
MimIrADe: Automatic Differentiation in MimIR

Marcel Ullrich
Saarland University, Saarland

Informatics Campus
Saarbrücken, Germany

Sebastian Hack
Saarland University, Saarland

Informatics Campus
Saarbrücken, Germany

Roland Leißa
University of Mannheim
Mannheim, Germany

Abstract

Automatic differentiation (AD) is at the core of all machine
learning frameworks and has applications in scientific com-
puting as well. Theoretical research on reverse-mode AD
focuses on functional, higher-order languages, enabling AD
to be formulated as a series of local, concise program rewrites.
These theoretical approaches focus on correctness but disre-
gard efficiency. Practical implementations, however, employ
mutation and taping techniques to enhance efficiency. This
approach, however, necessitates intricate, low-level, and non-
local program transformations.
In this work, we introduceMimIrADe, a functionally in-

spired AD technique implemented within a higher-order,
graph-based (“sea of nodes”) intermediate representation (IR).
Our method consists of a streamlined implementation and
incorporates standard optimizations, resulting in an efficient
AD system. The higher-order nature of the IR enables us
to utilize concise functional AD methods, expressing AD
through local rewrites. This locality facilitates modular high-
level extensions, such as matrix operations, in a straightfor-
ward manner. Additionally, the graph-based structure of the
IR ensures that critical implementation aspects—particularly
the handling of shared pullback invocations—are managed
naturally and efficiently. Our AD pass supports a compre-
hensive set of features, including non-scalar types, pointers,
and higher-order recursive functions.

We demonstrate through standard benchmarks that a suite
of common optimizations effectively eliminates the over-
head typically associated with functional AD approaches,
producing differentiated code that performs on par with
leading mutation and taping techniques. At the same time,
MimIrADe’s implementation is an order of magnitude less
complex compared to its contenders.

CCS Concepts: • Mathematics of computing → Auto-

matic differentiation.

Keywords: automatic differentiation, functional program-
ming, intermediate representation

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CC ’25, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1407-8/25/03
https://doi.org/10.1145/3708493.3712685

ACM Reference Format:

Marcel Ullrich, Sebastian Hack, and Roland Leißa. 2025. MimIrADe:
Automatic Differentiation in MimIR. In Proceedings of the 34th ACM
SIGPLAN International Conference on Compiler Construction (CC
’25), March 1–2, 2025, Las Vegas, NV, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3708493.3712685

1 Introduction

Automatic differentiation (AD) is a powerful tool for comput-
ing derivatives in numerical optimization, machine learning,
and scientific computing. It enables efficient, accurate, and
automatic gradient computation, eliminating the need for
manual differentiation or numerical approximations.
Among various AD techniques, reverse-mode AD is es-

pecially notable for its efficiency in computing gradients
of functions with many inputs and only a few outputs. It
has become a fundamental building block for many modern
machine-learning frameworks. In reverse-mode AD, the pro-
gram first executes in a forward pass. Then, it is traversed
backward from output to input, constructing a computation
graph of derivatives (see Figure 1). The derivative of the
output with respect to each input is calculated by recur-
sively applying the chain rule, utilizing intermediate values
stored in a tape during the forward pass. This tape records
all intermediate computations and the execution paths taken,
enabling efficient gradient computation with respect to any
specified subset of inputs.
A common method to implement this taping approach

is to overload arithmetic operators, recording intermediate
values in the tape as they are calculated. During the back-
ward pass, the tape is then accessed non-locally to efficiently
compute gradients. In practice, modern AD frameworks like
PyTorch [17] use dynamic computation graphs and sophis-
ticated memory management techniques to minimize the
memory overhead and optimize the performance of reverse-
mode AD. Enzyme [16], on the other hand, is a state-of-the-
art, fast, and highly efficient implementation of reverse mode
AD that performs AD at compile time. However, Enzyme’s
performance comes at the cost of increased complexity, as
it requires careful bookkeeping of intermediate values and
other memory management techniques to reduce memory
overhead. This makes Enzyme’s implementation complex
and hard to understand. In contrast, more theoretical work
[e.g. 10, 21] typically presents higher-order functional AD
with a set of modular, local rewrite rules.

The basic idea of these functional approaches is to aug-
ment a function to return a backpropagator [18] in addition

70

https://orcid.org/0009-0006-0127-9623
https://orcid.org/0000-0002-3387-2134
https://orcid.org/0000-0002-2444-6782
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3708493.3712685
https://doi.org/10.1145/3708493.3712685
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3708493.3712685&domain=pdf&date_stamp=2025-02-25

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Marcel Ullrich, Sebastian Hack, and Roland Leißa

1 f(x,y):
2 tape[’x’].

push(x)

3 tape[’y’].

push(y)

4 z = x + y
5 tape[’x’].

push(x)

6 tape[’z’].

push(y)

7 o = x ∗ z

8 x𝑑 = 0, y𝑑 = 0 // gradient initialization
9 o𝑑 = 1, z𝑑 = 0

10 x𝑓 = tape[’x’].pop()

11 z𝑓 = tape[’z’].pop()

12 x𝑑 += z𝑓 * o𝑑 // 𝜕o/𝜕x; line 7
13 z𝑑 += x𝑓 * o𝑑 // 𝜕o/𝜕z; line 7
14 x𝑓 = tape[’x’].pop()

15 y𝑓 = tape[’y’].pop()

16 x𝑑 += 1 * z𝑑 // 𝜕z/𝜕x; line 4; x𝑑 = z + x
17 y𝑑 += 1 * z𝑑 // 𝜕z/𝜕y; line 4; y𝑑 = x
18 return (o, (x𝑑, y𝑑))

Figure 1. An imperative taping approach to compute the
derivative for 𝑥 · (𝑥 +𝑦). The AD code is highlighted in blue.

𝜆 (x,y).
let z = x+y in

x ∗ z

𝜆 ((x, x∗), (y, y∗)).
let z, z∗ = (x+y, 𝜆s. x∗(s) + y∗(s)) in
(x ∗ z, 𝜆s. x∗(z*s) + z∗(x*s))

Figure 2. Each computation of the original program (left) is
augmented with a pullback marked with ∗ (colored in blue,
right). The differentiated function returns 𝑥 · (𝑥 + 𝑦), 𝜆𝑠.𝑠 ·
(2𝑥 + 𝑦, 𝑥).

to its original result (see Figure 2). The backpropagator, also
called pullback, is a function that takes the derivative with
respect to the function result, the adjoint, and returns the
derivatives with respect to function inputs, the tangent. Ex-
pressing gradients as backpropagators enables the chain rule
to be represented through function composition.

The transformation consists of a set of local rewrite rules
applied in a bottom-up manner, converting the original func-
tion into its derivative. The functional, higher-order ap-
proach to AD with backpropagators offers a straightforward
implementation and modularity, as the AD of a compound
language element translates naturally into differentiating its
components. However, the reliance on higher-order func-
tions in gradient computation makes this approach more
challenging for the compiler to produce efficient code.

Our approach,MimIrADe, combines a modular functional
approach with an efficient implementation, using a higher-
order intermediate representation (IR) and a set of standard
optimizations to achieve state-of-the-art performance. At
the heart of our approach is the use of the higher-order IR
MimIR [14]. Because the IR is higher-order we leverage the
simplicity of functional AD approaches and express AD by
concise, local rewrites. The locality of the rewrites allows
us to extend the implementation with high-level extensions
like matrix operations in a modular way. Because the IR is
graph-based, practically-relevant implementation aspects of
functional approaches, most importantly handling the shar-
ing of identical pullback invocations, basically come for free.
Additionally, our AD handles a rich set of features includ-
ing non-scalar types, pointers, and higher-order recursive
functions.

