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Abstract 

Diabetes is a worldwide health issue affecting millions of people. Machine learning methods have shown promising 
results in improving diabetes prediction, particularly through the analysis of gene expression data. While gene expres-
sion data can provide valuable insights, challenges arise from the fact that the number of patients in expression data-
sets is usually limited, and the data from different datasets with different gene expressions cannot be easily combined. 
This work proposes a novel approach to address these challenges by integrating multiple gene expression datasets 
and domain-specific knowledge using knowledge graphs, a unique tool for biomedical data integration, and to learn 
uniform patient representations for subjects contained in different incompatible datasets. Different strategies and KG 
embedding methods are explored to generate vector representations, serving as inputs for a classifier. Extensive 
experiments demonstrate the efficacy of our approach, revealing weighted F1-score improvements in diabetes pre-
diction up to 13% when integrating multiple gene expression datasets and domain-specific knowledge about protein 
functions and interactions.
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Introduction
Diabetes is a chronic health condition resulting from 
insufficient insulin production by the pancreas or the 
body’s inability to utilize the insulin it generates effec-
tively [1]. This disease has emerged as a worldwide health 
issue, impacting millions of people globally. According to 

the World Health Organization, in 2019, diabetes directly 
contributed to 1.5 million deaths, with 48% occurring 
before the age of 70. Besides that, this chronic disease 
is associated with the development of several comor-
bidities, such as blindness, kidney failure, heart attacks, 
strokes, and lower limb amputation.

Due to the multidisciplinary nature of diabetes, pre-
dicting and detecting this complex disease continues to 
pose a significant challenge. In the last decades, some 
approaches have demonstrated encouraging outcomes 
using machine learning methods to identify patterns and 
potential risk factors linked to diabetes, allowing not only 
the early detection of diabetes but also enabling tailored 
interventions [2–5]. These machine learning approaches 
encompass several types of data, including electronic 
health records  [6], imaging data  [7], and demographic 
data  [8]. Omics data, namely gene expression datasets, 
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have also received attention since genomics, epigenom-
ics, and transcriptomics can help understand the critical 
pathways and regulatory mechanisms in diabetes [9].

While gene expression datasets are readily accessible in 
public databases, and gene expression analysis is a pow-
erful tool for pinpointing genes associated with diseases, 
particularly in the context of diabetes prediction, a sig-
nificant issue arises in handling this type of data. On the 
one hand, gene expression datasets often exhibit a limi-
tation in the number of patients, with a relatively small 
number of included patients. Conversely, supervised 
machine learning methods are data-driven, relying on 
a large number of labeled data for effective training and 
performance. One alternative involves combining mul-
tiple expression datasets to increase the patient pool for 
training machine learning models. However, this brings 
us to the challenge of how to integrate the informa-
tion about multiple expression datasets, as each data-
set may measure gene expression across distinct genes. 
Additionally, variations in experimental platforms and 
designs across different studies further complicate inte-
gration efforts. These challenges highlight the limitations 
of current approaches based on gene expression data. 
Those approaches either focus on a single dataset, lim-
iting the scope of their analysis, or attempt to integrate 
data from multiple datasets, but this integration is often 
constrained to using the expression values for a set of 
common genes. The latter approaches reduce the com-
prehensiveness of the analysis and may overlook valuable 
information from genes present in one dataset but absent 
in others. Furthermore, they fail to adequately consider 
the complex relationships and interactions that exist 
between genes, which are critical for understanding the 
underlying biological processes. Consequently, there is a 
need for a solution that addresses the limitations of single 
dataset analysis, accommodate the diversity across differ-
ent datasets, and incorporate gene interactions into the 
overall framework.

Knowledge graphs (KGs) present a unique and prom-
ising solution. KGs can represent knowledge about 
concepts and relationships in a fully machine-readable 
format [10]. Moreover, several biomedical ontologies are 
publicly available to enrich KGs  [11], enabling the rep-
resentation of domain-specific knowledge. In fact, over 
the past few years, biomedical ontologies and KGs have 
emerged as a tool for biomedical data integration and 
have been adopted in many machine learning applica-
tions, with KG embedding approaches  [12] becoming 
increasingly popular  [13]. KG embedding approaches 
transform entities and relationships in a KG into a 
lower-dimensional vector space while attempting to 
preserve the graph structure and, in some cases, seman-
tic information. An alternative solution that has gained 

significant attention in recent years involves the use of 
graph neural network (GNN) architectures explicitly 
designed for graph structures. However, these architec-
tures are not well-suited for the inherently heterogene-
ous nature of KGs [10], particularly those enriched with 
ontological information. Additionally, GNNs typically 
require the presence of node features, which limits their 
applicability in biomedical scenarios where such features 
may not be available [14].

