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Abstract

Entity matching is the task of identifying records that refer to the same entity across
different datasets. It is a critical step in the data integration process. Supervised
entity matching methods typically frame the problem as a binary classification task
between record pairs. These methods require labeled record pairs, consisting of
matches and non-matches, for training. Key challenges in entity matching include
high heterogeneity among records referring to the same entity, scarcity of training
data, and the continuous emergence of unseen entities in real-world applications.

This thesis introduces two novel benchmarks for product matching, created us-
ing semantically annotated product identifiers on the Web as distant supervision.
These benchmarks, sourced from thousands of e-shops, are among the largest and
most diverse publicly available product matching datasets. They enable a fine-
grained evaluation of entity matching methods across different entity matching
challenges.

The thesis presents two new neural approaches for entity matching based on
pre-trained language models, which achieve state-of-the-art results on multiple
benchmarks. Unlike existing methods, both approaches exploit entity group in-
formation alongside binary matching labels during training. The first method,
JointBERT, employs a dual-objective fine-tuning strategy. The second method, R-
SupCon, uses supervised contrastive learning and establishes new state-of-the-art
results on multiple benchmarks, proving particularly effective on smaller training
sets. In addition, the thesis explores the usefulness of multilingual Transformers
for improving product matching performance in low-resource languages.

This work further investigates generative large language models for entity match-
ing, comparing them with pre-trained language models. The investigations include
an analysis of prompting techniques, such as zero-shot inference, in-context learn-
ing, and rule-based prompting, as well as fine-tuning for entity matching. The
results highlight the potential of large language models to match or exceed the per-
formance of fine-tuned pre-trained language models, while requiring no or minimal
amounts of training data. Additionally, the experiments demonstrate better gener-
alization to unseen entities compared to pre-trained language models.

The thesis also examines the explainability of matching decisions, introduc-
ing two methods for aggregating local explanations into global insights. The first
method, based on LIME explanations, is broadly applicable to matching classifiers.
The second method uses large language models to produce structured explanations
that can be automatically parsed and aggregated. Finally, the thesis introduces a
method for automating error analysis using large language models. This approach
allows for the automatic generation of error classes, which can help data engineers
in the process of improving entity matching pipelines.



Zusammenfassung

Entity Matching ist die Aufgabe, Datensätze zu identifizieren, die sich auf diesel-
be Entität in unterschiedlichen Datenquellen beziehen. Es handelt sich um einen
kritischen Schritt im Datenintegrationsprozess. Entity Matching Methoden, die auf
überwachten maschinellen Lernverfahren basieren, betrachten die Aufgabe als bi-
näre Klassifikation von Datensatzpaaren. Diese Methoden benötigen gelabelte Da-
tensatzpaare, sowohl Matches als auch Non-Matches, für das Training. Zu den
wichtigsten Herausforderungen zählen die hohe Heterogenität von Datensätzen,
die sich auf dieselbe Entität beziehen, die Knappheit an Trainingsdaten sowie das
kontinuierliche Auftreten unbekannter Entitäten in Anwendungen in der Praxis.

Diese Arbeit führt zwei neue Benchmarks für das Produkt-Matching ein, die
mittels semantisch annotierter Produktkennungen aus dem Web als distant super-
vision erstellt wurden. Diese Benchmarks, die aus tausenden von E-Shops stam-
men, gehören zu den größten und vielfältigsten öffentlich verfügbaren Datensätzen
für Produkt-Matching und ermöglichen eine feingranulare Evaluation von Entity
Matching-Systemen für verschiedene Entity Matching Herausforderungen.

Die Arbeit präsentiert zwei neue neuronale Ansätze für Entity Matching auf
Basis vortrainierter Sprachmodelle, die auf mehreren Benchmarks Werte auf dem
Stand der Technik erreichen. Im Gegensatz zu bestehenden Methoden nutzen bei-
de Ansätze während des Trainings neben den binären Matching-Labels auch En-
titätsgruppierungen. Die erste Methode, JointBERT, verwendet eine Fine-tuning-
Strategie mit zwei Zielen. Die zweite Methode, R-SupCon, nutzt überwachtes Con-
trastive Learning und erzielt Werte auf dem Stand der Technik auf mehreren Bench-
marks, insbesondere bei kleineren Trainingssätzen. Zusätzlich untersucht die Ar-
beit die Nützlichkeit von multilingualen Transformern zur Verbesserung der Produkt-
Matching Leistung in ressourcenarmen Sprachen.

Es werden große generative Sprachmodelle für Entity Matching untersucht und
mit vortrainierten Sprachmodellen verglichen. Prompting-Techniken, wie Zero-
Shot-Inferenz, In-Context Learning und regelbasiertes Prompting, sowie das Fine-
tuning für Entity Matching werden analysiert. Die Ergebnisse zeigen, dass große
Sprachmodelle ohne, oder mit nur minimalen Mengen von Trainingsdaten, die
Leistung von vortrainierten Sprachmodellen erreichen oder übertreffen können und
insbesondere bessere Generalisierung für unbekannte Entitäten ermöglichen.

Schließlich wird die Erklärbarkeit von Matching-Entscheidungen untersucht,
wobei zwei Methoden zur Aggregation lokaler Erklärungen eingeführt werden, um
globale Einblicke zu gewinnen. Die erste Methode basiert auf LIME-Erklärungen
und ist universell anwendbar, während die zweite große Sprachmodelle nutzt, um
strukturierte und automatisch parsbare Erklärungen zu erzeugen. Abschließend
wird eine Methode vorgestellt, die es ermöglicht, die Fehleranalyse mittels großer
Sprachmodelle zu automatisieren und Fehlerklassen automatisch zu generieren,
was Dateningenieuren dabei helfen kann Entity Matching-Prozesse zu verbessern.



iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Published Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I Foundations 15

2 Data Integration and Entity Matching 17
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The Data Integration Process . . . . . . . . . . . . . . . . . . . . 18
2.3 Entity Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Similarity Metrics . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Neural Language Representation . . . . . . . . . . . . . . 33
2.3.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 37

2.4 Additional Terminology . . . . . . . . . . . . . . . . . . . . . . . 39

3 Semantic Annotations on the Web 43
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Markup Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Microdata . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 RDFa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.3 Microformats . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 JSON-LD . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.5 Comparison of Markup Formats . . . . . . . . . . . . . . 47

3.3 Schema.org Vocabulary . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Development of Schema.org . . . . . . . . . . . . . . . . 48
3.3.2 Structure of the Schema.org Vocabulary . . . . . . . . . . 48

3.4 The WDC Schema.org Table Corpora . . . . . . . . . . . . . . . 50
3.4.1 Creation Process . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Content of the 2023 Corpus . . . . . . . . . . . . . . . . 53

v



vi CONTENTS

3.4.3 Comparison to Previous Table Corpora . . . . . . . . . . 54
3.4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . 55

II The Semantic Web as Supervision for Product Matching 57

4 Semantic Annotations as Training Data for Product Matching 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Schema.org Annotated Product Offers in the Common Crawl . . . 65
4.4 Cleansing and Clustering Schema.org Product Data . . . . . . . . 66
4.5 The WDC Training Dataset for Large-Scale Product Matching . . 69
4.6 The WDC Product Data Corpus and Gold Standard . . . . . . . . 72

4.6.1 Creation Process . . . . . . . . . . . . . . . . . . . . . . 72
4.6.2 Benchmark Profiling . . . . . . . . . . . . . . . . . . . . 75

4.7 Training Dataset and Benchmark Evaluation . . . . . . . . . . . . 76
4.7.1 Learning Product Matchers . . . . . . . . . . . . . . . . . 77
4.7.2 Maintaining Matchers to Cover Unseen Products . . . . . 82
4.7.3 Impact of Noisy Training Data . . . . . . . . . . . . . . . 84
4.7.4 Fine-Tuning the BERT Transformer . . . . . . . . . . . . 85
4.7.5 Large-Scale Intermediate Training of BERT . . . . . . . . 87

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 WDC Products: A Multi-Dimensional Entity Matching Benchmark 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 WDC Products: A Multi-Dimensional Entity Matching Benchmark 100

5.3.1 Creation Process . . . . . . . . . . . . . . . . . . . . . . 101
5.3.2 Benchmark Profiling . . . . . . . . . . . . . . . . . . . . 107

5.4 Comparison to Existing Benchmarks . . . . . . . . . . . . . . . . 109
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

III Deep Neural Networks for Entity Matching 113

6 Cross-Language Learning for Entity Matching 115
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 Models and Baselines . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 120
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



CONTENTS vii

7 JointBERT: Dual-Objective Fine-tuning for Entity Matching 123
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 Dual-Objective Training of BERT . . . . . . . . . . . . . . . . . 127
7.4 Method Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4.2 Models and Baselines . . . . . . . . . . . . . . . . . . . 132
7.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . 133
7.4.4 Challenge-specific Analysis . . . . . . . . . . . . . . . . 135

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 R-SupCon: Supervised Contrastive Learning for Entity Matching 139
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3 Supervised Contrastive Learning for Entity Matching . . . . . . . 143

8.3.1 Stage 1: Contrastive Pre-Training . . . . . . . . . . . . . 144
8.3.2 Stage 2: Cross-Entropy Fine-Tuning . . . . . . . . . . . . 146

8.4 Method Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.4.2 Models and Baselines . . . . . . . . . . . . . . . . . . . 148
8.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . 149

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9 Prompt Engineering and Fine-tuning of Large Language Models for
Entity Matching 157
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.4 Zero-shot Prompting . . . . . . . . . . . . . . . . . . . . . . . . 164
9.5 Adding Training Data . . . . . . . . . . . . . . . . . . . . . . . . 168

9.5.1 In-Context Learning . . . . . . . . . . . . . . . . . . . . 169
9.5.2 Learning Matching Rules . . . . . . . . . . . . . . . . . . 172
9.5.3 Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.6 Cost and Runtime Analysis . . . . . . . . . . . . . . . . . . . . . 175
9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

IV Explainability and Error Analysis for Entity Matching 179

10 Explaining Model Decisions for Entity Matching 181
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.3 Explanations for Model Decisions Using Mojito . . . . . . . . . . 185

10.3.1 Generating Instance Explanations . . . . . . . . . . . . . 185



viii CONTENTS

10.3.2 Aggregating Instance Explanations . . . . . . . . . . . . 187
10.4 Explanations for Model Decisions Using an LLM . . . . . . . . . 190

10.4.1 Generating Instance Explanations . . . . . . . . . . . . . 191
10.4.2 Aggregating Instance Explanations . . . . . . . . . . . . 193

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

11 Automatic Error Analysis for Entity Matching 195
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
11.3 Discovery of Error Classes . . . . . . . . . . . . . . . . . . . . . 197
11.4 Assignment of Errors to Error Classes . . . . . . . . . . . . . . . 200
11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

12 Conclusion 203
12.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . 203
12.2 Research Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
12.3 Open Issues and Future Research Directions . . . . . . . . . . . . 208

List of Figures 211

List of Tables 213

Bibliography 215



Chapter 1

Introduction

1.1 Motivation

Entity matching, the process of identifying records that refer to the same entity in
different datasets, is a critical task in data integration [Christen, 2012b,Christophides
et al., 2020, Barlaug and Gulla, 2021]. In an era where data grows exponentially,
organizations increasingly depend on accurate data integration to drive their ana-
lytics, decision-making, and strategic initiatives.

In today’s connected world, entity matching plays a crucial rule in many ar-
eas. In healthcare, entity matching can be used to consolidate patient records from
various hospitals and clinics to provide a unified view, improving patient care and
clinical research. In e-commerce, entity matching can be used to merge product
offers from multiple platforms to deliver a holistic overview of offers to customers.
Companies must integrate data between various departments and locations [Doan
et al., 2012] for various applications such as analytics or customer relationship
management. In the area of finance, the integration of financial data is crucial for
supporting investment decisions.

Furthermore, entity matching is vital in government operations, where it can
help ensure consistency and accuracy in public record management, such as vot-
ing registries and tax records. In academia and research, entity matching facil-
itates the integration of datasets from different studies or experiments, enabling
meta-analyses and increased data utility for scientific exploration. This application
is particularly relevant in fields such as genomics [Gomez-Cabrero et al., 2014],
where data from multiple studies can be combined to improve the understanding
of genetic patterns and influences.

Despite advances in machine learning and natural language processing, which
have significantly influenced current entity matching methods [Christophides et al.,
2020, Barlaug and Gulla, 2021], entity matching remains a challenging problem
due to the diversity, volume, and variability of datasets from different sources.
Figure 1.1 shows an example of the entity matching task and its result for multiple
datasets referencing persons. The following paragraphs explain the challenges and

1



2 CHAPTER 1. INTRODUCTION

characteristics of the entity matching task along this example.
The entity matching process [Christen, 2012b, Christophides et al., 2020] in-

volves finding all pair-wise correspondences (matches) between the records of all
datasets. After discovering the correspondences, they are used to group records
into clusters of records with each cluster containing all records referencing the
same entity (right side of Figure 1.1).

Figure 1.1: An example of entity matching between three datasets. Identifying
all pairs of matching records results in a set of correspondences. These correspon-
dences are subsequently grouped into clusters that contain all records describing
the same entity. Adapted from [Papadakis et al., 2021].

Surface Form Heterogeneity: One of the main challenges in finding correspon-
dences between datasets is the heterogeneity among the surface forms of attribute
values. For example, the person Anthony H. Kane appears with the middle initial
in the top dataset, but without it and with a spelling error (Antony) in the middle
dataset, complicating the identification of a match between these records. Abbrevi-
ations are another source of surface form heterogeneity. The attributes organization
and affiliation in the top and bottom datasets exemplify this form of heterogene-
ity. Furthermore, attributes can be represented using different data types, such as
numerals for the age or citation counts, which can increase ambiguity due to differ-
ent units of measurement. An example is the citations attribute in the middle and
bottom dataset.

Schema Heterogeneity: This type of heterogeneity refers to all differences in
the schemata of the datasets. Useful information for finding correspondences may
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be represented in a compound, below first normal form attribute instead of multiple
attributes across different datasets. Examples are the name in the bottom dataset
versus name and surname in the other datasets, as well as the affiliation in the
bottom dataset that includes additional information about the country, which is
found in the separate attribute country in the middle dataset.

Missing Values: Missing values in the dataset attributes (middle dataset) can
lead to additional ambiguity, given that these attributes are relevant for finding
correspondences. The citations and country attributes in the middle dataset have
missing values which complicates finding correspondences with the bottom dataset
that contains this information as part of the affiliation and #citations attributes.

Value Conflicts: Conflicting values for attributes of records referencing the
same entity are another source of heterogeneity that complicate finding correspon-
dences. Sources for this type of heterogeneity can be errors made when values are
entered into a dataset, e.g. due to human error, a wrong birthdate may be entered
when a new person is added to a dataset. Furthermore, the process of extracting
data from databases can be error-prone and lead to value conflicts. Similarly, errors
in the schema matching step, which is performed before entity matching in the data
integration pipeline (see Section 2.2), can lead to value conflicts. Value conflicts
can further arise because of attribute values changing over time due to the intrinsic
nature of certain attributes, such as the natural process of aging or the number of ci-
tations increasing over the years. The records for the same entity Robert/Bob Smith
in the middle and bottom datasets show different amounts of citations, whereas the
affiliation in the top and bottom datasets also differs for this person as he may have
changed his place of work.

The arrows in Figure 1.1 show the complete pair-wise correspondences be-
tween the records, which are the result of performing the entity matching task as
a pair-wise matching task. After finding these correspondences, the final entity
matching step uses the pair-wise correspondences to group records into clusters
referencing the same entity. The right part of Figure 1.1 shows the final result of
this clustering, with one cluster for each entity containing all records that refer to
this entity. The entity matching process is described in more detail in Section 2.3.

Another important concept in entity matching is the concept of head and tail
entities. Entity 1 (Robert Smith) and Entity 3 (Anthony H. Kane) are described by
three records each in the final clusters in Figure 1.1. The clusters for the other per-
sons contain only two or a single record. Entities described by many records across
datasets are termed head entities, while those covered by few datasets are termed
tail entities. For instance, common products are head entities, whereas niche items
are tail entities. The head and tail distribution impacts the entity matching task,
especially when applying supervised learning methods [Peeters and Bizer, 2021],
as the amount of available training examples is often more limited for tail entities,
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resulting in less diversity in representations, which can lead to difficulty learning
the relevant patterns for the correct matching decision.

Traditional methods for entity matching [Christen, 2012b, Konda et al., 2016],
while effective if datasets are structured, struggle to perform effectively when ap-
plied to datasets characterized by textuality, heterogeneity, and ambiguity [Mudgal
et al., 2018]. The introduction of pre-trained language models (PLMs), such as
BERT [Devlin et al., 2019] and RoBERTa [Liu et al., 2019b], has provided new
avenues for tackling these challenges. Their subsequent adoption by the data in-
tegration community has shown remarkable improvements, specifically for textual
matching tasks [Li et al., 2020]. However, these models require thousands to tens
of thousands of task-specific training data pairs [Li et al., 2020], which are of-
ten not available. Furthermore, they struggle with generalizing to entities unseen
during training, which is a common scenario in dynamic and evolving application
domains [Peeters et al., 2024b].

The advent of large language models (LLMs), such as the GPT and Llama
series, has significantly advanced computational natural language understanding
by demonstrating strong zero-shot and few-shot performance [Brown et al., 2020,
Zhao et al., 2023]. Early studies of these models for entity matching [Narayan
et al., 2022, Peeters et al., 2025, Zhang et al., 2023] show that when adequately
prompted or fine-tuned, they can potentially offer robust solutions for entity match-
ing without the extensive need for labeled data.

Entity matching presents challenges such as high heterogeneity among records
referencing the same entity, and the continuous emergence of unseen entities (e.g.,
new products). Addressing these challenges requires publicly available bench-
marks that explicitly model these difficulties and enable fine-grained evaluation
and comparison of matching methods. The manual collection and annotation of
record pairs for training and evaluating entity matching systems is costly and time-
intensive [Gokhale et al., 2014]. Current publicly available benchmarks for entity
matching do not fulfill the stated requirements as many are small, exhibit limited
diversity, and none explicitly model the mentioned challenges [Primpeli and Bizer,
2020, Peeters et al., 2024b].

This thesis contributes to closing this research gap by introducing two novel
benchmarks for product matching. The benchmarks are created using semantically
annotated product identifiers on the Web as distant supervision to automatically
collect pairs of records and associated labels without requiring large-scale man-
ual annotation. Both benchmarks offer diverse data from thousands of e-shops,
making them two of the largest and most diverse publicly available product match-
ing benchmarks [Peeters et al., 2024b]. Furthermore, both benchmarks allow for
evaluating entity matching systems along explicitly modeled matching challenges.

The thesis introduces two PLM-based methods for neural entity matching that
improve on previous state-of-the-art methods by using entity group information
during the training procedure in addition to pair-wise matching and non-matching
entity descriptions. The proposed and existing methods are compared on the pre-
sented benchmarks and a range of widely used entity matching benchmarks, high-
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lighting the strengths and weaknesses of each method. The presented methods
outperform existing methods in matching scenarios where entities have been seen
during training. The thesis further evaluates multilingual Transformers for product
matching in low-resource scenarios.

This thesis investigates using generative large language models for entity match-
ing. These investigations include comparing the effectiveness of prompting tech-
niques, including zero-shot inference, in-context learning, rule-based prompting,
and fine-tuning. These experiments highlight the potential of LLMs to match or
exceed the performance of fine-tuned PLMs while requiring no or only minimal
amounts of training data. Additionally, the experiments demonstrate better gener-
alization to unseen entities compared to PLMs.

While neural methods for entity matching have advanced the field [Barlaug and
Gulla, 2021], record pair-specific matching decisions of these models cannot be
easily explained due to the black-box nature of neural networks [Sun et al., 2021].
As a result, the explainability of neural methods has become a research focus in
the field of entity matching [Di Cicco et al., 2019, Baraldi et al., 2023, Paganelli
et al., 2022]. Many current methods for explaining entity matching model decisions
focus on explanations for decisions for single record pairs [Di Cicco et al., 2019],
termed local explanations. Other methods focus on explaining matching decisions
of specific types of models, like PLMs [Baraldi et al., 2023,Paganelli et al., 2022].

This thesis contributes two novel methods for aggregating local explanations
into global insights to provide a comprehensive understanding of model behavior.
The first method, based on LIME [Ribeiro et al., 2016] explanations, is broadly ap-
plicable to matching classifiers. The second method uses large language models to
produce structured explanations that can be automatically parsed and aggregated.

Error analysis is an integral part of the process of improving entity matching
pipelines. This task consists of collecting single erroneous matching decisions
and aggregating them into meaningful error classes that allow insights into the
situations in which a matching model fails. Due to the creativity required to cre-
ate meaningful error classes from matching errors, humans have traditionally per-
formed this task. The last part of this thesis presents a method for using LLMs to
generate meaningful error classes and classify erroneous matching decisions auto-
matically.

1.2 Contributions

This section outlines the contributions of this thesis to the state-of-the-art of entity
matching in data integration. The thesis contributes novel entity matching bench-
marks based on Schema.org annotations found on the public Web, novel methods
for supervised entity matching, and novel methods for explaining entity match-
ing decisions and analyzing matching errors. Specifically, the contributions of this
thesis are:
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1. Novel Benchmarks for Entity Matching: This thesis contributes two novel
benchmarks, created using product identifiers found in Schema.org annota-
tions as distant supervision, and their evaluation to the field of benchmarks
for entity matching in data integration. Many widely used publicly available
benchmarks for entity matching exhibit a range of shortcomings, including
small size and lack of diversity regarding matching record pairs [Peeters
et al., 2024b]. Furthermore, they do not allow an evaluation of specific
matching dimensions like the number of corner cases or unseen entities dur-
ing inference. The first benchmark contains over thirty thousand match-
ing pairs, making it the largest entity matching benchmark for the product
domain at the time of its creation. It contains a test set with one specific
matching challenge assigned to each pair, allowing for a more fine-grained
evaluation, which is unavailable in previous benchmarks. The second bench-
mark, as an evolution of these ideas and with a similar size to the first, allows
for the detailed and separate evaluation of the dimensions number of corner
cases, number of unseen entities in the test set, and development set size.
It further allows studying the interactions between these three dimensions.
Both benchmarks expand the current set of publicly available benchmarks as
two of the largest available benchmarks while supporting the investigation
of specific matching challenges.

2. Cross-Lingual Fine-Tuning for Entity Matching: The Transformer archi-
tecture has been successfully used in multiple entity matching methods [Bar-
laug and Gulla, 2021] focusing on mono-lingual matching. In contrast, its
application on cross-lingual entity matching tasks has not been investigated.
This thesis contributes a comparison of mono- and multi-lingual Transformer
models on a cross-lingual product matching task to the field of supervised en-
tity matching. The investigated task consists of matching English and Ger-
man product offers for phones from the Web. The results demonstrate that
supplementing German training data with English training data improves
product matching performance in German.

3. JointBERT - Method for Dual-Objective Fine-Tuning for Entity Match-
ing: The task of entity matching using supervised machine learning methods
has traditionally been approached by training a binary classifier for compar-
ing two records [Fellegi and Sunter, 1969, Christen, 2012b, Christophides
et al., 2020]. Given a pair of records, the learned model decides whether
they match. Datasets used for training these models can contain multiple
records describing the same entity. These groups of records are known in
some cases. For example, GTIN or MPN numbers for products, DUNS num-
bers for companies, or ISBN numbers for books can be used to identify such
groups. Existing matching methods do not directly exploit the knowledge
that multiple records refer to the same entity and only learn from pairs of
records. This thesis contributes the JointBERT method to the field of super-
vised entity matching, which uses these groups as part of a second objective
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during model training. JointBERT is a multi-objective method as, in addition
to the binary matching objective, it is trained with the secondary objective of
predicting the individual entity groups to which both records in a pair belong.
The evaluation of the method shows that this dual-objective architecture im-
proves matching results in entity matching scenarios where multiple records
for the same entity are available.

4. R-SupCon - Supervised Contrastive Learning for Entity Matching: The
Transformer architecture is often used in existing methods for entity match-
ing. However, it is almost exclusively trained using a cross-entropy loss [Li
et al., 2020, Yao et al., 2022]. This thesis contributes the method R-SupCon
to the field of supervised entity matching, which applies supervised con-
trastive learning during the training procedure. The evaluation shows that a
supervised contrastive loss improves results over previous methods that use
a cross-entropy loss if only a small amount of training pairs are available and
the task does not contain unseen entities.

5. Prompt Engineering and Fine-tuning for Generative Large Language
Models for Entity Matching: Existing state-of-the-art entity matching sys-
tems [Barlaug and Gulla, 2021] are often based on smaller PLMs like BERT
and RoBERTa. This thesis contributes a comparison of the effectiveness of
various prompting techniques using LLMs to the field of entity matching.
These include zero-shot and few-shot prompting as well as prompting with
handwritten and automatically learned rules. The thesis further contributes
an evaluation of fine-tuning LLMs for entity matching. The experiments
compare hosted closed-source and local open-source LLMs and show they
can reach or exceed the matching performance of fine-tuned PLMs with no
or only a limited amount of training pairs. Additionally, the experiments
show better generalization to unseen entities compared to PLMs.

6. Novel Methods for Explaining Entity Matching Decisions and Analyzing
Matching Errors: This thesis contributes two novel methods for aggregat-
ing instance-level explanations into global-level model insights to the field
of explaining entity matching model decisions. The first method is based
on generating global insights by aggregating importance/relevancy weights
via domain-specific word classes and is applicable to any matching classifier
that can be explained with the LIME [Ribeiro et al., 2016] method. The sec-
ond method presented in this thesis leverages an LLM to generate structured
explanations for its decisions that can be automatically parsed and aggre-
gated into global-level insights as a ranked list of attributes with average
importance scores that the LLM bases its decisions on. The thesis further
contributes a method to automatically generate error classes from LLM-
generated structured explanations of erroneous matching decisions. Before-
hand, human annotators had to perform this creative task manually.
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1.3 Outline

This section provides an overview of the structure of this thesis. The thesis consists
of five parts. The first part introduces the foundational concepts of data integration,
entity matching, and semantic annotations on the Web. The second part describes
how Schema.org annotations can be used as distant supervision to automatically
create labeled pairs for entity matching and introduces two benchmarks derived
from Schema.org annotations. The third part describes novel neural methods and
their evaluation on the entity matching task. The fourth part presents methods for
explaining model decisions in entity matching and automating error analysis.

PART I: Foundations

The first part of the thesis introduces foundational concepts of data integration, en-
tity matching, and semantic annotations on the Web. These concepts form the basis
for all created benchmarks, methods, and experiments described in the following
chapters.

Chapter 2: Data Integration and Entity Matching: This chapter presents the
data integration process with a focus on the entity matching step, which is the main
topic of this thesis. The sections define basic concepts like entity and entity match-
ing, introduce the entity matching workflow, similarity metrics, evaluation metrics,
and the representation of records as embeddings using Word2Vec and language
models, specifically PLMs, and LLMs. The last section of the chapter defines ad-
ditional terminology used throughout the thesis.

Chapter 3: Semantic Annotation on the Web: This chapter presents the
concept of semantic annotations on the Web. The sections discuss the history
of semantic annotations and present various formats for annotating on the Web.
Schema.org is introduced, which is the main vocabulary for semantic annotations
used in the following sections of this thesis. Finally, two table corpora created from
Schema.org annotations during the work on this thesis are introduced, which can
be used as a source of domain data and for the creation of benchmarks, amongst
other things.

PART II: The Semantic Web as Supervision for Product Matching

The second part of the thesis describes a process for using Schema.org annota-
tions in the Common Crawl to automatically cluster product offers referring to the
same product by leveraging annotated product identifiers on web pages. It fur-
ther introduces the WDC LSPM benchmark created from this clustering as well
as an experimental evaluation of the benchmark for training product matchers us-
ing Schema.org data. These experiments include an analysis of performance on
unseen entities, additional fine-tuning for such entities, the impact of noise in the
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training data, and a large-scale fine-tuning experiment for the BERT Transformer
using millions of product offer pairs automatically generated from Schema.org an-
notations. In the second chapter of this part, the WDC Products benchmark is
introduced, an evolution of the WDC LSPM benchmark sourced from more recent
data. It includes multiple variants for investigating three matching challenges.

Chapter 4: Semantic Annotations as Training Data for Product Matching:
This chapter presents a process for using product identifiers in Schema.org an-

notations found in the Common Crawl to automatically cluster product offers re-
ferring to the same product. This clustering is subsequently used to create the
WDC LSPM benchmark, which was the largest and most diverse product matching
benchmark compared to publicly available benchmarks at the time of its creation
The benchmark addresses the need for larger and more diverse entity matching
benchmarks. The WDC LSPM benchmark is subsequently used to train and eval-
uate product matching systems, showing the usefulness of automatically created
training data from Schema.org annotations. These experiments include the main-
tenance of matchers for new unseen products and the impact of increasing label
noise in the training data. Finally, millions of the automatically generated training
pairs from the clustering are used to intermediately train the BERT Transformer,
further increasing its performance on the WDC LSPM benchmark, which under-
lines the usefulness of the clustering for automatically creating large amounts of
training data.

Chapter 5: WDC Products: A Multi-Dimensional Entity Matching Bench-
mark: This chapter introduces the WDC Products benchmark, created from a
clustering of Schema.org annotated products in a more recent version of the Com-
mon Crawl compared to WDC LSPM. The benchmark has a similar size compared
to WDC LSPM making it one of the largest publicly available benchmarks. WDC
Products originates from more sources than LSPM, resulting in higher diversity
than any publicly available product matching benchmark. WDC Products further
provides multiple variants of the benchmark that allow a separate investigation
along three matching challenges and how these challenges interact with each other.
These challenges are (1) the amount of corner cases, (2) the number of unseen en-
tities in the test set, and (3) the amount of available development set pairs. This
novel structure of the benchmark makes it a unique contribution to the field of en-
tity matching, as no existing publicly available benchmarks allow for this kind of
evaluation along multiple matching challenges.

PART III: Deep Neural Networks for Entity Matching

The third part of the thesis presents methods for entity matching based on neu-
ral networks. The chapters of this part discuss cross-language learning for entity
matching and introduce the PLM-based dual-objective method JointBERT and the
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contrastively trained R-SupCon method. Both methods use entity group informa-
tion in combination with pair-wise labels during training, resulting in state-of-the-
art performance on multiple entity matching benchmarks. The final chapter of this
part investigates prompting and fine-tuning of LLMs. It shows that this model type
can achieve or exceed the performance of PLMs with no or only a limited amount
of training examples and further achieves a better matching performance on unseen
entities than PLMs.

Chapter 6: Cross-Language Learning for Entity Matching: This chapter
presents an evaluation of mono- and multi-lingual PLMs like mBERT1 and XLM-
RoBERTa [Conneau et al., 2020] on cross-lingual product matching. The exper-
iments show that multi-lingual Transformer models can achieve high matching
performance on a low-resource language, German in these experiments, by sup-
plementing the available German training data with additional training data from
the high-resource language English compared to training with only the available
German training data.

Chapter 7: JointBERT: Dual-Objective Fine-tuning for Entity Matching:
This chapter presents JointBERT, a dual-objective fine-tuning method for entity
matching. Compared to existing single objective methods for entity matching
based on PLMs, JointBERT is trained with a secondary objective predicting the
entity groups both records in a training pair refer to in addition to the binary
match/non-match objective. The experimental evaluation shows that JointBERT
outperforms single-objective methods in entity matching scenarios where multiple
records are available per entity in the training set.

Chapter 8: R-SupCon: Supervised Contrastive Learning for Entity Match-
ing: This chapter presents R-SupCon, a method for entity matching based on
PLMs that is trained with a supervised contrastive loss. The method uses available
entity group information or derives it from available labeled training pairs in com-
bination with a source-aware sampling strategy to avoid label noise. In the first
step, the PLM RoBERTa is pre-trained with this method. In the second step, the
trained model is frozen, and a classification layer is fine-tuned for the final clas-
sification of record pairs as match or non-match. The experiments show that this
method improves the state-of-the-art on a set of entity matching benchmarks com-
pared to previous methods in seen scenarios and is especially effective if training
data is limited.

Chapter 9: Prompt Engineering and Fine-tuning of Large Language Mod-
els for Entity Matching: This chapter compares the effectiveness of prompt-
ing techniques for entity matching using LLMs, including zero-shot and few-shot

1https://github.com/google-research/bert/blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md
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prompting, prompting with written rules, and automatically learned rules. The
chapter further presents results for fine-tuning LLMs for entity matching. The ex-
perimental results show that LLMs can achieve the same performance as PLMs
with no or only a limited amount of training pairs and also achieve a better match-
ing performance on unseen entities than PLMs.

PART IV: Explainability and Error Analysis for Entity Matching

The fourth and final part of the thesis presents methods for explaining model deci-
sions of entity matching models and a method for automating error analysis with
LLM-based matchers. The former methods are based on aggregating explanations
for matching decisions for single record pairs into global insights. The first pre-
sented method aggregates domain-specific word classes in combination with im-
portance/relevancy weights generated by a method based on LIME [Ribeiro et al.,
2016] explanations. The second presented method leverages an LLM to create
structured explanations for its decision, which can subsequently be automatically
parsed and aggregated to global insights. The final chapter of this part introduces
a method for using LLMs to automatically generate meaningful error classes for
error analysis based on erroneous matching decisions and associated structured
explanations, which can help data engineers improve entity matching pipelines.

Chapter 10: Explaining Model Decisions for Entity Matching: This chapter
presents two methods for aggregating explanations of model decisions for single
record pairs into global insights. The first method is based on local Mojito [Di Ci-
cco et al., 2019] explanations, an adaptation of LIME [Ribeiro et al., 2016] for
entity matching. The explanations assign an importance score to each token in
the attributes of a record pair. The proposed method categorizes words into a set
of domain-specific word classes, which subsequently allows for the aggregation
of importance scores to a global level, showing the aptitude of PLM-based en-
tity matching models for recognizing and weighting important word classes like
model numbers compared to a previous RNN-based method. The second method
leverages an LLM to generate structured explanations for its decisions, containing
attributes and associated importance scores. This structure can subsequently be
exploited to automatically parse the explanations and aggregate importance scores
globally by attributes similar to the first method.

Chapter 11: Automatic Error Analysis for Entity Matching: This chapter
presents a method for using an LLM to automatically perform the creative task of
creating a set of error classes for error analysis. The LLM uses the matching errors
made together with the associated structured explanations to create these classes.
Human annotators had to perform this task beforehand. The experiments in this
chapter further show that the LLM can sort the errors into the correct error classes
with high accuracy, making this method useful for supporting data engineers work-
ing on entity matching pipelines.
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Chapter 12: Conclusion: This chapter summarizes the contributions of this
thesis and discusses the research impact of this thesis by discussing research pub-
lications that have used the benchmarks and methods described in this thesis. The
last section of this chapter presents directions for future work.

1.4 Published Work

The research work presented in this thesis has previously been presented at interna-
tional conferences and workshops. Each chapter of this thesis explicitly mentions
the relevant publications in its introduction. The following list presents an overview
of all publications that have contributed to this thesis.

• The Semantic Web as Supervision for Product Matching

– [Primpeli et al., 2019] Primpeli, A., Peeters, R., and Bizer, C. (2019).
The WDC Training Dataset and Gold Standard for Large-Scale Prod-
uct Matching. In Workshop on e-Commerce and NLP, Companion Pro-
ceedings of the 2019 World Wide Web Conference, pages 381–386.

– [Bizer et al., 2019] Bizer, C., Primpeli, A., and Peeters, R. (2019).
Using the Semantic Web as a Source of Training Data. Datenbank-
Spektrum, 19(2):127–135.

– [Peeters et al., 2020a] Peeters, R., Bizer, C., and Glavaš, G. (2020a).
Intermediate Training of BERT for Product Matching. In CEUR Work-
shop Proceedings, volume 2726, pages 2–6.

– [Peeters et al., 2020b] Peeters, R., Primpeli, A., Wichtlhuber, B., and
Bizer, C. (2020b). Using schema.org Annotations for Training and
Maintaining Product Matchers. In Proceedings of the 10th Interna-
tional Conference on Web Intelligence, Mining and Semantics, pages
195–204.

– [Peeters et al., 2024a] Peeters, R., Brinkmann, A., and Bizer, C.
(2024a). The Web Data Commons Schema.org Table Corpora. In Com-
panion Proceedings of the ACM Web Conference 2024, pages 1079–1082.

– [Peeters et al., 2024b] Peeters, R., Der, R. C., and Bizer, C. (2024b).
WDC Products: A Multi-Dimensional Entity Matching Benchmark. In
Proceedings of the 27th International Conference on Extending Database
Technology, pages 22–33.

• Methods based on Pre-Trained Language Models for Entity Matching

– [Peeters and Bizer, 2021] Peeters, R. and Bizer, C. (2021). Dual-
Objective Fine-tuning of BERT for Entity Matching. Proceedings of
the VLDB Endowment, 14(10):1913–1921.
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– [Peeters and Bizer, 2022a] Peeters, R. and Bizer, C. (2022a). Cross-
Language Learning for Product Matching. In Companion Proceedings
of the Web Conference 2022, pages 236–238.

– [Peeters and Bizer, 2022b] Peeters, R. and Bizer, C. (2022b). Su-
pervised Contrastive Learning for Product Matching. In Companion
Proceedings of the Web Conference 2022, pages 248–251.

• Prompt Engineering and Fine-tuning of Generative Large Language
Models for Entity Matching

– [Peeters and Bizer, 2023] Peeters, R. and Bizer, C. (2023). Using
ChatGPT for Entity Matching. In Proceedings of the 27th Conference
on Advances in Databases and Information Systems, pages 221–230.

– [Peeters et al., 2025] Peeters, R., Steiner, A., and Bizer, C. (2025).
Entity Matching using Large Language Models. In Proceedings of the
28th International Conference on Extending Database Technology.
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Chapter 2

Data Integration and Entity
Matching

2.1 Background

Information systems are ubiquitous in today’s connected and fast-moving society.
They are essential for the creation of business value, the management of data in the
health sector, and the support of research at scientific institutions and universities.
As a result, large amounts of data are generated worldwide. In 2020, approximately
64 zettabytes of data were created, consumed, and stored, with projections for 2025
reaching 175 zettabytes of global data usage [Reinsel et al., 2018]. Although only
2% of the 64 zettabytes used in 2020 were stored and retained in 2021, the resulting
amount of stored data is still greater than 1 zettabyte.

In addition to handling these large amounts of data, different types of hetero-
geneity between datasets from different data sources complicate data linkage be-
tween sources [Elmagarmid et al., 2007, Christen, 2012b]. The latter is a highly
relevant process for any organization trying to extract value from data. For ex-
ample, larger companies maintain various databases across different departments.
A holistic view of the data requires the integration of the different datasets into
one view or dataset for analytics purposes and to support strategic or operational
decisions. This process, which consists of multiple steps, is called data integration.

This chapter introduces the basic concepts and methods of the data integration
process with a special focus on the entity matching step, which is the main topic
of this thesis’ contributions. Section 2.2 introduces the full data integration pro-
cess for consolidating multiple datasets into one single integrated view or dataset.
Section 2.3 focuses specifically on the entity matching step of the data integra-
tion process and introduces relevant definitions and evaluation metrics. Section 2.4
clarifies additional terminology used throughout the thesis.

17
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2.2 The Data Integration Process

The data integration process aims to consolidate data from multiple sources into a
single integrated, complete, and concise view or dataset [Bleiholder and Naumann,
2009]. For a dataset to be complete per this definition, all the entities described
in the original datasets must also be contained in the integrated dataset. For a
dataset to be concise, only one record in the integrated dataset should describe
each entity. Formally, the terms record and entity are defined as [Christophides
et al., 2015, Papadakis et al., 2021]:

Definition 1 (Record) A record ri of a dataset D is defined as ri “ tpaij , vij q :
aij P N, vij P V u, with N the set of attribute names, and V the set of attribute
values in D with ri P D.

Definition 2 (Entity) An entity en is represented by a set of records, i.e. en “

tr1, ..., rnu, withtr1, ..., rnu describing the same object.

This thesis also uses the term entity description which is not formally defined
in the literature. For the purposes of this thesis, an entity description refers to a
record that is characterized by high textuality in the values of its attributes. In en-
tity matching use-cases, for example, when matching products across e-shops, the
entities are often described by highly textual attributes instead of a more structured
format as found in relational databases.

The term dataset used in this section refers to any kind of collection of records
referencing entities that are described by the same set of attributes. These sets
of attributes do not necessarily overlap between different datasets, nor do values
referencing the same attribute of the same entity across datasets have to be exactly
the same. These circumstances show the main challenge of the data integration
process, which is resolving different types of heterogeneity between datasets from
different data sources along the steps of the process. These kinds of heterogeneity
can be divided into three types [Özsu and Valduriez, 2020]:

• Syntactical Heterogeneity is the different representation of data in datasets
from different sources. For example, data may use different encodings, such
as ASCII or Unicode, across different data formats, such as CSV or XML.

• Structural Heterogeneity refers to differences in how the data is repre-
sented across data sources with respect to the schemata of the underlying
data structures. For example, the name of a person can be described by a
single attribute name in one dataset while it is represented by first name and
last name in another.

• Semantic Heterogeneity refers to all differences concerning the meaning of
the data and schema values. Examples are synonyms, i.e., values that have
the same meaning but different surface forms, or homonyms, referencing
values that have the same surface form but actually different meanings in
other datasets.
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Figure 2.1: The data integration process, adapted from [Lehmberg, 2019].

The data integration process aims to bridge all these types of heterogeneity
along its steps to create a concise and complete unified representation of the data.
Figure 2.1 gives an overview of the data integration process and its steps. The first
two steps of the process, schema matching and entity matching, are matching steps
that involve finding overlaps across data sources.

Schema Matching

The first step in the process, commonly referred to as Schema Matching or Schema
Alignment [Rahm and Bernstein, 2001], deals with structural heterogeneity be-
tween datasets from different data sources. Specifically, the outcome of the schema
matching task is a unified schema for the integrated view or dataset that represents
the attributes found in the different data sources. To achieve this, attribute columns
from all schemata need to be normalized and matched across the datasets, so that
each dataset from each source is consequently represented by the same schema.
Methods and research directions for the schema matching problem are discussed
in various surveys [Rahm and Bernstein, 2001, Bernstein et al., 2011, Gal, 2011].
Formally, schema matching between data sources is defined as [Rahm and Bern-
stein, 2001]:
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Definition 3 (Schema Matching) Given multiple schemata SA, SB , ... SN , for
multiple data sources A, B, ... N , find the correspondences CS Ď AˆBˆ ...ˆN
that map each attribute in each data source to its semantically equivalent attribute
in the other data sources.

Entity Matching

The second matching step, after the alignment of the schemata, is entity match-
ing, often also referred to as entity resolution, record linkage or identity resolu-
tion [Fellegi and Sunter, 1969, Christen, 2012b, Christophides et al., 2015, Barlaug
and Gulla, 2021]. Christophides et al. [Christophides et al., 2015] make a dis-
tinction between the terms entity resolution and entity matching, the latter being
a substep of the former in their definition. Entity resolution encompasses the en-
tity matching step and an optional upstream blocking or filtering step (more details
are given in Section 2.3) in their definition. For the purposes of this thesis, both
terms are used interchangeably and refer to the full process that includes both the
blocking and matching steps.

The goal of the entity matching step is to match all records across datasets that
reference the same entity and deals with resolving heterogeneity across records
from different sources to achieve that goal. Entity matching is the main focus of
this thesis, as all contributions relate to this step of the data integration pipeline.
Entity matching methods, research directions, and the relevant definitions are de-
scribed in further detail in Section 2.3. Entity matching between multiple sources
can be defined as [Christophides et al., 2015]:

Definition 4 (Entity Matching) Given multiple data sources A, B, ..., N , let
EDesc “ tr1, ..., rxu be the set of entity descriptions contained in all sources. Fur-
ther, let M : EDesc ˆ EDesc Ñ ttrue, falseu be a binary matching function. An
entity matching of EDesc aims to create a partitioning P “ tp1, ..., pnu of EDesc

where all p P P refer to distinct real-world objects and each p contains all entity
descriptions referring to p from EDesc.

Entity matching is often preceded by a blocking or filtering step [Papadakis
et al., 2020], which reduces the necessary amount of comparisons between pairs
of records as this number grows quadratically with the number of records in each
dataset.

Both matching steps, schema matching, and entity matching, in a pair-wise for-
mulation, require defining a binary decision function M that maps the comparison
of column/record pairs to a binary output space. Let p be a pair of records or a
pair of attributes from different datasets, then for both tasks it is necessary to find
a decision function M such that:

Mppq Ñ

#

1 if matching

0 otherwise
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Defining the decision function M is difficult due to heterogeneity in the values
and attributes of the datasets as presented above. It can further happen that the
semantics are not fully captured by schema and records [Miller et al., 2000] but
are implicit. The next section discusses these sources of difficulty for finding the
decision function together with examples for the entity matching task in detail.

Data Fusion

The final step of the data integration process is data fusion [Naumann et al., 2006,
Bleiholder and Naumann, 2009, Dong and Naumann, 2009]. This step requires
aligned schemata and matching record correspondences between all datasets to
create an integrated, complete, and concise view or dataset. The main challenge
of the data fusion step is fusing the records referencing the same entity across all
datasets. As a result, data fusion also faces the problem of semantically heteroge-
neous values similar to the previous steps in the data integration pipeline. Although
it is decided which values for which attribute refer to the same entity, it is still to be
decided which of the different representations of these equivalent values should be
selected for the fused records in the fused dataset in a step called conflict handling.

The conflict handling step of data fusion can be approached using three dif-
ferent strategies according to Bleiholder and Naumann [Bleiholder and Naumann,
2009]:

• Conflict Ignorance: Data fusion with conflict ignorance leaves the decision
of what values to use or discard to the application or user. Source datasets can
be merged using a union operator for all values without discarding anything
in this strategy. Assuming a perfect matching result in the schema matching
and entity matching steps, the resulting view or dataset of this type of conflict
handling will be complete but not necessarily concise.

• Conflict Avoidance: Data fusion with conflict avoidance employs functions
that make a decision for which value to keep and which to discard without
comparing the actual values. As a result, when employing this strategy, it is
unclear if there is a conflict between values in the first place, as this does not
play a role for the decision. An example of conflict avoidance are functions
that always choose the value from a preferred source.

• Conflict Resolution: Data fusion with conflict resolution considers the ac-
tual values of the records to be fused and employs a variety of conflict reso-
lution functions in case all values of matching records are not equal. These
are deciding functions like choice by majority vote or mediating functions
like taking the mean value of all conflicting values for one record.

After data fusion, the original datasets are represented by a single view or
dataset. Assuming perfect results in the matching and fusion steps, this unified
representation is concise and complete, although this is rarely achievable in real-
world scenarios due to errors along the integration pipeline. Such errors can further
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propagate along the pipeline, making each subsequent step more difficult. For ex-
ample, wrong correspondences generated during the entity matching step can lead
to erroneous conflict resolution if values from actual non-matching records are
fused.

This thesis focuses on benchmarks, methods and evaluations specifically for
the entity matching step of the data integration pipeline. The following section in-
troduces entity matching in more detail, presenting the process, similarity metrics,
neural language model representations and relevant evaluation metrics.

2.3 Entity Matching

The goal of the entity matching step of the data integration pipeline is to find all
entity descriptions referring to the same real-world entity in two data sources, or
across many sources. Different entity matching settings are defined as follows in
the literature [Christophides et al., 2020]:

• Dirty EM: Refers to the deduplication of a dataset from a single source that
contains duplicates.

• Clean-Clean EM: Refers to the setting of matching records between two
datasets from two sources that are themselves duplicate-free.

• Multi-Source EM: In this setting, datasets from more than two sources need
to be matched.

Although these definitions encompass a range of possible matching scenarios,
they do not cover all settings. For example, Dirty-Clean and Dirty-Dirty scenarios
with exactly two datasets are not covered by these definitions but are found in some
of the widely used benchmark datasets for evaluating entity matching (see Chap-
ter 8 for examples). Furthermore, multi-source entity matching can be considered
in the dirty and clean scenarios similar to the two-source definitions. This thesis
redefines these entity matching scenarios to encompass a wider range of real-word
scenarios:

• Dirty EM: Refers to the setting of matching records in a dataset from a
single data source that contains duplicates.

• Clean/Dirty Two-source EM: Refers to the setting of matching records be-
tween datasets from two sources that are internally duplicate-free (clean) or
one or both are not internally deduplicated (dirty).

• Clean/Dirty Multi-source EM: Refers to the setting of matching records
between datasets from more than two sources that are internally duplicate-
free (clean) or one or more are not internally deduplicated (dirty).

From the mentioned scenarios, the contributions of this thesis are evaluated
based on the clean/dirty two-source and clean/dirty multi-source scenarios.
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2.3.1 Workflow

Figure 2.2 shows the workflow of the entity matching step in data integration.
The input is made up of one or more datasets, which have aligned schemata as
a result of the previous schema matching step. The inputs first go through a pre-
processing procedure, followed by a blocking step. After the blocking step, the
entity matching part of the workflow comprises the record pair comparison and
record pair classification steps which result in a set of correspondences between
the datasets [Christen, 2012b]. The final step performs a clustering of these cor-
respondences into entity clusters [Hassanzadeh et al., 2009, Saeedi et al., 2017],
with ideally all records referring to the same entity ending up in the same cluster.
The following paragraphs give an overview of each step with a special focus on the
entity matching part of the workflow.

Figure 2.2: The entity matching workflow. Adapted from [Christen, 2012b].

