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Chapter 1

Introduction

This dissertation, written at the Graduiertenkolleg “Allokation auf Finanz- und

Gütermärkten” at Mannheim, contains three analyses of different types of eco-

nomic networks with heterogeneous players. In each model, a specific form of

heterogeneity is introduced which interacts with the network effects at the core

of the analysis, extending or overturning some key results in the literature.

The first model, on compatibility in a durable-goods monopoly, describes a

network of users of a good who benefit from each other using an identical product.

This is the kind of non-physical economic network based on positive consumption

externalities analysed by Katz and Shapiro (1985), Farrell and Saloner (1985)

and many other authors since. The effects in this class of models are particularly

relevant for markets for computer software (where the ability to exchange files

with other users is an important component of the value of the product), as well

as for durable goods consumed with less-durable complements (whose availability

increases in the size of the market). The focus in the present model is on the

effect of consumer heterogeneity in a durable-goods market where standards are

chosen by a monopolist. Choi (1994), Waldman (1993) and others have shown

how the firm will be tempted ex post to make a new product incompatible with

its predecessor in order to reduce the Coasian (1972) competition it faces from its

own output sold in earlier periods. When consumers anticipate this, both profits

and social welfare are compromised, suggesting a beneficial role of regulation

banning incompatibility.

In the model presented here, heterogeneity leads to an interaction between the

standard monopoly effect and the firm’s incentive to render the existing goods

on the market obsolete. In particular, the coexistence of a mass market and a
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smaller group of high-valuation consumers creates a trade-off for the firm be-

tween increasing the size of the network (to which it implicitly sells access in the

future), and maximizing short-term monopoly profits. This trade-off is affected

when consumers anticipate the future obsolescence of the goods they are buying,

because their willingness to pay (and hence, short-term profits) are reduced while

the value of network size is not: The threat of obsolescence increases the rela-

tive profitability of increasing output to expand the installed base. In contrast

with results in the literature, the inefficiency induced by arbitrary incompatibility

does not lead to a loss of welfare, but partially compensates the inefficiency of a

monopoly. Thus, at least in some cases, banning incompatibility would reduce,

not increase, welfare. Under certain conditions, a case can even be made for

forcing (or subsidizing) the monopolist to switch to an incompatible new prod-

uct when the firm would prefer to continue an inferior but widely adopted old

standard.

The second model, on interconnection and collusion, is used to analyze the

competition for retail customers between telephone networks, in the tradition

of the work by Laffont et al. (1998b) and others. An interesting feature of the

telecommunications industry, from an industrial-organization point of view, is

the fact that the same firms competing with each other in the retail market also

provide each other monopolistically with an intermediate good. This is because

each network, in order to give its subscribers access to the entire population of

telephone users, must have its competitors terminate calls to those consumers who

have chosen to be connected by them. Thus, the termination of calls originated

on another network is a mutually-provided intermediate input used to produce

telephone services, and the price of this input – the interconnection fee, or access

charge – has a significant effect on final prices and on the competition for retail

customers.

While this might appear to be a more literal, physical type of networks, the

driving force behind the model presented here is the creation of the same kind of

non-physical, purely economic “network” externalities as in the first. Consumers

are taken to be heterogeneous with respect to their calling patterns: Every tele-

phone user belongs to a group whose members he or she calls more often than

the rest of the population. In addition, the firms can offer non-linear subscrip-

tion tariffs discriminating between calls terminating on their own network and

elsewhere. These relatively simple assumptions are descriptively realistic, in par-

ticular for many mobile-telephony markets. They are also crucial for the final
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outcome, because they allow the firms to differentiate their otherwise homoge-

neous products. A markup on interconnection leads to a higher price of calling

users on the other network, resulting in a strict preference for each consumer to

join the same network as his or her group. Interestingly, this allows for collu-

sion even under non-linear tariffs, as long as prices can differ according to where

a call is terminated. The implication for competition policy is that some form

of permanent, sector-specific regulation is required even in a mature market to

ensure an efficient overall outcome when firms competing in the retail market

need to interconnect. This is in marked contrast with legislation in Germany,

for instance, where “workable” competition in the telecommunications industry

is deemed a sufficient condition for sector-specific regulation to be replaced by

standard anti-trust rules. On a positive note, this model suggests that regulation

may achieve its goals simply by banning certain forms of price discrimination

rather than through a more involved process of setting prices outright.

In the third model, on bargaing and mergers, an industry is formed by a set

of firms establishing a network of bilateral trading links. All trade is based on

efficient bargaining in the sense that the optimal allocation in the industry is

always achieved. The distribution of the resulting surplus, on the other hand,

depends on the bargaining power of each player, which is affected by changes in

other parts of the trading network even if the player is only indirectly linked to

them. In this cooperative setup, which is based on the analysis of Segal (2000),

players can merge or split up, increasing or reducing their joint bargaining share

without affecting the overall allocation. While this network of bargaining links is

quite different from the virtual ones in the first two models based on consumption

externalities, the heterogeneity of the players again plays a crucial role.

In particular, the differences in the players’ fundamental characteristics allow

for a privately profitable merger to have a larger effect on outsiders than on

the merging firms, and to compensate the initial effect of a negative shock to

an outsider, without relying on any allocative effects. Moreover, the model can

be used to demonstrate how the existence of additional, outside players turns

pairwise merger decisions into strategic complements or substitutes, leading to an

explanation of merger waves which is based entirely on bargaining considerations.

In contrast with the first two models, the absence of allocative effects assures that

there are no direct policy implications. However, it is straightforward to base an

argument about strategic (and inefficient) technology choice or R&D effort on

precisely this kind of bargaining model, immediately reintroducing policy issues.
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It goes without saying that these three models are a long way from a general

theory of the role of heterogeneity in networks. It is not even clear that such a

theory would be very helpful at a general level. Nor are the policy implications

presented here necessarily robust enough to interpret them as immediate calls

for government action. What these models demonstrate, rather, is that differ-

ences between the players in an economic model are of particular importance in

networks, where the heterogeneity of agents can interact with the externalities

between them. Vive la différence.
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Chapter 2

Compatibility and Obsolescence

in a Durable-Goods Monopoly

with Heterogeneous Consumers

2.1 Introduction

This is an analysis of the incentives for a durable-goods monopolist to introduce

arbitrary incompatibility between successive generations of its product. When

the number of fellow users with a compatible good matters for each consumer

(i. e. when there are positive “network” effects), incompatibility reduces the value

of the existing installed base, increasing the price consumers are willing to pay

to upgrade to a new product. As shown by Choi (1994), Waldman (1993) and

others, the firm will indeed tend to use its discretion ex post and choose incom-

patibility, achieving a form of “planned” obsolescence which in turn can lead to

an oversupply of upgrades.1 Consumers, on the other hand, anticipate that their

purchases will be made obsolete in the future, so ex-ante prices fall, offsetting

any positive effect on overall profits. Thus, whenever the decision over inter-

generational compatibility is made by a monopolist without ex-ante commitment

power, the outcome is likely to be incompatibility, inefficient upgrades and a loss

of both social welfare and private profits. This seems to suggest that the outcome

could be improved by a ban on incompatible upgrades.

1Strictly speaking, obsolescence is not planned ex ante in this setting, as in Bulow (1986),
but induced ex post when the firm chooses incompatibility. Hence, “arbitrary obsolescence”
would be more correct.
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The contribution of the present paper is to explain why this result is not robust

against the introduction of consumer heterogeneity. In particular, the presence of

a large “mass market” of low-valuation consumers leads to an interaction between

network externalities and the standard monopoly effect which can reverse both

the qualitative results and the policy implications found in earlier work.

In this model, consumer heterogeneity leads to three main results. First, the

firm’s control over compatibility becomes irrelevant when the low-valuation mar-

ket segment is sufficiently large. Second, when the size of the mass market and

the quality improvement of the new good are both intermediate, the lack of com-

mitment against future incompatibility improves the overall outcome by making

it relatively more attractive for the firm to deviate from its short-term monopolis-

tic behaviour, and to increase the size of the network by selling to low-valuation

consumers. While a ban on incompatible upgrades increases profits in this case,

welfare is higher if the monopolist is left to deal with its commitment problem

on its own. Third and finally, when compatibility implies lower quality, the mo-

nopolist can be too reluctant to switch to a new, superior standard even when

price-discrimination is possible and coordination failure is ruled out. In this last

case the optimal policy intervention would be to enforce, not ban, incompatible

upgrades.

To fix ideas, consider an unthreatened monopolist selling a software program

whose users benefit from others using a compatible version.2 Does Microsoft, for

instance, have an incentive to make a new version of Word or Excel incompatible

with its predecessor so that users are forced to upgrade only because everyone

else does? It may be tempting, from one’s own personal experience, to answer

in the affirmative. However, Microsoft has also been criticized for keeping its

products compatible with an old standard whose “installed base” of existing

users keeps the firm from switching to a new and superior (but incompatible)

standard. In contrast, as Lerner and Tirole (2000) note, non-commercial ”open

source” programmers, with no apparent incentive to induce obsolescence, seem

to be more willing to abandon old standards. At the very least, this seems to

suggest that arbitrary obsolescence is not the only possible outcome in a market

where software is supplied by a (profit-seeking) monopolist.

This is not a case study of Microsoft. The aim of this paper is only to

2The unthreatened monopoly can be seen as a limiting case in a market where network
externalities and proprietary standards create significant barriers to entry, or where standards
are set by (implicit) cartels.
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analyze some of the basic incentives for a monopolist with full discretion over

intergenerational compatibility. This is done in a simple two-type setting where

two generations of high-valuation consumers face a mass market of low-valuation

users. As it turns out, this form of consumer heterogeneity is sufficient to overturn

some qualitative results found in earlier work.

In the model, the existence of a low-valuation mass market leads to a trade-off

for the monopolist between short-term profits and network size. Short-term prof-

its are maximized by selling only to high-valuation consumers; in contrast, the

size of the network (to which the firm implicitly sells access in later periods) is

increased by selling the good to the low-valuation consumers in the mass market.

This has implications for the firm’s incentive to induce obsolescence by incom-

patibility, because the low-valuation consumers are less inclined than the high

types to buy an upgrade to their existing goods; indeed, in the model, the low

types’ willingness to pay for an upgrade is zero. Hence, the firm cannot profitably

shift the entire installed base to a new, incompatible standard, and leaving the

low-valuation consumers behind reduces the premium which the high-types are

willing to pay for an incompatible upgrade.

Heuristically, the results of this paper can be explained as follows. When

the mass market is very large, its value to future high-type consumers dominates

the short-term profit achievable from the early high types, so the firm sells to

all consumers in period 1 and chooses compatibility later, deriving its profit

mainly from selling access to a large network. The monopolist’s discretion over

compatibility is irrelevant in this case.

More interestingly, when the mass market is of intermediate size, the trade-off

between short-term profits and network size is decisively affected by consumers’

anticipation of inefficient, incompatible upgrades. If the firm cannot commit

itself to compatibility, first-generation consumers reduce their willingness to pay

for the original good, decreasing the opportunity cost for the monopolist to invest

in network size by selling to the low-valuation mass market. Once it has done so,

however, the incentive to choose incompatibility is reduced, leading to an overall

outcome where the efficient output level in period one is followed by the efficient

choice of compatibility in period two.

Finally, when compatibility implies lower product quality, the private incen-

tive for the firm to choose compatibility can be too high from a welfare point of

view. This is because under price discrimination, there are effictively two inter-

dependent markets in the second period, one for the new good and one for the
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upgrade, and the optimal choice of compatibility and quantities is different for

each. Profits in the market for the new good are maximized when all consumers

adopt the new, superior standard, but this requires selling the upgrade to the

low types owning the old version, reducing profits in the upgrade market. In

a variation of the standard monopoly theme, the firm fails to maximize welfare

because it targets the marginal buyer (in the upgrade market) rather than the

average one.

This paper is related to a number of earlier articles. The analysis of the

durable-goods monopolist competing with its own output in a market with a con-

stant set of heterogeneous consumers goes back to Coase (1972) and Bulow (1982).

Bulow (1986) describes planned obsolescence as a means for the monopolist to

overcome this problem. Network externalities have been a popular topic since

the seminal work of Katz and Shapiro (1985) and Farrell and Saloner (1985). For

an overview, see e. g. Katz and Shapiro (1994); for a critical view, Liebowitz and

Margolis (1994). Waldman (1993) and Choi (1994) describe planned obsolescence

resulting from network effects and arbitrary incompatibility. The main difference

between their work and the current paper is the introduction of heterogeneous

consumers. Upgrades in a durable-goods monopoly without network effects are

analyzed in Fudenberg and Tirole (1998). Ellison and Fudenberg (2000) find that

banning upgrades can improve welfare in a model with network externalities and

heterogeneous consumers. Waldman (1996) and Fishman and Rob (2000) con-

sider innovation incentives in a durable-goods monopoly. Nahm (2000) analyzes

forward and backward compatibility in a model with heterogeneous consumers

and separate markets for hardware and software.

The model is introduced in the next section. Section 2.3 contains a bench-

mark case where the firm can credibly commit to compatibility. In Section 2.4,

in contrast, this commitment is no longer possible. In Section 2.4.1 the mass

market is shown to have a crucial effect on whether the firm’s discretion over

compatibility is relevant at all. Section 2.4.2 contains the case of intermediate

mass market size and technical progress where the firm’s lack of commitment

actually improves the overall outcome from a welfare point of view. The possi-

bility of inefficient compatibility is explored in Section 2.5 where the assumption

of costless compatibility is given up. Section 2.6 concludes. Some proofs are in

the Appendix.
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2.2 The model

A monopolist sells a perfectly durable, indivisible good produced at zero cost to

a set of non-atomic consumers. There is no threat of entry by other firms. The

market exists for two periods t = 1, 2 of time; there is no discounting. In the

first period, the good has intrinsic quality α1. Between periods, quality increases

exogenously (and at no cost to the firm) to α2 > α1. There is no uncertainty, and

all parameters are common knowledge. Before selling the improved good in period

2, the monopolist decides whether or not the two generations of goods will be

compatible with each other; there is no fixed cost involved in this decision. Until

Section 2.5 it will also be assumed that the intrinsic quality of the second-period

good is independent of compatibility.

On the demand side, there are two types of consumers, high and low, whose

per-period utility from using the good is a function of their type, the intrinsic

quality of the good, and the number of consumers using a compatible good.3

Thus, a consumer of type τ using a good of quality α for one period enjoys a

utility of

u(τ, α, N)

if N fellow consumers use a compatible product. When a consumer buys a new

unit or an upgrade, he incurs a positive setup cost of c before being able to use

it.

For simplicity and to avoid a large number of less interesting subcases, the

utility functions of the two consumers types are restricted as follows. Let the two

types be denoted by H (for high) and L (for low), respectively. Then,

u(H, α, N) = θα + βN

u(L, α, N) = c,

where α is the stand-alone (intrinsic) quality of the good, and βN is the net-

work value of a good when N fellow consumers use a compatible product. The

parameters θ and β are both positive. Moreover, let

θα1 + β > c.

As a consequence, (i) it is profitable to provide the first-generation good to the

high types for a single period; (ii) a social planner would have both types of

3As long as there is no risk of confusion, “number” and “mass” will be used interchangeably
in this paper.
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consumers use the good in both periods; but (iii) a profit-maximizing firm has

no incentive to sell to low-type consumers in the second period because the max-

imimum price would be zero (so that after incurring the setup cost of c, the low

types still have non-negative utility). For further reference,

θ(α2 − α1)− c

will be called the net quality increase in period 2, i. e. the social value per high-

type consumer of replacing the old good with the new.

In the first period, the mass of high-type consumers is normalized to unity. In

addition, there are λ low-type consumers. Let H1 and L1 denote, respectively, the

sets of high- and low-type consumers entering the market at t = 1. Each consumer

observes the price p1 set by the monopolist for the first-period good and decides

whether or not to buy one unit. Consumers have no use for a second unit of the

good, and they cannot sell the good to others.4 Since each individual’s utility

depends on the decisions taken by others, there may be multiple equilibria in the

subgame where consumers choose to buy or abstain. As usual in the literature,

consumers can coordinate on an outcome which is Pareto-undominated for them.

In the second period, the first-period consumers (and the goods which they

have purchased) stay in the market. They are joined by a second generation of

high and low types of the same size as the first, so that there is now a mass

of 2 high-type consumers and 2λ low types. Let L2 and H2 denote the low

and high types entering at t = 2. After the new consumers have arrived, the

monopolist decides whether the second-period good will be compatible with the

first. Compatibility is symmetric, i. e. a compatible good is both forward and

backward compatible.5 The firm then sets an upgrade price pU
2 at which its

former patrons can trade in their first-generation good for the new one, and a

regular price p2 at which the new good can be purchased by first-time buyers

(i. e. second-generation customers and those from period 1 who did not buy the

4This is true, for instance, for most software markets.
5Ellison and Fudenberg (2000), among others, argue that it is more common for a newer

program version to be forward incompatible but backward compatible; e. g. Word 2000 can
read files created by Word 6.0 but not the other way around. On the other hand, even an
owner of Word 2000 incurs a cost of forward incompatibility when he has to manage different
file versions to exchange with others using an older program, so his utility should still increase
in the number of fellow users with a fully compatible version. Besides, to the extent that the
value of a network lies in the availability of complements – e. g. other users who can be asked
for help – the distinction between forward and backward compatibility becomes less relevant.
For a detailed analysis of forward and backward compatibility, see Nahm (2000).
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old good). However, consumers cannot be forced to reveal their ownership of the

old good, so the upgrade price can never exceed the price offered to first-time

buyers.6 Observing pU
2 and p2, consumers decide whether to upgrade (if they own

the old good), buy the new good, or decline the firm’s offer.

The solution concept is subgame-perfect Nash equilibrium.

2.3 Compatibility commitment

As a benchmark case, suppose the monopolist can credibly commit in period 1

to keeping the second-period product compatible. Solving the model backwards

as usual, the monopolist sets the second-period prices pU
2 and p2 at t = 2 so as to

maximize his second-period profit π2 given the number of goods already in the

market. Let B1 ⊆ {L1, H1} denote the installed base from period 1. With only

two types of consumers, there are three cases at t = 2:

Case 1: B1 = ∅ If the firm did not sell any unit of the first-generation good at

t = 1, its only profitable option at t = 2 is to sell the new good to the high-type

consumers H1 and H2, yielding a second-period (and total) profit of

π2(∅) = 2(θα2 + 2β − c). (2.1)

Case 2: B1 = {H1} Having sold the old product only to the high-type con-

sumers H1 in period 1, the firm sets a price p2 = θα2+2β−c for the newly-arrived

high types H2, extracting their entire rent. In addition, it will sell the second-

generation good to its former customers as an upgrade if and only if

θ(α2 − α1)− c > 0.

This is because the H1 consumers facing an upgrade offer pU
2 compare their utility

from upgrading, θα2 + 2β − c− pU
2 , with their reservation utility from continued

use of the old good, θα1 +2β. Under compatibility, all the firm can charge for the

upgrade is the perceived difference in stand-alone quality minus the setup cost

which consumers incur when upgrading, so that

pU
2 = θ(α2 − α1)− c (2.2)

6This corresponds to the “semi-anonymous” case in Fudenberg and Tirole (1998).
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This implies that a firm committed to compatibility takes the same upgrade

decision as a social planner. The second-period profit is given by

π2(H1) = θα2 + 2β − c + max{θ(α2 − α1)− c, 0}. (2.3)

Case 3: B1 = {L1, H1}. Finally, if the firm has sold the old good to all con-

sumers at t = 1, the second generation of high types H2 is willing to pay up to

p2 = θ2 + (2 + λ)β − c, while the maximum upgrade price pU
2 = θ(α2 − α1)− c is

the same as before. This gives a second-period profit of

π2(L1, H1) = θα2 + (λ + 2)β − c + max{θ(α2 − α1)− c, 0}. (2.4)

Turning to the first period, the firm maximizes the sum of its profits over

both periods while consumers anticipate the outcome of the continuation game

when they determine their willingness to pay for the first-period good.

Suppose the monopolist tries to sell the first-period good only to the high

types H1 present at t = 1. These consumers anticipate that they will replace the

first good by an upgrade at t = 2 if θ(α2 − α1) − c > 0, and that the second-

generation high-types H2 will join their network when they arrive. In equilibrium,

p1 must leave them indifferent between buying the first-period good and waiting

until the second period (when their net utility will be zero because the monopolist

fully extracts their rents). Thus,

p1 = 2θα1 + 3β − c. (2.5)

(Each consumer in H1 has utility θα1 +β− c in period 1 and θα1 +2β in period 2

if he does not upgrade; an upgrade increases his utility by θ(α2−α1)− c but this

additional rent is fully extracted by the upgrade price.) Note that the first-period

good has a positive value in period 2 even if it is replaced, because it allows its

owner to upgrade at a price reflecting only the incremental rather than the full

value of the second-period good.

Given p1, the total profit Π(H1) from selling only to the high-type consumers

at t = 1 is

Π(H1) = p1 + π2(H1)

= 2θα1 + 3β − c + θα2 + 2β − c + max{θ(α2 − α1)− c, 0} (2.6)

In contrast, when the firm sells its first-period product to all λ+1 consumers

L1 and H1, it can achieve a higher second-period profit π2(L1, H1) > π2(H1) but
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has to set a price p1 of no more than c. (The low types L1 enjoy a gross utility

of 2c over both periods but incur the setup cost of c in period 1.) This yields a

total profit from selling to all consumers in period 1 of

Π(L1, H1) = (λ + 1)c + θα2 + (λ + 2)β − c + max{θ(α2 − α1)− c, 0} (2.7)

(λ− 3)β

θ(α2 − α1)− c

0

T

A D

B C

Figure 2.1: Overall outcomes with compatibility commitment. The firm sells to
all first-period consumers if (λ− 3)β is above the threshold T ≡ 2θα1 − (λ + 2)c
(areas A and D). An upgrade is sold to the first-generation high types H1 if
θ(α2 − α1)− c > 0 (areas C and D).

Given the total payoffs from different levels of first-period output, the outcome

under compatibility commitment is as follows.

Lemma 1 When the firm can commit (or is restricted) to compatibility, it sells
the first-generation good only to the high-type consumers H1 if

(λ− 3)β < 2θα1 − (λ + 2)c

and to all consumers L1 and H1 otherwise.

Proof. When the firm does not sell the first-period good to any consumers, its

total profit is given by (2.1). This is strictly less than Π(H1) from (2.6). The
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Lemma follows from the comparison of (2.6) with (2.7).

Intuitively, the firm faces a trade-off between the rents which it extracts from

its first-period consumers and the size of the network to which it implicitly sells

access in period 2. Restricting its first-period output to the high-valuation types

H1 increases its first-period profit; this is the standard monopoly effect. In con-

trast, the value of the network is larger for the second-period high types H2 if

it includes the low-valuation “mass market” L1.
7 This network effect dominates

the monopoly effect if the network value of the first-period low types L1 to the

second-generation high types H2, λβ, is large relative to the rent which can be

extracted form the first-generation high types, 2θα1 + 3β − c, when first-period

output is restricted to them. This is depicted by areas A and D in Figure 2.1,

where the term

(λ− 3)β

measures the difference between the network contribution of the low types L1

and the opportunity cost of giving the high types H1 free access to the network.

Compatible upgrades are efficient because the upgrade price pU
2 in (2.2) is

equal to the net incremental value of the upgrade relative to the perfectly durable

(and compatible) old good.

Lemma 2 A compatible upgrade is sold to the high-type consumers H1 at t = 2
if and only if upgrading is efficient, i. e. iff

θ(α2 − α1)− c > 0.

2.4 Discretionary incompatibility

In contrast with the benchmark case in the previous section, suppose the monop-

olist can choose at t = 2 whether or not the new product will be compatible with

the existing installed base. As Choi (1994) shows, this allows the firm to set a

higher upgrade price than under compatibility when consumers are homogeneous

(so that they all choose to upgrade together). In particular, by reducing the

network value of the old good, incompatibility can make upgrades profitable to

sell when they are socially wasteful, i. e. when θ(α2 − α1)− c < 0.

7Delaying all sales until the second period is always dominated because the firm can fully
extract the high-type consumers’ rents when selling to them from period 1; this is a consequence
of the assumption that the firm can discriminate between its former patrons and new customers.
Cf. Choi (1994).
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The purpose of this section is to show that (i) the incompatibility option is

not used in equilibrium when the network value of the low-type consumers (to

the high types) lies above a threshold, and (ii) the lack of commitment against

incompatibility has the beneficial effect of lowering this threshold precisely when

incompatible upgrades are inefficient. As in the previous section, the behaviour

of the firm in period 2 depends on whom it sold the first-period product.

Case 1: B1 = {∅}. If the firm has not sold any units of the first-period product,

compatibility is irrelevant. The monopolist sells the second-period good to both

high-type groups H1 and H2 and achieves the same second-period (and total)

profit π2(∅) from (2.1) as before.

Case 2: B1 = {H1}. After selling only to the high types at t = 1, the mo-

nopolist can keep the new good compatible and achieve the second-period profit

π2(H1) from (2.3). Alternatively, it can choose incompatibility to raise the up-

grade price which its former patrons are willing to pay. Comparing their utility

from upgrading, θα2 + 2β − c, with their reservation utility of using the old, in-

compatible product, θα1 + β, the first-generation high types H1 are indifferent

when

pU,IC
2 = θ(α2 − α1) + β − c, (2.8)

where the superscript IC indicates incompatibility. (Note that compared with

pU
2 in (2.2), this upgrade price is increased by β, reflecting the decrease in utility

of the old good due to incompatibility.) Thus, the firm can make a positive profit

from selling incompatible upgrades whenever

θ(α2 − α1)− c > −β.

As long as this is the case, the newly-arrived H2 users pay up to θα2 + 2β − c

for the second-period good, the same as under compatibility. This leads to a

second-period profit of

πIC
2 (H1) = θα2 + 2β − c + θ(α2 − α1) + β − c.

Lemma 3 When incompatibility is possible and the first-period good has been
sold only to the high types H1, the second-period outcome is

Compatibility and no upgrades if θ(α2 − α1)− c ∈ (−∞,−β)

Incompatibility and inefficient upgrades if θ(α2 − α1)− c ∈ [−β, 0),

Incompatbility and efficient upgrades if θ(α2 − α1)− c ∈ [0,∞).
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The new high-type consumers H2 always buy the second-period good at

p2 = θα2 + 2β − c.

Proof. When θ(α2 − α1) − c < −β, the firm cannot profitably sell even an

incompatible upgrade to its earlier customers, and incompatibility would reduce

the first-time buyers’ willingness to pay. Therefore, the monopolist keeps the new

good compatible and sells it only to the new high types H2.

When θ(α2 − α1)− c ∈ [−β, 0), an incompatible upgrade is profitable to sell

(pU,IC
2 > 0) even though the perceived increase in quality, θ(α2−α1), is less than

the setup cost incurred by those who upgrade, so the outcome is inefficient. (A

compatible upgrade selling at pU
2 = θ(α2 − α1)− c would not be profitable.)

When θ(α2 − α1) − c > 0, incompatibility still raises the upgrade price by β

(so the firm prefers incompatibility), but there is no efficiency loss.

Regardless of the upgrade decision, first-time customers are sold the second-

period product plus access to the network consisting of both high-type groups

H1 and H2, so p2 is invariant.

Case 3: B1 = {L1, H1}. When the installed base comprises all first-generation

consumers, incompatibility is relatively less profitable at t = 2 because the low-

type consumers L1 will not upgrade at any positive price (since their valuation

of both goods is the same), and leaving them behind reduces the utility of the

high-type consumers buying the new, incompatible product.

Lemma 4 Suppose incompatibility is possible and λ > 1/2. If the first-period
good has been sold to both L1 and H1, the second-period outcome is compatibility
and an efficient upgrade decision. The firm achieves the second-period profit of
π2(L1, H1) from (2.4).

Proof. Under compatibility, the second-period profit is given by (2.4). Under

incompatibility, the new high-type consumers H2 pay at most θα2 + 2β − c (i. e.

λβ less than under compatibility). For the first-generation high types H1, the

upgrade is worthwhile up to a price of pU
2 = θ(α2−α1)+(1−λ)β−c (this follows

from comparing their utility derived from the new product in a network of H1

and H2 with their reservation utility from the old good in a network of L1 and

H1.) Hence,

πIC
2 (L1, H1) = θα2 + 2β − c + θ(α2 − α1) + (λ + 1)β − c,
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which is less than π2(L1, H1) from (2.4) when λ > 1/2.

In what follows, it will be assumed that λ is indeed larger than 1/2; this is not

a very restrictive assumption given the focus of this paper on a large low-valuation

market segment.

Given the continuation payoffs from t = 2, the firm again chooses its first-

period output (via the price p1 which it sets) in order to maximize its total profit

Π over both periods, as will be discussed in the following two subsections.