This work tackles the challenge of integrating hetero-
geneous gene expression datasets in biomedical appli-
cations, focusing on diabetes prediction. We propose a 
novel approach that generates a KG to incorporate both 
gene expression data and domain-specific knowledge 
and then employs KG embedding methods to generate 
vector representations of patients using different strate-
gies. These patient representations serve as the input for 
a clustering method and a classifier to predict the likeli-
hood of a patient having diabetes. We conduct an exten-
sive evaluation of the impact of integrating multiple gene 
expression datasets comparing different strategies and 
KG embedding methods. The results show that incor-
porating other expression datasets and domain-specific 
knowledge improves diabetes prediction, emphasizing 
the efficacy of our approach.

Related work
Diabetes prediction using gene expression data
Several works have been using gene expression data to 
predict diabetes, employing diverse methodologies and 
datasets. In Li et al. [15], a support vector machine clas-
sifier is used for the diagnosis of diabetes. While multiple 
datasets were extracted from the Gene Expression Omni-
bus database, the machine learning model was trained 
on only one dataset, with three additional datasets used 
for validation. Feature selection involved the identifica-
tion of ten common genes across all datasets. Mansoori 
et  al.  [16] and Kazerouni et  al.  [17] focus on long non-
coding RNAs potentially associated with diabetes type 
2. Both studies incorporated data collected from 100 
diabetic and 100 non-diabetic subjects to train the clas-
sifiers. Mansoori et al. [16] employed logistic regression, 
whereas Kazerouni et  al.  [17] compare four classifiers 
(K-nearest neighbor, support vector machine, logistic 
regression, and artificial neural networks) to predict dia-
betes type 2 using the expression values for specific long 
non-coding RNAs as input. Both studies suggest that 
increasing the dataset with a larger number of patients 
would likely improve the performance of the classifiers. 
Furthermore, some other approaches explore expression 
data for diabetes prediction without employing machine 
learning methods [9, 18, 19].



Page 3 of 16Sousa and Paulheim  Journal of Biomedical Semantics            (2025) 16:2  

Integration approaches of omics data
With the growing collection of diverse molecular com-
partments, such as gene expression, DNA methylation 
status, and protein abundance, the volume of omics data 
has increased significantly, providing a unique oppor-
tunity to uncover biological mechanisms and pathways 
across diverse cell types. However, integrating omics data 
is challenging due to the varying dimensions across dif-
ferent data types (e.g., genes, proteins, metabolites), as 
well as differences in experimental conditions and sam-
ple types  [20]. Therefore, several approaches have been 
proposed to facilitate the integration of multi-omics data. 
A possible solution to the integration problem is to map 
cells into a co-embedded space or non-linear manifold, 
allowing for the identification of shared features across 
cells within the omics space.

MultiMAP  [21] is an approach for dimensionality 
reduction and integration that creates a non-linear mani-
fold that represents different high-dimensional datasets. 
It normalizes distances within each dataset and between 
datasets based on specific neighborhood parameters. 
These distances are used to build a neighborhood graph 
on the manifold. Finally, MultiMAP projects both the 
manifold and the data into a shared low-dimensional 
embedding space by minimizing the cross-entropy 
between the graph in the manifold and the graph in the 
embedding space. GLUE (graph-linked unified embed-
ding)  [22] is a framework that uses a graph variational 
autoencoder to explicitly model regulatory interactions 
across omics layers, effectively bridging the gap between 
them. COBOLT  [23] proposes a multimodal variational 
autoencoder based on a hierarchical Bayesian generative 
model to enable the joint analysis of cells across diverse 
omics datasets. StaBMap [24] is a mosaic data integration 
technique that constructs a topology based on shared fea-
tures and subsequently maps cells to supervised or unsu-
pervised reference coordinates by following the shortest 
paths within the topology. SIMBA (single-cell embedding 
along with features)  [25] is a graph method that begins 
by representing different types of entities, such as cells 
and genes, into a single graph. For instance, if a gene is 
expressed in a particular cell, an edge is created between 
the gene and the cell, with the edge weight reflect-
ing the gene’s expression level. Once the input graph is 
built, SIMBA utilizes a multi-relation graph embedding 
approach coupled with a Softmax-based transformation 
to project the nodes into a common low-dimensional 
space.

While these approaches have been proposed for inte-
grating various types of omics data, some of them can 
also be applied to combining multiple gene expres-
sion datasets. However, our approach distinguishes by 
incorporating domain-specific knowledge, which allows 

capturing the relationships between genes both within 
individual datasets and across datasets.

Knowledge graph embeddings
In the biomedical domain, the exploration of KGs has 
become increasingly prominent, with KG embedding 
methods emerging as particularly promising for captur-
ing KG-based information [26]. These methods map enti-
ties and relationships in a KG into a lower-dimensional 
vector space while preserving graph structure and, in 
some cases, semantic information. Various types of KG 
embedding methods have been proposed to date.

