more
than two parameters simultaneously. However, it is feasible
to test different parameters separately and make individual
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Fig. 4 Estimates for the Savage–Dickey Bayes factor might vary
depending on the method used to approximate the density. The his-
tograms depict for the Bell et al. (2015) study, the prior and posterior
density of the difference between source memory parameters in the
pleasant face condition. For the prior distribution (left panel), the density
is known. For the posterior distribution (right panel), the density needs

to be approximated. The solid line represents the estimated logspline
nonparametric density of the sourcememory difference, the dashed line
the fitted truncated normal density of the sourcememory difference. The
dots show for each approximation method the estimated height of the
difference distribution at the zero point, that is, the point at which the
source memory parameters are equal
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Fig. 5 The unconditional
encompassing approach
estimates the Bayes factor
through the proportion of prior
and posterior counts in
accordance with the restriction.
The histograms represent for
Bell et al.’s study the posterior
source memory parameters in
each condition separately, the
scatterplot represents the joint
distribution. Orange color
reflects samples in agreement
with the constrained model and
white color represent samples
that are not in agreement with
the model
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assessments for each one. Finally, the test-relevant param-
eters should be independent of all other parameters in the
model (Wetzels et al., 2010; Heck, 2019). In MPT research,
this requirement ismetwhen (1) expectations concern group-
level MPT parameters (e.g., group-level source memory
under different experimental conditions) and (2) indepen-
dent priors are assigned to these parameters, as is the case of
the current instance of the 2HTSMmodel. Caution should be
taken when testing parameters at a lower level, for instance,
individual-level MPT parameters, as they are dependent of
nuisance parameters (i.e., parameters that are unconstrained
under the null model). In these cases, Bayes factors can be
computed using the generalized Savage–Dickey density ratio
(Verdinelli & Wasserman, 1995).3

Testing ordinal constraints

Let us turn to directional hypotheses. The Bayes factor iden-
tity we use to test ordinal constraints is a generalization
of the Savage–Dickey density ratio (Wetzels et al., 2010).
In contrast to the Savage–Dickey density ration, however,
the unconditional encompassing method does not require an
approximation of the prior or posterior densities. Instead,
the unconditional encompassing method is a simple count-
ing method. That is, the unconditional encompassing Bayes
factor is defined as the ratio of the sample proportions of the
prior and posterior draws of the encompassing model that
match the restriction. Thus, only the number of prior and
posterior MCMC samples obtained from the encompassing
model are counted which satisfy the constraint.

3 Testing ordinal constraints is still possible for individual-level param-
eters, even if the Savage–Dickey Bayes factor cannot be applied.

Returning again to Experiment 2 in Bell et al.’s study, the
directional model states that unexpected information should
be remembered easier than expected information and that this
effect should be larger in the pleasant face condition. When
we have MCMC samples available across all conditions, we
can evaluate whether the prediction is true for each iteration.
The dots in Fig. 5 depict samples from the posterior distribu-
tion of the encompassing model for the difference of source
memory parameters in both experimental conditions. The
orange dots depict samples for which the prediction holds,
that is, the difference in the source memory parameter for
unexpected information and expected information is positive
and that the difference between the source memory parame-
ters is larger in one experimental condition than the other.

The proportion of prior draws in accordance with the
restricted model can be computed directly. Since the distri-
bution of the difference between source memory parameters
is symmetric at zero, in each condition, half of the samples
will be positive, that is, the source memory parameter for
unexpected information and expected information is posi-
tive, which yields a proportion of 0.52 = 0.25. From this
subset, again, half of the samples from the pleasant face con-
dition will be larger than for the disgusting face condition
(i.e., 0.25/2 = 0.125). Thus only the sample proportion of
posterior draws in accordancewith the restrictedmodel needs
to be computed.

Here again, if the proportion of prior samples in agreement
with the constraint is smaller than the proportion of posterior
samples in agreement with the constraint, it implies evidence
in favor of the restricted model. Vice versa, if the propor-
tion of prior samples in agreement with the constraint is
larger than the proportion of posterior samples in agreement
with the constraint, it implies evidence against the restricted
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model.Whatmakes thismethod user-friendly is that this sim-
ple counting principle can be generalized to highly complex
directional hypotheses involving multiple conditions.

Scale dependence in ordinal constrained inference

A caveat to using reparametrization of the MPT parame-
ters (Knapp & Batchelder, 2004) to test ordinal constraints is
that resultsmay change depending onwhether parameters are
tested in the probability or the probit space. That is, due to the
nonlinearity of the probit transformation, (dis)ordinal effects
may becomemore pronounced or disappear when transition-
ing between scales (so-called removable interactions), which
may lead to different conclusions.

As pointed out in Wagenmakers et al. (2010), the prob-
ability space changes at the boundaries of the scale (e.g.,
moving from 0.85 to 0.95) represent larger absolute changes
compared to changes at the center of the scale (moving from
0.55 to 0.65; cf. logistic/probit regression). Testing hypothe-
ses on the probit-space therefore has the advantage that it
puts a weighting function on changes on the boundaries,
which makes changes comparable. At the same time, probit-
transformedMPTparameters are less interpretable than those
on the probability scale and are often considered a mere
technical convenience to model correlations and to incor-
porate covariates rather than being considered quantities to
reason about. The interpretation of the parameters and the
formulation of hypotheses often happens on the probability
scale. Since Bell et al. (2015) directly related source memory
(instead of probit transformed source memory) to behavior
descriptions and facial appearance of the stimuli, we there-
fore decided to test the model parameters in our case study
on the same scale.4

In addition to the interpretation of the parameters, the
interpretation of the moments of source parameters are also
scale-dependent. Since the probit to probability transforma-
tion is non-linear, the transformed group-level parameters
�(μ) cannot be interpreted as group-levelmeans on the prob-
ability scale, but merely as group-level medians (see Heck
et al. 2018). Additionally, the covariances between param-
eters on the probit scale do not directly translate to the
covariances on the probability scale. In TreeBUGS, users
have access to the probitInverse() function, which
facilitates exploration of the relationship between parame-
ters on the probit scale and their corresponding values on the
probability scale.