2.4.1 Obsolescence and the mass market

If the firm sells the first-generation good only to the high types H1, consumers

expect (by Lemma 3) that it will introduce an incompatible upgrade in period 2

whenever θ(α2 − α1) − c > −β. They also anticipate that incompatibility will

increase the utility difference between the new good and the old by β, and thus

raise the upgrade price by the same amount (cf. (2.2) and (2.8)). This reduces

the value of the first-period good as an upgrade base in period 2, so when incom-

patibility is expected the first-period high types pay at most

2θα1 + 2β − c

for the first-period good (i. e. β less than under a commitment to future compat-

ibility, cf. (2.5)). The resulting overall profit is

Π(H1) =


2θα1 + 3β − c + θα2 + 2β − c if θ(α2 − α1)− c < −β,

2θα1 + 2β − c + θα2 + 2β − c
+ θ(α2 − α1) + β − c

otherwise.
(2.9)

Alternatively, the firm can decide to sell the first-generation product to all

consumers L1 and H1. By Lemma 4 and the assumption that λ > 1/2, the final

outcome is the same as if the firm was committed to compatibility, with the

overall profit Π(L1, H1) given by (2.7). The comparison of (2.7) with (2.9) yields

the following result.

Proposition 1 Suppose the firm is free to make the second-period good incom-
patible with the one sold before. If

(λ− 3)β > 2θα1 − (λ + 2)c (2.10)

it sells the first-period good to all consumers L1 and H1 and never chooses in-
compatibility at t = 2. The inequality in (2.10) is sufficient but not necessary.
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The intuition is essentially the same as when the firm is committed to second-

period compatibility. The first-period trade-off for the firm is between extracting

the rents of the high types H1 (by keeping prices high and output low), and

maximizing the size of the network (by selling to all first-period consumers). After

selling only to the high types in period 1, incompatibility increases the second-

period upgrade price. However, this is anticipated in period 1, so the overall

profit of the low-output strategy is no higher than under compatibility. Thus,

when the network value of the “mass market” low types L1 to the second-period

high types is large, the network effect again dominates the monopoly effect (areas

A and D in Figure 2.1), turning the incompatibility option irrelevant. It should be

noted, however, that this depends on the existence of a large set of low-valuation

consumers whose willingness to pay for an upgrade (even an incompatible one)

is too low for the monopolist to profitably shift the entire market to the new

product in period 2.

2.4.2 Lack of commitment and efficiency

Proposition 1 states that the lack of a commitment against discretionary incom-

patibiliy is irrelevant when the size of the low-valuation market segment lies above

a threshold value; this corresponds to areas A and D in Figures 2.1 and 2.2. In

addition, it turns out that the commitment problem has a beneficial effect, from

a planner’s point of view, by lowering this threshold precisely when discretionary

incompatibility leads to inefficient upgrades. This will be the focus of the present

subsection.

The key idea is that the anticipation of inefficient upgrades has an impact on

the first-period trade-off between extracting consumers’ rents and maximizing the

size of the network. By Lemma 3, consumers expect inefficient upgrades when

(i) the first-period good has been sold only to the high types H1, and (ii) the net

quality increase θ(α2 − α1)− c is negative but larger than −β, so that the price

pU,IC
2 of an incompatible upgrade in (2.8) is still positive. Since the firm extracts

the entire rent of the high types H1 when it sells the first-period good only to

them, it also bears the full welfare loss caused by inefficient upgrades. Thus,

the low-output strategy becomes relatively less profitable in period 1 while the

second-period value of a larger network including the low types L1 is unchanged.

Consequently, the incentive for the monopolist to sell to all consumers in period 1

(and to choose compatibility at t = 2) is increased whenever incompatibility leads
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(λ− 3)β

θ(α2 − α1)− c

0−β

T

T − β

A D

B1

B2

B3

C

Figure 2.2: Overall outcomes when the firm has discretion over incompatibility.
T ≡ 2θα1 − (λ + 2)c denotes the threshold value for (λ − 3)β from Figure 2.1.
The shaded area B2 represents the case where the commitment problem leads
to higher first-period output. In area B3, incompatibility leads to inefficient
upgrades. Outside of B2 and B3 the outcome is the same as in the commitment
case.

to inefficient upgrades.

Suppose (λ−3)β lies below the threshold T in Figure 2.2, so that Proposition

1 does not apply. When the net quality increase θ(α2 − α1) − c is below −β

(area B1), the outcome is the same as in the benchmark commitment case. The

first-period good is sold only to the high types H1 because the monopoly effect

dominates the network effect; there are no upgrades since the incremental value

of even an incompatible second-period good is below the setup cost c; and the

second-period high types are offered a compatible good when they arrive on

the market. Similarly, when the net quality increase is positive (area C), the

firm sells the first good only to the high types H1 (again, the monopoly effect

dominates the network effect at t = 1), chooses incompatibility at t = 2 and sells

the new product to both high-valuation groups. The first-period customers are

“forced” to buy an incompatible upgrade but there is no loss of efficiency; nor

are consumers any worse off, since the higher upgrade price under incompatibility
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is compensated by a lower first-period price. Thus, when the exogenous quality

increase measured by θ(α2 − α1) is either very small or very large, the firm’s

discretion over compatibility has no welfare effects.

The interesting situation is the one where the net quality increase θ(α2−α1)−c

is negative but the firm can nevertheless charge a positive upgrade price for an

incompatible second-period product. In Figure 2.2, this case is represented by

areas B2 and B3.

By Lemmas 3 and 4, the second-period outcome is incompatibility and ineffi-

cient upgrades if first-period sales have been restricted to the high types H1, and

compatibility and no upgrades if the low types L1 also bought the first-period

good. Given this, the profit-maximizing output level in period 1 again depends

on whether the relative network value of the low types, (λ − 3)β, lies above a

threshold value. However, this threshold is lower than the corresponding critical

value in the commitment case (represented by the line T in Figure 2.1).

Proposition 2 Let θ(α2−α1)− c ∈ [−β, 0), and let T ≡ 2θα1− (λ+2)c. When
the firm is free to choose incompatibility, it

• sells to all consumers L1 and H1 in period 1 and

• chooses compatibility in period 2

if and only if (λ− 3)β lies above a threshold value given by

T + θ(α2 − α1)− c.

Proof. Comparing (2.7) with (2.9), the firm prefers selling to all first-period

consumers if and only if

(λ− 3)β > θα1 + θα2 − (λ + 3)c.

The RHS is equal to T + θ(α2 − α1)− c.

Thus, compared with the commitment case in Figure 2.1, the firm’s discretion

over compatibility leads to two very different new outcomes when the relative size

of the mass market and technological progress are both intermediate. On the one

hand, when the relative network value of the low types L1 is small, arbitrary

obsolescence reduces both welfare and profits; this is the result found by Choi

(1994) and represented by area B3 in Figure 2.2. On the other hand, the trade-off

between the monopoly effect and the network effect is shifted towards the latter,
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lowering the threshold value for (λ−3)β above which the monopolist chooses the

efficient output level (i. e. sells to all consumers) in period 1. This creates area

B2 in Figure 2.2, where sales to all consumers L1 and H1 in the first period are

followed by second-period compatibility and the (efficient) decision not to offer

upgrades. The border between B2 and B3 represents the new, lower threshold

value of T + θ(α2 − α1)− c.

From a theoretical perspective, Proposition 2 underscores the role of consumer

heterogeneity in this model of network externalities and compatibility. The bene-

ficial effect of the commitment problem in area B2 arises because the anticipation

of incompatibility reduces the first-period willingness to pay of the “marginal”

consumer in H1, weakening the standard monopoly effect relative to the (un-

changed) network effect. With homogeneous consumers, this cannot occur.

From a policy perspective, Proposition 2 implies that consumer heterogeneity

makes the welfare effect of a ban on incompatibility ambiguous. In the situation

represented by area B2, welfare is higher when the firm is left to handle its

commitment problem on its own; mandatory compatibility increases profits but

hurts consumers.8 On the other hand, banning incompatibility increases both

profits and welfare in the case depicted by area B3.

2.5 Inefficient compatibility

Up to this point, there was no reason for a social planner to prefer incompati-

bility since it implied neither lower costs nor higher quality of the second-period

good. In this section, in contrast, compatibility is assumed to imply lower qual-

ity, as it often does in an industry with technological progress. Suppose that

the monopolist can choose between two different goods in period 2, one of which

is compatible with the old product while the other is not. Let αC
2 denote the

inherent quality of the compatible second-period good, and let αIC
2 stand for the

level of quality which can be attained without being constrained to compatibility.

By assumption,

αIC
2 > αC

2 > α1.

8Note that by increasing its output at t = 1, the firm does not solve its commitment
problem. Only the first-period high types are affected by the lack of commitment; increasing
sales in period 1 reduces the rent extracted from these consumers. Creating a larger installed
base is not a commitment device but an investment which becomes relatively more attractive
when the threat of incompatibility is relevant.
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Thus, while both second-period goods are better than the old one, compatibility

reduces the inherent quality of the new product.

The main result in this section is that there can be too much compatibility, and

that forcing the firm to choose the incompatible product can increase welfare. In

the second period the firm is active in two interdependent sub-markets, upgrades

and new goods, and the profit-maximizing choice of compatibility and quantities

is different for each. Profits in the market for new goods are maximized when all

consumers adopt the new standard, but this requires selling the upgrade to the

low types L1, reducing profits in the upgrade market. The possible loss of overall

welfare stems from the well-known fact that the monopolist targets the marginal

buyer (in the upgrade market) whereas a planner would maximize the utility of

the average consumer.

The following is not a complete description of every possible constellation

but a demonstration of the welfare benefits of mandatory incompatibility in a

reasonably general example. Thus, the attention will be restricted to the case

characterized by the following two assumptions.

Assumption 1
θ(αC

2 − α1)− c > θ(αIC
2 − αC

2 ).

This implies that (i) both types of upgrades are viable in the sense that the incre-

mental quality exceeds the setup cost, and (ii) the compatible upgrade embodies

most – but not all – of the exogenous technological progress which has occurred

between periods.

Assumption 2
(λ− 3)β > θα1 + θαIC

2 − 2c,

so that the value of the first-period low types L1 to the second-period high types

H2, given by λβ, is large relative to the rent which can be extracted from the

first-generation high-types H1 by selling only to them in period 1 and offering

the incompatible upgrade in the second period.

Under these assumptions, an unconstrained monopolist chooses compatibility

in period 2.

Lemma 5 Under Assumptions 1 and 2, the monopolist

• sells the first-period good to all consumers L1 and H1 present at t = 1,

• chooses the compatible good at t = 2,
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• and sells the new good to the high-type consumers H1 (as an upgrade) and
H2 (as a full product).

A detailed proof is given in the Appendix. Essentially, by Assumption 2, it pays

for the monopolist to forgo extracting the rent of the first-period high types,

and to invest in network size instead by selling to both low- and high-valuation

consumers L1 and H1 in period 1. In period 2, the firm can choose to maximize

the total quality of the good which it sells to the newly-arrived high types H2 by

selling the incompatible upgrade to all period-1 consumers; however, this implies

that the marginal consumer in the upgrade market has a valuation of zero for the

new good. Alternatively, the firm can increase its profit in the upgrade market by

selling only to high-valuation consumers, but it has to choose the lower-quality

compatible good in this case in order to preserve the installed base it created

in period 1. Under Assumptions 1 and 2, it is indeed more profitable to sell

fewer upgrades of lower quality at a positive price than to give away a better,

incompatible upgrade to all former customers, even though this implies selling a

lower-quality product to the new consumers. This is a variation of the well-known

monopoly theme of the firm taking into account the marginal consumer rather

than the average one, so it is not surprising that the outcome can be socially

inefficient.

Now suppose the firm is forced to choose the incompatible, higher-quality

product in period 2. As the following Lemma states, the outcome is the same as

before except that the upgrade is sold to the low-type consumers L1 as well.

Lemma 6 Under Assumptions 1 and 2, if the firm is constrained to incompati-
bility, it

• sells the first-period good to all consumers L1 and H1 present at t = 1,

• “sells” the incompatible upgrade to all first-period consumers L1 and H1 at
a price of zero, and

• sells the new product to the second-period high types H2.

A detailed proof, similar to the one for Lemma 5, is given in the Appendix.

Intuitively, Assumption 2 guarantees that in period 1 the monopolist prefers to

maximize the size of the network (to which is sells access in the second period)

even if this implies having to provide free upgrades in period 2.

It is now straightforward to derive the welfare effect of mandatory incompat-

ibility.
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Proposition 3 Under Assumptions 1 and 2, the welfare effect of restricting the
monopolist to incompatibility is given by

∆W = 2θ(αIC
2 − αC

2 )− λc.

Proof. Since the cost of production is zero, welfare is equal to the total utility

enjoyed by each consumer group over both periods. The Proposition follows

directly from Lemmas 5 and 6.

Intuitively, the welfare effect of mandatory incompatibility is positive when

the incremental quality increase enjoyed by the high types H1 and H2 is larger

than the additional setup cost incurred by the low-valuation consumers L1. Thus,

in this simple model of network externalities and heterogeneous consumers there

can be “excess inertia” (a tendency for an old standard to prevail when it should

be replaced) even though by assumption there is no coordination failure, the

standard is “sponsored” (owned by the monopolist), and the firm can price dis-

criminate (albeit imperfectly).

2.6 Conclusion

This paper has highlighted the role of consumer heterogeneity in a durable-goods

monopoly where the firm has full control over compatibility between successive

product generations. In particular, the focus has been on the effect of a “mass

market” of low-valuation consumers existing alongside a set of high-valuation

users. When consumers are heterogeneous, the standard monopoly effect comes

into play, interacting with the network effect and affecting the qualitative outcome

in a non-trivial way.

There are three results. First, when the mass market is large (and comprised

of consumers whose valuation for quality is sufficiently low), the firm’s discretion

over compatibility is irrelevant. The firm forgoes extracting the rents of its early

high-valuation customers, expanding output instead to increase the size of the

network to which it can implicitly sell access later on.

Second, when the size of the mass market and the speed of technological

progress are both intermediate, the lack of commitment against ex-post incom-

patibility increases the incentive to invest in network size early on, leading to

a more efficient overall outcome precisely when there would be inefficient up-

grades in a homogeneous-consumers world. This is yet another instance of one
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inefficiency (the potential arbitrary obsolescence of the old good) counteracting

another (the standard monopoly effect).

Finally, consumer heterogeneity can lead to the firm choosing compatibility

when it would be efficient, from a welfare point of view, to switch to a superior

but incompatible new standard.

As they stand, these results have clear policy implications. In earlier research,

a ban on incompatible upgrades could increase welfare. The results in this paper

suggest that when there is a large mass market, (i) the problem of discretionary

incompatibility may be irrelevant; (ii) when it is not, it can be more efficient to

let the firm act on its commitment problem by expanding output than to regulate

its compatibility choice; and (iii) when compatiblity implies lower quality, under

some conditions the best policy is to make incompatible upgrades mandatory.

However, these results should not be read as immediate policy recommen-

dations. The model employed in this paper is quite simplistic, and a number

of parameter assumptions have been made in order to concentrate on the more

interesting cases. Given the strong qualitative effects found so far, it should be

worth further to explore the role of consumer heterogeneity in a more general

setting with a richer set of consumer types. In particular, it would be interesting

to see the implications for R&D incentives in an infinite-horizon framework like

in Fishman and Rob (2000). This is left for further research.

2.7 Appendix

Proof of Lemma 5

The first step of the proof is to derive the optimal compatibility and output choice

of the firm at t = 2. The second step is to let the firm maximize its total profit

at t = 1 given its subgame-perfect behaviour from step 1.

At t = 2, given an installed base of L1 and H1, the firm can

1. choose compatibility and sell to H1 and H2 for a second-period profit of

θ(αC
2 − α1)− c + θαC

2 + (λ + 2)β − c;

2. choose incompatibility and sell to H1 and H2 for a second-period profit of

θ(αIC
2 − α1) + (1− λ)β − c + θIC

2 + 2β − c, (2.11)

or
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3. choose incompatibility and sell to L1, H1, and H2 for a second-period profit

of

θαIC
2 + (λ + 2)β − c. (2.12)

(The low-type consumers L1 and L2 pay at most zero for the new good, so all

other options are dominated.) The first option domintates the second if

(2λ− 1)β > 2θ(αIC
2 − αC

2 ),

which is implied by Assumption 2. By Assumption 1, the first option also dom-

inates the third. The overall profit over both periods from selling to L1 and H1

at t = 1 is therefore (cf. (2.7))

Π(L1, H1) = (λ + 1)c + θαC
2 + (λ + 2)β − c + θ(αC

2 − α1)− c.

At t = 2, given an installed base of only H1, the optimal choice is incompati-

bility and sales of the second-period good to H1 and H2 (Lemma 3), resulting in

an overall profit over both periods of (cf. (2.9))

Π(H1) = 2θα1 + 2β − c + θαIC
2 + 2β − c + θ(αIC

2 − α1) + β − c. (2.13)

Finally, if the firm sells nothing at t = 1 its overall profit is

Π(∅) = 2(θαIC
2 + 2β − c).

Maximizing its overall profit at t = 1, the firm never chooses to sell nothing

(which is always dominated by selling to H1), and prefers to sell to all consumers

if

(λ− 3)β > 2θ(αIC
2 − αC

2 ) + 2θα1 − (λ + 2)c,

which holds by Assumptions 1 and 2.

Proof of Lemma 6

The incompatibility constraint affects the firm only when has sold the first-period

good to all consumers L1 and H1 present at t = 1. In this case, the only relevant

choice under incompatibility is whether to sell the upgrade to the low types L1

as well as the high types H2. By (2.11) and (2.12), the firm sells the upgrade to

both groups if

(2λ− 1)β > θαIC
2 − θα1 − c,
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which is assured by Assumption 2. This gives an overall profit over both periods

of selling to L1 and H1 at t = 1 of

Π(L1, H1) = θαIC
2 + (λ + 2)β − c (2.14)

(note that the low types L1 have a valuation (net of the setup cost) of zero for

one-period consumption, so both the first-period good and the upgrade must be

sold at a price of zero.) Comparing (2.14) with the overall profit (2.13) from

selling the first-period good only to H1, the firm prefers to sell to all first-period

consumers if and only if Assumption 2 holds.
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Chapter 3

Interconnection,
Termination-Based Price
Discrimination, and Network
Competition in a Mature
Telecommunications Market

3.1 Introduction

A distinctive feature of the telecommunications industry is the need for competing

networks to interconnect in order to provide each of their customers with access

to the entire consumer population. This leads to an interesting coexistence of

vertical and horizontal relationships, where each network is the monopolistic

supplier of an intermediate input—the termination of calls directed towards its

own subscribers—to its rivals in the retail market, and in turn relies on them to

provide access to their customers. It is generally agreed that the outcome will

be socially inefficient if each firm sets its termination fee independently, because

a unilateral increase by any firm raises its rivals’ costs without affecting its own.

Thus, unless the fee for terminating calls is set by a regulator, efficiency demands

that the firms be allowed to cooperate in setting a common, reciprocal price for

this mutually-provided intermediate input. This immediately raises the question

of whether an unregulated access charge can be an instrument of collusion in the

retail market.

It is fairly clear that interconnection conditions need to be regulated as long as

there is one dominant player in the market. While collusion in the retail market
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is not usually a major issue in this situation, the incumbent has an obvious

incentive to erect entry barriers by raising interconnection prices. However, there

is a widespread perception that this sector-specific regulation is necessary and

justified only until the market is “mature” in the sense that no single player any

longer holds a dominant position. Legislation in Germany, for instance, provides

for sector-specific regulation to be replaced by regular antitrust provisions once

the market is in a state of “workable competition”. Unfortunately, it is not

obvious from a theoretical point of view that such competition, however defined,

in the retail market will in itself assure an efficient outcome when the firms are

allowed to set the terms and conditions of interconnection cooperatively.

The main point of the present paper is to show how control over the access

charge facilitates collusion in the retail market even when the firms compete in

non-linear tariffs, as long as they can price-discriminate according to where calls

terminate. This is in contrast with a common observation in the literature that

non-linear tariffs eliminate the collusive scope of the access charge. Moreover,

when consumers’ calling patterns are sufficiently biased, the model predicts a

markup on the price of calls to other networks—a typical characteristic of real-

life telecommunications markets which most existing models on non-linear tariffs

fail to explain. As for policy implications, the results of this paper suggest that

standard antitrust provisions alone will not necessarily ensure efficiency even in

mature telecommunications markets. On the other hand, sector-specific regula-

tion might achieve its goal of preventing collusion simply by banning termination-

based price discrimination, rather than by setting interconnection fees outright.

Finally, on the theoretical level, this paper demonstrates how the degree of hor-

izontal differentiation between networks can be the endogenous outcome of the

firms’ strategic interaction, based on a plausible assumption about consumer be-

haviour.

The standard model of interconnection in a mature market is described in

several variations by Laffont et al. (1998a) and Laffont et al. (1998b). Other pa-

pers on the subject include Armstrong (1996), Armstrong (1998) and Carter and

Wright (1999), employing a very similar approach. Briefly stated, these are static,

discrete-choice models of the Hotelling type, where a set of atomless consumers

is distributed over the characteristics space between two firms, each consumer is

connected to the entire network by one of the firms, and consumers choose their

calling partners with equal probability among the entire consumer population.

In this kind of setup, the firms’ ability to collude by manipulating the reciprocal

31



access charge depends on the type of tariffs offered to the final customers. In

particular, a simple linear retail tariff results in a common incentive to raise the

access charge above marginal cost, which raises the cost of cutting prices to win

market share, and thus enables the networks to sustain a more profitable shared-

market equilibrium. On the other hand, the scope for collusion disappears with

non-linear tariffs, which allow each firm to attract additional consumers by reduc-

ing their fixed fee without incurring an access deficit from lowering usage prices.

Equilibrium profits are then only a function of the exogenous “transportation”

cost in the Hotelling setup, leaving the networks indifferent about the intercon-

nection fee. This result continues to hold when consumers differ in their preferred

call volumes, as in Dessein (2000) and Hahn (2000). Since two-part and other

non-linear tariffs are pervasive in telecommunications, this seems to support the

view that sector-specific regulation might be only a temporary necessity.

However, real-life tariffs are often not just non-linear, but they also discrim-

inate between calls to members of the same network (“on-net” calls) and calls

terminating on another network (“off-net” or “outbound” calls). This is par-

ticularly true in most mobile-telephony markets. Laffont et al. (1998b) analyze

this case of termination-based price discrimination. As shown by Gans and King

(1999), the result is a cooperative agreement to sell access at a discount. (Among

other things, this implies that “bill and keep” arrangements can be a form of

imperfect but simple collusion.) The argument goes as follows. With access to

the other network sold below marginal cost, firms will offer outbound calls to

their consumers at a lower rate than on-net calls. Other things equal, this means

consumers prefer subscribing to a smaller network. This in turn makes it less at-

tractive for each firm to expand its consumer base, since the marginal consumer

has to be compensated for the increase in the size of the network he subscribes

to. Therefore, the firms can sustain a profitable shared-market equilibrium with

an access discount and off-net rates below on-net prices.

This argument, however, is somewhat at odds with casual empiricism. In

many mobile-telephony markets, for instance, calls to other networks are sub-

stantially more expensive than on-net calls. To the extent that interconnection

fees and costs are publicly observable, it also seems highly doubtful that most

networks terminate each others’ outbound calls at a discount. Moreover, from a

theoretical perspective, it is not obvious that the assumption of exogenous hor-

izontal differentiation is quite appropriate in a market like telecommunications

where the basic good—the transmission of signals—is essentially a homogeneous
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commodity. One might argue that the good which consumers really demand is

network membership, and that the networks differ in the features and services

they offer. However, these are endogenous choices for the networks, and it is not

clear that they would choose to place themselves at their respective end of the

Hotelling line; anecdotal evidence suggests on the contrary that networks tend to

match their rivals’ features quite closely.

This paper introduces two innovations to the basic framework of the standard

model. First, consumers’ preferences for the two networks are no longer exoge-

nously given, but a function of calling patterns and tariffs. Thus, the perceived

horizontal differentiation upon which the profitability of a shared-market out-

come depends becomes a result of the firms’ strategic behaviour rather than an

a-priori assumption. Second, it is assumed that consumers do not choose their

calling partners randomly among all others, but that they make most of their calls

to a specific subset of consumers (their “group”). The main result of the paper is

that the access charge can be used as a collusive device even when the networks

compete in non-linear tariffs as long as termination-based price discrimination is

possible. In particular, an interconnection markup (and the resulting markup on

off-net calls) can be used to differentiate the otherwise homogeneous networks if

consumers’ bias towards their preferred calling partners is sufficiently strong.

Heuristically, the main effect can be explained in a very simple model of spatial

competition. Suppose there are two beaches connected by a road, and an ice-

cream vendor and a set of consumers on each of them. Everything is symmetric.

The vendors can neither move their location nor discriminate among consumers.

There is a transportation cost of t for each consumer walking to the other beach

to buy his ice-cream there. Consumers have unit demand and a reservation price

of r. It is well-known that in this setting the only pure-strategy Nash equilibrium

(i) is symmetric; (ii) exists if and only if t > (r − φ)/2, where φ ≤ r is the cost

of producing one unit of ice-cream; and (iii) consists of both vendors selling to

their “home” market at a price of r, extracting the entire consumer surplus. Now

suppose that prior to competing in prices, the two vendors can jointly determine

the transportation cost t. Clearly, they will agree on some t > (r − φ)/2 which

allows them to sustain the cartel outcome in equilibrium.

In the interconnection model developed below there is no transportation cost

in the literal sense, nor do consumers have different preferences for the firms as

such. However, users call certain subsets of the population more often than others.

If the majority of a consumer’s preferred calling partners have chosen network A,
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and if calls from one network to the other are more expensive than calls within

the same network, then this consumer derives a lower utility from subscribing to

network B than from joining his preferred group on A. In other words, a markup

on outbound calls creates positive externalities among subscribers on the same

network. Together with the biased calling pattern, this implies that a consumer

who switches networks incurs a utility loss equivalent to the transportation cost

in the ice-cream vendor model. Moreover, the interconnection fee directly affects

the price differential between on-net and off-net prices, so by agreeing on a higher

access markup the networks can effectively increase the perceived differentiation

between themselves.

In contrast with the ice-cream vendor model, however, there are limits to the

degree of differentiation that can be achieved in this way, because joining the

less-preferred set of consumers is not completely without value, which implies

an upper bound on the transportation cost. Moreover, the price differential has

a negative impact on equilibrium profits as long as consumers make some of

their calls to the other network, because a markup on off-net calls reduces total

surplus and, therefore, the rents that each firm can appropriate. In terms of the

ice-cream vendor model, the firms can only choose the transportation cost t up to

an upper bound t, which defines a minimum cost of production φ = r− 2t above

which the Nash equilibrium can be sustained through an appropriate choice of

t ≤ t. If φ ≥ φ, then the firms maximize their equilibrium profits by choosing a

transportation cost just equal to (r − φ)/2.

The effects at work are quite different when access is provided at a discount.

In this case, just as in the equilibrium found by Gans and King, calls to other

networks are cheaper than those terminating on the same network, resulting

in negative externalities among the customers of each firm. A network trying to

expand its market share must therefore compensate the marginal consumer for the

loss in utility he experiences from being on a larger network and making a smaller

share of his calls at the subsidized off-net rate. A decrease in the interconnection

fee implies a lower off-net rate, which increases the negative externality of network

size and, thus, the compensation required to attract the marginal consumer.

Consequently, the firms can increase the cost of deviating from the shared-market

outcome, and hence sustain a more profitable equilibrium, by aggreeing on a

reduced access charge.

While both access markups and discounts reduce the competition for retail

customers, they lead to rather different effects on consumer behaviour, efficiency
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and profits. With a discount on interconnection and the corresponding negative

externalities, consumers join the network with the smallest number of their pre-

ferred calling partners in order to maximize the number of calls priced at the more

favorable off-net rate. Consequently, a large share of calls is subsidized by the

firms in equilibrium, leading to inefficiently high volume demand. In constrast,

when outbound calls are more expensive than on-net calls, consumers choose the

same network as those whom they call the most, so the majority of calls is made

at the (undistorted) on-net rate, and the main effect of the access charge is on

off-equilibrium profits. For this reason, profits tend to be higher under a positive

access markup when both types of equilibria exist. In particular, a markup leads

to higher profits than a discount if (i) consumers’ calling patterns are sufficiently

biased towards their peer groups, (ii) fixed costs per customer are above a lower

limit, and (iii) there is sufficient friction on the demand side that no firm can

corner the entire market (and thereby eliminate the need to interconnect).

Regardless of whether a markup or discount is preferred by the firms, they

will always agree on an access fee that is bounded away from the social optimum,

so that consumers make a positive share of their calls at a price that differs from

marginal cost. This implies a demand inefficiency and a loss in social welfare.

Short of a regulator imposing the welfare-maximizing interconnection fee, the

socially efficient outcome can be restored by a ban on termination-based price

discrimination and, hence, on tariff-mediated externalities. When the price for

each call is the same regardless of where it terminates, the firms strictly prefer

the efficient interconnection fee as long as their profits increase in the amount of

total surplus generated. This is the case, for instance, when there are subsets of

captive consumers whose rents can be fully appropriated by the firms.