Pre-Processing Step

The pre-processing step involves processing of the input records in a way that facil-
itates the later stages of the workflow. Pre-processing usually includes data trans-
formation and standardization steps like value normalization, lower-casing, and
string normalization to reduce heterogeneity among the values between datasets.
The purpose of the pre-processing step is to facilitate finding a binary decision
function for matching as described above. An overview of common pre-processing
methods is available in [Christen, 2012b,Elmagarmid et al., 2007,Sarawagi, 2008].

Data transformation procedures include (1) removal of unwanted characters
and stopwords, (2) expansion of abbreviations and correction of misspellings, and
(3) segmentation of longer attributes into shorter attributes [Christen, 2012b]. An
example of the latter is the separation of full address information into single at-
tributes, e.g., street, housenumber, city, etc.

Data standardization steps ensure that the data in all datasets conforms to a
pre-defined standard [Elmagarmid et al., 2007], e.g. a certain representation for
addresses or dates is enforced across all datasets to facilitate comparison in the
next steps.

Although most of these pre-processing steps have proven valuable for the en-
tity matching workflow [Barlaug and Gulla, 2021], recent entity matching methods
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for textual data are based on pre-trained language models. These language mod-
els provide their own pre-processing and tokenization functions that assume no
prior in-depth processing in an effort to keep data processing equivalent to the pre-
processing applied to the pre-training data of the models [Devlin et al., 2019]. In
these cases, applying extensive pre-processing beforehand may lead to lower per-
formance of the following steps, e.g., lower-casing when using a cased language
model will impact the resulting embeddings and skew contextual information pos-
sibly hurting matching performance (see Section 2.3.3).

Blocking Step

The next step in the entity matching workflow is the blocking step [Christophides
et al., 2015]. This step is optional and aims to reduce the computational complexity
of the following entity matching step. As entity matching is defined as a matching
task between pairs of records, with increasing amounts of records across datasets,
the cross product of pairs of records grows quadratically and becomes computa-
tionally intractable [Christen, 2012b, Christophides et al., 2020].

The blocking step is applied to avoid comparing every possible pair combina-
tion among the datasets. To this end, blocking methods usually provide an index-
ing function that is applied to every record and returns a blocking key [Bilenko
et al., 2006] that is then used by an equality function that checks if two records are
found under a common blocking key. As a result, only record pairs with a com-
mon blocking key pass the output of the blocking function and are compared in the
entity matching step.

While easing the computational complexity problem, this step introduces the
potential to negatively impact the following entity matching and data fusion steps.
Finding good blocking keys is a non-trivial problem [Papadakis et al., 2020] and
leads to a trade-off between eased computational requirements and missing true
matches among the datasets. If two matching records do not end up in the same
block, e.g., due to heterogeneity in their values that cannot be resolved during pre-
processing, this record pair will never be matched and subsequently not fused in
the later stages thus leading to redundancy in the final integrated view or dataset.

Christen [Christen, 2012b] divides blocking methods into four families: (1)
standard blocking, (2) sorted neighborhood blocking, (3) q-gram-based indexing,
and (4) canopy clustering. In recent years, deep learning-based blocking methods
have become more prominent, which often do not follow the paradigm of blocking
keys but instead directly leverage methods similar to deep entity matching sys-
tems [Papadakis et al., 2022]. These are based on distributional representations in
the embedding space combined with a nearest-neighbor search in that space to find
pairs of records to be compared. An overview of blocking methods can be found in
the surveys of O’Hare et al. [O’Hare et al., 2019], Papadakis et al. [Papadakis et al.,
2020] and Steorts et al. [Steorts et al., 2014]. Papadakis et al. further performed
a comparison of blocking key-based and nearest-neighbor-based approaches [Pa-
padakis et al., 2023b]. More recent approaches based on deep learning have turned
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to using contrastive learning for blocking [Brinkmann et al., 2024, Mugeni and
Amagasa, 2022].

This thesis does not investigate the blocking problem, as all contributions focus
on the matching step after the blocking has already been performed. All benchmark
datasets used in this thesis already provide pair-wise training, validation and testing
splits after blocking.

Matching Step

The matching step is the central part of the entity matching workflow. It consist of
two steps, (1) record pair comparison and (2) record pair classification [Christen,
2012b]. It takes a set of record pairs as input and must provide a decision function
that assigns either matching or non-matching to each pair. For this purpose, the
matching algorithm needs to compare both records using some form of feature
representation, resulting, e.g., in a similarity vector for each record pair [Christen,
2012b] in the record pair comparison step. The final output of this step, is a set of
correspondences based on the identified matches between record pairs.

The record pair classification step makes a decision for each record pair given
the similarity representation of the pair [Christen, 2012b]. Depending on the match-
ing method, this classification step can be a separate step or can be integrated into
the method. The former is usually the case for rule-based and unsupervised entity
matching methods, while supervised methods perform the classification step to-
gether with the record pair comparison as part of the model [Christen, 2012b, Bar-
laug and Gulla, 2021]. Supervised non-neural methods usually train a machine
learning model on a labeled set of matching and non-matching record pairs and
automatically learn the similarity representation of a record pair and the decision
threshold for record classification from manually created features as part of the
model from the training data [Christen, 2012a]. Commonly used models for this
task are decision trees, support vector machines, logistic regression and random
forests [Elfeky et al., 2002, Christen, 2008, Konda et al., 2016].

For supervised neural methods, the process is similar to non-neural methods
with the difference that the feature engineering step is part of the model archi-
tecture (see Section 2.3.3). Some models create similarity vectors attribute-wise
before combining them [Mudgal et al., 2018] while more recent methods based
on language models of the Transformer family [Brunner and Stockinger, 2020, Li
et al., 2020, Peeters and Bizer, 2021] usually work with the serialization of com-
plete records or record pairs even at the lowest level of the network as part of the
contextualization mechanism of these models (see Section 2.3.3). The final clas-
sification step of the combined similarity vectors of a record pair in Transformer-
based methods like BERT [Devlin et al., 2019] or RoBERTa [Liu et al., 2019b] is
commonly handled using a simple feed-forward layer or network as the head of
the model, resulting in a decision for match or non-match. Barlaug and Gulla [Bar-
laug and Gulla, 2021] provide an overview of a selection of neural methods for
entity matching. For generative large language model-based methods, the match-
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ing decision is instead parsed from the generated natural language answer of the
model following a prompt [Narayan et al., 2022] without an additional classifica-
tion layer. The following paragraphs give a short overview of select methods from
each category.

Early Methods: The works cited as foundational work for the matching task are
the works of Newcombe and Kennedy [Newcombe and Kennedy, 1962] and Fellegi
and Sunter [Fellegi and Sunter, 1969] who formulated some of the first methods for
linking heterogeneous entities between datasets from different sources. The work
of Newcombe and Kennedy is based on the manual curation of linkage rules over
a series of iterations to improve the quality of results. The authors define the entity
matching task as a Bayesian inference problem. Fellegi and Sunter build on this
work, formalize the task, and propose a statistical model supporting the generation
of matching rules.

Unsupervised Methods: Early unsupervised methods aggregate the resulting
similarity vector into a single score and define a threshold value for classifica-
tion into matches and non-matches [Bilenko and Mooney, 2003, Cohen and Rich-
man, 2002, Monge and Elkan, 1996] while others rely on hand-crafted matching
rules [Hernández and Stolfo, 1995,Lim et al., 1996] or clustering algorithms [Elfeky
et al., 2002]. Monge and Elkan [Monge and Elkan, 1996, Monge, 1997] propose
a matching algorithm based on string similarity metrics combined with a thresh-
old to separate matching from non-matching record pairs. Dey et al. [Dey et al.,
1998] propose the linear combination of similarities of each attribute in a record
pair combined with a decision threshold for the matching decision. Cohen [Cohen,
2000] proposes the use of TFIDF vectors together with the cosine similarity metric
for distance-based matching. More recent applications of unsupervised methods to
entity matching are the work of Zhu et al. [Zhu et al., 2016] who apply a graph-
based approach for matching on RDF-based graphs. Wu et al. [Wu et al., 2020]
propose ZeroER based on Gaussian mixture models as an unsupervised method
for entity matching.

Supervised Methods: In early supervised machine learning methods, the sim-
ilarity vector of the record pair comparison step is created by applying various
similarity metrics (see Section 2.3.2) attribute-wise to generate a similarity rep-
resentation of each attribute of the compared records, which are then combined
to a final similarity vector representation. Cochinwala et al. [Cochinwala et al.,
2001] propose some of the first supervised learning techniques for entity match-
ing based on the CART algorithm [Breiman, 2017] for generating classification
trees, a linear combination of parameters and a nearest neighbor approach, result-
ing in the best performance for the tree-based approach. Bilenko et al. [Bilenko and
Mooney, 2003] use an SVM with separate features for each matching attribute and
show that this performs better than treating the entire record as one large textual
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attribute. Cohen and Richman [Cohen and Richman, 2002] propose a learnable
distance function from training data as part of their supervised method. Konda et
al. [Konda et al., 2016] propose Magellan, a framework for blocking and entity
matching based on learning supervised classifiers on string and numerical similar-
ity features between attributes. Another direction of supervised methods leverages
active learning to minimize the amount of required labels for learning by keep-
ing a human in the loop who subsequently labels sets of record pairs selected by
the methods based on various heuristics [Sarawagi and Bhamidipaty, 2002, Isele
and Bizer, 2013, Chen et al., 2019, Kasai et al., 2019, Bogatu et al., 2021, Huang
et al., 2022, Primpeli and Bizer, 2022]. Meduri et al. [Meduri et al., 2020] give an
overview of active learning methods for entity matching.

First Wave Neural Methods (RNN Era): Deep learning-based methods for
entity matching do not rely on explicit feature engineering but instead perform it as
part of their learning process in the subsymbolic space [Goodfellow et al., 2016].
These methods convert each record attribute-wise [Mudgal et al., 2018] or record-
wise [Li et al., 2020] into a vector representation based on the tokens contained in
their attributes and subsequently create features internally as part of learning the
parameters of the layers of the deep neural network. The record representations
are merged into a pair representation close to the output layer of the network. The
foundational works for neural methods in entity matching are DeepER [Ebraheem
et al., 2018] and Deepmatcher [Mudgal et al., 2018] who were the first to apply
siamese neural networks to the entity matching task and showed an increase of
matching performance for neural networks especially for textual entity matching
tasks. Both methods convert records attribute-wise to embeddings using methods
such as Word2Vec [Mikolov et al., 2013b] and fastText [Bojanowski et al., 2017].
The methods combine these embeddings into representations of each record as
part of the network, and subsequently perform a classification step using feed-
forward networks to decide if they match. Although the Deepmatcher framework
offers various neural network designs, including one of the first attention-based
architectures for entity matching, the recurrent neural network is found to perform
consistently best in a wide range of entity matching tasks [Peeters et al., 2020b, Li
et al., 2020]. Further examples from the early era of neural methods for entity
matching are Seq2SeqMatcher [Nie et al., 2019] and Hi-EM [Zhao and He, 2019].

Second Wave Neural Methods (PLM Era): The second wave of neural meth-
ods for entity matching based on the Transformer architecture and pre-trained
language models started with the work of Brunner and Stockinger [Brunner and
Stockinger, 2020] who were the first to apply fine-tuning of PLMs to the task of
entity matching showing increased performance compared to the neural methods
of the RNN era. Li et al. [Li et al., 2020] proposed Ditto based on fine-tuned PLMs
with additional data augmentation functionality which became the state-of-the-art
for several years. Wang et al. [Wang et al., 2023] proposed Sudowoodoo based on
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a self-supervised contrastive learning method for low-resource matching scenar-
ios. PromptEM [Wang et al., 2022c] moved towards the prompting paradigm of
the LLM era (see below) by steering the models more towards a natural language
answer to the question if a record pair matches compared to the earlier approaches
that serialized both records and used the [CLS] token of the Transformer for clas-
sification. The authors show that this method can perform better, arguing that the
serialization of the task is closer to the natural language pre-training of the PLMs.
Mugeni et al. [Mugeni et al., 2023] showed that fine-tuning adapters instead of the
full PLM can achieve the same or better result while saving on time and compute
resources.

Third Wave Neural Methods (LLM Era): The third wave of neural meth-
ods is still in its infancy at the time of writing and is predominantly based on
the use of generative large language models for entity matching [Narayan et al.,
2022, Fan et al., 2024b, Sisaengsuwanchai et al., 2023, Zhang et al., 2024a, Wang
et al., 2024, Wadhwa et al., 2024]. Narayan et al. [Narayan et al., 2022] laid the
foundation with their first experiments using a GPT-based model for entity match-
ing showing matching performance comparable to fully fine-tuned PLMs with only
a few in-context examples as part of the prompt. While LLMs are technically pre-
trained language models, they are not referenced as PLMs in the literature. The
term PLM is used to refer to smaller models like BERT, whereas the term LLM
is commonly used to refer to autoregressive language models with more than a
billion parameters. This thesis follows the same naming scheme when referring
to PLMs and LLMs. Concurrent work and the work presented in this thesis (see
Chapter 9 for a deeper discussion of related work) show that LLMs have a high
potential for the entity matching task as they show good performance for two of
the shortcomings of PLM-based approaches. Their strong zero-shot and few-shot
capabilities lead to requiring only a few labeled examples to reach or exceed the
matching performance of fully fine-tuned PLMs. Furthermore, they consistently
perform well even on unseen entities (see Chapter 9).

Domain Adaptation: Highly related to the concept of unseen entities (see
Section 2.4) these methods focus on training models on one or more benchmark
datasets and try to subsequently transfer the trained models to other benchmarks
(which may be from the same or a different matching domain) without or with only
a few additional training pairs of the target domain. Methods investigating domain
adaptation can stem from any of the previously presented categories, while many of
the recently proposed methods are based on neural networks [Jin et al., 2021,Loster
et al., 2021, Kirielle et al., 2022, Trabelsi et al., 2022, Tu et al., 2022, Bai et al.,
2023, Sun et al., 2024, Xu and Wang, 2024].
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Clustering Step

The clustering step [Hassanzadeh et al., 2009, Saeedi et al., 2017] in entity match-
ing follows the identification of matching record pairs as correspondences and aims
to consolidate these correspondences into unified clusters that represent individ-
ual entities across datasets. This step often employs graph-based methods, where
nodes represent records and edges denote pair-wise matches. A common approach
is to apply transitive closure, ensuring that if Record A matches Record B, and
Record B matches Record C, then all three records are grouped in a single cluster,
even if a direct match was not initially identified between A and C. Such transitive
relations help capture the latent connections between records, thus increasing the
robustness of the clustering.

This clustering step presents additional challenges, as errors in the initial match-
ing phase, such as false positives (incorrect matches), may propagate, leading to
clusters that erroneously merge records of distinct entities. Likewise, false nega-
tives (missed matches) can result in fragmented clusters, which fail to capture the
entirety of an entity’s records across datasets.

The outcome of the clustering step is a partitioning of all records into distinct
clusters, with each cluster ideally corresponding to a unique entity. This consoli-
dated view is essential for achieving the conciseness and completeness objectives
of data integration, ensuring that each entity is represented only once in the inte-
grated dataset.

For clean entity matching scenarios, the clustering step relies on enforcing
the one-to-one correspondence between records of different data sources. Unique
Mapping Clustering [Böhm et al., 2012, Lacoste-Julien et al., 2013] sorts all edges
in the correspondence graph by decreasing weight (e.g., record similarity), then
iterates through records and only considers the top edge as a true correspondence.
This approach is similar to solving the stable marriage problem [McVitie and Wil-
son, 1970]. The Hungarian algorithm [Kuhn, 1955] is another example of a clus-
tering approach for clean entity matching scenarios. More clustering algorithms
for clean entity matching are presented in [Papadakis et al., 2023a].

The work of Saeedi et al. [Saeedi et al., 2017] compares various methods to
perform the clustering step, which are suited for dirty entity matching, in their
FAMER framework. Methods based on connected components [Junghanns et al.,
2017] identify all connected subgraphs within the graph of correspondences and
perform clustering based on the records that are part of these subgraphs. For exam-
ple the transitive closure method described above is a simple example for a method
based on connected components. While straightforward, this method has the po-
tential of propagating erroneous matches as well as fragmenting clusters due to
missing matches.

Center clustering [Hassanzadeh and Miller, 2009] assigns entities to clusters
based on edge weights (the weights are the similarities of the two connected records
as output by the matching step), prioritizing edges with high similarity. Initially,
it focuses on edges with high similarity, making it effective in maintaining quality
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clusters. Merge Center [Hassanzadeh and Miller, 2009] is a variation of Center
clustering that merges clusters if a record of one cluster is close to the center of
another cluster. Although it can improve recall, it risks reducing precision due to
merging similar but different entities.

Star clustering [Aslam et al., 2004] creates clusters by assigning entities with
high node degrees as centers, which act as local hubs around which clusters are
formed. The algorithm can lead to overlapping clusters, which requires additional
post-processing steps to resolve these overlaps. Star-2 clustering [Saeedi et al.,
2017], an alternative version of Star clustering, bases center selection on the aver-
age similarity degree of outgoing edges, rather than the count.

Correlation clustering [Bansal et al., 2004, Gionis et al., 2007, Chierichetti
et al., 2014, Pan et al., 2015] is an approach that uses not only positive but also
negative edge weights based on similarity to determine clusters, aiming to maxi-
mize internal agreements while minimizing disagreements between clusters. An
example of an approximate version of Correlation Clustering used for scalability
is CCPivot [Chierichetti et al., 2014], where multiple vertices are selected as initial
cluster centers or pivots in each iteration, reducing the number of rounds needed to
cluster all vertices.

Draisbach et al. [Draisbach et al., 2019] present Maximum Clique Clustering
and Extended Maximum Clique Clustering which are based on extracting max-
imum cliques from the components of a graph iteratively where each maximum
clique represents on entity cluster. They further present Global Edge Consistency
Gain, which reclassifies edges within the clusters to maximize the consistency of
the transitive relationship implied by the edge connections, thus refining the cluster
boundaries more accurately. The authors compare their methods to a selection of
the approaches mentioned above and additional clustering methods like Markov
Clustering [Van Dongen, 2000] and GCCluster [Wang et al., 2016].

2.3.2 Similarity Metrics

Similarity metrics are used to calculate the similarity of single attribute values,
complete records, or to compare embedding representations of the former. As a
result, they are essential to any kind of matching task, e.g. in this thesis similarity
metrics are used as part of matching algorithms as well as for the selection of cor-
ner case records (see Section 2.4 and Chapter 5). This section introduces a set of
relevant similarity metrics that are commonly used throughout the data integration
process and partly in the experiments of this thesis. The presented similarity met-
rics are an integral part of non-neural entity matching systems. Although neural
networks perform feature engineering as part of their internal layers (as discussed
in Section 2.3.3), most non-neural methods base the features of their matching
classifiers on a set of similarity measures including, but not limited to, those pre-
sented below [Konda et al., 2016, Bilenko and Mooney, 2003]. For example, the
Magellan entity matching system [Konda et al., 2016] may use one or multiple
similarity metrics for each of the attributes in a record pair as input to a machine
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learning classifier. The representation of a record pair in Magellan is thus a mul-
tidimensional vector of similarities. This notion of multi-dimensional vectors and
similarities is an integral concept that finds continuation in the use of embeddings
in neural entity matching systems (see Section 2.3.3).

Vector Similarity

Vector similarity allows for the comparison of numerical vectors in embedding
spaces. This can, for example, be a simple bag-of-words representation of two
records using word occurrence or TFIDF weighting or the comparison of embed-
dings created by a neural network (see Section 2.3.3). A commonly used metric for
comparing numerical vectors is cosine similarity, which measures similarity using
the angle between two vectors. Given two vectors A⃗ and B⃗, cosine similarity is
defined as:

simcosinepA⃗, B⃗q “
A⃗ ¨ B⃗

|A⃗||B⃗|
(2.1)

String Similarity

Much of the data in real-world use cases contains string values either as single
words, multiple words, or even full sentences. For example, for the disambigua-
tion of persons, it may be required to match attributes consisting of the first, middle,
and last names of a person, which may appear in any kind of ordering across dif-
ferent datasets. Depending on the structure of the data, the choice of the optimal
similarity metric is key. String similarity metrics are commonly divided into cat-
egories: character-based, token-based, hybrid, and phonetic metrics [Elmagarmid
et al., 2007].

Character-based Metrics: These metrics compare strings character-wise e.g.
by applying edit operations to one string to convert it into the other. Fewer neces-
sary operations for this conversion result in a higher similarity being assigned. A
well-known edit-based metric is the Levenshtein [Levenshtein et al., 1966] simi-
larity metric. It first calculates the distance between two strings by counting the
number of deletions, insertions, and substitutions necessary to convert one string
into the other. Once the distance distlevpa, bq is obtained, the Levenshtein similarity
is defined as:

simlevpa, bq “ 1.0 ´
distlevpa, bq

maxp|a|, |b|q
(2.2)

Other well-known character-based metrics are, for example, the Jaro [Jaro,
1989] similarity and its extension, the Jaro-Winkler [Winkler, 1990] similarity,
which were proposed for the matching of names and put a higher importance on
matching the beginning of strings.
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Token-based Metrics: These metrics work at the word or n-gram level instead
of the character level and are better suited to compare longer strings consisting of
multiple words that may appear in different order, compared to character-based
metrics [Elmagarmid et al., 2007]. Commonly used token-based metrics are Jac-
card [Jaccard, 1912], Overlap [Christen, 2012a] and CosineTFIDF [Cohen et al.,
2003].

The Jaccard [Jaccard, 1912] similarity measures the intersection between two
sets of words or n-grams of two strings A,B over the union of their tokens. If
the intersection is measured in relation to the size of the smaller set, it is Overlap
similarity [Christen, 2012a]. They are defined as:

simjaccardpA,Bq “
|A X B|

|A Y B|
(2.3)

simoverlappA,Bq “
|A X B|

minp|A|, |B|q
(2.4)

Hybrid Metrics: This family of similarity metrics combines character-based
and token-based metrics by allowing a degree of variability when estimating the
equality of tokens. This allows them to combine the advantages of both by han-
dling typographical errors within words or n-grams and differing orderings in-
side a string [Doan et al., 2012]. Examples of this type of metric are Monge-
Elkan [Monge and Elkan, 1996], generalized Jaccard [Naumann and Herschel,
2022] and SoftTFIDF [Cohen et al., 2003]. Hybrid metrics usually comprise an
inner character-based similarity metric and an outer token-based metric. For ex-
ample, the generalized Jaccard similarity may contain an inner Levenshtein sim-
ilarity that compares tokens and considers them matching if their edit distance is
below a user-defined threshold θ [On et al., 2006]. Given a set of matching tokens
|matchpA,Bq| decided by an inner similarity metric siminner between the set of
tokens between two strings, generalized Jaccard is defined as:

matchpA,Bq “ tpai, bjq|ai P A ^ bj P B : siminnerpai, bjq ě θu (2.5)

simgen.jacpA,Bq “
|matchpA,Bq|

|A| ` |B| ´ |matchpA,Bq|
(2.6)

Numerical Similarity

The previously presented metrics are suitable for the comparison of strings, but not
other data types. Another example of a frequently occurring data type are numer-
als. For these cases, specialized metrics for numbers can be applied, for example,
by calculating the absolute or percentage difference between two numbers and nor-
malizing by a maximum absolute difference extracted from the data or defined by
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the user [Christen, 2012a] or by calculating a relative difference between the two
values [Konda et al., 2016]. These similarities are defined for two numbers u, v as:

simnumabs “ 1.0 ´
|u ´ v|

maxpu, vq
(2.7)

simnumrel “ 1.0 ´
2 ˆ |u ´ v|

u ` v
(2.8)

Numerical similarity can also be used to cover additional data types such as
time, date, or geographic data by first converting and normalizing the respective
type into a numerical format followed by application of the presented metrics or
other metrics specific to the data type [Christen, 2012a].

2.3.3 Neural Language Representation

The previous section presented various similarity metrics for e.g. engineering fea-
tures for the comparison of two records in a record pair. In neural methods for
entity matching, neural networks perform feature engineering and similarity com-
parison as part of the network [Goodfellow et al., 2016, Barlaug and Gulla, 2021].
All neural methods for entity matching can theoretically be trained in an end-to-
end fashion from inputs over feature engineering to outputs, as long as each layer
is differentiable and thus trainable with the backpropagation algorithm.

Neural methods are based on tokenizing string inputs into words or tokens
and subsequently converting them into embedding representations using the net-
works themselves [Devlin et al., 2019] or an external embedding representation as
input [Mikolov et al., 2013b, Bojanowski et al., 2017]. The embedding represen-
tations used for words and tokens for entity matching can also be learned as part
of the neural models, but it has been experimentally proven to be more effective
to initialize them from an existing word modeling vocabulary such as fastText or a
fully pre-trained language model like BERT [Barlaug and Gulla, 2021].

Neural entity matching models of the first era (see Section 2.3.1) which use
embeddings as numerical representations of the input tokens but do not consist of
a full language model like those of the second era, usually use an external model
to create the input embeddings to the actual matching model [Ebraheem et al.,
2018, Mudgal et al., 2018].

These embeddings are based on simple language models from the Word2Vec
family [Mikolov et al., 2013b, Mikolov et al., 2013a], which are trained on tex-
tual corpora like Wikipedia. Word2Vec is based on the distributional assumption
that similar words appear in similar contexts. The language model is trained as a
simple feed-forward network in two configurations. The continuous bag-of-words
(CBOW) model is trained by using left and right context words to predict a masked
center word, while the skip-gram model is trained to predict the surrounding con-
text words from the center word. The authors have shown that this training on
large textual corpora like Wikipedia results in a trained feed-forward network that
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Figure 2.3: The CBOW and Skip-gram variations of the Word2Vec
model [Mikolov et al., 2013a].

can embed words while semantically similar words are located in close proximity
in the resulting embedding space. The two variations of the Word2Vec model are
depicted in Figure 2.3.

The fastText [Bojanowski et al., 2017] model extends on the idea of Word2Vec
by not training on words but sub-word tokens, which allows for the representation
of words unseen during training by aggregating the word-specific sub-word tokens
that are part of the vocabulary of fastText. Compared to the local context learning
of Word2Vec and fastText, GloVe [Pennington et al., 2014] word embeddings are
created based on global co-occurrence statistics across the whole training corpus.

The research done during the first era of neural methods for entity match-
ing has shown that this notion of distributional similarity among word embed-
dings enhances the entity matching task compared to randomly initializing embed-
dings [Ebraheem et al., 2018, Mudgal et al., 2018, Barlaug and Gulla, 2021]. The
methods of the first era use these language representations in the form of externally
learned, fixed embeddings on the input level of the network. The higher layers of
the network are then tuned based on the entity matching task, learning more en-
tity matching specific features as part of the network. This is done for each input
record/attribute separately or with cross-attention to the other record/attribute in a
record pair [Mudgal et al., 2018]. The final layers of the network then aggregate
the separate embeddings to a similarity representation of the record pair, e.g. via
summarization, difference, dot product, or cosine similarity. This final similarity
representation, based on the original language embeddings, is then passed through
a classifier to obtain the matching decision.

Figure 2.4 shows an example of this layered architecture starting with em-
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Figure 2.4: The layered Deepmatcher training architecture [Mudgal et al., 2018].

bedding attributes separately using, e.g., fastText embeddings and consequently
aggregating them to attribute similarity representations and finally a record pair
similarity as input to the final classifier. This structure of aggregating attribute
similarities to a record similarity and subsequent classification is analogous to the
process found in methods previously used in non-neural matching systems like
Magellan [Konda et al., 2016] (see Section 2.3.2).

Entity matching methods of the first era are usually not trained end-to-end as
their input embeddings (e.g., fastText) are fixed during training [Barlaug and Gulla,
2021]. Section 4.7.1 of this thesis shows that allowing full end-to-end training for
these models can improve the matching performance.

The neural entity matching methods of the second and third eras [Brunner and
Stockinger, 2020, Li et al., 2020, Wang et al., 2022c, Narayan et al., 2022, Wang
et al., 2024] which are based on the Transformer [Vaswani et al., 2017] architec-
ture make use of architecture-specific embedding functionality in contrast to using
an externally learned language representation as they are based on PLM and LLM
language models at their core. In existing entity matching methods, they are com-
monly trained in a full end-to-end fashion which includes fine-tuning the input
embeddings for the matching task.

Autoencoding PLM models like BERT [Devlin et al., 2019] and RoBERTa [Liu
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et al., 2019b], for example, use a WordPiece or SentencePiece1 tokenizer to split
words in record pairs into sub-tokens that are part of the Transformers original
vocabulary from the pre-training stage. There is no direct separation between at-
tributes of a record in this format, as the full record is passed as a string of tokens,
although additional tokens can be added to inform the model of the structure of the
data [Li et al., 2020]. The vocabularies of the PLMs, which are mappings from to-
kens to multi-dimensional embeddings, are created in such a way that even single
characters can be represented, which means that these models can represent any
kind of word made up of the known set of characters and tokens. The embeddings
of the vocabulary tokens themselves are learned as part of the pre-training proce-
dure. For example, BERT is pre-trained on the English version of Wikipedia as
well as BookCorpus data using multi-task learning in the form of masked language
modeling and next sentence prediction [Devlin et al., 2019]. Input embeddings
PLMs and LLMs often consist of an aggregation of multiple embeddings, for ex-
ample, the token embeddings themselves and a positional embedding encoding the
location of the token in comparison to others in the sentence.

The subsequent fine-tuning of these models, for example, for the entity match-
ing task, includes the fine-tuning of the embedding layer itself, which is another
differentiation point of these methods from the first era of neural methods where
Word2Vec or fastText embeddings were fixed and not adapted as part of the model
training procedure [Mudgal et al., 2018]. As part of the fine-tuning, the embed-
dings of the input layer are propagated through the network while contextualized
on all other tokens as part of the bi-directional self-attention layers [Vaswani et al.,
2017] of autoencoders. In the last layer of the Transfomer encoder, either the em-
bedding representation of a summary token that represents the full sequence or the
aggregation of all token embeddings is used as input to a final classification layer
that outputs the final matching decision.

Although PLMs can be used to embed each record in a pair of records sepa-
rately and consequently combine the representations of each through, e.g. the dot
product, which can be subsequently passed to a classifier, it has been shown that
concatenating both records as input to the PLM leads to better performance due
to the self-attention mechanism applying to all tokens across records [Barlaug and
Gulla, 2021]. Figure 2.5 shows the end-to-end training architecture of the Ditto [Li
et al., 2020] entity matching system. Both records are converted to string represen-
tations, concatenated, tokenized, and propagated through the Transformer layer.
At the last layer, the contextualized similarity representation of the record pair (the
prepended [CLS] token) is further passed into a classification layer that decides
if the record pair is a match. The Ditto architecture is trained in a true end-to-
end fashion, with all layers including the embedding layer being adapted for the
matching task.

Large language models of the third era are based on the same Transformer
architecture as PLMs but were pre-trained using an autoregressive decoder-style

1https://github.com/google/sentencepiece

https://github.com/google/sentencepiece


2.3. ENTITY MATCHING 37

Figure 2.5: The Ditto end-to-end training architecture [Li et al., 2020].

language modeling objective, specifically next word prediction, on a large scale.
General pre-training is followed by additional instruction fine-tuning [Sanh et al.,
2022] on a multitude of tasks, and optional reinforcement learning from human
feedback [Ouyang et al., 2022] to further adapt the model to human preferences.
The output of entity matching systems using these models is based on the gener-
ation of natural language instead of using similarity embeddings in combination
with a classifier as in PLMs. The input to these models is realized via natural lan-
guage prompting consisting of a task description as well as one or more record
pairs for which a matching decision is to be made [Narayan et al., 2022, Zhang
et al., 2023, Wang et al., 2024]. The model then generates a natural language
answer conditioned on the input prompt and the knowledge stored in the model
parameters.

2.3.4 Evaluation Metrics

The evaluation practices used to evaluate the extent to which a method was success-
ful in performing the entity matching task make use of standard measures from
machine learning and have found wide adoption in the data integration commu-
nity [Christen and Goiser, 2007]. The pair-wise entity matching task is defined
on pairs of records that must be assigned either a matching or non-matching label.
When evaluating entity matching systems, these pairs of records and their corre-
sponding labels are available as record/label tuples in the form of pr1, r2, y12q. The
task of an entity matching system is then to predict the correct label yij P t0, 1u

for each pair of records. The label predicted by the method, ŷij , is then compared
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to the true label yij and sorted into one of the following categories:

• True Positives (TP): A matching pair of records pra, rb, yab “ 1q that was
predicted to be matching pra, rb, ŷab “ 1q.

• False Positives (FP): A non-matching pair of records prc, rd, ycd “ 0q that
was predicted to be matching prc, rd, ŷcd “ 1q.

• True Negatives (TN): A non-matching pair of records prc, rd, ycd “ 0q that
was predicted to be non-matching prc, rd, ŷcd “ 0q.

• False Negative (FN): A matching pair of records pra, rb, yab “ 1q that was
predicted to be non-matching pra, rb, ŷab “ 0q.

After sorting each prediction into one of the four categories, summary predic-
tions can be calculated from them. The metrics most commonly used for binary
classification problems are accuracy, precision, recall and F1-score.

Accuracy measures how many of the overall number of pairs of records were
classified correctly and is defined as:

Accuracy “
TP ` TN

TP ` TN ` FP ` FN
(2.9)

Precision measures how many predicted matches are actually true matches:

Precision “
TP

TP ` FP
(2.10)

Recall measures the fraction of correctly classified matches compared to all
true matches:

Recall “
TP

TP ` FN
(2.11)

The F1-score is the harmonic mean between the two measures precision (P)
and recall (R) and is defined as:

F1 “
2PR

P ` R
(2.12)

From the presented measures, precision, recall and F1-score are commonly
used in the literature [Christen, 2012a, Christophides et al., 2015, Barlaug and
Gulla, 2021] as the pair-wise entity matching task, due to its nature, has an in-
trinsic imbalance between matching and non-matching records. Depending on the
size of the datasets, the overall number of matches is several orders of magnitude
smaller than the number of non-matches. Using accuracy for evaluation in this
scenario may lead to overestimation of the actual performance of entity matching
systems, as well as difficulty in evaluating differences between matching systems.
As a result, entity matching performance is usually measured by calculating preci-
sion, recall and F1 on the matching class.
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2.4 Additional Terminology

This section introduces additional terminology used throughout the thesis, which
has either not been clearly defined in entity matching literature or is adapted from
specific machine learning terminology to the entity matching domain.

Corner cases

Corner cases are matching and non-matching record pairs that are close to the
decision boundary between the two classes match and non-match. Such examples
define the decision boundary between classes and are commonly referred to as
hard positives and hard negatives in machine learning literature [Simo-Serra et al.,
2015, Schroff et al., 2015, Zhan et al., 2021].

For the entity matching task, this hardness can be expressed based on textual
and numerical similarity of record pairs using similarity metrics such as those pre-
sented in Section 2.3.2. Textual metrics like Jaccard can be directly applied to
the original tokens of records. Further, embedding-based methods can be used to
embed each record and subsequently calculate, for example, cosine similarity be-
tween embeddings combined with nearest-neighbor search in the embedding space
to find corner cases.

Corner case pairs selected in this manner exhibit the property of resembling a
pair of the respective other class. For example, in the context of product match-
ing, a positive corner case refers to a pair of matching product offers that exhibit
dissimilarities in their surface forms, which are usually the result of heterogeneity
introduced by different vendors, for example, mentioning different product features
in the offers or using different abbreviations or units of measurement. A negative
corner case consists of two non-matching product offers whose textual representa-
tions are highly similar, e.g., may differ only in a single product feature.

Evaluation Set Naming

This section clarifies the naming of the various evaluation sets used throughout
the thesis and to what parts of the evaluation process they refer (see [Bishop and
Nasrabadi, 2006, James et al., 2013, Goodfellow et al., 2016]).

Training Set: The training set contains all record pairs that are used for directly
training supervised machine learning-based entity matching models, i.e. these
record pairs and their labels are shown to the model as examples for matches and
non-matches during the training procedure.

Validation Set: The validation set contains all record pairs that are used for
model selection and hyperparameter optimization of the models. These pairs are
not shown directly to the model but are used as a means to evaluate changes in
model performance when parameters of the training change. These record pairs
are not part of the training set and are as such unknown to the models.
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Development Set: The development set consists of all pairs that are part of the
training set and the validation set. When using the term development set, it is not
necessary that the training and validation subsets are already defined, as these may
be created at a later stage by splitting the development set. The term development
set refers to all pairs of records that are used for training or for model selection.
The development set is only used in entity matching systems based on supervised
learning. Unsupervised methods or supervised systems that are applied zero-shot
(see below) do not use the development set but are directly evaluated on the test
set.

Test Set: The test set encompasses all pairs of records that are not part of the
development set. The purpose of this set is an unbiased evaluation of trained mod-
els on unknown data that have not been used for training or for model selection.
The test set is the main reference point for evaluating entity matching systems, as
the performance on this set most closely resembles the expected unbiased perfor-
mance during deployment on new record pairs.

Generalization to Unseen Entities

The generalization phenomenon in machine learning [Dziugaite et al., 2020,Musavi
et al., 1994] refers to the observable performance loss when transferring a model
from development data to the withheld test data. Due to a shift in the data dis-
tribution, a performance loss can be measured by, for example, comparing the
evaluation metrics on the validation and test sets. In the case of entity matching,
this effect is usually measured by comparing the performance metrics introduced
above on the validation and test sets.

The special case of generalization to seen or unseen entities describes the
strength of the distribution shift from development to test data. For example, in
the product matching domain, the smallest shift happens when the model is tasked
to decide for match or non-match on a pair of product records that refer to prod-
ucts for which example pairs have already been seen during training. A shift in
structure or semantics may occur, but the pair of records is close to the training
distribution. This is further referenced as a seen scenario in this thesis. The un-
seen scenario happens when a trained product matching model needs to decide on
a match or non-match for record pairs of products for which no matching or non-
matching pairs were seen in the training set. In this case, the domain is the same,
and it is expected that patterns learned during training will transfer to an extent, as
products usually exhibit a similar structure in their descriptions. But if the same
model needs to decide whether two records from the publication domain refer to
the same publication, while the matching task is defined as the same, the actual
wording and structural and semantic patterns differ from the patterns learned for
matching products during training. In this regard, generalization to unseen enti-
ties is also related to the field of transfer learning or domain adaptation in entity
matching (see Section 2.3.1).

This thesis defines an unseen entity as an entity that is contained as part of the
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records in the test set but no records of that entity appear in the development set.
Unseen entities are also called out-of-distribution entities [Yang et al., 2024]. In
the context of pair-wise entity matching, a test pair may contain records of (1) zero,
(2) a single, or (3) two unseen entities. If the first case is true for the entire test set,
this is referenced as a fully seen matching scenario. If the third case is true for the
entire test set, it is a fully unseen matching scenario. Any other combination of
pairs from the three cases is named a partly unseen scenario.

The concept of seen and unseen entities is integral to the entity matching task,
as in many domains additional previously unknown entities can appear either due
to not including them as part of the development set at creation time, applying
matchers on domains that they were not specifically trained for, or due to e.g. the
introduction of new entities over time. For example, new products constantly ap-
pear in online shops, new publications are written, and new companies are estab-
lished. The challenge of handling unseen entities is discussed at multiple points
throughout the thesis (see Chapters 4 through 9, excluding Chapter 6) and is one
of the matching challenge dimensions of the WDC Products benchmark presented
in Chapter 5.
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Chapter 3

Semantic Annotations on the Web

3.1 Background

The Web has become an indispensable resource that redefines the way informa-
tion is disseminated, accessed, and used. As the Web has grown, so too has the
complexity of managing and interpreting the vast amounts of information it holds.
The Semantic Web, a visionary concept proposed by Tim Berners-Lee [Lassila
et al., 2001], aims to address this challenge by making web data more interpretable
to machines. This enhanced understanding facilitates more efficient data sharing,
reuse, and interoperability across various systems.

At its core, the Semantic Web extends the traditional Web by embedding meta-
data within web content, thereby enabling machines to interpret the context and
meaning of the data. This paradigm shift is underpinned by various standards
and technologies, including the Resource Description Framework (RDF) [Klyne,
2004], the Web Ontology Language (OWL), and the SPARQL Protocol and RDF
Query Language (SPARQL) [Seaborne and Prud’hommeaux, 2008], which collec-
tively support machines in performing sophisticated data integration and inference
tasks.

Central to the implementation of the Semantic Web is the concept of seman-
tic annotations, facilitated by domain-independent markup formats and annotation
vocabularies. Semantic annotations involve enriching web content with metadata
that provides explicit information about the data’s semantics. This process typi-
cally involves tagging elements of web content with ontological terms, which de-
scribe their meaning in a structured, machine-readable format [Guha et al., 2016].
Semantic annotations thus bridge the gap between human-readable content and
machine-interpretable data, enabling automated agents to interpret and manipulate
the information.

Utilizing markup formats and vocabularies to semantically annotate web data
enhances the accessibility, crawlability, and searchability of webpage content [Mika,
2015]. This practice is beneficial for various web applications, such as web search,
price comparison, and reservation engines [Guha et al., 2016]. The use of seman-
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tically annotated data has become increasingly crucial for web data publishers as
more web applications make use of it. To ensure consistent semantic terminology,
major search engines such as Bing, Google, Yahoo and Yandex collaborated in
2011 to create the Schema.org1 vocabulary. The adoption of semantic annotations
on the Web has grown substantially over the years. In 2010, 5.7% (147 million)
of the examined webpages included semantically annotated data, and this figure
increased to 49. 9% (1.7 billion) by 2020 [Brinkmann et al., 2023a], according to
the Web Data Commons project 2.

Schema.org annotations play a central role in the contributions of this the-
sis. Chapter 4 presents a benchmark and evaluation based on using Schema.org
marked-up product data on the Web to automatically generate training data for en-
tity matching methods on a large scale. To this end, product identifiers found in
Schema.org annotations of products are used to group them into clusters of prod-
uct offers referring to the same product automatically. Chapter 5 presents a second
benchmark that is created from such a clustering.

This chapter is structured as follows. Section 3.2 introduces the main markup
formats, while Section 3.3 presents the Schema.org vocabulary. Finally, Sec-
tion 3.4 presents how Schema.org annotations have been used to create two large
table corpora as part of this thesis.

3.2 Markup Formats

Markup formats are essential tools that web developers use to embed structured
data directly into HTML documents. These formats allow for the precise defini-
tion of data elements on a webpage, making it easier for search engines to index
and display content in a rich and meaningful manner. This section explores var-
ious markup formats, including Microdata, RDFa, Microformats, and JSON-LD,
examining their structures, use cases, and implementations.

3.2.1 Microdata

Microdata3 is a specification used to nest metadata within existing content on web
pages. This format leverages HTML5 attributes to annotate content, making it
easier for search engines to parse and understand the data. Microdata utilizes a
vocabulary such as Schema.org to define the types and properties of items. The
following attributes are essential components of Microdata:

• itemscope: Creates a new item and indicates that the HTML element contains
information about an item.

• itemtype: Specifies the type of item using a URL that defines the vocabulary
(e.g., Schema.org).

1https://schema.org/
2https://webdatacommons.org/structureddata/
3https://www.w3.org/standards/history/microdata/

https://schema.org/
https://webdatacommons.org/structureddata/
https://www.w3.org/standards/history/microdata/
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• itemprop: Indicates that the element contains the value of the specified prop-
erty for the item.

• itemid: Provides a global identifier for the item.

Figure 3.1 shows an example of a product marked up with Microdata.

Figure 3.1: An example product marked up with Microdata.

3.2.2 RDFa

Resource Description Framework in Attributes4 (RDFa) is a standard for embed-
ding rich metadata within web documents. RDFa extends HTML5 by providing
additional attributes to annotate elements with structured data. RDFa enables inter-
operability by using URIs to denote the type and relationship of data elements. This
format supports various vocabularies, including Schema.org and Dublin Core5.
The following attributes are essential components of RDFa:

• vocab: Defines a default vocabulary for the document or element.

• typeof : Specifies the resource type using a URL.

• property: Indicates that the element contains the value of the specified prop-
erty.

• content: Provides the value of a property when the content is not human-
readable.

• resource: Defines a URI for the subject resource.

Figure 3.2 shows an example of a product marked up with RDFa.

Figure 3.2: An example product marked up with RDFa.

4https://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
5https://www.dublincore.org/

https://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
https://www.dublincore.org/
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3.2.3 Microformats

Microformats 6 are a set of simple open data formats built on existing and widely
adopted standards. They are designed to be easy to understand and implement,
using class names and attributes to embed metadata into HTML content. Micro-
formats focus on providing a human-readable and machine-processable structure
without requiring significant changes to existing HTML code. Key attributes and
conventions in Microformats include:

• class: Utilizes specific class names to indicate properties of the data (e.g.,
h-product, p-name, p-price).

• rel: Defines a relationship between the current document and another docu-
ment.

Figure 3.3 shows an example of a product marked up with Microformats.

Figure 3.3: An example product marked up with Microformats.

3.2.4 JSON-LD

JavaScript Object Notation for Linked Data7 (JSON-LD) is a method of encoding
Linked Data using JSON. JSON-LD allows for the embedding of metadata within
a script tag, separate from the HTML content. This approach provides a clean
and flexible way to add structured data to web pages without altering the HTML
structure. JSON-LD is favored by search engines and is recommended by Google
for structured data. Key attributes in JSON-LD include:

• @context: Provides the context for the data, usually a URL pointing to the
schema definition.

• @type: Defines the type of the item.

• @id: Provides a unique identifier for the item.

• property names: Specific properties are defined within the JSON structure,
such as name, price, and description.

Figure 3.4 shows an example of a product marked up with JSON-LD.

6https://microformats.org/2005/06/20/welcome
7https://www.w3.org/community/json-ld/

https://microformats.org/2005/06/20/welcome
https://www.w3.org/community/json-ld/
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Figure 3.4: An example product marked up with JSON-LD.

3.2.5 Comparison of Markup Formats

Each markup format has its unique strengths, making them suitable for different
scenarios in web development. Microdata and RDFa are similar in that they embed
structured data directly within HTML tags, creating a close association between
content and its metadata. This close integration can be advantageous for developers
who prefer a more declarative approach, where the data and its structure are easily
visible and maintained within the HTML itself. This method also allows for easier
updates and immediate visibility of the structured data in the source code.

Microformats, while adhering to a simpler methodology, employ specific class
names to encode metadata. This approach reduces complexity and is more ac-
cessible for developers who are looking for straightforward implementation with-
out needing to learn extensive new syntax. Microformats excel in simplicity and
human-readability, making it easy to adopt and integrate into existing web pages
with minimal changes.

JSON-LD stands out due to its separation of structured data from HTML con-
tent. By embedding JSON-LD within a script tag, developers can keep their HTML
clean and focused purely on presentation while all the structured data is maintained
in a well-organized JSON format. This separation simplifies the HTML structure
and allows for more complex data relationships and easier updates, as the JSON
data can be dynamically generated and manipulated without altering the HTML.
JSON-LD is particularly favored by search engines like Google8, as it provides a
robust and flexible way to implement structured data that can be easily processed
and indexed.

A critical advantage of JSON-LD over the other formats is its ability to handle
more complex data structures and relationships. Since JSON is a widely used for-
mat for data interchange, integrating JSON-LD with other systems and APIs is of-
ten more straightforward. Additionally, JSON-LD’s clear separation from HTML
content reduces the risk of errors during web development and maintenance, as the
structured data can be managed independently from the web page’s design and con-
tent. While Microdata and RDFa can also represent complex relationships through
nested structures, they require careful attention to HTML syntax and attributes.

8https://developers.google.com/search/docs/appearance/structured-data/intro-structured-data

https://developers.google.com/search/docs/appearance/structured-data/intro-structured-data
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3.3 Schema.org Vocabulary

Schema.org is a collaborative, community-driven initiative founded by Google,
Microsoft, Yahoo, and Yandex with the goal of creating a unified vocabulary for
structured data on the Web [Guha et al., 2016, Kanza et al., 2018]. Launched in
June 2011, Schema.org provides a collection of schemas, or structured data for-
mats, that webmasters can use to mark up their pages in ways recognized by major
search providers. This effort helps search engines better understand and display
content, enhancing the quality of search results and making it easier for users to
find the information they need. Applications that use Schema.org data include
Google Shopping, Google for Jobs, and Google Dataset Search9.

3.3.1 Development of Schema.org

The development of Schema.org stemmed from the need for a standardized ap-
proach to structured data on the Web. Prior to Schema.org, various markup lan-
guages and vocabularies existed, leading to inconsistencies and inefficiencies in
how search engines indexed and presented web content. Early attempts like Ya-
hoo’s SearchMonkey in 2008 and Google Rich Snippets in 2009 led to the es-
tablishment of data silos [Mika, 2015]. By consolidating multiple vocabularies
into a single, extensible framework, Schema.org aimed to streamline the process
of adding structured data to web pages and ensure compatibility across different
search engines.

Schema.org’s development has been a collaborative and iterative process in-
volving input from a wide range of stakeholders, including webmasters, develop-
ers, and search engine providers. In its original iteration, Schema.org comprised
297 classes/types and 187 relations/properties [Guha et al., 2016]. By May 2024,
the Schema.org vocabulary has been released in version 2710. At its inception,
Schema.org was designed to be extensible in two primary ways, which were for-
mally defined in 2015 as hosted and external extensions [Guha et al., 2016]. Hosted
extensions are developed in collaboration with the broader community and subject
matter experts and are integrated into the core Schema.org vocabulary. In con-
trast, external extensions are managed independently and are not incorporated into
the core Schema.org structure. A notable example of an external extension is the
GS111 web vocabulary, which provides detailed product data descriptions.

3.3.2 Structure of the Schema.org Vocabulary

The Schema.org vocabulary is structured as a hierarchy of types and properties
designed to cover a broad spectrum of web content. The key components of its
structure are:

9https://developers.google.com/search/docs/appearance/structured-data/search-gallery
10https://schema.org/docs/releases.html
11https://www.gs1.org/voc/

https://developers.google.com/search/docs/appearance/structured-data/search-gallery
https://schema.org/docs/releases.html
https://www.gs1.org/voc/
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Figure 3.5: Part of the Schema.org documentation for the Product class.