4 A robustness analysis in the probit space did not change the conclu-
sions drawn in our case study.

Case study

In this section, we illustrate parameter estimation and model
comparison using informative priors for the study by Bell
et al. (2015) who embedded source memory in a theory on
schema-congruence.

Model

The case study implemented a slightly adapted version of
the 2HTSM model. In contrast to the model presented in
Fig. 1, Bell et al. (2015) assumed that the item memory D
and the source memory d for sources A and B are not neces-
sarily equivalently good. Thus, their model estimated these
parameters separately for the respective source. In addition,
the probability of distractor detection of new items was set
to the average item memory of source A and source B, that
is, DNew = (DA + DB)/2. Finally, the authors estimated
separate MPT parameters in each of the two within-subjects
conditions. Thus, for each participant, 12 MPT parameters
were estimated, that is, two pairs of itemmemory and source
memory parameters and two guessing parameters in each
condition.

We implemented the hierarchical 2HTSM model with
the modifications outlined in the previous sections and
detailed in the appendix. That is, we assumed item homo-
geneity, assigned a Normal(0, 0.28) prior distribution to
the probit-transformed group-level guessing parameters, a
Normal(0, 1) prior distribution to the probit-transformed
group-level memory parameters, a LKJ(1) prior distribu-
tion to the correlation matrix, and a Gamma(2, 3) prior
distribution to the standard deviation of the individual shift
parameters.

Method

Parameter estimation and model comparison was based on
50,000 samples from the posterior distribution of the encom-
passing model with 10,000 samples as burn-in. In both case
studies, the relevant comparison was between the null model
and the restricted model expressing ordinal predictions. In
addition to the main analysis, we report the range of Bayes
factors that resulted from a sensitivity analysis in which we
assigned any other of our 48 prior specifications. We also
report the Bayes factor between the encompassing model
and the restricted model as a “bookend” comparison. Book-
ends in model comparison have been suggested as a proxy
of model adequacy; that is, a model is only considered ade-
quate if it can outperformmodels that are more parsimonious
(e.g., the null model) and models that are more complicated
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(e.g., the saturated model which fits the data perfectly if the
goal is to assess general adequacy of the model; Lee et al.
(2019)). Here we aimed to ensure that, within the proposed
model, the effects of the manipulation point in the expected
direction in the sense that they are within the model compar-
isons we are running. Therefore, we select the encompassing
model as a bookend, instead of a saturated model. Finally,
we report normal approximation results to illustrate method
uncertainty.

We first computed the Bayes factor of the null ver-
sus the encompassing method using the Savage–Dickey
density ratio. We then computed the Bayes factor of the
restricted versus the encompassing model using the uncon-
ditional encompassing Bayes factor. With the two quantities
at hand, the desired comparison between the null and the
restricted hypothesis was obtained through transitivity. For
the main hypothesis (i.e., the hypothesis concerning group-
level parameters) and informative priors we computed the
Bayes factor 100 times to quantify the computational stability
of the Bayes factor estimates (i.e., repeatedly sampled from
the posterior distribution). For Matzke-Klauer priors Bayes
factors were computed 20 times. We report the median of the
Bayes factor estimates and their range. Bayes factors used to
illustrate a concept (i.e., Bayes factors assessing individual
differences, sensitivity analyses) were computed only once.

Reanalysis of Bell et al. (2015)

To illustrate our approach for the case of disordinal interac-
tions,we conducted a reanalysis of the data fromExperiments
1 and 2 presented in Bell et al. (2015). Both experiments

investigated how appearance-based first impressions affect
person memory. Figure 6 shows a schematic illustration
of the experimental setup. In the study phase, participants
were instructed to memorize person information, that is,
pictures of faces and short behavior descriptions. Impor-
tantly, the faces were chosen to be either pleasant-looking
or disgusting-looking. Similarly, the behavior descriptions
were categorized as being either pleasant or disgusting. Thus,
within these combinations, the behavior description either
matched the appearance of the face (congruent condition) or
not did not match the appearance (incongruent condition). In
the subsequent test phase, participants were presented with
pictures of faces again. Their task was to indicate whether
they had seen the faces before and if so, whether their behav-
ior had been pleasant or disgusting.

Data

The individual-level data for the study were kindly pro-
vided by the authors. The experiments feature data from
138 and 114 participants, respectively. Each participant was
instructed to learn 40 face–behavior pairs randomly drawn
from an item pool, with 10 falling into each of the four cells
of the experimental design. In the test phase, 40 additional
faceswere introduced. Thus, each participant provided a total
of 80 data points.

Hypothesis

The authors hypothesized that unexpected information should
be memorized easier than expected information (see Fig. 7).