The model is described in the next section. Section 3.3 contains the case of an

access markup. The complementary case of a discount is described in Section 3.4.

The different outcomes are compared in Section 3.5. In Section 3.6 it is shown

that a ban on termination-based price discrimination suffices to restore efficiency

in the present model. Section 3.7 concludes. Most proofs are in the Appendix.

3.2 The model

The point of departure for this model is the setup in section 5 of Laffont et al.

(1998b), with firms competing in non-linear tariffs and practising termination-

based price discrimination. The main innovation is the introduction of biased
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calling patterns, i. e. a preference of consumers to call some users more often than

others. Moreover, in constrast with previous research, firms are not assumed to

be exogenously differentiated.

Two firms (or “networks”), A and B, offer telephone services to end users.

Both use the same technology. There is a fixed cost f of connecting a customer

to a network for one period. This includes the cost of billing and any other cost

unrelated to variable consumption. In the case of mobile phones, the fixed cost

may also include a subsidy on handsets, so that f may be quite large relative

to other variables. The marginal cost c of each call minute includes the cost of

termination c0. Each network charges an access fee (or “interconnection charge”)

of a per minute of each incoming call for the termination services which it provides

at a cost of c0. For the originating network, the marginal cost of an “off-net” (or

“outbound”) call terminating on the other network is therefore

ĉ ≡ c + a− c0,

since it saves the cost of terminating the call itself but has to pay the access fee

a. For further reference, let

m ≡ a− c0

c

denote the access markup or discount relative to the true (total) marginal cost of a

call, so that the perceived cost of an outbound call can be written as (1+m)c = ĉ.

(Throughout, a caret denotes variables pertaining to off-net calls.)

On the demand side, there is a set of measure one of non-atomic consumers,

each of whom subscribes to at most one of the two networks. All consumers make

the same number of calls, also normalized to unity.1 Each consumer’s calling

pattern determines the share of his calls going to any given subset of consumers.

More precisely, let the set of all consumers be partitioned into two equal subsets

(or “groups”) i = 1, 2 of measure 1/2 each.2 Consumers make a share of γ of

their calls within their own group and 1−γ to the other group, with 1/2 < γ ≤ 1.

Actual calling partners are chosen randomly in either case. See Figure 3.1 for a

graphical representation.

For illustration, suppose a share of z1 ∈ [0, 1] of the members of group 1 is

connected to network A and the complementary share of 1 − z1 has chosen B.

1Throughout, measure-theoretic terms and the economic variables which they represent are
used interchangeably.

2Allowing for more than two consumer groups is straightforward but does not lead to any
new insights justifying the additional notation.

36



group 1

group 2

1− γ

γ

γ

Figure 3.1: Consumers in each group make a share of γ > 1/2 of their calls to
their own group and 1− γ to the other.

Likewise, let z2 denote the share of group 2 connected to network A, and let 1−z2

denote the share of group 2 on B. Then each member of group 1 makes a share

of γz1 + (1 − γ)z2 of his calls to network A and γ(1 − z1) + (1 − γ)(1 − z2) to

B. Since γ > 1/2, consumers make a larger share of calls to their fellow group

members than to the other group.3

In addition to belonging to different groups, consumers are heterogeneous with

respect to their switching costs. A share of µ of the members of each group is

free to subscribe to either network at no cost. In what follows, these consumers

will be referred to as “mobile”. The remaining 1 − µ consumers are locked-in

(or “captive”) to one of the networks with a switching cost of infinity (but they

can leave the market if their tariff results in a negative net level of utility).4 For

3Calling patterns are biased but still balanced: Consumers call some subsets of the population
more often than others, but any two sets of consumers receive the same number of calls from
each other. Thus, at equal usage prices, the flow of calls between the two networks is completely
symmetric. See Dessein (1999a) and Dessein (1999b) for the analysis of calling patterns where
this is not the case.

4Some form of friction is necessary for pure-strategy equilibria to exist in the presence
of positive network externalities. In the literature, consumers usually vary à la Hotelling in
their relative taste for each network. In such a setting, equilibrium requires a sufficiently low
degree of substitutability of the two firms (i. e. a high transportation cost). In this model, in
contrast, consumers regard the firms’ products as a priori homogeneous, and any perception of
horizontal differentiation is due entirely to prices, calling patterns and the choices made by other
consumers. To obtain shared-market outcomes where both networks stay in the market, one
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simplicity, all the captive members of each group are assumed to be locked-in

to the same network.5 Moreover, the captive consumers of group 1 are assumed

to be locked-in on network A, and the captive members of group 2, on B. This

reflects the idea that the market is “mature”, i. e. the situation is essentially

symmetric for both firms.

Assumption 3 µ ∈ (1/2, 1).

That is, while some users are locked-in, more than half of all consumers are

“mobile” and free to choose either network. This assumption eliminates some

corner solutions in the presence of negative externalities; it is sufficient but not

necessary for what follows.

In all other respects, consumers are identical. Their utility is linear in money,

and a call of length q, on-net or off, increases utility by u(q), where u′ > 0 and

u′′ < 0. By assumption, consumers derive utility from calling others but not from

being called.6

The two networks compete in two-part tariffs, and they are free to price-

discriminate between on-net and outbound calls. More precisely, Ti = (Fi, pi, p̂i)

is a tariff set by firm i with a fixed fee Fi and per-minute prices pi > 0 and p̂i > 0

for on-net and off-net calls, respectively. Moreover, each firm can discriminate

between captive and mobile consumers (but not between consumer groups).7

An immediate effect of termination-based price discrimination is the creation

of tariff-mediated externalities among consumers choosing their network. Con-

sumers are subject to positive externalities if the price of on-net calls on their

network is less than the off-net rate, i. e. p < p̂. In this case, an increase in the

number of subscribers on the same network leaves each existing customer better

must rule out either firm attracting all consumers at once, eliminating the need to interconnect
altogether. This restriction actually makes the model more “realistic” in the sense that real-
life firms in a mature market probably cannot attract all their rival’s customers at once by
lowering their prices. (Whether in reality this is due to consumer switching costs or firms’
capacity constraints is a different matter.) Another way to capture the entire market and
render interconnection irrelevant would be to take over the rival firm. This is ruled out here.

5This assumption can be relaxed. The essential point is that the captive consumers in each
group are distributed asymetrically across the two networks.

6This assumption, which is standard in the literature, ignores the fact that telephone calls
are usually part of an underlying relationship between the caller and the party called. The
main results of this paper are not affected by it.

7As will be shown, equilibrium tariffs for the captive and mobile consumers differ only in
the fixed fee as long as termination-based price discrimination is possible. Some generality is
admittedly lost by the restriction to a single two-part tariff per consumer type; the analysis of
general (menues of) non-linear tariffs is beyond the scope of this paper.
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off because it raises the share of his calls made at the lower on-net price. Like-

wise, if outbound calls are cheaper than those to the same network, consumers

face negative externalities and experience a loss in welfare as more subscribers

join their network.

The game has four stages, and the order of moves is as follows. First, in

the cooperative stage, the networks jointly determine the access markup or dis-

count, m. There are no side payments or binding agreements about the firms’

subsequent behaviour. Second, in the competitive stage, they independently and

non-cooperatively set their tariffs. Third, each consumer subscribes to exactly

one network. Finally, consumers place their calls, and payoffs are realized.

The equilibrium concept is subgame-perfect Nash equilibrium. Throughout,

the attention is restricted to pure strategies and symmetric “shared-market” out-

comes where each firm serves half the total market (but not necessarily half of

each consumer subgroup). As usual, the model is solved backwards. The last

two stages are analyzed in the next two subsections. Some preliminary results

for the second stage are derived in Subsection 3.2.3. Sections 3.3 and 3.4 contain,

respectively, the analysis of stage 2 given an access markup and discount. The

first stage is described in Section 3.5.

3.2.1 Stage 4: Consumption

Consider the final stage where consumers, having subscribed to one of the net-

works, determine their optimal consumption of telephone calls. While a con-

sumer’s calling pattern, together with the subscription choices of all other con-

sumers, determines how many calls he makes to which network, the duration of

each call is determined by its per-minute price, p (or p̂). The indirect utility that

a consumer derives from a call at a per-minute price of p can be expressed as

v(p) = u
(
q(p)

)
− pq(p),

where

q(p) = arg max
q

u(q)− pq

is the optimal call length given p. By the envelope theorem, v′(p) = −q(p).

Moreover, q′(p) < 0 and q′′(p) > 0 by assumption.

The following assumption assures that the market is viable.

Assumption 4 f < v(c).

39



That is, the fixed cost of connecting a consumer to a network is less than the level

of utility that this consumer can achieve if all his calls are made at a per-minute

price equal to the true marginal cost c.

3.2.2 Stage 3: Subscription

The subscription stage is best described as a market for network membership with

unit demand and consumption externalities. The most notable feature at this

stage is the discontinuity in aggregate demand induced by positive externalities.

With negative externalities (p > p̂) on both networks, subscription demand is

smooth; with positive externalities on either network, the mobile consumers from

the same group always choose the same network.

When consumers decide which network to subscribe to, they take the firms’

tariffs and their own subsequent consumption as given. Let zi, i = 1, 2, denote

the share of consumers from group i subscribing to network A. For an individual

in group 1, the net utility of being on network A is

wA
1 (z1, z2) =

[
γz1 + (1− γ)z2

]
v(pA)

+
[
γ(1− z1) + (1− γ)(1− z2)

]
v(p̂A)

− FA,

(3.1)

the weighted sum of the indirect utilities from on-net and off-net calls minus the

fixed fee, where the weights are given by the measure of each type of calls that

this consumer is planning to make. Likewise, the net utility of subscribing to

network B is

wB
1 (z1, z2) =

[
γ(1− z1) + (1− γ)(1− z2)

]
v(pB)

+
[
γz1 + (1− γ)z2

]
v(p̂B)

− FB.

(3.2)

The expressions for the members of group 2 are analogous. When on-net and off-

net prices differ, the resulting externalities imply that each consumer’s optimal

decision depends on the choices of everyone else, giving rise to the usual multi-

plicity of equilibria in “network” models. The following assumption eliminates

payoff-dominated equilibria that are due to coordination failure.

Assumption 5 If a coalition of “mobile” consumers can increase the payoff to
each of its members by choosing a different network, they can coordinate on doing
so. Side payments are ruled out.
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This assumption essentially prevents outcomes where the networks create positive

externalities and consumers fail to choose a more favourable tariff only because

they expect too few of their fellow consumers to follow suit. Thus, it makes the

positive-externalities case more competitive without affecting the outcome under

negative externalities, where the relevant marginal coalition always consists of an

individual consumer and coordination is therefore not an issue.

The equilibrium of the subgame starting with consumers’ subscription choices

at stage 3, and thus the aggregate demand for network membership at stage 2,

is determined by the condition that no coalition of consumers has an incentive

to switch providers, given tariffs and the subscription choices made by all other

users. The kind of equilibrium that can be reached depends on the type of exter-

nalities created by the firms. Consider the mobile consumers in group 1, taking

the choices of all other consumers as given. If there are positive externalities

(p < p̂) on network A, then the incentive to choose network A over B increases

in the number of fellow group members on A. If it pays for any individual mobile

member of group 1 on B to switch to A, then it is even more profitable for all of

them to do so collectively. Thus, demand for network membership is discontin-

uous. If instead firm A creates negative externalities, the marginal coalition of

mobile consumers on B consists of any single individual. The following lemma as-

serts that positive externalities on either network imply that demand for network

membership is discontinuous on both.

Lemma 7 Suppose there are positive externalities (i. e. p < p̂) on at least one
of the networks. Then in any (pure-strategy Nash) equilibrium of the subgame
beginning at stage 3 where consumers choose providers, all the mobile members
of a given group i subscribe to the same network.

Proof. Without loss of generality, suppose there are positive externalities on

network A. Let some mobile consumers from group 1 choose A and some B. In

equilibrium, they must enjoy the same level w of net utility (regardless of the

type of externalities on B), so that no individual consumer has an incentive to

deviate. But the consumers who have chosen B can assure themselves a payoff

w∗ > w by collectively switching to A. Thus, firm B must offer them w∗ in

equilibrium, a contradiction.

The mobile consumers from the two groups i = 1, 2 can still choose different

networks in equilibrium because they give different weights to the captive pop-
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ulation on each network. (See Figure 3.2 for an illustration.) For the mobile

consumers in group 1 to subscribe to network A while those in group 2 choose B,

the share of calls to the captive consumers from the same group, γ(1− µ), must

be at least as large as the share of calls to the other group, 1− γ. This is assured

by the following assumption.8

Assumption 6

γ >
1

2− µ
.

To complete the description of consumers’ subscription decisions at stage 3,

consider the remaining case where both firms create negative externalities, so

that it is individual consumers (as against non-trivial coalitions) who have the

highest incentive to switch providers. The necessary and sufficient condition for

an equilibrium is the equality of the net utilities from joining networks A and B,

wA
1 (z1, z2) and wB

1 (z1, z2) from (3.1) and (3.2) for a mobile consumer in group 1

(and analogously for group 2), given that zi of the mobile members of group i

have chosen network A, i = 1, 2. Solving for market shares among each group,

on obtains

z1(TA, TB) =
FB − FA

γΣ
− (1− γ)z2

γ
+

v(p̂A)− v(pB)

γΣ
(3.3)

and

z2(TA, TB) =
FB − FA

γΣ
− (1− γ)z1

γ
+

v(p̂A)− v(pB)

γΣ
(3.4)

where

Σ ≡ v(p̂A)− v(pA) + v(p̂B)− v(pB) > 0,

and where TA = (FA, pA, p̂A) and TB = (FB, pB, p̂B) denote the tariffs offered

to the non-captive consumers. Since z1 is the market share of A among the

entire group 1, and since the locked-in members of that group always stay on

network A, we have z1 ∈ [1 − µ, 1]. Likewise, firm A cannot attract more than

the mobile members of group 2, so z2 ∈ [0, µ]. Since µ > 1/2 by Assumption 3,

the market-share equations in (3.3) and (3.4) can be solved for

z1 = z2 = z(TA, TB) =
FB − FA + v(p̂A)− v(pB)

Σ
, (3.5)

8There may exist (multiple) equilibria at lower values of γ if Assumption 5 is relaxed and
coordination problems are introduced.
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provided that z ∈ [1 − µ, µ], i. e. as long as some consumers of each mobile set

choose firm A and some choose B. In this case, illustrated in Figure 3.3, the

share of intra-group calls γ is irrelevant.

group
1

group
2network A network B

Figure 3.2: Consumers choose networks by groups under positive externalities.
The shaded areas represent the 1− µ captive consumers in each group.

group 1

group 2

network A network B

Figure 3.3: With negative externalities on both networks, consumers from the
same group subscribe to different networks.

3.2.3 Stage 2: Competition in tariffs

Now consider the second stage where the networks compete in tariffs for the

mobile consumers from both groups, given the access markup or discount m
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chosen at stage 1. The following lemma gives a sufficient condition for the optimal

usage prices p and p̂ to be equal to their respective marginal cost c and ĉ.9 When

this condition holds, the subgame beginning at stage two is effectively reduced to

a one-dimensional competition in fixed fees for market share among the mobile

consumers.

Lemma 8 (Marginal-cost pricing) Consider the continuation game begin-
ning at stage 2 where the firms independently set tariffs. Suppose network i
offers a tariff Ti = (Fi, pi, p̂i) to a subset X of all consumers. If (i) each con-
sumer x ∈ X choosing firm i directs the same share of calls to network A (and
the complementary share to B), and (ii) tariffs are set simultaneously, then

• for a given set of consumers who actually join the network, the firm’s profit
is quasiconcave in p and p̂, and

• the usage prices in a pure-strategy Nash equilibrium are equal to their re-
spective marginal cost, i. e. p = c and p̂ = ĉ.

The intuition is this. Given the rival’s tariffs and consumers’ subsequent

behaviour, the firm’s own tariff Ti has two effects. First, it determines market

shares among the mobile consumers through the net utility that each potential

customer can achieve by subscribing to this firm. Second, it affects the average

profit per actual customer. A necessary condition for a Nash equilibrium is that

the profit per customer is maximized given the current market share, i. e. holding

constant the marginal consumer’s net utility. But when the average and marginal

consumers make the same share of their calls off-net, then their surplus net of the

fixed fee is also maximized by the same pair of usage prices p and p̂, so there is

no conflict between maximizing profit per customer and satisfying the marginal

consumer’s incentive constraint. Setting prices equal to marginal costs, the firm

maximizes the amount of surplus created, using the fixed fee to extract its share

of the surplus and keep the marginal consumer indifferent.

Corollary 1 (Marginal-cost pricing for captive consumers) The optimal
tariff offered by each firm i = A, B to its captive consumers has

• p = c

• p̂ = ĉ

9Unless otherwise noted, “marginal cost” refers to the marginal cost of (one minute of) a
call as perceived by the selling firm, i. e. c for on-net calls and ĉ = (1 + m)c for outbound calls.
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• F =
(
γz1 + (1− γ)z2

)
v(c) +

(
γ(1− z1) + (1− γ)(1− z2)

)
v(ĉ),

where zk is the share of group k = 1, 2 subscribing to firm i.

That is, each firm sets its usage prices such that the total surplus created in

its captive market is maximized, and then uses the fixed fee to extract that

surplus completely. Consequently, each firm’s equilibrium profit from its captive

consumers is

πL
i =

1− µ

2

[(
γz1 + (1− γ)z2

)
v(c)

+
(
γ(1− z1) + (1− γ)(1− z2)

)
v(ĉ)− f

]
,

(3.6)

regardless of the kind of tariff it offers to the mobile segment of the market.

3.3 Access markup and positive externalities

As shown above, consumers’ subscription choices depend fundamentally on

whether at least one of the firms creates positive externalities. It turns out that

in the presence of an access markup, i. e. m > 0, a symmetric Nash equilibrium

requires off-net prices above the on-net rate, i. e. p̂ > p, implying positive exter-

nalities. Conversely, when m < 0, then p̂ < p in equilibrium. Thus, depending

on the sign of the access markup m from the first stage of the game, the firms

find themselves in either of two regimes. This section describes the outcome of

the stage-2 competition in tariffs given a positive access markup m > 0. The

next section contains the analysis of the complementary case.

In a nutshell, the story in this section goes as follows. Suppose the firms

agreed on a positive interconnection markup m > 0 at the first stage. Then the

only candidate equilibrium is the symmetric outcome where both firms charge

higher usage prices for off-net calls and consumers choose networks by groups.

The only relevant deviation from this outcome involves one of the firms attracting

all its rival’s mobile consumers. This is always profitable when the access markup

m is small. As m increases, the deviation profit decreases faster than the shared-

market payoff, and under some conditions on fixed costs and calling patterns, the

symmetric outcome is an equilibrium if m is sufficiently large.

The following Lemma asserts that if a symmetric equilibrium exists, it must

involve tariffs leading to positive externalities. Roughly speaking, profits are

quasiconcave in usage prices by Lemma 8, with a maximum at p = c and p̂ =
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(1 + m)c. Hence, moving closer to marginal-cost pricing leaves each firm better

off, so m > 0 implies that the off-net price p̂ will exceed the on-net rate p.

Lemma 9 If m > 0, then a symmetric equilibrium requires tariffs with p < p̂.

By Lemma 7, if follows that all mobile consumers in each group subscribe

to the same network. It is easy to see that the mobile members of group 2

cannot prefer network A if those of group 1 choose B. Hence, the only symmetric

equilibrium candidate is the outcome where network A serves all the members

of group 1, and firm B connects all consumers in group 2, as in Figure 3.2. By

Lemma 8, usage prices must equal marginal cost in equilibrium, so the difference

between on-net and off-net rates is a simple linear function of the access markup

m.

The continuation game at stage 2 now resembles the ice-cream vendor model

described in the introduction. An increase in the price of off-net calls raises the

transportation cost for consumers who make more of their calls to one network

than to the other. This in turn makes it less attractive for each firm to deviate

from the shared-market equilibrium and attract its rival’s customers. At the same

time, the reservation value of subscribing to the “right” network (the equivalent of

r in the simple spatial model) is reduced by higher off-net prices. Thus, there is a

negative effect on equilibrium profits as well as a reduced payoff from deviations.

Moreover, when m > 0, incoming calls generate a profit for the receiving firm,

and the volume of incoming and outgoing calls changes when a firm deviates from

the shared-market outcome. As will be shown below, however, the overall effect

of a symmetric increase in the off-net price is to reduce the lower limit for the

fixed cost f above which the shared-market outcome can be sustained.

Marginal-cost pricing on both networks reduces the incentive constraint for

the mobile consumers in group 1 to choose A to

FA ≤ FB + (2γ − 1− γµ)
(
v(c)− v(ĉ)

)
, (3.7)

and likewise the constraint for the mobile members of group 2 to join network B

becomes

FA ≥ FB − (2γ − 1− γµ)
(
v(c)− v(ĉ)

)
(3.8)

(2γ−1−µγ > 0 by Assumption 6). Moreover, in order for consumers’ net utilities

in equilibrium to be non-negative, it must be that

Fi ≤ γv(c) + (1− γ)v(ĉ) i = A, B. (3.9)

46



Just as in the ice-cream vendor model, the only candidate for a symmetric pure-

strategy equilibrium is the outcome where prices (in this case, fixed fees) are just

equal to consumers’ reservation price (the weighted indirect utility from on-net

and off-net calls).

Lemma 10 In a symmetric (pure-strategy Nash) equilibrium, condition (3.9)
must hold with equality.

Proof. Consider a candidate equilibrium where the inequality in (3.9) is strict.

Then there is at least one firm which can raise its fixed fee by some ε > 0, and

thus its profit per customer, without losing market share: a contradiction.

Taken together, Lemmas 8 and 10 imply that the profit of each firm in a

shared-market Nash equilibrium with positive externalities is

π⊕ =
1

2

(
γv(c) + (1− γ)v(ĉ)− f

)
+

1− γ

2
mcq(ĉ). (3.10)

For this equilibrium to exist, neither firm must find it profitable to raise

its tariff and lose its mobile clientele, or to undercut its rival and attract its

customers. The first of these deviations might appear odd since it involves one

of the firms voluntarily ceding the mobile market to its competitor. However,

with m > 0 the firms make a positive profit on each incoming call which they

terminate, and the amount of incoming traffic is higher when members of the

same group are on different networks than in the shared-market outcome. Thus,

it is not completely obvious that firm A never prefers to leave the mobile market

to network B. As the following lemma shows, however, this deviation from the

candidate shared-market outcome is never profitable.

Lemma 11 In the shared-market outcome with alle the members of group 1 on
network A, all group 2 consumers on network B, and marginal-cost usage prices
p = c and p̂ = ĉ set by both networks, a firm ceding the mobile market to its rival
reduces its payoff.

Intuitively, since all off-net prices are equal to ĉ, the increase in incoming call

volume is exactly matched by an increase in the number and volume of calls from

the firm’s captive consumers to all others, leaving the interconnection balance

unchanged at zero. But the retreating firm loses whatever profit it makes on its

mobile customers, and the surplus generated in its captive market (which it fully

extracts) is reduced as a larger share of calls is made off-net.
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This leaves undercutting and attracting the other firm’s mobile consumers as

the only remaining deviation from the candidate shared-market equilibrium. The

resulting deviation profit, denoted by a superscript D, is10

πD(TD
A ) =

1− µ

2

[
(γ + (1− γ)µ)v(c) + (1− γ)(1− µ)v(ĉ)− f

]
+

µ

2

[
(1 + µ)(pD

A − c)q(pD
A) + (1− µ)(p̂D

A − ĉ)q(p̂D
A) + 2(FD

A − f)
]

+
1− µ

2
(1− γ + γµ)mcq(ĉ),

(3.11)

where the first line is the profit which firm A makes on its captive consumers; the

second line is the profit from all mobile consumers; and the last line is the profit

from terminating the incoming calls originated by the rival’s captive consumers.

It turns out that this deviation is always profitable when the interconnection

premium m is small (but non-negative).

Proposition 4 There is a value m > 0 such that for all m ∈ [0, m], it is prof-
itable for each firm to deviate from the shared-market outcome by undercutting its
rival and attracting all mobile customers, even if the deviating firm is constrained
to setting usage prices equal to marginal cost, i. e. p = c and p̂ = ĉ.

Intuitively, when m is close to zero, the deviating firm bears only a small

opportunity cost in its home market (the mobile group-1 consumers for A) when

adjusting its tariff to satisfy the incentive constraint of the rival’s mobile con-

sumers. A simple way to find a lower bound for the deviation profit is to hold

prices constant at p = c and p̂ = ĉ and adjust only the fixed fee FD
A to com-

pensate the marginal consumers for the loss in utility from switching networks,

(2γ− 1− γµ)
(
v(c)− v(ĉ)

)
. But as m goes to zero, so does v(c)− v(ĉ), and there-

fore the amount by which the deviating firm must reduce its fixed fee. As long

as f < v(c), as assumed, even the lower bound for the deviation profit exceeds

the shared-market payoff when m is close to zero.

It follows that a termination markup m > m > 0 is necessary for a shared-

market Nash equilibrium. What remains to be shown is whether any value of m

above m is sufficient for its existence. Since the mobile consumers in the two

groups differ in their share of calls going to either network, Lemma 8 no longer

applies and the optimal tariff includes usage prices deviating from marginal cost.

10The following equations are given for firm A. The expressions for firm B are obtained by
exchanging subscripts A and B.
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Lemma 12 (Optimal deviation tariff) Suppose one of the firms departs from
the shared-market outcome, attracting its rival’s mobile consumers. The firm’s
payoff is maximized by the optimal deviation tariff TD = (FD, pD, p̂D) with

pD = c− (2γ − 1)
1− µ

1 + µ

q(pD)

q′(pD)

p̂D = ĉ + (2γ − 1)
q(p̂D)

q′(p̂D)

FD = (1− γ + γµ)v(pD) + (1− µ)γv(p̂D)

provided that the binding incentive constraint is the one for the new customers to

switch networks, i. e. v(pD)− v(p̂D) ≥ −
(
v(c)− v(ĉ)

)
.

Several points are worth noting about this result. First, without further re-

strictions on the model the optimal usage prices can be defined only implicitly.

Second, pD > c and p̂D < ĉ, i. e. usage prices differ from perceived marginal cost.

This is because the firm cannot price-discriminate between its marginal con-

sumers (whom it tries to attract away from its rival) and its inframarginal ones.

Satisfying the marginal consumers’ incentive constraint therefore involves an op-

portunity cost as the reduced tariff is offered to all mobile consumers. Since the

marginal consumers make more off-net calls than the average consumer, this cost

is minimized by a tariff which involves a cross-subsidy from on-net to outbound

calls.11 Finally, TD has been derived under the assumption that the marginal

consumer coalition consists of those mobile users who would have subscribed to

the rival network in the shared-market equilibrium. It can be shown that this is

correct as long as the inequality in the last line of the Lemma holds (v(c) > v(ĉ),

so pD must be strictly above p̂D for this condition to be violated). As the follow-

ing lemma asserts, this is the case when m is large enough; otherwise πD(TD)

constitutes an upper bound for the profit of the deviating firm.

Lemma 13 (i) There is a positive m such that v(pD)− v(p̂D) ≥ −
(
v(c)− v(ĉ)

)
if m ≥ m. (ii) When m < m, then πD(TD) is an upper bound for the true
deviation profit.

In a nutshell, the on-net price pD does not depend on m and the off-net price

p̂D increases monotonically and without bound as m goes to infinity. The same

11As µ approaches unity, pD converges to c and FD to v(c), and the number of calls affected
by p̂D 6= ĉ goes to zero, so in the absence of captive consumers, TD is essentially the same as
the marginal-cost tariff set by the non-deviating firm.
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is trivially true for c and ĉ. Thus, as m goes out of bounds, the LHS of the

inequality is positive and the RHS negative. When m is positive but below m, it

can be shown that the incentive constraint of the firm’s existing customers must

hold as well as the one for its new clients, and the maximum deviation payoff can

be no higher than in the absence of this additional constraint.

The shared-market outcome is a Nash equilibrium if the payoff of each firm is

non-negative and at least as large as the deviation profit. By (3.10) the derivative

of the shared-market profit w. r. t. m is

∂π⊕

∂m
=

1− γ

2
mc2q′(ĉ),

so π⊕ is non-increasing in m > 0, and monotonically decreasing if γ < 1. Hence,

the aim is to find the smallest positive m for which deviating from the symmetric

outcome is not profitable, i. e. m⊕ = min{m |πD(TD) ≤ π⊕}.12

It will be convenient to analyze the effects of m on the shared-market and

deviation profits in terms of the fixed cost f . An increase in f has a larger impact

on the profit of the deviating firm, which connects more consumers. Thus, the

condition that πD(TD) ≤ π⊕ translates into a lower bound fmin for the fixed

cost. On the other hand, the shared-market profit, too, decreases in f , so the

non-negativity condition implies an upper bound fmax.13

Comparing (3.10) with (3.11), it is immediate that the shared-market payoff is

larger than the (upper bound on the) deviation profit if and only if f is sufficiently

large. Defining

fmin ≡ (1 + µ)(pD − c)q(pD) + (1− µ)(p̂D − ĉ)q(p̂D) + 2FD

+ (1− γ)(1− µ)
(
v(c)− v(ĉ)

)
+ (2γ − 1− γµ)mcq(ĉ)

− γv − (1− γ)v(ĉ)

(3.12)

with TD = (FD, pD, p̂D) from Lemma 12, we have

π⊕ ≥ πD ⇐⇒ f ≥ fmin.