Types: Types are the core building blocks of Schema.org, representing entities
such as Person, Organization, Product, Event, and many others. Each type defines
a set of properties that are relevant to that entity. Types are organized in a hierar-
chical manner, allowing for the inheritance of properties. For example, Person is a
subtype of Thing, meaning it inherits properties from Thing.

Properties: Properties describe attributes of types. For example, a Person type
has properties such as name, birthDate, and address. Properties can be specific
to a type or shared across multiple types. The vocabulary includes data types for
properties, specifying what kind of values are expected (e.g., Text, Number, Date,
URL).

Data Types: Schema.org defines several data types to ensure that proper-
ties have well-defined formats. These include basic types like Text, Number, and
Boolean, as well as more complex types like Date, Time, URL, and Structured-
Value.

Enumeration: Some properties have a fixed set of values, known as enumer-
ations. For example, the BookFormatType enumeration for a Book type includes
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values like Paperback, Hardcover, and EBook.
Extensibility: Schema.org is designed to be extensible. The core vocabulary

can be expanded with extensions to cover more specific needs or emerging do-
mains. Extensions allow for the integration of specialized vocabularies into the
main Schema.org framework without disrupting its overall structure.

Figure 3.5 shows an example of the documentation of the Schema.org class
Product. The properties related to GTIN numbers are used in this thesis to au-
tomatically group product offers on the Web into clusters of the same product
and subsequently generate training data, as well as benchmarks (see Chapters 4
and 5) from this clustering. The next section presents two large table corpora from
Schema.org annotations that were created as part of the work on this thesis.

3.4 The WDC Schema.org Table Corpora

Schema.org has found broad adoption as millions of websites have started to use
the Schema.org vocabulary to provide structured data within their pages. At the
time of writing, approximately 50% of all web pages contain Schema.org annota-
tions [Brinkmann et al., 2023a].

The Web Data Commons (WDC) project12 regularly extracts Schema.org data
from the Common Crawl13, the largest public web corpus. This extraction is the ba-
sis for the creation of the benchmarks presented in this thesis. The CommonCrawl
is released monthly and typically contains approximately 3 billion HTML pages
originating from over 30 million different websites (hosts). The WDC project uses
the extracted data to calculate statistics about the adoption of Schema.org on the
Web [Brinkmann et al., 2023a]. In addition, it publishes the extracted data in the
form of N-Quads14, a provenance-enabled graph data format.

This section presents a process of how this extracted data can be directly used
for applications that require tabular data without requiring users to sort through
large amounts of N-Quads for the data they seek. These tables can further be used
to create additional benchmarks similar to those presented in this thesis. The WDC
Schema.org Table Corpora are created from the extracted data by (1) grouping the
data by website, (2) removing incomplete entities that were extracted from listing
pages, and (3) deduplicating it. The resulting relational tables are presented in a
JSON format. This section presents two releases of the WDC Schema.org Table
Corpus: The 2020 release consists of 4.2 million relational tables that together
contain „292 million rows of data. The corpus was generated from the WDC 2020
JSON-LD and Microdata extraction. The second corpus contains 5 million tables
with „361 million rows of data generated from the WDC 2023 extraction.

The tables in the corpora belong to 44 different Schema.org classes, with Prod-
uct, LocalBusiness, and Event being the most widely used classes. As the tables are

12http://webdatacommons.org/structureddata/
13https://commoncrawl.org/
14https://www.w3.org/TR/n-quads/

http://webdatacommons.org/structureddata/
https://commoncrawl.org/
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generated from Schema.org annotations, all tables that describe entities of a spe-
cific type use the same set of attributes to describe these entities, i.e. all tables use a
shared schema. However, since the data originates from more than 4.3 million dif-
ferent websites (hosts) across the Web, the actual data values are heterogeneous in
terms of the value format, the unit of measurement, and the language. The code to
reproduce the creation process presented in the following is available on GitHub15

The work presented in this section has been previously published in [Peeters
et al., 2024a].

3.4.1 Creation Process

This section describes the process of creating the WDC Schema.org Table Corpora.
The 2023 release of the corpus is used to illustrate the process in terms of number
of tables, number of rows, and the required amount of computation.

Extracting Data from the Common Crawl

The WDC project has developed a parsing framework for extracting structured data
from the Common Crawl [Meusel et al., 2014]. This framework runs in the AWS
cloud and supports the parallel processing of multiple (W)ARC files. To extract
JSON-LD, Microdata, RDFa, and Microformats data from the HTML pages con-
tained in the (W)ARC files, the framework uses the Any23 parser library16. For the
2023 release, 250 AWS spot instances with 8 ˆ 3.2 GHz CPUs and 16 GB RAM
were used for the extraction, which altogether required 4,602 machine hours. The
extracted corpus consists of 97 billion RDF quads (N-Quads). Webmasters primar-
ily use JSON-LD and Microdata syntaxes to annotate web pages with Schema.org
terms17. Consequently, the extracted JSON-LD and Microdata data is merged to
form class-specific subsets for selected Schema.org classes. The subsets consist of
all entities of a specific class and entities of other classes present on the same page
and contain 39 billion RDF quads18. Five days of compute time on a local shared
server equipped with 96 ˆ 3.6 GHz CPU cores and 1024 GB RAM were necessary
to create the Schema.org subsets.

Grouping by Host

In the second step, all entities, corresponding attributes, and attribute values are
converted from RDF quads to tabular format and grouped by host. As this process
involves converting a graph structure into single relational tables, which requires
flattening the graph, the following decisions are made. If an attribute contains

15https://github.com/wbsg-uni-mannheim/schemaorg-tables
16https://github.com/apache/any23
17https://webdatacommons.org/structureddata/
18https://webdatacommons.org/structureddata/schemaorg/

https://github.com/wbsg-uni-mannheim/schemaorg-tables
https://github.com/apache/any23
https://webdatacommons.org/structureddata/
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child entities instead of a literal value, all child entities and their attributes are
extracted as a list. However, only literal values are considered for the attributes
of child entities, dismissing any child entity attributes further down the hierarchy.
For example, a web page about a movie might annotate the name of the movie
and details of the actors who appear in the movie, including their names and their
spouses. In this case, the movie name and a list of actors are extracted. For each
actor, only the actor’s name is extracted because it is a literal value. Child entities
further down the hierarchy, such as the actor’s spouse, are omitted. After this step,
the 2023 version of the table corpus contains „7.5 million tables with a total of
„1.4 billion rows.

Removal of Listing Pages and Sparse Entities

Listing pages contain concise information about entities that are described in more
detail on other pages. In order to have attribute-rich entity descriptions in the cor-
pus, descriptions originating from listing pages must be excluded. Other pages
provide detailed descriptions of one entity and brief descriptions of other entities as
part of navigation elements or advertisements. The objective is to extract only the
main entity from such pages. The following heuristic is applied to exclude these
sparse entities. The entity is extracted if a web page contains only one relevant
entity with at least three attributes. For web pages that contain multiple entities,
the attribute values of each entity are concatenated, and the mean absolute devi-
ation (MAD) of each entity is calculated based on the length of the concatenated
attribute values. Entities with at least three attributes and concatenated attribute
value lengths greater than the median plus three times the MAD (positive outliers)
are extracted. If a web page marks up multiple entities without outliers, those
entities are dismissed as originating from a listing page. Applying the heuristics
reduces the corpus size to „5 million tables and „429 million rows.

Content-based Deduplication

Content-based deduplication removes exactly equal entity descriptions that orig-
inate from different web pages of the same host. This process is applied to all
attributes except for schema.org/url, which is excluded for top and second-level
attributes as it may differ and lead to false positives during deduplication. Only
attributes with a density above 25% are kept for the final table for each host, and
all sparse attributes are dismissed to avoid extremely sparse tables. After content-
based deduplication, the 2023 release of the WDC Schema.org Table Corpus con-
tains „5 million tables containing all together „361 million rows of data. It took
10 days of compute time on a local shared server equipped with 96 ˆ 3.6 GHz
CPU cores and 1024 GB RAM to create the 2023 release from the extracted RDF
quads resulting from the first step.
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3.4.2 Content of the 2023 Corpus

This section presents profiling information for the 2023 WDC Schema.org Table
Corpus. The corpus comprises approximately 5 million tables, containing over 361
million rows of data in total. The tables cover 42 Schema.org classes and originate
from over 4.33 million websites (hosts).

Tables by Class

The statistics on the number of tables per class, their rows, and the average number
of attributes for a selection of Schema.org classes are presented in Table 3.1. The
selected Schema.org classes demonstrate the breadth of the corpus, ranging from
classes with extensive tables, such as Product, to those with fewer tables, such as
Dataset. In addition to the statistics for the complete corpus (Overall), Table 3.1
provides separate statistics for the largest 100 tables and tables with at least three
rows (Minimum 3). For example, the corpus contains over one million Local-
Business tables describing altogether 8 million business entities with on average 4
attributes, such as name, address, telephone, or average rating. By distinguishing
between the Top 100 and Minimum 3 tables, it is visible that the Top 100 tables
account for 1% to 11% of all rows for the three most popular classes: Product,
LocalBusiness, and Event.

Table 3.1: Number of tables and rows for selected Schema.org classes in millions
(M) and thousands (k).

Overall Top100 Minimum 3

Class Tables Rows Avg. Attr. Rows Tables Rows

Product 3M 288M 5 4M 2M 283M
LocalBusiness 1M 8M 4 903k 65k 6M
Event 368k 15M 8 1M 261k 14M
Restaurant 60k 716k 7 348k 7k 313k
JobPosting 58k 3M 7 543k 37k 3M
Recipe 41k 4M 11 619k 33k 3M
Question 38k 4M 6 2M 21k 2M
Hotel 22k 2M 6 794k 9k 880k
Book 14k 3M 6 944k 10k 2M
Movie 6k 2M 7 481k 5k 1M
SportsEvent 4k 579k 6 296k 3k 281k
Hospital 2k 40k 6 31k 396 7k
Dataset 2k 364k 7 286k 1k 77k

Attributes

The WDC Schema.org Table Corpus is constructed using Schema.org annotations.
As a result, all tables share the same set of attributes, while the attributes present in
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a specific table depend on the annotations included by the corresponding host in its
web pages. Table 3.2 shows a selection of attributes that appear in the tables for the
classes Product, LocalBusiness and Movie. Common attributes such as name and
description are present in many tables across multiple classes. Other attributes,
such as productID and genre, are more class-specific and less frequently used,
indicating that a long-tail distribution for such attributes exists in the corpus. For
both head and long-tail attributes, the tables exhibit a high average value density
of 95%. This shows that if hosts use a Schema.org term, they do so consistently.
Some attributes are entity identifiers that can be used to link entities across tables,
for example, to derive training data for entity matching tasks. Examples of such
attributes are SKU, productID, MPN and GTIN13 for the class Product as well as
the telephone number for LocalBusiness.

Table 3.2: Fraction of tables containing specific attributes.

Product LocalBusiness Movie

Attribute in %
of tables Attribute in %

of tables Attribute in %
of tables

name 100 name 99 name 96
offers 96 address 97 description 73
description 86 telephone 91 director 63
sku 57 aggregaterating 19 datecreated 55
brand 33 geo 16 aggregaterating 38
image 28 pricerange 12 duration 36
category 11 email 11 actor 36
aggregaterating 9 description 11 genre 26
productid 7 openinghoursspec 10 datepublished 25
mpn 7 url 8 image 15
gtin13 3 image 7 url 13

3.4.3 Comparison to Previous Table Corpora

Various table corpora have been created in recent years. Table 3.3 lists table cor-
pora and shows statistics on their number of tables (Tabs.), the average number of
rows (Avg. # Rows) and attributes (Avg. # Attr.), and whether all tables in the
corpus use a single shared schema. The WDC Web Table Corpus [Lehmberg et al.,
2016] and the Dresden Web Table corpus [Eberius et al., 2015] extract relational
HTML tables from web pages in the Common Crawl. These web tables [Zhang
and Balog, 2020] have been used in related work on table search [Chapman et al.,
2020] and table augmentation [Cafarella et al., 2018]. The WikiTables table cor-
pus contains tables that were extracted from Wikipedia [Bhagavatula et al., 2013].
VizNet [Hu et al., 2019] consists of tables that were chosen for benchmarking vi-
sualization methods. Open Data Portal Watch [Mitlöhner et al., 2016] contains
tabular data that was collected from open data portals. Table 3.3 shows that the
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tables in the WDC Web Table Corpus, the Dresden Web Table Corpus, WikiTa-
bles, and VizNet have a relatively small number of rows. Compared to the web
tables corpora, the WDC Schema.org table corpora and GitTables [Hulsebos et al.,
2023] contain, on average, more rows. GitTables [Hulsebos et al., 2023] consists
of tables that are extracted from CSV files shared on GitHub. The tables in all the
referenced table corpora do not use a single shared schema, but each table uses a
different, proprietary schema. As a post-processing step, the tables in GitTables are
annotated with semantic types from DBpedia and Schema.org using an automated
annotation method [Hulsebos et al., 2023].

Table 3.3: Related table corpora.

Single Avg. # Avg. #
Table Corpus Schema Tabs. Rows Attr.

Dresden Web Tables Corpus [Eberius et al., 2015] ˆ 59M 17 6
WDC Web Tables Corpus 2015 [Lehmberg et al., 2016] ˆ 90M 14 5
WikiTables [Bhagavatula et al., 2013] ˆ 15M 15 6
VizNet [Hu et al., 2019] ˆ 31M 17 3
Open Data Portal Watch [Mitlöhner et al., 2016] ˆ 1M 17 14
GitTables [Hulsebos et al., 2023] ˆ 2M 209 25
WDC Schema.org Corpus 2020 ✓ 4M 89 5
WDC Schema.org Corpus 2023 ✓ 5M 72 5

3.4.4 Applications

This section describes various applications of the WDC Schema.org Table Corpora.
The corpora can be used for benchmarking, as a source of training data, to analyze
the adoption of semantic web technologies, and as a source of domain data. This
following paragraphs give an overview of some possible applications.

Source of Training Data

Its structuredness, the common schema, and shared entity identifiers make the cor-
pus a source of (pre-)training data for table representation learning as well as data
integration. The corpus also contains 4 million question-answer pairs originating
from 38,000 websites (see row Question in Table 3.2), which could be used to fine-
tune large language models or as background knowledge for retrieval-augmented
question answering. In addition, the corpus can also be used as a structured pre-
training resource for table representation learning methods [Deng et al., 2020] or
for fine-tuning large language models for structured data tasks [Li et al., 2023a].

Analyzing the Adoption of Semantic Web Technologies

Detailed statistics on which host uses which Schema.org terms are published to-
gether with the corpora. From a web science perspective, these statistics together
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with the data itself can be used to analyze the adoption of the Schema.org vocab-
ulary within specific application domains, as well as on the Web in general [Guha
et al., 2016, Brinkmann et al., 2023a].

Source of Domain Data

The corpus can further be used as a large source of domain data. For example,
if a user wants to assemble a list of shops or hotels in a city, the 1 million local
business tables in the corpus with 8 million rows in total could prove a useful
starting point. If the user wants to analyze the skills that are currently in demand
on the job market, they may use the 3 million job postings in the corpus for their
analysis.

Benchmarking

The table corpus is a useful resource for evaluating table annotation, schema match-
ing, entity matching, and data retrieval methods due to its shared schema and the
presence of entity identifiers such as GTINs, MPNs, or phone numbers in many
tables. For example, the SOTAB table annotation benchmark [Korini et al., 2022]
was constructed by selecting a subset of tables from the 2020 version of the cor-
pus, removing attribute labels from the tables, and having the annotation systems
predict the removed labels. The SOTAB benchmark was used in the 2023 edition
of the SemTab challenge19. A second benchmark that uses tables from the 2020
version of the corpus is the WDC Schema Matching Benchmark20 that requires
instance-based schema matching methods to discover correspondences between
table columns.

The next part of the thesis presents an evaluation of using Schema.org annota-
tions as supervision for automatically creating training sets for product matching
and introduces two benchmarks based on this process.

19https://sem-tab-challenge.github.io/2023/
20https://webdatacommons.org/structureddata/smb/

https://sem-tab-challenge.github.io/2023/
https://webdatacommons.org/structureddata/smb/
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Chapter 4

Semantic Annotations as Training
Data for Product Matching

4.1 Introduction

Deep neural networks have become part of the methods for all steps of the data
integration pipeline, including schema matching [Deng et al., 2020, Wang et al.,
2023], information extraction [Yang et al., 2022], and entity matching [Mudgal
et al., 2018, Li et al., 2020, Wang et al., 2022c].

Most publicly available training corpora and benchmarks for entity matching
are limited with respect to the amount and diversity of matching entity description
pairs available for training [Peeters et al., 2024b]. This chapter evaluates the po-
tential of using semantic annotations from a large number of websites as a source
of training data for supervised product matching methods.

This chapter contributes a novel benchmark, WDC LSPM, and associated ex-
perimental analysis to the field of supervised entity matching, showing that manual
labeling of training data for matching entities in the domain of products can be re-
placed by relying exclusively on Schema.org annotations gathered from the public
Web. Many product offers on the Web are accompanied by product identifiers, such
as GTINs 1 or EANs. A GTIN is a unique and internationally recognized identifier
for products, with EANs being a type of GTIN with a specific length. Each GTIN
is unique to a product and helps distinguish it from millions of other products on
the global market. As these identifiers are marked up using Schema.org annota-
tions as part of product offers, it is possible to cluster these offers by identifier. The
result is a clustering of product offers from different e-shops referring to the same
product, which can subsequently be leveraged to create training pairs for product
matching methods automatically. The clustering is created from Schema.org an-
notations found in the WDC extraction of the Common Crawl (see Section 3.4).
The specific clustering used in this chapter consists of more than 20 million pairs
of offers referring to the same products. The offers were extracted from 43 thou-

1https://www.gs1.org/standards/id-keys/gtin
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sand e-shops that provide Schema.org annotations, including some form of product
identifiers, such as manufacturer part numbers (MPNs), global trade item numbers
(GTINs), or stock-keeping units (SKUs). At the time of creation, the dataset is
orders of magnitude larger than the training sets of the publicly available datasets
Walmart-Amazon [Gokhale et al., 2014], Amazon-Google [Köpcke et al., 2010],
and Abt-Buy [Köpcke et al., 2010] that are widely used to evaluate entity matching
methods (also see Table 4.1 and Section 5.4).

This chapter introduces the process for automatically generating a large-scale
training set for product matching from Schema.org annotations as the basis for the
generation of the WDC LSPM benchmark. Afterwards, it evaluates the usefulness
of the WDC LSPM benchmark by using it to train non-neural and neural product
matchers to a high level of performance using a range of experiments.

Using Schema.org product identifier annotations, such as GTINs or MPNs, as
distant supervision for product matching carries a certain level of inherent noise.
Therefore, it is important to explore the learning method’s label noise resistance.
A specialized set of experiments shows that the Deepmatcher [Mudgal et al., 2018]
system can be reliably trained with the inherent noise of the automatically created
training set, but quickly loses performance when the level of label noise is further
increased.

Finally, millions of additional training pairs from the clustering are used to per-
form large-scale intermediate training of the PLM BERT [Devlin et al., 2019], lead-
ing to increased performance on the WDC LSPM benchmark when compared to
fine-tuning on thousands of training pairs with the state-of-the-art method Ditto [Li
et al., 2020], further supporting the usefulness of Schema.org annotations as a
source of training data also on million scale. These experiments build the founda-
tion for the WDC Products benchmark presented in Chapter 5 and all the following
chapters, since the created benchmarks are used as part of all the following experi-
mental evaluations.

The contributions of this chapter are summarized as follows:

• WDC Product Data Corpus and Gold Standard for Large-Scale Product
Matching (WDC LSPM): A highly textual product matching benchmark
derived from Schema.org annotations in the Common Crawl of November
2017 using annotated product identifiers on webpages to cluster product of-
fers referring to the same product. The benchmark provides training, val-
idation, and test splits for four product categories. This benchmark com-
pliments publicly available product matching benchmarks due to its large
size and multi-source nature, resulting in more available and heterogeneous
product descriptions per product compared to previous publicly available
benchmarks.

• Evaluation of WDC LSPM to Train and Maintain Product Matchers:
An analysis of the usefulness of the created benchmark for training various
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neural and non-neural matching methods is performed. This evaluation in-
cludes an investigation of the impact of label noise on the matchers and the
possibility of maintaining matchers for unseen entities and their performance
on such entities. The results show that neural product matchers trained and
maintained with the Schema.org data in the WDC LSPM benchmark can
achieve a high performance of more than 90% F1 in all product categories
covered by the benchmark and are robust to the average label noise inherent
to the automatically generated pairs.

• Evaluation of Schema.org Training Data for the Large-Scale Interme-
diate Training of BERT: The usefulness of the LSPM benchmark and the
original clustering of product offers is further supported by subjecting the
PLM BERT [Devlin et al., 2019] to large-scale intermediate training with
millions of automatically labeled training examples, resulting in improved
performance compared to fine-tuning with only thousands of examples. The
additional inclusion of a masked language modeling (MLM) objective to-
gether with the binary matching objective in a multi-task training setup with
millions of automatically created training pairs results in further improve-
ments to matching performance.

The first and second contributions are joint work with Anna Primpeli and
Benedikt Wichtlhuber published in [Peeters et al., 2020b]. The author contributed
the LSPM benchmark and all entity matching experiments apart from those de-
scribed in Section 4.7.2 which were performed by Benedikt Wichtlhuber. The pro-
cess presented in Section 4.4 and the resulting corpus in Section 4.5 are the work
of Anna Primpeli. They are included in this thesis as they are the basis for the cre-
ation of both presented benchmarks. The third contribution [Peeters et al., 2020a]
is joint work with Goran Glavaš, who supported the author with best practices for
the BERT Transformer architecture and its intermediate training.

Section 4.2 presents related work on the properties of publicly available bench-
marks for entity matching and the usage of semantic annotations on the Web.
Section 4.3 discusses the semantic annotations found in the Common Crawl of
November 2018 which is the basis for the following clustering process. Section 4.4
presents the process of exploiting Schema.org annotations to collect large amounts
of training data for entity matching automatically. Section 4.5 presents the WDC
Training Dataset for Large-Scale Product Matching as the result of this process.
Section 4.6 presents the process of building the WDC LSPM benchmark from this
dataset. Section 4.7 presents the experimental results for the evaluation of the
Schema.org generated training data and the WDC LSPM benchmark. Section 4.8
concludes the chapter with a discussion of the results and contributions.
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4.2 Related Work

The first part of this section gives an overview of the properties of existing entity
matching benchmarks showing the need for larger and more diverse benchmarks.
The second part of this section presents various studies on the adoption of markup
languages that have been performed, showing a steady increase over the years. This
increased adoption of semantic annotations makes the creation of the corpus and
benchmarks presented in the following sections and chapters a possibility.

Properties of Existing Entity Matching Benchmarks and Corpora:

Various benchmark datasets [Primpeli and Bizer, 2020] have been proposed and
used to compare entity matching methods since the inception of the field. Due to
the importance of benchmarks for evaluating entity matching systems and driving
the entity matching field forward, some researchers have focused on analyzing and
categorizing publicly available benchmarks along various dimensions [Primpeli
and Bizer, 2020,Graf et al., 2022]. Table 4.1 gives an overview of publicly available
entity matching benchmark datasets and their statistics, including: domain, number
of sources from which the data originates, number of entities/records, and number
of positive pairs (record pairs referring to the same entity).

The Alaska and Ember benchmarks are very recent additions to the set of entity
matching benchmarks and were chronologically proposed after the work presented
in this chapter. The remaining benchmarks in the table have become a gold stan-
dard for evaluating entity matching systems for many years and are widely used in
the literature [Primpeli and Bizer, 2020, Barlaug and Gulla, 2021].

When comparing the statistics, it is evident that these benchmarks originate
from a limited number of sources, usually two, and are limited by the amount of
matches (per entity) that are available for training and evaluating machine learning
systems. These properties lead to limited heterogeneity among the entity records
and hinder learning entity-specific patterns due to the low amount of available
matches per entity. These circumstances prompt the need for corpora and bench-
marks with larger amounts of training data, especially for training neural network-
based entity matching systems that usually require a large and diverse amount
of training data to perform at peak effectiveness [Mudgal et al., 2018, Li et al.,
2020, Peeters et al., 2024b].

As the process of labeling record pairs as positives or negatives is highly labor
intensive and costly [Gokhale et al., 2014] at scale, but at the same time considered
a very mundane task, this has prompted research into using automatically collected
training data from semantic annotations, as presented in this chapter. Section 5.2
presents a more in-depth discussion of the benchmarks presented in Table 4.1 and
compares them to the two benchmarks proposed in this thesis.
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Table 4.1: Comparison of existing benchmark datasets and corpora for entity
matching.

Benchmark Domain # Sources # Entities # Records # Matches
# Non-

Matches
Avg. Matches

per Entity

Leipzig Database Group

Abt-Buy Product 2 1,012 1,081/1,092 1,095 - 1.08
Amazon-Google Product 2 995 1,363/3,226 1,298 - 1.30
DBLP-ACM Bibliogr. 2 2,220 2,614/2,294 2,223 - 1.00
DBLP-Scholar Bibliogr. 2 2,351 2,616/64,263 5,346 - 2.27

DuDe

Restaurants Company 2 110 533/331 112 - 1.02
Cora Bibliogr. 1 118 1,879 64,578 268,082 547.27

Magellan

Walmart-Amazon Product 2 846 2,554/22,074 1,154 - 1.36
Company Company 2 28,200 28,200/28,200 28,200 84,432 1.00
Beer Product 2 68 4,345/3,000 68 382 1.00
iTunes-Amazon Product 2 120 6,906/55,932 132 407 1.10

Alaska

Camera Product 24 103 3,865 157,157 - 1,525.80
Monitor Product 26 242 2,283 13,556 - 56.02

Chinese Academy of Sciences

Ember (Chinese) Product 1 350 6,245 5,053 206,296 14.44

Usage of Semantic Annotations on the Web:

The major search engine companies Google, Yahoo!, Microsoft, and Yandex ex-
tract structured data from their web crawls, but do not make the data publicly
available for commercial reasons. However, there have been several studies on
the adoption of markup languages:

Mika and Potter [Mika and Potter, 2012] analyze the adoption of markup lan-
guages based on Web crawls of the Bing search engine from 2011 and 2012. They
state that search engines at that time were biased towards popular head sites with
textual content and were not specifically looking for marked up data in webpages.
They report an adoption of over 30% for the websites in their sample that use some
form of semantic annotation, with RDFa and Microdata being the most preferred
choices of syntax.

Meusel et al. [Meusel et al., 2015] studied the adoption of the Schema.org vo-
cabulary during the period 2012 to 2014 using early extractions from the Web Data
Commons (WDC) project2. They find that half of the elements in the Schema.org
standard are not observed in any part of the examined corpora, while deprecations
in the standard have often found widespread adoption. The authors further state
that homogeneity in the adoption of the Schema.org vocabulary increases the more
relevant the marked-up data is for large search engines like Google due to their
usage in rich search snippets. Another reason for the increased homogeneity is

2https://webdatacommons.org/

https://webdatacommons.org/
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observed in the usage of parts of the vocabulary in widely deployed content man-
agement systems.

Guha et al. [Guha et al., 2016] present an updated analysis of Microdata adop-
tion with a particular focus on the Schema.org vocabulary. They summarize their
findings in three lessons learned: (1) if asymmetry exists between publishers and
consumers, the complexity should be put with the smaller number as to continue
using their learned workflows, (2) long specifications are not followed as develop-
ers tend to copy and edit examples instead, and (3) complexity should be added
over time as needed as adoption is driven by basic layers first.

Kanza et al. [Kanza et al., 2018] analyze the social processes around the cre-
ation and maintenance of the Schema.org vocabulary. They find that GitHub is
the main platform for creating and editing functionality, while the main use of the
community mailing list is for clarifications. The authors further state that 10% of
the users perform 80% of the work, with most users being "lurkers" that do not
start discussions or interact with the group.

Alrashed et al. [Alrashed et al., 2021] find that 61% of the hosts in a Google
crawl that provides Schema.org/Dataset annotations do not describe datasets and
propose a classifier to identify such low-quality annotations. They state that the
providers often do not use the correct typing for artifacts on a webpage if the
Schema.org category is more general, as is the case for the dataset category.

Finally, the Web Almanac3 has tracked the adoption of semantic annotations on
the Web based on a crawl by the HTTP archive. The aforementioned WDC project4

performs a yearly extraction of the Common Crawl and examines the adoption of
semantic annotations each year5, and makes the data available as raw annotations
on HTML pages and in various other formats to interested users. This effort was
presented in 2014 by Meusel et al. [Meusel et al., 2014] and recently by Brinkmann
et al. [Brinkmann et al., 2023a] who found that the adoption of Schema.org terms
has risen to 50% of all webpages in the Common Crawl over the years. This
widespread adoption makes the use of Schema.org annotations to automatically
create training data a lucrative prospect.

The clustering of products based on Schema.org annotations and the WDC
LSPM benchmark for entity matching used in this chapter, as well as the WDC
Products benchmark presented in Chapter 5, are all based on WDC extractions,
which will be named at the corresponding locations in this thesis. The data from
two of these extractions is also available in a relational table format as previously
presented in Section 3.4.

3https://almanac.httparchive.org/en/2022/structured-data
4https://webdatacommons.org/
5https://webdatacommons.org/structureddata/

https://almanac.httparchive.org/en/2022/structured-data
https://webdatacommons.org/
https://webdatacommons.org/structureddata/
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4.3 Schema.org Annotated Product Offers in the Com-
mon Crawl

The Web Data Commons (WDC) project6 monitors the adoption of Schema.org an-
notations on the Web by analyzing the Common Crawl7, a series of public Web cor-
pora, each containing several billion HTML pages [Meusel et al., 2014,Brinkmann
et al., 2023a]. Table 4.2 shows the number of pay level domains (PLDs) in the
CommonCrawl that use product-related Schema.org terms in 2017 compared to
2013. The absolute number of websites, the richness of the descriptions, and the
number of websites annotating product identifiers (lower part of the table) have all
grown significantly. The November 2018 version of the Common Crawl contains
2.5 billion pages originating from 32.8 million pay-level domains (PLDs). Exam-
ples of pay-level domains are, for instance, amazon.de or ebay.co.uk. Of these
PLDs, 9.6 million use semantic annotations (29.3%).

Table 4.2: Adoption of product-related Schema.org properties. The percentages
refer to all websites using Schema.org Product markup [Primpeli et al., 2019].

Property #PLDs 2013 #PLDs 2017 %PLDs 2013 %PLDs 2017

s:Product/name 50,536 535,625 89.62% 92.11%
s:Offer/price 33,509 462,444 59.42% 79.53%
s:Product/offers 33,090 462,233 58.68% 79.49%
s:Offer/priceCurrency 14,704 430,556 26.08% 74.04%
s:Product/image 34,921 419,391 61.93% 72.11%
s:Product/description 38,037 377,639 67.46% 64.94%
s:Offer/availability 21,789 337,876 38.64% 58.11%
s:Product/url 11,937 263,720 21.17% 45.35%
s:Product/brand 5,880 73,934 10.43% 12.71%

s:Product/productID 7,392 35,211 10.90% 6.05%
s:Product/sku 1,323 126,696 1.95% 21.78%
s:Product/mpn 484 8,161 0.71% 1.40%
s:Product/gtin13 276 5,467 0.41% 0.94%
s:Product/identifier 160 538 0.24% 0.09%
s:Product/gtin8 0 257 0.00% 0.04%
s:Product/gtin12 0 577 0.00% 0.09%
s:Product/gtin14 0 722 0.00% 0.12%

Table 4.3 gives an overview of the most frequently offered types of data (in
the form of Schema.org classes). The table distinguishes between the two most
widely used annotation syntaxes. The Microdata syntax for annotating data in the
BODY of HTML pages and the JSON-LD syntax which is used to embed data into
the HEAD section of HTML pages. Around 850 thousand websites provide prod-

6https://www.webdatacommons.org/structureddata/
7https://commoncrawl.org/

https://www.webdatacommons.org/structureddata/
https://commoncrawl.org/
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Table 4.3: Number of websites (PLDs) offering specific types of data [Bizer et al.,
2019].

Schema.org class Microdata JSON-LD

WebPage 1,124,583 121,393
Product 812,205 40,169
Offer 676,899 57,756
Article 612,361 57,082
Organization 510,069 1,349,775
PostalAddress 502,615 178,500
ImageObject 360,875 111,946
BreadcrumbList 344,538 205,971
ListItem 338,845 209,207
Blog 337,843 12,174
BlogPosting 327,828 43,243
Person 324,349 335,784
LocalBusiness 294,390 249,017
AggregateRating 258,078 23,105
WebSite 158,054 3,519,466
Review 124,022 6,622
Place 92,127 66,396
Event 88,130 63,605
Brand 65,835 11,439

uct data using the Schema.org vocabulary. The product properties that are most
widely used are name, description, brand, and image. Interestingly and very cru-
cial for using semantic annotations from different websites to train matching meth-
ods, 30.5% of the websites annotate product identifiers, such as MPNs, GTINs, or
SKUs, which allow offers for the same products originating from different websites
to be clustered.

4.4 Cleansing and Clustering Schema.org Product Data

Webmasters maintaining semantic annotations in the templates used to render HTML
pages have different levels of knowledge and understanding of the Schema.org vo-
cabulary. Schema.org terms are not used consistently and according to the speci-
fications on all sites [Meusel et al., 2015]. As a result, semantic annotations must
be cleansed before they can be used for training entity matching systems. The fol-
lowing paragraphs describe the pipeline of cleansing operations that are applied to
create a large training dataset for products from Schema.org annotations. The Web
Data Commons product corpus version November 20178 is the starting point for
the creation of the training set. The corpus contains 809 million schema:Product
and schema:Offer entities originating from 581,482 websites.

8https://www.webdatacommons.org/structureddata/2017-12/stats/schema_org_subsets.html

https://www.webdatacommons.org/structureddata/2017-12/stats/schema_org_subsets.html
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Figure 4.1: WDC Product Data Corpus creation pipeline [Peeters et al., 2020b].

In the first step, the subset of the product offers that provide some kind of
product identifier, such as MPNs, GTINs, or SKUs, is selected. Afterwards, the
selected offers are grouped into ID-clusters based on these identifiers. The result-
ing clusters are further cleansed of abnormalities. Figure 4.1 gives an overview
of the data cleansing pipeline that is performed to group offers into clusters. The
following paragraphs describe each of the cleansing steps. The cleansing and clus-
tering pipeline is the work of Anna Primpeli and was presented in [Primpeli et al.,
2019]. The process is presented in this thesis as it is the basis of the following
experimental evaluation and the benchmarks created and presented in this thesis.

Filtering of Product Offers with Annotated Identifiers

All products and offers that include a globally unique identifier are gathered from
the WDC product corpus, so they can later be clustered using these identifiers.
When manually examining a subset of the annotations, it is noticeable that many
websites annotate globally scoped identifiers, such as GTIN or MPN, using the
vendor scoped term sku (stock keeping unit) or the generic terms identifier and
productID as shown in Table 4.4. As a result, all offers that contain any identifier-
related term (e.g. gtin8, gtin12, gtin13, gtin14, mpn, sku, identifier and productID)
are considered and vendor-specific identifiers are filtered later in the cleansing pro-
cess. Similarly to the observations of [Meusel et al., 2014] and [Kärle et al., 2016],
6% of the websites annotating product offers have syntax errors in the URIs identi-
fying Schema.org terms or use deprecated or undefined terms. In an effort to make
use of these offers as well, all entities that have at least one property with an iden-
tity revealing suffix9 are included. Using this selection strategy, 116 million of the
809 million offers (14%) in the Web Data Commons product corpus are identified
to contain some sort of product identifier.

Detection and Removal of Listing Pages and Advertisements

The goal is to include the comprehensive description of a product from its de-
tail page in the final dataset, not the summary of this information often found on
listing pages and in advertisements on detail pages of other products. However,
identifiers in listing items and advertisements are also annotated, making it neces-

9Regex applied to each predicate URI for capturing identity revealing properties:
. ˚ {pgtin8|gtin12|gtin13|gtin14|sku|mpn|identifier|

productIDq
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Table 4.4: Value overlap of different ID properties [Primpeli et al., 2019].

Value
overlap

gtin8 gtin12 gtin13 gtin14

sku 2,065 18,682 103,736 16,897
productID 2,966 13,854 198,847 10,192
identifier 122 3,751 17,732 837
Overlap # 5,153 36,287 320,315 27,926
Overlap % 6.75% 15.81% 11.21% 11.35%

sary to detect those entities and remove them from the corpus. For the detection
of listing pages and advertisements, a heuristic is applied that relies on the follow-
ing features: amount of schema.org/Offer and schema.org/Product entities per web
page, variation in the length of product descriptions, number of identifier values,
and semantic connection to parent entities using the terms schema:relatedTo and
schema:similarTo. This heuristic for identifying listing pages and advertisements
achieves an F1 score of 94.8% on a manually annotated test set. This cleansing
step removes 49% of the offer entities, leaving 58 million non-listing and non-
advertisement offers in the dataset.

Filtering by Identifier Value Length

In the next step, the identifier values are normalized by removing non-alphanumeric
characters and common prefixes such as initial zero digits and identifier-related
strings like ean, mpn, sku, and isbn. Considering the length of global identifiers
such as GTIN or ISBN numbers in comparison to vendor-specific identifiers that
are often relatively short, all offers having identifiers that are shorter than 8 char-
acters are filtered out. Additionally, offers whose id values completely consist of
alphabetical characters are removed. Finally, it can be observed that a considerable
number of websites use the same identifier value to annotate all their offers, likely
due to an error in the script generating the pages. These websites and their offer are
removed from the dataset. After applying both filtering steps, 26 million product
offers remain in the dataset.

Cluster Creation

The remaining 26 million offers are grouped into 18 million clusters using their
identifier values. It can happen that single offers contain multiple alternative iden-
tifiers referring to the same product, e.g., GTIN8 and GTIN12 or GTIN12 and
MPN. This information is used to propagate connections across clusters and fi-
nally merge clusters referring to the same product, resulting in a reduction of the
number of clusters to 16 million. 13 million of these clusters contain only a sin-
gle offer. Some websites include identifiers that refer to product categories, such
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as UNSPSC numbers10, in addition to identifiers referring to single products in
the annotations. To detect such cases, the structure of the identifier co-occurrence
graph within each cluster is examined. Vertices with a degree greater than 10 and a
clustering coefficient of Ci ă 0.2 tend to represent product categories rather than
single products, and the clusters are split accordingly. This leads to the creation
of 199,139 additional clusters. In the final step, an English language-focused sub-
set of the clustering is created by including only offers from the top-level domains
com, net, co.uk, and org.

Offer Categorization

The Schema.org vocabulary contains terms for annotating an offer’s product cate-
gory. However, less than 2% of the offer pages in the WDC 2017 corpus annotate
category information. The ID clusters are instead categorized into a flat prod-
uct categorization schema suggested by merging categories of a publicly available
Amazon product dataset11, as well as the Google12 and UNSPSC13 taxonomies.
For this purpose, a one-vs-rest ensemble of logistic regression classifiers is trained
to categorize product offers. For training and testing, 2,115 clusters are manually
annotated while considering an annotation limit of at least 50 clusters per product
category. The ensemble achieves 85% F1micro on the test set over all categories.
The learned model is applied to the English subset and a product category is as-
signed to each ID cluster. Table 4.5 presents the distribution of clusters, offers, and
cluster group sizes per category.

4.5 The WDC Training Dataset for Large-Scale Product
Matching

Applying the cleansing procedure described above to the Web Data Commons
product corpus of November 2017 results in a final dataset comprising 26 million
offers originating from 79 thousand websites. The dataset is named WDC Training
Dataset for Large-Scale Product Matching. Using the identifiers, the product of-
fers are grouped into 16 million clusters referring to the same products. 13 million
of these have a size of one, 1.9 have a size of two, and 1.1 million have a size larger
than two. The English language subset consists of 16 million offers grouped into
10 million clusters. Of these clusters, 8.4 million have a size of one, 1 million have
a size of two, and 625.7 thousand have a size larger than two. Only considering
clusters in the English subset having a size larger than five and excluding clusters
of sizes bigger than 80 offers, 20.7 million positive training examples (pairs of

10http://www.unspsc.org/
11http://jmcauley.ucsd.edu/data/amazon/
12https://www.google.com/basepages/producttype/taxonomy.en-US.txt
13https://wwwcfprd.doa.louisiana.gov/osp/lapac/vendor/commodityTree.cfm

http://www.unspsc.org/
http://jmcauley.ucsd.edu/data/amazon/
https://www.google.com/basepages/producttype/taxonomy.en-US.txt
https://wwwcfprd.doa.louisiana.gov/osp/lapac/vendor/commodityTree.cfm
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Table 4.5: Distribution of clusters, offers, and cluster group sizes per product cat-
egory in the English WDC Product Data Corpus [Peeters et al., 2020b].

Category % Clusters % Offers
# Clusters of Size

[3-4] [5-10] [11-20] [>20]
Tools_and_Home 12.37 9.41 27,228 8,336 4,648 1,325
Home_and_Garden 10.59 8.89 33,812 16,873 5,364 1,997
Automotive 8.95 8.37 22,808 10,143 4,094 4,421
Other_Electronics 6.74 5.27 21,590 5,603 1,155 508
Clothing 5.93 6.67 40,767 32,915 3,177 1,840
Books 5.36 4.22 19,771 6,361 654 360
Jewelry 4.94 4.95 19,526 11,245 2,112 1,436
Shoes 4.42 4.15 27,948 9,080 1,468 381
Health_and_Beauty 4.23 3.93 22,852 7,429 1,302 537
Toys_and_Games 4.01 3.21 11,196 3,109 968 521
Office_Products 4.01 13.13 27,393 10,875 3,052 1,561
Sports 3.84 5.45 16,930 6,927 1,556 2,602
Grocery 3.51 3.01 20,428 3,416 416 243
Computers 3.03 4.04 12,917 6,694 3,257 4,184
Travel 2.63 2.68 21,871 7,914 704 385
CDs_and_Vinyl 2.49 1.80 4,251 1,514 486 71
Camera_and_Photo 2.38 1.97 11,583 3,851 663 134
Musical_Instruments 2.26 2.01 6,218 1,176 240 180
Cellphones 2.03 1.52 3,652 1,334 274 281
Others 6.28 5.33 27,781 8,561 1,972 1,378

matching product offers) and a maximum of 2.6 trillion negative training examples
can be automatically derived from the dataset.

Table 4.5 shows the distribution of offers per product category, as well as the
cluster size distribution in the English training set. Taking into account only clus-
ters that have a size greater than two, more than 1.2 million positive pairs for the
clusters in the categories Office Product and Clothing, and more than 300 thousand
pairs each for the categories Shoes, Camera and Photo, Cell Phone and Acces-
sories, Computers and Accessories, and Jewelry can be derived. The available
training data that can be derived for each category is larger than the datasets that
have been available to the public so far. Furthermore, the combined numbers of
pairs are several orders of magnitude higher than the amount of training examples
available in the benchmark datasets in Table 4.1 in Section 4.2.

Attribute Extraction

From the set of all clustered offers, the descriptive properties of the offers that are
annotated with Schema.org terms are extracted. Table 4.6 shows the distribution
of descriptive Schema.org properties in the full and English datasets, as well as the
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Table 4.6: Amount of offers in the training set having specific properties [Bizer
et al., 2019].

Property Offers Full Set Offers English Set

# % # %

s:name 25,281,317 95.37% 15,653,878 95.15%
s:description 17,215,475 64.94% 11,352,319 69.00%
s:brand 9,313,258 35.13% 5,645,282 34.31%
s:image 5,785,250 21.82% 4,348,830 26.43%
s:price 3,335,306 12.58% 1,977,269 12.01%
s:priceCurrency 2,971,417 11.20% 1,873,611 11.38%
s:availability 1,180,268 4.45% 716,066 4.35%
s:manufacturer 2,024,537 7.63% 1,254,601 7.62%

s:sku 11,475,859 43.29% 7,239,039 44.00%
s:mpn 4,611,908 17.39% 3,167,895 19.25%
s:productID 9,386,433 35.41% 6,351,147 38.60%
s:gtin8 452,151 1.70% 167,411 1.01%
s:gtin13 3,529,958 13.31% 1,449,759 8.81%
s:gtin12 300,102 1.13% 261,431 1.58%
s:gtin14 420,712 1.58% 71,428 0.43%
s:identifier 179,225 0.67% 65,736 0.39%

distribution of identifier-related Schema.org properties in both sets. The density
of descriptive properties beside name and description is low (ă 50%). This is
in line with previous findings [Meusel et al., 2014] that only a small subset of
the Schema.org vocabulary is widely used on the Web. More than 75% of the
identifiers that were used for the clustering were annotated using the terms sku
and productID, which justifies the decision not to ignore these, in theory, vendor-
specific properties but also to consider their values in the cleansing process.

In addition to the annotated properties, the product specifications are extracted
from HTML tables that are included in the detail pages in the form of key/value
pairs. The method described in the works of Petrovski et al. [Petrovski et al., 2017]
and Qiu et al. [Qiu et al., 2015] is applied for this purpose. The method detects
specification tables for 24% of the offers contained in the full set and 17% of the
offers in the English set.

Quality of the Clustering

In order to evaluate the quality of the clustering of product identifiers, 900 pairs
of offers belonging to the same clusters are randomly sampled, and it is manually
verified by two human domain experts if the offers do, in fact, refer to the same
product by inspecting the name and description values of the offers. 93.4% of
the sampled pairs are considered to be labeled correctly. 2.1% of the pairs in the
sample (19 out of 900) are erroneous due to the web pages providing incorrect
identifier values. 1.0% of the pairs in the sample (9 out of 900) are wrong due to
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errors introduced by the transitive grouping strategy, which merges two clusters if
a single offer is found that is annotated with the identifier values of both clusters
(e.g., a GTIN8 and an MPN number). For 3.4% of the sample (31 offer pairs), the
two annotators were unable to decide whether the two offers referred to the same
product because the names and descriptions were too short (e.g., just "Samsung
Galaxy") or too general (e.g. "computer software"). In 20 of these 31 cases, the
name and description together contained less than four tokens. These pairs can be
easily deleted from the dataset using a length filter if desired.

The experiments described in Section 4.7.3 show that the observed amount of
errors is acceptable to use the identifiers to automatically generate training pairs
and train effective product matching systems with them.

4.6 The WDC Product Data Corpus and Gold Standard
for Large-Scale Product Matching

This Section gives an overview of the creation process and the profile of the test
and development sets that make up the WDC LSPM benchmark. The previous
sections presented the process for generating a large clustering of product offers
using product identifiers annotated using Schema.org annotations from the Web.
The LSPM benchmark presented in this section leverages this clustering, specifi-
cally the English WDC Training dataset, to automatically create development sets
and semi-automatically create test sets for the benchmark.

4.6.1 Creation Process

Test Sets

The LSPM benchmark test sets consist of 1100 pairs of product offers for each
of the following four product categories: Computers & Accessories, Camera &
Photo, Watches and Shoes. Each test set covers 150 products (ID-clusters from
the English WDC Training Dataset) from each category with positive and negative
pairs. Overall, offers for more than these 150 products are contained in the test sets,
serving only as negative correspondences to the 150 products without positives of
their own. These are contained for the purpose of generating negative corner cases
for the 150 products in an effort to create a challenging benchmark. For each of
the 150 products the test set contains two matching pairs of offers (positives) and
five or six non-matching pairs of offers (negatives). The aim was to include a
diverse selection of products as well as a good mixture of difficult and easy-to-
match pairs of offers into the test sets. To this end, similarity metrics are applied to
different attributes to sort pairs and collect corner cases (positives and negatives)
for the test set, while also including randomly selected offer pairs. The clustering
of semantically annotated identifier values in the English WDC Training Dataset
serves as distant supervision, separating matches (intra-cluster) from non-matches
(inter-cluster). A domain expert manually reviewed all pairs of offers in the test
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set to ensure that the label was correct and replaced them if erroneous labels were
discovered.

To build each test set, 150 ID-Clusters are randomly selected from the English
WDC Training Dataset per category. For each of the 150 products, a good mixture
of difficult and easy-to-match positive and negative pairs of offers in the test set is
essential to represent a challenging real-world matching use-case and avoid bias in
pair selection. The subsequently presented process represents a simulated blocking
step as it may be performed in a real-world scenario. To determine which pairs to
include, the following heuristic is applied.

For each product (ID-cluster), two positive pairs are selected from within a
cluster. For this purpose, all possible pairs within a cluster are ordered using the
Jaccard similarity of the titles, the Jaccard similarity of the descriptions, or the
average of both (the selected metric is chosen randomly). One corner case pair
is selected by selecting the most dissimilar pair and choosing the second positive
randomly from the list.

For each cluster, one offer is selected to create negatives. Subsequently, all
possible negative pairs with all offers of the same category are built. After applying
one of the previously mentioned similarities at random, the resulting list of pairs is
ordered, and two to three negative pairs with a high similarity and three randomly
chosen negative pairs are selected from that list. A domain expert verifies that the
selected pairs are correctly labeled as matches or non-matches by reading the titles
and descriptions of the offers. Since negatives are not only selected among the 150
clusters but from the whole English WDC Training Dataset, technically, more than
150 products are represented in the test set as stated above.

