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Abstract

The emergence of Pre-trained Language Models (PLMs) has revolutionized the field
of natural language processing, yielding remarkable improvements for a wide range
of tasks. While PLMs excel at discerning language patterns and crafting coherent nar-
ratives, they exhibit limitations when adapting to specialized topics, such as medical
concepts, cross-lingual conversational systems, and contents derived from diverse so-
ciodemographic backgrounds – necessitating specific terminologies, deep contextual
understanding, and sensitivity to socially-aware language use. These limitations, collec-
tively referred to as adaptation barrier, underscore the difficulty of adapting PLMs to
fields demanding expert knowledge, e.g., medical terminology, multilingual applications,
or social-contextual interactions for understanding cultural idioms. In such contexts, the
deficiency of topic-relevant information within the model’s training data can significantly
impair the performance of language models in practical applications.

To address the adaptation barrier of PLMs, recent studies focused on techniques,
such as domain adaptation, cross-lingual transfer learning, or incorporating external
knowledge sources from diverse sociodemographic contexts to bridge the gap between
generalizability and the specific demands of specialized topics. These studies highlight
the considerable potential for enhancing performance by integrating knowledge from
domain-specific, language-specific, or social-related resources into general-purpose PLMs.
While research on (i) adapting PLMs to specific topics is an active and dynamic field,
and (ii) investigating the pressing need for effective adaptation methods is conducted
in prior studies, these research directions have been confined to a singular perspective:
either domain-specific, language-specific, or solely centered on the social dimension. This
limited scope has constrained the in-depth exploration of multiple facets and viewpoints
concerning the efficacy of the proposed adaptation approaches. Furthermore, several
promising research directions are under-explored and warrant attention. These include
the development of task-agnostic adaptation techniques applicable across tasks, as well as
adaptation strategies suitable for deployment in multi-domain and multilingual contexts.
Moreover, there is a pressing need to enhance the efficiency of adapting PLMs, striking
a balance between parameter utilization and data requirements – a set of vital factors
essential for the viability of these models in applied scenarios.

In this thesis, we systematically conduct experiments across multiple dimensions
and perspectives, aimed at closing the research gap concerning the adaptation barrier
of PLMs. Concretely, we center on three key challenges (C1, C2, C3) – effectiveness,
efficiency, interpretability, inherent in adapting current state-of-the-art PLMs to diverse
domains, languages, and social dimensions:

(C1) Effectiveness: PLMs are typically trained on heterogeneous data with an empha-
sis on achieving generalizability – not tailored for specific domains, languages, or social
contexts. We introduce task-agnostic adaptive pre-training methods with multiple trans-
fer learning objectives. We conduct experiments on self-supervised domain adaptation
and cross-lingual transfer for task-oriented dialogs, along with hybrid setups combining
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multiple transfer learning methods for demographic adaptation. We demonstrate the
effectiveness of our proposed methods, enabling versatile use across multi-domain and
multilingual use cases, and contrasting them with task-specific approaches tailored for
singular task.

(C2) Efficiency: given the constraints posed by computational resources and the
challenges of acquiring extensive labeled training data in practical scenarios, we delve into
methodologies that are considered data-efficient and parameter-efficient. We introduce a
term-matching technique to gather domain-specific data efficiently and propose leverag-
ing cross-lingual corpora for multilingual dialog specialization, facilitating both domain
and language adaptation. We further present a novel task-agnostic domain adaptation
approach, enhancing its efficacy in scenarios involving multiple domains and with limited
data availability. Our findings demonstrate the feasibility and scalability of language
model adaptation in resource-limited settings.

(C3) Interpretability: to enhance model transparency and unveil both strengths and
limitations, we conduct multi-faceted controlled experiments to evaluate the implications
of domain, language, and demographic adaptation techniques. We study the effects of
cross-domain transfer and token-level segmentation use cases, providing insights into
how cross-domain knowledge influences model behavior and how domain-specific infor-
mation is captured with token-level control. We further conduct controlled experiments
to examine the impact of demographic adaptation, highlighting the negligible effect and
suggesting future research attention. Through systematic analyses, we provide a compre-
hensive understanding of how adaptation techniques influence model interpretability,
while shedding light on further challenges and adaptability.

Through our findings, we hope to contribute to the advancement of more effective
and adaptable language models across multiple dimensions. Further, we hope that our
research outcomes will pave the way for the applicability of these models in addressing
a broad spectrum of real-world challenges, thereby mitigating the adaptation barrier
associated with PLMs.
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Zusammenfassung

Die Entstehung von vortrainierten Sprachmodellen (Pre-trained Language Models, PLMs)
hat den Bereich der Verarbeitung natürlicher Sprache revolutioniert und bemerkenswerte
Verbesserungen für ein breites Spektrum an Aufgaben gebracht. PLMs sind zwar hervor-
ragend in der Lage, Sprachmuster zu erkennen und kohärente Erzählungen zu erstellen,
weisen aber Einschränkungen bei der Anpassung an spezielle Themen auf, darunter
medizinische Konzepte, sprachübergreifende Konversationssysteme und Inhalte, die aus
unterschiedlichen sozio-demografischen Hintergründen stammen, da diese spezifischen
Terminologien ein tiefes kontextuelles Verständnis und Sensibilität für soziale Nuancen
erfordern. Diese Einschränkungen, die zusammenfassend als Anpassungsbarriere bezeich-
net werden, unterstreichen die Schwierigkeit der Anpassung von PLMs an Bereiche,
die Expertenwissen erfordern, z. B. medizinische Terminologie, mehrsprachige Anwen-
dungen oder sozial-kontextuelle Interaktionen zum Verständnis kultureller Idiome. In
solchen Kontexten kann der Mangel an themenrelevanten Informationen in den Trai-
ningsdaten des Modells die Leistung von Sprachmodellen in praktischen Anwendungen
erheblich beeinträchtigen.

Um die Anpassungsbarriere von PLMs zu überwinden, haben sich neuere Studien
auf Techniken wie Domänenanpassung, sprachübergreifendes Transferlernen oder die
Einbeziehung externer Wissensquellen aus verschiedenen soziodemografischen Kontex-
ten konzentriert, um die Kluft zwischen Verallgemeinerbarkeit und den spezifischen
Anforderungen spezialisierter Themen zu überbrücken. Diese Studien verdeutlichen
das beträchtliche Potenzial zur Leistungssteigerung durch die Integration von Wissen
aus domänenspezifischen, sprachspezifischen oder sozialbezogenen Ressourcen in all-
gemein einsetzbare PLMs. Während die Forschung zur (i) Anpassung von PLMs an
spezifische Themen ein aktives und dynamisches Feld ist und (ii) der dringende Bedarf
an effektiven Anpassungsmethoden in früheren Studien untersucht wurde, waren diese
Forschungsrichtungen auf eine singuläre Perspektive beschränkt: entweder domänen-
spezifisch, sprachspezifisch oder ausschließlich auf die soziale Dimension konzentriert.
Dieser begrenzte Umfang hat die eingehende Erforschung der verschiedenen Facetten
und Standpunkte in Bezug auf die Wirksamkeit der vorgeschlagenen Anpassungsansätze
eingeschränkt. Darüber hinaus sind mehrere vielversprechende Forschungsrichtungen
noch nicht ausreichend erforscht und verdienen Aufmerksamkeit. Dazu gehören die Ent-
wicklung von aufgabenanagnotischen Adaptionstechniken, die aufgabenübergreifend
anwendbar sind, sowie Adaptionsstrategien, die sich für den Einsatz in multidisziplinären
und mehrsprachigen Kontexten eignen. Darüber hinaus besteht die dringende Notwen-
digkeit, die Effizienz der Anpassung von PLMs zu verbessern und ein Gleichgewicht
zwischen Parameternutzung und Datenanforderungen herzustellen – eine Reihe von
entscheidenden Faktoren, die für die Realisierbarkeit dieser Modelle in Anwendungssze-
narien unerlässlich sind.

In dieser Arbeit führen wir systematisch Experimente durch, um die Forschungslücke
zur Anpassungsbarriere von PLMs zu schließen. Dabei konzentrieren wir uns auf drei
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zentrale Herausforderungen (C1, C2, C3) – Effektivität, Effizienz, Interpretierbarkeit,
die mit der Anpassung moderner PLMs an unterschiedliche Domänen, Sprachen und
soziale Dimensionen verbunden sind:

(C1) Effektivität: PLMs werden meist auf heterogenen Daten trainiert, um Verall-
gemeinerbarkeit zu erreichen, sind aber nicht auf spezifische Domänen, Sprachen oder
soziale Kontexte abgestimmt. Wir stellen aufgaben-agnostische adaptive Pre-Training-
Methoden mit mehreren Transfer-Lernzielen vor. Unsere Experimente umfassen selbst-
überwachte Domänenanpassung, sprachübergreifenden Transfer für aufgabenorientierte
Dialoge und hybride Ansätze zur demographischen Anpassung. Wir zeigen die Effektivi-
tät unserer Methoden, die vielseitig in verschiedenen Domänen und Sprachen einsetzbar
sind, und vergleichen sie mit aufgabenspezifischen Ansätzen.

(C2) Effizienz: In Anbetracht der Beschränkungen, die sich aus den Rechenressour-
cen ergeben, und der Herausforderungen, die sich aus der Beschaffung umfangreicher ge-
labelter Trainingsdaten in praktischen Szenarien ergeben, befassen wir uns mit Methoden,
die als daten- und parametereffizient gelten. Wir stellen ein Term-Matching-Verfahren
vor, um domänenspezifische Daten effizient zu erfassen, und schlagen vor, sprachüber-
greifende Korpora für die mehrsprachige Dialogspezialisierung zu nutzen, was sowohl
die Domänen- als auch die Sprachanpassung erleichtert. Darüber hinaus stellen wir einen
neuartigen, aufgabenagnostischen Ansatz zur Domänenanpassung vor, der die Wirksam-
keit des Term-Matching-Verfahrens in Szenarien mit mehreren Domänen und begrenzter
Datenverfügbarkeit erhöht. Unsere Ergebnisse zeigen die Machbarkeit und Skalierbarkeit
der Sprachmodellanpassung in ressourcenbeschränkten Umgebungen.

(C3) Interpretierbarkeit: Um die Transparenz des Modells zu erhöhen und sowohl
Stärken als auch Grenzen aufzuzeigen, führen wir vielschichtige kontrollierte Experimen-
te durch, um die Auswirkungen von Techniken zur Anpassung an Domänen, Sprache
und Demografie zu bewerten. Wir untersuchen die Auswirkungen des domänenüber-
greifenden Transfers und der Segmentierung auf Token-Ebene in Anwendungsfällen,
die Aufschluss darüber geben, wie domänenübergreifendes Wissen das Modellverhalten
beeinflusst und wie domänenspezifische Informationen mit der Kontrolle auf Token-
Ebene erfasst werden. Darüber hinaus führen wir kontrollierte Experimente durch, um
die Auswirkungen der demografischen Anpassung zu untersuchen, wobei wir deren ver-
nachlässigbaren Effekt hervorheben und künftige Forschungsschwerpunkte vorschlagen.
Durch systematische Analysen vermitteln wir ein umfassendes Verständnis dafür, wie
Anpassungstechniken die Interpretierbarkeit von Modellen beeinflussen, und beleuchten
gleichzeitig weitere Herausforderungen und Anpassungsmöglichkeiten.

Wir hoffen, mit unseren Ergebnissen einen Beitrag zur Entwicklung effektiverer
und anpassungsfähigerer Sprachmodelle über mehrere Dimensionen hinweg leisten zu
können. Darüber hinaus hoffen wir, dass unsere Forschungsergebnisse den Weg für
die Anwendbarkeit dieser Modelle bei der Bewältigung eines breiten Spektrums von
Herausforderungen in der realen Welt ebnen und damit die mit PLMs verbundene
Anpassungsbarriere abmildern.
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Chapter 1

Introduction

“Adapt or perish, now as ever, is Nature’s inexorable imperative.”
Herbert George Wells

«Mind at the End of Its Tether»

1.1 Motivation and Problem Statement

Language is a fundamental tool for human communication and understanding, enabling
us to convey our thoughts, ideas, and emotions. Language as a tool for communication
implies that there are underlying patterns and structures to language that could be ana-
lyzed and modeled. Language models are a technological innovation that relies on these
patterns and structures to understand and generate natural language text (i.e., coherent
and meaningful text) (Jurafsky and Martin, 2000), and are designed to mimic the way
humans use language to communicate.

To illustrate the power of language models, let’s consider the story of a chef who is
just starting out her culinary career. At first, the chef is overwhelmed by the sheer number
of ingredients and recipes available and struggles to create dishes that are both delicious
and extraordinary. However, as she gains more experience with heterogeneous recipes,
she begins to understand the patterns and rules that govern cooking and is capable of
experimenting with new ingredients and techniques.

Similarly, language models learn from vast amounts of text data, identifying patterns
and structures that could be used to understand and generate new texts. By analyzing
large amounts of text data, a language model can learn the patterns of language use and
identify common phrases and idioms. Pre-trained Language Models (PLMs) (Radford
et al., 2018; Devlin et al., 2019) utilizing the Transformer (Vaswani et al., 2017) architecture,
in particular, have gained widespread attention in recent years for their ability to perform
a variety of Natural Language Processing (NLP) tasks without the necessity to be trained
from scratch (Min et al., 2023). These PLMs, such as GPT (Radford et al., 2018) and
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BERT (Devlin et al., 2019), are trained on massive amounts of general and heterogeneous
corpora, enabling them to understand a wide range of texts, achieve outstanding perfor-
mance across multiple tasks (e.g., Wang et al., 2022; Zhang et al., 2023), and be utilized
for applications (Zhou et al., 2020; Valizadeh and Parde, 2022, inter alia).

While PLMs offer a powerful tool for NLP, they face several barriers to effectively
deploy in real-world applications. One of the most significant barriers is the need to
adapt language models to specific topics.1 Just as a chef must adjust their recipes to
fit different cuisines and dietary restrictions, language models must be tailored to the
specific characteristics of different domains, languages, and social contexts in order to
achieve optimal performance on selected tasks in practical use cases. For example, a
language model trained on English data may not be as effective when applied to the
Arabic text (Antoun et al., 2020; Lan et al., 2020), and a language model trained on formal
language in books may struggle with informal language used by specific communities
(e.g., slang and colloquialisms in social media) (Sun et al., 2024).

Here, we introduce the concept of adaptation barrier, indicating one of the key chal-
lenges of PLMs – these models are trained on massive and heterogeneous corpora with a
focus on generalizability without addressing particular topic concerns. This means that
while these models can recognize patterns in language and generate coherent text, they
may not be well-suited for specific topics of interest (e.g., medical concepts, cross-lingual
conversational systems, sociocultural contents), which require specialized terminologies,
deep contextual understanding, and awareness of social nuances. In practice, the absence
of such topic-relevant information can severely hurt performance in downstream appli-
cations, as shown in numerous studies (Ruder and Plank, 2018; Friedrich et al., 2020;
Ben-David et al., 2020).

To address the challenge of adaptation barrier in PLMs, recent work has actively ex-
plored methods to adapt PLMs to specific topics of interest (Lee et al., 2019; Beltagy et al.,
2019). These studies highlight the potential for significant performance improvements
by incorporating knowledge from domain-specific, language-specific, or social-related
resources into general-purpose PLMs (Gururangan et al., 2020; Xue et al., 2021; Lauscher
et al., 2022a). While (i) adapting PLMs toward specific topics of interest is an active re-
search topic, and (ii) the specific need for effective adaptation methods has been conducted
in previous research, these studies, however, focused mostly on a narrow perspective:
either on domain-only, language-only, or solely centered on the social dimension. The lim-
ited scope has restricted the exploration of multidimensional prospects and viewpoints on
the efficacy of proposed adaptation approaches. Moreover, several underexplored research
directions merit attention. These include the development of task-agnostic adaptation
techniques for versatile task accommodation, adaptation methods for deployment in
multi-domain and multilingual scenarios, and the optimization of efficiency concerning
parameter and data usage – a set of crucial considerations for real-world applications.

1Here, the topic indicates all perspectives of applied scenarios, which focus on specific interests.
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Pre-trained 
Language Models 

(PLMs)

Domains

Social
Dimensions

Languages

Figure 1.1: Illustration of multidimensional aspects of adapting PLMs investigated in this
thesis: domains, languages, and social dimensions.

In this thesis, we aim towards closing the research gap concerning the existing adap-
tation barrier of PLMs by considering multidimensional perspectives as illustrated in Fig-
ure 1.1: domains, languages, and social dimensions. Domain adaptation involves specializ-
ing PLMs to handle specific fields of knowledge, such as medicine or finance, ensuring
the understanding of specialized terminologies in domain-specific contents. Language
adaptation focuses on enhancing the model’s ability to process texts in the selected lan-
guage(s), allowing it to handle linguistic diversity across those languages. Social dimension
adaptation ensures PLMs are sensitive to cultural and societal factors, enabling them to
align with social aspects (e.g., demographics), adhere to norms, and promote inclusivity.
In particular, we systematically study the following challenges:

(C1) Effectiveness: Pre-trained language models are typically trained on large and
heterogeneous corpora, which encompass generalizability but may not effectively
capture the characteristics of specific fields in need. How could we effectively adapt
language representations to encode knowledge relevant to specific domains, languages,
and social dimensions, leveraging task-agnostic methods?

(C2) Efficiency: Computational resources are typically limited in real-world applica-
tions, and training data is often scarce in specific fields and languages. How could
we improve adaptation methods to optimize parameter efficiency and handle limited
training data, ensuring practical deployment without substantial computational or
resource overhead?

(C3) Interpretability: Adaptation methods, despite their focus on improving model
performance, often lack interpretable analyses, hindering the reliability and ro-
bustness of the models. How could we ensure that the adapted PLMs truly encode
the knowledge? How could we foster transparency with interpretable analyses that
are understandable and meaningful to humans?
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For the key challenges listed above, we conduct a series of experiments and instantiate
analyses, address the strengths and limitations of PLMs, and provide practical guidance
on how to adapt these models to a specific subject area of interest. Through our findings,
we hope to contribute to the development of more effective and adaptable language
models that could be tailored to diverse NLP tasks, mitigating the adaptation barrier
of PLMs.

1.2 Contributions
This thesis constitutes a substantial contribution to the field of NLP by addressing the
challenges associated with adapting language models to multidimensional perspectives:
domains, languages, and social dimensions. Our foremost aim is to develop robust and
efficient techniques capable of surmounting adaptation barrier that may arise from these
varied perspectives. Besides, we conduct thorough analyses to improve the interpretabil-
ity of our findings. The efficacy of newly proposed adaptation techniques is assessed
through the evaluation on Natural Language Understanding (NLU) tasks:2 (a) Task-
oriented Dialog (TOD) tasks, including Dialog State Tracking (DST) (Wu et al., 2020)
and Response Retrieval (RR) (Henderson et al., 2020); (b) sequence tagging tasks (i.e.,
Named Entity Recognition (NER)) (Tjong Kim Sang and De Meulder, 2003; Uzuner
et al., 2011; Salinas Alvarado et al., 2015; Bamman et al., 2019; Friedrich et al., 2020); (c)
Natural Language Inference (NLI) task (Williams et al., 2018); and (d) text classification
tasks (Hovy et al., 2015). NLU tasks are essential for comprehending and evaluating the
adaptation of language models, ensuring their robustness and reliability across diverse
contexts. We cover 14 domains, 7 languages, and 2 social dimensions,3 encompassing
multifaceted contexts.4 To address the challenges identified in § 1.1, we introduce novel
methods and resources as well as analytical insights. Concretely, our contributions are as
follows:

Corpora. We construct textual resources for training and evaluating the adaptation
approaches. We focus primarily on data-limited scenarios: how to efficiently collect
sufficient data to facilitate effective knowledge transfer (C2). To tackle data limitations,
we streamline the data collection process, ensuring efficient acquisition and utilization of
limited resources across various domains and languages.

2NLU focuses on machine reading comprehension, interpretation, and extracting meanings from human
language to simulate the human understanding process, enabling machines to understand the context,
semantics, and intent behind the words and phrases used in human communication. NLU has various
applications in fields such as sentiment analysis and information retrieval.

3Here, the social dimensions are explored through the lens of demographic adaptation, focusing on two
factors: age and gender.

4Domains: taxi, restaurant, hotel, train, attraction, government, telephone, fiction, slate, travel, finance,
news, clinical, science. Languages: English, German, Russian, Chinese, Arabic, Danish, French. Social
Dimensions: age, gender.
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1. DomainCC and DomainReddit: in order to advance research on domain adap-
tation with in-domain corpus training, we leverage a simple terminology extraction
method to construct DomainCC and DomainReddit corpora, which are ex-
tended from CCNet (Wenzek et al., 2020) and Pushshift API (Baumgartner et al.,
2020) respectively. The in-domain corpora are then utilized for conducting dialogic
pre-training to PLMs for domain adaptation (see Chapter 3).

2. LangCC and LangOpenSubtitles: we compile target-language-specific as well
as cross-lingual corpora for language adaptation and construct LangCC and Lan-
gOpenSubtitles. They are acquired from CCNet (Wenzek et al., 2020) and
OpenSubtitles (Lison and Tiedemann, 2016) respectively. The collected corpora are
then utilized for conducting dialogic pre-training to PLMs for language adaptation
(see Chapter 4).

3. Multi2WOZ: we introduce a novel multilingual multi-domain TOD dataset,
derived from the well-established English dataset MultiWOZ (Budzianowski et al.,
2018; Eric et al., 2020). Multi2WOZ spans four typologically diverse languages
(Chinese, German, Arabic, and Russian), containing gold-standard dialogs in target
languages that are directly comparable with development and test portions of the
English dataset, enabling reliable and comparative estimates of cross-lingual transfer
performance for TOD. We carry out a two-phase translation of the English data: (a)
automatic translation, and (b) manual post-editing of the translations. To measure
the translation quality, an additional quality assurance step is further controlled
to highlight the robustness and reliability of the newly introduced multilingual
multi-domain TOD dataset (see Chapter 4).

Methods. To effectively and efficiently adapt language models to domains, languages,
and social dimensions (C1, C2), we present the following four contributions that are
aligned with the proposed task-agnostic adaptation methodology.

1. Dialogic Domain-Adaptive Pre-training: to address the challenge of adapt-
ing PLMs to conversational nature of dialogic tasks (Wu et al., 2020), we propose
novel task-agnostic Response Selection (RS) objectives (Oord et al., 2018; Hender-
son et al., 2019c) applied on dialogic DomainReddit corpus – compared against
Masked Language Modeling (MLM) objective (Devlin et al., 2019; Gururangan
et al., 2020) on DomainCC corpus (see § 3.1). The comparison highlights how
our proposed methods more effectively integrate and leverage domain-specific
knowledge in dialogic contexts.
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2. Efficient Domain-Adaptive Pre-training: the risk of catastrophic forgetting
of the previously acquired knowledge (French, 1999) alleviates the effectiveness of
the proposed domain adaptation approach (Pfeiffer et al., 2023). To address the
issue, we propose a novel modular and parameter-efficient domain specialization
method: TADA, and compare it against the domain-aware adapters (Houlsby et al.,
2019) (see § 3.2).

3. Dialogic Language-Adaptive Pre-training: we introduce TOD-XLMR –
a multilingual pre-trained language model, specialized in the English conversational
corpus. LangCC and LangOpenSubtitles are further leveraged to facilitate
language adaptation for a specific target language with the variants of conversational
training objectives (see Chapter 4).

4. Multi-task Learning for Demographic-Adaptive Pre-training: we
propose a novel task-agnostic method to adapt the language representations for
the demographic factors of gender and age, using dynamic multi-task learning for
adaptation. The approach couples language modeling objectives with the prediction
of demographic classes to jointly learn the contextualized text representations while
being sensitive to demographic variations (see Chapter 5).

Analyses. Based on the newly introduced resources and methods outlined above, we
perform a series of analyses to gain deeper insights into adapting language models for
domains, languages, and social dimensions (C1, C2), and further enhance model trans-
parency with the concerns of human interpretability (C3).

1. To increase efficiency and alleviate the issue of catastrophic forgetting as compared
to full domain-adaptive pre-training (Gururangan et al., 2020), we demonstrate con-
sistent performance improvements of proposed modular and parameter-efficient
domain specialization approach in both single-domain and multi-domain scenarios.
Furthermore, we conduct systematic analyses to assess (a) the effect of domain-
aware token representation, and (b) the few-shot transfer capability, ensuring the
robustness of our proposed method (see § 3.2).

2. To handle the challenge of language ambiguity beyond English and leverage the
multilingual PLMs, we present a new framework for multilingual conversational
specialization of PLMs that aims to facilitate cross-lingual transfer for arbitrary
downstream TOD tasks. We systematically benchmark a number of zero-shot
and few-shot cross-lingual transfer approaches on Multi2WOZ dataset. Our
experimental results demonstrate that our proposed language adaptation approach
enables an exceptionally sample-efficient few-shot transfer for downstream TOD
tasks (see Chapter 4).
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3. To evaluate the effectiveness of demographic specialization in multilingual PLMs,
we evaluate across four languages (English, German, Danish, French) using a multi-
lingual corpus of reviews annotated with demographic information. The initial
experiments yield gains in most tasks and settings, consistent with earlier findings.
With further analysis, the results reveal that most gains can be attributed to con-
founding effects of language and/or domain adaptation. The findings suggest that
adaptation approaches in social dimensions – specifically in demographic factors,
fail to instill demographic knowledge into PLMs, making it an open problem in
the age of PLMs (see Chapter 5).

We hope that our work catalyzes future research into the challenges of the adaptation
barrier of PLMs and draws further attention to the development of more effective and
efficient approaches of adapting language models to applied perspectives. By incorpo-
rating interpretable analyses, we aim to provide deeper insights into the strengths and
limitations of adaptation methods for multidimensional aspects, ultimately leading to
more robust and reliable NLP applications.

1.3 Outline

This thesis consists of three parts, each of which covers multiple Chapters:

Part I. Contains the introduction (Chapter 1), which states the overview of the thesis.
The subsequent theoretical background (Chapter 2) presents the fundamental knowledge
related to language modeling and pre-trained language models. Building on the inherent
characteristics of pre-trained language models and insights from previous research, we
identify the challenges associated with adapting language models to multidimensional
aspects.

Part II. Comprises a detailed discussion, spanning from domain adaptation (Chapter 3),
language adaptation (Chapter 4) to demographic adaptation (Chapter 5). The discussion
includes the curation of datasets, the proposed task-agnostic approaches of adapting
language models to different objectives for diverse downstream tasks, and further ablation
studies to demonstrate the effectiveness (C1), efficiency (C2), and interpretability (C3) of
our proposed methods.

Part III. Concludes the thesis by summarizing the key findings and contributions.
We discuss the limitations and provide directions for future research (Chapter 6).
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Chapter 2

Theoretical Background

“All men have the stars, but they are not the same things for different people.
For some, who are travelers, the stars are guides.
For others they are no more than little lights in the sky.
For others, who are scholars, they are problems.”

Antoine de Saint-Exupéry
«Le Petit Prince»

In this Chapter, we first give an overview of the advancements in language modeling
techniques that have emerged in recent years (§ 2.1), and the extension of language models
to domain-specific and multilingual use cases (§ 2.2). Further, we delve into the concepts
of transfer learning and its effectiveness in adapting models for a wide range of NLP
tasks, discussing promising methods and recent research directions (§ 2.3). We then high-
light the challenges associated with language modeling and establish their connections to
the subsequent Chapters, where we propose adaptation approaches concerning multi-
dimensional perspectives: domain adaptation, language adaptation, and demographic
adaptation (§ 2.4).

2.1 Language Modeling
Language is like a vast and intricate puzzle, with countless pieces that fit together to form
meaning. Language models serve as tools to analyze and mimic this complex puzzle,
helping us process and interpret language patterns. Over the years, language modeling
has undergone a significant evolution, transitioning from early statistical methods to
modern neural language models. Fundamentally, language modeling involves the devel-
opment of machine-based systems that can comprehend and mimic human languages.
It encompasses the task of estimating the probability distribution of word sequences
within a language, thereby enabling the prediction of the most probable word or se-
quence of words to follow based on the words that have previously been observed. In
the early development stage of language models, statistical methods, such as n-gram
models, gained widespread popularity. These models relied on the frequency count of
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n-grams (i.e., sequence of n words) in a text corpus to predict the subsequent word in a
sequence. Despite their effectiveness, these models encounter difficulties in managing
long-range dependencies and overcoming data sparsity issues. With the advent of neural
networks, Bengio et al. (2000) addressed the limitation of data sparsity by introducing
neural language model, utilizing a shallow feed-forward neural network to learn dis-
tributed representations of words and the language model jointly.1 This approach tackled
the “curse of dimensionality” by representing words as dense, low-dimensional vectors,
known as word embeddings or embeddings, which encode semantic information based
on their contexts in the training corpus. The introduction of neural language model,
where word embeddings are learned parameters within the neural network, emerges as a
solution to represent words numerically and capture their semantic meanings based on
the distributional properties of words.

Subsequent work demonstrated the effectiveness of word embeddings in various NLP
downstream tasks (Collobert and Weston, 2008). Mikolov et al. (2013) further advanced
the quality of word embeddings with significant reduction of computational costs by
introducing Word2Vec. However, these methods were tied to fixed window size and
context-independent representation of words, struggling with handling long-range de-
pendencies, word sense variations (i.e., polysemy), and Out-of-Vocabulary (OOV) issues.
This led to the exploration of contextualized embeddings (Peters et al., 2018), which aimed
to capture not only the semantic meaning of individual words but also their meaning
within the context of a longer sentence or document.

More recently, attention-based models such as the Transformer architecture (Vaswani
et al., 2017) with deep neural networks have gained widespread recognition and adop-
tion in language modeling (Devlin et al., 2019). These models employ subword unit
tokenization (Gage, 1994; Sennrich et al., 2016) to better handle OOV issue. Moreover,
self-attention mechanisms enable them to assess and prioritize the relative significance
of different words in a sequence. By doing so, they are able to more effectively capture
long-term dependencies and handle polysemy with contextual representations, leading
to significant enhancements in performance across a range of NLP tasks.

In the following Sections, we will delve deeper into the history of language models
(§ 2.1.1), tracing their evolution and the key milestones. We explore the development
of language models from early approaches like n-grams to more sophisticated neural
language models with the discussion of word embeddings (§ 2.1.2) and Transformer
(§ 2.1.3). We hope to provide a comprehensive understanding of language modeling and
its role in advancing NLP techniques.

1The distributional hypothesis, proposed by Harris (1954), suggests that words with similar meanings
tend to occur in similar contexts, and was captured by Firth (1957) by the well-known quote: “You shall know
a word by the company it keeps.” Embeddings allow the quantification of these distributional properties
and enable capturing word relationships and similarities.
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2.1.1 From N-Gram Models to Neural Language Models

In the realm of natural language processing, language modeling stands as a fundamental
task, aiming to estimate the probability of a given sequence. The stream of language models
can be traced back to the N-gram model, which has paved the way for more advanced
neural language modeling techniques. To comprehend the connection between N-gram
models and neural language models, let us embark on the journey.

Language modeling is a probability distribution over word sequences. Given a se-
quence with a number of swords (w1, w2, . . . , ws; orw1:s), the probability of the entire
sequence P (w1:s) can be decomposed as the chain rule of probability (Jurafsky and
Martin, 2000):

P (w1:s) = P (w1)P (w2|w1)P (w3|w1:2) . . . P (ws|w1:(s−1))

=
s∏

k=1

P (wk|w1:(k−1))
(2.1)

The chain rule shows that the joint probability of the entire word sequences could be
estimated by multiplying the number of conditional probabilities of a word given previous
words. To reduce the difficulty of the modeling problem by taking advantage of the word
order, and the fact that temporally closer words in the word sequence are statistically
more dependent (Bengio et al., 2000), N-gram language models instead approximate
the probability of a word by just the last few words. N-gram language model (or N-
gram model in short) is a statistical approach to language modeling rooted in Markov
assumptions: the probability of a word depends only on the previous word(s), which
indicates that we can predict the probability of some future unit without looking too far
into the past (Jurafsky and Martin, 2000). N-gram models estimate the probability of
the next word in a sequence given the preceding N − 1 words. The probability of the
entire sequence P (w1:s) can be approximated by:

P (w1:s) ≈
s∏

k=1

P (wk|w(k−1):(k−N+1)) , (2.2)

where N is predefined and the probability is estimated by frequency counts of words
within the corpus.2

N-gram models offer a probabilistic framework for language modeling and capture
local dependencies within N words. Moreover, the simplicity and efficiency of the N-
gram models make it a valuable tool in various practical applications in NLP. For text
generation, N-gram models can be used to generate sentences by selecting the most
probable next word based on preceding words. In sentiment analysis, N-gram models can

2The N in N-gram models represent the number of words considered together as a unit. For example, in
a bigram (N=2; 2-Gram) model, two adjacent words are treated as a unit, while a trigram (N=3; 3-Gram)
model considers three adjacent words.
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2. THEORETICAL BACKGROUND

be employed to determine the sentiment of a given text by analyzing the frequency and
distribution of words or phrases that carry sentiments. By calculating the probabilities
of specific N-grams associated with positive or negative sentiments, N-gram models can
perform sentiment classification.

Despite their usefulness, N-gram models have notable limitations in three main
perspectives: (1) Limited comprehension of long-range dependencies: N-gram models
only consider a fixed number of preceding words (up to N-1), which restricts their ability
to capture broader context, often resulting in limited capacity and repetitive patterns.
(2) Lack of semantic understanding: no semantic information is conveyed by frequency
counts, which may struggle with understanding negations, sarcasm, or more complex
linguistic expressions of sentiment. (3) Data sparsity issue to handle out-of-vocabulary
words.3 The realization of the above issues has led to the development of more advanced
approaches: neural language models.

Neural Language Models To overcome the limitations of N-gram models, neural
language models emerged. Neural language models leverage the power of Artificial
Neural Networks (ANN) (or NN in short) to learn complex patterns and representations
from large-scale textual data. NN are a class of machine learning models inspired by
the structure and function of biological neurons in the human brain. They consist of
interconnected artificial neurons, called nodes, organized in multiple layers. Each node
receives input signals, processes them using an activation function, and produces an
output signal which further passes to other nodes. The connections between nodes are
represented by parameters, which determine the strength of the influence between nodes
and are learned during the machine learning process.

A neural network fθ(x) can be viewed as a function parameterized by θ that takes
an input x and maps it to a probability distribution over possible output(s) y. Any
(deep) neural networks with K layers and without residual connections (He et al., 2016),
could be considered as a composition of functions fk

θ (·), corresponding to each layer k
(Collobert et al., 2011):

fθ(x) = fK
θ (fK−1

θ (· · · f1
θ (x) · · · )) (2.3)

Compared to the neural network, a neural language model is identical to a (deep)
neural network: a function fθ(·) parameterized by a large number of parameters θ (nowa-
days millions to trillions) that takes input texts T , containing sequences of words (each
word is represented by a dense feature vector), and maps it to outputs y (if considering
classification tasks, then y would be a finite set of candidates):

fθ(T ) = fK
θ (fK−1

θ (· · · f1
θ (T ) · · · )) , (2.4)

3The number of unique N-grams grows exponentially with the size of vocabulary, leading to sparse data
and making it difficult to estimate probability and results in poor generalization and limited coverage of rare
or unseen n-grams.
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2. THEORETICAL BACKGROUND

where the objective of learning a good neural language model (i.e., good function) is to
learn the underlying distribution of words or sequences of words in a given language
corpus. This enables the model to learn meaningful representations of words that can be
effectively utilized for various NLP tasks.

Neural language models have transformed language processing through the utiliza-
tion of non-linear activation functions and layered architectures. Activation functions
play a significant role in introducing non-linearity within these models, enabling the
approximation of complex functions and facilitating the handling of language’s inherent
non-linear nature, including syntax, semantics, and contextual dependencies. Addition-
ally, the layered architecture of neural language models contributes to their non-linear
behavior as each layer applies non-linear transformations to input data, enabling the acqui-
sition of hierarchical representations and the capturing of increasingly intricate patterns
as information progresses through the layers. Neural networks have been widely used for
language modeling due to their ability to capture complex patterns and dependencies in
the data, which alleviates the major limitations of N-gram models:

(a) Capture semantic information: neural language models use distributed representa-
tions for words (i.e., word embeddings). These representations capture semantic
relationships between words, meaning that similar words are closer together in the
embedding space. As a result, neural language models can encode higher similarity
scores for relevant words and better capture semantic information.

(b) Avoid data scarcity problem: the number of unique N-grams grows exponentially
with the size of the vocabularies. This leads to the data scarcity problem, as many N-
grams may have low or zero occurrences in the training data, making it challenging
to estimate their probabilities accurately (Bengio et al., 2000).4 Neural language
models address the data scarcity problem by learning dense representations of words
that generalize well across different contexts. Instead of relying on exact matches of
N-grams, neural language models can learn from similar contexts, even if specific
combinations of words are rare in the training data. This allows neural language
models to better estimate probabilities for unseen word combinations.

(c) Mitigate local dependency issue: N-gram models have a fixed context window size,
which restricts the model’s ability to capture long-range dependencies between
words. Neural language models can capture long-range dependencies through ad-
vanced mechanisms (e.g., gating mechanism (Hochreiter and Schmidhuber, 1997),
self-attention mechanism (Vaswani et al., 2017)), taking into account information
from all context words in the sequence, enabling the model to capture long-range
dependencies effectively.

4While N-gram models demonstrate simplicity and effectiveness, incorporating longer contexts often
results in significant data scarcity challenges. Consequently, context length is typically restricted to 3 (i.e.,
trigram) or 4, leading to the neglect of any valuable information beyond this limited scope.
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2. THEORETICAL BACKGROUND

In this work, we focus on two major types of neural networks architectures applied to
neural language models: feed-forward, and Transformer-based (i.e., combine feed-forward
and self-attention mechanism). Feed-forward neural networks are foundational models
that process data in a forward direction, while Transformer-based models combine feed-
forward architecture with a self-attention mechanism to effectively capture dependencies
in sequential data. Neural language models utilizing feed-forward neural networks are
discussed in § 2.1.2 and the Transformer using feed-forward and self-attention mechanism
to capture word relationships in arbitrary longer contexts will follow in § 2.1.3.

2.1.2 Emergence of Word Embeddings

Neural language models have been introduced to address the limitations posed by N-
gram models, such as their inability to capture semantic information, handle data scarcity
issues, and manage local dependencies. One significant advancement is the introduction
of learning dense word representations with a feed-forward neural network.

Static word embeddings depict words as low-dimensional, real-valued vectors. This
method operates based on the distributional hypothesis (Harris, 1954), which asserts
that word meaning can be inferred from the distribution of surrounding context. This
hypothesis posits that words appearing in similar contexts share semantic meanings, thus
enabling the capture of semantic similarity between word pairs (i.e., similar words will
exhibit comparable contexts and possess similar dense vector representations).

The notion of static word embeddings as dense vectors (or distributed representa-
tions) was originally coined by Bengio et al. (2000), who trained the word embeddings
as feature vectors alongside the parameters of a neural language model (see Figure 2.1).
Building on this work, Collobert and Weston (2008) demonstrated the effectiveness of
pre-trained word embeddings as a powerful tool applied in various NLP downstream
tasks.5 Besides, a neural network architecture introduced in their paper has become the
prototype of the current research paper of training the neural-based word embeddings.

However, it was Mikolov et al. (2013) who brought the static word embeddings to great
attention with the development of the Word2Vec model. The architecture presented two
neural-based approaches with a shallow feed-forward neural network: Skip-Gram (SG)
and Continuous Bag-of-Words (CBOW). Algorithmically, both methods are analogous,
with the distinction that CBOW predicts target words based on source context words,
while SG performs the inverse by predicting source context words from the target words.
Although this inversion seems like an arbitrary choice, statistically, CBOW has the effect
of smoothing over a significant amount of distributional information by treating an

5Although the number of parameters in Bengio’s model scales linearly with the input window and
vocabulary size, computing output probabilities is much more computationally intensive than in n-gram
models, due to the need to compute activations for all vocabulary words. Collobert and Weston mitigated
this by using a pairwise ranking criterion instead of softmax, reducing computational demands and enabling
training on larger datasets.
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Figure 2.1: Overview of the neural probabilistic language model architecture introduced
by Bengio et al. (2000). The neural network model is developed to jointly (i) learn the
dense representations of each word, and (ii) estimate the probabilities for word sequences.
The model comprises an input layer with dense word representations, a hidden layer with
tanh activation, and an output softmax layer to predict the probabilities of words in the
vocabulary given the context of previous (n− 1) words. With vocabulary size |V |, the
parameters of the model are the word feature matrix C ∈ R|V |×m, the word features to
output weights W ∈ R|V |×(n−1)m, the output biases b (with |V | elements), the hidden
layer biases d (with h elements), the hidden-to-output weights U ∈ R|V |×h, and the
hidden layer weight matrix H ∈ Rh×(n−1)m, where h is the number of hidden units,
and m is the dimension of dense representation of each word.

entire context as a single observation. This smoothing turns out useful for learning better
representation of frequent words. On the other hand, SG treats each context-target
pair as a distinct observation, resulting in better representations for infrequent words.
To accelerate the training process, Mikolov et al. (2013) proposed an approach called
negative sampling, implemented specifically for SG method. Rather than predicting
the context word from the entire vocabulary in the training corpus, a small number of
suitable training instances are considered. In these selected instances, one word is the
actual context word, while the others are randomly chosen from the vocabulary. Despite
the efficiency, Word2Vec is tied to a fixed vocabulary size and cannot handle OOV words
effectively.
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2. THEORETICAL BACKGROUND

Subword-based embeddings (e.g., FastText, BPE, WPA, SPA) tackle the OOV prob-
lem by breaking words into multiple subword tokens, which can be combined to represent
the original word. FastText (Bojanowski et al., 2017) enriches the word representations
by treating each word as a collection of fixed-length N-grams (subword units). The word
representation is obtained by summing the representations of its N-grams representa-
tions trained with a SG model, which particularly benefits from handling OOV words
effectively. Alternatives such as Byte-Pair Encoding (BPE) (Gage, 1994; Sennrich et al.,
2016), Word-Piece Algorithm (WPA) (Schuster and Nakajima, 2012), and Sentence Piece
Algorithm (SPA) (Kudo and Richardson, 2018), advance subword-based embeddings
by introducing variable-length subwords (compared to fixed character N-grams). BPE
starts with the base vocabulary of individual characters and iteratively merges the most
frequent pair of tokens to form subwords, which is widely used in generative PLMs such
as GPT-2 (Radford et al., 2019). Similarly, WPA starts with individual characters and itera-
tively merges them into subwords that maximize the likelihood of the entire training data,
differing from BPE by ensuring the merging process optimally improves the likelihood
of the training data, which is used in models like BERT (Devlin et al., 2019). Both BPE
and WPA focus on word-level decomposition and are well-suited for languages with clear
word boundaries. SPA instead offers a more universal solution by tokenizing raw and
unsegmented text, which is effective for languages without clear word boundaries (e.g.,
Chinese). SPA is highly versatile and language agnostic, making it especially suitable for
multilingual or script-diverse contexts. Subword-based embeddings offer: (i) Enhanced
word representation at different levels of granularity, capturing morphological structure
(e.g., prefixes, suffixes) and handling OOV words effectively. (ii) Improved efficiency
through adaptable subword units, resulting in a more compact and expressive vocabulary
that captures the most frequent and informative subword patterns.

Despite the success, static word embeddings encounter three principal issues and
are further addressed by the Transformer (Vaswani et al., 2017) utilizing contextualized
embeddings in § 2.1.3:

(a) Lack of contextual information: consider words in isolation and do not take into
account the surrounding context. As a result, they fail to capture the full range of
contextual dependencies and nuances present in natural language.

(b) Difficulty in handling polysemy and homonymy: words with multiple mean-
ings (polysemy) or words that share the same form but have different meanings
(homonymy) pose challenges for static word embeddings. These models assign a
single embedding to each word, regardless of its context or meaning, resulting in
ambiguous representations.
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2. THEORETICAL BACKGROUND

(c) Constraint of dynamic adaptation: Static word embeddings are not designed to
adapt to new information or changes in language usage over time. They are fixed
and unable to learn from new data without retraining the entire embedding model,
hindering their ability to capture evolving language patterns and trends.

We further discuss their successors of utilizing contextualized embeddings: the Trans-
former (Vaswani et al., 2017).

2.1.3 Evolution of Transformer

The Transformer, introduced by Vaswani et al. (2017), revolutionized NLP by addressing
(i) the limitations of static word embeddings (see § 2.1.2), and (ii) the long-range depen-
dency issue from recurrent neural networks (RNNs; Hopfield (1982); Elman (1990)).6

An overview of the Transformer architecture is illustrated in Figure 2.2. The Transformer
architecture introduces self-attention mechanisms to simultaneously capture dependen-
cies across the entire input sequence. This parallel processing approach enables the
Transformer to overcome the limitations of RNNs and their variants, significantly re-
ducing training time while effectively capturing long-range contextual information and
outperform in various NLP tasks.