1.1 Contributions

This paper makes the following contributions:

• MimIrADe differentiates a rich feature set including non-
scalar types, pointers, conditionals, recursion, and high-
order functions. Due to the modular nature of our ap-
proach, it is straightforward to extend MimIrADe to new
high-level primitives such as matrix operations (Section 3).

• We demonstrate that MimIrADe achieves performance
comparable to state-of-the-art contenders through evalua-
tion on the ADBench benchmark suite (Section 4.1).

• At the same time,MimIrADe’s implementation is an order
of magnitude less complex than Enzyme’s (Section 4.2).

• This is enabled by MimIR’s optimization framework,
which includes a partial evaluator. It succinctly removes
the overhead of the local rewrites. We evaluate the op-
timizers of other compilers (Haskell, OCaml, Rust) with
respect to their ability to optimize a simple program dif-
ferentiated with the functional approach. We show that
MimIrADe optimizes more aggressively and outperforms
all of them (Section 4.3).

2 Background

This section provides a brief overview of the mathematical
concepts of AD.

2.1 Reverse Mode Automatic Differentiation

Given a function 𝑓 , the gradient ∇𝑓 is a function that evalu-
ated at 𝑝 produces the vector of partial derivatives of 𝑓 at 𝑝 .
The partial derivative 𝜕𝑓

𝜕𝑥
(𝑝) of 𝑓 at point 𝑝 with respect to

𝑥 is the rate of change of 𝑓 at 𝑝 in direction 𝑥 . For a func-
tion with an 𝑛-dimensional domain and an𝑚-dimensional
co-domain the Jacobian matrix is defined as:

𝐽 =

𝜕𝑓1
𝜕𝑥1

· · · 𝜕𝑓1
𝜕𝑥𝑛

...
. . .

...
𝜕𝑓𝑚
𝜕𝑥1

· · · 𝜕𝑓𝑚
𝜕𝑥𝑛

The goal of AD is to compute this matrix efficiently.

In forward-mode AD, the gradients are traced from the
inputs to the outputs of the program through every compu-
tation, resulting in 𝜕𝑓

𝜕𝑥𝑖
for some 𝑖 hence computing a single

column of the Jacobian. The gradient computation needs to
be executed 𝑛 times to compute the gradients with respect
to every input 𝑥𝑖 , and hence all columns of the Jacobian.
Whereas the gradient is the derivative of the output for all
inputs, the tangent is the derivative of all outputs for an
input.
It is very common that𝑚 ≪ 𝑛. Imagine a loss function

when training a neural net. There,𝑚 = 1, i.e. the loss and
𝑛 is large, i.e. the number of parameters in the neural net.
Using forward AD one would still need 𝑛 executions of the
program to compute all 𝑛 columns of the Jacobian.

71

MimIrADe: Automatic Differentiation in MimIR CC ’25, March 1–2, 2025, Las Vegas, NV, USA

This is why in practice reverse-mode AD is used more fre-
quently. In reverse-mode AD, we start with the outputs and
conceptually traverse the execution trace of the program
in reverse (see Figure 1 and 2). Therefore, we get the gradi-
ent 𝜕𝑦𝑖

𝜕𝑥
of one output 𝑦𝑖 with respect to all inputs 𝑥 in one

reverse-mode AD computation. Thus,𝑚 evaluations suffice
to compute the Jacobian matrix making this approach more
efficient in the case of many inputs and few outputs:

𝐽 =

𝜕𝑦1
𝜕𝑥
...

𝜕𝑦𝑚
𝜕𝑥

 =

∇𝑇𝑦1
...

∇𝑇𝑦𝑚

Pearlmutter and Siskind [18] proposed to use backprop-

agators—also called pullbacks—to implement reverse-mode
AD. A pullback of a function 𝑓 is a function 𝑓 ∗ that inter-
nalizes the concept of reverse program traversal exhibited
in reverse-mode AD. Conceptually, the pullback takes as
argument the change in the output and returns the change
in the inputs that lead to the change of the output.

Example 1. Consider the pullback for 𝑥 · 𝑦:
mul∗ := 𝜆𝑠. (𝑦 · 𝑠, 𝑥 · 𝑠)

mul∗ (1) =
[
𝑦 𝑥

]𝑇
=

[
𝜕 (𝑥 ·𝑦)
𝜕𝑥

𝜕 (𝑥 ·𝑦)
𝜕𝑦

]𝑇
= ∇(𝑥 · 𝑦)

Note that the pullback reuses results from the forward pass of
the computation.

As shown in the example, pullback functions are charac-
terized by the equation:

𝑓 ∗(𝑥) (𝑠) = 𝑠 · ∇𝑓 (𝑥)
The formulation of gradients as pullbacks allows us to repre-
sent the chain rule as function composition of pullbacks.

Example 2. Let ℎ = 𝑔 ◦ 𝑓 with scalar functions 𝑓 , 𝑔, and ℎ.
Then, ℎ∗ is defined as 𝑓 ∗ ◦ 𝑔∗:

ℎ∗ (𝑠) := 𝑓 ∗ (𝑔∗ (𝑠))

= 𝑔∗ (𝑠) · 𝜕𝑓 (𝑥)
𝜕𝑥

= 𝑠 · 𝜕𝑔(𝑓 (𝑥))
𝜕𝑓 (𝑥) · 𝜕𝑓 (𝑥)

𝜕𝑥

= 𝑠 · 𝜕𝑔(𝑓 (𝑥))
𝜕𝑥

= 𝑠 · 𝜕ℎ(𝑥)
𝜕𝑥

= 𝑠 · ∇ℎ(𝑥)

To compute gradients of programs in a modular fashion,
we extend the notion of pullbacks to expressions. The pull-
back 𝑒∗ of an expression 𝑒 is the pullback of the associated
function that computes the expression.

2.2 Automatic Differentiation as Local Substitution

Using pullbacks, reverse mode AD can be performed by local
program rewrite. Local here means that a part of the program
can be AD’d by AD’ing its constituents. For each function

𝑓 : 𝐴 → 𝐵

we generate its AD’d version

𝑓 𝑎 : 𝐴𝑎 → 𝐵𝑎 × (𝐵 → 𝐴)

that takes the input 𝑥 and produces the output as well as
the pullback for 𝑓 at point 𝑥 . We use the notation 𝐴𝑎 for the
augmented type. The augmented type represents additional
information needed in the differentiated program. For in-
stance, a higher-order function argument needs to provide
its differentiated version.𝐴𝑎 is equal to𝐴 except for function
types where we additionally return the pullback.

(𝐴 → 𝐵)𝑎 := (𝐴𝑎 → 𝐵𝑎 × (𝐵 → 𝐴))

The differentiated function satisfies the equation

𝑓 𝑎 𝑥 = (𝑓 (𝑥), 𝑓 ∗(𝑥))

where 𝑓 ∗(𝑥) is the pullback of 𝑓 that produces the weighted
derivatives in point 𝑥 . We just write 𝑓 ∗ and elide the appli-
cation point if it is clear from the context.

Example 3.

𝑓 := 𝜆(𝑥,𝑦). (𝑥 + 𝑦) · 𝑦 of type R × R → R

𝑓 ∗ := 𝜆𝑠. (𝑠 · 𝑦, 𝑠 · (𝑥 + 2 · 𝑦)) of type R → R × R

𝑓 𝑎 := 𝜆(𝑥,𝑦). (𝑓 (𝑥,𝑦), 𝑓 ∗) of type R × R → R×
(R → R × R)

Function 𝑓 computes (𝑥+𝑦) ·𝑦, 𝑓 𝑎 computes 𝑓 and the pullback
𝑓 ∗. With the pullback, we compute the derivatives of 𝑓 as 𝑓 ∗ 1.
The derivative with respect to 𝑥 is 𝑦 and the derivative with
respect to 𝑦 is 𝑥 + 2 · 𝑦.

