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Abstract
Visual generative modeling is a transformative area that aims to synthesize di-

verse, realistic-looking visual content, e.g., images and videos. These models are
widely applied in various domains, ranging from creative art design and the visual
effects industry to data augmentation for downstream computer vision tasks. Over
the past decade, this field has made tremendous progress, with significant advance-
ments evolving from Generative Adversarial Networks (GANs) to diffusion models.
Despite achieving higher fidelity and improved training stability, it remains chal-
lenging to control the synthesis process and generate content precisely as desired.
To this end, this thesis presents several new techniques aimed at improving align-
ment and controllability in GANs and diffusion models across various tasks, such
as GAN inversion, layout-to-image, text-to-image, and text-to-video generation.

Firstly, we propose a novel GAN inversion encoder that can faithfully recon-
struct complex scene-centric datasets and disentangle content and style informa-
tion from the given image. Based on this, we built an exemplar-based style synthesis
pipeline, which can assist various downstream tasks, such as improving domain
generalization in semantic segmentation. Secondly, we developed new training
strategies for layout-to-image diffusion models, which can significantly improve
the alignment with the layout condition while maintaining data diversity. Thirdly,
we strengthened pretrained text-to-image diffusion models via inference time opti-
mization. Our work enables the model to better follow the complex text prompt and
synthesize multiple desired objects with their corresponding attributes. Lastly, we
introduce the concept of Generative Temporal Nursing, where we intervene in the
generative process on the fly during inference to improve control over the temporal
dynamics in generated videos. This approach empowers pretrained text-to-video
diffusion model to synthesize longer dynamic videos.

In summary, this thesis pushes the boundaries of visual generative modeling by
enhancing control over the generation process and strengthening alignment with
the provided conditional information. These enhancements make the models more
effective in a wide range of real-world applications.
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Zusammenfassung
Die visuelle generative Modellierung ist ein transformativer Bereich, der darauf

abzielt, vielfältige, realistisch aussehende visuelle Inhalte wie Bilder und Videos zu
synthetisieren. Diese Modelle finden in verschiedenen Bereichen Anwendung, von
Gestaltung kreativer Kunst und visueller Effekte bis hin zur Datenaugmentation
für diverse Computer-Vision-Aufgaben. Dieses Feld hat in den letzten zehn Jahren
enorme Fortschritte gemacht, insbesondere durch die Entwicklungen von Genera-
tive Adversarial Networks (GANs) und Diffusionsmodellen. Trotz der Erreichung
höherer Wiedergabetreue und verbesserter Trainingsstabilität bleibt es jedoch eine
Herausforderung, den Syntheseprozess zu kontrollieren und Inhalte präzise nach
den gewünschten Vorgaben zu generieren. Zu diesem Zweck stellt diese Disserta-
tion mehrere neue Techniken vor, die darauf abzielen, die Ausrichtung und Steuer-
barkeit von GANs und Diffusionsmodellen in verschiedenen Aufgabenbereichen,
wie GAN-Inversion, Layout-zu-Bild, Text-zu-Bild und Text-zu-Video Synthese, zu
verbessern.

Erstens stellen wir einen neuartigen GAN-Inversions-Encoder vor, der kom-
plexe, szenen-zentrierte Datensätze original-getreu rekonstruieren und Inhalte von
Stilinformationen des Eingabebildes trennen kann. Darauf aufbauend haben wir
eine beispielbasierte Stilsynthese-Pipeline entwickelt, die vielfältige nachgelagerte
Aufgaben unterstützen kann, unter anderem die Verbesserung der Domänengener-
alisierung in der semantischen Segmentierung. Zweitens haben wir neue Train-
ingsstrategien für Layout-zu-Bild-Diffusionsmodelle entwickelt, die die Ausrich-
tung an der Layout-Vorgabe signifikant verbessern, während die Diversität der
generierten Daten erhalten bleibt. Drittens haben wir vortrainierte Text-zu-Bild-
Diffusionsmodelle durch Optimierung zur Inferenzzeit optimiert. Unsere Arbeit
ermöglicht es dem Modell, komplexen Textvorgaben besser zu folgen und mehrere
gewünschte Objekte mit ihren jeweiligen Attributen zu synthetisieren. Zuletzt
führen wir das Konzept des Generativen Temporalen Nursing ein, bei dem wir
während der Inferenz dynamisch in den Generierungsprozess eingreifen, um die
Kontrolle über die zeitlichen Abläufe zu verbessern. Dieser Ansatz befähigt das
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vortrainierte Text-zu-Video-Diffusionsmodell, längere dynamische Videos zu syn-
thetisieren.

Zusammenfassend erweitert diese Dissertation die Grenzen der visuellen gen-
erativen Modellierung, indem sie den Generierungsprozess besser kontrolliert und
die Übereinstimmung mit den bereitgestellten Eingabebedingungen stärker unter-
stützt. Diese Verbesserungen machen die Modelle effektiver für eine Vielzahl von
realen Anwendungen.
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1 | Introduction

1.1 Contribution Overview . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Exemplar-Based Synthesis with Content-Style Disentangle-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Improved Layout-to-Image Diffusion Models Via Adversar-

ial Supervision . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Improved Generative Semantic Nursing for Text-to-Image

Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Generative Temporal Nursing for Longer Dynamic Video

Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Open-Source Software . . . . . . . . . . . . . . . . . . . . . . . . . 13

Imagine if machines could dream — conjuring visions as vivid and varied as
those of a painter’s brush strokes on canvas. This is the realm of generative mod-
els, the creative heart of artificial intelligence, where data serves not just to inform
but to inspire. Unlike discriminative models, which excel at parsing the world, rec-
ognizing, localizing and categorizing elements within diverse datasets, generative
models are akin to artists, endowed with the ability to create. These models, usually
neural networks, are trained to synthesize novel data, such as images and videos,
following the distribution of a given training dataset. Equipped with generative ca-
pabilities, they have a wide spectrum of applications across various industries. In
art design and visual effects, they facilitate the rapid prototyping of creative visual
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Chapter 1. Introduction 2

content, allowing artists and designers to create visually stunning environments
and characters that would be challenging or time-consuming to craft manually. In
fields requiring vast amounts of training data, such as autonomous driving and
robotic learning, generative models can enrich real datasets with diverse synthetic
data, especially for scenarios that are either rare or difficult to capture in real-world
data collection, such as adverse weather conditions.

In recent years, the field of generative models has witnessed rapid development,
driven by significant advancements fromVariational Autoencoders (VAEs) (Kingma
andWelling, 2014) and Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) to the recent emergence of diffusion models (DMs) (Ho et al., 2020, Song et al.,
2020). As one of the early generative models, VAE builds upon traditional Autoen-
coder (AE), consisting of an encoder and a decoder. VAE compresses the data into a
compact latent space, where the encoded representation is formulated as a normal
distribution. This probabilistic formulation enables sampling from the posterior
distribution, allowing the decoder to generate new data. Despite being conceptu-
ally simple, the outputs produced by VAEs are often observed to be blurry (Burgess
et al., 2018). Further, the introduction of GAN has marked a significant leap for-
ward in enhancing the visual quality of the generated samples. GAN consists of a
generator and a discriminator that engage in an adversarial training process. The
generator aims to create realistic samples, while the discriminator works to differ-
entiate between real and generated samples. This dynamic rivalry enables GANs
to progressively produce content that is both more convincing and lifelike. How-
ever, this adversarial setup can also lead to training instabilities or mode collapse,
where the generator tends to produce samples with limited diversity. The recently
emerged diffusion model operates by iterative denoising from pure noise to gen-
erate clean data. The model is trained to reverse the forward process, which adds
noise to real data gradually. DM exhibits the intriguing properties of stable training
and the capability to produce diverse outputs.

Despite significant advancements in generative models that have enhanced vi-
sual quality and diversity, controlling the generation process and ensuring align-
ment with potential input conditions, such as text and layout, remains a substantial
challenge. Unconditional random sampling will naturally lead to random results
without any specific guidelines or constraints. To gain more precise control over



3 Chapter 1. Introduction

Figure 1.1: An overview of the topics addressed in this thesis. We focus on four main tasks:
GAN inversion, layout-to-image, text-to-image, and text-to-video synthesis. For the latter
three tasks, we implement innovative techniques using more recent diffusion models. For
the illustration of the text-to-video task, the images shown are subsampled from the video
sequence.

the generation process, multiple sources of auxiliary information have been uti-
lized, e.g., an existing image (Abdal et al., 2019, Collins et al., 2020, Richardson et al.,
2021), semantic label map (Park et al., 2019, Tan et al., 2021a, Sushko et al., 2022,
Xue et al., 2023) or textual prompt (Rombach et al., 2022, Ramesh et al., 2022, Nichol
et al., 2022). For instance, an existing image can serve as a reference for semantic
content or as a style exemplar, which can be used for style transfer. Alternatively,
a label map specifying the pixel-wise semantic class can also guide the layout con-
tent. Textual descriptions allow for more accessible and creative content creation,
as users can simply describe in natural language what they would like to see in the
outputs.

In this thesis, we aim to enable a more controllable generation process and en-
hance alignment with the given conditional information, particularly for GANs and
diffusion models. As outlined in Fig. 1.1, this thesis concentrates on four tasks:
GAN inversion, layout-to-image, text-to-image, and text-to-video generation. For
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the latter three tasks, we introduce innovations using more recent diffusion models.
GAN inversion aims to map a given image back to the latent space of a pretrained
GAN generator, allowing the resulting latent codes to be used for further image
editing and manipulation. In Chapter 3, we propose a novel GAN inversion en-
coder - Masked Noise Encoder (MNE), which can project the image into style and
content latents respectively. Meanwhile, the MNE is capable of handling complex
scene-centric data, as opposed to the object-centric focus seen in previous works. In
Chapter 4, we propose two training strategies for layout-to-image diffusion models,
to achieve better alignment with the label map condition. We integrate adversarial
supervision into the diffusion model training pipeline so that the label map con-
dition can be explicitly leveraged. Considering the iterative nature of DMs during
inference, we introduce a multistep unrolling strategy that provides supervision
over a time window rather than at a single timestep. In Chapter 5, to mitigate the
issues of object negligence and attribute binding in text-to-image (T2I) synthesis,
we intervene in the generation process of a pretrained T2I model with improved op-
timization objectives on the cross-attention maps, where cross-attention is a crucial
link between the text prompt and the diffusion model. In Chapter 6, we introduce
the concept of Generative Temporal Nursing (GTN), where we aim to alter the gen-
erative process on the fly during inference to improve control over the temporal
dynamics and enable the generation of longer dynamic videos using a pretrained
text-to-video diffusion model.

In the remainder of this chapter, we will discuss the research challenges and
our contributions in Section 1.1. We then provide a detailed outline of the thesis
structure in Section 1.2. Finally, we list the publications and open-source software
that contributed to this thesis in Section 1.3 and Section 1.4, respectively.

1.1 Contribution Overview

This thesis focuses on improving alignment and controllability in GANs and
Diffusion Models across four concrete tasks: GAN inversion, layout-to-image, text-
to-image, and text-to-video generation. In the following sections, we will delve into
the challenges and our contributions for each subtask.



5 1.1 Contribution Overview

1.1.1 Exemplar-Based Synthesis with Content-Style
Disentanglement

GAN inversion aims to encode a given image into the latent codes of a pre-
trained GAN generator, which facilitates image editing and manipulation. These
latent codes are derived by reconstructing the image from the latent space. Previ-
ous studies (Richardson et al., 2021, Yao et al., 2022, Roich et al., 2022, Alaluf et al.,
2022, Dinh et al., 2022, Šubrtová et al., 2022) have predominantly focused on sim-
ple, single-object-centric datasets such as FFHQ (Karras et al., 2019), CelebA-HQ
(Karras et al., 2018), and LSUN (Yu et al., 2015). However, when applied to com-
plex scene-centric datasets like Cityscapes (Cordts et al., 2016) and BDD100K (Yu
et al., 2020), these methods often result in significant reconstruction errors, leading
to unsatisfactory visual outcomes.

To address these limitations, in Chapter 3 we propose a novel GAN inversion
encoder, dubbed as Masked Noise Encoder (MNE), which enables high quality re-
construction of complex scenes. We discovered that using latent vectors without
spatial dimension alone are not sufficient for the faithful reconstruction of scene-
centric datasets. Therefore, we design the encoder to map the image not only to
latent vectors but also to intermediate noise maps with spatial dimensions. By do-
ing so, the reconstruction quality is significantly improved. Meanwhile, MNE learns
to encode the content and style information into the noise map and latent code, re-
spectively. Favorably, MNE is equipped with strong plug-n-play ability, i.e., readily
usable on novel domains without retraining or fine-tuning needed.

With MNE, we build an exemplar-based style synthesis pipeline. Given two
exemplar images, we extract the noise map from the content reference and latent
codes from the style reference. These elements are then combined to synthesize a
novel sample. Our pipeline ensures that the resulting image reflects the semantic
content of the content exemplar and the style of the style exemplar, effectively
combining their properties into a cohesive visual output.

We further explored the application of our style synthesis pipeline in real-world
scenarios, such as semantic segmentation. Specifically, we utilized our pipeline to
generate stylized synthetic data, enabling the reuse of original labels from the con-
tent exemplar thanks to the precise control over the semantic content. We demon-
strated that our pipeline can significantly enhance the domain generalization per-
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formance of various segmenters without requiring additional annotation efforts. In
addition to boosting performance during training, a style-augmented validation set
based on known labeled data can serve as a good proxy test set, where we observe
that there is a strong correlation between the performance on the synthetic test set
and the real test set. This can facilitate effective model selection for deployment,
thus offering great practical value.

1.1.2 Improved Layout-to-Image Diffusion Models Via
Adversarial Supervision

The task of layout-to-image synthesis (L2I), also referred to as semantic image
synthesis (SIS), involves generating realistic and diverse images from provided se-
mantic label maps, which specify per-pixel semantic class labels. This task requires
the generative model to effectively interpret and transform these maps into visually
coherent images that adhere closely to the depicted layouts. Early studies on this
task were conducted using GANs (Wang et al., 2018b, Park et al., 2019, Wang et al.,
2021c, Tan et al., 2021b, Sushko et al., 2022), and have been recently extended to
diffusion models (Wang et al., 2022, Xue et al., 2023, Zhang and Agrawala, 2023).
GAN-based approaches often suffer from the mode collapse issue, where the gener-
ator produces similar-looking images despite sampling from different noise inputs,
resulting in limited data diversity.

On the other hand, large-scale pretrained diffusion models, which have been
trained on extensive datasets, are equippedwith the capability of synthesizingmore
diverse data. Recent efforts have been devoted to adopting such pretrained diffu-
sion models for the L2I task. FreestyleNet (Xue et al., 2023) proposed to finetune the
diffusionmodel on the paired layout-image data and rectify the attention within the
model based on the layout condition. However, fully fine-tuning the model tends to
lead to overfitting on the training data. Built upon the text-to-image diffusionmodel
Stable Diffusion (Rombach et al., 2022), FreestyleNet’s overfitting is also evident in
the diminished text controllability, which reflects the loss of powerful pretrained
knowledge. Regardless of how the user varies the text prompt, the output remains
largely insensitive to prompt changes, exhibiting little visual differentiation. An-
other line of work such as ControlNet (Zhang and Agrawala, 2023) has become
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a more attractive option, which freezes the pretrained T2I model and introduces
an additional adapter to accommodate the layout information. By doing so, the
rich prior knowledge can be preserved to the maximum extent. However, a com-
mon observation is that the model outputs are often not closely aligned with the
provided layout conditions. We attribute this to the suboptimal training pipeline,
wherein the traditional diffusion model training loss, i.e., 𝐿2 reconstruction loss, is
employed without explicit supervision on the layout.

To achieve the goal of synthesizing diverse samples that are well aligned with
the layout condition, in Chapter 4 we propose two novel training strategies for
L2I diffusion models: adversarial supervision integration and multistep unrolling.
Specifically, we employ a discriminator based on a semantic segmentation model,
leveraging the layout condition explicitly to provide per-pixel feedback to the dif-
fusion model generator on how closely the denoised images adhere to the input
layout. Instead of employing supervision at a randomly sampled single timestep,
as used in prior works, we additionally unroll multiple steps over a specified time
window to mimic the inference time sampling, which provides a more compre-
hensive learning signal. Enabled by both training techniques, our approach can
effectively ensure consistent layout alignment, while maintaining the text control-
lability inherent in the large-scale pretrained diffusion model.

1.1.3 Improved Generative Semantic Nursing for
Text-to-Image Synthesis

Text-to-image synthesis is a rapidly advancing area in the field of generative
models, where the goal is to create images from textual descriptions. This task
involves generating visual content that accurately reflects the semantics and de-
tails conveyed by the text prompt. This technology has far-reaching applications
in creative industries, digital art, and advertising, where T2I generation can signifi-
cantly reduce manual effort and enhance creativity. Large-scale generative mod-
els such as GLIDE (Nichol et al., 2022), Stable Diffusion (Rombach et al., 2022),
DALL·E 2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022), eDiff-I (Balaji et al.,
2022), have recently achieved significant progress and demonstrated exceptional
capacity to generate stunning photorealistic images. However, it remains challeng-



1.1 Contribution Overview 8

ing to synthesize images that fully comply with the given prompt input (Marcus
et al., 2022, Feng et al., 2023, Wang et al., 2023e, Chefer et al., 2023). There are two
challenging semantic issues in text-to-image synthesis, i.e., “missing objects” and
“attribute binding”. “Missing objects” refers to the phenomenon that not all objects
mentioned in the input text faithfully appear in the generated image. “Attribute
binding” represents the critical compositionality problem, where the attribute in-
formation, e.g., color or texture, is not properly aligned with the corresponding
object or is incorrectly attached to another object.

To mitigate these issues, Attend & Excite (A&E) (Chefer et al., 2023) has intro-
duced the concept of Generative Semantic Nursing (GSN). The core idea is to update
latent codes on the fly, enhancing the incorporation of semantic information from
the given text into pretrained synthesis models. To enforce the object occurrence,
A&E defined a loss objective that aims to maximize the maximum attention value
for each object token. Although showing promising results on simple composition,
e.g., “a cat and a dog”, we observed unsatisfactory outcomes when the test prompts
become more complex. We attribute this to the suboptimal loss objective, which
considers only the single maximum value and fails to take spatial distribution into
account.

In Chapter 5, we propose a novel objective function for GSN, termed as Divide &
Bind, which exhibits outstanding capability in generating images that fully adhere
to the prompt. We maximize the total variation of the attention map to encour-
age multiple, spatially distinct attention excitations. By distributing the attention
spatially for each token, we facilitate the generation of all objects mentioned in
the prompt, even in the presence of high token competition. Intuitively, this cor-
responds to dividing the attention map into several distinct regions. Furthermore,
to mitigate the attribute binding issue, we propose a Jensen-Shannon divergence
(JSD)-based binding loss. This loss explicitly aligns the distribution between the
excitation of each object and its attributes. By combining both terms for optimiza-
tion, our approach is able to improve the pretrained T2I model, enabling it to ef-
fectively generate multiple instances with correct attribute binding from complex
textual descriptions.
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1.1.4 Generative Temporal Nursing for Longer Dynamic
Video Synthesis

Taking one step further from text-to-image synthesis, text-to-video (T2V) syn-
thesis aims to generate dynamic video sequences from textual descriptions. Un-
like static images, videos consist of multiple frames that must be temporally co-
herent and accurately reflect the input text. This task is inherently more complex,
requiring the model not only to understand and generate visual content but also
to manage the temporal evolution of scenes and actions as described in the text.
Remarkable progress in T2V has been made by industry (OpenAI, 2024, Kaishou,
2024, AI, 2024, Runway, 2024), however, their models are not publicly accessible.
Despite falling behind their industrial counterparts, open-sourced T2V diffusion
models (Blattmann et al., 2023, Guo et al., 2024, Wang et al., 2023c, Chen et al., 2023,
Wang et al., 2023b, Chen et al., 2024a) have still demonstrated promising results.
We focused on investigating available open-sourced T2V models and identified two
common issues: limited visual changes within the video, and poor ability to gener-
ate longer videos with coherent temporal dynamics. In particular, the scenes gener-
ated by these models tend to show a high degree of frame-to-frame similarity, often
resembling a static image with slight changes rather than a video with dynamic and
evolving content as the text prompt specified. Additionally, these models typically
fail to extend beyond generating videos longer than the trained 16 frames per in-
ference pass. Although recent studies (Qiu et al., 2024, Wang et al., 2023a) strive
to produce longer videos using a sliding window approach, these methods incur
significant overhead frommultiple inference runs and confront the additional chal-
lenge of maintaining temporal coherence throughout these passes.

To mitigate the aforementioned issues, in Chapter 6, we propose the concept
of “Generative Temporal Nursing” (GTN), which aims to enhance the temporal dy-
namics of (long) video synthesis in real-time during inference, without the need
for re-training T2V models, and is designed to operate in a single pass to avoid
excessive computational overhead. As a form of GTN, we propose VSTAR, consist-
ing of Video Synopsis Prompting (VSP) and Temporal Attention Regularization
(TAR). To disseminate the single input prompt and provide better guidance across
frames, Video Synopsis Prompting leverages the capabilities of large languagemod-
els (LLMs), e.g., ChatGPT (OpenAI, 2022), to decompose the single input prompt
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that describes a dynamic transition into multiple stages of visual development. Fur-
thermore, based on our systematic analysis of the architectural design of T2V mod-
els, we identified the temporal attention units as the critical component driving
the dynamic aspects of video synthesis. Through detailed ablation studies com-
paring the temporal attention of real and synthesized videos, we found that the
temporal attention of real videos exhibits a band-matrix-like structure, indicating
a strong temporal correlation among adjacent frames and a diminishing correla-
tion as the distance between frames increases. Intriguingly, the attention maps of
the synthesized videos are less structured, especially for longer ones, which may
account for their weaker temporal dynamics. Motivated by these findings, we in-
troduce a straightforward yet effective Temporal Attention Regularization strategy
to enhance the dynamics of generated videos. When combining both strategies,
our VSTAR can effectively synthesize long dynamic videos that adhere to the input
prompt, which describes a visual evolution.

1.2 Thesis Outline

In this section, we briefly describe the content of each subsequent chapter and
list the corresponding publications.

Chapter 2: Related Work. In this chapter, we outline the foundational work
upon which our contributions are based, along with other relevant research works.
Specifically, we discuss three primary areas central to our study: generative mod-
eling, GAN inversion, and conditional visual synthesis.

Chapter 3: Exemplar-Based SynthesiswithContent-StyleDisentanglement.
In this chapter, we propose a novel GAN inversion encoder that can disentangle
content and style information from a given image. Building upon this, we have
established an exemplar-based style synthesis pipeline. We demonstrated that syn-
thetic data generated by our pipeline not only improves the domain generalization
of semantic segmenters during training but also assists in model validation and
selection for deployment. This showcases the practical utility of our proposed ap-
proach.

The work presented in this chapter is published as the WACV 2023 paper titled
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“Intra-Source Style Augmentation for Improved Domain Generalization” (Li et al.,
2023b). An extension of the conference version has been accepted at IJCV 2024 (Li
et al., 2024c). Part of the work was also presented as an extended abstract in an oral
format at the “2nd Workshop and Challenge on Vision Datasets Understanding” at
CVPR 2023.

Chapter 4: Improved Layout-to-Image Diffusion Models Via Adversarial
Supervision. This chapter presents two training strategies for layout-to-image
diffusion models, enhancing their alignment with the layout condition while simul-
taneously producing diverse data via text control. We first introduced a semantic
segmenter-based discriminator to provide per-pixel feedback to the diffusion model
generator, which explicitly leverages the input layout condition in the supervision
process. Further, we propose a novel multistep unrolling strategy that encourages
consistent adherence to the layout condition over a time window, rather than at just
a single timestep. By employing our strategies, we improved several L2I diffusion
models with different adapter designs, showcasing themodel-agnostic effectiveness
of our proposal.

The work presented in this chapter is based on the ICLR 2024 paper “Adversarial
Supervision Makes Layout-to-Image Diffusion Models Thrive” (Li et al., 2024a).

Chapter 5: Improved Generative Semantic Nursing for Text-to-Image Syn-
thesis. In this chapter, we focus on resolving two semantic alignment issues in
pretrained T2I model, i.e., missing objects and attribute binding issue. We propose
two novel inference-time objectives to update the latent codes during the gener-
ation process, ensuring that the semantic information in the given text prompt is
better reflected in the final output. Our approach can effectively synthesizemultiple
objects with their corresponding attributes as mentioned in the text prompt.

The work presented in this chapter is published in the BMVC 2023 Oral paper
“Divide&Bind YourAttention for ImprovedGenerative Semantic Nursing” (Li et al.,
2023a).

Chapter 6: Generative Temporal Nursing for Longer Dynamic Video Syn-
thesis. In this chapter, we investigate the open-sourced T2V model, aiming to gen-
erate longer dynamic videos that involve a visual evolution. We introduce the con-
cept of “Generative Temporal Nursing” (GTN), where we intervene in the video
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generation process on-the-fly to enhance the temporal dynamics without any need
for fine-tuning. As a form of GTN, we propose VSTAR, which comprises two com-
ponents: Video Synopsis Prompting (VSP) and Temporal Attention Regularization
(TAR). VSTAR enables the pretrained T2Vmodel to generate longer dynamic videos
beyond the typical short clips trained on, e.g., 16 frames.

The work in this chapter is based on the paper “VSTAR: Generative Temporal
Nursing for Longer Dynamic Video Synthesis” (Li et al., 2025). Part of the work
was presented as an extended abstract at the “AI for Content Creation Workshop”
at CVPR 2024, and the full version is published at ICLR 2025. Yumeng Li is the lead
author. William Beluch contributed to paper writing.

1.3 Publications
The content of this thesis is based on the following publications:

• Intra-Source Style Augmentation for Improved Domain Generalization
Yumeng Li, Dan Zhang, Margret Keuper, Anna Khoreva
Proceedings of the IEEE/CVFWinter Conference onApplications of Computer
Vision, WACV 2023

• Divide & Bind Your Attention for Improved Generative Semantic Nursing
Yumeng Li, Margret Keuper, Dan Zhang, Anna Khoreva
Proceedings of the British Machine Vision Conference, BMVC 2023 (Oral)

• Intra- & Extra-Source Exemplar-Based Style Synthesis for Improved Domain
Generalization
Yumeng Li, Dan Zhang, Margret Keuper, Anna Khoreva
International Journal of Computer Vision, IJCV 2024

• Adversarial Supervision Makes Layout-to-Image Diffusion Models Thrive
Yumeng Li, Margret Keuper, Dan Zhang, Anna Khoreva
Proceedings of the International Conference on Learning Representations, ICLR
2024

• VSTAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis
Yumeng Li, William Beluch, Margret Keuper, Dan Zhang, Anna Khoreva

https://openaccess.thecvf.com/content/WACV2023/papers/Li_Intra-Source_Style_Augmentation_for_Improved_Domain_Generalization_WACV_2023_paper.pdf
https://proceedings.bmvc2023.org/366/
https://link.springer.com/article/10.1007/s11263-023-01878-8
https://link.springer.com/article/10.1007/s11263-023-01878-8
https://openreview.net/forum?id=EJPIzl7mgc
https://arxiv.org/abs/2403.13501
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Proceedings of the International Conference on Learning Representations, ICLR
2025

Additional publications not being part of this thesis:

• Anomaly-Aware Semantic Segmentation via Style-Aligned OoD Augmenta-
tion
Dan Zhang, Kaspar Sakmann, William Beluch, Robin Hutmacher, Yumeng Li
Proceedings of the IEEE/CVF International Conference on Computer Vision,
Workshop on Robustness and Reliability of Autonomous Vehicles in the Open-
world, ICCV 2023

• Domain-Aware Fine-Tuning of Foundation Models
Ugur Ali Kaplan, Margret Keuper, Anna Khoreva, Dan Zhang, Yumeng Li
International Conference onMachine Learning,Workshop on FoundationMod-
els in the Wild, ICML 2024

• Label-Free Neural Semantic Image Synthesis
Jiayi Wang, Kevin Alexander Laube, Yumeng Li, Jan Hendrik Metzen, Shin-I
Cheng, Julio Borges, Anna Khoreva
Proceedings of the European Conference on Computer Vision, ECCV 2024

1.4 Open-Source Software
As part of the work accomplished in this thesis, several software tools have been

developed and released as open source. These tools are intended to facilitate fur-
ther research and development in the community. Below is a list of open-sourced
software published during this research:

• Accomplished for thework in Chapter 3: https://github.com/boschresearch/
ISSA

• Accomplished for thework in Chapter 4: https://github.com/boschresearch/
Divide-and-Bind

• Accomplished for thework in Chapter 5: https://github.com/boschresearch/
ALDM

https://openaccess.thecvf.com/content/ICCV2023W/BRAVO/papers/Zhang_Anomaly-Aware_Semantic_Segmentation_via_Style-Aligned_OoD_Augmentation_ICCVW_2023_paper.pdf
https://openaccess.thecvf.com/content/ICCV2023W/BRAVO/papers/Zhang_Anomaly-Aware_Semantic_Segmentation_via_Style-Aligned_OoD_Augmentation_ICCVW_2023_paper.pdf
https://arxiv.org/abs/2407.03482
https://arxiv.org/abs/2407.01790
https://github.com/boschresearch/ISSA
https://github.com/boschresearch/ISSA
https://github.com/boschresearch/Divide-and-Bind
https://github.com/boschresearch/Divide-and-Bind
https://github.com/boschresearch/ALDM
https://github.com/boschresearch/ALDM
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• Accomplished for thework in Chapter 6: https://github.com/boschresearch/
VSTAR

https://github.com/boschresearch/VSTAR
https://github.com/boschresearch/VSTAR
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In this chapter, we aim to provide a broad overview of the related literature
and background information, serving as preparation for the subsequent chapters
of this thesis. We introduce generative modeling, with a particular focus on Gen-
erative Adversarial Networks (GANs) and diffusion models in Section 2.1. In Sec-
tion 2.2, we provide a comprehensive overview of GAN inversion, which lays the
foundation for Chapter 3. Furthermore, we delve into conditional visual synthesis
in Section 2.3, covering layout-to-image, text-to-image, and text-to-video. These
topics are relevant to Chapters 4 to 6 respectively.
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2.1 Generative Modeling

Generative modeling has emerged as a pivotal area of research within the field of
artificial intelligence, focusing on the development of models capable of generating
new data samples that are indistinguishable from real data. These models, which
include Variational Autoencoders (VAEs) (Kingma andWelling, 2014, Higgins et al.,
2017, Van Den Oord et al., 2017), Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014, Karras et al., 2018, 2019), autoregressive models (Van Den Oord
et al., 2016, Esser et al., 2021, Chang et al., 2022) and diffusion models (DMs) (Ho
et al., 2020, Song et al., 2020, Rombach et al., 2022), have demonstrated remarkable
success across various domains, such as image synthesis, natural language process-
ing, and audio generation. The fundamental objective of generative modeling is to
learn the underlying distribution of a given dataset and to sample from this distri-
bution to create novel instances that retain the intrinsic properties of the original
data distribution.