An additional test set was created for the computers category as part of the
MWPD2020 Semantic Web Challenge on Mining the Web of HTML-embedded
Product Data [Zhang et al., 2020]. The test set was used for evaluating and ranking
the matching systems of the participants of this challenge. A categorization scheme
consisting of five specific types of matching challenges was designed to derive the
pairs in the MWPD test set. The basis for its creation are the pairs in the computer
test set that are characterized as seen corner cases, as their selection, as described
above, is based on similarity metrics resulting in corner cases and different offers
for the same product being contained in the development as well as test set resulting
in a seen scenario. From these pairs, 200 positives are selected, with one hundred
of those having typos introduced and the other hundred having words dropped
manually by two domain experts. The resulting augmented pairs are added to the
MWPD test set.

Finally, the similarity calculations used in the selection process for positives
and negatives of the computers test set are leveraged to select 25 additional prod-
ucts (ID-clusters) that are similar to the existing ones in the computers test set.
Similarly, 25 products are selected that have a low similarity. This selection is
done manually by a domain expert from the respective sorted similarity lists. For
each of these sets of 25 products, a single positive and three negatives are created
using the same process as described before. Note that negative pairs are not created



74 CHAPTER 4. SEMANTIC ANNOTATIONS AS TRAINING DATA

with the clusters already contained in the computers test set. The resulting test set
contains pairs for five matching challenges: (1) corner cases in a seen scenario, (2)
positive pairs with typos in a seen scenario, (3) positive pairs with dropped words
in a seen scenario, (4) an unseen scenario with products similar to the seen products
and, (5) an unseen scenario with products with low similarity to the seen products.

Development Sets

Development sets of four different sizes are created for the four product categories
and subsequently split into training and validation sets. To build development sets,
the ID-clusters of all products in the already created respective test set are used
to automatically build positive pairs inside and negative pairs across clusters using
a heuristic similar to the one used for building the test sets. These pairs are not
manually checked for the correctness of the label. An evaluation of expected noise
and its impact on training is presented in Section 4.7.3. The process of building
development sets is presented in detail in the following.

For each cluster, all combinations of offers within the cluster are created and
from this group x positive pairs are randomly sampled. x is used as a scaling factor
to vary the number of positive pairs sampled per product. The maximum amount
possible is sampled if the group contains fewer than x pairs. For each sampled pair,
it is assured that it does not appear in the corresponding test set.

To build negative pairs, the similarity of the title of all the pairs of clusters
from the test set is calculated by using the Jaccard similarity over the concatenated
titles of all the offers within a cluster. The top ten most similar clusters based on
this similarity are chosen for each cluster. Considering the resulting ten pairs of
clusters, the smallest of the ten similar clusters is selected, and the other nine are
randomly down-sampled to the same size. Then all possible pairs between each
combination of the ten similar clusters with the current cluster are built. From
the resulting group, y negative pairs are randomly sampled. y is a scaling factor
for the negative pairs. The maximum amount possible is sampled if the group
contains fewer than y pairs. If, during the selection of the ten most similar clusters,
negative pairs between these clusters already exist due to prior sampling for the
other cluster, this cluster combination does not contribute further pairs to the group.
This procedure for sampling negative pairs ensures that the offers in a negative
pair are either corner cases or at least similar, simulating a blocking process and
resulting in pairs with interesting patterns for training entity matching systems.

Using varying scaling factors x and y, it is possible to easily create develop-
ment sets of different sizes. A fixed positive to negative ratio of 1: 3 for x:y is
chosen and four development sets of increasing size are built for the following
values: 1:3(small), 3:9(medium), 15:45(large) and 50:150(xlarge).
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Table 4.7: WDC LSPM test set profiling.

Category #Products
# Pos.
Pairs

# Neg.
Pairs

% Density
T D B S

Computers 150(745) 300 800 100 82 42 22
Cameras 150(563) 300 800 100 73 25 7
Watches 150(617) 300 800 100 71 15 7
Shoes 150(563) 300 800 100 70 8 2
All 600(2485) 1,200 3,200 100 74 23 10

Table 4.8: Distribution of offer pairs per type of matching challenge in the MWPD
test set.

Matching challenge #Match #Non-Match
(SN-DM) Similar non-matches, dissimilar matches 275 825
(NP-HS) New products - high similarity to known products 25 75
(NP-LS) New products - low similarity to known products 25 75
(KP-TY) Known products - introduced typos 100 0
(KP-DR) Known products - dropped tokens 100 0

4.6.2 Benchmark Profiling

Table 4.7 shows statistics for the WDC LSPM benchmark test sets, including the
percentage of pairs per category, where both offers contain a value for the respec-
tive attribute. The test sets contain 300 positive and 800 negative pairs of offers
from each category. The title attribute of all of these offers is filled. The other
attributes describing the offers might contain NULL values and thus have a lower
density. Altogether, the test sets consist of offers for 2485 products (ID-clusters)
across all categories. These offers are distributed as follows over the product cate-
gories: 745 for Computers, 563 for Cameras, 617 for Watches, and 563 for Shoes.
There are positive pairs for 150 of these products per category. The remaining
products are contained as part of offers in the negative pairs, as previously de-
scribed in Section 4.6. The MWPD test set contains in total 1,500 product pairs
distributed over five matching challenges. The distribution of offer pairs by type of
matching challenge in the MWPD test set is shown in Table 4.8.

Table 4.9 shows the statistics for the size and attribute density of the develop-
ment sets. The sizes of the development sets range from „2K offer pairs for the
small development sets to „20K pairs for the xlarge versions. The four training
sizes allow for an in-depth evaluation of matching systems on the dimension of
available labeled development data. Each development set contains offer pairs for
the same products that are contained in the test sets. As a result, the WDC LSPM
benchmark represents a fully seen scenario.
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Table 4.9: WDC LSPM development set profiling.

Category
# Pos.
Pairs

# Neg.
Pairs

% Density
T D B S

Small
Computers 722 2,112 100 51 34 21
Cameras 486 1,400 100 53 21 4
Watches 580 1,675 100 43 15 7
Shoes 530 1,533 100 49 8 0
All 2,318 6,720 100 49 21 10

Medium
Computers 1,762 6,332 100 51 34 20
Cameras 1,108 4,147 100 57 22 4
Watches 1,418 4,995 100 44 14 6
Shoes 1,214 4,591 100 49 7 0
All 5,502 20,065 100 50 20 9

Large
Computers 6,146 27,213 100 51 31 18
Cameras 3,843 16,193 100 60 25 3
Watches 5,163 21,864 100 45 13 6
Shoes 3,482 19,507 100 51 6 0
All 18,634 84,777 100 51 19 8

XLarge
Computers 9,690 58,771 100 50 30 16
Cameras 7,178 35,099 100 66 29 3
Watches 9,264 52,305 100 50 11 5
Shoes 4,141 38,288 100 53 5 0
All 30,273 184,463 100 54 19 7

4.7 Training Dataset and Benchmark Evaluation

The first three parts of this section present a set of matching experiments conducted
using the WDC LSPM benchmark to show the usefulness of Schema.org annotated
product identifiers as distant supervision to automatically generate training data us-
ing the clustering process described before. These experiments include the training
of product matchers, the maintenance of product matchers for unseen products, and
an evaluation of the noise-robustness of the matchers. The last two parts present a
fine-tuning experiment with the BERT [Devlin et al., 2019] PLM including a large-
scale experiment that uses millions of training pairs from the WDC Training Set for
Product Matching to intermediately train BERT before fine-tuning it on the WDC
LSPM benchmark. Corresponding code and datasets are available on GitHub1415

14https://github.com/wbsg-uni-mannheim/wdc-lspc-v2
15https://github.com/wbsg-uni-mannheim/productbert-intermediate

https://github.com/wbsg-uni-mannheim/wdc-lspc-v2
https://github.com/wbsg-uni-mannheim/productbert-intermediate
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4.7.1 Learning Product Matchers

In order to demonstrate the utility of the training sets for learning product match-
ers, all deep learning models that are part of the Deepmatcher16 framework [Mud-
gal et al., 2018] are trained using the training sets of the LSPM benchmark. The
Deepmatcher models are binary classifiers that compare two product offers by first
converting all word tokens into an embedding space attribute-wise using various
pre-trained embedding options like fastText embeddings [Bojanowski et al., 2017].
The embedding sequences of each attribute of the two product offers are then sum-
marized and aggregated before concatenation of the resulting per-attribute embed-
dings as input to a classification module. The models in the Deepmatcher frame-
work differ in the complexity of the summarization step. The SIF model aggre-
gates embedding sequences by simply averaging them using smooth inverse fre-
quency [Arora et al., 2017]. The RNN uses a bi-GRU, while the Attention model
employs decomposable attention [Parikh et al., 2016]. Finally, Hybrid is a combi-
nation of the latter two models.

Experimental Setup

In the pre-processing step, punctuation is removed, all word tokens are lower-
cased, and stopwords are removed using the NLTK17 stopword list. Experiments
are performed for all product categories from the WDC LSPM benchmark as well
as their combination. For each category and their combination, all four vari-
ants of the Deepmatcher models are trained using all four development set sizes.
Character-based fastText embeddings pre-trained on Wikipedia18 are chosen to
convert the inputs to vectorized format, as these have shown to perform well for
the task of product matching with Deepmatcher [Mudgal et al., 2018]. To compare
pre-trained embeddings to self-training on the WDC Training Dataset, the brand,
title and description attributes of the WDC Product Data Corpus are used to derive
self-trained fastText embeddings for comparison. These embeddings are trained
using the default parameters of the fastText library. All development sets of the
WDC LSPM benchmark are split into training and validation sets using a strati-
fied 80:20 split. All Deepmatcher experiments are run three times for 15 epochs
each, and the results are averaged. All models use default parameters, apart from
the positive-negative ratio, which allows for penalizing errors on the minority class
more severely in imbalanced datasets. The positive-negative ratio is set to the actual
ratio found in each training set. Once training is complete, the model is evaluated
using the corresponding test set.

These experiments are repeated while allowing the model to propagate gradi-
ents back to the embedding layer itself, resulting in true end-to-end training, which
is not part of the default Deepmatcher implementation that uses fixed pre-trained

16https://github.com/anhaidgroup/deepmatcher
17https://www.nltk.org/
18https://fasttext.cc/docs/en/pretrained-vectors.html

https://github.com/anhaidgroup/deepmatcher
https://www.nltk.org/
https://fasttext.cc/docs/en/pretrained-vectors.html
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embeddings. This end-to-end training allows the model to fine-tune the embed-
dings themselves for the product matching task in addition to the parameter of the
model itself.

Finally, for both the standard Deepmatcher and the end-to-end variant, the
training set of size xlarge for the Computers category is selected and the parameters
of the best-performing model are optimized using random search to show possible
performance gains of an optimized model. The adjusted parameters include learn-
ing rate, learning rate decay, batch size, and positive-negative ratio. Each selected
parameter combination is trained three times and the results are averaged to find
the best-performing combination.

Baselines

The Magellan [Konda et al., 2016] framework and a simple baseline using word
co-occurrence are trained using the same training and validation sets, to allow a
comparison to traditional non-neural methods. Magellan offers automatic feature
creation using string-based similarity metrics like Levenshtein and Jaccard simi-
larity. These features are then used as input to scikit-learn [Pedregosa et al., 2011]
classifiers. The word co-occurrence method uses a binary feature vector of words
occurring in the attributes of both products without regard for attribute borders.
The vocabulary of words is derived using the words occurring in the training set.
The resulting feature vector is then used as input to scikit-learn classifiers. For
both Magellan and word co-occurrence, hyperparameters are tuned using auto-
matic grid-search. All experiments are carried out using different combinations of
the features title, description, brand, and specification table content.

Results

Table 4.10 shows the results of the experiments on the largest of the four training
sets for each category of products. The Magellan system shows the lowest per-
formance, with F1 values between 60 and 69%. The word co-occurrence baseline
reaches up to 84% F1 with significantly higher precision than Magellan. All of
the Deepmatcher approaches achieve at least 90% F1 while achieving nearly 96%
F1 for the Watches category. Overall, the RNN-based model performs consistently
well for the product matching task on this benchmark. These first results already
show that automatic creation of training data using Schema.org annotations as dis-
tant supervision allows training product matchers that can achieve a high level of
performance comparable to using manually created training sets of other bench-
marks (see Section 5.2).

When comparing default Deepmatcher to the end-to-end variation, it is evident
that fine-tuning the embedding layer can improve performance by up to 4% F1,
which can be mostly credited to improved recall. Parameter optimization, repre-
sented by (opt.) in Table 4.10, leads to nearly 2% higher F1 for the Computers set
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Table 4.10: Results on LSPM training set XLarge.

Category Model Features P R F1 σ

Magellan
Computers XGBoost T+D+B+S 72.32 65.33 68.65 -
Cameras XGBoost T+D+B+S 73.87 54.67 62.84 -
Watches XGBoost T+D+B+S 74.15 50.67 60.20 -
Shoes RandomForest T+D+B+S 51.33 83.67 63.62 -
All RandomForest T+D+B+S 48.68 78.42 60.07 -

Word Co-Occurrence
Computers LinearSVC T+D+B+S 86.74 80.67 83.59 -
Cameras LinearSVC T+D+B+S 81.51 64.67 72.12 -
Watches LinearSVC T+D+B+S 88.14 69.33 77.61 -
Shoes LogisticRegression T 86.14 58.00 69.32 -
All LogisticRegression T+D+B+S 85.97 66.92 75.26 -

Deepmatcher - Pre-Trained fastText
Computers RNN T+D+B 89.75 91.89 90.80 0.79
Computers(opt.) RNN T+D+B 93.07 92.11 92.56 0.76
Cameras RNN T+D+B+S 89.22 89.22 89.21 1.68
Watches RNN T+D+B+S 92.73 94.22 93.45 0.93
Shoes RNN T 93.16 92.11 92.61 1.05
All RNN T+D 92.04 88.36 90.16 0.43

Deepmatcher - Self-Trained fastText
Computers RNN T+D+B 89.66 94.22 91.88 0.79
Cameras RNN T+D 89.74 85.44 87.53 1.34
Watches RNN T+D 93.66 91.78 92.70 0.95
Shoes RNN T 90.65 90.45 90.54 0.85
All RNN T+D 90.98 87.31 89.10 0.39

Deepmatcher(End-to-End) - Pre-Trained fastText
Computers RNN T 94.00 97.00 95.46 0.70
Computers(opt.) RNN T+D+B 93.76 96.78 95.25 0.31
Cameras RNN T 91.44 93.00 92.18 0.70
Watches RNN T+D 94.58 96.89 95.72 0.50
Shoes RNN T 95.58 93.78 94.67 0.54
All RNN T+D+B 91.25 93.38 92.30 0.31

Deepmatcher(End-to-End) - Self-Trained fastText
Computers RNN T+D+B 93.88 97.16 95.50 0.35
Cameras RNN T 93.16 92.11 92.63 0.27
Watches RNN T+D 94.84 95.17 95.00 1.45
Shoes RNN T 93.25 91.56 92.38 0.25
All RNN T+D+B 92.40 93.62 92.98 0.11
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and standard RNN Deepmatcher, while improving primarily on precision. The end-
to-end RNN parameter optimization did not lead to performance improvements.

The comparison of pre-trained and self-trained embeddings shows that self-
training can marginally increase the performance for some product categories, but
overall the fine-tuning of already pre-trained embeddings leads to higher results
on average for the selected models and embeddings. Overall, fine-tuning pre-
trained embeddings offers significant performance gains without the overhead of
self-training on large corpora. An inspection of the training times of the computers
RNN and its end-to-end equivalent shows an increase of 6% on average for the
latter, which is acceptable considering the possible gains in performance.

The learning curves of a model represent an evaluation of the models perfor-
mance along the dimension of available training data, in this case represented by
the four training set sizes available in the LSPM benchmark. Figure 4.2 shows
the learning curves for the four Deepmatcher models, as well as the end-to-end
variant of the RNN on the Computers and combined test sets. This is representa-
tive of the learning curves of all product categories, with only minor differences
between them. The curve shows that the RNN model significantly surpasses the
other models for training sets of size large. The overall improvement from large to
xlarge is only up to 3% F1 according to the experiments, showing that training sets
of the size of large are already close to the maximum observed performance and
may be preferable for practical applications due to the significantly lower amount
of required training labels. The end-to-end variant of Deepmatcher surpasses the
standard for medium-sized training sets and thus should be the preferred way of
training if a medium-sized or larger training set is available.

Figure 4.3 shows the learning curves of the best-performing Deepmatcher model
(end-to-end RNN) compared to those of the traditional baselines on the Computers
and combined test sets. Whereas Magellan does not improve with larger size train-
ing sets, both word co-occurrence and Deepmatcher show a strong increase with
training sets of size medium. The large set marginally improves the performance
of word co-occurrence by approximately 3% F1, while Deepmatcher gains nearly
10%. For all product categories, the performance of Deepmatcher on the smallest
training set is greater than that of the traditional methods, making it the preferred
method if resources are available for training and maintaining deep learning mod-
els. However, training sets of at least size medium are required to achieve a good
level of performance.

Overall, the results demonstrate that using Schema.org annotations as distant
supervision for building training sets allows to learn models that can achieve 90%
and more F1 over several product categories considering the possible noise in la-
bels of these automatically created training sets due to annotation errors or wrong
annotation practices, as discussed in Section 4.5. Consequently, they are a viable
alternative to manually labeled datasets, especially when considering the required
size and the associated manual human workload this would incur.
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(a) All (b) Computers

Figure 4.2: Comparison of Deepmatcher models.

(a) All (b) Computers

Figure 4.3: Comparison Deepmatcher to baselines.
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4.7.2 Maintaining Matchers to Cover Unseen Products

An additional dimension to consider when training product matchers is the constant
introduction of new products to the market, which are unseen during the training
process of the matchers. For e-commerce applications, it is crucial to be able to
cluster offers for unseen products and correctly distinguish them from offers for
seen (known) products. This section investigates to what extent the matchers that
were trained in Section 4.7.1 for a set of products can generalize to new, unseen
products. This is followed by evaluating different approaches for fine-tuning these
matchers using offers for previously unseen products gathered from the Web in the
English WDC Training Dataset.

Experimental Setup

In order to evaluate how matchers generalize to unseen products, 30 of the 150
products having positive and negative pairs in the test set are randomly selected.
These 30 products are treated as unseen. The test set of the category Computers, as
well as the Computers xlarge development set, are split accordingly by removing
all pairs that contain any of these 30 products from both sets into a new develop-
ment set and test set. Table 4.11 provides statistics on the resulting development
and test sets for seen and unseen products.

Table 4.11: Datasets for seen and unseen new products.

Category
# Pos.
Pairs

# Neg.
Pairs

% Density
T D B

Test Unseen 59 154 100 89 57
Test Seen 241 646 100 90 56
Dev Unseen 264 3,562 100 66 49
Dev Seen 7,488 43,454 100 69 49
Dev Comb. 7,752 47,016 100 69 49

Generalization to Unseen Products

In the first experiment, the different matching models are trained using the training
data for the seen products and subsequently evaluated using the test set for unseen
products. Table 4.12 shows the results for the evaluation of the trained model on
seen and unseen products for the Deepmatcher, as well as the Magellan and word
co-occurrence baselines. The performance of Deepmatcher on the seen products
is comparable to the results obtained in Table 4.10 for the Computers xlarge train-
ing set. Performance on unseen products drops considerably for Deepmatcher and
word co-occurrence with losses of 16% and 40% F1, respectively. Magellan is the
least affected, with an absolute loss of 4% in F1. However, the F1 performance for
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unseen products of all three models is below 90% and, as a result, likely insuffi-
cient for many e-commerce applications. The continuous maintenance of product
matchers to cover new products must be considered necessary for such applica-
tions.

Table 4.12: Results for seen and unseen new products.

Model
Seen Unseen

P R F1 σ P R F1 σ ∆F1

Word Co-Occ. 84.9 81.7 83.3 - 72.0 30.5 42.9 - 40.4
Magellan 73.1 64.3 68.4 - 70.0 59.3 64.2 - 4.2
Deepmatcher 92.8 91.0 91.9 0.5 76.2 75.7 75.9 2.9 12.6

Fine-tuning Matchers for New Products

By regularly recrawling e-shops that are known to annotate product identifiers us-
ing Schema.org terms, it is possible to monitor the appearance of new products
on the Web (products having identifiers that have not been contained in previous
crawls) and to gather heterogeneous offers for these products. The crawled of-
fers for new products can subsequently be used to maintain the existing product
matchers.

In the following, three methods of adapting the product matcher to previously
unseen products are explored. Firstly, the trained model is fine-tuned by continuing
the training using only the small training set containing the unseen products from
Table 4.11. Secondly, the model is fine-tuned using the training sets for previously
seen as well as previously unseen products, i.e., all available training data. Both
fine-tuning approaches are evaluated after every two trained epochs. The model
optimizer is reset before fine-tuning. Finally, a model is trained from scratch using
all of the training data for comparison with fine-tuning.

Figure 4.4 shows the results of the two continuously evaluated fine-tuning ap-
proaches for the products categorized as previously seen and unseen for up to 26
epochs. Fine-tuning the model using only training data for previously unseen prod-
ucts achieves around 90% F1 after 8 epochs on the previously unseen products,
while performance on the previously seen products drops to around 89% F1 due
to the network forgetting patterns learned during previous training due to noisy
weight updates during this fine-tuning step.

This observation is supported, as when training using the combined training
sets, the performance on the seen products does not experience this drop and can
increase further by a small amount as the patterns of the seen products remain part
of the training set. For previously unseen products, a good performance of 90% F1
is achieved after 10 epochs. This number further increases until it can match the
performance on seen products after 16 epochs.

Fully re-training the model for 15 epochs on the combined training set achieves
91% F1 on the seen and 90% F1 on the unseen products, which is marginally
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(a) Fine-tuning on full set. (b) Fine-tuning on new data only.

Figure 4.4: Fine-tuning product matchers

less performant than fine-tuning an existing model with the same training set over
the same amount of epochs, making this the least desirable approach for matcher
maintenance.

The two fine-tuning approaches differ in the size of the training set used (3,826
vs. 50,942 pairs) and subsequently in training time per epoch. In the experiments,
one epoch of fine-tuning on the large set takes approximately 30 times longer than
training one epoch on the small set, making the latter approach more relevant in
time-constrained scenarios. One limitation of these experiments lies in the fact that
it is not clear how much of the performance differences are attributable to the offers
for new/existing products or size effects that may occur between two training sets
of varying size.

4.7.3 Impact of Noisy Training Data

The usage of Schema.org data from a large number of websites as distant super-
vision implies a certain level of noise in the derived labels due to errors or wrong
annotation practices, as discussed earlier. The results of Section 4.7.1 show that the
6% label-noise inherent to the WDC Training Dataset, as explained in Section 4.5,
still allows the learning of high-performance product matchers.

In order to investigate the impact of further label noise on the performance of
neural and non-neural methods, experiments with additional artificial label noise
are conducted. For this purpose, the labels of 5, 10, 20, 30, and 40% of the labels in
the Computers xlarge training set are randomly changed to the opposite label. Both
positive and negative labels are affected equally. As the WDC Training Dataset
contains approximately 6% inherent label noise, this serves as the minimum pos-
sible noise value for the experiments. The optimized standard Deepmatcher RNN
model is trained on the Computers xlarge training set for this experiment. The
model is trained for 15 epochs using the same train/validation split as in the exper-
iments presented in Section 4.7.1.

Table 4.13 shows the results of this experiment. The Magellan and word co-
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Table 4.13: Impact of Noisy Training Data.

Noise Magellan Word Co-Occ. Deepmatcher
% P R F1 P R F1 P R F1
+0 74.13 64.00 68.69 84.91 80.67 82.74 93.12 93.11 93.11
+5 74.31 63.67 68.59 85.20 78.67 81.80 84.75 83.11 83.90
+10 68.66 61.33 64.79 79.42 73.33 76.26 79.82 77.56 78.66
+20 48.24 91.33 63.13 71.38 69.00 70.17 71.83 75.67 73.69
+30 36.40 92.33 52.21 48.12 85.33 61.54 45.49 71.67 55.63
+40 30.65 91.33 45.90 31.52 63.67 42.16 35.59 62.45 45.29

occurrence models can handle 5% in additional noise with only marginal losses in
performance. Deepmatcher loses 10% F1 in this scenario. The addition of another
5% noise does impact all of the models significantly, with Magellan losing 4%,
word co-occurrence 5%, and Deepmatcher 5% F1. With increasing label noise,
all models continue to drop in performance until rapid deterioration occurs around
the mark of 30% and 40% noise for all models. Interestingly, Deepmatcher still
performs comparably better, but the difference in performance to the traditional
methods is only marginal at this point.

Overall, the non-neural models can handle up to 10% label noise with marginal
loss in performance, while Deepmatcher is severely affected by any increase in la-
bel noise. With further addition of label noise, all models rapidly decrease in per-
formance. As a result, for designing the process of automatically deriving training
labels using distant supervision, it is very important to make sure that label-noise
is minimized as much as possible.

4.7.4 Fine-Tuning the BERT Transformer

Deep Transformer networks [Vaswani et al., 2017], pre-trained on large corpora
via language modeling objectives [Devlin et al., 2019, Liu et al., 2019b, Clark
et al., 2020] significantly pushed the state-of-the-art in a variety of downstream
tasks [Wang et al., 2019,Hu et al., 2020], including a number of sentence-pair clas-
sification tasks, e.g. paraphrase identification [Dolan and Brockett, 2005]. Early
studies with Transformers in entity matching [Brunner and Stockinger, 2020, Li
et al., 2020] also demonstrate the effectiveness of models like BERT [Devlin et al.,
2019] for the task of entity matching.

In this Section, BERT is fine-tuned for product matching using the WDC LSPM
benchmarks and shown to be more training data efficient as well as more perfor-
mant compared to training the Deepmatcher [Mudgal et al., 2018] models when
using automatically generated training sets from Schema.org annotations. Fine-
tuning BERT results in 15-20% higher F1 scores in settings with small- and medium-
sized training sets. Even for large training sets, fine-tuning BERT can still yield a
2% improvement over Deepmatcher.
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Fine-tuning Setup

The experiments use the training, validation, and test sets from the Computers
category of the WDC LSPM benchmark. To test the efficiency of the classifiers
with respect to training size, the experiments are conducted with all training set
sizes: small, medium, large, and xlarge.

The input for BERT, consisting of two sequences, one for each product offer,
is the concatenation of the attributes of both offers. To this end, all attributes of
each product offer are concatenated into one string using the attributes brand, title,
description, and specification table content in this order.

All experiments are conducted with PyTorch [Paszke et al., 2019] using BERT’s
implementation19 from the HuggingFace Transformers library [Wolf et al., 2020].
All hyperparameters are set to their defaults if not stated otherwise. The chosen
loss function is the binary cross-entropy loss using Adam [Kingma and Ba, 2015]
as the optimization algorithm. BERT allows for input sequences of maximal length
of 512 tokens. First, each attributes length is constrained to 5 (brand), 50 (title),
100 (description) and 200 (specification table content) words, respectively, drop-
ping any words outside that range. Long product offers are further truncated by
removing tokens from their end until BERT’s constraints are satisfied. Fine-tuning
happens on all layers for 50 epochs with a linearly decaying learning rate with
warm-up over the first epoch. The validation set is used for model selection and
early stopping: if the F1 score on the validation set does not improve over 10 con-
secutive epochs, the training stops. The batch size is fixed to 32 and the learning
rate is optimized in the range [5e-6, 1e-5, 3e-5, 5e-5, 8e-5, 1e-4]. Three model
instances are trained for each hyperparameter configuration, and the average per-
formance is reported.

BERT-based product matching is compared with the same methods used in
Section 4.7. The Magellan and word co-occurrence methods are combined with
XGBoost, Random Forest, Decision Tree, linear SVM, and Logistic Regression as
classification methods and randomized search is applied over the respective hyper-
parameter spaces. For Deepmatcher, fastText embeddings trained on the English
Wikipedia20 are used as input, and end-to-end training of word embeddings is en-
abled, as it has been shown to improve performance in Section 4.7.1. All Deep-
matcher instances are trained for 50 epochs with default parameters apart from
the learning rate, which is optimized in the same range as for BERT. For the pre-
processing of Deepmatcher and BERT inputs, the method-specific tokenizers are
used. For the other baselines, all attributes are lower-cased.

Fine-tuning Results

Table 4.14 compares the results of fine-tuning BERT to the baselines. BERT out-
performs all three baselines in all settings. The gains from BERT-based product

19Used pre-trained BERT instance: bert-base-uncased.
20https://fasttext.cc/docs/en/pretrained-vectors.html



4.7. TRAINING DATASET AND BENCHMARK EVALUATION 87

Table 4.14: BERT compared to baselines on WDC LSPM computers.

Word Cooc. Magellan Deepmatcher BERT Ditto

P R F1 P R F1 P R F1 P R F1 F1

xlarge 86.59 79.67 82.99 71.44 56.89 63.33 89.63 94.78 92.12 95.99 93.00 94.47 95.45
large 79.52 77.67 78.58 67.67 63.67 65.60 85.70 91.22 88.38 91.64 95.00 93.29 91.70
medium 65.83 78.33 71.54 48.99 81.56 61.20 66.39 82.78 73.67 84.89 94.22 89.31 88.62
small 53.98 74.67 62.66 50.86 71.22 59.17 54.86 69.56 61.20 75.62 89.33 81.89 80.76

matching become larger the smaller the training dataset is: for the smallest train-
ing set, BERT outperforms Deepmatcher by 20% F1. For the largest training set,
BERT gains 2.3% F1 over Deepmatcher. The results demonstrate that using prod-
uct offers originating from Schema.org annotations is also a useful source of data
for fine-tuning the BERT Transformer model. The next section shows that large-
scale training of BERT with millions of product offer pairs from the WDC Training
Dataset can further improve these results.

4.7.5 Large-Scale Intermediate Training of BERT

BERT has been pre-trained on a general-purpose natural language corpus, with the
style of language and topics of most of its natural language training data, BookCor-
pus and Wikipedia, being very different from product descriptions. Intermediate
training on large training sets for other tasks [Phang et al., 2018, Pruksachatkun
et al., 2020] has been shown to improve downstream performance. In an effort
to test the intuitive assumption that intermediate in-domain training can improve
matching performance and to further substantiate the usefulness using Schema.org
annotations as distant supervision, an intermediate training step is introduced be-
fore the model’s final fine-tuning for specific products. In this intermediate step,
BERT is trained on millions of product offer pairs from the English WDC Training
Dataset.

In a second experiment, domain-specific (self-supervised) language modeling
is added to the intermediate training as a second objective, proving the usefulness
of the WDC Training Dataset also for product-specific language modeling.

Creation of Intermediate Training Sets

The English WDC Product Corpus for Large-Scale Product Matching and its prod-
uct cluster structure are used to build wide coverage training sets consisting of
millions of offer pairs. In order to have an unbiased evaluation, the clusters con-
tained in the test set and fine-tuning training sets of the WDC LSPM benchmark
are removed from the corpus prior to building the intermediate training sets.

Subsequently, the effects of intermediate training on two structurally differ-
ent training sets are compared. The first intermediate training set contains only
offer pairs for the category Computers: this leads to the introduction of more Com-
puter-related information into BERT and steers the Transformer network to detect
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Table 4.15: Intermediate training set statistics.

# products
w/ pos (overall)

# pos.
pairs

# neg
pairs

# comb.
pairs

computers only 60,030 (286,356) 409,445 2,446,765 2,856,210
4 categories 201,380 (838,317) 858,308 2,665,056 3,523,364

relevant linguistic phenomena for recognizing matches between Computer offers.
The second training set contains pairs from all four categories of the WDC LSPM
benchmark with fewer training pairs per product. This offers a wider selection of
products, resulting in more versatile information about what constitutes a product
match for the model, but less in-depth information for each product/category.

The intermediate training sets, named computers and 4 categories, are created
as follows: for positive instances, only clusters containing more than one offer,
from which at least one positive pair can be built, are selected. The selection of
clusters is restricted to those of size ď80. For each offer in each cluster, up to
15 (computers) or 5 (4 categories) positive pairs are created with the other offers
from that cluster. Half of those are positive corner cases, created by (1) applying
cosine similarity between the bag-of-words vectors for concatenation of title and
the first five words of description and (2) sorting the offer pairs by cosine similarity
and selecting the pairs with the lowest scores. The remaining 50% are selected by
randomly pairing offers from the same cluster. Negative pairs are created using a
similar heuristic: for each offer used for positive pairs, the same amount of nega-
tive pairs is created using offers from other clusters of the same category. Negative
corner cases (50%) are pairs of offers from different clusters with the highest co-
sine similarity. The other half are randomly sampled pairs of offers from different
clusters. Table 4.15 displays the statistics of the resulting intermediate training
sets.

Intermediate Training Procedure

For the first set of experiments, intermediate training is performed with a single
objective, the binary product matching task. The architecture is exactly the same
as for the previous fine-tuning experiments. One model is trained for each of the
training sets in Table 4.15. After intermediate training, the model is evaluated with
and without final product-specific fine-tuning. The intermediate training is run for
40 epochs with a linearly decaying learning rate (starting from 5e-5) with 10,000
warm-up steps and a batch size of 256. Due to the long training times, the first
90% of the epochs are trained on sequences of length 128 and only the last 10% on
the full sequences of 512 tokens to speed up training, similar to the original BERT
training procedure [Devlin et al., 2019].

In the second set of experiments, the masked language modeling objective is
added to the product matching objective and both are jointly optimized in the in-
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Table 4.16: Intermediate training with PM objective.

intermediate training

computers category 4 categories

P R F1
∆ only

fine-tune
P R F1

∆ only
fine-tune

xlarge 95.58 93.67 94.61 0.14 95.45 95.44 95.45 0.98
large 92.68 95.56 94.09 0.80 91.34 96.00 93.61 0.32
medium 94.01 95.78 94.88 5.57 91.59 95.67 93.59 4.28
small 94.38 93.11 93.73 11.84 90.39 90.89 90.64 8.75
none 94.41 90.00 92.15 -2.32 (xl) 88.24 95.00 91.49 -2.98 (xl)

termediate training step. For masking words, the original masking procedure is
followed: randomly, 15% of tokens are selected for replacement. In 80% of the
cases, the token is replaced with the [MASK] token, in 10% of the cases with a
random vocabulary token, and in the remaining 10% the original token is kept. As
in the original work, the Transformer network is trained by minimizing the cross-
entropy loss over predictions of masked tokens. After intermediate training, two
model variants are evaluated: with and without the final product-specific matching
fine-tuning.

Intermediate Training Results

Table 4.16 shows the results of the intermediate training procedure. When compar-
ing the intermediate training on the computers training set against the intermediate
training on the training set comprising 4 product categories, it can be seen that
without final fine-tuning (row none in Table 4.16), it is already possible to achieve
a good matching performance of 92% F1. This result shows that, through the inter-
mediate training, category-specific knowledge is injected into BERT’s parameters,
as it is able to make good matching predictions for products for which it has not
seen any training examples yet. Once the intermediate model is subjected to fur-
ther fine-tuning on offer pairs from the training sets, further improvements in all
settings are observable, with improvements being most prominent for the smallest
training set. Intermediate training followed by fine-tuning on the small training set
reaches a performance of „94% F1, which, without intermediate pre-training, was
previously obtained only on the largest training set. Training on category-specific
data (computers) yields marginally better performance compared to training on the
mix of pairs from 4 categories.

Table 4.17 shows the results of adding the MLM objective to the product
matching objective in the intermediate training step using the computers intermedi-
ate training set. Compared to the corresponding settings in which the intermediate
training did not include MLM, the performance with fine-tuning increases by up
to 3% F1, producing a new top matching performance, >97% F1 for the largest
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Table 4.17: Intermediate training with PM and MLM objective.

intermediate training - PM + MLM

P R F1
∆ only

fine-tune
∆ interm.
only PM

xlarge 98.20 96.56 97.37 2.90 2.76
large 94.99 96.67 95.82 2.53 1.73
medium 96.05 97.11 96.58 7.27 1.70
small 95.64 97.44 96.53 14.64 2.80
none 94.31 94.00 94.16 -0.31 (xl) 2.01

training set and 96% F1 for all other training sizes. This confirms the findings
from other application domains [Beltagy et al., 2019, Lee et al., 2020] that point
to the benefits of domain-specific MLM pre-training. The original pre-training
data likely contains only few instances of product-specific vocabulary, as it covers
a wide range of topics. Applying intermediate MLM training on domain-specific
data allows for better adaptation of vocabulary embeddings to the domain, resulting
in better downstream performance.

In summary, subjecting BERT to an intermediate training step with large amounts
of product data sourced from Schema.org annotations leads to a model that gen-
eralizes well to new unseen products from the same category and can be easily
fine-tuned with small amounts of product-specific training data to further increase
the performance for these products. Depending on the structure of the intermedi-
ate training set, more training data for a single category leads to a small increase in
performance compared to a more heterogeneous training set encompassing a larger
set of products from several categories. Adding the MLM objective to the interme-
diate training results in further improvements in matching performance, showing
that domain-specific language modeling further adapts BERT’s parameters to the
product domain.

4.8 Conclusion

This chapter first presented a process for clustering product offers found in the
Common Crawl using product identifiers like GTINs and MPNs that were extracted
from Schema.org annotations from thousands of websites. Ideally, all offers in a
cluster refer to the same product. To further ensure this, the process is accompanied
by various cleansing steps such as detecting and removing offers annotated with
categorical instead of product identifiers. The resulting corpus, the WDC Train-
ing Dataset for Large-Scale Product Matching, contains 26 million product offers
originating from 79 thousand websites that are grouped in 16 million clusters. The
profiling of the corpus showed that is possible to generate and automatically label
40 million matching pairs and over 5 trillion non-matching pairs from these clus-
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ters. The diversity in terms of sources and its size make this corpus the largest
publicly available source of labeled data for product matching at the time of its
creation, with a size that is several orders of magnitude larger than training sets of
previous publicly available benchmarks.

The contributed WDC LSPM benchmark is based on this clustering. The
benchmark offers training, validation, and testing splits for the four product cat-
egories computers, cameras, which contain more structured attribute information
in their textual attributes, and watches and shoes, which have less structured tex-
tual descriptions and their combination. The training sets are available in four sizes
ranging from two thousand to 65 thousand labeled pairs. The largest combined set
containing all categories contains over 30 thousand matching and over 180 thou-
sand non-matching pairs making it the largest and most diverse publicly available
multi-source entity matching benchmark at the time of its creation. It further con-
tains a second test for the computers category that contains pairs hand-annotated
with specific matching challenges for more fine-grained evaluation of matching
systems.

The LSPM benchmark and additional training pairs from the clustering were
subsequently used to evaluate the usefulness of automatically generated training
data using Schema.org annotations by training a set of neural and non-neural prod-
uct matchers. The experiments showed that the Deepmatcher RNN model trained
on these pairs can achieve a high performance of more than 90% F1, which can
be further increased by allowing end-to-end training from embeddings to the final
layer. The comparison to the non-neural baselines further confirmed the findings
of Mudgal et al. [Mudgal et al., 2018] that deep neural networks perform better
than symbolic methods on highly textual data. Although Deepmatcher loses 16%
performance in an unseen scenario, the experiments showed that the matchers can
be maintained to reach the same performance as on seen products by selecting rel-
evant pairs from the clusters of the English WDC Training Dataset for continued
fine-tuning of the Deepmatcher RNN model.

The experiments analyzing the noise resistance of the models showed that the
average of 6% label noise inherent to the training pairs due to the automated clus-
tering process does not prohibit training high-performance matchers, although fur-
ther increases in label-noise rapidly deteriorate the matching performance of Deep-
matcher.

Lastly, the million-scale intermediate training experiments with the BERT trans-
former further showed the usefulness of the size and diversity of the automatically
generated training pairs, which further improved performance compared to solely
fine-tuning the model, especially when adding the masked language modeling ob-
jective that was part of BERTs pre-training and training on millions of product
offer pairs from the same category. This increased the performance of the BERT
Transformer to over 97% F1 on the computers category of the LSPM benchmark
with fine-tuning and 94% without additional fine-tuning, reaching 2-13% higher
F1 for the respective fine-tuning set sizes compared to the Ditto method [Li et al.,
2020].
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Chapter 5

WDC Products: A
Multi-Dimensional Entity
Matching Benchmark

5.1 Introduction

Over the last decades, a wide range of benchmarks have been developed to com-
pare the performance of entity matching systems [Primpeli and Bizer, 2020,Peeters
et al., 2024b]. The datasets used by these benchmarks range from structured
datasets to datasets exhibiting mostly textual entity descriptions. While the older
benchmarks focus on matching records between two data sources, more recent
benchmarks often rely on data from larger numbers of Web data sources that are
more heterogeneous and more difficult to match as a result (see Section 5.4 for a
comparison).

Although the field of benchmarking entity matching systems is mature, pub-
licly available benchmarks do not explicitly cover the following aspects:

1. Explicit Modeling of Combinations of Challenges: The overall difficulty
of an entity matching task depends on a combination of multiple dimensions,
such as the amount of hard-to-solve matches and non-matches (corner cases)
or the number of available training examples. Current benchmarks usually
represent single points in the space along such dimensions, or they provide
for the evaluation of matching tools along a single dimension, for instance,
by offering development sets of different sizes. The benchmarks do not sup-
port the systematic evaluation of matching systems along a combination of
different dimensions, for example, offering development sets of different
sizes that exhibit different corner case fractions. Such multi-dimensionality
would provide for a more fine-grained evaluation of the strengths and weak-
nesses of matching systems in a controlled environment.

2. Generalization to Unseen Entities: While state-of-the-art matching sys-
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tems [Li et al., 2020, Yao et al., 2022] reach a very high performance for
matching entities that are covered by records in the training data, experi-
ments involving unseen entities which are not covered by the training data
indicate that the methods lack robustness and perform worse for such enti-
ties [Wang et al., 2022d,Peeters and Bizer, 2021]. None of the publicly avail-
able English-language entity matching benchmarks explicitly measure the
robustness of matchers with regard to their performance for unseen entities.
Such unseen entities play an important role in many use cases, for example,
when new products frequently appear in e-commerce scenarios [Wang et al.,
2022d], while new books and new articles play a central role in bibliographic
data management.

3. Larger number of Descriptions per Entity: Some of the widely used
benchmarks only contain a small number of matching records per entity,
e.g., on average around 1.2 records (see Table 5.1 and discussion in Section
5.4). This lack of training records hinders the systematic analysis along the
dimension of available training data.

4. Entity Matching as Multi-Class Classification: There are matching use
cases that do not require being able to match arbitrary entities but require
the matcher to recognize a previously known set of entities. For instance,
for price tracking or a market analysis, it may be necessary to find offers
for the specific set of products that the company produces. For these use
cases, treating entity matching as multi-class classification can be more ap-
propriate, e.g. learning how to recognize relevant products in a large set of
product offers. In this case, instead of the binary labeling of pairs of records
into matches and non-matches, the classifier labels each record with a single
label from the label space of all relevant entities.

This chapter contributes the WDC Products benchmark, which covers all of
the points listed above, compared to publicly available benchmarks, to the field of
benchmarking of entity matching methods. This benchmark, like the WDC LSPM
benchmark, is based on Schema.org annotations for product offers, and the same
process presented in the previous chapter is the basis for creating this benchmark.
More specifically, WDC Products1 is created from a similar clustering as WDC
LSPM with the December 2020 Common Crawl as the data source.

The contribution of this chapter is the following:

• WDC Products - A Multi-Dimensional Entity Matching Benchmark: As
an evolution of the LSPM benchmark, the highly textual WDC Products
benchmark is designed along the evaluation of three dimensions that match-
ing systems should handle. These are (1) the number of corner cases (hard
positives and negatives), (2) the number of unseen entities in the test set,

1https://webdatacommons.org/largescaleproductcorpus/wdc-products/

https://webdatacommons.org/largescaleproductcorpus/wdc-products/
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and (3) the size of the development set. The WDC Products Benchmark
contains 26 variants of training, validation, and test sets to evaluate each di-
mension separately by fixing the other two, which is impossible in publicly
available benchmarks. The WDC Products benchmark, due to its structure,
is also available in a multi-class formulation of the entity matching problem,
allowing for an evaluation of this formulation of the task.

The WDC Products benchmark was published in [Peeters et al., 2024b] and is
joint work with Reng Chiz Der, who contributed the Ditto and HierGAT baseline
experiments and supported with annotation work.

Section 5.2 presents related work on existing entity matching benchmarks. Sec-
tion 5.3 presents the creation process and profile of the multi-dimensional WDC
Products benchmark. Section 5.4 compares both previously presented benchmarks
(WDC LSPM and WDC Products) with existing benchmarks. Section 5.5 con-
cludes the chapter with a discussion of the contributions.

5.2 Related Work

This section gives an overview of publicly available benchmarks for the entity
matching task, including available data generators for creating synthetic bench-
marks. The section ends with a short discussion of framing the entity matching
task as a non-binary matching task.

Benchmarks for Entity Matching

Today, a large number of publicly accessible entity matching benchmarks exist,
which were proposed over the past 50 years of entity matching research [Primpeli
and Bizer, 2020]. Currently, only a subset is regularly used in recent research due
to factors such as difficulty, size, and adoption of fixed evaluation splits. Almost all
of these benchmarks provide datasets consisting of one or more sources together
with a list of matching entities between these sources. However, these lists do not
always provide a complete mapping that contains all matching pairs. Most of these
benchmarks were created during a time when learning-based algorithms did not
have the prominence they have today. As a result, fixed evaluation splits follow-
ing the machine learning evaluation paradigm of training, validation, and test sets
were not yet relevant. Consequently, researchers must devise their own evaluation
setup, and if there is no agreement among the community, any results reported for
entity matching systems are difficult to compare between research works [Primpeli
and Bizer, 2020]. Furthermore, all existing publicly available benchmarks exhibit
several limitations listed in Section 5.1. The following paragraphs list important
repositories and publications for entity matching benchmarks sorted by time of cre-



Table 5.1: Comparison of WDC Products to existing original benchmarks that have been used in entity matching work or have been
recently proposed. See [Primpeli and Bizer, 2020] for additional rarely used benchmarks. Splits marked with * have not been released
with the respective benchmark but were adopted by the community. Dev and test size refer to the largest available split if applicable.

Benchmark Domain # Sources # Entities # Records # Attr
Avg.

Density
# Matches

# Non-
Matches

Avg. Matches
per Entity

Fixed Splits
(# Train Sizes)

Dev Size
(Matches)

Test Size
(Matches)

Max F1 in
related work

Leipzig Database Group

Abt-Buy Product 2 1,012 1,081/1,092 3 0.63 1,095 - 1.08 ✓* (1) 7,659 (822) 1,916 (206) 94.29 [Peeters and Bizer, 2022b]
Amazon-Google Product 2 995 1,363/3,226 4 0.75 1,298 - 1.30 ✓* (1) 9,167 (933) 2,293 (234) 79.28 [Peeters and Bizer, 2022b]
DBLP-ACM Bibliogr. 2 2,220 2,614/2,294 4 1 2,223 - 1.00 ✓* (1) 9,890 (1,776) 2,473 (444) 99.17 [Li et al., 2020]
DBLP-Scholar Bibliogr. 2 2,351 2,616/64,263 4 0.81 5,346 - 2.27 ✓* (1) 22,965 (4,277) 5,742 (1,070) 96.30 [Yao et al., 2022]

DuDe

Restaurants Company 2 110 533/331 5 1 112 - 1.02 ✓* (1) 757 (88) 189 (22) 100.00 [Li et al., 2020]
Cora Bibliogr. 1 118 1,879 18 0.31 64,578 268,082 547.27 - - 100.00 [Wang et al., 2011]

Magellan

Walmart-Amazon Product 2 846 2,554/22,074 10 0.84 1,154 - 1.36 ✓* (1) 8,193 (769) 2,049 (193) 88.20 [Yao et al., 2022]
Company Company 2 28,200 28,200/28,200 1 1 28,200 84,432 1.00 ✓* (1) 90,129 (22,560) 22,503 (5,640) 93.85 [Li et al., 2020]
Beer Product 2 68 4,345/3,000 4 0.96 68 382 1.00 ✓* (1) 359 (54) 91 (14) 94.37 [Li et al., 2020]
iTunes-Amazon Product 2 120 6,906/55,932 7 0.99 132 407 1.10 ✓* (1) 430 (105) 109 (27) 97.80 [Li et al., 2020]

Alaska

Camera Product 24 103 3,865 56 0.13 157,157 - 1,525.80 - - 99.40 [Yao et al., 2022]
Monitor Product 26 242 2,283 87 0.17 13,556 - 56.02 - - 99.60 [Yao et al., 2022]

Chinese Academy of Sciences

Ember Product 1 350 6,245 5 1 5,053 206,296 14.44 ✓(1) 8,000 (1,974) 50,000 (500) 78.45-96.89 [Wang et al., 2022d]

WDC

LSPM Computers Product 269 745 3,665 4 0.51 7,478 59,571 10.04 ✓(4) 68,461 (9,690) 1,100 (300) 98.33 [Peeters and Bizer, 2022b]
LSPM Cameras Product 190 562 4,068 4 0.43 9,564 35,899 17.02 ✓(4) 42,277 (7,178) 1,100 (300) 98.02 [Peeters and Bizer, 2021]
LSPM Watches Product 235 615 4,676 4 0.5 9,991 53,105 16.25 ✓(4) 61,569 (9,264) 1,100 (300) 97.09 [Peeters and Bizer, 2021]
LSPM Shoes Product 120 562 2,808 4 0.41 4,440 39,088 7.90 ✓(4) 42,429 (4,141) 1,100 (300) 97.88 [Peeters and Bizer, 2021]
WDC Products Product 3,259 2,162 11,715 5 0.79 28,299 124,899 13.09 ✓(3) 24,335 (8,971) 4,500 (500) 64.50-89.04
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ation. Table 5.1 gives an overview of key features of entity matching benchmarks
that are frequently used in publications2.