We observe that the pullback is only closed in the con-
text of the function. This means that 𝑓 ’s parameters usually
occur free in 𝑓 ∗ as the pullback might use them directly or
indirectly via intermediate results of 𝑓 . Therefore, we com-
pute the pullback, and thus the derivatives, and the function
simultaneously in 𝑓 𝑎 . This allows for sharing between the
function and the pullback to avoid redundant computations.

2.3 Algorithm

The classic pullback-based algorithm [18] implements
reverse-mode AD as a local substitution of the individual
language constructs. To compute 𝑓 𝑎 for a function

𝑓 := 𝜆𝑎. 𝑏 of type 𝐴 → 𝐵 ,

We recursively transform the body 𝑏 of the function. For
each composed expression, we construct the differentiated
expression that uses the differentiated variants of the connec-
tives. Our transformation keeps the structure of the program
the same and augments every computation with the corre-
sponding pullback.

72

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Marcel Ullrich, Sebastian Hack, and Roland Leißa

Table 1. Pullbacks of arithmetic operations

𝑒 = 𝑓 args 𝑓 ∗

add (𝑥,𝑦) 𝜆𝑠. (𝑠, 𝑠)
sub (𝑥,𝑦) 𝜆𝑠. (𝑠,−𝑠)
mul (𝑥,𝑦) 𝜆𝑠. (𝑠 · 𝑦, 𝑠 · 𝑥)
div (𝑎, 𝑏) 𝜆𝑠. (𝑠/𝑦, −𝑠 ·𝑥/𝑦 ·𝑦)

Arithmetic Operations. These are replaced by their dif-
ferentiated counterpart that contains the corresponding pull-
back. For example mul : R × R → R becomes:
mul𝑎 := 𝜆(𝑥,𝑦). (mul (𝑥,𝑦), 𝜆𝑠. (mul (𝑠,𝑦), mul (𝑠, 𝑥)︸ ︷︷ ︸

mul∗(𝑥,𝑦)

))

This represents the fact that
𝜕(𝑥 · 𝑦)/𝜕𝑥 = 𝑦 and 𝜕(𝑥 · 𝑦)/𝜕𝑦 = 𝑥 .

With the differentiated multiplication mul𝑎 , we compute the
product and a pullback that returns a pair of partial deriva-
tives. The derivative with respect to the left-hand side is 𝑦
and the derivative with respect to the right-hand side is 𝑥 :

mul𝑎 (2, 𝑣) = (2𝑣, mul∗) mul∗ 1 = (𝑣, 2)
Table ?? summarizes the pullbacks for arithmetic opera-

tions. As the shape of the differentiated operators is always
similar, we will use a shorthand notation. The shape is in
general:

𝑓 𝑎 := 𝜆args. (𝑓 args, 𝑓 ∗)
The pullback of a literal 𝑐 : 𝑆 is given as

𝑐∗ := 𝜆𝑠.

(
®0 : 𝐴

)
of type 𝑆 → 𝐴 .

3 MimIrADe

In the following section, we present the framework and the
design and implementation decisions of our AD approach.

3.1 MimIR

We implement our AD in MimIR. This is an extension to the
higher-order intermediate representation MimIR [13]. At its
core,MimIR is a lambda calculus with a dependent, higher-
order type system and contains lambdas, recursion, integers,
and tuples. All other operations, like arithmetic, memory,
pointers, floating point numbers, and loop constructs, are
added through so-called plugins. A plugin contains typed
declarations of the new operations, so-called axioms, as well
as passes to operate on these axioms. As an example, Sec-
tion 3.3.2 presents the axioms of a plugin that provides matrix
computations. Passes include optimizations, lowering of ax-
ioms to the core calculus, and backends including a LLVM
code generator.
MimIR represents a conditional by invoking a projection

from a pair consisting of a “false”- and a “true”-continuation:

if(e) then T else F ⇒ (F, T)#e ()
The expression 𝑒 selects the corresponding branch which is
invoked with unit to continue execution. This way, our AD
approach only needs rules for tuples and applications to also
handle conditionals.

MimIR is well-suited for AD. The plugin system enables a
simple definition of the differentiation operation. The mini-
mal core calculus minimizes the burden to support all opera-
tions with the AD procedure. The dependent, higher-order
type system allows for a succinct definition of gradients used
in the AD. Furthermore, the optimization infrastructure of
MimIR defines helpful standard optimizations including a
partial evaluator that we utilize to generate efficient code for
the gradients.
MimIR is a higher-order IR. This means that we simulta-

neously work on low-level code with a lot of control and
optimizations for efficiency reasons as well as having fea-
tures from functional programming available. The design
of MimIR allows us to extend the language with the plu-
gins by declaring high-level axioms. This also makes the
implementation of the AD transformation easier.

3.2 Reverse Mode AD in MimIR

We encode the AD rules outlined in Section 2.2 straight-
forwardly inMimIR code using higher-order functions. We
present the substitution rules for the core of MimIR and
other common plugins in Section 3.3. For new plugins, the
developer can provide differentiated versions of the axioms
to extend the support of the transformation. Typically, the
algorithm presented in Section 2.3 introduces a lot of over-
head which MimIR reliably optimizes away by a series of
optimizations that we discuss in more detail in Section 4.3.

Structure-Preserving Pullbacks. Along with normal
pullbacks we also use a second kind called structure-
preserving pullbacks. The idea behind them is to organize the
pullbacks of individual elements of a data structure the same
way the data structure is organized. structure-preserving pull-
backs simplify the differentiation of operations that interact
with compound types like tuples or Ptrs. For instance, for
a projection into a tuple, we can access the pullback via a
projection into the structure-preserving pullback. For an
expression

𝑒 : 𝐶 𝐸 using a compound type 𝐶 : Type → Type ,

the structure-preserving pullback is defined as
𝑒∗𝑆 : 𝐶 (𝐸 → 𝐴) .

Example 4. The tuple 𝑡 = (1, 4.3) of typeN × R︸︷︷︸
𝑇

in a function

𝑓 of type R × R︸︷︷︸
𝐴

→ R has the pullback

𝑡∗ of type N × R︸︷︷︸
𝑇

→ R × R︸︷︷︸
𝐴

73

MimIrADe: Automatic Differentiation in MimIR CC ’25, March 1–2, 2025, Las Vegas, NV, USA

and the structure-preserving pullback

𝑡∗𝑆 of type (N︸︷︷︸
fst 𝑇

→ R × R︸︷︷︸
𝐴

) × (R︸︷︷︸
snd 𝑇

→ R × R︸︷︷︸
𝐴

) .

A pointer 𝑝 : Ptr(R) has the structure-preserving pullback
𝑝∗𝑆 of type Ptr(R → R × R) .

The normal pullback 𝑡∗ is a function taking the co-tangent
with respect to the tuple and returning the tangent for the
function. The structure-preserving pullback in contrast is a
tuple of pullbacks for each of its elements.

Projections. The pullback of the projection 𝑒 = 𝑡#𝑖 out of
a tuple 𝑡 with index 𝑖 is the projection out of the structure-
preserving pullback 𝑒∗ = 𝑡∗

𝑆
#𝑖 .

Tuples. For a tuple

𝑡 = (𝑒1, . . . , 𝑒𝑛) of type 𝐸1 × · · · × 𝐸𝑛

we need to define the pullback 𝑡∗ as well as the structure-
preserving pullback 𝑡∗

𝑆
. The pullback 𝑡∗ of the tuple is the

weighted sum of the pullbacks of the individual elements:

𝑡∗ = 𝜆𝑠𝑡 .
∑︁

𝑒∗𝑖 (𝑠𝑡#𝑖) of type 𝐸1 × · · · × 𝐸𝑛 → 𝐴 .