Earlywork in generativemodeling primarily centered aroundVAEs, which lever-
age probabilistic graphical models to encode data into a lower-dimensional latent
space and subsequently decode it back to its original form with minimal loss of
information. This probabilistic framework allows VAEs to generate diverse and co-
herent samples, though they often struggle with producing high-fidelity outputs
compared to more recent approaches. The advent of GANs marked a significant
breakthrough in the field, introducing a game-theoretic framework where a gener-
ator network and a discriminator network are trained simultaneously. This adver-
sarial training process has led to the creation of highly realistic outputs, pushing
the boundaries of what generative models can achieve. However, GANs are no-
toriously difficult to train and can suffer from issues such as mode collapse and
instability. More recently, diffusion models have emerged as a powerful class of
generative models. Diffusion models work by modeling the process of adding noise
to data and then learning to reverse this process, effectively generating samples
that closely resemble the original data distribution. DMs have shown impressive
results in generating high-quality images and have been praised for their stability
and diversity of outputs compared to GANs. The stable training process of DMs
has enabled large-scale training and the generation of high-fidelity outputs on ex-
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Figure 2.1: Illustration of Generative Adversarial Network (GAN).

tensive datasets. In the following, we will provide a more detailed examination of
GANs in Section 2.1.1 and DMs in Section 2.1.2, which both have been studied in
this thesis.

2.1.1 Generative Adversarial Networks
Generative Adversarial Networks (GANs) were introduced in 2014 by Goodfel-

low et al. (2014) and have revolutionized the field by introducing an adversarial
training framework. GANs consist of two neural networks: the generator and the
discriminator, which are trained simultaneously through a process of competition,
as illustrated in Fig. 2.1. The generator network aims to create data samples that
are indistinguishable from real data, fooling the discriminator. It takes a random
noise vector as input and transforms it into a data sample, such as an image. The
discriminator network, on the other hand, evaluates the authenticity of the samples
it receives, distinguishing between real data from the training set and fake data pro-
duced by the generator. Therefore, the training of GANs can be seen as a two-player
adversarial game. Formally, the training objective can be formulated as:

min
𝐺

max
𝐷
𝑉 (𝐷,𝐺) = E𝒙∼𝑝data(𝒙) [log𝐷 (𝒙)] + E𝒛∼𝑝𝒛 (𝒛) [log(1 − 𝐷 (𝐺 (𝒛)))], (2.1)

where𝐺 and𝐷 represent the generator and discriminator, respectively. 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝒛
denote the distribution of real data and input noise. 𝐷 (𝑥) indicates the probability
that 𝑥 came from the real data distribution. In practice, the generator and discrim-
inator are updated iteratively, typically in an alternating fashion. The respective
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training objective can be derived from Eq. (2.1):

min
𝐷
𝐿𝐷 = −E𝒙∼𝑝data(𝒙) [log𝐷 (𝒙)] − E𝒛∼𝑝𝒛 (𝒛) [log(1 − 𝐷 (𝐺 (𝒛)))], (2.2)

min
𝐺
𝐿𝐺 = E𝒛∼𝑝𝒛 (𝒛) [log(1 − 𝐷 (𝐺 (𝒛)))] . (2.3)

However, it is observed that Eq. (2.3) may not provide sufficient gradient for 𝐺 to
learn well, if the discriminator can reject generated samples with high confidence
as they are clearly different from the training data. To overcome this saturation
problem, the non-saturating GAN loss is commonly used:

min
𝐺
𝐿𝐺 = −E𝒛∼𝑝𝒛 (𝒛) [log𝐷 (𝐺 (𝒛))] . (2.4)

In theory, the solution of the two-player game is a Nash equilibrium, where neither
the generator𝐺 nor the discriminator𝐷 can improve. Nevertheless, achieving Nash
equilibrium in practice can be challenging due to the dynamic and often unstable
nature of GAN training. Some works attempt to stabilize the training by modifying
the loss function (Nowozin et al., 2016, Arjovsky et al., 2017, Mao et al., 2017).

Many efforts have also been devoted to the architectural design of GANs (Kar-
ras et al., 2018, 2019, Brock et al., 2019). The StyleGAN series (Karras et al., 2018,
2019, 2020a,b, 2021) has made notable contributions to this evolution. Introduced
by Karras et al. (2019), StyleGAN brought a novel approach to the generator archi-
tecture by incorporating a style-based latent space, as illustrated in Fig. 2.2. Unlike
the traditional generator that only feeds the latent code through the input layer,
StyleGAN maps the input noise to the style latent, which is injected at various
scales through adaptive instance normalization (AdaIN) to control different aspects
of the generated outputs. This newly introduced style space enables better dis-
entanglement of the latent space, offering greater opportunities for manipulation
and editing tasks, such as via GAN inversion (Abdal et al., 2019, Tov et al., 2021,
Patashnik et al., 2021), which will be described in more detail in Section 2.2. Fol-
lowing the success of StyleGAN, several iterations have been developed to enhance
its capabilities and address its limitations. To mitigate the water droplet-like ar-
tifacts, StyleGAN2 (Karras et al., 2020b) replaced the instance normalization with
weight demodulation, which is based on statistical assumptions about the signal in-
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Figure 2.2: Evolution from the traditional GAN generator to the style-based genera-
tor (Karras et al., 2019). The illustration is taken from Karras et al. (2019).

stead of actual contents of the feature maps. Additionally, StyleGAN2 revisited the
progressive growing scheme and explored skip connections and residual connec-
tion design to produce high-quality images. StyleGAN2-ADA (Karras et al., 2020a)
proposed an adaptive discriminator augmentation strategy that can effectively sta-
bilize training when the training data is limited. Further, StyleGAN3 (Karras et al.,
2021) redesigned all signal-processing aspects of the StyleGAN2 generator, which
can reduce the texture sticking artifacts caused by aliasing, and make the morphing
transition more natural.

2.1.2 Diffusion Models
Diffusion models (Ho et al., 2020, Song et al., 2020, Nichol and Dhariwal, 2021)

have emerged as a powerful class of generative models capable of synthesizing
high-quality results. Remarkably, they have demonstrated advantages in terms of
training stability and output diversity compared to GANs. Diffusion models con-
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Figure 2.3: Illustration of Diffusion Model (DM).

sist of forward and backward diffusion processes, as illustrated in Fig. 2.3. In the
forward process, the clean data is gradually turned into noise. A denoising model
is then trained to conduct the backward diffusion process to recover the structure
of the data, yielding a generative model. Formally, given a data point sampled from
the real data distribution 𝑥0 ∼ 𝑞(𝑥), in the forward diffusion process, one can add
Gaussian noise to the sample progressively in𝑇 steps, yielding a sequence of noisy
samples 𝑥1, ..., 𝑥𝑇 :

𝑞(𝑥𝑡 |𝑥𝑡−1) = 𝑁 (𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ), (2.5)

where {𝛽𝑡 ∈ (0, 1)}𝑇𝑡=1 represents the noise variance schedule. Let 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =∏𝑡
𝑠=0 𝛼𝑠 , one can sample 𝑥𝑡 at any arbitrary timestep 𝑡 in a closed form using repa-

rameterization trick:

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, where 𝜖 ∼ 𝑁 (0, 𝐼 ) (2.6)

∼ 𝑁 (𝑥𝑡 ;
√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 )𝐼 ). (2.7)

As𝑇 →∞, the latent 𝑥𝑇 is approximately an isotropic Gaussian distribution. There-
fore, we can obtain new data points by sampling 𝑥𝑇 from 𝑁 (0, 𝐼 ) if the reverse dis-
tribution 𝑞(𝑥𝑡−1 |𝑥𝑡 ) is learned.

Since 𝑞(𝑥𝑡−1 |𝑥𝑡 ) is intractable, in practice we learn a model 𝑝𝜃 to approximate
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these conditional probabilities in order to run the backward diffusion process:

𝑝𝜃 (𝑥0:𝑇 ) = 𝑝 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ), (2.8)

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = 𝑁 (𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)). (2.9)

The model can be trained to maximize the Evidence Lower Bound (ELBO):

log𝑝 (𝑥) ⩾ E𝑞(𝑥1 |𝑥0) [log𝑝𝜃 (𝑥0 |𝑥1)] (2.10)
− 𝐷𝐾𝐿 (𝑞(𝑥𝑇 |𝑥0) | |𝑝 (𝑥𝑇 )) (2.11)

−
𝑇∑︁
𝑡=2
E𝑞(𝑥𝑡 |𝑥0) [𝐷𝐾𝐿 (𝑞(𝑥𝑡−1 |𝑥𝑡 , 𝑥0) | |𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ))] . (2.12)

Empirically, Ho et al. (2020) observed that simplifying the training objectives leads
to improved performance. The simplified loss term is summarized as follows:

𝐿𝑠𝑖𝑚𝑝𝑙𝑒 = E𝑥0,𝑡,𝜖

[
∥𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡)∥2

]
. (2.13)

Typically, 𝜖𝜃 is implemented as a UNet (Ronneberger et al., 2015) to predict the
added noise at each timestep. More recently, transformer-based denoising mod-
els (Peebles and Xie, 2023) have showcased advantages in scalability and large-scale
training.

While diffusion models operating in the pixel space have shown impressive re-
sults in generating high-quality images, they can be computationally intensive due
to the high dimensionality of the data space. To address this challenge, Latent Dif-
fusion Models (LDMs) (Rombach et al., 2022), also known as Stable Diffusion (SD),
have been introduced, which operate in a lower-dimensional latent space rather
than directly in the pixel space, as illustrated in Fig. 2.4. LDMs leverage an au-
toencoding model consisting of an encoder and a decoder to first map the high-
dimensional data into a more compact latent space. More precisely, given an image
𝑥 ∈ R𝐻×𝑊×3 in RGB space, the encoder E projects 𝑥 into a compressed latent rep-
resentation 𝑧 = E(𝑥). Then 𝑧 is mapped back to the image space by the decoderD.
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Figure 2.4: Illustration of Latent Diffusion Model (LDM).

The autoencoder is trained to reconstruct the data:

𝑥 = 𝐷 (𝑧) = 𝐷 (E(𝑥)) ≈ 𝑥 . (2.14)

Further, a diffusion model can be trained in the compact latent space of this
trained autoencoder. The training objective described in Eq. (2.13) now reads:

𝐿𝐿𝐷𝑀 = E𝑧0∼E(𝑥),𝑡,𝜖
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡)∥2

]
, (2.15)

where 𝑧 ∈ Rℎ×𝑤×𝑐 . Notably, the encoder downsamples the spatial dimension by a
factor of 𝑓 = 𝐻/ℎ =𝑊 /𝑤 , which can greatly improve the computational efficiency.
Thanks to the training efficiency and stability, LDMs also enables large-scale train-
ing with various conditional information (Rombach et al., 2022, Podell et al., 2024,
Zhang and Agrawala, 2023), e.g., text, semantic label maps, which will be detailed
in Section 2.3.
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Figure 2.5: Illustration of GAN Inversion taken from Xia et al. (2022). GAN inversionmaps
a given real image 𝑥 to the latent space and obtains the latent code 𝑧∗. The reconstructed
image 𝑥∗ is then obtained by 𝑥∗ = 𝐺 (𝑧∗). By varying the latent code z∗ in different inter-
pretable directions, we can edit the corresponding attribute of the real image.

2.2 GAN Inversion
GANs have demonstrated remarkable capability in generating high-quality sam-

ples that are often indistinguishable from real ones. Meanwhile, the latent space
of GANs, such as StyleGAN (Karras et al., 2019), encodes rich semantic informa-
tion, allowing for the manipulation and editing of outputs by varying the latent
variables (Jahanian et al., 2020, Härkönen et al., 2020, Shen et al., 2020). While it
is straightforward to obtain latent variables for synthesized samples, deriving la-
tent codes for real images is less clear. To address this challenge, GAN inversion
aims to map real images back into the latent space of a pre-trained GAN. Ideally,
the inverted latent codes should be able to faithfully reconstruct the given image
while maintaining editability, i.e., facilitating downstream manipulation and edit-
ing. However, there is a tradeoff between fidelity and editability (Tov et al., 2021,
Roich et al., 2022, Moon and Park, 2022, Song et al., 2022). High-quality reconstruc-
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tion may lead to latent codes that reside far away from the pretrained generator
manifold, compromising the potential for further manipulation. This is due to the
mismatch between the real data distribution and the synthesized one. To address
this challenge, many methods have been proposed, which can be broadly cate-
gorized into three types: optimization-based (Creswell and Bharath, 2019, Abdal
et al., 2019, 2020, Gu et al., 2020, Collins et al., 2020, Kang et al., 2021), encoder-
based (Richardson et al., 2021, Bartz et al., 2021, Tov et al., 2021, Wei et al., 2022, Yao
et al., 2022), and hybrid approaches (Zhu et al., 2020a, Chai et al., 2021, Roich et al.,
2022, Dinh et al., 2022, Alaluf et al., 2022). In the remainder of this section, we will
delve into each category in more detail.

2.2.1 Optimization-based GAN Inversion
Optimization-based GAN inversion methods (Creswell and Bharath, 2019, Ab-

dal et al., 2019, 2020, Gu et al., 2020, Collins et al., 2020, Kang et al., 2021) directly
optimize the latent vector on a per-image basis. Formally, given an image 𝑥 and
a pretrained GAN generator 𝐺 , one strives to find an optimal latent code 𝑧∗ by
minimizing a distance metric ℓ via gradient descent:

𝑧∗ = arg min
𝑧

ℓ (𝐺 (𝑧), 𝑥), 𝑧 ∈ Z ∼ 𝑁 (0, 𝐼 ). (2.16)

Typically, ℓ (·) is a metric that measures the reconstruction quality and visual fi-
delity, such as ℓ1, ℓ2, perceptual loss (Johnson et al., 2016) and LPIPS (Zhang et al.,
2018b). For instance, Abdal et al. (2019) employed a weighted combination of the
perceptual loss and the pixel-wise ℓ2 loss.

For StyleGAN inversion, it has been observed that the projected style spaceW
and the extended style spaceW+ have better expressiveness and disentanglement
property, rendering themmore favorable choices for the GAN inversion task (Abdal
et al., 2020, Cherepkov et al., 2021, Abdal et al., 2021). The extended style spaceW+

differs from the nativeW space in that it allows for separate latent codes for each
layer of the generator network, rather than a single shared latent code, providing
more flexibility. However, since the optimization problem is highly non-convex, it
requires a good initialization to mitigate the local minima issue. Abdal et al. (2019)
proposed using the average latent codes �̄� for initialization. Some works (Zhu
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et al., 2016, Roich et al., 2022, Alaluf et al., 2022) proposed hybrid approaches to
provide a better starting point, which will be introduced in Section 2.2.3. Neverthe-
less, optimization-based methods generally have worse editability. It is also worth
mentioning that the optimization is performed during inference and thus leads to
significant computational overhead.

2.2.2 Encoder-based GAN Inversion
Beingmore computationally efficient, encoder-basedmethods (Richardson et al.,

2021, Bartz et al., 2021, Tov et al., 2021, Wei et al., 2022, Yao et al., 2022) involve
training of an encoder network 𝐸 to map real images to latent codes in a single
forward pass. Once trained, the encoder can be applied to different given images
instead of being optimized on a per sample basis. Formally, the process can be
formulated as:

𝜃 ∗𝐸 = arg min
𝜃𝐸

ℓ (𝐺 (𝐸 (𝜃𝐸, 𝑥)), 𝑥), (2.17)

where 𝑥 represents the training data, and the encoder 𝐸 is parameterized with 𝜃𝐸 .
The representative encoder-based work pSp encoder (Richardson et al., 2021) em-
ployed a feature pyramid (Lin et al., 2017) to extract three levels of feature maps,
which are mapped to various latent codes in the extended style spaceW+of Style-
GAN. The e4e encoder (Tov et al., 2021) further incorporated regularization losses
to minimize the variance between the different style codes and enforce proximity to
the original latent style spaceW. In doing so, the e4e encoder achieved enhanced
editability, while trading off some detail preservation. To improve the reconstruc-
tion quality, the Feature-Style encoder (Yao et al., 2022) further replaces the lower
latent code prediction with a feature map prediction.

Despitemuch progress, most works only showcase applications on single object-
centric datasets, such as CelebA-HQ (Karras et al., 2018), FFHQ (Karras et al., 2019),
LSUN (Yu et al., 2015). They still fail on more complex scenes, thus restricting
their application in practice. In Chapter 3, we propose a novel GAN inversion en-
coder, termed the Masked Noise Encoder. This encoder can reconstruct complex
scene-centric data, such as driving scenes, and is capable of disentangling content
and style. This enables style mixing augmentation, which is beneficial for various
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downstream applications.

2.2.3 Hybrid GAN Inversion

Hybrid GAN inversion methods (Zhu et al., 2020a, Chai et al., 2021, Roich et al.,
2022, Dinh et al., 2022, Alaluf et al., 2022, Song et al., 2022) seek to achieve a balance
between reconstruction quality and computational efficiency, typically involving
both encoder and optimization, or breaking the inversion process into two stages.
Zhu et al. (2020a), Chai et al. (2021) first used an encoder to provide an initial esti-
mate of the latent vector, which is then refined through optimization. PTI (Roich
et al., 2022) similarly obtained a pivotal latent code through an encoder, then tuned
the generator to further reduce distortion, especially for out-of-domain samples. In-
stead of direct fine-tuning, HyperStyle (Alaluf et al., 2022) and HyperInverter (Dinh
et al., 2022) incorporate a hypernetwork to predict weight offsets for the generator.
Designed for out-of-domain GAN inversion, Song et al. (2022) first invert the im-
age and perform user-desired editing to obtain a coarse result. Further, a mask of
interest is derived from the difference between unedited and edited results. After
obtaining the mask, one can composite the edited image with the original input
to resolve the out-of-domain issue. A deghosting network is employed to remove
ghosting artifacts.

Recent works have explored the usage of additional inputs such as labeled re-
gions of interest (Moon and Park, 2022) and segmentation masks (Šubrtová et al.,
2022). Our method introduced in Chapter 3 only requires RGB images and a frozen
generator. Importantly, it offers plug-n-play ability on unseen web-crawled images,
broadening its applicability to downstream tasks.

2.3 Conditional Visual Synthesis
Instead of generating from randomly sampled noise, conditional visual synthe-

sis aims to produce visual results, such as images and videos, that adhere to user-
provided conditions. These conditions can include class labels (Mirza and Osindero,
2014, Dhariwal and Nichol, 2021, Sauer et al., 2022), spatial layouts (Wang et al.,
2018b, Park et al., 2019, Sushko et al., 2022, Xue et al., 2023), and text prompts (Rom-



27 2.3 Conditional Visual Synthesis

bach et al., 2022, Ramesh et al., 2022, Kang et al., 2023, Esser et al., 2024). The ability
to guide the generative process with such specific inputs has opened new avenues
in creative and practical applications, making conditional synthesis a vital area of
research. Among these, three topics are particularly relevant to this thesis: layout-
to-image, text-to-image and text-to-video.

Despite the rapid advancements in generative models, accurately controlling the
synthesis process to produce the desired outcomes remains a significant challenge.
Ensuring that the generated visuals not only meet the specified conditions but also
maintain high fidelity and coherence is an active research topic. In Chapters 4 to 6,
we propose several novel techniques to improve the alignment and controllability of
the conditional generation process. These methods aim to enhance how generative
models interpret and integrate user conditions, leading to more precise and high-
quality outputs.

In what follows, we review and discuss the related works in the key areas of
layout-to-image, text-to-image, and text-to-video synthesis. Finally, in Section 2.3.4,
we discuss the evaluationmetrics for conditional visual synthesis and datasets used.

2.3.1 Layout-to-Image Synthesis

The task of layout-to-image synthesis (L2I), also known as semantic image syn-
thesis (SIS), is to generate realistic and diverse images given the semantic label
maps, which previously has been studied based on Generative Adversarial Net-
works (GANs) (Wang et al., 2018b, Park et al., 2019, Wang et al., 2021c, Tan et al.,
2021b, Sushko et al., 2022), and recently extended to diffusion models (Wang et al.,
2022, Xue et al., 2023, Zhang and Agrawala, 2023).

GAN-Based Layout-to-Image Synthesis. The investigation can be mainly split
into two directions: improving the conditional insertion in the generator (Park et al.,
2019,Wang et al., 2021c, Tan et al., 2021b), and improving the discriminator’s ability
to providemore effective conditional supervision (Ntavelis et al., 2020, Sushko et al.,
2022). For the generator design, early works such as Pix2Pix (Isola et al., 2017) and
Pix2PixHD (Wang et al., 2018a) employed a UNet (Ronneberger et al., 2015), which
takes the label map as input and produces an image as output. However, the seman-
tic information cannot be well-preserved when the network goes deeper, i.e., at the
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later stage of image generation. To mitigate this, SPADE (Park et al., 2019) proposed
a spatially adaptive denormalization layer that directly modulates the generator’s
hidden representation at various scales, conditioned on the label map. Further, OA-
SIS (Sushko et al., 2022) inherited the generator design of SPADE and introduced
a pixel-wise semantic segmentation network as the discriminator. By doing so,
the generator receives richer feedback instead of image-level real/fake classifica-
tion. Notably, OASIS considerably improves the layout faithfulness compared to
prior works. However, despite good layout alignment, samples of the above GAN-
based L2I models often lack diversity and present high similarity between different
generated images, especially when there is limited pixel-wise labeled training data.
With the increasing prevalence of diffusionmodels, particularly the large-scale pre-
trained text-to-image diffusionmodels (Nichol et al., 2022, Ramesh et al., 2022, Balaji
et al., 2022, Rombach et al., 2022), more attention has been devoted to leveraging
pretrained knowledge for the L2I task and using diffusion models. Our work ALDM
introduced in Chapter 4 falls into this field of study.

DiffusionModel Based Layout-to-Image Synthesis. Thanks to the training sta-
bility of diffusion models, it is easier to train them on large-scale data compared to
GANs. Taking advantage of such powerful pretrained knowledge, most diffusion
model-based L2I methods are built upon pretrained DMs, rather than being trained
from scratch. PITI (Wang et al., 2022) learns a conditional encoder to match the
latent representation of GLIDE (Nichol et al., 2022) in the first stage and finetune
jointly in the second stage, which unfortunately leads to the loss of text editability
of GLIDE. Training diffusion models in the pixel space is extremely computation-
ally expensive as well. With the emergence of latent diffusion models, i.e., Stable
Diffusion (SD) (Rombach et al., 2022), recent works (Xue et al., 2023, Zhang and
Agrawala, 2023, Mou et al., 2024) made initial attempts to insert layout condition-
ing into SD. FreestyleNet (Xue et al., 2023) proposed to rectify the cross-attention
maps in SD based on the label maps, while it also requires fine-tuning the whole
SD, which largely compromises the text controllability, as shown in Fig. 4.1. On
the other hand, OFT partially updates SD, T2I-Adapter (Mou et al., 2024) and Con-
trolNet (Zhang and Agrawala, 2023) keep SD frozen, combined with an additional
adapter to accommodate the layout conditioning. Despite preserving the intriguing
editability via text, they do not fully comply with the label map (see Fig. 4.1). We
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attribute this to the suboptimal diffusion model training objective, where the con-
ditional layout information is only implicitly used without direct supervision. In
light of this, in Chapter 4 we propose to incorporate the adversarial supervision to
explicitly encourage alignment of images with the layout conditioning, and a mul-
tistep unrolling strategy during training to enhance conditional coherency across
sampling steps.

Prior works (Xiao et al., 2022, Wang et al., 2023d) have also made links between
GANs and diffusion models for unconditional generation. Nevertheless, they pri-
marily build upon GAN backbones, and the diffusion process is considered as an aid
to smoothen the data distribution (Xiao et al., 2022), and stabilize the GAN train-
ing (Wang et al., 2023d), as GANs are known to suffer from training instability and
mode collapse. By contrast, our ALDM aims at improving L2I diffusion models,
where the discriminator supervision serves as a valuable learning signal for layout
alignment.

2.3.2 Text-to-Image Synthesis
Text-to-image (T2I) synthesis aims to create images based on input textual de-

scriptions. This task requires the model to have a deep understanding of the prompt
semantics and the ability to translate these semantics into visually coherent and
contextually accurate images. Text-conditional GAN (Reed et al., 2016) is the first
attempt for this task. It is a natural extension to the class conditional cGAN(Mirza
and Osindero, 2014), where the class labels are replaced by the text embeddings.
To improve the image quality, StackGAN(Zhang et al., 2017) decomposed this chal-
lenge intomoremanageable sub-problems. The first stage produces a low-resolution
image with the primitive shape and colors of the object. The second stage further
refines the output from the first stage and produces high-resolution images with
more details. AttnGAN (Xu et al., 2018) was the first to develop an attention mech-
anism that enables better prompt understanding for GANs. Taking advantage of
pretrained large foundation models such as CLIP in the generator training objec-
tive and DINO (Caron et al., 2021) in the discriminator, StyleGAN-T (Sauer et al.,
2023) achieves impressive results for GAN-based T2I synthesis.

With the rapid emergence of diffusion models (Ho et al., 2020, Song et al., 2020,
Nichol and Dhariwal, 2021), recent large-scale text-to-image diffusion models such
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as GLIDE (Nichol et al., 2022), Stable Diffusion (Rombach et al., 2022), eDiff-I (Bal-
aji et al., 2022), DALL·E 2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022), and
SD3 (Esser et al., 2024), have showcased astonishing progress. Compared to GAN-
based methods, the training stability of DMs enables large-scale training, which
significantly improves the synthesis quality. One line of works directly generates
images in the pixel space and is often combined with a super-resolution model to
upsample the results to a higher resolution. Among them, GLIDE (Nichol et al.,
2022) jointly trains the text encoder with the diffusion model, while Imagen (Sa-
haria et al., 2022) and eDiff-I (Balaji et al., 2022) adopt a pretrained and frozen
large language model, e.g., CLIP (Radford et al., 2021), T5 (Raffel et al., 2020), as
the text encoder. The text embeddings generated by these language models are fur-
ther utilized by the diffusion model via the cross-attention mechanism. The latter
choice has become the de facto option, as it significantly reduces the computational
burden during training. Another line of works involves first compressing the im-
age to a low-dimensional latent space and then training the model in this latent
space. The representative framework Stable Diffusion (SD) (Rombach et al., 2022)
trained an autoencoder model in an adversarial manner following VQGAN (Esser
et al., 2021) in the first stage. Subsequently, Stable Diffusion trains a denoising
UNet (Ronneberger et al., 2015) in the latent space of the pretrained autoencoder
model. SDXL (Podell et al., 2024) improves SD for high-resolution image synthesis
by scaling up the architecture, e.g., employing a 3× larger UNet backbone. More
recent work SD3 (Esser et al., 2024) builds upon the transformer-based DiT (Peebles
and Xie, 2023) instead of UNet, achieving SoTA results.

Despite synthesizing high-quality images, it remains challenging to produce re-
sults that properly comply with the given text prompt. A few recent works (Feng
et al., 2023, Chefer et al., 2023) aim at improving the semantic guidance purely based
on the text prompt without model fine-tuning. StructureDiffusion (Feng et al., 2023)
used language parsers for hierarchical structure extraction, to ease the composition
during generation. Attend & Excite (Chefer et al., 2023) optimizes cross-attention
maps during inference time by maximizing the maximum attention value of each
object token to encourage object presence. However, we observed that Attend&Ex-
cite struggles with more complex prompts. In Chapter 5, we propose an improved
generative semantic nursing approach Divide & Bind that in contrast fosters the
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stimulation of multiple excitations. This improved optimization aids in holding
the position amidst competition from other tokens. Additionally, we incorporate a
novel binding loss that explicitly aligns the object with its corresponding attribute,
yielding a more accurate binding effect.

2.3.3 Text-to-Video Synthesis
Text-to-video synthesis is a rapidly evolving field that extends the capabilities of

text-to-image generation to dynamic visual content. The task involves generating
video sequences that are coherent, temporally consistent, and accurately reflect
the textual descriptions provided. This is inherently more challenging than text-
to-image synthesis due to the need to maintain consistency across multiple frames
while ensuring that the generated content aligns with the textual input.