Translational models, exemplified by TransE  [27] and 
TransR  [28] explore distance-based scoring functions. 
The basic idea of the translational distance models is that 
each fact represents the distance between the two enti-
ties, usually after a translation carried out by the rela-
tions. TransE is the most representative translational 
distance model, but several extensions have been intro-
duced to address TransE limitations, namely TransR, 
which introduces a projection matrix for each relation.

On the other hand, semantic matching approaches, 
such as distMult [29], HolE [30], and ComplEx [31], use 
similarity-based scoring functions to capture the latent 
semantics of entities and relations in their vector space 
representations. DistMult takes the inherent structure of 
relations into account by employing tensor factorization. 
HolE combines the simplicity of DistMult with the power 
of RESCAL  [32]. ComplEx extends DistMult by intro-
ducing complex embeddings to handle a large variety of 
binary relations.

Walk-based methods, such as RDF2vec  [33], employ 
random walks to generate entity sequences as input to a 
neural language model that learns latent entity represen-
tations. Different walk-based approaches differ in their 
strategies for random walks and consideration of edge 
direction and type. In the context of biomedical KGs, 
characterized by rich hierarchical relations, walk-based 
approaches emerge as particularly well-suited, consider-
ing that these hierarchical relations can be more easily 
captured in walks.

Methodology
Gene expression datasets typically only have few 
instances, and different datasets record different gene 
expressions. Thus, when training prediction models, one 
can either (1) use only one dataset, thereby having only 
little training data, or (2) try to combine multiple data-
sets. In the latter case, those are typically “incompatible” 
in the sense that they have different feature sets, i.e., a 
naive combination would lead to a larger dataset with 
lots of NULL values.
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To overcome these challenges, we propose a meth-
odology to integrate multiple expression datasets into a 
biomedical KG and then use it for diabetes prediction. 
Figure  1 shows an overview of this methodology. The 
first step corresponds to processing gene expression 
data. Then, the KG that integrates not only expression 
data from different datasets but also domain knowledge 
on protein function and protein interactions is built. The 
third step consists of generating a vector representation 
for each patient described in the biomedical KG. The 
last step involves evaluating the patient representations 
through diabetes prediction and distribution/ clustering 
of patient representations. The source code for our meth-
odology is available on GitHub (https:// github. com/ ritat 
sousa/ expre ssion KG).

Expression data processing
Several studies have recently explored gene expression 
for diabetic and non-diabetic individuals, and the find-
ings from these studies can be accessed in publicly availa-
ble databases. The Gene Expression Omnibus (GEO) [34] 
is a public database maintained by the National Center 
for Biotechnology Information that archives high-
throughput gene expression and other genomics datasets. 
Each GEO dataset represents a curated collection of bio-
logically comparable GEO samples whose measurements 
are assumed to be calculated equivalently. The file associ-
ated with each dataset contains the raw gene expression 
data generated by microarrays. The data is structured in a 
tabular format, with each row corresponding to a unique 
patient, columns representing different gene fragments, 
and the cells containing specific expression values of 
those gene fragments for each respective patient.

Given the complexity of gene expression datasets, the 
pre-processing step is crucial. First, each probe of the 
microarray, identified by an identifier, contains a gene 
fragment for which the expression level is being deter-
mined. Each gene fragment is accompanied by an anno-
tation detailing its biological context, indicating its 

association with a known gene. However, it is worth not-
ing that not all gene fragments have such associations. 
Since our methodology relies on linking gene expression 
data with domain-specific knowledge describing gene 
functions, fragments without an associated gene are fil-
tered out.

Another challenge involves the normalization of the 
expression values, as it helps to adjust the values within 
a specific range and improve comparability. In our work, 
we explore three alternatives for normalization: no nor-
malization, gene normalization, and patient normaliza-
tion. The first option, no normalization, leaves the data in 
its raw form. The second alternative, normalization of the 
values for each gene, adjusts the expression values across 
patients for each gene separately. The third alternative, 
normalization of the values for each patient, ensures that 
the gene expression values for each individual patient 
are scaled consistently. In both the gene and patient nor-
malization methods, we apply a min-max scaling process. 
This involves subtracting the minimum value from each 
data point and dividing the result by the range (the differ-
ence between the maximum and minimum values). This 
transformation scales all values between 0 and 1, where 
the minimum value becomes 0, the maximum becomes 
1, and all other values are proportionally adjusted within 
this range.

Knowledge graph building
The KG is built by integrating two types of data sources: 
expression data and domain-specific knowledge. Figure 2 
illustrates the integration of the two sources into a KG. 
Since our approach relies on KG graph embeddings for 
generating patient representations and most embedding 
approaches are not able to handle numeric literals  [35], 
we adopt two different strategies to include the expres-
sion data in the KG.