Fig. 6 Schematic illustration of the experimental procedure in Bell
et al. (2015) relevant to the reanalysis. In the study phase (left), par-
ticipants were shown faces and behavior descriptions of persons that
were either disgusting or pleasant. In the test phase (right), participants

were presented with faces again. If participants indicated that they had
already seen the faces in the study phase, they had to indicate whether
the person’s behavior was disgusting or pleasant
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Fig. 7 Schematic representation of the group-level source memory
parameter under the restricted model (left; Mr ) and the null model
(right; M0). The restricted model makes predictions both about the
ordering of the source memory parameters within the behavior descrip-

tion conditions (x-axis) but also in within the faces conditions (depicted
as bright and dark blue dots). The null hypothesis predicts that the
source memory should be equal for both behavior descriptions

This hypothesis was based on the findings by Bell et al.
(2012) who suggested the existence of a cognitive mecha-
nism which emphasizes events that contradict expectations.
Moreover, the authors found that the effect was larger when
positive expectations were violated. The authors attributed
this interaction to the fact that subjects likely expected more
negative behavior descriptions and that therefore unexpected
positive behavior descriptions made a stronger impression
on the participants.5 We compared the restricted model
that describes this disordinal interaction to a null model
that predicts that inconsistent and consistent information is
remembered equally well for both face conditions.

Model fit

Before reporting theBayes factors, we first examinemodel fit
indices to ensure that our model can adequately describe the
data. Figure 8 displays posterior model predictions from our
model in both experiments. The posterior predictive distribu-
tion can be interpreted as the model’s attempt to re-describe
the data that yielded the posterior distribution. An adequate
model should be able to reproduce the data used to update its
prior distributions; the figure suggests that the model predic-
tions perfectlymatch the observed response frequencies. This
conclusion is confirmed by quantitative measures of model
fit such as the T1 andT2 statistics proposed byKlauer (2010).
That is, the model is able to recover the observed mean struc-
ture (pT1 = 0.397 for Experiment 1 and pT 1 = 0.469 for
Experiment 2) as well as the observed covariance structure

5 This disordinal interactionwas an exploratory finding in experiment 1
which the authors then tested on data fromExperiment 2. For simplicity,
we test this disordinal prediction on the data from both experiments.

(pT2 = 0.261 for experiment 1 and pT 2 = 0.361 for Exper-
iment 2).6

Results

The group-level parameter estimates and the individual-level
parameter estimates are displayed in Fig. 9. The Bayes fac-
tors are summarized in Table 1. For Experiment 1, the data
are uninformative. That is, the Bayes factor in favor for the
null model relative to the restricted model centers around
BFr0 = 0.51 and ranges from 0.45 to 0.57. This result
is robust against alternative prior specifications and meth-
ods used to test equality constraints. For Matzke–Klauer
priors, the evidence is equally weak but points in the oppo-
site direction, with a Bayes factor in favor of the restricted
model which centers at BFr0 = 2.06, ranging from 1.65
to 3.14. In the bookend comparison between the restricted
and the encompassing model, the data too are uninforma-
tive, suggesting that the restricted model cannot outperform
the encompassing model. To conclude, the Bayesian analy-
sis does not support (but also does not contradict) the results
from the frequentist analysis of the aggregate data reported by
Bell et al. (2015) which suggested the presence of a disordi-
nal interaction. This discrepancy may be partially explained
by the fact that the parameter estimates from the hierarchical
analysis are very uncertain, as can be seen in the left panel in
Fig. 9. Although the point estimates descriptively conform
to the predicted disordinal interaction, the large uncertainty
in the estimates leads to inconclusive evidence.

For Experiment 2, the data suggest moderate evidence
in favor of the restricted model relative to the null model.
The Bayes factor centers around 4.4 and ranges from 3.77
to 5.71 and is robust against different prior specifications.

6 Model adequacy in terms of quantitative measures of model fit was
also confirmed for the model with Matzke-Klauer priors.
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Fig. 8 Posterior model predictions of data in Experiment 1 (left)
and Experiment 2 (right). In the learning phase, participants learned
face–behavior combinations. Within these combinations, the behavior
description either not matched the appearance of the face (incongruent),
or matched their appearance (congruent). In the test phase, participants
were shown faces again, together with new faces. Each panel shows the
participants’ observed and predicted responses during the test phase.

The frequencies indicate the number of participants responding with
"disgusting behavior description", "pleasant behavior description", or
whether they indicated that the presented face was new. The colored
dots reflect the models’ predicted responses. The black dots represent
the observed response frequencies. The model using informative priors
closely matches the observed responses indicating good model fit

These estimates are smaller and less variable compared to
the ones we receive with the Matzke–Klauer prior, for which
Bayes factor estimate centers at 8.16, ranging from 5.75 to
11.59, which suggests moderate-to-strong evidence in favor
for the restricted model. As for the bookend model, the data
again are uninformative suggesting that the restricted model
is not able to outperform the encompassing model. Thus,

for the second experiment, the Bayesian analysis supports
the results from the frequentist analysis and suggested the
presence of a disordinal interaction.

Notably, not the choice of prior distributions but the
method used to compute the Savage–Dickey Bayes factor
has the biggest effects on the results; for the normal approx-
imation method Bayes factors go as high as 62 in favor for
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Fig. 9 Violin plots of the estimated source memory parameters in
Experiment 1 (left panel; blue) and Experiment 2 (right panel; orange)
of Bell et al. (2015). In the top panels, we illustrate the group-level
parameters. The bottom panel illustrates the comparison between the

source memory parameters in the two behavior description conditions
at the individual level. The dots represent the median estimate and the
error bars the 80% credible intervals

Table 1 Summary of computed
Bayes factors for Bell et al.
(2015). The null hypothesis was
evaluated using both the
logspline approximation method
and the truncated normal
approximation method to
compute the Savage–Dickey
Bayes factor BFr0

BF type Experiment 1 Experiment 2

Group-level

Main analysis (informative) BFr0 0.51 [0.45, 0.57] 4.4 [3.77, 5.71]