Recent text-to-video diffusion models (Blattmann et al., 2023, Wang et al., 2023c,
Chen et al., 2023, Wang et al., 2023b, Guo et al., 2024, Chen et al., 2024a) are com-
monly built upon large-scale pretrained T2I model, e.g., Stable Diffusion (Rombach
et al., 2022). Such methods generally introduce a temporal dimension to the T2I
model and incorporate temporal transformer for temporal modeling and fine-tune
on a video dataset, however differ in their design choice of the temporal units and
fine-tuning process. ModelScope (Wang et al., 2023b) and VideoCrafter (Chen et al.,
2023) similarly inserting the temporal attention after spatial units within the UNet.
LaVie (Wang et al., 2023c) and AnimateDiff (Guo et al., 2024) additionally employed
Rotary Positional Encoding (Touvron et al., 2023) and Sinusoidal Positional Encod-
ing based on the frame indices, respectively. More recently, VideoCrafter2 (Chen
et al., 2024a) adopted the architecture of its predecessor, and advance the fine-tuning
process by enriching existing video datasets with high-quality image data, achiev-
ing state-of-the-art T2V performance. More remarkable progress in T2V has been
made by industry (OpenAI, 2024, Kaishou, 2024, AI, 2024, Runway, 2024), however,
their models are not publicly accessible. Therefore, we focus on investigating open-
sourced T2V diffusion models.

Due to the memory constraints, T2V models are typically trained on short video
clips, i.e., 16 frames. Therefore, it is especially difficult to generate long videos be-
yond the trained duration. Some works (Wang et al., 2023a, Qiu et al., 2024) have
specifically focused on long video generation, which typically require multiple in-
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ference passes. FreeNoise (Qiu et al., 2024) proposed noise rescheduling combined
with local window-based attention fusion. Gen-L-Video (Wang et al., 2023a) casts
the problem as fusing multiple short video clips with temporal overlapping. How-
ever, they necessitate several passes for generation, significantly raising the infer-
ence overhead. Different from these methods, we propose VSTAR in Chapter 6 that
targets long video generation with a pretrained T2V model in one single pass. VS-
TAR is more computationally efficient without running inference multiple times
and bypasses the challenge of maintaining the coherency of different runs.

2.3.4 Evaluation Metric and Datasets
Evaluation of synthesis quality is crucial for advancing the development of gen-

erative models and for effectively comparing their progress in the field. As genera-
tive models continue to evolve, their outputs are judged not only by their ability to
produce visually realistic results, but also by their capability to accurately and con-
sistently reflect the provided conditions. Several commonly used evaluationmetrics
have been developed, each focusing on different aspects of the generated outputs.

Visual fidelity is a fundamental dimension often evaluated to determine how
well a model performs in generating faithful content. One of the most widely
used metrics for this is the Fréchet Inception Distance (FID) (Heusel et al., 2017).
FID measures the distance between the distributions of feature representations, ex-
tracted from real images and synthesized ones using a pretrained Inception V3 net-
work (Szegedy et al., 2016). A smaller FID value thus indicates higher visual fidelity
of the results. Formally, FID can be defined as:

𝐹𝐼𝐷 =
𝜇𝑔𝑒𝑛 − 𝜇𝑟𝑒𝑎𝑙2 + Tr

(
Σ𝑔𝑒𝑛 + Σ𝑟𝑒𝑎𝑙 − 2(Σ𝑔𝑒𝑛Σ𝑟𝑒𝑎𝑙 )1/2

)
, (2.18)

where 𝜇𝑟𝑒𝑎𝑙 , Σ𝑟𝑒𝑎𝑙 and 𝜇𝑔𝑒𝑛, Σ𝑔𝑒𝑛 are feature-wise mean and covariance matrix of the
real and generated images, respectively.

In addition to perceived quality, diversity is another important dimension to
consider. While FID has been widely adopted for evaluating perceptual quality, it
fails to capture the lack of diversity, as a model replicating the real training set
without much variation can achieve a very low FID score (Sajjadi et al., 2018). To
complement FID, Precision and Recall metrics (Sajjadi et al., 2018) are often used



33 2.3 Conditional Visual Synthesis

to provide a more comprehensive evaluation of generative models with respect to
fidelity and diversity.

For conditional visual synthesis, alignment with the input conditions is an es-
sential aspect as well. Given the layout condition, alignment evaluation is typ-
ically performed by employing a pretrained segmentation model and computing
the Mean Intersection over Union (mIoU) between the predictions on synthesized
images and the input condition. For text input conditions, evaluating alignment
involves assessing how accurately the generated content reflects the details and
semantics described in the text, with the aid of vision-language models. CLIP-
Score has been a popular metric to compute the embedding similarity between the
text prompt and synthesized results, which leverages a pretrained multimodal CLIP
model (Radford et al., 2021). The CLIP (Contrastive Language-Image Pre-training)
model is trained on a large-scale image-text paired dataset, aligning visual and tex-
tual representations in a unified manner. However, some studies (Hu et al., 2023b,
Lu et al., 2024) found that CLIPScore is suboptimal for complex prompts and more
fine-grained evaluation, especially concerning specific objects and attributes. More
recent evaluation metrics such as TIFA score (Hu et al., 2023b) utilize the power
of Large Language Models (LLMs) to design questions of interest and then employ
Visual Question Answering (VQA) models to verify if a certain aspect is properly
synthesized in the output.

Additionally, for video synthesis, evaluation along the temporal dimension is a
crucial aspect. Temporal consistency is typically measured between consecutive
frames using an image-language model such as CLIP. Due to the current lack of
powerful video-language foundation models, the textual alignment of T2V models
is performed on each individual frame, similar to the evaluation process used in
T2I tasks. Furthermore, user studies are often conducted to gather human feedback
based on various criteria. The insights gained from these studies are particularly
important in fields such as entertainment and advertising, where user satisfaction
is critical.

In addition to evaluation metrics, datasets play a critical role in training and
assessing the performance of generative models. Object-centric datasets such as
FFHQ (Karras et al., 2019) and CelebA-HQ (Karras et al., 2018) are frequently used
for GANs. These datasets contain high-resolution images of faces, offering diverse
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attributes, e.g., age, ethnicity. Yet, they are relatively simple, as each image contains
only a single face, and the facial structures often share a high similarity. In this the-
sis, particularly in Chapters 3 and 4, we focused on scene-centric datasets, such as
Cityscapes (Cordts et al., 2016), ACDC (Sakaridis et al., 2021), and ADE20K (Zhou
et al., 2017). Cityscapes is an urban driving dataset collected from 50 different cities,
primarily in Germany. It contains 2975 finely annotated training images and 500
images for validation. Each image is annotated with pixel-level semantic segmen-
tation, providing detailed labels for 19 semantic classes, including cars, pedestri-
ans, buildings, roads, and other elements commonly found in urban environments.
While Cityscapes focuses on urban scenes under normal weather conditions, the
ACDC (Adverse Conditions Dataset with Correspondences) (Sakaridis et al., 2021)
expands this by incorporating four adverse weather conditions: rain, fog, snow,
and nighttime, which largely enhances the dataset diversity. ACDC is mostly cap-
tured in Zürich, containing 4006 images with high-quality per-pixel semantic class
annotation. Unlike Cityscapes and ACDC, which focus on urban driving environ-
ments, ADE20K (Zhou et al., 2017) offers a more diverse range of scenes, including
indoor and outdoor environments. It contains over 20000 images with pixel-level
annotations across 150 semantic classes, covering a broad spectrum of objects such
as buildings, furniture, animals, and vehicles. Compared to object-centric datasets,
these scene-centric datasets pose a greater challenge for generative models, as they
require an understanding not only of individual objects but also of their spatial re-
lationships. Our proposed methods have demonstrated significant advantages in
these complex settings, improving both visual fidelity and alignment with the con-
ditional information. For text-to-image and text-to-video synthesis introduced in
Chapters 5 and 6, our approaches are training-free and do not require any training
data. Following prior works (Chefer et al., 2023, Yuan et al., 2024), we use a set of
predefined text prompts to evaluate generation quality, alignment with the textual
input, and other factors. More detailed evaluation protocols can be founded in the
respective chapters.
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In Chapter 3, we propose a novel masked noise encoder for StyleGAN2 inver-
sion. Based on this, we have developed an exemplar-based style synthesis pipeline
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that can significantly improve domain generalization in semantic segmentation.
The model learns to faithfully reconstruct the image, preserving its semantic layout
through noise prediction. Randommasking of the estimated noise enables the style
mixing capability of our model, i.e. it allows to alter the global appearance with-
out affecting the semantic layout of an image. Using the proposed masked noise
encoder to randomize style and content combinations in the training set, i.e., intra-
source style augmentation (ISSA) effectively increases the diversity of training data
and reduces spurious correlation. As a result, we achieve up to 12.4%mIoU improve-
ments on driving-scene semantic segmentation under different types of data shifts,
i.e., changing geographic locations, adverse weather conditions, and day to night.
ISSA is model-agnostic and straightforwardly applicable with CNNs and Trans-
formers. It is also complementary to other domain generalization techniques, e.g.,
it improves the recent state-of-the-art solution RobustNet by 3%mIoU in Cityscapes
to Dark Zürich. In addition, we demonstrate the strong plug-n-play ability of the
proposed style synthesis pipeline, which is readily usable for extra-source exem-
plars e.g., web-crawled images, without any retraining or fine-tuning. Moreover,
we study a new use case to indicate neural network’s generalization capability by
building a stylized proxy validation set. This application has a significant practi-
cal sense for selecting models to be deployed in the open-world environment. Our
code is available at https://github.com/boschresearch/ISSA. The content of
this chapter corresponds to the WACV 2023 paper “Intra-Source Style Augmenta-
tion for Improved Domain Generalization” (Li et al., 2023b) and its extended version
published at IJCV 2024 (Li et al., 2024c).

3.1 Introduction

The varying environment in real life with potentially diverse illumination and
adverse weather conditions makes challenging the deployment of deep learning
models in an open-world (Sakaridis et al., 2021, Zhang et al., 2021a). Therefore,
improving the generalization capability of neural networks is crucial for safety-
critical applications such as autonomous driving (see for example Fig. 3.1). While
generally the target domains can be inaccessible or unpredictable at training time,
it is important to train a generalizable model, based on the known (source) domain,

https://github.com/boschresearch/ISSA
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Unseen domain (snow) Ground truth

Baseline Ours

Figure 3.1: Semantic segmentation results of HRNet (Wang et al., 2021b) on unseen do-
main (snow), trained on Cityscapes (Cordts et al., 2016) and tested on ACDC (Sakaridis
et al., 2021). The model trained with our ISSA can successfully segment the truck, while
the baseline model fails completely.

which may offer only a limited or biased view of the real world (Burton et al., 2017,
Shafaei et al., 2018).

Diversity of the training data is considered to play an important role for domain
generalization, including natural distribution shifts (Taori et al., 2020). Many exist-
ing works assume that multiple source domains are accessible during training (Li
et al., 2018a, Balaji et al., 2018, Li et al., 2018b, 2020, Jin et al., 2020, Zhou et al.,
2020, Hu et al., 2020). For instance, Li et al. (2018a) applied meta-learning to better
generalize to unseen domains, where source domains are divided into meta-source
and meta-target domains to simulate domain shift; Hu et al. (2020) propose multi-
domain discriminant analysis to learn a domain-invariant feature transformation.
However, for pixel-level prediction tasks such as semantic segmentation, collect-
ing diverse training data involves a tedious and costly annotation process (Caesar
et al., 2018). Therefore, improving and predicting generalization from a single source
domain is exceptionally compelling, particularly for semantic segmentation.

One pragmatic way to improve data diversity is by applying data augmenta-
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tion. It has been widely adopted in solving different tasks, such as image classifi-
cation (Zhang et al., 2018a, Hendrycks et al., 2019, Verma et al., 2019, Hong et al.,
2021, Zhou et al., 2021), GAN training with limited data (Karras et al., 2020a, Jiang
et al., 2021), or pose estimation (Peng et al., 2018, Bin et al., 2020, Wang et al., 2021a).
One line of data augmentation techniques focuses on increasing the content diver-
sity in the training set, such as geometric transformation (e.g., cropping or flip-
ping), CutOut (DeVries and Taylor, 2017), and CutMix (Yun et al., 2019). However,
CutOut and CutMix are ineffective on natural domain shifts, as reported in (Taori
et al., 2020). Style augmentation, on the other hand, only modifies the style - the
non-semantic appearance such as texture and color of the image (Gatys et al., 2016) -
while preserving the semantic content. By diversifying the style and content combi-
nations, style augmentation can reduce overfitting to the style-content correlation
in the training set, improving robustness against domain shifts. Hendrycks cor-
ruptions (Hendrycks and Dietterich, 2018) provide a wide range of synthetic styles,
including weather conditions. However, they are not always realistic looking, thus
being still far from resembling natural data shifts. In this work, we propose an
exemplar-based style synthesis pipeline for semantic segmentation, aiming to im-
prove the style diversity in the training and validation set without extra labeling
effort.

Our exemplar-based style synthesis technique is based on the inversion of Style-
GAN2 (Karras et al., 2020b), which is the state-of-the-art unconditional Generative
Adversarial Network (GAN) and thus ensures high quality and realism of synthetic
samples. GAN inversion allows encoding a given image to latent variables, and thus
facilitates faithful reconstruction with style mixing capability. To realize the syn-
thesis pipeline, we learn to separate semantic content from style information based
on a single source domain. This allows to alter the style of an image while leaving
the content unchanged. In particular, we focus on intra-source style augmentation
(ISSA). Namely, our exemplar-based style synthesis makes use of training samples
from the source domain, extracting their styles and contents followed by randomly
mixing them up. In doing so, we can increase the data diversity and alleviate the
spurious correlation in the given training data.

The faithful reconstruction of images with complex structures such as driv-
ing scenes is non-trivial. Prior methods (Richardson et al., 2021, Yao et al., 2022,
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Roich et al., 2022, Alaluf et al., 2022, Dinh et al., 2022, Šubrtová et al., 2022) are
mainly tested on simple single-object-centric datasets, e.g., FFHQ (Karras et al.,
2019), CelebA-HQ (Karras et al., 2018), or LSUN (Yu et al., 2015). As shown in (Ab-
dal et al., 2020), extending the native latent space of StyleGAN2 with a stochastic
noise space can lead to improved inversion quality. However, all style and content
information will be embedded in the noise map, leaving the latent codes inactive
in this setting. Therefore, to enable the precise reconstruction of complex driv-
ing scenes as well as style mixing, we propose a masked noise encoder for Style-
GAN2. The proposed randommasking regularization on the noise map encourages
the generator to rely on the latent prediction for reconstruction. Thus, it allows
to effectively separate content and style information and facilitates realistic style
mixing, as shown in Fig. 3.2.

We further discover an excellent plug-n-play ability of the proposed style syn-
thesis pipeline, i.e., it can be directly applied to unseen domains without requiring
the re-training of the encoder or generator. For instance, in Fig. 3.11, we employ
our pipeline directly on web-crawled images, where the model is only trained on
Cityscapes. This appealing property opens up the opportunity to go beyond intra-
source exemplar-based style mixing, and grants us more flexibility to harness extra-
source data for style synthesis. Thus, we also experiment with extra-source style
argumentation (ESSA) to further improve the generalization performance.

Besides data augmentation, we explore the usage of the proposed pipeline for
assessing neural networks’ generalization capability in Section 3.3.5. By transfer-
ring styles from unannotated data samples of the target domain to existing labelled
data, we can build a style-augmented proxy set for validation without introducing
extra-labelling effort. We observe that performance on this proxy set has a strong
correlation with the real test performance on unseen target data, which could be
used in practice to select more suitable models for deployment.

In summary, we make the following contributions:

• We propose a masked noise encoder for GAN inversion, which enables high
quality reconstruction and style mixing of complex scene-centric datasets.

• We exploit GAN inversion for intra-source data augmentation, which can im-
prove generalization under natural distribution shifts on semantic segmenta-
tion.
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• Extensive experiments demonstrate that our proposed augmentation method
ISSA consistently promotes domain generalization performance on driving-
scene semantic segmentation across different network architectures, achiev-
ing up to 12.4% mIoU improvement, even with limited diversity in the source
data and without access to the target domain.

• We discover the plug-n-play ability of our masked noise encoder, and show-
case its potential of direct application on extra-source data such asweb-crawled
images.

• We further explore the usage of the proposed pipeline for assessing models’
generalization performance on unseen data. By building a style-augmented
proxy validation set on known labelled data, we observe that there is a strong
correlation between the performance on the proxy validation set and the real
test set, which offers useful insights for model selection without introducing
any extra annotation effort.

3.2 Method
We introduce our exemplar-based style synthesis pipeline in Section 3.2.1, which

relies on GAN inversion that can offer faithful reconstruction and style mixing of
images. To enable better style-content disentanglement, we propose amasked noise
encoder for GAN inversion in Section 3.2.2. Its detailed training loss is described in
Section 3.2.3.

3.2.1 Exemplar-Based Style Synthesis Pipeline
The lack of data diversity and the existence of spurious correlation in the train-

ing set often lead to poor domain generalization. To mitigate them, the proposed
style synthesis pipeline aims at 1) extracting styles from given exemplars, and 2)
augmenting the training samples in the source domain with the new styles, while
preserving their semantic content. For data augmentation, it employs GAN inver-
sion to randomize the style-content combinations. In doing so, it diversifies the
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Figure 3.2: Qualitative results (best view in color and zoom in) of StyleGAN2 inver-
sion methods on Cityscapes, i.e., pSp (Richardson et al., 2021), pSp†, Feature-Style en-
coder (Yao et al., 2022) and our masked noise encoder. Note, pSp† is an improved version
of pSp (Richardson et al., 2021) introduced by us, training pSp with an additional discrimi-
nator and incorporate synthesized images for better initialization. pSp† can reconstruct the
rough layout of the scene but still struggles to preserve details. The Feature-Style encoder
shows a better reconstruction quality, yet it cannot faithfully reconstruct small objects (e.g.
pedestrian), and some objects (e.g. the vehicle, bicycle) are rather blurry. Our masked noise
encoder has highest image fidelity, preserving finer details in the inverted image.

source dataset and reduces spurious style-content correlations. Because the con-
tent of images is preserved and only the style is changed, the ground truth label
maps can be re-used for training and validation, without requiring any further an-
notation effort.

Our style synthesis pipeline is built on top of an encoder-based GAN inversion,
given its fast inference. GANs, such as StyleGANs (Karras et al., 2019, 2020b,a), have
shown the capability of encoding rich semantic and style information in interme-
diate features and latent spaces. For encoder-based GAN inversion, an encoder is
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Figure 3.3: Method overview. Our encoder is built on top of the pSp encoder (Richardson
et al., 2021), shown in the blue area (A). It maps the input image to the extended latent
spaceW+ of the pre-trained StyleGAN2 generator. To promote the reconstruction quality
on complex scene-centric dataset, e.g., Cityscapes, our encoder additionally predicts the
noisemap at an intermediate scale, illustrated in the orange area (B). M stands for random
noise masking, regularization for the encoder training. Without it, the noise map overtakes
the latent codes in encoding the image style, so that the latter cannot make any perceivable
changes on the reconstructed image, thus making style mixing impossible.

trained to invert an input image back into the latent space of a pre-trained GAN
generator. The encoder is desired to separately encode the style and content infor-
mation of the input image. With such an encoder, it can synthesize new training
samples with new style-content combinations. In particular, we are interested in
intra-source style augmentation (ISSA), where the encoder should take the content
and style codes from different training samples within the source domain and feed
them to the pre-trained generator. If this encoder-based GAN inversion can also
handle unseen data, we will further make use the styles of exemplars outside the
source domain, such as web-crawled images, enabling extra-source style augmen-
tation (ESSA). In both cases, since only the styles of the training samples in the
source domain are modified, the newly synthesized training samples already have
their ground truth label maps in place.

StyleGAN2 can synthesize natural looking images resembling complex scene-
centric datasets such as Cityscapes (Cordts et al., 2016) and BDD100K (Yu et al.,
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2020). However, existing GAN inversion encoders cannot provide the desired fi-
delity and style mixing capability to enable ISSA and ESSA for an improved domain
generalization of semantic segmentation. Loss of fine details or inauthentic recon-
struction of small-scale objects would even harm the model’s generalization ability.
Therefore, we propose a novel encoder design to invert StyleGAN2, termedmasked
noise encoder (see Fig. 3.3).

3.2.2 Masked Noise Encoder

We build our encoder upon the pSp encoder (Richardson et al., 2021). It employs
a feature pyramid (Lin et al., 2017) to extractmulti-scale features from a given image,
see Fig. 3.3-(A). We improve over pSp by identifying in which latent space to embed
the input image for the high-quality reconstruction of the images with complex
street scenes. Further, we propose a novel training scheme to enable the style-
content disentanglement of the encoder, thus improving its style mixing capability.

Extended Latent Space. The StyleGAN2 generator takes the latent code 𝑤 ∈
W generated by an MLP network and randomly sampled additive Gaussian noise
maps {𝜖} as inputs for image synthesis. As pointed out in Abdal et al. (2019), it is
suboptimal to embed a real image into the original latent spaceW of StyleGAN2,
due to the gap between the real and synthetic data distributions. A common practice
is to map the input image into the extended latent space W+. The multi-scale
features of the pSp feature pyramid are respectively mapped to the latent codes
{𝑤𝑘} at the corresponding scales of the StyleGAN2 generator, i.e., map2latent in
Fig. 3.3-(A).

Additive Noise Map. The latent codes {𝑤𝑘} from the extended latent spaceW+

alone are not expressive enough to reconstruct images with diverse semantic lay-
outs such as Cityscapes (Cordts et al., 2016) as shown in Fig. 3.2-(pSp†). The latent
codes of StyleGAN2 are one-dimensional vectors that modulate the feature vectors
at different spatial positions identically. Therefore, they cannot precisely encode
the semantic layout information, which is spatially varying. To address this issue,
our encoder additionally predicts the additive noise map 𝜀 of the StyleGAN2 at an
intermediate scale, i.e., map2noise in Fig. 3.3-(B). The noisemap 𝜀 has spatial dimen-
sions, making it inherently capable of encoding more information. It is particularly
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Figure 3.4: Style mixing effect enabled by random noise masking (best view in color). De-
spite the good reconstruction quality, the encoder trained without masking cannot change
the style of the given Content image. In contrast, the encoder trained with masking can
modify it using the style from the given Style image.

advantageous when dealing with content information that varies spatially, as the
noise map can more readily accommodate such information. As evidenced by the
visualization presented in Fig. 3.5, the noise map is adept at capturing the semantic
content of the scene.

Random Noise Masking. While offering high-quality reconstruction, the addi-
tive noise map can be too expressive so that it encodes nearly all perceivable details
of the input image. This results in a poor style-content disentanglement and can
damage the style mixing capability of the encoder (see Fig. 3.4). To avoid this un-
desired effect, we propose to regularize the noise prediction of the encoder by ran-
dom masking of the noise map. Note that the random masking as a regularization
technique has also been successfully used in reconstruction-based self-supervised
learning (Xie et al., 2022, He et al., 2022). In particular, we spatially divide the noise
map into non-overlapping 𝑃 × 𝑃 patches, see M in Fig. 3.3-(B). Based on a pre-
defined ratio 𝜌 , a subset of patches is randomly selected and replaced by patches of
unit Gaussian random variables 𝜖 ∼ 𝑁 (0, 1) of the same size. 𝑁 (0, 1) is the prior
distribution of the noise map at training the StyleGAN2 generator. We call this
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Figure 3.5: Noise map visualization of our masked noise encoder. The noise map encodes
the semantic content of the image.

Figure 3.6: Style mixing process. The generator𝐺 takes the latent codes {𝑤𝑘
𝑠 } of 𝐼𝑠 and

the noise map 𝜀𝑐 of 𝐼𝑐 , and produce the stylized image, i.e., 𝐺 (𝑤𝑘
𝑠 , 𝜀𝑐).

encoder masked noise encoder as it is trained with random masking to predict the
noise map.

The proposed random masking reduces the encoding capacity of the noise map,
hence encouraging the encoder to jointly exploit the latent codes {𝑤𝑘} for recon-
struction. Fig. 3.7 visualizes the style mixing effect. The encoder takes the noise
map 𝜀𝑐 and latent codes {𝑤𝑘

𝑠 } from the content image and style image, respectively.
Then, they are fed into StyleGAN2 to synthesize a new image, i.e., 𝐺 (𝑤𝑘

𝑠 , 𝜀𝑐), as
illustrated in Fig. 3.6. If the encoder is not trained with random masking, the new
image does not have any perceptible difference with the content image. This means
the latent codes {𝑤𝑘} encode negligible information of the image. In contrast, when
being trained with masking, the encoder creates a novel image that takes the con-
tent and style from two different images. This observation confirms the enabling
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Figure 3.7: Visual examples of style mixing on BDD100K (best view in color) enabled by
ourmasked noise encoder. By combining the latent codes {𝑤𝑘

𝑠 } of 𝐼𝑠 and the noisemap 𝜀𝑐 of
𝐼𝑐 , the synthesized images𝐺 (𝑤𝑘

𝑠 , 𝜀𝑐) preserve the content of 𝐼𝑐 with a new style resembling
𝐼𝑠 .

role of masking for content and style disentanglement, and thus the improved style
mixing capability. The noise map no longer encodes all perceptible information of
the image, including style and content. In effect, the latent codes {𝑤𝑘} play a more
active role in controlling the style. In Fig. 3.5, we further visualize the noise map of
the masked noise encoder and observe that it captures well the semantic content of
the scene.

Additionally, we discover that ourmasked noise encoder is equippedwith strong
plug-n-play ability, i.e., readily usable on novel domains without retraining or fine-
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tuning. As shown in Fig. 3.11, themasked noise encoder togetherwith the generator
which is trained on Cityscapes not only reconstruct unseen domain data (e.g., north
polar bear), but also remain the style mixing capability (e.g., turning bright day into
a sunset scene). This generalization capability allows us to further exploit extra-
source data for style synthesis, i.e., ESSA. Except that the styles are extracted from
external exemplars, the style synthesis process of ESSA is identical to ISSA.

3.2.3 Encoder Training Loss

Mathematically, the proposed StyleGAN2 inversion with the masked noised en-
coder 𝐸𝑀 can be formulated as

{𝑤1, . . . ,𝑤𝐾 , 𝜀} = 𝐸𝑀 (𝑥); (3.1)
𝑥∗ = 𝐺 ◦ 𝐸𝑀 (𝑥) = 𝐺 (𝑤1, . . . ,𝑤𝐾 , 𝜀).

The masked noise encoder 𝐸𝑀 maps the given image 𝑥 onto the latent codes {𝑤𝑘}
and the noise map 𝜀. The StyleGAN2 generator𝐺 takes both {𝑤𝑘} and 𝜀 as the input
and generates 𝑥∗. Ideally, 𝑥∗ should be identical to 𝑥 , i.e., a perfect reconstruction.

When training the masked noise encoder 𝐸𝑀 to reconstruct 𝑥 , the original noise
map 𝜀 is masked before being fed into the pre-trained 𝐺

𝜀𝑀 = (1 −𝑀𝑛𝑜𝑖𝑠𝑒) ⊙ 𝜀 +𝑀𝑛𝑜𝑖𝑠𝑒 ⊙ 𝜖, (3.2)
𝑥 = 𝐺 (𝑤1, . . . ,𝑤𝐾 , 𝜀𝑀), (3.3)

where𝑀𝑛𝑜𝑖𝑠𝑒 is the random binary mask, ⊙ indicates the Hadamard product, and 𝑥
denotes the reconstructed image with the masked noise 𝜀𝑀 . The training loss for
the encoder is given as

L = L𝑚𝑠𝑒 + 𝜆1L𝑙𝑝𝑖𝑝𝑠 + 𝜆2L𝑎𝑑𝑣 + 𝜆3L𝑟𝑒𝑔, (3.4)

where {𝜆𝑖} are weighting factors. The first three terms are the pixel-wise MSE loss,
learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018b) loss and
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adversarial loss (Goodfellow et al., 2014),

L𝑚𝑠𝑒 =
(1 −𝑀𝑖𝑚𝑔) ⊙ (𝑥 − 𝑥)


2 , (3.5)

L𝑙𝑝𝑖𝑝𝑠 =
(1 −𝑀𝑓 𝑒𝑎𝑡 ) ⊙ (VGG(𝑥) − VGG(𝑥))


2 , (3.6)

L𝑎𝑑𝑣 = − log𝐷 (𝐺 (𝐸𝑀 (𝑥))). (3.7)

which are the common reconstruction losses for encoder training (Zhu et al., 2020a,
Richardson et al., 2021). Note that masking removes the information of the given
image 𝑥 at certain spatial positions, the reconstruction requirement on these po-
sitions should then be relaxed. 𝑀𝑖𝑚𝑔 and 𝑀𝑓 𝑒𝑎𝑡 are obtained by up- and down-
sampling the noise mask 𝑀𝑛𝑜𝑖𝑠𝑒 to the image size and the feature size of the VGG-
based feature extractor. The adversarial loss is obtained by formulating the encoder
training as an adversarial game with a discriminator𝐷 that is trained to distinguish
between reconstructed and real images.