The first strategy involves representing patient gene 
expression values in a KG using a binning approach. Fol-
lowing the technique proposed in  [35], we create bins 

Fig. 1 Overview of the proposed methodology with the main steps: processing gene expression data, building the KG, learning patient 
representations, evaluating patient representations

https://github.com/ritatsousa/expressionKG
https://github.com/ritatsousa/expressionKG
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from the set of expression values for each gene within a 
given dataset. The percentage of unique values defines 
the number of bins. For this strategy, we employed three 
options: using the non-normalized values, the gene-
normalized values, or the patient-normalized values, 
depending on which normalization approach is applied 
to the expression data beforehand. This allows for flex-
ibility in how the data is scaled before binning. To imple-
ment the binning strategy, a blank node is generated to 
represent the expression value attributed to a specific 
gene for a given patient. This establishes an association 
wherein a patient is connected to a blank node, which, in 
turn, is linked to a bin representing the expression value 
and the corresponding gene. Consider a simplified exam-
ple using RDF where _:x denotes a blank node:

(patientID, rdf:type, :Patient)
(:geneID, rdf:type, :Gene)
(:patientID, :hasExpression, _:x)
(_:x, :isExpressionOfGene, :geneID)
(_:x :hasValue :binID)
The second strategy employs a patient-gene links 

approach based on expression values. A link between a 
patient and a gene is created when the patient’s expres-
sion value for that gene is higher than the calculated 
average expression value. For this strategy, two com-
parison options are available. The first is to compare the 

expression value of a particular gene in a patient with the 
patient’s average gene expression across all genes. The 
second option is to compare the expression value of that 
gene in the patient with the average expression of the 
same gene across all patients.

The domain-specific knowledge includes the Gene 
Ontology (GO)  [36], GO annotation data  [37], and pro-
tein-protein interaction (PPI) data  [38]. The GO defines 
a hierarchy of classes that describe protein functions 
that can be represented as a graph where nodes are GO 
classes and edges define relationships between them. 
The GO encompasses three distinct domains for char-
acterizing functions: the biological processes a protein is 
involved in, the molecular functions a protein performs, 
and the cellular components where a protein is located. 
These three domains of GO are represented as separate 
root ontology classes since they do not share any com-
mon ancestor. The GO annotation data refers to assign-
ing functions represented as GO classes to proteins 
represented as links in the graph (see Fig.  3). Finally, 
the PPI data is extracted from STRING [38], one of the 
largest available PPI databases that integrates physical 
interactions and functional associations between pro-
teins collected from several sources. Each interaction is 
scored based on its origin, with scores combined into a 
final value scaled between 0 and 1, reflecting STRING’s 

Fig. 2 Schematic representation of how expression data and domain-specific knowledge are combined within the KG
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confidence in the biological relevance of the association. 
To ensure high-confidence interactions, only those with a 
combined score above 0.7 are included.

To bridge the gap between the two types of data 
sources, the expression data and the domain-specific 
knowledge, a gene in the expression data graph is 
mapped to a protein in the domain-specific KG. Online 
ID mapping tools, namely UniProt ID Mapping tool1, are 
used to convert identifiers between genes and proteins.

Generating patient representations
We propose to generate patient representations by lev-
eraging the information of multiple gene expression 
datasets and domain knowledge. As a preliminary step, 
the KG is converted into a directed and labeled RDF 
graph, following the W3C’s OWL to RDF Graph Map-
ping guidelines2. Next, our methodology employs six 
graph embedding approaches, namely RDF2vec, TransE, 
TransR, distMult, HolE, and ComplEx. These approaches 
were selected because they are representative of the main 
types of graph embedding techniques.

Two distinct approaches are employed to represent 
patients:

• The first approach involves generating KG embed-
dings directly for the patients using the KG. This 

approach was implemented across the multiple 
strategies for constructing the KG. These strategies 
include: (1) the binning approach without any nor-
malization, (2) the binning approach with patient-
level normalization, and (3) the binning approach 
with gene-level normalization. Additionally, two link-
ing strategies were applied to establish links between 
patients and genes: one based on the average gene 
expression value for each patient, and the other using 
the average expression value of the gene across all 
patients.

• The second generates KG embeddings for the genes 
present in gene expression datasets and represents 
patients as the weighted average of gene embeddings, 
determined by the respective gene expression val-
ues. This approach can be applied independently of 
the specific strategy used to construct the KG. How-
ever, the weighted average used to represent patients 
can be calculated using either non-normalized gene 
expression values, patient-level normalized values, or 
gene-level normalized values.