The University of Leipzig Database Group3 published four benchmark tasks
for pair-wise entity matching in 2010 [Köpcke et al., 2010] which are still widely
used today [Mudgal et al., 2018, Li et al., 2020]. These benchmarks were released
as two-source tasks where two tables and the perfect mapping between both are
available. The Abt-Buy and Amazon-Google benchmarks consist of longer tex-
tual attributes of the product domain, while the DBLP-Scholar and DBLP-ACM
datasets contain more structured, less textual attributes of the publication domain.
The Leipzig DB group also provides four benchmarks for entity clustering. To this
end, two of the four datasets from the domains of geography, music and person,
were enriched with artificial data, created using data generators [Christen and Vat-
salan, 2013, Hildebrandt et al., 2020]. These benchmarks contain structured entity
representations with amounts of attributes between three and five.

The Hasso-Plattner Institute maintains the DuDe repository4 since 2011, pro-
viding three benchmark tasks [Draisbach and Naumann, 2017] originally published
in other sources, which have been modified for the entity matching setting with
the Cora benchmark considered more textual and the Restaurants and CD bench-
marks representing very structured matching tasks. The benchmarks are provided
together with the ground truth of the matches.

The Magellan repository5 of the Data Management Research Group of the Uni-
versity of Wisconsin-Madison has been maintained since 2015 and includes a large
collection of benchmark tasks from other repositories, as well as benchmarks cre-
ated at the Research Group. The benchmarks span a wide range of topics and
degrees of structuredness. The most prominent ones that have been used exten-
sively in research are the Walmart-Amazon (product), Company (company), Beer
(product), and iTunes-Amazon (product) benchmarks which apart from the highly
textual Company, can all be considered structured benchmarks.

As all previously presented benchmarks were created during a time when learning-
based systems were not as prominent as they are today, no fixed training, valida-
tion, and test splits were originally made available with them. In 2018, the release
of the Deepmatcher [Mudgal et al., 2018] matching framework provided public
downloads6 of the fixed splits for many of the presented benchmarks, which have
consequently been adopted by the research community, leading to better compara-
bility of the benchmark results across systems in recent works.

The Alaska Benchmark7 [Crescenzi et al., 2021] of the Roma Tre University
released in 2019 is a benchmark for data integration tasks currently providing two

2https://paperswithcode.com/task/entity-resolution
3https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_r

esolution
4https://hpi.de/naumann/projects/data-integration-data-quality-and-data-cleansing/dude.html
5https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository
6https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
7http://alaska.inf.uniroma3.it/

https://paperswithcode.com/task/entity-resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://hpi.de/naumann/projects/data-integration-data-quality-and-data-cleansing/dude.html
https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
http://alaska.inf.uniroma3.it/
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e-commerce benchmarks for public download. The Alaska benchmarks support not
only the entity matching task, but also allow for an evaluation of schema matching
systems due to the data being crawled from web pages of more than 20 different
hosts that use different schemata for their product representations. Consequently,
these benchmarks are highly structured to support the schema matching task. La-
bels are provided in the form of ground truth for matches. No negatives or fixed
splits are available for these benchmarks yet, but they are supposed to be provided
in the future.

The Web Data Commons (WDC) project maintained by the Web-based systems
research group of the University of Mannheim published the WDC Gold Standard
for Product Matching and Product Feature Extraction8 in 2016. The WDC LSPM
benchmark presented in Section 4.6 has been released in 2019. The WDC Products
benchmark presented in Section 5.3 was released in 2022. Both benchmarks are
based on Schema.org product data that has been extracted from different versions
of the Common Crawl.

Megagon Labs has published the Machamp entity matching benchmark [Wang
et al., 2021a] in 2021 which combines structured and unstructured tasks from a
selection of the benchmark tasks described above into seven new tasks that exhibit
differing degrees of structuredness. The Machamp benchmark datasets provide
fixed training, validation, and test splits together with the datasets to facilitate re-
producibility and comparability.

In 2022, the Chinese-language product matching benchmark Ember [Wang
et al., 2022d] has been released. Similarly to WDC Products, Ember also sup-
ports evaluating the generalization of matchers to unseen entities. Ember pro-
vides various test sets to investigate the impact of a higher negative-to-positive
ratio among matches and non-matches and the utility of multi-modal features for
product matching.

Data Generators for Entity Matching

In addition to the previously presented benchmarks, which rely on real-world datasets,
a selection of data generators for entity matching exists, which allow for the cre-
ation of artificial datasets. This paragraph discusses a selection of data generators
proposed over the last ten years. All of the presented generators follow the pattern
of using a source dataset or repository of source entities, which are then dupli-
cated and corrupted using various transformation functions with varying degrees
of corruption on the attributes of the data to generate heterogeneous matches.

The GECO [Christen and Vatsalan, 2013] data generator focuses on generat-
ing artificial datasets for the personal data domain using a set of heuristics and
produces duplicate records by corrupting the generated data using various string
corruption techniques. This generator has produced the Voters benchmark in the
Leipzig repository.

8http://webdatacommons.org/productcorpus/

http://webdatacommons.org/productcorpus/
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The EMBench [Ioannou et al., 2013] generator uses real-world datasets as a
basis to generate datasets by applying varying transformations to real-world exam-
ples to generate a higher/more diverse heterogeneity artificially.

The SWING [Ferrara et al., 2011] data generator focuses on building match-
ing data for knowledge graphs by applying transformations to surface forms or
structures of samples of existing knowledge graphs.

The LANCE data generator [Saveta et al., 2015] also focuses on generating
additional matching data for knowledge graphs and, in addition to value and struc-
ture transformations, also takes into account expressive OWL constructs and can
consequently produce test sets of varying levels of difficulty.

DaPo [Hildebrandt et al., 2020] is a more recent data generator based on Apache
Spark to create datasets of very large size. It requires input from a source dataset,
which can then be duplicated using various corruption techniques. DaPo has been
used to generate various sizes of the Musicbrainz benchmark in the Leipzig repos-
itory.

The ALMSERgen [Primpeli and Bizer, 2022] data generator was created to
produce multi-source entity matching tasks along various matching dimensions
such as entity overlap, value heterogeneity, and pattern overlap. To this end, it uses
an existing benchmark dataset for duplication and value transformations for the
multi-source matching task along the given dimensions.

Benchmarks for Blocking

Many of the entity matching benchmarks presented are also used to evaluate block-
ing methods [Wang et al., 2023, Brinkmann et al., 2024, Papadakis et al., 2020,
Papadakis et al., 2016]. Recent work on blocking introduces larger benchmark
datasets in order to challenge the scalability of blocking systems [Papadakis et al.,
2016, Papadakis et al., 2022]. Due to its size the PDC2020 product corpus pre-
sented in Section 5.3.1 is well-suited as starting point for building blocking bench-
marks. An example of a blocking benchmark that is derived from the PDC2020
corpus is the recent SC-Block benchmark [Brinkmann et al., 2024]9.

Entity Matching as Non-Binary Classification

While the WDC Products benchmark presented in Section 5.3 provides two ver-
sions for pair-wise and multi-class entity matching, related work has nearly exclu-
sively addressed entity matching as a binary pair-wise task. Multi-class classifica-
tion methods are more prominent in the area of product categorization [Silla and
Freitas, 2011, Gao, 2020] which constitutes a higher-level task that aims at groups
of entities rather than single entities. Recent work introduced FlexER [Genossar
et al., 2023] which discusses the notion of what constitutes a match along a hi-
erarchy of increasing strictness. Multi-class entity matching, as presented in the

9https://webdatacommons.org/largescaleproductcorpus/wdc-block/

https://webdatacommons.org/largescaleproductcorpus/wdc-block/
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Figure 5.1: Example of hard and easier matching and non-matching offer pairs
from WDC Products. Hard matches (non-matches) exhibit a strong textual dissim-
ilarity (similarity) making them harder to classify correctly.

WDC Products benchmark, is a relevant formulation of the task for practitioners,
as experiments with proprietary data at eBay [Shah et al., 2018] show.

5.3 WDC Products: A Multi-Dimensional Entity Match-
ing Benchmark

The WDC Products benchmark, as an evolution of WDC LSPM, is the first bench-
mark that employs non-generated real-world data to assess the performance of
matching systems along three dimensions: (1) amount of corner cases, (2) frac-
tion of unseen entities in the test set, and (3) development set size. For this, the
benchmark provides nine training, nine validation, and nine test sets, which can be
combined into 27 variants of the benchmark. The range of variants includes simple
variants that contain only a low amount of corner cases and no unseen entities while
enough training data is available. It also includes highly challenging variants that
require the system to match corner cases involving unseen entities, while for the
seen entities, only a small number of training examples are available. While exist-
ing publicly available benchmarks can partly support these dimensions, this usually
entails severe limitations, especially for modeling the corner case and robustness
dimensions, as discussed in Section 5.4, which can limit the meaningfulness of the
obtained results.

WDC Products is based on product data that has been extracted in 2020 from
3,259 e-shops that mark up product offers within their HTML pages using the
Schema.org vocabulary. Compared to the WDC LSPM benchmark, WDC Prod-
ucts uses the same basic process to generate a clustering of product offers using a
more recent version of the Common Crawl. WDC Products contains 11,715 prod-
uct offers describing in total 2,162 product entities belonging to various product
categories. Figure 5.1 shows examples of hard and easy matches and non-matches
sourced from the benchmark.

In order to prevent any potential information leakage between training and test-
ing, the WDC Products benchmark strictly separates offers that appear in the pairs
contained in the training, validation, and test sets so that each offer can only be
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Figure 5.2: Creation process of WDC Products from the extraction of offers from
the Common Crawl to the final benchmark.

contained in one of the splits. This splitting also allows the formulation of the
benchmark in pair-wise format and as a multi-class matching benchmark. WDC
Products is the first benchmark to offer fixed datasets for pair-wise and multi-class
entity matching tasks and offers multiple dimensions for a systematic evaluation of
entity matching systems. The WDC Products benchmark and the code used for its
generation are available for public download10.

5.3.1 Creation Process

The creation pipeline of the WDC Products benchmark consists of the following
six steps: (1) extraction of product offers from the Common Crawl, (2) cleansing
of the product clusters, (3) grouping similar products, (4) product selection, (5)
splitting, and (6) pair-generation. This section gives an overview of the six steps,
which are visualized in Figure 5.2. Detailed explanations of every step are given in
the following sections.

The first step of the pipeline is the extraction of large amounts of product offers
from the Common Crawl11 using Schema.org annotations using the same extrac-
tion, cleansing, and clustering process as the WDC Training Dataset in Chapter 4.
More specifically, the first step is based on a clustering created from the Decem-
ber 2020 Common Crawl12. In the second step, several cleansing heuristics are
applied to prepare the clustered data for the benchmark. In the third step, similar
product clusters are grouped together in order to facilitate the later discovery of
corner cases. In the fourth step, several sets of 500 product clusters are selected
from the previous grouping to mix and merge for materializing the two dimensions
amount of corner cases and unseen products. For this purpose, the groups are it-
erated over, and one seed product cluster is randomly selected for each group. To
ensure the inclusion of corner cases, similarity searches are performed using dif-
ferent similarity metrics among the product clusters from the previous grouping
and the respective selected seed product. For each corner case selection, random
drawing is performed from a set of similarity metrics to avoid selection bias. As

10http://webdatacommons.org/largescaleproductcorpus/wdc-products/
11https://commoncrawl.org/
12https://webdatacommons.org/largescaleproductcorpus/v2020/index.html

http://webdatacommons.org/largescaleproductcorpus/wdc-products/
https://commoncrawl.org/
https://webdatacommons.org/largescaleproductcorpus/v2020/index.html
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the basis for the later generation of the unseen dimension, a second distinct set of
500 products is selected for each corner case ratio.

In the fifth step, the offers in the selected clusters are split into training, valida-
tion, and test sets. In order to prevent information leakage in the training process,
each offer is only assigned to a single set. Depending on the corner case ratio, this
splitting is done either randomly or using the previously applied similarity metrics
to ensure positive corner cases. At this point, the unseen dimension is also mate-
rialized by replacing, for example, 50% of the products in the test split with the
products from the second set of 500 unseen products. Finally, the development
set size dimension is realized by further selecting subsets from the training split
of each product to build a medium and small training set. In the sixth and final
step, the generated splits are used to generate pairs of offers for the pair-wise for-
mulation of the benchmark. Again, random choice is applied to the same set of
similarity metrics already used in Step 4 to ensure an appropriate number of corner
case pairs.

Extraction of Product Offers from the Common Crawl

The WDC Products benchmark uses product offers from the WDC Product Data
Corpus V2020 (PDC2020)13. The corpus was created by extracting Schema.org
product data from the September 2020 version of the Common Crawl. The ex-
tracted data goes through a pipeline of cleansing steps similar to the one presented
in Chapter 4. The resulting PDC2020 corpus consists of „98 million product of-
fers originating from 603,000 websites. All of these offers contain some form of
product identifier that allows them to be grouped into „7.1 million clusters that
have a size of at least two offers. An evaluation of the cleanliness of the clusters
estimated a noise ratio of 6.9% for clusters smaller than or equal to 80 and around
1.8% for clusters larger than 80. A cluster is considered clean if all contained of-
fers are for the same product. Each product offer in the corpus is described by the
textual attributes title, description, and brand, as well as the numerical attribute
price and a corresponding priceCurrency attribute.

Cleansing of the Product Clusters

Some further cleansing steps are applied to the PDC2020 corpus to increase the
quality of the product clusters and find a suitable subset for building the benchmark.
These steps are detailed in the following paragraphs.

PDC2020 is a multi-lingual corpus with product offers originating from all
across the Web, as such it also includes a lot of non-English product offers. As
WDC Products is designed to be an English benchmark, some steps are applied
to filter out non-English offers. In its original form, PDC2020 contains more than
98M offers and over 7M product clusters with a size of at least two. In the first step,

13http://webdatacommons.org/largescaleproductcorpus/v2020/

http://webdatacommons.org/largescaleproductcorpus/v2020/
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the fastText language identification model14 is applied to each row in PDC2020,
more specifically to the concatenation of the attributes title and description. A
product offer with a longer textual description should lead to reliable identification
as English or non-English for the algorithm. For any offers without description, the
language identification has to rely on non-English words in the product titles alone.
After applying the fastText model, all rows are kept where the classifier confidence
is highest for English. In the second step, a regular expression is applied to identify
non-Latin characters in the remaining product offers, and only those that contain
less than four non-Latin characters are kept. These are kept as sometimes product
descriptions contain non-Latin characters as part of a model name or branding of
the manufacturer. Any product offers with more than four non-Latin characters are
assumed to be non-English and removed.

In the second cleansing step after language identification, the attributes title,
description, and brand are concatenated, and any duplicate rows on this combined
attribute are deleted, keeping only the first occurrence. Finally, all product offers
are removed where the title attribute contains less than five tokens, as it is expected
that offers with such short titles are unsuited for a benchmark due to being very
sparsely described, which results in unsolvable ambiguity when trying to match
similarly sparse but different products.

The third and last step aims to remove any remaining intra-cluster noise in the
form of wrongly assigned product offers. For this purpose, a heuristic based on
simple word occurrence is employed among offers inside a cluster. More specifi-
cally, each clusters offers are scanned and the average length of titles is recorded
while at the same time a dictionary of word counts across offers’ titles is created.
Any offer containing very unique words compared to all others in the cluster are
assumed to be noisy non-matching product offers and subsequently removed from
the cluster.

After these cleansing steps, PDC2020 contains 22M offers and 900K product
clusters of size greater than one. This cleansed corpus is used as the base for
creating WDC Products and is also available for download on the WDC Products
website with the creation code. In combination, these two artifacts allow for the
creation of more fine-grained steps for each of the benchmark dimensions and the
generation of entirely new benchmarks similar to WDC Products.

Grouping Similar Products

To group similar products for easier discovery of corner case products and re-
duce computational complexity in later stages, the scikit-learn implementation
of DBSCAN clustering15 is used on the data corpus with an epsilon of 0.35 and
min_samples of 1 to determine coarse groups of similar products. Simple binary
word occurrences after lower-casing and removing tags and punctuation are used
as a feature vector for each product. The values for epsilon and min_samples were

14https://fasttext.cc/docs/en/language-identification.html
15https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

https://fasttext.cc/docs/en/language-identification.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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Figure 5.3: Depiction of the cluster sizes and distribution of offers into splits for
seen product clusters with size 7-15 (left) and unseen product clusters with size 2-6
(right).

chosen to generate the largest number of groups containing products with at least 7
offers. The minimum number of 7 is chosen because this is the minimum amount
needed to cleanly split offers into train, validation, and test at a later stage. A ran-
dom manual check of the generated groups showed that they contain either only
highly similar products, e.g., hard drives from the same vendor, or very similar
products, e.g., graphics cards from the same but also other vendors.

In the next step, the corpus with annotated DBSCAN groups is split into two
parts, the first one, from which the seen portion of the benchmark is drawn and
represented by 629 DBSCAN groups, containing all products represented by at
least 7 offers and the second one, from which the unseen examples are drawn and
represented by 2,845 DBSCAN groups, with products having between 2 and 6
offers. In the final step, two domain experts manually check all 629 groups in the
first part and annotate them with useful or avoid depending on the cleanliness of
the group. The domain experts then look at the same number of groups for the
second part and annotate them in an analogous manner. The results of this process
are two sets of grouped and manually curated products from which sets of products
are selected in the next step.

Product Selection

For creating WDC Products, multiple sets of 500 products are selected from the
cleansed and grouped PDC2020 corpus along three dimensions that characterize
the final benchmark. The three dimensions are: (1) amount of corner cases, (2)
amount of unseen products, and (3) development set size. The amount of corner
cases determines the percentage of the 500 products that have at least 4 textually
highly similar products in the set of 500. The higher the amount of corner cases
in a dataset, the harder it will be for matching systems to disambiguate between
matching and non-matching offers as textual descriptions will be very similar for
such products. This dimension is varied in 3 steps: 80%, 50%, and 20%. The
amount of unseen products is only relevant for test splits and determines the per-
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centage of products that are represented in the training and validation sets. This
dimension is varied from 0% unseen over 50% to 100% unseen. The third dimen-
sion varies the amount of available development data in small, medium, and large
sizes. These sets of products need to fulfill two characteristics: each product must
be represented by at least 7 (seen) or 2 (unseen) unique product offers for the pur-
pose of cleanly splitting them among training, validation, and test sets, and at least
four very similar but different products need to be available in the selected set of
products for the purpose of generating negative corner cases.

The next paragraph describes the selection of 500 products for the final bench-
mark datasets while keeping the corner case dimension fixed to 80% corner cases.
The process is applied analogously for the other corner case percentages.

400 products are selected in such a way that this number includes at least four
negative corner cases for each selected product (80% corner cases). Subsequently,
100 random products (the remaining 20%) are selected from the corpus. This se-
lection process is applied once for the seen and once for the unseen groups of the
corpus, to make it possible to build sets for each unseen percentage later. The se-
lection process starts by iterating through the annotated DBSCAN groups. Inside
each DBSCAN group, one product cluster is randomly selected and subsequently
the four most similar product clusters inside that group are identified by randomly
alternating between the most similar examples on the product title according to a
variety of similarity metrics: Cosine, DICE and Generalized Jaccard similarities
from the py_stringmatching16 package and a fastText embedding model trained
on the titles of the product matching benchmarks Amazon-Google, Abt-Buy, and
Walmart-Amazon.

Although it is possible to simply apply a stricter version of the DBSCAN
grouping to select corner cases, this would limit the selection to the representa-
tion and similarity metric used in this clustering, leading to a benchmark that can
be easily solved using the DBSCAN algorithm. By using a varied selection of
similarity metrics, biasing the benchmark towards a single method of corner case
selection can be avoided while ensuring that it cannot be solved by a matcher based
on a single metric. After collecting 400 products in this way for the seen and for
the unseen split, respectively, another 100 products are randomly selected for seen
and unseen from the remaining product clusters, bringing both product sets to 500
products with an 80% negative corner case ratio.

Splitting

In this step, the offers of each of the 500 product clusters of the seen part are
split into training, validation, and test offers. For the seen products, the maximum
number of selected offers from a product cluster is limited to 15. Exactly two
offers are sampled from the respective cluster for the unseen products. Figure 5.3
shows how the subsequent splitting of the selected offers of both sets into training

16https://github.com/anhaidgroup/py_stringmatching

https://github.com/anhaidgroup/py_stringmatching
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validation and test offers is performed. The validation and test splits are assigned
two offers each, while the remaining offers are assigned to the training split. The
selection of offers for each split is done along the corner case dimension, which
means that for 80% of the products the same similarity metrics as before are used
for all combinations of offers in a product cluster and then sorted by increasing
similarity to find positive corner cases. The resulting list is split at the first fifth,
and two pairs are randomly selected from the corner case part (low similarity) for
inclusion in test and validation splits. The rest are assigned to the training split.

To build the unseen dimension, products in the fully seen test set are systemat-
ically replaced with products from the unseen split. To keep the amount of corner
cases the same when building the 50% unseen test set, 250 products are replaced
with unseen products in a ratio of 80% corner cases and 20% random. Finally, to
build the 100% unseen test set, the original test set is fully replaced with the cor-
responding selection from the unseen split. In summary, three test sets (0%, 50%,
and 100% unseen) are generated for the corner case ratio of 80%.

In the last step, datasets for the last dimension, the development set size, are
generated. For this purpose, the subsets of each product that were assigned to the
training split are further divided as follows: All product offers are assigned to the
large training set, three among those are assigned to the medium training set, and
two of the three are assigned to the small training set. For 80% of the products, the
same positive corner case procedure as before is applied to ensure that the pairs in
the small and medium training sets are corner cases.

The same process is repeated again for the corner case ratios 50% and 20%.
This procedure results in three test sets and three development sets for each corner
case ratio: nine test sets, nine validation sets, and nine training sets overall. At this
stage, the multi-class version of the WDC Products benchmark is materialized. For
the pair-wise formulation, pairs are generated from the selected product offers in
the final step.

Pair Generation

The training, validation, and test splits prepared previously are used as a base to
generate pair-wise datasets from the selected products and splits. For each offer
in each set, all positive pairs, as well as varying amounts of negative corner cases
and random pairs, are created, depending on the development set size, to simulate
a blocking process. In the following, this process is explained for the development
size large.

A product cluster in the large training set can contain between 3 and 11 unique
offers. All possible positive pairs are generated using the available offers and in-
cluded in the final large pair-wise training set. Afterward, for each offer in the
product cluster, the three most similar product offers (using alternating similarities
as before) among the remaining 499 product clusters in the dataset are selected. If
a pair is already contained in the final training set, e.g. because of a mirrored pair,
the next most similar pair is added instead. Finally, a random negative pair is added
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for a total of four negative pairs for each offer in the current product cluster. This
process is continued for all 499 remaining product clusters, resulting in the final
pair-wise large training set.

The generation of all pair-wise test sets and the large validation sets follows
the same process as for the large training sets. For the medium and small training
and validation sets, the amount of selected negative corner cases per product offer
is reduced to 2 (medium sets) and 1 (small sets) to simulate a reduced labeling
effort in addition to the lower amount of available product offers per product for
the different training sets (3 for medium and 2 for small).

5.3.2 Benchmark Profiling

Table 5.2: Statistics of the training, validation and test sets of WDC Products along
the dimensions amount of corner-cases and development set size for the pair-wise
and multi-class matching tasks.

Type Corner-Cases Pair-Wise Multi-Class

Small Medium Large Small Medium Large
All Pos Neg All Pos Neg All Pos Neg

Training
80%

2,500 500 2,000 6,000 1,500 4,500 19,835 8,471 11,364 1,000 1,500 2,841
Validation 2,500 500 2,000 3,500 500 3,000 4,500 500 4,000 1,000 1,000 1,000
Test 4,500 500 4,000 4,500 500 4,000 4,500 500 4,000 1,000 1,000 1,000

Training
50%

2,500 500 2,000 6,000 1,500 4,500 19,607 8,339 11,268 1,000 1,500 2,817
Validation 2,500 500 2,000 3,500 500 3,000 4,500 500 4,000 1,000 1,000 1,000
Test 4,500 500 4,000 4,500 500 4,000 4,500 500 4,000 1,000 1,000 1,000

Training
20%

2,500 500 2,000 6,000 1,500 4,500 19,015 7,963 11,052 1,000 1,500 2,763
Validation 2,500 500 2,000 3,500 500 3,000 4,500 500 4,000 1,000 1,000 1,000
Test 4,500 500 4,000 4,500 500 4,000 4,500 500 4,000 1,000 1,000 1,000

The WDC Products benchmark consists of 11,715 unique product offers, which
describe 2,162 different products. It further consists of nine training sets, nine val-
idation sets, and nine test sets, each for pair-wise matching and multi-class match-
ing. Table 5.2 shows statistics on the size of the datasets for each of these splits.
Each split contains offers for exactly 500 products. All test sets contain exactly
4,500 pairs of offers (pair-wise) or 1,000 offers (multi-class). The sizes of the
training and validation sets, on the other hand, vary across the development set size
dimension from 5,000 (pairwise) and 2,000 (multi-class), representing the small
dataset, to 8,500/2,500 in the medium and „25,000/„4,000 in the large set. This
allows for the evaluation of matching systems along the dimension of development
set size while ensuring comparability between pair-wise and multi-class tasks, as
both datasets always contain the same set of offers in training, validation, and test,
as well as no overlapping offers between the training and evaluation splits. In ad-
dition to the development set size dimension, each dataset exists in three versions
of increasing difficulty, represented by the number of corner cases among the con-
tained products. Finally, for each of the three difficulties, three test sets of the
same size are available with an increasing amount of unseen products from 0%
over 50% to 100%, representing the third and final dimension of the benchmark.
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As explained in Section 5.3.1, care is taken to preserve the corresponding corner
case ratio when replacing seen products with unseen products.

Attribute Density and Vocabulary:

Each offer in WDC Products has five attributes, title, description, price, priceCur-
rency, and brand. Table 5.3 contains statistics on density and value length for each
attribute in all datasets. Most of the attributes have a density of more than 90%,
with description (75%) only filled in three-quarters of offers and brand (35%) be-
ing the least dense attribute. Manual inspection revealed that brand information is
often found in the title attribute if the brand attribute itself is missing. The median
value lengths of the attributes reveal that title can be considered a shorter textual
attribute while description contains longer strings. Brand and priceCurrency con-
sist of a single word which in the case of priceCurrency is often a three-character
identifier for the currency, such as USD or EUR. The price represents the single
numerical attribute of the benchmark. An example of each attribute can be seen in
Figure 5.1. Table 5.3 further shows statistics for the unique vocabulary used across
all datasets, which highlights the heterogeneity of the benchmark, with each dataset
containing between 17K and 20K unique words on average, as well as making use
of around 12K (24%) tokens contained in RoBERTa’s vocabulary of size „50K.

Table 5.3: Attribute density and length statistics across the merged sets by devel-
opment set size and amount of corner cases.

Development
Set Size

Corner-Cases # Entities
Density (%)/

Median Length (# Words)
Vocabulary

(unique)

title description price priceCurrency brand Words Tokens

Average - - 100/8 75/32 93/1 90/1 35/1 18,832 11,876

Small
80%

500 100/8 75/37 94/1 91/1 34/1 16,662 11,420
Medium 500 100/8 75/37 94/1 91/1 34/1 17,612 11,718
Large 500 100/8 75/36 94/1 91/1 34/1 19,862 12,246

Small
50%

500 100/8 76/32 93/1 90/1 35/1 17,232 11,548
Medium 500 100/8 76/32 93/1 90/1 35/1 18,313 11,912
Large 500 100/8 75/32 93/1 90/1 35/1 20,361 12,372

Small
20%

500 100/8 74/29 92/1 90/1 35/1 16,179 11,201
Medium 500 100/8 74/29 92/1 90/1 35/1 17,220 11,563
Large 500 100/8 74/29 92/1 90/1 34/1 19,235 12,028

Label Quality:

As the benchmark labels originate from automatic clustering of offers using an-
notated product identifiers from the Web, a manual evaluation of their correctness
is performed on the test splits of WDC Products. Two domain experts check the
match and non-match labels from a sample of labeled pairs which are sampled
from all nine available test splits. From each test split, an equal amount of posi-
tives and negatives is sampled while the overall amount depends on the corner case
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percentage of the respective test set. As the test sets with higher corner case ra-
tios contain harder-to-match pairs, this ensures the sampling does not favor easily
disambiguated pairs. Specifically, 100/60/40 pairs are sampled for corner case per-
centages of 80/50/20, resulting in 600 (300 positives, 300 negatives) labeled pairs
in total. Overall, the noise level in the sample is estimated as 4.00% by the first
annotator and 4.17% by the second annotator with a Cohen’s Kappa of 0.91.

5.4 Comparison to Existing Benchmarks

Table 5.1 compares the WDC LSPM and WDC Products benchmarks to publicly
available benchmark tasks along various profiling dimensions. Among the bench-
marks presented, the WDC LSPM and WDC Products benchmarks are the only
ones that originate from hundreds and thousands of sources, in this case, e-shops,
underlining the diversity of both benchmarks compared to the existing benchmarks
that originate primarily from two sources.

WDC Products is the only multi-dimensional benchmark that provides 27 vari-
ants along the three dimensions, amount of corner cases, unseen entities in the
test set, and development set size, which allow for the systematic comparison of
matching systems. Most other benchmarks consist of a single variant apart from
the WDC LSPM benchmark, which allows for the evaluation along the two dimen-
sions of development set size and product category. Varying degrees of difficulty in
the form of corner cases and separate test sets for unseen entities are original fea-
tures of WDC Products not found in other benchmarks. WDC Products is, further-
more, the only benchmark in this comparison that offers a multi-class formulation
of the entity matching task. This is possible due to the constant amount of available
matches per entity across the full set of products included in the benchmark, which
provides enough offers for each product to cleanly split them into training, valida-
tion, and test sets. Although the WDC LSPM benchmark also has a high amount
of average matches per entity, they are not equally distributed across all contained
products due to differences in the creation process and fewer available product
offers at the time of its creation. Comparing the maximum F1 reported for each
benchmark in related work shows that WDC Products is challenging for matching
systems. The WDC LSPM and WDC Products benchmarks expand the space of
publicly available benchmarks by allowing for an extensive evaluation of multiple
dimensions for the product domain of entity matching that was not possible before,
as discussed in the next section.

Adaptation of Existing Benchmarks

This section discusses whether existing benchmarks already cover the dimensions
of the WDC Products benchmark. It also explores the feasibility of extending
existing benchmarks to implement these dimensions and points to problems that
hinder such an adaption.
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Development Set Size: Most of the benchmarks listed in Table 5.1 provide
a single fixed development set size (see column Fixed Splits in Table 5.1). The
only benchmark besides WDC Products that defines development sets of different
sizes is the WDC LSPM benchmark. It is possible to downsample the training and
validation sets of all benchmarks in order to generate development sets of differ-
ent sizes. A problem that arises from the downsampling is that most benchmarks
except Alaska and the WDC benchmarks only contain a single match for most en-
tities (see column Avg. Matches per Entity in Table 5.1). Downsampling these
benchmarks will increase the amount of entities that are not covered in the train-
ing set (unseen dimension), making the benchmarks more difficult and blurring the
distinction between the two dimensions.

Amount of Corner Cases: None of the publicly available benchmarks im-
plements the dimension amount of corner cases nor offers test sets with different
difficulty levels. The corner case dimension is realized in WDC products by careful
selection of sets of 500 products from the PDC2020 corpus using the set of similar-
ity metrics described in Section 5.3.1. The large amount of products contained in
PDC2020 ensures the availability of very similar but distinct products. Although
a similar dimension can be realized using the English WDC Training Dataset for
the WDC LSPM benchmark, this was not considered at the time of creation but
remains a possible addition in future work.Most publicly available benchmarks are
not accompanied by a product corpus that can be used to select additional similar
products. To include a corner case dimension in existing benchmarks, filtering out
some entities to create easier versions of the benchmark would be a possibility.
However, reducing corner cases in this way would entail reducing the overall size
of the benchmarks, which would blur the distinction between the development set
size and the corner case dimensions.

Unseen Entities: The dimension unseen entities is inseparably linked to the
splitting of product offers into development and test sets. For most existing bench-
marks, namely the Magellan and Leipzig benchmarks, the community has adopted
a set of splits that were created using random splitting17 of product pairs after
blocking, which does not explicitly consider the unseen dimension. Given the low
amount of average matches per entity in Table 5.1 for these benchmarks, it is pos-
sible that by chance all offers for a specific product end up only in the test set
resulting in an unseen entity. The explicit modeling of this dimension requires
knowledge of all matching records in a dataset, or, if not available, the reduction
of the dataset to the set of known matches, which would severely reduce the size
of a benchmark. Followed by a careful splitting procedure, it would be possible
to explicitly model this dimension in the existing benchmarks, albeit on a much
smaller scale than WDC Products. The WDC LSPM benchmark is designed to not
include any unseen entities as part of the default available test sets. A subset of the
MWPD challenge test set included in WDC LSPM as presented in Section 4.6.2
allows the evaluation on 50 unseen products which is on a much smaller scale than

17https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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the 500 available in WDC Products.
Multi-Class Formulation: The formulation of entity matching as a multi-

class task is not explicitly available in any publicly available benchmarks apart
from WDC Products. Evaluation of a multi-class task requires the availability of a
relevant amount of examples for each class, the classes being, for example, product
identifiers in the case of product benchmarks, that further need to be split across
development and test sets. The low amount of available matches per entity in
existing benchmarks prohibits formulating these in a multi-class format.

Multi-Dimensionality: In summary, while all dimensions can be realized to a
certain extent in some of the publicly available benchmarks in isolation, it is essen-
tial to note that the dimensions interact with each other. For example, classifying
unseen entities in an environment of low corner cases can be significantly easier
than classifying unseen entities when many corner cases are present, as the results
in Section 8.4.3 show. Realizing a single one of the chosen dimensions is often
already prohibitive in publicly available benchmarks, as discussed above. Real-
izing all of them in order to explore their interaction is practically infeasible for
most benchmarks. WDC Products offers the possibility of exploring such nuances
along its 27 variants and is further supported by the large PDC2020 corpus that
can be used as a starting point for extending the benchmark or exploring further
dimensions.

5.5 Conclusion

This chapter presented the WDC Products benchmark based on Schema.org an-
notations found on the public Web. The process presented in Chapter 4 and an
updated clustering of product offers using annotated product identifiers such as
MPNs and GTINs from the December 2020 Common Crawl served as the starting
point for the creation of the benchmark.

WDC Products complements the field of benchmarking entity matching sys-
tems with a new multi-dimensional benchmark consisting of real-world product
offers originating from thousands of e-shops annotated in the Common Crawl of
December 2020. The benchmark provides 27 variants for the comparison of sys-
tems along the dimensions (1) amount of corner cases (2) generalization to unseen
entities, and (3) development set size. In comparison to other benchmarks, WDC
Products contains a larger amount of examples per entity which enabled the mod-
eling of the entity matching task as a binary pair-wise classification task on the
one hand and on the other hand as a multi-class matching task. This makes WDC
Products the first entity matching benchmark which provides for the fine-grained
evaluation of matching systems along three dimensions, as well as the first bench-
mark to offer evaluation setups for both pair-wise and multi-class matching. WDC
Products is further accompanied by a large product corpus that can be used to ex-
tend the benchmark or explore additional dimensions.
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Chapter 6

Cross-Language Learning for
Entity Matching

6.1 Introduction

Transformer-based entity matching methods [Barlaug and Gulla, 2021] have sig-
nificantly improved the state-of-the-art for textual matching tasks such as matching
product offers in e-commerce. To excel at these tasks, Transformer-based matching
methods require a decent amount of training data, as shown in Section 4.7.4. Col-
lecting enough training data can be challenging and costly. Section 4.4 showed that
semantic annotations can be leveraged for this purpose for the product domain by
using annotated product identifiers to cluster product offers for the same products
and subsequently automatically build training pairs. If a matcher for non-English
product descriptions should be learned, it can be difficult to find enough offers in
the respective target language on the Web for less widely used languages and less
commonly sold products.

This chapter contributes an evaluation of the utility of English language offers
for training product matchers for less widely spoken target languages, such as Ger-
man, to the field of supervised entity matching. To this end, experiments are carried
out with training sets that combine a large number of English language record pairs
with a smaller number of training pairs in the target language. Additionally, the
experiments encompass matchers that internally rely on different mono- as well
as multi-lingual pre-trained Transformer models, including BERT [Devlin et al.,
2019], a German version of BERT1, multilingual BERT2, XLM-R [Conneau et al.,
2020], as well as on an SVM classifier.

The experiments show that extending the German training set with English
pairs is always beneficial. The impact of adding English pairs is especially high in
low-resource settings, where only a small set of German pairs is available. When
this contribution was made, no other work had investigated cross-lingual product

1https://github.com/dbmdz/berts
2https://github.com/google-research/bert/blob/master/multilingual.md
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matching with Transformer models. Since then, more exploration has been done
on this topic in languages other than German, which is presented in Section 6.2.

The contribution of this chapter is:

• Evaluation of Cross-Lingual Fine-Tuning for Product Matching: An
evaluation of the cross-lingual product matching performance of mono- and
multilingual PLMs in English and German languages. The evaluation shows
that by combining English language training pairs and a small number of
training pairs in the German target language, it is possible to learn product
matchers that achieve F1 scores above 90%, outperforming matchers that
were trained using only a small amount of product offers in the target lan-
guage.

Section 6.2 presents related work on cross-lingual entity matching. Section 6.3
introduces the datasets created for the experiments. Section 6.4 gives an overview
of the different matchers and the training process, while Section 6.5 presents and
discusses the results of the experiments. Finally, Section 6.6 concludes this chapter
with a review of the results and findings.

The work presented in this chapter has previously been published in [Peeters
and Bizer, 2022a]

6.2 Related Work

This section gives an introduction to related work for cross-language learning and
applications for the related field of entity linking as well as entity matching.

Cross-language Learning

Language understanding between different peoples has been a cornerstone of trade
and social exchange since the dawn of civilization. This has become even more
relevant in today’s highly globalized society. The natural language processing re-
search field, from which many of the methods in state-of-the-art entity matching
are inspired, contains many subfields that research cross-lingual tasks, for exam-
ple, machine translation, which has become ubiquitous due to the developments in
smartphone technology. Early machine translation tasks were based on statistical
models [Lopez, 2008] like Markov chains, while the resurgence of neural networks
in the 2010s has moved the field nearly completely towards these models with the
Transformer architecture being the foundation of state-of-the-art models in this
area [Dabre et al., 2020]. In addition to machine translation, cross-language learn-
ing is relevant in fields such as text processing [Pikuliak et al., 2021] and text sum-
marization [Wang et al., 2022a]. Multi-lingual Transformers that revolutionized the
field of machine translation are usually pre-trained on (aligned) multi-lingual text
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and are fine-tuned either with or without using explicit cross-language alignments
from multi-lingual dictionaries [Ruder et al., 2019, Conneau et al., 2020, Wang
et al., 2018].

Cross-language Learning for Entity Linking

Cross-lingual matching is a task that is relevant in many fields, for example, cross-
lingual entity linking between knowledge graphs which is related to entity match-
ing, is an active research field [McNamee et al., 2011,Sil et al., 2018,Sevgili et al.,
2022]. Chen et al. [Chen et al., 2017] claim to be the first to experiment with
cross-lingual alignment of knowledge graphs. In their follow-up work [Chen et al.,
2018], they experimented with learning cross-lingual embedding models for entity
linking learned on multilingual data from Wikipedia. Wang et al. [Wang et al.,
2018] use convolutional neural networks to train an entity linking model that lever-
ages prealigned entities during training to learn an embedding model that is subse-
quently used for aligning entities by distance in the embedding space. Pei et al. [Pei
et al., 2020] train a cross-lingual alignment model by combining adverserial noise
detection with a graph neural network-based encoder. More recent methods in the
field have almost exclusively moved to using the Transformer architecture [Sevgili
et al., 2022]

Cross-language Learning for Entity Matching

In the entity matching field, Rinser et al. [Rinser et al., 2013] leverage inter-
language links in Wikipedia to build a linked graph of entities in different languages
combined with a top-down approach of stricter connectivity measures to remove
erroneous links. Subsequently, they match entities using similarity measures for
each attribute together with a matching threshold achieving F1 scores above 90%
F1. Their work builds on previous methods for entity matching between languages
in Wikipedia based on connectedness measures in graphs [Adar et al., 2009, Has-
san and Mihalcea, 2009, Hecht and Gergle, 2010]. Narducci et al. [Narducci et al.,
2013] use the bag-of-words language model combined with cosine similarity to
match e-government services to services from other administrations in different
languages that are already linked to the Linked Open Data cloud.

To the best of the authors’ knowledge, the contribution of this chapter was the
first to explore cross-language learning for product matching with Transformers.
The following related work was released after the contribution of this thesis:

Alves et al. [Alves et al., 2024] explore cross-lingual learning for product
matching by using English product offers to train classification models for transfer
to the Portuguese target language using various mono- and multi-lingual Trans-
formers as well as various cross-lingual transfer strategies such as joint and cas-
cade learning. They use the computers category of the WDC LSPM benchmark
together with a Portuguese dataset they create themselves by crawling Portuguese
product websites and using GTIN and EAN numbers as distant supervision. The
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authors experiment with an experimental setup similar to the one presented in the
following sections by training on a selection of source and target language data
which they call joint learning. Another learning strategy, cascade learning, first
fine-tunes on a source language while subsequently starting a second fine-tuning
on target language data. They show results similar to those presented in this thesis,
stating that it is possible to achieve high scores of 90% F1 by training in a source
language and only a few examples of the target language, especially for the multi-
lingual XLM-RoBERTa and multi-lingual BERT models. They state that having
target language data available for training is important as their zero-shot experi-
ments resulted in comparably low results with a maximum of approximately 80%
F1 for multi-lingual BERT.

Możdżonek et al. [Możdżonek et al., 2022] prepare a product matching dataset
for the Polish language similar to the WDC LSPM benchmark datasets for two
product categories. The authors show that they can achieve a performance of
85% F1 with small training set sizes (1.5K to 2K pairs) and up to 93% F1 with
large training set sizes (10K-14K pairs) with multilingual BERT as well as XLM-
RoBERTa when training with polish training pairs. They further apply both multi-
lingual models to the WDC LSPM benchmark and compare them to results of the
Ditto [Li et al., 2020] and Deepmatcher [Mudgal et al., 2018] systems, showing that
the multi-lingual models achieve comparable performance to mono-lingual Trans-
formers in the English language, with improved performance (2-6% F1 depending
on product category) for the small training sizes of the WDC LSPM benchmark.
Their work, while employing multi-lingual transformers on product matching tasks
in two different languages, does not directly study cross-lingual fine-tuning in the
sense of transferring matching knowledge gained from a different language to a
target language.

6.3 Datasets

The datasets used as a basis for the experiments in this chapter were created as
part of a student project3. The experiments in this chapter make use of a selection
of these datasets for the product category mobile phones containing English- and
German-language offers. The offers have been crawled from 66 different e-shops,
auction platforms, and electronic marketplaces. Each offer contains a title, a de-
scription, and a product identifier such as a GTIN or MPN number. The data was
collected using 150 mobile phones as seeds for the crawling process. These seeds
contain widely-sold head products but also less-sold long-tail phones. In addition
to offers for the seed phones, the dataset also includes offers for additional phones
that have been discovered during the crawling process. The offers are grouped
into pairs by using shared GTIN, EAN, and MPN numbers as distant supervision,
similar to the clustering process presented in Section 4.4.

3https://data.dws.informatik.uni-mannheim.de/Web-based-Systems-Group/StudentProjects
/2020/Cross-lingual-Product-Matching-using-Transformers/

https://data.dws.informatik.uni-mannheim.de/Web-based-Systems-Group/StudentProjects/2020/Cross-lingual-Product-Matching-using-Transformers/
https://data.dws.informatik.uni-mannheim.de/Web-based-Systems-Group/StudentProjects/2020/Cross-lingual-Product-Matching-using-Transformers/


6.3. DATASETS 119

Figure 6.1: Example of a matching product offer pair in English (top) and a pair
for the same product in German (bottom).

The identifiers are not used during the experiments to prevent the matching
from being trivial and to represent a real-world matching use-case for which iden-
tifiers are usually only available for a subset of offers or not at all. Non-matching
pairs are created by combining an offer for a seed product with an offer for a sim-
ilar seed product or a similar offer from a phone that has been discovered during
crawling. The pairs are arranged into language-specific training sets of different
sizes. The training sets range from 450 to 7200 pairs and contain 50% matches
and 50% non-matches. Figure 6.1 shows an example of a pair of English product
offers and a pair of the same product in German. For the experiments, the German-
language test set containing 1200 pairs (25% matches and 75% non-matches) is
used. None of the pairs in the test set is included in the training sets. Half of
the pairs in all sets were chosen randomly, while the other half contains corner
case pairs, measured and created by the students using cosine similarity. Figure
6.2 shows the distribution of positive and negative pairs in the German test set for
the 150 seed mobile phones. The datasets represent a seen matching scenario as
for each product contained in the test set, offers for that product also exist in the
training set.

Figure 6.2: Distribution of positive (left) and negative (right) pairs in the German
test set for each of the 150 seed mobile phones.
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6.4 Models and Baselines

The experiments encompass three pre-trained Transformer-based models from the
HuggingFace4 library. The BERT base model (bert-base-uncased) represents a
monolingual English option. This model was pre-trained on a dump of the English
Wikipedia and BookCorpus. The second model is a German BERT model (bert-
base-german-dbmdz-uncased) pre-trained on diverse German texts, including a
Wikipedia dump, parts of the Common Crawl, and the EU Bookshop corpus. As
multilingual models, multi-lingual BERT (bert-base-multilingual-uncased), which
is trained on the top 100 largest Wikipedias, as well as XLM-RoBERTa (xlm-
roberta-base), which is trained on a CommonCrawl corpus consisting of 100 dif-
ferent languages, are chosen. This selection of models allows the examination
of the performance differences that result from pre-training using multi-lingual
texts compared to pure mono-lingual pre-training. The simple word co-occurrence
baseline using an SVM classifier that has been used in previous experiments in
Section 4.7.1 is used as a non-neural baseline.

Input sequences for the Transformer-based models are created by concatenat-
ing the title and description attributes of a product offer into one string and apply-
ing the respective tokenizer to both product offers in a pair to represent them in
the standard input representation for Sequence Classification, i.e., "[CLS] Product
1 [SEP] Product 2 [SEP]" for BERT-based models. As input for the SVM base-
line, a bag-of-words word vector representation indicating co-occurring words in a
product pair is generated, which serves as input for the classifier.

For every experimental run, the learning rate is optimized in the range between
5e-6 and 1e-4 with early stopping. The run is stopped if a given model does not
improve for three consecutive epochs during hyperparameter tuning on the valida-
tion set. Models are fine-tuned for 25 epochs. The batch size is fixed to 16 and
the weight decay in the optimizer to 0.01. All other hyperparameters are left at
their default values. The scores reported are averages over three runs that were
individually trained using the same hyper-parameter setup.

6.5 Results and Discussion

The first set of experiments compares the performance of the different mono- and
multi-lingual models on the German test set while training on the one hand with
only 1800 German training pairs and on the other hand with the same 1800 Ger-
man pairs and an additional 7200 English pairs. Table 6.1 shows the results of this
experiment. When fine-tuned with only 1800 German pairs, the English BERT
model scores the lowest overall, falling 6% F1 behind the SVM baseline at 65%
F1, showing that the language mismatch between English pre-training and Ger-
man fine-tuning has a severe negative impact. The German version of BERT can
instead improve on the SVM by 2.5% F1, showing the importance of German lan-

4https://huggingface.co/transformers/
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guage pre-training for German tasks. The multilingual XLM-R achieves a result
comparable to that of German BERT. Multilingual BERT achieves the best result
with 87% F1, outperforming German BERT by 14% F1. After extending the Ger-
man training set with the additional 7200 English training pairs (Row F1 with EN
in Table 6.1), all models apart from the SVM improve significantly. German BERT
sees the highest improvement with a gain of 16% F1, putting it 1.5% points behind
multilingual BERT, which achieves the highest score of 91.4% F1.

Table 6.1: Results on the German test set with and without additional English
training data. Training sizes: EN - 7200, DE - 1800.

SVM BERT gBERT mBERT XLM-R
F1 without EN 71.00 65.27 73.43 87.69 73.40
F1 with EN 71.05 74.29 89.83 91.44 86.98
Difference 0.05 9.02 16.40 3.75 13.58

These results show that adding training data in a high-resource language like
English, which can be automatically collected, for example, by the process pre-
sented in Chapter 4, to a smaller amount of training data in the target language
leads to improvements for all Transformer models and, as a result, is a promising
course of action for matching tasks in low-resource languages.

Table 6.2: Results on the German test set when varying the amount of training
data for both languages.

DE
EN

0 450 900 1800 3600 7200 ∆ 0-7200

450 67.11 72.79 75.44 80.83 86.82 87.97 20.86
900 75.76 75.10 74.00 87.67 88.92 88.19 12.43

1800 87.69 88.43 88.38 90.17 90.72 91.44 3.75
3600 93.63 92.98 92.46 93.97 93.25 94.46 0.83

In a second set of experiments, multi-lingual BERT is trained with different
combinations of training data sizes for both languages to understand how much
training data in the target language is required and how much English training data
needs to be added to reach a high performance level. Table 6.2 shows the results of
the experiments. For German training sets of size 900 and less, any combination of
training datasets resulting in an overall amount of less than 2000 pairs leads to an
F1 around 75% F1 or less regardless of the composition among languages. If the
training set consists of more than 2000 pairs, an F1 greater than 80% is achievable
in all scenarios. If training data in the target language is scarce (450 pairs), adding
English training pairs has a significant effect, leading to a large improvement in
every step up to 3600 additional English pairs (86.82% F1). After this point, dou-
bling the amount of English training data only yields an improvement of 1% F1.
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The beneficial effect of additional English training data is visible across all set-
tings, although it diminishes with increasing size of the German training set. Once
the German training set reaches a size of 1800 pairs, the effect of adding English
training data is no longer as strong as before but still results in an overall improved
model, reaching a maximum of 94.5% F1 when trained using 3600 German and
7200 English pairs.