The last regularization term is defined as

L𝑟𝑒𝑔 = ∥𝜀∥1 +
𝐸𝑀𝑤 (𝐺 (𝑤𝑔𝑡 , 𝜖)) −𝑤𝑔𝑡2 . (3.8)

The L1 normhelps to induce sparse noise prediction. It is complementary to random
masking, reducing the capacity of the noise map. The second term is obtained by
using the ground truth latent codes𝑤𝑔𝑡 of synthesized images𝐺 (𝑤𝑔𝑡 , 𝜖) to train the
latent code prediction 𝐸𝑀𝑤 (·) (Yao et al., 2022). It guides the encoder to stay close to
the original latent space of the generator, speeding up the convergence.

3.3 Experiments

We start from the experiment setup in Section 3.3.1. Then, Section 3.3.2 and
Section 3.3.3 respectively report our experiments on the masked noise encoder for
StyleGAN2 inversion and ISSA for improved domain generalization of semantic
segmentation.
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3.3.1 Experimental Setup

Datasets. Weconduct extensive experiments on four diverse driving scene datasets,
which are Cityscapes (CS) (Cordts et al., 2016), BDD100K (BDD) (Yu et al., 2020),
ACDC (Sakaridis et al., 2021), and Dark Zürich (DarkZ) (Sakaridis et al., 2019).
Cityscapes is collected from different cities primarily in Germany, under good or
medium weather conditions during daytime. BDD100K is a driving-scene dataset
collected in the US, representing a geographic location shift from Cityscapes. Be-
sides, it also includes more diverse scenes (e.g., city streets, residential areas, and
highways) and different weather conditions captured at different times of the day.
Both ACDC and Dark Zürich are collected in Switzerland. ACDC contains four ad-
verse weather conditions (rain, fog, snow, night) and Dark Zürich contains night
scenes. The default setting is to use Cityscapes as the source training data, whereas
the validation sets of the other datasets represent unseen target domains with dif-
ferent types of natural shifts, i.e., used only for testing. Additionally, we also study
the challenging day-to-night generalization scenario, where BDD100K-Daytime is
used as the source set, ACDC-Night andDark Zürich are treated as unseen domains.
In both cases, we consider a single source domain for training.

Training details. We experiment with two image resolutions: 128× 256 and 256×
512. The StyleGAN2 (Karras et al., 2020a) model is first trained to unconditionally
synthesize images and then fixed during the encoder training. To invert the pre-
trained StyleGAN2 generator, the masked noise encoder predicts both latent codes
in the extended W+ space and the additive noise map. In accordance with the
StyleGAN2 generator,W+ space consists of 14 and 16 latent code vectors for the
input resolution 128 × 256 and 256 × 512, respectively. The additive noise map is
always at the intermediate feature space with one fourth of the input resolution.
We use the same encoder architecture, optimizer, and learning rate scheduling as
pSp (Richardson et al., 2021). Our encoder is trained with the loss function defined
in Eq. (3.4) with 𝜆1 = 10 and 𝜆2 = 𝜆3 = 0.1. For our random noise masking, we use
a patch size 𝑃 of 4 with a masking ratio 𝜌 = 25%. A detailed ablation study on the
masking and noise map of the encoder can be found in Section 3.3.2.

We use the trained masked noise encoder to perform ISSA as described in Sec-
tion 3.2.1. We experiment with several architectures for semantic segmentation, i.e.,
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Figure 3.8: Influence of the noise map resolution on style-mixing ability. Using higher res-
olution noise map, e.g., 𝐻 ×𝑊 , leads to poor style-mixing ability. While too low resolution,
e.g., 𝐻16 ×

𝑊
16 , cannot reconstruct the scene faithfully.

HRNet (Wang et al., 2021b), SegFormer (Xie et al., 2021), and DeepLab v2/v3+ (Chen
et al., 2018a,b). The baseline segmentation models are trained with their default
configurations and using the standard augmentation, i.e., random scaling and hor-
izontal flipping.

3.3.2 Evaluation of Masked Noise Encoder

Reconstruction quality. Table 3.1 shows that ourmasked noise encoder consider-
ably outperforms two strong StyleGAN2 inversion baselines pSp (Richardson et al.,
2021) and Feature-Style encoder (Yao et al., 2022) in all three evaluation metrics.
The achieved low values of MSE, LPIPS (Zhang et al., 2018b) and FID (Heusel et al.,
2017) indicate its high-quality reconstruction. Both the masked noise encoder and
the Feature-Style encoder adopt the adversarial loss L𝑎𝑑𝑣 and regularization using
synthesized images with ground truth latent codes𝑤𝑔𝑡 . Therefore, we also add them
to train pSp and note this version as pSp†. While pSp† improves over pSp in MSE
and FID, it still underperforms compared to the others. This confirms that invert-
ing into the extended latent spaceW+ only allows limited reconstruction quality
on Cityscapes. The Feature-Style encoder (Yao et al., 2022) replaces the prediction
of the low level latent codes with feature prediction, which results in better recon-
struction without severely harming style editability. However, its reconstruction
on Cityscapes is still not satisfying and underperforms to our masked noise en-
coder. As noted in Yao et al. (2022), the feature size of the Feature-Style encoder is
restricted. Using a larger feature map to improve reconstruction quality can only
be done as a replacement of more latent code predictions. Consequently, it largely
reduces the expressiveness of the latent embedding and leads to extremely poor
editability, being no longer suitable for downstream applications, e.g., style mixing
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Method MSE ↓ LPIPS ↓ FID ↓
pSp (Richardson et al., 2021) 0.078 0.348 130.62
pSp† (Richardson et al., 2021) 0.049 0.339 14.60
Feature-Style (Yao et al., 2022) 0.025 0.220 7.14
Ours 0.011 0.124 3.94

Table 3.1: Reconstruction quality on Cityscapes at the resolution 128 × 256. MSE,
LPIPS (Zhang et al., 2018b) and FID (Heusel et al., 2017) respectively measure the pixel-
wise reconstruction difference, perceptual difference, and distribution difference between
the real and reconstructed images. The proposedmasked noise encoder (Ours) consistently
outperforms pSp, pSp† and the feature-style encoder. Note, pSp† is introduced by us, by
training pSp with an additional discriminator and incorporating synthesized images for
better initialization.

data augmentation.
The visual comparison across pSp†, the Feature-Style encoder and our masked

noise encoder is shown in Fig. 3.2 and is aligned with the quantitative results in
Table 3.1. pSp† has overall poor reconstruction quality. The Feature-Style encoder
cannot faithfully reconstruct small objects and restore fine details. In comparison,
our masked noise encoder offers high-quality reconstruction, preserving the se-
mantic layout and fine details of each class. Having a high-quality reconstruction
is an important requirement for using the encoder for data augmentation. Unfortu-
nately, neither pSp† nor the Feature-Style encoder achieve satisfactory reconstruc-
tion quality. For instance, they both fail at capturing the red traffic light in Fig. 3.2.
Using such images for data augmentation can confuse the semantic segmentation
model, leading to performance degradation.

Ablation on the masking effect. In Fig. 3.4 and Fig. 3.7, we visually observe that
random masking offers a stronger perceivable style mixing effect compared to the
model trained without masking. Next, we test the effect of masking on improving
the domain generalization for the semantic segmentation task. In particular, we
employ the encoder that is trained with and without masking to perform ISSA. In
Table 3.2, while slightly degrading the source domain performance of the baseline
model on Cityscapes, ISSA improves the domain generalization performance on
BDD100K, ACDC and Dark Zürich. As ISSA with masked noise encoder is more
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Method Cityscapes ACDC BDD Dark Zürich

Baseline 70.47 41.48 45.66 15.25
ISSA w/o masking 69.68 44.63 46.45 17.36
ISSA w/- masking 69.48 47.43 47.87 26.10

Table 3.2: The effect of random noise masking on improving domain generalization via
ISSA. We report the mean Intersection over Union (mIoU) of HRNet (Wang et al., 2021b)
trained onCityscapes at the resolution 256×512. BDD100K (BDD), ACDC, andDark Zürich
(DarkZ) represent different domain shifts from Cityscapes.

Patch size Ratio MSE ↓ LPIPS ↓ FID ↓

2 25% 0.005 0.090 1.50
50% 0.008 0.127 2.02

4 25% 0.004 0.089 1.41
50% 0.009 0.129 2.01

Table 3.3: Ablation on the mask patch size and masking ratio. The influence of patch size
on the reconstruction is minor, while masking ratio is more important, i.e., higher masking
ratio has negative impact.

effective at diversifying the training set and reducing the style-content correlation,
it achieves more pronounced gains in Table 3.2, e.g., more than 10% improvement
in mIoU from Cityscapes to Dark Zürich.

Ablation on masking hyperparameters. We conduct an ablation study on the
mask patch size 𝑃 and masking ratio 𝜌 , shown in Table 3.3. We observe that the
mask patch size is a relatively insensitive hyperparameter, while higher masking
ratio results in noticeable degradation on the reconstruction quality. Empirically,
the patch size 𝑃 = 4 with a masking ratio 𝜌 = 25% achieves the best reconstruction
performance. Therefore, we use the encoder trained with this parameter combina-
tion for our data augmentation ISSA.

Ablation on the noise map resolution. We investigate the effect of noise map
size and experimentally observed that the reconstruction quality benefits the most
from using the noise map at the intermediate feature space with one fourth of the
input resolution. As shown in Table 3.4, using 32 × 64 noise, i.e., one fourth of the
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Noise scale MSE ↓ LPIPS ↓ FID ↓
4 × 8 ∼ 8 × 16 0.041 0.317 14.90
32 × 64 0.008 0.101 2.30

Table 3.4: Effect of noise map resolution on reconstruction quality. Experiments are done
on Cityscapes, 128 × 256 resolution.

image resolution, achieves better reconstruction quality than using lower resolution
noise maps. Higher resolution noise map, e.g., full image resolution, in contrast, can
be too expressive and encode nearly all perceivable details. This results in worse
style mixing capability, as shown in Fig. 3.8. Therefore, we employ the intermediate
noise map at one fourth of the input resolution in all of our experiments.

3.3.3 ISSA for Domain Generalization

Comparison with data augmentation methods. Table 3.5 reports the mIoU
scores of Cityscapes to ACDC domain generalization using two semantic segmen-
tation models, i.e., HRNet (Wang et al., 2021b) and SegFormer (Xie et al., 2021).
Qualitative visualization is illustrated in Fig. 3.9. ISSA is compared with three
representative data augmentations methods, namely, CutMix (Yun et al., 2019),
Hendrycks’s weather and digital corruptions (Hendrycks and Dietterich, 2018), and
StyleMix (Hong et al., 2021). Remarkably, our ISSA is the top performing method,
consistently improving mIoU in both models and across all four different scenarios
of ACDC, i.e., rain, fog, snow and night. Compared to HRNet, SegFormer is more
robust against the considered domain shifts.

In contrast to the others, CutMix mixes up the content rather than the style.
It improves the in-distribution performance on Cityscapes, but this gain does not
extend to domain generalization. Hendrycks’s weather corruptions can be seen as
the synthetic version of Cityscapes under the rain, fog, and snow weather condi-
tions. While already mimicking ACDC at training, it can still degrade ACDC-Snow
by more than 5.8% in mIoU using HRNet. Among the four Hendrycks’ corruption
types (i.e., noise, blur, digital and weather), Hendrycks-Digital, consisting of con-
trast, elastics transformation, pixelation and JPEG, is the best-performing one, but
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HRNet (Wang et al., 2021b) SegFormer (Xie et al., 2021)
Method CS Rain Fog Snow Night Avg. CS Rain Fog Snow Night Avg.

Baseline 70.47 44.15 58.68 44.20 18.90 41.48 67.90 50.22 60.52 48.86 28.56 47.04

ColorTransform 69.90 49.35 65.14 52.63 26.56 48.42 68.50 51.58 66.45 52.87 30.33 50.31
CutMix (Yun et al., 2019) 72.68 42.48 58.63 44.50 17.07 40.67 69.23 49.53 61.58 47.42 27.77 46.57
Hendrycks-Weather 69.25 50.78 60.82 38.34 22.82 43.19 67.41 54.02 64.74 49.57 28.50 49.21
Hendrycks-Digital 69.13 50.13 65.71 49.22 24.81 47.47 67.57 55.53 66.46 49.92 30.33 50.56
FDA (Yang and Soatto, 2020) 70.43 49.68 65.19 50.65 26.41 47.98 67.92 51.28 67.03 51.30 28.28 49.47
StyleMix (Hong et al., 2021) 57.40 40.59 49.11 39.14 19.34 37.04 65.30 53.54 63.86 49.98 28.93 49.08
ISSA (Ours) 70.30 50.62 66.09 53.30 30.18 50.05 67.52 55.91 67.46 53.19 33.23 52.45

Oracle 70.29 65.67 75.22 72.34 50.39 65.90 68.24 63.67 74.10 67.97 48.79 63.56

Table 3.5: Comparison of data augmentation for improving domain generalization, i.e.,
from Cityscapes (train) to ACDC (unseen). The mean Intersection over Union (mIoU) is
reported on Cityscapes (CS), four individual scenarios of ACDC (Rain, Fog, Snow and
Night) and the whole ACDC (Avg.). ColorTransform consists of various color transfor-
mations such as altering the contrast, brightness, saturation; luma flip and hue rotation.
Hendrycks-Weather (Hendrycks and Dietterich, 2018) simulates weather conditions in a
synthetic manner for data augmentation, and Hendrycks-Digital is composed of contrast,
elastics transformation, pixelation and JPEG corruption. Oracle indicates the supervised
training on both Cityscapes and ACDC, serving as an upper bound on ACDC for the other
methods. Note, it is not supposed to be an upper bound on Cityscapes. Underline de-
notes worse results than the baseline on ACDC. ISSA performs the best and consistently
improves the mIoU in all four scenarios of ACDC using both HRNet and SegFormer.

still underperforms ISSA. StyleMix (Hong et al., 2021) also seeks to mix up styles.
However, it does not work well for scene-centric datasets, such as Cityscapes. Its
poor synthetic image quality (see Fig. 3.10) leads to the performance drop over the
HRNet baseline in many cases, e.g., on Cityscapes to ACDC-Fog from 58.68% to
49.11% mIoU.

More evaluation on the generalization performance fromCityscapes to BDD100K
and Dark Zürich is provided in Table 3.6, where the observation is consistent with
Table 3.5 explained above. In addition to weather changes, we further compare dif-
ferent data augmentation methods under the more challenging day-to-night setting
in Table 3.7. ISSA present consistent advantages over competing methods, which
again justifies the effectiveness of ISSA on improving generalization performance.

Comparison with domain generalization techniques. We further compare
ISSA with two advanced feature space style mixing methods designed to improve
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HRNet (Wang et al., 2021b) SegFormer (Xie et al., 2021)
Method CS ACDC BDD DarkZ CS ACDC BDD DarkZ

Baseline 70.47 41.48 45.66 15.50 67.90 47.04 49.35 24.20

ColorTransform 69.90 48.42 50.22 24.13 68.50 50.31 51.09 25.04
CutMix (Yun et al., 2019) 72.68 40.67 45.57 15.34 69.23 46.57 48.93 22.98
Hendrycks-Weather 69.25 43.19 44.53 18.71 67.41 49.21 49.84 23.44
Hendrycks-Digital 69.13 47.47 47.60 22.32 67.57 50.56 51.11 25.11
FDA (Yang and Soatto, 2020) 70.43 47.98 48.74 22.46 67.92 49.47 50.47 22.45
StyleMix (Hong et al., 2021) 57.40 37.04 39.30 15.85 65.30 49.08 50.49 23.50
ISSA (Ours) 70.30 50.05 50.29 27.24 67.52 52.45 51.92 27.39

Table 3.6: Comparison of data augmentation for improving domain generalization, i.e.,
from Cityscapes (train) to ACDC, BDD100K and Dark Zürich (unseen). ISSA consistently
outperforms the other data augmentation techniques across different datasets and net-
work architectures, which is consistent with the Table 3.5.

domain generalization performance: MixStyle (Zhou et al., 2021) and DSU (Li et al.,
2022c). Both extract the style information at certain normalization layers of CNNs.
MixStyle (Zhou et al., 2021) mixes up styles by linearly interpolating the feature
statistics, i.e., mean and variance, of different images, while DSU (Li et al., 2022c)
models the feature statistics as a distribution and randomly draws samples from it.

We adopt the experimental setting of DSU with default hyperparameters, using
DeepLab v2 (Chen et al., 2018a) segmentation network with ResNet101 backbone.
Table 3.8 shows that ISSA outperforms both MixStyle and DSU by a large margin.
We also observe that there is a slight performance drop on the source domain (i.e.,
CS) when applying DSU and MixStyle. As they operate at the feature-level, there is
no guarantee that the semantic content stays unchanged after the random pertur-
bation of feature statistics. Thus, the changes in feature statistics might negatively
affect the performance, as also indicated in Li et al. (2022c). Note that, in contrast,
ISSA operates on the image space. Combining ISSA with MixStyle and DSU leads
to a strong boost in performance of these methods.

Being model-agnostic, ISSA can be combined with other networks designed
specifically for the domain generalization of semantic segmentation. To showcase
its complementary nature, we add ISSA on top of two state-of-the-art domain gen-
eralization methods for semantic segmentation, RobustNet (Choi et al., 2021) and
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Method BDD100K ACDC-Night Dark Zürich

Baseline 52.97 23.52 23.63

CutMix 54.03 24.37 23.99
Weather 52.10 23.79 24.21
Digital 52.10 24.17 23.24
StyleMix 46.33 19.13 19.27
ISSA(Ours) 53.37 25.93 26.55

Table 3.7: Comparison of data augmentation techniques for improving domain general-
ization using HRNet (Wang et al., 2021b), i.e., from BDD100K-Daytime to ACDC-Night and
Dark Zürich. BDD100K-Daytime is a subset of BDD100K, which contains 2526 images in
daytime under various weather conditions, but not in dawn/nighttime. Here, we evaluate
the domain generalization with respect to day to night.

Method Cityscapes ACDC BDD100K Dark Zürich

Baseline (Chen et al., 2018a) 61.73 30.86 34.30 11.62

MixStyle (Zhou et al., 2021) 59.01 36.97 36.27 9.38
DSU (Li et al., 2022c) 59.59 38.31 35.53 12.29
ISSA (Ours) 62.20 43.21 42.60 21.56

MixStyle + ISSA 60.17 41.81 42.17 20.56
DSU + ISSA 60.20 43.31 42.24 24.63

Table 3.8: Comparison with feature-level augmentation methods on domain generaliza-
tion performance of Cityscapes as the source. Following DSU (Li et al., 2022c), we conduct
experiments using DeepLab v2 (Chen et al., 2018a) as the baseline for fair comparison.

SHADE (Zhao et al., 2022). RobustNet proposed a novel instance whitening loss to
selectively remove domain-specific style information. SHADE on the other hand
aims to learn style-invariant representation and preserve knowledge from the pre-
trained backbone. Although color transformation has already been used for aug-
mentation in both methods and SHADE additionally employs feature-level style
augmentation, ISSA can introduce more natural style shifts, thus is able to bring
further improvements. Table 3.9 verifies the effectiveness of ISSA, which brings ex-
tra gains for RobustNet and SHADE. For RobustNet, the performance of the chal-
lenging day to night scenario, i.e., Cityscapes to Dark Zürich is boosted from 20.11%
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Image Ground truth Baseline Ours

Figure 3.9: Semantic segmentation results of Cityscapes to ACDC generalization using
HRNet. The HRNet is trained on Cityscapes only. The segmenter trained with ISSA pro-
vides more reasonable prediction under adverse weather conditions.

Content Style

StyleMix ISSA (Ours)

Figure 3.10: Comparison of StyleMix (Hong et al., 2021) and ISSA. StyleMix has rather
low fidelity, while ISSA can preserve more details.
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Method Cityscapes ACDC BDD100K Dark Zürich

Baseline (Chen et al., 2018b) 69.01 44.23 43.27 16.03

RobustNet (Choi et al., 2021) 69.47 47.25 46.94 20.11
+ ISSA 69.45 47.55 48.44 23.09

SHADE (Zhao et al., 2022) 64.24 47.30 46.44 25.37
+ ISSA 63.79 47.64 47.76 25.58

Table 3.9: Combination of ISSA and RobustNet (Choi et al., 2021). We adopt the experi-
mental setting of RobustNet and use DeepLab v3+ (Chen et al., 2018b) as the baseline. Our
ISSA is complementary to RobustNet and further improves its generalization performance.

to 23.09% in mIoU.

Comparison with unsupervised domain adaptation methods. We compare
ourmethodwithmultiple unsupervised domain adaptation (UDA) techniques, which
not only have access to the source domain, but also use extra unlabeled samples of
the target domain. The quantitative comparison of Cityscapes to ACDC adapta-
tion/generalization is shown in Table 3.10. Our method has presented competitive
performance, even without using images from the target domain.

3.3.4 Plug-n-Play Ability of the Exemplar-Based Style
Synthesis Pipeline

In Section 3.3.3, we have focused on ISSA for improved domain generalization.
Next, we investigate the plug-n-play ability of our exemplar-based style pipeline,
which enables ESSA. Specifically, the generator and masked noise encoder which
are trained on one dataset can be directly used for mixing styles from other datasets,
thus avoiding retraining or fine-tuning the models. This ability is valuable in two
perspectives: 1) harnessing external data for improved domain generalization via
ESSA; and 2) saving computationally complexity. Compared to other data augmen-
tation techniques, e.g., CutMix (Yun et al., 2019), Hendrycks corruption (Hendrycks
and Dietterich, 2018), our style synthesis requires training GAN and an encoder,
which could take considerable computational resources. Therefore, it is of practi-
cal interest if the trained models can be readily useable for novel domains.
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Method Network Use Target mIoU

Baseline

DeepLabv2

— 30.9

BDL (Li et al., 2019) ✓ 32.7
CRST (Zou et al., 2019) ✓ 32.8
AdaptSegNet (Tsai et al., 2018) ✓ 33.4
SIM (Wang et al., 2020) ✓ 34.6
MRNet (Zheng and Yang, 2021) ✓ 36.1
ADVENT (Tsai et al., 2019) ✓ 37.7
CLAN (Luo et al., 2019) ✓ 39.0
FDA (Yang and Soatto, 2020) ✓ 45.7
ISSA(Ours) ✗ 43.2

DAFormer (Hoyer et al., 2022) DAFormer ✓ 55.4
ISSA(Ours) SegFormer ✗ 52.5

Table 3.10: Comparison with UDA methods on Cityscapes to ACDC generalization. Re-
markably, our domain generalization method (without access to the target domain, nei-
ther images nor labels), is on-par or better than unsupervised domain adaptation (UDA)
methods, which requires knowledge of the target domain during training. Results of UDA
methods are from (Sakaridis et al., 2021).

ISSAusing arbitrary encoders. Favorably, thanks to the plug-n-play ability of the
synthesis pipeline, we observe that ISSA can still be effective even when encoder
and generator are trained on a different dataset of a similar task, and re-training is
not required. Note that here the source is with respect to the segmenter training
for domain generalization, not the encoder training. As shown in Table 3.11, when
training the segmenter on Cityscapes using ISSA, we can directly use generator
and encoder trained on BDD100K without fine-tuning. Even though the models
have not seen any samples of Cityscapes, they can still reconstruct and augment
styles within Cityscapes, and the effectiveness of ISSA is not compromised. This
implies that, once the generator and encoder are trained on one dataset, they are
also straightforwardly applicable for augmenting novel datasets.

Extra-source exemplar based style synthesis. Furthermore, we exploit the us-
age of extra-source data as the style exemplar. Visual examples in Fig. 3.11 show-
case the plug-n-play style-mixing ability of our encoder on web-crawled images,
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Style Content 1 Mixed 1 Content 2 Mixed 2

Figure 3.11: Extra-source exemplar based style synthesis using web-crawled images,
where the generator and encoder are only trained on Cityscapes. Except for the Content
1 image of the first 2 rows, all the others are web-crawled images.

Content Style

Figure 3.12: Visualization of interpolation in the style latent space. As illustrated, we
can control the style mixing strength and achieve a smooth transition on both trained
Cityscapes and unseen web-crawled images.

where the model is only trained on Cityscapes. It can be observed that the style
of unseen images can still be successfully transferred to the content images, which
grants us the opportunity to further utilize images on the web to enhance the effec-
tiveness of style augmentation beyond intra-source styles. Also, we illustrate the
interpolation capability in the style latent space on both trained Cityscapes and un-
seen web-crawled image. This property enables more control on the style mixing
strength.

To further explore the usage of images on the web, we take Landscape Pictures1

1https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=

https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=download
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Snow Night Frog Rain
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Figure 3.13: Visual examples of stylized data by transferring style from one unannotated
ACDC sample (target domain) to Cityscapes (source domain). Best view in color.

Method Cityscapes Rain Fog Snow Night Avg.
Baseline 70.5 44.2 58.7 44.2 18.9 41.5
ISSA: CS-G-E 70.3 50.6 66.1 53.3 30.2 50.1
ISSA: BDD-G-E 70.3 52.2 66.3 52.2 31.0 50.4

Table 3.11: Comparison on Cityscapes to ACDC generalization using ISSA with genera-
tor and encoder trained on Cityscapes (CS-G-E) and BDD100K (BDD-G-E), respectively.
Despite never seeing Cityscapes samples, ISSA with BDD-G-E is still highly effective.

dataset as the extra-source exemplars for style augmentation. Table 3.12 justifies
that by exploiting additional image styles, ESSA can further improve the general-
ization performance of ISSA on unseen target domains.

3.3.5 Stylized Proxy Validation Set Synthesis

Beyond the usage of data augmentation for network training, we further explore
if our exemplar-based style synthesis pipeline can be used to assess the generaliza-
tion capability of semantic segmentation models for both source and target domain

download

https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=download
https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=download
https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=download
https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=download
https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=download
https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=download
https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=download
https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=download
https://www.kaggle.com/datasets/arnaud58/landscape-pictures?resource=download
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Method Cityscapes ACDC BDD100K Dark Zürich

Baseline 70.47 41.48 45.66 15.50

ISSA: CS-G-E 70.30 50.05 50.29 27.24
ESSA: CS-G-E 69.85 50.87 51.42 29.06

Table 3.12: Utilizing Landscape Pictures as extra-source exemplars for style augmenta-
tion, where the generator and encoder are only trained on Cityscapes (CS-G-E). ESSA can
further improve the generalization performance from Cityscapes to other unseen datasets.

without extra data annotation effort. Prior work (Zhang et al., 2021b) has used con-
ditional GAN synthesized samples to predict generalization performance of image
classifiers in the source domain. However, it remains unclear how to evaluate the
generalization performance on unseen domains, and apply it on dense prediction
tasks. Given the fact that our masked noise encoder can transfer styles even from
novel domains, we utilize this attractive property to generate a stylized proxy vali-
dation set, i.e., combining styles from the target domain with the contents from the
source domain training samples. For getting their styles, exemplars from the target
domain do not need to be labelled. The existing ground-truth label maps of the
training samples in the source domain are reused as the ground-truth annotations
of the stylized proxy validation set. Visual examples of transferring ACDC style
using one sample from each weather condition are provided in Fig. 3.13.

Experimental Setup. We investigate the generalization performance of 95 se-
mantic segmentation models trained on Cityscapes, where 54 models are obtained
from MMSegmentation (Contributors, 2020) model zoo and the others are trained
by ourselves. The models cover both CNN-based architectures, e.g., HRNet (Wang
et al., 2021b), DeepLab (Chen et al., 2017), DANet (Fu et al., 2019), and transformer-
based model, e.g., SegFormer (Xie et al., 2021), SETR (Zheng et al., 2021). Besides,
the models are trained using different strategies, e.g., various learning rate sched-
ule, cropping size and data augmentation. We consider generalization performance
on both source and target domain for the correlation study. Specifically, we use
the Cityscapes validation set as the source test set, ACDC and BDD100K valida-
tion sets as the target test data. To verify the generalization performance on the
source domain, we apply intra-source style augmentation on the Cityscapes train-



63 3.3 Experiments

Figure 3.14: Correlation between real Cityscapes test performance and intra-source style
augmented proxy performance for 95 models. Spearman’s Rank Correlation coefficient (𝜌)
and Kendall Rank Correlation Coefficient (𝜏) are computed to quantitatively measure cor-
relation strength. Blue and orange dots represent CNN- and transformer-based backbones,
respectively. We observe that there is a strong correlation between the real test mIoU and
proxy mIoU.

ing set and use it as the proxy validation set. For the verification of target domain
generalization performance, we build a proxy set by transferring styles from the
corresponding target test dataset. Further, we study the correlation between the
real test performance and performance on the proxy data.

Correlation Metrics. We compute Spearman’s Rank Correlation coefficient (𝜌)
and Kendall Rank Correlation Coefficient (𝜏) to quantitatively measure the cor-
relation strength. The value of the correlation coefficient varies from [−1, 1]. A
value closer to ±1 indicates strong positive/negative association between the two
variables. As the coefficient goes towards 0, the association becomes looser. Both
correlation coefficients are non-parametric, i.e., no strict assumptions on the data
distribution, and the assessment is based on the ranking of the data.