Main analysis (Matzke–Klauer) BFr0 2.06 [1.65, 3.14] 8.16 [5.75, 11.59]

Sensitivity analysis BFr0 – [0.42, 1.29] – [3.42, 7.17]

Bookend comparison BFre 0.71 [0.64, 0.77] 1.19 [1.12, 1.28]

Individual-level comparison

informative BFre 0.0011 – 0.45 –

Matzke–Klauer BFre 43.34 – 3,444 –

Group-level (Normal-Approximation)

Main analysis (informative) BFr0 0.55 [0.49, 0.63] 6.99 [5.98, 8.55]

Main analysis (Matzke–Klauer) BFr0 2.87 [1.94, 6.51] 44.47 [27.09, 61.69]

Sensitivity Analysis BFr0 – [0.45, 1.77] – [6.14, 31.87]

Note. For each test (rows) and experiment (columns) the Bayes factor in favor of the restricted model versus
the null (BFr0) or the encompassing model (BFre). Numbers in square brackets indicate Bayes factor ranges.
See the main text for an explanation of the different tests. Empty cells indicate that the quantity was not
computed for a particular analysis
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Table 2 Estimates for the
group-level source memory
parameter d for the data of
experiment 1 and 2 in Bell et al.
(2015). The column “Reported”
shows the estimates as reported
in the original manuscript using
frequentist estimation on
aggregated data. The columns
“informative” and
“Matzke–Klauer” show the
median estimates and 95%
credible intervals when using
Bayesian hierarchical
approaches

Source memory d
Face Behavior Reported Informative Matzke–Klauer

Experiment 1 Pleasant Pleasant .35 [.20, .50] .30 [.08, .49] .20 [.01, .43]

Disgusting .31 [.21, .41] .29 [.15, .40] .32 [.18, .42]

Disgusting Pleasant .49 [.43, .55] .42 [.32, .51] .42 [.30, .50]

Disgusting .03 [.00, .30] .17 [.02, .37] .11 [.01, .33]

Experiment 2 Pleasant Pleasant .05 [.00, .30] .17 [.02, .36] .17 [.02, .37]

Disgusting .40 [.31, .49] .31 [.16, .41] .27 [.07, .39]

Disgusting Pleasant .47 [.40, .55] .44 [.33, .53] .45 [.35, .53]

Disgusting .10 [.00, .32] .13 [.01, .31] .08 [.00, .27]

Note. Data of reported estimates are extracted from Figs. 3 and 4 of the original manuscript

the restricted model using the Matzke–Klauer prior. When
assessing the robustness of the Bayes factor under differ-
ent prior specifications for informative priors, values go as
high as 32 in favor for the restricted model. These findings
suggest very strong evidence for the presence of the dis-
ordinal interaction. These large differences may stem from
the skewed distribution of the source memory parameter in
the ’disgusting-face, disgusting-behavior’ condition (visible
in the violin plot in Fig. 9) so that the difference in source
memory parameters in the disgusting face condition cannot
be accurately described using only the mean and standard
deviation. This in combination with theMatzke–Klauer prior
positioning the parameter closer to the boundaries (d = 0.08)
than the informative prior (d = 0.13), accentuates the inter-
action even further.

Parameter estimates

Table 2 summarizes the estimates for the source memory
parameter, obtained from informative prior distributions,
the reported estimates in the original manuscript, and from
Matzke–Klauer priors. The reported estimates – which were
based on frequentist estimation on aggregated data – suggest
less variability in the estimates compared to the Bayesian

hierarchical models. The twoBayesianmodels aremore sim-
ilar to each other with the exception of the source memory
estimates regarding the pairing of disgusting face and dis-
gusting behavior in both experiments. Although all estimates
have similar credible/confidence intervals with lower bounds
close to zero, the median of the informative prior is higher
than the estimates from the other approaches. Regarding the
source-guessing parameter (Table 3), the estimates mostly
converge. Experiment 1 shows a slight discrepancy in the
parameters in the disgusting face condition. Here the two
Bayesianmodels yield similar estimates that are smaller than
the reported ones.

Assessing individual differences

Another benefit of Bayesian hierarchical models is that they
estimate overall effects, but are also suited to assess individ-
ual differences. When predicting a specific pattern of effects
on cognitive parameters, researchers might be interested in
whether the patterns observed on the aggregate level also
generalize to the individual level (Haaf & Rouder, 2019;
Miller & Schwarz, 2018). That is, whether biases on the
population-level, are exhibited by all individuals within the
population. Note that the studies by Bell et al. (2015) were

Table 3 Estimates for the
group-level source guessing
parameter g for the data of
experiment 1 and 2 in Bell et al.
(2015). The column “Reported”
shows the estimates as reported
in the original manuscript using
frequentist estimation on
aggregated data. The columns
“informative” and
“Matzke–Klauer” show the
median estimates and 95%
credible intervals when using
Bayesian hierarchical
approaches

Source guessing g
Face Reported Informative Matzke–Klauer

Experiment 1 Pleasant .36 [.30, .42] .35 [.27, .43] .32 [.24, .41]

Disgusting .75 [.69, .80] .69 [.62, .76] .69 [.61, .75]

Experiment 2 Pleasant .30 [.24, .37] .36 [.29, .43] .37 [.30, .45]

Disgusting .67 [.61, .73] .66 [.59, .72] .68 [.61, .73]

Note. Data of reported estimates are extracted from Table 4 in the original manuscript
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designed to test group-level hypotheses, that is, the authors
did not pose research questions concerning individual-level
effects. As will become apparent below, the individual-level
parameter estimates are also highly uncertain,whichhampers
statistical inference. Nevertheless, researchers interested in
assessing individual-level effects in paradigms where more
trials can be assessedmight find the following demonstration
valuable.