The Transformer architecture consists of two main components: encoder and decoder.
The encoder in the Transformer processes the input sequence, applying self-attention
mechanisms and feed-forward networks to capture dependencies and encode the infor-
mation effectively. The encoded representations capture the contextual information of
the input sequence and serve as the input for the decoder. The decoder then utilizes the
encoded information to generate the output sequence. In this Section, we would intro-
duce the Transformer architecture focusing on the overview of embeddings, multi-head
self-attention mechanism and encoder-decoder architecture.

Embeddings. In the Transformer architecture, two primary types of embeddings are
used: token embeddings and positional encodings. Token embeddings represent individual
tokens or words in the input sequence. Each token is initially represented as a dense vector,
capturing its semantic and syntactic properties (here: input and output embedding).
These token embeddings are learned during the training process and can be fine-tuned to
improve the model’s performance on specific tasks. Vaswani et al. (2017) utilized subword-
based token embeddings by employing BPE (Gage, 1994; Sennrich et al., 2016). This allows

6Recurrent Neural Networks (RNNs) are tailored for sequential data processing, maintaining a hidden
state to retain information from prior time steps. They iterate over input sequences, updating their hidden
state based on the current input and previous states. However, RNNs are hindered by the vanishing gradient
problem, where gradients become increasingly small as they propagate back through time during training.
This problem limits their ability to capture long-range dependencies in sequences. Long Short-Term Memory
Networks (LSTMs) (Hochreiter and Schmidhuber, 1997) is a variant of RNNs developed to mitigate the
gradient vanishing problem with memory cells and gating mechanisms to manage information flow. Despite
their advancements, LSTMs still struggle with sequential processing and can be computationally intensive.
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the model to effectively handle OOV words by tokenizing them into subword units. Since
the Transformer lacks explicit sequential information like recurrent models (Hopfield,
1982; Elman, 1990), positional encoding is added to the token embedding, enabling the
model to incorporate positional information of each token in the sequence. By combining
the token embedding with the positional encoding, the Transformer model can effectively
capture both the semantic properties of individual tokens and their relative positions in
the sequence.

Multi-Head Self-Attention Mechanism. To enable the model to determine the
importance of tokens within an input sequence based on their contextual relevance,
the self-attention mechanism is incorporated into the Transformer architecture. The
term “self-attention” refers to the fact that attention scores are computed within the
same sequence. This mechanism allows the model to attend to different positions or
tokens within the sequence and learn their dependencies. The self-attention mechanism
utilizes scaled dot-product attention, and involves the creation of three attention matrices:
query matrix Q, key matrix K , and value matrix V . These matrices are formed by an
input matrix X , where each row represents an input token representation xi (i.e., the
combination of its token embedding and positional encoding). By multiplying the input
matrix with three trainable weight matrices (WQ, WK , W V ), three attention matrices
are formed: query matrix Q, key matrix K , and value matrix V :

Q = XWQ; K = XWK ; V = XW V , (2.5)

where each row of each weight matrix corresponds to the query vector qi, key vector ki,
and value vector vi for an input token representation xi.

The self-attention mechanism utilizes the query, key, and value matrix (Q, K , andV )
to compute attention scores. The attention scores determine the importance or relevance
of each token in the input sequence in relation to other tokens. To calculate the attention
scores, the dot product is computed between the query matrixQ and key matrixK , scaled
by a factor

√
dk (dk is the dimension of query and key vector) to ensure stable gradients,

and passed through a softmax operation to normalize the scores (i.e., making all values
positive and summing up to 1). To weight the value vectors, the value matrix V is then
multiplied by the attention scores. This approach allows the model to focus on preserving
the values of the relevant words while minimizing the influence of irrelevant words. The
resulting weighted value matrix serves as the final attention output (Equation 2.6), further
processed by subsequent layers in the Transformer architecture:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.6)

The self-attention mechanism allows the model to attend to different parts of the input
sequence and capture the long-range dependencies and relationships between tokens,
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contributing to its ability to learn contextual representations effectively. Multi-head
self-attention is an extension of the self-attention mechanism: instead of relying on a
single attention head (i.e., a single set of WQ, WK , W V ), it utilizes multiple attention
heads to capture different types of dependencies and attend to multiple aspects of the
input sequence simultaneously. For example, one attention head might learn information
between subject-verb relationships, while the other might focus on capturing long-range
dependencies between tokens. In multi-head self-attention, the input token represen-
tation is multiplied by the corresponding weight matrices to obtain the query, key, and
value vectors specific to each attention head. The number of attention heads m is a
hyperparameter that determines the capacity of the model to capture different patterns
and dependencies within the sequence.7

MultiHeadAttention(Q,K, V ) = Concat(head1, head2, . . . , headm)WO

where headi = Attention(QWQ
i ,KWK

i , V W V
i )

(2.7)

To enhance training efficiency, the attention computations for each head are per-
formed in parallel, and the results are concatenated and projected using an additional
weight matrixWO to form the final output. Specifically, for each set of attention matrices
of each head are: WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv . After con-
catenation, the projected weight matrix is: WO ∈ Rhdv×dmodel . According to Vaswani
et al. (2017), the Transformer model employedh = 8 heads anddmodel = 512 embedding
dimensions, which gives dk = dv = dmodel/h = 64. The reduced dimension of each
head allows for efficient parallelization while maintaining the computational cost similar
to that of single-head self-attention with full dimensionality.

Encoder-Decoder Architecture. The Transformer architecture was originally intro-
duced as a sequence-to-sequence model specifically for machine translation (MT) tasks.
This architecture utilizes a multi-layer encoder-decoder framework as depicted in Fig-
ure 2.2. Encoder consists of N identical layers, each including a multi-head self-attention
and feed-forward network sub-layer. A residual connection (He et al., 2016) is employed
around each of the two sub-layers to allow the model to retain and propagate useful in-
formation from the earlier layer to the subsequent layer, avoiding the gradient vanishing
problem.8 The residual connection is then followed by layer normalization (Ba et al.,

7Increasing the number of attention heads allows for more diverse and fine-grained attention patterns to
be learned. However, it also increases the computational complexity of the model.

8Deep neural networks often suffer from the vanishing gradient problem, where gradients become
extremely small as they propagate through many layers, eventually vanishing to zero. When the gradients
vanish, it becomes challenging for the network to update the weights of earlier layers effectively. This leads
to slower convergence and can prevent the network from learning complex patterns and dependencies in
the data. Residual connections allow the gradients to flow more easily through the network by providing
shortcuts from earlier layers to later layers. This helps to mitigate the vanishing gradient problem and
facilitates better optimization during training.
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2016) to mitigate the internal covariate shift problem.9 Decoder has similar architecture
as encoder consisting of N identical layers, except it incorporates the encoder output
with a second multi-head self-attention module. Besides, the decoder utilizes masked
multi-head self-attention while preventing the inputs from attending to future positions.
This is crucial to ensure that the model only attends to information that is available at
the current decoding step to prevent reverse information flow.

The last layer of the Transformer is typically one or more linear layers followed by a
softmax function. The number of linear layers depends on the target tasks, which learn
representations into the desired output format for the task at hand. By employing this final
layer, the Transformer can make predictions or generate text sequences by mapping its
learned representations to class labels or specific tokens from a fixed vocabulary, facilitating
various NLP tasks such as sentiment analysis and machine translation.

The advancement of the Transformer architecture enables the model to effectively en-
code the contextual information in the input sequence, capture long-range dependencies,
and process sequences through efficient parallel training. The modularity and adaptability
of Transformer architecture have inspired the development of language models tailored
to specific tasks, where subsequent research has shown that using decoder-only layers for
auto-regressive models (Radford et al., 2018) or encoder-only layers for bidirectional auto-
encoding models (Devlin et al., 2019; Liu et al., 2019c) can be sufficient. Decoder-only
model excels in text generation tasks due to its autoregressive nature, while encoder-only
model is highly effective for NLU tasks because of its bidirectional contextual represen-
tation (Wu et al., 2020).10 These Pre-trained Language Models (PLMs) utilizing the
Transformer architecture have led to significant improvements in various NLP tasks,
making the Transformer a highly influential model architecture in the NLP field. In
the following Section, we will delve exclusively into the advancements of encoder-based
pre-trained Transformer-based language models. Due to the focus on NLU tasks, we
would rely on the strengths of encoder-only models (Devlin et al., 2019; Liu et al., 2019c),
which leverage bidirectional learning for better capturing and handling NLU tasks by
understanding the nuances and intricacies within text, and the effective use of token
representations (i.e., Embeddings layer) (Reimers and Gurevych, 2019; Su et al., 2023).
Specifically, the exploration would cater the PLMs to various domains and languages
usage (Wu et al., 2020; Conneau et al., 2020a) (§ 2.2). We hope to provide a comprehen-
sive understanding of how language models can continue to evolve to meet the growing
demands of domain- and language-related applications.

9In deep neural networks, the distribution of inputs to each layer can change during training, making it
difficult for subsequent layers to learn effectively. Layer normalization normalizes the inputs to each layer,
making the network more robust to these distribution shifts and ensuring that the inputs of each layer are
centered and have unit variance. This stabilizes the training process and allows for faster convergence.

10NLU tasks have also been cast as text generation setup (Brown et al., 2020), highlighting the versatility
of decoder-only models. However, encoder-only models remain highly effective for NLU tasks because of
their bidirectional contextual representation (Wu et al., 2020).
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2.2 Pre-trained Language Models

Building upon the success of the Transformer, Pre-trained Language Models (PLMs)
utilizing Transformer-based architecture (Radford et al., 2018; Devlin et al., 2019; Liu
et al., 2019c) has emerged as a transformative breakthrough in the field of NLP.11 These
PLMs typically undergo a two-stage training process. In the first stage, known as pre-
training, the model is trained on a massive (un)labeled text corpora, which helps to
grasp the statistical patterns and contextual representation of words presented in the
data. The second stage, known as fine-tuning, involves training the pre-trained model
further on specific downstream tasks. This stage typically requires labeled data and
task-specific annotations. By fine-tuning the pre-trained model on specific downstream
tasks (e.g., sentiment analysis, named entity recognition), the model’s parameters are
adjusted to better align with the specific task’s objective, enabling it to make accurate
predictions or generate desired outputs. PLMs achieve state-of-the-art performance,
making them invaluable assets for a wide range of NLP applications. We would introduce
two prominent encoder-based PLMs: BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019c), utilized in our following Chapters and explore their advanced domain and
multilingual pre-training variations. The overall comparisons are shown in Table 2.1.

2.2.1 General-Purpose Pre-training

General-purpose pre-training refers to the training of a language model on a large corpus
of unlabeled text data from heterogeneous sources. The objective is to develop a deep
understanding of language and capture general language representations. These pre-
trained models are designed to be versatile and perform well across a wide range of NLP
tasks. Here we introduce two widely-used variations: BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019c).

Bidirectional Encoder Representations from Transformers (BERT). BERT pro-
posed by Devlin et al. (2019) is a Pre-trained Language Model (PLM) that builds upon
the Transformer architecture. While the Transformer architecture consists of both en-
coder and decoder components, BERT focuses primarily on the encoder part.12 For the
pre-training stage, BERT employs two objectives for self-supervised training as shown
in Figure 2.3: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP).
MLM, referred to as Cloze task (Taylor, 1953), is a token-level prediction task that involves
masking certain tokens in each training example and training the model to predict the
masked tokens based on the surrounding context. MLM enables the model to grasp bidi-

11For brevity, in the following Sections and Chapters, we will use pre-trained language models (PLMs) to
refer to all notions of pre-trained Transformer-based language models.

12BERT is originally designed for natural language understanding (NLU) tasks, aiming to learn contextu-
alized word representations.
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Model BERT
(Devlin et al., 2019)

mBERT
(Devlin et al., 2019)

TOD-BERT
(Wu et al., 2020)

Purpose General Multilingual Domain

Tokenization WPA WPA WPA
# Params 109 M (cased) / 110 M (uncased) 179 M 110 M
# Vocabs ‡ 28996 (cased) / 30522 (uncased) 119547 30524 (uncased)
Objective MLMS + NSP MLMS + NSP MLMD + RCL
Training Data 16 GB - 1 GB
# Languages 1 (EN) 104 1 (EN)

Model RoBERTa
(Liu et al., 2019c)

XLM-R
(Conneau et al., 2020a)

TOD-XLMR
(Hung et al., 2022b)

Purpose General Multilingual Domain & Multilingual

Tokenization bBPE SPA SPA
# Params 125 M 279 M 279 M
# Vocabs ‡ 50265 250002 250004
Objective MLMD MLMD MLMD + RCL
Training Data 160 GB 2.5 TB 1 GB
# Languages 1 (EN) 100 100

Table 2.1: Overview of encoder-based Transformer models. The listed models for compar-
ison are utilized in the following Chapters. We consider only the base architecture with
12 layers for each model. It is noted that there might be case-sensitive (cased) or case-
insensitive (uncased) variations. MLMS refers to static masked tokens and MLMD refers
to dynamic masking of MLM. Tokenization methods are discussed in § 2.1.2. ‡Unless
explicitly specified, the vocabulary size corresponds to the cased model.

rectional relationships optimized on the token level. NSP aims to predict whether two
sentences are consecutive in the original text or randomly sampled from different sources.
This teaches them to comprehend the sentence relationship and grasp the coherence
and context transitions within the sentence level. To represent the input, BERT utilizes
Word Piece Algorithm (WPA) (Schuster and Nakajima, 2012) for breaking the words
into subword tokens, allowing effective handling of known and unknown words. BERT
incorporates special tokens like the separator token ([SEP]), classification token ([CLS]),
and padding token ([PAD]). The [SEP] token indicates different parts of the input se-
quence, while the [CLS] token represents the entire input sequence for classification
tasks, and [PAD] token is used to fill the remaining positions in the input sequence of
varying lengths. These special tokens, along with tokens from vocabulary, are embedded
as token embeddings and combined with position and segment embeddings to form the
first layer of the model. The original BERT model is pre-trained on BookCorpus (Zhu
et al., 2015) and English Wikipedia. The pre-trained BERT model can be used to gen-
erate contextualized input representations as features (Devlin et al., 2019; Reimers and
Gurevych, 2019) or can be directly fine-tuned for downstream tasks (Devlin et al., 2019).
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Figure 2.3: Overview of BERT pre-training architecture. BERT employs two objectives
for self-supervised training: Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP).

Robustly Optimized BERT Pre-Training Approach (RoBERTa). RoBERTa is a
variant of the BERT model that was introduced by Liu et al. (2019c). While RoBERTa
shares many similarities with BERT, there are a few key differences in their training proce-
dures. One major difference is in the training data. RoBERTa is trained on a significantly
larger corpus that includes original BERT training data and additional publicly available
text from the internet (BERT: 16 GB vs. RoBERTa: 160 GB), which allows the model to
capture more diverse and comprehensive language patterns. RoBERTa eliminates the
NSP task, while introducing dynamic masking (MLMD) so that a new masking pattern
is generated each time a sentence is fed into training, whereas BERT uses static masked
tokens (MLMS) during training. This dynamic masking approach allows RoBERTa to
benefit from more training steps and effectively utilize more data during pre-training. It
also applies various optimization techniques, such as training with larger batches, and
using byte-level Byte-Pair Encoding (bBPE) (Radford et al., 2019) to efficiently handle
different character encodings. Overall, these modifications in the training process of
RoBERTa lead to improved performance compared to BERT model, demonstrating the
effectiveness of the optimized pre-training approach with larger training data.
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2.2.2 Multilingual Pre-training

Multilingual pre-training focuses on training a model on a diverse multilingual corpus to
efficiently comprehend and process multiple languages. This approach acknowledges
the importance of language representations capable of accommodating the nuances and
complexities of different languages while utilizing a shared set of subword units during
pre-training. The models vary from bilingual (Kim et al., 2019) to multilingual (Conneau
and Lample, 2019; Conneau et al., 2020a), aiming to develop language representations
that can handle a multitude of languages effectively. This enables the pre-trained language
model to perform effectively on various multilingual tasks, showcasing its versatility
and adaptability across different languages (Pires et al., 2019). Here we introduce two
prominent multilingual encoder-based PLMs: mBERT (Devlin et al., 2019) and XLM-
R (Conneau et al., 2020a), utilized in the subsequent Chapters.

Multilingual BERT (mBERT). mBERT is a multilingual variant of BERT, trained
on a multilingual corpus of 100+ languages sourced from Wikipedia.13 It has the abil-
ity to handle multiple languages effectively and has been extensively used for various
multilingual NLP tasks (Wu and Dredze, 2019; Kassner et al., 2021). Identical to BERT,
mBERT pre-training involves two training objectives (MLM, NSP) and the Word Piece
Algorithm (WPA) (Schuster and Nakajima, 2012) which utilizes the shared subword units
across different languages, enabling consistent tokenization and facilitating cross-lingual
transfer of learned representations (Karthikeyan et al., 2020).

Unsupervised Cross-Lingual Representation Learning at Scale (XLM-R). XLM-
RoBERTa (XLM-R) (Conneau et al., 2020a) is an enhanced version of XLM (Cross-
lingual Language Model Pre-training; Conneau and Lample (2019)) and RoBERTa (Liu
et al., 2019c). Conneau and Lample (2019) initially proposed XLM, utilizing Translation
Language Modeling (TLM) to leverage parallel data from Wikipedia for cross-lingual
pre-training. XLM-R follows similar training setups as XLM, while incorporating the
following distinct elements: (i) Expand training data: XLM-R is instead trained on a vast
multilingual unlabeled corpus (2.5 TB) of 100 languages sourced from CCNet (Wenzek
et al., 2020). Besides, the amount of data for low-resource languages is increased by
two orders of magnitude on average. (ii) Avoid parallel training data: XLM leverages
parallel data for cross-lingual supervision, while XLM-R is trained with dynamic masking
(MLMD) training objective (i.e., similar to RoBERTa, without NSP) on a large scale
multilingual dataset without utilizing parallel data for cross-lingual supervision. (iii)
Leverage Sentence Piece Algorithm (SPA) for tokenization: instead of BPE (Gage, 1994;
Sennrich et al., 2016), XLM-R employs SPA (Kudo and Richardson, 2018), which allows
for more fine-grained tokenization, making it particularly advantageous for languages

13https://github.com/google-research/bert/blob/master/multilingual.md
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lacking clear word boundaries. Compared to mBERT, XLM-R encodes a larger vocab-
ulary size (mBERT: 120 K vs. XLM-R: 250K), resulting in capturing a more extensive
range of subword units and linguistic patterns across languages.

2.2.3 Domain-Specific Pre-training

Domain-specific pre-training involves training a model on a diverse range of domain-
specific corpus. The objective is to develop domain-specialized language representations.
This process allows the language model to adapt and learn domain-specific features,
vocabularies, and patterns that are relevant to the target domain(s). Domain-specialized
language models offer more effective and efficient solutions for domain-specific tasks and
applications. They can provide more accurate predictions, better insights, and improved
performance compared to general-purpose pre-training models that lack domain-specific
knowledge. For the purpose of conversational knowledge, two domain-purpose pre-
training models are utilized in the following Chapters: TOD-BERT (Wu et al., 2020)
and TOD-XLMR (Hung et al., 2022b).

Task-Oriented Dialog BERT (TOD-BERT). TOD-BERT (Wu et al., 2020) is a
domain-specialized variant of BERT model. It is designed for English task-oriented
dialog (TOD) systems, aiming to assist users in completing specific tasks (e.g., booking
a flight or making a restaurant reservation), through conversational interactions. To
better model dialog behavior during pre-training, TOD-BERT continually trains on
general-purpose BERT model on nine English TOD datasets across 60+ subdomains to
capture conversational TOD structure. During pre-training, two objectives are jointly
trained: (i) MLM: similar to RoBERTa with dynamic masking, and (ii) RCL (Response
Contrastive Loss): a newly proposed method utilizing in-batch contrastive learning to
capture sequential order, structural information, and response similarity within dialogs.
TOD-BERT outperforms BERT on four TOD downstream tasks, and shows a stronger
few-shot ability to mitigate the data scarcity problem for TOD.

Task-Oriented Dialog XLM-R (TOD-XLMR). TOD-XLMR, proposed by Hung
et al. (2022b), is a domain-specialized variant of XLM-R model, which will be demon-
strated in Chapter 4. Unlike TOD-BERT, tailored for English-only TOD systems, TOD-
XLMR is specifically designed to cater needs of multilingual TOD systems. To encode
conversational structure to a multilingual pre-trained language model, TOD-XLMR is
trained in the same manner as TOD-BERT: employing two training objectives (MLM,
RCL) on nine English TOD datasets to cater conversational structure in XLM-R. Since
TOD-XLMR has been conversationally specialized only in English data, it is shown to be
beneficial to further language-specific training through transfer learning approaches.
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2.3 Enhancing Transfer Learning through Adaptive Pre-
training

The field of NLP has experienced remarkable progress with the advent of PLMs (see § 2.1.3).
These models typically employ a sequential transfer learning paradigm, involving a two-
stage training process: pre-training then fine-tuning. In the pre-training phase, the models
are pre-trained on massive corpora to capture linguistic patterns and semantic represen-
tations. This initial training phase equips the models with a broad understanding of
language(s). Subsequently, they are fine-tuned on downstream tasks, typically smaller
task-specific datasets compared to the pre-trained data. The sequential transfer learn-
ing approach allows the general language knowledge gained during pre-training to be
effectively transferred and adapted, refining the model’s capabilities to meet the specific
requirements of the target tasks through further fine-tuning. However, sequential transfer
learning has certain limitations. While PLMs capture a broad range of language features,
they may not possess domain-specific, language-specific, or demographic-aware knowl-
edge necessary for optimal performance on downstream tasks. Additionally, catastrophic
forgetting, where fine-tuning disrupts previously learned representations, can hinder the
transfer of knowledge across tasks (McCloskey and Cohen, 1989; French, 1999).

In the following Sections, we will delve into the fundamentals of transfer learning,
specifically focusing on the sequential transfer learning paradigm. We will then discuss
the limitations associated with sequential transfer learning and introduce a more recent
approach known as adaptive pre-training (Gururangan et al., 2020). The adaptive pre-
training approach aims to enhance knowledge transfer through a three-stage training
paradigm: pre-training, adaptation, then fine-tuning, utilizing pre-trained language mod-
els. This approach effectively overcomes the limitations of sequential transfer learning
by incorporating an adaptation stage between pre-training and fine-tuning. It offers a
more efficient mechanism for acquiring specialized knowledge while retaining previously
acquired information during the pre-training phase.

2.3.1 Transfer Learning and Adaptive Pre-training

Transfer learning in NLP encompasses the notions of a source and a target, with the
objective of extracting knowledge from a source setting and applying it to a distinct target
setting (Pan and Yang, 2010). The source refers to the dataset that serves as the knowledge
source for transferring information. It can be a large-scale general dataset, a dataset specific
to a particular subdomain(s), or a collection of language(s) corpora. On the other hand,
the target refers to any NLP tasks (e.g., sentiment analysis, named entity recognition).
The fundamental principle of transfer learning in NLP entails utilizing pre-existing
knowledge or representations from the source to improve the model’s performance on
the target task. By effectively transferring knowledge from the source to the target, models
can leverage prior learning to achieve better generalization on unseen tasks related to
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effectively tackling a wide range of NLP tasks.
Sequential transfer learning is a specific approach within transfer learning that in-

volves utilizing a sequence of related tasks to enhance model performance. It aims to
capture and transfer knowledge from earlier tasks to improve performance on subsequent
tasks. Pre-trained Transformer-based language models (see § 2.2), like BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019c) follow the two-stage training paradigms
sequentially: pre-training, then fine-tuning. In the pre-training stage, the language model
is trained on a large corpus of text data to learn general language representations. These
representations capture the relationships and patterns within the language. In the fine-
tuning stage, the word or wordpiece (Schuster and Nakajima, 2012; Basmatkar et al.,
2019) representations learned during pre-training are reused in supervised training for a
downstream task, with fine-tuning (i.e., optionally updates) to adapt the model to the
task-specific knowledge required for the downstream task.

Following the two-stage sequential transfer learning paradigm enables the model to
benefit from the general language understanding acquired during pre-training and later
adapt to the specific target task. Approaches based on sequential transfer learning have
achieved state-of-the-art results on a wide range of NLP tasks. However, the two-stage
sequential transfer learning paradigms face the following major challenges:

(1) Mismatch of Domain(s) and Language(s): The representations learned from the
pre-trained model might not be perfectly aligned with the domain, or language-
specific tasks, which can limit its capacity on downstream tasks performance. This
is commonly addressed as a problem of domain shift (Lekhtman et al., 2021; Guo
and Yu, 2022), where the data distribution for pre-training is different from fine-
tuning data, which can incur negative transfer in performance during fine-tuning,
as the model’s knowledge might not be directly applicable to the new domain(s) or
language(s).

(2) Scarcity of Task-Annotated Data: Fine-tuning typically requires a task-specific
annotated dataset. However, in many real-world scenarios, obtaining a large labeled
dataset for the target task might be challenging or expensive, leading to suboptimal
results due to the scarcity of task-annotated data.

To overcome these challenges and enhance the model adaptability of sequential trans-
fer learning, an adaptive pre-training approach with a three-stage process is addressed (Gu-
rurangan et al., 2020; Jiang et al., 2022): pre-training, adaptation, then fine-tuning. The
overview of the adaptive pre-training utilizing pre-trained language models is depicted
in Figure 2.4. The general workflow of adaptive pre-training (i.e., a three-stage sequential
transfer learning) involves the following steps:
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I. Pre-training II. Adaptation III. Fine-tuning
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Data

Pre-trained Model
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Objective(s)

Pre-trained Model

Adaptive Model
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Evaluation
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Adaptive Model

Fine-tuned Model

Figure 2.4: Overview of the adaptive pre-training framework. The framework involves a
three-stage process: Pre-training, Adaptation, Fine-tuning.

• Pre-training: This stage involves training a language model on a vast amount of het-
erogeneous datasets (typically sourced from general web resources (Liu et al., 2019c),
domains (Wu et al., 2020), languages (Conneau et al., 2020a)). Self-supervised learn-
ing objectives, such as next sentence prediction (Devlin et al., 2019) and masked
language modeling (Devlin et al., 2019; Liu et al., 2019c), are commonly conducted
during pre-training. The process serves as a foundation for the natural language
understanding of the model, capturing the contextual representation of tokens,
which are essential for subsequent tasks.

• Adaptation: Following pre-training, the model is further trained on a smaller corpus
of narrower domain- and/or language-specific (un)labeled data. The continual
learning phase enables the model to acquire specialized knowledge, tailoring it to
become more relevant for the target tasks during fine-tuning. The primary focus
in this stage shifts towards adapting the model’s representations to align with the
domains and languages associated with the downstream tasks, which mitigates the
scarcity of task-annotated data, as mentioned above.

• Fine-tuning: Once the model has undergone adaptation with acquired knowledge,
it can be fine-tuned on a labeled dataset tailored to a specific downstream task in a
particular domain and/or language. The fine-tuning process involves updating the
model’s parameters to make it more suitable and accurate for the task at hand. This
stage ensures that the model becomes specialized for the target task while leveraging
the knowledge captured during pre-training and adaptation.
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Figure 2.5: Overview of the transfer learning taxonomy proposed by Ruder (2019). The
taxonomy is structured according to: (a) whether the source and target settings involve the
same task; (b) the characteristics of the source and target domains; and (c) the sequence
in which the tasks are acquired.

By incorporating an adaptation phase between pre-training and fine-tuning, the
intermediary step allows the model to better align its representations to the task at hand.
This adaptive pre-training approach offers a more flexible and effective way to utilize PLMs
in NLP tasks.

2.3.2 Transferability of Pre-trained Language Models

Building upon the notion of transferability in language models, our work draws inspi-
ration from the research conducted by Gururangan et al. (2020). We adopt and refine
the transfer learning techniques proposed in their study, which proved to be successful
in harnessing the capabilities of PLMs. This enables us to leverage the knowledge and
representations learned during pre-training, conduct an adaptation step for acquiring
specialized knowledge, and further fine-tune on various downstream tasks. The adap-
tation phase in the adaptive pre-training framework plays a vital role in harnessing the
power of transferability for PLMs, which is also the core of adapting different transfer
learning methods, offering flexible and highly effective solutions for leveraging PLMs
regarding transferability.

To classify the field of transfer learning and its methods, a taxonomy was introduced
by Pan and Yang (2010) and later adapted to the field of NLP by Ruder (2019). The
taxonomy as illustrated in Figure 2.5 comprises the following categories: transductive
learning (domain adaptation, cross-lingual transfer) and inductive learning (multi-task
learning, sequential transfer learning). These categories provide a rough classification
based on the similarity between source and target tasks, the nature of the domains involved,
and the order in which tasks are learned. Transductive learning focuses on adapting
models across domains or languages, while inductive learning explores knowledge transfer
from multiple tasks or sequentially learned representations.
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Figure 2.6: Overview of the transfer learning methods utilized in the adaptation phase of
the adaptive pre-training framework proposed in this work. Each Chapter (Ch3, Ch4,
Ch5) employs a combination of transfer learning methods. This integrative approach
allows for a comprehensive adaptation strategy that enhances the model’s capability to
handle multidimensional adaptation and tasks effectively.

However, the proposed taxonomy has certain limitations, as it fails to consider the
practical aspects of combining multiple transfer learning methods, such as domain adap-
tation with sequential transfer learning. Moreover, determining the degree of similarity
or difference between source and target tasks can be challenging, as the categories in the
taxonomy are not mutually exclusive. To address these limitations and emphasize the
flexibility and adaptability of transfer learning methods in the adaptation phase for har-
nessing the power of PLMs in adaptive pre-training discussed in the subsequent Chapters,
it is essential to acknowledge the interconnectedness and overlaps between different ap-
proaches. By exploring the interconnections among various transfer learning techniques,
we can learn more robust and versatile representations tailored for multidimensional
adaptation of NLP tasks – for domains, languages, and social dimensions in this work.
In the upcoming Chapters (Chapter 3, Chapter 4, Chapter 5), we delve into the core
of the adaptive pre-training framework utilizing transferability of PLMs. The transfer
learning methods conducted in the adaptation phase of the adaptive pre-training frame-
work are depicted in Figure 2.6. The Figure presents a comprehensive integration of three
transfer learning methods for adaptation: domain adaptation, cross-lingual transfer, and
multi-task learning. These approaches are strategically employed to augment the adaptive
pre-training process and enhance its effectiveness. By incorporating these transfer learning
methods, we aim to showcase the remarkable flexibility and adaptability of the adaptive
pre-training framework leveraging PLMs. We would introduce the concepts of domain
adaptation, cross-lingual transfer, and multi-task learning in the following.
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Domain Adaptation. The method specifically focuses on transferring knowledge or
representations from a source domain to a target domain where the distributions of data
may differ. The goal is to bridge the domain gap and improve the performance of the
target task in the new domain, especially when the domain-specific target tasks suffer from
data scarcity issues. Domain adaptation techniques often involve aligning the source
and target domains, either by feature transformations or by learning domain-invariant
representations. Recent advancements in this field have focused on unsupervised domain
adaptation, where labeled target domain data is not required for domain adaptation. Ram-
poni and Plank (2020) provided an overview of unsupervised domain adaptation methods
categorized into: model-centric, data-centric, and hybrid approaches. In this work, we
focus on data-centric methods, leveraging in-domain data for adaptive pre-training utiliz-
ing PLMs for task-oriented dialogs (Chapter 3), multilingual dialogs (Chapter 4), and
demographic factors (Chapter 5).14

Cross-Lingual Transfer. This is a technique that facilitates the transfer of knowledge
across different languages. The main objective is to align the representation spaces of
text between two or more languages. This approach is especially valuable when dealing
with language-specific target tasks that suffer from data scarcity issues (e.g., resource-lean
languages). To achieve the alignment of representation spaces, recent work proposed
unsupervised methods or methods that incorporate cross-lingual supervision signals,
either relying on cross-lingual word embedding spaces (Ruder et al., 2019) or more recent
multilingual language models (Pires et al., 2019; Lauscher et al., 2020; Conneau et al.,
2020b). These approaches aim to bridge the linguistic and semantic gaps across languages,
enabling effective knowledge transfer and improving performance on tasks in resource-
lean languages. In the subsequent Chapters, we analyze how cross-lingual transfer helps
to improve downstream task performance in both zero-shot and few-shot scenarios by
utilizing multilingual pre-trained language models (i.e., mBERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020a)) in task-oriented dialogs (Chapter 4) and whether
language-adaptive pre-training helps in multilingual demographic adaptation (Chapter 5).

Multi-Task Learning. In addition to domain adaptation and cross-lingual transfer,
the incorporation of multi-task learning enriches the adaptive pre-training process by
enabling the model to learn multiple tasks simultaneously (Caruana, 1997). Through joint
training on various tasks alongside in-domain or language-specific texts, the model can
effectively extract and leverage shared information across tasks. This multi-task learning

14It is noted that the term domain adaptation is widely used in various concepts. In the context of this
thesis, to make a clear distinction, domain-specific pre-training (see § 2.2.3) refers to the initial training phase,
where a model is trained on a domain-specific corpus encompassing various subdomains. And domain
adaptation (or domain-adaptive pre-training introduced in Gururangan et al. (2020)) refers to the process
of further training a general- or domain-specialized pre-trained model on specific subdomains or narrower
domains.
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approach facilitates the transfer of knowledge acquired from one task to improve its
performance on other tasks, encouraging generalization across multiple tasks due to the
simultaneous training process. Recent research has focused on conducting multi-task
learning during the task fine-tuning stage to jointly learn multiple tasks at once (Guda
et al., 2021), while we instead focus on the adaptation stage (Liu et al., 2019b; Aghajanyan
et al., 2021), which has greater capability to incorporate (un)labeled data for adaptive pre-
training while mitigating the scarcity of task annotated data. We analyze how multi-task
learning impacts the model’s performance concerning demographic factors (Chapter 5).

2.4 Challenges
Adaptive pre-training methods have demonstrated significant success in a wide range
of downstream tasks, spanning various aspects from (i) domain-adaptive pre-training
for applications such as dialog understanding (Wu et al., 2021) and geographic adap-
tation (Hofmann et al., 2024), (ii) language-adaptive pre-training for tasks like causal
commonsense reasoning (Ponti et al., 2020) and syntactic parsing (Glavaš and Vulić,
2021), and (iii) a hybrid approach that integrates both domain- and language-adaptive
pre-training, has shown promise in hate speech detection (Glavaš et al., 2020). Despite
the success, there remain challenges to be addressed: effectiveness (C1), efficiency (C2),
and interpretability (C3).

2.4.1 Towards Effective Adaptive Pre-training

To enhance the effectiveness of adaptive pre-training methods, three critical perspectives
come to the forefront (C1): (1) Task-specific versus task-agnostic approaches, where the
former requires labeled task data and is limited to a single task, while the latter aims
to develop versatile models adaptable to multiple tasks without the specific task data
constraint. (2) Handling multi-domain and multilingual use cases, becomes imperative
in real-world applications, where a single model must seamlessly accommodate various
domains and languages to avoid the impracticality of deploying multiple models. (3)
Addressing low-resource scenarios for task fine-tuning, is paramount as many languages
and domains lack sufficient annotated data for effective task fine-tuning. Exploring these
perspectives opens the door to advancing adaptive pre-training methods and empowering
language models to perform optimally across diverse settings.

Task-Specific vs. Task-Agnostic. Compared to task-specific pre-training methods that
are limited to only single-task usage (Zeng and Nie, 2020; Liu et al., 2021c), task-agnostic
adaptive pre-training techniques instead aim to develop a versatile model that is capable of
effectively adapting to various tasks (Bhattacharjee et al., 2020). In this work, we thus focus
on task-agnostic adaptive pre-training approaches, which can handle multidimensional
use cases across multiple tasks effectively. For instance, a model specialized in the financial
domain can be applied to any financial-related tasks, including named entity recognition
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and sentiment analysis. To tackle the challenge, we propose task-agnostic methods for
self-supervised domain adaptation (Chapter 3) and cross-lingual transfer (Chapter 4)
for task-oriented dialogs, along with hybrid setups combining multiple transfer learning
methods (see Figure 2.6) for demographic adaptation (Chapter 5).

Multi-Domain and Multilingual Use Cases. The necessity of handling multi-domain
and multilingual scenarios with a single model arises from the increasing complexity and
diversity of real-world data. In practical applications, data often comes from various
sources with diverse domains and languages, each with its own unique characteristics and
patterns. For instance, a language model may need to process text data from fields as di-
verse as healthcare, finance, and technology, and cater to a wide range of language-speaking
users. Using separate models for each domain and language would not only be resource-
intensive but also impractical to manage, update, and maintain. Therefore, a single model
capable of handling multi-domain and multilingual use cases becomes essential. For multi-
domain scenarios, we propose two ways of utilizing the single-domain adaptive methods
and aggregating in the task fine-tuning stage by (i) employing adapters (Houlsby et al.,
2019; Pfeiffer et al., 2020, 2021; Parović et al., 2022) for multi-domain task-oriented dialog
systems (see § 3.1), and (ii) introducing a novel method considering meta-embeddings and
meta-tokenizers (see § 3.2). For multilingual scenarios, we utilize augmented in-domain
and language-specific texts with the proposed multi-task learning objectives, to encode
the demographic knowledge into a multilingual PLM (see Chapter 5). By incorporating
these approaches, we aim to enhance the adaptability of PLMs for multi-domain and
multilingual use cases.

Low-Resource Scenarios for Task Fine-Tuning. Additionally, adaptive pre-training
methods should be able to handle low-resource scenarios for task fine-tuning. In situations
where labeled data for task fine-tuning is scarce, such as for low-resource languages or
niche domains, models are required to adapt effectively to limited task training data
while preserving their performance. Gururangan et al. (2020) showed that adaptive
pre-training with unlabeled data leads to performance gains in low-resource settings for
diverse domains and tasks in English. Aharoni and Goldberg (2020) proposed to find
domain-specific clusters in PLMs to aid domain data selection, requiring only a small
set of in-domain data for unsupervised domain adaptation training. Apart from data-
centric approaches, another line of research focuses on aggregating representations of
high-resource embeddings from the source domain and low-resource embeddings from
the target domain with attention-based meta-embeddings (Kiela et al., 2018) or adversarial
training approach (Lange et al., 2021a). For resource-lean languages, Lauscher et al. (2020)
introduced continual few-shot transfer learning after task fine-tuning for resource-lean
languages, and has proved to significantly reduce the performance gap observed for zero-
shot transfer scenarios. Another area of research concentrates on the representation

36



2. THEORETICAL BACKGROUND

space alignment in either cross-lingual (Liu et al., 2019a) or multilingual settings (Cao
et al., 2019). In this work, we investigate the sample efficient few-shot transfer scenarios
(Chapter 3) and the effect of continual few-shot transfer for multilingual task-oriented
dialogs (Chapter 4). These efforts aim to improve the adaptability of PLMs, even with
limited available task data.

2.4.2 Towards Efficient Adaptive Pre-training

As the size and complexity of PLMs continue to expand, the computational resources
required for adaptive pre-training also increase substantially. This poses challenges for
practical deployment and scalability. Enhancing the efficiency of adaptive pre-training
methods revolves around two primary concerns (C2): (1) Data-efficient methods, which
aim to maximize the use of limited data by optimizing data collection and utilization
strategies; and (2) Parameter-efficient methods, that aim to reduce training time and
optimize resource utilization while maintaining adaptability across multiple dimensions.
These areas of investigation hold the key to overcoming computational obstacles and
making adaptive pre-training more efficient and accessible in real-world applications.

Data-Efficient. Efficiently collecting sufficient and representative data for domains,
languages, and social contexts for the knowledge transfer of model adaptation poses a sig-
nificant challenge. Acquiring a substantial and diverse dataset that accurately represents
the target domain and/or language tasks can be time-consuming, expensive, or even un-
feasible in some cases. Traditional supervised learning approaches heavily rely on labeled
data, which may be limited or unavailable for specific domains or niche areas (Ramponi
and Plank, 2020; Ivison et al., 2023). As a result, data-efficient methods become essential
in adaptive pre-training to make the most out of the available data, leverage transfer
learning, and adapt language models effectively to domains and languages without an
overwhelming reliance on extensive labeled datasets. In this work, we focus on utilizing a
small amount of unlabeled domain- and language-specific datasets (around 50K to 200K).
We propose a simple term-matching method to efficiently acquire in-domain data for
task-oriented dialog (DomainCC and DomainReddit; see § 3.1). In Chapter 4, we
introduce a novel multilingual multi-domain TOD datasets: Multi2WOZ, enabling a re-
liable and robust resource to facilitate cross-lingual transfer studies on TOD. Further, we
present target-language-specific (LangCC) and cross-lingual (LangOpenSubtitles)
corpora, for conducting efficient dialogic pre-training for language adaptation. In Chap-
ter 5, we adapt the language representation from demographic corpora of gender and age
for efficient demographic adaptation.
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Parameter-Efficient. Parameter-efficient adaptive pre-training seeks to optimize the
utilization of model parameters to achieve effective transfer learning while minimizing the
excessive computational overhead. Traditional approaches, like full fine-tuning (Gururan-
gan et al., 2020), involve updating all parameters of PLMs, which can be computationally
expensive and memory-intensive. To mitigate the computational complexity and memory
requirements of adaptive pre-training, making it more feasible for resource-constrained
environments, the goal is to design parameter-efficient methods that can efficiently adapt
to multiple domains and languages, while retaining the pre-trained knowledge intact.
Recent work proposed modular-based approaches (Pfeiffer et al., 2023) to adapt the model
while only updating or adding a relatively small number of parameters.15 Adapters (Re-
buffi et al., 2017; Houlsby et al., 2019) introduce new trainable dense layers into PLMs
while keeping the original model parameters fixed. Adapters have been proven effective
in cross-lingual transfer (Pfeiffer et al., 2020) and are further extended to multi-domain
and multilingual scenarios, including advanced stacking (Pfeiffer et al., 2020) and fu-
sion (Pfeiffer et al., 2021). Though adapters are capable of modular portability to various
downstream tasks and reducing computational cost by avoiding full fine-tuning, two
main shortcomings are indicated: (1) training time significantly increases while preserv-
ing more parameters for training (Rücklé et al., 2021); (2) lack of expressiveness (Ansell
et al., 2022). To address the issues, we propose a novel task-agnostic domain adaptation
method, leveraging domain-specialized embeddings and tokenizers (see § 3.2; Hung et al.
(2023b)). The proposed approach allows for parameter-efficient adaptation, and proves
to be comparably better than adapters in few-shot scenarios.

2.4.3 Towards Interpretability of Adaptive Pre-training

Attaining a comprehensive understanding of the behavior and decision-making mecha-
nisms exhibited by PLMs, holds utmost importance in maximizing their capabilities and
addressing potential limitations. Interpretability, defined as “the ability [of a model] to
explain or to present [its predictions] in understandable terms to a human” (Doshi-Velez
and Kim, 2018; Luo et al., 2024), holds key significance in this pursuit. To enhance in-
terpretability with our proposed adaptive pre-training methods for multidimensional
adaptation of PLMs, we examine how models adapt not just in terms of performance
gains but also in their responses across domains, languages, and demographic factors un-
der different controlled conditions (C3). We aim to improve model transparency, uncover
both strengths and limitations, and ultimately advance the field of adaptive pre-training
toward more robust and comprehensive approaches.

In this work, we explore a set of analyses to enhance interpretability. We study the
cross-domain transfer (§ 3.1.6) and token-level segmentation analysis (§ 3.2.6), showing the
strength of the adaptive pre-training approach beneficial in closely related domains and

15Parameter-efficient fine-tuning methods typically have up to four orders of magnitude fewer parameters
than full fine-tuning (Treviso et al., 2023).
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how tokenization enhances in-domain terminology for better adaptation. Additionally,
we conduct control experiments to examine the impact of demographic adaptation
utilizing a multilingual PLM (§ 5.5.2). Through the analyses, we hope to shed light on
how the multilingual PLM respond to various demographic factors and discern potential
variations in their performance across different demographic subgroups. We expect the
analyses will shift the focus of the research community beyond merely evaluating the
performance gains achieved by adaptive pre-training methods. Instead, it is encouraged
to further investigate how and why the proposed techniques operate, and foster diverse
perspectives and insights in relation to the control experiments. Equipped with the
awareness of interpretability concerns, we can take significant strides toward enhancing
the diversity and inclusivity of proposed methods and trained models. This, in turn, will
encourage innovation and progress in the field of NLP and promote more robust and
effective methods for a broader spectrum of users and applications.

While adaptive pre-training methods have achieved performance gains in various
downstream applications, continuous research and development are required to overcome
the challenges of effectiveness (C1), efficiency (C2), and interpretability (C3). In the
forthcoming Chapters, we delve into each of the outlined challenges, presenting and
discussing the proposed solutions. By addressing these aspects, we hope to propel adaptive
pre-training methods across multiple dimensions, and pave the way for more versatile
and reliable language models in real-world use cases.