Observations. In Fig. 3.14, we show the correlation of performance on the intra-
source style augmented proxy set and real Cityscapes test set across different net-
work architectures. We clearly observe a strong correlation (𝜌 > 0.95), indicating
that ISSA proxy set can serve as a good indicator for generalization in the source
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(a) (b) (c)

(d) (e) (f)
Figure 3.15: Correlation between test performance and proxy performance for 95 models.
We compute Spearman’s Rank Correlation coefficient (𝜌) and Kendall Rank Correlation
Coefficient (𝜏) to quantitatively measure correlation strength. Blue and orange dots rep-
resent CNN- and transformer-based backbones, respectively. In each row, we investigate
the correlation between the real test performance, i.e., mIoU of ACDC and BDD100K, and
mIoU of different proxy sets. We observe that Figs. 3.15(c) and 3.15(f) achieve the strongest
correlation for each scenario, which indicates that it is beneficial to build a proper proxy
set using styles of the corresponding test dataset.

domain.
Furthermore, we report the correlation results of target domain generalization

on two datasets, i.e., ACDC and BDD100K in each row of Fig. 3.15. We com-
pare three different choices of the proxy set in each column, namely the original
Cityscapes validation set, intra-source style augmented Cityscapes validation set
and target data style augmented validation set. Blue and orange dots represent
CNN- and transformer-based backbones, respectively. Quantitatively, the correla-
tion coefficients of Figs. 3.15(a) and 3.15(d) are rather low. Also from Fig. 3.15(a),
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some blue points in the upper right corner has stronger performance on Cityscapes
validation set compared to the orange points, but worse on ACDC test data. This
suggests that evaluation of the original Cityscapes (source) validation set cannot
properly reflect the generalization performance on the target domain. Therefore,
this raises the concern that by following the traditional way, selecting the best
model based on the source validation performance could be problematic when the
deploying environment involves data of unknown target domains. By applying
intra-source style augmentation on the Cityscapes validation set, the correlation
coefficient has been improved (see Figs. 3.15(b) and 3.15(e)). We hypothesize that
style mixing results in better data coverage and thus can better represent model’s
generalization ability under style shifts. Furthermore, whenever it is possible to
have access to images of the target domain, even though without annotation, we
can utilize styles of the unlabeled target data and achieve the strongest correlation
in Figs. 3.15(c) and 3.15(f). In addition to the correlation metric, in general models
have higher mIoU on the Cityscapes validation set, compared with the intra-source
style and target domain style augmented proxy set. And the mIoU range on the
intra-source proxy set is closer to the one of using target styles, which also justifies
our hypothesis above.

Additionally, we also observe an interesting phenomenon from Fig. 3.15: all
transformer-based models (orange dots) are above the linear fit. This suggests that
transformer-based models present better generalization ability under natural shifts
compared with CNN-based models (blue dots). This is consistent with the acknowl-
edgement on transformers from prior works (Naseer et al., 2021, Bai et al., 2021,
Zhang et al., 2022).

To sum up, we present a new use case of proposed exemplar-based style synthe-
sis pipeline, and demonstrate that stylized samples can be used as a proxy validation
set and a strong indicator for model’s generalization capability without introduc-
ing additional annotation efforts. Based on this observation, we can better utilize
existing annotated data together with our exemplar-based style synthesis pipeline,
to select models in practice especially when deployment in an open-world environ-
ment, where unknown target data commonly exists.
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3.4 Conclusion

In this paper, we propose a GAN inversion based style synthesis pipeline for
domain generalization in semantic segmentation. The key enabler for our pipeline
is the masked noise encoder, which is capable of preserving fine-grained content
details and allows style mixing between images without affecting the semantic con-
tent. In particular, we employ intra-source style augmentation (ISSA) for learning
domain generalized semantic segmentation using restricted training data from a
single source domain. Extensive experimental results verify the effectiveness of
ISSA on domain generalization across different datasets and network architectures.
We further demonstrate the plug-n-play ability of the proposed pipeline. Without
requiring retraining the encoder and generator, our model can be used directly on
extra-source exemplars such as web-crawled images, enabling extra-source style
augmentation (ESSA). It also opens up applications beyond data augmentation for
improved domain generalization. Specifically, we show that the intra- & extra-
source exemplar-based style synthesis pipeline can be used for creating proxy val-
idation sets to compare the generalization capability of diverse models on both the
source and target domain without extra data annotation effort.

Limitation and future work. One limitation of ISSA is that our style mixing is
a global transformation, which cannot specifically alter the style of local objects,
e.g., adjusting vehicle color from red to black, though when changing the image
globally, local areas are inevitably modified. Also compared to simple data aug-
mentation such as color transformation, our pipeline requires higher computational
complexity for training. It takes around 7 days to train the masked noise encoder
on 256 × 512 resolution using 2 GPUs. A similar amount of time is required for
the StyleGAN2 training. Nonetheless, for data augmentation, it only concerns the
inference time of our encoder, which is much faster, i.e., 0.1 seconds, compared to
optimization based methods such as PTI (Roich et al., 2022) that takes 55.7 seconds
per image.

In the future, it is challenging yet interesting to extend our work with more
flexible local editing. Our proposed intra- & extra-source exemplar-based style syn-
thesis is a global transformation, which cannot specifically alter the style of local
objects, e.g., adjusting vehicle color from red to black, though when changing the
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image globally, local areas are inevitably modified. One potential direction is by ex-
ploiting the pre-trained language-vision model, such as CLIP (Radford et al., 2021).
We can synthesize styles conditioned on text rather than an image. For instance,
by providing a text condition “snowy road", ideally we would want to obtain an im-
age where there is snow on the road and other semantic classes remain unchanged.
Recent works (Bar-Tal et al., 2022, Hertz et al., 2023, Kawar et al., 2023) studied
local editing conditioned on text. However, CLIP exhibits a strong bias (Bar-Tal
et al., 2022) and may generate undesirable results, and the edited image may suffer
from insufficient alignment with the other parts of the image. Overall, there is still
large room for improvement on synthesizing images with more controls on both
style and content. In Chapter 4, we will work on layout-to-image diffusion models,
where additional layout information, i.e., semantic label map is leveraged and the
image style can be controlled via text prompt.
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In this chapter, we focus on layout-to-image (L2I) diffusion models. Despite the
recent advances in large-scale diffusion models, little progress has been made on
the layout-to-image synthesis task. Current L2I models either suffer from poor
editability via text or weak alignment between the generated image and the in-
put layout. This limits their usability in practice. To mitigate this, we propose

68
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to integrate adversarial supervision into the conventional training pipeline of L2I
diffusion models (ALDM). Specifically, we employ a segmentation-based discrimi-
nator which provides explicit feedback to the diffusion generator on the pixel-level
alignment between the denoised image and the input layout. To encourage consis-
tent adherence to the input layout over the sampling steps, we further introduce the
multistep unrolling strategy. Instead of looking at a single timestep, we unroll a few
steps recursively to imitate the inference process, and ask the discriminator to as-
sess the alignment of denoised images with the layout over a certain time window.
Our experiments show that ALDM enables layout faithfulness of the generated im-
ages, while allowing broad editability via text prompts. Moreover, we showcase
its usefulness for practical applications: by synthesizing target distribution sam-
ples via text control, we improve domain generalization of semantic segmentation
models by a large margin (∼12 mIoU points). The code and model are available at
https://github.com/boschresearch/ALDM. This work is published at the Inter-
national Conference on Learning Representations (ICLR), 2024 (Li et al., 2024a).

4.1 Introduction

Layout-to-image synthesis (L2I) is a challenging task that aims to generate im-
ages with per-pixel correspondence to the given semantic label maps. Yet, due
to the tedious and costly pixel-level layout annotations of images, availability of
large-scale labelled data for extensive training on this task is limited. Meanwhile,
tremendous progress has been witnessed in the field of large-scale text-to-image
(T2I) diffusion models (Ramesh et al., 2022, Balaji et al., 2022, Rombach et al., 2022).
By virtue of joint vision-language training on billions of image-text pairs, such as
LAION dataset (Schuhmann et al., 2022), these models have demonstrated remark-
able capability of synthesizing photorealistic images via text prompts. A natural
question is: can we adapt such pretrained diffusion models for the L2I task using
a limited amount of labelled layout data while preserving their text controllability
and faithful alignment to the layout? Effectively addressing this question will then
foster the widespread utilization of L2I synthetic data.

Recently, increasing attention has been devoted to answer this question (Zhang
and Agrawala, 2023, Xue et al., 2023, Mou et al., 2024). Despite the efforts, prior

https://github.com/boschresearch/ALDM
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Ground truth

+ “heavy fog”

FreestyleNet ControlNet Ours

+ “snowy scene
with sunshine”

+“snowy scene,
night time”

Layout faithfulness
Text editability

Figure 4.1: In contrast to prior L2I synthesis methods (Xue et al., 2023, Zhang and
Agrawala, 2023), our ALDM model can synthesize faithful samples that are well aligned
with the layout input, while preserving controllability via text prompt. Equippedwith these
both valuable properties, we can synthesize diverse samples of practical utility for down-
stream tasks, such as data augmentation for improving domain generalization of semantic
segmentation models.

works have suffered to find a good trade-off between faithfulness to the layout
condition and editability via text, which we also empirically observed in our exper-
iments (see Fig. 4.1). When adopting powerful pretrained T2I diffusion models, e.g.,
Stable Diffusion (SD) (Rombach et al., 2022), for L2I tasks, fine-tuning the whole
model fully as in Xue et al. (2023) can lead to the loss of text controllability, as the
large model easily overfits to the limited amount of training samples with layout
annotations. Consequently, the model can only generate samples resembling the
training set, thus negatively affecting its practical use for potential downstream
tasks requiring diverse data. For example, for downstream models deployed in an
open-world, variety in synthetic data augmentation is crucial, since annotated data
can only partially capture the real environment and synthetic samples should com-
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plement real ones.

Conversely, when freezing the T2I model weights and introducing additional
parameters to accommodate the layout information (Zhang and Agrawala, 2023,
Mou et al., 2024), the L2I diffusion models naturally preserve text control of the
pretrained model but do not reliably comply with the layout conditioning. In such
case, the condition becomes a noisy annotation of the synthetic data, undermining
its effectiveness for data augmentation. We hypothesize the poor alignment with
the layout input can be attributed to the suboptimal MSE loss for the noise predic-
tion, where the layout information is only implicitly utilized during the training
process. The assumption is that the denoiser has the incentive to utilize the layout
information as it poses prior knowledge of the original image and thus is benefi-
cial for the denoising task. Yet, there is no direct mechanism in place to ensure
the layout alignment. To address this issue, we propose to integrate adversarial
supervision on the layout alignment into the conventional training pipeline of L2I
diffusion models, which we name ALDM. Specifically, inspired by Sushko et al.
(2022), we employ a semantic segmentation model based discriminator, explicitly
leveraging the layout condition to provide a direct per-pixel feedback to the diffu-
sion model generator on the adherence of the denoised images to the input layout.

Further, to encourage consistent compliance with the given layout over the sam-
pling steps, we propose a novel multistep unrolling strategy. At inference time, the
diffusion model needs to consecutively remove noise for multiple steps to produce
the desired sample in the end. Hence, the model is required to maintain consistent
adherence to the conditional layout over the sampling time horizon. Therefore, in-
stead of applying discriminator supervision at a single timestep, we additionally
unroll backward multiple steps over a certain time window to imitate the inference
time sampling. This way the adversarial objective is designed over a time horizon
and future steps are taken into consideration as well. Enabled by adversarial super-
vision over multiple sampling steps, our ALDM can effectively ensure consistent
layout alignment, while maintaining initial properties of the text controllability of
the large-scale pretrained diffusion model. We experimentally show the effective-
ness of adversarial supervision for different adaptation strategies (Qiu et al., 2023,
Zhang and Agrawala, 2023, Mou et al., 2024) of the SDmodel (Rombach et al., 2022)
to the L2I task across different datasets, achieving the desired balance between lay-
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out faithfulness and text editability (see Table 4.1).
Finally, we demonstrate the utility of our method on the domain generalization

task, where the semantic segmentation network is evaluated on unseen target do-
mains, whose samples are sufficiently different from the trained source domain. By
augmenting the source domain with synthetic images generated by ALDM using
text prompts aligned with the target domain, we can significantly enhance the gen-
eralization performance of original downstream models, i.e., ∼ 12 mIoU points on
the Cityscapes-to-ACDC generalization task (see Table 4.6).

In summary, our main contributions include:

• We introduce adversarial supervision into the conventional diffusion model
training, improving layout alignment without losing text controllability.

• We propose a novel multistep unrolling strategy for diffusion model training,
encouraging better layout coherency during the synthesis process.

• We show the effectiveness of synthetic data augmentation achieved via ALDM.
Benefiting from the notable layout faithfulness and text control, our ALDM
improves the generalization performance of semantic segmenters by a large
margin.

4.2 Method
L2I diffusion model aims to generate images based on the given layout. Its cur-

rent training and inference procedure is inherited from unconditional diffusion
models, where the design focus has been on how the layout as the condition is
fed into the UNet for noise estimation, as illustrated in Fig. 4.2 (A). It is yet under-
explored how to enforce the faithfulness of L2I image synthesis via direct loss su-
pervision. Here, we propose novel adversarial supervision which is realized via 1)
a semantic segmenter-based discriminator (Section 4.2.1 and Fig. 4.2 (B)); and 2)
multistep unrolling of UNet (Section 4.2.2 and Fig. 4.2 (C)) to induce faithfulness
already from early sampling steps and consistent adherence to the condition over
consecutive steps.
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Figure 4.2: Method overview. To enforce faithfulness, we propose two novel training
strategies to improve the traditional L2I diffusion model training (area (A)): adversarial
supervision via a segmenter-based discriminator illustrated in area (B), and multistep un-
rolling strategy in area (C).

4.2.1 Discriminator Supervision on Layout Alignment
For training the L2I diffusion model, a Gaussian noise 𝜖 ∼ 𝑁 (0, 𝐼 ) is added to the

clean variable 𝑥0 with a randomly sampled timestep 𝑡 , yielding 𝑥𝑡 :

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, (4.1)

where 𝛼𝑡 defines the level of noise. A UNet (Ronneberger et al., 2015) denoiser 𝜖𝜃 is
then trained to estimate the added noise via the MSE loss:

L𝑛𝑜𝑖𝑠𝑒 = E𝜖∼𝑁 (0,𝐼 ),𝑦,𝑡
[
∥𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑦, 𝑡)∥2

]
= E𝜖,𝑥0,𝑦,𝑡

[𝜖 − 𝜖𝜃 (√𝛼𝑡𝑥0 +
√

1 − 𝛼𝑡𝜖,𝑦)
2]

.

(4.2)

Besides the noisy image𝑥𝑡 and the time step 𝑡 , the UNet additionally takes the layout
input 𝑦. Since 𝑦 contains the layout information of 𝑥0 which can simplify the noise
estimation, it then influences implicitly the image synthesis via the denoising step.
From 𝑥𝑡 and the noise prediction 𝜖𝜃 , we can generate a denoised version of the clean
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image 𝑥 (𝑡)0 as:

𝑥
(𝑡)
0 =

𝑥𝑡 −
√

1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 , 𝑦, 𝑡)√
𝛼𝑡

. (4.3)

However, due to the lack of explicit supervision on the layout information 𝑦 for
minimizing L𝑛𝑜𝑖𝑠𝑒 , the output 𝑥 (𝑡)0 often lacks faithfulness to 𝑦, as shown in Fig. 4.3.
It is particularly challenging when 𝑦 carries detailed information about the image,
as the alignment with the layout condition needs to be fulfilled on each pixel. Thus,
we seek direct supervision on 𝑥 (𝑡)0 to enforce the layout alignment. A straightfor-
ward option would be to simply adopt a frozen pre-trained segmenter to provide
guidance with respect to the label map. However, we observe that the diffusion
model tends to learn a mean mode to meet the requirement of the segmenter, ex-
hibiting little variation (see Table 4.4 and Fig. 4.8).

To encourage diversity in addition to alignment, we make the segmenter train-
able along with the UNet training. Inspired by Sushko et al. (2022), we formulate an
adversarial game between the UNet and the segmenter. Specifically, the segmenter
acts as a discriminator that is trained to classify per-pixel class labels of real images,
using the paired ground-truth label maps; while the fake images generated by UNet
as in (Eq. (4.3)) are classified by it as one extra “fake” class, as illustrated in area (B)
of Fig. 4.2. As the task of the discriminator is essentially to solve a multi-class se-
mantic segmentation problem, its training objective is derived from the standard
cross-entropy loss:

𝐿𝐷𝑖𝑠 = −E
[
𝑁∑︁
𝑐=1

𝛾𝑐

𝐻×𝑊∑︁
𝑖, 𝑗

𝑦𝑖, 𝑗,𝑐 log
(
𝐷𝑖𝑠 (𝑥0)𝑖, 𝑗𝑐

) ]
− E

[
𝐻×𝑊∑︁
𝑖, 𝑗

log
(
𝐷𝑖𝑠 (𝑥 (𝑡)0 )𝑖, 𝑗,𝑐=𝑁+1

)]
,

(4.4)

where 𝑁 is the number of real semantic classes, and 𝐻 ×𝑊 denotes spatial size of
the input. The class-dependent weighting𝛾𝑐 is computed via inverting the per-pixel
class frequency

𝛾𝑐 =
𝐻 ×𝑊∑

E
[
1
[
𝑦𝑖, 𝑗,𝑐 = 1

] ] , (4.5)
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for balancing between frequent and rare classes. To fool such a segmenter-based
discriminator, 𝑥 (𝑡)0 produced by the UNet as in (Eq. (4.3)) shall comply with the input
layout 𝑦 to minimize the loss

𝐿𝑎𝑑𝑣 = −E
[
𝑁∑︁
𝑐=1

𝛾𝑐

𝐻×𝑊∑︁
𝑖, 𝑗

𝑦𝑖, 𝑗,𝑐 log
(
𝐷𝑖𝑠 (𝑥 (𝑡)0 )𝑖, 𝑗,𝑐

)]
. (4.6)

Such loss poses explicit supervision to the UNet for using the layout information,
complementary to the original MSE loss. The total loss for training the UNet is thus

𝐿𝐷𝑀 = 𝐿𝑛𝑜𝑖𝑠𝑒 + 𝜆𝑎𝑑𝑣𝐿𝑎𝑑𝑣 , (4.7)

where 𝜆𝑎𝑑𝑣 is the weighting factor. The whole adversarial training process is illus-
trated Fig. 4.2 (B). As the discriminator is improved along with UNet training, we
no longer observe the mean mode collapsing as with the use of a frozen semantic
segmenter. The high recall reported in Table 4.2 confirms the diversity of synthetic
images produced by our method.

4.2.2 Multistep Unrolling

Admittedly, it is impossible for the UNet to produce high-quality image 𝑥 (𝑡)0 via
a single denoising step as in (Eq. (4.3)), especially if the input 𝑥𝑡 is very noisy (i.e., 𝑡
is large). On the other hand, adding such adversarial supervision only at low noise
inputs (i.e., 𝑡 is small) is not very effective, as the alignment with the layout should
be induced early enough during the sampling process. To improve the effectiveness
of the adversarial supervision, we propose a multistep unrolling design for training
the UNet. Extending from a single step denoising, we perform multiple denoising
steps, which are recursively unrolled from the previous step:

𝑥𝑡−1 =
√
𝛼𝑡−1

(
𝑥𝑡 −
√

1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 , 𝑦, 𝑡)√
𝛼𝑡

)
+
√

1 − 𝛼𝑡−1 · 𝜖𝜃 (𝑥𝑡 , 𝑦, 𝑡), (4.8)

𝑥
(𝑡−1)
0 =

𝑥𝑡−1 −
√

1 − 𝛼𝑡−1𝜖𝜃 (𝑥𝑡−1, 𝑦, 𝑡 − 1)
√
𝛼𝑡−1

. (4.9)
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As illustrated in area (C) of Fig. 4.2, we can repeat (Eq. (4.8)) and (Eq. (4.9)) 𝐾
times, yielding {𝑥 (𝑡)0 , 𝑥

(𝑡−1)
0 , ..., 𝑥

(𝑡−𝐾)
0 }. All these denoised images are fed into the

segmenter-based discriminator as the “fake” examples:

𝐿𝑎𝑑𝑣 =
1

𝐾 + 1

𝐾∑︁
𝑖=0
−E

[
𝑁∑︁
𝑐=1

𝛾𝑐𝑦𝑐 log
(
𝐷𝑖𝑠 (𝑥 (𝑡−𝑖)0 )𝑐

)]
. (4.10)

By doing so, the denoising model is encouraged to follow the conditional label map
consistently over the time horizon. It is important to note that while the number of
unrolled steps 𝐾 is pre-specified, the starting time step 𝑡 is still randomly sampled.

Such unrolling process resembles the inference time denoising with a sliding
window of size 𝐾 . As pointed out by Fan and Lee (2023), diffusion models can be
seen as control systems, where the denoising model essentially learns to mimic the
ground-truth trajectory of moving from noisy image to clean image. In this regard,
the proposed multistep unrolling strategy also resembles the advanced control al-
gorithm - Model Predictive Control (MPC), where the objective function is defined
in terms of both present and future system variables within a prediction horizon.
Similarly, our multistep unrolling strategy takes future timesteps along with the
current timestep into consideration, hence yielding a more comprehensive learn-
ing criteria.

While unrolling is a simple feed-forward pass, the challenge lies in the increased
computational complexity during training. Apart from the increased training time
due to multistep unrolling, the memory and computation cost for training the UNet
can be also largely increased along with 𝐾 . Since the denoising UNet model is the
same and reused for every step, we propose to simply accumulate and scale the
gradients for updating the model over the time window, instead of storing gradients
at every unrolling step. This mechanism permits to harvest the benefit of multistep
unrolling with a controllable increase in complexity during training.

4.2.3 Implementation Details

We apply our method to the open-source text-to-image Stable Diffusion (SD)
model (Rombach et al., 2022) so that the resulting model not only synthesizes high
quality images based on the layout condition, but also accepts text prompts to
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change the content and style. As SD belongs to the family of latent diffusion mod-
els (LDMs), where the diffusion model is trained in the latent space of an autoen-
coder, the UNet denoises the corrupted latents which are further passed through
the SD decoder for the final pixel space output, i.e., 𝑥0 = D(𝑧0). We employ Uper-
Net (Xiao et al., 2018) as the discriminator, nonetheless, we also ablate other types
of backbones in Table 4.4. Since Stable Diffusion can already generate photoreal-
istic images, a randomly initialized discriminator falls behind and cannot provide
useful guidance immediately from scratch. We thus warm up the discriminator
firstly, then start the joint adversarial training. In the unrolling strategy, we use
𝐾 = 9 as the moving horizon. An ablation study on the choice of 𝐾 is provided in
Table 4.5. Considering the computing overhead, we apply unrolling every 8 opti-
mization steps.

4.3 Experiments
Section 4.3.1 compares L2I diffusion models in terms of layout faithfulness and

text editability. Further, we provide detailed ablation studies in Section 4.3.2. In
Section 4.3.3, we evaluate the use of synthesized images for data augmentation to
improve domain generalization.

4.3.1 Evaluation of Layout-to-Image Synthesis

Experimental Details. We conducted experiments on two challenging datasets:
ADE20K (Zhou et al., 2017) and Cityscapes (Cordts et al., 2016). ADE20K consists of
20K training and 2K validation images, with 150 semantic classes. Cityscapes has
19 classes, whereas there are only 2975 training and 500 validation images, which
poses special challenge for avoiding overfitting and preserving prior knowledge
of Stable Diffusion. Following ControlNet (Zhang and Agrawala, 2023), we use
BLIP (Li et al., 2022b) to generate captions for both datasets.

By default, our ALDM adopts ControlNet (Zhang and Agrawala, 2023) architec-
ture for layout conditioning and finetune Stable Diffusion v1.5 checkpoint. Nev-
ertheless, the proposed adversarial training strategy can be combined with other
L2I models as well, as shown in Table 4.1. All trainings are conducted on 512 × 512
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Cityscapes ADE20K
Method FID ↓ mIoU↑ FID↓ mIoU↑
OFT (Qiu et al., 2023) 57.3 48.9 29.5 24.1
+ Adversarial supervision 56.0 54.8 31.0 29.7

+ Multistep unrolling 51.3 58.8 29.7 31.8

T2I-Adapter (Mou et al., 2024) 58.3 37.1 31.8 24.0
+ Adversarial supervision 55.9 46.6 32.4 26.5

+ Multistep unrolling 51.5 50.1 30.5 29.1

ControlNet (Zhang and Agrawala, 2023) 57.1 55.2 29.6 30.4
+ Adversarial supervision 50.3 61.5 30.0 34.0

+ Multistep unrolling 51.2 63.9 30.2 36.0

Table 4.1: Effect of adversarial supervision and multistep unrolling on different L2I syn-
thesis adaptation methods. Best and second best are marked in bold and underline, re-
spectively.

resolution. For Cityscapes, we do random cropping and for ADE20K we directly re-
size the images. Nevertheless, we directly synthesize 512× 1024 Cityscapes images
for evaluation. We use AdamW optimizer and the learning rate of 1 × 10−5 for the
diffusion model, 1 × 10−6 for the discriminator, and the batch size of 8. The adver-
sarial loss weighting factor 𝜆𝑎𝑑𝑣 is set to be 0.1. The discriminator is firstly warmed
up for 5K iterations on Cityscapes and 10K iterations on ADE20K. Afterward, we
jointly train the diffusion model and discriminator in an adversarial manner. We
conducted all training using 2 NVIDIA Tesla A100 GPUs. For all experiments, at
inference time we use DDIM sampler (Song et al., 2020) with 25 sampling steps.

Evaluation Metrics. Following Sushko et al. (2022), Xue et al. (2023), we evaluate
the image-layout alignment via mean intersection-over-union (mIoU) with the aid
of off-the-shelf segmentation networks. To measure the text-based editability, we
use the recently proposed TIFA score (Hu et al., 2023b), which is defined as the
accuracy of a visual question answering (VQA) model, e.g., mPLUG (Li et al., 2022a).
Fréchet Inception Distance (FID) (Heusel et al., 2017), Precision and Recall (Sajjadi
et al., 2018) are for assessing sample quality and diversity.

Main Results. In Table 4.1, we apply the proposed adversarial supervision and
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Cityscapes ADE20K
Method FID ↓ mIoU↑ P.↑ R.↑ TIFA↑ FID↓ mIoU↑ P.↑ R.↑ TIFA↑
PITI n/a n/a n/a n/a ✗ 27.9 29.4 n/a n/a ✗
FreestyleNet 56.8 68.8 0.73 0.44 0.300 29.2 36.1 0.83 0.79 0.740
T2I-Adapter 58.3 37.1 0.55 0.59 0.902 31.8 24.0 0.79 0.81 0.892
ControlNet 57.1 55.2 0.61 0.60 0.822 29.6 30.4 0.84 0.84 0.838
ALDM (ours) 51.2 63.9 0.66 0.68 0.856 30.2 36.0 0.86 0.82 0.888

Table 4.2: Quantitative comparison of the state-of-the-art L2I diffusion models. Best and
second best are marked in bold and underline, respectively, while the worst result is in red.
Our ALDM demonstrates competitive conditional alignment with notable text editability.

multistep unrolling strategy to different Stable Diffusion based L2Imethods: OFT (Qiu
et al., 2023), T2I-Adapter (Mou et al., 2024) and ControlNet (Zhang and Agrawala,
2023). Through adversarial supervision andmultistep unrolling, the layout faithful-
ness is consistently improved across different L2I models, e.g., improving the mIoU
of T2I-Adapter from 37.1 to 50.1 on Cityscapes. In many cases, the image quality is
also enhanced, e.g., FID improves from 57.1 to 51.2 for ControlNet on Cityscapes.
Overall, we observe that the proposed adversarial training complements different
SD adaptation techniques and architecture improvements, noticeably boosting their
performance. By default, ALDM represents ControlNet with adversarial supervi-
sion and multistep unrolling in other tables.

In Table 4.2, we quantitatively compare our ALDM with the other state-of-the-
art L2I diffusion models: PITI (Wang et al., 2022), which does not support text con-
trol; and recent SD based FreestyleNet (Xue et al., 2023), T2I-Adapter and Control-
Net, which support text control. FreestyleNet has shown good mIoU by trading off
the editability, as it requires fine-tuning of the whole SD. Its poor editability, i.e.,
low TIFA score, is particularly notable on Cityscapes. As its training set is small
and diversity is limited, FreestyleNet tends to overfit and forgets about the pre-
trained knowledge. This can be reflected from the low recall value in Table 4.2 as
well. Both T2I-adapter and ControlNet freeze the SD, and T2I-Adapter introduces a
much smaller adapter for the conditioning compared to ControlNet. Due to limited
fine-tuning capacity, T2I-Adapter does not utilize the layout effectively, leading to
low mIoU, yet it better preserves the editability, i.e., high TIFA score. By contrast,
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Ground truth Label T2I-Adapter FreestyleNet ControlNet ALDM

Figure 4.3: Qualitative comparison of faithfulness to the layout condition on ADE20K.
Our ALDM can comply with the label map consistently, while the other may ignore the
ground truth label map and hallucinate, e.g., synthesizing trees in the background (see the
2nd and 4th row).
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T2I-Adapter FreestyleNet ControlNet ALDM

Orig. Caption: “a red van driving down a street next to tall buildings.”

+“snowy scene”

+“nighttime”

→“burning van”

Figure 4.4: Visual comparison of text control between different L2I diffusion models on
Cityscapes. Based on the image caption, we directly modify the underlined objects (indi-
cated as→), or append a postfix to the caption (indicated as +). In contrast to prior work,
ALDM can faithfully accomplish both global scene level modification (e.g., “snowy scene”)
and local editing (e.g., “burning van”).

ControlNet improves mIoU while trading off the editability. In contrast, ALDM
exhibits competitive mIoU while maintaining high TIFA score, which enables its
usability for practical applications, e.g., data augmentation for domain generaliza-
tion detailed in Section 4.3.3.