To interpret the expression in (3.12), multiply both sides by µ/2, the measure

of the rival’s mobile clientele which the deviating firm A attempts to attract. The

12Since πD(TD) is, strictly speaking, only an upper bound on the true deviation profit (be-
cause of the possibility that m < m), there might be some m < m⊕ that also satisfies the
no-deviation condition. Thus, π⊕(m⊕) is a lower bound for the true shared-market profit.

13This corresponds to the condition that r − 2t ≤ φ ≤ r in the ice-cream vendor model.
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first line on the RHS is the profit (gross of fixed costs) of the deviating firm from

serving all mobile consumers. The second line gives the increase in A’s profit from

increasing (and fully extracting) the surplus generated in its captive market as the

locked-in users make their calls to the newly-attracted mobile consumers on-net

rather than off. The third line represents the increase in its profit from incoming

calls, whose volume is higher than in the shared-market outcome because the

mobile and locked-in members of group 2 are now on different networks. On

the other hand, the deviating firm loses the shared-market profit on the mobile

group 1 consumers given by the last line, and it incurs the fixed cost f on each

of its newly-attracted mobile customers.

The first derivative of fmin w. r. t. m,

∂fmin

∂m
= (1− µ)

[(
(p̂D − ĉ)q′(p̂D) + (1− 2γ)q(p̂D)

)∂p̂D

∂m
− cq(p̂D)

]
+ (1− γ)(1− µ)cq(ĉ)

+ (2γ − 1− γµ)
(
cq(ĉ) + mc2q′(ĉ)

)
+ (1− γ)cq(ĉ)

= (1− µ)
(
q(ĉ)− q(p̂D)

)
c + (2γ − 1− γµ)mcq′(ĉ),

(3.13)

is negative.14 Thus, an increase in the interconnection markup m reduces the

mimimum level of the fixed cost f above which the shared-market outcome can

be a Nash equilibrium. This is the result of a number of different effects.

First, as the interconnection markup increases, it becomes more costly for

the deviating firm to satisfy the incentive constraint of the marginal consumers

whom it attempts to attract away from its rival, and who (if they do switch to the

deviating firm) make more of their calls off-net than the firm’s average customer.

A higher markup m leads to a higher off-net price p̂D, which implies a lower fixed

fee FD for all mobile consumers, marginal or not, and therefore a lower amount

of surplus which the firm can extract from the mobile market. This effect, which

increases the relative profitability of the shared-market outcome, is captured by

the first line on the RHS of (3.13).

Second, the larger m, the higher is the deviating firm’s profit in its captive

market relative to the shared-market outcome. Prices for the locked-in consumers

are always equal to marginal cost, so a higher markup on interconnection reduces

the (fully extractable) surplus from off-net calls, of which there are fewer when

14By Lemma 12, (p̂D − ĉ)q′(p̂D) = (2γ − 1)q(p̂D), and p̂D < ĉ, so q(p̂D) > q(ĉ).
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the network is expanded. This effect, which works against the shared-market

outcome, is represented by the second line of (3.13).

Third, the interconnection fee affects the profit of the deviating firm from in-

coming calls originated by the remaining captive consumers on the rival network.

An increase in m raises the profit from terminating calls but reduces their volume

(because the rival network increases its off-net price p̂ = ĉ accordingly). As can

be seen from the third line of (3.13), the net effect is positive when m is close to

zero, and it converges to a non-positive value as m (and, therefore, ĉ) becomes

large.15

Finally, as the fourth line of (3.13) indicates, a larger m decreases the cost of

forgoing to serve the mobile group 1 consumers (for firm A) at the optimal shared-

market tariff. In the shared-market outcome, consumers make 1−γ of their calls

off-net at a usage price equal to the perceived marginal cost ĉ = (1 + m)c.

Thus, unless the share of intra-group calls γ equals one, an increase in m reduces

the (fully extracted) surplus and therefore makes the shared-market outcome

relatively less profitable.

When γ is not too small, the first effect dominates the others as m grows

large, so the overall effect of an increase in m is to reduce the deviation payoff

relative to the shared-market profit, and thus to decrease the minimum level for

the fixed cost f that is necessary to sustain the symmetric equilibrium. Since by

Lemmas 12 and 13, p̂D < ĉ, it can be seen from the last equation in (3.13) that

∂fmin/∂m < 0 if (but not only if) Assumption 6 is satisfied (cf. Figure 3.4).

Turning to the non-negativity condition for the shared-market profit, the up-

per bound for f is given by

fmax = v(c)− (1− γ)
(
v(c)− v(ĉ)−mcq(ĉ)

)
, (3.14)

with a first derivative w. r. t. m of

(1− γ)mc2q′(ĉ), (3.15)

which is non-positive for all m > 0, and strictly negative when γ < 1: Whenever

consumers make some of their calls to the other network, a markup on off-net

prices reduces the amount of surplus, and therefore profits, generated in equilib-

rium. Consequently, shared-market profits are maximized by the smallest value

of m for which fmin ≤ f .

15cq(ĉ) → 0 as m →∞, and mc2q′ < 0 ∀ m > 0.
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m

f

fmax

fmin

f0

m⊕

Figure 3.4: An example for fmin and fmax as functions of m. Given a fixed
cost per customer of f0, m⊕ is the smallest access markup which supports the
shared-market equilibrium.

A shared-market equilibrium exists if fmin ≤ f ≤ fmax. The following Lemma

states that when the share of intra-group calls γ is large, then fmin and fmax

define a non-empty interval for the fixed cost f , as in Figure 3.4.

Lemma 14 If m ≥ m from Lemma 13, then there is a γ < 1 such that fmin ≤
fmax ∀γ > γ.

Moreover, the lower the share of mobile consumers µ, the wider is the range of

parameters over which the shared-market equilibrium can be sustained. Unless

m is too close to zero, the threshold fmin for the fixed cost f increases in µ. Lower

values of µ imply a smaller set of consumers which a deviating firm can attract,

and a larger share of off-net calls made by each of them, making their incentive

constraint more costly to satisfy.16 Since this reduces the deviation profit, a lower

fixed cost f suffices to support the shared-market outcome when µ is exogenously

decreased.

Thus, when the calling pattern of each group is sufficiently biased towards

the members of the same group, and when there is some degree of friction in the

market, there is a range of values for the (exogenous) fixed cost f such that m

16The last part of this statement relies on the assumption that µ > 1/2.
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can be chosen to sustain the shared-market outcome in equilibrium with positive

profits.

Proposition 5 Suppose the share of intra-group calls γ is sufficiently high and
the fixed cost exceeds the lower bound of fmin,

f > lim
m→∞

fmin(m).

If the interconnection markup m has been chosen at stage 1 such that

f ≥ fmin(m),

then the unique Nash equilibrium in pure strategies is the shared-market outcome
with marginal-cost usage prices p = c and p̂ = ĉ, consumers choosing networks
by group as in Figure 3.2, and per-firm profits as in (3.10).

Whether or not the lower bound of fmin lies below the fixed cost f depends

on the exact functional specification. It is not difficult, however, to construct

examples where fmin is negative above some finite value m, in which case the

shared-market outcome can always be sustained if γ is sufficiently high.

3.4 Access discount and negative externalities

This section covers the complementary case where the firms have agreed on an

interconnection discount m < 0 at stage 1.17 As in the previous section, there is

no shared-market equilibrium where externalities and the access markup m are

of opposite signs; if they were, then one of the firms could increase its profit by

approaching marginal-cost pricing while holding market shares constant.

Lemma 15 When m < 0, a symmetric Nash equilibrium requires p̂ < p.

With negative externalities on both networks (lower prices for off-net calls

than on-net), the market shares of firm A among the two groups are given by

z(TA, TB) from (3.5) as long as each network is chosen by some members of each

subset, i. e. while z ∈ [1 − µ, µ]. When this is the case, all a firm’s mobile

customers make the same share z of their calls to network A and 1− z to B, so

17This case is included mainly for the sake of completeness, and because it plays a role in
the literature. In reality, access discounts and off-net prices below the on-net rate appear to
be less relevant, although there are examples of “bill and keep” arrangements with an access
charge of zero; cf. Gans and King (1999).
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by Lemma 8 usage prices in a Nash equilibrium must be p = c and p̂ = ĉ. This

means that the firms compete in fixed fees FA and FB only, and the expression

for the market share of network A is reduced to

z(FA, FB) =
1

2
+

FB − FA

2∆
,

where

∆ ≡ v(ĉ)− v(c) > 0

is the difference in indirect utilities from outbound and on-net calls priced at

their respective marginal cost.

Now consider the profit of firm A given marginal-cost pricing by both firms,

πA(FA, FB) =
1− µ

2

[
zv(c) + (1− z)v(ĉ)− f

]
+

(
z − 1− µ

2

)
(FA − f)

+ z(1− z)mcq(ĉ),

(3.16)

where the first line on the RHS is the profit πL
A that firm A makes on its captive

consumers, as in (3.6) with z1 = z2 = z; the second line is the profit from the

mobile subscribers whom A attracts; and the last line gives the (negative) profit

from incoming calls, whose volume is a function of firm B’s off-net prices for its

mobile and captive customers, both of which are equal to ĉ. (The arguments of z

have been dropped for simplicity.) Since the net utility of the mobile consumers

must be non-negative, the fixed fee is constrained by

FA ≤
v(c) + v(ĉ)

2
. (3.17)

As long as this constraint is slack, the first-order condition w.r.t. FA is given

by

∂πA

∂FA

=
1− µ

4

+
µ

2
+

FB + f − 2FA

2∆

+
FB − FA

2∆2
mcq(ĉ),

(3.18)

which yields A’s best-reply function, implicitly defined by(
2∆ + mcq(ĉ)

)
FA =

(
∆ + mcq(ĉ)

)
FB + ∆f +

1 + µ

2
∆2. (3.19)
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The best-reply function for B is completely symmetric, i. e.(
2∆ + mcq(ĉ)

)
FB =

(
∆ + mcq(ĉ)

)
FA + ∆f +

1 + µ

2
∆2. (3.20)

The objective function of A in (3.16) is concave in FA if 2∆ + mcq̂ is positive:

∂2πA

∂F 2
A

= − 1

2∆2

(
2∆ + mcq(ĉ)

)
.

The following Lemma assures that this is the case when m is negative but not

too large in absolute terms.

Lemma 16 Consider the function g(m) = (1+ y)∆+mcq(ĉ), where ∆ ≡ v(ĉ)−
v(c). If y = 0, then g(m) < 0 ∀m < 0. If y > 0, then there is a value of m̃ < 0
such that g(m) > 0 ∀m ∈ (m̃, 0).

In particular, this means that ∆+mcq(ĉ) is negative whenever m is negative,

and 2∆+mcq(ĉ) is positive when m is “not too negative”. (2∆+mcq(ĉ) is concave

in m for all m < 0.) Hence, the profit function is concave and (3.19) and (3.20)

are indeed best-reply functions, and their slope is negative. This implies that

fixed fees are strategic substitutes. As can be seen from (3.18), the cross-partial

derivative of firm A’s profit w.r.t. FB,

∂2πA

∂FA∂FB

=
1

2∆2

(
∆ + mcq(ĉ)

)
,

is indeed negative. More precisely, an increase in FB has two opposite effects.

First, as usual, a higher fixed fee FB makes raising FA more profitable for firm

A; this is reflected by the positive term ∆ in the parenthesis. Second, there is a

negative effect of an increased FB represented by the term mcq(ĉ). When m < 0,

the profit from terminating incoming calls (given by the last line in (3.16)) is

a negative, strictly convex function of FA with a minimum at FA = FB (i. e.

at z = 1/2). Therefore, the effect on A’s profit of an increase in FA increases

monotonically as FA − FB increases, so raising FB makes an increase in FA less

profitable. By Lemma 16 this second, negative effect dominates the first whenever

m is negative.

The best-reply functions for A and B define a unique and symmetric pure-

strategy candidate equilibrium in FA and FB, which is stable if 3∆+2mcq(ĉ) > 0

(so that the slopes of the best-reply functions are larger than −1). Solving (3.19)

and (3.20) for FA = FB = F	, one obtains

F	 = f +
1 + µ

2
∆. (3.21)
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Together with the marginal-cost pricing result for the usage prices and the con-

straint on the fixed fee in (3.17), this leads to the following characterization of

the shared-market outcome.

Proposition 6 In the shared-market outcome with negative externalities, usage
prices are equal to marginal cost,

p = c and p̂ = ĉ,

fixed fees exceed fixed costs,

FA = FB = F	 = min

[
f +

1 + µ

2
∆,

v(c) + v(ĉ)

2

]
,

and each firm serves half of each consumer group, z1 = z2 = 1/2, as in Figure 3.3.

It follows that equilibrium profits per firm are

π	(m) =
1− µ

2

(
v(c) + v(ĉ)

2
− f

)
+

µ

2

(
F	 − f

)
+

mcq(ĉ)

4
(3.22)

where the first term gives the equilibrium profit on firm i’s captive consumers,

the second term is the profit from non-captive consumers, and the last term gives

the loss from granting access below cost.18

Proposition 7 In the symmetric, shared-market outcome with negative exter-
nalities, a decrease in the access markup m increases profits if m is negative but
close to zero.

Proof. Analogous to the proof of Lemma 16. For m ≈ 0, F	 = f + 1+µ
2

∆, and

the derivative of the profit per firm w.r.t. m is

∂π	

∂m
=

c

4

(
mcq′(ĉ)− µ2q(ĉ)

)
. (3.23)

As m → 0, the first term in the parenthesis vanishes, and the expression is

negative. Thus, π	 decreases as m approaches zero from below.

18To verify that this candidate outcome is indeed a Nash equilibrium, it remains to be shown
that it is robust against unilateral deviations outside the range of z ∈ [1−µ, µ], as well as against
either firm deviating to a tariff with p < p̂. Non-existence of equilibrium under some parameter
constellations would still imply that (3.22) is an upper bound on shared-market profits under
an interconnection discount.
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It follows that profits in the shared-market outcome with negative externalities

are maximized by some m	 strictly below zero.19 Intuitively, the lower is m, the

larger is the difference p − p̂ between on-net and off-net rates, so the stronger

are the negative externalities that consumers on the same network exert on each

other. When a firm tries to expand its market share, the marginal consumer has

to be compensated for the loss in utility resulting from being on a larger network;

the larger is p − p̂, the higher is the required compensation (which is given to

all inframarginal consumers as well). By making it more expensive to expand, a

lower m helps to sustain a more profitable shared-market outcome.

However, there is a lower bound for the optimal m	. First of all, a discount on

incoming calls on both networks leads to off-net prices below their true marginal

cost, i. e. p̂ = (1 + m)c < c for all m < 0. Even if access payments between the

two networks cancel out in equilibrium, each firm still has to subsidize the incom-

ing calls originated by its rival’s customers. This subsidy, given by the last term

in (3.22), has an increasingly negative effect on profits as m decreases, because

both the subsidy per call minute mc and the length of incoming calls q((1+m)c)

increases. At what point this overproduction effect dominates the competition

effect depends on functional forms and parameters; but while the negative ex-

ternalities induced by m < 0 soften the competition for market share, it is clear

that they also distort equilibrium consumption, and hence reduce profits.

Second, m	 is bounded below by the condition that 3∆ + 2mcq(ĉ) > 0,

which is necessary for the slopes of the reaction functions to exceed −1. (The

same condition implies that 2∆ + mcq(ĉ) > 0, guaranteeing the concavity of the

objective function.)

Third, as the following lemma asserts, the mobile consumers’ participation

19This is essentially the same result as in the analysis in Gans and King (1999) of the model
in Laffont et al. (1998b) with two-part tariffs and termination-based price discrimination. In
that model, consumers’ utility is specified explicitly as

u(q) =
q1−(1/η)

1− 1
η

,

with η > 1. It follows that variable demand is given by q(p) = p−η, so that q(ĉ) = ĉ−η and
q′(ĉ) = −ηĉ−(η+1). Setting the first derivative in (3.23) equal to zero and solving for m	, one
can see that profits in the shared-market outcome with negative externalities are maximized by

m	 = − µ2

η + µ2
∈ (−1, 0).
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constraint in (3.17) is binding whenever m is below some negative cutoff value.

When this is the case, profits increase in m, implying another lower bound for

the optimal m	.

Lemma 17 Given the fixed fee F	 from (3.21), the individual-rationality con-
straint in (3.17) is binding if and only if m < mPC, where mPC ∈ (−∞, 0)
solves

f +
1 + µ

2
∆ =

v(c) + v(ĉ)

2
.

Moreover, if m < mPC, then ∂π	/∂m > 0.

3.5 Stage 1: Cooperative choice of the access

charge

When the networks jointly determine the interconnection markup at the first

stage of the game, they either choose a discount (m	 < 0) to support a shared-

market outcome with negative externalities, as in (3.22); or they can agree on

a positive markup m⊕ > 0 in order to sustain the equilibrium with positive

externalities, with profits per firm as in (3.10). In either case, Propositions 4 and

7 imply that the markup m chosen by the networks is bounded away from the

socially optimal value of zero.

An important difference between the two types of externalities is their relative

effect on payoffs in and off the equilibrium. With negative externalities induced

by an access discount, consumers choose networks so as to maximize their number

of off-net calls. This also maximizes the equilibrium share of calls with a usage

price below the true marginal cost c, and thus with inefficiently high volume

demand. In contrast, in the positive-externalities outcome described in Section

3.3, the access charge mainly affects payoffs off the equilibrium. It turns out that

the positive-externalities outcome is more attractive to the firms if the share of

intra-group calls γ and the fixed cost f are both sufficiently high.

When the firms agree on an access markup, the shared-market outcome with

consumers joining networks by group can be sustained if the fixed cost exceeds

the lower bound of fmin. Since equilibrium profits decrease in m, the profit-

maximizing m⊕ is chosen such that fmin (a monotonically-decreasing function of

m) just equals the actual fixed cost f . By (3.10), per-firm profit π⊕ is continuous

59



m

π

π⊕

m⊕

π	

m	

Figure 3.5: Equilibrium shared-market profits as a function of the intercon-
nection markup m when γ and f are sufficiently high for π⊕ to exceed π	. No
equilibrium exists for m ∈ [0, m⊕).

and monotonically increasing in the share of intra-group calls γ. As γ approaches

unity, π⊕ converges to the cartel level,

γ → 1 ⇒ π⊕ → v(c)− f

2
.

Not only do profits increase in γ, but the existence of the positive-externalities

equilibrium also requires that γ > 1/(2−µ), as assumed.20 In contrast, as γ goes

to 1/2, so that the calling pattern becomes “unbiased” in the sense of Laffont

et al. (1998a), there is no shared-market equilibrium with positive externalities.

On the other hand, if the firms negotiate an access discount and subsequently

offer tariffs which lead to negative externalities, then by (3.22) equilibrium shared-

market profits are independent of γ. In particular, this is true for the upper bound

on π	,

1

2

(
v(c) + v(ĉ) + mcq(ĉ)

2
− f

)
.

20See Assumption 6. The lower bound for γ of 1/(2 − µ) is a consequence of Assumption
5, which rules out coordination failure among consumers. To the extent that consumers can-
not coordinate their choice of network, there may also exist (multiple) positive-externalities
equilibria for lower values of γ.
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Moreover, Lemma 16 implies that this upper bound is strictly less than
(
v(c)−

f
)
/2 for all m < 0, including the profit-maximizing m	 from the previous sec-

tion.21 Proposition 8 follows directly.

Proposition 8 Suppose the fixed cost f is sufficiently high to support the
positive-externalities equilibrium. Then there is a minimum value γ∗ < 1 for
the share of intra-group calls γ such that equilibrium profits are maximized by a
positive interconnection markup m⊕ > 0 whenever γ ≥ γ∗.

Whether f is indeed sufficiently high to support the positive-externalities

equilibrium depends in part on the share of mobile consumers µ. The larger is µ,

the larger must be the share of intra-group calls γ to support the outcome depicted

in Figure 3.2, which requires that γ > 1/(2− µ). Moreover, it is relatively more

profitable to deviate and attract the rival’s subscribers when the share of mobile

consumers is large. Indeed, as µ → 1, the positive-markup outcome cannot be

sustained by any f < fmax. Thus, a certain amount of friction (measured by 1−µ)

is necessary to support the shared-market equilibrium with a positive markup on

interconnection and on outbound calls. In contrast, the negative-externalities

equilibrium exists even when all consumers are mobile.

3.6 Banning termination-based price discrimi-

nation

Since the profit-maximizing access markup or discount is bounded away from zero,

social welfare is compromised in either case because some calls are priced above or

below their true cost, implying a demand inefficiency. (The exception is the limit

case under positive externalities where γ = 1, so that there are no calls between

the networks; but this exploits the assumption that all the locked-in members

of each group are on the same network.) This prompts the question of what a

regulator can and should do to improve the outcome. In a world of complete

information the answer would be simple: Impose m = 0 and let the networks

compete from stage 2. In reality, regulation introduces a set of problems of its

own, most notably asymmetric information between the firms and the regulator

and the risk of regulatory capture. It turns out that in the present setup, there

is no need for the regulator to determine the correct access charge. Instead, a

21Since F	 ≤
(
v(c) + v(ĉ)

)
/2 by Proposition 6, the upper bound for profits follows from

(3.22).
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ban on termination-based price discrimination suffices for the networks to strictly

prefer an access markup of zero. This result goes beyond the profit neutrality of

the interconnection fee generally found in the literature on non-linear tariffs.

When on-net and off-net prices must be the same, then by definition the level

of net utility from joining either network is independent of the decisions taken

by all other consumers. Consider the set of all mobile consumers (from both

groups) and let pi denote the usage price set by network i = A, B for all calls,

and Fi the fixed fee. If v(pA)−FA > v(pB)−FB, then all mobile consumers join

network A. If the inequality is reversed, they all choose B. For the remaining

case where v(pA) − FA = v(pB) − FB and users are indifferent between the two

networks, it is assumed that each consumer independently chooses A or B with

equal probability (cf. Figure 3.6).22

group 1

group 2

network A

network B

Figure 3.6: In the absence of externalities, mobile consumers independently
choose one of the networks with probability 1/2 if both offer the same level of
net utility v(pi)− Fi.

Thus, there are only two equilibrium candidates. In the symmetric outcome,

each network serves its captive consumers plus one-half of the mobile consumers

22This assumption, which is admittedly arbitrary, is sufficient but not necessary for what
follows. Cf. footnotes 23 and 24.
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from each group and makes a “shared-market” profit of

πS
i =

1− µ

2

(
(pL

i − c)q(pL
i ) + v(pL

i )− f
)

+
µ

2

(
(pM

i − c)q(pM
i ) + FM

i − f
)

+
1− µ

2

(
1− µ

2
− γ(1− µ)

)[
q(pL

j )− q(pL
i )

]
+

µ

4

[
q(pM

j )− q(pM
i )

] (3.24)

where the subscript j denotes the rival’s tariff, and superscripts L and M denote

locked-in and mobile consumers, respectively. The first line of (3.24) gives the

direct profits from captive and mobile consumers; the remaining terms represent

the access payments to and from the rival network. Thus, (i) the optimal usage

prices in the shared-market outcome must be the same on both networks, (ii)

equilibrium prices are equal to their average marginal cost, i. e. pLS
i = c +

(
1 −

(1 − µ)γ − µ/2
)
mc and pMS

i = c + mc/2, and (iii) profits are quasi-concave in

usage prices. Moreover, access payments cancel out in equilibrium, so the terms

on the second and third line of (3.24) are zero.

To corner the (mobile) market, network i only needs to provide a level of net

utility v(pM
i ) − FM

i exceeding by some ε > 0 that which is offered by the rival

network j. The resulting profit for firm i is

πK
i =

1− µ

2

(
(pL

i − c)q(pL
i ) + v(pL

i )− f
)

+ µ
(
(pM

i − c)q(pM
i ) + FM

i − f
)

− 1− µ

2
mc

[
(1− γ)(1− µ)q(pL

i ) + µq(pM
i )− (1− γ + γµ)q(pL

j )
]
.

(3.25)

The optimal usage prices maximizing πK
i are again equal to the average marginal

cost of each call. Thus, the firm sets a price of pLK
i = c + (1 − γ)(1 − µ)mc for

its captive consumers, and a price of pMK
i = c + 1−µ

2
mc for its mobile customers.

Lemma 18 Suppose m 6= 0. If a symmetric (shared-market) Nash equilibrium
exists, then per-firm profits must be strictly less than

1− µ

2

(
v(c)− f

)
.

Proof. In a symmetric shared-market equilibrium, access payments between

the networks cancel out, so the terms on the second and third line of (3.24) are

zero. The profit on each firm’s locked-in consumers given by the first term on

the first line is strictly less than

1− µ

2
(v(c)− f)
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because

(p− c)q(p) + v(p)

is uniquely maximized by p = c, and pLS
i 6= c ∀m 6= 0.

To prove the lemma, it suffices to show that the profit made on the firm’s

mobile clientele,

µ

2

(
(pMS − c)q(pMS) + FMS − f

)
, (3.26)

must be non-positive in equilibrium. Otherwise, the following deviation from

the shared-market outcome would be profitable. Let one of the firms reduce its

fixed fee FMS by some ε > 0, cornering the market while keeping all other prices

constant. By (3.24) and (3.25), this results in a net gain of

µ

2

(
(pMS − c)q(pMS) + FMS − f − ε

)
+

1− µ

2
mcµ

[
q(pLS)− q(pMS)

]
.

Since pLS < pMS for m > 0, and the reverse for m < 0, there always exists some

ε > 0 such that this deviation is profitable if (3.26) is positive.23

The only remaining candidate equilibrium is asymmetric, with one firm cor-

nering the mobile market and the other serving only its locked-in consumers. The

profit of the firm which retreats to its captive market, denoted by a superscript

R,

πR
i =

1− µ

2

(
(pL

i − c)q(pL
i ) + v(pL

i )− f
)

+
1− µ

2
mc

[
(1− γ)(1− µ)q(pL

j ) + µq(pM
j )− (1− γ + γµ)q(pL

i )
]
,

(3.27)

is maximized by a usage price of pLR
i = c + (1− γ + γµ)mc, which is again equal

to average marginal cost.

Lemma 19 If m 6= 0, then there is no asymmetric Nash equilibrium in (weakly)
undominated pure strategies.

23It can be shown that
∣∣pLS − c

∣∣ ≤ ∣∣pMS − c
∣∣ (which is sufficient but not necessary for the

proof) whenever at least half of group 1 (2) joins network A (B). Thus, the assumption that
indifferent consumers choose networks with equal probability is sufficient but not necessary.
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Proof. See Appendix.24

An access markup of zero maximizes both profits and welfare. Optimal usage

prices for all firms converge to c as m goes to zero, and the profit of each firm

in its captive market becomes (1− µ)
(
v(c)− f

)
/2. Moreover, equilibrium in the

mobile market requires that the profit per mobile consumer, FM − f , be zero.

There are multiple equilibria, but they only differ in which firm serves which part

of the mobile market at zero profit.

Proposition 9 The unique profit-maximizing interconnection charge is equal to
cost, i. e. m = 0. In equilibrium, usage prices are equal to (technical) marginal
cost, p = c, and each firm achieves a profit of

1− µ

2

(
v(c)− f

)
.

This is the first-best outcome. Both firms have a strict incentive to set m = 0

to the best of their knowledge, and welfare is maximized since prices are equal

to the true marginal cost of each call. The captive consumers receive no rent at

all, while the mobile users extract the entire surplus generated in their market

segment.

This result differs from most of the literature in that the firms competing in

nonlinear tariffs strictly prefer to choose the welfare-maximizing interconnection

fee. In contrast, Laffont et al. (1998a) and Hahn (2000) find that the access

charge has no effect on equilibrium profits in a model with non-linear tariffs.

Dessein (2000) also obtains the profit-neutrality result as long as all consumers

participate in the market, so that aggregate demand for network membership is

constant. This is due to the fact that in the Hotelling model with exogenous

differentiation employed in those papers, equilibrium profits depend only on the

transportation cost, leaving the firms indifferent about marginal cost and, hence,

interconnection fees.

In the present model, a ban on termination-based price discrimination pre-

vents the networks from differentiating themselves and, therefore, from achieving

a positive profit in the mobile market. At the same time, a deviation from the

socially-optimal access charge reduces the amount of surplus that each firm can

24The proof relies on Assumption 3 (µ > 1/2) and on the assumption than when indifferent,
each consumer joins either network with equal probability. Both assumptions together are
sufficient to prove the lemma, but neither one is necessary.
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extract from its captive customers.25 However, it should be kept in mind that

the type of calling patterns modelled here is still quite special. Some scope for

collusion might well be restored if calling patterns are unbalanced and consumers

differ in their willingness to switch networks, as in Dessein (1999a) and Dessein

(1999b).