39





Part II

Adaptation

41





Chapter 3

Domain Adaptation

“The only way to make sense out of change is to plunge into it,
move with it, and join the dance.”

Alan Wilson Watts
«Wisdom Of Insecurity: A Message for an Age of Anxiety»

The advent of Pre-trained Language Models (PLMs) based on Transformer (Vaswani et al.,
2017) has ushered in remarkable advancements across a spectrum of NLP applications
(see § 2.2). However, seamlessly adapting those PLMs to new domains persists as a central
concern. The major two challenges arise (see § 2.3.1): (1) Mismatch of Domain(s): in
the realm of many machine learning algorithms, a default assumption arises that the
training and test datasets follow the same underlying distribution. However, when
these distributions do not match, a domain shift problem emerges (Lekhtman et al.,
2021; Farahani et al., 2021). In this scenario, the source training data and the target
task domain differ (i.e., they are not sampled from the same underlying distribution).
Consequently, performance drops on the target task, which undermines the ability of
models to truly generalize across varied contexts. (2) Scarcity of task-annotated data: the
scarcity of annotated task data presents a substantial challenge (i.e., “Y scarcity”), while
the availability of domain-specific data for domain specialization might be constrained
(i.e., “X scarcity”) (Ramponi and Plank, 2020).

The above challenges underscore the importance of domain adaptation, a crucial
transfer learning technique aimed at mitigating the domain shift problem and enhancing
the robustness and efficacy of language models in real-world settings.1 Recent work
proposed domain-adaptive pre-training utilizing PLMs (see § 2.3.1) as a three-stage training
framework to mitigate the above challenges. However, two perspectives are addressed

1The extensive concern arises for domain adaptation: generalization beyond the training distribution.
Ultimately, the models should possess the ability to adapt and robustly handle any test distribution without
prior exposure to corresponding data. This broader imperative encompasses the necessity of effectively
managing out-of-distribution scenarios, particularly when dealing with unknown domains (Volpi et al., 2018;
Zhou et al., 2023).

43



3. DOMAIN ADAPTATION

to further enhance the adaptive pre-training methods via the effectiveness and efficiency
perspectives for domain adaptation (C1 and C2; see § 2.4).

In this Chapter, we first investigate domain-adaptive pre-training methods for task-
oriented dialog systems. The capability of a task-oriented dialog system to seamlessly adapt
to different domains holds paramount importance for its practical deployment. To address
this crucial aspect, we (i) present data collection methods designed to tackle the challenges
stemming from the scarcity of annotated in-domain data; (ii) introduce the integration of
dialogic objectives to enhance the adaptability of PLMs to specific subdomains; and (iii)
further substantiate the effectiveness of employing adapters (Houlsby et al., 2019) to foster
more efficient domain adaptation in task-oriented dialog systems (see § 3.1; Hung et al.
(2022a)). Despite the advantages that adapters bring, such as diminished training time
due to a reduced number of parameters and decreased deployment costs through memory
storage reduction, two primary shortcomings are indicated: (a) training time significantly
increases due to the inclusion of additional parameters (Rücklé et al., 2021); (b) adapters
are perceived to lack expressiveness (Ansell et al., 2022). To address these concerns, we
propose a novel task-agnostic domain adaptation method, leveraging domain-specialized
embeddings and tokenizers (see § 3.2; Hung et al. (2023b)). The efficacy of the proposed
approach is demonstrated across 4 downstream tasks (including task-oriented dialog tasks,
NER, and NLI) in both (i) single- and multi-domain; and (ii) high- and low-resource
scenarios. Notably, our findings underscore that the proposed approach has shown
comparably better performance in few-shot scenarios compared to adapters.

In the context of task-agnostic domain adaptation methods proposed in this Chapter,
our aim is to shed light on the advantages inherent in various approaches across a spectrum
of downstream tasks. We hope that our contributions will pave the way for more effective
and efficient domain adaptation techniques, with implications that extend across various
domains for NLP applications.

3.1 Domain Specialization for Task-Oriented Dialog
*Recent work has shown that self-supervised dialog-specific pre-training on large conver-
sational datasets yields substantial gains over traditional language modeling pre-training
in downstream Task-oriented Dialog (TOD) tasks (Henderson et al., 2019c, 2020). These
approaches, however, exploit general dialogic corpora (e.g., Reddit) and thus presumably
fail to reliably embed domain-specific knowledge useful for concrete downstream TOD
domains. In this Section, we investigate the effects of domain specialization of PLMs for
TOD. Within our proposed Domain Specialization framework for TOD (DS-TOD),

*This Section is adapted from: Chia-Chien Hung, Anne Lauscher, Simone Paolo Ponzetto, and
Goran Glavaš. 2022. DS-TOD: Efficient Domain Specialization for Task-Oriented Dialog. In Findings
of the Association for Computational Linguistics (ACL 2022), pages 891–904, Dublin, Ireland, May 2022.
Association for Computational Linguistics.
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we first automatically extract salient domain-specific terms, and then utilize them to
construct DomainCC and DomainReddit – resources that we leverage for domain-
specific pre-training (C2; § 3.1.3), based on (i) Masked Language Modeling (MLM) and (ii)
Response Selection (RS) objectives, respectively. We further propose a resource-efficient
and modular domain specialization by means of domain adapters – additional parameter-
light layers in which we encode the domain knowledge (C2; § 3.1.4). Our experiments
with prominent TOD tasks – dialog state tracking (DST) and response retrieval (RR)
– encompassing five domains from the MultiWOZ benchmark (Budzianowski et al.,
2018; Eric et al., 2020) demonstrate the effectiveness of DS-TOD (§ 3.1.6). Moreover, we
show that the light-weight adapter-based specialization (1) performs comparably to full
fine-tuning2 in single-domain setups, and (2) is particularly suitable for multi-domain
specialization, where besides advantageous computational footprint, it can offer better
TOD performance (C1).

3.1.1 Introduction

Task-oriented dialog (TOD) as shown in Figure 3.1, where conversational agents help users
complete concrete tasks (e.g., book flights or order food), has arguably been one of the
most prominent NLP applications in recent years, both in academia (Budzianowski et al.,
2018; Henderson et al., 2019c; Liu et al., 2021a, inter alia) and industrial applications (e.g.,
Yan et al., 2017; Henderson et al., 2019b; Gupta et al., 2022; Valizadeh and Parde, 2022).
Like for most other NLP tasks, fine-tuning of PLMs (e.g., BERT (Devlin et al., 2019), GPT-
2 (Radford et al., 2019); see § 2.2) pushed the state-of-the-art in TOD tasks (Budzianowski
and Vulić, 2019; Hosseini-Asl et al., 2020), with language model pre-training at the same
time alleviating the need for large labeled datasets (Ramadan et al., 2018).

More recent TOD work recognized the idiosyncrasy of dialog – i.e., dialogs represent
interleaved exchanges of utterances between two (or more) participants – and proposed
pre-training objectives specifically tailored for dialogic corpora (Henderson et al., 2019c;
Wu et al., 2020; Bao et al., 2020, inter alia). For instance, Wu et al. (2020) pre-train TOD-
BERT model on the concatenation of nine human-to-human multi-turn dialog datasets
(see § 2.2.3). Similarly, Henderson et al. (2019c, 2020) pre-train a general-purpose dialog
encoder on a large corpus from Reddit by means of response selection objectives. Encod-
ing dialogic linguistic knowledge in this way led to significant performance improvements
in downstream TOD tasks.

While these approaches impart useful dialogic linguistic knowledge, they fail to
exploit the fact that individual task-oriented dialogs typically belong to one narrow
domain (e.g., food ordering) or few closely related domains (e.g., booking a train and
hotel; Budzianowski et al., 2018; Ramadan et al., 2018). Given the multitude of different

2To clarify, full fine-tuning (Houlsby et al., 2019) is considered in the adaptation phase of adaptive
pre-training framework to update all PLM parameters (detailed in § 2.3.1) in this Chapter. While fine-tuning
indicates the downstream task fine-tuning, as the third stage illustrated in Figure 2.4.
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Task-Oriented Dialog
(Taskbot)

Narrow focus:
fulfill task requirements, efficiency

Open-Domain Dialog 
(Chit-chat)
Broad focus:

no specific goal, long-term trust and companionship

Hi, I’m good. Recently I
moved to a new place.

Hi, long time no see, how are you?

Reaaally? Happy for you. Tell me
more about your new place.

It’s located in Mannheim
and it’s close to the city
center and my work place.

Hi, I’d like to visit Tainan on
Saturday by Taiwan High-Speed Rail.
Can you help me to book a ticket?

Hi, how can I help you?

Yes, what time would you like to 
travel?

I’d like to be there at 8am.

Dialog Systems

Figure 3.1: Examples of dialog systems, including an open-domain dialog (chit-chat), and
a task-oriented dialog (taskbot, or TOD) system. Open-domain dialog involves engaging
in conversations without a particular subject or user objective, with the primary aim of
establishing the long-term user engagement. In contrast, task-oriented dialog systems are
designed to assist users in achieving their goals in specific domain(s) (Huang et al., 2020).

downstream TOD domains (e.g., ordering food is quite different from booking a flight), it
is, intuitively, unlikely that general dialogic pre-training reliably encodes domain-specific
knowledge for all of them.

In this Section, we propose Domain Specialization for Task Oriented Dialog (DS-
TOD), a novel task-agnostic domain-adaptive pre-training framework for task-oriented
dialog. DS-TOD, depicted in Figure 3.2, encloses three steps: (1) we extract domain-
specific terms (e.g., terms related to ordering taxi or terms related to buying a train ticket)
from the training portions of a task-specific TOD corpus; (2) we next use the extracted
terms to obtain domain-specific data from large unlabeled corpora (e.g., Reddit); (3)
finally, we conduct intermediate training of a PLM (e.g., BERT) on the domain-specific
data, in order to inject the domain-specific knowledge into the encoder. This intermediate
training step ensures domain specificity and is designed to be easily adaptable to any
downstream TOD tasks in a task-agnostic manner. As a result, we obtain a domain-
specialized PLM, which can then be fine-tuned for any downstream TOD tasks, e.g.,
dialog state tracking. An overview of domain-adaptive pre-training framework for TOD
is illustrated in Figure 3.3.
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I. Pre-training II. Domain
Adaptation for TOD III. Fine-tuning

TOD
Datasets

(60+ subdomains)

TOD-BERT

MLMD

+ RCL

TOD-BERT

Adaptive Model

DomainCC;
DomainReddit
(5 subdomains)

MLMD;
RS-Class;

RS-Contrast
+

Adapter

MultiWOZ
(DST, RR)

Cross-Domain 
Transfer;
Sample 

Efficiency;
Multi-domain

Adaptive Model

Fine-tuned Model

Model

parameters

initialized from

BERT

Figure 3.3: Overview of the domain-adaptive pre-training framework for TOD. The
framework involves a three-stage process: Pre-training, Domain Adaptation for TOD,
Fine-tuning. In this Chapter, intermediate training indicates the second (II) stage: domain
adaptation phase.

Contributions. We advance the state-of-the-art in TOD with the following contribu-
tions: (i) Departing from general-purpose dialogic pre-training (e.g., Henderson et al.,
2019a), we leverage a simple terminology extraction method to construct DomainCC and
DomainReddit corpora which we then use for domain-specific LM and dialogic pre-
training, respectively. (ii) We examine different objectives for injecting domain-specific
knowledge into PLMs: we empirically compare Masked Language Modeling (MLM)
applied on the “flat” domain dataset DomainCC against two different Response Selec-
tion (RS) objectives (Oord et al., 2018; Henderson et al., 2019c) applied on the dialogic
DomainReddit corpus. We demonstrate the effectiveness of our specialization on
two TOD tasks – dialog state tracking (DST) and response retrieval (RR) – for five
domains from the MultiWOZ dataset (Budzianowski et al., 2018; Eric et al., 2020). (iii)
We propose modular domain specialization for TOD via adapter modules (Houlsby
et al., 2019; Pfeiffer et al., 2020). Additional experiments reveal the advantages of adapter-
based specialization in multi-domain TOD: combining domain-specific adapters via
stacking (Pfeiffer et al., 2020) or fusion (Pfeiffer et al., 2021) (a) performs en par with or
outperforms expensive multi-domain pre-training, while (b) having a much smaller com-
putational footprint.3 (iv) The code and resources developed for DS-TOD are publicly
available.4

3Assume N mutually close domains and a bi-domain downstream setup (any two domains). With an
adapter-based approach, we pre-train one adapter for each domain (complexity: N ) and then combine the
adapters of the two domains intertwined in the concrete downstream setup. In contrast, multi-domain
specialization would require one bi-domain pre-training for each two-domain combination (complexity:
N2).

4https://github.com/umanlp/DS-TOD
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3.1.2 Related Work

TOD Datasets. Datasets for TOD can be divided into single-domain (Wen et al., 2017;
Mrkšić et al., 2017a) and multi-domain ones (Budzianowski et al., 2018; Rastogi et al.,
2020; Moghe et al., 2023a). The latter are generally seen as closer to real-world situations
and intended usages of personal assistants, where strict adherence to a single domain is
unlikely. While downstream TOD datasets exist for specific domains, corresponding
large(er)-scale datasets that would enable domain-adaptive pre-training have been limited
to the general domain (Henderson et al., 2019a).

Pre-trained Language Models in Dialog. The advantages of large-scale pre-training
of language models on massive amounts of text (Devlin et al., 2019; Radford et al., 2019;
Lewis et al., 2020a), ubiquitous in natural language tasks, have also spilled over to task-
oriented dialog. Recent research focused on either (1) leveraging general-domain dialogic
resources (e.g., Reddit, Twitter) in order to improve downstream TOD tasks (Henderson
et al., 2019c, 2020; Zhang et al., 2020; Bao et al., 2020; Liu et al., 2021b) or (2) using TOD
datasets to inject dialogic structure into PLMs (Wu et al., 2020; Peng et al., 2021; Su et al.,
2022). Neither of the two, however, considers task-agnostic domain-adaptive pre-training
methods, that could support any downstream TOD tasks.

Domain Adaptation and Knowledge Reuse. Common unsupervised approaches
for extracting domain-specific portions of large general domain corpora, rely on term
and document frequencies (Kim et al., 2009), learn a candidate retrieval-based classi-
fier (Glavaš et al., 2020) or perform unsupervised domain clustering with PLMs (Aharoni
and Goldberg, 2020). In this Section, we address the lack of in-domain resources by
creating large-scale domain-specific corpora – flat as well as dialogic – for the five domains
of the MultiWOZ dataset using a simple TF-IDF based term filtering approach.

To inject domain knowledge into PLMs, recent work proposed the approach either
as a step before the downstream task-specific fine-tuning (Glavaš et al., 2020) or in parallel
with it (i.e., in a multi-task training setup) (Gururangan et al., 2020). In the narrower
context of TOD, Whang et al. (2020) present the lone effort on domain specialization for
TOD: they focus on easier, single-domain TOD and investigate the specialization effect
with a single task, response retrieval. In this work, in contrast, we focus on dialogic domain-
adaptive pre-training, as depicted in Figure 3.3, and further demonstrate its effectiveness in
multi-domain use-cases for TOD (C1). For efficiency and to avoid catastrophic forgetting,
adapter modules have been widely used for parameter-efficient fine-tuning of PLMs for
new tasks (Houlsby et al., 2019) and languages (Pfeiffer et al., 2020). Non-destructive
adapter compositions (e.g., stacking or fusion) can be beneficial if multiple knowledge
facets, stored in separate adapters, need to be leveraged (Pfeiffer et al., 2020, 2021) (C2).
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Taxi Restaurant Hotel Train Attraction

Slot names

destination,
departure,
arriveBy,
leaveAt

pricerange,
area, day, people,

food,
name,
time

pricerange,
area, day, people,

type, parking,
stars, internet,

stay, name

destination,
departure,
day, people,
arriveBy,
leaveAt

area, type,
name

# Total‡ 1654, 207, 195 3813, 438, 437 3381, 416, 394 3103, 484, 494 2717, 401, 395
# Multi-domain‡ 1329, 150, 143 2616, 388, 375 2868, 360, 327 2828, 454, 461 2590, 390, 383
# Single domain‡ 325, 57, 52 1197, 50, 62 513, 56, 67 275, 30, 33 127, 11, 12
% Single domain 24.62% 19.00% 15.21% 7.25% 3.49%

Table 3.1: Statistics for MultiWOZ 2.1 dataset. For each domain, we report slot names,
the total number of dialogs as well as the number of single-domain and multi-domain
dialogs. ‡The number of dialogs for training, development, and test set respectively.

3.1.3 Domain-Specialized Corpora

We create large-scale domain-specific corpora in two steps: given a collection of in-domain
dialogs, we first extract salient domain terms (§ 3.1.3.1); we then use these domain terms
to filter content from CCNet (Wenzek et al., 2020) as a large general corpus and Red-
dit (Baumgartner et al., 2020) as a source of dialogic data (§ 3.1.3.2).

3.1.3.1 Domain-Specific Ngrams

We start from Wizard-of-Oz, a widely used multi-domain TOD dataset (MultiWOZ;
Budzianowski et al., 2018): we resort to the revised version 2.1 (Eric et al., 2020) and
work with the five domains that have test dialogs: Taxi, Attraction, Train, Hotel, and
Restaurant. Table 3.1 shows the statistics of domain-specific MultiWOZ subsets.

To obtain large domain-specific corpora for domain adaptation phase as illustrated
in Figure 3.3, we first construct sets of domain-specific ngrams for each domain. To this
end, we first compute TF-IDF scores for all {1,2,3}-grams found in single-domain dialogs
from MultiWOZ training sets5: our term frequency (TF) is the total ngram frequency
in all domain dialogs; the inverse document frequency (IDF) is here the inverse of the
proportion of dialogs that contain the ngram. We then select N ngrams with the largest
TF-IDF scores (in all our experiments, we set N = 80) and manually eliminate from the
list ngrams that are not intrinsic to the domain (e.g., weekdays, named locations). Finally,
since MultiWOZ terms follow the British English spelling (e.g., centre, theatre), we add
the corresponding American English word forms (e.g., center, theater). The complete
resulting ngram sets for all domains are given in Table 3.2.

5E.g., for the Taxi domain, we collect all training dialogs that span only that domain (i.e., only taxi
ordering) and omit dialogs that besides Taxi involve one or more other domains (e.g., taxi ordering and hotel
booking in the same dialog).
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Domain Ngrams

Taxi

taxi, contact number, book a taxi, booked, time schedule, pickup, leaving, booked type, booking completed,
departing, destination, cab, completed booked, honda, ford, audi, lexus, toyota, departure, skoda,
lexus contact, toyota contact, ford contact, volvo, train station, departure site, tesla, audi contact,
honda contact, skoda contact, picking, departing, volkswagen

Attraction
museum, college, entrance, attraction, information, centre town, center town, entertainment, swimming pool,
gallery, sports, nightclub, pounds, park, postcode, architecture, centre area, center area, cinema, church,
trinity college, entrance free, jello gallery, post code, town centre, town center, downing college

Train
train station, travel time, leaving, pounds, train ticket, departing, payable, train leaving, cambridge, london,
reference id, arrive, destination, kings cross, total fee, departure, arriving, book a train, booked, stansted,
stansted airport, peterborough, traveling, trip, airport, booking successful, norwich

Hotel
hotel, nights, parking, free parking, wifi, star hotel, price range, free wifi, guesthouse, guest house, internet,
guest, hotel room, star rating, expensive room, priced, rating, book room, moderately priced, moderate price,
stay for, reservation, breakfast available, book people, fully booked, booking, reference

Restaurant

restaurant, food, price range, expensive, cheap, priced, chinese food, italian food, moderately priced, south town,
book table, city, north town, serving, city centre, city center, european food, reservation, food type, phone address,
centre town, center town, expensive restaurant, moderate price, cuisine, restaurant center, restaurant centre,
south town, expensive price, east town, cheap restaurant, indian food, asian food, british food, book people

Table 3.2: Salient domain ngrams extracted from the single-domain training portions of
MultiWOZ 2.1.

3.1.3.2 Domain-Specific Corpora

We next use the extracted domain ngrams to retrieve two types of in-domain data for
domain specialization: (i) flat text and (ii) dialogic data.

DomainCC. For each of the five MultiWOZ domains, we create the corresponding
flat text corpus for MLM training by filtering out 200K sentences from the English
portion of CCNet (Wenzek et al., 2020) – a high-quality collection of monolingual
corpora extracted from CommonCrawl6 that has been used for pre-training multilingual
PLMs (Conneau et al., 2020a; Liu et al., 2020) – that contain one or more of the previously
extracted domain terms. We additionally clean all DomainCC portions by removing
email addresses and URLs, and lower-casing all terms. We provide example excerpts for
each domain in Appendix B.1.

DomainReddit. Being constructed from CommonCrawl, DomainCC portions
do not exhibit any natural conversational structure, encoding of which has been shown
beneficial for downstream TOD tasks (Henderson et al., 2019c; Wu et al., 2020). We
thus additionally create a dialogic corpus for each domain: we employ the Pushshift
API (Baumgartner et al., 2020) to extract dialogic data from Reddit (period 2015–2019).
To this end, we select subreddits related to traveling (listed in Table 3.3) which we believe
align well with the content of MultiWOZ, which was created by simulating conversa-
tions between tourists and clerks in a tourist information center. Each of the subreddits
contains threads composed of a series of comments, each of which can serve as a context

6https://commoncrawl.org/
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Subreddit # Members‡ Domains

travel 5.8M Taxi, Attraction, Train, Hotel, Restaurant
backpacking 2.5M Taxi, Attraction, Train, Hotel, Restaurant
solotravel 1.7M Taxi, Attraction, Train, Hotel, Restaurant
CasualUK 797K Taxi, Attraction, Train, Hotel, Restaurant
unitedkingdom 553K Taxi, Attraction, Train, Hotel, Restaurant
restaurant 81.6K Restaurant
trains 64.8K Train, Attraction
hotel 1.8K Hotel
hotels 4.9K Hotel
tourism 3.9K Taxi, Attraction, Train, Hotel, Restaurant
uktravel 1.5K Taxi, Attraction, Train, Hotel, Restaurant
taxi 0.6K Taxi

Table 3.3: Subreddits and associated domains selected for creating DomainReddit.
‡The recorded number of members for each subreddit is based on the crawling date
(24/05/2021).

Field Example

Subreddit restaurant

Context Hosts don’t get tips? That’s news to me. Most host positions in my area get at
least 1% of sales; they make anywhere between 60-100 per night in tips!

True Response
We get tips but definitely not that much (in my experience). The tip out in my
restaurant is 1% split between shift leaders, food runners, and any other FOH
other than servers/bartenders. Full time hosts get about 50-75 every other week

False Response Wow that’s terrible. Then again, my restaurant is in CA, so wages and guest
check averages are usually higher.

Table 3.4: Example from DomainReddit dataset.

followed by a series of responses. For DomainReddit we select context-response pairs
where either the context utterance or the response contains at least one of the domain-
specific terms. To construct examples for injecting conversational knowledge, we follow
Henderson et al. (2019a) and couple each true context-response pair (i.e., a comment
and its immediate response) with a false response – a non-immediate response from the
same thread. Table 3.4 provides an example context with its true and one false response;
further examples, for all domains, are available in Appendix B.1. Finally, we also clean
DomainReddit by removing email addresses and URLs as well as comments having
fewer than 10 characters. The total number of Reddit triples (context, true response, false
response) that we extract this way for the MultiWOZ domains is as follows: Taxi – 120K;
Attraction – 157K; Hotel – 229K; Train – 229K; and Restaurant – 243K.
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3.1.4 Domain-Adaptive Pre-training for TOD

The next step in DS-TOD is the injection of domain-specific knowledge through inter-
mediate training on DomainCC and DomainReddit. To this end, we train a PLM
(1) via Masked Language Modeling on DomainCC, and (2) using two different Re-
sponse Selection objectives on DomainReddit. Finally, for all objectives, we compare
full fine-tuning (i.e., update all PLM parameters in domain adaptation phase) against
adapter-based specialization, where we freeze the PLM parameters and inject domain
knowledge into new adapter layers.

3.1.4.1 Training Objectives

Masked Language Modeling (MLM). Following successful work on adaptive pre-
training leveraging language modeling for domain-adaptation (Gururangan et al., 2020;
Aharoni and Goldberg, 2020; Glavaš et al., 2020), we delve into the advantages of further
pre-training PLMs via Masked Language Modeling (MLM) with a small subset of in-
domain data (typically around 100 K). Our research focuses on investigating the effect
of applying standard MLM on small domain-specific portions of DomainCC to inject
domain-specific knowledge for TOD (C2; see § 2.4.2). In this context, the MLM loss
Lmlm is computed as the negative log-likelihood of the predicted probability of the true
token (Devlin et al., 2019; Liu et al., 2019c).

Lmlm = −
M∑

m=1

logP (tm) , (3.1)

where M is the total number of masked tokens in a given text and P (tm) is the predicted
probability of the token tm over the vocabulary size.

Response Selection (RS). RS objectives force the model to recognize the correct
response utterance given the context – pre-training with such objectives is particularly
useful for conversational settings, including TOD tasks (Henderson et al., 2019c, 2020).
We consider two RS objectives. The first is a simple pairwise binary classification formula-
tion (RS-Class): given a context-response pair, predict whether the response is a true (i.e.,
immediate) response to the context. The loss function for RS-Class loss is formulated as:

LRS−class = − (y log(f(c, r)) + (1− y) log(1− f(c, r))) , (3.2)

where c represents the context, r denotes the response, y is the actual label indicating
whether the response is true (1) or false (0), and f is the function calculating the predicted
probability of the response to the given context.

We straightforwardly use pairs of contexts and their true responses from DomainRed-
dit as positive training instances. Next, we create negative samples for each positive
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instance as follows: (a) we use the crawled false response from DomainReddit, which
represents a relevant but non-consecutive response from the same thread; such non-
immediate responses from the same thread represent the so-called hard negatives in-
troduced to prevent the model from learning simple lexical cues and similar heuristics
that poorly generalize; (b) we additionally randomly sample k utterances from the same
domain but different threads (these represent the so-called easy negatives).7

The second response selection objective (RS-Contrast) that we adopt is a type of loss
function used for contrastive model training based on the representational similarities
between sampled positive and negative pairs (Oord et al., 2018). It has been used for
pre-training cross-lingual language models (Chi et al., 2021) and shown to be useful in
information retrieval (Reimers and Gurevych, 2021; Thakur et al., 2021; Litschko et al.,
2022). The goal is to estimate the mutual information between pairs of variables by
discriminating between a positive pair and its associated N negative pairs. Given a true
context-response pair and N negatives, the noise-contrastive estimation (NCE) loss is
computed as:

LNCE = − log
exp (f(c, r+))∑N+1
i=1 exp (f(c, ri))

,

where c is the context, r+ is the true response and ri iterates over all responses for the
context – the true response r+ and N false responses; a function f produces a score
meant to indicate whether the response r is a true response of the context c.

By learning to differentiate whether the response is true or false for a given context
(RS-Class) or to produce a higher score for a true response than for false responses
(RS-Contrast), RS objectives encourage the PLM to adapt to the underlying structure
of the conversation. By feeding only in-domain data to it, we impart domain-specific
conversational knowledge into the model.

3.1.4.2 Adapter-Based Domain Specialization

Fully fine-tuning the model requires adjusting all of the model’s parameters, which can
be undesirable due to large computational effort and risk of catastrophic forgetting of the
previously acquired knowledge (McCloskey and Cohen, 1989; Pfeiffer et al., 2021). To
alleviate these issues, we investigate the use of adapters (Houlsby et al., 2019), additional
parameter-light modules that are injected into a PLM before fine-tuning (C2; § 2.4.2).
In adapter-based fine-tuning only adapter parameters are updated while the pre-trained
parameters are kept frozen (and previously acquired knowledge thus preserved). We
adopt the Adapter-Transformer architecture proposed by Pfeiffer et al. (2020), which
inserts a single adapter layer into each Transformer layer and computes the output of the
adapter, a two-layer feed-forward network, as follows:

Adapter(h, r) = U · g(D · h) + r ,

7k is uniformly sampled from the set {1, 2, 3}.
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with h and r as the hidden state and residual of the respective transformer layer. D ∈
Rm×h and U ∈ Rh×m are the linear down- and up-projections, respectively (h being
the transformer’s hidden size, and m as the adapter’s bottleneck dimension), and g(·)
is a non-linear activation function. The residual r is the output of the Transformer’s
feed-forward layer, whereas h is the output of the subsequent layer normalization. The
down-projection D compresses token representations to the adapter size m ≪ h, and
the up-projection U projects the activated down-projections back to the Transformer’s
hidden size h. The ratio h/m captures the factor by which the adapter-based fine-tuning
is more parameter-efficient than full fine-tuning.

For multi-domain TOD scenarios (i.e., dialogs covering more than a single domain),
we further experiment with combinations of individual domain adapters: (1) Stacking:
sequential stacking of adapters one on top of the other (Pfeiffer et al., 2020), and (2)
Fusion, where we compute a weighted average of outputs of individual adapter, with
fusion weights as parameters that are learned in the final task-specific fine-tuning (Pfeiffer
et al., 2021). An overview of Adapter-Transformer architecture is illustrated in Figure 3.4.

3.1.5 Experimental Setup

We demonstrate the effectiveness of our domain-specialization framework (DS-TOD)
by comparing it to non-specialized baseline models and thoroughly compare different
specialization methods from § 3.1.4.

Evaluation Task and Measures. We evaluate our domain-specialized models and
baselines on two prominent downstream TOD tasks: Dialog State Tracking (DST) and
Response Retrieval (RR). DST is treated as a multi-class classification task based on a
predefined ontology, where given the dialog history, the goal is to predict the output state,
i.e., (domain, slot, value) tuples. For our implementation, we follow Wu et al. (2020),
and represent the dialog history as a sequence of utterances. The model then needs to
predict slot values for each (domain, slot) pair at each dialog turn. We report the joint
goal accuracy, in which the predicted dialog states are compared to the ground truth slot
values at each dialog turn. The ground truth contains slot values for all the (domain, slot)
candidate pairs. A prediction is considered correct if and only if all predicted slot values
exactly match its ground truth values. For DST, we show an example in the hotel domain
from MultiWOZ 2.1 dataset (Eric et al., 2020):

Utterance I need to book a hotel in the east that has 4 stars.
Slots Hotel-area : east

Hotel-stars: 4

RR is a ranking problem, relevant for retrieval-based TOD systems (Wu et al., 2017;
Henderson et al., 2019c). Following Henderson et al. (2020) and Wu et al. (2020), we
adopt recall at top 1 rank given 99 randomly sampled candidates (R100@1) as the eval-
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uation metric for RR. We demonstrate an example for RR in the hotel domain from
MultiWOZ 2.1 dataset (Eric et al., 2020) as following, where R3 is considered as the
correct response of the context:

Context I need to book a hotel in the east that has 4 stars.
Responses R1: That does not matter as long as it has free wifi and parking.

R2: If you would like something cheap, I recommend the Allenbell.
For something moderately priced, I would recommend the
Warkworth House.

✓ R3: I can help you with that. What is your price range?
... ...

Data. In the domain-adaptive pre-training procedure, we use the domain-specific
portions of our novel DomainCC and DomainReddit resources (§ 3.1.3). For the
MLM training, we randomly sample 200K domain-specific contexts from DomainCC
and dynamically mask 15% of the subword tokens (Liu et al., 2019c). For RS-Class and
RS-Contrast, we randomly sample 200K instances from DomainReddit. We evaluate
the efficacy of the methods on DST and RR using MultiWOZ 2.1 (Eric et al., 2020).
Since we aim to understand the effect of the domain specialization methods, we construct
domain-specific training, development, and testing portions from the original data set by
assigning them all dialogs that belong to a domain (i.e., both single- and multi-domain
dialogs) from respective overall (train, dev, test) portions.

Models and Baselines. We experiment with two PLMs: BERT (Devlin et al., 2019) and
its TOD-sibling, TOD-BERT (Wu et al., 2020).8 As baselines, we report the performance
of the non-specialized variants and compare them against our domain-specialized PLM
variants, obtained after domain-adaptive MLM-training on DomainCC or RS-Class/RS-
Contrast training on DomainReddit.

Hyperparameters and Optimization. During intermediate training (i.e., domain
adaptation phase in Figure 3.3), we fix the maximum sequence length to 256 subword
tokens (for RS objectives, we limit both the context and response to 128 tokens). We train
for 30 epochs, in batches of 32 instances and search for the optimal learning rate among
the following values: {1 · 10−4, 5 · 10−5, 1 · 10−5, 1 · 10−6}. We apply early-stopping
based on development set performance (patience: 3 epochs). We minimize the cross-
entropy loss using AdamW (Loshchilov and Hutter, 2019). For downstream evaluation
(i.e., fine-tuning phase in Figure 3.3), we train for 300 epochs in batches of 6 (DST) and
24 instances (RS) with the learning rate fixed to 5 · 10−5. We also apply dev-set-based
early-stopping (patience: 10 epochs).

8We use the pre-trained language models weights loaded from HuggingFace: bert-base-cased and
TODBERT/TOD-BERT-JNT-V1. More details about the models can be referred to § 2.2.1 and § 2.2.3.
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Dialog State Tracking Response Retrieval
Model Taxi Res. Hotel Train Attr. Avg. Taxi Res. Hotel Train Attr. Avg.

BERT 23.87 35.44 30.18 41.93 29.77 32.24 23.25 37.61 38.97 44.53 48.47 38.57
TOD-BERT 30.45 43.58 36.20 48.79 42.70 40.34 45.68 57.43 53.84 60.66 60.26 55.57

BERT-MLM 23.74 37.09 32.77 40.96 36.66 34.24 31.37 53.08 45.41 51.66 52.23 46.75
TOD-BERT-MLM 29.94 43.14 36.11 47.61 41.54 39.67 41.77 55.27 50.60 55.17 54.62 51.49
TOD-BERT-RS-Class 36.39 43.38 37.89 48.82 43.31 41.96 47.01 58.21 57.05 59.70 57.72 55.94
TOD-BERT-RS-Contrast 35.03 44.81 38.74 49.04 42.73 42.07 48.04 59.82 54.49 60.06 60.63 56.61

BERT-MLM-adapter 22.52 40.49 31.90 42.17 35.05 34.43 32.84 44.01 39.15 38.43 45.05 39.90
TOD-BERT-MLM-adapter 32.06 44.06 36.74 48.84 43.50 41.04 49.08 58.18 55.55 59.46 60.26 56.51
TOD-BERT-RS-Class-adapter 33.10 42.57 38.61 49.03 42.35 41.13 49.59 61.26 56.87 58.88 60.00 57.32
TOD-BERT-RS-Contrast-adapter 34.90 44.42 37.52 48.71 42.83 41.68 47.97 58.97 55.41 59.15 61.95 56.69

Table 3.5: Results of DS-TOD models on two downstream tasks: Dialog State Tracking
(DST) and Response Retrieval (RR) with joint goal accuracy (%) as the metric for DST
and R100@1 (Henderson et al., 2020) (%) for RR.

3.1.6 Results and Discussion

Overall Performance. We report downstream DST and RR results in Table 3.5, which
is segmented in three parts: (1) at the top we show the baseline results (BERT, TOD-
BERT) without any domain specialization; (2) in the middle of the table we show results
of PLMs domain-specialized via full fine-tuning; (3) the bottom of the table contains
results for adapter-based domain specialization (C1; § 2.4.1).

In both DST and RR, TOD-BERT massively outperforms BERT due to its conver-
sational knowledge. Domain specialization brings gains for both PLMs across the board.
The only exception is full MLM-fine-tuning of TOD-BERT (i.e., TOD-BERT-MLM
vs. TOD-BERT; -4% for RR and -0.8% for DST): we believe that this is an example of
negative interference – while TOD-BERT is learning domain knowledge, it is – because
of MLM-based domain training – forgetting the conversational knowledge obtained
in dialogic pre-training (Wu et al., 2020). This hypothesis is further supported by the
fact that adapter-based MLM specialization of TOD-BERT – which prevents negative
interference by design – brings slight performance gains (i.e., TOD-BERT-MLM-adapter
vs. TOD-BERT; +0.8% for DST and +1.0% for RR) and is consistent with the concurrent
findings of Qiu et al. (2021).

Overall, domain specialization with RS seems to be more robust than that via MLM-
ing, with the two variants (RS-Class and RS-Contrast) exhibiting similar average perfor-
mance across evaluation settings. This points to the importance of injecting both the
knowledge of dialogic structure as well as domain knowledge for performance gains in
TOD tasks in the domain of interest.

Interestingly, the gains from domain specialization are significantly more pronounced
for Taxi than for other domains. We relate this to the proportion of the single-domain
dialogs for a given domain in MultiWOZ, which is by far the largest (24%, see Table 3.1)
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Figure 3.5: Sample efficiency of DS-TOD for DST: joint goal accuracy (%) for randomly
sampled sub-portions (5%, 10%, 20%, 30%, 50%, 70%, and 100%) of the downstream
training data from the Taxi domain.

for the Taxi domain. Consequently, successful specialization for that domain is a priori
more likely to show substantial gains on MultiWOZ (i.e., less multi-domain influence).

An encouraging finding is that, on average, adapter-based specialization yields similar
gains as specialization via full fine-tuning: given that adapter fine-tuning is substantially
more efficient, this holds the promise of more sustainable TOD.

Sample Efficiency. To further understand the effect of the injected domain-specific
knowledge, we conduct an additional few-shot analysis (Figure 3.5) on DST (C1; § 2.4.1).
To this end, we select the Taxi domain, since we witnessed the largest gains for that domain.
We analyze the differences in performance between baseline and domain-specialized PLMs
when they are exposed to downstream training portions of different sizes, ranging from
5% to 100% of the whole training dataset.9 TOD-BERT retains a sizable performance gap
over BERT for all settings, pointing to the power of dialogic pre-training. Importantly,
for all dataset sizes, the performances of the domain-specialized variants of TOD-BERT-
RS-{Class, Contrast} surpass the one of the non-specialized TOD-BERT. Even more
interestingly, specialized variants exposed to only 50% of the DST training data manage
to surpass the performance of TOD-BERT fine-tuned on all of the training data (100%).
This suggests that self-supervised domain specialization has the potential to substantially
reduce the amount of annotated TOD data required to reach some performance level.

9Note that 5% of the training data in the Taxi domain amounts to 83 dialogs.
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Figure 3.6: Relative improvements (TOD-BERT-RS-Contrast vs. TOD-BERT) in cross-
domain DST transfer.

Cross-Domain Transfer. MultiWOZ domains are mutually quite related: some
are similar, i.e., share vocabulary and slots (e.g., Taxi and Train) whereas others often
appear together in a dialog (e.g., Train and Hotel; see Table 3.1 for the number of multi-
domain MultiWOZ dialogs). We thus next investigate whether intermediate training
for one domain benefits other closely related domains (C3; § 2.4.3). To this end, we
expose models specialized for one domain (e.g., Taxi) to downstream fine-tuning and
evaluation in the other domain (e.g., Restaurant). Figure 3.6 summarizes the deltas in
performance between the non-specialized TOD-BERT and TOD-BERT-RS-Contrast
for all domain pairs. Encouragingly, the specialization for one domain seems to generally
lead to downstream gains in related domains too: the gains are most prominent for pairs
of domains that frequently co-occur in dialogs – Hotel pre-training for the Restaurant
downstream (and vice versa) and Taxi pre-training for downstream tasks in the Restaurant
and Attraction domains.

Multi-Domain Specialization. In many real-world scenarios, a single model needs
to be able to handle multiple domains because (a) multi-domain dialogs exist, and (b)
simultaneous deployment of multiple single-domain models may not be feasible. To
simulate this scenario, we conduct an additional analysis, in which we concatenate dialogs
from respective MultiWOZ portions that cover concrete combinations of two or three
domains. We choose three domain combinations with the largest number of multi-
domain dialogs, namely the two largest 2-domain combinations and the largest 3-domain
combination (Figure 3.7): Hotel+Train, Attraction+Train, and Hotel+Taxi+Restaurant.

As baselines, we report the performance of BERT and TOD-BERT fine-tuned on the
respective multi-domain TOD training sets. We test the effect of multi-domain specializa-
tion in two variants: (1) fully specialized model trained for multiple domains (Full-FT): as
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Figure 3.7: Number of dialogs in the MultiWOZ 2.1 training dataset when joining
several domains. Striped bars indicate the domain combinations used for multi-domain
specialization.

Model Specialization
Method

Hotel+
Train

Attraction+
Train

Hotel+Taxi+
Restaurant

BERT – 42.66 45.06 37.00
TOD-BERT – 46.38 46.40 42.47

TOD-BERT-RS-Class
Full-FT 47.39 47.33 42.39

Stacking 47.19 46.68 42.15
Fusion 44.25 45.57 44.02

Table 3.6: DS-TOD performance on DST in multi-domain scenarios. We compare the
fully multi-domain-specialized variant (Full-FT) of the TOD-BERT-RS-Class model
with its variant that combines readily available single-domain adapters (Stacking and
Fusion) on three multi-domain evaluation sets.

RS-Class has proven to be effective in our single-domain specialization experiments, we
run RS-Class training on the concatenation of the selected domains from DomainRed-
dit that correspond to the domains of the joint training sets. Accordingly, the training
data is roughly twice (or three times) as big as that used for single-domain specialization;
(2) composition of single-domain adapters for multiple domains: while for Full-FT, a new
intermediate training is necessary for each domain combination, with adapter-based
specialization we can simply combine the adapters of relevant domains in downstream
fine-tuning. In this setup, we combine the single-domain adapters by sequentially stack-
ing them (Pfeiffer et al., 2020) (Stacking) or by fusing them, i.e., interpolating between
their outputs (Pfeiffer et al., 2021) (Fusion).
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The multi-domain specialization results are shown in Table 3.6. Interestingly, combin-
ing single-domain adapters in downstream training (via Stacking or Fusion) performs en
par with full-sized two-domain specialization on DomainReddit by means of RS-Class
training. In contrast to TOD-BERT-RS-Class (Full-FT), which requires full retraining
of the model on the unlabelled domain-specific corpora for each combination of the
domains, combining single-domain adapters is much more efficient as it does not require
any further intermediate domain training for domain combinations. In the 3-domain
setup (Hotel+Taxi+Restaurant), the Fusion approach even outperforms the full 3-domain
specialization (TOD-BERT-RS-Class Full-FT) by 2 points.

Overall, we find that the adapter compositions provide a simple and effective way to
combine information from several domain-specialized adapters, removing the need for
additional multi-domain specialization in the face of multi-domain dialogs downstream
task (C1; § 2.4.1).

3.1.7 Conclusions

In this Section, we introduced DS-TOD – a novel framework for domain adaptation
of PLMs for task-oriented dialog. Given a collection of in-domain dialogs, we extract
domain terms and use them to filter in-domain dialogic corpora. Our experimental
study, conducted across five domains of the MultiWOZ dataset, demonstrates that
domain specialization, especially by means of response selection objectives on the dialogic
in-domain corpora, leads to consistent gains in TOD tasks: DST and RR.

Our findings reveal the benefits of task-agnostic domain-adaptive pre-training uti-
lizing in-domain dialogic data and response selection objectives could bring substantial
gains for TOD downstream tasks. Further, we proposed an adapter-based approach
offering a viable solution for multi-domain scenarios. However, questions remain about
the applicability of this approach to other domain-specific tasks (e.g., named-entity recog-
nition) and its effectiveness in low-resource settings. This paves the way for investigating
more effective and efficient task-agnostic domain adaptation strategies, aiming to catalyze
further research for applying a single model for multi-domain usage.
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3.2 Efficient Task-Agnostic Domain Adaptation
* In Section 3.1, we demonstrated the benefits of domain-adaptive pre-training for TOD,
demonstrating how intermediate training of PLMs on domain-specific data leads to sub-
stantial gains for downstream TOD tasks. Additionally, we explored the use of adapters
to enhance training efficiency and prevent catastrophic forgetting alleviated from full
fine-tuning (i.e., updating all PLM parameters in domain adaptation phase). However,
the adapter-based approaches require additional parameters for each layer and are crit-
icized for their limited expressiveness. In this Section, we introduce TADA, a novel
Task-Agnostic Domain Adaptation method which is modular, parameter-efficient, and
thus, data-efficient. Within TADA, we retrain the embeddings to learn domain-aware
input representations and tokenizers for the Transformer encoder, while freezing all other
parameters of the model. Subsequently, task-specific fine-tuning is performed. We extend
our approach by conducting experiments with meta-embeddings and newly introduced
meta-tokenizers, resulting in a single model per task in multi-domain use cases. Our broad
evaluation in 4 downstream tasks for 14 domains across single- and multi-domain setups
and high- and low-resource scenarios (C1; § 2.4.1) reveals that TADA is an effective and
efficient alternative to full fine-tuning and adapters for domain adaptation, while not
introducing additional parameters or complex training steps (C2; § 2.4.2).