To study individual effects in thewithin-subject conditions
(i.e., the simple effect of congruency within each experimen-
tal condition), we can assess whether descriptively the point
estimates depicted at the bottom panel in Fig. 9 crossed the
diagonal line contrary to the prediction. For Experiment 1,
based on the median point estimates, 50.7% of participants
(i.e., 70/138) showed the predicted effect for pleasant faces,
that is, they remembered the pleasant face better when it
was paired with disgusting (i.e., unexpected) rather than with
pleasant information. For disgusting faces, this was the case
for 92.80% of participants (i.e., 128/138). However, when
accounting for the uncertainty of the estimates (i.e., 80%
credible intervals), this number dropped to 0% in the pleas-
ant face condition and 15.9% of participants (i.e., 22/138) in
the disgusting face condition.

For Experiment 2, we see a similar pattern. For pleasant
and disgusting faces, all participants (i.e., 114/114) showed
the predicted effect, but when accounting for the 80% credi-
ble intervals, this number dropped to 0% (i.e., 0/114) in the
pleasant face condition and to 48.2% (i.e., 55/114) in the
disgusting face condition.

A principled test to evaluate individual differences

Although the descriptive statistics give an insight into
whether or not the individuals show the predicted effect,
assessing whether credible intervals cross the diagonal is not
a principled test of whether all participants show the pre-
dicted pattern. Moreover, it yields only limited information
about whether people outside of this sample would have
an effect in the same direction. For a detailed discussion
of the issues with this approach, we refer interested read-
ers to Haaf and Rouder (2019); Thiele et al. (2017). Instead
of counting the number of participants who show an effect
in one or the other direction, we apply the model compar-
ison approach developed by Haaf and Rouder (2017), and
compare an individual-constrained model where every par-
ticipant shows an effect in the predicted direction with an
encompassing model where this constraint is not obeyed. If
the encompassing model is supported, further research could
shed light on the conditions under which the test is beneficial
or not (Haaf & Rouder, 2017).

To examine individual differences, the same restrictions
that we have previously imposed at the group-level can be
applied at the individual level. That is, we now test whether

the predicted biases in person memory are present in every
participant at the same time. This model makes a very risky
prediction: the a priori probability that all participants show
the effect is only approximately five in 10,000 in both exper-
iments, and in fact, the risk-taking does not pay off. Since
the posterior probability that all participants show the effect
is smaller than the prior probability (i.e., one in a million
for Experiment 1 and three in 10,000 for Experiment 2) the
hypothesis that all participants show the effect simultane-
ously is not supported. For Experiment 1, the data suggest
extreme evidence in favor for the encompassing model with
a Bayes factor of 942. For Experiment 2, the data suggested
anecdotal evidence: the Bayes factor in favor for the encom-
passing model relative to the restricted model is 2.21.

Sensitivity of individual-level Bayes factor to group-level
priors

So far, in this case study the differences in informative priors
compared to Matzke–Klauer priors led to only negligible
deviations in group-level estimates and the conclusions that
onewould draw from theBayes factors of both priors differed
only when method uncertainty was taken into consideration.
However, the influence of the two priors becomes apparent
when evaluating the individual effects.

For Experiment 1, with informative priors, the data sug-
gest extreme evidence with a Bayes factor of 1/0.001 ≈ 910
against the restrictive model. By comparison, the Matzke–
Klauer lead to the opposite conclusion, suggesting very
strong evidence in favor of the restrictedmodel relative to the
encompassing model with a Bayes factor of 43. For Exper-
iment 2, while the data suggest anecdotal evidence with a
Bayes factor of 1/0.45 ≈ 2.21 against the restrictive model
with informative priors, the Matzke–Klauer Bayes factor in
favor of the restricted model relative to the encompassing
model was 3444, suggesting extreme evidence.

These vastly different Bayes factors are a result of extreme
participant populations predicted by Matzke–Klauer priors.
The mixture of several populations causes an extreme low a
priori probability that all participants will show the predicted
effect simultaneously, approximately only one in 10 million
for Experiment 1 and 2 (which is 1000 times less than for
informative priors). The implication of this low a priori prob-
ability is that a small number of posterior samples consistent
with the constraint is already sufficient to suggest evidence in
favor of the restricted model, and indeed, since the posterior
probability increased relative prior probability (i.e., 22 and
1768 in 10 million), the restricted model is favored in both
experiments.

When estimating individual-level parameters, the two pri-
ors also diverge. Figure 10 compares the individual estimates
of source memory and guessing from the two models in the
disgusting face-disgusting behavior condition in Experiment
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Fig. 10 For the reanalysis of Bell et al. (2015), Matzke–Klauer priors
as implemented in TreeBUGS and informative priors yield the same
posterior estimates for guessing parameters (right). For the sourcemem-

ory parameters (left), on the other hand, the variance of the estimates
fromMatzke–Klauer priors is larger, which implies a smaller degree of
shrinkage

1. The dashed line corresponds to identical estimates from
the two priors. The estimates for source guessing param-
eters (right plot) do not deviate much from this line. For
the source memory parameter (left plot), on the other hand,
parameters estimated with Matzke-Klauer are closer to the
extremes,while parameters estimatedwith informative priors
are placed closer to the group mean. To reach a definite con-
clusion, the estimates obtained from the two priors could be
compared to ones obtained maximum-likelihood estimates.
Due to the scare data structure, however, the frequentistmeth-
ods fail to estimate individual-level parameters.