6.6 Conclusion

This chapter contributed an evaluation of cross-lingual fine-tuning using mono-
and multi-lingual Transformer for the task of product matching to the field of su-
pervised entity matching. The presented work has shown that the performance
of Transformer-based product matchers for potential low-resource languages, in
this case German, can be significantly improved by adding English-language offer
pairs to the training set. The impact of adding the English pairs is especially high
for low-resource settings in which only a small number of non-English pairs is
available. Furthermore, for successful cross-language learning during fine-tuning,
a Transformer model like multilingual BERT, that has also been pre-trained on
large amounts of text in different languages, achieves a higher performance com-
pared to mono-lingual models in English or the target Language German. Given
that training pairs in high-resource languages such as English can automatically be
extracted from the Web by exploiting Schema.org annotations (see Section 4.4),
cross-language learning can contribute to reducing labeling costs in many low-
resource language matching scenarios.

Compared to previous work, Rinser et al. [Rinser et al., 2013] used interlan-
guage links in Wikipedia to align entities before the matching step, which is based
on similarity calculations per attribute and a matching threshold. For the presented
product matching case from many web sources, such an alignment graph via inter-
language links is not available. A similar graph could theoretically be created using
product identifiers such as GTINs and MPNs similar to the clustering performed in
Section 4.4, but in real-world use cases, these identifiers are often only available for
a small subset of product offers to be matched. The matching step with attribute-
wise similarity metrics would require an information extraction step as the product
offers are highly textual, and as previously shown in Section 4.7, similarity-based
features do not achieve the same matching performance level as neural networks
in general and Transformers in particular. A similar conclusion follows for other
previous works that are based on graphs [Adar et al., 2009, Hassan and Mihalcea,
2009,Hecht and Gergle, 2010] or similarity-based features [Narducci et al., 2013].
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JointBERT: Dual-Objective
Fine-tuning for Entity Matching

7.1 Introduction

Practical data integration settings often require the integration of datasets from
multiple sources, while these datasets themselves are not deduplicated. As a re-
sult, there may be multiple records in each dataset that describe the same entity.
These groups of records contain diverse descriptions that, in unison, give a holistic
view of the entity. In some use-cases shared identifiers are available for a subset
of the records to be integrated, which allow for the identification of these entity
groups. For instance, in the product domain some e-shops annotate product offers
with GTIN numbers while others do not. The same applies to financial information
providers, which might identify companies using DUNS numbers or libraries that
provide ISBN, LCCN, GND, or ORCID identifiers. As not all records are accom-
panied by an identifier, which would make the matching step trivial, the challenge
in these settings is to learn a matcher for records not containing an identifier using
the records having an identifier as training data.

The matching tasks in these use-cases often involve a set of popular head en-
tities for which many records, including identifiers, are available from different
sources. However, the tasks also involve long-tail entities for which hardly any
data is available. The users of applications that build on the integrated data expect
data describing head entities to exhibit hardly any integration errors, e.g., in the
context of a price portal or electronic marketplace, users would likely expect data
describing a widely-sold phone to be correct, while mistakes for offers for a tail
product would not be relevant to most customers. This means that matching meth-
ods should excel on both head and tail entities, while taking full advantage of the
large amounts of training data that are available for head entities.

This chapter contributes the JointBERT method to the field of supervised en-
tity matching, which combines a binary matching and a multi-class matching ob-
jective into a dual-objective training approach for the BERT model that can better
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exploit the training data available in multi-source matching scenarios as described
above, leading to improved overall matching performance. In addition to the binary
matching objective, the model is tasked with predicting the entity group of each of
the two records in a pair during training. The idea behind this dual-objective train-
ing is to force the model to perceive the matching task not only as a comparison of
two isolated records but also to incorporate information from other records of the
respective entities seen during training into the matching decision. When training
data is scarce for each entity in a pair, i.e., for long-tail entities, the model can still
rely on learning patterns using the binary matching objective. The entity matching
methods available at the time of this contribution have not directly incorporated
information about the entity groups as part of the method.

The JointBERT method is experimentally compared with BERT [Devlin et al.,
2019], RoBERTa [Liu et al., 2019b], Ditto [Li et al., 2020], Deepmatcher [Mudgal
et al., 2018], Magellan [Konda et al., 2016], and the word co-occurrence baseline
used in the previous chapters on five entity matching benchmark datasets. The ex-
periments show that the dual-objective trained JointBERT can improve on single-
objective classifiers by 1% to 5% F1 for seen entities, given that enough training
data for both objectives is available. The results further show that JointBERT per-
forms only slightly worse than BERT in cases where multi-class training data is
scarce, i.e., entity groups are small.

To gain a deeper understanding of the strengths and weaknesses of the dual-
objective training approach, the learned models are evaluated on the matching
challenges in the MWPD test set of the WDC LSPM benchmark, such as dropped
tokens and typos in the entity descriptions as well as records pairs involving new
entities unseen during training. The code for replicating these experiments is avail-
able on GitHub1.

The contributions of this chapter are:

• JointBERT - A Dual-Objective Fine-Tuning Method for Entity Match-
ing: This chapter introduces JointBERT, a dual-objective supervised training
method for entity matching with BERT that combines binary pair-wise en-
tity matching with multi-class classification by leveraging information about
entity groups in the training data. At training time, the method predicts the
entity group each record in a pair belongs to in addition to the pair-wise
matching decision, whereas existing entity matching methods do not directly
use information about the entity groups.

• Evaluation of JointBERT Compared to Single-Objective Methods: The
JointBERT method is experimentally compared with various other entity
matching methods showing that dual-objective training performs best for
seen entities, given that enough training data for both objectives is avail-
able. The strengths and weaknesses of dual-objective training are evaluated

1https://github.com/wbsg-uni-mannheim/jointbert

https://github.com/wbsg-uni-mannheim/jointbert


7.2. RELATED WORK 125

and compared to other methods using the matching challenges found in the
MWPD test set of the WDC LSPM benchmark.

Section 7.2 presents related work on multi-objective entity matching meth-
ods. Section 7.3 presents the JointBERT method and its architecture. Section 7.4
presents the experiments and a discussion of the results compared to existing meth-
ods. Finally, Section 7.5 concludes this chapter with a review of the results and
contributions.

The work presented in this chapter has previously been published in [Peeters
and Bizer, 2021].

7.2 Related Work

This section gives an introduction to related work for multi-task learning, its appli-
cation to related matching tasks, and entity matching.

Multi-task Learning

Multi-task learning (MTL) [Caruana, 1997, Ruder, 2017, Zhang and Yang, 2021],
which is closely related to the dual-objective fine-tuning approach presented in
this chapter, has a long history in natural language processing [Ruder, 2017] and
serves the purpose of complementing a main task using auxiliary training tasks
or directly training for multiple main tasks in order to obtain better representations
compared to single task training. With the ubiquity of neural models, MTL has seen
a resurgence, with BERT [Devlin et al., 2019] and other Transformers [Lan et al.,
2020] using a form of MTL for pre-training for various tasks like aligning natural
language text with structured table formats [Yin et al., 2020] or question answering
via knowledge bases [Wang et al., 2021b]. Liu et al. [Liu et al., 2019a] presented a
method to jointly train the lower layers of a BERT model using multiple objectives
such as sentence classification, sentence similarity, and sentence ranking, resulting
in improved overall performance compared to single-task training.

Multi-task Learning for Matching Tasks

Various approaches exist in the related field of entity linking that apply multi-task
learning. For example, Deng et al. [Deng et al., 2020] pre-train a tabular trans-
former for various tabular tasks, including entity linking using two tasks, masked
language modeling, and masked entity recovery. Mrini et al. [Mrini et al., 2022]
apply multi-task learning specifically for the case of entity linking by training
with two additional auxiliary tasks that learn mention detection and prediction re-
ranking in combination with the main task.

Suhara et al. [Suhara et al., 2022] learn a joint model for column type predic-
tion and column relation extraction by constantly switching between both tasks at
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training time. Shraga et al. [Shraga et al., 2020] apply multi-task learning to learn
a schema matching model based on similarity matrices consisting of two interact-
ing neural networks, one adjustor of the matrix and an evaluator, that are jointly
trained.

Multi-task Learning for Entity Matching

The JointBERT method presented in this chapter is inspired by some of the earlier
presented work, especially in the area of natural language processing [Liu et al.,
2019a]. At the time of its contribution it was the first method that applied multi-
objective training for entity matching with Transformers. Relevant neural entity
matching methods at the time of contribution, such as the Deepmatcher frame-
work [Mudgal et al., 2018] and the ground-laying works for Transformer-based
entity matching by Brunner and Stockinger [Brunner and Stockinger, 2020] and
the Ditto framework [Li et al., 2020] used single-objective training (binary match-
ing decision) and did not make use of entity group information during training.
The following paragraphs present some work which applies multi-task learning to
entity matching, and was presented after the contribution of JointBERT.

Genossar et al. [Genossar et al., 2023] discuss the notion of what constitutes a
match along a hierarchy of increasing strictness. They state that depending on the
application domain, a pair of records may also be labeled as a match even if not re-
ferring to the same entity but closely related entities, such as for example all sneak-
ers from the brand Adidas. The multiple intents entity resolution (MIER) method
they propose combines multiple of these intents using a multi-label approach which
uses Transformers and a superimposed graph neural network for message passing
among all of the intents in an effort to improve results for each of them. The model
is jointly trained on all intents, resulting in improved performance on the chosen
benchmarks.

Zhang et al. [Zhang et al., 2024b] presented EMBA in 2024, which applies
multi-task learning using an attention-over-attention mechanism on individual to-
ken representations for improving entity matching. This method is highly similar to
the method presented in this chapter as the authors primarily compare to the Joint-
BERT method in their paper. Compared to the method presented in this chapter,
EMBA does not use the [CLS] token as a representation of a record pair for both
objectives, but instead directly leverages the embeddings of each individual token
which are used for predicting the individual entity group each record belongs to
separately. The final matching decision for a pair is the result of the attention-over-
attention module, which combines all token embeddings of both records using an
additional attention operation which is subsequently passed to a linear layer for
the binary decision. The authors can improve the results of JointBERT using this
adaptation of the model architecture (also see Section 7.5).

Fan et al. [Fan et al., 2024a] presented Unicorn in 2024 which is a multi-task
matching model for entity matching. It consists of a trained encoder that converts
any pair of records into an embedding representation and a matcher, which is a
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binary classifier for the matching decision for the pairs of records. Their method
additionally uses the mixture-of-experts ensembling technique, which combines
various submodels, each with different task specialization, using a gating network
to improve matching results. The tasks they use for training are entity matching,
column type annotation, schema matching, entity linking, entity alignment, string
matching, and ontology matching. They project pairs for each task into the same
embedding space using the DeBERTa encoder [He et al., 2020], learn a mixture-
of-experts to align the pair representations in a shared matching space, and train a
classifier for the decision end-to-end. Their results show improvements for various
matching tasks, although the entity matching task specifically sees only marginal
improvements compared to the Ditto framework [Li et al., 2020]. Additional ex-
periments with zero-shot inference suggest a strong generalization performance
of the model. However, this is only studied on a single dataset and thus cannot
be generalized to hold for all datasets without more analysis. Compared to Joint-
BERT, which focuses solely on entity matching, Unicorn does not make use of
entity group information but uses different related matching tasks to improve the
results for all tasks in unison.

7.3 Dual-Objective Training of BERT

The JointBERT method assumes that the following two requirements concerning
the training set are fulfilled:

1. The training examples consist of pairs of entity descriptions which are ac-
companied by pairs of entity identifiers that reference the entity group each
description belongs to.

2. The training set contains multiple entity descriptions for many of the de-
scribed entities, i.e. entities are described by multiple diverse descriptions
referencing the same entity.

These two requirements are typically fulfilled in multi-source entity matching
settings where some data sources provide entity identifiers, such as GTIN, ISBN,
DUNS, or ORCID numbers, together with the entity descriptions.

JointBERT Model Architecture:

To input an entity description pair into BERT in entity matching, the string repre-
sentations of two entity descriptions are usually concatenated using BERTs [CLS]
Sequence 1 [SEP] Sequence 2 [SEP] input scheme for sequence classification
tasks [Li et al., 2020]. Sequences 1 and 2 consist of the concatenated attribute
values of the respective entity description, optionally including the attribute name
as well. The pooled output representation of the [CLS] token from the last encoder
layer is then used as input for a linear classification layer followed by sigmoid or
softmax to obtain the final class probabilities, in the case of entity matching, for



128 CHAPTER 7. JOINTBERT: DUAL-OBJECTIVE ENTITY MATCHING

the two classes match and non-match. The [CLS] token is used as a representation
of the two sequences, trained for a specific task [Devlin et al., 2019].

Figure 7.1: The JointBERT architecture. Picture adapted from [Li et al., 2020].

JointBERT adds a multi-class training objective to the binary matching ob-
jective during the fine-tuning phase. For this objective, the model is tasked with
predicting the entity group identifier of each of the two entity descriptions in a pair
in addition to the binary entity matching decision.

Figure 7.1 illustrates the architecture and training objectives of JointBERT. The
input to the JointBERT model is designed, similar to related work, by first concate-
nating all attributes of an entity description into a single string representation and
then combining two entity descriptions into a pair using [CLS] and [SEP] tokens
as follows: [CLS] Entity 1 [SEP] Entity 2 [SEP]. The output representation of the
[CLS] token of the last encoder layer is then fed into three separate linear layers.
The first corresponds to the classifier for the binary decision, i.e. do the entity
descriptions refer to the same entity. The activation function for this layer is the
sigmoid function, resulting in the probability of the positive class (match). The
second and third linear layers are trained to predict the entity identifier of the left
and right entity descriptions, respectively. The activation function for both is a
softmax layer, resulting in the probabilities for each entity identifier in the training
set. Binary cross-entropy loss is used for the binary objective, and cross-entropy
loss is used for both multi-class objectives. With BCEL and CEL as binary
cross-entropy and cross-entropy loss, respectively, and ybi , yli , yri as binary and
multi-class labels, the instance loss of JointBERT is defined as:
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Li “ BCEL pybi , ŷbiq ` pCEL pyli , ŷliq ` CEL pyri , ŷriqq

JointBERT is initialized with the pre-trained BERTbase parameters. During
training, both objectives are jointly optimized. Matching decisions during infer-
ence are solely based on the output of the binary classification layer, making the
method applicable on any pair of entity descriptions without the requirement of
group identifiers as these are usually not available for all entity descriptions as
described in the previous section.

7.4 Method Evaluation

In this section, the performance of JointBERT is compared to the performance
of BERT, RoBERTa, Ditto, Deepmatcher, Magellan, and the word co-occurrence
baseline using five entity matching benchmark datasets. Two of these benchmarks,
WDC LSPM and DI2KG monitors [Crescenzi et al., 2021], model multi-source
entity matching settings and fulfill the requirement from the problem statement
in Section 7.3 that multiple entity descriptions should be available for many of
the described entities. The other three benchmarks, Abt-Buy, DBLP-Scholar and
Company [Mudgal et al., 2018], do not fulfill this requirement and are included in
order to evaluate the performance of JointBERT in a two-source setting, i.e., the
entity groups in these benchmarks have a maximum size of two unless duplicates
within the datasets exist.

7.4.1 Datasets

Tables 7.1 and 7.2 compare the development and test sets used for the experiments
with additional information on the size distribution of the entity groups found in
the development set.

WDC LSPM

The WDC LSPM benchmark has been introduced in detail in Section 4.6. WDC
LSPM models a multi-source entity matching scenario and fulfills the requirements
from Section 7.3 that entity identifiers as well as multiple entity descriptions should
be available for many entities (see last two columns of Table 7.1). The experiments
make use of training, validation and test sets for the four categories computers,
cameras, shoes and watches. All entities contained in the test sets are also repre-
sented with different entity descriptions in the training set, representing a fully seen
scenario. In addition to the WDC LSPM default test sets, JointBERT is evaluated
on the MWPD test set containing a set of 5 matching challenges as described in
Section 4.6.

The attributes brand, title, description, and specTableContent are used for all
experiments. The three latter attributes are highly textual and contain longer se-
quences of words. As the attribute values originate from the Web and may contain
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Table 7.1: Statistics of the training sets.

Training Set Size
# Pos.
Pairs

# Neg.
Pairs

# entities

% entities
with min # of
descriptions
5 10

WDC computers

xlarge 9,690 58,771 745 57 10
large 6,146 27,213 745 57 10
medium 1,762 6,332 745 55 8
small 722 2,112 745 28 0

WDC cameras

xlarge 7,178 35,099 562 50 14
large 3,843 16,193 562 50 14
medium 1,108 4,147 562 47 11
small 486 1,400 562 22 1

WDC watches

xlarge 9,264 52,305 615 62 15
large 5,163 21,864 615 62 15
medium 1,418 4,995 615 59 12
small 580 1,675 615 30 0

WDC shoes

xlarge 4,141 38,288 562 42 2
large 3,482 19,507 562 42 0
medium 1,214 4,591 562 39 0
small 530 1,533 562 13 0

DI2KG monitor default 611 68,538 100 59 1

abt-buy default 822 6,837 992 0 0
dblp-scholar default 4,277 18,688 2,312 12 1
company default 22,560 67,569 22,560 0 0

Table 7.2: Statistics of the test sets.

Test Set
# entities

w/ pos (overall)
# Pos.
Pairs

# Neg.
Pairs

# Comb.
Pairs

WDC computers 150 (745) 300 800 1,100
WDC cameras 150 (562) 300 800 1,100
WDC watches 150 (615) 300 800 1,100
WDC shoes 150 (562) 300 800 1,100

DI2KG monitor-seen 84 (88) 1,369 122,882 124,251
DI2KG monitor-unseen 123 (141) 7,651 852,365 860,016
DI2KG monitor-combined 207 (229) 9,020 975,247 984,267

abt-buy 205 (819) 206 1,710 1,916
dblp-scholar 848 (1,635) 1,070 4,672 5,742
company 5,640 (5,640) 5,640 16,863 22,503
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noise due to extraction errors, the maximum number of words in each attribute is
limited. This is done with regard to the length limits of the BERT Transformer
model, which is 512 tokens. The attribute value length is limited to twice their
median length to ensure that this step only affects unusually long strings.

DI2KG Monitors

All models are further evaluated using the DI2KG monitors dataset [Crescenzi
et al., 2021] that was used for the DI2KG challenge at the DI2KG workshop2 at
VLDB2020. The dataset contains product offers and corresponding ground truth
(entity identifiers) from a wide range of online shops and represents a multi-source
matching problem. This dataset fits the requirements of Section 7.3, as entity iden-
tifiers are available and multiple entity descriptions exist for most entities (see the
last two columns of Table 7.1). The pairwise training set offered for the challenge
is used for training. This set was created using a subset of the entity descriptions of
a subset of all entities in the ground truth [Crescenzi et al., 2021]. To allow for un-
biased evaluation, all entity descriptions contained in the training set are removed
from the collection of entity descriptions in the ground truth before building test
sets. This means that the same entity description will not appear in the training and
test sets. Using the remaining offers, two test sets are built by creating all possible
pairs and assigning the corresponding pair as well as entity identifiers to the two
sets (1) entities appearing in the training set (seen) and (2) entities not appearing
in the training set (unseen). This allows for comparing the performances of clas-
sifiers specifically for these two cases. Each offer in this dataset contains a title
attribute and a set of specifications that are not aligned across offers originating
from different e-shops. The attributes used are the title and the concatenation of all
specifications as key-value pairs into a second attribute specs. The length of both
attributes is restricted in the same way as the length of the attributes in the WDC
LSPM benchmark.

Abt-Buy, DBLP-Scholar, Company

All models are evaluated using the Abt-Buy, DBLP-Scholar, and Company en-
tity matching benchmarks. For these experiments, the preprocessed versions and
splits3 that were also used for the Deepmatcher paper [Mudgal et al., 2018] are
used. The datasets all model the use-case of two mostly deduplicated datasets to
be matched for different domains (see Table 5.1), namely products (Abt-Buy), sci-
entific texts (DBLP-Scholar), and companies. The last two columns of Table 7.1
show that Abt-Buy and Company do not fulfill the second requirement of Section
7.3 that multiple entity descriptions should be available for a larger fraction of the
entities. Results on these datasets are included to show how JointBERT performs
in such cases. Due to duplicates within the two sources, DBLP-Scholar contains

2http://di2kg.inf.uniroma3.it/2020/
3https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

http://di2kg.inf.uniroma3.it/2020/
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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at least five entity descriptions for 12% of the entities. The experiments in Sec-
tion 7.4.3 show that this fraction is too small to meet the second requirement. As
the datasets only contain pairwise ground truth labels (match/non-match), the tran-
sitive relations resulting from positive pairs are used to assign entity labels to each
entity description in all pairs. A summary class other is introduced and assigned
to all entity descriptions that appear only in negative pairs. All available attributes
are used during the experiments for each of the three datasets.

7.4.2 Models and Baselines

As part of the experiments, the performance of JointBERT is compared to that
of BERT and RoBERTa. Furthermore, Ditto [Li et al., 2020], the state-of-the-art
Transformer-based entity matching framework at the time of JointBERTs creation,
the previous state-of-the-art framework Deepmatcher [Mudgal et al., 2018], as well
as Magellan and the word occurrence-based baseline are evaluated. The following
paragraphs present each model and the specific settings used for training them.

Transformer-based models:

All Transformer-based models are implemented using PyTorch [Paszke et al., 2019]
and the HuggingFace Transformers library [Wolf et al., 2020]. The uncased base
versions of the pre-trained models for BERT and RoBERTa are used for the exper-
iments. For each of them, a linear layer is added on top of the pooled output of the
[CLS] token and combined with a sigmoid activation function, resulting in a sin-
gle output probability for the positive class (match), for the current pair of product
offers. All models are trained using binary cross-entropy loss.

All Transformer-based models are trained on a single NVIDIA RTX 2080Ti
GPU with 12GB VRAM. The attributes of each entity description are concatenated
into a single string. Any further pre-processing is omitted and left to the tokenizer
of the respective models. All models are allowed the full input length of 512 tokens.
The batch size is fixed at 32, and the Adam [Kingma and Ba, 2015] optimizer is
used to train the models for 50 epochs using a linearly decaying learning rate with
one epoch warm-up. The learning rate is optimized over the range [1e-5, 3e-5,
5e-5, 8e-5. 1e-4]. Model selection is performed using the maximum F1 value on
the validation set. Training is stopped early if the performance of a model on the
validation set does not increase over ten consecutive epochs. All models are trained
three times and the average performance is reported.

Ditto

For the experiments with the Ditto [Li et al., 2020] framework, the domain knowl-
edge injection module is activated using the spans for the product or general do-
main, depending on the dataset. The training data augmentation module with the
operator span_del, which deletes randomly sampled spans to augment the data, is
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used. For the Abt-Buy, DBLP-Scholar, and Company datasets, the respective op-
erator that was found to work best in the original paper is applied. Instead of using
a RoBERTa model at the core of Ditto as in the original paper [Li et al., 2020], the
same uncased base BERT version is used to make the results directly comparable
to the results of the JointBERT experiments to avoid effects that may occur due to
different pre-training of the Transformers. The batch size is set to 8 due to memory
constraints of the GPU and the model trained for 50 epochs using a linearly decay-
ing learning rate of 3e-5 with warmup. All Ditto models are trained three times,
and the performance average is reported.

Deepmatcher:

For Deepmatcher [Mudgal et al., 2018], the RNN summarization method is se-
lected which has been proven to perform best for the WDC LSPM datasets [Peeters
et al., 2020b] (see Section 4.7). The batch size is fixed at 16. The positive-negative
ratio, which controls the class weighting, is set to the actual distribution found in
each training set. All other hyper-parameters are left at default values. FastText
embeddings pre-trained on the English Wikipedia4 are used as input for Deep-
matcher. Each model configuration is trained three times for 50 epochs, and the
average is reported. For the datasets Abt-Buy, DBLP-Scholar, and Company, the
best result from the original paper is reported [Mudgal et al., 2018].

Magellan and Word Co-occurrence:

The two non-neural baselines are the word co-occurrence model that has been in-
troduced before (see Section 4.7) and the Magellan framework. Both methods
are optimized using random search over parameter grids for the following clas-
sifiers: Logistic Regression, LinearSVC, DecisionTree, Random Forest, and XG-
Boost. After finding the best hyperparameter settings and the best classification
algorithm on the validation set, the best model configuration is trained three times
and the average is reported. For the datasets Abt-Buy, DBLP-Scholar, and Com-
pany, the results of the Magellan experiments from the Deepmatcher paper are
reported [Mudgal et al., 2018].

7.4.3 Results and Discussion

Table 7.3 shows the F1 results of the experiments across all models and datasets.
On the WDC LSPM datasets and the large and xlarge training sizes, the JointBERT
model performs best and can improve on single-objective BERT by 1% to 10%
F1 depending on the dataset. The improvement range over RoBERTa and Ditto
is smaller with a range of 1% to 5% over Ditto apart from the watches xlarge
training set, where both perform equally well. Using the multi-class objective in
addition to binary classification results in a high matching performance of >95%

4https://fasttext.cc/docs/en/pretrained-vectors.html

https://fasttext.cc/docs/en/pretrained-vectors.html
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F1 in all categories for the large and xlarge WDC training sets. For the medium
and small WDC training sets, JointBERT is outperformed by BERT, RoBERTa and
Ditto. The performance loss to single-objective BERT is up to 3% F1 and up to
6% for Ditto for these training sizes. This is due to the overall smaller amount of
training data combined with the smaller amount of unique entity descriptions per
product, resulting in no longer fulfilling requirement two from Section 7.3, which
turns the multi-class training objective to affect the performance negatively instead.
All BERT-based models consistently beat the baseline methods and Deepmatcher
on all training set sizes and categories for the WDC datasets. The differences
are most pronounced for smaller training set sizes, making BERT-based models
highly training data efficient compared to Deepmatcher, Magellan, and the word
co-occurrence baseline.

Table 7.3: F1 results on the test sets for each dataset.

Testset Training Set Word Co-oc Magellan Deepmatcher BERT RoBERTa Ditto JointBERT

LSPM computers

xlarge 82.39 63.16 88.95 94.57 94.73 96.53 97.49
large 81.23 64.56 84.32 92.11 94.68 93.81 96.90
medium 70.94 61.59 69.85 89.31 91.90 88.97 88.82
small 62.69 57.60 61.22 80.46 86.37 81.52 77.55

LSPM cameras

xlarge 73.33 51.70 84.88 91.42 94.39 94.74 98.02
large 76.24 54.49 82.16 91.02 93.91 94.41 96.51
medium 69.89 54.99 69.34 87.02 90.20 87.97 87.91
small 64.86 52.78 59.65 77.47 85.74 78.67 78.30

LSPM watches

xlarge 79.78 56.04 88.34 95.76 94.87 97.05 97.09
large 79.64 60.59 86.03 95.23 93.93 97.17 98.46
medium 69.54 66.62 67.92 89.00 92.28 89.16 87.46
small 63.49 59.73 54.97 78.73 87.16 81.32 75.83

LSPM shoes

xlarge 70.38 61.45 86.74 87.44 88.88 93.28 97.88
large 71.18 60.48 83.17 87.37 86.60 90.07 95.16
medium 72.43 59.80 74.40 79.82 81.12 83.20 82.61
small 63.65 58.57 64.71 74.49 80.29 75.13 73.13

DI2KG monitor-seen default 83.59 21.79 77.41 96.22 96.65 86.51 97.82
DI2KG monitor-unseen default 21.24 16.02 33.93 91.49 93.26 73.52 82.86
DI2KG monitor-combined default 33.82 16.90 37.37 92.19 93.76 75.28 84.77

Abt-Buy default 36.30 43.60 62.80 84.64 91.05 82.11 83.44
DBLP-Scholar default 85.38 92.30 94.70 95.27 95.29 94.47 93.99
Company default 71.81 79.80 92.70 91.70 91.81 90.68 91.40

For the DI2KG monitor dataset, RoBERTa performs slightly better than BERT.
JointBERT achieves the best overall performance for the seen test set is achieved
by JointBERT which outperforms RoBERTa by nearly 1.5% F1. On the unseen
test set, BERT and RoBERTa lose around 3-5% performance while JointBERT
drops by 15% F1. As the DI2KG monitor dataset provides enough training data
for the multi-class objective (see last two columns of Table 7.1), the impact of this
objective on the final prediction is high. This circumstance leads to very good
results when predicting for seen entities and has a negative effect when predicting
for unseen entities.

For two of the three two-source datasets Abt-Buy, DBLP-Scholar and Com-
pany, RoBERTa performs best, while Ditto and BERT perform slightly worse. On
Abt-Buy, RoBERTa outperforms BERT by 6% F1. JointBERT results are up to 1%
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F1 worse than BERT, due to the limited number of diverse entity descriptions per
entity in these datasets.

In conclusion, if training data is limited and JointBERT’s second requirement
of multiple entity descriptions for many entities is not fulfilled, then using single-
objective training and a robust model like RoBERTa, which has been pre-trained on
large amounts of textual data, including web pages, leads to higher performance,
especially for unseen entities. If more training data for both objectives is available
and the task mainly contains seen entities, then JointBERT consistently outper-
forms RoBERTa. The results presented for JointBERT achieved state-of-the-art
results on the WDC LSPM benchmark at the time of this contribution.

7.4.4 Challenge-specific Analysis

As the JointBERT method performs best with many available training examples,
in addition to previous experiments, the strong performance of JointBERT is fur-
ther analyzed when trained using large amounts of training data by evaluating all
models, trained with the computers xlarge training set on the MWPD test set of the
WDC LSPM benchmark.

Table 7.4 provides statistics on the amounts of matches and non-matches for
each challenge and reports the performance of all matchers, trained using the
computers-xlarge training set, for the specific matching challenges of the MWPD
test set. For the two challenges that involve unseen products, BERT and RoBERTa
perform the best (within 1.5% F1 of each other), with around 84% F1 for unseen
products similar to seen products and around 77% F1 for those that are less similar
to seen products. JointBERT’s performance for unseen products is the worst among
all BERT-based models, as the multi-class objective steers the model towards rec-
ognizing a specific set of entities and reduces its ability to generalize to unseen
entities. This is the same effect that was already observed on the monitor-unseen
test set in the previous section.

Table 7.4: F1 Results for the specific matching challenges of the MWPD test set.

Matching Challenge # Match # Non-Match Word Co-oc Magellan Deepmatcher BERT RoBERTa Ditto JointBERT

Unseen - high similarity 25 75 48.00 27.89 58.64 84.53 83.18 69.97 59.92
Unseen - low similarity 25 75 11.43 59.04 58.78 76.92 77.72 65.78 58.91
Seen - introduced typos 100 0 54.01 19.79 60.76 71.21 85.49 83.49 89.08
Seen - dropped tokens 100 0 78.79 50.35 71.75 87.62 89.88 90.28 93.23
Seen - very hard cases 25 75 61.22 11.00 74.53 89.04 88.51 94.12 95.55
Mix of corner cases 250 750 77.93 58.48 79.90 84.08 86.32 85.30 84.24

Full MWPD test set 525 975 69.65 48.23 71.53 82.58 86.20 83.96 83.35

When looking at the challenges involving seen products, which have typo-
graphical errors in important words or in which words are dropped entirely, Joint-
BERT outperforms all other models by at least 3% F1. The robustness to such
challenges thus stems from the additional multi-class objective that supports the
binary decision, as the direct similarity comparison of the two strings in a purely
binary pair-wise setting becomes harder due to typos or dropped words.
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The third challenge for seen products consists of especially hard offer pairs.
This challenge set consists of highly similar negatives and dissimilar positives.
JointBERT performs best on this challenge and can outperform BERT by 6.5% F1,
highlighting the utility of the dual-objective training approach for seen products.

Finally, the last set contains a mix of hard offer pairs for seen products and
some unseen products and constitutes the bulk of the MWPD test set. All BERT-
based models perform comparably here with around 85% F1 except RoBERTa,
which has a slightly higher performance of 86.5% F1. Overall, RoBERTa proves
to be the most robust of all models, even though it does not excel over other models
at any particular challenge and as a result performs the best overall on the full set.

7.5 Conclusion

This chapter contributed the JointBERT method for dual-objective fine-tuning of
Transformers to the field of supervised entity matching. The method is trained
for the classic binary matching objective using record pairs (similar to Ditto [Li
et al., 2020]) and a second matching objective that leverages available information
about entity groups found in the training set, for example, product identifiers for
the product matching domain.

The experiments demonstrated that jointly training BERT for binary and multi-
class entity matching outperforms state-of-the-art matching models like Ditto that
were trained using only the binary objective by 1% to 5% F1 for seen entities given
that sufficient amounts of training data for both objectives are available. This joint
training method is applicable to any entity matching scenario in which entity iden-
tifiers are available for a subset of entity descriptions to be matched. An example
of such a scenario are price portals that maintain a product catalog and have to
match incoming product offers to it.

The analysis of specific matching challenges in Section 7.4.4 illustrated that
JointBERT outperforms the other models on challenges involving seen products
by at least 1.5% F1, given that enough training data is available. As a downside,
JointBERT underperforms on unseen products in comparison to Ditto, BERT, and
RoBERTa, as the multi-class objective biases the model towards recognizing seen
entities. JointBERT should be considered for use cases involving seen entities and
enough labels for both objectives, while single-objective Transformers are more
suited for unseen entities and use cases involving small amounts of training data.

Compared to the work released after the contribution of JointBERT (see Sec-
tion 7.2), EMBA [Zhang et al., 2024b] is a direct refinement of the dual-objective
training approach of JointBERT that, instead of using just the [CLS] token, uses
all token representations and an additional attention module to reach a matching
decision. The authors were able to further improve the results of the dual-objective
method as they directly compare with the original JointBERT in their experiments.

FlexER [Genossar et al., 2023] added looser matching intents to the strict en-
tity matching definition to jointly train for all objectives, resulting in improvements
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over the Ditto baseline. As the authors restructured the WDC LSPM benchmark
and used a different splitting, the JointBERT requirements may no longer be ful-
filled in their version of the LSPM benchmark, making the comparison difficult.
Furthermore, the FlexER model is not directly applicable to the existing entity
matching benchmarks as they do not offer the required multi-intent information.

The Unicorn model [Fan et al., 2024a], instead of having multiple objectives,
uses multiple matching tasks in their training set to learn a model that projects
matching and non-matching pairs of the respective task into a combined embedding
space, where pair representations are aligned by a mixture-of-experts and finally
passed to a binary classifier. Although their results showed good improvements for
many of the tasks considered, the improvements in entity matching are marginal
compared to Ditto, mostly < 1% F1. The comparison to JointBERT proves diffi-
cult as all their chosen benchmarks do not fulfill JointBERTs requirements to have
groups of entity descriptions in the training data. Both methods, FlexER and Uni-
corn, could be combined with the dual-objective method of JointBERT in future
work which may lead to further improvements.
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Chapter 8

R-SupCon: Supervised
Contrastive Learning for Entity
Matching

8.1 Introduction

Contrastive learning [Chopra et al., 2005] is a form of metric learning [Kaya and
Bilge, 2019] with the goal of separating dissimilar instances while grouping simi-
lar instances in the embedding space. The contrastive learning approach has seen
success in the area of information retrieval [Gao et al., 2021] and computer vi-
sion [Chen et al., 2020, Khosla et al., 2020], where recent approaches [Khosla
et al., 2020] can outperform methods based solely on cross-entropy learning.

This chapter contributes R-SupCon, a method that leverages supervised con-
trastive learning, to the field of supervised entity matching. The JointBERT method
presented in Chapter 7 uses information on entity groups in the training data by
predicting entity group identifiers together with the binary match or non-match de-
cision during training. The R-SupCon method presented in this chapter follows the
same idea of incorporating entity group information during training, but instead of
using the entity group information jointly together with the pair-wise matching dur-
ing fine-tuning as a dual-objective method, R-SupCon first performs a contrastive
pre-training step adapting all layers of the Transformer encoder with a supervised
contrastive loss that makes use of entity group information. After this pre-training
step, the encoder parameters are frozen, and a single tunable classification layer is
added that is fine-tuned with cross-entropy loss for the binary matching objective.

R-SupCon adopts a recent approach for supervised contrastive learning from
computer vision called SupCon [Khosla et al., 2020] for entity matching tasks in
which the development set contains identifiable groups of entity descriptions, for
example, using product identifiers such as GTINs. Similarly to JointBERT, the
approach relies on these groups of entity descriptions during training but does not
require information about these groups during inference, making it applicable also
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to any entity description pair without such identifiers.
This chapter further contributes a source-aware sampling strategy for creating

training batches for supervised contrastive pre-training, which can be applied to
datasets that do not contain explicit identifiers for entity groups but for which pairs
of labeled entity descriptions are available. This strategy samples training batches
in a way that avoids label-noise inside the training batch, which would harm the
learning process.

By combining the RoBERTa transformer encoder, supervised contrastive learn-
ing, and the source-aware sampling strategy, R-SupCon achieves new state-of-the-
art results on the WDC LSPM benchmark, as well as on Abt-Buy, Amazon-Google,
and the seen variants of the WDC Products benchmark. The code for replicating
the experiments is available on GitHub1.

The contributions of this chapter are:

• R-SupCon - Method for Supervised Contrastive Learning for Entity
Matching: R-Supcon, a method for entity matching leveraging supervised
contrastive learning based on the SupCon loss proposed in computer vision.
It consists of a contrastive pre-training stage followed by cross-entropy fine-
tuning of only the final layer. The method can achieve state-of-the-art results
on various benchmarks compared to previous state-of-the-art methods based
purely on cross-entropy fine-tuning.

• Source-Aware Sampling Strategy: A source-aware sampling strategy for
training batches that eliminates inter-source label-noise and enables con-
trastive pre-training also to be successfully applied to use cases without ex-
plicitly available identifiers by inferring them from available labeled pairs in
the development set.

• Evaluation of R-SupCon Compared to Previous Methods: R-SupCon is
experimentally compared with recent entity matching methods on a vari-
ety of datasets, including the multi-dimensional WDC Products benchmark,
showing that the method excels for seen entities and is especially useful in
low-resource scenarios compared to existing methods.

Section 8.2 presents related work on contrastive learning and its application to
entity matching. Section 8.3 presents the R-SupCon method and its architecture.
Section 8.4 presents the experiments on various benchmarks and discusses the re-
sults compared to the existing methods. Finally, Section 8.5 summarizes the results
and findings of this chapter.

The work presented in this chapter has previously been published in [Peeters
and Bizer, 2022b].

1https://github.com/wbsg-uni-mannheim/contrastive-product-matching

https://github.com/wbsg-uni-mannheim/contrastive-product-matching
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8.2 Related Work

This section gives an introduction to related work for contrastive learning and its
application to data integration tasks, specifically entity matching.

Contrastive Learning

Contrastive learning is a form of metric learning with the goal of clustering similar
examples in a vector space while pushing dissimilar examples apart [Jaiswal et al.,
2020]. Contrastive learning has a strong foundation in self-supervised learning
approaches as it is often used in conjunction with data augmentation to generate
positive examples, e.g., in the field of computer vision [Jaiswal et al., 2020]. A
well known example of an early loss function for contrastive learning is the triplet
loss [Schroff et al., 2015], consisting of triplets of an anchor example together with
a positive and a negative example for that anchor. During training, the embedding
space over all anchors is learned in a way that the distance between anchor and pos-
itive is minimized while the distance between anchor and negative is maximized.

Subsequent work on contrastive losses extended this approach by including
more positives or negatives per anchor or both [Chen et al., 2020, Gao et al.,
2021, Khosla et al., 2020], often by using matrix multiplication inside training
batches to automatically build large amounts of negatives, reducing the need for
explicit preparation of anchor/negative/positive pairs as in earlier work [Schroff
et al., 2015]. The Sentence-BERT [Reimers and Gurevych, 2019] variants of the
BERT transformer are examples of an encoder architecture trained with contrastive
losses. Recent work in entity linking also applied self-supervised contrastive losses
for learning embedding spaces that cluster similar entities [Wang et al., 2022b].

One of the drawbacks of self-supervised contrastive training is the reliance
on augmentation methods to produce interesting positives and the possibility of
treating actual positive examples as negatives during batch-based pair induction
processes (see results in Section 8.4.3). To avoid the latter, explicit pair-building
or special sampling strategies can be applied. If labeled positive examples are
available, the former can be replaced by using actual positive examples from the
respective domain, which are likely to be more representative of the distribution
than augmented examples. Labeled and augmented examples can also be combined
for further improved results as shown in Section 8.4.3.

A contrastive loss that incorporates available label information is the super-
vised contrastive loss SupCon [Khosla et al., 2020] proposed in computer vision.
The authors show that this loss in combination with the standard data augmentation
techniques from the computer vision domain leads to higher performance in im-
age classification tasks compared to self-supervised and supervised cross-entropy
losses. The method presented in this chapter adapts the SupCon loss for entity
matching. Another version of a supervised contrastive loss, SCL [Gunel et al.,
2020], was proposed in the area of natural language processing.
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Contrastive Learning for Entity Matching

In the area of data integration, Brinkmann et al. [Brinkmann et al., 2024] recently
proposed SC-Block, a blocking method for entity matching that is based on the
adapted SupCon loss presented in this chapter. The authors combine a contrastive
training stage using labeled data to learn an embedding space that clusters similar
records together with a nearest neighbor search to create candidate pairs to be in-
put to a subsequent entity matching method. They show that the entity matching
pipelines run between 1.5 to 4 times faster with supervised contrastive blocking
compared to state-of-the-art methods [Brinkmann et al., 2024].

State-of-the-art entity matching models like Ditto [Li et al., 2020] or Hier-
GAT [Yao et al., 2022] are trained with cross-entropy losses, while contrastive
learning has only recently become a focus of research interest [Peeters and Bizer,
2022b, Bai et al., 2023, Wang et al., 2023] for deep entity matching methods. To
the best of the authors’ knowledge, the method presented in this chapter is the
first to apply contrastive learning to the entity matching problem. The following
paragraphs list relevant work that was published after the method presented in this
chapter.

Bai et al. [Bai et al., 2023] apply contrastive learning to learn a general embed-
ding space using multiple entity matching datasets at the same time. Their work
is focused on aligning differences in matching patterns across different product
matching datasets to one single embedding space that performs well on all datasets
and can be further fine-tuned for a specific dataset. Their contrastive loss is a su-
pervised contrastive loss using the labels of positive pairs to generate positives for
an anchor in a batch and using the negative batch sampling strategy for negative
examples [Chen et al., 2020]. This supervised contrastive loss is highly similar to
the adapted SupCon method presented in this chapter. Their results show that their
method can improve on Ditto on both in-domain and out-of-domain record pairs
after fine-tuning. Being in domain in their terminology means that record pairs
from the relevant benchmarks training sets were part of the contrastive training
stage.

Wang et al. [Wang et al., 2023] present Sudowoodo which is a method using
self-supervised contrastive learning for multiple data integration tasks. They used
the SimCLR [Chen et al., 2020] loss in combination with data augmentation to per-
form contrastive pre-training and subsequently fine-tune using cross-entropy loss
using the learned representations for single records during pre-training. The au-
thors specifically investigate a low-resource setting with a budget of 500 available
labeled pairs for fine-tuning which is significantly smaller than the available la-
beled examples in the benchmarks they investigate. The authors further propose a
pseudo-labeling strategy to add additional, potentially noisy, labeled pairs for the
fine-tuning stage. For this, the authors use cosine similarity in conjunction with
the learned embedding representations from contrastive pre-training. Their results
show that in this low-resource setting, their method can achieve comparable or
better results than the Ditto and Deepmatcher baselines.
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8.3 Supervised Contrastive Learning for Entity Matching

The SupCon contrastive loss presented in [Khosla et al., 2020] uses all examples
in a batch to maximize the distances between an example and all of its negatives
in that batch, as well as minimize the distances between an example and all of
its positives. To achieve this, the method exploits label information about the
training examples in combination with augmenting single examples to derive ad-
ditional positive examples for learning. All examples in a batch that do not carry
the same label are treated as negatives. The SupCon loss can also be applied in a
self-supervised fashion if label information is not available by only generating pos-
itives for each example using data augmentation (this corresponds to the SimCLR
loss [Chen et al., 2020]). The original implementation of SupCon for computer
vision uses a set of N randomly sampled example/label pairs (e.g., a picture of
a dog and the label "dog") where each example is augmented twice using a ran-
dom function from a set of augmentation functions, creating final input batches of
2N examples. Using the assigned labels, the contrastive loss among all examples
of a batch can be calculated and iteratively optimized using gradient descent op-
timization. In comparison to SimCLR, the SupCon loss can also handle different
examples from the same class that did not originate from augmentation of the same
example. The experiments in Section 8.4.3 show that this property is essential for
the application of contrastive learning to the entity matching problem.

The SupCon loss is defined by [Khosla et al., 2020] as:
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where i P I ” 1...2N is the index of the anchor. τ P R` is the scalar tempera-
ture parameter and Apiq ” Izi. Further, P piq ” tp P Apiq : ỹp “ ỹiu is the set of
indices of all positives in the batch distinct from i.

The R-SupCon method for applying contrastive learning to entity matching
consists of two steps: (1) a contrastive pre-training step on batches of individual
entity descriptions using SupCon loss, followed by (2) a fine-tuning step using
matching and non-matching pairs of entity descriptions. The RoBERTa-base model
is used as the encoder architecture, which has been shown to achieve strong results
across different entity matching benchmark datasets and different training set sizes
in previous chapters.
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8.3.1 Stage 1: Contrastive Pre-Training

Labels for Contrastive Pre-Training

Supervised contrastive training assumes that all examples that refer to the same en-
tity share the same label, e.g. all pictures of dogs are labeled as "dog". The develop-
ment sets of some entity matching tasks include identifiers for entity groups, such
as GTIN or MPN numbers for products, which can directly be used as labels for
contrastive training. The training sets of other tasks do not provide explicit group
identifiers but only label a certain amount of entity description pairs from different
sources as matching or non-matching. For contrastive pre-training, explicit labels
on the entity level need to be obtained, so that matching entity descriptions share
the same label. To obtain such labels, R-SupCon uses the matching pairs from
the development set and builds a correspondence graph over all entity descriptions,
where the graph’s edges connect matching entity descriptions. A unique label can
then be assigned to each connected graph component so that matching entity de-
scriptions share the same label.

Source-aware Sampling Strategy

As often only a subset of matches between sources is known and labeled in the
development set, it is likely that actually matching entity descriptions will be as-
signed different labels during the process presented above. During the contrastive
pre-training stage, this will result in treating these as non-matching entity descrip-
tions if they appear in the same batch due to the different labels. This circumstance
severely deteriorates the quality of the learned representations as discussed in Sec-
tion 8.4.3. To alleviate this problem, a source-aware sampling strategy is applied
that allows the elimination of such inter-source label noise. Instead of generating
one combined dataset containing all entity descriptions and their labels from each
source, one dataset is generated per source, containing all entity descriptions from
that source as well as only those entity descriptions from other sources which share
a label with an entity descriptions from the current source, i.e. entity descriptions
that were originally labeled as a match. Figure 8.1 illustrates this procedure for a
matching task involving three sources.

Once a sampling dataset is built for every source using this procedure, entity
descriptions are sampled from only one of the sampling datasets into each batch.
For each batch, the dataset from which to sample is chosen at random. This pro-
cedure eliminates inter-source label noise during contrastive training, given that
the data sources themselves do not contain duplicates. If it is known beforehand
that inter-source label noise does not exist, e.g., when the selected entity descrip-
tions for contrastive training are already annotated with group identifiers, a single
sampling set containing all entities is sufficient. Note that this sampling strategy as-
sumes that the sources themselves are either deduplicated or duplicates are known.
Otherwise, a certain amount of label-noise may still exist inside each sampling
dataset.
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Figure 8.1: Sampling strategy for datasets with limited product identifier informa-
tion. Produces one sampling dataset per source containing all product offers of that
source as well as all known (connected) matching offers from other sources.

Batch Building Process

The method of the original SupCon paper [Khosla et al., 2020] for assembling each
batch is applied with modifications. First, N entity descriptions from a random one
of the sampling datasets are selected and the available group identifier information
is used to randomly select for each of these entity descriptions a matching entity
description from the dataset. The selection of the same entity description is ex-
plicitly allowed, even if other entity descriptions with the same label exist. The
final batch then consists of 2N offers where for each of the N offers at least one
offer having the same label is contained in the batch. In contrast to the original
SupCon paper, an additional projection head is not used on top of the encoder, but
the mean-pooled representation of the last encoder layer is directly taken and nor-
malized using L2 normalization to attain a vector representation for a single entity
description for contrastive training.

All entity descriptions in a batch are then propagated through the encoder net-
work to produce their vector representations, which are subsequently used to cal-
culate the SupCon loss and tune the encoder parameters minimizing/maximizing
distances between all matching/non-matching entity descriptions in the batch. As
batches are sampled differently across epochs, many distance comparisons across
all entity descriptions are performed over all training epochs, leading to good rep-
resentations in the learned vector space.
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Attribute Value Serialization

Entity descriptions are serialized by concatenating all their attributes while main-
taining attribute separation by inserting additional tokens. More specifically, a
single attribute is serialized as "[COL] column_name [VAL] actual_value". These
strings are then concatenated for all attributes of an entity description to build its
serialized input representation.