In total, for each embedding method, 8 distinct represen-
tations of patients are employed. These representations 
result from the combination of several normalization 
strategies (non-normalized, patient-level normaliza-
tion, and gene-level normalization), different strategies 
to build the KG (blank nodes and binning approach and 
inking approach between patients and genes based on 
expression values) and two approaches for representing 

Fig. 3 Subgraph of domain-specific knowledge

1 https:// www. unipr ot. org/ id- mappi ng.
2 https:// www. w3. org/ TR/ owl2- mappi ng- to- rdf/.

https://www.uniprot.org/id-mapping
https://www.w3.org/TR/owl2-mapping-to-rdf/
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patients with embeddings (direct patient embeddings 
and weighted average of gene embeddings). This diverse 
set of representations enables a comprehensive explo-
ration of how various data preprocessing techniques, 
KG construction strategies, and embedding approaches 
affect the utilization of patient representations within the 
KG embedding space.

Evaluating patient representations
We evaluate the different patient representations on two 
dimensions, diabetes prediction performance and dis-
tribution and clustering of patient representations, as 
shown in Fig. 1.

Results and discussion
Experimental setup
Three diabetes-related GEO datasets (GSE1236583, 
GSE1406274, and GSE1431435) are considered for 
this work (Table  1 and Fig.  4). These datasets comprise 
patients associated with two distinct groups: patients 

diagnosed with type 1 diabetes (T1D) and those serv-
ing as control subjects (non-T1D). Regarding the demo-
graphic data, only the GSE123658 dataset includes 
information on the gender and age of the patients. This 
dataset contains 40 female and 42 male patients in total, 
with a similar gender distribution across the two groups. 
Specifically, the diabetes group consists of 22 female 
and 21 male patients, while the control group includes 
18 female and 21 male patients. Patient ages range from 
19 to 73 years, with an overall median age of 35 years. 
Among diabetes patients, the median age is 41 years, 
whereas the control group has a median age of 30 years.

Regarding the KG embedding implementations, we 
used an RDF2vec python implementation6 and the 
OpenKE library7. The hyperparameters used for each KG 
embedding model are described in Tables  2 and 3. For 
RDF2Vec, we used the hyperparemeters defined in [39]. 
For the remaining KG embedding methods, the default 
hyperparameters given by OpenKE were used.

The experiments were conducted on a machine 
equipped with an Intel(R) Xeon(R) processor and 768GB 
of RAM. The machine was configured to run on AlmaL-
inux 9.4.

Table 1 Number of patients, number of shared genes across 
different datasets

Dataset Patients

T1D non-T1D

GSE123658 39 43

GSE140627 5 2

GSE143143 15 15

Fig. 4 Venn diagram showing the number of genes in common 
between the three datasets

Table 2 RDF2vec hyperparameters

Hyperparameter Value

Embedding size 100

Walk depth 4

Maximum number of walks 100

Table 3 ComplEx, DistMult, HolE, TransE, TransR 
hyperparameters

Hyperparameter ComplEx DistMult HolE TransE TransR

Embedding size 100 100 100 100 100

Optimization Adagrad Adagrad Adagrad SGD SGD

Train times 500 500 500 500 500

Number batches 100 100 100 100 100

Entity neg rate 1 1 1 1 1

Relation neg rate 0 0 0 0 0

Bern 1 1 0 0 0

Alpha 0.5 0.5 0.1 0.001 0.001

Lambda 0.05 0.05 – – 4

Margin – – – 1 1

3 https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE12 3658.
4 https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE14 0627.
5 https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE14 3143.

6 https:// github. com/ IBCNS ervic es/ pyRDF 2vec.
7 https:// github. com/ thunlp/ OpenKE/ tree/ OpenKE- Tenso rflow1.0.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123658
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140627
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143143
https://github.com/IBCNServices/pyRDF2vec
https://github.com/thunlp/OpenKE/tree/OpenKE-Tensorflow1.0
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Evaluation metrics
The evaluation of patient representations in the study 
is conducted on two dimensions: the diabetes predic-
tion performance and the distribution and clustering of 
patient representations.

To quantitatively assess the utility of the patient repre-
sentations, diabetes prediction is formulated as a binary 
classification task, where the goal is to categorize a set 
of patients based on whether they have diabetes or not. 
Therefore, the patient representations are fed into a 
multi-layer perception (MLP) algorithm for training. 
To assess the efficacy of the proposed methodology, we 
analyse the classification performance using four met-
rics: precision, recall, F1-score, and weighted average 
F1-score. These metrics enable a comprehensive assess-
ment of the model’s performance, providing a clearer 
picture of how well the learned representations support 
diabetes prediction.