3.7 Conclusion

This paper has been focussed on a mature telecommunications market where two

networks compete for retail customers but cooperate when setting a reciprocal

interconnection fee. When the firms can price-discriminate based on where a call

is terminated, then a negotiated access charge can be used to sustain collusion

in the final market. An access markup or discount implies that in a shared-

market equilibrium consumers are subject to positive or negative externalities.

In either case, competition for market share is softened. In particular, when (i)

consumers make a sufficiently high share of calls within their own group, (ii) some

consumers are locked in, and (iii) the fixed cost per customer is sufficiently high,

then a positive access markup can be used to sustain a shared-market equilibrium

with positive externalities and profits close to the cartel level.

In contrast with previous research, this prediction appears to be roughly in line

with casually-observed data from the mobile-telephony markets in Germany, the

UK and other countries, where access charges appear to exceed quite significantly

the marginal cost of interconnection, and where off-net calls are generally more

expensive than on-net calls.

From a theoretical point of view, the main innovation of the model is to endo-

genize the horizontal differentiation between the networks, based on a plausible

assumption about consumer preferences. This is in contrast with much of the ex-

isting literature based on address models à la Hotelling, where equilibrium profits

under non-linear pricing are determined entirely by the exogenous transportation

cost. Moreover, the results presented here are derived under a functional specifi-

cation which, while being far from general, is not very restrictive by the standards

of existing models.

As far as policy is concerned, the results in this paper suggest that

termination-based price discrimination should be viewed with suspicion when

25Dessein (2000) obtains a similar result in a discrete-choice model with elastic total demand
for network membership.

66



the networks compete in non-linear tariffs. (With linear tariffs, price discrimina-

tion can actually increase welfare; see Laffont et al. (1998b)). Most importantly,

banning this form of price discrimination can be an efficient substitute for a more

difficult direct regulation of the access charge, at least within the confines of this

model.

Finally, the results suggest that number portability might have an effect on

competition beyond the obvious reduction of consumer switching costs. To the

extent that termination-based pricing schemes rely on number prefixes to iden-

tify network membership, number portability might render this form of price

discrimination impracticable, eliminating the incentive to deviate from the so-

cially efficient interconnection fee.
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3.8 Appendix

Proof of Lemma 8

In any candidate Nash equilibrium where firm i offers a tariff Ti to the consumers

in X, it attracts a (possibly empty) subset Z ⊆ X. Let z ∈ Z denote a consumer

in Z, and let a(z) denote the share of his calls made “on-net” on network i. The

incentive constraint of the marginal consumer zm (i. e. the individual or coalition

who has the highest incentive to deviate to network j) is given by

a(zm)v(pi) + (1− a(zm))v(p̂i)− Fi ≥ wj,

where wj is the net utility which the marginal consumer (or coalition) can assure

himself by switching to network j. Note that wj is exogenous for firm i. An

optimal tariff T ∗
i must maximize firm i’s profit subject to the above incentive

constraint. Precisely,

T ∗
i = arg max

∫
z∈Z

a(z)(pi − c)q(pi) + (1− a(z))(p̂i − ĉ)q(p̂i) + Fi − fdz

+ I(Z, Tj)− λ
[
wj + Fi − a(zm)v(pi)− (1− a(zm))v(p̂i)

]
+ πR

i (Z, TR
i ),

where λ is the usual Kuhn-Tucker shadow price of the constraint, I(Z, Tj) is

the profit from incoming calls, and πR
i (Z, TR

i ) is the profit on firm i’s remaining

customers who are offered a tariff TR
i . Note that I(·) and πR

i (·) are independent

of T ∗
i for any given Z.

By the first-order condition for Fi, λ is equal to |C|, the measure of C. By

the FOC for pi,∫
z∈Z

a(z)
[
q(pi) + (pi − c)q′

]
dz − |C|amq(pi) = 0, (3.28)

so we have p∗i = c if and only if∫
z∈Z

a(z)q(pi)dz = |C|amq(pi), (3.29)

or

1

|C|

∫
z∈Z

a(z)dz = am.

That is, marginal-cost pricing is optimal if (and only if) the share of calls going to

network A is the same for the average and the marginal consumer. An analogous

argument applies to p̂i.
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Quasiconcavity follows from (3.28) and (3.29): The objective function is

increasing if pi < c, flat at pi = c, and decreasing otherwise.

Proof of Lemma 9

First, suppose there is a Nash equilibrium with negative externalities on both

networks and a market share for network A of z ∈ (1−µ, µ) (this is more general

than a symmetric outcome with z = 1/2). Then each mobile consumer on each

network makes a share of γz + (1 − γ)z = z of his calls to network A and the

complementary share to B, so Lemma 8 applies. In particular, profit increases as

p approaches c and p̂ approaches ĉ as long as the set of actual consumers remains

constant. This can be achieved by a corresponding change in the fixed fee F

as long as both firms create nonpositive externalities, so that market shares are

determined as in (3.3) and (3.4). Given strictly negative externalities on the other

network j, i. e. pj > p̂j, firm i can increase its payoff by a unilateral deviation to

pi = p̂i, eliminating the negative externalities on its network.

Now consider a symmetric equilibrium with pi = p̂i = p set by both firms

i = A, B for the mobile consumers, who are therefore indifferent between the two

networks. Since p̂A = p̂B, access payments cancel out. Without loss of generality,

suppose firm A is chosen by no more than half of all mobile consumers. Firm

A can deviate to a tariff with pA < p < p̂A such that the members of group 1

(weakly) prefer A, and the members of group 2 choose B. That is, consumers

choose networks as in Figure 3.2, and firm A has at least as many customers as

before. Moreover, each of A’s customers now makes a higher share of his calls

on-net (so the average cost of each call is reduced), and p̂A > p̂B, resulting in a

positive access balance in favour of A. Thus, the deviation to pA < p̂A (positive

externalities) is profitable.

Proof of Lemma 11

Without loss of generality, let firm A cede its mobile group-1 clientele to firm B,
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resulting in a profit of

π̃A =
1− µ

2

[
γ(1− µ)v(c) + (γµ + 1− γ)v(ĉ)− f

]
+

1− γ

2
(1− µ)mcq(ĉ)

+
γµ

2
(1− µ)mcq(ĉ),

where the first line is the profit from A’s captive consumers, the second line

is the profit on incoming calls from group 2, and the last line is the profit on

incoming calls from the mobile group 1 consumers who have switched to network

B. Subtracting the shared-market profit (3.10) from p̃iA and collecting terms,

the change in A’s payoff is given by

π̃A − π⊕ =
µ

2

[
(2γ − 1− γµ)(mcq(ĉ) + v(ĉ)− v) + f − v

]
This is a function of m (since ĉ ≡ (1+m)c) whose value at m = 0, (f −v(c))µ/2,

is negative by Assumption 4. Moreover, the first derivative w. r. t. m,

µ

2
(2γ − 1− γµ)mc2q′(ĉ),

is non-positive for all m ≥ 0.

Proof of Proposition 4

Consider the symmetric candidate equilibrium with positive externalities on both

networks and tariffs Ti = (Fi, c, ĉ), where Fi = γv(c) + (1 − γ)v(ĉ) by Lemma

10, i = A, B. Suppose firm A deviates and attracts B’s mobile consumers set

leaving usage prices constant at marginal cost. Then it must adjust FA to satisfy

the incentive constraint of the mobile consumers in group 2,

FD
A = (1− γ + γµ)v(c) + (1− µ)γv(ĉ).

Plugging FD
A , pD

A = c and p̂D
A = ĉ into (3.11), one obtains the profit from this

suboptimal deviation for A,

1− µ

2

[
(γ + (1− γ)µ)v(c) + (1− γ)(1− µ)v(ĉ)− f

]
+ µ(FD

A − f) +
1− µ

2
(1− γ + γµ)mcq(ĉ).
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Comparing this with the shared-market payoff in (3.10), one can see that deviat-

ing pays if

v(c)− f ≥ (4γ − 2− 3γµ + µ)
(
v(c)− v(ĉ)

)
− (2γ − 1− γµ)mcq(ĉ).

But v(c) > f by Assumption 4, and the RHS is zero for m = 0. By continuity,

there is a value m > 0 such that the inequality holds for all m ∈ [0, m).

Proof of Lemma 12

Without loss of generality, suppose that firm A deviates from the shared-market

outcome and attracts both sets of mobile consumers with a tariff TD
A . For all

mobile consumers to subscribe to A, neither those from group 1 nor those from

group 2 must have an incentive to defect. Moreover, the members of both groups

must not prefer to coordinate on defecting together. This implies the following

incentive constraints. (Since by Lemmas 8 and 10, B’s tariff has pB = c, p̂B = ĉ

and FB = γv(c) + (1− γ)v(ĉ).)

First, the mobile members of group 1 must prefer A to B given that the mobile

group 2 members also choose A:

FD
A ≤ (γ + µ− γµ)v(pD

A) + (1− γ)(1− µ)v(p̂D
A)

+ (2γ − 1)(1− µ)
(
v(c)− v(ĉ)

)
.

(3.30)

Second, the group-2 consumers must choose A given that so does group 1:

FD
A ≤ (1− γ + γµ)v(pD

A) + (1− µ)γv(pD
A). (3.31)

Third, a joint defection to B of all mobile consumers would leave the mobile

members of group 1 worse off if

FD
A ≤ γv(pD

A) + (1− γ)v(p̂D
A) + (2γ − 1− γµ)

(
v(c)− v(ĉ)

)
. (3.32)

Clearly, when

v(pD
A)− v(p̂D

A) ≥ −
(
v(c)− v(ĉ)

)
, (3.33)

then (3.31) implies both (3.30) and (3.32). Assuming that (3.33) holds, the ob-

jective is to maximize (3.11) subject to (3.31). This is equivalent to the simplified

program

max
T D

A

(1 + µ)(pD
A − c)q(pD

A) + (1− µ)(p̂D
A − ĉ)q(p̂D

A) + 2FD
A

s. t. FD
A ≤ (1− γ + γµ)v(pD

A) + (1− µ)γv(pD
A).

(3.34)
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The tariff given in the Lemma follows from the first-order conditions.

Proof of Lemma 13

To prove (i), it needs to be shown that

v(pD)− v(p̂D) ≥ −
(
v(c)− v(ĉ)

)
(3.35)

for all m larger than some m > 0, with pD and p̂D from Lemma 12. For m = 0,

pD > c and p̂D < c, so the LHS of the above inequality is negative, and the RHS

is zero. By continuity, the inequality fails for all m in an open interval around

zero. As m increases, the RHS decreases monotonically at a rate of cq(ĉ), while

pD is constant in m. Hence, it suffices to show that v(p̂D) decreases in m and

eventually becomes smaller than v(pD).

By Lemma 12,

p̂D = (1 + m)c + (2γ − 1)
q(p̂D)

q′(p̂D)
.

Interpret the RHS as a function of p (with parameter m > 0) and observe that

∂

∂p

q(p)

q′(p)
< 1 ⇔ q(p)q′′(p) > 0,

so the RHS has a unique fixed point in p, which defines p̂D. An increase in m

unambiguously shifts the RHS upwards and p̂D to the right. Thus, the LHS of

(3.35) increases monotonically in m. Moreover, the derivative of the RHS w. r. t.

m is larger than −∞, so p̂D goes out of bounds as m → +∞, and v(pD)− v(p̂D)

eventually becomes positive.

As for (ii), πD(TD) is the true deviation profit as long as (3.35) holds, i. e.

when m ≥ m. When m < m, it can be shown the the incentive constraints for

the mobile consumers in both groups must be binding when firm A optimally

deviates from the shared-market equilibrium. (Assume that only the constraint

for the group-1 users is binding while the constraint for the mobile consumers

in group 2 is slack. Then the optimal deviation tariff satisfies (3.35), so the

constraint for the group-2 users is necessary and sufficient, a contradiction.) This

amounts to an additional constraint for the program in (3.34), so the resulting

deviation profit can be no larger than πD(TD).
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Proof of Lemma 14

Suppose γ = 1 and m ≥ m. By (3.12) and (3.14), fmin < fmax iff

(1 + µ)(pD − c)q(pD) + (1− µ)(p̂D − ĉ)q(p̂D)

+ 2FD + (1− µ)mcq(ĉ)− v(c) < v(c).

Since ĉ = c + mc, this is equivalent to

(1 + µ)(pD − c)q(pD) + (1− µ)(p̂D − c)q(p̂D)

+ 2FD + (1− µ)mc
[
q(ĉ)− q(p̂D)

]
< 2v(c).

Since p̂D < ĉ by Lemma 12, the term in square brackets on the LHS is negative.

Hence, it suffices to show that

(1 + µ)(pD − c)q(pD) + (1− µ)(p̂D − c)q(p̂D) + 2FD ≤ 2v(c). (3.36)

Suppose that the LHS of (3.36) was maximized subject to the participation con-

straint of the average consumer,

FD ≤ 1 + µ

2
v(pD) +

1− µ

2
v(p̂D).

Then the optimal tariff TD would consist of pD = p̂D = c and FD = v(c), so

that the LHS of (3.36) would just equal 2v(c). When the average and marginal

consumer differ, as they do for the firm deviating from the shared-market out-

come, then some rent is left to the inframarginal consumers, and the inequality

in (3.36) is strict. By continuity, there is a γ < 1 such that this result holds for

all γ ∈ (γ, 1].

Proof of Lemma 15

Suppose instead that there was a symmetric equilibrium where both firms set

p < p̂ given m < 0. By Lemma 7, all the mobile members of group choose

the same network. Moreover, the only symmetric outcome is the one where

the members of group 1 all choose firm A and the consumers in group 2 join

network B. Hence, the mobile clientele of each firm is homogeneous, and Lemma

8 applies. In particular, profits are quasiconcave in usage prices (holding market

shares constant), with a maximum at p = c and p̂ = ĉ.
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The incentive constraint for the group-1 consumers to stay on network A is

FA ≤ FB + γv(pA) + (1− γ)v(p̂A)− (1− γ + γµ)v(pB)− (1− µ)γv(p̂B).

For the mobile members of group 2 to remain with firm B, we need

FA ≥ FB + (1− γ)v(pA) + γv(p̂A)− γv(pB)− (1− γ)v(p̂B).

The two constraints are consistent (there is a non-empty set of values for FA such

that both are satisfied) if

(2γ − 1− γµ)(v(pB)− v(p̂B)) ≥ (2γ − 1)(v(p̂A)− v(pA)). (3.37)

By Lemma 8, the profit of firm A increases monotonically as its usage prices

approach p = c and p̂ = ĉ < c. Since 2γ − 1 − γµ > 0 by Assumption 6,

and v(pB) > v(p̂B) when firm B sets pB < p̂B, the LHS of (3.37) is strictly

positive, firm A can approach marginal-cost pricing to a point where p̂A < pA

and still satisfy the inequality. Hence, whenever one of the firms creates positive

externalities, the best reply of its rival, holding market shares constant, is to set

p̂ < p, so there is no shared-market equilibrium with positive externalities when

m < 0.

Proof of Lemma 16

Since ĉ ≡ (1 + m)c, g(0) = 0. For m < 0,

∂g

∂m
= −ycq(ĉ) + mc2q′(ĉ)

is positive throughout if and only if y = 0. In this case, g is an increasing

function of m with a maximum of zero at m = 0. If y > 0, however, g decreases

toward zero for small (absolute) values of m: As m → 0, ∂g/∂m converges to

−ycq(c) < 0 (q′(c) is finite ∀c > 0). Thus, when y > 0, then g is positive and

approaches zero from above for all values of m in a non-empty interval (m̃, 0).

Proof of Lemma 17

Given F	 from (3.21), the participation constraint in (3.17) can be rewritten as

v(c)− f >
µ

2

(
v(ĉ)− v(c)

)
,
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where the LHS is strictly positive and constant in m, and the RHS is zero for

m = 0 and monotonically decreasing in m. Thus, the inequality holds for m ≈ 0

and changes sign at most once, at mPC < 0. (Note that mPC need not be finite.)

If m < mPC , then F	 =
(
v(ĉ)+ v(c)

)
/2, and the derivative of the shared-market

profit in (3.22) w. r. t. m becomes

∂π	

∂m
=

mc2q′(ĉ)

4
> 0 ∀m < 0.

Proof of Lemma 19

Without loss of generality, suppose firm A corners the mobile market. Let pM
B

denote the usage price offered to the mobile consumers by firm B. (In equi-

librium, this offer is not taken up by any consumer; pM
B only affects payoffs off

the equilibrium.) The proof consists of two steps. First, it is shown that the

incentive constraints for the two firms together imply a lower bound for
∣∣pM

B − c
∣∣.

Second, any pM
B satisfying this constraint is shown to be weakly dominated. For

simplicity, the attention is restricted to m > 0; a completely analogous argument

applies when m < 0.

(i) Lower bound for pM
B . Consider the incentive for firm A to deviate from

the candidate equilibrium. Precisely, let A cede the mobile market to firm B

given that B has set a tariff TLR
B = (FLR, pLR) for its captive clients, and TMR

B =

(FMR, pMR) for the mobile consumers. This deviation is profitable for A unless

A ≥ B + C +
1− µ

2
mcµ

[
q(pMR)− q(pLR)

]
,

where

A ≡ µ
(
(pMK − c)q(pMK) + FMK − f

)
B ≡ 1− µ

2

(
(pLR − c) + v(pLR)− (pLK − c)q(pLK)− v(pLK)

)
C ≡ 1− µ

2
mc

[
(1− γ)(1− µ)q(pLK) + µq(pMK)− (1− γ + γµ)q(pLR)

]
On the other hand, firm B can deviate from the candidate outcome by cap-

turing the mobile market. Given usage prices pLK
A and pMK

A set by firm A for its

locked-in and mobile customers, respectively, this deviation is profitable for firm
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B unless

A ≤ B + C +
1− µ

2
mcµ

[
q(pMK)− q(pLK)

]
.

Thus, for the two incentive constraints to be simultaneously satisfied, it must be

that

m
[
q(pMK)− q(pMR) + q(pLR)− q(pLK)

]
≥ 0.

Since pLK ≤ min
{

pMK , pLR
}

for all positive values of m, this implies that

pMR ≥ max
{

pMK , pLR
}
∀m > 0. (3.38)

(ii) Weak-dominance argument. Fix a tariff TMR
B = (FMR

B , pMR
B ) which satis-

fies (3.38) and consider the action space of firm A in the mobile market. As long

as

v(pM
A )− FM

A > v(pMR
B )− FMR

B , (3.39)

firm B is indifferent about TMR
B because its offer is not taken up by any

consumers. If (3.39) is reversed, then firm B’s payoff increases as pMR
B

approaches pMK (because πK
i from (3.25) is quasi-concave in pM

i ). In the

remaining case where consumers are indifferent, B’s profit is quasi-concave

in pMR with a maximum at pMS (see (3.24)). Consequently, a usage price of

p̄MR ≡ max
{
pMK , pMS

}
weakly dominates any pMR > p̄MR. But pMS = c+mc/2

is less than pLR = c + (1 − γ + γµ)mc whenever γ ≤ 1/(2 − 2µ), for which

µ > 1/2 is sufficient. Thus, p̄MR ≤ max
{
pMK , pLR

}
, and any pMR satisfying

(3.38) is weakly dominated by p̄MR.
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Chapter 4

Bargaining, Mergers, and
Heterogeneous Outsiders

With Konrad Stahl

4.1 Introduction

Despite the prevelance in economic theory of markets with many players on one

or both sides, trade in real life very often takes place on a bilateral basis with a

single buyer and seller bargaining over prices and quantities. This is especially

true for intermediate goods traded within the kind of multi-tiered, oligopolistic

market structure often referred to as an “industry”. Of particular interest in such

a setting is the relationship between market structure and bargaining outcomes.

This is more than just a theoretical exercise. Over the past two decades,

mergers and acquisitions have played a very prominent role in the evolution of

many important industries.1 DaimlerChrysler, AOL Time Warner and Novartis

are just three of the most well-known examples; others like the GE–Honeywell

merger failed to become reality only because of exogenous obstacles. Somewhat

less spectacular but nonetheless important for their industries, there have been

a number of de-mergers like the spin-off of Delphi from General Motors. Yet the

economic theory of mergers remains very incomplete. The explanations of merger

incentives range from monopolization motives to “synergies” and empire-building

by ill-controlled managers. Another aspect which has attracted some attention

is the impact of a merger on bargaining shares.2 However, not very much is

1See, for instance, Gugler et al. (2001).
2Segal (2000) gives an overview of the literature on integration and bargaining.
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known about the bargaining effects of mergers in multi-tiered industries with

heterogeneous firms; nor is there yet a fully convincing theoretical explanation of

merger waves.

This paper is a contribution towards the development of a more general theory

of bargaining and mergers in industries with bilateral trade among very differ-

ent players. We build on the cooperative approach recently developed by Segal

(2000), paying particular attention to the role of heterogeneity among the out-

siders to a merger. Abstracting from allocative effects and concentrating on bar-

gaining considerations alone, we find that heterogeneity among outsiders gives

rise to a number of new effects: Outsiders can be the main beneficiaries of a

profitable merger; the final consequences of player-specific shocks can be quite

different from the initial effect; and the merger decisions of two disjoint pairs of

firms are generally strategic complements or substitutes, suggesting a bargaining-

based rationale for mergers to occur in waves.

Throughout, we take the candidate players for a merger as exogenously given.

In this assumption, and in the flavour of some of our results, this paper is related

to the exogenous-mergers literature following Stigler (1950), which focuses on

mergers among homogeneous firms in a single market. A standard reference is

Salant et al. (1983), who show that the merging firms in a Cournot oligopoly with

constant marginal cost must have a market share of at least 80 percent in order

for the merger to be privately profitable. Heuristically, the merging firms move

the industry allocation closer to the cartel outcome (by internalizing the external

effects they exert on each other) but lose some market power by becoming a

single player instead of several independent ones; the net effect is ambiguous

for the merging firms but positive for all outsiders. More recently, Nilssen and

Sørgard (1998) have extended this approach to study the interaction between

disjoint mergers within the framework of Fudenberg and Tirole (1984). However,

the combination of allocative and market-power effects, as well as the marginal-

cost synergies assumed by Nilssen and Sørgard, make it somewhat difficult to

consider each effect in isolation even in a simple, horizontal market.

In a related strand of the literature, the interaction of upstream and down-

stream players is taken into consideration in the analysis of merger incentives

within a non-cooperative framework. Examples include the application to union

formation in Horn and Wolinsky (1988b) and Stole and Zwiebel (1996b); Stole

and Zwiebel (1998); and most recently the supplier–retailer model of Inderst and

Wey (2001). A notable improvement of the last paper over some predecessors
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like Horn and Wolinsky (1988a) lies in the use of “efficient” bargaining (i. e. over

quantities as well as prices), which eliminates any allocative effects of a merger

and allows for an analysis based entirely on bargaining-power considerations.

Broadly speaking, a merger in this setting—like in Horn and Wolinsky (1988b)—

is profitable if the merging players face a common supplier operating at increasing

unit cost, or a common customer who regards their output as substitutable. In

either case, a merger shifts the focus of each bilateral bargaining session towards

the higher inframarginal rents, resulting in an increased payoff for the merged

entity.

Segal (2000) takes the analysis of mergers (“collusion”, in his terms) to an-

other level using a cooperative approach in which the joint profit of any coalition

of firms is always maximized by definition, and where the game is entirely about

the distribution of rents.3 In contrast with the very specific, non-cooperative

models in the earlier literature, Segal’s approach leads to a unifying view of the

underlying bargaining effects in a very general setting. Among other things, he

shows that the profitability of a merger is determined by the impact of the outside

players on the substitutability of the merging firms rather than the level of that

substitutability per se.

A limitation of almost all previous work, however, lies in the way outsiders

are modeled. Since the focus is generally on merger incentives as such, relatively

little attention is paid to outsiders’ characteristics. To simplify matters, they

are usually taken to be essentially homogeneous. For instance, while the basic

model in Inderst and Wey (2001) allows for heterogeneity, no attention is given

to the case where one supplier has increasing unit costs while the other operates

under economies of scale. Segal (2000) employs a robustness condition with

respect to the choice of random-order values which implies that all outsiders

must either increase or decrease the merging players’ substitutability, ruling out

the interesting and realistic case where there are both types of outsiders.

While we follow Segal’s very general cooperative approach, we concentrate on

the effects of a merger on heterogeneous outsiders, restricting our attention to

Shapley values rather than general random-order values. Relative to Segal, this

implies that we take intrinsic bargaining abilities as known ex ante. Regardless of

this restriction, individual payoffs depend on the marginal contributions of each

player to various preceding coalitions; heuristically, these correspond to different

3Inderst and Wey (2001) obtain an equivalent setting by a combination of efficient bargaining
and assumptions ruling out coordination failure.
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bargaining situations where some of the other players refuse to cooperate.

Mergers or de-mergers in our model affect payoffs by changing the composi-

tion of the preceding coalitions in each ordering of the players. Intuitively, this

corresponds to a change in the set of different bargaining situations in which each

player finds himself after some of the others have refused to cooperate. A recur-

ring theme will be the complementarity of two merging players in the presence of

some outsiders. When two players have merged, they employ or withdraw their

joint resources together rather than separately. This has an impact on the average

marginal contributions of the other players because it replaces each bargaining

situation where only one of the merging parties is active by one in which either

both or neither of them participate. If the merging parties are complementary in

their impact on the remaining players, then their joint impact exceeds the sum

of their individual effects. We make this argument more precise below using a

second-difference operator introduced by Segal (2000) (and earlier, by Ichiishi

(1993)) to capture the complementarity of the merging players.

A key feature of our analysis is that we allow outsiders to be heterogeneous.

In real life, bargaining takes place in fairly complex settings, where the players

can face very different bilateral-trading partners at the same time. For example,

producers of intermediate inputs deal with both downstream customers and up-

stream suppliers, and there is no reason to assume that these two kinds of trading

partners share any fundamental characteristics. The same is true in the case of a

vertical merger. Even the outsiders to a horizontal merger in a simple two-sided

market can very easily be fundamentally different. For example, there is nothing

exceptional about a firm dealing simultaneously with some suppliers producing

at increasing unit cost, and with others enjoying economies of scale.

The automobile industry is a case in point. Suppliers to car makers range

from small firms providing specialized springs exclusively to the industry at in-

creasing average cost, to large steel producers supplying raw metal sheets to many

industries at strongly decreasing average cost. On their output side, some car

makers deal with very different retailing channels. For instance, car brands or

model types might be substitutes in small local markets but complements for a

large multi-brand retailer trying to expand its geographical reach.

Outsider heterogeneity is not only an important empirical phenomenon; it

also leads to effects which are otherwise absent in pure bargaining models. If all

outsiders are fundamentally alike, then a merger in a zero-sum game can only be

profitable if it hurts all outsiders. It follows immediately that the heterogeneity
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of outsiders is a necessary condition for some of them to benefit from a profitable

merger. Indeed, when outsiders differ sufficiently, then the main effect of a merger

can be a redistribution of surplus from some outsiders to others, while the merging

firms themselves receive only a small share of the redistributed rents.

This is of particular interest when an outsider is hit by an exogenous shock

prior to the merger decision. Even a shock specific to that outsider can have

an indirect effect, in addition to the obvious direct one. This is because the

characteristics of the affected outsider have an influence on the contributions of

other players and, therefore, on how they are affected by a merger. By changing

the amount of surplus received by each outsider after a merger, the shock can

change the merger decision itself, which in turn can more than compensate the

payoff effect of the shock originally experienced by the affected outsider.

This has important implications for empirical studies. First of all, the corre-

lation between firm-specific shocks and profits is distorted or even reversed when

these shocks result in mergers (or de-mergers) in the same industry. (Note that

an “industry” in our context includes all the firms which are part of the same

buyer-supplier network, so the merger need not occur in the immediate vicinity

of the firm affected by the shock.) Second, the main incidence of the shock may

fall on players who are only indirectly connected to the one originally affected.

Re-interpreting the exogenous shock as the (binding) technology adoption of an

outsider, we also conclude that the prospect of a merger can lead to inefficient

incentives for technology choice and R&D effort.

The existence of different kinds of outsiders is also a necessary and generically

sufficient condition for the interaction of two disjoint mergers. When there are

additional outsiders who do not take part in either merger, then the two merg-

ers interact symmetrically, turning merger decisions into strategic substitutes or

complements. This qualifies an intermediate result derived by Inderst and Wey

(2001), who find that the merger decisions of two disjoint pairs of players are

independent of each other in a four-firm industry. Our results show that this

does not generalize to a setting with more than four firms because each merger

affects the impact of the other on the payoffs of those players who participate in

neither one.