Qualitative comparison on the faithfulness to the label map is shown in Fig. 4.3.
T2I-Adapter often ignores the layout condition (see the first row of Fig. 4.3), which
can be reflected in low mIoU as well. FreestyleNet and ControlNet may halluci-
nate objects in the background. For instance, in the second row of Fig. 4.3, both
methods synthesize trees where the ground-truth label map is sky. In the last row,
ControlNet also generates more bicycles instead of the ground truth trees in the
background. Contrarily, ALDM better complies with the layout in this case. Vi-
sual comparison on text editability is shown in Figs. 4.1 and 4.4. We observe that
FreestyleNet only shows little variability and minor visual differences, as evidenced
by the low TIFA score. T2I-Adapter and ControlNet on the other hand preserve
better text control, nonetheless, they may not follow well the layout condition. In
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Original caption: “a street filled with lots of parked cars next to tall buildings”

Ground truth Label →“muddy street” →“snowy street” →“burning cars”

Original caption: “a car driving down a street next to tall buildings”

Ground truth Label →“purple car” →“blue car” →“red car”

Original caption: “a couple of men standing next to a red car”

Ground truth Label →“purple car” →“green car” →“pink car”

Original caption: “a room with a chair and a window”

Ground truth Label +“sketch style” +“Picasso painting” +“Cyberpunk style”

Figure 4.5: Visual examples of text controllability with our ALDM. Based on the original
image captions generated by BLIP model, we can directly modify the underlined objects
(indicated as →), or append a postfix to the caption (indicated as +). Our ALDM can
accomplish both local attribute editing (e.g., car color) and global image style modification
(e.g., sketch style).

Fig. 4.1, ControlNet fails to generate the truck, especially when the prompt is mod-
ified. And in Fig. 4.4, the trees on the left are only sparsely synthesized. While
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Ground truth Label +“rainy scene” +“snowy scene” +“nighttime”

Ground truth Label +“muddy road” +“heavy fog”
+“snowy scene,

nighttime ”

Figure 4.6: Visual examples of Cityscapes, synthesized by ALDM via various textual de-
scriptions, which can be further utilized on downstream tasks.

ALDM produces samples that adhere better to both layout and text conditions, in-
line with the quantitative results. More visual editing examples are illustrated in
Figs. 4.5 and 4.6.

Comparison with GAN-based L2I Methods. We additionally compare our
method with prior GAN-based L2I methods in Table 4.3. It is worthwhile to men-
tion that all GAN-based approaches do not have text controllability, thus they can
only produce samples resembling the training dataset, which constrains their util-
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Cityscapes ADE20K
Method FID ↓ mIoU↑ TIFA↑ FID↓ mIoU↑ TIFA↑

GANs

Pix2PixHD (Wang et al., 2018b) 95.0 63.0

✗

81.8 28.8

✗

SPADE (Park et al., 2019) 71.8 61.2 33.9 38.3
OASIS (Schönfeld et al., 2020) 47.7 69.3 28.3 45.7
SCGAN (Wang et al., 2021c) 49.5 55.9 29.3 41.5
CLADE (Tan et al., 2021b) 57.2 58.6 35.4 23.9
GroupDNet (Zhu et al., 2020b) 47.3 55.3 41.7 27.6

DMs

PITI (Wang et al., 2022) n/a n/a ✗ 27.9 29.4 ✗
FreestyleNet (Xue et al., 2023) 56.8 68.8 0.300 29.2 36.1 0.740
T2I-Adapter (Mou et al., 2024) 58.3 37.1 0.902 31.8 24.0 0.892
ControlNet (Zhang and Agrawala, 2023) 57.1 55.2 0.822 29.6 30.4 0.838
ALDM (ours) 51.2 63.9 0.856 30.2 36.0 0.888

Table 4.3: Quantitative comparison results with the state-of-the-art layout-to-image
GANs and diffusion models (DMs). Our ALDM demonstrates competitive conditional
alignment with notable text editability.

ity on downstream tasks. On the other hand, our ALDM achieves the balanced
performance between faithfulness to the layout condition and editability via text,
rendering itself advantageous for the domain generalization tasks.

In Fig. 4.7, we compare ourALDMwithGAN-based style transfermethod ISSA (Li
et al., 2024c) introduced in Chapter 3. It can be observed that ALDM produces more
realistic results with faithful local details, given the label map and text prompt. In
contrast, style transfer methods require two images, and mix them on the global
color style, while the local details, e.g., mud, and snow may not be faithfully trans-
ferred.

4.3.2 Ablation Study

Ablation on Discriminator. We conduct the ablation study on different discrim-
inator designs, shown in Table 4.4. Both choices for the discriminator network:
CNN-based segmentation network UperNet (Xiao et al., 2018) and transformer-
based Segmenter (Strudel et al., 2021), improve faithfulness of the baseline Con-
trolNet model.
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Content Style ISSA Label ALDM

+“muddy street”

+“snowy scene”

+“nighttime”

Figure 4.7: Comparison between our ALDM and GAN-based style-transfer method
ISSA (Li et al., 2024c) described in Chapter 3. It can be seen that ALDM can produce more
realistic results with faithful local details, given the label map and text. In contrast, style
transfer methods require two images, and mix them on the global color style, while the
local details, e.g., mud, and snow may not be faithfully transferred.

Instead of employing the discriminator in the pixel space, we also experiment
with feature-space discriminator. Thanks to large-scale vision-language pretrain-
ing on massive datasets, Stable Diffusion (SD) (Rombach et al., 2022) has acquired
rich representations, endowing it with the capability not only to generate high-
quality images, but also to excel in various downstream tasks. RecentworkVPD (Zhao
et al., 2023b) has unleashed the potential of SD, and leveraged its representation for
visual perception tasks, e.g., semantic segmentation. More specifically, they ex-
tracted cross-attention maps and feature maps from SD at different resolutions and
fed them to a lightweight decoder for the specific task. Despite the simplicity of
the idea, it works fairly well, presumably due to the powerful knowledge of SD.
In the ablation study, we adopt the segmentation model of VPD as the feature-
based discriminator. Nevertheless, different from the joint training of SD and the
task-specific decoder in the original VPD implementation, we only train the newly
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Cityscapes ADE20K
Method FID↓ mIoU↑ FID↓ mIoU↑
ControlNet 57.1 55.2 29.6 30.4

+ UperNet 50.3 61.5 30.0 34.0
+ Segmenter 52.9 59.2 29.8 34.1

+ Feature-based 53.1 59.6 29.3 33.1

+ Frozen UperNet - - 50.8 40.2

Table 4.4: Ablation on the discriminator type.

Ground truth Label Samples

Figure 4.8: Visual results of using a frozen segmentation network, i.e., a pretrained Uper-
Net (Xiao et al., 2018), to provide conditional guidance during diffusion model training. We
can observe the mode collapse issue, where the diffusion model tends to learn to a mean
mode and exhibits little variation in the generated samples.

added decoder, while freezing SD to preserve the text controllability as ControlNet.
As shown in Table 4.4, the feature-based discriminator also works reasonably well.

Lastly, we employ a frozen semantic segmentation network to provide guidance
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Cityscapes ADE20K
FID↓ mIoU↑ TIFA↑ FID↓ mIoU↑ TIFA↑ Overhead

ControlNet 57.1 55.2 0.822 29.6 30.4 0.838 0.00
K = 0 50.3 61.5 0.894 30.0 34.0 0.904 0.00
K = 3 54.9 62.7 0.856 - - - 1.55
K = 6 51.6 64.1 0.832 30.3 34.5 0.898 3.11
K = 9 51.2 63.9 0.856 30.2 36.0 0.888 4.65
K = 15 50.7 64.1 0.882 30.2 36.9 0.825 7.75

Table 4.5: Ablation on the unrolling step 𝐾 . Overhead is measured as seconds per training
iteration.

directly. Note that this case is no longer adversarial training anymore, as the seg-
mentation model does not update itself with the generator. Despite achieving high
mIoU, the generator tends to learn a meanmode of the class and produce unrealistic
samples (see Fig. 4.8), thus yielding high FID. In this case, the generator can more
easily find a “cheating” way to fool the discriminator as it is not updating.

Ablation onMultistep Unrolling. For the unrolling strategy, we compare differ-
ent number of unrolling steps in Table 4.5. We observe that more unrolling steps
is beneficial for improving the faithfulness, as the model can consider more future
steps to ensure alignment with the layout condition. However, the additional un-
rolling time overhead also increases linearly. Therefore, we choose𝐾 = 9 by default
in all experiments.

4.3.3 Improved Domain Generalization for Semantic
Segmentation

We further investigate the utility of synthetic data generated by different L2I
models for domain generalization (DG) in semantic segmentation. Namely, the
downstream model is trained on a source domain, and its generalization perfor-
mance is evaluated on unseen target domains. We experiment with both CNN-
based segmentation model HRNet (Wang et al., 2021b) and transformer-based Seg-
Former (Xie et al., 2021). Quantitative evaluation is provided in Table 4.6, where all
models except the oracle are trained on Cityscapes, and tested on both Cityscapes
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HRNet (Wang et al., 2021b) SegFormer (Xie et al., 2021)
Method CS Rain Fog Snow ACDC CS Rain Fog Snow ACDC

Baseline (CS) 70.47 44.15 58.68 44.20 41.48 67.90 50.22 60.52 48.86 47.04

Hendrycks-Weather 69.25 50.78 60.82 38.34 43.19 67.41 54.02 64.74 49.57 49.21
ISSA 70.30 50.62 66.09 53.30 50.05 67.52 55.91 67.46 53.19 52.45
FreestyleNet 71.73 51.78 67.43 53.75 50.27 69.70 52.70 68.95 54.27 52.20
ControlNet 71.54 50.07 68.76 52.94 51.31 68.85 55.98 68.14 54.68 53.16
ALDM (ours) 72.10 53.67 69.88 57.95 53.03 68.92 56.03 69.14 57.28 53.78

Oracle (CS+ACDC) 70.29 65.67 75.22 72.34 65.90 68.24 63.67 74.10 67.97 63.56

Table 4.6: Comparison on domain generalization, i.e., from Cityscapes (train) to ACDC
(unseen). mIoU is reported on Cityscapes (CS), individual scenarios of ACDC (Rain, Fog,
Snow) and the whole ACDC. Hendrycks-Weather (Hendrycks and Dietterich, 2018) simu-
lates weather conditions in a synthetic manner for data augmentation. Oracle model is
trained on both Cityscapes and ACDC in a supervised manner, serving as an upper bound
on ACDC (not Cityscapes) for the other methods. ALDM can consistently improve gener-
alization performance of both HRNet and SegFormer.

and the unseen ACDC. The oracle model is trained on both datasets.
We observe that Hendrycks-Weather (Hendrycks and Dietterich, 2018), which

simulatesweather conditions in a syntheticmanner, brings limited benefits. ISSA (Li
et al., 2024c) resorts to simple image style mixing within the source domain. For
models that accept text prompts (FreestyleNet, ControlNet and ALDM), we can syn-
thesize novel samples given the textual description of the target domain, as shown
in Figs. 4.4 and 4.5. Nevertheless, the effectiveness of such data augmentation de-
pends on the editability via text and faithfulness to the layout. FreestyleNet only
achieves on-par performance with ISSA. We hypothesize that its poor text editabil-
ity only provides synthetic data close to the training set with style jittering similar
to ISSA’s style mixing. While ControlNet allows text editability, the misalignment
between the synthetic image and the input layout condition, unfortunately, can
even hurt the performance. While mIoU averaged over classes is improved over
the baseline, the per-class IoU shown in Table 4.7 indicates the undermined perfor-
mance on small object classes, such as traffic light, rider and person. On those small
objects, the alignment is noticeablymore challenging to pursue than on classes with
large area such as truck and bus. In contrast to it, ALDM, owing to its text editability
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Method Pole Traf. light Traf. sign Person Rider Car Truck Bus Train Motorbike Bike

Baseline 48.50 59.07 67.96 72.44 52.31 92.42 70.11 77.62 64.01 50.76 68.30
ControlNet 49.53 58.47 67.37 71.45 49.68 92.30 76.91 82.98 72.40 50.84 67.32
ALDM 51.21 60.50 69.56 73.82 53.01 92.57 76.61 81.37 66.49 52.79 68.61

Table 4.7: Per-class IoU of Cityscapes object classes. Numbers in red indicate worse IoU
compared to the baseline. The best is marked in bold. Our ALDM has demonstrated better
performance on small object classes, e.g., pole, traffic light, traffic sign, person, rider, which
reflects our method can better comply with the layout condition, as small object classes
are typically more challenging in L2I task and pose higher requirement for the faithfulness
to the layout condition.

Image Ground truth Baseline Ours

Figure 4.9: Semantic segmentation results of Cityscapes→ ACDC generalization using
HRNet. The HRNet is trained on Cityscapes only. Augmented with diverse synthetic data
generated by our ALDM, the segmentationmodel canmakemore reliable predictions under
diverse conditions under diverse unseen conditions, which is crucial for deployment in the
open-world.

and faithfulness to the layout, consistently improves across individual classes and
ultimately achieves pronounced gains onmIoU across different target domains, e.g.,
11.6% improvement for HRNet on ACDC.

Qualitative visualization is illustrated in Fig. 4.9. The segmentation model em-
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powered by ALDM can produce more reliable predictions under diverse weather
conditions, e.g., improving predictions on objects such as traffic signs and person,
which are safety critical cases.

4.4 Conclusion
In this work, we propose to incorporate adversarial supervision to improve the

faithfulness to the layout condition for L2I diffusion models. We propose to lever-
age a segmenter-based discriminator to explicitly utilize the layout label map and
provide a strong learning signal. Further, we propose a novel multistep unrolling
strategy to encourage conditional coherency across sampling steps. Our ALDM
can well comply with the layout condition, meanwhile preserving the text con-
trollability. Capitalizing these intriguing properties of ALDM, we synthesize novel
samples via text control for data augmentation on the domain generalization task,
resulting in a significant enhancement of the downstream model’s generalization
performance.
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Emerging large-scale text-to-image (T2I) generative models, e.g., Stable Diffu-
sion (SD), have exhibited overwhelming results with high fidelity. Despite the
magnificent progress, current state-of-the-art T2I models still struggle to generate
images fully adhering to the input prompt. Prior work, Attend & Excite, has intro-
duced the concept of Generative Semantic Nursing (GSN), aiming to optimize cross-
attention during inference time to better incorporate the semantics. It demonstrates

91
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promising results in generating simple prompts, e.g., “a cat and a dog”. However, its
efficacy declines when dealing with more complex prompts, and it does not explic-
itly address the problem of improper attribute binding. To address the challenges
posed by complex prompts or scenarios involving multiple entities and to achieve
improved attribute binding, we propose Divide & Bind. We introduce two novel
loss objectives for GSN: a novel attendance loss and a binding loss. Our approach
stands out in its ability to faithfully synthesize desired objects with improved at-
tribute alignment from complex prompts and exhibits superior performance across
multiple evaluation benchmarks. More videos can be found on the project page
https://sites.google.com/view/divide-and-bind. This work is published as
an oral paper at the British Machine Vision Conference, 2023 (Li et al., 2023a).

5.1 Introduction

In the realm of text-to-image (T2I) synthesis, large-scale generativemodels (Rom-
bach et al., 2022, Ramesh et al., 2022, Saharia et al., 2022, Balaji et al., 2022, Chang
et al., 2023, Yu et al., 2022, Kang et al., 2023) have recently achieved significant
progress and demonstrated exceptional capacity to generate stunning photorealis-
tic images. However, it remains challenging to synthesize images that fully comply
with the given prompt input (Marcus et al., 2022, Feng et al., 2023, Chefer et al.,
2023, Wang et al., 2023e). There are two well-known semantic issues in text-to-
image synthesis, i.e., “missing objects” and “attribute binding”. “Missing objects”
refers to the phenomenon that not all objects mentioned in the input text faithfully
appear in the image. “Attribute binding” represents the critical compositionality
problem that the attribute information, e.g., color or texture, is not properly aligned
to the corresponding object or wrongly attached to the other object. To mitigate
these issues, recent work Attend & Excite (A&E) (Chefer et al., 2023) has introduced
the concept of Generative Semantic Nursing (GSN). The core idea lies in updating
latent codes on-the-fly such that the semantic information in the given text can be
better incorporated within pretrained synthesis models.

As an initial attempt A&E (Chefer et al., 2023), building upon the powerful open-
source T2I model Stable Diffusion (SD) (Rombach et al., 2022), leveraged cross-
attention maps for optimization. Since cross-attention layers are the only interac-

https://sites.google.com/view/divide-and-bind
https://sites.google.com/view/divide-and-bind
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“A train driving down the

tracks under a bridge”

“Ironman cooking in

the kitchen with a dog”

“Three geese floating

in the middle of a river”
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Figure 5.1: OurDivide & Bind can faithfully generate multiple objects based on detailed
textual description. Compared to prior state-of-the-art semantic nursing technique for
text-to-image synthesis, Attend & Excite (Chefer et al., 2023), our approach exhibits supe-
rior alignment with the input prompt and maintain a higher level of realism.

tion between the text prompt and the diffusion model, the attention maps have sig-
nificant impact on the generation process. To enforce the object occurrence, A&E
defined a loss objective that attempts to maximize the maximum attention value
for each object token. Although showing promising results on simple composition,
e.g., “a cat and a frog”, we observed unsatisfying outcomes when the prompt be-
comes more complex, as illustrated in Fig. 5.1. A&E fails to faithfully synthesize
the “train” or “dog” in the first two examples, and miss one “goose” in the third
one. We attribute this to the suboptimal loss objective, which only considers the
single maximum value and does not take the spatial distribution into consideration.
As the complexity of prompts increases, token competition intensifies. The single
excitation of one object token may overlap with others, leading to the suppression
of one object by another (e.g., missing “train” in Fig. 5.1) or to hybrid objects, ex-
hibiting features of both semantic classes (e.g., mixed dog-turtle in Fig. 5.3). Similar
phenomenon has been observed in Tang et al. (2023b) as well.

In this work, we propose a novel objective function for GSN. We maximize the
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total variation of the attention map to prompt multiple, spatially distinct attention
excitations. By spatially distributing the attention for each token, we enable the
generation of all objects mentioned in the prompt, even under high token compe-
tition. Intuitively, this corresponds to dividing the attention map into multiple re-
gions. Besides, tomitigate the attribute binding issue, we propose a Jensen-Shannon
divergence (JSD) based binding loss to explicitly align the distribution between ex-
citation of each object and its attributes. Thus, we term our method Divide & Bind.
Our main contributions can be summarized as:

• We propose a novel total-variation based attendance loss enabling the pres-
ence of multiple objects in the generated image.

• We propose a JSD-based attribute binding loss for faithful attribute binding.

• Our approach exhibits outstanding capability of generating images fully ad-
hering to the prompt, outperforming A&E on several benchmarks involving
complex descriptions.

5.2 Preliminaries

Stable Diffusion (SD).We implement our method based on the open-source state-
of-the-art T2I model SD (Rombach et al., 2022), which belongs to the family of
latent diffusion models (LDMs). LDMs are two-stage methods, consisting of an
autoencoder and a diffusion model trained in the latent space. In the first stage,
the encoder E transforms the given image 𝑥 into a latent code 𝑧 = E(𝑥), then 𝑧
is mapped back to the image space by the decoder D. The autoencoder is trained
to reconstruct the given image, i.e. D(E(𝑥)) ≈ 𝑥 . In the second stage, a diffusion
model (Ho et al., 2020, Nichol and Dhariwal, 2021) is trained in the latent space of
the autoencoder. During training, we gradually add noise to the original latent 𝑧0
with time, resulting in 𝑧𝑡 . Then the UNet (Ronneberger et al., 2015) denoiser 𝜖𝜃 is
trained with a denoising objective to predict the noise 𝜖 that is added to 𝑧0:

L = E𝑧∼E(𝑥),𝜖∼𝑁 (0,𝐼 ),𝑐,𝑡
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑐, 𝑡)∥2

]
, (5.1)
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Figure 5.2: Method overview. We perform latent optimization on-the-fly based on the
attention maps of the object tokens with our TV-based 𝐿𝑎𝑡𝑡𝑒𝑛𝑑 and JSD-based 𝐿𝑏𝑖𝑛𝑑 .

where 𝑐 is the conditional information, e.g., text. During inference, given 𝑧𝑇 ran-
domly sampled from Gaussian distribution, UNet outputs noise estimation and
gradually removes it, finally producing the clean version 𝑧0.

Cross-Attention in Stable Diffusion. In SD, a frozen CLIP text encoder (Rad-
ford et al., 2021) is adopted to embed the text prompt P into a sequential embedding
as the condition 𝑐 , which is then injected into UNet through cross-attention (CA)
to synthesize text-complied images. The CA layers take the encoded text embed-
ding and project it into queries 𝑄 and values 𝑉 . The keys 𝐾 are mapped from the
intermediate features of UNet. The attention maps are then computed by

𝐴𝑡 = Softmax (𝑄𝐾
𝑇

√
𝑑
), (5.2)

where 𝑡 indicates the time step, Softmax is applied along the channel dimension.
The attention maps 𝐴𝑡 can be reshaped into Rℎ×𝑤×𝐿, where ℎ,𝑤 is the resolution of
the feature map, 𝐿 is the sequence length of the text embedding. Further, we denote
the cross-attention map that corresponds to the 𝑠th text token as 𝐴𝑠𝑡 ∈ Rℎ×𝑤 , see
an illustration in Fig. 5.2. One known issue of SD is that not all objects are present
in the final image (Liu et al., 2022, Wang et al., 2023e, Chefer et al., 2023), while,
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Figure 5.3: Cross-attention visualization in different timesteps for each object token and
predicted clean image 𝑥0

(𝑡) . Note that this is a GIF, best viewed in Acrobat Reader.

as shown in (Balaji et al., 2022, Hertz et al., 2023), the high activation region of the
corresponding attention map strongly correlates to the appearing pixels belonging
to one specific object in the final image. Hence, the activation in the attention maps
is an important signal and an influencer in the semantic guided synthesis.

5.3 Method
Given the recognized significance of the cross-attention maps in guiding seman-

tic synthesis, our method aims at optimizing the latent code at inference time to
excite them based on the text tokens. We employ the generative semantic nurs-
ing (GSN) method (Section 5.3.1) for latent code optimization, and propose a novel
loss formulation (Section 5.3.2). It consists of two parts, i.e. divide and bind, which
encourages object occurrence and attribute binding respectively.

5.3.1 Generative Semantic Nursing (GSN)
To improve the semantic guidance in SD during inference, one pragmatic way is

via latent code optimization at each time step of sampling, i.e. GSN (Chefer et al.,
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Figure 5.4: Binding loss ablation. 𝐿𝑏𝑖𝑛𝑑 aligns the excitation of attribute and object atten-
tion.

2023)

𝑧′𝑡 ← 𝑧𝑡 − 𝛼𝑡 · ∇𝑧𝑡L, (5.3)

where𝛼𝑡 is the updating rate andL is the loss to encourage the faithfulness between
the image and text description, e.g. object attendances and attribute binding. GSN
has the advantage of avoiding fine-tuning SD.

As the text information is injected into the UNet of SD via cross attention layers,
it is natural to set the loss L with the cross attention maps as the inputs. Given the
text prompt P and a list of object tokens 𝑆 , we will have a set of attention maps
{𝐴𝑠𝑡 } for 𝑠 ∈ 𝑆 . Ideally, if the final image contains the concept provided by the object
token 𝑠 , the corresponding cross-attention map 𝐴𝑠𝑡 should show strong activation.
To achieve this, A&E (Chefer et al., 2023) enhances the single maximum value of
the attention map, i.e. 𝐿𝐴&𝐸 = −min𝑠∈𝑆 (max𝑖, 𝑗 (𝐴𝑠𝑡 [𝑖, 𝑗])). However, it does not fa-
cilitate with multiple excitations, which is increasingly important when confronted
with complex prompts and the need to generate multiple instances. As shown in
Fig. 5.3, a single excitation can be easily taken over by the other competitor token,
leading to missing objects in the final image. Besides, it does not explicitly address
the attribute binding issue. Instead, our Divide & Bind promotes the allocation of
attention across distinct areas, enabling themodel to explore various regions for ob-
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ject placement. Moreover, we introduce an attribute binding regularization which
explicitly encourages attribute alignment.

5.3.2 Divide & Bind

Our proposed method Divide & Bind consists of a novel objective for GSN

min
𝑧𝑡
L𝐷&𝐵 = min

𝑧𝑡
L𝑎𝑡𝑡𝑒𝑛𝑑 + 𝜆L𝑏𝑖𝑛𝑑 (5.4)

which has two parts, the attendance loss L𝑎𝑡𝑡𝑒𝑛𝑑 and the binding loss L𝑏𝑖𝑛𝑑 that
respectively enforce the object attendance and attribute binding. 𝜆 is the weighting
factor. Detailed formulation of both loss terms is presented as follows.

Divide for Attendance. The attendance loss 𝐿𝑎𝑡𝑡𝑒𝑛𝑑 is to incentivize the presence
of the objects, thus is applied to the text tokens associated with objects 𝑆 ,

L𝑎𝑡𝑡𝑒𝑛𝑑 = −min
𝑠∈𝑆

𝑇𝑉 (𝐴𝑠𝑡 ), 𝑇𝑉 (𝐴𝑠𝑡 ) =
∑︁
𝑖, 𝑗

��𝐴𝑠𝑡 [𝑖 + 1, 𝑗] −𝐴𝑠𝑡 [𝑖, 𝑗]
�� + ��𝐴𝑠𝑡 [𝑖, 𝑗 + 1] −𝐴𝑠𝑡 [𝑖, 𝑗]

��
(5.5)

where 𝐴𝑠𝑡 [𝑖, 𝑗] denotes the attention value of the 𝑠-th token at the specific location
[𝑖, 𝑗] and time step 𝑡 . The loss formulation in Eq. (5.5) is based on the the finite differ-
ences approximation of the total variation (TV) |∇𝐴𝑠𝑡 | along the spatial dimensions.
It is evaluated for each object token andwe take the smallest value, i.e., representing
the worst case among the all object tokens. Taking the negative TV as the loss, we
essentially maximize the TV for latent optimization in Eq. (5.4). Since TV is essen-
tially computed as a form of summation across the spatial dimension, it encourages
large activation differences across many neighboring at different spatial locations
rather than a single one, thus not only having one high activation region but also
many of them. Such an activation pattern in the space resembles to dividing it into
different regions. The model can select some of them to display the object with
single or even multiple attendances. This way, conflicts between different objects
that compete for the same region can be more easily resolved. Furthermore, from
an optimization perspective, it allows the model to search among different options
for converging to the final solution. The loss is applied at the initial sampling steps.
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As can be seen from the GIF in Fig. 5.3, for the “dog” token, regions on both left and
right sides are explored in the initial phase. In the end, the left side is taken over by
the “turtle” but the “dog” token covers the right side. While for SD, the “dog” token
has a single weak activation, and for Attend & Excite, it only has one single high
activation region on the right that is taken over by the “turtle” later.

Attribute Binding Regularization. In addition to the object attendance, the
given attribute information, e.g. color or material, should be appropriately attached
to the corresponding object. We denote the attention map of the object token and
its attribute token as 𝐴𝑠𝑡 and 𝐴𝑟𝑡 , respectively. For attribute binding, it is desirable
that 𝐴𝑟𝑡 and 𝐴𝑠𝑡 are spatially well-aligned, i.e. high activation regions of both tokens
are largely overlapped. To this end, we introduceL𝑏𝑖𝑛𝑑 . After proper normalization
along the spatial dimension, we can view the normalized attention maps 𝐴𝑟𝑡 and 𝐴𝑠𝑡
as two probability mass functions whose sample space has size ℎ ×𝑤 . To explicitly
encourage such alignment, we can thenminimize the symmetric similarity measure
Jensen–Shannon divergence (JSD) between these two distributions:

L𝑏𝑖𝑛𝑑 = 𝐽𝑆𝐷
(
𝐴𝑟𝑡 ∥𝐴𝑠𝑡

)
. (5.6)

Specifically, we adopt the Softmax-based normalization along the spatial dimension.
When performing normalization, we also observe the benefit of first aligning the
value range between the two attention maps. Namely, the original attention map
of the object tokens𝐴𝑠𝑡 have higher probability values than the ones of the attribute
tokens 𝐴𝑟𝑡 . Therefore, we first re-scale 𝐴𝑟𝑡 to the same range as 𝐴𝑠𝑡 . As illustrated in
Fig. 5.4, after applying 𝐿𝑏𝑖𝑛𝑑 , the attribute token (e.g. “purple”) is more localized to
the correct object region (e.g. “dog” or “crown”).

Implementation Details. We provide the algorithm overview in Algorithm 1.
Given the text prompt P, we firstly identify the tokens of interest, e.g., object to-
kens and attribute tokens. This process can either be done manually or automati-
cally with the aid of GPT-3 (Brown et al., 2020) as shown in Hu et al. (2023b). Taking
advantage of the in-context learning (Brown et al., 2020, Hu et al., 2022) capability
of GPT-3, by providing a few in-context examples, GPT-3 can automatically ex-
tract the desired nouns and adjectives for new input prompts. For instance, in our
experiments on the COCO-Subject and COCO-Attribute benchmarks, we used the
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captions of COCO images without fixed templates as the prompts, where the object
and attribute tokens were selected automatically using GPT-3. Based on the token
indices, we can extract attention maps and apply our 𝐿𝐵&𝐷 to update the noised
latent 𝑧𝑡 .