Data Augmentation

Applying data augmentations, such as deleting words, to entity descriptions can
easily distort entity descriptions to the extent that the assigned label is no longer
correct. For example, dropping the "4s" from the string "Apple iPhone 4s" would
make it impossible to assign the correct label with certainty. Even without such ex-
plicit data augmentation in the symbolic space, the usage of dropout noise during
training inherent to Transformer encoders can be regarded as soft data augmenta-
tion in the embedding space since two embeddings of the same product offer will
nearly never look exactly the same during training. As a result of this, even the se-
lection of the same entity description as a positive to itself can still have a positive
effect on training the Transformer.

In addition to using the default dropout noise, the following evaluation exper-
iments with applying explicit data augmentations to entity descriptions during the
pre-training stage. For this purpose, the nlpaug2 python package is used and 6
types of augmentations are selected: (1) simulating typos, (2) swapping words, (3)
deleting words, (4) deleting spans of words, (5) substituting words with synonyms,
and (6) randomly splitting words. For every selected entity description in a batch,
a random choice is made among all augmentations and the option of not augment-
ing at all. If an entity description is selected for augmentation, every word in that
entity description has a 10% chance to be augmented with the currently selected
augmentation method.

8.3.2 Stage 2: Cross-Entropy Fine-Tuning

For the fine-tuning step, a single dropout and linear layer are added on top of the
model, which returns a binary label, match, or non-match, for a pair of entity de-
scriptions. Both entity descriptions in a pair are propagated through the encoder,
and their mean-pooled representations are combined as input to the final classifi-
cation layer as follows: Given the two embedding representations u and v, they
are combined as: pu, v, |u ´ v|, u ˚ vq. The model is trained using binary cross-
entropy loss. The parameters of the encoder layers can either be frozen or further
tuned during the fine-tuning step, while the parameters of the classification layer
are always tuned.

2https://github.com/makcedward/nlpaug

https://github.com/makcedward/nlpaug
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8.4 Method Evaluation

In the first set of experiments, R-SupCon is evaluated on three benchmark datasets
from the product matching domain: Abt-Buy, Amazon-Google and the WDC LSPM
computers category. Abt-Buy and Amazon-Google represent the use case of match-
ing product offers from two deduplicated sources. The offers in both datasets do
not contain product identifiers. The WDC LSPM dataset, on the other hand, repre-
sents a multi-source matching task. The WDC LSPM training and validation sets
feature product identifiers for all offers.

In the second set of experiments, R-SupCon is applied to the various variants
of the WDC Products benchmark to analyze the models performance on the three
dimension of the benchmark. R-SupCon is compared with the following baselines
on WDC Products: the word (co-)occurrence baseline, Magellan [Konda et al.,
2016], Ditto [Li et al., 2020], RoBERTa-base [Liu et al., 2019b] and HierGAT [Yao
et al., 2022]. In addition to the pair-wise variant of the benchmark, R-SupCon is
also applied to the multi-class version and compared to the relevant baselines.

The R-SupCon model is implemented using the Huggingface transformers li-
brary3. For contrastive pre-training, the batch size is set to 1024. The temperature
parameter is left at its default value of 0.07 and the model is trained using the
Adam optimizer for 200 epochs with a linearly decaying learning rate of 5e-05
with a 0.05 warm-up ratio. For the fine-tuning step, the batch size is set to 64 and
the model trained for up to 50 epochs using early stopping if validation loss does
not improve for 10 consecutive epochs. Each model is trained three times and the
average results are reported.

8.4.1 Datasets

Abt-Buy/Amazon-Google

All available attributes are used for training and evaluation for the two-source
datasets Abt-Buy and Amazon-Google. Both benchmarks do not contain prod-
uct identifiers for individual product offers. Only labeled positive and negative
offer pairs are available. The method described in Section 8.3.1 is applied together
with the source-aware sampling strategy to generate identifiers for contrastive pre-
training. The selection of pairs to use for building the correspondence graph is
done only on the training and validation splits of the pairwise datasets. In an effort
to introduce a regularization effect, only 80% of matching pairs from the training
and validation splits are used to perform this calculation. Due to the low number
of training offers per product in the two-source matching case, the model is more
prone to overfit to the few known matching offers, reducing performance for prod-
ucts where no matching offers have been seen during contrastive pre-training. By
withholding known matching information for 20% of offer pairs, the model can
later use these during the fine-tuning stage to better adapt to such cases.

3https://github.com/huggingface/transformers
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WDC LSPM

The training, validation, and test sets from the computers category of WDC LSPM,
as introduced in Section 4.6, are used in these experiments. In addition to the
pair labels, the product offers are further annotated with product identifiers, which
identify offers for the same products from different sources. These were previously
used to build the benchmark from Schema.org annotations in the Common Crawl
as described in Chapter 4. The source-aware sampling strategy is not necessary
in this case, as the product identifiers can be directly used as labels for contrastive
pre-training and the pair-wise labels for the fine-tuning step. All product offers that
are part of the training and validation sets are used for contrastive pre-training. The
attributes used are title, description, brand, and specTableContent.

WDC Products

The WDC Products benchmark is used in its entirety, allowing for the evaluation
along its dimensions as introduced in Section 5.3. This benchmark is annotated
with product identifiers which also originate from Schema.org annotation in the
Common Crawl. Source-aware sampling is not necessary for this benchmark. All
product offers that are part of the training and validation sets are used for con-
trastive pre-training. The full range of available attributes, title, description, brand,
price and priceCurrency, is selected for the experiments.

8.4.2 Models and Baselines

Word (Co-)Occurrence

The Word co-occurrence model represents the same simple symbolic baseline for
pair-wise matching used in the previous chapters of this thesis. It uses the binary
word co-occurrence between two entity descriptions in a pair as feature input to a
binary LinearSVM sklearn [Pedregosa et al., 2011] classifier. For the multi-class
matching case in WDC Products, the method is slightly adapted, as the feature
input is no longer a representation of a pair of offers but a single product offer to
classify. A binary word occurrence vector instead of word co-occurrence is used
as a result. During training, a grid search is performed on a set of combinations of
parameters.

Magellan

Magellan [Konda et al., 2016] is the second symbolic baseline. Magellan se-
lects appropriate similarity metrics for each attribute depending on the attribute
datatype. The resulting attribute-specific similarity scores are inputted to a sklearn
binary Random Forest classifier, which determines the matching decision. Sim-
ilarly to the previous baseline, the model parameters are optimized using a grid
search.
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Deepmatcher

For the Deepmatcher models the RNN variant of the models is used, which has
been proven to work well for the task as discussed in Section 4.7. The parameter
settings correspond to those presented in that section.

RoBERTa

The RoBERTa-base [Liu et al., 2019b] model is a sub-symbolic baseline represent-
ing a Transformer-based language model which has been shown to reach high per-
formance on the entity matching task (see Section 7.4 and [Li et al., 2020, Peeters
and Bizer, 2021]). The RoBERTa model is fine-tuned for pair-wise and multi-class
matching for 50 epochs, with early stopping after 10 epochs if the validation score
does not improve. The batch size is set to 64, and the learning rate linearly de-
creases with warm-up, with a maximum value of 5e-5.

Ditto

For Ditto [Li et al., 2020] the experiments use a RoBERTa-base language model
with the activated data augmentation module, specifically the delete operator. The
Ditto model is fine-tuned for 50 epochs with a batch size of 64 and a learning rate
of 5e-5 on a linearly decreasing schedule with warm-up.

JointBERT

The JointBERT model as introduced in Chapter 7. The parameter settings for each
dataset correspond to those presented in that chapter.

HierGAT

The HierGAT [Yao et al., 2022] model combines the attention mechanism of the
Transformer language model and a hierarchical graph attention network. The Hier-
GAT model is trained for 50 epochs with a batch size of 16 and a linearly decreasing
learning rate of 5e-6 with warmup.

8.4.3 Results and Discussion

Abt-Buy, Amazon-Google, WDC LSPM Results

The first set of experiments compares R-SupCon to the neural entity matching sys-
tems Ditto [Li et al., 2020], JointBERT [Peeters and Bizer, 2021], Deepmatcher [Mud-
gal et al., 2018] and RoBERTa [Liu et al., 2019b]. Two versions of contrastively
pre-trained RoBERTa models are evaluated: (1) R-SupCon using supervised Sup-
Con loss, and (2) R-SimCLR using self-supervision only, corresponding to Sim-
CLR loss [Chen et al., 2020]. For R-SimCLR, each product offer is assigned a
unique identifier, and a match for each offer is only sampled by augmenting the
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Table 8.1: F1-score results on the test sets for each dataset and training size. (F)
and (UF) signify frozen and unfrozen encoder parameters during fine-tuning. For
Abt-Buy and Amazon-Google results in brackets signify not reducing label-noise
by separately sampling from both data sources. Results with * are taken from [Li
et al., 2020].

Abt-Buy Amazon-Google LSPM Computers

# Training
Pairs

„7.5K „9K
„3K

(small)
„8K

(medium)
„23K
(large)

„68K
(xlarge)

Deepmatcher 62.80* 70.70* 61.22 69.85 84.32 88.95
RoBERTa 91.05 74.10* 86.37 91.90 94.68 94.73
Ditto 89.33* 75.58* 80.76* 88.62* 91.70* 95.45*
JointBERT - - 77.55 88.82 96.90 97.49

R-SupCon(F) 93.70(38.24) 79.28(42.44) 93.18 97.66 98.16 98.33
R-SupCon(F)+aug 94.29 76.14 95.21 98.50 98.50 98.33
R-SupCon(UF) 79.99(71.47) 71.81(61.06) 79.52 87.32 94.59 96.16
R-SupCon(UF)+aug 77.84 68.37 80.69 89.12 94.56 96.13

R-SimCLR(F) 56.63 56.16 53.98 55.25 58.97 60.66
R-SimCLR(F)+aug 53.67 54.29 53.36 54.97 58.34 62.19
R-SimCLR(UF) 79.99 64.87 65.75 82.72 92.20 95.25
R-SimCLR(UF)+aug 79.28 63.71 66.73 82.24 91.89 95.75

∆ to best baseline +3.24 +3.7 +8.84 +6.6 +1.6 +0.84

same offer either via implicit dropout noise or explicit data augmentation. Ta-
ble 8.1 shows the results of applying contrastive pre-training compared to the four
baseline systems.

For the two-source datasets Abt-Buy and Amazon-Google, applying contrastive
pre-training results in an improvement of 3.2-3.7% F1 compared to the respective
strongest baseline model. Results are reported for two sampling strategies for con-
trastive learning, one containing all offers from all sources in the sampling set
leading to label-noise for these dataset (see Section 8.4.1), and the other using
the source-aware sampling strategy with separated sampling datasets to eliminate
label-noise. The experiments show that it is important to apply the source-aware
sampling for supervised contrastive learning for such cases: For Abt-Buy and
Amazon-Google, performance drops by 55% and 37% F1, respectively, without
the source-aware sampling strategy. All contrastively pre-trained RoBERTa mod-
els outperform the baselines by 0.8-8.8% F1 for the WDC LSPM dataset. Adding
contrastive pre-training can improve the best baseline results for small and medium
training sizes by 8.8% and 6.6% F1, respectively. Improvements on large and
xlarge are visible but comparably small in the range of 0.8% to 1.8% F1. Freezing
the encoder parameters after the contrastive pre-training step leads to higher per-
formance on all datasets compared to further updating them during the fine-tuning
step.

Applying augmentation during the contrastive pre-training phase delivers mixed
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results across datasets. For the smaller WDC training sets, there is an improvement
of 1-2% F1 but only minimal improvements on the larger training sets and on Abt-
Buy, while Amazon-Google sees a 4% drop in performance when augmentation is
applied.

Using only self-supervision during contrastive pre-training leads to worse re-
sults compared to not pre-training at all. The label-noise inherent to self-supervised
SimCLR due to only regarding an augmented version of the same offer as matching
and treating all others as non-matching, even if they do actually match, is likely the
cause of the large drop in performance.

In summary, supervised contrastive pre-training can further improve the per-
formance of matching systems compared to direct cross-entropy fine-tuning, with
the caveat that label-noise must be minimized during supervised contrastive pre-
training as otherwise the performance of the matchers is negatively impacted as en-
tity descriptions belonging to the same real-world entity will be pushed apart. Us-
ing SupCon loss and an appropriate sampling strategy for the two-source datasets
to reduce label-noise can improve on all benchmark datasets by 1-9% F1, setting a
new state-of-the-art for all of them at the time of contribution.

Compared to JointBERT, which had the requirement of multiple available en-
tity descriptions for each entity group to perform well, the R-SupCon method is
also feasible on smaller training set sizes and when only a small amount of entity
descriptions are available in each entity group. The next sections further compare
the strengths and weaknesses of R-SupCon to baseline methods along the dimen-
sions of the WDC Products benchmark.

WDC Products Pairwise Benchmark Results

Table 8.2 summarizes the F1-score results of the experiments for the pair-wise
matching tasks along all three dimensions of the WDC Products benchmark: amount
of corner cases, amount of unseen entities in the test set, and development set size.
See Section 5.3 for a detailed description of the dimensions and the benchmark.
Table 8.3 shows the corresponding precision and recall values of the four neural
matching systems. Figures 8.2, 8.3, and 8.4 visualize the results along the three
dimensions.

Dimension Corner Cases: Figure 8.2 fixes the development set size to medium
and unseen products to 0% while varying the amount of corner cases. Increasing
the amount of corner cases causes all methods to lose performance while not chang-
ing the ranking of the methods. The overall drop in performance is similar for all
models, suggesting that no model is much better suited for handling corner cases.
The absolute F1 values for the variants of the benchmark containing 80% corner
cases for the top-performing systems R-SupCon, Ditto, and RoBERTa all lie be-
tween 72.18 and 79.99. Varying the amount of corner cases negatively impacts the
precision of matchers more than it does recall. The matching systems mistake very
similar negatives as positives which is in line with the increased amount of these
cases along this dimension.
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Figure 8.2: Varying corner-case ratio combined with no unseen entities in the test
set and development set size medium.

Figure 8.3: Varying fraction of unseen products in the test set combined with 50%
corner-cases and development set size medium.

Figure 8.4: Varying development set sizes combined with 50% corner-cases and
no unseen entities in the test set.



Table 8.2: Results of the pair-wise experiments over all three dimensions, amount of corner-cases, amount of unseen products in the
test set, and development set size. Results are F1 scores for the class match. Bold results indicate the best F1 score for that benchmark
variant, underlined indicates second best.

Development
Set Size

Corner Cases Word-Cooc Magellan RoBERTa Ditto HierGAT R-SupCon

Seen Half-Seen Unseen Seen Half-Seen Unseen Seen Half-Seen Unseen Seen Half-Seen Unseen Seen Half-Seen Unseen Seen Half-Seen Unseen

Small
80%

43.73 40.07 27.46 31.15 33.75 33.34 65.45 66.68 64.50 58.33 58.97 57.16 59.65 61.54 60.63 77.48 64.25 51.91
Medium 52.66 44.06 30.57 30.55 35.00 33.47 72.18 72.05 70.13 74.07 72.78 69.49 71.40 67.64 67.45 79.99 67.21 53.10
Large 56.67 50.24 30.26 31.96 36.42 34.95 78.15 75.52 69.75 79.46 68.81 67.94 75.42 73.20 68.53 82.15 67.27 53.31

Small
50%

48.10 40.23 29.44 31.38 32.44 33.34 68.69 69.18 65.79 70.19 65.40 61.84 61.70 60.74 59.21 78.43 68.24 57.44
Medium 58.07 46.04 29.70 35.83 37.45 36.61 78.58 75.91 71.14 79.16 75.22 70.24 75.17 73.30 68.74 81.88 68.69 57.23
Large 60.39 51.15 31.64 35.41 37.39 38.51 82.46 78.89 71.52 83.88 79.36 69.36 81.47 76.98 71.34 85.16 71.15 57.68

Small
20%

46.55 45.30 33.30 34.17 37.50 35.18 75.24 75.87 72.44 73.96 75.36 72.62 64.34 64.62 68.25 85.06 73.09 64.56
Medium 58.04 51.33 34.38 36.90 40.68 37.10 83.68 80.60 78.35 83.43 78.40 76.33 79.53 77.60 74.84 87.46 73.17 63.52
Large 61.81 54.26 35.83 37.58 41.57 37.23 87.80 82.17 78.64 87.52 82.81 77.92 84.15 79.54 75.53 89.04 74.59 62.45

Table 8.3: Precision and recall values for the neural matching systems.

Development
Set Size

Corner Cases RoBERTa Ditto HierGAT R-SupCon

Seen Half-Seen Unseen Seen Half-Seen Unseen Seen Half-Seen Unseen Seen Half-Seen Unseen

P R P R P R P R P R P R P R P R P R P R P R P R

Small
80%

55.84 79.07 57.06 80.27 54.20 79.80 46.28 79.33 46.28 83.13 43.93 83.60 49.20 76.27 51.06 77.53 48.92 80.13 71.19 85.00 55.87 75.60 40.14 73.47
Medium 66.61 79.07 65.60 80.47 61.92 81.40 70.97 77.53 67.10 79.53 60.76 81.47 68.68 74.40 61.08 75.93 59.82 77.47 76.18 84.20 60.08 76.27 41.73 73.00
Large 73.82 83.07 69.73 82.53 61.93 80.27 77.09 81.33 63.81 74.80 59.67 78.93 71.42 80.00 67.27 80.47 60.96 78.60 79.09 85.47 59.89 76.73 42.32 72.00

Small
50%

60.35 79.93 58.77 84.33 56.00 80.00 62.43 80.20 54.06 83.20 50.15 82.20 51.83 76.67 47.39 84.60 45.83 83.73 73.56 84.00 57.00 85.00 45.83 76.93
Medium 76.02 81.33 67.92 86.07 62.61 82.40 75.99 82.87 65.28 88.87 60.74 83.33 74.72 75.80 65.32 83.73 59.10 82.40 79.04 84.93 57.58 85.13 45.70 76.53
Large 83.20 81.80 71.89 87.53 63.26 82.40 84.29 83.53 72.21 88.13 59.25 83.67 80.49 87.47 68.60 87.73 62.01 84.00 84.08 86.27 59.81 87.80 47.07 74.47

Small
20%

71.72 79.47 69.60 83.53 63.66 84.13 67.13 82.87 68.02 84.80 63.55 85.13 56.10 76.60 54.95 79.33 58.86 81.33 83.09 87.13 63.60 85.93 53.59 81.20
Medium 83.43 83.93 75.12 87.00 70.63 88.00 83.10 83.80 71.70 86.53 68.54 86.13 77.26 81.93 71.66 84.67 66.95 84.87 87.05 87.87 63.57 86.20 52.96 79.33
Large 87.81 87.80 75.53 90.13 70.51 88.93 89.93 85.27 78.59 87.53 72.34 84.47 81.17 87.40 71.35 89.93 66.49 87.47 88.69 89.40 64.80 87.87 51.13 80.20
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Dimension Seen/Unseen Figure 8.3 shows the performance of all methods in
test sets that contain only seen, a mix of unseen and seen, as well as only unseen
products while fixing the corner case dimension to 50% and development set size
to medium. All methods show a significant drop in performance compared to com-
pletely seen data, but specifically R-SupCon, which performs best on seen data,
experiences a large drop of 25%. However, all deep learning-based approaches
outperform symbolic baselines even for unseen products. These same findings are
visible on the remaining corner case and development size sets. The unseen di-
mension negatively impacts the precision of all matchers significantly while recall
increases, only R-SupCon experiences drops in performance on both measures, ex-
plaining the observed large drop in F1. The contrastive pre-training thus severely
limits the generalization ability of the method as the created clusters in the vector
space are not helpful for correctly disambiguating unseen products.

Dimension Development Set Size Figure 8.4 shows the results for the devel-
opment set size dimension while fixing the corner cases to 50% and the unseen
products to 0%. The results show that most methods struggle with the small devel-
opment set apart from R-SupCon which can achieve an F1 of over 78%. This gap
closes significantly with the medium development set for deep learning methods.
Deep learning-based methods outperform symbolic baselines for pair-wise match-
ing, even with the smallest development sets. Regarding the precision and recall
measures, an increased size of the development set translates into improvements
for both measures on all systems, although the increases in precision are more
pronounced, suggesting that the additional development data helps the models to
predict negative corner cases better.

WDC Products Multi-class Benchmark Results

Table 8.4 shows the results of the multi-class matching experiment. R-SupCon
performs significantly better than the other two baselines for multi-class match-
ing. The simple symbolic word occurrence baseline is able to beat the fine-tuned
RoBERTa model for small- and medium-size datasets for multi-class matching, an
effect that was not observed for the pair-wise variant. The comparison of the multi-
class RoBERTa model to its pairwise counterpart shows that both methods achieve
similar results given the large development size, but the multi-class model is not
able to achieve the same results for the smaller sizes, showing that for a multi-class
formulation, fine-tuning a transformer model requires a minimum amount of three
to four offers per class to achieve good results. Finally, R-SupCon reaches 3-6%
higher total F1s than its pair-wise counterpart even for smaller development set
sizes, suggesting that this method is especially well suited for a multi-class match-
ing scenario with the goal of recognizing a set of known products. The multi-
class experiments further underline the usefulness of the two versions of the WDC
Products benchmark for pair-wise and multi-class matching, as the performance of
tested methods can be different depending on the entity matching formulation, as
the experiments show.
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Table 8.4: Results for multi-class matching over the dimensions development set
size and amount of corner-cases. Results are micro-F1.

Development
Set Size

Corner-Cases Word-Occ RoBERTa R-SupCon

Small
80%

63.30 36.63 82.30
Medium 71.50 52.03 88.63
Large 79.40 78.77 89.33

Small
50%

68.60 40.83 85.23
Medium 76.10 61.33 89.80
Large 81.10 82.00 91.73

Small
20%

66.60 39.83 87.87
Medium 76.20 61.13 92.60
Large 81.30 83.37 93.03

8.5 Conclusion

This chapter contributed R-SupCon, a method for supervised contrastive learning,
to the field of supervised entity matching. The method uses a supervised contrastive
pre-training stage which does not rely on record pairs directly but instead uses
entity group information in the training set, similar to JointBERT, to train on record
level, subsequently automatically generating a large amount of record pairings in
the training batches.

The experiments demonstrated that supervised contrastive pre-training followed
by cross-entropy fine-tuning can improve the performance of matchers compared to
only performing cross-entropy fine-tuning on multi-source and two-source bench-
mark tasks by 0.8-8.8% in F1-score, thereby setting a new state-of-the-art for the
Abt-Buy, Amazon-Google and WDC LSPM computers benchmarks at the time of
contribution. The evaluation using multiple training set sizes for the multi-source
benchmark WDC LSPM computers shows that the matching performance improve-
ment of R-SupCon is most pronounced for smaller training sets.

The proposed source-aware sampling strategy designed to reduce inter-source
label noise during contrastive pre-training is crucial for achieving good perfor-
mance on matching tasks without explicit entity group information in the training
set, e.g. available product identifiers. Label-noise is inherently harmful for the
matching task, as shown by using different sampling strategies for the two-source
datasets. When label-noise exists, the contrastive training stage pushes noise-
affected matching records apart or non-matching records closely together in the
embedding space, resulting in erroneous matching decisions during inference. The
application of data augmentation to the contrastive pre-training step showed that
this further increased performance for all but one of the used datasets, especially
for smaller training set sizes.

The comparison of R-SupCon on the dimensions of the WDC Products bench-
mark to methods purely trained using cross-entropy loss like Ditto [Li et al., 2020]
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and HierGAT [Yao et al., 2022] shows that R-SupCon achieves state-of-the-art per-
formance on the amount of corner case and development set size dimensions when
considering the fully seen scenario. R-SupCon is not suitable for scenarios involv-
ing unseen entities, as the matching performance of a RoBERTa model fine-tuned
with cross-entropy loss leads to better generalization in these scenarios.

Compared to the JointBERT method introduced in Chapter 7, both methods
make use of entity group information in the training set. JointBERT includes this
information as a second objective during fine-tuning while R-SupCon has two sep-
arate stages, using the entity group information during the pre-training stage and
subsequently fine-tuning only the last layer with cross-entropy loss. The compar-
ison of both systems in this chapter and the results from Section 7.4.4 show that
they face the same challenges in the unseen scenario, as the focus on a specific set
of entity groups reduces generalization performance to unseen entities compared
to pair-wise cross-entropy fine-tuning. While JointBERT requires multiple diverse
entity descriptions for each entity group to reach a good performance, R-SupCon
achieves a high performance despite only few available entity descriptions per en-
tity group, achieving higher performance than Ditto and HierGAT for the seen sce-
nario. This circumstance is likely due to the explicit learning of clusters of entity
descriptions referring to the same entity in the vector space while JointBERT learns
to incorporate information from the varied surface forms in each entity group. The
latter potentially requires more examples than explicit metric learning to achieve
the same level of performance. Testing this hypothesis is left to future work.

Compared to the DAEM system [Bai et al., 2023] by investigating the results
on the benchmarks on which both systems were evaluated, R-SupCon achieves
„5-10% higher F1 scores on the WDC LSPM computers benchmarks, as well as
„4.5% higher F1 on the Abt-Buy benchmark. The idea behind DAEM is to create
a general matching model during supervised contrastive pre-training using a vari-
ety of benchmarks and subsequently fine-tuning the model to a specific benchmark
domain. Various differences exist between both systems that may cause the differ-
ence in results, for example, DAEM does not freeze the encoder weights after the
pre-training stage. The system further does not include Abt-Buy as part of the pre-
training and finally the domain adaptation architecture and adversarial training of
the system, together with no source-aware sampling may further impact the result-
ing performance causing the overall lower performance compared to R-SupCon.

The Sudowoodoo [Wang et al., 2023] system applies unsupervised contrastive
loss and investigates a self-supervised low-resource setting resulting in 13% and
20% lower performance on Abt-Buy and Amazon-Google, respectively, compared
to R-SupCon. As Sudowoodoo does not use source-aware sampling nor entity
group information during contrastive training, the method does not achieve the
same performance as R-SupCon and a direct comparison of results is not possible
as both methods aim at different use-cases.



Chapter 9

Prompt Engineering and
Fine-tuning of Large Language
Models for Entity Matching

9.1 Introduction

The major drawbacks of recent PLM-based methods like Ditto [Li et al., 2020],
JointBERT, R-SupCon, and HierGAT [Yao et al., 2022] for entity matching are that
PLMs need a lot of task-specific training examples for fine-tuning and that they are
not very robust concerning unseen entities that were not part of the training data
(see Sections 7.4.4 and 8.4.3 and [Akbarian Rastaghi et al., 2022]).

Generative large language models [Zhao et al., 2023] such as GPT, Llama,
Gemini, and Mistral have the potential to address both of these shortcomings. Due
to being pre-trained on large amounts of textual data as well as due to emergent
effects resulting from the model size [Wei et al., 2022], LLMs often show a better
zero-shot performance compared to PLMs and are more robust concerning unseen
examples [Brown et al., 2020, Zhao et al., 2023].

This chapter contributes a comparison of the effectiveness of different prompt-
ing techniques and fine-tuning of LLMs to the field of entity matching. The results
show that LLMs are a less task-specific training data-dependent and more robust
alternative to PLM-based matchers. The models are evaluated in a zero-shot sce-
nario and a scenario where task-specific training data is available and can be used
to select demonstrations, generate matching rules, or fine-tune the LLM. The work
presented in this thesis covers hosted and open source LLMs that can be run locally.
At the time of this contribution, the usage of LLMs had only been investigated in
an exploratory study [Narayan et al., 2022]. Concurrent and follow-up work since
that then is discussed in Section 9.2. Figure 9.1 shows an example of how LLMs
are used for entity matching. The two entity descriptions at the bottom of the figure
are combined with the question of whether they refer to the same real-world entity
in a prompt. The prompt is passed to the LLM, which generates the answer shown
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Figure 9.1: Process of combining two entity descriptions into a prompt which is
afterward passed to the LLM.

at the top of Figure 9.1. All data and code used for the experiments presented in
this chapter is available on GitHub1.

The contributions of this chapter are:

• Evaluation of Different Prompting Techniques for LLMs: An evaluation
of a wide range of zero-shot and few-shot, as well as rule-based prompts,
comparing their impact on the entity matching task, building on an exploratory
study [Narayan et al., 2022]. The sensitivity of different LLMs to changes
in the prompt is further investigated, and it is shown that for some LLMs the
performance is stable while it fluctuates strongly for others.

• Comparison of LLMs to PLMs: It is shown that GPT4 without any task-
specific training data outperforms fully fine-tuned PLMs on 3 out of 4 e-
commerce datasets and achieves a comparable performance for bibliographic
data.

• Comparison of Hosted and Open-Source LLMs: A cost analysis of hosted
LLMs is performed and it is shown that open-source LLMs can achieve a
similar F1 performance as hosted LLMs given that a small amount of task-
specific training data or matching knowledge in the form of rules is available.

Section 9.2 reviews the existing literature on the emerging field of using LLMs
for entity matching. Section 9.3 introduces the experimental setup. Section 9.4
compares prompt designs and LLMs in the zero-shot setting, while Section 9.5 in-
vestigates whether model performance can be improved by providing demonstra-
tions for in-context learning, adding matching knowledge in the form of natural

1https://github.com/wbsg-uni-mannheim/MatchGPT/tree/main/LLMForEM

https://github.com/wbsg-uni-mannheim/MatchGPT/tree/main/LLMForEM
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language rules, and fine-tuning. Section 9.6 presents a cost analysis of the hosted
LLMs and a runtime analysis of all LLMs. Finally, Section 9.7 concludes the chap-
ter and summarizes the implications of the findings.

The work presented in this chapter builds on work previously published in [Peeters
and Bizer, 2023] and has been published in [Peeters et al., 2025].

9.2 Related Work

At least since the release of ChatGPT by OpenAI, LLMs have become a focus in
many research fields and business applications [Zhao et al., 2023]. The research
area on entity linking has started to experiment with LLMs [Shi et al., 2024, Xin
et al., 2024] and in the area of data integration many researchers have also turned
to these models due to their strong zero-shot and few-shot performance compared
to fine-tuning PLMs with thousands of labeled examples. For example, Brinkmann
et al. [Brinkmann et al., 2023b] investigate the usefulness of LLMs for the task of
product information extraction. Korini and Bizer [Korini and Bizer, 2023] apply
LLMs for the task of column type annotation in tables.

Narayan et al. [Narayan et al., 2022] were the first to experiment with using
an LLM (GPT3) for entity matching as part of a wider study that also covered
data engineering tasks such as schema matching and missing value imputation.
They showed that this specific LLM was able to reach the matching performance
of a fully fine-tuned Ditto with just ten few-shot demonstration on multiple bench-
marks.

The work presented in this chapter builds on this groundlaying work. Com-
pared to Narayan et al., this chapter evaluates a wider range of LLM models us-
ing a larger set of prompt designs. The chapter presents a deeper analysis of the
prompt sensitivity of the models and the prompt-to-model fit. It further investigates
the utility of additional methods such as rule learning and LLM fine-tuning specif-
ically for entity matching, which were not covered in previous work. The research
works listed in the following are concurrent work to the contributions made in this
chapter.

Zhang et al. [Zhang et al., 2023] explore the potential of LLMs in the con-
text of data processing tasks. They discuss various prompting techniques such as
zero-shot, few-shot, and batch prompting and provide an experimental evaluation
of these techniques comparing various LLMs, including GPT3.5 and GPT4, with
Ditto [Li et al., 2020] and Magellan [Konda et al., 2016] amongst others. The
authors show that GPT4 achieves similar performance to a fully fine-tuned Ditto
and underline the intrinsic interpretability of LLM decisions due to their ability to
explain their decisions, as well as their adaptability to many tasks using a small
amount of in-context examples. They conclude that LLMs have significant po-
tential for entity matching processes, but bring several limitations that need to be
addressed, like computational efficiency and cost concerns.
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In their concurrent work, Zhang et al. [Zhang et al., 2024a] further experiment
with instruction fine-tuning of a Llama2 model for multiple data preparation tasks
at once. The relevant tasks are error detection, data imputation, schema matching,
entity matching, and column type annotation. The model is small enough to be
operated on a single consumer-grade GPU. Before the intstruction tuning step, the
authors pre-tune the model on two more general datasets that are not related to the
data integration domain. Their results show that a fine-tuned 13B Jellyfish model is
able to achieve a similar matching performance as GPT4 and can even outperform
it on some of the tested entity matching benchmarks.

Sisaengsuwanchai et al. [Sisaengsuwanchai et al., 2023] investigate the impact
of various prompt engineering techniques on the performance of ChatGPT, includ-
ing a cost analysis for each prompt. The authors test various ways of framing the
prompt for entity matching including format of the record attributes, prompting for
similarity scores, and few-shot prompting. They conclude that prompt engineering
has a large impact on performance, but they also highlight that this varies depend-
ing on the used datasets, resulting in no prompt performing best on all datasets.
Instead, they state that it is essential to find a good balance between finding the
right prompt for the task and managing the costs.

Fan et al. [Fan et al., 2024b] present a cost-effective approach, BatchER, which
consists of two components. Firstly, they experiment with batching multiple entity
matching decisions together, and secondly, they add in-context demonstrations to
reduce the cost of in-context learning that is incurred when only making a single de-
cision in a prompt. The authors investigate various methods along the two compo-
nents and conclude that diversity-based batching, based on selecting diverse record
pairs from different clusters of a DBSCAN clustering together with a covering-
based demonstration selection strategy achieves the best performance while min-
imizing cost. The covering-based strategy involves calculating relevance scores
between the record pairs to be queried and the existing labeled training data to sub-
sequently select demonstrations that collectively cover the feature space of relevant
demonstrations.

Li et al. [Li et al., 2024] propose a framework that uses traditional similarity
metrics such as Jaccard to select a set of record pairs for an LLM to solve using
an uncertainty-based approach termed Greedy Approximation Question Selection.
Their approach is similar to a blocking method as they try to keep the costs of using
LLMs for the entity matching task below a specific budget by ensuring to give only
the most relevant record pairs to the LLM.

Wang et al. [Wang et al., 2024] propose a framework to evaluate how LLMs
perform on entity matching tasks, specifically focusing on three key paradigms:
Match, Compare, and Select. Match means directly identifying whether two enti-
ties are the same, while Compare first compares multiple attributes of entities and
then makes a decision based on the comparisons. Finally, Select presents a set of
candidate entities, with the LLM having to select the one that matches a given en-
tity. They combine these paradigms in their method called ComEM, which uses
a smaller LLM to first rank and filter potential matches using the matching and
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comparing strategies to limit costs, while employing a larger LLM for the final se-
lection step. As a result of this process, the method is mainly suitable for a clean-
clean matching scenario as it is based on finding a single match across datasets and
does not explicitly consider the case that multiple matches may exist. The authors
show that they are able to outperform the self-supervised contrastive framework
Sudowoodoo [Wang et al., 2023] on 7 of 8 benchmarks with their method.

Wadhwa et al. [Wadhwa et al., 2024] use large LLMs like GPT4 and Alpaca
to solve a set of entity matching problems from the training sets of benchmarks,
while providing the correct label and further prompt the models to also provide a
chain-of-thought style natural language explanation of their decision. They then
make use of these generated explanations to fine-tune a smaller language model,
Flan-T5 base, and observe large improvements of 10% F1 on average compared to
not providing explanations for this model in cross-domain generalization.

Steiner et al. [Steiner et al., 2024] focus on enhancing the capabilities of LLMs
for entity matching through fine-tuning techniques that refine both the represen-
tation and generation of training examples. The experimental approach is multi-
dimensional, examining how different training example representations, particu-
larly those augmented with LLM-generated explanations, can improve entity match-
ing performance and generalization across domains like products and publications.
The study further explores the impact of training example selection strategies, us-
ing LLMs to filter misleading examples and generate additional synthetic exam-
ples. Their work directly builds on the experiments performed in this chapter,
specifically the fine-tuning experiments in Section 9.5.

9.3 Experimental Setup

This section provides details about the large language models, the benchmark
datasets, the serialization of entity descriptions, and the evaluation metrics that
are used in the experiments.

Large Language Models:

Three hosted LLMs from OpenAI and three open-source LLMs that can be run on
local GPUs are compared:

• gpt-4o-mini-2024-07-18 (GPT-mini): This hosted LLM from OpenAI of-
fers lower API usage fees compared to GPT-4 and GPT-4o. It has a context
window of 128K tokens. The training data cut-off date is October 2023.

• gpt4-0613 (GPT-4): This version of OpenAI’s GPT-4 model from June
2023 has a context window of 8192 tokens. The training data cut-off date is
September 2021.

• gpt-4o-2024-08-06 (GPT-4o): GPT-4o is OpenAI’s flagship model with a
128K context and a training data cutoff date of October 2023.
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• Llama-2-70b-chat-hf (Llama2): This Llama2 version2 from Meta has 70B
parameters and has been optimized for dialogue use cases. It has a context
window of 4K tokens, and the training data cut-off date is September 2022.

• Meta-Llama-3.1-70B-Instruct (Llama3.1): This Llama3.1 model from Meta
has 70B parameters and is optimized for dialogue use cases. It has a context
window of 128K tokens and a training data cut-off date of December 2023.

• Mixtral-8x7B-Instruct-v0.1 (Mixtral): Mixtral is an open-source model
that consists of 8 smaller models. It is developed by Mistral AI3 and has a
context window of 32K.

The following sections and tables use the model naming scheme introduced in
the brackets above. The langchain4 library is used for interaction with the Ope-
nAI API and template-based prompt generation. The temperature parameter is set
to 0 for all LLMs to reduce randomness. The temperature parameter adjusts the
randomness of the model’s outputs by scaling the logits before applying the soft-
max function. The experiments with open-source experiments are run on a local
machine with an AMD EPYC 7413 processor, 1024GB RAM, and four nVidia
RTX6000 GPUs.

The performance of the LLMs is compared to two PLM-based matching base-
lines, the RoBERTa-base [Liu et al., 2019b] model, which has been shown to
reach high performance on the entity matching task (see Sections 7.4.3 and 8.4.3
and [Zeakis et al., 2023, Li et al., 2020, Peeters and Bizer, 2021]). The RoBERTa
model is fine-tuned for entity matching on the respective development sets. The
second baseline PLM is the Ditto [Li et al., 2020] system. Ditto introduces various
data augmentation and domain knowledge injection modules. A RoBERTa-base
language model is used at its core for the following experiments, and the data aug-
mentation modules proposed in the original paper are applied where available.

RoBERTa-base is selected as a representative model for directly comparing
PLMs to LLMs. Ditto combines this PLM with additional entity matching-specific
functionality. Ditto also outperforms earlier matchers such as Deepmatcher [Mud-
gal et al., 2018] and DeepER [Ebraheem et al., 2018], and performs within a 2%
F1 range compared to more complex methods such as SETEM [Ding et al., 2024]
or HierGAT [Yao et al., 2022] on the datasets selected below.

The following benchmarks are used for the experiments in this chapter. The
attributes used for the serialization of entity descriptions are presented in brackets
after each benchmark name.

The first benchmark dataset used for the experiments is the most challenging
version of the WDC Products benchmark (brand, title, currency, price), containing
80% corner cases. The benchmark was released at the end of the year 2022 after the
training data cutoff date of the LLMs. The Abt-Buy (title, price), Walmart-Amazon

2https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
3https://mistral.ai/
4https://www.langchain.com/

https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://mistral.ai/
https://www.langchain.com/
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Table 9.1: Dataset statistics. In-context example selection and fine-tuning are
performed on training and validation sets. Prompts are evaluated on test sets.

Dataset Training set Validation set Test set

# Pos # Neg # Pos # Neg # Pos # Neg

(WDC) - WDC Products 500 2,000 500 2,000 259 989
(A-B) - Abt-Buy 616 5,127 206 1,710 206 1,000
(W-A) - Walmart-Amazon 576 5,568 193 1,856 193 1,000
(A-G) - Amazon-Google 699 6,175 234 2,059 234 1,000
(D-S) - DBLP-Scholar 3,207 14,016 1,070 4,672 250 1,000
(D-A) - DBLP-ACM 1,332 6,085 444 2,029 250 1,000

(brand, title, model number, price) and Amazon-Google (brand, title, price) bench-
marks using the versions released with the Deepmatcher paper [Mudgal et al.,
2018] represent two-source entity matching benchmarks from the product domain.
The DBLP-Scholar (authors, title, venue, year) and DBLP-ACM (authors, title,
venue, year) benchmarks in their version from the Deepmatcher paper represent
the task of matching bibliographic entries between two sources. WDC Products
and Walmart-Amazon contain duplicates for some entities within the same dataset,
representing a dirty-dirty matching scenario [Christophides et al., 2015], while the
other datasets represent a clean-clean matching scenario.

Splits and Sampling

For WDC Products, the training, validation, and test split of size small [Peeters
et al., 2024b] are used. The same evaluation splits established in the DeepMatcher
paper [Mudgal et al., 2018] are used for the other benchmark datasets. Due to
the large number of experiments performed against the OpenAI API and as these
experiments, especially for long prompts and for using the GPT4 model, result
in relevant API usage fees, all test sets are down-sampled to approximately 1250
entity pairs. Table 9.1 provides statistics on the number of positive pairs (matches)
and negative pairs (non-matches) in the development and down-sampled test sets
of all benchmarks used in the experiments.

Serialization

For the serialization of pairs of entity descriptions into prompts, each entity de-
scription is serialized as a string by concatenating attribute values. Figure 9.1
shows an example of this serialization practice for a pair of product offers. The
same serialization method is applied for the bibliographic data.

For the serialization of pairs of entity descriptions (records) into prompts, each
entity description is serialized into a single string by concatenating its attribute
values using blanks as deliminator, e.g. serializepeq :“ ValA1 ValA2 ... ValAn.
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Figure 9.1 shows an example of this serialization practice for a pair of product
offers. The same serialization method is applied for the bibliographic data. All
datasets contain textual attributes, e.g., the title of a product or publication, as well
as numerical attributes like price and year. The decision was made not to add
the names of the attributes themselves to the serialization string, as this negatively
affected performance in preliminary experiments.

Evaluation

The responses gathered from the models are natural language text. To decide
whether a response refers to a positive matching decision regarding a pair of entity
descriptions, lower-casing is applied to the answer, which is subsequently parsed
for the word yes. If not found, it is assumed that the model decides on not match-
ing. This approach, while simple, is nevertheless effective as shown by Narayan et
al. [Narayan et al., 2022].

9.4 Zero-shot Prompting

In the first scenario, the impact of different prompt designs on the entity matching
performance of the LLMs is analyzed. The prompt sensitivity of the different mod-
els for the entity matching task is further investigated, and finally, the performance
of the LLMs is compared to the PLM baselines.

Prompt Building Blocks

Prompts are constructed as a combination of smaller building blocks to allow the
systematic evaluation of different prompt designs. Each prompt consists of at
least a task description and the serialization of the pair of entity descriptions to
be matched. In addition, the prompts may contain a specification of the output
format. Alternative task descriptions that formulate the task as a question using
simple or complex wording combined with domain-specific or general terms are
evaluated. The alternative task descriptions are as follows:

• domain-simple: "Do the two product descriptions match?" / "Do the two
publications match?"

• domain-complex: "Do the two product descriptions refer to the same real-
world product?" / "Do the two publications refer to the same real-world pub-
lication?"

• general-simple: "Do the two entity descriptions match?"

• general-complex: "Do the two entity descriptions refer to the same real-
world entity?"

A specification of the output format may follow the task description. For this,
two formats are evaluated: (1) free which does not restrict the answer of the LLM,
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Table 9.2: Average F1-scores over all datasets for the zero-shot experiments.

Prompt All Datasets (Average F1)

GPT-mini GPT-4 GPT-4o LLama2 Llama3.1 Mixtral

domain-complex-force 85.29 88.91 87.00 66.60 84.87 68.29
domain-complex-free 85.40 89.46 80.31 69.69 72.06 62.13
domain-simple-force 50.41 86.10 82.72 57.24 60.52 41.65
domain-simple-free 33.65 87.92 63.53 50.40 36.94 43.20
general-complex-force 83.50 87.94 85.02 63.89 83.26 59.51
general-complex-free 83.13 87.85 55.81 62.73 80.54 61.50
general-simple-force 52.88 81.12 83.65 62.31 72.65 33.59
general-simple-free 45.49 85.07 64.67 52.77 63.38 36.12
Narayan-complex 56.13 86.70 50.65 56.34 36.16 32.04
Narayan-simple 75.15 86.92 45.64 67.81 37.32 30.94

Mean 65.10 86.80 69.90 60.98 62.77 46.90
Standard deviation 18.45 2.26 14.86 6.18 18.54 13.68

and (2) force which instructs the LLM to "Answer with ’Yes’ if they do and ’No’ if
they do not". The prompt continues with the entity description pair to be matched,
serialized as presented in Section 9.3. Figure 9.1 contains an example of a complete
prompt that implements the prompt design general-complex-free. In addition to
the prompts generated using these building blocks, the prompt designs proposed
by Narayan et al. [Narayan et al., 2022] are evaluated. The main difference of
these designs compared to the ones created from building blocks is that they put
the serialization of the entities before the task description, while the latter order the
task description and the serialization the other way around.

Effectiveness

Table 9.3 shows the results for each dataset separately. Table 9.2 shows the results
of the zero-shot experiments averaged across all datasets. Regarding overall perfor-
mance, the GPT4 model outperforms all other LLMs on all product datasets by at
least 1% F1 achieving an absolute performance of 89% or higher on 5 of 6 datasets
without requiring any task-specific training data. On the publication datasets, GPT-
4o achieves nearly the same performance (0.1-1% F1). This gap increases on the
product datasets to 1-3% F1, making the more recent model marginally worse than
GPT4. GPT-mini performs up to 6% F1 worse than GPT-4o with only a marginal
performance difference on 4 of 6 datasets. Among open-source LLMs, Llama3.1
consistently outperforms Llama2 by 1-21% F1. Llama3.1’s performance is com-
parable to GPT-mini on all datasets. The Mixtral model performs less effectively
on this task, lagging behind the other open-source models by 7-16% on 4 datasets.
In summary, the results indicate that locally run open-source LLMs can perform
similarly to OpenAI’s GPT-mini model given that the right prompt is selected.
However, if maximum performance is desired, none of the other LLMs can match
GPT-4 in a zero-shot setting.



Table 9.3: Results (F1) of the zero-shot experiments for all datasets. Best results are set bold, second best are underlined.

Prompt WDC Products Abt-Buy Walmart-Amazon

GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral

domain-complex-force 80.84 88.35 87.64 65.23 83.67 53.37 90.95 95.15 90.47 57.59 89.84 82.20 86.36 89.00 84.04 46.70 84.85 70.44
domain-complex-free 80.00 89.61 67.35 69.09 50.86 51.98 91.93 95.78 89.35 64.13 78.90 78.07 86.28 89.33 82.91 51.96 69.87 54.42
domain-simple-force 21.35 83.72 81.53 23.89 33.22 8.43 77.55 93.56 91.77 65.82 79.77 51.96 48.84 88.78 83.84 52.17 54.81 27.56
domain-simple-free 16.85 84.50 42.99 24.75 1.59 14.81 60.81 94.38 78.24 63.43 34.40 52.30 43.82 88.67 56.00 40.15 17.76 24.43
general-complex-force 78.80 85.83 87.02 66.02 81.89 42.04 89.88 94.40 90.67 56.70 88.11 79.02 86.58 89.67 83.67 44.69 84.14 50.56
general-complex-free 81.15 86.72 23.86 67.59 67.81 52.22 87.73 94.87 72.00 55.77 87.31 81.27 85.99 89.45 45.85 44.95 83.43 53.82
general-simple-force 20.71 77.39 82.48 46.54 62.57 9.89 80.67 93.23 93.95 82.03 88.72 54.04 46.33 86.41 86.65 63.91 72.05 21.20
general-simple-free 18.84 83.41 41.77 39.30 44.24 12.03 73.05 92.77 83.80 77.21 80.00 58.86 37.34 88.60 62.50 56.03 60.69 19.63
Narayan-complex 47.31 81.23 31.89 44.97 9.09 21.05 79.89 92.13 58.59 68.44 34.40 40.00 41.46 83.37 24.00 57.74 12.50 15.17
Narayan-simple 71.01 81.91 21.91 52.72 9.16 15.33 86.63 92.42 57.34 73.99 35.06 37.80 69.28 84.72 20.28 63.32 18.69 11.65

Mean 51.69 84.27 56.84 50.01 44.41 28.12 81.91 93.87 80.62 66.51 69.65 61.55 63.23 87.80 62.97 52.16 55.88 34.89
Standard deviation 27.96 3.42 25.66 16.25 28.83 18.31 9.22 1.17 13.01 8.50 23.24 16.32 20.44 2.08 24.39 7.69 27.56 19.39

Prompt Amazon-Google DBLP-Scholar DBLP-ACM

GPT-mini GPT-4 GPT-4o LLama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o LLama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o LLama2 Llama3.1 Mixtral

domain-complex-force 70.98 75.61 73.56 57.93 73.99 40.98 86.11 88.44 89.76 85.46 84.29 75.40 96.51 96.90 96.53 86.69 92.59 87.33
domain-complex-free 72.18 75.57 61.17 56.29 60.59 24.91 86.06 89.78 84.03 85.11 80.87 77.75 95.97 96.71 97.06 91.57 91.24 85.66
domain-simple-force 24.55 75.32 58.00 29.86 19.33 13.39 41.51 77.21 84.35 84.07 77.17 60.39 88.65 98.03 96.85 87.62 98.81 88.15
domain-simple-free 19.48 74.51 35.85 17.16 5.76 17.69 7.63 88.20 73.79 81.53 67.69 59.67 53.30 97.28 94.29 75.35 94.41 90.32
general-complex-force 65.25 74.91 70.98 53.59 69.36 31.65 85.82 87.22 87.54 79.67 85.97 66.15 94.66 95.60 90.25 82.67 90.09 87.63
general-complex-free 64.09 74.38 20.44 49.48 68.45 29.45 85.66 87.50 76.85 76.42 86.32 68.01 94.16 94.16 95.87 82.18 89.93 84.23
general-simple-force 25.53 53.60 56.28 49.32 33.87 11.24 54.19 78.26 85.65 66.37 80.27 31.65 89.87 97.85 96.86 65.71 98.41 73.50
general-simple-free 17.56 66.67 32.19 37.79 25.35 12.70 40.75 81.47 72.20 51.06 73.99 38.59 85.40 97.47 95.58 55.21 95.98 74.88
Narayan-complex 18.45 76.38 13.90 39.63 10.40 3.36 56.34 89.82 78.82 42.99 55.27 27.40 93.31 97.27 96.67 84.26 95.32 85.26
Narayan-simple 42.24 75.70 5.71 48.71 6.58 2.51 84.12 88.37 72.82 70.47 59.40 35.06 97.60 98.41 95.77 97.62 95.04 83.30

Mean 42.03 72.27 42.81 43.98 37.37 18.79 62.82 85.63 80.58 72.32 75.12 54.01 88.94 96.97 95.57 80.89 94.18 84.03
Standard deviation 22.39 6.76 23.16 12.23 26.51 11.99 25.87 4.53 6.15 14.07 10.43 18.01 12.43 1.19 1.94 11.87 3.01 5.29
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Sensitivity

Small variations in the prompts can have a large impact on the overall task per-
formance [Narayan et al., 2022, Zhao et al., 2021, Liu et al., 2023]. This prompt
sensitivity is measured as the standard deviation (SD) of the F1 scores of a model
over all 10 prompt designs. This standard deviation is listed in the lower section
of Tables 9.3 and 9.2. When comparing the prompt sensitivity of the models, the
GPT4 model is most invariant to the wording of the prompt (mean standard de-
viation 2.26) while also achieving high results with most of the prompt designs.
Comparing the sensitivity of GPT4 with all other models shows that they have
a significantly higher prompt sensitivity (standard deviation 6.18 to 18.54 in Ta-
ble 9.2).