3.2.1 Introduction

Pre-trained language models (PLMs) (Radford et al., 2018; Devlin et al., 2019) utilizing
the Transformer (Vaswani et al., 2017) have emerged as a key technology for achieving
impressive gains in a wide variety of NLP tasks. However, these PLMs are trained on
massive and heterogeneous corpora with a focus on generalizability without addressing
particular domain-specific concerns. In practice, the absence of such domain-relevant
information can severely hurt performance in downstream applications as shown in
numerous studies (i.a., Zhu and Goldberg, 2009; Ruder and Plank, 2018; Friedrich et al.,
2020).

To impart useful domain knowledge, two main methods of domain adaptation lever-
aging the Transformer have emerged: (1) Massive pre-training from scratch (Beltagy et al.,
2019; Wu et al., 2020) relies on large-scale domain-specific corpora incorporating various
self-supervised objectives during pre-training (see § 2.2). However, the extensive training
process is time- and resource-inefficient, as it requires a large collection of (un)labeled
domain-specialized corpora and massive computational power. (2) Domain-adaptive
intermediate pre-training (Gururangan et al., 2020) is considered more light-weight (de-

*This Section is adapted from: Chia-Chien Hung, Lukas Lange, and Jannik Strötgen. 2023. TADA:
Efficient Task-Agnostic Domain Adaptation for Transformers. In Findings of the Association for Computa-
tional Linguistics (ACL 2023), pages 487–503, Toronto, Canada, July 2023. Association for Computational
Linguistics.
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tailed in § 2.3.1), as it requires only a small amount of in-domain data and fewer epochs
continually training on the PLM from a previous checkpoint. However, fully fine-tuning
the model in the adaptation phase (i.e., updating all PLM parameters) may result in catas-
trophic forgetting and interference (McCloskey and Cohen, 1989; Houlsby et al., 2019), in
particular for longer iterations of adaptation. To overcome these limitations, alternatives
such as adapters (Rebuffi et al., 2017; Houlsby et al., 2019), and sparse fine-tuning (Guo
et al., 2021a; Ben Zaken et al., 2022) have been introduced. These approaches, however, are
still parameter- and time-inefficient, as they either add additional parameters or require
complex training steps and/or models.

In this Section, we propose Task-Agnostic Domain Adaptation for Transformers
(TADA), a novel domain specialization framework. As depicted in Figure 3.8, it consists
of two steps: (1) We conduct intermediate training of a pre-trained Transformer-based lan-
guage model (e.g., BERT) on the unlabeled domain-specific text corpora in order to inject
domain knowledge into the Transformer. Here, we fix the parameter weights of the en-
coder while updating only the weights of the embeddings (i.e., embedding-based domain-
adaptive pre-training). As a result, we obtain domain-specialized embeddings for each
domain with the shared encoder from the original PLM without adding further parame-
ters for domain adaptation. (2) The obtained domain-specialized embeddings along with
the encoder can then be fine-tuned for downstream tasks in single- or multi-domain sce-
narios (Lange et al., 2021b), where the latter is conducted with meta-embeddings (Coates
and Bollegala, 2018; Kiela et al., 2018) and a novel meta-tokenization method for differ-
ent tokenizers. An overview of the efficient domain-adaptive pre-training framework is
illustrated in Figure 3.9.

Contributions. We advance the field of domain adaptation with the following con-
tributions: (i) We propose a modular, parameter-efficient, and task-agnostic domain
adaptation method (TADA) without introducing additional parameters for intermediate
training of PLMs. (ii) We demonstrate the effectiveness of our specialization method
on four heterogeneous downstream tasks – Dialog State Tracking (DST), Response Re-
trieval (RR), Named Entity Recognition (NER), and Natural Language Inference (NLI)
across 14 domains. (iii) We propose modular domain specialization via meta-embeddings
and show the advantages in multi-domain scenarios. (iv) We introduce the concept of
meta-tokenization to combine sequences from different tokenizers in a single model and
perform the first study on this promising topic. (v) The code and resources developed
for TADA are publicly available.10

10https://github.com/boschresearch/TADA
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I. Pre-training II. Efficient
Domain Adaptation III. Fine-tuning

TOD Datasets
(60+ subdomains)
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Figure 3.9: Overview of the efficient domain-adaptive pre-training framework. The
framework involves a three-stage process: Pre-training, Efficient Domain Adaptation,
Fine-tuning.

3.2.2 Related Work

Domain Adaptation. Domain adaptation is a type of transfer learning that aims to
enable the trained model to be generalized into a specific domain of interest (Farahani et al.,
2021). Recent studies have focused on neural unsupervised or self-supervised domain
adaptation leveraging PLMs (Ramponi and Plank, 2020), which do not rely on large-
scale labeled target domain data to acquire domain-specific knowledge. Gururangan et al.
(2020) proposed domain-adaptive intermediate pre-training, continually training PLM
on MLM with domain-relevant unlabeled data, leading to improvements in downstream
tasks in both high- and low-resource setups. The proposed approach has been applied to
a wide variety of tasks (Glavaš et al., 2020; Lewis et al., 2020b) across languages (Hung
et al., 2023c), however, requires fully fine-tuning (i.e., update all PLM parameters) during
domain adaptation, which can potentially result in catastrophic forgetting and negative
interference (Houlsby et al., 2019; He et al., 2021).

Parameter-Efficient Training. Parameter-efficient methods for domain adaptation
alleviate these problems. They have shown robust performance in low-resource and few-
shot scenarios (Fu et al., 2023), where only a small portion of parameters are trained while
the majority of parameters are frozen and shared across tasks. These lightweight alterna-
tives are shown to be more stable than their corresponding fully fine-tuned counterparts
and perform on par with or better than expensive fully fine-tuning setups, including
adapters, prompt-based fine-tuning, and sparse subnetworks. Adapters (Rebuffi et al., 2017;
Houlsby et al., 2019) are additional trainable neural modules injected into each layer of the
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otherwise frozen PLM, including their variants (Pfeiffer et al., 2021), have been adopted in
both single-domain (Bapna and Firat, 2019) and multi-domain (Hung et al., 2022a) scenar-
ios. Sparse subnetworks (Hu et al., 2022; Ansell et al., 2022) reduce the number of training
parameters by keeping only the most important ones, resulting in a more compact model
that requires fewer parameters for fine-tuning. Prompt-based fine-tuning (Li and Liang,
2021; Lester et al., 2021) reduces the need for extensive fine-tuning with fewer training
examples by adding prompts or cues to the input data. These approaches, however, are
still parameter- and time-inefficient, as they add additional parameters, require complex
training steps, are less intuitive to the expressiveness, or are limited to the multi-domain
scenario for domain adaptation. A broader overview and discussion of recent domain
adaptation methods in low-resource scenarios is given in the survey of Hedderich et al.
(2021).

3.2.3 Methods for Task-Agnostic Domain Specialization

To inject domain-specific knowledge through domain-adaptive pre-training into PLMs,
these models are trained on unlabeled in-domain text corpora. For this, we introduce a
novel embedding-based intermediate training approach as an alternative to full fine-tuning
and adapters (§ 3.2.3.1), and further study the effects of domain-specific tokenization
(§ 3.2.3.2) (C1, C2; § 2.4.1, § 2.4.2). We then utilize multiple domain-specialized em-
beddings with our newly proposed meta-tokenizers and powerful meta-embeddings in
multi-domain scenarios (§ 3.2.3.3 and § 3.2.3.4) (C1; § 2.4.1).

3.2.3.1 Domain Specialization

Fully fine-tuning the model requires adjusting all of the model’s parameters, which
can be undesirable due to time- and resource-inefficiency and can dramatically increase
the risk of catastrophic forgetting of the previously acquired knowledge (McCloskey
and Cohen, 1989; Ansell et al., 2022). To alleviate these issues, we propose a parameter-
efficient approach without adding additional parameters during intermediate domain-
specialized adaptation: we freeze most of the PLM parameters and only update the input
embeddings weights of the first Transformer layer (i.e., the parameters of the embeddings
layer) during MLM. With this, the model can learn domain-specific input representations
while preserving acquired knowledge in the frozen parameters. As shown in Figure 3.8,
the encoder parameters are fixed during intermediate training while only the embeddings
layer parameters are updated.

As a result, after intermediate MLM, multiple embeddings specialized for different do-
mains are all applicable with the same shared encoder. As these trained domain-specialized
embeddings are easily portable to any downstream task, we experiment with their combi-
nation in multi-domain scenarios via meta-embeddings methods (Yin and Schütze, 2016;
Kiela et al., 2018). We discuss this in more detail in § 3.2.3.3.
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3.2.3.2 Domain-Specific Tokenization

Inspired by previous work on domain-specialized tokenizers and vocabularies for language
model pre-training (Beltagy et al., 2019; Lee et al., 2019; Yang et al., 2020), we study the
domain adaptation of tokenizers for PLMs and train domain-specialized variants with
the standard Word Piece Algorithm (WPA) (Schuster and Nakajima, 2012) analogously
to the BERT tokenizer. As a result, the domain-specialized tokenizers cover more in-
domain terms compared to the original PLM tokenizers. In particular, this reduces
the number of out-of-vocabulary tokens, i.e., words that have to be split into multiple
subwords, whose embedding quality often does not match the quality of word-level
representations (Hedderich et al., 2021).

3.2.3.3 Meta-Embeddings

Given n embeddings from different domains D, each domain would have an input
representation xDi ∈ RE , 1 ≤ i ≤ n, where n is the number of domains and E is the
dimension of the input embeddings. Here, we consider two variants: averaging (Coates
and Bollegala, 2018) and attention-based meta-embeddings (Kiela et al., 2018).

Averaging merges all embeddings into one vector without training additional param-
eters by taking the unweighted average:

eAV G =
1

n

∑
i

xDi (3.3)

In addition, a weighted average with dynamic attention weights αDi can be used. For
this, the attention weights are computed as follows:

αDi =
exp(V · tanh(WxDi))∑n

k=1 exp(V · tanh(WxDk))
, (3.4)

with W ∈ RH×E and V ∈ R1×H being parameters that are randomly initialized
and learned during training and H is the dimension of the attention vector which is a
predefined hyperparameter.

The domain embeddings xDi are then weighted using the learned attention weights
αDi into one representation vector:

eATT =
∑
i

αDi · xDi (3.5)

As Averaging simply merges all information into one vector, it cannot focus on
valuable domain knowledge in specific embeddings. In contrast, the attention-based
weighting allows for dynamic combinations of embeddings based on their importance
depending on the current input token.
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Domain Text : Acetaminophen is an analgesic drug
=> TOK-1 : Ace #ta #mino #phen is an anal #gesic dr #ug (10 subwords)
=> TOK-2 : Aceta #minophen is an anal #gesic drug (7 subwords)

Aggregation TOK-1 TOK-2

Space [Ace #ta #mino #phen] is an [anal #gesic] [dr #ug] [Aceta #minophen] is an [anal #gesic] drug

Dynamic [Ace #ta] [#mino #phen] is an anal #gesic [dr #ug] Aceta #minophen is an anal #gesic drug

Truncation [Ace] [#mino] is an anal #gesic [dr] Aceta #minophen is an anal #gesic drug

Table 3.7: Examples of our proposed aggregation approaches for meta-tokenization:
Space, Dynamic, Truncation, for a given text and two different tokenizers (TOK-1,
TOK-2). The bottom of the table shows the results after aggregation. [a b . . . z] denotes
the average of all embedding vectors corresponding to subword tokens a, b, . . . , z.

As shown in related works, these meta-embeddings approaches suffered from critical
mismatch issues when combining embeddings of different sizes and input granularities
(e.g., character- and word-level embeddings) that could be addressed by learning addi-
tional mappings to the same dimensions on word-level to force all the input embeddings
towards a common input space (Lange et al., 2021a).

Our proposed method prevents these issues by (a) keeping the input granularity fixed,
which alleviates the need for learning additional mappings, and (b) locating all domain
embeddings in the same space immediately after pre-training by freezing the subsequent
Transformer layers. We compare the results of two variants in § 3.2.5. More information
on meta-embeddings can be found in the survey of Bollegala and O’ Neill (2022).

3.2.3.4 Meta-Tokenization for Meta-Embeddings

To utilize our domain-adapted tokenizers in a single model with meta-embeddings, we
have to align different output sequences generated by each tokenizer for the same input.
This is not straightforward due to mismatches in subword token boundaries and sequence
lengths. We thus introduce three different aggregation methods to perform the meta-
tokenization, and the examples for each method are shown in Table 3.7:

(a) Space: We split the input sequence on whitespaces into tokens and aggregate for
each tokenizer all subword tokens corresponding to a particular token in the original
sequence.

(b) Dynamic: The shortest sequence from all tokenizers is taken as a reference. Sub-
words from longer sequences are aggregated accordingly. This assumes that word-
level knowledge is more useful than subword knowledge and that fewer word
splitting is an indication of in-domain knowledge.

(c) Truncation: This method is similar to the Dynamic aggregation, but it uses
only the first subword for each token instead of computing the average when a
token is split into more subwords.
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Task Dataset Domain Background Train / Dev / Test License†

DST,
RR MultiWOZ 2.1 (Eric et al., 2020)

Taxi 200 K 1,654 / 207 / 195

MIT
Restaurant 200 K 3,813 / 438 / 437
Hotel 200 K 3,381 / 416 / 394
Train 200 K 3,103 / 484 / 494
Attraction 200 K 2,717 / 401 / 395

NLI MNLI (Williams et al., 2018)

Government 46.0 K 77,350 / 2,000 / 2,000 OANC
Travel 47.4 K 77,350 / 2,000 / 2,000 OANC
Slate 214.8 K 77,306 / 2,000 / 2,000 OANC
Telephone 234.6 K 83,348 / 2,000 / 2,000 OANC
Fiction 299.5 K 77,348 / 2,000 / 2,000 CC-BY-{3.0; SA-3.0}

NER

CoNLL (Tjong Kim Sang and De Meulder, 2003) News 51.0 K 14,987 / 3,466 / 3,684 DUA
I2B2-CLIN (Uzuner et al., 2011) Clinical 299.9 K 13,052 / 3,263 / 27,625 DUA
SEC (Salinas Alvarado et al., 2015) Financial 4.8 K 825 / 207 / 443 CC-BY-3.0
LITBANK (Bamman et al., 2019) Fiction 299.5 K 5,548 / 1,388 / 2,973 CC-BY-4.0
SOFC (Friedrich et al., 2020) Science 300.1 K 489 / 123 / 263 CC-BY-4.0

Table 3.8: Overview of the selected datasets for 4 tasks (DST, RR, NLI, NER) on 14
domains. For each domain, we report the number of collected in-domain texts for domain-
adaptive pre-training, as well as the size and license of the downstream dataset. All selected
datasets are applicable for commercial usage. †License: Open American National Corpus
(OANC), Direct Universal Access (DUA), Creative Commons Attribution Share-Alike
(CC-BY-SA), Creative Commons Attribution International License (CC-BY).

Once the token and subword boundaries are determined, we retrieve the subword em-
beddings from the embedding layer corresponding to the tokenizer and perform the
aggregation if necessary, in our case averaging all subword embeddings.

3.2.4 Experimental Setup

We demonstrate the effectiveness of our proposed task-agnostic domain adaptation
(TADA) framework on 4 downstream tasks across 14 domains. This includes a detailed
description of the downstream tasks, and an overview of the background datasets col-
lected for domain-adaptive pre-training. We further provide details on the models, their
hyperparameters, and the comparisons with baseline systems.

Tasks and Evaluation Measures. We evaluate our domain-specialized models and
baselines on four prominent downstream tasks: Dialog State Tracking (DST), Response
Retrieval (RR), Named Entity Recognition (NER), and Natural Language Inference
(NLI) with five domains per task. Table 3.8 shows the statistics of all datasets.

(i) DST is cast as a multi-classification dialog task. As detailed defined in § 3.1.5, given
a dialog history (sequence of utterances) and a predefined ontology, the goal is
to predict the output state, i.e., (domain, slot, value) tuples (Wu et al., 2020) like
(restaurant, pricerange, expensive). The standard joint goal accuracy is adopted as
the evaluation measure: at each dialog turn, it compares the predicted dialog states
against the annotated ground truth. The predicted state is considered accurate if
and only if all the predicted slot values match exactly to the ground truth (see an
example in § 3.1.5).
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(ii) RR is a ranking task, relevant for retrieval-based task-oriented dialog systems (Hen-
derson et al., 2019c; Wu et al., 2020). As outlined in § 3.1.5, given the dialog context,
the model ranks N dataset utterances, including the true response to the context
(i.e., the candidate set covers one true response and N − 1 false responses). Follow-
ing Henderson et al. (2019c), we report the recall at top rank given 99 randomly
sampled false responses, denoted as R100@1 (see an example in § 3.1.5).

(iii) NER is a sequence tagging task, aiming to detect named entities within a sentence
by classifying each token into the entity type from a predefined set of categories
(e.g., PERSON, ORGANIZATION) including a neutral type (O) for non-entities.
Following prior work (Tjong Kim Sang and De Meulder, 2003; Nadeau and Sekine,
2007), we report the strict micro F1 score. An example of NER task from clinical
domain (Uzuner et al., 2011) followed BIO format11 is demonstrated as below:

Tokens Subcentimeter attenuation lesion within
the lower pole of ...

Tags B-problem I-problem I-problem I-problem
I-problem I-problem I-problem O ...

(iv) NLI is a language understanding task testing the reasoning abilities of machine
learning models beyond simple pattern recognition. The task is to determine if a
hypothesis logically follows the relationship from a premise, inferred by entailment
(true), contradiction (false), or neutral (undefined). Following Williams
et al. (2018), accuracy is reported as the evaluation measure. We show an example of
NLI task from government domain (Williams et al., 2018) as following:

Premise 6 See also Internal Control Management and Evaluation
Tool (GAO-01-1008G, August 2001).

Hypothesis The tool is not for Internal Control Management.
Label Contradiction

Background Data for MLM-Specialization. We collect unlabeled background datasets
from the original or related text sources to specialize our models with domain-adaptive
pre-training (details are available in Table 3.9). For MLM training, we randomly sample
up to 200K domain-specific sentences12 (C2; § 2.4.2) and dynamically mask 15% of the
subword tokens following Liu et al. (2019c).

11BIO format is a common tagging format for tagging tokens in a sequence tagging task. B, I, and O stand
for Begin, Interior, and Outside respectively.

12Except for four low-resource domains. For these, we randomly sample 44K (Government, Travel,
News) and 4.5K (Financial) respectively.
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Task Domain Background dataset # Sentences

DST,
RR

Taxi

DomainCC corpus from Hung et al. (2022a).

200 K
Restaurant 200 K
Hotel 200 K
Train 200 K
Attraction 200 K

NLI

Government

The respective part of the OANC corpus.

46.0 K
Travel 47.4 K
Slate 214.8 K
Telephone 234.6 K

Fiction The BooksCorpus (Zhu et al., 2015), used as the pre-training data of BERT 299.5 K(Devlin et al., 2019).

NER

News The Reuters news corpus in NLTK (nltk.corpus.reuters). Similar to the 51.0 Ktraining data of CoNLL (Tjong Kim Sang and De Meulder, 2003).
Clinical Pubmed abstracts from clinical publications filtered following Lange et al. (2022). 299.9 K
Financial The financial phrase bank from Malo et al. (2014). 4.8 K
Fiction Same as NLI Fiction, described above. 299.5 K

Science Randomly sampled SemanticScholar abstracts from Biology (70%) and Computer 300.1 KScience (30%). Similar to the pre-training data of SciBERT (Beltagy et al., 2019).

Table 3.9: Overview of the background datasets and their sizes as reported in Table 3.8
in the background column. The background datasets are used to train domain-specific
tokenizers and domain-adapted embeddings layer.

Models and Baselines. We experiment with the most widely used PLM: BERT (Devlin
et al., 2019) for NER and NLI. For DST and RR as dialog tasks, we experiment with
BERT and TOD-BERT (Wu et al., 2020) following the previous Section (§ 3.1.6; Hung
et al. (2022a)) for comparing general- and task-specific PLMs.13 We want to highlight
that our proposed method can be easily applied to any existing PLM. As baselines, we
report the performance of the non-specialized variants and compare them against (a) full
fine-tuning (Gururangan et al., 2020), (b) adapter-based models (Houlsby et al., 2019),
and (c) our domain-specialized PLM variants trained with TADA.

Hyperparameters and Optimization. During MLM training, we fix the maximum
sequence length to 256 (DST, RR) and 128 (NER, NLI) subwords and do lowercasing.
We train for 30 epochs in batches of 32 instances and search for the optimal learning rate
among the following values: {5 · 10−5, 1 · 10−5, 1 · 10−6}. Early stopping is applied
on the development set performance (patience: 3 epochs) and the cross-entropy loss is
minimized using AdamW (Loshchilov and Hutter, 2019). For DST and RR, we follow
the hyperparameter setup from Hung et al. (2022a). For NLI, we train for 3 epochs in
batches of 32 instances. For NER, we train 10 epochs in batches of 8 instances. Both
tasks use a fixed learning rate of 5 · 10−5. Detailed computational information is in
Appendix B.2.

13We use the pre-trained language models weights loaded from HuggingFace: bert-base-uncased
(NLI, NER) and bert-base-cased, TODBERT/TOD-BERT-JNT-V1 (RR, DST). More details about the
models can be referred to § 2.2.1 and § 2.2.3.
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DST RR
Model Taxi Restaur. Hotel Train Attract. Avg. Taxi Restaur. Hotel Train Attract. Avg.

BERT 23.87 35.44 30.18 41.93 29.77 32.24 23.25 37.61 38.97 44.53 48.47 38.57
TOD-BERT 30.45 43.58 36.20 48.79 42.70 40.34 45.68 57.43 53.84 60.66 60.26 55.57

BERT (MLM-FULL) 23.74 37.09 32.77 40.96 36.66 34.24 31.37 53.08 45.41 51.66 52.23 46.75
TOD-BERT (MLM-FULL) 29.94 43.14 36.11 47.61 41.54 39.67 41.77 55.27 50.60 55.17 54.62 51.49
BERT (MLM-ADAPT) 22.52 40.49 31.90 42.17 35.05 34.43 32.84 44.01 39.15 38.43 45.05 39.90
TOD-BERT (MLM-ADAPT) 32.06 44.06 36.74 48.84 43.50 41.04 49.08 58.18 55.55 59.46 60.26 56.51

BERT (MLM-EMB) 22.39 31.26 25.75 41.00 34.02 30.88 40.89 54.24 47.30 52.18 56.50 50.22
TOD-BERT (MLM-EMB) 32.00 43.47 36.67 47.34 42.80 40.46 47.08 57.71 55.65 60.72 60.39 56.31
TOD-BERT (MLM-EMBTOK-S) 33.03 41.14 36.77 47.50 40.77 39.84 50.41 58.97 56.48 62.63 59.56 57.61
TOD-BERT (MLM-EMBTOK-X) 32.55 44.60 36.92 47.27 43.58 40.98 50.77 60.40 56.87 62.11 60.89 58.21

NLI NER
Model Govern. Tele. Fiction Slate Travel Avg. Financ. Fiction News Clinical Science Avg.

BERT 79.07 78.18 76.63 73.40 77.33 76.92 90.56 72.09 90.04 85.91 78.23 83.44

BERT (MLM-FULL) 80.82 81.43 76.43 71.97 77.78 77.69 90.53 72.33 90.62 86.18 78.19 83.57
BERT (MLM-ADAPT) 75.58 73.70 72.33 67.11 72.42 72.23 76.62 63.82 89.17 80.64 61.65 74.38

BERT (MLM-EMB) 80.77 80.42 79.27 73.50 77.94 78.38 90.38 71.79 90.67 85.82 78.82 83.50
BERT (MLM-EMBTOK-S) 80.57 79.15 78.51 72.94 77.28 77.69 87.49 69.90 89.55 85.53 79.39 82.37
BERT (MLM-EMBTOK-X) 81.08 80.16 78.97 73.15 77.68 78.21 89.27 69.77 89.21 85.31 77.33 82.18

Table 3.10: Results of our single-domain models with domain-specialized embeddings
and tokenizers on four downstream tasks (DST, RR, NLI, NER). The evaluation metrics
include: joint goal accuracy (%) for DST, R100@1 (%) for RR, accuracy (%) for NLI, and
F1 (%) for NER.

3.2.5 Evaluation Results

For each downstream task, we first conduct experiments in a single-domain scenario,
i.e., training and testing on data from the same domain, to show the advantages of
our proposed approach of task-agnostic domain-adaptive embedding-based pre-training
and tokenizers (§ 3.2.5.1). We further consider the combination of domain-specialized
embeddings with meta-embeddings variants (Coates and Bollegala, 2018; Kiela et al.,
2018) in a multi-domain scenario, where we jointly train on data from all domains of the
respective task (§ 3.2.5.2).

3.2.5.1 Single-Domain Evaluation

We report downstream performance for the single-domain scenario in Table 3.10, with
each subtable being segmented into three parts: (1) at the top, we show baseline results
(BERT, TOD-BERT) without any domain specialization; (2) in the middle, we show
results of domain-specialized PLMs via full fine-tuning and the adapter-based approach;
(3) the bottom of the table contains results of our proposed approach specializing only
the embeddings and the domain-specific tokenization.

As discussed in § 3.1.6, in the TOD tasks of DST and RR, TOD-BERT demonstrates
superior performance over BERT, attributed to its specialized training on conversational
knowledge. However, when subjected to further domain-adaptive pre-training with
full MLM training (MLM-FULL), TOD-BERT’s performance decreases (i.e., -4% for
RR and -0.8% for DST compared to TOD-BERT). This downturn is believed to result
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from the negative interference of full MLM domain specialization: while TOD-BERT is
being trained on domain data during intermediate pre-training, the model forgets the
conversational knowledge obtained during the initial dialogic pre-training stage (Wu et al.,
2020). The hypothesis is further supported by the observations for the adapter-based
method which gains slight performance increases.

Our proposed embedding-based domain adaptation (MLM-EMB) yields similar
performance gains as specialization with adapters for TOD-BERT on average. Inspired by
previous work on domain-specialized subtokens for language model pre-training (Beltagy
et al., 2019; Yang et al., 2020), we additionally train domain-specific tokenizers (MLM-
EMBTOK) with the Word Piece Algorithm (WPA) (Schuster and Nakajima, 2012). The
training corpora are either obtained from only background corpora (S) or from the
combination of background and training set of each domain (X). Further, our domain-
specialized tokenizers coupled with the embedding-based domain-adaptive pre-training
exhibit similar average performance for DST and outperform the state-of-the-art adapters
and all other methods for RR.

Similar findings are observed for NLI and NER. MLM-EMB compared to MLM-
FULL results in +0.7% performance gains in NLI and reaches similar average gains in
NER. Especially for NLI, the domain-specialized tokenizers (MLM-EMBTOK) are
beneficial in combination with our domain-specialized embeddings, while having consid-
erably fewer trainable parameters. Given that TADA is substantially more efficient and
parameter-free (i.e., without adding extra parameters), this promises more sustainable
domain-adaptive pre-training.
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DST RR
Model Taxi Restaur. Hotel Train Attract. Avg. Taxi Restaur. Hotel Train Attract. Avg.

BERT 29.10 39.92 36.67 47.63 42.32 39.13 44.87 51.98 49.11 50.15 54.81 50.18
TOD-BERT 34.65 44.24 39.54 51.66 44.24 42.87 50.99 61.53 56.09 58.94 62.76 58.06
BERT (MLM-FULL) 31.94 42.16 38.48 45.37 41.48 39.89 49.59 55.76 54.66 55.59 59.85 55.09
TOD-BERT (MLM-FULL) 32.26 45.70 39.51 51.31 45.92 42.94 53.51 64.44 59.22 62.14 66.49 61.16

(AVG) TOD-BERT (EMB+MLM-EMBs) 37.65 46.06 39.61 51.95 46.95 44.44 52.84 62.56 58.54 60.79 64.87 59.92
(ATT) TOD-BERT (EMB+MLM-EMBs) 35.13 46.86 40.73 51.10 44.76 43.72 53.06 63.18 56.94 60.45 64.13 59.55
(AVG) TOD-BERT (MLM-EMBs) 35.42 46.71 40.82 52.34 47.30 44.52 55.20 64.58 60.39 62.84 66.11 61.82
(ATT) TOD-BERT (MLM-EMBs) 37.35 46.98 41.32 51.92 47.88 45.09 53.73 64.00 59.89 61.54 65.05 60.84

NLI NER
Model Govern. Tele. Fiction Slate Travel Avg. Financ. Fiction News Clinical Science Avg.

BERT 82.88 82.10 80.69 76.01 80.11 80.36 87.68 69.11 89.96 85.76 76.14 81.73
BERT (MLM-FULL) 83.29 81.79 81.11 76.32 79.66 80.43 88.71 69.92 89.69 85.61 80.03 82.79

(AVG) BERT (MLM-EMBs) 83.80 80.87 81.70 77.60 81.30 81.05 87.72 68.78 90.16 85.68 78.22 82.11
(ATT) BERT (MLM-EMBs) 83.50 81.64 81.74 76.68 80.36 80.78 88.89 69.05 90.56 85.43 80.55 82.90

Table 3.11: Results of our multi-domain models leveraging meta-embeddings on four
downstream tasks (DST, RR, NLI, NER).

3.2.5.2 Multi-Domain Evaluation

In practice, a single model must be able to handle multiple domains because the deploy-
ment of multiple models may not be feasible (C1; § 2.4.1). To simulate a multi-domain
setting, we utilize the domain-specialized embeddings from each domain (§ 3.2.5.1) and
combine them with meta-embeddings (§ 3.2.3.3).

To train a single model for each task applicable to all domains, we concatenate the
training sets of all domains for each task. As baselines for DST and RR, we report the per-
formance of BERT and TOD-BERT and a version fine-tuned on the concatenated multi-
domain training sets (MLM-FULL). We test the effect of multi-domain specialization in
two variants: averaging (AVG) and attention-based (ATT) meta-embeddings. We conduct
experiments to check whether including general-purpose embeddings from TOD-BERT
(EMB+MLM-EMBs) is beneficial compared to the one without (MLM-EMBs). The
results in Table 3.11 show that combining domain-specialized embeddings outperforms
TOD-BERT in both tasks. In particular, averaging meta-embeddings performs better
in RR while attention-based ones work better in DST by 3.8% and 2.2% compared to
TOD-BERT, respectively. It is further suggested that combining only domain-specialized
embeddings (i.e., without adding general-purpose embeddings) works better for both
meta-embeddings variants.

These findings are confirmed by NLI and NER experiments. The meta-embeddings
applied in our multi-domain scenarios outperform BERT by 0.7 points for NLI and 1.2
points for NER, respectively. An encouraging finding is that two domains (Financial,
Science) with the smallest number of training resources benefit the most compared to
other domains in NER task. Such few-shot settings are further investigated in § 3.2.6.1.

Overall, we find that the meta-embeddings provide a simple yet effective way to com-
bine several domain-specialized embeddings, alleviating the need of deploying multiple
models.
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Government Telephone Fiction Slate Travel Avg.

Model 1% 20% 1% 20% 1% 20% 1% 20% 1% 20% 1% 20%

SD

BERT 57.62 75.21 49.20 74.45 43.76 72.90 46.70 67.71 54.05 71.55 50.27 72.36
BERT (MLM-FULL) 61.92 76.07 54.53 75.07 49.32 73.21 45.81 67.26 56.56 72.50 53.63 72.82
BERT (MLM-ADAPT) 42.88 67.93 41.27 65.80 38.12 59.53 38.91 54.71 40.74 65.89 40.38 62.78

BERT (MLM-EMB) 61.66 76.61 49.86 75.33 48.35 72.22 49.10 68.26 60.27 72.73 53.85 73.03
BERT (MLM-EMBTOK-X) 61.27 75.75 49.20 74.11 49.74 72.26 49.10 66.51 58.99 72.15 53.66 72.16

MD
BERT 69.56 79.49 64.80 77.72 61.53 76.84 61.43 72.64 66.40 76.42 64.74 76.62

(AVG) BERT (MLM-EMBs) 70.13 80.00 64.39 78.28 62.24 76.94 62.61 71.61 66.45 76.21 65.16 76.61
(ATT) BERT (MLM-EMBs) 71.21 79.90 65.56 78.48 61.33 77.34 61.99 72.69 66.24 76.32 65.27 76.95

Table 3.12: Few-shot learning results on NLI task for 1% and 20% of the training data
size in single-domain (SD) and multi-domain (MD) scenarios. We report mean of 3 runs
with different random seeds (for brevity), where the results with both mean and standard
deviation are in Appendix B.3.

3.2.6 Analysis

To more precisely analyze the advantages of our proposed embedding-based domain-
adaptive pre-training methods and tokenizers, we study the following: few-shot transfer
capability (§ 3.2.6.1), the effect of domain-specialized tokenizers on subword tokens
(§ 3.2.6.2), and the combinations of multiple domain-specialized tokenizers with meta-
tokenizers in multi-domain scenarios (§ 3.2.6.3).

3.2.6.1 Few-Shot Learning

We report few-shot experiments in Table 3.12 using 1% and 20% of the training data for NLI.
We run three experiments with different random seeds to reduce variance and report the
mean and standard deviation for these limited task data scenarios. MLM-EMB on average
outperforms MLM-FULL by 1% in the single-domain scenario, especially for Slate and
Travel domains with the largest improvements (i.e., 3.3% and 2.7%, respectively). In
contrast, the adapter-based models (MLM-ADAPT) perform worse in this few-shot
setting. This demonstrates the negative interference (-10%) caused by the additional
parameters that cannot be properly trained, given the scarcity of task data for fine-tuning.
In multi-domain settings, attention-based meta-embeddings, on average, surpass the
standard BERT model in both few-shot setups. Overall, these findings demonstrate the
strength of our proposed embedding-based domain-adaptive pre-training in limited task
data scenarios (C1; § 2.4.1).

3.2.6.2 Domain-Specific Tokenizers

To study whether domain-specialized tokenizers better represent the target domain, we
select the development sets and count the number of words that are split into multiple
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DST and RR
Model Taxi Restaurant Hotel Train Attraction Avg. Diff.

TOK-O 856 1597 1530 1659 1310 1390.4 -
TOK-S 715 1338 951 951 946 1048.2 -24.6%
TOK-X 465 959 753 753 740 798.4 -42.6%

NLI
Model Government Telephone Fiction Slate Travel Avg. Diff.

TOK-O 4095 4221 3379 5094 5883 4534.3 -
TOK-S 1874 3517 3568 3597 3685 3248.2 -28.4%
TOK-X 1873 3522 2426 3683 3984 3097.6 -31.7%

NER
Model Finance Fiction News Clinical Science Avg. Diff.

TOK-O 397 1930 6357 5121 832 2927.4 -
TOK-S 695 1958 8526 3744 653 3115.2 +6.4%
TOK-X 600 1822 5818 2939 463 2328.4 -20.5%

Table 3.13: The number of words that have to be split into multiple tokens (>= subwords)
for different tokenizers. The assumption is that the fewer the number of words split into
subwords, the more effectively a tokenizer represents the target domain.

tokens for each tokenizer. The assumption is that the domain-specialized tokenizers allow
for word-level segmentation, and thus, word-level embeddings, instead of fallbacks to
lower-quality embeddings from multiple subword tokens.

We compare three different tokenizers for each setting: (a) TOK-O: original tokenizer
from PLMs without domain specialization; (b) TOK-S: domain-specialized tokenizer
trained on the in-domain background corpus; (c) TOK-X: domain-specialized tokenizer
trained on the concatenated in-domain background corpus plus the downstream training
set.

Table 3.13 shows the results on all four tasks averaged across domains. It is evident
that TOK-X compared to TOK-O in general significantly reduces the number of tokens
split into multiple subwords (-42.6% in DST, RR; -31.7% in NLI; -20.5% in NER). This
indicates that the domain-specialized tokenizers cover more tokens on the word-level, and
thus, convey more domain-specific information. For domains with smaller background
datasets, e.g., Financial and News, the tokenizers are not able to leverage more word-
level information. For example, TOK-S that was trained on the background data performs
worse in these domains, as the background data is too small and the models overfit on
background data coming from a similar, but not equal source. Including the training
corpora helps to avoid overfitting and/or shift the tokenizers towards the dataset word
distribution, as TOK-X improves for both domains over TOK-S. The finding is well-aligned
with the results in Table 3.10 (see § 3.2.5.1) and supports our hypothesis that word-level
tokenization is beneficial (C3; § 2.4.3).
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Model DST RR NLI NER
(AVG) BERT‡ (MLM-EMBs) 44.52 61.82 81.05 82.11
(ATT) BERT‡ (MLM-EMBs) 45.09 60.84 80.78 82.90

(AVG) BERT‡ (MLM-EMBTOKs-X) dynamic 42.16 59.87 79.10 70.73
(AVG) BERT‡ (MLM-EMBTOKs-X) space 41.57 58.54 79.51 70.63
(AVG) BERT‡ (MLM-EMBTOKs-X) truncation 40.26 58.07 79.47 66.66
(ATT) BERT‡ (MLM-EMBTOKs-X) dynamic 42.73 59.22 79.32 70.83
(ATT) BERT‡ (MLM-EMBTOKs-X) space 41.45 58.95 79.93 70.71
(ATT) BERT‡ (MLM-EMBTOKs-X) truncation 40.82 59.09 79.67 68.41

Table 3.14: Results of meta-tokenizers in multi-domain experiments with meta-
embeddings. Here bold indicates the best performance and underline indicates the
best-performing meta-tokenization aggregation method. ‡BERT variants: TOD-BERT
(DST, RR) and BERT (NLI, NER).

3.2.6.3 Study on Meta-Tokenizers

In § 3.2.5.2, we experiment with multiple domain-specialized embeddings inside meta-
embeddings. These embeddings are, however, based on the original tokenizers and not
on the domain-specialized ones. While the latter are considered to contain more domain
knowledge and achieve better downstream single-domain performance (§ 3.2.5.1), it is not
straightforward to combine tokenized output by different tokenizers for the same input
due to mismatches in subword boundaries and sequence lengths.

Therefore, we further conduct experiments with meta-tokenizers in the context of
meta-embeddings setup following § 3.2.3.4. We compare the best multi-domain models
with our proposed aggregation approaches. The averaged results across domains are
shown in Table 3.14 (per-domain results are available in Appendix B.4). Overall, it is
observed that the Space and Dynamic approaches work better than Truncation.
However, there is still a performance gap between using multiple embeddings sharing the
same sequence from the original tokenizer compared to the domain-specialized tokenizers.
Nonetheless, this study shows the general applicability of meta-tokenizers in PLMs
and suggests future work toward leveraging the domain-specialized tokenizers in meta-
embeddings.

3.2.7 Conclusions

In this Section, we introduced TADA – a novel task-agnostic domain adaptation method
which is modular and parameter-efficient for pre-trained Transformer-based language
models. We demonstrated the efficacy of TADA in 4 downstream tasks across 14 domains
in both single- and multi-domain settings, as well as high- and low-resource scenarios. An
in-depth analysis revealed the advantages of TADA in few-shot transfer and highlighted
how our domain-specialized tokenizers take the domain vocabularies into account. We
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conducted the first study on meta-tokenizers and showed their potential in combination
with meta-embeddings in multi-domain applications. Our work points to multiple
future directions, including advanced meta-tokenization methods and the applicability
of TADA beyond the studied tasks in this Section.

In the next Chapter, we focus on language adaptation, which involves a multifaceted
exploration. We create a robust multilingual multi-domain task-oriented dialog dataset,
spanning four topologically diverse languages. Further, we introduce a novel language-
adaptive pre-training framework utilizing PLMs for multilingual conversational special-
ization, aiming to facilitate cross-lingual transfer for arbitrary downstream task-oriented
dialog tasks.
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Chapter 4

Language Adaptation

“The difference between the almost right word and the right word is really a large matter
– ’tis the difference between the lightning bug and the lightning.”

Mark Twain
«A Letter to George Bainton»

* Language diversity is a fundamental aspect of human communication, reflecting the
global variety of cultures, perspectives, and knowledge. Effective language adaptation
in NLP is essential to dismantle language barriers, foster inclusivity, and ensure that
technological advancements cater to a wide spectrum of users. Language adaptation em-
powers language models to comprehend diverse languages, enabling individuals around
the world to access information, and communicate to enhance user experience. Besides,
it also extends the research areas and applications to regions and communities that were
previously underserved due to language constraints. Research on multi-domain task-
oriented dialog (TOD) has predominantly focused on the English language, primarily
due to the shortage of robust TOD datasets in other languages, preventing the systematic
investigation of cross-lingual transfer for this crucial NLP application area. Acknowledg-
ing the paramount importance of mitigating language barriers for TOD, this Chapter
introduces Multi2WOZ, a new multilingual multi-domain TOD dataset, derived from
the well-established English dataset MultiWOZ, that spans four typologically diverse
languages: Chinese, German, Arabic, and Russian. In contrast to concurrent efforts
(Zuo et al., 2021; Ding et al., 2022), Multi2WOZ contains gold-standard dialogs in
target languages that are directly comparable with development and test portions of
the English dataset, enabling reliable and comparative estimates of cross-lingual transfer
performance for TOD. We then introduce a novel adaptive pre-training framework for

*This Chapter is adapted from: Chia-Chien Hung, Anne Lauscher, Ivan Vulić, Simone Paolo Ponzetto,
and Goran Glavaš. 2022. Multi2WOZ: A Robust Multilingual Dataset and Conversational Pretraining for
Task-Oriented Dialog. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL 2022), pages 3687–3703, Seattle,
United States, July 2022. Association for Computational Linguistics.
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multilingual conversational specialization of PLMs that aims to facilitate cross-lingual
transfer for arbitrary downstream TOD tasks (i.e., task agnostic) (C1; § 2.4.1). Using
such conversational PLMs specialized for concrete target languages, we systematically
benchmark a number of zero-shot and few-shot cross-lingual transfer approaches on two
standard TOD tasks: Dialog State Tracking (DST) and Response Retrieval (RR). Our
experiments show that, in most setups, the best performance entails the combination of
(i) conversational specialization in the target language, and (ii) few-shot transfer for the
concrete TOD task. Most importantly, we show that our conversational specialization
in the target language allows for an exceptionally sample-efficient few-shot transfer for
downstream TOD tasks.

4.1 Introduction

Task-oriented dialog is arguably one of the most popular NLP application areas (Yan et al.,
2017; Henderson et al., 2019c, inter alia), with more importance recently given to more
realistic, and thus, multi-domain conversations (Budzianowski et al., 2018; Ramadan
et al., 2018), in which users may handle more than one task during the conversation, e.g.,
booking a taxi and making a reservation at a restaurant. Unlike many other NLP tasks
(e.g., Hu et al., 2020; Liang et al., 2020; Ponti et al., 2020, inter alia), the progress towards
multilingual multi-domain TOD has been hindered by the lack of sufficiently large and
high-quality datasets in languages other than English (Budzianowski et al., 2018; Zang
et al., 2020) and more recently, Chinese (Zhu et al., 2020). This lack can be attributed
to the fact that creating TOD datasets for new languages from scratch or via translation
of English datasets is significantly more expensive and time-consuming than for most
other NLP tasks. However, the absence of multilingual datasets that are comparable
(i.e., aligned) across languages prevents a reliable estimate of effectiveness of cross-lingual
transfer techniques in multi-domain TOD (Razumovskaia et al., 2022).

In order to address these research gaps, in this Chapter we introduce Multi2WOZ,
a reliable and large multilingual evaluation benchmark for multi-domain task-oriented dia-
log, derived by translating the monolingual English-only MultiWOZ data (Budzianowski
et al., 2018; Eric et al., 2020) to four linguistically diverse major world languages, each
with a different script: Arabic (AR), Chinese (ZH), German (DE), and Russian (RU).

Compared to the concurrent efforts that derive multilingual datasets from English
MultiWOZ (Zuo et al., 2021; Ding et al., 2022), our Multi2WOZ is: (1) much larger –
we translate all dialogs from development and test portions of the English MultiWOZ
(in total 2,000 dialogs containing the total of 29.5K utterances); (2) much more reliable
– complete dialogs, i.e., utterances as well as slot-values, have been manually translated
(without resorting to error-prone heuristics), and the quality of translations has been
validated through quality control steps; and (3) parallel – the same set of dialogs has been
translated to all target languages, enabling the direct comparison of the performance of
multilingual models and cross-lingual transfer approaches across languages.

82



4. LANGUAGE ADAPTATION

I. Pre-training II. Language
Adaptation III. Fine-tuning

TOD
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Figure 4.1: Overview of the language-adaptive pre-training framework. The framework
involves a three-stage process: Pre-training, Language Adaptation, Fine-tuning. In this
Chapter, intermediate training indicates the second (II) stage: language adaptation phase.

We then use Multi2WOZ to benchmark a range of state-of-the-art zero-shot and
few-shot methods for cross-lingual transfer in two standard TOD tasks: Dialog State
Tracking (DST) and Response Retrieval (RR). We propose a general framework for
improving performance and sample-efficiency of cross-lingual transfer for TOD tasks.
We first leverage the parallel conversational OpenSubtitles corpus (Lison and Tiedemann,
2016) to carry out a conversational specialization of a PLM for a given target language,
irrespective of the downstream TOD task of interest. We then show that this intermediate
conversational specialization in the target language (i) consistently improves the DST and
RR performance in both zero-shot and few-shot transfer, and (ii) drastically improves
sample-efficiency of few-shot transfer. An overview of language-adaptive pre-training
framework is illustrated in Figure 4.1.