To gain deeper insights into the distribution and clus-
tering of different patient representations, we employ 
t-SNE  [40], a statistical method for visualizing high-
dimensional data. By projecting the patient embed-
dings into a two-dimensional space, we can visually 
observe how well the learned representations capture 
two clusters, one with diabetic and one with non-diabetic 
patients.8 To quantitatively assess the quality of these 
clusters, we further compute over the original embed-
dings a set of clustering evaluation metrics: Calinski-
Harabasz score  [41], Davies-Bouldin score  [42], and 
silhouette score  [43]. Calinski-Harabasz score evaluates 
the ratio of the sum of between-cluster dispersion and of 
within-cluster dispersion, providing a measure of clus-
ter separation. A higher score indicates that the clusters 
are well-separated. Davies-Bouldin score captures the 
average similarity measure of each cluster with its most 
similar cluster. A lower Davies-Bouldin score suggests a 
better clustering. Silhouette score measures how simi-
lar each patient is to its own cluster compared to other 
clusters. The score ranges from −1 to 1, where a higher 
value indicates better-defined clusters, with points well-
matched to their own cluster and poorly matched to 
neighboring clusters.

Diabetes prediction
To assess the efficacy of the proposed methodology, we 
analysed the diabetes performance on the GSE123658 
dataset by enriching the training data with informa-
tion from the GSE140627 and GSE143143 datasets. The 

GSE123658 dataset was selected due to its suitability for 
creating a test set of adequate size.

Since our approach involves integrating data from mul-
tiple expression datasets into a KG, we compare it against 
two baselines that employ the expression values of the 
patient directly as input for the classifier. The first base-
line exclusively employs data from GSE140627 for train-
ing the classifier. The second baseline represents a more 
simplistic approach to adding information from other 
datasets. It involves merging all measured genes across 
datasets and setting the value to 0 when the patient does 
not have an expression value.

Furthermore, we compare the proposed methodology 
with two established frameworks for omics data integra-
tion: SIMBA9 and MultiMAP10. These frameworks were 
selected for their ability to integrate multiple gene expres-
sion datasets and the availability of Python implementa-
tions. For a fair comparison, the embedding dimensions 
for both frameworks were set to 100, consistent with the 
dimensions used in the KG embedding methods. The 
embeddings generated by these frameworks were sub-
sequently used to train a classifier. Additionally, we also 
compare our methodology to a variant that employs a 
GNN with random initialization, instead of relying on 
KG embedding methods, followed by training a classifier. 
For the GNN input, we adopted the patient-gene links 
strategy to build the gene expression KG, where a link 
between a patient and a gene is created when the patient’s 
expression value for that gene is higher than the average 
expression value calculated either per patient or per gene.

We employed a stratified cross-validation strategy to 
ensure robust evaluation, dividing the GSE123658 data-
set into five folds. The same five folds were used through-
out all experiments. The reported results represent the 
average performance over these five folds. Figure 5 illus-
trates the employed cross-validation strategy.

Table  4 shows the accuracy, precision, recall, f-meas-
ure, and weighted average f-measure for the baselines 
and the proposed methodology. The two baseline results 
using gene expression values directly indicate that add-
ing information in a simple way from other datasets 
already slightly enhances performance. This outcome 
is unexpected since the integration of information from 
diverse datasets is lacking. However, the datasets have 
some genes in common (Fig.  4), which can explain that 
it is still possible to have some advantage in adding more 
examples in the training set. However, by integrating 
the information from other datasets in a KG, it becomes 
evident that training a model with diverse datasets can 

8 It is important to note that we do not perform clustering on the data, 
but exploit metrics that are used for measuring the separation of clusters 
in clustering to understand which representation and embedding methods 
provide the best class separation of diabetic and non-diabetic patients.

9 https:// simba- bio. readt hedocs. io.
10 github. com/ Teich lab/ Multi MAP.

https://simba-bio.readthedocs.io
https://github.com/Teichlab/MultiMAP


Page 9 of 16Sousa and Paulheim  Journal of Biomedical Semantics            (2025) 16:2  

improve significantly the performance of the machine 
learning models in all metrics. For example, the best 
WAF in the gene expression baselines is 0.771, while our 
approach, yields up to 0.870. Therefore, it confirms our 
hypothesis that injecting other expression datasets can 
improve the performance of machine learning models. 
However, there are performance variations depending on 
the embedding method and representation strategy used 
in our approach. With respect to the remaining baselines, 
the omics integration frameworks that do not incorpo-
rate domain-specific knowledge underperform compared 
to directly using gene expression values. This suggests 
that dimensionality reduction has a significant perfor-
mance impact. The lower performance of GNN can be 
attributed to their challenges in handling the heterogene-
ous structure of KGs and the lack of node features in our 
datasets.