The structure-preserving pullback is the tuple of individual
pullbacks

𝑡∗𝑆 = (𝑒∗1, . . . , 𝑒∗𝑛) of type (𝐸1 → 𝐴) × · · · × (𝐸𝑛 → 𝐴) .

Applications. We distinguish between two kinds of ap-
plications: For a return call return 𝑒 , we also return the
pullback return (𝑒, 𝑒∗). For a function call 𝑔 𝑒 , we call the
differentiated function and compose the argument pullback
with the function pullback:

1 (g e)𝑎 :=
2 let (e, e∗) = e𝑎 in
3 let (y, g∗) = g𝑎 e in
4 (y, e∗ ◦ g∗)
We first compute the argument and its pullback (line 2).

Afterward, we compute the function call result and the pull-
back of the function (line 3). Then, we compute the pullback
of the function application by composing the argument pull-
back with the function pullback (line 4). The main idea is that
the pullback 𝑔∗ computes the derivatives of 𝑦 with respect to
the function arguments 𝑒 of 𝑔. The pullback 𝑒∗ computes the
derivatives of 𝑒 with respect to the function argument 𝑎 of
𝑓 . By composing both of them, we compute the derivatives
of 𝑦 with respect to the function argument 𝑎 of 𝑓 . We take a
closer look at the application rule in Section 3.1.

Example 5. Consider the derivation process of 𝑓 (𝑎, 𝑏) = (𝑎 +
𝑏) ·𝑏 in Figure 3a. The blue code segments in Figure 3b indicate
that they were introduced by AD. This code mostly consists
of boilerplate code for the tuple pullbacks and the pullback
composition. Despite these changes, the control flow and overall

fun f (a:R, b:R) → R {
let x = a+b in
let y = x ∗ b in
return y

}
(a) original program

fun f𝑎 (a:R, b:R) → R {
let a∗ = 𝜆s. (s,0) in
let b∗ = 𝜆s. (0,s) in

let (p,p∗) = ((a,b), 𝜆(s1,s2).
a∗(s1)+b∗(s2)) in

let (x, add∗) = add𝑎 p in

let x∗ = p∗ ◦ add∗ in
let (q,q∗) = ((x,b), 𝜆(s1,s2).

x∗(s1)+b∗(s2)) in
let (y,mul∗) = mul𝑎 q in

let y∗ = q∗ ◦ mul∗ in
return (y, y∗)

}
(b) augmented version

fun f𝑎 (a:R, b:R)→ R {
let p = (a,b) in
let x = add p in

let q = (x,b) in
let y = mul q in

fun f∗ (s:R)→ R×R {
let x∗ = (mul s b, mul s b) in
let y∗ = x∗ + (0, mul s x) in
// automatically folded to
// (mul s b, mul s (add b x))
y∗

}
return (y, f∗)

}
(c) optimized program

Figure 3. Differentiation of a function with two arguments

shape of the program remain the same. Constant folding and
inlining simplifies Figure 3b to Figure 3c as follows:

𝑦∗ = 𝑞∗ ◦𝑚𝑢𝑙∗

= 𝑞∗ ◦ (𝜆𝑠. (𝑠 · 𝑏, 𝑠 · 𝑥))
= 𝜆𝑠. 𝑥∗ (𝑠 · 𝑏) + 𝑏∗ (𝑠 · 𝑥)
= 𝜆𝑠. (𝑝∗ ◦ 𝑎𝑑𝑑∗) (𝑠 · 𝑏) + 𝑏∗ (𝑠 · 𝑥)
= 𝜆𝑠. 𝑝∗ (𝑠 · 𝑏, 𝑠 · 𝑏) + 𝑏∗ (𝑠 · 𝑥)
= 𝜆𝑠. 𝑎∗ (𝑠 · 𝑏) + 𝑏∗ (𝑠 · 𝑏) + 𝑏∗ (𝑠 · 𝑥)
= 𝜆𝑠. (𝑠 · 𝑏, 0) + (0, 𝑠 · 𝑏) + (0, 𝑠 · 𝑥)
= 𝜆𝑠. (𝑠 · 𝑏, 𝑠 · (𝑏 + 𝑥))
= 𝜆𝑠. (𝑠 · 𝑏, 𝑠 · (𝑎 + 2𝑏))

This is the expected gradient 𝜕𝑓

𝜕𝑎
= 𝑏 and 𝜕𝑓

𝜕𝑏
= 𝑎 + 2𝑏 for

𝑓 (𝑎, 𝑏) = (𝑎 + 𝑏) · 𝑏 = 𝑎𝑏 + 𝑏2. The remaining gradient com-
putation is as short as possible and corresponds to the code
a human would write. Note that the last simplification is for
readability; 𝑥 would not be recomputed in the program.

3.3 Extensions

Apart from arithmetic operations and connectives, we also
want to support more advanced constructs beyond the most
basic core of a programming language. MimIR in itself is
a pure-type-system-style lambda calculus with dependent
types. This core can be extended by declaring (usually com-
pound and/or dependently typed) functions—called axioms
since no implementation is given—and bundle transforma-
tions (such as constant folding) in plugins. In fact, numbers

74

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Marcel Ullrich, Sebastian Hack, and Roland Leißa

and arithmetic operations like addition and multiplication
that we used in Section 2.3 are also implemented as aMimIR
plugin.
To extend the AD transformation for a plugin we need

AD versions of the plugin’s axioms. These can be supplied
with the plugin itself or added independently afterwards. In
the next sections, we will take a look at some of the plugins
that MimIrADe interacts with.

3.3.1 Memory Operations. MimIR’s memory plugin in-
troduces a memory object of type Mem that represents the
memory state that must be used linearly (similar to the
IO monad in Haskell). Furthermore, the plugin contains
a type operator Ptr(𝐴) to construct a pointer to 𝐴 and a set
of operations to allocate and access memory:

alloc : Mem → Mem × Ptr(𝑉)
load : Mem × Ptr(𝑉) → Mem ×𝑉

store : Mem × Ptr(𝑉) ×𝑉 → Mem

lea : Ptr(«𝑖 : 𝑛;𝑇 #𝑖») × (𝑖 : N) → Ptr(𝑇 #𝑖)

Anymutable variable must be first allocated; this operation
retrieves a pointer and thememory referenced by this pointer
can be mutated via loads and stores. Note that memory
operations take a Mem object as an argument and return a
new Mem object in addition to their actual result. The lea
operation1 computes the address of the 𝑖th element of an
array or tuple. Hereby, «𝑛;𝑇» is a homogeneous array with
𝑛 elements of type 𝑇 whereas «𝑖 : 𝑛;𝑇 #𝑖» is a heterogeneous
array (a.k.a. tuple type) with 𝑛 elements where the element
at index 𝑖 has type 𝑇 #𝑖 .

Note that the structure-preserving pullback of a pointer is
a pointer of a pullback. We use two strategies to differentiate
pointers: structure-preserving pullbacks and accumulation of
gradients.

Structure-Preserving Pullbacks. Our main strategy is
to maintain the structure-preserving pullbacks:
• For an alloc, we additionally allocate the structure-

preserving pullback pointer (see Figure 4a).
• If a pointer is loaded, the pullback from the structure-
preserving pullback is loaded and associated with the
pullback of the loaded value. But compared to the other
axioms, we do not handle load by itself. Instead, we dif-
ferentiate the application load (mem, p) (see Figure 4b).
We first load the pullback of the pointer content from
the structure-preserving pullback. This way, the loaded
value is associated with the correct pullback. The invari-
ant we use is that the structure-preserving pullback 𝑝∗

𝑆

always contains the pullback corresponding to the value
contained in the pointer.