Discussion

This article discussed two points of refinement for the spec-
ification and comparison of Bayesian MPT models. We
highlighted how to specify informative predictions both in
terms of plausible values for model parameters within exper-
imental conditions and in terms of the rank ordering across
experimental conditions. We did do so by using the 2HTSM
model for source monitoring, however, our arguments and
methods generalize to all MPT research. The aim of this
work was to provide researchers with principles for specify-
ing and comparing MPT models and to present methods that
are simple to use.

Effects of prior selection on Bayes factors

To ensure plausible model predictions within experimental
conditions, we argued for the need of informative priors.
Using prior-predictive checks, we illustrated that the priors
proposed by Matzke et al. (2015) and Klauer (2010) and
implemented in theRpackageTreeBUGS (Heck et al., 2018)

are in our application uninformative and vague at the group
level but are highly informative at the individual level and
favor extreme values. These distributions predicted nonsensi-
cal response rates and – instead of a homogeneous population
of participants – a mix of different participant populations.
Moreover, the priors affected Bayes factor estimates; in our
case study, Matzke–Klauer Bayes factors and Bayes factors
obtained from informative priors diverged, sometimes with
extreme evidence for opposite hypotheses when the hypoth-
esis concerned individual differences.

We presented various techniques to compute Bayes fac-
tors, however, Bayes factors are often criticized as they are
sensitive to priors (e.g., Kass and Raftery, 1995). This is
correct; as our case studies demonstrated, priors drastically
affected the Bayes factors. Yet, the same applies to the other
two steps of model specification. A different model equa-
tion will result in different Bayes factors, as will different
hypotheses as they are incorporated in the model (see e.g.,
van den Bergh et al. 2022). In the formalization of theories,
subjectivity comes into play at all stages of model specifica-
tion – this is one of the characteristics of cognitive modeling
and the construction of psychological theories in general.
However, one should not equate subjectivity with random-
ness. Themodel equation,model assumptions, and parameter
priors are not random: they result largely from theoretical
considerations.

From our own experiences, MPT modelers are often
discouraged from informing their priors for fear of being
accused of “Bayes factor hacking”. Researchers can coun-
teract this by justifying their parameter priors and preregister
them to ensure the confirmatory status of their analyses. For
aspects of the prior that are not fully justified by theory,
researchers can perform sensitivity analyses to determine
the extent to which their results are fragile or robust with
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respect to different modeling choices (Myung & Pitt, 1997;
Sinharay&Stern, 2002). For instance, in our implementation
of the 2HTSM model, our goal was to constrain the individ-
ual variability encoded in the covariance matrix; however,
we considered several combinations of parameter values to
be plausible. In this case, a sensitivity analysis could reveal
whether the Bayes factor was robust against alternative plau-
sible prior distributions; that is, whether different priors
lead to diverging conclusions. When conducting sensitivity
analyses, the alternative prior distributions should have the
same theoretically justified properties as the prior distribu-
tion chosen in the analysis (i.e., a distribution centered around
chance),make reasonable prior predictions, Haaf andRouder
(2017, 2019); Lee &Vanpaemel, 2018), and be preregistered
alongwith the prior distribution chosen in the analysis. Sensi-
tivity analyses are particularly justified when data are scarce
(e.g., inmemory research or research on clinical populations)
and parameter priors can be expected to have a greater impact
on the results.

Effects of prior selection on parameter estimation

Furthermore, our case study showed some differences in
the parameter estimates for the two priors. However, differ-
ences in parameter estimation did not affect all parameters
to the same extent, instead they became apparent only in
individual-level parameters. This is goodnews forMPTmod-
elers: regarding parameter estimation on the group level, the
two priors discussed in this article largely converged to the
same posterior estimates. At the individual level, differences
between the two priors weremost pronounced for parameters
that were subject to greater uncertainty.

In MPT models, the tree architecture gives an indication
on which parameters might be affected most: the more fre-
quently parameters occur in the individual branches, themore
information is available for estimation. For instance, Fig. 1
shows that in the 2HTSMmodel, source guessing is featured
in every branch as guessing can guide all responses. Thus,
data from all trials can be used to estimate the parameter
resulting in precise estimates. By contrast, source memory
may be represented only in branches of previously presented
items for which the source was correctly identified. MPT
modelers should keep this in mind, especially when work-
ing with tree structures where the test-relevant parameters
are the ones occurring in only a few branches. To inform
these parameters, researchers could collect more data. How-
ever, in memory experiments, this is inherently difficult,
since presenting participants with hundreds of source–item
pairs for learning and retrieval is not possible. Alternatively,
researchers have the option to enhance the informativeness
of their MPTmodels by implementing design optimizations,
as suggested by Heck and Erdfelder (2019). This involves

carefully selecting items that guarantee an adequate number
of responses within the relevant tree branches. Generally, in
paradigms with scarce data and/or a tree-architecture that
does not sufficiently inform test-relevant parameters, the
development of informative prior distributions is especially
important.

Prior selection is research design-dependent

Here, we are not arguing against the use of the software
package TreeBUGS. On the contrary, we welcome that its
user-friendliness facilitates the wide application of Bayesian
MPT models. In fact, in TreeBUGS Heck et al. (2018) have
already further restricted the vague priors proposed byKlauer
(2010) and Matzke et al. (2015). That TreeBUGS priors
were not suitable for our application does not necessarily
mean that this will be the case for other applications and
MPT models.