Algorithm 1 Simplified Algorithm Overview of Divide & Bind
Input: A text prompt P and a pretrained Stable Diffusion 𝑆𝐷
Output: A noised latent 𝑧𝑡−1 for the next denoising step
1: Determine object 𝑆 and attribute 𝑅 tokens by GPT with in-

context learning as in TIFA (Hu et al., 2023b)
2: Extract attention maps for the object tokens 𝐴𝑠𝑡 and attribute

tokens 𝐴𝑟
3: if 𝐴𝑟 are not None then
4: 𝐿𝐷&𝐵 = 𝐿𝑎𝑡𝑡𝑒𝑛𝑑 + 𝜆𝐿𝑏𝑖𝑛𝑑
5: else
6: 𝐿𝐷&𝐵 = 𝐿𝑎𝑡𝑡𝑒𝑛𝑑

7: end if
8: 𝑧′𝑡 ← 𝑧𝑡 − 𝛼𝑡 · ∇𝑧𝑡𝐿𝐷&𝐵
9: 𝑧𝑡−1 ← 𝑆𝐷 (𝑧′𝑡 ,P, 𝑡)
10: return 𝑧𝑡−1

We inherit the choice of optimization hyperparameters from the initial attempt
for GSN - Attend & Excite (A&E) (Chefer et al., 2023). The optimization is operated
on the attention map at 16× 16 resolution, as they are the most semantically mean-
ingful ones (Hertz et al., 2023). Based on the observation that the image semantics
are determined by the initial denoising steps (Liew et al., 2022, Kwon et al., 2023),
the update is only performed from 𝑡 = 𝑇 to 𝑡 = 𝑡𝑒𝑛𝑑 , where 𝑇 = 50 and 𝑡𝑒𝑛𝑑 = 25
in all experiments. The weight of binding loss 𝜆 = 1, if the attribute information is
provided. Otherwise, 𝜆 = 0, i.e., using only the attendance loss.
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Evaluation Set Description Example # Prompt
Animal-Animal a [animalA] and a [animalB] “a cat and a frog” 66

Color-Object a [colorA] [subjectA]
and a [colorB] [subjectB]

“a green backpack
and a pink chair” 66

Animal-Scene a [animalA] and
a [animalB] [scene]

“a bird and a bear
in the kitchen” 56

Color-Obj-Scene a [colorA] [subjectA] and
a [colorB] [subjectB] [scene]

“a black cat and a red suitcase
in the library” 60

Multi-Object more than two instances in the image “two cats and two dogs”
“three sheep standing in the field” 30

COCO-Subject filtered COCO captions containing
subject related questions from TIFA

“a dog and a cat curled up
together on a couch” 30

COCO-Attribute filtered COCO captions containing
attribute related questions from TIFA

“a red sports car is parked
beside a black horse” 30

Table 5.1: Description of benchmarks used for the experimental evaluation.

5.4 Experiments

5.4.1 Experimental Setup

Benchmarks. We conduct exhaustive evaluation on seven prompt sets as summa-
rized in Table 5.1. Animal-Animal and Color-Object are proposed in Chefer et al.
(2023), which simply compose two subjects and alternatively assign a color to the
subject. Building on top of this, we append a postfix describing the scene or scenario
to challenge the methods with higher prompt complexity, termed as Animal-Scene
and Color-Obj-Scene. Further, we introduce Multi-Object which aims to produce
multiple entities in the image. Note that different entities could belong to the same
category. For instance, “one cat and two dogs” contains in total three entities and
two of them are dogs. Besides the designed templates, we also filtered the COCO
captions used in the TIFA benchmark (Hu et al., 2023b) and categorize them into
COCO-Subject and COCO-Attribute. There are up to four objects without any at-
tribute assigned in COCO-Subject and two objects with attributes COCO-Attribute,
respectively. Note that the attributes in COCO-Attribute contain not only color, but
also texture information, such as “a wooden bench”.

Evaluation metrics. To quantitatively evaluate the performance of our method,
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Figure 5.5: Quantitative comparison using Text-Text similarity and TIFA Score. Divide &
Bind achieves comparable performance to A&E on the simple Animal-Animal and Color-
Object, and shows superior results on more complex text descriptions, i.e., Animal-Scene
and Color-Obj-Scene. Improvements over SD in % are reported on top of the bars.

we used the text-text similarity fromChefer et al. (2023) and the recently introduced
TIFA score (Hu et al., 2023b), which is more accurate than CLIPScore (Radford et al.,
2021) and has much better alignment with human judgment on text-to-image syn-
thesis. To compute the text-text similarity, we employ the off-the-shelf image cap-
tioning model BLIP (Li et al., 2022b) to generate captions on synthesized images.
We then measure the CLIP similarity between the original prompt and all captions.
Evaluation of the TIFA metric is based on a performance of the visual-question-
answering (VQA) system, e.g. mPLUG (Li et al., 2022a). By definition, the TIFA
score is essentially the VQA accuracy. Given the text input T , we can generate N
multiple-choice question-answer pairs {𝑄𝑖,𝐶𝑖, 𝐴𝑖}𝑁𝑖=1, where 𝑄𝑖 is a question, 𝐶𝑖 is
a set of possible choices and 𝐴𝑖 is the correct answer. These question-answer pairs
can be designed manually or automatically produced by the large-scale language
model, e.g. GPT-3 (Brown et al., 2020). By providing a few in-context examples,
GPT-3 can follow the instruction to generate question-answer pairs, and generalize
to new text captions (Hu et al., 2022, 2023b).

5.4.2 Main Results

As shown in Fig. 5.5, we first quantitatively compare Divide & Bind with Stable
Diffusion (SD) (Rombach et al., 2022) and Attend & Excite (A&E) (Chefer et al., 2023)
on Animal-Animal and Color-Object, originally proposed in Chefer et al. (2023), as
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Method Multi-Object COCO-Subject COCO-Attribute
Text-Text TIFA Text-Text TIFA Text-Text TIFA

Stable Diffusion 0.786 0.647 0.823 0.791 0.790 0.752
Attend & Excite 0.809 0.755 0.818 0.824 0.793 0.798
Divide & Bind 0.805 0.785 0.824 0.840 0.799 0.805

Table 5.2: Quantitative comparison on complex COCO-captions and Multi-Object gen-
eration. Divide & Bind surpasses the other methods when it comes to handling complex
prompts.

well as our new benchmarks Animal-Scene and Color-Obj-Scene, which include
scene description and has higher prompt complexity. It can be seen that Divide &
Bind is on-par with A&E on Animal-Animal and achieves slight improvement on
Color-Object. Due to the simplicity of the template, the potential of our method
cannot be fully unleashed in those settings. In more complex prompts: Animal-
Scene and Color-Obj-Scene, Divide & Bind outperforms the other methods more
evidently, especially on the TIFA score (e.g., 5% improvement over A&E in Color-
Obj-Scene). Qualitatively, both SD and A&E may neglect the objects, as shown in
the “bird and a bear on the street, snowy scene” example in Fig. 5.6. Despite the
absence of objects in the synthesized images, we found SD can properly generate
the scene, while A&E tends to ignore it occasionally, e.g. the “library” and “kitchen”
information in the second column of Fig. 5.6). In the “a green backpack and a pink
chair in the kitchen” example, both SD and A&E struggle to bind the pink color with
the chair only. In contrast, Divide & Bind, enabled by the binding loss, demonstrates
a more accurate binding effect and has less leakage to other objects or background.
We provide ablation on the binding loss in Section 5.4.3.

Next, we evaluate the methods on Multi-Object, where multiple entities should
be generated. Visual comparison is presented in the third column of Fig. 5.6. In the
“three sheep standing in the field” example, both SD and A&E only synthesize two
realistic looking sheep, while the image generated by Divide & Bind fully complies
with the prompt. For the “one cat and two dogs” example, SD and A&E either miss
one entity or generate the wrong species. We observe that often the result of A&E
resembles the one of SD. This is not surprising, as A&E does not encourage attention
activation in multiple regions. As long as one instance of the corresponding object
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Figure 5.6: Qualitative comparison in different settings with the same random seeds. To-
kens used for optimization are highlighted in blue. Compared to others, Divide & Bind
shows superior alignment with the input prompt while maintaining a high level of realism.
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“The flash and

the superman

on the snowy street”

“The black widow

and the spiderman

on the beach”

“The flash with green

suit and the batman

with blue suit”

S
ta
b
le

D
iff
u
si
o
n

A
tt
en

d
&

E
x
ci
te

D
iv
id
e
&

B
in
d

Figure 5.7: Qualitative comparison using novel prompts with the same random seeds.
Tokens used for optimization are highlighted in blue. Compared to others, Divide & Bind
can better comply with the input prompt while maintaining a high level of realism.

token appears, the loss of A&E would be low, leading to minor update. We also
provide the quantitative evaluation in Table 5.2. Our Divide & Bind outperforms
other methods by a largemargin on the TIFA score, but only slightly underperforms
A&E on Text-Text similarity. We hypothesize that this is due to the incompetence
of CLIP on counting (Paiss et al., 2023), thus leading to inaccurate evaluation, as
pointed out in Hu et al. (2023b) as well.

We also benchmark on real image captions, such as COCO-Subject and COCO-
Attribute, where the text structure can bemore complex than fixed templates. Quan-
titative evaluation is provided in Table 5.2, where Divide & Bind showcases its ad-
vantages on both benchmarks over SD and A&E. A visual example “a dog and a cat
curled up together on a couch” is shown in Fig. 5.6. Consistent with the observa-
tion above: while A&E encourages the object occurrence, it may generate unnatural
looking images. While SD, may neglect the object, its results are more realistic. Di-
vide & Bind performs well with respect to both perspectives. We provide more
visual comparison using additional novel prompts in Fig. 5.7.
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Figure 5.8: Qualitative ablation on the binding loss 𝐿𝑏𝑖𝑛𝑑 . With the binding loss, the at-
tribute can be more accurately assigned to the corresponding object.

5.4.3 Ablation Study

We ablate the effect of the proposed binding loss 𝐿𝑏𝑖𝑛𝑑 qualitatively and quan-
titatively, as shown in Fig. 5.8. We observe that the binding loss introduce minor
difference on the quantitative evaluation. We hypothesize that the coarse measure-
ment of current evaluation metrics may not be able to reflect the advantage of our
method and are not well aligned with human judgement (Hu et al., 2023b, Lu et al.,
2024). As illustrated in Fig. 5.8, without the binding loss, the model is able to par-
tially reflect the attribute but may mix with other attributes as well. For instance,
in the second column, the front of the car is partially in green, which should be as-
signed to the balloon. While such imperfect results could still fool current evalua-
tionmetrics, as part of the car is indeed in pink. With 𝐿𝑏𝑖𝑛𝑑 , we can see the attributes
can be more accurately localized at the corresponding object area. Therefore, we
employ the binding loss by default, if the attributes are provided in the prompt.

5.4.4 Limitations

Despite improved semantic guidance, it is yet difficult to generate extremely
rare or implausible cases, e.g., unusual color binding “a gray apple”. Our method
may generate such objects together with the common one, e.g., generating a green
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“A pink chair and a gray apple ” “One dog and three cats ”

Stable Diffusion Attend&Excite Divide & Bind Stable Diffusion Attend&Excite Divide & Bind

Figure 5.9: Limitations: challenging rare combinations (left) and instance miscounting
(right).

apple and a gray apple in the same image, see Fig. 5.9. As we use the pretrained
model without fine-tuning, some data bias is inevitably inherited. Another issue
is miscounting: more instances may be generated than it should. We attribute the
miscounting to the imprecise language understanding limited by the CLIP text en-
coder (Radford et al., 2021, Paiss et al., 2023). This effect is also observed in other
large-scale T2I models, e.g., Parti (Yu et al., 2022), making it an interesting case for
future research.

5.5 Conclusion
In this work, we propose a novel inference-time optimization objective Divide &

Bind for semantic nursing of pretrained T2I diffusion models. Targeting at mitigat-
ing semantic issues in T2I synthesis, our approach demonstrates its effectiveness in
generating multiple instances with correct attribute binding given complex textual
descriptions. We believe that our regularization technique can provide insights in
the generation process and support further development in producing images se-
mantically faithful to the textual input.
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Despite tremendous progress in the field of text-to-video (T2V) synthesis, open-
sourced T2V diffusion models struggle to generate longer videos with dynamically
varying and evolving content. They tend to synthesize quasi-static videos, ignor-
ing the necessary visual change-over-time implied in the text prompt. At the same
time, scaling these models to enable longer, more dynamic video synthesis often
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remains computationally intractable. To address this challenge, we introduce the
novel concept of Generative Temporal Nursing (GTN), where we aim to alter the
generative process on the fly during inference to improve control over the tempo-
ral dynamics and enable the generation of longer videos. We propose a method
for GTN, dubbed VSTAR, which consists of two key ingredients: 1) Video Synopsis
Prompting (VSP) - automatic generation of a video synopsis based on the original
single prompt leveraging LLMs, which gives accurate textual guidance to different
visual states of longer videos, and 2) Temporal Attention Regularization (TAR) -
a regularization technique to refine the temporal attention units of the pre-trained
T2V diffusion models, which enables control over the video dynamics. We experi-
mentally showcase the superiority of the proposed approach in generating longer,
visually appealing videos over existing open-sourced T2V models. We additionally
analyze the temporal attention maps realized with and without VSTAR, demon-
strating the importance of applying our method to mitigate neglect of the desired
visual change over time. The content of this chapter corresponds to our paper “VS-
TAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis” (Li et al.,
2025), which is published at the International Conference on Learning Representa-
tions (ICLR), 2025.

6.1 Introduction

Driven by a whirlwind of activity from both published research and the open-
source community, text-to-image synthesis and its natural extension to text-to-
video synthesis have undergone remarkable progress in the past few years. Hav-
ing transformed the idea of content creation, they are now widespread as both a
research topic and an industry application. In the realm of text-to-video (T2V) syn-
thesis specifically, recent advancements in video diffusion models (Blattmann et al.,
2023, Wang et al., 2023c, Chen et al., 2023, Wang et al., 2023b, Guo et al., 2024, Chen
et al., 2024a, OpenAI, 2024) have sparked promising progress, offering improved
possibilities for creating novel video content from textual descriptions.

However, despite these advancements, we observe two common issues in cur-
rent open-source T2V models (Wang et al., 2023c, Chen et al., 2023, Wang et al.,
2023b, Guo et al., 2024, Chen et al., 2024a): limited visual changes within the video,
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“The process of a lava eruption, from smoke emission to lava cooling”

VideoCrafter2

VSTAR

Figure 6.1: Our VSTAR can generate a 64-frame video with dynamic visual evolution in
a single pass. Images are subsampled from the video. Note that the first column is a GIF,
best viewed in Acrobat Reader.

and a poor ability to generate longer videos with coherent temporal dynamics.
More specifically, the synthesized scenes often exhibit a high degree of similar-
ity between frames (see Fig. 6.1), frequently resembling a static image with minor
variations as opposed to a video with varying and evolving content. Additionally,
these models do not generalize well to generate videos with more than the typical
16 frames in one pass (see Fig. 6.8). While several recent works attempt to generate
long videos in a sliding window fashion (Wang et al., 2023a, Qiu et al., 2024), the
methods not only introduce considerable overhead due to requiringmultiple passes,
but also face the new challenge of preserving temporal coherence throughout these
passes.

To mitigate the aforementioned issues, we propose the concept of “Generative
Temporal Nursing” (GTN), which aims to improve the temporal dynamics of (long)
video synthesis on the fly during inference, without re-training T2V models, and
using a single pass to not induce a high computational overhead. As a form of GTN,
we propose VSTAR, consisting of Video Synopsis Prompting (VSP) and Temporal
Attention Regularization (TAR).
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Current open-sourced T2V models, such as ModelScope (Wang et al., 2023b),
LaVie (Wang et al., 2023c) and VideoCrafter (Chen et al., 2023, 2024a), are built upon
T2I models, and process all frames within one batch. The single text prompt is con-
ditioned via cross-attention in the spatial transformer of the UNet and shared by all
frames. However, it is challenging for the T2V models to transform the semantics
from a single prompt into the required visual change across frames, especially when
a video with high dynamics is desired, as shown in Fig. 6.1. For dynamic video syn-
thesis faithful to the input prompt, the generation could benefit from a synopsis that
describes the main events of the video, with explicit descriptions about the desired
visual development over time. As a method to provide this guidance and better
disseminate the single input prompt across frames, the first strategy of GTN, Video
Synopsis Prompting (VSP) leverages the ability of large language models (LLMs),
e.g., ChatGPT (OpenAI, 2022), to decompose the single input prompt describing
a dynamic transition into several stages of visual development. More specifically,
thanks to their in-context learning capability (Brown et al., 2020, Hu et al., 2022),
LLMs can be instructed to perform such synopsis prompting automatically by pro-
viding a few (or even one) concrete examples. VSP can thus provide the T2V model
more accurate guidance on individual visual states, encouraging diversity from the
spatial perspective.

Next, we investigate the architectural units of T2Vmodels introduced to capture
the temporal interactions between frames. These units, newly incorporated into
the T2I backbone, are based on temporal transformers consisting of self-attention
layers (Chen et al., 2023, Wang et al., 2023c,b, Guo et al., 2024). Naturally, this tem-
poral attention serves as a critical component in driving the dynamic aspects of
video synthesis. Previous work on T2I generation has shown that cross-attention,
as the only interaction between the UNet and the input text prompt, can be ma-
nipulated to steer the image generation process, e.g. control the image layout or
improve attribute binding (Hertz et al., 2023, Feng et al., 2023, Chefer et al., 2023,
Li et al., 2023a, Chen et al., 2024b). A resulting natural question is, can we improve
the dynamics of video synthesis by manipulating the temporal attention? Observ-
ing the visual gap between real videos and synthesized ones leads us to compare
their temporal attention maps (see Fig. 6.4). We discover that real videos have a
band-matrix-like structure, indicating high temporal correlation among adjacent
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frames and reduced correlation with frames further apart. Intriguingly, the atten-
tion maps of the synthesized ones are less structured, potentially explaining their
inferior temporal dynamics.

Inspired by this observation, we propose a simple yet effective Temporal At-
tention Regularization (TAR) strategy to improve the video dynamics of generated
videos. More specifically, we design a symmetric Toeplitz matrix with values along
the off-diagonal direction following a Gaussian distribution. The standard deviation
of this distribution can control the regularization strength, i.e., the visual variation
along the temporal dimension. Adding it to the existing temporal attention maps
strengthens the temporal correlation between adjacent frames, while reducing it be-
tween more distant frames. Notably, TAR is readily applicable to pre-trained T2V
models and requires no optimization, thus introducing no extra inference overhead.
Equipped with both strategies, our VSTAR can produce long videos with appealing
visual changes in one single pass.

Finally, we analyze the temporal attention mechanisms of different T2V mod-
els, establishing valuable connections between their capability to generate longer
videos and their architectures. Following the analysis, we offer several training
suggestions for enhancing the generalization ability of future models.

In summary, our contributions include:

• We introduce a novel concept of “Generative Temporal Nursing”, aiming to
improve temporal dynamics, especially for long videos, without requiring any
training or introducing high computational overhead at inference time.

• We propose VSTAR, a method for Generative Temporal Nursing, consisting of
two simple yet effective strategies: Video Synopsis Prompting and Temporal
Attention Regularization, which enable long video generation in a single pass
with improved video dynamics.

• We are the first to provide an analysis of temporal attention within video dif-
fusion models, and unleash its potential for controlling the video dynamics.
Based on the analysis, we provide insights on how to improve the training of
the next generation of T2V models.
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Figure 6.2: Method overview. Our VSTAR consists of two strategies: Video Synopsis
Prompting (left) and Temporal Attention Regularization (right).

6.2 Method

Our concept of Generative Temporal Nursing (GTN) aims at improving the video
dynamics of pre-trained T2V diffusion models. Besides the text prompt, we identify
in Section 6.2.1 that the temporal attention layer is a further key component of T2V
models responsible for determining video dynamics. Our first GTN strategy, Video
Synopsis Prompting (Section 6.2.2), expands the initial text prompt for the whole
video into a sequence of detailed descriptions that control the video progression re-
spectively on different frames. Being inspired by the temporal attention analysis in
Section 6.2.3 on real videos, we next design a simple yet effective Temporal Atten-
tion Regularization (Section 6.2.4), encouraging the temporal attention of synthetic
videos to mimic the attention of real videos.

6.2.1 Preliminary: Text-to-Video Diffusion Model

Current open-sourced text-to-video (T2V) diffusionmodels (Wang et al., 2023b,c,
Chen et al., 2023, 2024a) share a similar high-level design, even if training strate-
gies and specific implementations vary. Based on the text-to-image (T2I) latent dif-
fusion model, e.g., Stable Diffusion (SD) (Rombach et al., 2022), two main changes
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Figure 6.3: An illustration example of VSP. With the aid of LLMs, we can obtain more
descriptive video synopsis for key stages.

are introduced for video diffusion models: inflating the 2D UNet to a 3D UNet and
adding temporal transformers to capture the requisite temporal relationship found
between video frames. With the addition of a temporal axis to the 2D convolutional
kernels of SD, the resulting pseudo-3D convolutional layers can handle the input
video latent 𝑧 ∈ R𝑁×𝐶×𝐻×𝑊 , where𝑁 is the number of frames and𝐶,𝐻,𝑊 represent
the channel and spatial dimension of each frame in the latent space, respectively. To
generate a video of𝑁 frames given a text prompt, current T2Vmethods (Wang et al.,
2023b,c, Chen et al., 2023, 2024a, Guo et al., 2024) process all 𝑁 frames within one
batch, and simply repeat the same prompt embedding for all frames. Inherently, the
provided text prompt is conditioned via cross-attention of the spatial transformer
in the UNet. The temporal transformer consists of several self-attention layers that
operate along the temporal axis. More specifically, the spatial dimension of the
intermediate features is merged into the batch dimension, resulting in a shape of
(𝐵×ℎ×𝑤, 𝑁 ). Since the spatial layers inherited from SD can only handle each frame
independently, the temporal attention layers thus play a crucial role for modeling
the video dynamics.

6.2.2 Video Synopsis Prompting (VSP)

Similar to T2I models, T2V models shall generate the desired content informa-
tion based on the text prompt. T2I models already struggle with handling compli-



115 6.2 Method

cated text prompts, particularly when required to properly compose a scene and
correctly place relative content spatially (Yang et al., 2023, Feng et al., 2023, Yang
et al., 2024a, Wang et al., 2024c). The lack of semantic understanding, reasoning,
and planning of the synthesis models results in low quality outputs. The issue be-
comes more critical when moving from image to video synthesis, as the evolution
of the scenes must also now be considered. For example, the text prompt “A land-
scape transitioning from winter to spring” is highly abstract; the seasonal change
from winter to spring inherently can consist of several visual states. As shown in
Fig. 6.8, the SOTA T2V model VideoCrafter2 (Chen et al., 2024a) fails to generate
such dynamic changes.

Inspired by the creation of long dynamic videos in real life, we propose to of-
fload the task of interpreting the text prompt, reasoning about it, and creating a
video synopsis to LLMs. This task can be effectivelymanaged in the language space,
where LLMs have presented strong generalization across various tasks. When we
ask ChatGPT (OpenAI, 2022) to parse the same text prompt, i.e., “A landscape tran-
sitioning from winter to spring”, into a sequence of text descriptions that well de-
scribe the dynamics, the result is more convincing and semantically informative as
shown in Fig. 6.3. This can be done by leveraging the in-context learning capabil-
ity (Brown et al., 2020, Hu et al., 2022) of LLMs, where we guide them to perform
the video synopsis prompting task automatically through prompting with a single
concrete example. For instance, we can instruct ChatGPT (OpenAI, 2022) with the
following prompt:

I have a prompt "A landscape transitioning from winter to spring" for video
generation. Can you split the process and describe the states separately? Each
state is described in only one sentence and please consider the coherency be-
tween sub-prompts. Please be straightforward and do not use a narrative style.
For example, for prompt "a boy is getting old", it can be divided into two states,
e.g., "a young boy" and "an old man".
Based on this example, can you provide the description? The number of states
is not limited to two.

Subsequently, ChatGPT can provide a detailed video synopsis that includes mul-
tiple visual states. Once the LLM has learned such a task, we can then simply
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Real 16 frames Synthetic 16 frames Real 48 frames Synthetic 48 frames

Res. 64 Res. 32 Res. 64 Res. 32 Res. 64 Res. 32 Res. 64 Res. 32

Figure 6.4: Temporal attention visualization of real and synthetic videos of 16 and 48
frames. Attention of real videos exhibits a band-matrix like structure, indicating high cor-
relation with adjacent frames. Synthetic videos exhibit less-structured attention maps,
especially for 48 frames, which explains the low quality of long video generation.
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Figure 6.5: Per-layer temporal attention analysis. We replace the temporal attention maps
at different resolutions with a diagonal matrix (1st row) and an all-ones matrix (2nd row),
which leads to a more dynamic or a more static video, respectively. We observe that high
resolution attention has a larger impact on the video dynamics. Note that this is a GIF,
best viewed in Acrobat Reader.

prompt it to execute the task without reiterating the examples:

I have a prompt "A peony starts to bloom, in the field". Can you split the
process and describe the states separately?

It is sufficient to generate text descriptions for the main event changes in a video
rather than for each frame. A text encoder e.g., CLIP text decoder (Radford et al.,
2021), is then applied to extract the text embeddings of these descriptions, which are
then interpolated to guide each frame’s synthesis via cross attention as illustrated in
Fig. 6.2. This process yields more accurate guidance for transitioning visual stages,
while ensuring smooth conditioning without abrupt changes between frames.
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6.2.3 Temporal Attention Analysis

To properly synthesize videos that capture the dynamics conveyed in the input
prompt, we delve into the synthesis model itself. An examination of the compo-
nents new to T2V models, beyond the common building blocks already used in
T2I models, leads naturally to the temporal attention layers. These new modules
are crucial for facilitating proper video synthesis, i.e., generating sequential frames
with dynamic yet consistent content that reflect the input text information. We hy-
pothesize that the ineffectiveness of current T2V models arises from unstructured
interactions among frames in the same video within the temporal attention layers.
To verify our hypothesis, we conduct a systematic analysis comparing the attention
maps of real and synthetic videos. Specifically, the attention map A is expressed as:

𝐴 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜙 (𝑄,𝐾)) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑄𝐾𝑇
√
𝑑

)
∈ R𝑁×𝑁 , (6.1)

where𝑄 and 𝐾 represent the query and key of the self-attention layer, and 𝑑 is the
latent dimension. This attention matrix essentially depicts the pairwise correlation
between the 𝑁 frames of one video. For real videos, their attention maps can be
obtained by adding noise to their clean latent and extracting the attention during
the denoising process. For synthetic videos, we can read out their attention maps
directly during their synthesis passes.

As shown in Fig. 6.4, for both 16 and 48 frame real videos, the attention matrix
manifests as a band-matrix-like structure. Intuitively, closer frames should have a
higher correlation with each other to maintain temporal coherency. Compared to
real videos, attention matrix of the synthetic ones is less structured, especially for
48 frames. That explains why the model generalizes even worse to longer videos.
High correlation is spread across a wide range of frames, resulting in a harmonized
sequence with similar appearances.

Further, we conducted a per-resolution ablation as shown in Fig. 6.5. We replace
the attention map at each individual resolution, i.e., 64, 32, 16, and 8, while keeping
the other resolution untouched. We experiment with two extreme cases: using the
Identity matrix (𝐼𝑁 ) and the all-ones matrix (𝐽𝑁 ). The former regularizes the frames
to bemutually independent, while the latter oppositely requires full correlation, i.e.,
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static sequence. The observations from Fig. 6.5 are highly consistent. When utiliz-
ing 𝐼𝑁 to encourage independence among frames, the temporal coherence of the
synthesized frames is indeed compromised. Conversely, employing 𝐽𝑁 can signifi-
cantly diminish the video dynamics, leading to a quasi-static video. This controlled
experiment clearly demonstrates how the temporal attention layer impacts the dy-
namics of the video synthesis model.

Finally, we investigate the effect of the interplay between attention and resolu-
tion on the content dynamics of videos. As also shown in Fig. 6.5, the replacement
at the higher resolutions of 64 and 32 has a more evident effect than at lower reso-
lutions. Applying the changes jointly at both resolutions, 64 & 32, further amplifies
the effect. In contrast, the videos are much less responsive to the attention replace-
ment at resolution 8. Likely, the low resolution features encode high-level seman-
tics, while with higher resolution features there is more capacity for representing
varying local details in the scene; such details are necessary for reflecting coherent
change over frames.

Based on these controlled experiments, we can conclude that manipulating tem-
poral attention allows us to alter the video dynamics, i.e., making the visual process
eithermore static ormore dynamic. In particular, adjustments at higher resolutions,
e.g. 64 & 32, are more effective.

6.2.4 Temporal Attention Regularization (TAR)

From the experiments above, we have clearly observed the role of temporal at-
tention layers in determining the dynamics of videos. Naturally, the attention ma-
trices of synthetic videos should be similar to that of real videos. Therefore, we
propose a simple regularization technique applied on the temporal attention layers
for pretrained T2V model. Note that, our proposal is directly applied to pretrained
T2V models without requiring re-training, and incurs no additional optimization
costs during inference.