1The name is inspired by the x86 assembly instruction and its semantics is
similar to getelementptr in LLVM but arguably more streamlined.

• Dually, if a value is stored in a pointer, the pullback of
the value is stored in the structure-preserving pullback
(see Figure 4c).

• For array accesses via lea, we index the structure-
preserving pullback with the same index.

In this mode, the differentiation of memory operations com-
poses with other operations. The only exception is that we
use the application of the memory axioms as atomic units
instead of the application and axiom differentiation individ-
ually, i.d. we differentiate load (mem, p) instead of load and
mem separately. Dual to the forward pass, the backward pass
uses memory side effects during the differentiation.

Accumulation of Gradients. Our second strategy is to
accumulate gradients. This strategy is closely related to tap-
ing as explained in Figure 1. Similar implementations are
employed by Moses and Churavy [16], who implement a tap-
ing approach, and Wang et al. [24], who use memory cells
in which the gradient is computed using continuations. For
read-only pointer arguments 𝑝 : Ptr(𝐴𝑖), we do not main-
tain the structure-preserving pullback. Instead, we create a
shadow pointer 𝑝∗

𝐺
: Ptr(𝐴𝑖) to accumulate the gradients. Its

pullback adds the tangent to the associated shadow pointer
(see Figure 5). Therefore, the gradient is accumulated in the
backward pass of the uses of the pointer.
This optimization for pointer arguments helps to reduce

normalization operations as the additions of tangents re-
sulting from the pullbacks do not need to consider pointers.
Instead, the accumulation takes care of the additions. Ad-
ditionally, the access to pullbacks for arguments becomes
simpler. With the gradient pullbacks, we can access the tan-
gents directly instead of constructing structure-preserving
pullbacks to wrap the identity for arguments.
The gradient pullback optimization is not strictly neces-

sary as we could in principle obtain the same result from
the main strategy. However,MimIR’s partial evaluator is cur-
rently not powerful enough to transform the strategies into
each other. For this reason, we optimize the argument case
with the second strategy.

We apply the modified taping mode on the whole contin-
uation to avoid issues with composition between the two
modes.

3.3.2 Matrix Operations. The matrix plugin provides
high-level operations on matrices. This plugin also allows for
efficient code generation due to sophisticated optimizations
on high-level operations.

Our transformation operates directly on the high-level ma-
trix axioms rather than analyzing low-level loops and array
accesses. This allows us to use more informed computations
resulting in more efficient code. We look at the following
common matrix operations:

unit : 𝑇 → Mat(𝑇)
sum : Mat(R) → R

75

MimIrADe: Automatic Differentiation in MimIR CC ’25, March 1–2, 2025, Las Vegas, NV, USA

alloc𝑎 := 𝜆 m0.
let (m1, p∗𝑆) = alloc m0 in

let (m2, p) = alloc m1 in

((m2, p), 𝜆 (s𝑚0 , s𝑝). s𝑚0)
(a) alloc

(load (m0, p))𝑎 :=
let (m1, v∗) = load (m0, p∗𝑆) in
let (m2, v) = load (m1, p) in
((m2, v), 𝜆 (s𝑚 , s𝑣). v∗ s𝑣)

(b) load

store𝑎 (m0, p, v) :=
let m1 = store (m0, p∗𝑆 , v∗) in
let m2 = store (m1, p, v) in
(m2, 𝜆 s𝑚0 . m

∗
0 s𝑚0)

(c) store
Figure 4. Differentiated axioms to handle memory operations

(load (m0, p))𝑎 :=
let (m1, v) = load (m0, p) in
((m1, v), 𝜆 (s𝑚0 , s𝑣). let (s𝑚1 , s𝑝) = load (s𝑚0 , p

∗
𝐺
) in

let s𝑝𝑎 = s𝑝 + s𝑣 in

let s𝑚2 = store (s𝑚1 , p
∗
𝐺
, s𝑝𝑎) in p∗

𝐺
)

Figure 5. Acc. of gradients w/ shadow pointer & array

transpose : Mat(𝑇) → Mat(𝑇)
product : Mat(R) × Mat(R) → Mat(R)

For each of these operations, we provide a derived version
that extends the differentiation transformation:

unit𝑎 := 𝜆𝑒.(unit 𝑒, 𝜆𝑆. sum𝑆)
sum𝑎 := 𝜆𝑀.(sum𝑀, 𝜆𝑠. unit𝑠)

transpose𝑎 := 𝜆𝑀.(𝑀𝑇 , 𝜆𝑆 .𝑆𝑇)
product𝑎 := 𝜆(𝑀, 𝑁).(𝑀 × 𝑁, 𝜆𝑆.(𝑆 × 𝑁𝑇 , 𝑀𝑇 × 𝑆))

We handle unit and sum as generalizations of addition
and tuple construction. The pullback of the transpose is
the transpose of the tangent whereas the pullback of the
product is a product for each of its components. Note that
MimIrADe just knows that it looks, for example, at a matrix
product. This allowsMimIrADe to simply use the optimal
pullback and implement the product with highly-optimized
computations.
For code generation, we translate matrices into arrays.

The matrix operations are implemented on top of BLAS [4]
or alternatively translated to straightforward loops nests.

3.3.3 Affine Operations. The matrix plugin lowers many
operations to affine loops provided by the affine plugin:

for :
(
start : Int, end : Int, step : Int, accinit : 𝑇,
body : (Int × (acc : 𝑇)) → 𝑇

)
→ 𝑇

When applied with the loop bounds, the body, and the initial
accumulator, the for-axiom returns the final accumulator.
The body is applied ⌊ end−startstep ⌋ times with the current index
and the accumulator.
In general, we generate the differentiated code for the

for axiom by first lowering it to loops with recursion. But
for special cases, we generate more efficient gradients by
performing a sophisticated partial evaluation manually via
handcrafted optimization passes: We inspect the body to de-
tect special cases like array manipulation that allow for more
efficient code generation. If the body only reads and writes

arrays and performs arithmetic operations, we simplify the
caching behavior of the differentiated loop as follows:

For loops, we would generate closures around each itera-
tion that capture the involved expressions. Instead, we create
caches and only write the necessary values that we need to
compute the tangents similar to Moses and Churavy [16].
The differentiated for-loop then consists of a forward pass
for-loop with additional cache writes and a backward pass
for-loop that computes the tangents. This allows us to avoid
the memory allocation overhead of closures.

3.4 Implementation in MimIR

To better understand the details of the differentiation rules
presented in Section 3.2, we take a closer look at the applica-
tion rule. Let 𝑓 : 𝐴 → 𝑋 be the function to be differentiated.
If we stumble upon an application

𝑦 = 𝑔 𝑒 of type 𝑌 ,

we compute

𝑦,𝑔∗(𝑒) = 𝑔𝑎 𝑒 of type 𝑌 × (𝑌 → 𝐸) .
From the pullback 𝑔∗(𝑒) with respect to the argument 𝑒 of 𝑔
and the pullback 𝑒∗ with respect to the argument 𝑎 of 𝑓 , we
compute the pullback of the application

𝑦∗ = 𝑒∗ ◦ 𝑔∗(𝑒) of type 𝑌 → 𝐴

where

𝑔 : 𝐸 → 𝑌 𝑒 : 𝐸
𝑔𝑎 : 𝐸𝑎 → 𝑌𝑎 × (𝑌 → 𝐸) 𝑒∗ : 𝐸 → 𝐴 .