Contributions. We advance the field of multilingual multi-domain TOD with the
following key contributions: (i) We introduce Multi2WOZ – a robust multilingual
muti-domain TOD dataset spanning four typologically diverse languages, and conduct
quality control step to ensure reliability. (ii) We propose a conversational specialized PLM
which can be tailored for cross-lingual transfer in downstream TOD tasks. (iii) We exam-
ine different objectives for injecting language-specific knowledge into PLMs leveraging
two collected corpora: we empirically compare Masked Language Modeling (MLM)
applied on the “flat” language dataset LangCC against Translation Language Modeling
(TLM) (Conneau and Lample, 2019) with Response Selection (RS) objectives on dialogic
LangOpenSubtitles corpus. We demonstrate the effectiveness of cross-lingual transfer
on two downstream TOD tasks – DST and RR. (iv) Our proposed language-adaptive pre-
training framework for TOD consistently improves task performance in both zero-shot
and few-shot transfer scenarios, with exceptionally notable sample efficiency in few-shot
transfer for downstream TOD tasks.
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4.2 Related Work

TOD Datasets. Research in task-oriented dialog has been, for a long time, limited
by the existence of only monolingual English datasets. While earlier datasets focused
on a single domain (Henderson et al., 2014a,b; Wen et al., 2017), the focus shifted to-
wards the more realistic multi-domain task-oriented dialogs with the creation of the
MultiWOZ dataset (Budzianowski et al., 2018), which has been refined and improved
in several iterations (Eric et al., 2020; Zang et al., 2020; Han et al., 2021). Due to the
particularly high costs of creating TOD datasets (in comparison with other language
understanding tasks) (Razumovskaia et al., 2022), only a handful of monolingual TOD
datasets in languages other than English (Zhu et al., 2020) or bilingual TOD datasets
have been created (Gunasekara et al., 2020; Lin et al., 2021). Mrkšić et al. (2017b) were
the first to translate 600 dialogs from the single-domain WOZ 2.0 (Mrkšić et al., 2017a)
to Italian and German. Concurrent work (Zuo et al., 2021; Ding et al., 2022), which we
discuss in detail in § 4.3.2 and compare thoroughly against our Multi2WOZ, introduces
the first multilingual multi-domain TOD datasets, created by translating portions of
MultiWOZ to several languages.

Language Specialization and Cross-lingual Transfer. Multilingual PLMs (e.g.,
mBERT (Devlin et al., 2019), XLM-R (Conneau et al., 2020a)) are pre-trained on large
general-purpose and massively multilingual corpora (over 100 languages) (see § 2.2.2).
While this makes them versatile and widely applicable, it does lead to suboptimal repre-
sentations for individual languages, a phenomenon commonly referred to as the “curse
of multilinguality” (Conneau et al., 2020a). Therefore, one line of research focused on
adapting (i.e., specializing) those models to particular languages (Lauscher et al., 2020;
Pfeiffer et al., 2020). For example, Pfeiffer et al. (2020) propose a more computationally ef-
ficient approach for extending the model capacity for individual languages: this is done by
augmenting the multilingual PLM with language-specific adapter modules. Glavaš et al.
(2020) perform language adaptation through additional intermediate masked language
modeling in the target languages with filtered text corpora, demonstrating substantial
gains in downstream zero-shot cross-lingual transfer for hate speech and abusive language
detection tasks. In a similar vein, Moghe et al. (2021) carry out intermediate fine-tuning of
multilingual PLMs on parallel conversational datasets and demonstrate its effectiveness
in zero-shot cross-lingual transfer for the DST task.

Lauscher et al. (2020) show that few-shot transfer, in which one additionally fine-
tunes the PLM on a few labeled task-specific target-language instances leads to large
improvements for many task-and-language combinations, and that labelling a few target-
language examples is more viable than further LM-specialization for languages of interest
under strict zero-shot conditions. This finding is also corroborated in our work for two
TOD tasks.
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1

Language Family Script Example

German (DE) Indo-European (Germanic) Alphabet (Latin) Hallo
Russian (RU) Indo-European (Slavic) Alphabet (Cyrillic) Привет (Preevyet)
Chinese (ZH) Sino-Tibetan Logographic (Hanzi) 你好 (nı̌ hǎo)
Arabic (AR) Semitic Abjad AJ.kQÓ (Marhaba)

Table 1: Languages selected for constructing Multi2WOZ.Figure 4.2: Languages selected for constructing Multi2WOZ.

4.3 Multi2WOZ

In this Section we describe the construction of the Multi2WOZ dataset, providing also
details on inter-translator reliability. We then discuss two concurrent efforts in creating
multilingual TOD datasets from MultiWOZ and their properties, and emphasize the
aspects that make our Multi2WOZ a more reliable and useful benchmark for evaluating
cross-lingual transfer for TOD.

4.3.1 Dataset Creation

Language Selection. We translate all 2,000 dialogs from the development and test
portions of the English MultiWOZ 2.1 (Eric et al., 2020) dataset to German (DE),
Russian (RU), Chinese (ZH), and Arabic (AR). We selected the target languages based
on the following criteria: (1) linguistic diversity (DE and RU belong to different Indo-
European subfamilies – Germanic and Slavic, respectively; ZH is a Sino-Tibetan language
and AR Semitic), (2) diversity of scripts (DE and RU use Latin and Cyrillic scripts,
respectively, both alphabet scripts; AR script represents the Abjad script type, whereas
the ZH Hanzi script belongs to logographic scripts), (3) number of native speakers (all
four are in the top 20 most-spoken world languages), and (4) our access to native and
fluent speakers of those languages who are proficient in English. The selected languages
with language families and script types are displayed in Figure 4.2.

Two-Step Translation. Following the well-established practice, we carried out a two-
phase translation of the English data: (1) we started with an automatic translation of the
dialogs – utterances as well as the annotated slot values – followed by (2) the manual
post-editing of the translations. We first automatically translated all utterances and slot
values from the development and test dialogs from the MultiWOZ 2.1 (Eric et al., 2020)
(1,000 dialogs in each portion; 14,748 and 14,744 utterances, respectively) to our four
target languages, using Google Translate.1 We then hired two native speakers of each
target language,2 all with a University degree and fluent in English, to post-edit the (non-

1Relying on its Python API: https://pypi.org/project/googletrans
2In order to reduce the translation costs, we initially attempted to post-edit the translations via crowd-

sourcing. We tried this for Russian using the popular platform Toloka (toloka.yandex.com); however,
the translation quality remained unsatisfactory even after several post-editing rounds.
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Utterance Value for “attraction-name”

Original No hold off on booking for now. cineworld cinemaCan you help me find an attraction called cineworld cinema?

Automatic Translation 目前暂无预订。您能帮我找到一个名为cineworld Cinema的景点吗？ Cineworld电影
Manual Correction 目前暂无预订。您能帮我找到一个名为电影世界电影院的景点吗？ 电影世界电影院

Table 4.1: Example utterance (from the dialog MUL0484) with a value for a slot
(“attraction-name”). We show the original English text, the automatic translation to
Chinese and the final translation after manual post-editing.

overlapping sets of) automatic translations, i.e., fix the errors in automatic translations of
utterances as well as slot values.

Since we carried out the automatic translation of the utterances independently of
the automatic translation of the slot values, the translators were instructed to pay special
attention to the alignment between each translated utterance and translations of slot
value annotations for that utterance. We show an example utterance with associated slot
values after the automatic translation and manual post-editing in Table 4.1.

Quality Control. In order to reduce the translation costs, our human post-editors
worked on disjoint sets of dialogs. Because of this, our annotation process contained an
additional quality assurance step. Two new annotators for each target language judged the
correctness of the translations on the random sample of 200 dialogs (10% of all translated
dialogs, 100 from the development and test portion each), containing 2,962 utterances
in total. The annotators had to independently answer the following questions for each
translated utterance from the sample: (1) Is the utterance translation acceptable? and (2)
Do the translated slot values match the translated utterance? On average, across all target
languages, both quality annotators for the respective language answered affirmatively to
both questions for 99% of all utterances. Adjusting for chance agreement, we measured
the Inter-Annotator Agreement (IAA) in terms of Cohen’s κ (Cohen, 1960), observing
the almost perfect agreement3 of κ = 0.824 for the development set and κ = 0.838 for
test set. The annotation guidelines for manual post-editing and quality control utilized
during the creation of Multi2WOZ are elaborated in Appendix C.1 and Appendix C.2.

Annotation Duration and Cost. In total, we hired 16 annotators, four for each of
our four target languages: two for post-editing and two for quality assessment. The
overall effort spanned almost full 5 months (from July to November 2021), and amounted
to 1,083 person-hours. With the remuneration rate of 16 $/h, the total cost of creating
Multi2WOZ was $17,328.

3According to Landis and Koch (1977), if κ ≥ 0.81.
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4.3.2 Comparison with Concurrent Work

Two concurrent works also derive multilingual datasets from MultiWOZ (Zuo et al.,
2021; Ding et al., 2022), with different strategies and properties, discussed in what follows.

GlobalWOZ (Ding et al., 2022) encompasses Chinese, Indonesian, and Spanish
datasets. The authors first create templates from dialog utterances by replacing slot-value
strings in the utterances with the slot type and value index (e.g., “. . .and the post code
is cb238el” becomes the template “. . .and the post code is [attraction-postcode-1]”.
They then automatically translate all templates to the target languages. Next, they select a
subset of 500 test set dialogs for human post-editing with the following heuristic: dialogs
for which the sum of corpus-level frequencies of their constitutive 4-grams (normalized
with the dialog length) is the largest.4 Since this selection step is independent for each
language, each GlobalWOZ portion contains translations of a different subset of English
dialogs: this prevents any direct comparison of downstream TOD performance across
languages. Even more problematically, the selection heuristic directly reduces linguistic
diversity of dialogs chosen for the test set of each language, as it favors the dialogs that
contain the same globally most frequent 4-grams. Due to this artificial homogeneity of
its test sets, GlobalWOZ is very likely to overestimate downstream TOD performance
for target languages.

Unlike GlobalWOZ, AllWOZ (Zuo et al., 2021) does automatic translation of a
fixed small subset of MultiWOZ plus post-editing in seven target languages. However,
it encompasses only 100 dialogs and 1,476 turns; as such, it is arguably too small to
draw strong conclusions about the performance of cross-lingual transfer methods. Its
usefulness in joint domain and language transfer evaluations is especially doubtful, since
it covers individual MultiWOZ domains with an extremely small number of dialogs
(e.g., only 13 for the Taxi domain). Finally, neither Ding et al. (2022) nor Zuo et al.
(2021) provide any estimates of the quality of their final datasets nor do they report their
annotation costs.

In contrast to GlobalWOZ, Multi2WOZ is a parallel corpus – with the exact same
set of dialogs translated to all four target languages; as such it directly enables performance
comparisons across the target languages. Further, containing translations of all dev and
test dialogs from MultiWOZ (i.e., avoiding sampling heuristics), Multi2WOZ does
not introduce any confounding factors that would distort estimates of cross-lingual
transfer performance in downstream TOD tasks. Finally, Multi2WOZ is 20 times larger
(per language) than AllWOZ: experiments on Multi2WOZ are thus much more likely
to yield conclusive findings.

4Interestingly, the authors do not provide any motivation or intuition for this heuristic. It is also worth
noting that they count the 4-gram frequencies, upon which the selection of the dialogs for post-editing
depends, on the noisy automatic translations.

87



4. LANGUAGE ADAPTATION

4.4 Cross-lingual Transfer for TOD

The parallel nature and sufficient size of Multi2WOZ allow us to benchmark and com-
pare a number of established and novel cross-lingual transfer methods for TOD. In particu-
lar, (1) we first inject general conversational TOD knowledge into XLM-RoBERTa (XLM-
R; Conneau et al., 2020a), yielding TOD-XLMR (§ 4.4.1); (2) we then propose several
variants for conversational specialization of TOD-XLMR for target languages, better
suited for transfer in downstream TOD tasks (§ 4.4.2); (3) we investigate zero-shot and
few-shot transfer for two TOD tasks: DST and RR (§ 4.4.3).

4.4.1 TOD-XLMR: A Multilingual TOD Model

Recently, Wu et al. (2020) demonstrated that specializing BERT (Devlin et al., 2019) on
conversational data by means of additional pre-training via a combination of Masked Lan-
guage Modeling (MLM) and Response Selection (RS) objectives yields improvements in
downstream TOD tasks. Following these findings, we first (propose to) conversationally
specialize XLM-R (Conneau et al., 2020a), a state-of-the-art multilingual PLM cover-
ing 100 languages, in the same manner: applying the RS and MLM objectives on the
same English conversational corpus consisting of nine human-human multi-turn TOD
datasets (see § 2.2.3 for more details). As a result, we obtain TOD-XLMR – a massively
multilingual PLM specialized for task-oriented conversations. Note that TOD-XLMR is
not yet specialized (i.e., fine-tuned) for any concrete TOD task (e.g., DST or Response
Generation). Rather, it is enriched with general task-oriented conversational knowledge
(in English), presumed to be beneficial for a wide variety of TOD tasks.

4.4.2 Target-Language Specialization

TOD-XLMR has been conversationally specialized only in English data. We next hy-
pothesize that a further conversational specialization for a concrete target language X
can improve the transfer EN→X for all downstream TOD tasks. Accordingly, similar
to Moghe et al. (2021), we investigate several intermediate training procedures that fur-
ther conversationally specialize TOD-XLMR for the target language X (or jointly for
EN and X). For this purpose, we (i) compile target-language-specific as well as cross-
lingual corpora from the CCNet (Wenzek et al., 2020) and OpenSubtitles (Lison and
Tiedemann, 2016) datasets, and (ii) experiment with different monolingual, bilingual,
and cross-lingual training procedures. Here, we propose a novel cross-lingual response
selection (RS) objective and demonstrate its effectiveness in cross-lingual transfer for
downstream TOD tasks.

88



4. LANGUAGE ADAPTATION

Training Corpora. Two types of data are collected for language specialization: (i)
LangCC as “flat” corpora (i.e., without any conversational structure): we simply ran-
domly sample 100K sentences for each language from the respective monolingual por-
tion of CCNet (we denote with Mono-CC the individual 100K-sentence portions of
each language; with Bi-CC the concatenation of the English and each of target lan-
guage Mono-CCs, and with Multi-CC the concatenation of all five Mono-CC portions);
(ii) LangOpenSubtitles as parallel dialogs corpora (in EN and target language X)
from OpenSubtitles (OS): OS is a parallel conversational corpus spanning 60 languages,
compiled from subtitles of movies and TV series. We leverage the parallel OS dialogs to
create two different cross-lingual specialization objectives, as described next.

Training Objectives. We directly use the LangCC portions (Mono-CC, Bi-CC, and
Multi-CC) for standard MLM training (see § 3.1.4.1). We then leverage the parallel OS
dialogs for two training objectives. First, we carry out Translation Language Modeling
(TLM) (Conneau and Lample, 2019) on the synthetic dialogs which we obtain by in-
terleaving K randomly selected English utterances with their respective target language
translations; we then (as with MLM), dynamically mask 15% of tokens of such interleaved
dialogs (Liu et al., 2019c); we vary the size of the context the model can see when predicting
missing tokens by randomly selecting K (between 2 and 15) for each instance. Second,
we use LangOpenSubtitles to create instances for both monolingual and cross-lingual
Response Selection (RS) training. RS is a simple binary classification task in which for
a given pair of a context (one or more consecutive utterances) and response (a single ut-
terance), the model has to predict whether the response utterance immediately follows
the context (i.e., it is a true response) or not (i.e., it is a false response). RS pre-training
(see § 3.1.4.1) has been proven beneficial for downstream TOD in monolingual English
setups (Mehri et al., 2019; Henderson et al., 2019c, 2020; Hung et al., 2022a).

In this work, we leverage the parallel LangOpenSubtitles data to introduce the
cross-lingual RS objective, where the context and the response utterance are not in the
same language. In our experiments, we carry out both (i) monolingual RS training in
the target language (i.e., both the context and response utterance are, e.g., in Chinese),
denoted RS-Mono, and (ii) cross-lingual RS between English (as the source language
in downstream TOD tasks) and the target language, denoted RS-X. We create hard RS
negatives, by coupling contexts with non-immediate responses from the same movie or
episode (same imdbID), as well as easy negatives by randomly sampling m ∈ {1, 2, 3}
responses from a different movie of series episode (i.e., different imdbID). Hard negatives
encourage the model to reason beyond simple lexical cues. Examples of training instances
for OpenSubtitles-based training (for EN-ZH) are shown in Table 4.2.
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EN Subtitle ZH Subtitle
- Professor Hall. - Yes. - I think your theory may be correct. - Walk with me.
Just a few weeks ago, I monitored the strongest hurricane on record.
The hail, the tornados, it all fits.
Can your model factor in storm scenarios?

-霍尔教授 -是的 -我认为你的理论正确 -跟我来
上周我观测到史上最大的飓风
雹暴和龙卷风也符合你的理论
你能预测暴风雨的形成吗？

Translation LM (TLM) - Professor Hall. - Yes. - I think your theory may be [MASK]. - Walk with...-霍尔教授 -是的 -我认为你的[MASK]正确...

Response Selection (RS)
Context:
上周我观测到史上最大的飓风
雹暴和龙卷风也符合你的理论

Monolingual (RS-Mono)
True Response:
你能预测暴风雨的形成吗？
False Response:
你有彼得的电脑断层扫描吗？

Cross-lingual (RS-X)
True Response:
Can your model factor in storm scenarios?
False Response:
Do you have Peter’s CT scan results?

Table 4.2: Examples of training instances from LangOpenSubtitles for conversational
specialization for the target language created from OpenSubtitles (OS). Top row: an
example of a dialog created from OS, parallel in English and Chinese. Below are training
examples for different training objectives: (1) Translation Language Modeling (TLM) on
the interleaved English-Chinese parallel utterances; (2) two variants of Response Selection
(RS) – (a) monolingual in the target language (RS-Mono) and (b) cross-lingual (RS-X).

4.4.3 Downstream Cross-lingual Transfer

Finally, we fine-tune the various variants of TOD-XLMR, obtained through the above-
described specialization (i.e., intermediate training) procedures, for two downstream
TOD tasks (DST and RR) and examine their cross-lingual transfer performance. We
cover two cross-lingual transfer scenarios: (1) zero-shot transfer in which we only fine-
tune the models on the English training portion of MultiWOZ and evaluate their
performance on the Multi2WOZ test data of our four target languages; and (2) few-shot
transfer in which we sequentially first fine-tune the models on the English training data
and then on the small number of dialogs from the development set of Multi2WOZ, in
similar vein to Lauscher et al. (2020). In order to determine the effect of our conversational
target language specialization (§ 4.4.2) on the downstream sample efficiency, we run few-
shot experiments with different numbers of target language training dialogs, ranging
from 1% to 100% of the size of Multi2WOZ development portions.

4.5 Experimental Setup

Evaluation Tasks and Measures. We evaluate different multilingual conversational
PLMs in cross-lingual transfer (zero-shot and few-shot) for two prominent TOD tasks:
Dialog State Tracking (DST) and Response Retrieval (RR).

DST is commonly cast as a multi-class classification task, where given a predefined
ontology and dialog history (a sequence of utterances), the model has to predict the
output state, i.e., (domain, slot, value) tuples (Wu et al., 2020).5 We adopt the standard
joint goal accuracy as the evaluation measure: at each dialog turn, it compares the predicted
dialog states against the manually annotated ground truth, which contains slot values for

5The model is required to predict slot values for each (domain, slot) pair at each dialog turn.
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all the (domain, slot) candidate pairs. A prediction is considered correct if and only if all
predicted slot values exactly match the ground truth (see an example in § 3.1.5).

RR is a ranking task that is well-aligned with the RS objective and relevant for retrieval-
based TOD systems (Wu et al., 2017; Henderson et al., 2019c): given the dialog context,
the model ranks N dataset utterances, including the true response to the context (i.e.,
the candidate set includes the one true response and N -1 false responses). We follow
Henderson et al. (2020) and report the results for N = 100, i.e., the evaluation measure
is recall at the top 1 rank given 99 randomly sampled false responses, denoted as R100@1

(see an example in § 3.1.5).

Models and Baselines. We briefly summarize the models that we compare in zero-shot
and few-shot cross-lingual transfer for DST and RR. As baselines, we report the perfor-
mance of the vanilla multilingual PLM: XLM-R (Conneau et al., 2020a),6 and its variant
further trained on the English TOD data from Wu et al. (2020): TOD-XLMR (§ 4.4.1).
Comparison between XLM-R and TOD-XLMR quantifies the effect of conversational
English pre-training on downstream TOD performance, much like the comparison be-
tween BERT and TOD-BERT done by Wu et al. (2020); however, here we extend the
comparison to cross-lingual transfer setups. We then compare the baselines against a
series of our target language-specialized variants, obtained via intermediate training on
LangCC (Mono-CC, Bi-CC, and Multi-CC) by means of MLM, and on LangOpen-
Subtitles jointly via TLM and RS (RS-X or RS-Mono) objectives (see § 4.4.2).

Hyperparameters and Optimization. For training TOD-XLMR (§ 4.4.1), we select
the effective batch size of 8. In target-language-specific intermediate training (§ 4.4.2),
we fix the maximum sequence length to 256 subword tokens; for RS objectives, we limit
the context and response to 128 tokens each. We train for 30 epochs in batches of size
16 for MLM/TLM, and 32 for RS. We search for the optimal learning rate among the
following values: {10−4, 10−5, 10−6}. We apply early stopping based on development
set performance (patience: 3 epochs for MLM/TLM, 10 epochs for RS). In downstream
fine-tuning, we train in batches of 6 (DST) and 24 instances (RR) with the initial learn-
ing rate fixed to 5 · 10−5. We also apply early stopping (patience: 10 epochs) based
on the development set performance, training maximally for 300 epochs in zero-shot
setups, and for 15 epochs in target-language few-shot training. In all experiments, we use
AdamW (Loshchilov and Hutter, 2019) as the optimization algorithm.

6We use the pre-trained language model weights loaded from HuggingFace: xlm-roberta-base. More
details about the model can be referred to § 2.2.2.
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Model DE AR ZH RU Avg.

w/o intermediate specialization

XLM-R 1.41 1.15 1.35 1.40 1.33
TOD-XLMR 1.74 1.53 1.75 2.16 1.80

with conversational target-language specialization

MLM on Mono-CC 3.57 2.71 3.34 5.17 3.70
Bi-CC 3.66 2.17 2.73 3.73 3.07
Multi-CC 3.65 2.35 2.06 5.39 3.36

TLM on OS 7.80 2.43 3.95 6.03 5.05
TLM + RS-X on OS 7.84 3.12 4.14 6.13 5.31
TLM + RS-Mono on OS 7.67 2.85 4.47 6.57 5.39

Table 4.3: Performance of multilingual conversational models in zero-shot cross-lingual
transfer for Dialog State Tracking (DST) on Multi2WOZ, with joint goal accuracy (%)
as the evaluation metric. Reference English DST performance of TOD-XLMR: 47.86%.

4.6 Results and Discussion

We now present and discuss the downstream cross-lingual transfer results on Multi2WOZ
for DST and RR in two different transfer setups: zero-shot transfer and few-shot transfer
(C1; § 2.4.1).

4.6.1 Zero-Shot Transfer

Dialog State Tracking (DST). Table 4.3 summarizes zero-shot cross-lingual transfer
performance for DST. First, we note that the transfer performance of all models for all
four target languages is extremely low, drastically lower than the reference English DST
performance of TOD-XLMR, which stands at 47.9%. These massive performance drops,
stemming from cross-lingual transfer are in line with findings from concurrent work
(Zuo et al., 2021; Ding et al., 2022) and suggest that reliable cross-lingual transfer for DST
is much more difficult to achieve than for most other language understanding tasks (Hu
et al., 2020; Ponti et al., 2020).

Despite low performance across the board, we do note a few emerging and consistent
patterns. First, TOD-XLMR slightly but consistently outperforms the vanilla XLM-
R, indicating that conversational English pre-training brings marginal gains. All of our
proposed models from § 4.4.2 (the lower part of Table 4.3) substantially outperform TOD-
XLMR, proving that intermediate conversational specialization for the target language
brings gains, irrespective of the training objective.

Expectedly, TLM and RS training on parallel LangOpenSubtitles data brings
substantially larger gains than MLM-ing on LangCC: flat monolingual target-language
corpora (Mono-CC) or simple concatenations of corpora from two (Bi-CC) or more
languages (Multi-CC). German and Arabic seem to benefit slightly more from the cross-
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Model DE AR ZH RU Avg.

w/o intermediate specialization

TOD-XLMR 3.3 2.9 1.9 2.7 2.7

with conversational target-language specialization

MLM on Mono-CC 22.9 25.5 24.5 33.4 26.6
TLM on OS 44.4 30.3 34.1 39.3 37.0
TLM + RS-Mono on OS 44.3 30.9 34.8 39.6 37.4

Table 4.4: Performance of multilingual conversational models in zero-shot cross-lingual
transfer for Response Retrieval (RR) on Multi2WOZ with R100@1 (%) as the evalua-
tion metric. Reference English RR performance of TOD-XLMR: 64.75%

lingual Response Selection training (RS-X), whereas for Chinese and Russian we obtain
better results with the monolingual (target language) RS training (RS-Mono).

Response Retrieval (RR). The results of zero-shot transfer for RR are summarized
in Table 4.4. Compared to DST results, for the sake of brevity, we show the performance
of only the stronger baseline (TOD-XLMR) and the best-performing variants with
intermediate conversational target-language training (one for each objective type): MLM
on Mono-CC, TLM on OS, and TLM+RS-Mono on OS. Similar to DST, TOD-XLMR
exhibits a near-zero cross-lingual transfer performance for RR as well, across all target
languages. In sharp contrast to DST results, however, conversational specialization for
the target language – with any of the three specialization objectives – massively improves
the zero-shot cross-lingual transfer for RR. The gains are especially large for the models
that employ the parallel OS corpus in intermediate specialization, with the monolingual
(target language) RS objective slightly improving over TLM training alone.

Given the parallel nature of Multi2WOZ, we can directly compare the transfer
performance of both DST and RR across the four target languages. In both tasks, the
best-performing models exhibit stronger performance (i.e., smaller performance drops
compared to the English performance) for German and Russian than for Arabic and
Chinese. This aligns well with the linguistic proximity of the target languages to English
as the source language.

4.6.2 Few-Shot Transfer and Sample Efficiency

Next, we present the results of few-shot transfer experiments, where we additionally
fine-tune the task-specific TOD model on a limited number of target-language dialogs
from the development portion of Multi2WOZ, after first fine-tuning it on the complete
English training set from MultiWOZ (see § 4.4.3). Few-shot cross-lingual transfer results,
averaged across all four target languages, are summarized in Figure 4.3. The figure shows
the performance for different sizes of the target-language training data (i.e., number of
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Figure 4.3: Few-shot cross-lingual transfer results for Dialog State Tracking (upper figure)
and Response Retrieval (bottom figure), averaged across all four target languages (detailed
per-language results available in Appendix C.3). Results are shown for different sizes of
the training data in the target language (i.e., different number of shots): 1%, 5%, 10%, 50%
and 100% of the Multi2WOZ development sets (of respective target languages).

target-language shots, that is, percentage of the target-language development portion from
Multi2WOZ). Detailed per-language few-shot results are given in Table 4.5, for brevity
only for TOD-XLMR and the best target-language-specialized model (TLM+RS-Mono
on OS). We provide full per-language results for all specialized models from Figure 4.3 in
Appendix C.3.
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DST RR
Lang Model 1% 5% 10% 50% 100% 1% 5% 10% 50% 100%

DE TOD-XLMR 7.68 19.26 28.08 33.17 34.10 10.25 32.47 35.56 45.39 49.46
TLM+RS-Mono on OS 15.88 24.14 28.38 32.57 35.45 46.08 48.94 49.98 53.43 55.72

AR TOD-XLMR 1.48 1.57 6.18 15.62 17.63 6.36 18.72 23.57 36.04 42.69
TLM+RS-Mono on OS 4.42 6.79 8.27 14.39 21.48 33.45 37.09 38.01 41.89 47.15

ZH TOD-XLMR 8.63 12.55 16.40 23.45 25.49 15.69 31.10 33.22 41.97 48.14
TLM+RS-Mono on OS 11.63 14.90 17.97 22.81 28.84 38.45 43.71 45.27 48.50 51.81

RU TOD-XLMR 4.34 21.89 30.01 37.58 37.61 8.90 31.31 34.51 43.33 47.45
TLM+RS-Mono on OS 13.74 17.44 18.63 24.33 29.15 41.97 45.44 46.02 49.90 53.16

Table 4.5: Per-language few-shot transfer performance (sample efficiency results) on DST
and RR for the baseline TOD-XLMR and the best specialized model (TLM+RS-Mono
on OS).

The few-shot results unambiguously show that the intermediate conversational spe-
cialization for the target language(s) drastically improves the target-language sample effi-
ciency in the downstream few-shot transfer. The baseline TOD-XLMR – not exposed to
any type of conversational pre-training for the target language(s) – exhibits substantially
lower performance than all three models (MLM on Mono-CC, TTLMLM on OS, and
TLM+RS-Mono on OS) that underwent conversational intermediate training on respec-
tive target languages. This is evident even in the few-shot setups where the three models are
fine-tuned on merely 1% (10 dialogs) or 5% (50 dialogs) of the Multi2WOZ development
data (after prior fine-tuning on the complete English task data from MultiWOZ).

As expected, the larger the number of task-specific (DST or RR) training instances
in the target languages (50% and 100% setups), the closer the performance of the baseline
TOD-XLMR gets to the best-performing target-language-specialized model – this is
because the size of the in-language training data for the concrete task (DST or RR) be-
comes sufficient to compensate for the lack of conversational target-language intermediate
training that the specialized models have been exposed to. The sample efficiency of the con-
versational target-language specialization is more pronounced for RR than for DST. This
seems to be in line with the zero-shot transfer results (see Tables 4.3 and 4.4), where the
specialized models displayed much larger cross-lingual transfer gains over TOD-XLMR
on RR than on DST. We hypothesize that this is due to the intermediate specialization
objectives (especially RS) being better aligned with the task-specific training objective of
RR than that of DST.
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4.7 Reproducibility

To ensure full reproducibility of our results and further fuel research on multilingual
TOD, we release the parameters of TOD-XLMR within the Huggingface repository as
the first publicly available multilingual PLM specialized for TOD.7 We also release our
code and data and provide the annotation guidelines for manual post-editing and quality
control utilized during the creation of Multi2WOZ in Appendix C.1 and Appendix C.2.
This makes our approach completely transparent and fully reproducible. All resources
developed as part of this work are publicly available.8

4.8 Conclusions

Task-oriented dialog has predominantly focused on English, primarily due to the lack
of robust TOD datasets in other languages (Razumovskaia et al., 2022), preventing
systematic investigations of cross-lingual transfer methodologies in this crucial NLP
application area. To address this gap, in this Chapter, we have presented Multi2WOZ
– a robust multilingual multi-domain TOD dataset. Multi2WOZ encompasses gold-
standard dialogs in four languages (German, Arabic, Chinese, and Russian) that are
directly comparable with development and test portions of the English MultiWOZ
dataset, thus allowing for the most reliable and comparable estimates of cross-lingual
transfer performance for TOD to date. Further, we presented a language-adaptive pre-
training framework for multilingual conversational specialization of PLMs that facilitates
cross-lingual transfer for downstream TOD tasks. Our experiments on Multi2WOZ for
two prominent TOD tasks – Dialog State Tracking and Response Retrieval – reveal that
the cross-lingual transfer performance benefits from both (i) intermediate conversational
specialization for the target language, and (ii) few-shot cross-lingual transfer for the
concrete downstream TOD task. Crucially, we show that our novel conversational
specialization for the target language leads to exceptional sample efficiency in downstream
few-shot transfer.

Subsequent research has expanded on our work, building on the foundation estab-
lished by Multi2WOZ dataset and the proposed multilingual conversational special-
ization framework. Moghe et al. (2023b) leverage Multi2WOZ dataset to evaluate the
effectiveness of automatic metrics in distinguishing between high-quality and low-quality
translations at the sentence level. They assess the correlation between machine transla-
tion (MT) metrics and task accuracy performance, suggesting that MT metrics should
produce labels rather than scores to enable a more informative interaction between MT
and multilingual language understanding. Hu et al. (2023) introduce Multi3WOZ,
exploring further refinements to support cultural adaptation through an outline-based

7https://huggingface.co/umanlp/TOD-XLMR
8https://github.com/umanlp/Multi2WOZ
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generation method. The approach aims to address the limitations of machine-translated
texts that fail to adapt to cultural nuances. They also provide the training dataset for
target languages to improve cross-lingual studies and propose an automatic multilingual
evaluation framework for TOD systems (Hu et al., 2024). These advancements focus on
two key areas: (i) the quality of multilingual TOD datasets, and (ii) the proper evaluation
of cross-lingual TOD task performance, both of which drive future research exploration.

In the next Chapter, we focus on adaptive pre-training methods on social dimensions,
where we incorporate demographic knowledge into PLMs leveraging the adaptive pre-
training framework. We further introduce a series of control experiments to validate the
efficacy of the demographic specialization techniques.
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Chapter 5

Demographic Adaptation

“不是我要把天堂樂園的籬笆拆掉，我只是想把籬笆往外面再擴張一點。”
“I’m not trying to dismantle the fence in Paradise, I’m trying to extend it a bit further.”

李安Ang Lee

*Demographic factors (e.g., gender or age) shape and are reflected in our language. Pre-
vious work showed that incorporating demographic factors can consistently improve
performance for various NLP tasks. However, the work mainly focused on (1) monolin-
gual English datasets, which limited the multilingual (thus multi-cultural) perspectives;
(2) incorporating demographic features in language representations, which rely either
on leveraging demographic-specific lexica to specialized word embeddings or relying
on text encoders which have not been pre-trained for general-purpose language under-
standing; and (3) introducing demographic features in only task-specific fine-tuning,
which limited the benefits of demographic knowledge to tasks at hand (i.e., not task-
agnostic; see § 2.4.1). In this Chapter, our examination centers on ascertaining whether the
previous findings of domain-adaptive pre-training in Chapter 3 and language-adaptive
pre-training in Chapter 4 remain valid. Specifically, we investigate whether the practice
of integrating demographic factors consistently retains its effectiveness when employing
state-of-the-art multilingual PLMs (see § 2.2.2 and § 2.4.1). We use three common special-
ization methods proven effective for incorporating external knowledge into PLMs (e.g.,
domain-specific, language-specific, or geographic knowledge) with adaptive pre-training
framework (see § 2.3.1). We adapt the language representations for the demographic
dimensions of gender and age, using masked language modeling and dynamic multi-
task learning for adaptation, where we couple language modeling objectives with the
prediction of demographic classes (C1; § 2.4.1). Our results, when employing a multilin-

*This Chapter is adapted from: Chia-Chien Hung, Anne Lauscher, Dirk Hovy, Simone Paolo Ponzetto,
and Goran Glavaš. 2023. Can Demographic Factors Improve Text Classification? Revisiting Demographic
Adaptation in the Age of Transformers. In Findings of the Association for Computational Linguistics (EACL
2023), pages 1565–1580, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics.
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gual PLM, show substantial gains in task performance across four languages (English,
German, French, and Danish), which is consistent with the results of previous work.
However, controlling for confounding factors (i.e., towards interpretability, see C3 and
§ 2.4.3) – primarily domain and language proficiency of PLMs – shows that downstream
performance gains from our demographic adaptation do not actually stem from demo-
graphic knowledge. Our results indicate that demographic specialization of PLMs, while
holding promise for positive societal impact, still represents an unsolved problem for
(modern) NLP.

5.1 Introduction

Demographic factors like social class, education, income, age, or gender, categorize people
into specific groups or populations. At the same time, demographic factors both shape
and are reflected in our language (e.g., Trudgill, 2000; Eckert and McConnell-Ginet, 2013;
Flek, 2020). A large body of work focused on modeling demographic language variation,
especially the correlations between words and demographic factors (Bamman et al., 2014;
Garimella et al., 2017; Welch et al., 2020, inter alia). In a similar vein, Volkova et al. (2013)
and Hovy (2015) demonstrated that explicitly incorporating demographic information in
language representations improves performance on downstream NLP tasks, e.g., topic
classification or sentiment analysis. However, these observations rely on approaches
that leverage gender-specific lexica to specialize word embeddings and text encoders
(e.g., recurrent networks) that have not been pre-trained for (general purpose) language
understanding. To date, the benefits of demographic specialization have not been tested
with Transformer-based (Vaswani et al., 2017) PLMs (see § 2.2), which have been shown
to excel on the vast majority of NLP tasks and even surpass human performance in some
cases (Wang et al., 2018).

More recent studies focus mainly on monolingual English datasets and introduce
demographic features in task-specific fine-tuning (Voigt et al., 2018; Buechel et al., 2018),
which limits the benefits of demographic knowledge to tasks at hand. In this Chapter, we
investigate the (task-agnostic) demographic specialization of PLMs, aiming to impart the
associations between demographic categories and linguistic phenomena into the PLMs
parameters. If successful, such specialization could benefit any downstream NLP task
in which demographic factors (i.e., demographically conditioned language phenomena)
matter. For this, we adopt intermediate training paradigms that have been proven effective
for the specialization of PLMs for other types of knowledge, e.g., in domain, language,
and geographic adaptation (Glavaš et al., 2020; Hung et al., 2022a; Hofmann et al., 2024).
To this effect, we perform (i) masked language modeling on text corpora produced by a
demographic group and (ii) dynamic multi-task learning (Kendall et al., 2018), wherein
we combine language modeling with the prediction of demographic categories.
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I. Pre-training II. Demographic
Adaptation III. Fine-tuning
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Figure 5.1: Overview of the demographic-adaptive pre-training framework. The frame-
work involves a three-stage process: Pre-training, Demographic Adaptation, Fine-tuning.
In this Chapter, intermediate training indicates the second (II) stage: demographic adap-
tation phase.

We evaluate the effectiveness of the demographic PLM specialization on both intrin-
sic (demographic category prediction) and extrinsic (sentiment classification and topic
detection) evaluation tasks across four languages: English, German, French, and Danish,
using a multilingual corpus of reviews (Hovy et al., 2015) annotated with demographic
information. In line with earlier findings (Hovy, 2015), our initial experiments based on a
multilingual PLM (mBERT; Devlin et al., 2019), render demographic specialization effec-
tive: we observe gains in most tasks and settings. Through a set of controlled experiments,
where we (1) adapt with in-domain language modeling alone, without leveraging demo-
graphic information, (2) demographically specialize monolingual PLMs of evaluation
languages, (3) carry out a meta-regression analysis over dimensions that drive the perfor-
mance, and (4) analyze the topology of the representation spaces of demographically
specialized PLMs, we show, however, that most of the original gains can be attributed to
confounding effects of language and/or domain specialization.

Our findings indicate that specialization approaches, proven effective for other types
of knowledge, fail to adequately instill demographic knowledge into PLMs, making
demographic specialization of NLP models an open problem in the age of PLMs. An
overview of the demographic-adaptive pre-training framework is depicted in Figure 5.1,
and our research code and data are publicly available.1

1https://github.com/umanlp/SocioAdapt
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5.2 Related Work

Adaptive Pre-training. Adaptive pre-training (see § 2.3.1), focusing on intermediate
language modeling with texts from the same or similar distribution as the downstream
data, has been shown to lead to improvements on various NLP tasks (e.g., Gururangan
et al., 2020). During this process, the goal is to inject additional information into the
pre-trained language model and thus specialize the model for a particular domain (e.g.,
Aharoni and Goldberg, 2020; Hung et al., 2022a), language (e.g., Glavaš et al., 2020) or
to encode other types of knowledge such as argumentation knowledge (e.g., Holtermann
et al., 2022), or geographic knowledge (e.g., Hofmann et al., 2024).

For instance, we propose a computationally efficient approach in Chapter 3 by em-
ploying domain-specific adapter or embeddings modules, and show the domain adapta-
tion approach leads to improvements in downstream tasks. In Chapter 4, we perform
language adaptation through Response Selection (RS) objectives in the target languages
with dialogic text corpora (i.e., LangOpenSubtitles), demonstrating substantial gains
in downstream cross-lingual transfer for task-oriented dialog tasks. These specialization
approaches mainly rely on a single objective (e.g., MLM on “plain” text data, or RS on
“dialogic” text corpora). Instead, Hofmann et al. (2024) conduct geoadaptation by cou-
pling MLM with a token-level geolocation prediction in a dynamic multi-task learning
setup. In this work, we adopt a similar approach and perform masked language modeling
on the text corpora of a specific demographic dimension.

Demographic Specialization. User demographics contribute to the diversity of lan-
guage preferences (Loveys et al., 2018). Accordingly, several studies have leveraged demo-
graphic information (e.g., gender, age, education) to investigate the effect of encoded
sociodemographic knowledge in the representations of PLMs (Lauscher et al., 2022a)
or obtain better language representations for various NLP tasks (Volkova et al., 2013;
Garimella et al., 2017). Recent research studies on demographic adaptation mainly fo-
cus on (1) learning demographic-aware word embeddings and do not work with large
PLMs (Hovy, 2015), or (2) leveraging demographic information with special PLM architec-
tures specifically designed for certain downstream tasks (e.g., empathy prediction (Guda
et al., 2021)). The latter, however, do not consider a task-agnostic approach to injecting
demographic knowledge into language models, and also focus on a monolingual setup
only. Further, what roles the different factors (i.e., domain, language, demographic aspect)
in the specialization really play remains unexplored.
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5.3 Demographic Adaptation

Our goal is to inject demographic knowledge through intermediate PLM training in a
task-agnostic manner (C1; § 2.4.1). To achieve this goal, we train the PLM in a dynamic
multi-task learning setup (Kendall et al., 2018), in which we couple masked language
modeling (MLM) with predicting the demographic category – gender or age group
of the text author. Such multi-task learning setup is designed to force the PLM to
learn associations between the language constructs and demographic groups, if these
associations are salient in the training corpora.

Masked Language Modeling (MLM). Following successful work on pre-training via
language modeling for domain-adaptation (Gururangan et al., 2020; Hung et al., 2022a),
we investigate the effect of running standard MLM on the text corpora of a specific
demographic dimension (e.g., gender-related corpora) (Liu et al., 2019c). We compute
the MLM loss Lmlm in the common way, as negative log-likelihood of the true token
probability (see § 3.1.4.1 and Equation 3.1).

Demographic Category Prediction. In the multi-task learning setup, the representa-
tion of the input text, as output by the PLM, is additionally fed into a classification head
that predicts the corresponding demographic category: age (below 35 and above 45)2, and
gender (female and male). The demographic prediction loss Ldem is computed as the
standard binary cross-entropy loss.

We experiment with two different ways of predicting the demographic category of
the text: (i) from the transformed representation of the sequence start token ([CLS]),
and (ii) from the contextualized representations of each masked token. We hypothesized
that the former variant, in which we predict the demographic class from the [CLS] token
representation, would establish links between more complex demographically condition
linguistic phenomena (e.g., syntactic patterns or patterns of compositional semantics
that a demographic group might exhibit), whereas the latter – predicting demographic
class from representations of masked tokens – is more likely to establish simpler lexical
links, i.e., capture the vocabulary differences between the demographic groups.

Multi-Task Learning. Since both losses can be computed from the same input in-
stances, we opt for joint Multi-Task Learning (MTL) and resort to dynamic MTL based
on the homoscedastic uncertainty of the losses, wherein the loss variances are used to
balance the contributions of the tasks (Kendall et al., 2018). The intuition is that more
effective MTL occurs if we dynamically assign less importance to more uncertain tasks, as
opposed to assigning uniform task weights throughout the whole training. Homoscedas-
tic uncertainty weighting in MTL has been effective in different NLP settings (Lauscher

2As suggested by Hovy (2015) the split for the age ranges result in roughly equally-sized data sets for each
sub-group and is non-contiguous, avoiding fuzzy boundaries.
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et al., 2018; Hofmann et al., 2024). In our scenario, Lmlm and Ldem are measured on
different scales in which the model would favor (i.e., be more confident for) one objec-
tive than the other. The confidence level of the model prediction for each task would
change throughout the training process: this makes dynamic weighting desirable. We
dynamically prioritize the tasks via homoscedastic uncertainties σt:

L̃t =
1

2σ2
t

Lt + log σt , (5.1)

whereσ2
t is the variance of the task-specific loss over training instances for quantifying the

uncertainty of the task t ∈ {mlm, dem}. In practice, we train the network to predict
the log variance, ηt := log σ2

t , since it is more numerically stable than regressing the
variance σ2

t , as the log avoids divisions by zero. The adjusted losses are then computed as:

L̃t =
1

2
(e−ηtLt + ηt) (5.2)

The final loss is to minimize the sum of two uncertainty-adjusted losses: L̃mlm + L̃dem.