Importantly, we do not propose our priors as a new default.
The appropriateness of the priors depends on the specific
MPT model and research design at hand. The specific prior
we set on the correlation matrix, for instance, will make
different predictions when more or fewer parameters are fea-
tured in themodel. Furthermore, the priors chosen here,while
making assumptions consistent with our theoretical expec-
tations (e.g., source guessing centered at nominal guessing
level), are far from perfect. As apparent in Fig. 2 our priors
on the source memory parameters are not completely flat but
still assign a higher density to extreme values. This is due to
our consideration to adapt the default priors only to the extent
that the model made reasonable prior predictions. However,
based on the prior predictions, it would also be legitimate to
constrain the model priors even further. That is, constrain-
ing the participant variability group level will further lead to
predictions that result in a more homogeneous population.

ExperiencedMPTmodelers will certainly be able to iden-
tify further improvements based on published literature or
their own research. For instance, the model employed in this
study assumes independent priors on the model parameters.
While this approach is simple and common, using corre-
lated prior distributions on group-level parameters is a more
direct and flexible approach when testing hypotheses about
condition differences. By placing a prior on a difference
parameter, researchers can express expectations about condi-
tion differences independently of the average performance.
This parameterization leads to correlated predictions about
condition means: for instance, if source memory is high in
the one condition, it should also be relatively high in the
other condition, irrespective of the magnitude of condition
differences. For such parameterizations, it is useful to dis-
tinguish between test-relevant and nuisance parameters and
possibly use less informed priors for the latter. Gronau et al.
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(2021) demonstrated the substantial impact of considering
parameter dependencies on the resulting Bayes factor. Future
research could explore adjustments to our model to accom-
modate this possibility.

Furthermore, our model specification of MPT parameter
correlations within subjects across conditions could cer-
tainly be refined. We placed an LKJ prior on the correlation
matrix MPT parameters across within-subject conditions.
Greater flexibility could be achieved through the construc-
tion of a more informative prior on the correlation matrix.
For instance, this could involve assigning a uniform LKJ
prior on the correlation matrix and normal distributions on
its elements, as suggested by Martin (2021). This would
allow researchers to directly model expectations about cor-
relations between certain parameter pairs. For instance, item
memory may be highly correlated within a subject across
conditions while source memory might be affected by exper-
imental manipulations.

Further improvements may entail centering distributions
ofMPTparameter on specific values. For example, for source
monitoring tasks influenced by expectations based on prior
knowledge as in the first case study Bell et al. (2015), one
might assume guessing to be expectancy-based around .60 or
higher. Similarly, the choice of the prior distribution for the
source memory and item memory parameters can be influ-
encedby the paradigmexpertise of theMPTmodeler. In cases
where the researcher possesses valuable insights and expec-
tations regarding these parameters, it is possible to replace
the prior distribution proposed here with one that favors the
anticipated values.

As a refinement to current practices, we advise model-
ers to justify their priors theoretically and to visualize the
prior predictions from their models. As the priors may influ-
ence the Bayes factors and hence conclusions drawn from
the data, the informative priors should be developed prior to
data collection and mentioned in the preregistration. Since
visualizations of the prior predictions contribute to the under-
standing of the model, we advise MPT modelers to present
them to the readers of their manuscript at least as an (online)
appendix.

Testing theories directly using ordinal constrained
inference

In addition to specifying the statisticalmodelwithin an exper-
imental condition, we also discussed how to test expected
effects on model parameters across experimental conditions
using Bayes factors. Research questions in MPT research
are often characterized as ordinal expectations in the form
of ordinal and disordinal interactions, but so far it has been
challenging to evaluate them. Commonly used methods to

test ordinal expectations require the reparametrization of the
MPT parameters (Knapp & Batchelder, 2004), are mainly
applicable for non-hierarchical models, and are not suited to
test these expectations directly.

As a further refinement to current practices, we therefore
suggested computing Bayes factors using Savage–Dickey
and the unconditional encompassing method (Gelfand et al.,
1992; Klugkist et al., 2005; Sedransk et al., 1985). The
methods discussed here have three considerable advantages
over the current methods, as (1) they do not require the
reparametrization of MPT parameters in order to represent
interaction effects, (2) they are suited for hierarchical mod-
els, thus taking into account participant heterogeneity and
hierarchical shrinkage, and (3) they are able to test theories
directly. Furthermore, the methods allow researchers to test a
wide variety of research questions, including the assessment
of individual differences. Finally, the unconditional encom-
passing method relies simply on counting instances from the
prior and posterior distribution, and thus is intuitive and sim-
ple to use.

However, the unconditional encompassing method comes
with some limitations. First, testing parameters without repa-
rameterization bears the risk that certain effects could be
magnified or reduced depending on the scale on which they
are tested. This problem is especially pronounced when the
parameters are located on the boundaries of the distributions.
Here we decided to test the effects on the probability scale
to be consistent with the theoretical prediction. As an addi-
tional sensitivity analysis, we repeated the analysis on the
probit scale, which did not change our conclusions.

Furthermore, we assessed the computational stability of
the Bayes factor estimates through repeated computations.
The robustness of the Bayes factor depends largely on
whether enough prior and posterior samples in agreement
with the constraint can be drawn from the encompassing
model in order to estimate the proportion of restricted param-
eter space reliably. That is, if the number of restricted param-
eters is large or the restricted parameter space decreases (e.g.,
if the data suggests extreme evidence against the restricted
model) the Bayes factor results become unreliable (e.g.,
Sarafoglou et al. 2023). This issue might, for instance, occur
for the assessment of individual differences in the previ-
ous section. As a first remedy, more samples can be drawn
from the encompassing model to stabilize the Bayes factor
estimates, but ultimately more efficient alternatives must be
developed. Alternatives to the unconditional encompassing
approach are the conditional encompassing method (Mul-
der et al., 2009) and the recently developed bridge sampling
method to evaluate restrictedmodels (Sarafoglou et al., 2023;
Gronau et al., 2020, 2019). Thesemethods have already been
applied to test order constraints in multinomial models, but
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not yet to test these restrictions on the class of (hierarchical)
MPTmodels (e.g., Heck andDavis-Stober, 2019; Sarafoglou
et al., 2023). A user-friendly implementation of these meth-
ods would be a key asset for Bayesian MPT modeling.