The same rule applies if 𝑔 is the function 𝑓 itself. In that case,
we recurse.

4 Evaluation

We compare our implementation MimIrADe to the popular
frameworks PyTorch [17] and Enzyme [16]. PyTorch builds
dynamic computation graphs via operator overloading in
Python. Enzyme differentiates LLVM code during compila-
tion.

Although our approach is more similar to other high-level
approaches known from functional programming languages
from a theoretical point of view, we compare MimIrADe to
the low-level implementations of state-of-the-art AD. We
show that our modular functional approach competes with
modern highly optimized implementations due to compiler
optimizations that remove the overhead that originates from
the functional approach.

76

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Marcel Ullrich, Sebastian Hack, and Roland Leißa

GMM1 GMM2 BA1 BA2 MNIST1MNIST2 LSTM

100

103

106

1.
33

1.
09

0.
68

0.
64 0.
86

0.
95 1.
135.
09

3.
13

31
71
.2
9

31
71
.2
9

1.
24 3.
62

14
6.
73

Sp
ee
du

p

Enzyme
PyTorch

Figure 6. Speedup 𝑡framework/𝑡MimIR of MimIrADe vs. Enzyme
and PyTorch

Setup. We evaluate the frameworks on Microsoft’s AD-
Bench suite [22]. We use the Gaussian mixture model
(GMM), bounded analysis (BA), and a long short-term mem-
ory neural network (LSTM) from the ADBench suite. Addi-
tionally, we compare the approaches on a network for the
MNIST classification task [8].

For a fair comparison to Enzyme, we do not take advantage
of the high-level specialized extensions available inMimIR
formatrix operations. Instead, we differentiate the code at the
level of affine for-loops. This abstraction layer corresponds to
the knowledge obtained by LLVM scalar evolution analyses
in Enzyme.

4.1 Experimental Running Time

Figure 6 compares the runtime of the different implemen-
tations. For theMimIR implementations, we write the tests
in the high-level language Impala that compiles to MimIR
and used theMimIrADe AD compiler pass. Finally,MimIR
emits an LLVM file that we feed to Clang to generate an exe-
cutable. The Enzyme implementation2 is written in C++ and
uses the Enzyme LLVM pass. The PyTorch implementation3
is written in Python and uses the PyTorch package.
Our evaluation shows that Enzyme and MimIrADe are

comparable in performance. In some cases like bounded anal-
ysis, Enzyme has a better caching/recomputation balance
resulting in lower runtime. In other cases like the GMM or
LSTM benchmark, MimIrADe is faster due to more caching.
The main performance difference is due to caching or re-
computation of intermediate results. Enzyme manages to
better detect induction variables and recompute them in the
backward pass instead of storing them. But it also sometimes
stores additional unnecessary intermediate results in the
forward pass.
In our tests, PyTorch is slower than Enzyme and MimI-

rADe. This is partly due to the overhead of constructing
the backward graph at runtime, the overhead of the Python
interpreter, more memory usage, and missing optimizations

2https://github.com/EnzymeAD/Enzyme/tree/main/enzyme/benchmarks/
ReverseMode
3https://github.com/microsoft/ADBench/tree/master/src/python/
modules/PyTorch

102 103 104 105 106

100

102

104

Size

Ti
m
e
in

m
s

TorchScript PyTorch PyTorch 2.0
PyTorch 2.0 1 CPU Enzyme MimIR

Figure 7. Runtime of the Gaussian Mixture Model (GMM)
algorithm on different input sizes (lower is better). The dia-
gram is a log-log plot.

Table 2. Lines of code (LoC) and cyclomatic complexity (CC)
(lower is better). We compute the cyclomatic complexity
measure per function. The total cyclomatic complexity refers
to the sum over all files. † refers to the tool without plugins
and extensions.

MimIrADe Enzyme MimIrADe † Enzyme †

LoC 4.7k 58.9k 1.3k 49.4k
Total CC 704 13793 141 11857

Average CC 1.6 10.9 1.8 12.8

like inlining. PyTorch is inefficient in the bounded analysis
benchmark resulting in a significantly longer running time.
This slowdown is caused by the deeply nested function calls
and loops that contain conditionals.

TorchScript improves upon PyTorch by compiling parts
of the code. The resulting speedup is especially visible for
very large input sizes where TorchScript becomes one of
the best implementations as shown in Figure 7. PyTorch 2.0
further refines the TorchScript approach of ahead-of-time
compilation using TorchDynamo [2], TorchInductor, and
AOTAutoGrad. For small inputs, the remaining overhead
of Python, not compiled functions, and communication over-
head still causes PyTorch 2.0 to be slower than Enzyme
and MimIrADe. PyTorch 2.0 speeds up the computation for
large input sizes by making use of available CPU cores. This
can be seen in the slowdown when restricting PyTorch 2.0
to a single CPU. Enzyme andMimIrADe both do not make
use of additional cores.

4.2 Code Complexity

One major contribution of this paper is the simplicity of our
approach. In order to verify this claim, we estimate the code
complexity of MimIrADe and Enzyme using code complexity
metrics. Table 2 summarizes the LoC. For Enzyme4, we mea-
sured the source folder. To make the comparison fair, we also
4https://github.com/EnzymeAD/Enzyme

77

https://github.com/EnzymeAD/Enzyme/tree/main/enzyme/benchmarks/ReverseMode
https://github.com/EnzymeAD/Enzyme/tree/main/enzyme/benchmarks/ReverseMode
https://github.com/microsoft/ADBench/tree/master/src/python/modules/PyTorch
https://github.com/microsoft/ADBench/tree/master/src/python/modules/PyTorch
https://github.com/EnzymeAD/Enzyme

MimIrADe: Automatic Differentiation in MimIR CC ’25, March 1–2, 2025, Las Vegas, NV, USA

measured the metrics for Enzyme † without the Clang plugin,
the MLIR code, and without the different scalar evolution
expander versions. WithMimIrADe5, we refer to the code of
the AD plugin.MimIrADe † refers to the plugin without the
special casing of pointer arguments. Enzyme has roughly
10× more code than MimIrADe. This does not necessarily
give an indication of which code is simpler. But as a rule of
thumb the larger a code base gets, the harder it becomes to
debug and maintain. As a more profound code complexity
metric, Table 2 also outlines the cyclomatic complexity [15]6
of both implementations. Enzyme’s cyclomatic complexity
is roughly an order of magnitude larger as MimIrADe’s.

4.3 Effectiveness of MimIR’s Optimizations

MimIrADe relies onMimIR’s optimizer and, in particular, its
partial evaluator to eliminate the boilerplate code introduced
by the differentiation transformation (see Example 5). The
optimizer is run before and after the differentiation transfor-
mation.

More specific, the program is optimized as follows: A set
of peephole optimizations—called normalizers—are eagerly
applied at every construction of a MimIR expression. These
optimizations implement, for instance, constant folding and
algebraic simplifications such as 𝑥 + 0 = 0. Other optimiza-
tions like dead-code elimination and common subexpres-
sion elimination are performed automatically during the
construction of aMimIR program. Finally, a set of standard
optimizations is run. These include: • 𝜂-conversion • Tail
call elimination • Scalarization of tuples • Copy propaga-
tion to specialize functions for statically known arguments
• Partial evaluation: Function calls with statically known
arguments cause beta-reduction to inline the call if possible.
This optimization happens independently at each call-site.
• 𝛽-reduction: On top of that 𝛽-reduction will always be
performed if a function’s sole use is a single call.