5.4 Experimental Setup

Here we describe evaluation tasks and provide details on the data used for demographic
specialization and downstream evaluation.

Evaluation Tasks. We follow Hovy (2015) and measure the effects of demographic
specialization of PLMs on three text-classification tasks, coupling intrinsic demographic
attribute classification (AC) with two extrinsic text classification tasks: sentiment analysis
(SA) and topic detection (TD). We show an example for each of the AC, SA, and TD task
respectively:

(i) Attribute Classification (AC) for SA – United Kingdom (age):
Text Delivery and dispatch are usually quite quick, and they often have

huge discount days.
Label Age: <35

(ii) Sentiment Analysis (SA) – Germany (gender-M):
Text Keine Antwort auf meine Emails, keine Zeichnung.
Label Negative

(iii) Topic Detection (TD) – United States (gender-F):3

Text We used housetrip to book an apartment in nyc over spring break.
Label Hotels

3The five topics for TD task in gender category for United States include: Car Lights, Domestic Appli-
ances, Fashion Accessories, Pets, and Hotels. A more detailed description regarding the selection of topics
for different countries is given by Hovy et al. (2015).
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Gender Age

Country Language Specialization SA, AC-SA TD, AC-TD Specialization SA, AC-SA TD, AC-TD

F M F / M <35 >45 <35 / >45

Denmark Danish 1,596,816 2,022,349 250,485 120,805 833,657 494,905 75,300 44,815
France French 489,778 614,495 67,305 55,570 40,448 36,182 6,570 6,120
Germany German 210,718 284,399 28,920 30,580 66,342 47,308 5,865 8,040
UK English 1,665,167 1,632,894 156,630 183,995 231,905 274,528 26,325 22,095
US English 575,951 778,877 72,270 61,585 124,924 70,015 6,495 12,090

Table 5.1: Number of instances in different portions of the Trustpilot dataset (Hovy
et al., 2015) used in our experiments. For each country (Denmark, France, Germany, UK,
and US), we report the size of the specialization and fine-tuning portions, the latter for
each of the two extrinsic tasks: Sentiment Analysis (SA) and Topic Detection (TD). Note
that we use the same SA and TD reviews for the intrinsic AC tasks of predicting the
demographic categories (denoted AC-SA and AC-TD, respectively). Numbers are shown
separately for the two demographic dimensions: gender and age. For task fine-tuning
datasets (for SA/AC-SA, and for TD/AC-TD), we indicate the number of instances in
each category (which is the same for both categories: F and M for gender, <35 and >45
for age). We split the fine-tuning datasets randomly into train, development, and test
portions in the 60/20/20 ratio.

As an intrinsic evaluation task, AC directly tests if the intermediate demographic spe-
cialization results in a PLM that can be more effectively fine-tuned to predict the same
demographic classes used in the intermediate specialization: PLMs (vanilla PLM and our
demographically specialized counterpart) – are fine-tuned in a supervised fashion to pre-
dict the demographic class (gender or age) of the text author. SA is a ternary classification
task in which the reviews with ratings of 1, 3, and 5 stars represent instances of negative,
neutral, and positive class, respectively. TD classifies texts into 5 different topic categories.
We report the F1-measure for each task following Hovy (2015).

Data. We carry out our core experimentation on the multilingual demographically
labeled dataset of reviews (Hovy et al., 2015), created from the internationally popular user
review website Trustpilot.4 For comparison and consistency, we work with exactly
the same data portions as Hovy (2015): collections that cover (1) two most prominent
demographic dimensions – gender and age, with two categories in each (gender: male or
female; age: below 35 or above 45)5 and (2) five countries (four languages): United States
(US), Denmark, Germany, France, and United Kingdom (UK). Table 5.1 displays the num-
bers of reviews for each country, demographic aspect, and dataset portion (demographic
specialization vs. task fine-tuning).

4https://www.trustpilot.com/
5As suggested by Hovy (2015), the split for the age ranges results in roughly equally-sized data sets for

each sub-group and is non-contiguous, avoiding fuzzy boundaries.
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To avoid any information leakage, we ensure that – for each country-demographic
dimension collection (e.g., US, gender) – there is zero overlap between the portions we
select for intermediate demographic specialization and portions used for downstream
task fine-tuning and evaluation (for AC, SA, and TD). For TD, we aim to eliminate
the confounding effect of demographically-conditioned label distributions (e.g., female
authors wrote reviews for clothing store more frequently than male authors; vice-versa
for electronics and technology). To this effect, we select, for each country, reviews from
the five most frequent topics and sample the same number of reviews in each topic for
both demographic groups (i.e., male and female for gender; below 35 and above 45 for age).
For the intrinsic AC task (i.e., fine-tuning to predict either gender or age category), we
report the results for two different review collections: the first is the set of reviews that
have, besides the demographic classes, been annotated with sentiment labels (we refer to
this as AC-SA), and the second is the reviews that have topic labels (i.e., product/service
category; we refer to this portion as AC-TD). For these downstream task datasets, we
make sure that two demographic classes (male and female for gender; under 35 and above
45 for age) are equally represented in each dataset portion (train, validation, and test).

For intermediate specialization of the multilingual model, we randomly sample
100K instances per demographic group from the gender specialization portion and 50K
instances each from the texts reserved for age specialization concatenated across all 5 coun-
tries (C2; § 2.4.2). For the specialization of monolingual PLMs, we randomly sample the
same number of instances but from the specialization portions of a single country. Follow-
ing the established procedure (e.g., Devlin et al., 2019; Liu et al., 2019c), we dynamically
mask 15% of the tokens in the demographic specialization portions for MLM.

Pre-trained Transformer-based Language Models. Given that we experiment with
Trustpilot data in four different languages, in our core experiments, we resorted to
multilingual BERT (mBERT)6 (Devlin et al., 2019) as the starting PLM. This allows us
to merge the (fairly large) specialization portions of Trustpilot in different languages
(see Table 5.1) and run a single multilingual demographic specialization procedure on the
combined multilingual review corpus. We then fine-tune the demographically-specialized
mBERT and evaluate downstream task performance separately for each of the five coun-
tries (using train, development, and test portions of the respective country). We report the
results for two different variants of our dynamic multi-task demographic specialization
(DS): (1) when the demographic category is predicted from representations of masked
tokens (DS-Tok), and (2) when we predict the demographic category from the encoding
of the whole sequence (i.e., review; this version is denoted with DS-Seq). We compare
these demographic-specialized PLM variants against two baselines: vanilla PLM and
PLM specialized on the same review corpora as our MTL variants but only via MLM
(i.e., without providing the demographic signal).

6We use the pre-trained language model weights loaded from HuggingFace:
bert-base-multilingual-cased. More details about the model can be referred to § 2.2.2.
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Training and Optimization. In demographic specialization training, we fix the max-
imum sequence length to 128 subword tokens. We train for 30 epochs in batches
of 32 instances and search for the optimal learning rate among the following values:
{5 ·10−5, 1 ·10−5, 1 ·10−6}. We apply early stopping based on the development set per-
formance: we stop if the joint MTL loss does not improve for 3 epochs). For downstream
task fine-tuning and evaluation, we train for maximum 20 epochs in batches of 32. We
search for the optimal learning rate between the following values: {5 · 10−5, 1 · 10−5, 5 ·
10−6, 1 · 10−6} and apply early stopping based on the development set performance
(patience: 5 epochs). We use AdamW (Loshchilov and Hutter, 2019) as the optimization
algorithm.

5.5 Results and Discussion
We first discuss the results of multilingual demographic specialization with mBERT as
the PLM (§ 5.5.1). We then provide a series of control experiments in which we isolate
the effects that contribute to performance gains of demographically specialized PLMs
(§ 5.5.2).

5.5.1 Multilingual Specialization Results

Table 5.2 shows the results of gender- and age-specialized mBERT variants – DS-Seq
and DS-Tok – on gender and age classification (AC-SA and AC-TD) as intrinsic tasks
together with sentiment analysis (SA) and topic detection (TD) as extrinsic evaluation
tasks, for each of the five countries encompassed by the Trustpilot datasets (Hovy et al.,
2015). The performance of DS-Seq and DS-Tok is compared against the PLM baselines
that have not been exposed to demographic information: vanilla mBERT and mBERT
with additional MLM on the same Trustpilot data on which DS-Seq and DS-Tok
were trained. Our demographically specialized models generally outperform the vanilla
mBERT across the board, both on intrinsic and extrinsic tasks, unsurprisingly with much
more prominent gains on the former. The comparison against the domain-adaptation
in which mBERT was intermediately trained only MLM on Trustpilot reviews, but
without demographic category prediction, however, reveals that much of the gains that
DS-Seq and DS-Tok have over vanilla mBERT stem from domain adaptation: somewhat
surprisingly, DS models fall behind MLM-based domain adaptation on the intrinsic tasks
of gender/age classification (e.g., for age group classification on AC-SA, the DS variants
fall short of MLM by 2 F1 points), while exhibiting small but fairly consistent gains over
MLM for extrinsic SA and TD tasks, both in gender and age intermediate specialization.
Although the gains are not particularly convincing, the SA and TD still seem to favor
intermediate demographic specialization, which is in line with findings from Hovy (2015),
who also reported small but (mostly) consistent gains for these two tasks.
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Demographic: gender Demographic: age

Gender class. SA TD Age class. SA TD

Country Model AC- AC- F M X F M X AC- AC- <35 >45 X <35 >45 X
SA TD SA TD

Denmark

mBERT 64.0 61.8 69.2 64.8 67.2 59.3 58.3 59.0 57.2 64.5 62.7 62.7 62.9 56.1 52.2 53.4
MLM 65.2 63.4 69.5 65.8 67.8 59.7 58.8 59.4 65.5 65.1 63.3 62.1 63.0 57.1 52.6 54.1

DS-Seq 64.9 63.5 69.9 65.7 67.7 59.7 57.8 59.1 65.2 65.2 63.1 62.9 63.0 56.9 53.3 54.5
DS-Tok 65.0 63.5 69.1 65.6 68.0 59.9 58.9 59.0 65.3 64.6 64.2 63.3 63.2 56.2 53.2 54.3

Germany

mBERT 59.5 57.9 66.1 63.2 64.5 67.8 65.6 65.8 58.0 56.9 52.6 55.0 55.0 60.1 55.3 57.1
MLM 61.2 60.1 67.7 65.3 66.1 68.6 67.0 67.1 61.1 58.9 53.6 55.5 56.7 61.5 56.5 58.7

DS-Seq 60.1 60.3 66.7 64.0 65.7 67.6 65.7 66.4 56.4 58.2 53.8 55.3 55.5 60.8 57.6 59.3
DS-Tok 62.9 58.3 66.8 64.3 66.8 68.3 67.0 66.7 56.6 57.4 53.0 56.5 56.7 59.3 56.5 59.3

US

mBERT 62.6 58.1 66.3 64.4 66.0 71.2 68.4 70.2 62.9 60.7 57.7 57.9 57.8 68.0 64.3 64.3
MLM 63.3 59.6 67.3 66.2 66.9 72.1 69.4 70.3 63.6 61.9 59.4 57.8 58.2 69.0 64.2 65.2

DS-Seq 63.8 59.2 67.2 66.3 67.0 72.3 69.2 70.4 60.7 61.5 59.3 57.9 58.0 69.8 64.4 65.8
DS-Tok 62.2 58.8 68.0 66.4 67.3 72.8 69.5 70.5 59.7 61.2 59.9 58.6 57.8 69.2 65.4 64.9

UK

mBERT 61.9 63.1 71.0 69.0 69.7 70.4 67.9 68.9 65.1 65.2 63.8 63.9 63.7 64.7 67.1 66.3
MLM 63.0 65.3 72.0 70.4 71.0 70.6 67.9 69.8 65.4 65.6 62.8 62.0 63.0 65.1 67.3 67.3

DS-Seq 63.4 64.9 72.9 70.9 71.7 70.6 68.2 69.8 65.3 62.8 63.8 64.9 64.9 66.0 68.1 66.5
DS-Tok 63.5 65.6 73.0 71.0 71.9 70.8 68.2 69.9 64.0 62.8 64.6 65.2 65.1 66.4 67.3 67.6

France

mBERT 63.9 61.2 69.3 67.0 67.8 44.6 42.4 43.1 55.7 56.6 59.6 57.4 61.5 52.0 47.1 49.0
MLM 64.6 62.1 69.9 67.1 68.4 45.8 43.3 44.3 56.8 57.2 59.9 59.5 61.6 52.5 47.2 50.3

DS-Seq 64.1 63.1 70.6 67.3 68.4 46.0 43.4 44.2 55.1 55.5 60.4 60.3 62.8 51.1 47.3 50.3
DS-Tok 65.0 62.9 70.1 67.5 68.8 45.5 43.9 44.4 54.4 55.9 60.9 59.8 59.7 50.2 48.0 50.8

Average

mBERT 62.4 60.4 68.4 65.7 67.0 62.7 60.5 61.4 59.8 60.8 59.3 59.4 60.2 60.2 57.2 58.0
MLM 63.5 62.1 69.3 67.0 68.0 63.4 61.3 62.2 62.5 61.7 59.8 59.4 60.5 61.0 57.6 59.1

DS-Seq 63.3 62.2 69.5 66.8 68.1 63.2 60.9 62.0 60.5 60.6 60.1 60.3 60.8 60.9 58.1 59.3
DS-Tok 63.7 61.8 69.4 67.0 68.6 63.5 61.5 62.1 60.0 60.4 60.5 60.7 60.5 60.3 58.1 59.4

Table 5.2: Results of gender-specialized (age-specialized) multilingual BERT (DS-Seq
and DS-Tok) on gender (age) classification (AC-SA and AC-TD) as intrinsic task and
sentiment analysis (SA) and topic detection (TD) as extrinsic evaluation tasks. Compar-
isons against the vanilla mBERT and mBERT additionally trained on the same review
corpora but without demographic information, only with masked language modeling
(MLM). For SA and TD, we separately report the performance on the test sets consisting
of only one demographic class (gender: F and M, age: <35 and >45) as well as on the mixed
test sets containing reviews from both demographic classes (X for both gender and age).
Bold numbers indicate the best-performing model (between mBERT, MLM, DS-Seq
and DS-Tok) for each country-task combination.

5.5.2 Control Experiments

To more precisely measure the contributions of demographic information that DS-*
variants incorporate, we design further experiments that control for two key side-effects
of demographic specialization: (i) language specialization and (ii) domain adaptation. We
then carry out the meta-regression analysis to tease out the individual contributions of
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language, domain, and demographic knowledge on the performance difference between
vanilla mBERT and respective intermediately specialized models (mBERT or mono-
lingual BERT specialized on the data of the same or different domain with or without
demographic signal). Finally, we compare the representation spaces of the PLMs – be-
fore and after demographic specialization – along the demographic dimension. The
exploration of different controlled conditions is aimed to enhance model transparency,
uncover both strengths and limitations, and ultimately contribute to more robust and
comprehensive adaptive pre-training methods (C3; § 2.4.3).

Controlling for Language Proficiency. Massively multilingual PLMs, like mBERT
or XLM-R (Conneau et al., 2020a) (see § 2.2.2) suffer from the curse of multilinguality
(Conneau et al., 2020a; Lauscher et al., 2020; Pfeiffer et al., 2020): given a fixed capacity
of the model, the representations from a multilingual PLM for any individual (high-
resource) language will be of lower quality than those of the monolingual PLM, as
multilingual PLMs share their limited capacity over many languages. It is thus possible
that demographic specialization of mBERT on Trustpilot data in our four languages
leads to substantial gains over vanilla mBERT (pre-trained on 104 languages) primarily
because of mBERT’s acquisition of additional language competencies for these four
languages.

To test this, we additionally execute demographic specialization individually for each
language (i.e., as opposed to a single multilingual specialization), starting from a monolin-
gual PLM of that language.7 Monolingual PLMs produce higher quality representations
for their respective language than mBERT. Because of this, we hypothesize that subject-
ing them to demographic specialization on Trustpilot is unlikely to improve their
“command” of the language substantially. Consequently, should we still see (downstream)
gains from demographic specialization for monolingual PLMs, we can be more confident
that they stem from the injected demographic information.

Table 5.3 shows the effects of demographic specialization on monolingual PLMs of
the four languages. For brevity (full results in Appendix D.1), we average the demographic
attribute classification (AC) results from two different test portions from Table 5.2 (hav-
ing labels for different downstream tasks, AC-SA and AC-TD); for extrinsic tasks, SA and
TD, we report only the score on demographically balanced test sets (denoted “X” in Ta-
ble 5.2). The results show that, when we control for language proficiency (as monolingual
PLMs are more proficient in their respective language than mBERT), the downstream
gains of demographic specialization (on SA and TD) vanish. The DS-Seq and DS-Tok
still retain marginal numeric (statistically insignificant) gains over MLM in gender-based
specialization, but they lag behind in age-based specialization. Also, both DS-* variants

7We use the pre-trained language model weights loaded from HuggingFace: bert-base-cased,
bert-base-german-cased, dbmdz/bert-base-french-europeana-cased, and
Maltehb/danish-bert-botxo.
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Gender Age

Country Model AC SA TD AC SA TD

Denmark

BERT 65.0 70.4 59.9 66.5 66.0 56.3
MLM 65.1 70.3 60.6 67.4 67.6 57.6

DS-Seq 65.2 70.6 60.0 67.1 67.1 56.5
DS-Tok 65.1 70.6 60.8 67.2 67.2 56.7

Germany

BERT 59.4 64.3 67.8 58.8 57.1 58.3
MLM 60.9 65.4 67.7 60.1 58.1 59.9

DS-Seq 60.1 66.2 67.8 59.8 55.8 59.1
DS-Tok 60.6 66.0 67.9 58.9 54.0 59.2

US

BERT 61.5 67.1 71.0 64.1 57.2 67.2
MLM 61.7 67.8 71.3 64.1 60.4 66.7

DS-Seq 61.6 68.0 71.6 65.2 59.4 67.1
DS-Tok 62.1 67.9 71.6 64.3 59.4 66.7

UK

BERT 64.1 72.3 70.1 65.8 65.5 68.0
MLM 64.3 72.6 70.0 66.5 66.9 70.0

DS-Seq 64.2 72.4 70.2 65.9 67.6 69.4
DS-Tok 64.1 72.2 70.3 66.0 67.1 69.2

France

BERT 63.6 68.6 45.1 56.5 60.3 49.6
MLM 64.1 67.6 45.5 56.4 61.6 50.2

DS-Seq 63.7 69.3 45.3 56.1 62.0 50.2
DS-Tok 63.7 69.5 45.6 56.3 61.5 50.3

Average

BERT 62.7 68.5 62.8 62.3 61.2 59.9
MLM 63.2 68.7 63.0 62.9 62.9 60.9

DS-Seq 62.9 69.3 63.0 62.8 62.4 60.5
DS-Tok 63.1 69.2 63.2 62.5 61.8 60.4

Table 5.3: Results of gender/age-specialized monolingual PLMs – DS-Seq and DS-Tok –
on demographic attribute classification (AC), sentiment analysis (SA) and topic detection
(TD). Bold numbers indicate the best-performing model (between BERT, MLM, DS-Seq
and DS-Tok) for each country-task combination.

and MLM display only marginal gains with respect to vanilla monolingual BERT models
of the four languages: e.g., in gender-specialization and for SA, DS-Tok has an average
advantage of 0.7 F1 points over the non-specialized vanilla monolingual BERTs; compare
this to a gain of 1.6 F1 points that mBERT-based DS-Tok has over vanilla mBERT (Ta-
ble 5.2). These results question the downstream usefulness of demographic specialization
– suggested by findings from prior work (Hovy, 2015) and our results for multilingual
PLMs (Table 5.2) – if one starts from the most proficient PLM for the concrete language
at hand, i.e., a monolingual PLM.

Controlling for Domain Knowledge. Both simple additional MLM on Trust-
pilot data, as well as multi-task demographic specialization training (DS-* variants),
inject knowledge about the domain-specific language of reviews into the PLM. As shown
by previous work (Glavaš et al., 2020; Diao et al., 2021; Hung et al., 2022a), domain
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Figure 5.2: Evaluation results on Trustpilot for Sentiment Analysis (SA) and Topic
Detection (TD) when running the intermediate specialization on out-of-domain data
(RtGender (Voigt et al., 2018) for gender and BAC (Schler et al., 2006) for age). We
report the delta in F1-score in comparison to the specialization on Trustpilot in-
domain data.

adaptation generally leads to better downstream performance on in-domain data for any
task. We next investigate to which extent the domain specialization is responsible for
performance gains. To this end, we perform demographic specialization on (demographi-
cally labeled) training data from a different domain: for gender specialization, we use the
RtGender (Voigt et al., 2018) consisting of social media posts collected from diverse
sources, whereas for age specialization we resort to the Blog Authorship Corpus (BAC;
Schler et al., 2006) containing blogposts from blogger.com.

Figure 5.2 displays the effects of out-of-domain specialization of BERT on down-
stream SA and TD performance (i.e., performance differences w.r.t. corresponding
in-domain specialized models). Since RtGender and BAC are English-only datasets, we
report the results only for US and UK (for brevity, we report the performance only on the
demographically balanced test sets, i.e., setups indicated with “X” in Table 5.2; both DS-*
variants exhibit very similar behavior, so for brevity, we only display results for DS-Tok;
complete results are in Appendix D.2). Expectedly, the out-of-domain specialization
deteriorates the downstream performance for both MLM and DS-Tok. Interestingly,
MLM, which is not exposed explicitly to the demographic signal in specialization, tends
to suffer less from out-of-domain specialization than the gender-informed DS-Tok. In
contrast, age-informed DS-Tok seems to exhibit similar losses as MLM due to out-of-
domain specialization. These results further question the hypothesis that demographic
information guides downstream gains, suggested by prior work (Hovy, 2015) and our
in-domain specialization results (with mBERT) from Table 5.2.
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Task Selected features all -D -M -S -C -A

Gender

AC-SA US (1.0); Denmark (0.9);
MLM (0.9); DS-Tok (0.9); 0.51 - 0.56 - 0.63 0.62

AC-TD MLM (1.0); Monoling(1.0)
DS-Tok (0.9); 0.51 - 0.73 - 0.54 0.66

SA
France (1.0); DS-Tok (1.0);
Denmark (0.8); MLM (0.8);
In-domain (0.6)

0.92 0.94 0.95 0.94 0.97 0.98

TD DS-Tok (0.6); MLM (0.5);
In-domain (0.5) 0.33 0.36 0.35 0.34 0.35 0.40

Age

AC-SA Denmark (3.0);
MLM (1.5); Monoling (0.9) 1.93 - 1.98 - 2.31 2.02

AC-TD UK (2.1); France (1.4);
MLM (0.9); 0.68 - 0.69 - 1.02 0.82

SA In-domain (1.3);
DS-Tok (1.0); MLM (0.9); 0.96 1.03 0.97 0.97 0.98 1.03

TD Denmark (1.6); <35 (0.7);
DS-Seq (0.6); DS-Tok (0.6) 1.52 1.53 1.53 1.55 1.61 1.54

Table 5.4: Results of meta-regression analysis. We report the goodness-of-fit (RMSE)
results for predicting deltas in downstream performance between specialized models and
their respective vanilla PLM. Results reported for three tasks – intrinsic demographic
attribute classification (AC; on datasets AC-SA and AC-TD), Sentiment Analysis (SA),
and Topic Detection (TD) with both demographic factors, gender and age. We compare
the results across different feature sets – for all features (all), and excluding individual
features: domain (-D), mono- vs. multilingual (-M), fine-tuning demographic setting
(e.g., F vs.M vs.X for gender; -S), country (-C), and the adaptation approach (i.e., MLM
vs.DS-Tok vs.DS-Seq; -A). For each task, when including all features (column: all), we
list the most important features, those with weights > 0.5 (selected features).

Meta-Regression Analysis. Next, we aim to quantify, via a meta-regression analysis,
the contributions of individual factors (country, in-domain vs. out-of-domain special-
ization, language, specialization approach, test set structure) on the task performance
(AC-SA, AC-TD, SA, TD). We use the difference in performance between the specialized
model and its corresponding vanilla PLM (mBERT or monolingual PLM) as the label (i.e.,
output, dependent) variable for the regression. We use the following input features (all
one-hot encoded) as prediction variables: (i) country/language of fine-tuning/evaluation
data, (ii) specialization method (MLM vs. DS-Tok vs. DS-Seq), (iii) in-domain vs. out-
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of-domain specialization, (iv) whether the starting/vanilla PLM is monolingual (e.g.,
French BERT) or multilingual (mBERT), (v) and the demographic group from which
the fine-tuning/evaluation data comes from (F vs. M vs. X for gender and <35 vs. >45
vs. X for age). We then fit a linear regressor on all data points, using either the full set of
features or, in ablations, excluding certain subsets; we report the goodness of fit as average
root mean square error (RMSE).

We summarize the results of our meta-regression analysis in Table 5.4. For each task,
we list the selected features paired with the RMSE scores. When we fit regression using all
features (all), the country of origin of fine-tuning data (i.e., features Denmark, France, UK,
etc.) tends to overall explain the variance of specialization effect on model performance as
good as or even better than the specialization approach (demographically-informed DS-*
variants and demographically-uninformed MLM). The specialization approach features
(MLM, DS-Tok, and DS-Seq), however, do appear among the most important features
in most settings, suggesting that knowing the specialization approach does help predict
the performance of the specialized model. Note, however, that in terms of assessing
whether demographic information generally improves specialization, this needs to be
combined with actual task performance results from Tables 5.2 and 5.3. For example,
feature DS-Tok is among the most important features for SA performance after gender
specialization: looking at the results for DS-Tok in both Tables 5.2 and 5.3, we see that it
achieves, in most cases, scores above MLM – this, in turn, suggests that demographically-
informed gender specialization does (regardless of other factors) improve the downstream
SA performance. The ablation results offer a complementary view into the importance of
individual features: the larger the increase in RMSE when excluding a feature (compared
to using all features), the more important the feature is. The regressions in which we
exclude the information on the specialization approach (-A) result in the highest RMSE
for gender specialization on both extrinsic tasks (SA and TD). In all other setups (AC for
both gender and age specialization, as well as SA and TD for age), there is another type
of information, the removal of which results in a less predictable specialization effect:
for instance, AC after age specialization, the -C setting increases the RMSE the most,
representing that features indicating the demographic composition of the country factor
of the fine-tuning dataset jointly have the largest effect on performance.

Combining results from Tables 5.2 and 5.3 with findings from the meta-regression
analysis leads to the overall conclusion that gender-based language specialization of PLMs
generally leads to downstream gains, whereas age-based specialization does not.
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Figure 5.3: Results of our multilingual and monolingual qualitative analysis for gender. For
multilingual case as plotted in (a), we show a tSNE visualization of review texts embedded
with a non-specialized (mBERT) and specialized (DS-Tok) model. Colors indicate the
demographic subgroup (upper figures) and countries (lower figures), respectively. For
monolingual case as illustrated in (b) and (c) for Denmark and Germany, we show a tSNE
visualization of texts embedded with non-specialized (danishBERT, germanBERT) and
specialized (DS-Tok) monolingual PLMs. Each subfigure is plotted with 2K instances.

Qualitative Analysis. Finally, we analyze the topology of the PLMs representation space
before and after demographic specialization. We encode the reviews from both demo-
graphic dimensions – (i) with the vanilla PLM (mBERT or monolingual BERT) and
its DS-Tok specialized counterpart – and then compress those representations into two
dimensions with t-distributed stochastic neighbor embedding (tSNE; van der Maaten and
Hinton, 2008). Figure 5.3 depicts these representation spaces after gender-specialization
(the age-specialization effects lead to similar conclusions; see Figure 5.4). The tSNE plots
do not show any salient gender specialization effect. In the case of mBERT, gender-
specialization (corresponding DS-Tok plot) leads to the separation of representation areas
according to review language and not the gender of its author.8 In the monolingual cases
(illustrated for Danish and German BERT), the space of the gender-specialized encoder
visually largely resembles that of the vanilla one, indicating that the demographic special-
ization procedure (DS-Tok) does not impart dimensions that allow for easy separation of
representation space along the specialization dimension.

8Note that the green and blue regions, indicating US and UK overlap due to shared language.
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Figure 5.4: Results of our multilingual and monolingual qualitative analysis for age. For
multilingual case as plotted in (a), we show a tSNE visualization of review texts embedded
with a non-specialized (mBERT) and specialized (DS-Tok) model. Colors indicate the
demographic subgroup (upper figures) and countries (lower figures), respectively. For
monolingual case as illustrated in (b) and (c) for Denmark and Germany, we show a tSNE
visualization of texts embedded with non-specialized (danishBERT, germanBERT) and
specialized (DS-Tok) monolingual PLMs. Each subfigure is plotted with 2K instances.

5.6 Conclusions

In this Chapter, we thoroughly examined the effects of demographic specialization of
PLMs via straightforward injection methods that have been proven effective for other
types of knowledge (C1). Initial results on intrinsic and extrinsic evaluation tasks using
a multilingual PLM indicated the usefulness of our approach. However, running a
series of additional experiments in which we controlled for potentially confounding
factors (language and domain) and a meta-analysis indicated that the demographic aspects
only have a negligible impact on the downstream task performance. This observation
is supported by additional qualitative analysis (C3). Overall, our findings point to the
difficulty of injecting demographic knowledge into PLMs: we hope that our in-depth
analysis and findings catalyze future research on the topic of truly human-centered NLP,
especially in multidimensional settings.

5.7 Further Ethical Considerations

In this Chapter, we concentrated on the demographic adaptation of PLMs, specifically
addressing gender and age aspects while acknowledging the existence of other factors
like ethnicity and education that aren’t covered here. It is important to recognize that
there might be additional effects and intersectional impacts at play. Our work deals with
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demographic adaptation from reviews that should be considered sensitive information.
We acknowledge that the limitations in data resources and annotations (Schler et al.,
2006; Hovy et al., 2015; Voigt et al., 2018) give rise to potential risks of overgeneralizing
our findings and applying our methods. We point the reader to the following risks and
potential implications: (1) partial language coverage, where languages are from Indo-
European subfamilies that do not represent typologically diverse languages; (2) limited
cultural coverage (Joshi et al., 2020), where the countries, although speaking different
languages, still belong a culturally relatively homogeneous part of the world, i.e., the West;
(3) simplified gender identities (Dev et al., 2021), where gender is modeled as a binary
variable, which does not reflect the wide variety of possible identities along the gender
spectrum and beyond (Lauscher et al., 2022b); (4) unfair stereotypical biases (Blodgett
et al., 2020), namely potential harms that might arise from unfair stereotypical biases in
the data (despite our efforts to balance the sample across demographic groups) or pre-
encoded in the model (Lauscher et al., 2021). Further, the sensitive user profile data might
bias the model towards additional demographic characteristics and lead to potentially
harmful predictions and applications.

In this Chapter, we have focused on advancing NLP research to understand better this
fine-grained aspect of the intertwined relationship between demographic adaptation and
PLMs in both monolingual and multilingual scenarios. While limited data resources may
hinder our ability to fully consider language coverage, cultural coverage, gender identities,
and stereotypical biases, it is our obligation to be transparent about these constraints
and ethical concerns and to continually work towards improving data collection and
methodologies to better serve the needs and perspectives of all users. We believe these
insights would raise awareness towards establishing fairer and more inclusive language
technologies for other demographic factors, other groups within these factors, and also
other languages and countries – multidimensional adaptation. In the next and final
Chapter, we summarize and wrap up the findings and contributions presented in this
thesis.
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Chapter 6

Conclusions and Perspectives

“In a time of drastic change it is the learners who inherit the future.
The learned usually find themselves equipped to live in a world that no longer exists.”

Eric Hoffer
«Reflections on the Human Condition»

To address adaptation barriers emerging from the discrepancy between the generic knowl-
edge encoded in pre-trained language models and the specific demands of real-world
applications across multiple perspectives – domains, languages, and social dimensions,
this thesis has undertaken a comprehensive investigation in bridging the critical gap. We
targeted three key challenges to adapt language models across multidimensional aspects
to enhance effectiveness, efficiency, and interpretability. The main contributions are
summarized in the following:

1. Enhance Effectiveness in Adaptive Pre-training (C1). We explored task-agnostic
adaptive pre-training methods, distinct from task-specific approaches that are limited to
single tasks. We developed versatile models capable of handling various tasks across multi-
ple domains and languages, including techniques for self-supervised domain adaptation
(Chapter 3) and cross-lingual transfer (Chapter 4), as well as hybrid setups for demo-
graphic adaptation (Chapter 5). Further, we addressed the challenges of multi-domain
and multilingual use cases. Recognizing the impracticality of using separate models for
each domain and language, we propose a single-model approach, which enhances the
adaptability of PLMs for multi-domain and multilingual scenarios. This involves using
adapters (§ 3.1) and novel methods – meta-embeddings and meta-tokenizers (§ 3.2) for
multi-domain adaptation, and multi-task learning objectives to incorporate demographic
knowledge into multilingual models (Chapter 5). Lastly, we tackled resource-limited
scenarios, crucial for languages or domains with limited labeled data. We delved into sam-
ple efficient few-shot transfer (Chapter 3) and continual few-shot cross-lingual transfer
learning (Chapter 4) to enhance model adaptability in resource-lean contexts.
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2. Improve Efficiency in Adaptive Pre-training (C2). In the realm of pre-trained
language models, the advancement in size and complexity is paralleled by an increase in
the computational demands for adaptive pre-training, raising concerns about practical de-
ployment and scalability. We delved into enhancing the efficiency of adaptive pre-training
by focusing on two critical areas: data efficiency and parameter efficiency. Data-efficient
methods prioritize effective collection and use of limited in-domain or in-language data
(around 50K to 200K), addressing the challenges of acquiring diverse datasets and re-
ducing reliance on extensive labeled data. We proposed a term-matching method for
efficient data acquisition for task-oriented dialog (DomainCC and DomainReddit)
(see § 3.1). In Chapter 4, we introduced a novel multilingual multi-domain TOD datasets:
Multi2WOZ, enabling a reliable and robust resource to facilitate cross-lingual transfer
studies on TOD. Further, we presented target-language-specific (LangCC) and cross-
lingual (LangOpenSubtitles) corpora, streamlining efficient dialogic pre-training for
language adaptation. In Chapter 5, we utilized a limited amount of language-specific
reviews from two demographic factors of social dimension – gender and age, to con-
duct demographic adaptation. Regarding parameter efficiency, our work underlined the
necessity of optimizing resource utilization to minimize computational overhead. We
critiqued conventional full fine-tuning methods for their resource intensity consumption
and introduced modular-based approaches for better parameter efficiency. We proposed
a novel task-agnostic domain adaptation method using domain-specialized embeddings
and tokenizers (see § 3.2). This approach presented a more efficient solution for domain-
adaptive pre-training, particularly in situations with limited training data, and offers a
more effective alternative to the use of adapters.

3. Enrich Interpretability in Adaptive Pre-training (C3). To understand the be-
havior and decision-making of language models in optimizing their performance and
addressing limitations, we focused on the interpretability and analysis of adaptive pre-
training methods across domains, languages, and social dimensions. Our objective was
to improve model transparency while systematically identifying the strengths and weak-
nesses. We investigated the effects of domain and language adaptation through cross-
domain transfer and token-level segmentation in Chapter 3 and Chapter 4. The analyses
allowed us to gain insights into the benefits of cross-domain knowledge transfer on model
behavior and quantify the knowledge encoded within the model through token-level
control. Additionally, we explored the impact of demographic factors on a multilin-
gual PLM through controlled experiments in Chapter 5. Our studies presented how the
model performed across different demographic subgroups and shifted the research focus
from merely assessing performance gains to a deeper understanding of the underlying
mechanics and complexities of adaptive pre-training methods across multiple factors.
Notably, our findings underscored the open challenge of injecting demographic knowl-
edge into multilingual PLM. This opens up avenues for future research to explore diverse
perspectives and insights across various tasks at hand.
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To summarize, in this thesis we have emphasized the importance of overcoming the
adaptation barriers encountered by PLMs across multidimensional aspects. We have
described and addressed three core challenges and presented novel corpora, new meth-
ods, and comprehensive analyses across various downstream tasks. While our work only
scratches the surface of these complex problems, it contributes to the development of
more effective, efficient, and interpretable approaches to bridging the adaptation gap
in PLMs. We advocate for a more holistic view, as it allows for better integration of the
addressed challenges and identifies transferable aspects across different contexts. However,
we acknowledge the limitations of our work, which relies on future exploration. First,
there is a need for better selection and handling of high-quality data to enhance data
efficiency and the reliability of model adaptation across diverse scenarios. Second, our
focus was primarily on encoder-based PLMs, and there is significant potential in exploring
a broader range of PLMs, particularly through a mixture-of-experts approach (Shazeer
et al., 2017; Feng et al., 2024) that integrates expert PLMs and adapters in a task-agnostic
manner for multi-domain and multilingual applications. Third, while our work has em-
phasized quantitative and qualitative analyses to enhance interpretability, incorporating
human-centered approaches, particularly through preference alignment, could signifi-
cantly enhance model transparency and usability, especially in domains like healthcare.
The potential paths for future research based on our work are manifold. We outline the
following possible directions for future work:

(i) Data Quality and Diversity. Data quality is one of the core factors when focusing
on data-efficiency methods for addressing adaptation barrier of PLMs. This fur-
ther highlights the research directions with the reliability of selecting high-quality
data (Longpre et al., 2024). The possible directions of research include: (a) employ-
ing influence functions combined with k-Nearest-Neighbors search to optimize both
speed and data quality (Guo et al., 2021b); (b) dynamically optimizing data usage
during training, leveraging model gradients on a small subset of clean data (Wang
et al., 2021), which are suggested to lead to better adaptation techniques (Grangier
and Iter, 2022); or (c) utilizing a PLM to filter the data quality, which is similar
as model-as-a-judge approach with learning objectives (Li et al., 2024a,b). Our
study encompassed a diverse range of contexts, covering 14 domains, 7 languages,
and 2 demographic factors (see § 1.2). However, we acknowledge that the covered
selections may not contain the full picture of real-world applications, especially in
specialized areas (e.g., legal, education) and resource-lean languages (e.g., Tagalog,
Tamil). This acknowledgment underscores the need to expand future research
scope to encompass a wider variety of domains and place a deliberate focus on low-
resource languages (Chung et al., 2023; Samardzic et al., 2024), thereby extending
our future investigations to cover a more comprehensive spectrum of real-world
scenarios.
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(ii) Task-Agnostic Unified Model for Multi-Domain and Multilingual Use Cases.
We presented task-agnostic approaches to address adaptation barrier of PLMs, in-
cluding multi-domain usage in Chapter 3, multilingual usage in Chapter 4, and a
hybrid setup for multilingual demographic adaptation usage in Chapter 5. However,
research questions are still open regarding the effects of deploying a unified model
across both multi-domain and multilingual setups. Kulkarni et al. (2023) proposed
a novel unified multi-domain and multilingual NER model, catering combination
of language and domain via (a) adapters, and (b) mixture-of-experts (Shazeer et al.,
2017) techniques. Their findings suggest that in a task-specific (i.e., NER) setting,
domain-specific adaptations hold greater significance than language-specific ones.
While this insight provides a greater understanding of the interplay between do-
mains and languages in adaptive models, it also raises interesting avenues for further
investigation of multidimensional scenarios: (i) exploring more effective and ef-
ficient methods for unified models to better handle the complexities of various
dimensional adaptations, and (ii) developing task-agnostic unified models that are
not limited to specific tasks with ensemble methods (e.g., mixture-of-LoRAs (Feng
et al., 2024)) to enhance generalization across different applications.

(iii) Preference-Alignment Leads to Better Interpretability. We examined the inter-
pretability aspects of adaptive pre-training frameworks across various tasks. How-
ever, it is crucial to acknowledge that our investigation primarily revolves around
controlled experiments (e.g., zero-shot transfer, few-shot transfer, sample efficiency),
leaving room for further exploration in the field of interpretability. Specifically,
human-centered interpretability remains an area for future research, concerning
both (a) visualization studies; and (b) incorporation of human-preference align-
ment. For instance, Kwon and Mihindukulasooriya (2023) developed a visual
analytics application aimed at enabling users to scrutinize the fairness and biases
of PLMs through MLM-scoring (Salazar et al., 2020). This approach holds the
potential for extension to multidimensional aspects, with consideration for task-
specific evaluation metrics. Furthermore, exploring methods to integrate human
preferences into the interpretability process remains a promising avenue for future
investigation (Kirk et al., 2023; Hung et al., 2023a). Aligning model behavior with
user preferences has the potential to enhance the feasibility and relevance of down-
stream tasks (Kim et al., 2023; Rafailov et al., 2023; Deng et al., 2024). Nonetheless,
the development of task-agnostic mechanisms for injecting specialized knowledge
and incorporating user preference alignment for classification tasks remains a di-
rection for future exploration. While efficiency and effectiveness remain primary
concerns in assessing the performance of adaptive language models, emphasizing
interpretability in human-centered applications holds promise for enhancing the
transferability of acquired knowledge and fostering transparent trust between users,
thereby maximizing the societal impact of these models.
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In order to facilitate future research and ensure reproducibility, all the resources
(including scripts, models, and corpora) in the context of the thesis are publicly available
(see Appendix A). We hope that our work catalyzes future investigation into overcoming
the adaptation barrier of PLMs. We aim to highlight the necessity for developing more
effective, efficient, and interpretable approaches to adapting language models to multidi-
mensional perspectives, ultimately leading to more robust and reliable NLP applications.

123





Bibliography

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettle-
moyer, and Sonal Gupta. 2021. Muppet: Massive multi-task representations with
pre-finetuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 5799–5811, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised domain clusters in pretrained
language models. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7747–7763, Online. Association for Computational
Linguistics.

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulić. 2022. Composable sparse
fine-tuning for cross-lingual transfer. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1778–1796,
Dublin, Ireland. Association for Computational Linguistics.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020. AraBERT: Transformer-based
model for Arabic language understanding. In Proceedings of the 4th Workshop on Open-
Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language
Detection, pages 9–15, Marseille, France. European Language Resource Association.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization.
Advances in Neural Information Processing Systems 2016 Deep Learning Symposium.

David Bamman, Chris Dyer, and Noah A. Smith. 2014. Distributed representations of
geographically situated language. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 828–834,
Baltimore, Maryland. Association for Computational Linguistics.

David Bamman, Sejal Popat, and Sheng Shen. 2019. An annotated dataset of literary
entities. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2138–2144, Minneapolis, Minnesota. Association for
Computational Linguistics.

125

https://doi.org/10.18653/v1/2021.emnlp-main.468
https://doi.org/10.18653/v1/2021.emnlp-main.468
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2022.acl-long.125
https://doi.org/10.18653/v1/2022.acl-long.125
https://aclanthology.org/2020.osact-1.2
https://aclanthology.org/2020.osact-1.2
https://arxiv.org/pdf/1607.06450.pdf
https://doi.org/10.3115/v1/P14-2134
https://doi.org/10.3115/v1/P14-2134
https://doi.org/10.18653/v1/N19-1220
https://doi.org/10.18653/v1/N19-1220


BIBLIOGRAPHY

Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng Wang. 2020. PLATO: Pre-trained
dialogue generation model with discrete latent variable. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 85–96, Online.
Association for Computational Linguistics.

Ankur Bapna and Orhan Firat. 2019. Simple, scalable adaptation for neural machine
translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1538–1548, Hong Kong, China. Association for
Computational Linguistics.

Pranjali Basmatkar, Hemant Holani, and Shivani Kaushal. 2019. Survey on neural
machine translation for multilingual translation system. In 2019 3rd International
Conference on Computing Methodologies and Communication (ICCMC), pages 443–
448. IEEE.

Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Black-
burn. 2020. The pushshift reddit dataset. In Proceedings of the international AAAI
conference on web and social media, volume 14, pages 830–839.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A pretrained language model for
scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3615–3620, Hong Kong, China. Association for
Computational Linguistics.

Eyal Ben-David, Carmel Rabinovitz, and Roi Reichart. 2020. PERL: Pivot-based domain
adaptation for pre-trained deep contextualized embedding models. Transactions of the
Association for Computational Linguistics, 8:504–521.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. 2022. BitFit: Simple parameter-
efficient fine-tuning for transformer-based masked language-models. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 1–9, Dublin, Ireland. Association for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. 2000. A neural probabilistic
language model. Advances in neural information processing systems, 13.

Kasturi Bhattacharjee, Miguel Ballesteros, Rishita Anubhai, Smaranda Muresan, Jie Ma,
Faisal Ladhak, and Yaser Al-Onaizan. 2020. To BERT or not to BERT: Comparing
task-specific and task-agnostic semi-supervised approaches for sequence tagging. In Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 7927–7934, Online. Association for Computational Linguistics.