The remainder of this paper is organized as follows. The basic model is intro-

duced in the next section, along with a measure of merger effects based on the

Shapley value. We motivate our use of a cooperative model in Section 4.7.1 in

the Appendix, where we show that the Shapley value is a useful solution concept
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in a very general setting of bilateral bargaining if one abstracts from allocative

externalities and coordination problems to concentrate exclusively on bargaining

effects.4 In spite of some limitations of our non-cooperative foundation (for in-

stance, there is no extensive form for the simultaneous bilateral negotiations), we

take this as an argument for following and extending Segal’s general cooperative

approach as against specific non-cooperative models which are subject to similar

limitations without offering the same generality of results. Our notion of hetero-

geneity is defined in Section 4.3 and shown to be necessary for outsiders to benefit

from a profitable merger. Section 4.4 contains the analysis of an exogenous shock

experienced by one of the outsiders before the merger decision. In Section 4.5 we

consider the interaction between two mergers. Our main results are illustrated

in two examples in Sections 4.4.1 and 4.5.4. Section 4.6 concludes. Some proofs

are contained in Section 4.7.2 in the Appendix.

4.2 The model

Consider a cooperative game with transferable utility among a set of players

N = {1, . . . , n}. For instance, N can be thought of as an industry consisting of n

firms facing each other in various vertical and horizontal bilateral relationships.

As usual, the characteristic function v : 2N → R+ defines the worth of any

coalition S ⊆ N . This is the maximum total net profit which the members of

S can achieve collectively if they coordinate their actions in the absence of the

remaining players N \ S. The worth of the empty set is normalized to zero,

v(∅) = 0. Note that v(S) depends only on the resources available to the players

in S; the allocation of control rights over those resources affects individual payoffs

but not the overall worth of the coalition S.

A merger of two players a and b in N is the binding decision to face all

other players as a single entity which simultaneously contributes (or withdraws)

the joint resources of its constituent parts in any given bargaining situation.

Likewise, a de-merger is the decision to separate an entity into two independent

players each of whom controls some of the joint resources. We assume that there

is at most one technologically feasible way of partitioning the resources of any

player into two independent units. Moreover, neither a merger nor a demerger

affects the joint contribution of both players to any given coalition in N ; that is,

4In contrast with Inderst and Wey (2001), we motivate the Shapley value by a stability
concept generalized from Stole and Zwiebel (1996), rather than by contingent contracts.
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we explicitly rule out synergies and diseconomies of scale.

At some points we will assume that v(S) is a continuous function of a param-

eter λ. What we have in mind is a parameter with a continuous effect on the

underlying profit functions of one or several of the players in N and, hence, on

the optimal joint payoff which any given coalition S can achieve. For example, λ

might represent the marginal cost of a supplier or the number of final consumers.

The game is solved by the Shapley (1953) value. Let Π denote the set of all

n! permutations of the n players, and let π ∈ Π denote a particular permutation

(or ordering). Further, let

∆i(S) ≡ v(S ∪ i)− v(S)

denote the marginal contribution of player i /∈ S to coalition S ⊂ N .5 As is well

known, the Shapley value is derived axiomatically and prescribes that each player

receive his average marginal contribution to the coalition of players preceding him

in each ordering π ∈ Π, with the same probability weight of 1/n! accorded to

each ordering.

Let ≺π denote precedence in ordering π, so that

{a, b} ≺π {c, d}

if and only if players a and b precede players c and d in ordering π, regardless of

the pairwise orderings of a and b, and c and d respectively. Let

B(i, π) ≡ {k ∈ N : k ≺π i}

denote the set of players preceding player i in ordering π. In other words, B(i, π)

is the coalition of players to which i makes his marginal contribution in this

ordering.

The Shapley value for player i is given by

Shi =
1

n!

∑
π∈Π

∆i(B(i, π)).

Non-cooperative foundations for the Shapley value have been given by Gul

(1989), Hart and Mas-Colell (1996), and Stole and Zwiebel (1996a) among others.

5For simplicity, we denote the single-element set {i} as i. The difference-operator notation is
borrowed and adapted from Segal (2000), who credits Ichiishi (1993) with an earlier introduction
of the same concept to describe complementarities between players in cooperative games.
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To motivate our use of the Shapley value, Section 4.7.1 in the Appendix contains

a generalization of the stability condition developed by Stole and Zwiebel (1996a).

At the core of this concept is the assumption that renegotiation is always possi-

ble. Thus, disagreement payoffs in any bilateral bargaining situation are given by

what the players can achieve after a general renegotiation of all active contracts

rather than by what is specified in the equilibrium set of contracts.6 We present

a setup where the firms in an industry are connected through a set of bilateral

trading links. The terms of trade are also determined bilaterally by delegated,

simultaneous, and efficient bargaining. Stole–Zwiebel stability in this setup im-

plies that payoffs obey Myerson’s (1980) “fair allocation” rule, and hence, by his

central result, are equal to the players’ Shapley values.

4.2.1 A measure of merger effects

This section is based largely on Segal (2000), who analyzes mergers as a combina-

tion of exclusive and inclusive contracts, arriving at essentially the same measure

of merger effects (4.4) in a closely related way.7

The impact Mk(ab) of a merger of any two firms a, b in N on an outsider

k ∈ N \ {a, b} is the difference between her Shapley values after and before the

merger,

Mk(ab) ≡ Shk
∣∣
a and b merged

− Shk
∣∣
a and b separate

,

where the Shapley value after the merger of a and b is evaluated over all per-

mutations of the remaining n− 1 players; one of these is the merged firm whose

marginal contribution to a preceding coalition B is the sum of the contributions

of its components a and b, ∆a(B)+∆b(B ∪ a). To determine Mk(ab), it is useful

to introduce the notion of a dummy player.

Definition 1 A player i ∈ N is called a dummy player if and only if v(S ∪ i) =
v(S \ i) for all S ⊆ N .

Using this definition, we can evaluate post-merger Shapley values over the per-

mutations of the original n players, which allows us to compare the effect of the

merger for each permutation.

6Inderst and Wey (2001) achieve the same result by letting firm bargain over sets of contracts
contingent on the outcomes of all other bilateral negotiations.

7Segal also allows for more general random-order values, assuming only that the probability
distribution over all orderings is symmetric with respect to the merging players; this is trivially
satisfied by the Shapley value.
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It is easily checked that adding a single dummy player to the set of n−1 post-

merger players has no effect on the Shapley values of the n−1 “real” players. Let

Nm denote the set of players consisting of the merged firm, the n− 2 outsiders in

N \ {a, b}, and the dummy player. Let Πm be the set of n! permutations of the

players in Nm. The post-merger payoff to an outsider k ∈ N \ {a, b} is equal to

Shk
∣∣
a and b merged

=
1

n!

∑
πm∈Πm

∆k(B(k, πm)).

For each ordering π ∈ Π there is exactly one counterpart πm ∈ Πm where the

merged firm takes the position of a in π and the dummy player appears instead

of b. Hence, to calculate Mk(ab) we need only determine the difference in the set

of players preceding k in each π and its corresponding πm.

Clearly, when both a and b precede k in π, then the coalition preceding k

in πm differs only in the presence of the dummy player, so that the marginal

contribution of k is unchanged. Similarly, there is no effect when both a and b

follow k in π. The only relevant orderings are those where k comes between a

and b.

More formally, let

B′(k, π) ≡ B(k, π) \ {a, b}

denote the set of players preceding k except for the merging firms a and b. In

an ordering π ∈ Π with a ≺π k ≺π b (where k follows a but precedes b), player

k makes her marginal contribution to B′(k, π) ∪ a. In the corresponding post-

merger ordering πm, k makes her marginal contribution to B′(k, π) ∪ {a, b}, and

the net effect on her payoff is equal to ∆k(B
′(k, π) ∪ {a, b})−∆k(B

′(k, π) ∪ a).

On the other hand, when b ≺π k ≺π a, then player k’s contribution in πm

is effectively made to B′(k, π) (plus the dummy player), resulting in a payoff

difference of ∆k(B
′(k, π))−∆k(B

′(k, π)∪b). With some additional notation, these

payoff effects can be summed up quite concisely over all the relevant orderings.

Let

∆2
ij(S) ≡ ∆j(∆i(S))

≡ ∆i(S ∪ j)−∆i(S)

≡ v(S ∪ {i, j}) + v(S)− v(S ∪ i)− v(S ∪ j)

(4.1)

denote the effect of player j ∈ N on the marginal contribution of player i ∈ N to

a preceding coalition S ⊆ N \ {i, j}.8 As the last line in (4.1) shows, this can be

8Note that the definition of the second-difference operator implies that ∆2
ij(S) ≡ ∆2

ji(S) for
i 6= j.

85



interpreted as a measure of the supermodularity of v on {i, j} or, equivalently, of

the complementarity between i and j in the presence of the players in S.9

Using the definition in (4.1), the payoff differences for k between orderings in

Π and Πm can be expressed as
∆2

bk(B
′(k, π) ∪ a) if a ≺π k ≺π b,

−∆2
bk(B

′(k, π)) if b ≺π k ≺π a,

0 otherwise.

(4.2)

Further, let the third-difference term

∆3
ijk(S) ≡ ∆k(∆

2
ij(S))

≡ ∆2
ij(S ∪ k)−∆2

ij(S),
(4.3)

denote the impact of player k on the complementarity between players i and j

in the presence of the players in S.10 For each ordering π ∈ Π with a ≺π k ≺π b

there is exactly one π∗ ∈ Π which is identical except for the transposition of a

and b (and which, by the definition of the Shapley value, has the same probability

weight as π). Hence, the terms in (4.2) can be pairwise combined and summed up

over those orderings where a ≺π k ≺π b. Defining the binary indicator function

1[expr] =

1 if expr is true

0 otherwise,

the effect of the merger of a and b on the payoff of k can be expressed as

Mk(ab) =
1

n!

∑
π∈Π

1[a ≺π k ≺π b]∆3
kab(B

′(k, π)). (4.4)

We will refer to Mk(ab) as the merger benefit for k, without implying that the

benefit is necessarily positive.

The third-difference terms ∆3
kab(B

′(k, π)) in (4.4) can be interpreted in two

different ways. One is to see them as the impact of player k on the complemen-

tarity of the merging parties a and b in the presence of the preceding outsiders

B′(k, π). The more player k increases this complementarity, the more she bene-

fits from the merger of a and b. Heuristically, consider two sellers a and b and

9See Segal (2000) for a discussion of the difference operator ∆.
10The term ∆3

ijk(S) measures the impact of any of the three players i, j, k on the complemen-
tarity between the remaining two. This is another implication of the fact that the difference
operator is symmetric with respect to the players over which the differences are taken.
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a single buyer k bargaining over two goods, one delivered by a and the other by

b. In the absence of k, the profit of a and b is zero, as is their complementarity

∆2
ab(∅).11 With k in the game, ∆2

ab(k) ≡ v(abk) + v(k)− v(ak)− v(bk) is positive

if the two goods are complements and negative if they are substitutes.12 Hence,

the third-difference term ∆3
kab(∅) is positive if and only if player k regards the

goods as complements. As is well known, k benefits from the merger of a and b

in this case.13

However, while the complementarity of the traded goods coincides with that

of the players a and b in the example just given, the two notions of product and

player complementarity are strictly different concepts. Indeed, one of the main

contributions of Segal (2000) is to demonstrate that merger incentives depend on

changes in the complementarities among players, not goods, and that some of the

paradoxes reported in earlier research are due to a confusion of the two concepts.

For illustration, add a fourth player u in our simple 3-player economy and suppose

that u produces a common input to a and b at increasing unit cost. If u’s unit

cost increase is sufficiently strong relative to k’s perception of complementarity,

then k’s contribution to the complementarity of a and b in the presence of u,

∆3
kab(u), is negative even though the goods themselves are still complementary

for k.

The other interpretation of the third-difference terms in (4.4) is based on the

observation that

∆3
kab(S) ≡ ∆2

ab(∆k(S)).

Thus, ∆3
kab(S) is positive if and only if the merging players a and b are comple-

mentary in their effect on the marginal contribution of player k to coalition S.

This matters because after merging, a and b contribute or withdraw their joint

resources together while before they acted separately, which is what the second

difference ∆2
ab(S) formalizes (as the last line of (4.1) makes clear). If ∆2

ab(∆k(S))

is positive, then the merger of a and b improves the bargaining position of player

k, which is reflected in an increase in her Shapley value Shk; if it is negative, k’s

payoff is reduced by the merger.

The profitability of the merger for the merging players themselves follows

from the fact that the worth of the grand coalition v(N) is independent of the

11The assumption that player k is essential and ∆2
ab(∅) = 0 is not critical.

12Throughout, we write v(abk) for v({a, b, k}).
13For example, Horn and Wolinsky (1988b) find that a firm benefits when complementary

workers form a single union.
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allocation of control rights over resources. Hence, the merger results in a zero-sum

redistribution of the constant total net surplus, and the benefit to the merging

players a and b is equal to the loss of the outsiders in N \ {a, b}:

Mab(ab) = −
∑

k∈N\{a,b}

Mk(ab). (4.5)

The merger benefit for each firm has a particularly simple form when there

are only four players N = {a, b, k, j}. When a and b merge, the effect on the

payoffs of outsiders k and j is, respectively,

Mk(ab) =
1

12

[
∆2

ab(k)−∆2
ab(∅) + ∆2

ab(kj)−∆2
ab(j)

]
(4.6)

and

M j(ab) =
1

12

[
∆2

ab(j)−∆2
ab(∅) + ∆2

ab(kj)−∆2
ab(k)

]
(4.7)

so that

Mab(ab) =
1

6

[
∆2

ab(∅)−∆2
ab(kj)

]
. (4.8)

For further reference, let

R(ab) =
∑

k∈N\{a,b}

1
[
Mk(ab) < 0

]
Mk(ab)

denote the (gross) amount of surplus redistributed by a profitable merger of

players a and b.

4.3 Heterogeneous outsiders

When outsiders are heterogeneous, a merger redistributes total industry surplus

among the outsiders as well as between insiders and outsiders. Moreover, the

positive effect on one or more outsiders can be arbitrarily large relative to the

benefit to the merging players themselves. In contrast with mergers in a Cournot

oligopoly à la Salant et al. (1983), this is based on bargaining considerations

alone, without any accompanying change in allocation.14 Moreover, the outsiders

need not be competitors to the merging firms; they can be any of the players in

a multi-tiered industry connected by active trading links.

14Stigler (1950) already notes that outsiders are the main beneficiaries of a merger if they
can free-ride on the merging firms’ reduction of output. Kamien and Zang (1990) show that
this can lead to the failure of the players to form a monopoly and maximize joint profits in a
Cournot oligopoly with endogenous mergers.
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In the literature, differences between outsiders have not received much at-

tention. Outsiders are usually taken as essentially, if not literally, homogeneous.

Indeed, in some applications there is only one outsider, so the question of hetero-

geneity among the outside players does not arise.15 In the otherwise very general

analysis in Segal (2000), the author employs a robustness condition which re-

quires outsiders to be homogeneous with respect to the sign of their effect on the

complementarity of the merging firms. This is essentially the same restriction as

in Inderst and Wey (2000) where, in a model of horizontal mergers in a two-tiered

industry, two suppliers can differ in their cost structures so long as they both have

either increasing or decreasing average costs. Similarly, in the technology-choice

analysis in Inderst and Wey (2001) only technologies with decreasing unit costs

are considered. In Segal’s case, the assumption is made to ensure that the sign

of Mab(ab) is invariant to the choice of random-order value. Since the set of

admissible random-order values in his model includes those which put all proba-

bility weight on any single outsider, all outsiders must be qualitatively identical

in their effect on ∆2
ab(S). More precisely, while some differences between the out-

siders are allowed, it is required that ∆3
kab(S) have the same sign for all outsiders

k ∈ N \ {a, b} and for all S ⊆ N \ {a, b, k}.
For the analysis of more complex real-life situations, the restriction to es-

sentially homogeneous outsiders can be unsatisfying. In particular, intermediate

firms in multi-tiered industries bargain with upstream suppliers which are likely

to have rather different characteristics than their downstream customers. Even

in simple two-sided markets outsiders to a merger can very easily be fundamen-

tally different. In the context of a horizontal downstream merger, for instance,

the merging firms might face some upstream suppliers with increasing costs and

others with decreasing costs.16 This is also true for vertical mergers where the

outside players belong to different industry tiers. In each case, the requirement

that the effect of outsider i on the complementarity of the merging firms a and

b, ∆3
iab(S), has the same sign for all i and for all S is quite restrictive.

In contrast with Segal (2000), we take the inherent bargaining abilities of the

players as given and known, so we do not consider issues like the invariance of

our results to the choice of specific random-order values. Instead, we rely on

15For example, in Horn and Wolinsky (1988b) the merger candidates are two groups of
workers facing a single firm (the outsider, in our context). The same is true in the section on
unionization of Stole and Zwiebel (1996b).

16This case is illustrated in the example in Section 4.4.1.

89



the Shapley value as our solution concept but generalize the analysis by allowing

explicitly for heterogeneity among the players, which we define as follows.

Definition 2 (Heterogeneity) Fix two merger candidates a and b in N . The
outside players in N \ {a, b, } are called heterogeneous if and only if there are at
least two outsiders i and j such that M i(ab) > 0 and M j(ab) < 0.

This does not imply that the third-difference terms ∆3
kab(S) which determine

Mk(ab) must be of constant sign for each outside player k ∈ N \{a, b} and for all

S ⊆ N \{a, b, k}; our notion of heterogeneity only means that at least one player’s

third-difference terms are positive, and another player’s negative, on average

over the orderings affected by the merger of a and b. In many applications, all

the third-difference terms of a given player are either positive or negative. For

instance, in the supplier-retailer example in Subsection 4.4.1, they are negative for

the increasing-cost supplier and positive for the one producing at decreasing cost.

Definition 2 allows for more general cases where the sign of the third-difference

terms may depend on the set of preceding players S.

Recalling from (4.5) that the profitability of the merger is the negative sum of

the merger benefits of all outsiders, it is almost tautological that heterogeneity as

defined above is a necessary and sufficient condition for some outsiders to benefit

from a profitable merger of players a and b. When this is the case, the merger

entails a redistribution of surplus not only from outsiders to the merging parties,

but also among all outsiders.

Not only can some heterogeneous outsiders benefit from a profitable merger;

they can be the main beneficiaries, receiving a larger share of the redistributed

surplus than the merging players themselves. This is because the profitabil-

ity of the merger of a and b to the merging players themselves, Mab(ab) =

−
∑

k∈N\{a,b} Mk(ab) can be close to zero even when the merger benefit Mk(ab)

is large and positive for some outsider k.

To present this argument in a more precise form, we assume that the character-

istic function is continuous in a parameter which affects the underlying individual

profit functions of the players in N .

Assumption 7 The characteristic function v(S) is continuous in some param-
eter λ ∈ (λ, λ) ⊂ R. There exists a λ1 such that Mab(ab) > 0, and a λ0 such that
Mab(ab) = 0, where λ0, λ1 ∈ (λ, λ).17

17For notational simplicity, the parameter λ is dropped from all functions building on v(·).
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This assumption is sufficient but not necessary for what follows. In particular, the

continuity of v(S) with respect to λ is analytically convenient but not essential

for the effects we describe.

Proposition 10 Under Assumption 7, if the outsiders in N \ {a, b} are hetero-
geneous given λ0, then there is a non-empty range of values for λ such that most
of the surplus R(ab) redistributed by a profitable merger is received by players in
N \ {a, b}. As λ → λ0, the share of R(ab) received by one or more outsiders goes
to one.

Proof. If, given λ0, outsiders are heterogeneous, then there is some outsider i

with M i(ab) > 0 when Mab(ab) in (4.5) is zero and a and b are just indifferent

about merging. Consequently, all the redistributed surplus goes to outsiders

(including, but not necessarily limited to, player i). By continuity, there is a

range for λ close to λ0 such that R(ab) > 2Mab(ab).

While the condition in Proposition 10 is quite general, to verify its validity

one has to compute the outsiders’ merger benefits. A simpler sufficient condi-

tion is satisfied in many applications where some players typically increase the

complementarity of the merging parties more than others do.18 The following

Lemma asserts that the merger benefits of two outsiders i and j differ overall if

one of them has a (weakly) larger impact on the complementarity of the merging

firms in the presence of all coalitions containing neither i nor j. Essentially, it

is shown that the stronger impact of either player extends to larger preceding

coalitions containing the other player, and therefore to all coalitions relevant for

the determination of the merger benefits M i(ab) and M j(ab) of i and j. Note

that this does not imply that the third-difference terms of the two players must

be of different signs given any specific set of preceding players.

Lemma 20 If

∆3
iab(S) ≥ ∆3

jab(S) ∀S ⊆ N \ {a, b, i, j}, (4.9)

with strict inequality for at least one set S, then

M i(ab) > M j(ab).

18In the example in Section 4.4.1, the decreasing-cost supplier always increases the comple-
mentarity of the two retailers while the increasing-cost supplier reduces it.
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If this holds when the merger candidates are just indifferent about merging,

then the outsiders k ∈ N \ {a, b} must necessarily be heterogeneous in the sense

that some merger benefits Mk(ab) are positive, and some are negative.

Lemma 21 If (4.9) holds for λ0 (with strict inequality for at least one set S),
then the outsiders to the merger of a and b are heterogeneous as defined above in
the vicinity of λ0.

Proof. By definition, Mab(ab) = −
∑

k∈N\{a,b} Mk(ab) = 0 when λ = λ0. Thus,

if there are two outsiders i and j with M i(ab) > M j(ab), then there must be

some outsider k (not necessarily identical with i) with Mk(ab) > 0 and another

outsider h (not necessarily j) with Mh(ab) < 0.

Consequently, when the condition in Lemma 20 holds around λ0, then there

is a non-empty range of values of λ such that the main benefit of the merger falls

on some outsiders.

Corollary 2 If (4.9) holds for λ0, Proposition 10 applies.

Note, however, the condition that Mab(ab) must be zero for some λ0. Without

this condition, Segal’s requirement that ∆3
iab(S) < 0 for all i and S would not be

in conflict with (4.9). However, when all third-difference terms are negative for

all outsiders, then there is no λ0 such that Mab(ab) is zero. While the continuity

of the characteristic function with respect to λ is not necessary, the existence of

λ0 is necessary for (4.9) to be a sufficient condition for Proposition 10.

4.4 Shocks

In this section we are more explicit about the kind of exogenous parameter change

considered in the previous section. We continue to take two merger candidates a

and b from N as exogenously given and concentrate on a shock specific to one of

the outsiders in N \ {a, b}.

Definition 3 (k-specific shock) A shock is specific to player k if it affects v(S)
only if k ∈ S. The shock is called positive if v(S) is weakly increased for all
S ⊆ N . It is called negative if v(S) is weakly reduced for all S ⊆ N .

As an example, one might think of a decrease in the marginal cost of a supplier

due to technological progress, or a decline in demand in a market where one of
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the players is a local monopolist. We take this shock to be permanent while

mergers are not, so that our merger candidates can change their merger or de-

merger decision after observing the shock to outsider k. This makes our approach

complementary to the technology-choice analysis in Inderst and Wey (2001) where

the players can switch their production technologies to improve their bargaining

position (possibly at the expense of overall efficiency) under a constant market

structure. In our model, the shock observed before the merger decision might also

result from player k’s choice of technology or R&D investment; what matters is

only that the shock is taken as given when the merger decision is made.

It turns out that in this setting the final payoff effect of a shock can be very

different from the initial effect when the players are heterogeneous and the shock

triggers a merger or de-merger of a and b. This has some important implications

for technology choice and R&D incentives, as well as for empirical work.

A k-specific shock directly affects player k’s payoff Shk, since his Shapley

value is a sum of first-difference terms ∆k(S) ≡ v(S ∪ k)− v(S), k /∈ S, where by

definition only the first term on the RHS is affected by the shock. In addition, the

shock has an impact on the worth of the grand coalition v(N). Thus, a negative

shock to player k has a negative direct effect on both k’s payoff and the total

surplus available to all players.

Moreover, a k-specific shock has an impact on the merger benefits M i(ab)

received by all outsiders i ∈ N \{a, b} when a and b merge, and hence on the prof-

itability of the merger itself. This is because M i(ab) is the sum of third-difference

terms ∆3
iab(B

′(i, π)) measuring the impact of player i on the complementarity of

a and b in the presence of the preceding players B′(i, π). For i = k, the effect of a

k-specific shock is obvious; for players other than k, the third-difference terms in

M i(ab) are affected because k appears in some of the preceding coalitions B′(i, π)

over which M i(ab) is evaluated.19

This is particularly relevant when the outside players are heterogeneous and

the merger decision involves a trade-off between extracting a larger share of the

total surplus from some outsiders and losing more of it to others. If a k-specific

shock affects the outsiders’ merger benefits sufficiently to change the sign of the

merger profitability Mab(ab), then it leads to an additional, indirect effect on the

payoffs of all players, including k itself, which may well can go in the opposite

direction of the original shock. Indeed, the merger effect can overcompensate the

19In the four-firm example in (4.6) and (4.7), a shock to k affects both ∆2
ab(k) and ∆2

ab(kj)
and, therefore, M j(ab).
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direct shock, leading to the opposite overall payoff effect that one would expect

from observing the k-specific shock alone.

Proposition 11 (Merger compensates negative shock) Consider a nega-
tive k-specific shock with a continuous effect measured by some parameter λ ∈ R.
Suppose that before the shock sign(Mab(ab)) = −sign(Mk(ab)) and there is a λ0

such that the sign of Mab(ab) changes into that of Mk(ab), which is bounded away
from zero. Then the payoff of player k is decreasing in the size of the shock except
for a discontinuity (an upward jump) at λ0. Moreover, if λ was sufficiently close
to λ0 before the shock, then player k is better off overall.

The merger decision of a and b is a trade-off in bargaining positions vis-à-vis

different trading partners. Those who enhance the complementarity of a and b

give them an incentive to remain separate; those who reduce it make a merger

more profitable. If Mab(ab) and Mk(ab) are of opposite signs prior to a shock

but have the same sign afterwards, then player k benefits from a change in the

merger decision. A negative k-specific shock has a negative direct effect on k’s

payoff, but if it reverses the sign of Mab(ab), some or all of the initial effect is

compensated.

The discontinuity in k’s total payoff is due to the fact that Shapley values and

merger benefits are continuous in λ but the merger decision is discrete and Mk(ab)

is bounded away from zero by assumption. As argued in the previous section,

the heterogeneity of the outside players as defined in Definition 2 is a necessary

condition for a merger to compensate part of the negative shock to k, or even to

overcompensate it. The flip side of this observation is that there must be some

players from whom the surplus redistributed to k is taken. Since the negative

shock to k reduces the worth of the grand coalition v(N), those players receive an

even smaller share of a reduced total surplus while player k, who was originally hit

by the negative shock, is left better off than before. In Section 4.4.1 we illustrate

this point in a simple example of a two-tiered producer/retailer industry where

a supplier operating at decreasing costs suffers a negative cost shock whose final

impact is borne primarily by another (and only indirectly connected) player.

Corollary 3 (Merger compensates positive shock) Suppose the k-specific
shock in Proposition 11 is positive instead of negative and sign(Mab(ab)) =
sign(Mk(ab)) before the shock. If there is a λ0 such that the sign of Mab(ab)
changes into the opposite of sign(Mk(ab)), then the total payoff of player k is
increasing in the size of the shock except for a downward jump at λ0. If λ was
sufficiently close to λ0 before the shock, then player k is worse off overall.
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It is straightforward to extend this to a setting where the shock is created by

one of the players rather than imposed exogenously. In particular, a k-specific

shock might be the result of player k’s technology choice or R&D effort prior to the

merger decision of a and b.20 The compensating effect described in Proposition

11 and its corollary implies a strategic incentive for player k to choose an inferior

technology if this induces a merger of a and b improving his bargaining position

sufficiently to make up for the loss of productive efficiency. Likewise, player k

will strategically underinvest in R&D if the efficient research effort would result

in an adverse merger of a and b, preventing k from fully appropriating the gains

from his efforts.

For empirical studies, the compensating effect of mergers implies that the

correlation between firm-specific shocks and profits can be distorted, or even re-

versed, when the trading partners of the affected firm merge or de-merge. In

contrast with mergers in Cournot models à la Salant et al. (1983), such mergers

need not take place on the same industry tier. As a real-world example, consider

the widely-reported demand stagnation in the automobile industry during the

early 1990s which was accompanied – accidentally or not – by the formation of

“module” suppliers bundling complementary inputs for the final downstream car

manufacturers. By casual observation, the negative demand shock has failed to

translate into lower profits for manufacturers. From a bargaining perspective,

this is not surprising since the merger of complementary suppliers should ben-

efit their downstream customers. This begs the question, however, why those

complementary suppliers would merge in the first place. Propositions 10 and 11

provide an explanation: If the merging suppliers face some other, fundamentally

different, trading partners in addition to final manufacturers (e. g. their own up-

stream suppliers), then the loss of bargaining power vis-à-vis the car makers can

be outweighed by an improved bargaining position in their other negotiations.

The main impact of the negative shock to car makers may then fall on firms

which are only indirectly linked to them.