Comparing the embedding methods, RDF2vec con-
sistently achieves superior results across a wide range 
of representation strategies, particularly successful 
when paired with patient-gene links approaches. This 
success can be attributed to key aspects of RDF2vec, 
such as its use of random walks, which allow it to cap-
ture long-distance relationships within the KG. In the 
context of gene expression KGs, this is particularly 
important, as much of the relevant information resides 
within the ontology and is not directly attributed to 
the gene expression at hand, but indirectly connected 
via multiple hops. The ability of RDF2vec to learn such 
indirect connections helps to capture the relation-
ships between different genes. These results also align 
with previous studies, which have demonstrated that 
RDF2vec is well-suited for several biomedical applica-
tions, given its capability to handle complex biomedical 
data  [44]. In contrast, translational methods, such as 
TransE and TransR, generally perform less effectively, 

although TransR shows an improvement when com-
bined with a patient-gene links approach. Semantic 
matching methods-specifically ComplEx, distMult, and 
HoLE-demonstrate comparable performance values, 
with HoLE showing a slight advantage when used with 
the patient-gene links approach.

Regarding the representation strategies, the perfor-
mance results in Table  4 indicate that using patient-
gene links for patient representation is particularly 
effective, consistently outperforming other approaches. 
The second-best method, employing the weighted aver-
age of gene embeddings for patient representation, also 
improves performance over some metrics compared to 
the baselines. Conversely, the binning approach per-
forms the worst, with results often falling below base-
line metrics. The binning approach represents gene 
expression values for individual patients through the 
creation of blank nodes in the KG. Each blank node 
corresponds to the expression value of a specific gene 
for a particular patient. In the KG, this is translated into 
connecting a patient to the blank node, which is then 
linked to a gene and the bin that reflects the expres-
sion value. Consequently, genes and their expression 
values are represented as separate triples, which can 
limit the effectiveness of embedding methods. For 
instance, walk-based embedding techniques may strug-
gle because the absence of paths connecting genes with 
their expression values, potentially leading to subopti-
mal performance in downstream tasks. Interestingly, 
prior studies suggested that the weighted average of 
gene embeddings was more successful for diabetes pre-
diction [39], potentially due to the use of datasets with 
fewer genes. In the current experiments, however, this 
approach underperformed, likely because the larger 
gene count reduced its effectiveness. Thus, the gene 
quantity appears to impact the performance of this rep-
resentation strategy significantly.

Fig. 5 Experimental strategy to split the GSE123658 dataset and enrich with data from the GSE140627 and GSE143143 datasets
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Distribution and clustering of patient representations
Figure 6 presents heatmaps displaying the values of three 
clustering metrics (Calinski-Harabasz score, Davies-
Bouldin score, and silhouette score) applied to two 
patient labels: control and disease. The values are com-
puted for patients across the three datasets (GSE123658, 
GSE140627, GSE143143). Each metric evaluates clus-
tering quality differently: higher Calinski-Harabasz and 
silhouette scores indicate better clustering, whereas, for 
the Davies-Bouldin score, lower values suggest stronger 
clustering performance. Despite these differences, the 
observed patterns across the metrics are largely consist-
ent. Analyzing the x-axis, which represents various KG 
embedding methods, three methods - RD2Vec, HolE, 
and TransR - consistently show superior clustering per-
formance. In contrast, Complex, DistMult, and TransE 
yield similar but somewhat worse results. The y-axis 
shows patient representation strategies. Here, a distinc-
tion is generally seen between patient representations 
created by a weighted average of gene embeddings (com-
posite_not-norm, composite_pat-norm, composite_gene-
norm) and those generated directly through embeddings 
in the KG. Notably, RDF2vec deviates from this pattern, 
achieving better clustering performance across a broader 
range of representation strategies. Specifically, RDF2vec 
achieves the best metric values when the KG includes 
patient-gene links when gene expression exceeds the 
average expression level for each patient (direct_linkpat-
gene_patavg). The clustering performance of RDF2vec 
may be attributed to its path-based approach, which 
effectively captures entity relationships and avoids the 
challenges that translational and semantic matching 
methods encounter with learning entity representations, 
rather than ontology class representations.

Another interesting aspect involves comparing clus-
tering metrics between patient representations gen-
erated using the gene expression KG and those based 
directly on gene expression values. Most of the time, 
composite representations that employ gene embed-
dings or representations obtained with RDF2vec 
outperform the baseline approaches in clustering 
performance.

In addition to evaluating the clustering patterns of 
patients labeled as disease and control, it is also insight-
ful to examine how patient embeddings from various 
datasets are being represented within the semantic 
space depending on the strategies of representation. 
Figure  7 visualizes the embeddings obtained with 
RDF2vec using t-SNE across different representation 
strategies. Comparing these plots reveals distinct rep-
resentation behaviors. For example, strategies like com-
posite_gene-norm and direct_kgbin_pat-norm seem to 
effectively align patients from different datasets within 
the same semantic space. In contrast, strategies such as 
direct_kgbin_gene-norm clearly delineate three groups, 
each corresponding to a distinct dataset. Notably, the 
plot using direct_linkpat-gene_patavg strategy aligns 
with findings in Fig.  6, showing increased separation 
between disease and control, while patients remain 
generally clustered by dataset, albeit with some overlap.