Conclusion

Although prior specification is often considered a nuisance
in Bayesian modeling, it offers MPT modelers the opportu-
nity to make model evaluation a complete test of the theory.
Heck et al.’s work has made it possible for many researchers
to apply BayesianMPTmodeling to their data. Nevertheless,
we believe that researchers are tempted to rely entirely on the
default settings of TreeBUGS. We hope that we have suc-
ceeded in drawing attention to the potential problems with
diffuseMatzke–Klauer priors, which were developed as gen-
eral priors for the MPT model class but not with a specific
MPT model in mind, and encouraged researchers to give the
specification of priors for their particular MPT model the
attention it deserves.

Even though the focus of this article was on source mem-
ory models, our arguments extend to all MPT research. MPT
research is characterized by complex experimental designs
and predictions often describe ordinal relations of parameters
that span multiple factor levels. In combination with infor-
mative priors, the specification of ordinal expectation brings
MPTmodelers closer to quantitatively describing and testing
their theory to the fullest extent possible.

Appendix

Model specifications

To model individual-level differences in the latent-trait
approach responses are aggregated over items so that we
receive a vector of category frequencies for each partici-
pant i (i = 1, · · · , I ) in each between-subjects experimental
condition j ( j = 1, · · · , J ). For convenience, we will drop
subscript j in the following paragraphs. The individual-level
MPT parameters are denoted as Di , di , bi and gi . The func-
tion fMPT that encodes the model equation translates the
parameters into category probabilities P(C)i , where a cat-
egory corresponds, for instance, to the probability to answer
“A” given that the correct source was Source A, P(“A” |
Source A)i . Differences between the default 2HTSM model
proposed in Matzke et al. (2015) and the informative model
used in this manuscript lies in the prior distributions for the
group-level parameters, that is, the prior distribution for the
guessing parameter (panel A in Fig. 12), the prior distribution
on the standard deviations across participants (panel B), and
the marginal correlation across participants (panel C and D).

Default prior distributions

The graphical model using default prior distributions is illus-
trated in Fig. 11. In this model, the vector containing the
individual-level MPT parameters is probit-transformed into

Fig. 11 Graphical model for the default 2HTSMmodel as implemented in TreeBUGSwith two within-subjects conditions and J between-subjects
conditions. Index I refers to the total number of participants within each between-subjects condition
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Fig. 12 informative prior distributions for guessing parameters (A.), the
standard deviations across participants (B.), andmarginal correlation for
LKJ(1) prior on matrices with 12 dimensions (C.)

the vector θi . The vectors over all participants are then com-
bined in a matrix � and assigned a multivariate normal
distribution as prior distribution with mean vector μ and
a covariance matrix �. As proposed in Heck et al. (2018)
and Matzke et al. (2015), the group-level MPT parameters
are assumed to be independent so that each element in μ is
assigned an independent standard normal distribution. The
covariance matrix is composed of a vector containing scal-
ing parameters ξ and a matrix W. In the original work by
Matzke et al. (2015), each element in ξ is assigned a uniform

distribution ranging from0 to 100. InTreeBUGS, Heck et al.
(2018) assign as default a uniform distribution ranging from
0 to 10 which limits the individual variability compared to
priors proposed by Matzke et al. (2015). Lastly, the matrix
W is assigned an inverse-Wishart as prior distribution with
degrees of freedom d f = P + 1, where P refers to the num-
ber of free participant parameters.

informative prior distributions

The graphical model using informative prior distributions
is illustrated in Fig. 13. The adaptations from the classi-
cal latent-trait model are based on recommendations of Stan
Development Team (2022) and Barnard et al. (2000) and
implemented in Singmann (2019). In this model, the probit-
transformed individual-levelMPTparameters are assumed to
be determined by themean vectorμ featuring the group-level
MPT parameters and by a matrix � containing participants’
individual deviations around the group mean. As in the
default model, we assume that the elements in μ are inde-
pendent. We assign the group-level memory parameters a
standard normal distribution as prior. The guessing param-
eters are assigned a Normal(0, 0.28) distribution as prior
which centers the guessing parameters around the nomi-
nal guessing level. The individual deviation matrix � is
obtained by drawing from a multivariate normal distribu-
tion with means μ = 0. The variance-covariance matrix

Fig. 13 Graphical model for 2HTSMmodel with informative priors with two within-subjects conditions and J between-subjects conditions. Index
I refers to the total number of participants within each between-subjects condition
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of this distribution is decomposed into a vector of standard
deviations σ and a Cholesky-factorized correlation matrixL,
which are used to scale a matrix of standardized deviation �̃

from a standard normal distribution. To constrain individual
variability and facilitate hierarchical shrinkage, we assigned
each element inσ aGamma(2, 3) distribution, favoring small
standard deviations over large ones. We further assign an
LKJ prior distribution with shape η = 1 to the correlation
matrix L. This yields a marginal distribution favoring corre-
lations among parameters in the range [−0.5, 0.5] over more
extreme correlations, see Fig. 12 panels C and D.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13428-024-02370-
y.
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