Together, these optimizations inline the pullbacks remov-
ing the boilerplate of closure allocation and function calls.
Using copy propagation, partial evaluation, and 𝛽-reduction,
functions are specialized as much as statically possible and
are evaluated with the corresponding arguments. Statically
known subexpressions will be simplified with the normaliz-
ers.
To empirically evaluate the influence of these optimiza-

tions and especially of MimIrADe, we compare the run-
time of a deliberately simple program—the power function—
before and after applying the optimizer.
Table 3 shows the runtime of the differentiated power

function before and after applying the partial evaluation
optimizations in MimIR, Haskell, OCaml, and Rust. For

5https://github.com/NeuralCoder3/thorin2
6we used metrix++ for the measurement; see https://github.com/
metrixplusplus/metrixplusplus

Table 3. Runtime in milliseconds of the differentiated power
function before and after applying the partial evaluation (PE)
optimizations in common languages (lower is better). FE
stands for the fully evaluated derivative (𝑏×𝑎𝑏−1). A gradient
highlights slow (red) and fast (yellow) executions.MimIR★ is
theMimIR version compiled with Clang O3. Rust S refers
to Rust with static dispatch.

MimIR MimIR★ Haskell OCaml Rust Rust S

PreOpt 360 268 403 843
Optimized 144 138 239 306
Manual 145 148 153 710 785 179
PE (Manual) 155 148 199 80 117 100
FE (Manual) 17 1 22 24 1 1

each test, we start with the MimIR code and transpile it to
the other languages for comparison.

• PreOpt corresponds to the originalMimIR code right after
the AD pass. This code includes all pullbacks as closures
explicitly. We did not perform inlining, beta-reduction, or
partial-evaluation at this stage.

• Optimized is the program that we obtain after running
MimIR’s optimizer on PreOpt. We inlined the pullbacks
and simplified the code using partial evaluation.

• Manual is a simplified and specialized manual implementa-
tion of the differentiated power function in the respective
language. This demonstrates what our approach would
have generated in these languages. For this reason, we
intentionally do not manually optimize these programs
any further.

• PartialEval (Manual), on the other hand, is a version
where we do apply conceivable partial evaluation opti-
mizations by hand to Manual. This code roughly corre-
sponds to Optimized up to implementation details like
continuation-passing style (CPS).

• FullEval (Manual) is a fully specialized manual im-
plementation of the differentiated power function. This
means, we directly compute (𝑎𝑏, (𝑏 · 𝑎𝑏−1, 0)). Such opti-
mized code is out of the reach of modern compilers due
to the complex reasoning steps required.

The large difference between ProOpt and Optimized for
MimIR highlights the importance of the optimizations. With-
out removing the boilerplate code, the code takes roughly
twice as long.
We observe thatMimIR performs all conceivable partial

evaluation optimizations as witnessed by the coinciding run-
times of Optimized, Manual, and PartialEval (Manual).
In comparison, Haskell achieves a similar runtime as ob-
served in Manual. However, other optimizations seem to
be used as PartialEval (Manual) exhibits a worse perfor-
mance. Additionally, Haskell is not able to achieve these
runtimes in the original unoptimized MimIR code.

78

https://github.com/NeuralCoder3/thorin2
https://github.com/metrixplusplus/metrixplusplus
https://github.com/metrixplusplus/metrixplusplus

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Marcel Ullrich, Sebastian Hack, and Roland Leißa

The OCaml compiler is unable to perform the optimiza-
tions resulting in slower code for most test cases. However,
OCaml generates the fastest executable for the manually
partially evaluated code.

Rust is similar to OCaml unable to perform the necessary
partial evaluation optimizations. It also generates a very fast
program for the manually partially evaluated code. In Rust,
we observe a big difference between different encodings of
the closures. Dynamic dispatch is used if we encode the clo-
sures as Box<dyn Trait> as shown in Rust Release. If we
encode the closures where possible using generics and use
static dispatch as shown in Rust Static, the performance
is significantly higher. The latter encoding is closer to the
code MimIR produces after closure conversion for code gen-
eration.

5 Related Work

Reverse mode AD requires the right-associative construc-
tion of the gradient, evaluating the chained derivatives from
the back to the front. This evaluation can be achieved in
multiple ways. One approach is constructing computation
graphs during the execution to traverse the nodes explicitly
[1, 17]. Another common approach is recording all necessary
values and control-flow information using a tape [16]. This
approach implements the traversal concretely without in-
termediate abstractions. These implementations commonly
perform better than the more high-level methods but are
more complicated due to handling non-local state.
High-level AD implementations compose derivatives di-

rectly, often representing them as closures [6, 9, 18, 24].
Vákár et al. [23] show that taping can be seen as optimiz-
ing this approach through partial evaluation and specialized
data structures, mirroring our use of normalization. Similar
connections are noted by Krawiec et al. [10] and their AD
implementation.

Despite the choice of representing the derivatives, imple-
mentations can also vary in their details on how to imple-
ment the transformation itself. With the high-level, mod-
ular approach, operators can be replaced with their corre-
sponding counterpart that also computes the derivative. This
is commonly achieved using operator overloading [24] or
compile-time passes involving rewrites [5, 9, 10]. In the im-
plementation ofWang et al. [24], both forward and backward
pass are interleaved using delimited continuations that com-
pute the forward pass, call a continuation for the remainder
program followed by the backward pass for the operator.
Gradients are accumulated using memory cells. This imple-
mentation combines both passes at once with the help of
memory cells for the gradients resulting in an implementa-
tion close to the lower-level taping approach but without an
explicit tape.
Our approach separates forward and backward pass by

using closures for the pullbacks that are combined to form the

backward pass. This separation is made possible by handling
application as a separate operator with its own derived form.
Shaikhha et al. [20] present an AD framework similar to

AD in our high-level matrix plugin. They focus on the dif-
ferentiation of array-processing primitives for which they
develop sophisticated global optimizations such as loop trans-
formations. Their forward pass AD combines advantages of
reverse mode for many applications. In contrast, we focus
on a simplified implementation keeping our code as modular
and local as possible while achieving comparable perfor-
mance.

Similar to Moses and Churavy [16] and Peng and Dubach
[19], we operate on a low-level IR. Compared to LLVM [11],
MimIR offers the advantage of having a much smaller core
resulting in a simpler implementation. Additionally,MimIR
makes it easier to define the transformation due to its func-
tional nature. Similar to Moses and Churavy [16], we run
optimizations before and after the AD transformation which
results in asymptotically faster programs. As in the extensi-
ble compiler framework MLIR [12], MimIR allows for exten-
sions making it possible to handle high-level structures like
matrices directly in a more straightforward and yet more
aggressive way. However, we foundMimIR easier to use as
MLIR due to full native support of higher-order functions
wheras MLIR relies on other dialects [3] to fully represent
them. On top of that, we argue thatMimIR’s “sea of nodes”
simplifies the implementation and optimizations. The idea
of a “sea of nodes” goes back to Click and Paleczny [7] while
MimIR pioneered this concept for higher-order languages.
The effectiveness of performing AD directly on high-level
structures is demonstrated by Peng and Dubach [19].

6 Conclusion and Future Work

This paper presents a modular, high-level approach to AD
through compiler transformation. This approach uses local
substitutions to compute derivatives and eliminates boiler-
plate code through partial evaluation. Our experiments show
that our method produces code that is as fast as state-of-
the-art approaches while its implementation is significantly
simpler and less complex than those of the best performing
AD approaches. Additionally, we show that an extensible
IR can provide high-level information (in our case through
MimIR plugins) to choose optimal gradients for efficient code
generation.
In the future, our AD approach can be extended to up-

coming plugins of MimIR. We are also working on a MimIR
plugin that adds metaprogramming capabilities. This would
allow us to define the AD transformation completely inside
of MimIR itself. Another area of work is to improveMimIR’s
optimizer in order to drop the special cases for argument
pointers and for-loops (see Section 3.3.1) and let the partial
evaluator do the heavy-lifting.