126

https://doi.org/10.18653/v1/2020.acl-main.9
https://doi.org/10.18653/v1/2020.acl-main.9
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://ieeexplore.ieee.org/abstract/document/8819788
https://ieeexplore.ieee.org/abstract/document/8819788
https://ojs.aaai.org/index.php/ICWSM/article/view/7347
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.1162/tacl_a_00328
https://doi.org/10.1162/tacl_a_00328
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://proceedings.neurips.cc/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.636
https://doi.org/10.18653/v1/2020.emnlp-main.636


BIBLIOGRAPHY

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. 2020. Language
(technology) is power: A critical survey of “bias” in NLP. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 5454–5476,
Online. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching
word vectors with subword information. Transactions of the Association for Computa-
tional Linguistics, 5:135–146.

Danushka Bollegala and James O’ Neill. 2022. A survey on word meta-embedding
learning. In Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, pages 5402–5409. International Joint Conferences on Artificial
Intelligence Organization. Survey Track.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
2020. Language models are few-shot learners. Advances in neural information process-
ing systems, 33:1877–1901.

Paweł Budzianowski and Ivan Vulić. 2019. Hello, it’s GPT-2 - how can I help you?
towards the use of pretrained language models for task-oriented dialogue systems. In
Proceedings of the 3rd Workshop on Neural Generation and Translation, pages 15–22,
Hong Kong. Association for Computational Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan
Ultes, Osman Ramadan, and Milica Gašić. 2018. MultiWOZ - a large-scale multi-
domain Wizard-of-Oz dataset for task-oriented dialogue modelling. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
5016–5026, Brussels, Belgium. Association for Computational Linguistics.

Sven Buechel, Anneke Buffone, Barry Slaff, Lyle Ungar, and João Sedoc. 2018. Modeling
empathy and distress in reaction to news stories. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 4758–4765, Brussels,
Belgium. Association for Computational Linguistics.

Steven Cao, Nikita Kitaev, and Dan Klein. 2019. Multilingual alignment of contextual
word representations. In International Conference on Learning Representations.

Rich Caruana. 1997. Multitask learning. Machine learning, 28:41–75.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Saksham Singhal, Wenhui Wang, Xia Song,
Xian-Ling Mao, Heyan Huang, and Ming Zhou. 2021. InfoXLM: An information-
theoretic framework for cross-lingual language model pre-training. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computational

127

https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.24963/ijcai.2022/758
https://doi.org/10.24963/ijcai.2022/758
https://arxiv.org/pdf/2005.14165
https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1507
https://doi.org/10.18653/v1/D18-1507
https://openreview.net/pdf?id=r1xCMyBtPS
https://openreview.net/pdf?id=r1xCMyBtPS
https://doi.org/https://doi.org/10.1023/A:1007379606734
https://doi.org/10.18653/v1/2021.naacl-main.280
https://doi.org/10.18653/v1/2021.naacl-main.280


BIBLIOGRAPHY

Linguistics: Human Language Technologies, pages 3576–3588, Online. Association for
Computational Linguistics.

John Chung, Ece Kamar, and Saleema Amershi. 2023. Increasing diversity while main-
taining accuracy: Text data generation with large language models and human interven-
tions. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 575–593, Toronto, Canada. Association for
Computational Linguistics.

Joshua Coates and Danushka Bollegala. 2018. Frustratingly easy meta-embedding –
computing meta-embeddings by averaging source word embeddings. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 194–198,
New Orleans, Louisiana. Association for Computational Linguistics.

Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20(1):37–46.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the 25th
International Conference on Machine Learning, ICML ’08, pages 160–167, New York,
NY, USA. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. Journal of
machine learning research, 12(ARTICLE):2493–2537.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume
Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin
Stoyanov. 2020a. Unsupervised cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 8440–8451, Online. Association for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-lingual language model pretraining.
In Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettlemoyer, and Veselin Stoyanov. 2020b.
Emerging cross-lingual structure in pretrained language models. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages 6022–
6034, Online. Association for Computational Linguistics.

Yang Deng, Lizi Liao, Zhonghua Zheng, Grace Hui Yang, and Tat-Seng Chua. 2024.
Towards human-centered proactive conversational agents. In Proceedings of the 47th

128

https://doi.org/10.18653/v1/2023.acl-long.34
https://doi.org/10.18653/v1/2023.acl-long.34
https://doi.org/10.18653/v1/2023.acl-long.34
https://doi.org/10.18653/v1/N18-2031
https://doi.org/10.18653/v1/N18-2031
https://journals.sagepub.com/doi/pdf/10.1177/001316446002000104
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://www.jmlr.org/papers/volume12/collobert11a/collobert11a.pdf?source
https://doi.org/10.18653/v1/2020.acl-main.747
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.1145/3626772.3657843


BIBLIOGRAPHY

International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’24, page 807–818, New York, NY, USA. Association for Computing
Machinery.

Sunipa Dev, Masoud Monajatipoor, Anaelia Ovalle, Arjun Subramonian, Jeff Phillips,
and Kai-Wei Chang. 2021. Harms of gender exclusivity and challenges in non-binary
representation in language technologies. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 1968–1994, Online and
Punta Cana, Dominican Republic. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational
Linguistics.

Shizhe Diao, Ruijia Xu, Hongjin Su, Yilei Jiang, Yan Song, and Tong Zhang. 2021.
Taming pre-trained language models with n-gram representations for low-resource
domain adaptation. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 3336–3349, Online. Association
for Computational Linguistics.

Bosheng Ding, Junjie Hu, Lidong Bing, Mahani Aljunied, Shafiq Joty, Luo Si, and
Chunyan Miao. 2022. GlobalWoZ: Globalizing MultiWoZ to develop multilingual
task-oriented dialogue systems. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1639–1657,
Dublin, Ireland. Association for Computational Linguistics.

Finale Doshi-Velez and Been Kim. 2018. Considerations for evaluation and generalization
in interpretable machine learning. Explainable and interpretable models in computer
vision and machine learning, pages 3–17.

Penelope Eckert and Sally McConnell-Ginet. 2013. Language and Gender. Cambridge
University Press.

Jeffrey L Elman. 1990. Finding structure in time. Cognitive science, 14(2):179–211.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyang Gao,
Adarsh Kumar, Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. MultiWOZ 2.1:
A consolidated multi-domain dialogue dataset with state corrections and state tracking
baselines. In Proceedings of the 12th Language Resources and Evaluation Conference,
pages 422–428, Marseille, France. European Language Resources Association.

129

https://doi.org/10.18653/v1/2021.emnlp-main.150
https://doi.org/10.18653/v1/2021.emnlp-main.150
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.259
https://doi.org/10.18653/v1/2021.acl-long.259
https://doi.org/10.18653/v1/2022.acl-long.115
https://doi.org/10.18653/v1/2022.acl-long.115
https://link.springer.com/chapter/10.1007/978-3-319-98131-4_1
https://link.springer.com/chapter/10.1007/978-3-319-98131-4_1
https://doi.org/10.1207/s15516709cog1402_1
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53


BIBLIOGRAPHY

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. 2021. A brief
review of domain adaptation. Advances in data science and information engineering,
pages 877–894.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, and Hao Wang. 2024. Mixture-of-
LoRAs: An efficient multitask tuning method for large language models. In Proceed-
ings of the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024), pages 11371–11380, Torino, Italia.
ELRA and ICCL.

John Firth. 1957. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis,
pages 10–32.

Lucie Flek. 2020. Returning the N to NLP: Towards contextually personalized clas-
sification models. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7828–7838, Online. Association for Computational
Linguistics.

Robert M. French. 1999. Catastrophic forgetting in connectionist networks. Trends in
Cognitive Sciences, 3(4):128–135.

Annemarie Friedrich, Heike Adel, Federico Tomazic, Johannes Hingerl, Renou Ben-
teau, Anika Marusczyk, and Lukas Lange. 2020. The SOFC-exp corpus and neural
approaches to information extraction in the materials science domain. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages
1255–1268, Online. Association for Computational Linguistics.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier.
2023. On the effectiveness of parameter-efficient fine-tuning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pages 12799–12807.

Philip Gage. 1994. A new algorithm for data compression. C Users Journal, 12(2):23–38.

Aparna Garimella, Carmen Banea, and Rada Mihalcea. 2017. Demographic-aware word
associations. In Proceedings of the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2285–2295, Copenhagen, Denmark. Association for
Computational Linguistics.

Goran Glavaš, Mladen Karan, and Ivan Vulić. 2020. XHate-999: Analyzing and detecting
abusive language across domains and languages. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 6350–6365, Barcelona, Spain (Online).
International Committee on Computational Linguistics.

130

https://link.springer.com/chapter/10.1007/978-3-030-71704-9_65
https://link.springer.com/chapter/10.1007/978-3-030-71704-9_65
https://aclanthology.org/2024.lrec-main.994
https://aclanthology.org/2024.lrec-main.994
https://doi.org/10.18653/v1/2020.acl-main.700
https://doi.org/10.18653/v1/2020.acl-main.700
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.18653/v1/2020.acl-main.116
https://doi.org/10.18653/v1/2020.acl-main.116
https://ojs.aaai.org/index.php/AAAI/article/view/26505
https://doi.org/10.18653/v1/D17-1242
https://doi.org/10.18653/v1/D17-1242
https://doi.org/10.18653/v1/2020.coling-main.559
https://doi.org/10.18653/v1/2020.coling-main.559


BIBLIOGRAPHY

Goran Glavaš and Ivan Vulić. 2021. Is supervised syntactic parsing beneficial for language
understanding tasks? an empirical investigation. In Proceedings of the 16th Conference of
the European Chapter of the Association for Computational Linguistics: Main Volume,
pages 3090–3104, Online. Association for Computational Linguistics.

David Grangier and Dan Iter. 2022. The trade-offs of domain adaptation for neural
language models. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 3802–3813, Dublin, Ireland.
Association for Computational Linguistics.

Bhanu Prakash Reddy Guda, Aparna Garimella, and Niyati Chhaya. 2021. EmpathBERT:
A BERT-based framework for demographic-aware empathy prediction. In Proceedings
of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, pages 3072–3079, Online. Association for Computational
Linguistics.

Chulaka Gunasekara, Seokhwan Kim, Luis Fernando D’Haro, Abhinav Rastogi, Yun-
Nung Chen, Mihail Eric, Behnam Hedayatnia, Karthik Gopalakrishnan, Yang Liu,
Chao-Wei Huang, et al. 2020. Overview of the ninth dialog system technology chal-
lenge: Dstc9. arXiv preprint arXiv:2011.06486.

Demi Guo, Alexander Rush, and Yoon Kim. 2021a. Parameter-efficient transfer learning
with diff pruning. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 4884–4896, Online. Association
for Computational Linguistics.

Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. 2021b. FastIF:
Scalable influence functions for efficient model interpretation and debugging. In Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 10333–10350, Online and Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Xu Guo and Han Yu. 2022. On the domain adaptation and generalization of pretrained
language models: A survey. arXiv preprint arXiv:2211.03154.

Raghav Gupta, Harrison Lee, Jeffrey Zhao, Yuan Cao, Abhinav Rastogi, and Yonghui
Wu. 2022. Show, don’t tell: Demonstrations outperform descriptions for schema-
guided task-oriented dialogue. In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 4541–4549, Seattle, United States. Association for Computational
Linguistics.

131

https://doi.org/10.18653/v1/2021.eacl-main.270
https://doi.org/10.18653/v1/2021.eacl-main.270
https://doi.org/10.18653/v1/2022.acl-long.264
https://doi.org/10.18653/v1/2022.acl-long.264
https://doi.org/10.18653/v1/2021.eacl-main.268
https://doi.org/10.18653/v1/2021.eacl-main.268
https://arxiv.org/abs/2011.06486
https://arxiv.org/abs/2011.06486
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.emnlp-main.808
https://doi.org/10.18653/v1/2021.emnlp-main.808
https://arxiv.org/pdf/2211.03154.pdf
https://arxiv.org/pdf/2211.03154.pdf
https://doi.org/10.18653/v1/2022.naacl-main.336
https://doi.org/10.18653/v1/2022.naacl-main.336


BIBLIOGRAPHY

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug
Downey, and Noah A. Smith. 2020. Don’t stop pretraining: Adapt language models
to domains and tasks. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8342–8360, Online. Association for Computational
Linguistics.

Ting Han, Ximing Liu, Ryuichi Takanabu, Yixin Lian, Chongxuan Huang, Dazhen
Wan, Wei Peng, and Minlie Huang. 2021. Multiwoz 2.3: A multi-domain task-oriented
dialogue dataset enhanced with annotation corrections and co-reference annotation. In
CCF International Conference on Natural Language Processing and Chinese Computing,
pages 206–218. Springer.

Zellig S Harris. 1954. Distributional structure. Word, 10(2-3):146–162.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng Ding, Liying Cheng, Jiawei Low,
Lidong Bing, and Luo Si. 2021. On the effectiveness of adapter-based tuning for
pretrained language model adaptation. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 2208–2222, Online.
Association for Computational Linguistics.

Michael A. Hedderich, Lukas Lange, Heike Adel, Jannik Strötgen, and Dietrich Klakow.
2021. A survey on recent approaches for natural language processing in low-resource
scenarios. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages
2545–2568, Online. Association for Computational Linguistics.

Matthew Henderson, Paweł Budzianowski, Iñigo Casanueva, Sam Coope, Daniela Gerz,
Girish Kumar, Nikola Mrkšić, Georgios Spithourakis, Pei-Hao Su, Ivan Vulić, and
Tsung-Hsien Wen. 2019a. A repository of conversational datasets. In Proceedings of the
First Workshop on NLP for Conversational AI, pages 1–10, Florence, Italy. Association
for Computational Linguistics.

Matthew Henderson, Iñigo Casanueva, Nikola Mrkšić, Pei-Hao Su, Tsung-Hsien Wen,
and Ivan Vulić. 2020. ConveRT: Efficient and accurate conversational representations
from transformers. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 2161–2174, Online. Association for Computational Linguistics.

Matthew Henderson, Blaise Thomson, and Jason D. Williams. 2014a. The second dialog
state tracking challenge. In Proceedings of the 15th Annual Meeting of the Special Interest

132

https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.1007/978-3-030-88483-3_16
https://doi.org/10.1007/978-3-030-88483-3_16
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/W19-4101
https://doi.org/10.18653/v1/2020.findings-emnlp.196
https://doi.org/10.18653/v1/2020.findings-emnlp.196
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337


BIBLIOGRAPHY

Group on Discourse and Dialogue (SIGDIAL), pages 263–272, Philadelphia, PA, U.S.A.
Association for Computational Linguistics.

Matthew Henderson, Blaise Thomson, and Jason D. Williams. 2014b. The third dialog
state tracking challenge. In 2014 IEEE Spoken Language Technology Workshop (SLT),
pages 324–329.

Matthew Henderson, Ivan Vulić, Iñigo Casanueva, Paweł Budzianowski, Daniela Gerz,
Sam Coope, Georgios Spithourakis, Tsung-Hsien Wen, Nikola Mrkšić, and Pei-Hao
Su. 2019b. PolyResponse: A rank-based approach to task-oriented dialogue with
application in restaurant search and booking. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations,
pages 181–186, Hong Kong, China. Association for Computational Linguistics.

Matthew Henderson, Ivan Vulić, Daniela Gerz, Iñigo Casanueva, Paweł Budzianowski,
Sam Coope, Georgios Spithourakis, Tsung-Hsien Wen, Nikola Mrkšić, and Pei-Hao
Su. 2019c. Training neural response selection for task-oriented dialogue systems. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 5392–5404, Florence, Italy. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
Computation, 9(8):1735–1780.

Valentin Hofmann, Goran Glavaš, Nikola Ljubešić, Janet B. Pierrehumbert, and Hinrich
Schütze. 2024. Geographic adaptation of pretrained language models. Transactions of
the Association for Computational Linguistics, 12:411–431.

Carolin Holtermann, Anne Lauscher, and Simone Paolo Ponzetto. 2022. Fair and
argumentative language modeling for computational argumentation. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 7841–7861, Dublin, Ireland. Association for Computational
Linguistics.

JJ Hopfield. 1982. Neural networks and physical systems with emergent collective compu-
tational abilities. Proceedings of the National Academy of Sciences of the United States
of America, 79(8):2554–2558.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard
Socher. 2020. A simple language model for task-oriented dialogue. In Advances
in Neural Information Processing Systems, volume 33, pages 20179–20191. Curran
Associates, Inc.

133

https://doi.org/10.1109/SLT.2014.7078595
https://doi.org/10.1109/SLT.2014.7078595
https://doi.org/10.18653/v1/D19-3031
https://doi.org/10.18653/v1/D19-3031
https://doi.org/10.18653/v1/P19-1536
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/tacl_a_00652
https://doi.org/10.18653/v1/2022.acl-long.541
https://doi.org/10.18653/v1/2022.acl-long.541
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf


BIBLIOGRAPHY

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 2790–2799. PMLR.

Dirk Hovy. 2015. Demographic factors improve classification performance. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 752–762, Beijing, China. Association for Computational Linguistics.

Dirk Hovy, Anders Johannsen, and Anders Søgaard. 2015. User review sites as a resource
for large-scale sociolinguistic studies. In Proceedings of the 24th international conference
on World Wide Web, pages 452–461.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. 2022. Lora: Low-rank adaptation of large language
models. In The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin
Johnson. 2020. XTREME: A massively multilingual multi-task benchmark for evalu-
ating cross-lingual generalisation. In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
4411–4421. PMLR.

Songbo Hu, Xiaobin Wang, Moy Yuan, Anna Korhonen, and Ivan Vulić. 2024. DI-
ALIGHT: Lightweight multilingual development and evaluation of task-oriented
dialogue systems with large language models. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 3: System Demonstrations), pages 36–52, Mexico City,
Mexico. Association for Computational Linguistics.

Songbo Hu, Han Zhou, Mete Hergul, Milan Gritta, Guchun Zhang, Ignacio Iacobacci,
Ivan Vulić, and Anna Korhonen. 2023. Multi 3 WOZ: A multilingual, multi-domain,
multi-parallel dataset for training and evaluating culturally adapted task-oriented dialog
systems. Transactions of the Association for Computational Linguistics, 11:1396–1415.

Minlie Huang, Xiaoyan Zhu, and Jianfeng Gao. 2020. Challenges in building intelligent
open-domain dialog systems. ACM Transactions on Information Systems (TOIS),
38(3):1–32.

Chia-Chien Hung, Wiem Ben Rim, Lindsay Frost, Lars Bruckner, and Carolin Lawrence.
2023a. Walking a tightrope – evaluating large language models in high-risk domains. In

134

https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.3115/v1/P15-1073
https://dl.acm.org/doi/abs/10.1145/2736277.2741141
https://dl.acm.org/doi/abs/10.1145/2736277.2741141
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://doi.org/10.18653/v1/2024.naacl-demo.4
https://doi.org/10.18653/v1/2024.naacl-demo.4
https://doi.org/10.18653/v1/2024.naacl-demo.4
https://doi.org/10.1162/tacl_a_00609
https://doi.org/10.1162/tacl_a_00609
https://doi.org/10.1162/tacl_a_00609
https://dl.acm.org/doi/abs/10.1145/3383123
https://dl.acm.org/doi/abs/10.1145/3383123
https://doi.org/10.18653/v1/2023.genbench-1.8


BIBLIOGRAPHY

Proceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLP,
pages 99–111, Singapore. Association for Computational Linguistics.

Chia-Chien Hung, Lukas Lange, and Jannik Strötgen. 2023b. TADA: Efficient task-
agnostic domain adaptation for transformers. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 487–503, Toronto, Canada. Association for
Computational Linguistics.

Chia-Chien Hung, Anne Lauscher, Dirk Hovy, Simone Paolo Ponzetto, and Goran
Glavaš. 2023c. Can demographic factors improve text classification? revisiting de-
mographic adaptation in the age of transformers. In Findings of the Association for
Computational Linguistics: EACL 2023, pages 1565–1580, Dubrovnik, Croatia. Associa-
tion for Computational Linguistics.

Chia-Chien Hung, Anne Lauscher, Simone Paolo Ponzetto, and Goran Glavaš. 2022a.
DS-TOD: Efficient domain specialization for task-oriented dialog. In Findings of the
Association for Computational Linguistics: ACL 2022, pages 891–904, Dublin, Ireland.
Association for Computational Linguistics.

Chia-Chien Hung, Anne Lauscher, Ivan Vulić, Simone Paolo Ponzetto, and Goran
Glavaš. 2022b. Multi2WOZ: A robust multilingual dataset and conversational pre-
training for task-oriented dialog. In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 3687–3703, Seattle, United States. Association for Computational
Linguistics.

Hamish Ivison, Noah A. Smith, Hannaneh Hajishirzi, and Pradeep Dasigi. 2023. Data-
efficient finetuning using cross-task nearest neighbors. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 9036–9061, Toronto, Canada. Association
for Computational Linguistics.

Junguang Jiang, Yang Shu, Jianmin Wang, and Mingsheng Long. 2022. Transferability
in deep learning: A survey. arXiv preprint arXiv:2201.05867.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. 2020.
The state and fate of linguistic diversity and inclusion in the NLP world. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational Linguistics.

Daniel Jurafsky and James H. Martin. 2000. Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition, 1st edition. Prentice Hall.

135

https://aclanthology.org/2023.findings-acl.31
https://aclanthology.org/2023.findings-acl.31
https://aclanthology.org/2023.findings-eacl.116
https://aclanthology.org/2023.findings-eacl.116
https://doi.org/10.18653/v1/2022.findings-acl.72
https://doi.org/10.18653/v1/2022.naacl-main.270
https://doi.org/10.18653/v1/2022.naacl-main.270
https://aclanthology.org/2023.findings-acl.576
https://aclanthology.org/2023.findings-acl.576
https://arxiv.org/abs/2201.05867
https://arxiv.org/abs/2201.05867
https://doi.org/10.18653/v1/2020.acl-main.560


BIBLIOGRAPHY

Kaliyaperumal Karthikeyan, Zihan Wang, Stephen Mayhew, and Dan Roth. 2020. Cross-
lingual ability of multilingual bert: An empirical study. In International Conference
on Learning Representations.

Nora Kassner, Philipp Dufter, and Hinrich Schütze. 2021. Multilingual LAMA: In-
vestigating knowledge in multilingual pretrained language models. In Proceedings
of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, pages 3250–3258, Online. Association for Computational
Linguistics.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7482–7491.

Douwe Kiela, Changhan Wang, and Kyunghyun Cho. 2018. Dynamic meta-embeddings
for improved sentence representations. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, pages 1466–1477, Brussels, Belgium.
Association for Computational Linguistics.

Hyun Kim, Joon-Ho Lim, Hyun-Ki Kim, and Seung-Hoon Na. 2019. QE BERT:
Bilingual BERT using multi-task learning for neural quality estimation. In Proceedings
of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day
2), pages 85–89, Florence, Italy. Association for Computational Linguistics.

Jaehyung Kim, Jinwoo Shin, and Dongyeop Kang. 2023. Prefer to classify: Improving
text classifiers via auxiliary preference learning. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 16807–16828. PMLR.

Su Nam Kim, Timothy Baldwin, and Min-Yen Kan. 2009. Extracting domain-specific
words - a statistical approach. In Proceedings of the Australasian Language Technology
Association Workshop 2009, pages 94–98, Sydney, Australia.

Hannah Kirk, Andrew Bean, Bertie Vidgen, Paul Rottger, and Scott Hale. 2023. The past,
present and better future of feedback learning in large language models for subjective
human preferences and values. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 2409–2430, Singapore. Association
for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations, pages 66–71, Brussels, Belgium. Association for Computational
Linguistics.

136

https://openreview.net/pdf?id=HJeT3yrtDr
https://openreview.net/pdf?id=HJeT3yrtDr
https://doi.org/10.18653/v1/2021.eacl-main.284
https://doi.org/10.18653/v1/2021.eacl-main.284
https://openaccess.thecvf.com/content_cvpr_2018/papers/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.pdf
https://doi.org/10.18653/v1/D18-1176
https://doi.org/10.18653/v1/D18-1176
https://doi.org/10.18653/v1/W19-5407
https://doi.org/10.18653/v1/W19-5407
https://proceedings.mlr.press/v202/kim23u.html
https://proceedings.mlr.press/v202/kim23u.html
https://aclanthology.org/U09-1013
https://aclanthology.org/U09-1013
https://doi.org/10.18653/v1/2023.emnlp-main.148
https://doi.org/10.18653/v1/2023.emnlp-main.148
https://doi.org/10.18653/v1/2023.emnlp-main.148
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012


BIBLIOGRAPHY

Mayank Kulkarni, Daniel Preotiuc-Pietro, Karthik Radhakrishnan, Genta Indra Winata,
Shijie Wu, Lingjue Xie, and Shaohua Yang. 2023. Towards a unified multi-domain
multilingual named entity recognition model. In Proceedings of the 17th Conference of
the European Chapter of the Association for Computational Linguistics, pages 2210–2219,
Dubrovnik, Croatia. Association for Computational Linguistics.

Bum Chul Kwon and Nandana Mihindukulasooriya. 2023. Finspector: A human-
centered visual inspection tool for exploring and comparing biases among foundation
models. In Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 3: System Demonstrations), pages 42–50, Toronto, Canada.
Association for Computational Linguistics.

Wuwei Lan, Yang Chen, Wei Xu, and Alan Ritter. 2020. An empirical study of pre-
trained transformers for Arabic information extraction. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
4727–4734, Online. Association for Computational Linguistics.

J. Richard Landis and Gary G. Koch. 1977. The measurement of observer agreement for
categorical data. Biometrics, 33(1):159–174.

Lukas Lange, Heike Adel, Jannik Strötgen, and Dietrich Klakow. 2021a. FAME: Feature-
based adversarial meta-embeddings for robust input representations. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8382–
8395, Online and Punta Cana, Dominican Republic. Association for Computational
Linguistics.

Lukas Lange, Heike Adel, Jannik Strötgen, and Dietrich Klakow. 2022. CLIN-X: pre-
trained language models and a study on cross-task transfer for concept extraction in
the clinical domain. Bioinformatics, 38(12):3267–3274.

Lukas Lange, Jannik Strötgen, Heike Adel, and Dietrich Klakow. 2021b. To share or not
to share: Predicting sets of sources for model transfer learning. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pages 8744–
8753, Online and Punta Cana, Dominican Republic. Association for Computational
Linguistics.

Anne Lauscher, Federico Bianchi, Samuel R. Bowman, and Dirk Hovy. 2022a. So-
cioProbe: What, when, and where language models learn about sociodemographics.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 7901–7918, Abu Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Anne Lauscher, Archie Crowley, and Dirk Hovy. 2022b. Welcome to the modern
world of pronouns: Identity-inclusive natural language processing beyond gender. In

137

https://doi.org/10.18653/v1/2023.eacl-main.161
https://doi.org/10.18653/v1/2023.eacl-main.161
https://doi.org/10.18653/v1/2023.acl-demo.4
https://doi.org/10.18653/v1/2023.acl-demo.4
https://doi.org/10.18653/v1/2023.acl-demo.4
https://doi.org/10.18653/v1/2020.emnlp-main.382
https://doi.org/10.18653/v1/2020.emnlp-main.382
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://doi.org/10.18653/v1/2021.emnlp-main.660
https://doi.org/10.18653/v1/2021.emnlp-main.660
https://doi.org/10.1093/bioinformatics/btac297
https://doi.org/10.1093/bioinformatics/btac297
https://doi.org/10.1093/bioinformatics/btac297
https://doi.org/10.18653/v1/2021.emnlp-main.689
https://doi.org/10.18653/v1/2021.emnlp-main.689
https://aclanthology.org/2022.emnlp-main.539
https://aclanthology.org/2022.emnlp-main.539
https://aclanthology.org/2022.coling-1.105
https://aclanthology.org/2022.coling-1.105


BIBLIOGRAPHY

Proceedings of the 29th International Conference on Computational Linguistics, pages
1221–1232, Gyeongju, Republic of Korea. International Committee on Computational
Linguistics.

Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto, and Kai Eckert. 2018. Investigating
the role of argumentation in the rhetorical analysis of scientific publications with neural
multi-task learning models. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3326–3338, Brussels, Belgium. Association for
Computational Linguistics.

Anne Lauscher, Tobias Lueken, and Goran Glavaš. 2021. Sustainable modular debiasing
of language models. In Findings of the Association for Computational Linguistics:
EMNLP 2021, pages 4782–4797, Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and Goran Glavaš. 2020. From zero to
hero: On the limitations of zero-shot language transfer with multilingual Transform-
ers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4483–4499, Online. Association for Computational Lin-
guistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-trained biomedical language representation
model for biomedical text mining. Bioinformatics, 36(4):1234–1240.

Entony Lekhtman, Yftah Ziser, and Roi Reichart. 2021. DILBERT: Customized pre-
training for domain adaptation with category shift, with an application to aspect
extraction. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 219–230, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-
efficient prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 3045–3059, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020a. BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880, Online. Association for Computational
Linguistics.

138

https://doi.org/10.18653/v1/D18-1370
https://doi.org/10.18653/v1/D18-1370
https://doi.org/10.18653/v1/D18-1370
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.18653/v1/2021.emnlp-main.20
https://doi.org/10.18653/v1/2021.emnlp-main.20
https://doi.org/10.18653/v1/2021.emnlp-main.20
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


BIBLIOGRAPHY

Patrick Lewis, Myle Ott, Jingfei Du, and Veselin Stoyanov. 2020b. Pretrained language
models for biomedical and clinical tasks: Understanding and extending the state-of-
the-art. In Proceedings of the 3rd Clinical Natural Language Processing Workshop,
pages 146–157, Online. Association for Computational Linguistics.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning
Cheng, and Tianyi Zhou. 2024a. Superfiltering: Weak-to-strong data filtering for
fast instruction-tuning. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 14255–14273, Bangkok,
Thailand. Association for Computational Linguistics.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong
Wang, Tianyi Zhou, and Jing Xiao. 2024b. From quantity to quality: Boosting LLM
performance with self-guided data selection for instruction tuning. In Proceedings of
the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 7602–7635,
Mexico City, Mexico. Association for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for
generation. In Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–4597, Online. Association for Compu-
tational Linguistics.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming
Gong, Linjun Shou, Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang, Rahul
Agrawal, Edward Cui, Sining Wei, Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Win-
nie Wu, Shuguang Liu, Fan Yang, Daniel Campos, Rangan Majumder, and Ming
Zhou. 2020. XGLUE: A new benchmark dataset for cross-lingual pre-training, under-
standing and generation. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 6008–6018, Online. Association for
Computational Linguistics.

Zhaojiang Lin, Andrea Madotto, Genta Winata, Peng Xu, Feijun Jiang, Yuxiang Hu,
Chen Shi, and Pascale N Fung. 2021. Bitod: A bilingual multi-domain dataset for
task-oriented dialogue modeling. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks, volume 1.

Pierre Lison and Jörg Tiedemann. 2016. OpenSubtitles2016: Extracting large parallel
corpora from movie and TV subtitles. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC’16), pages 923–929, Portorož,
Slovenia. European Language Resources Association (ELRA).

139

https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://aclanthology.org/2024.acl-long.769
https://aclanthology.org/2024.acl-long.769
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2024.naacl-long.421
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper-round1.pdf
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147


BIBLIOGRAPHY

Robert Litschko, Ivan Vulić, Simone Paolo Ponzetto, and Goran Glavaš. 2022. On
cross-lingual retrieval with multilingual text encoders. Information Retrieval Journal,
pages 1–35.

Jiexi Liu, Ryuichi Takanobu, Jiaxin Wen, Dazhen Wan, Hongguang Li, Weiran Nie,
Cheng Li, Wei Peng, and Minlie Huang. 2021a. Robustness testing of language un-
derstanding in task-oriented dialog. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 2467–2480, Online.
Association for Computational Linguistics.

Qi Liu, Lei Yu, Laura Rimell, and Phil Blunsom. 2021b. Pretraining the noisy channel
model for task-oriented dialogue. Transactions of the Association for Computational
Linguistics, 9:657–674.

Qianchu Liu, Diana McCarthy, Ivan Vulić, and Anna Korhonen. 2019a. Investigating
cross-lingual alignment methods for contextualized embeddings with token-level eval-
uation. In Proceedings of the 23rd Conference on Computational Natural Language
Learning (CoNLL), pages 33–43, Hong Kong, China. Association for Computational
Linguistics.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019b. Multi-task deep
neural networks for natural language understanding. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 4487–4496, Florence,
Italy. Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad,
Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual denoising pre-training for neu-
ral machine translation. Transactions of the Association for Computational Linguistics,
8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019c. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Zihan Liu, Feijun Jiang, Yuxiang Hu, Chen Shi, and Pascale Fung. 2021c. Ner-bert: a
pre-trained model for low-resource entity tagging. arXiv preprint arXiv:2112.00405.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret
Zoph, Denny Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ip-
polito. 2024. A pretrainer’s guide to training data: Measuring the effects of data
age, domain coverage, quality, & toxicity. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human

140

https://doi.org/10.1007/s10791-022-09406-x
https://doi.org/10.1007/s10791-022-09406-x
https://doi.org/10.18653/v1/2021.acl-long.192
https://doi.org/10.18653/v1/2021.acl-long.192
https://doi.org/10.1162/tacl_a_00390
https://doi.org/10.1162/tacl_a_00390
https://doi.org/10.18653/v1/K19-1004
https://doi.org/10.18653/v1/K19-1004
https://doi.org/10.18653/v1/K19-1004
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/2112.00405.pdf
https://arxiv.org/pdf/2112.00405.pdf
https://doi.org/10.18653/v1/2024.naacl-long.179
https://doi.org/10.18653/v1/2024.naacl-long.179


BIBLIOGRAPHY

Language Technologies (Volume 1: Long Papers), pages 3245–3276, Mexico City, Mexico.
Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In
International Conference on Learning Representations.

Kate Loveys, Jonathan Torrez, Alex Fine, Glen Moriarty, and Glen Coppersmith. 2018.
Cross-cultural differences in language markers of depression online. In Proceedings
of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From
Keyboard to Clinic, pages 78–87, New Orleans, LA. Association for Computational
Linguistics.

Siwen Luo, Hamish Ivison, Soyeon Caren Han, and Josiah Poon. 2024. Local interpreta-
tions for explainable natural language processing: A survey. ACM Computing Surveys,
56(9):1–36.

Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wallenius, and Pyry Takala. 2014.
Good debt or bad debt: Detecting semantic orientations in economic texts. Journal of
the Association for Information Science and Technology, 65(4):782–796.

Michael McCloskey and Neal J. Cohen. 1989. Catastrophic interference in connectionist
networks: The sequential learning problem. volume 24 of Psychology of Learning and
Motivation, pages 109–165. Academic Press.

Shikib Mehri, Evgeniia Razumovskaia, Tiancheng Zhao, and Maxine Eskenazi. 2019.
Pretraining methods for dialog context representation learning. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 3836–3845,
Florence, Italy. Association for Computational Linguistics.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation
of word representations in vector space. In 1st International Conference on Learning
Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track
Proceedings.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen,
Oscar Sainz, Eneko Agirre, Ilana Heintz, and Dan Roth. 2023. Recent advances in
natural language processing via large pre-trained language models: A survey. ACM
Computing Surveys, 56(2):1–40.

Nikita Moghe, Evgeniia Razumovskaia, Liane Guillou, Ivan Vulić, Anna Korhonen, and
Alexandra Birch. 2023a. Multi3NLU++: A multilingual, multi-intent, multi-domain
dataset for natural language understanding in task-oriented dialogue. In Findings of
the Association for Computational Linguistics: ACL 2023, pages 3732–3755, Toronto,
Canada. Association for Computational Linguistics.

141

https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/W18-0608
https://dl.acm.org/doi/full/10.1145/3649450
https://dl.acm.org/doi/full/10.1145/3649450
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.23062
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.18653/v1/P19-1373
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://dl.acm.org/doi/pdf/10.1145/3605943
https://dl.acm.org/doi/pdf/10.1145/3605943
https://doi.org/10.18653/v1/2023.findings-acl.230
https://doi.org/10.18653/v1/2023.findings-acl.230


BIBLIOGRAPHY

Nikita Moghe, Tom Sherborne, Mark Steedman, and Alexandra Birch. 2023b. Extrinsic
evaluation of machine translation metrics. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13060–
13078, Toronto, Canada. Association for Computational Linguistics.

Nikita Moghe, Mark Steedman, and Alexandra Birch. 2021. Cross-lingual intermediate
fine-tuning improves dialogue state tracking. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 1137–1150, Online and
Punta Cana, Dominican Republic. Association for Computational Linguistics.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien Wen, Blaise Thomson, and Steve
Young. 2017a. Neural belief tracker: Data-driven dialogue state tracking. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1777–1788, Vancouver, Canada. Association for Computational
Linguistics.

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira Leviant, Roi Reichart, Milica Gašić,
Anna Korhonen, and Steve Young. 2017b. Semantic specialization of distributional
word vector spaces using monolingual and cross-lingual constraints. Transactions of
the Association for Computational Linguistics, 5:309–324.

David Nadeau and Satoshi Sekine. 2007. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359.

Marinela Parović, Goran Glavaš, Ivan Vulić, and Anna Korhonen. 2022. BAD-X: Bilin-
gual adapters improve zero-shot cross-lingual transfer. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1791–1799, Seattle, United States. Association
for Computational Linguistics.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayandeh, Lars Liden, and Jianfeng Gao.
2021. Soloist: Building task bots at scale with transfer learning and machine teaching.
Transactions of the Association for Computational Linguistics, 9:807–824.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 2227–2237, New Orleans, Louisiana. Association for Computational Linguistics.

142

https://doi.org/10.18653/v1/2023.acl-long.730
https://doi.org/10.18653/v1/2023.acl-long.730
https://doi.org/10.18653/v1/2021.emnlp-main.87
https://doi.org/10.18653/v1/2021.emnlp-main.87
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.1162/tacl_a_00063
https://doi.org/10.1162/tacl_a_00063
https://www.jbe-platform.com/content/journals/10.1075/li.30.1.03nad
https://www.jbe-platform.com/content/journals/10.1075/li.30.1.03nad
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://ieeexplore.ieee.org/document/5288526
https://doi.org/10.18653/v1/2022.naacl-main.130
https://doi.org/10.18653/v1/2022.naacl-main.130
https://doi.org/10.1162/tacl_a_00399
https://doi.org/10.18653/v1/N18-1202


BIBLIOGRAPHY

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna
Gurevych. 2021. AdapterFusion: Non-destructive task composition for transfer learn-
ing. In Proceedings of the 16th Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages 487–503, Online. Association for
Computational Linguistics.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vulić, and Edoardo Ponti. 2023. Modular deep
learning. Transactions on Machine Learning Research. Survey Certification.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. 2020. MAD-X: An
Adapter-Based Framework for Multi-Task Cross-Lingual Transfer. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multilingual
BERT? In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4996–5001, Florence, Italy. Association for Computational
Linguistics.

Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić, and
Anna Korhonen. 2020. XCOPA: A multilingual dataset for causal commonsense
reasoning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2362–2376, Online. Association for Computational
Linguistics.

Yao Qiu, Jinchao Zhang, and Jie Zhou. 2021. Different strokes for different folks: In-
vestigating appropriate further pre-training approaches for diverse dialogue tasks. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Process-
ing, pages 2318–2327, Online and Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving
language understanding by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
2019. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon,
and Chelsea Finn. 2023. Direct preference optimization: Your language model is
secretly a reward model. In Thirty-seventh Conference on Neural Information Processing
Systems.

Osman Ramadan, Paweł Budzianowski, and Milica Gašić. 2018. Large-scale multi-domain
belief tracking with knowledge sharing. In Proceedings of the 56th Annual Meeting of

143

https://aclanthology.org/2021.eacl-main.39
https://aclanthology.org/2021.eacl-main.39
https://openreview.net/forum?id=z9EkXfvxta
https://openreview.net/forum?id=z9EkXfvxta
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2021.emnlp-main.178
https://doi.org/10.18653/v1/2021.emnlp-main.178
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://doi.org/10.18653/v1/P18-2069
https://doi.org/10.18653/v1/P18-2069


BIBLIOGRAPHY

the Association for Computational Linguistics (Volume 2: Short Papers), pages 432–437,
Melbourne, Australia. Association for Computational Linguistics.

Alan Ramponi and Barbara Plank. 2020. Neural unsupervised domain adaptation in
NLP—A survey. In Proceedings of the 28th International Conference on Computational
Linguistics, pages 6838–6855, Barcelona, Spain (Online). International Committee on
Computational Linguistics.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan.
2020. Towards scalable multi-domain conversational agents: The schema-guided
dialogue dataset. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
8689–8696.

Evgeniia Razumovskaia, Goran Glavaš, Olga Majewska, Edoardo M. Ponti, Anna Ko-
rhonen, and Ivan Vulić. 2022. Crossing the conversational chasm: A primer on
natural language processing for multilingual task-oriented dialogue systems. Journal
of Artificial Intelligence Research, 74:1351–1402.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. 2017. Learning multiple
visual domains with residual adapters. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using
Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China.
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2021. The curse of dense low-dimensional information
retrieval for large index sizes. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages 605–611, Online. Association for
Computational Linguistics.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers,
and Iryna Gurevych. 2021. AdapterDrop: On the efficiency of adapters in transformers.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 7930–7946, Online and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Sebastian Ruder. 2019. Neural Transfer Learning for Natural Language Processing. Ph.D.
thesis, National University of Ireland, Galway.

144

https://doi.org/10.18653/v1/2020.coling-main.603
https://doi.org/10.18653/v1/2020.coling-main.603
https://ojs.aaai.org//index.php/AAAI/article/view/6394
https://ojs.aaai.org//index.php/AAAI/article/view/6394
https://doi.org/10.1613/jair.1.13083
https://doi.org/10.1613/jair.1.13083
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.acl-short.77
https://doi.org/10.18653/v1/2021.acl-short.77
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://aran.library.nuigalway.ie/bitstream/handle/10379/15463/neural_transfer_learning_for_nlp.pdf?ref=ruder.io


BIBLIOGRAPHY

Sebastian Ruder and Barbara Plank. 2018. Strong baselines for neural semi-supervised
learning under domain shift. In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 1044–1054,
Melbourne, Australia. Association for Computational Linguistics.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019. A survey of cross-lingual word
embedding models. Journal of Artificial Intelligence Research, 65:569–631.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff. 2020. Masked
language model scoring. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2699–2712, Online. Association for Computational
Linguistics.

Julio Cesar Salinas Alvarado, Karin Verspoor, and Timothy Baldwin. 2015. Domain
adaption of named entity recognition to support credit risk assessment. In Proceedings
of the Australasian Language Technology Association Workshop 2015, pages 84–90,
Parramatta, Australia.

Tanja Samardzic, Ximena Gutierrez, Christian Bentz, Steven Moran, and Olga Pelloni.
2024. A measure for transparent comparison of linguistic diversity in multilingual NLP
data sets. In Findings of the Association for Computational Linguistics: NAACL 2024,
pages 3367–3382, Mexico City, Mexico. Association for Computational Linguistics.

Jonathan Schler, Moshe Koppel, Shlomo Argamon, and James W Pennebaker. 2006.
Effects of age and gender on blogging. In AAAI Spring Symposium: Computational
Approaches to Analyzing Weblogs.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese and korean voice search. In 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5149–5152.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Linguistics.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. In International Conference on Learning Representations.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-
tau Yih, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. 2023. One embedder, any
task: Instruction-finetuned text embeddings. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 1102–1121, Toronto, Canada. Association for
Computational Linguistics.

145

https://doi.org/10.18653/v1/P18-1096
https://doi.org/10.18653/v1/P18-1096
https://www.jair.org/index.php/jair/article/view/11640
https://www.jair.org/index.php/jair/article/view/11640
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://aclanthology.org/U15-1010
https://aclanthology.org/U15-1010
https://doi.org/10.18653/v1/2024.findings-naacl.213
https://doi.org/10.18653/v1/2024.findings-naacl.213
https://cdn.aaai.org/Symposia/Spring/2006/SS-06-03/SS06-03-039.pdf
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71


BIBLIOGRAPHY

Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang.
2022. Multi-task pre-training for plug-and-play task-oriented dialogue system. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4661–4676, Dublin, Ireland. Association for Computa-
tional Linguistics.

Zhewei Sun, Qian Hu, Rahul Gupta, Richard Zemel, and Yang Xu. 2024. Toward
informal language processing: Knowledge of slang in large language models. In Pro-
ceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pages 1683–1701, Mexico City, Mexico. Association for Computational Linguistics.

Wilson L Taylor. 1953. “cloze procedure”: A new tool for measuring readability. Journal-
ism quarterly, 30(4):415–433.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A heterogeneous benchmark for zero-shot evaluation of infor-
mation retrieval models. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition. In Proceedings of
the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pages
142–147.

Marcos Treviso, Ji-Ung Lee, Tianchu Ji, Betty van Aken, Qingqing Cao, Manuel R.
Ciosici, Michael Hassid, Kenneth Heafield, Sara Hooker, Colin Raffel, Pedro H.
Martins, André F. T. Martins, Jessica Zosa Forde, Peter Milder, Edwin Simpson, Noam
Slonim, Jesse Dodge, Emma Strubell, Niranjan Balasubramanian, Leon Derczynski,
Iryna Gurevych, and Roy Schwartz. 2023. Efficient Methods for Natural Language
Processing: A Survey. Transactions of the Association for Computational Linguistics,
11:826–860.