4.4.1 Example: Horizontal merger in a retailing model

Consider the horizontal-merger decision of two retailers a and b facing two pro-

ducers c and d in a four-firm industry à la Inderst and Wey (2001) illustrated

20This assumes that the choice of technology cannot be reversed after the merger. See Inderst
and Wey (2001) for the opposite case.
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in Figure 4.1. Let xac denote the quantity supplied to retailer a by producer c,

c d

a b

Figure 4.1: Two retailers a and b selling the output of both upstream producers
c and d in separate local markets.

and analogously for the other three trading links. The cost function of producer

i = c, d is given by

κi(xai + xbi) + δi(xai + xbi)
2, κi ≥ 0.

To introduce the kind of fundamental heterogeneity defined above, we assume

that δc > 0 and δd ∈ (−1
2
, 0), implying increasing unit costs for producer c

and decreasing costs for producer d. Each retailer i = a, b operates as a local

monopolist, achieving a gross profit (before payments to the upstream suppliers)

of

α(xic + xid)− (x2
ic + x2

id), α > max{κc, κd}

from selling the two goods.21 At least one retailer and one producer must be

present for a coalition of firms to achieve a positive profit; this implies that

∆2
ab(∅) is zero. Hence, if a and b merge, then the merger benefits to the outsiders

c and d are22

M c(ab) =
1

12

(
∆2

ab(c)−∆2
ab(d) + ∆2

ab(cd)
)

(4.10)

and

Md(ab) =
1

12

(
∆2

ab(d)−∆2
ab(c) + ∆2

ab(cd)
)
, (4.11)

while the merging firms improve their joint payoff by

Mab(ab) = −1

6
∆2

ab(cd).

21The gross-profit function implies that the goods are neither (strict) substitutes nor com-
plements, and that the retailers have no operating cost. Neither assumption is critical. The
local-monopoly assumption conveniently eliminates coordination problems for a and b vis-à-vis
final consumers (but not against c and d).

22Cf. (4.6)–(4.8)
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Maximizing joint profits over the quantities traded among each coalition of

firms gives

∆2
ab(c) = v(abc)− v(ac)− v(bc)

= − δc(α− κc)
2

2(1 + δc)(1 + 2δc)
,

∆2
ab(d) = v(abd)− v(ad)− v(bd)

= − δd(α− κd)
2

2(1 + δd)(1 + 2δd)
,

and

∆2
ab(cd) = v(abcd)− v(acd)− v(bcd)

= − δc(α− κc)
2

2(1 + δc)(1 + 2δc)
− δd(α− κd)

2

2(1 + δd)(1 + 2δd)

= ∆2
ab(c) + ∆2

ab(d).

(The equality of ∆2
ab(cd) = ∆2

ab(c) + ∆2
ab(d) stems from the fact that the down-

stream goods are neither complements nor substitutes.)

Since δc > 0 and δd < 0 by assumption, we have ∆2
ab(c) < 0 and ∆2

ab(d) > 0.

By (4.10), (4.11) and (4.12), the merger benefit is negative for the increasing-

cost outsider c and positive for outsider d: M c(ab) = 2∆2
ab(c) < 0 and Md(ab) =

2∆2
ab(d) > 0. Thus, the upstream firms are heterogeneous according to Definition

2, and they satisfy condition (4.9) for all admissible values of α, κc and κd.
23 As a

consequence of Corollary 2, when the merger incentive for a and b is close to zero,

one of the outsiders receives most of the redistributed surplus. Indeed, one can

easily find parameter values such that ∆2
ab(d) = −∆2

ab(c) > 0, in which case a and

b are indifferent about merging, and the merger effectively redistributes surplus

from the increasing-cost producer c to the supplier d operating a decreasing unit

cost.

Now suppose that initially the merger candidates a and b prefer to stay apart,

i. e. Mab(ab) < 0 because ∆2
ab(cd) = ∆2

ab(c) + ∆2
ab(d) > 0. Suppose further that

producer d is hit by a negative cost shock increasing κd by λ, which, other things

equal, has a continuous, negative impact on d’s Shapley value Shd. At the same

time, the shock leaves ∆2
ab(c) < 0 unchanged but decreases ∆2

ab(d) arbitrarily close

23∆2
ab(d) > ∆2

ab(c) implies ∆3
dab(∅) ≡ ∆2

ab(d) −∆2
ab(∅) > ∆3

cab(∅) ≡ ∆2
ab(c) −∆2

ab(∅) for all
κc < α and κd < α.
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to zero.24 Thus, player d increases the complementarity between a and b by less

than before the shock. This affects the trade-off for the merger candidates a and b

between extracting more rent from c by merging and from d by staying separate,

and if λ is large enough, then a and b reverse their initial decision and merge. As

a function of λ, therefore, player d’s total payoff is non-monotonic. Precisely, it

is decreasing except for an upward jump at the point where ∆2
ab(d) = −∆2

ab(c),

at which the merger becomes profitable. If ∆2
ab(d) was close to −∆2

ab(c) before

the shock and the shock is not too large, then by the continuity of v, the negative

effect on Shd is less than the merger benefit Md(ab), and player d benefits overall

from the negative shock, while player c suffers (since M c(ab) < 0). The negative

effect of a shock to supplier d is borne primarily by the increasing-cost supplier

c which is connected to d only through their common downstream customers.

Instead of being subject to an exogenous shock, player d might have to make

a binding technology choice before a and b decide about merging. The range

of negative-shock sizes leaving d better off overall then translates into a range

of technology parameters such that d’s final payoff is maximized by choosing

an inferior technology lest ∆2
ab(d) be so large as to induce a merger of a and

b. By the same line of reasoning, a positive shock specific to player d can be

compensated by an adverse merger decision by a and b, leaving d worse off than

before the shock. This implies a disincentive to engage in cost-reducing R&D for

a player with a positive merger-benefit term Mk(ab), i. e. for a trading partner

which enhances the complementarity of a and b. For instance, the incentive for

a decreasing-cost supplier to reduce its marginal cost is inefficiently low if one of

its customers responds by de-merging into two independent units.

4.5 Interaction between merger decisions

So far we have only considered a single merger of two predetermined players. In

this section, we analyze the effect of one merger on the profitability of another,

where both pairs of merger candidates are exogenously fixed. While this is still

much less ambitious than allowing for the endogenous determination of merging

partners, we believe it to be a significant building block for a more complete

theory of bargaining and mergers, and for a better understanding of “merger

waves”.

24The derivative of ∆2
ab(d) w. r. t. κd is negative for κd ∈ [0, α), and ∆2

ab(d) → 0 as κd → α.
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As a stylized empirical fact, it is often observed that mergers occur in waves.

There are several possible explanations for this, from economy-wide shocks in-

creasing the profitability of mergers (like changes in the tax code or in the anti-

trust regime) to herding effects and management fads. Nilssen and Sørgard (1998)

show how mergers can be strategic complements in a Cournot model à la Salant

et al. (1983). While this suggests that market power considerations might lead

to an interaction of merger incentives for disjoint sets of players, this is not dis-

entangled from the monopolization effect and the cost synergies assumed by the

authors. On the other hand, Inderst and Wey (2001) find that merger incentives

are independent in a model based purely on bargaining effects.

The results in this section show that even in a pure bargaining model, the

decisions of two disjoint pairs of merger candidates in an n-firm industry generally

interact. Only in the special case of n = 4, when there are no “complete” outsiders

who do not participate in either merger, are pairwise mergers independent of each

other. Generally, the merger of two firms a and b affects the impact ∆3
kcd(S) of

each “complete” outsider k ∈ N \ {a, b, c, d} on the complementarity of players c

and d and, therefore, the amount of surplus Mk(cd) received by those outsiders

when c and d merge. This is because some of the preceding coalitions S contain

a and b, who after their merger appear either jointly or not all where before they

appeared separately. As will be shown, this leads to a symmetric interaction

between the merger incentives for a and b on the one hand, and c and d on

the other. The interaction can be positive, in which case mergers are strategic

complements; if it is negative, they are strategic substitutes.

Let a and b denote two players pondering a merger, and let c and d denote

a disjoint second pair of potential merger candidates, so that {a, b} ∩ {c, d} = ∅
and {a, b} ∪ {c, d} ⊆ N . Only the a–b merger and the c–d merger are allowed; in

particular, the firms cannot form a grand merger containing all four of them. We

first look for the effect of a merger of a and b on the private profitability M cd(cd)

of the c–d merger. This is the same as the negative sum of the effects of the a–b

merger on the merger benefits Mk(cd) received by all outsiders k ∈ N \ {c, d}
when c merges with d. Among the outsiders to the second merger are the players

who have formed the first; of these, a is again, and without loss of generality,

treated as the proxy player while b is taken to be a dummy. The a–b pair needs

to be considered separately from those players k /∈ {a, b, c, d} who participate in

neither merger, because after their own merger, a and b contribute a different

set of marginal resources to the same preceding coalitions, while the “complete”
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outsiders k ∈ N \ {a, b, c, d} contribute the same resources as before to different

preceding coalitions.

The two types of outsiders are considered in turn before the total effect of the

a–b merger on M cd(cd) is stated in Proposition 12.

4.5.1 Complete outsiders

We begin with the “complete” outsiders k /∈ {a, b, c, d}, restricting our attention

to those orderings where c ≺π k ≺π d, i. e. k follows c and precedes d, which are

the only relevant ones for

Mk(cd) =
1

n!

∑
π∈Π

1[c ≺π k ≺π d]∆kcd(B
′(k, π)), (4.12)

where

B′(k, π) ≡ B(k, π) \ {c, d},

like before, stands for the set of outsiders to the c–d merger who precede player

k in ordering π.

If both a and b precede k in ordering π, then the a–b merger has no relevant

effect on the k-preceding coalition B′(k, π).25 The same is true when both a and

b appear after k. This leaves those orderings where k comes between {a, b} and

{c, d}.
If {a, c} ≺π k ≺π {b, d}, then after the a–b merger, the relevant preceding

coalition is B′(k, π)∪ b instead of just B′(k, π). Conversely, when {b, c} ≺π k ≺π

{a, d}, the post-merger preceding coalition is B′(k, π) \ b rather than B′(k, π).

These two cases can be pairwise combined and aggregated quite concisely with

the help of some additional notation.

Define the set of preceding players outside of both merger pairs as

B′′(k, π) ≡ {i ∈ N \ {a, b, c, d} : i ≺π k}
≡ B′(k, π) \ {a, b}.

(4.13)

For each ordering π ∈ Π with a ≺π k ≺π b there is exactly one corresponding

ordering π∗ ∈ Π which differs only in the transposition of a and b. In particu-

lar, the set of “complete” outsiders preceding k is the same in both orderings,

25Recall that only the identity of the players in B′(k, π) matters for ∆3
kab(B

′(k, π); their
ordering within B′(k, π) is irrelevant. Moreover, adding the dummy player to B′(k, π) has no
effect.
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B′′(k, π) = B′′(k, π∗). Thus, the effects in the two relevant types of orderings can

written as

1

n!

∑
π∈Π

1[{a, c} ≺π k ≺π {b, d}]
[
∆3

kcd(B
′′(k, π) ∪ {a, b}) + ∆3

kcd(B
′′(k, π))

−∆3
kcd(B

′′(k, π) ∪ a)−∆3
kcd(B

′′(k, π) ∪ b)
]
.

(4.14)

This is the average complementarity of a and b as members of the coalition

B′(k, π) preceding k, for ∆3
kcd(B

′(k, π)). Intuitively, the complementarity of a

and b matters because after their merger, they appear either in combination or

not at all, where before they would contribute their resources separately. This is

emphasized in the following representation of (4.14) using the second-difference

operator ∆2
ab.

Lemma 22 The effect of the a–b merger on the c–d merger benefit for each
“complete” outsider k ∈ N \ {a, b, c, d} in (4.14) is equivalent to

1

n!

∑
π∈Π

1[{a, c} ≺π k ≺π {b, d}]∆2
ab

(
∆2

cd [B′′(k, π) ∪ k]−∆2
cd [B′′(k, π)]

)
(4.15)

This follows directly from the definition of the difference operators ∆2
ab and ∆3

kcd.

The next step is to aggregate the effect in (4.15) across all “complete” out-

siders k ∈ N \ {a, b, c, d}. To do this, we can exploit the fact that (4.15), and

hence the sum over all outsiders, consists of terms of the form ∆2
ab(∆

2
cd(S)),

where S ⊆ N \ {a, b, c, d}. Therefore, the total effect on all complete outsiders

can be computed by adding over all subsets S ⊆ N \ {a, b, c, d}, which leads to a

particularly simple expression.

Lemma 23 Across all “complete” outsiders k ∈ N \ {a, b, c, d}, the effect of the
a–b merger on the benefits Mk(cd) received from the c–d merger is

− 2

n!

∑
S⊆N\{a,b,c,d}

α|S|∆
2
ab

[
∆2

cd(S)
]
, (4.16)

where the coefficient

α|S| = (n− 2|S| − 4) (|S|+ 1)! (n− |S| − 3)! (4.17)

depends only on n and the cardinality of S.

We postpone the discussion of α|S|, which has some interesting characteristics,

and of the nested second differences, until Proposition 12 has been derived.
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4.5.2 Merging outsiders

The merging players a and b need to be considered separately as outsiders to the

merger of c and d because they change their marginal contribution to any given

preceding coalition. Consider first the dummy player b. If a and b stay apart,

then the effect of the c–d merger on the payoff of b is

M b(cd) =
1

n!

∑
π̂∈Π

1[c ≺π̂ b ≺π̂ d]∆3
bcd(B

′(b, π̂)). (4.18)

In contrast, when a and b have merged and b has become a dummy player, the

effect of the c–d merger on b is zero by definition. Thus, by participating in

the first merger with a, player b loses ∆3
bcd(B

′(b, π̂)) in each ordering π̂ with

c ≺π̂ b ≺π̂ d. (The loss may well be negative, i. e. a gain.)

The proxy player a, on the other hand, receives a c–d merger benefit (if

positive; damage if negative) of

Ma(cd) =
1

n!

∑
π∈Π

1[c ≺π a ≺π d]∆3
acd(B

′(a, π)) (4.19)

if a and b are separate players, and

M (ab)(cd) =
1

n!

∑
π∈Π

1[c ≺π a ≺π d]∆3
(ab)cd(B

′(a, π)) (4.20)

when they are merged, where the (ab) notation indicates that a now controls the

joint resources of a and b.

Our objective for the moment is to determine how the combined c–d merger

benefits for a and b change when a and b merge themselves. Formally, we look

for

M (ab)(cd)−Ma(cd)−M b(cd). (4.21)

Since M (ab)(cd), Ma(cd), and M b(cd) contain different third-difference terms eval-

uated over various preceding coalitions in different subsets of Π, solving for the

aggregate effect in (4.21) involves a number of steps. First, the fundamental sym-

metry of the permutations in Π allows us to sum the terms in M b(cd) over the

equivalent orderings with c ≺π a ≺π b obtained by the transposition of a and b

in each ordering π̂ in (4.18). Second, the third-difference terms ∆3
icd(B

′(i, π)) can

be expressed in terms of second differences ∆2
cd(·) and sets of complete outsiders

B′′(a, π) preceding a, so that each of the merger benefits in (4.21) can be written

as a sum of comparable terms. The following lemma describes the result of these

operations. The proof in Section 4.7.2 in the Appendix contains the details.
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Lemma 24

M (ab)(cd)−Ma(cd)−M b(cd) =

1

n!

∑
π∈Π

{
1
[
c ≺π a ≺π {b, d}

]
∆2

ab

(
∆2

cd[B
′′(a, π)]

)
− 1

[
{b, c} ≺π a ≺π d

]
∆2

ab

(
∆2

cd[B
′′(a, π)]

)}
.

(4.22)

As before, this expression can be rewritten as the sum of terms of the form

∆2
ab(∆

2
cd(S)) over all coalitions S ⊆ N \ {a, b, c, d} of preceding outsiders.

Lemma 25 The effect in (4.22) of the merger of players a and b on their own
benefit derived from a merger of players c and d is equivalent to

1

n!

∑
S⊆N\{a,b,c,d}

α|S|∆
2
ab

[
∆2

cd(S)
]
, (4.23)

with α|S| as defined in (4.17).

4.5.3 Total effect of the first merger on the second

The total effect of the merger of a and b on the profitability of the c–d merger is

the negative sum of (4.16) and (4.23).

Proposition 12 The effect of the merger of a and b on the profitability M cd(cd)
of the c–d merger is given by

1

n!

∑
S⊆N\{a,b,c,d}

α|S|∆
2
ab

[
∆2

cd(S)
]
, (4.24)

with α|S| as defined in (4.17).

A number of points are worth noting about the coefficients α|S|. First, they

depend only on n and on the size of each coalition S ⊆ N \ {a, b, c, d}. Second,

they are positive for S = ∅, negative for S = N \ {a, b, c, d}, and non-increasing

in |S|. Third, they are symmetric in the sense that

α|S| = −αn−|S|−4,

so that for each S of size |S| there is a corresponding S ′ ⊆ N \ {a, b, c, d} of size

n− |S| − 4 whose coefficient is minus that of S.
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For example, for n = 5 and N = {a, b, c, d, e}, (4.24) becomes

1

120

(
2∆2

ab

[
∆2

cd(∅)
]
− 2∆2

ab

[
∆2

cd(e)
])

=− 2

120
∆2

ab

[
∆3

ecd(∅)
]

=− 2

120
∆2

ab

[
∆2

cd(∆e(∅))
]

(4.25)

Hence, the a–b merger increases the profitability of the c–d merger if and only

if a and b are non-complementary in their effect on ∆3
ecd(∅). Recall that when c

and d merge, some of the redistributed surplus goes to e if ∆3
ecd(∅) > 0, i. e. if e

enhances the complementarity of c and d. In order to make the c–d merger more

attractive, the merger of a and b—in essence, the decision to act in combination

rather than separately—must reduce this third-difference term, which is just what

(4.25) implies.26

When n > 5, (4.24) expands to a sum of terms of the form

−∆2
ab

[
∆2

cd(S
′)−∆2

cd(S)
]
,

where S is a strict subset of S ′. The term in square brackets describes the impact

of the players in S ′ \ S on the complementarity of the merging parties c and d;

this corresponds to the third-difference terms in (4.12) describing the impact of

a single outsider on the complementarity of the merging firms. Hence, it is a

measure of the amount of surplus redistributed to outsiders when c and d merge.

To increase the profitability of the merger of c and d, the first merger of a and b

must reduce the amount of surplus going to outsiders. It does so if and only if a

and b are non-complementary with respect to the term in square brackets, i. e. if

and only if ∆2
ab[ · ] is negative.

Among other things, Proposition 12 implies that there is no effect of the first

merger on the second when there are no other players besides {a, b, c, d}. In

contrast, the two merger decision are generically interdependent when n > 4.

Thus, while four-player models might appear to be a natural starting point for

the analysis of two disjoint mergers, their results do not necessarily generalize to

a setting with n > 4.

Corollary 4 (n = 4) Disjoint pairwise mergers are independent if n = 4. They
are generically interdependent if n > 4.

26Cf. the discussion in Section 4.5.4 of the solid curve in Figure 4.3
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Another implication of (4.24) is the fundamental symmetry of the interaction

between disjoint mergers.

Corollary 5 (Symmetry of merger interaction) The impact of a merger of
a and b on the profitability of a merger between c and d is the same as the effect
of the c–d merger on the profitability of the merger of a and b.

This symmetry follows from the fact that ∆2
ab(∆

2
cd(S)) = ∆2

cd(∆
2
ab(S)), i. e. that

the order of taking differences over v(S) is irrelevant. Abusing terminology, one

can think of ∆2
cd(S) as the first derivative of the characteristic function with

respect to the (binary) merger decision of c and d, evaluated at S. By the same

token, ∆2
ab(∆

2
cd(S)) corresponds to the cross-derivative of v with respect to both

mergers, so that the symmetry of interaction between them is not surprising.

Proposition 13 follows directly.

Proposition 13 Merger decisions are strategic complements if (4.24) is positive.
A sufficient condition is that ∆2

ab(∆
2
cd(S)) is non-increasing in the cardinality of

S for all S ⊆ N \ {a, b, c, d}.
Conversely, mergers are strategic substitutes if (4.24) is negative, for which

it is sufficient that ∆2
ab(∆

2
cd(S)) is non-decreasing in the cardinality of S for all

S ⊆ N \ {a, b, c, d}.

The intuition behind the sufficient conditions in Proposition 13 is that, if

∆2
ab(∆

2
cd(S)) is non-increasing in S, then ∆2

ab(∆
3
kcd(S)) ≡ ∆2

ab(∆
2
cd(S∪k)−∆2

cd(S))

is non-positive for all outsiders k ∈ N \ {a, b, c, d}, k /∈ S. Thus, the third-

difference terms which sum to k’s merger benefit Mk(cd) in (4.12) are weakly

reduced by the merger of a and b, and hence the share of surplus received by c

and d after their merger increases. Conversely, if ∆2
ab(∆

2
cd(S)) is non-decreasing in

S, then the a–b merger increases Mk(cd) for all outsiders k, reducing the incentive

for c and d to merge as well.

The fact that merger decisions can be either strategic substitutes or comple-

ments gives rise to a familiar kind of considerations.27 In particular, the inter-

action of merger decisions implies a rationale for merger waves based entirely on

bargaining considerations. When two pairwise mergers are unprofitable in isola-

tion but profitable if undertaken simultaneously, then the removal of an obstacle

to one of them (an easing of sector-specific regulation, say) can trigger a merger

of firms which, prima facie, should not have been affected by that obstacle before.

27See, e. g., Bulow et al. (1985). Nilssen and Sørgard (1998) apply the “puppy dog/fat cat”
framework of Fudenberg and Tirole (1984) to the analysis of sequential mergers in a Cournot
oligopoly.
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4.5.4 Example: Vertical mergers in a three-tiered indus-
try

As an example for the interaction between disjoint pairwise mergers, consider the

simple extension of the Inderst–Wey retailing model from section 4.4.1 illustrated

in Figure 4.2. As before, there are two local-monopoly retailers selling the goods

produced by two suppliers. For consistency with the notation used in section 4.5,

let b and d denote the retailers, and let a and c denote their direct suppliers,

each of whom produces a single good. In addition, there is now an upstream

firm e producing an intermediate input good used by a and c. We look for the

interaction between the vertical mergers of a and b on the one hand, and c and

d on the other.

By Proposition 13 and (4.25), the two merger decisions are strategic com-

plements if the a–b merger reduces the marginal contribution of the complete

outsider e to the complementarity of players c and d, and strategic substitutes

otherwise. This is the case when the goods produced by suppliers a and c are suf-

ficiently complementary; when they are not, the mergers are strategic substitutes.

The final outcome is a segmentation of the range of the substitutability param-

eter γ into cases where one or both pairs of merger candidates merge depending

on the action taken by the other.

In the following we specify our example and solve for the interaction effect

described in Proposition 12, before discussing in detail both the strategic effect

and merger incentives for a single pair in isolation.

a c

b d

e

Figure 4.2: Two retailers b and d, two intermediate-level firms a and c, and an
upstream producer e.

Let the gross profit of each retailer i = b, d be given by

α(xia + xic)− (x2
ia + x2

ic + 2γxiaxic),
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where xia and xic is the quantity supplied to retailer i by the intermediate-level

firms a and c, respectively, and where γ ∈ [−1, 1] measures the degree of comple-

mentarity between the two goods as perceived by the final customers patronizing

each retailer; the goods are complements if γ < 0 and substitutes if γ > 0.

Let the intermediate-level firms a and c produce each unit of their differ-

entiated goods using as their only input one unit of the homogeneous out-

put of the upstream firm e. Firm e, in turn, produces the total quantity

xae + xce ≡ xba + xbc + xda + xdc at increasing, quadratic cost

δ(xae + xce)
2 δ > 0.

We assume that each tier of firms is essential, i. e. a coalition of firms can only

produce some final output if it contains player e, plus at least one of a and c,

plus at least one of b and d.28 Standard computations show that the worth of the

grand coalition N = {a, b, c, d, e} is equal to

v(abcde) =
α2

1 + 4δ + γ
,

which is well-defined for all δ > 0 and γ ≥ −1. Total output is

xba + xbc + xda + xdc =
2α

1 + 4δ + γ
.

Now consider the strategic effect of a vertical merger of firms a and b on the

profitability of a second merger of c and d. By (4.25) and the maximization of

the relevant subcoalition payoffs, this is equal to

− 2

120
∆2

ab

[
∆3

cde(∅)
]

=− 2

120
α2

(
1

1 + δ
+

1

1 + 4δ + γ
− 1

1 + 2δ
− 1

1 + 2δ + γ

)
. (4.26)

As noted above, this is a mutual effect of each vertical merger on the profitability

of the other. The right-hand side of (4.26) is a continuous, decreasing function

of the substitutability parameter γ. An example is shown as the solid curve in

Figure 4.3. It is positive when the goods are perfect complements (γ = −1)

and negative when they are perfect substitutes (γ = 1). Thus, the two vertical-

merger decisions are strategic complements if and only if the goods produced by

the intermediate firms are sufficiently complementary (precisely, if γ is lower than

the unique value γ0 at which (4.26) is zero).

28This assumption simplifies the analysis by reducing the worth of some subsets of N to zero;
it is not critical.
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γ
−1 10γ2 γ1

γ0 γ3

Figure 4.3: Profitability of a vertical merger in isolation (broken line), and
mutual effect of one merger on the other (solid line). The two goods are perfect
complements when γ = −1 and perfect substitutes when γ = 1. The vertical axis
indicates utils. α = 2 and δ = .3

In the example drawn in Figure 4.3 with α = 2 and δ = .3, the range of

substitutability parameters γ is segmented into four cases. First, when γ ∈
[−1, γ2], so that the goods are close complements, c and d profit from merging

regardless of the decision taken by the other merger candidates (but their total

profit is higher if a and b also merge).

Second, when γ ∈ (γ2, γ1] then the merger of c and d is profitable if and only

if a and b merge as well: The broken curve is negative but the sum of both curves

is positive. By the fundamental symmetry of this simple model, the incentives for

a and b are exactly the same, and it is precisely the strategic complementarity of

the two mergers which makes each of them profitable if both occur. Essentially,

this leads to a simple 2×2 normal-form game with two symmetric, Pareto-ranked

equilibria in which both pairs of players take the same action. It is straightforward

to think of real-life situations where one of the two pairs is prevented by some

exogenous force from taking the preferred merger (or de-merger) decision; when

this obstacle is removed, both pairs or merger candidates act in unison even

though only one of them is directly affected by it. Hence, even in this simple

illustration can one find a purely bargaining-based rationale for a merger or de-

merger “wave”.

Third, when γ ∈ (γ1, γ3], neither pair of candidates wants to merge no matter

what action is taken by the other. Finally, when the goods are very close sub-

108



stitutes and γ ∈ (γ3, 1], the c–d merger (and, by symmetry, the a–b merger as

well) is profitable if and only if the other merger does not take place. While this

implies the usual kind of coordination problems, it is another instance where the

reversal of either merger decision leads to a change of the other.

In the remainder of this section, we describe the forces behind these effects

in more detail. To develop an intuition for the mutual effect in (4.26), it is

useful first to consider the broken curve in Figure 4.3 representing the merger

profitability for c and d, M cd(cd), when players a and b remain separate. This is

the negative sum of the effects of the c–d merger on each of the remaining three

players. Formally,

M cd(cd) = −
[
Ma(cd) + M b(cd) + M e(cd)

]
. (4.27)

Consider the three terms on the RHS in turn. The effect Ma(cd) on player

a is a decreasing function of the substitutability parameter γ. Intuitively, the

merger of c and d results in a shift towards the margin of the negotiation over

the joint rent with player a as a supplier to retailer d. The more substitutable

the goods produced by a and c, the lower is the marginal rent relative to the

inframarginal one which c and d “lock in” by merging.29

In contrast, the merger benefit M b(cd) for retailer b is a negative, concave and

increasing function of γ. The c–d merger shifts the negotiation between retailer

b and supplier c to the margin where rents are lower due to the convexity of

the upstream firm’s costs.30 This effect is more pronounced when output (and

hence, marginal cost) is high, which is the case when the goods are complements.

Conversely, total output falls in γ, so when the goods are more substitutable,

marginal costs are relatively lower and the c–d merger is less detrimental to

retailer b.

Finally, the merger benefit M e(cd) of the upstream firm e is a positive function

which monotonically decreases in γ. Being an essential player, e always increases

the complementarity of c and d. The more complementary the goods produced

by the intermediate firms a and c, the higher is the worth of the grand coalition

v(N) and the larger is the average contribution of the upstream firm e to the

complementarity of the players c and d, and hence, M e(cd).

Overall, (4.27) is a quasiconvex function of γ on [−1, 1] which is decreasing

29This is closely related to the “scarce needs” variant of the vertical-foreclosure model of
Hart and Tirole (1990).

30Cf. the “scarce supplies” variant in Hart and Tirole (1990).
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at γ = −1. If δ < 1/2, then there is an interval [γ, γ], −1 ≤ γ < γ ≤ 1, on

which (4.27) is negative.31 Otherwise, it is positive throughout. Intuitively, when

the goods are close complements, then the negative effect of the c–d merger on

retailer b dominates the effects on the other two outsiders, so that c and d profit

from merging. Moreover, when the cost parameter δ is large (> 1/2), the effect on

b dominates regardless of the substitutability between the goods, and the merger

of c and d is profitable in isolation for all values of γ.