79

MimIrADe: Automatic Differentiation in MimIR CC ’25, March 1–2, 2025, Las Vegas, NV, USA

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean,Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. https://www.tensorflow.org/ Software
available from tensorflow.org.

[2] Jason Ansel. 2022. TorchDynamo. https://github.com/pytorch/
torchdynamo

[3] Siddharth Bhat and Tobias Grosser. 2022. Lambda the Ultimate SSA:
Optimizing Functional Programs in SSA. In IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2022, Seoul, Ko-
rea, Republic of, April 2-6, 2022, Jae W. Lee, Sebastian Hack, and Tatiana
Shpeisman (Eds.). IEEE, 1–11. https://doi.org/10.1109/CGO53902.2022.
9741279

[4] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington,
R Clint Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Ham-
marling, Greg Henry, et al. 2002. An updated set of basic linear algebra
subprograms (BLAS). ACM Trans. Math. Software 28, 2 (2002), 135–151.

[5] Timon Böhler, David Richter, and Mira Mezini. 2023. Using Rewrite
Strategies for Efficient Functional Automatic Differentiation. In Pro-
ceedings of the 25th ACM International Workshop on Formal Techniques
for Java-like Programs. 51–57. https://doi.org/10.1145/3605156.3606456

[6] Aloïs Brunel, Damiano Mazza, and Michele Pagani. 2019. Backprop-
agation in the simply typed lambda-calculus with linear negation.
Proceedings of the ACM on Programming Languages 4, POPL (2019),
1–27. https://doi.org/10.1145/3371132

[7] Cliff Click and Michael Paleczny. 1995. A Simple Graph-Based Inter-
mediate Representation. In Proceedings ACM SIGPLAN Workshop on
Intermediate Representations (IR’95), San Francisco, CA, USA, January
22, 1995, Michael D. Ernst (Ed.). ACM, 35–49. https://doi.org/10.1145/
202529.202534

[8] Li Deng. 2012. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Magazine 29, 6
(2012), 141–142. https://doi.org/10.1109/MSP.2012.2211477

[9] Conal Elliott. 2018. The simple essence of automatic differentiation.
Proceedings of the ACM on Programming Languages 2, ICFP (2018),
1–29. https://doi.org/10.1145/3236765

[10] Faustyna Krawiec, Simon Peyton Jones, Neel Krishnaswami, Tom
Ellis, Richard A Eisenberg, and Andrew W Fitzgibbon. 2022. Provably
correct, asymptotically efficient, higher-order reverse-mode automatic
differentiation. Proc. ACM Program. Lang. 6, POPL (2022), 1–30. https:
//doi.org/10.1145/3498710

[11] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis and Transformation. San Jose,
CA, USA, 75–88. https://doi.org/10.1109/CGO.2004.1281665

[12] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infras-
tructure for Domain Specific Computation. In 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). 2–14.

https://doi.org/10.1109/CGO51591.2021.9370308
[13] Roland Leißa, Klaas Boesche, Sebastian Hack, Arsè ne Pérard-Gayot,

RichardMembarth, Philipp Slusallek, André Müller, and Bertil Schmidt.
2018. AnyDSL: a partial evaluation framework for programming high-
performance libraries. Proc. ACM Program. Lang. 2, OOPSLA (2018),
119:1–119:30. https://doi.org/10.1145/3276489

[14] Roland Leißa, Marcel Ullrich, JoachimMeyer, and Sebastian Hack. 2025.
MimIR: An Extensible and Type-Safe Intermediate Representation for
the DSL Age. 9, POPL (2025). https://doi.org/10.1145/3704840

[15] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on
software Engineering 4 (1976), 308–320. https://doi.org/10.1109/TSE.
1976.233837

[16] William Moses and Valentin Churavy. 2020. Instead of rewriting
foreign code for machine learning, automatically synthesize fast gra-
dients. Advances in neural information processing systems 33 (2020),
12472–12485. https://doi.org/10.1109/SC41404.2022.00065

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d 'Alché-
Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024–
8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

[18] Barak A Pearlmutter and Jeffrey Mark Siskind. 2008. Reverse-mode
AD in a functional framework: Lambda the ultimate backpropagator.
ACM Transactions on Programming Languages and Systems (TOPLAS)
30, 2 (2008), 1–36. https://doi.org/10.1145/1330017.1330018

[19] Mai Jacob Peng and Christophe Dubach. 2023. LAGrad: Statically
Optimized Differentiable Programming in MLIR. In Proceedings of the
32nd ACM SIGPLAN International Conference on Compiler Construction.
228–238. https://doi.org/10.1145/3578360.3580259

[20] Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, and Simon
Peyton Jones. 2019. Efficient differentiable programming in a func-
tional array-processing language. Proceedings of the ACM on Program-
ming Languages 3, ICFP (2019), 1–30. https://doi.org/10.1145/3341701

[21] Tom J Smeding and Matthijs IL Vákár. 2023. Efficient Dual-Numbers
Reverse AD via Well-Known Program Transformations. Proceedings
of the ACM on Programming Languages 7, POPL (2023), 1573–1600.
https://doi.org/10.1145/3571247

[22] Filip Srajer, Zuzana Kukelova, and Andrew Fitzgibbon. 2018. A bench-
mark of selected algorithmic differentiation tools on some problems
in computer vision and machine learning. Optimization Methods and
Software 33, 4-6 (2018), 889–906. https://doi.org/10.1080/10556788.
2018.1435651

[23] Matthijs Vákár, Sam Staton, and Mathieu Huot. 2022. Higher order
automatic differentiation of higher order functions. Logical Methods in
Computer Science 18 (2022). https://doi.org/10.46298/lmcs-18(1:41)2022

[24] Fei Wang, Daniel Zheng, James Decker, Xilun Wu, Grégory M Essertel,
and Tiark Rompf. 2019. Demystifying differentiable programming:
Shift/reset the penultimate backpropagator. Proceedings of the ACM
on Programming Languages 3, ICFP (2019), 1–31. https://doi.org/10.
1145/3341700

Received 2024-11-13; accepted 2024-12-21

80

https://www.tensorflow.org/
https://github.com/pytorch/torchdynamo
https://github.com/pytorch/torchdynamo
https://doi.org/10.1109/CGO53902.2022.9741279
https://doi.org/10.1109/CGO53902.2022.9741279
https://doi.org/10.1145/3605156.3606456
https://doi.org/10.1145/3371132
https://doi.org/10.1145/202529.202534
https://doi.org/10.1145/202529.202534
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1145/3236765
https://doi.org/10.1145/3498710
https://doi.org/10.1145/3498710
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/3276489
https://doi.org/10.1145/3704840
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/SC41404.2022.00065
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/1330017.1330018
https://doi.org/10.1145/3578360.3580259
https://doi.org/10.1145/3341701
https://doi.org/10.1145/3571247
https://doi.org/10.1080/10556788.2018.1435651
https://doi.org/10.1080/10556788.2018.1435651
https://doi.org/10.46298/lmcs-18(1:41)2022
https://doi.org/10.1145/3341700
https://doi.org/10.1145/3341700

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Reverse Mode Automatic Differentiation
	2.2 Automatic Differentiation as Local Substitution
	2.3 Algorithm

	3 MimIrADe
	3.1 MimIR
	3.2 Reverse Mode AD in MimIR
	3.3 Extensions
	3.4 Implementation in MimIR

	4 Evaluation
	4.1 Experimental Running Time
	4.2 Code Complexity
	4.3 Effectiveness of MimIR's Optimizations

	5 Related Work
	6 Conclusion and Future Work
	References