As illustrated in Fig. 6.4, the attention correlation of the real video resembles a
band-matrix-like structure, with high correlation between neighboring frames and
lower correlation the larger the frame offset. To approximate such a structure, we
design a symmetric Toeplitz matrix as the regularization matrix Δ𝐴, with its values
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σ = 1 σ = 4 σ = 8

Figure 6.6: Visualization of regularization matrix Δ𝐴 with different standard deviation 𝜎 .
A Smaller 𝜎 can enhance the effect of regularization.

along the off-diagonal direction following the Gaussian distribution:

Δ𝐴𝑖, 𝑗 = 𝑒
− 1

2 (
𝑗−𝑖
𝜎
)2, (6.2)

where 𝑖, 𝑗 ∈ {1, ..., 𝑁 } represent the entry index of the attention regularization map,
and 𝜎 is the standard deviation of the normal distribution. Regularization matrices
with different 𝜎 are visualized in Fig. 6.6. As indicated in Fig. 6.14, the standard
deviation𝜎 can control the regularization strength, i.e. larger𝜎 leading to less visual
variations along the temporal dimension. This regularization matrix is then added
to the original attention matrix in (6.1), i.e.

𝐴′← 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜙 (𝑄,𝐾) +max[𝜙 (𝑄,𝐾)] · Δ𝐴) . (6.3)

To balance both terms, we additionally introduce max[𝜙 (𝑄,𝐾)], which weights Δ𝐴
based on maximum in the attention matrix 𝜙 (𝑄,𝐾). As illustrated in Fig. 6.2, the
regularized attention map 𝐴′ will be inserted back for further processing.

With the combination of both VSP and TAR, our VSTAR can effectively provide
temporal nursing for video generation, enabling the synthesis of long videos with
appealing visual evolution using pretrained T2V models, while also introducing no
optimization overhead. We find temporal attention analysis to be a powerful tool
for understanding the temporal modeling of video diffusion models and leverage it
to analyze other T2V models in the next section. We establish valuable connections
to their architecture designs, and provide guidance for the future training of T2V
models for long video generation.
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6.3 Experiments

Experimental setting. To demonstrate the effectiveness of VSTAR in creating
more dynamic videos, we run experiments and ablations on prompts, generated by
ChatGPT (OpenAI, 2022), that describe various visual transitions. By default, we
employ the state-of-the-art open-sourced T2V model VideoCrafter2 (Chen et al.,
2024a) with 320×512 resolution as our base model, which is combined with the
proposed video synopsis prompting and temporal attention regularization. We refer
to this combination as our method or VSTAR throughout the experiments.

6.3.1 Main Results

Comparison with other T2V methods. In Fig. 6.7 and Fig. 6.8 we compare our
VSTAR with other commonly used T2V models, namely, ModelScope (Wang et al.,
2023b), LaVie (Wang et al., 2023c) and AnimateDiff (Guo et al., 2024), for both 16 and
32 frame generation. For a fair comparison, we use the base model of LaVie with-
out its cascaded components, e.g., the video super-resolution model. Although all
methods are able to generate meaningful results for 16-frame videos (see Fig. 6.7),
the videos created by the other T2V models do not properly reflect the visual con-
tent specified by the input prompt. Given “A Ferrari driving on the road, starts
to snow”, the other methods tend to focus on one particular state, e.g., the snowy
scene, lacking dynamic progression throughout the video. In contrast, our VSTAR
appropriately captures the weather transition from a clear day to a snowy one.

When generating 32 frames in one pass, as shown in Fig. 6.8, our method ex-
hibits even greater advantages. The comparison methods yet again fail to generate
content corresponding to the given prompt, but this time to the extent that the vi-
sual quality of the individual frames is also greatly compromised. In contrast, our
VSTAR is able to generate long videos with dynamic visual evolution. More quali-
tative results synthesized by VSTAR are provided in Fig. 6.9. Based on these results,
with a desire to further understandwhy other T2Vmodels generalize poorly to long
video generation, we analyze the temporal attention of these models, as detailed in
the following paragraph.

Comparison on inter-frame similarity with real videos. To quantitatively as-
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Figure 6.7: Comparison with other T2V models on 16 frames generation. Our VSTAR can
synthesize desired visual development from a clear day to snowy scene, while the others
tend to generate the final visual state, i.e., snowy day. Note that the first column is a GIF,
best viewed in Acrobat Reader.

sess inter-frame similarity in a video, we calculate the perceptual similarity be-
tween every pair of frames using the recently proposed metric DreamSim (Fu et al.,
2023), which has been demonstrated to align closely with human judgment. In
Fig. 6.10, we plot the similarity matrices of real videos and those synthesized by
VideoCrafter2 and our VSTAR; the values in the matrix are normalized across all
methods. VideoCrafter2 exhibits very high similarity across all frames, suggesting
minimal visual dynamics, which is aligned with qualitative results. Our VSTAR on
the other hand mimics the perceptual similarity correlation of real videos, affirming
the effectiveness of our proposal for nursing the video dynamics.

Observing the resemblance between the temporal attention maps of the real
videos and their similarity matrices, we attempt to directly employ a DreamSim-
based similarity matrix as Δ𝐴 for regularization. As shown in Fig. 6.11, this im-
proves the temporal dynamics, leading to a gradual appearance of the rainbow.
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Figure 6.8: Comparison with other T2V models on 32 frames generation, which is dou-
ble the length of the default option. Our VSTAR can generate long videos with desired
dynamics, while the others struggle to synthesize faithful results.

Temporal attention analysis of other T2V models. In Fig. 6.12, we visualize
the temporal attention layers of ModelScope (Wang et al., 2023b), LaVie (Wang
et al., 2023c) and AnimateDiff (Guo et al., 2024). It can be seen that ModelScope ex-
hibits similar attention behavior to VideoCrafter (see Fig. 6.4), in that the temporal
correlation significantly deteriorates when generating longer videos. This is no-
ticeable even for videos of 32 frames, twice the length of the standard option, and
aligns with the qualitative comparison in Fig. 6.8. AnimateDiff (Guo et al., 2024)
and LaVie (Wang et al., 2023c) demonstrate different temporal attention behavior,
due to the incorporation of Rotary Positional Encoding (Touvron et al., 2023) in
the former and Sinusoidal Positional Encoding in the latter. With the positional
encoding, the models learn better temporal correlation among neighboring frames
for 16 frames, showing a band-matrix structure more closely resembles that of real
videos. However, when generating videos longer than its training capacity, the
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“Superman flying in the sky, sunny day becomes a dark rainy day”

𝑁 = 48

“A young boy becomes an old man, and turns into a young girl”

𝑁 = 64

“A day at the beach from dawn till dusk, bird’s-eye view”

𝑁 = 64

“The seasonal cycle of a lake from frozen winter to autumn”

𝑁 = 64

Figure 6.9: Qualitative results of videos with 48 and 64 frames synthesized by VSTAR.
Images are sub-sampled from the sequence. Note that the first column is a GIF, best viewed
in Acrobat Reader.
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Real VideoCrafter2 Ours

Figure 6.10: Inter-frame perceptual similarity matrix based on DreamSim Fu et al. (2023),
where values are normalized across all methods. VideoCrafter2 has high similarity across
nearly all frames, which is aligned with the visual results lacking variation. In contrast, our
synthesized videos highly resemble the real ones, indicating desired dynamics.
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Figure 6.11: Regularization with inter-frame DreamSimmatrix of one real reference video.

model faces considerable difficulty in preserving the desired temporal dynamics,
resulting in inferior synthesis quality, as depicted in Fig. 6.8. The Rotary Positional
Encoding employed in LaVie is a form of relative positional encoding, i.e., it depends
on the relative offsets of frames, which could explain the periodic pattern seen in
the attention maps. While the Sinusoidal Positional Encoding used in AnimateDiff
is based on the absolute frame index, leading to the model failing completely for
indices unseen during training (past 16). These observations concerning T2V mod-
els are interestingly aligned with prior studies regarding Positional Encoding on
length generalization in Transformers (Kazemnejad et al., 2023) in the context of
LLMs.

This comparison offers valuable insights into improving the training of the next
generation of T2V models. For instance, omitting positional encoding can improve
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Figure 6.12: Temporal attention visualization of other T2VModels for the default 16 frame
and longer 32 frame videos. ModelScope has similar issues to VideoCrafter2 (see Fig. 6.4),
i.e., high correlation spread across many frames, especially for𝑁 = 32. LaVie and Animate-
Diff incorporate positional encoding of frame indices, thus naturally do not generalize well
to long video generation beyond trained 16 frames.

generalization capability, and incorporating a regularization loss on the temporal
attention maps can help to enforce the desired temporal dynamics. Alternatively,
one can employ a better combination of data format and positional encodings, as
explored in the recent work (Zhou et al., 2024), which achieves improved length
generalization. For instance, Randomized Positional Encoding (Ruoss et al., 2023)
can help to avoid overfitting on the position indices, and mixing up subsampled
video sequences can further strengthen local correlations. Combining such tech-
niques may improve the generalization to long video generation.

6.3.2 Ablation Study

Ablation on the effect of TAR and VSP. We investigate the effects of the pro-
posed Temporal Attention Regularization and Video Synopsis Prompting individ-
ually in Fig. 6.13, where we generate videos of 48 frames in one inference pass
based on the prompt “Spiderman on the beach from morning to evening”, using
the same initial noise. The synthesized video clips are presented in the first col-
umn as GIFs; the other images are subsampled from the full sequence. The baseline
model VideoCrafter2 struggles to synthesize a video faithful to the input prompt,
generating a sequence of highly similar frames, with a stride-like texture in the
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Figure 6.13: Ablation on the effect of Video Synopsis Prompting (VSP) and Temporal At-
tention Regularization (TAR). Subsampled from 48 frames. Combination of TAR and VSP
effectively enables long video generation with desired visual evolution. While individual
strategy improves upon the baseline, there still lacks of desired dynamics.

background, that fail to depict the time-lapse video. When employing the TAR, the
model generates a more realistic sequence, however without the desired visual evo-
lution; the single plain prompt is insufficient to describe the scene changes. Inter-
estingly, while VSP provides a more descriptive summary of different visual states,
without TAR, the temporal attention remains strongly correlated. The model then
attempts to depict the provided textual description, however with limited visual
variation. When combining both strategies, our VSTAR can effectively synthesize
the desired visual content, exhibiting improved dynamics with a more appealing
time-lapse effect.

Ablation on regularizationmatrix. We further ablate by investigating the effect
of using a different standard deviation 𝜎 in the regularization matrix Δ𝐴, shown in
Fig. 6.14. We start from applying regularization at the highest temporal resolution
i.e., 64, since high-resolution temporal attention more greatly influences the video
dynamics, as demonstrated in the temporal attention analysis in Section 6.2.3. The
results show that decreasing 𝜎 results in a stronger regularization effect, inducing
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Figure 6.14: Ablation of attention regularization matrix Δ𝐴. Smaller 𝜎 induces a stronger
regularization effect, leading to increasing temporal dynamics. When applying regulariza-
tion at both 64 & 32, the video becomes more dynamic, i.e., the peony is fully bloomed.
Yet, excessive regularization, i.e., 𝜎64 = 𝜎32 = 1, can leave the impression of temporal inco-
herency. Contains GIFs, best viewed in Acrobat Reader.

more pronounced visual changes throughout the video (e.g. compare row 2 to row
4, and notice the extent of the blooming of the flower). Going one step further,
applying regularization also at a resolution of 32 results in the peony reaching its
fullest bloom. However, when equally strong regularization is applied at both a
resolution of 64 and 32, i.e., 𝜎64 = 𝜎32 = 1, the visual changes can be too excessive,
leaving the impression of poor temporal coherency across frames. Empirically, we
find that applying 𝜎64 = 1 strikes a good balance between dynamic changes and
temporal coherency.
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Figure 6.15: User study on both standard 16 frames and longer videos with 32 ∼ 64
frames. For the first three aspects, participants review pairs of videos, choosing between
them or rating them as the same. For temporal coherency, the numbers are the absolute
probability that a participant perceives the video from the respective method as having
smooth temporal progression.

6.3.3 User Study
For further evaluation, we conducted a user study to compare our VSTAR with

the SOTA T2V model VideoCrafter2 (Chen et al., 2024a). 110 individuals with di-
verse backgrounds participated in the user study, working in fields such as com-
puter vision, reinforcement learning, natural language processing, art design, med-
ical engineering, mechanical engineering, and administrative management, among
others. We assess the videos across four dimensions: text alignment, video dynam-
ics, visual quality and temporal coherency. Text alignment concerns whether the
synthesized results properly reflect the input text prompt. Video dynamics exam-
ines the dynamic visual changeswithin the progression of the video. A higher visual
quality indicates fewer artifacts and distortions, leading to a more visually pleasing
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Figure 6.16: User study on paired of videos, both generated by our VSTAR, to verify the
consistency of our method’s improvement, making it challenging for users to make a clear
choice. Indeed, a large number of participants perceived both videos as identical across all
three aspects. The rest had diverse preferences between the two videos. This demonstrates
the consistency of our synthesis results and their closely matched quality.

result. Temporal coherency evaluates if the result is temporally smooth, i.e., there
are no abrupt or unexplained changes that could disrupt the viewing experience.
For the first three aspects, participants are presented with paired results to evalu-
ate, selecting one over the other or deeming them equivalent. Regarding temporal
coherency, we pose a simple yes-or-no question, asking whether the participants
perceive the video as being temporally smooth.

The outcome is summarized in Fig. 6.15. Our VSTAR emerges as the preferred
choice across various frame lengths from all aspects, with its advantages becoming
more pronounced in the generation of longer videos with 𝑁 = 32 ∼ 64. Impor-
tantly, our method not only enhances video dynamics but also preserves temporal
coherency. A majority of participants confirmed that our results exhibit smooth
temporal transitions, with 87.6% for standard-length videos and 79.1% for longer
videos agreeing to this assessment. This favorable reception surpasses the baseline
VideoCrafter2, possibly as a result of its less engaging content.

Additionally, we included pairs of videos, both generated byVSTAR, to verify the
consistency of our method’s improvement, making it challenging for users to make
a clear choice. As shown in Fig. 6.16, participants indeed often found it difficult
to differentiate, with 52.7%, 40.3% and 50.9% of them rating both videos as equal
in terms of text alignment, visual dynamics, and visual quality, respectively. The
remaining participants were divided in their preference between the two videos.
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This indicates that our synthesis results are consistent and display a narrow gap
between them.

6.3.4 Discussion
Limitations. VSTAR offers a simple yet effective solution for improving pretrained
T2V models, however, there are fundamental issues of pretrained models that may
not be completely resolved via generative nursing at inference time only. Although
our VSTAR has eased the process of reasoning prompts that involve dynamic evo-
lution, the model can still struggle with responding to the decomposed open-world
prompts, resulting in visuals that are not aligned with the prompt, potentially due
to limited capability of the text encoder (Podell et al., 2024, Liu et al., 2024). Nev-
ertheless, several recent works (Chefer et al., 2023, Agarwal et al., 2023) as well as
our approach (Li et al., 2023a) described in Chapter 5 have employed on-the-fly la-
tent optimization to improve the textual alignment of a frozen T2I model. One may
explore the combination of VSTAR with such techniques for further improvement.

Potential negative societal impact. Given the imbalanced nature of large-scale
datasets, pretrained T2V models may inherit certain data biases, inaccurately rep-
resenting the diversity of the overall population. These biases can potentially re-
inforce existing societal stereotypes and inequalities. Therefore, it is advisable to
undertake proactive steps to identify and mitigate such biases, which may include
the involvement of human reviewers in sensitive contexts.

6.4 Conclusion
In this paper, we contribute two simple concepts, Video Synopsis Prompting

(VSP) and Temporal Attention Regularization (TAR), that, when employed together,
facilitate the generation of longer (e.g. 64 frames), temporally coherent videos with
improved dynamics. We show the benefit of both VSP and TAR on diverse prompts
and in comparison to the state of the art, and ablate on the employed TAR regu-
larization matrix. Besides motivating TAR, our analysis of temporal correlation in
real videos may offer valuable insights towards improving design and training of
the next generation of T2V models. For example, some form of positional encod-
ing appears to be hampering generalization capability, while the incorporation of
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a regularization loss on temporal attention maps can help to enforce temporal dy-
namics. While VSTAR is readily applied to pretrained T2Vmodels, future workmay
incorporate it during training for improved procedural dynamics, such as complex
activities on respective data.
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This thesis has delved into the rapidly evolving field of generative modeling,
with a focus on image and video synthesis using GANs and diffusion models. In
this work, we have addressed key challenges related to alignment and controllabil-
ity during the generation process, proposing several novel approaches that push the
boundaries of AI-generated content. In this chapter, we begin by summarizing our
contributions in Section 7.1, where we highlight the advancements made through

132
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our research. Following this, we discuss the future perspectives of generative mod-
eling and their broader impact in Section 7.2.

7.1 Summary

In this work, we have proposed several novel techniques, aiming at improving
the alignment and controllability of generative models, such as GANs and diffusion
models. These advancements have been applied across four different tasks: GAN in-
version, layout-to-image, text-to-image, and text-to-video synthesis. Our research
pushes the boundaries of visual synthesis, allowing greater control over generated
outcomes and fostering the practical integration of synthetic data into real-world
applications. In what follows, we summarize the individual contributions of each
chapter.

7.1.1 Exemplar-Based Synthesis with Content-Style
Disentanglement

In Chapter 3, we worked on GAN inversion for more complex scene-centric
datasets, which enables many real-life applications of great practical value. Our
method contains two key enablers: spatial noise prediction and randomnoisemask-
ing. Rather than encoding the given image solely into latent vectors, we also predict
noise maps with spatial dimensions, which greatly enhances reconstruction qual-
ity. However, these noise maps can be so expressive that they render the latent
vectors redundant, leading to poor editability. To address this, we randomly mask
noise during encoder training, which encourages the model to rely on the latent
vectors for reconstruction. The proposed Masked Noise Encoder not only achieves
superior fidelity but also features style mixing capabilities, with style and content
information respectively encoded into the latents and the noise map. Notably, our
encoder exhibits excellent plug-n-play ability and can be readily applied to unseen
data. In addition to delivering impressive visual results, we demonstrated the ef-
fectiveness of our pipeline in real-world applications, such as enhancing domain
generalization and model validation for various semantic segmentation networks.
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7.1.2 Improved Layout-To-Image Diffusion Models via
Adversarial Supervision

In Chapter 4, we focused on layout-to-image (L2I) diffusion models. Prior GAN-
based methods generally suffer from the mode collapse issue, characterized by the
limited diversity of their outputs. Large-scale pretrained diffusion models, such as
Stable Diffusion (Rombach et al., 2022), have demonstrated astonishing capabilities
for synthesizing diverse data. Consequently, one would naturally consider adopt-
ing them for the L2I task. Prior to our work, attention was primarily focused on
architecture design to incorporate the layout condition into the diffusion model.
Our work, however, explored training strategies for the L2I diffusion model, which
are independent of the architecture. We observed that L2I diffusion models often
align poorly with the input layout condition, ignoring the provided semantic class
information. We attribute this to the suboptimal training objective that fails to ex-
plicitly consider the layout condition. We designed ALDM, which consists of two
novel training strategies to enhance alignment: adversarial supervision and multi-
step unrolling. First, we employed a segmentation network-based discriminator to
provide per-pixel guidance, explicitly leveraging the ground-truth label map condi-
tion. Furthermore, we introduced a multistep unrolling mechanism, which involves
unrolling backward multiple steps over a specified time window to imitate the in-
ference time sampling. In this way, ALDM promotes consistent adherence to the
conditional layout across the sampling time horizon, resulting in significantly im-
proved alignment in the output. We applied ALDM to various adaptation methods,
e.g., ControlNet, T2I-Adapter, and demonstrated consistent improvement over the
baselines, underscoring the effectiveness of the proposed training strategies. Re-
markably, our work (Li et al., 2024a) provides a powerful data generator that is
beneficial for training downstream models in various fields such as robotic grasp-
ing (Li et al., 2024b).

7.1.3 Improved Generative Semantic Nursing for
Text-To-Image Synthesis

In Chapter 5, we focused on text-to-image (T2I) synthesis, aiming at mitigating
semantic alignment issues of a pretrained T2I model. One of the primary challenges
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in T2I synthesis is the frequent occurrence of object missing and attribute binding
issues, where the generated image fails to include all the objects mentioned in the
textual prompt or incorrectly assigns attributes to objects, leading to visual incon-
sistencies and a lack of fidelity in the generated content. To address these issues,
we proposed two novel optimization objectives, namely, divide and bind loss, for
generative semantic nursing, where the latent is updated on the fly to improve the
faithfulness of the outcome. The divide loss aims to incentivize the presence of ob-
jects by maximizing the total variation of the attention map, encouraging the model
to distribute attention across regions, thereby allowing it to generate different ob-
jects. The bind loss explicitly aligns the spatially normalized attention distribution
of the subject token with its corresponding attribute token using Jensen–Shannon
divergence, which significantly improves the accuracy of the attribute assignment.
Through extensive experiments, we demonstrated that our Divide & Bind can ef-
fectively generate multiple instances with the desired attributes, resulting in sig-
nificant improvements in semantic alignment and the overall quality of the gen-
erated images, particularly when dealing with complex textual descriptions. This
enhanced precision opens up new possibilities in applications like art design, where
the ability to accurately translate intricate ideas into visual content is crucial.

7.1.4 Generative Temporal Nursing for Longer Dynamic
Video Synthesis

In Chapter 6, we targeted at generating longer dynamic videos using a pretrained
text-to-video (T2V)model. As a newly emerging and increasingly popular field, cur-
rent open-source T2V models are still in their early stages, with limited capabilities
and some notable limitations. Among them, we focused on two key issues: the lim-
ited variation within generated clips and the difficulty in generalizing these models
to produce longer video sequences. More specifically, the synthesized scenes often
exhibit high similarity between frames, resembling a static image with minor vari-
ations, despite the text prompt specifying an evolving process. Additionally, these
models by default can only generate 16 frames in one single inference pass, as they
were trained on short video clips. They cannot straightforwardly produce longer
videos by simply setting a larger length.
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To tackle these challenges, we introduce the novel concept of “Generative Tem-
poral Nursing” (GTN), which aims to intervene in the video generation process on
the fly during inference to improve the temporal dynamics of the results, without
requiring any training or inducing high computational overhead at inference time.
As a form of GTN, we propose VSTAR, consisting of Video Synopsis Prompting
(VSP) and Temporal Attention Regularization (TAR). Leveraging the outstanding
reasoning capability of LLMs, VSP can provide more descriptive textual guidance
along the temporal dimension by breaking the single text prompt into several key
visual states. As our core contribution, TAR is a simple yet effective regulariza-
tion technique designed to enhance the temporal dynamics of the output, inspired
by our thorough analysis of the temporal attention units in T2V models. We ob-
served that the attention map of real videos exhibits a band-matrix-like structure,
whereas that of synthesized ones is much less organized and more dispersed across
different frames, particularly in longer videos. To bridge this gap, TAR employs a
symmetric Toeplitz matrix as the regularization matrix, with values along the off-
diagonal direction following a Gaussian distribution. TAR effectively enhances the
dynamic aspects of the video and is crucial for enabling long video synthesis. With
the combination of VSP, VSTAR can generate visually appealing evolutions using a
pretrained T2Vmodel in a single inference pass, without requiring additional train-
ing. Beyond the visually appealing results, our work (Li et al., 2025) is the first to
conduct a detailed temporal attention analysis in T2V models. Our study provides
valuable insights into improving the training of the next generation of T2V models.

7.2 Future Perspectives

This thesis has presented several contributions aimed at improving controllabil-
ity and alignment in GANs and diffusion models. As the field of generative mod-
eling continues to evolve, promising directions remain that could further enhance
the capabilities and applications of these models. In this section, we explore future
perspectives on advancing generative modeling and its broader impact. For a more
detailed discussion of the limitations and outlook concerning individual contribu-
tions, we refer the reader to the respective chapters.
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7.2.1 More Fine-Grained Control

In Chapters 4 and 5, we improved the controllability of the image generation pro-
cess conditioned on the text prompt and semantic label map. Nevertheless, such
conditioning types may not be able to specify every aspect of the image. For in-
stance, the label map does not contain any geometry constraints such as object
pose and orientation. On one hand, further conditions can be explored. Wang et al.
(2024a) proposed a new type of conditioning descriptor “neural layout”, which es-
sentially comprises neural features extracted from pretrained foundation models,
e.g., DINO (Caron et al., 2021, Oquab et al., 2024). Given that they are trained on
massive datasets, foundation models have demonstrated rich semantic and geomet-
ric knowledge (Zhang et al., 2023, Tang et al., 2023a, El Banani et al., 2024), mak-
ing them advantageous candidates for providing conditioning information. On the
other hand, different conditions can complement each other. Several studies (Qin
et al., 2023, Zhao et al., 2023a) have made initial attempts using embedding con-
catenation and task-aware weight modulation. It remains an interesting and active
research question on how to effectively and flexibly utilize multiple conditioning
inputs to better steer the synthesis process. Moreover, some fine-grained aspects
such as explicit lighting control (Kocsis et al., 2024, Zeng et al., 2024a), and mate-
rial properties of the object (Sharma et al., 2024, Zeng et al., 2024b), are also crucial
for photorealistic image synthesis, especially when physical rendering rules are of
concern.

Controllable video generation is inherently more complicated due to the addi-
tional temporal dimension, and exploration of this topic is still in its early stages.
Some studies (Guo et al., 2023, Zhang et al., 2024, Xing et al., 2024, Lin et al., 2024)
have adapted the image control paradigm to videos, allowing for the manipulation
of spatial layouts and semantic aspects of the content. However, the temporal and
dynamic aspects of video introduce new complexities, particularly in the control
of camera movements and object motion. These aspects present unique challenges
that differ significantly from those encountered in static image manipulation. Re-
cent works attempt to utilize explicit camera parameters for camera control (Wang
et al., 2024d, Yang et al., 2024b, He et al., 2024), which are not straightforward to pro-
vide at inference time. A point-based trajectory map has been explored to specify
object movement (Yin et al., 2023, Wang et al., 2024d). Despite showing promising
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results, these methods primarily operate in simple scenarios involving one or two
objects. Future work could focus on exploring more expressive yet user-friendly
motion conditioning information to better describe movement in the scene.

7.2.2 Personalized Control
Different people often have unique preferences and tastes, meaning that the

same input condition could lead to vastly different “ideal” outputs depending on
the individual. This variability underscores the importance of personalization in
generative modeling. Personalization can serve as a powerful tool to reduce am-
biguity, ensuring that the generated content aligns more closely with the user’s
specific desires and expectations. Previous methods have explored subject-driven
synthesis (Ruiz et al., 2023, Kumari et al., 2023, Liu et al., 2023) and portrait face-
driven synthesis (Wang et al., 2024b, Kim et al., 2024). However, the subject is not
the only aspect that requires attention. There are more fine-grained concepts and
details that matter. For instance, one might prefer certain attributes of an object,
such as its material, or specific aspects of the example, like the lighting conditions.
In video synthesis, a user might want to customize the specific subject motion (Ya-
tim et al., 2024) or cameramovement pattern. Therefore, it is an interesting research
direction to investigate more fine-grained personalization. For instance, by leverag-
ing the rapid development in (region-level) vision-language models (Rasheed et al.,
2024, Ma et al., 2024), one can extract high-level features or textual descriptions for
more precise conditioning.

7.2.3 Multimodal World Models
Recent advancements in video generation models, such as Sora (OpenAI, 2024),

have not only demonstrated astonishing visual results, but also highlighted the po-
tential of large-scale video generation models as a promising path toward build-
ing general-purpose simulators of the physical world. The comprehensive under-
standing of environmental dynamics and physical constraints by world models can
provide significant value across various industries, such as media production, au-
tonomous driving, and the development of autonomous agents. World models (Hu
et al., 2023a, Bruce et al., 2024, Xiang et al., 2024) are generally multimodal models
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that can interact with various conditions, e.g., natural language, images, and ac-
tions. With the development and availability of such models, many exciting future
research opportunities arise. For instance, the world model can serve as a neural
simulator for testing and validating model performance. Autonomous agents, e.g.,
autonomous vehicles, robots, can directly interact with the world model, which
will adapt based on the maneuvers received from the agents. This paradigm re-
duces the need for extensive real-world data collection and can address more cor-
ner cases, thereby mitigating safety concerns. Besides serving as a data source, the
world model processes general knowledge of the physical world, and thus its rep-
resentation can be utilized or distilled for other tasks as well. Prior works (Zhao
et al., 2023b, Kaplan et al., 2024) have demonstrated the potential of using Stable
Diffusion (Rombach et al., 2022) as a feature extraction backbone for various visual
perception tasks. We believe that this powerful world model can further enhance
the performance of a wide range of downstream tasks.

In summary, visual synthesis is a fascinating and rapidly evolving field with the
potential to revolutionize a wide range of real-world applications. Our work has
contributed to addressing key challenges in alignment and controllability. The ad-
vancements discussed in this outlook have the potential to further enhance how
we create and interact with digital content, enabling more precise, tailored, and
immersive experiences across various industries. More fine-grained control allows
industries such as film production and game development to achieve higher lev-
els of precision and creativity, enabling creators to generate complex visuals that
closely align with their vision. Personalized control takes this even further, en-
abling applications in e-commerce, virtual experiences, and interactive content to
deliver uniquely tailored outputs based on individual user preferences. Addition-
ally, the development of multimodal world models opens new possibilities for areas
like autonomous driving and robotics, where the ability to simulate complex envi-
ronments with accurate physical and causal relationships is essential. Ultimately,
advanced generative models can go beyond simply producing better visual content;
they have the potential to profoundly influence our everyday lives through various
real-world applications.
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