Finally, it is essential to compare the evaluation 
through embedding visualizations and clustering met-
rics (Figs. 6 and 7) with the diabetes performance eval-
uation (Table  4). While the patient-gene links strategy 
yielded label separation primarily when combined with 
RDF2vec embeddings, incorporating machine learning 
extended this success across other embedding methods 
as well.

Fig. 6 Heat maps depicting the values for three clustering metrics - a Calinski-Harabasz score (higher is better), b Davies-Bouldin score (lower 
is better), c Silhouette score (higher is better). Each heat map shows the clustering metric values with the x-axis representing different embedding 
methods (RDF2Vec, ComplEx, distMult, HolE, TransE, TransR) and the y-axis representing different strategies for generating patient representation 
using the embeddings (composite_not-norm, composite_pat-norm, composite_gene-norm, direct_kgbin_not-norm, direct_kgbin_pat-norm, 
direct_kgbin_gene-norm, direct_linkpat-gene_patavg, direct_linkpat-gene_geneavg). At the top of each heat map, the clustering metric value 
is provided for patient representations derived directly from gene expression data (GE) as a baseline point
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Conclusion
Several approaches for diabetes prediction rely on the 
analysis of expression data, which provide a detailed 
molecular profile reflecting gene activity and regulation 
and therefore can uncover relationships between specific 
genes and the development of diabetes. However, explor-
ing expression data in machine learning presents its own 

set of challenges. Existing expression datasets related to 
diabetes have a very low number of patients, which can 
be a limitation for data-driven methods such as machine 
learning algorithms. Therefore, the integration of multi-
ple expression datasets can address the issue of limited 
patients and, at the same time, offer a comprehensive 
perspective on the complex factors influencing diabetes. 

Fig. 7 Plots illustrating patient representations derived from different strategies using embeddings (composite_not-norm, composite_pat-norm, 
composite_gene-norm, direct_kgbin_not-norm, direct_kgbin_pat-norm, direct_kgbin_gene-norm, direct_linkpat-gene_patavg, direct_
linkpat-gene_geneavg) are presented. For each strategy, patient representations were reduced to two dimensions using the t-SNE technique. 
Each point corresponds to a patient, with the color representing their label (e.g., control or disease) and the shape denoting the dataset of origin. 
Effective separation of colors in the plots indicates successful differentiation between the two labels, while clustering of points by shape suggests 
a bias in the patient representations based on their dataset of origin
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However, a significant hurdle arises since different data-
sets measure the expression of different genes. Not only 
do they often capture expression for distinct sets of 
genes, but even when they overlap, the experimental con-
ditions under which these genes were measured might 
differ substantially. These differences render the features 
extracted from different datasets incompatible, making 
the integration process harder.

We have developed an approach that enables a com-
prehensive representation of gene expression data from 
different datasets within a KG. Through semantic links 
and domain-specific knowledge, KGs can create a unified 
knowledge space to connect datasets from distinct stud-
ies. In this work, we have explored different strategies 
to include the expression data in the KG and different 
strategies to represent the patients within the KG using 
KG embedding methods. The results of our experiments 
showed that integrating gene expression data in a KG is 
able to improve the performance of diabetes prediction.

The proposed approach is versatile and can be extended 
to the prediction of other diseases. The core steps - such 
as data preprocessing, patient representation, and predic-
tive modeling - are not disease-specific and can be inher-
ently applicable, as long as a gene expression dataset is 
available and the objective involves predicting disease 
presence or absence for a patient. In future research, it 
will be crucial not only to incorporate diverse datasets 
with richer demographic details to further validate our 
findings but also to apply and assess the methodology in 
the context of other diseases beyond diabetes.

In addition, there are also some limitations of the pro-
posed approach that can be addressed in future work. 
One limitation is the potential integration of multimodal 
data. Currently, the KG only incorporates gene expression 
data, but incorporating other types of omics data (e.g., 
proteomics, metabolomics) or even clinical data could 
offer a more holistic view of diseases. Another limitation 
is the formulation of the disease prediction task, which 
is cast as a binary classification problem. This approach 
might oversimplify the complexity of prediction for some 
diseases. Therefore, expanding this methodology to sup-
port multi-class or multi-label classification would allow 
the model to better capture the complexities of disease, 
such as distinguishing between different stages of a dis-
ease (e.g., cancer stages) or identifying various subtypes 
of a disease (e.g., different cancer types).
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