Now consider the solid curve in Figure 4.3 depicting the strategic effect of a

merger of players a and b on the profitability of the c–d merger. After a and b

have merged, they employ or withdraw their joint resources together rather than

separately. Thus, the merger of a and b eliminates those bargaining situations

where the upstream firm e makes its marginal contribution to a set of players

containing either a or b but not the other. As it turns out, this implies that the

merger benefit from the c–d merger for the upstream firm, M e(cd), is reduced

when the goods are complements and increased when they are substitutes.

To see this, consider the terms which make up M e(cd) when a and b are

separate players. Recall that

M e(cd) =
1

n!

∑
π∈Π

1[c ≺π e ≺π d]∆e

[
∆2

cd(B
′(e, π))

]
.

The preceding coalitions B′(e, π) are {∅}, {a, b}, {a}, and {b} (with different but

positive weights). In the absence of the intermediate firm a, there is no second

good, and both ∆e(∆
2
cd(∅)) and ∆e(∆

2
cd(b)) are positive but independent of the

substitution parameter γ. In contrast, γ has an important effect for ∆e(∆
2
cd(a))

and ∆e(∆
2
cd(ab)).

∆e(∆
2
cd(a)) represents a bargaining situation where retailer b is not active; the

term is positive and monotonically decreasing in γ ∈ [−1, 1) and zero for γ = 1.

With complementary goods, the essential player e enables c and d to generate

together, but not separately, a positive profit which increases as the total value

of the final output increases (i. e. as γ decreases and the goods become more

complementary). In contrast, as γ goes to unity and the goods become perfect

substitutes, player c no longer provides any additional value when its competitor

a is present, so that c and d are no longer complementary players.

On the other hand, ∆e(∆
2
cd(ab)) determines the bargaining share of the up-

stream firm e when all other players are active as well; it is negative when the

31In Figure 4.3, this interval is given by [γ2, γ3].
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goods are close complements, i. e. the joint contribution of supplier c and retailer

d to the remaining three players is less than the sum of their individual contribu-

tions. This is because a second retailer adds no value when the two intermediate

firms a and c supply perfect complements produced (or procured) at increasing

cost. The marginal value of an additional unit is then equal to α at either re-

tailer independent of absolute quantities, so adding d as a second retailer does

not increase the worth of coalition {a, b, c, e}. In contrast, retailer d does make a

positive contribution when supplier c is absent, since without the complementary

good produced by c, the marginal value α − 2xia of supplier a’s output xia is

strictly decreasing in each local retailing market. Hence, supplier c reduces the

marginal contribution of retailer d when the goods are close complements, result-

ing in a weak bargaining position for the essential upstream firm e. When the

goods are perfect substitutes, in contrast, the marginal contribution of supplier

c is zero whenever its competitor a is already present, so that ∆e(∆
2
cd(ab)) = 0

for γ = 1.

When a and b merge, the upstream firm e bargains either in the presence of the

merged entity or in the absence of both a and b. Technically, the third-difference

terms ∆e(∆
2
cd(a)) and ∆e(∆

2
cd(b)) are replaced by ∆e(∆

2
cd(∅)) and ∆e(∆

2
cd(ab)).

Since ∆e(∆
2
cd(b)) and ∆e(∆

2
cd(∅)) are constant in γ, and since

∆e(∆
2
cd(a))−∆e(∆

2
cd(ab))

is positive and monotonically decreasing in γ, the merger of a and b reduces the

bargaining power of the upstream firm e if the goods are complementary (i. e.

if γ is low). The upshot is that the mutual effect of the two disjoint mergers

on each other represented by the solid curve in Figure 4.3 is a decreasing and

convex function of γ which, for δ > 0, is positive at γ = −1 and negative at

γ = 1. Hence, there is a unique value γ0 ∈ (−1, 1) such that the merger decisions

of the two pairs of candidates are strategic complements if γ < γ0 and strategic

substitutes otherwise.

When each pair of merger candidates takes into account the strategic effect

in (4.26) in addition to the direct effect of their decision in (4.27), then the range

of values of the substitutability parameter γ ∈ [−1, 1] is segmented into different

cases as a function of the sum of both effects as described above. Depending

on parameter values, however, some of the cases described above may not exist.

For instance, when the cost parameter δ is larger than 1/2, then M cd(cd) (the

broken curve in the graph) is positive for all admissible values of γ, eliminating
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the interesting case where each merger takes place if and only if the other does

as well.

4.6 Conclusion

By explicitly allowing for the heterogeneity of outside players, we extend the

cooperative approach of Segal (2000) in a direction which we find particularly

relevant for the study of merger and de-merger decisions. Real-life industries

with bilateral bargaining are usually more complex than the two-tier models

analyzed in most of the literature. In particular, intermediate-level firms face both

upstream and downstream trading partners, making the assumption of essentially

homogeneous outsiders rather questionable. Even in simple two-sided industries,

outsider heterogeneity can arise quite naturally, as our four-firm retailing example

demonstrates. Indeed, from a bargaining perspective the salient feature of a

multi-tiered industry is not the number of tiers or the direction of supply flows,

but the fundamental heterogeneity of the players with respect to their marginal

contribution to any given coalition.

When outsiders are heterogeneous, a profitable merger can benefit some of

them even in a pure bargaining model without the monopolization effects typical

for Cournot-market mergers à la Salant et al. (1983). In those models, the merging

firms lose market power relative to the outsiders, but the merger reduces the

coordination problem among the Cournot competitors and moves the industry

closer to the cartel outcome; hence, the merging firms receive a smaller share

of a larger pie, and the net effect can go in either direction. In contrast, in our

purely bargaining-based model (like in Segal (2000) and Inderst and Wey (2001)),

the players can coordinate on maximizing total profit regardless of the market

structure, and mergers are all about bargaining power and the distribution of

the fixed surplus. The novel feature in this paper is that mergers lead to a

redistribution among the outsiders as well as from all outsiders to the merging

firms. In particular, the main share of the redistributed surplus can be received

by (some) outsiders.

The fact that outsiders can benefit from a profitable merger is of particular

interest when, prior to the merger decision, an outsider k receives an exogenous

shock to its profitability. Besides the obvious direct payoff effect, such a shock has

an impact on the merger incentives of firms other than k. In particular, the shock

can trigger a merger which overcompensates the direct payoff effect, in which case
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the incidence of the shock to one player falls entirely on others who may not even

be directly linked to him. Among other things, this implies inefficient incentives

for (binding) technology choice and R&D effort when a firm’s trading partners

subsequently take a merger or de-merger decision.

Finally, we show that the existence of different kinds of outsiders is a necessary

and (generically) sufficient condition for the interaction of merger decisions. If the

only outsiders to a merger of two players a and b are the potential participants

in another, disjoint, merger, then there is no effect of the first merger on the

profitability of the second, and hence no interaction between merger decisions.

In contrast, if there are additional outsiders who do not take part in either merger,

then the two pairs of merger candidates interact symmetrically, turning merger

decisions into strategic substitutes or complements. This suggests a perspective

on merger waves which is derived entirely from bargaining considerations: When

mergers interact, then an exogenous effect leading to a revision of one merger

decision can affect another, seemingly unrelated one by other players in the same

industry.

4.7 Appendix

4.7.1 Bargaining and the Shapley value

To motivate our use of the Shapley value, we generalize the stability condition

for multiple bilateral negotiations introduced by Stole and Zwiebel (1996a). Un-

der some additional assumptions, Stole–Zwiebel stability implies that individual

payoffs follow the “fair allocation” rule of Myerson (1980), so by his central result

they are equal to the players’ Shapley values. The additional assumptions (which

are sufficient but not necessary) are (i) “efficient” bargaining sets; (ii) absence

of externalities; and (iii) a mild form of quasi-concavity of the aggregate profit

function.

Myerson shows that individual payoffs in a cooperative game are equal to

Shapley values if (i) the players are connected by chains of “coordination confer-

ences” (trading links, in our terminology), and (ii) the payoff allocation rule is

efficient and fair; it is efficient if individual payoffs sum to the worth of the grand

coalition, and it is fair if eliminating a trading link ij has the same effect on the

payoffs of both players i and j,

Xi(L)−Xi(L \ ij) = Xj(L)−Xj(L \ ij),
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for all trading links ij, where Xi and Xj are payoffs and L is the set of all trading

links.32

Stole and Zwiebel’s stability condition applies to a setting where three or more

players bargain in bilateral negotiations. Its key feature is the assumption that

contracts are non-binding, so that after the breakdown of any single negotiation

all remaining contracts can be renegotiated. Thus, disagreement payoffs are

given by what the players can achieve by subsequent renegotiations rather than

by what is specified in their expected equilibrium contracts. More precisely, we

define stability as follows.

Definition 4 (Stole–Zwiebel stability) The outcome of a set of simultaneous
bilateral negotiations is Stole–Zwiebel (SZ) stable if no player has an incentive to
re-open any of his bilateral bargaining sessions, given the contracts specified in
all other negotiations, and given that all remaining contracts can be renegotiated
should the re-opened bargaining session break down in disagreement.

Let n firms N = {1, . . . , n} bargain simultaneously and on a bilateral basis.

Any two firms i and j in N can bargain over a pair of quantities qij ∈ R2
+ which

they supply to each other, as well as a net lump-sum payment pij. Thus, allo-

cation and bilateral rent-sharing can be determined separately, so that the issue

of double marginalization does not arise. However, the firms cannot negotiate

anything other than qij and pij. In particular, their behaviour in the remaining

negotiations is not contractible. We follow the literature in assuming that if a

firm is involved in several negotiations, it sends a different agent to each of them.

An agent acts faithfully to maximize the profit of his firm in his bilateral negoti-

ation, but he cannot coordinate his actions with other agents of the same firm.33

Let

Q ≡ {qij}i6=j∈N

denote the set of all bilateral-quantity vectors. Let P denote the corresponding

set of bilateral net payments. Two firms i and j are linked in Q if and only if at

32There are three related types of efficiency in this context. “Efficient bargaining” refers
to the fact that when the bargaining set contains both quantities and payments as separate
items, then the bilateral surplus can be shared freely without compromising allocative efficiency.
Myerson’s efficiency of the payoff rule means that no surplus is wasted when individual payoffs
are determined. Finally, the overall allocation is efficient if it maximizes total surplus across
all firms.

33The assumption that agents of the same firm cannot communicate is made, for example,
by Björnerstedt and Stennek (2000). A similar notion is implied by the contingent-contracts
approach in Inderst and Wey (2001).
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least one of the quantities in qij is positive.34 For further reference, let Z ⊆ Q

denote a set of bilateral quantities exogenously set to zero, qij ≡ 0 ⇔ qij ∈ Z.

By abuse of notation, we will also refer to Z as a set of eliminated links ij

corresponding to each qij ∈ Z.

Each firm i ∈ N has a gross profit function fi(Q), defined as its revenue from

sales to customers outside of N minus its own cost of production conditional on

Q, but ignoring payments to and from its trading partners in N . The net profit

gi(Q, P ) of each firm is the sum of fi(Q) and the net payments received from its

trading partners.

In each bilateral negotiation, the two firms i and j choose bilaterally-optimal

quantities qB
ij to maximize their joint profits, taking the outcomes of all other

bargaining encounters as given,

qB
ij = arg max

qij

gi(qij, Q−ij, P ) + gj(qij, Q−ij, P ),

where Q−ij is the set of quantities in all other bilateral trades (including those of

i and j with any third party k /∈ {i, j}). In contrast, the bilateral net payment

pij is used to share the incremental joint surplus equally. Under Stole–Zwiebel

bargaining, this is the difference between the joint profit gi(Q, P )+gj(Q,P ) after

an agreement, and the sum of payoffs after a breakdown and the subsequent

renegotiation of all remaining contracts.

Assumption 8 (No externalities) Holding all other elements of Q constant,
a change in the bilateral quantity qij only affects the gross profit fk(Q) of firm k
if k ∈ {i, j}.

In particular, this assumption rules out production externalities among suppliers,

and it implies that firms do not compete with each other on any market outside

of N .

Lemma 26 Conditional on any set of eliminated links Z ⊆ Q, the allocation
maximizing total surplus across all firms is SZ-stable.

Proof. From a planner’s point of view, a necessary condition for the optimality

of an allocation Q∗ is that for all active links ij /∈ Z,

q∗ij = arg max
qij

∑
k∈N

fk(qij, Q
∗
−ij),

34In the models of buyer-supplier bargaining of which we are a aware, bilateral trade takes
place in only one direction. We allow for two-way trade to emphasize that the equivalence of
Shapley values and payoffs under Stole–Zwiebel bargaining generalizes to this case.
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i. e. each bilateral quantity must maximize industry profits conditional on all

other trades following Q∗. Absent externalities, this is equivalent to

q∗ij = arg max
qij

fi(qij, Q
∗
−ij) + fj(qij, Q

∗
−ij) (4.28)

for all links ij.

In contrast, players i and j maximize their joint surplus by choosing a bilateral

quantity qij, taking the choices for all other links as given. The bilateral joint

surplus of i and j is maximized by

qB
ij = arg max

qij

gi(qij, Q−ij, P ) + gj(qij, Q−ij, P ) (4.29)

for all trading links ij. That is, each bilateral quantity must maximize the sum

of the two parties’ net profits given all other quantities and payments. But

conditional on Q−ij and P−ij, qij affects only gross profits fi(·) and fj(·). (The

bilateral payment pij ∈ P cancels out.) Thus, (4.29) is equivalent to

qB
ij = arg max

qij

fi(qij, Q−ij) + fj(qij, Q−ij).

Clearly, this is satisfied by the necessary condition (4.28) for the planner’s

optimal set of quantities Q∗.

This establishes the SZ stability of the (constrained) efficient outcome after

the breakdown of any number of trading links in the industry. However, bilateral

quantity setting can also lead to SZ stable but inefficient outcomes. An obvi-

ous reason is coordination failure in the presence of complementarities (or scale

economies); another is capacity constraints.35

The following assumptions rule out inefficient equilibria of the bilateral quan-

tity game. The first says that the planner’s optimal set of bilateral quantities is

unique for any given set of links which have been eliminated. In particular, this

rules out perfect substitutes. The second assumption requires that when the set

of quantities is inefficient, at least one pair of firms has an incentive to move its

quantity closer to the efficient quantity q∗ij.

35Suppose there are two buyers and a seller whose marginal cost is zero up to its capacity and
infinite thereafter, let the buyers’ profits be increasing in the amount of the good they receive,
and suppose that it is globally efficient for each buyer to receive half the seller’s capacity. In this
situation, any allocation that gives a share of x of the seller’s capacity to one buyer and 1− x
to the other is an equilibrium in the game where bilateral quantities are chosen independently.

116



Assumption 9 (Unique efficient quantities) After any set Z ⊆ Q of links
has been eliminated, total surplus

∑
i∈N fi(Q) is uniquely maximized by Q∗

Z.

Assumption 10 A inefficient set of bilateral quantities Q 6= Q∗
Z contains at

least one link qij for which
∣∣qB

ij − q∗Z,ij

∣∣ <
∣∣qij − q∗Z,ij

∣∣, where

qB
ij = arg max

qij

fi(qij, Q−ij) + fj(qij, Q−ij)

is the bilaterally efficient quantity for firm i and j given Q−ij.

A straightforward way to satisfy the last assumption is to define∑
i∈N gi(Q, P )—and thus, by Assumption 8, bilateral joint profits—as continu-

ous and strictly quasi-concave in bilateral quantities, with a maximum in qij > 0

conditional on any Q−ij.
36 However, Assumption 10 is less restrictive than that,

allowing for discrete quantities and for some constrained-efficient quantities qB
Z,ij

of zero.

So far we have established sufficient conditions for a unique and overall effi-

cient SZ-stable outcome. In each bargaining session, the disagreement points are

given by breakdown payoffs which in turn depend on the payoffs reached after

another link has broken down, and so on until only one active link is left. In other

words, payoffs are determined recursively. Myerson’s result provides a convenient

shortcut which leads directly to the Shapley value.

By assumption, bilateral payments pij are used to share the incremental joint

surplus equally. Thus, if the outcome is SZ-stable, the set of payments P ∗ must

be such that

gi(Q
∗, P ∗)− gi(Q

∗
Z , P ∗

Z) = gj(Q
∗, P ∗)− gj(Q

∗
Z , P ∗

Z), (4.30)

where Q∗
Z and P ∗

Z are quantities and payments after a breakdown of the link be-

tween i and j (i. e. Z = {qij}. In words, the payment p∗ij ∈ P ∗ between any trading

partners i and j results in an equal split of their joint profit under the unique

efficient allocation Q∗, minus their payoffs under the unique constrained-efficient,

renegotiated allocation Q∗
Z in the event of a breakdown of their bargaining ses-

sion. Condition (4.30) is nothing other than the “fair allocation” rule of Myerson

(1980) for an arbitrary set of players which are connected through a series of

“conferences” (bilateral bargaining sessions, in our context). As Myerson shows,

the fair-allocation rule plus the fact that payoffs sum to G(Q∗) implies that the

payoff for each player is indeed given by his Shapley (1953) value.

36See, for example, Björnerstedt and Stennek (2000) or Inderst and Wey (2001).

117



We would like to emphasize, however, that Assumptions 8–10 are sufficient

but not necessary to ensure that SZ-stable payoffs are equal to Shapley values.

Broadly speaking, they ensure that the players can coordinate on the allocation

maximizing their joint surplus even if they only bargain over prices and quantities.

Moreover, they are by no means necessary for our results based on Shapley values

in the main text.

4.7.2 Proofs

Proof of Lemma 20

M i(ab) and M j(ab) are symmetric sums of third-difference terms ∆3
iab(S)

and ∆3
jab(S

′), respectively, where S and S ′ are the preceding coalitions

in the relevant orderings where each player follows a but precedes b.

When (4.9) holds, then the third-difference terms of i exceed those of j

for all preceding coalitions S ⊆ Ŝ ≡ N \ {a, b, i, j} containing neither i

nor j. The remaining preceding coalitions are obtained by the union of

each S ⊆ Ŝ and {j} for player i and by S ∪ i for player j. Fix some

S∗ ⊆ Ŝ. By definition, ∆3
iab(S

∗ ∪ j) ≡ ∆2
ab(S

∗ ∪ {i, j}) − ∆2
ab(S

∗ ∪ j) and

∆3
jab ≡ ∆2

ab(S
∗ ∪ {i, j}) − ∆2

ab(S
∗ ∪ i). But ∆2

ab(S
∗ ∪ i) ≡ ∆2

ab(S
∗) + ∆3

iab(S
∗)

is larger than ∆2
ab(S

∗ ∪ j) ≡ ∆2
ab(S

∗) + ∆3
jab(S

∗) by (4.9). By the symmetry of

both the preceding coalitions and the probability weights of the Shapley value,

for each of the terms over which M j(ab) is summed there is a corresponding and

(weakly) larger term in the sum of M i(ab).

Proof of Lemma 23

Fix a subset S ⊆ N\{a, b, c, d} with cardinality |S|. For each “complete” outsider,

S can appear as an argument in (4.15) with a positive or negative sign (depending

on whether k ∈ S), corresponding to the preceding coalitions (B′′(k, π) ∪ k) and

(B′′(k, π)) respectively. The coefficient for S in (4.16) is the net number, across

all outsiders, of preceding coalitions equal to S.

Fix any k ∈ N \{a, b, c, d}. If k /∈ S, then S corresponds to B′′(k, π) in (4.15).

Thus, a, c and all the members of S must precede the outsider k in an ordering

π (and all other players must follow k) in order for S to appear, with a negative

sign, in (4.15). There are (|S|+2)!(n−|S|−3)! such orderings for k, and there are

n− |S| − 4 outsiders k /∈ S. Thus, in the aggregate across all complete outsiders,
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subset S appears with a negative sign

(n− |S| − 4)(|S|+ 2)!(n− |S| − 3)! (4.31)

times. Conversely, for each k ∈ S, S corresponds to B′′(k, π)∪ k in (4.15), i. e. a,

c and S \ k must precede k in an ordering π so that S appears in (4.15) with a

positive sign. There are (|S|+ 1)!(n− |S| − 2)! such orderings, and |S| outsiders

in S, giving a total of

|S|(|S|+ 1)!(n− |S| − 2)! (4.32)

instances where S appears in (4.15) with a positive sign. The Lemma follows

from netting (4.31) and (4.32).

Proof of Lemma 24

M b(cd) can be evaluated over all orderings π ∈ Π with c ≺π a ≺π d, where each

π is obtained from each π̂ with c ≺π̂ b ≺π̂ d in (4.18) by the transposition of

players a and b. As before, let B′′(b, π̂) ≡ B′(b, π̂) \ {a, b} denote the “complete”

outsiders preceding b in ordering π̂. Consequently, B′′(a, π) = B′′(b, π̂). If b ≺π̂ a,

then B′(b, π̂) = B′′(a, π); if a ≺π̂ b, then B′(b, π̂) = B′′(a, π) ∪ a. Hence,

M b(cd) =
1

n!

∑
π∈Π

{
1
[
c ≺π a ≺π {b, d}

] (
∆2

cd[B
′′(a, π) ∪ b]−∆2

cd[B
′′(a, π)]

)
− 1

[
{b, c} ≺π a ≺π d

] (
∆2

cd[B
′′(a, π) ∪ a]−∆2

cd[B
′′(a, π) ∪ {a, b}]

)}
.

Moreover, by the definition of B′′(a, π) ≡ B′(a, π) \ {a, b},

Ma(cd) =
1

n!

∑
π∈Π

{
1
[
c ≺π a ≺π {b, d}

] (
∆2

cd[B
′′(a, π) ∪ a]−∆2

cd[B
′′(a, π)]

)
− 1

[
{b, c} ≺π a ≺π d

] (
∆2

cd[B
′′(a, π) ∪ b]−∆2

cd[B
′′(a, π) ∪ {a, b}]

)}
and

Mab(cd) =
1

n!

∑
π∈Π

{
1
[
c ≺π a ≺π {b, d}

] (
∆2

cd[B
′′(a, π) ∪ {a, b}]−∆2

cd[B
′′(a, π)]

)
− 1

[
{b, c} ≺π a ≺π d

] (
∆2

cd[B
′′(a, π)]−∆2

cd[B
′′(a, π) ∪ {a, b}]

)}
.

Finally,

∆2
ab(∆

2
cd(S)) ≡ ∆2

cd(S ∪ {a, b}) + ∆2
cd(S)−∆2

cd(S ∪ a)−∆2
cd(S ∪ b).

The Lemma follows directly.
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Proof of Lemma 25

This is analogous to the proof of Lemma 23. The expression in (4.22) is the sum

of terms of the form ∆2
ab∆

2
cd(S), where S ⊆ N \ {a, b, c, d} corresponds to the

set of complete outsiders B′′(a, π) preceding player a in ordering π. Fix a subset

S with cardinality |S|. The corresponding term ∆2
ab(∆

2
cd(S)) has a positive sign

in each ordering where player c and the members of S precede player a (and all

others follow), which is the case in

(|S|+ 1)!(n− |S| − 2)!

orderings. The sign of ∆2
ab(∆

2
cd(S)) is negative if the coalition preceding a consists

of c, b and S (and no other players); there are

(|S|+ 2)!(n− |S| − 3)!

orderings of this type. Thus, the (net) coefficient corresponding to subset S in

(4.22) is

α|S| ≡ (n− 2|S| − 4)(|S|+ 1)!(n− |S| − 3)!
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Ellison, Glenn, and Drew Fudenberg (2000). The neo-luddite’s lament: Excessive

upgrades in the software industry. RAND Journal of Economics, 31, 253–

272.

Farrell, Joseph, and Garth Saloner (1985). Standardization, compatibility, and

innovation. RAND Journal of Economics, 16, 70–83.

Fishman, Arthur, and Rafael Rob (2000). Product innovation by a durable-good

monopolist. RAND Journal of Economics, 31, 237–252.

Fudenberg, Drew, and Jean Tirole (1984). The fat-cat effect, the puppy-dog ploy,

and the lean and hungry look. American Economic Review, 74, 361–366.

Fudenberg, Drew, and Jean Tirole (1998). Upgrades, tradeins, and buybacks.

RAND Journal of Economics, 29, 235–258.

Gans, Joshua S., and Stephen P. King (1999). Using ’bill and keep’ interconnect

arrangements to soften network competition. Unpublished manuscript,

Melbourne Business School.

Gugler, K., D. Mueller, B. Yurtoglu, and D. Zulehner (2001). The character-

istics and effects of mergers: An international comparison. Unpublished

manuscript, University of Vienna.

Gul, Faruk (1989). Bargaining foundations of Shapley value. Econometrica, 57,

85–95.

Hahn, Jong-Hee (2000). Network competition and interconnection with heteroge-

neous subscribers. Unpublished manuscript, Christ Church College, Uni-

versity of Oxford.

Hart, Oliver, and Jean Tirole (1990). Vertical integration and market foreclosure.

Brookings Papers on Economic Activity: Microeconomics, 205–286.

123



Hart, Sergiu, and Andreu Mas-Colell (1996). Bargaining and value. Economet-

rica, 64, 357–380.

Horn, Henrick, and Asher Wolinsky (1988a). Bilateral monopolies and incentives

for merger. RAND Journal of Economics, 19, 408–419.

Horn, Henrik, and Asher Wolinsky (1988b). Worker substitutability and patterns

of unionisation. Economic Journal, 98, 484–497.

Ichiishi, Tatsuro (1993). The Cooperative Nature of the Firm. Cambridge, UK:

Cambridge University Press.

Inderst, Roman, and Christian Wey (2000). Market structure, bargaining, and

technology choice. Discussion Paper FS IV 00-12, Wissenschaftszentrum

Berlin.

Inderst, Roman, and Christian Wey (2001). Negotiated contracts in bilaterally

oligopolistic industries. Unpublished manuscript, University College Lon-

don and Wissenschaftszentrum Berlin.

Kamien, Morton I., and Israel Zang (1990). The limits of monopolization through

acquisition. Quarterly Journal of Economics, 105, 465–499.

Katz, Michael L., and Carl Shapiro (1985). Network externalities, competition,

and compatibility. American Economic Review, 75, 424–440.

Katz, Michael L., and Carl Shapiro (1994). Systems competition and network

effects. Journal of Economic Perspectives, 8, 93–115.

Laffont, Jean-Jacques, Patrick Rey, and Jean Tirole (1998a). Network com-

petition: I. Overview and nondiscriminatory pricing. RAND Journal of

Economics, 29, 1–37.

Laffont, Jean-Jacques, Patrick Rey, and Jean Tirole (1998b). Network competi-

tion: II. Price discrimination. RAND Journal of Economics, 29, 38–56.

Lerner, Josh, and Jean Tirole (2000). The simple economics of open source.

Unpublished manuscript, Harvard Business School and IDEI, Toulouse.

Liebowitz, S. J., and Stephen E. Margolis (1994). Network externality: An un-

common tragedy. Journal of Economic Perspectives, 8, 133–150.

124



Myerson, Roger B. (1980). Conference structures and fair allocation rules. Inter-

national Journal of Game Theory, 9, 169–182.

Nahm, Jae (2000). The effect of compatibility on software supply and hardware

demand: Forward and backward compatibility. Unpublished manuscript,

Dept. of Economics, Hong Kong University of Science and Technology.

Nilssen, Tore, and Lars Sørgard (1998). Sequential horizontal mergers. European

Economic Review, 42, 1683–1702.

Salant, Stephen W., Sheldon Switzer, and Robert J. Reynolds (1983). Losses

from horizontal merger: The effects of an exogenous change in industry

structure on Cournot-Nash equilibrium. Quarterly Journal of Economics,

98, 185–99.

Segal, Ilya (2000). Collusion, exclusion, and inclusion in random-order bargain-

ing. Unpublished manuscript.

Shapley, Lloyd S. (1953). A value for n-person games. In Harold W. Kuhn, and

Albert W. Tucker (eds.), Contributions to the Theory of Games, Volume 2,

307–317. Princeton, NJ: Princeton University Press.

Stigler, George J. (1950). Monopoly and oligopoly by merger. American Eco-

nomic Review, 40, 23–34.

Stole, Lars, and Jeffrey Zwiebel (1998). Mergers, employee hold-up and the scope

of the firm: An intrafirm bargaining approach to mergers. Unpublished

manuscript, University of Chicago, GSB, and Stanford University, GSB.

Stole, Lars A., and Jeffrey Zwiebel (1996a). Intra-firm bargaining under non-

binding contracts. Review of Economic Studies, 63, 375–410.

Stole, Lars A., and Jeffrey Zwiebel (1996b). Organizational design and technology

choice under intrafirm bargaining. American Economic Review, 86, 195–

222.

Waldman, Michael (1993). A new perspective on planned obsolescence. Quarterly

Journal of Economics, 108, 273–283.

Waldman, Michael (1996). Planned obsolescence and the R&D decision. RAND

Journal of Economics, 27, 583–595.

125