Peter Trudgill. 2000. Sociolinguistics: An introduction to language and society. Penguin
UK.

Özlem Uzuner, Brett R South, Shuying Shen, and Scott L DuVall. 2011. 2010 i2b2/va
challenge on concepts, assertions, and relations in clinical text. Journal of the American
Medical Informatics Association, 18(5):552–556.

Mina Valizadeh and Natalie Parde. 2022. The AI doctor is in: A survey of task-oriented
dialogue systems for healthcare applications. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6638–
6660, Dublin, Ireland. Association for Computational Linguistics.

146

https://doi.org/10.18653/v1/2022.acl-long.319
https://doi.org/10.18653/v1/2024.naacl-long.94
https://doi.org/10.18653/v1/2024.naacl-long.94
https://journals.sagepub.com/doi/pdf/10.1177/107769905303000401?casa_token=uKluE57vOd8AAAAA:rFIRVJRRHmkMntFOY5rPnzcT4IxsZIAJX4lFh5iVz5IWd2D0dQX5fnuzX5pGrCTqN3-EMyap1hIlYco
https://openreview.net/pdf?id=wCu6T5xFjeJ
https://openreview.net/pdf?id=wCu6T5xFjeJ
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.1162/tacl_a_00577
https://doi.org/10.1162/tacl_a_00577
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168320/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168320/
https://doi.org/10.18653/v1/2022.acl-long.458
https://doi.org/10.18653/v1/2022.acl-long.458


BIBLIOGRAPHY

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(86):2579–2605.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
5998–6008.

Rob Voigt, David Jurgens, Vinodkumar Prabhakaran, Dan Jurafsky, and Yulia Tsvetkov.
2018. RtGender: A corpus for studying differential responses to gender. In Proceedings
of the Eleventh International Conference on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Resources Association (ELRA).

Svitlana Volkova, Theresa Wilson, and David Yarowsky. 2013. Exploring demographic
language variations to improve multilingual sentiment analysis in social media. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1815–1827, Seattle, Washington, USA. Association for Computational
Linguistics.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and
Silvio Savarese. 2018. Generalizing to unseen domains via adversarial data augmentation.
In Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bow-
man. 2018. GLUE: A multi-task benchmark and analysis platform for natural language
understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Ana-
lyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Xinyi Wang, Ankur Bapna, Melvin Johnson, and Orhan Firat. 2021. Gradient-guided
loss masking for neural machine translation. arXiv preprint arXiv:2102.13549.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza
Mirzaei, Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunku-
mar, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit,
Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal,
Maitreya Patel, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varsh-
ney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Savan
Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta Patro,
Tanay Dixit, and Xudong Shen. 2022. Super-NaturalInstructions: Generalization via
declarative instructions on 1600+ NLP tasks. In Proceedings of the 2022 Conference

147

http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/L18-1445
https://aclanthology.org/D13-1187
https://aclanthology.org/D13-1187
https://proceedings.neurips.cc/paper_files/paper/2018/file/1d94108e907bb8311d8802b48fd54b4a-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://arxiv.org/pdf/2102.13549.pdf
https://arxiv.org/pdf/2102.13549.pdf
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340


BIBLIOGRAPHY

on Empirical Methods in Natural Language Processing, pages 5085–5109, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.

Charles Welch, Jonathan K. Kummerfeld, Verónica Pérez-Rosas, and Rada Mihalcea.
2020. Compositional demographic word embeddings. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
4076–4089, Online. Association for Computational Linguistics.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Milica Gašić, Lina M. Rojas-
Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. 2017. A network-based end-to-
end trainable task-oriented dialogue system. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 1, Long
Papers, pages 438–449, Valencia, Spain. Association for Computational Linguistics.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Fran-
cisco Guzmán, Armand Joulin, and Edouard Grave. 2020. CCNet: Extracting high
quality monolingual datasets from web crawl data. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 4003–4012, Marseille, France. European
Language Resources Association.

Taesun Whang, Dongyub Lee, Chanhee Lee, Kisu Yang, Dongsuk Oh, and HeuiSeok
Lim. 2020. An effective domain adaptive post-training method for bert in response
selection. In Proc. Interspeech 2020, pages 1585–1589.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge
corpus for sentence understanding through inference. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguistics.

Chien-Sheng Wu, Steven C.H. Hoi, Richard Socher, and Caiming Xiong. 2020. TOD-
BERT: Pre-trained natural language understanding for task-oriented dialogue. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 917–929, Online. Association for Computational Linguistics.

Han Wu, Kun Xu, Linfeng Song, Lifeng Jin, Haisong Zhang, and Linqi Song. 2021.
Domain-adaptive pretraining methods for dialogue understanding. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 2: Short
Papers), pages 665–669, Online. Association for Computational Linguistics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas: The surprising cross-lingual
effectiveness of BERT. In Proceedings of the 2019 Conference on Empirical Methods

148

https://doi.org/10.18653/v1/2020.emnlp-main.334
https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://www.isca-speech.org/archive_v0/Interspeech_2020/pdfs/2153.pdf
https://www.isca-speech.org/archive_v0/Interspeech_2020/pdfs/2153.pdf
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/2021.acl-short.84
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077


BIBLIOGRAPHY

in Natural Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), pages 833–844, Hong Kong, China.
Association for Computational Linguistics.

Yu Wu, Wei Wu, Chen Xing, Ming Zhou, and Zhoujun Li. 2017. Sequential matching
network: A new architecture for multi-turn response selection in retrieval-based chat-
bots. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 496–505, Vancouver, Canada. Association
for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Sid-
dhant, Aditya Barua, and Colin Raffel. 2021. mT5: A massively multilingual pre-
trained text-to-text transformer. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 483–498, Online. Association for Computational Linguistics.

Zhao Yan, Nan Duan, Peng Chen, Ming Zhou, Jianshe Zhou, and Zhoujun Li. 2017.
Building task-oriented dialogue systems for online shopping. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, page 4618–4625.
AAAI Press.

Yi Yang, Mark Christopher Siy UY, and Allen Huang. 2020. Finbert: A pretrained
language model for financial communications. arXiv preprint arXiv:2006.08097.

Wenpeng Yin and Hinrich Schütze. 2016. Learning word meta-embeddings. In Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1351–1360, Berlin, Germany. Association for Computa-
tional Linguistics.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang, and
Jindong Chen. 2020. MultiWOZ 2.2 : A dialogue dataset with additional annotation
corrections and state tracking baselines. In Proceedings of the 2nd Workshop on Natural
Language Processing for Conversational AI, pages 109–117, Online. Association for
Computational Linguistics.

Yan Zeng and Jian-Yun Nie. 2020. Jointly optimizing state operation prediction and
value generation for dialogue state tracking. arXiv preprint arXiv:2010.14061.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao,
Jianfeng Gao, Jingjing Liu, and Bill Dolan. 2020. DIALOGPT : Large-scale generative
pre-training for conversational response generation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pages
270–278, Online. Association for Computational Linguistics.

149

https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14261
https://arxiv.org/abs/2006.08097
https://arxiv.org/abs/2006.08097
https://doi.org/10.18653/v1/P16-1128
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://arxiv.org/pdf/2010.14061.pdf
https://arxiv.org/pdf/2010.14061.pdf
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30


BIBLIOGRAPHY

Zhihan Zhang, Wenhao Yu, Mengxia Yu, Zhichun Guo, and Meng Jiang. 2023. A survey
of multi-task learning in natural language processing: Regarding task relatedness and
training methods. In Proceedings of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages 943–956, Dubrovnik, Croatia.
Association for Computational Linguistics.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. 2023. Domain gen-
eralization: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(4):4396–4415.

Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum. 2020. The design and im-
plementation of XiaoIce, an empathetic social chatbot. Computational Linguistics,
46(1):53–93.

Qi Zhu, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. 2020. CrossWOZ:
A large-scale Chinese cross-domain task-oriented dialogue dataset. Transactions of the
Association for Computational Linguistics, 8:281–295.

Xiaojin Zhu and Andrew B Goldberg. 2009. Introduction to semi-supervised learning.
Synthesis lectures on artificial intelligence and machine learning, 3(1):1–130.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books. In Proceedings of the IEEE
international conference on computer vision, pages 19–27.

Lei Zuo, Kun Qian, Bowen Yang, and Zhou Yu. 2021. Allwoz: Towards multilingual
task-oriented dialog systems for all. CoRR, abs/2112.08333.

150

https://aclanthology.org/2023.eacl-main.66
https://aclanthology.org/2023.eacl-main.66
https://aclanthology.org/2023.eacl-main.66
https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1162/coli_a_00368
https://doi.org/10.1162/coli_a_00368
https://doi.org/10.1162/tacl_a_00314
https://doi.org/10.1162/tacl_a_00314
https://link.springer.com/book/10.1007/978-3-031-01548-9
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhu_Aligning_Books_and_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhu_Aligning_Books_and_ICCV_2015_paper.pdf
http://arxiv.org/abs/2112.08333
http://arxiv.org/abs/2112.08333


Appendix A

Published Resources

We provide an overview of the resources (code, data, model) published in the context of
this thesis in Table A.1.

Chapter Resource Name Type Access

Chapter 3
DS-TOD (§ 3.1) Code

GitHub: umanlp/DS-TODDomainCC & DomainReddit (§ 3.1.3) Data

TADA (§ 3.2) Code GitHub: boschresearch/TADA

Chapter 4

Multilingual Dialog Adaptation (§ 4.1) Code
GitHub: umanlp/Multi2WOZMulti2WOZ (§ 4.3) Data

LangCC & LangOpenSubtitles (§ 4.4.2) Data

TOD-XLMR (§ 4.4.1) Model HuggingFace: umanlp/TOD-XLMR

Chapter 5 Demographic Adaptation (§ 5.1) Code
GitHub: umanlp/SocioAdaptMultilingual Demographic Dataset (§ 5.4) Data

Table A.1: Overview of all resources published in the context of this thesis.
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Appendix B

Experimental Details for
Chapter 3

B.1 Domain-Specific Corpora

In this Section, we show examples from both DomainCC (Table B.1) and DomainRed-
dit (Table B.2). Both resources were created starting from the salient domain terms listed
in Table 3.2.

Domain “Flat” Text

Taxi
Taxis: licensed black cabs operate a 24-hour, 365 day service from directly outside the
arrivals area of the terminal building. Each taxi can carry up to five passengers (so-
me can carry up to eight), with luggage and all are able to take wheelchair passengers.

Restaurant

Asian food is very easy to like because it hits your mouth very differently than Eur-
opean food does. In European food, there may be two things to hit - maybe sweet
and salty, maybe salty-savory, but Asian kind of works around, plus you have that
distinct in the evening, a five course wine tasting dinner will be served in a gastrono-
mic 2 Michelin starred restaurant.

Train
Getting to centre London is very easy as it take only one underground train and it
takes only 20-25 minutes to get to Oxford Circus. Stansted airport is only 31 minutes
away and all major motorways (M1, M11, North circular) is 5-10 minutes away.

Hotel
Beautifully restored 1920’s guesthouse, comfortable and spacious bedrooms, lush gar-
dens to explore, friendly and super helpful host, secure parking. What more could
you ask for! I would definitely recommend 6 on Kloof.

Attraction

On 31 august we travelled to Ely by train from kings cross and visited the Cathedral’s
interesting stained glass museum. We also visited Oliver Cromwell’s house nearby
and sat outside for lunch, an extra bonus as it was a beautiful summer day. There
was also time to look around Ely’s town centre before heading home.

Table B.1: Example from DomainCC dataset, where the salient domain terms are marked
as bold. The texts are displayed in the original version, without correcting typos.
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B. EXPERIMENTAL DETAILS FOR CHAPTER 3

Domain Dialogic Data

Taxi

Context:
I wager that is majorly low. All the taxi
drivers around me drive brand new hybrid
Lexus’s. If you consider the fuel, cars upkeep,
the car itself and the insurance. They must be
owning a good scoop to make all that worth it.

True Response:
A lot of taxi drivers round my way are working two jobs and have it as their
second gig filling in what little free time they have from their main job.
False Response:
Buying vehicles (converged ones in my fathers case) is a huge expense which
I don’t think can be fully tax offset.

Restaurant

Context:
Interesting. Thanks for the post and thanks
for mentioning Normandie. I will definitely
check that out and look at staying somewhere
other than Zocalo. Any other recommend-
ations for stuff you really liked? I’m a huge
food guy so any awesome restaurants
(already have a Pujol reservation are)
welcome.

True Response:
You’re welcome. Thanks for reading. Don’t get me wrong Zocalo has some
historic significance etc. and is nice to visit for the day, but that’s about all
the time you need there. For some cheap but still good tacos, ...

False Response:
Zocalo is hectic and filled with tons of people. IMO after 1 day there you’ll
want out. Roma Norte and Condesa have some beautiful parks and are
filled with cool cafes, restaurants and bars ...

Train
Context:
You just need to hope you don’t need to walk
all the way to the back of the train.

True Response:
I have to do I multiple times a day with the TGV’s. Those are only 200m
short. I don’t working on this 400m train often. But yes it happens.
False Response:
We need a sub for European trains!

Hotel

Context:
Thanks for the info. I didn’t book a hotel yet
and plan to do that by tomorrow. Wasn’t
aware that most don’t have free parking.
I’ll try to find one with parking included.

True Response:
You are not likely to find a hotel with free parking in the old city. And,
to be honest, unless budget is a big deal, for a short trip it’s entirely worth
the experience to stay in either the upper or lower old city ...
False Response:
Where is your hotel? Many either have parking, or arrangements for parking
in nearby lots and garages. If you’re at or near the Frontenac there is a public
garage under city hall that is much less expensive than many hotel options.

Attraction

Context:
Thank youuu! I’ll better pack a coat to keep
myself warm! Hmm you’re right I might
just skip the day trip! I like history/
museum, art, architecture and
scenery/nature! What are the top few
places do you recommend though?

True Response:
In terms of museums and history, you’re really spoilt for choice in London.
The Natural History Museum, Imperial War Museum and National
Maritime Museum are my personal favourites. If you like nature go check
out the wildlife in Richmond Park. It’s a ...
False Response:
The UK is due to be extremely cold this winter so I’d have some extra warm
clothes just in case. November is usually fine, a bit rainy, but this year might
be a special case. You can visit Camden but I personally wouldn’t spend ...

Table B.2: Example from DomainReddit dataset, where the salient domain terms are
marked as bold. The texts are displayed in the original version, without correcting typos.
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B.2 Computational Information

Detailed explanations of hyperparameters setups are provided in § 3.2.4. In our conducted
experiments, we only search for the learning rate in domain-adaptive pre-training. The
best learning rate depends on the selected domains and methods for each task. All the
experiments are performed on Nvidia Tesla V100 GPUs with 32GB VRAM and run on a
carbon-neutral GPU cluster. The number of parameters and the total computational
budget for domain-adaptive pre-training (in GPU hours) are shown in Table B.3.

Model # Trainable Parameters MLM Budget (in GPU hours)

BERT‡ (MLM-FULL) ∼110 M ∼5.5h (NER and NLI), 7.5h (DST and RR)
BERT‡ (MLM-ADAPT) ∼0.9 M ∼2.5h (NER and NLI), 3.5h (DST and RR)
BERT‡ (MLM-EMB) ∼24 M ∼3.5h (NER and NLI), 4.5h (DST and RR)

Table B.3: Overview of the computational information for the domain-adaptive pre-
training. ‡BERT variants: BERT (NLI, NER) and TOD-BERT (DST, RR).
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B.3 Few-Shot Learning Results for NLI

We provide the results of few-shot learning on NLI (Williams et al., 2018) task in Table B.4.
We report the results for 1% and 20% of the training data size in both single-domain and
multi-domain scenarios.

Government Telephone Fiction Slate Travel Avg.

Model 1% 20% 1% 20% 1% 20% 1% 20% 1% 20% 1% 20%

SD

BERT 57.62±5.4 75.21±.4 49.20±1.9 74.45±.3 43.76±2.2 72.90±.3 46.70±2.1 67.71±.5 54.05±4.0 71.55±.4 50.27±2.4 72.36±.1
BERT (MLM-FULL) 61.92±1.8 76.07±.7 54.53±1.6 75.07±.7 49.32±1.4 73.21±.6 45.81±0.7 67.26±.6 56.56±3.5 72.50±.4 53.63±0.5 72.82±.4
BERT (MLM-ADAPT) 42.88±1.8 67.93±.2 41.27±1.1 65.80±.2 38.12±1.7 59.53±.4 38.91±2.1 54.71±.7 40.74±2.8 65.89±.6 40.38±1.5 62.78±.7

BERT (MLM-EMB) 61.66±1.0 76.61±.3 49.86±0.8 75.33±.3 48.35±4.1 72.22±.6 49.10±2.5 68.26±.3 60.27±1.6 72.73±.6 53.85±1.7 73.03±.1
BERT (MLM-EMBTOK-X) 61.27±1.8 75.75±.5 49.20±5.5 74.11±.1 49.74±0.8 72.26±.8 49.10±1.9 66.51±.8 58.99±2.3 72.15±.8 53.66±2.0 72.16±.1

MD
BERT 69.56±3.2 79.49±.7 64.80±2.0 77.72±.2 61.53±2.5 76.84±.7 61.43±2.0 72.64±.4 66.40±2.976.42±.564.74±1.8 76.62±.2

(AVG) BERT (MLM-EMBs) 70.13±1.3 80.00±.2 64.39±1.3 78.28±.2 62.24±1.7 76.94±.4 62.61±1.6 71.61±.3 66.45±1.4 76.21±.4 65.16±1.3 76.61±.1
(ATT) BERT (MLM-EMBs) 71.21±1.1 79.90±.3 65.56±1.4 78.48±.1 61.33±1.3 77.34±.3 61.99±1.3 72.69±.4 66.24±1.7 76.32±.5 65.27±1.6 76.95±.2

Table B.4: Few-shot learning results on NLI task for 1% and 20% of the training data size
in single-domain (SD) and multi-domain (MD) scenarios. We report mean and standard
deviation of 3 runs with different random seeds.
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B.4 Per-Domain Results for Meta-Tokenizers

We provide the results for each domain in our multi-domain experiments with meta-
tokenizers and meta-embeddings in Table B.5 for DST and RR, and in Table B.6 for NLI
and NER.

DST RR
Model Taxi Restaurant Hotel Train Attraction Avg. Taxi Restaurant Hotel Train Attraction Avg.

(AVG) TOD-BERT (MLM-EMBs) 35.42 46.71 40.82 52.34 47.30 44.52 55.20 64.58 60.39 62.84 66.11 61.82
(ATT) TOD-BERT (MLM-EMBs) 37.35 46.98 41.32 51.92 47.88 45.09 53.73 64.00 59.89 61.54 65.05 60.84

(AVG) TOD-BERT‡ (dynamic) 32.06 44.12 40.54 49.89 44.21 42.16 52.84 62.54 58.26 61.24 64.46 59.87
(AVG) TOD-BERT‡ (space) 31.35 44.89 37.27 49.47 44.86 41.57 51.59 62.46 56.44 60.21 61.99 58.54
(AVG) TOD-BERT‡ (truncation) 33.61 43.88 38.20 44.24 41.35 40.26 52.55 61.19 55.55 58.58 62.47 58.07
(ATT) TOD-BERT‡ (dynamic) 34.06 45.01 39.73 50.11 44.73 42.73 51.22 62.08 58.04 61.39 63.35 59.22
(ATT) TOD-BERT‡ (space) 30.19 42.57 40.23 49.84 44.41 41.45 51.51 61.64 57.30 60.91 63.41 58.95
(ATT) TOD-BERT‡ (truncation) 31.45 43.44 37.08 48.13 44.02 40.82 51.59 62.63 57.97 60.66 62.62 59.09

Table B.5: Results of meta-tokenizers in multi-domain experiments with meta-
embeddings on two downstream tasks: DST and RR, with joint goal accuracy (%) and
R100@1 (%) as evaluation metric, respectively. Three meta-tokenization aggregation
methods: dynamic, space, truncation, are combined with two meta-embeddings ap-
proaches: average (AVG), attention-based (ATT). ‡Domain-specialized tokenizers in use
based on MLM-EMBTOKs-X, referring to § 3.2.5.1 and Table 3.10.

NLI NER
Model Government Telephone Fiction Slate Travel Avg. Financial Fiction News Clinical Science Avg.

(AVG) BERT (MLM-EMBs) 83.80 80.87 81.70 77.60 81.30 81.05 87.72 68.78 90.16 85.68 78.22 82.11
(ATT) BERT (MLM-EMBs) 83.50 81.64 81.74 76.68 80.36 80.78 88.89 69.05 90.56 85.43 80.55 82.90

(AVG) BERT‡ (dynamic) 81.08 79.81 80.44 75.35 78.80 79.10 83.26 59.70 75.93 70.42 64.33 70.73
(AVG) BERT‡ (space) 81.90 81.33 80.49 75.14 78.69 79.51 83.68 61.68 76.39 70.78 60.61 70.63
(AVG) BERT‡ (truncation) 81.44 81.38 79.17 75.86 79.50 79.47 77.99 53.53 74.37 67.08 60.33 66.66
(ATT) BERT‡ (dynamic) 81.70 80.62 80.33 74.78 79.15 79.32 84.64 59.98 76.08 71.30 62.17 70.83
(ATT) BERT‡ (space) 83.34 81.43 80.23 74.83 79.81 79.93 83.70 62.03 76.04 71.54 60.22 70.71
(ATT) BERT‡ (truncation) 82.37 81.64 78.81 75.65 79.90 79.67 80.33 58.80 74.49 66.92 61.51 68.41

Table B.6: Results of meta-tokenizers in multi-domain experiments with meta-
embeddings on two downstream tasks: NLI and NER, with accuracy (%) and F1 (%)
as the evaluation metric, respectively. Three meta-tokenization aggregation methods:
dynamic, space, truncation, are combined with two meta-embeddings approaches: av-
erage (AVG), attention-based (ATT). ‡Domain-specialized tokenizers in use based on
MLM-EMBTOKs-X, referring to § 3.2.5.1 and Table 3.10.
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C.1 Annotation Guidelines: Post-Editing of the Translation

C.1.1 Task Description

Multi-domain Wizard-of-Oz dataset (MultiWOZ) (Budzianowski et al., 2018) is intro-
duced as a fully-labeled collection of human-to-human written conversations spanning
over multiple domains and topics.

Our project aims to translate the monolingual English-only MultiWOZ dataset
to four linguistically diverse major world languages, each with a different script: Arabic
(AR), Chinese (ZH), German (DE), and Russian (RU).

In this annotation task, we resort to the revised version 2.1 (Eric et al., 2020) and
focus on the development and test portions of the English MultiWOZ 2.1 (in total of
2,000 dialogs containing a total of 29.5K utterances). We first automatically translate all
the utterances and the annotated slot values to the four target languages, using Google
Translate. Next the translated utterances and slot values (i.e., fix the translation errors)
will be post-edited with manual efforts.

For this purpose, a JSON file for development or test set will be provided to each
annotator. There are two tasks: (1) Fix the errors in automatic translations of translated
utterances and the translated slot values. (2) Check the alignment between each translated
utterance and the slot value annotations for that utterance.
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C.1.2 JSON Representation

The JSON file will be structured as follows, feel free to use any JSON editor tools (e.g.,
JSON Editor Online) to annotate the files.

Annotation Data

• dialogID: An unique ID for each dialog.

• turnID: The turn ID of the utterance in the dialog.

• services: Domain(s) of the dialog.

• utterance: English utterance from MultiWOZ.

• SlotValues: English annotated slot values from MultiWOZ.

• transUtterance: Translated utterance from Google Translate.

• transSlotValues: Translated slot values from Google Translate.

Annotation Task

• fixTransUtterance: The revised translated utterance with manual efforts.

• fixTransSlotValues: The revised translated slot values with manual efforts.

• changedUtterance: Whether the translated utterance is changed. Annotate as 1 if
the translated utterance is revised, 0 otherwise.

• changedSlotValues: Whether the translated slot values is changed. Annotate as 1
if the translated slot values are revised, 0 otherwise.
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C.1.3 Annotation Examples

Example 1: Name Correction and Mismatch
The following example in Chinese shows the error fixed with the translated name issue,
and also the correctness of the mismatch case between the translated utterance and
translated slot values.

dialogID: MUL0484.json
turnID: 6
services: train, attraction
utterance: No hold off on booking for now. Can you help me find an attraction called
cineworld cinema?
slotValues: {attraction-name: cineworld cinema}
transUtterance:目前暂无预订。您能帮我找到一个名为cineworld Cinema的
景点吗？

transSlotValues: {attraction-name: Cineworld电影}

fixTransUtterance:目前暂无预订。您能帮我找到一个名为电影世界电影院
的景点吗？

fixTransSlotValues: {attraction-name:电影世界电影院}
changedUtterance: 1
changedSlotValues: 1

Example 2: Grammatical Error
The following example in German shows the error corrected based on the grammatical
issue of the translated utterance.

dialogID: PMUL1072.json
turnID: 6
services: train, attraction
utterance: I’m leaving from Cambridge.
slotValues: {train-departure: cambridge}
transUtterance: Ich verlasse Cambridge.
transSlotValues: {train-departure: cambridge}

fixTransUtterance: Ich fahre von Cambridge aus.
fixTransSlotValues: {train-departure: cambridge}
changedUtterance: 1
changedSlotValues: 0
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C.1.4 Additional Notes

There might be some cases of synonyms. For example, in Chinese周五 and星期五
both have the same meaning as Friday in English, also similarly in Russian regarding
the weekdays. In this case, just pick the most common one and stay consistent among
all the translated utterances and slot values. Besides there might be some language varia-
tions across different regions, please ignore the dialects and metaphors while fixing the
translation errors.

If there are any open questions that you think are not covered in this guide, please do
not hesitate to get in touch with me or post the questions on Slack, so these issues can be
discussed together with other annotators and the guide can be improved.
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C.2 Annotation Guidelines: Quality Control

C.2.1 Task Description

Multi-domain Wizard-of-Oz dataset (MultiWOZ) (Budzianowski et al., 2018) is intro-
duced as a fully-labeled collection of human-to-human written conversations spanning
over multiple domains and topics. Our project is aimed to translate the monolingual
English-only MultiWOZ dataset to four linguistically diverse major world languages,
each with a different script: Arabic (AR), Chinese (ZH), German (DE), and Russian
(RU). In the previous annotation task, we resorted to the revised version 2.1 (Eric et al.,
2020) and focused on the development and test portions of the English MultiWOZ 2.1.

According to the translation process, it was processed in two steps: we first auto-
matically translated all the utterances and the annotated slot values to the four target
languages, using Google Translate. Next the translated utterances and slot values (i.e., fix
the translation errors) were post-edited with manual efforts from native speakers of each
language.

Additionally, a quality assurance step is required to check the quality of the post-
edited translation. For this purpose, a JSON file for a random sample 200 dialogs (100
from the development and test set each), containing 2,962 utterances in total will be
provided to two annotators for each target language to judge the correctness of the
translations. Each annotator has to independently answer the following questions for
each translated utterance from the sample: (1) Is the utterance translation acceptable? (2)
Do the translated slot values match the translated utterance?

Annotation Data

• dialogID: An unique ID for each dialog.

• turnID: The turn ID of the utterance in the dialog.

• utterance: English utterance from MultiWOZ.

• SlotValues: English annotated slot values from MultiWOZ.

• fixTransUtterance: The revised translated utterance with manual efforts.

• fixTransSlotValues: The revised translated slot values with manual efforts.

Annotation Task

• UtteranceAcceptable: Is the utterance translation acceptable? Annotate as 1 if the
translated utterance is acceptable, 0 otherwise.

• SlotValuesMatchAcceptable: Do the translated slot values match the translated
utterance? Annotate as 1 if the translated slot values are acceptable, 0 otherwise.

• NOTE: Extra notes of judgement.
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C.2.2 Annotation Examples

Small grammatical errors, but still catching the meaning will be considered acceptable.
However, if the whole meaning regarding the translation changes, it will then be consid-
ered as not acceptable.

Example 1: Ambiguity
The following example shows the ambiguity issues regarding the translated utterance. In
German, table can be translated into Tabelle as a table form or Tisch as a table for reserva-
tion. Regarding the contextual information from the utterance, the correct translation
should be Tisch instead of Tabelle in this case. Therefore, the translated utterance will be
considered as not acceptable, and annotated as 0.

dialogID: PMUL2464.json
turnID: 9
utterance: Yes, Bedouin is a restaurant that serves African food in the Centre. It is in the
expensive range. Would you like to book a table?
slotValues: {restaurant-name: bedouin}
fixTransUtterance: Ja, Beduine ist ein Restaurant, das afrikanisches Essen im Zentrum
serviert. Es liegt im teuren Bereich. Möchten Sie eine Tabelle reservieren?
fixTransSlotValues: {restaurant-name: Beduine}

UtteranceAcceptable: 0
SlotValuesMatchAcceptable: 1
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Example 2: Grammatical Error
The following example shows a slight grammatical issue regarding the translated utterance.
This is mainly with the synonym case in Chinese, where the place can be translated into
地方 or位置, while位置will be more appropriate in this scenario. However,地方 still
keeps the semantic meaning. Therefore, the translated utterance will be considered as
acceptable, and annotated as 1. And further checking with the translated slot values, all
are correct, and should be annotated as 1.

dialogID: PMUL0400.json
turnID: 12
utterance: Please book the place for 7 people at 11:30 on the same day.
slotValues: {restaurant-people: 7, restaurant-time: 11:30, restaurant-day: Monday}
fixTransUtterance:请于当天11:30预订7人的地方。
fixTransSlotValues: {restaurant-people: 7, restaurant-time: 11:30, restaurant-day:周
一}

UtteranceAcceptable: 1
SlotValuesMatchAcceptable: 1

C.2.3 Additional Notes

Please ignore the slot values with “dontcare”, “not mentioned”, and “none”, while check-
ing the translation quality. If there are any open questions that you think are not covered
in this guide, please do not hesitate to get in touch with me or post the questions on
Slack, so these issues can be discussed together with other annotators and the guide can
be improved.
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C.3 Few-Shot Cross-Lingual Transfer Experiments

We provide the full per-language experimental results of few-shot cross-lingual transfer
results for Dialog State Tracking (DST) and Response Retrieval (RR) in Table C.1.

DST RR
Lang Model 1% 5% 10% 50% 100% 1% 5% 10% 50% 100%

DE

TOD-XLMR 7.68 19.26 28.08 33.17 34.10 10.25 32.47 35.56 45.39 49.46
MLM on Mono-CC 13.75 25.15 34.12 38.01 38.26 34.37 42.13 43.51 49.10 52.80
TLM on OS 14.17 19.45 21.62 27.28 29.91 47.21 48.59 48.96 53.01 55.30
TLM+RS-Mono on OS 15.88 24.14 28.38 32.57 35.45 46.08 48.94 49.98 53.43 55.72

AR

TOD-XLMR 1.48 1.57 6.18 15.62 17.63 6.36 18.72 23.57 36.04 42.69
MLM on Mono-CC 4.41 5.74 7.02 14.10 17.22 28.54 31.50 32.82 41.09 44.26
TLM on OS 4.18 6.33 6.89 13.60 17.77 32.19 35.04 37.02 41.39 47.04
TLM+RS-Mono on OS 4.42 6.79 8.27 14.39 21.48 33.45 37.09 38.01 41.89 47.15

ZH

TOD-XLMR 8.63 12.55 16.40 23.45 25.49 15.69 31.10 33.22 41.97 48.14
MLM on Mono-CC 11.64 19.73 25.46 34.93 35.61 34.40 37.65 39.65 48.01 50.97
TLM on OS 11.48 17.43 21.95 28.52 32.51 38.17 42.82 42.91 49.29 51.63
TLM+RS-Mono on OS 11.63 14.90 17.97 22.81 28.84 38.45 43.71 45.27 48.50 51.81

RU

TOD-XLMR 4.34 21.89 30.01 37.58 37.61 8.90 31.31 34.51 43.33 47.45
MLM on Mono-CC 12.70 16.56 19.45 24.58 25.90 37.43 42.80 46.19 52.43 53.73
TLM on OS 12.45 14.26 16.10 21.13 27.04 42.23 44.40 44.78 49.43 53.76
TLM+RS-Mono on OS 13.74 17.44 18.63 24.33 29.15 41.97 45.44 46.02 49.90 53.16

Table C.1: Full per-language few-shot cross-lingual transfer results for Dialog State Track-
ing (DST) and Response Retrieval (RR). Results are shown for different sizes of the
training data in the target-language (i.e., different number of shots): 1%, 5%, 10%, 50% and
100% of the Multi2WOZ development sets (of respective target languages).
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D.1 Control Experiment for Language Proficiency
Experimental results of monolingual BERT and multilingual BERT are provided in five
countries with gender data (Table D.1) and age (Table D.2) data on text classification tasks.

Gender class. SA TD

AC-SA AC-TD F M X F M X F M X F M X

Country Model Mono Multi Mono Multi Mono Multi Mono Multi

Denmark

BERT 66.1 64.0 63.8 61.8 72.3 67.9 70.4 69.2 64.8 67.2 60.7 59.8 59.9 59.3 58.3 59.0
MLM 66.0 65.2 64.2 63.4 72.5 68.3 70.3 69.5 65.8 67.8 60.6 60.6 60.6 59.7 58.8 59.4

DS-Seq 66.2 64.9 64.1 63.5 72.6 68.6 70.6 69.9 65.7 67.7 61.3 60.5 60.0 59.7 57.8 59.1
DS-Tok 66.0 65.0 64.1 63.5 72.4 68.4 70.6 69.1 65.6 68.0 61.1 60.2 60.8 59.9 58.9 59.0

Germany

BERT 59.8 59.5 58.9 57.9 66.5 63.7 64.3 66.1 63.2 64.5 67.9 66.1 67.8 67.8 65.6 65.8
MLM 62.0 61.2 59.7 60.1 68.1 65.8 65.4 67.7 65.3 66.1 68.5 66.7 67.7 68.6 67.0 67.1

DS-Seq 61.1 60.1 59.0 60.3 68.8 64.4 66.2 66.7 64.0 65.7 68.9 66.4 67.8 67.6 65.7 66.4
DS-Tok 60.9 62.9 60.3 58.3 67.9 65.6 66.0 66.8 64.3 66.8 68.6 66.8 67.9 68.3 67.0 66.7

US

BERT 64.3 62.6 58.7 58.1 68.6 67.0 67.1 66.3 64.4 66.0 72.5 69.7 71.0 71.2 68.4 70.2
MLM 64.6 63.3 58.7 59.6 68.4 67.6 67.8 67.3 66.2 66.9 73.1 70.1 71.3 72.1 69.4 70.3

DS-Seq 64.3 63.8 58.8 59.2 68.6 68.0 68.0 67.2 66.3 67.0 73.1 70.3 71.6 72.3 69.2 70.4
DS-Tok 64.7 62.2 59.4 58.8 68.9 67.5 67.9 68.0 66.4 67.3 73.3 69.9 71.6 72.8 69.5 70.5

UK

BERT 63.2 61.9 65.0 63.1 73.4 71.0 72.3 71.0 69.0 69.7 71.2 69.1 70.1 70.4 67.9 68.9
MLM 63.7 63.0 64.8 65.3 73.9 71.0 72.6 72.0 70.4 71.0 71.2 69.4 70.0 70.6 67.9 69.8

DS-Seq 63.2 63.4 65.2 64.9 73.6 72.2 72.4 72.9 70.9 71.7 71.5 69.3 70.2 70.6 68.2 69.8
DS-Tok 63.3 63.5 64.8 65.6 73.7 72.0 72.2 73.0 71.0 71.9 71.4 69.1 70.3 70.8 68.2 69.9

France

BERT 64.1 63.9 63.1 61.2 70.5 67.3 68.6 69.3 67.0 67.8 46.0 44.5 45.1 44.6 42.4 43.1
MLM 64.9 64.6 63.2 62.1 71.0 67.7 67.6 69.9 67.1 68.4 46.2 44.3 45.5 45.8 43.3 44.3

DS-Seq 64.2 64.1 63.1 63.1 70.5 67.5 69.3 70.6 67.3 68.4 47.1 44.2 45.3 46.0 43.4 44.2
DS-Tok 64.4 65.0 62.9 62.9 71.7 68.3 69.5 70.1 67.5 68.8 46.9 44.3 45.6 45.5 43.9 44.4

Average

BERT 63.5 62.4 61.9 60.4 70.3 67.4 68.5 68.4 65.7 67.0 63.7 61.8 62.8 62.7 60.5 61.4
MLM 64.2 63.5 62.1 62.1 70.8 68.1 68.7 69.3 67.0 68.0 63.9 62.2 63.0 63.4 61.3 62.2

DS-Seq 63.8 63.3 62.0 62.2 70.8 68.1 69.3 69.5 66.8 68.1 64.4 62.1 63.0 63.2 60.9 62.0
DS-Tok 63.9 63.7 62.3 61.8 70.9 68.4 69.2 69.4 67.0 68.6 64.3 62.1 63.2 63.5 61.5 62.1

Table D.1: Evaluation results compared with monolingual BERT and multilingual BERT
in five countries with gender data for intrinsic attribute classification tasks (AC-SA, AC-
TD) and extrinsic evaluation tasks: sentiment analysis (SA) and topic detection (TD).
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Age class. SA TD

AC-SA AC-TD <35 >45 X <35 >45 X <35 >45 X <35 >45 X

Country Model Mono Multi Mono Multi Mono Multi Mono Multi

Denmark

BERT 67.7 57.2 65.3 64.5 67.3 66.2 66.0 62.7 62.7 62.9 58.4 54.4 56.3 56.1 52.2 53.4
MLM 67.4 65.5 67.4 65.1 67.7 67.3 67.6 63.3 62.1 63.0 59.3 55.3 57.6 57.1 52.6 54.1

DS-Seq 67.4 65.2 66.8 65.2 67.4 66.2 67.1 63.1 62.9 63.0 58.7 55.0 56.5 56.9 53.3 54.5
DS-Tok 67.8 65.3 66.6 64.6 67.6 66.1 67.2 64.2 63.3 63.2 59.0 55.4 56.7 56.2 53.2 54.3

Germany

BERT 57.9 58.0 59.6 56.9 53.6 57.9 57.1 52.6 55.0 55.0 61.6 57.4 58.3 60.1 55.3 57.1
MLM 58.1 61.1 62.0 58.9 58.1 58.2 58.1 53.6 55.5 56.7 62.2 57.6 59.9 61.5 56.5 58.7

DS-Seq 58.2 56.4 61.3 58.2 56.3 57.3 55.8 53.8 55.3 55.5 63.5 57.9 59.1 60.8 57.6 59.3
DS-Tok 57.2 56.6 60.6 57.4 57.9 58.1 54.0 53.0 56.5 56.7 63.5 58.2 59.2 59.3 56.5 59.3

US

BERT 65.2 62.9 63.0 60.7 60.5 58.7 57.2 57.7 57.9 57.8 68.8 64.9 67.2 68.0 64.3 64.3
MLM 65.3 63.6 62.9 61.9 59.8 59.5 60.4 59.4 57.8 58.2 71.2 65.7 66.7 69.0 64.2 65.2

DS-Seq 66.2 60.7 64.1 61.5 61.6 58.3 59.4 59.3 57.9 58.0 72.5 65.5 67.1 69.8 64.4 65.8
DS-Tok 65.7 59.7 62.9 61.2 61.1 58.7 59.4 59.9 58.6 57.8 69.4 65.7 66.7 69.2 65.4 64.9

UK

BERT 65.7 65.1 65.8 65.2 65.2 66.3 65.5 63.8 63.9 63.7 68.1 68.1 68.0 64.7 67.1 66.3
MLM 66.9 65.4 66.1 65.6 68.2 67.2 66.9 62.8 62.0 63.0 68.8 70.1 70.0 65.1 67.3 67.3

DS-Seq 67.0 65.3 64.7 62.8 67.8 66.4 67.6 63.8 64.9 64.9 67.8 68.9 69.4 66.0 68.1 66.5
DS-Tok 66.8 64.0 65.2 62.8 67.6 66.5 67.1 64.6 65.2 65.1 68.2 69.6 69.2 66.4 67.3 67.6

France

BERT 56.0 55.7 57.0 56.6 59.7 57.5 60.3 59.6 57.4 61.5 51.9 49.1 49.6 52.0 47.1 49.0
MLM 55.9 56.8 56.9 57.2 60.7 59.4 61.6 59.9 59.5 61.6 53.8 48.5 50.2 52.5 47.2 50.3

DS-Seq 55.5 55.1 56.7 55.5 61.3 58.7 62.0 60.4 60.3 62.8 53.8 49.0 50.2 51.1 47.3 50.3
DS-Tok 55.8 54.4 56.7 55.9 60.2 60.7 61.5 60.9 59.8 59.7 54.6 51.4 50.3 50.2 48.0 50.8

Average

BERT 62.5 59.8 62.1 60.8 61.3 61.3 61.2 59.3 59.4 60.2 61.8 58.8 59.9 60.2 57.2 58.0
MLM 62.7 62.5 63.1 61.7 62.9 62.3 62.9 59.8 59.4 60.5 63.1 59.4 60.9 61.0 57.6 59.1

DS-Seq 62.9 60.5 62.7 60.6 62.9 61.4 62.4 60.1 60.3 60.8 63.3 59.3 60.5 60.9 58.1 59.3
DS-Tok 62.7 60.0 62.4 60.4 62.9 62.0 61.8 60.5 60.7 60.5 62.9 60.1 60.4 60.3 58.1 59.4

Table D.2: Evaluation results compared with monolingual BERT and multilingual BERT
in five countries with age data for intrinsic attribute classification tasks (AC-SA, AC-TD)
and extrinsic evaluation tasks: sentiment analysis (SA) and topic detection (TD).
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D.2 Control Experiment for Domain Knowledge

We provide the experimental results on classification tasks compared by specializing on
in-domain (Trustpilot (Hovy et al., 2015)) and out-of-domain (RtGender (Voigt
et al., 2018) for gender and BAC (Schler et al., 2006) for age) data in Table D.3.

SA TD

Gender F M X F M X F M X F M X

Country Model RtGender Trustpilot RtGender Trustpilot

US
MLM 68.3 67.3 66.9 68.4 67.6 67.8 72.7 69.9 71.1 73.1 70.1 71.3

DS-Seq 68.1 67.4 66.9 68.6 68.0 68.0 72.7 69.3 71.2 73.1 70.3 71.6
DS-Tok 68.6 67.2 66.4 68.9 67.5 67.9 72.4 69.6 71.2 73.3 69.9 71.6

UK
MLM 73.3 71.0 71.7 73.9 71.0 72.6 71.1 69.3 69.8 71.2 69.4 70.0

DS-Seq 73.3 71.1 71.9 73.6 72.2 72.4 71.2 69.0 69.5 71.5 69.3 70.2
DS-Tok 73.4 71.1 71.6 73.7 72.0 72.2 71.3 69.2 69.6 71.4 69.1 70.3

Average
MLM 70.8 69.2 69.3 71.2 69.3 70.2 71.9 69.6 70.5 72.2 69.8 70.7

DS-Seq 70.7 69.3 69.4 71.1 70.1 70.2 72.0 69.2 70.4 72.3 69.8 70.9
DS-Tok 71.0 69.2 69.0 71.3 69.8 70.1 71.9 69.4 70.4 72.4 69.5 71.0

SA TD

Age <35 >45 X <35 >45 X <35 >45 X <35 >45 X

Country Model BAC Trustpilot BAC Trustpilot

US
MLM 59.4 58.4 58.9 59.8 59.5 60.4 68.4 64.6 66.9 71.2 65.7 66.7

DS-Seq 58.4 57.3 58.0 61.6 58.3 59.4 68.6 64.5 67.3 72.5 65.5 67.1
DS-Tok 58.6 58.5 58.9 61.1 58.7 59.4 69.3 65.0 67.1 69.4 65.7 66.7

UK
MLM 66.2 66.7 66.4 68.2 67.2 66.9 67.8 68.7 68.9 68.8 70.1 70.0

DS-Seq 66.1 66.6 66.8 67.8 66.4 67.6 67.8 68.7 68.6 67.8 68.9 69.4
DS-Tok 66.6 66.0 66.3 67.6 66.5 67.1 68.0 68.8 69.2 68.2 69.6 69.2

Average
MLM 62.8 62.6 62.7 64.0 63.4 63.7 68.1 66.7 67.9 70.0 67.9 68.4

DS-Seq 62.3 62.0 62.4 64.7 62.4 63.5 68.2 66.6 68.0 70.2 67.2 68.3
DS-Tok 62.6 62.3 62.6 64.4 62.6 63.3 68.7 66.9 68.2 68.8 67.7 68.0

Table D.3: Evaluation results on Trustpilot classification tasks (SA, TD) compared
by specializing on out-of-domain data (RtGender) for gender and BAC for age and
in-domain data (Trustpilot).
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