Prompt to Model Fit

The best result for each model is listed in bold in Table 9.3, the second best result
is underlined. This highlighting shows that there is no prompt design that performs
best for most models. As a result, a general statement of how to design a prompt
for the entity matching task cannot be made. Although the presented analysis is
not exhaustive with regards to all potentially possible prompt designs, the results
indicate that the best prompt depends on the model/dataset combination. While
a good performing prompt can be found by testing a set of pre-defined prompts,
automated approaches for prompt tuning and evolution could still further improve
the results [Wang et al., 2022c, Fernando et al., 2024].

Comparison to PLM Baselines

The zero-shot performance of LLMs is compared to the performance of two PLM-
based matchers: a fine-tuned RoBERTa model [Liu et al., 2019b] and a fine-tuned
Ditto [Li et al., 2020] system. Table 9.4 shows the overall best results for each
LLM compared to the two PLM-based matchers on all datasets. For three of the
six datasets, GPT4 achieves higher performance than the best PLM baseline (2.65-
4.71% F1), while the performance for the other three datasets is 3.69, 4.49 and
0.73% F1 lower. This shows that GPT4 without using any task-specific train-
ing data is able to reach comparable results or even outperform PLMs that were
fine-tuned using thousands of training pairs (see Table 9.1). The reliance on large
amounts of task-specific training data to achieve good performance is one of the
main shortcomings of fine-tuned PLMs. The experiments in this section show that
LLMs are a viable choice if task-specific training data is unavailable or costly.

Generalization

The previous chapters have demonstrated that PLM-based matchers struggle with
generalizing to unseen (out-of-distribution) entities. In another set of experiments,
each of the previously fine-tuned RoBERTa and Ditto models is applied, apart from
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Table 9.4: Comparison of F1 scores of the best zero-shot prompt per model with
PLM baselines. The "unseen" rows correspond to training on the dataset named in
the column and applying the model to the WDC Products test set.

WDC A-B W-A A-G D-S D-A

GPT-mini 81.15 91.93 86.58 72.18 86.11 97.60
GPT-4 89.61 95.78 89.67 76.38 89.82 98.41
GPT-4o 87.64 93.95 86.65 73.56 89.76 97.06

Llama2 69.09 82.03 63.91 57.93 85.46 97.62
Llama3.1 83.67 89.84 84.85 73.99 86.32 98.81
Mixtral 53.37 82.20 70.44 40.98 77.75 90.32

RoBERTa 77.53 91.21 87.02 79.27 93.88 99.14
Ditto 84.90 91.31 86.39 80.07 94.31 99.00

∆ best
LLM/PLM

4.71 4.47 2.65 -3.69 -4.49 -0.33

RoBERTa unseen - 55.52 36.46 31.00 29.64 16.25
Ditto unseen - 48.74 31.55 33.12 32.82 29.00

∆ RoBERTa unseen - -22.01 -41.07 -46.53 -47.89 -61.28
∆ Ditto unseen - -36.16 -53.35 -51.78 -52.08 -55.90

the one fine-tuned on WDC Products, to the WDC Products test set, which contains
a different set of products that are unseen to these fine-tuned models. The results
of these experiments are reported in the "RoBERTa Unseen" and "Ditto Unseen"
rows at the bottom of Table 9.4. Compared to fine-tuning directly on the WDC
Products development set (84.90% F1 for Ditto), the transfer of fine-tuned models
leads to large drops in performance ranging from 36 to 56% F1 for Ditto and 22 to
61% F1 for RoBERTa. All LLMs achieve at least 8% F1 higher performance than
the best transferred PLM while GPT4 outperforms the best PLM by 40% to 68%.
These results show that LLMs have a general capability to perform entity matching
as a result of their training procedure, while PLM-based matchers are fitted closely
to entities of specific datasets after fine-tuning but are not capable of performing
the task in a zero-shot manner.

9.5 Adding Training Data

Task-specific training data in the form of matching and non-matching entity pairs
can be used to (1) add demonstrations to the prompts, (2) learn textual matching
rules, and (3) fine-tune the LLMs. This section explores how the zero-shot results
can be improved using task-specific training data. To make the results comparable,
the same development sets (see Table 9.1) that were used to fine-tune the PLM-
based matchers are used for all experiments in this section.



9.5. ADDING TRAINING DATA 169

9.5.1 In-Context Learning

For the in-context learning experiments, each LLM is provided with a set of task
demonstrations [Liu et al., 2022] as part of the prompt to help guide the model’s
decisions. The provided demonstrations are then followed by the specific entity
description pair for which the model should generate an answer. Figure 9.2 shows
an example of an in-context learning prompt with a single positive and a single
negative demonstration. The number of demonstrations in each prompt is varied
from 6 to 10 with an equal amount of positive and negative examples. For the
selection of the demonstrations, three different heuristics are compared:

Figure 9.2: Example of a prompt containing a positive and a negative demonstra-
tion before asking for a decision.

• Random: As a baseline heuristic, the task demonstrations are drawn ran-
domly from the training set of the respective benchmark.

• Related: Related demonstrations are selected from the training set of the
respective benchmark with the idea of presenting correct matching decisions
on highly similar products. This is done by calculating the Generalized Jac-
card5 similarity between the string representation of the pair to be matched
and all positive and negative pairs in the corresponding training set. After-
wards, the pairs are sorted by similarity and the most similar positive and
negative pairs are selected as demonstrations.

• Hand-picked: The hand-picked demonstrations were selected by a data en-
gineer with the goals of being diverse and potentially helpful for corner case
decisions. For the four datasets in the product domain, these examples are

5https://anhaidgroup.github.io/py_stringmatching/v0.3.x/GeneralizedJaccard.html

https://anhaidgroup.github.io/py_stringmatching/v0.3.x/GeneralizedJaccard.html
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Table 9.5: Mean results for the in-context learning.

Prompt All Datasets (Mean F1)

Shots GPT4-mini GPT4 GPT4o LLama2 Llama3.1 Mixtral

6 73.76 90.24 90.41 65.44 82.12 50.51
Fewshot-related

10 76.56 90.80 91.21 62.69 85.85 53.25
6 77.86 89.44 89.77 63.99 85.95 57.37

Fewshot-random
10 80.51 89.05 89.85 65.62 88.06 53.94
6 72.81 88.61 89.44 70.52 84.87 57.76

Fewshot-handpicked
10 73.93 88.76 89.52 69.91 87.60 51.03

Hand-written rules 0 81.49 87.65 86.36 51.22 85.57 79.03
Learned rules 0 84.14 86.64 84.96 44.23 84.11 74.53

Mean - 77.63 88.90 88.94 61.70 85.51 59.68
Standard deviation - 3.85 1.25 2.00 8.63 1.77 10.23

Best zero-shot 0 85.51 89.95 88.10 76.01 86.25 69.18

∆ Few-shot/zero-shot - -5.00 0.85 3.10 -5.49 1.81 -11.42
∆ Rules/zero-shot - -1.37 -2.29 -1.74 -24.78 -0.68 9.86

drawn from the WDC Products training set and were chosen to represent
various product categories, as well as pairs where different attributes are im-
portant for the matching decision. For the two datasets from the publication
domain, the examples are selected from the pool of training examples from
DBLP-Scholar covering a range of distinct venues, publication years, and
research areas.

Effectiveness

Table 9.5 shows the average results of the in-context experiments compared to the
best zero-shot baselines. Table 9.6 shows the results for each dataset separately.
Depending on the model/dataset combination, the usefulness of in-context learn-
ing differs. The GPT4 model, which is the best performing model in the zero-
shot scenario, only improves significantly on Amazon-Google (9%) with marginal
improvements on two datasets (0.6-1.5%) when supplying related demonstrations
and an improvement of 2% on DBLP-Scholar with hand-picked demonstrations.
GPT4’s performance on WDC Products and Abt-Buy drops irrespective of the
demonstration selection method, meaning that the model does not need the ad-
ditional guidance in these cases. The GPT-4o model, on the other hand, sees im-
provements on all datasets when supplying demonstrations closing the gap to GPT-
4 compared to zero-shot and even outperforming it for WDC Products. GPT-mini
and Mixtral are not capable of using the in-context information as both models lose
between 4 and 26% performance on most datasets. For all other LLMs, providing
in-context examples usually leads to performance improvements, while the size of
the improvements varies widely.

In summary, in-context learning improves the performance of LLMs for ap-
proximately 61% of the tested model/dataset combinations (see row ∆ Few-shot/zero-



Table 9.6: Results (F1) of the few-shot and rule-based experiments. Best result is bold, second best is underlined.

Prompt WDC Products Abt-Buy Walmart-Amazon

Shots GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral

6 51.59 85.71 89.96 59.64 77.43 37.45 90.96 93.83 94.35 66.78 90.72 49.77 74.32 91.19 90.54 56.23 81.31 50.78
Fewshot-related

10 57.87 86.45 91.74 53.23 84.04 41.93 92.62 94.35 94.87 63.78 92.80 52.44 74.85 91.24 90.63 56.15 86.89 54.70

6 67.48 86.55 87.69 57.25 77.53 53.80 88.19 94.12 95.26 62.99 92.65 55.75 75.00 88.89 88.62 60.68 86.34 53.68
Fewshot-random

10 73.23 86.37 87.40 50.83 80.17 50.22 90.31 93.21 95.55 68.28 93.75 49.80 76.78 89.00 88.78 67.44 88.00 46.94

6 55.56 87.23 88.28 58.26 75.45 48.12 88.06 93.36 95.49 71.56 89.23 47.79 70.59 88.84 88.94 66.52 86.65 50.64
Fewshot-handpicked

10 59.73 86.72 87.89 46.96 79.39 44.86 89.58 93.62 93.95 82.21 92.80 42.02 74.38 87.89 90.34 65.86 88.53 45.56

Hand-written rules 0 73.76 85.71 86.49 53.77 80.84 69.81 90.50 94.15 87.69 41.93 89.86 86.18 87.60 89.16 84.55 33.65 88.16 83.08
Learned rules 0 78.68 87.06 85.24 59.33 80.17 70.25 89.43 93.40 92.91 48.38 88.19 88.83 87.94 86.21 88.40 43.27 86.47 80.11

Mean - 64.74 86.48 86.48 54.91 79.38 52.06 90.03 93.81 93.76 63.24 91.25 59.07 77.68 89.05 89.05 56.23 86.54 58.19
Standard deviation - 9.25 0.52 0.52 4.22 2.44 11.38 1.48 0.40 0.39 11.95 1.89 16.83 6.04 1.54 1.54 11.30 2.13 13.83

Best zero-shot 0 81.15 89.61 87.64 69.09 83.67 53.37 91.93 95.78 93.95 82.03 89.84 82.20 86.58 89.67 86.65 63.91 84.85 70.44

∆ Few-shot/zero-shot - -7.92 -2.38 4.10 -9.45 0.37 0.43 0.69 -1.43 1.60 0.18 3.91 -26.45 -9.80 1.57 3.98 3.53 3.68 -15.74
∆ Rules/zero-shot - -2.47 -2.55 -1.15 -9.76 -2.83 16.88 -1.43 -1.63 -1.04 -33.65 0.02 6.63 1.36 -0.51 1.75 -20.64 3.31 12.64

Prompt Amazon-Google DBLP-Scholar DBLP-ACM

Shots GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral

6 61.58 84.27 82.95 62.48 65.28 39.11 75.83 88.00 86.44 69.11 80.18 53.82 88.25 98.41 98.21 78.37 97.78 72.12
Fewshot-related

10 63.52 85.21 83.46 62.36 71.43 47.89 77.93 88.52 88.33 64.29 82.38 55.57 92.54 99.01 98.20 76.34 97.58 66.95

6 57.37 78.08 78.67 59.78 74.32 48.99 82.56 90.21 90.16 67.04 86.43 55.80 96.55 98.81 98.21 76.22 98.40 76.21
Fewshot-random

10 60.56 78.76 78.61 59.92 80.46 46.17 84.98 89.30 90.54 69.63 87.17 56.13 97.19 97.66 98.21 77.64 98.80 74.39

6 55.19 76.92 77.25 64.65 73.93 45.92 68.86 90.98 89.19 81.34 85.34 67.70 98.61 94.34 97.47 80.78 98.62 86.36
Fewshot-handpicked

10 58.49 76.57 77.22 63.89 79.52 49.18 62.96 91.81 90.06 73.56 86.13 55.61 98.42 95.97 97.66 86.96 99.21 68.97

Hand-written rules 0 66.37 72.47 73.83 46.39 71.90 58.31 76.74 87.34 89.30 53.72 84.82 83.55 93.95 97.09 96.30 77.88 97.85 93.26
Learned rules 0 68.28 73.50 72.39 59.77 71.88 48.55 84.00 89.42 78.59 8.43 81.95 78.38 95.42 90.25 92.25 46.21 95.97 81.04

Mean - 61.42 78.22 78.22 59.91 73.59 48.02 76.73 89.45 89.45 60.89 84.30 63.32 95.12 96.44 96.44 75.05 98.03 77.41
Standard deviation - 4.19 4.27 4.27 5.41 4.51 4.95 7.15 1.41 1.41 21.14 2.34 11.03 3.25 2.76 2.76 11.38 0.94 8.39

Best zero-shot 0 72.18 76.38 73.56 57.93 73.99 40.98 86.11 89.82 89.76 85.46 86.32 77.75 97.60 98.41 97.06 97.62 98.81 90.32

∆ Few-shot/zero-shot - -8.66 8.83 9.90 6.72 6.47 8.20 -1.13 1.99 0.78 -4.12 0.85 -10.05 1.01 0.60 1.15 -10.66 -0.01 -3.96
∆ Rules/zero-shot - -3.90 -2.88 0.27 1.84 -2.09 17.33 -2.11 -0.40 -0.46 -31.74 -1.50 5.80 -2.18 -1.32 -0.76 -19.74 -0.96 2.94
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shot in Table 9.6). Providing demonstrations was not helpful for GPT4, which does
not need the additional guidance on two datasets, as well as for the smaller models
GPT-mini and Mixtral which suffer large performance drops on many datasets. As
a result, the usefulness of in-context learning cannot be assumed but needs to be
determined experimentally for each model/dataset combination.

Comparison of Selection Methods

The best demonstration selection method also varies depending on the dataset. The
open-source LLMs achieve the best performance when random or hand-picked
demonstrations are provided. In contrast, GPT-4 and GPT-4o achieve the highest
scores on most datasets using related demonstrations, suggesting that these models
are better able to understand and apply specific patterns from closely related ex-
amples to the current matching decision. The hand-picked demonstrations, while
not helpful for the Llama models on their source dataset WDC Products, lead to
improvements on all other product datasets. The same effect is visible for the hand-
picked demonstrations transferred to DBLP-ACM.

9.5.2 Learning Matching Rules

In this set of experiments, instead of providing the models with in-context exam-
ples, a set of textual matching rules is provided in the prompt in order to guide
the model to find the correct solution. Two kinds of rules are used in this regard,
handwritten and learned rules. Handwritten rules are a set of binary rules created
by defining which attributes need to match for the given domain to signify a match.
The rules also inform the model of potential heterogeneity in these attributes, such
as slight differences in surface form or value formats. For the learned rules, the
hand-picked examples that were used for the in-context experiments are passed to
GPT4, and the model is asked to generate matching rules from these examples.
Similarly to the handwritten rules, they refer to specific attributes that should be
matching and potential sources of heterogeneity that the GPT4 model extracted
from the provided examples. A subset of these handwritten and learned rules for
the product domain is depicted in Figure 9.3.

Effectiveness

Table 9.6 shows the results of providing matching rules in comparison to the best
zero-shot prompt and the in-context experiments. The results show that GPT4 with
matching rules does not improve on its best zero-shot performance and instead
loses 1% to 3% F1 on all datasets. All other models see improvements on some
datasets of 0.3% to 17% F1 over zero-shot depending on the model/dataset com-
bination. Especially the Mixtral LLM, which has comparatively low performance
compared to all other LLMs in the zero-shot and few-shot settings, significantly
improves with the provision of rules on all datasets, gaining from 3 to 17% F1. In
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Figure 9.3: Example of a prompt containing handwritten matching rules for the
product domain. A subset of the learned rules is depicted below.

summary, the provision of matching rules can be helpful, especially for the open-
source LLMs with Mixtral achieving its highest scores on all datasets using rules,
but providing task demonstrations leads to higher performance gains than provid-
ing matching rules for all other models.

Sensitivity

Similarly to the zero-shot scenario, the prompt sensitivity of each LLM is mea-
sured across all few-shot and rule experiments. This standard deviation is listed in
the lower section of Tables 9.5 and 9.6. When comparing the prompt sensitivity
of the models with the zero-shot deviations across different prompt formulations,
the average deviation from the mean has decreased for all models, showing that
additional guidance in the form of demonstrations and rules leads to more robust
results overall.
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Table 9.7: Results for fine-tuning LLMs and subsequent transfer to all datasets.
Left-most column shows the dataset used for fine-tuning.

WDC A-B W-A A-G D-S D-A

Llama2 66.81 75.98 72.83 54.77 41.74 28.86
Llama3.1 72.05 83.47 76.92 63.97 65.25 80.91WDC Products
GPT-mini 88.89 92.49 88.61 77.78 86.82 97.28

Llama2 58.79 92.15 81.84 68.61 84.12 95.31
Llama3.1 77.87 93.60 84.85 74.49 79.86 94.07Abt-Buy
GPT-mini 83.66 94.17 88.83 76.63 86.03 97.85

Llama2 49.71 88.13 90.57 66.50 64.57 87.74
Llama3.1 51.12 89.92 91.01 73.76 82.62 95.41Walmart-Amazon
GPT-mini 72.64 94.94 92.99 82.06 89.31 97.85

Llama2 59.50 77.16 63.21 76.19 78.59 88.70
Llama3.1 61.28 85.00 82.35 78.67 70.49 87.73Amazon-Google
GPT-mini 64.75 90.23 82.98 87.11 87.02 96.88

Llama2 29.41 49.48 59.52 46.55 92.80 97.45
Llama3.1 35.11 74.27 77.15 58.59 92.37 97.84DBLP-Scholar
GPT-mini 57.70 84.07 84.02 73.33 93.95 97.64

Llama2 6.15 29.96 29.60 16.22 66.84 99.20
Llama3.1 15.33 49.82 41.90 25.00 83.37 99.60DBLP-ACM
GPT-mini 31.54 85.25 67.99 49.43 89.70 99.40

Llama2 69.09 82.03 63.91 57.93 85.46 97.62
Llama3.1 83.67 89.84 84.85 73.99 86.32 98.81Best zero-shot
GPT-mini 81.15 91.93 86.58 72.18 86.11 97.60

Llama2 -2.28 +10.12 +26.66 +18.26 +7.34 +1.58
Llama3.1 -5.80 +3.76 +6.16 +4.68 +6.05 +0.79∆ best zero-shot
GPT-mini +7.74 +3.01 +6.41 +14.93 +7.84 +1.80

Llama2 -22.8 -3.63 +0.90 -0.19 +2.98 +0.79
Llama3.1 -11.74 -2.18 +1.34 +2.29 +2.55 +1.19∆ best GPT4
GPT-mini -0.72 -0.84 +3.32 +10.73 +4.13 +0.99

Best GPT4 - 89.61 95.78 89.67 76.38 89.82 98.41

9.5.3 Fine-Tuning

In the next set of experiments, the GPT-mini, Llama2, and Llama3.1 models are
fine-tuned using either the OpenAI API for gpt-mini or local hardware as described
above for the Llama models. The training and validation sets of each dataset are
used to train a fine-tuned model with the domain-simple-force prompt template and
subsequently the fine-tuned models are applied with this same prompt template
to all datasets test sets. GPT-mini is fine-tuned for 10 epochs using the default
parameters suggested by OpenAI. For the Llama models, fine-tuning is performed
for 10 epochs using 4-bit quantization to manage the high VRAM requirements of
the 70B models together with Low-Rank Adaptation (LoRA) [Hu et al., 2022] for
efficient model adaptation. The LoRA configuration includes the alpha parameter
set to 16, a dropout rate of 0.1 and a rank (r) of 64. The learning rate is set to 2e-4.
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Effectiveness

The results of the fine-tuned LLMs are shown in Table 9.7. The lower part of the
table restates the best zero-shot and GPT4 results for comparison. When com-
paring the fine-tuning results with the best zero-shot performance (Section ∆ best
zero-shot in Table 9.7), a substantial improvement of 1% to 26% F1 is observable
depending on the dataset for all models. Only the Llama models on WDC Prod-
ucts do not profit from fine-tuning. On four out of six datasets, the best fine-tuned
Llama3.1 and GPT-mini models exceed the performance of zero-shot GPT4 by 1
to 10% F1 (see Section ∆ best GPT4 in Table 9.7).

In summary, fine-tuning the models leads to improved results compared to
the zero-shot version of the model that rivals the performance of the best GPT4
prompts with the much cheaper GPT-mini model and consistently improves the
performance of the Llama models by 1-26% F1 on 5 of 6 datasets, leaving Llama
3.1 only slightly behind GPT-mini on 4 datasets. Furthermore, the experiments
show that the fine-tuned Llama models reach a similar performance or outperform
GPT4 on 4 out of 6 datasets.

Generalization

A generalization effect is observed for the GPT-mini model fine-tuned on one
dataset to datasets from related domains and across domains. Transferring mod-
els between related product domains leads to improved performance over the best
zero-shot prompts for many combinations of datasets. The effect is especially
visible for the combinations WDC Products, Abt-Buy and Walmart-Amazon that
contain similar products. The transfer to Amazon-Google results in better perfor-
mance than zero-shot for all of the mentioned product datasets. In contrast, the
reverse transfer from Amazon-Google does not yield improved results. Further-
more, all GPT-mini models fine-tuned on the datasets from the product domain
exhibit good generalization to the publication domain, resulting in improvements
of 1-3% F1 over the best zero-shot result. Transferring fine-tuned models within
the publication domain shows the same effect. The transfer does not work in the
other direction as transferring a model fine-tuned for the publication domain leads
to lower performance on the product datasets. For the Llama models this effect
is only visible for some inter-product transfers for Llama2. Transfer of fine-tuned
models to unseen benchmarks has received some research attention in the context
of PLM-based matchers [Trabelsi et al., 2022,Tu et al., 2022] but often results in a
significant loss of matching performance as shown in Table 9.4.

9.6 Cost and Runtime Analysis

Apart from pure matching performance, there are additional considerations such
as data privacy requirements and the cost of using hosted LLMs which may re-
sult in the decision to use a less performant but cheaper hosted LLM or to run an
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Table 9.8: Costs for hosted LLMs on WDC Products. The best performing prompt
was selected for the analysis for each scenario.

Zeroshot 6-Shot 10-Shot

GPT-mini GPT-4 GPT-4o GPT-mini GPT-4 GPT-4o GPT-mini GPT-4 GPT-4o

F1 (Best prompt) 81.15 89.61 87.64 67.48 87.23 89.96 73.23 86.72 91.74

Mean # Tokens prompt 76 77 93 633 639 641 992 942 1,009
Mean # Tokens completion 89 40 1 2 2 2 2 2 2
Mean # Tokens combined 166 117 94 635 641 643 994 944 1,011

Token incr. to ZS - - - 3.8x 5.5x 6.8 6x 8.1x 10.8x

Cost per prompt 0.006¢ 0.474¢ 0.024¢ 0.01¢ 2.056¢ 0.162¢ 0.015¢ 3.037¢ 0.254¢

Cost incr. to ZS (GPT-mini) - 73x 3.8x 1.5x 319x 25x 2.4x 470x 39x

Cost incr. per ∆ F1 to ZS - 8.7x 0.6x 0.1x 52x 3x 0.3x 84x 3.7x

Rules (written) Rules (learned) Fine-tune

GPT-mini GPT-4 GPT-4o GPT-mini GPT-4 GPT-4o Train Inference

F1 (Best prompt) 73.76 85.71 86.49 78.68 87.06 85.24 - 88.89

Mean # Tokens prompt 213 214 213 815 817 815 97 88
Mean # Tokens completion 1 1 4 1 1 3 1 1
Mean # Tokens combined 214 215 217 816 818 818 98 89

Token incr. to ZS 1.3x 1.8x 2.3x 4.9x 7x 8.7x 0.6x 0.5x

Cost per prompt 0.003¢ 0.649¢ 0.057¢ 0.012¢ 2.458¢ 0.207¢ 0.280¢ 0.003¢

Cost incr. to ZS (GPT-mini) 0.5x 101x 9x 1.9x 381x 32x 43x 0.5x

Cost incr. per ∆ F1 to ZS 0.07x 22x 1.7x 0.8x 64x 7.8x - 0.06x

open-source LLM on local hardware. The cost analysis presented in the follow-
ing provides an overview of expected costs for hosted models. The purpose of the
analysis is to give the reader general guidance of what to expect with regards to the
cost dimension. A more in-depth analysis of costs including acquisition costs for
GPUs and electricity for the open-source models is left to future work.

Costs: Table 9.8 lists the costs associated with the hosted LLMs across all
experimental scenarios for the WDC Products dataset. The cost of using a hosted
LLM is dependent on the length of the respective prompts, measured by the amount
of tokens, and the current prices of the respective model. Thus, the results pre-
sented here are a snapshot as of August 2024 as the prices are subject to change.
The costs of all used OpenAI models are compared along all of the previous
prompting strategies. The prices for using the models at the time of comparison
were as follows for 1 million prompt/completion tokens: $0.15/$0.60 for GPT-
mini, $30.00/$60.00 for GPT-4, and $2.50/$10.00 for GPT-4o.

Table 9.8 shows that the in-context learning (6-shot, 10-shot) and the rule-
based approaches (hand-written and learned) from Section 9.5 require between
1.3 and 11 times the amount of tokens per prompt compared to basic zero-shot
prompting (see row Token increase to ZS in Table 9.8). For all of them, this is due
to longer prompts, either because of the inclusion of few-shot demonstrations or
rules. The fine-tuning approach, on the other hand, requires less tokens than zero
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Table 9.9: Runtime in seconds per prompt (request) for all LLMs using the best
prompts from the previous sections on the WDC Products dataset. Runtimes
marked with * are for the quantized version of the model used for fine-tuning.

Model Zeroshot 6-Shot 10-Shot
Rules

(written)
Rules

(learned)
Fine-Tune
(Inference)

GPT-mini 1.54 s 0.46 s 0.51 s 0.47 s 0.47 s 0.46 s
GPT4 2.19 s 0.75 s 0.78 s 0.68 s 0.76 s -
GPT4-o 0.51 s 0.48 s 0.53 s 0.48 s 0.49 s -

Llama2 22.62 s 7.15 s 7.82 s 23.16 s 24.51 s *0.30 s
Llama3.1 0.54 s 1.70 s 2.36 s 0.67 s 1.70 s *0.30 s

shot, as the prompt chosen for fine-tuning uses the restricted output format force
(see Section 9.4) whereas the best zero-shot prompt for GPT-mini uses the free
format which allows the model to answer more verbosely. From a cost perspective,
the in-context learning and the rule-based approaches increase the costs by 1.5 to
470 times compared to the cost of the zero-shot GPT-mini model. While GPT-
mini is the cheapest model in this lineup, the GPT-4o model achieves significantly
higher performance, often approaching or even surpassing GPT-4, at a fraction of
GPT-4’s cost. If many training examples are available, fine-tuning the GPT-mini
model results in comparably high performance for a fraction of the cost of GPT-4o.

Runtime: Table 9.9 lists the average runtime per prompt for all LLMs. The
selected prompts and the number of tokens used are the same as in Table 9.8. If the
prompt allowed free-form answering, this leads to much longer runtimes compared
to forcing the model to answer shortly. The large difference in runtimes between
zero-shot Llama2 and Llama3.1 in Table 9.9 is an example of this. The runtimes
of the hosted models are a snapshot of the API performance in August 2024 and
may change at any time. Prompting GPT4 takes around 50% longer than the other
two OpenAI models that have comparable runtimes if the answering scheme is the
same. The locally hosted open-source LLM Llama2 requires the largest amount of
time for most scenarios on the used local hardware (see Section 9.3), particularly
when generating freely in zero-shot and rule-based cases, where its runtime is 10
to 33 times longer than that of GPT-4. On the other hand, the Llama3.1 model
achieves a runtime comparable to the GPT models in most setups.

9.7 Conclusion

This chapter contributed a comparison of the effectiveness of prompting techniques
and fine-tuning of LLMs, including an evaluation of the prompt sensitivity, as well
as a comparison of open-source to hosted LLMs and LLMs to PLMs like Ditto [Li
et al., 2020] to the field of entity matching.

The experiments showed that LLMs are a more robust and less task-specific
training data dependent alternative compared to PLM-based matchers. The ex-



178 CHAPTER 9. PROMPTING AND FINE-TUNING LLMS

periments using different prompt designs have shown that there is no single best
prompt per model or per dataset, but that the best prompt needs to be estimated for
each model/dataset combination. Adding demonstrations or matching rules to the
prompts marginally profit models that already have a high zero-shot performance,
while the performance of models with a comparatively low zero-shot performance
increases.

The findings of this chapter can be summarized as follows: For use cases that
do not involve many unseen entities and for which a decent amount of training
data is available, PLM-based matchers are a suitable option which do not require
much compute due to the smaller size of the models. For use cases that involve a
relevant amount of unseen entities and for which it is costly to gather and main-
tain a decent-size training set, LLM-based matchers are the preferred choice due
to their high zero-shot performance and ability to generalize to unseen entities.
If using the best performing hosted LLMs is not an option due to their high us-
age costs, fine-tuning a cheaper hosted model is an alternative that can deliver a
similar F1 performance. If using hosted models is no option due to privacy con-
cerns, using an open-source LLM on local hardware can be an alternative provid-
ing slightly lower F1 performance given that some task-specific training data or
domain-specific matching rules are available.

Compared to the pioneering work of Narayan et al. [Narayan et al., 2022] and
concurrent work presented in Section 9.2, this chapter evaluates a wider range of
LLM models using a larger set of prompt designs. In addition, it provides a deeper
analysis of the prompt sensitivity of the models and the prompt-to-model fit. A
comparison to the ComEM [Wang et al., 2024] system, which first filters and ranks
possible matches across datasets before selecting a match without intricate prompt
engineering, is not directly possible as the work presented in this thesis uses down-
sampled versions of the test sets and more recent LLMs than Wang et al. Given
these limitations, all hosted LLMs and Llama3.1 achieve higher F1 values with
the best prompt design in the zero-shot setting, as reported in this chapter, than
the ones reported in the evaluation of the ComEM system on the relevant datasets.
Wang et al. state that future work should incorporate prompt engineering into their
proposed method, which would in turn allow a more thorough comparison of the
impact of their method compared to the results presented in this thesis. Other
concurrent work [Zhang et al., 2023, Sisaengsuwanchai et al., 2023] focusing on
prompt engineering concludes similar findings as presented in this chapter regard-
ing the necessity of a prompt search for each benchmark and model for best results,
as well as the need to consider costs. The latter is a main concern of other recent re-
search work on prompting [Li et al., 2024], with a focus on in-context learning [Fan
et al., 2024b] and large language model fine-tuning [Zhang et al., 2024a] includ-
ing the generation of explanations with more expensive LLMs to fine-tune smaller
language models [Wadhwa et al., 2024, Steiner et al., 2024]. The next chapters of
this thesis focus on the generation of similar explanations not for the purpose of
fine-tuning, but explaining model decisions and automating error analysis in entity
matching.
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Chapter 10

Explaining Model Decisions for
Entity Matching

10.1 Introduction

Deep learning-based approaches are ubiquitous in entity matching [Barlaug and
Gulla, 2021]. Earlier non-neural frameworks like Magellan [Konda et al., 2016]
that are based on attribute similarity-based features retain a certain level of inter-
pretability of how the inputs translate to the outputs of the model. An example for
this interpretability would be the importance value of a certain feature for, e.g., a
logistic regression classifier that allows a statement of which features have a high
relevance for the final decision, or a decision tree that can be easily interpreted by
a human. This level of interpretability is no longer given for neural methods due
to the black-box nature of these sub-symbolic methods. For a human observer, it
is not possible to follow how the inputs to a neural model, e.g. all the tokens car-
rying the information about a product, to the output. When passing through the
layers of the network, it is unclear to what extent certain information in the input is
deemed important for a decision. Furthermore, as PLMs and LLMs are pre-trained
on large corpora, it is not clear in how far information learned during pre-training
plays a role in the decision compared to the actual tokens that are part of the cur-
rent input. Some efforts have been made to explain sub-symbolic models for entity
matching [Di Cicco et al., 2019, Baraldi et al., 2023, Paganelli et al., 2022] and
are discussed in Section 10.2. Although these methods allow some insight into
model matching decisions, they are based on either only explaining singular (lo-
cal) model decisions for a specific record pair [Di Cicco et al., 2019, Baraldi et al.,
2023] or focus on a specific model architecture and cannot be directly applied to
other matching systems [Paganelli et al., 2022].

This chapter contributes two novel methods for explaining decisions of entity
matching models to the field of entity matching. Both methods allow aggregat-
ing explanations of single model decisions into global insights about the models
matching decisions, while existing work focuses on explaining decisions for sin-
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gle record pairs [Di Cicco et al., 2019, Baraldi et al., 2023]. The first method
is based on the Mojito framework [Di Cicco et al., 2019] that itself is based on
LIME [Ribeiro et al., 2016]. Mojito generates explanations for single entity match-
ing model decisions, which the method presented in this thesis further aggregates
into global insights of how the model performs entity matching. The second pre-
sented method is based on structured explanations generated by an LLM that can
be automatically aggregated into global insights.

The first method investigates which words in the entity descriptions were con-
sidered relevant by the different models for specific matching challenges. For
this, Mojito [Di Cicco et al., 2019] explanations are generated for sets of match-
ing decisions that involve specific challenges. The generated Mojito word impor-
tance weights are then aggregated using manually annotated domain-specific word
classes such as model name, product attribute, or stop word. The comparison of ag-
gregated explanations of decisions of BERT-based models and Deepmatcher shows
that the former are better at focusing on strong predictors such as model numbers
while still being able to fall back to other word classes such as model name in cases
where model numbers are not available.

The second method prompts an LLM to provide structured explanations for
its decisions. These structured explanations contain attributes and tokens that the
LLM considered relevant for its decision. In addition, each attribute in the ex-
planations is accompanied by a model-generated importance and similarity score,
which allows insights into the models matching decision for a specific pair of en-
tity descriptions. These structured explanations can be subsequently automatically
parsed and aggregated, similarly to the first method.

In summary, the contributions of this chapter are:

• Method for Aggregating Mojito Explanations of Model Decisions into
Global Insights: A method that takes advantage of local explanations for
model decisions from the recent Mojito explanation framework [Di Cicco
et al., 2019] in combination with annotation of word classes to aggregate
these explanations into global insights about the matching model. The results
show that Transformer models can focus on strong predictors like model
names or model numbers when they occur in record pairs and shift their
focus to others if they are missing. The Deepmatcher RNN model and sym-
bolic baselines show a more constant distribution of importance over all pre-
dictors. As it relies on an external explanation framework, the method is
broadly applicable to matching classifiers.

• Method for the Automatic Aggregation of LLM-based Structured Ex-
planations into Global Insights: A method that leverages an LLM to pro-
vide explanations for its own decisions in a structured format, including at-
tributes relevant for the model decision accompanied by model-generated
importance and similarity scores. These structured explanations can be au-
tomatically aggregated into global model insights without relying on external
explanations and separate annotation of word classes.
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Section 10.2 presents an overview of related work for explaining model de-
cisions in the field of entity matching. Section 10.3 presents the first method for
aggregating instance explanations based on Mojito. Section 10.4 presents the sec-
ond method that aggregates structured explanations provided by an LLM to gain
global insight into the model. Finally, Section 10.5 summarizes the contributions
and findings of this chapter.

The work presented in this chapter has previously been published in [Peeters
and Bizer, 2021] and in [Peeters et al., 2025] .

10.2 Related Work

This section gives an introduction to related work for explainability of black-box
machine learning models and specific methods proposed for the entity matching
task.

Explanations for Machine Learning Model Decisions

The explainability of machine learning models has been an important field of re-
search since sub-symbolic or black-box models exist [Gilpin et al., 2018,Xu et al.,
2019, Sun et al., 2021, Holzinger et al., 2022]. Such models are characterized by
the inability of humans to understand the process that connects inputs to the model
with its output, that is, its predictions [Xu et al., 2019]. Humans cannot attribute
a prediction to certain input features or their combinations. The most prominent
example of black box models are deep neural networks consisting of many con-
nected layers that transform input features like text after conversion to the embed-
ding space to a model decision [Goodfellow et al., 2016, Sun et al., 2021], e.g., a
binary classification in the entity matching case.

Methods for explaining machine learning models are categorized into two fam-
ilies, (1) transparency by design and (2) post-hoc methods [Xu et al., 2019]. The
former design the model in a way that makes them explainable as part of the model
design, e.g. decision trees or neural networks containing an explanation compo-
nent as part of the architecture. Post-hoc methods, on the other hand, try to explain
model decisions after a black-box model has been trained. These methods can
also be model-specific or model-agnostic, and they can be global or local. Local
methods provide explanations for single input examples, while global methods try
to explain the general workings of a model for a specific task, independently of a
single example.

Examples of local agnostic methods are LIME [Ribeiro et al., 2016], which
approximates a complex model locally with an interpretable surrogate, and An-
chors [Ribeiro et al., 2018], which identify conditions under which predictions are
invariant. Integrated gradients [Pruthi et al., 2020] is an example of a local method
specific to neural networks, as it is based on tracing the gradients from input to
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output during backpropagation to identify the contributions of input features to
output predictions. Examples of global methods include the works of Ibrahim et
al. [Ibrahim et al., 2019], who develop techniques to generate explanations for the
entire input space of a model by clustering local explanations, and Radulovic et
al. [Radulovic et al., 2021], who propose methods for generating high-confidence
interpretations for black-box models over all possible inputs by creating multiple
specialized surrogate models in combination with correlating feature values to class
labels to provide global explainability.

Explanations for Entity Matching Model Decisions

Understanding the decisions of a matching model is important for users to build
trust towards the systems [Thirumuruganathan et al., 2019]. Explanations of model
decisions can also be used for debugging matching pipelines. The prevalence
of deep neural networks, especially PLMs over recent years in the field of en-
tity matching, has led to research into the explainability of these matching sys-
tems [Ebaid et al., 2019, Di Cicco et al., 2019, Baraldi et al., 2023, Paganelli et al.,
2022].

Ebaid et al. [Ebaid et al., 2019] propose a framework, ExplainER, which is
composed of multiple model-agnostic explanation techniques like LIME [Ribeiro
et al., 2016] and Anchors [Ribeiro et al., 2018] providing local explanations as
well as the possibility of aggregating them into global insights via aggregation or
if-then rules. ExplainER is based on similarity-based features like Jaccard string
similarity and not all of its features are applicable to token-based textual models
like the prevalent Transformer architecture that is part of most methods applied in
this thesis.

DiCicco et al. [Di Cicco et al., 2019] present Mojito, an explainability method
based on LIME [Ribeiro et al., 2016] adapted explicitly for the pair-wise entity
matching case. LIME is based on slightly perturbing instances using, for example,
word deletion to identify which words cause the label to change and learning a
local surrogate model in the form of a linear regression using its coefficients as
feature importances for the classifier to be explained. The Mojito method adds
an additional perturbation method to LIME which is copying tokens between the
records of a record pair. Mojito is used as the basis for the explainability method
presented in Section 10.3.

Barlaug [Barlaug, 2023] presents a model-agnostic explainability method called
LEMON based on LIME [Ribeiro et al., 2016]. Compared to LIME, the LEMON
method provides explanations for both records in a pair, avoiding cross-record in-
teraction effects, and further presents the concept of attribution potential, which
allows users to understand what features would need to change to transform a non-
matching decision into a matching decision.

Paganelli et al. [Paganelli et al., 2022] present an in-depth evaluation of BERT
entity matching decisions using embedding similarity and attention scores in the
layers. They conclude that the fine-tuning process is crucial as the pre-training
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knowledge encoded in the model is not enough to perform the task reliably. Al-
though the Transformer does identify matching attributes, the actual decisions are
based on contextual knowledge across multiple tokens rather than direct compar-
isons of single tokens between two records in a pair.

Baraldi et al. [Baraldi et al., 2023] present WYM, an example of an intrinsically
locally interpretable system based on the idea of finding and extracting important
decision units among entity descriptions for matchers during training. The authors
concede that the usage of this method negatively impacts the performance of the
matching systems as it is based on simple logistic regression, that is, increased ex-
plainability comes with the trade-off of reduced matching performance compared
to using a neural method like Ditto [Li et al., 2020].

Research into explanations created by LLMs has recently come into focus in
data integration and entity matching. In addition to the work presented in this the-
sis, Li et al. [Li et al., 2023a] use the generation of explanations successfully to
improve the decisions of their Table-GPT model for table tasks, including entity
matching. Wadwha et al. [Wadhwa et al., 2024] use LLM-generated explanations
to augment training data to fine-tune smaller Transformer models, showing an in-
crease in performance and out-of-domain generalization. Steiner et al. [Steiner
et al., 2024] examine how different representations of training examples, aug-
mented with LLM-generated explanations, can improve entity matching perfor-
mance. The experiments of Steiner et al. are based on the LLM generated struc-
tured explanations presented in this chapter.

10.3 Explanations for Model Decisions Using Mojito

The method presented in this section investigates the global importance of words
belonging to domain-specific word classes for the matching decisions based on
aggregated explanations for single matching decisions of matching models. This
analysis is based on the Mojito [Di Cicco et al., 2019] framework, which adapts the
LIME algorithm [Ribeiro et al., 2016] for the use case of pairwise entity matching.
The code for replicating these experiments is available on GitHub1.

10.3.1 Generating Instance Explanations

LIME [Ribeiro et al., 2016] creates an explanation for a single matching decision
as follows: The instance to be explained (pair of entity descriptions) is perturbed
using word dropping, and labels for all perturbed instances are queried from the
matching model. This set of instance/label pairs is then used to train a surrogate
linear regression model, which is assumed to approximate the original model lo-
cally for that specific matching decision. The regression model coefficients are
extracted and signify the importance of the respective words for the matching de-
cision. The Mojito framework [Di Cicco et al., 2019] offers a second method for

1https://github.com/wbsg-uni-mannheim/jointbert

https://github.com/wbsg-uni-mannheim/jointbert
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perturbing instances, which is the copying of tokens between entities. For the fol-
lowing demonstration of the presented method, only the default LIME word drop-
ping method is applied for perturbation. Figure 10.1 shows an example of a LIME
explanation generated with Mojito for a matching decision by a BERT model for
a pair from the MWPD test set of the WDC LSPM benchmark (see Section 4.6.2).
Words with orange coloring signify positive weight (pushing toward match), and
blue words indicate negative weight (pushing towards non-match). The model’s
decision for non-match in this specific case seems to be based on the difference
in RAM size and SSD size between the two Chromebooks, which is intuitively
understandable for a human acquainted with the domain.

Figure 10.1: LIME explanation example for a non-match classified correctly by
the BERT model.

For these experiments, the MWPD test set of the WDC LSPM benchmark
serves as a basis. It contains a variety of hard pairs and products with and without
training examples in the associated training set. This allows for sampling interest-
ing record pairs, whose explanations can give further insight into the model deci-
sion process when applying the method presented in this section. For the creation
of the explanation evaluation dataset, 50 pairs of product offers, split into 25 posi-
tives and 25 negatives, are sampled for each of the following matching situations.
This selection allows for a fine-grained evaluation of the generated explanations
along these matching situations in the following section:

1. Both products had many training examples (>10)

2. Both products had few training examples (<5)

3. Both products had no training examples

4. Both offers contain a model number

5. At least one offer does not have a model number

In the next step, each of the words and numbers in all selected pairs title at-
tributes is labeled using a set of common product-specific word classes that sub-
sequently makes it possible to aggregate the explanations across different products
that are described by different words that share the same common word class. For
example iPhone 10 or Samsung S10 would share the common word class model
name. In the aggregation step of the next section, these word classes will enable
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the aggregation of explanations for each instance into global modal insights. Table
10.1 shows an overview of these domain-specific word classes and examples of
words that fall into each class.

Table 10.1: Product domain-specific word classes used for manual annotation of
the explanation dataset.

Word Class Examples

Model number DUAL-GTX1060-O6G, DT100G3/128GB, ...
Brand name Asus, Apple, Hewlett-Packard, NVIDIA, . . .
Model name Thinkpad 11e, GTX 1070, Core i7-4770k, ...
Characteristic attribute 16 GB RAM, 256 GB SSD, 4 GHz, . . .
Stopword with, New, Wholesale, Laptop Outlet Direct, . . .
Product type Hard Disk Drive, Processor, Graphics Card, . . .
Other descriptive word Kit, OEM, High Performance, . . .

10.3.2 Aggregating Instance Explanations

Mojito explanations are restricted to explaining single matching decisions by lo-
cally approximating the model around one specific decision. Mojito’s explanations
can be aggregated for multiple matching decisions representing a specific match-
ing situation to identify the types of words onto which a model focuses in specific
matching situations or challenges. For aggregating explanations and for abstract-
ing from specific strings and numbers to common word classes relevant for the
domain, such as model number, brand and model name, a three-step approach is
used:

To understand the importance of domain-specific word classes in specific match-
ing situations and for specific matching challenges, the five classes previously
presented are used to analyze in how far the importance of specific word classes
changes based on the premises of the class. In a first step, Mojito is applied to
all 250 selected pairs, resulting in importance values for the matching decision for
each token in the string representing each pair of records. In the second step, the
generated Mojito word weights for the specific tokens are aggregated by word class
for each matching situation separately. Finally, the resulting weight aggregations
can be compared according to the matching situation between different models. To
demonstrate the global model insights that can be gained by this method, a subset
of the annotated pairs and matching situations are analyzed in the following sec-
tions: (1) pairs correctly classified by BERT, JointBERT, and Deepmatcher, as well
as (2) pairs with and without model numbers.

Correct Matching Decisions

To gain a general overview of the differences between the three models BERT,
JointBERT, and Deepmatcher along the selected subsets, explanation plots using
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pairs that all models correctly predicted for the match class are presented in Fig-
ure 10.2. The black lines across the swarm columns for each model denote the
median value of that column. There are some notable differences visible between
the Deepmatcher and BERT-based models. Both BERT-based models put a large
fraction of the explanation weights on model numbers, which is reasonable as this
word class is the strongest indicator of matching or non-matching descriptions for
this domain. Compared to the BERT models, Deepmatcher puts less weight on the
model numbers. The second highest weighted word class is the model name for the
BERT-based models, which is the highest weighted for Deepmatcher. The model
name is one of the strongest indicators for a matching or non-matching pair as of-
ten these are the strings where hard non-matching pairs differ in subtle ways (e.g.,
IPhone X vs. IPhone Xs). For matching pairs, on the other hand, it is unlikely
that these strings differ apart from possible differences due to e.g. encoding or
typographical errors. The differences between the models are minimal for the re-
maining word classes. The weighting of stopwords is low for all models, showing
that all tested models are capable of ignoring irrelevant words.

Figure 10.2: Aggregated explanations for pairs classified correctly by all models.

Role of Model Numbers

As model numbers are a strong indicator for identifying matches and non-matches,
if they are available, focusing on the two subsets solvable using model numbers
and not solvable using only model numbers allows to illustrate how model deci-
sions change for each of these cases. Figures 10.3 and 10.4 show the resulting
explanation plots for aggregating the explanations for these matching situations for
matching pairs. For those cases that can be solved using model numbers, that is,
where they are available for both offers, the BERT-based models focus strongly on
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the model numbers and to a lesser extent on the model name compared to the Deep-
matcher model which is more focused on the model names and does not weight the
model number as strongly in comparison (Figure 10.3).

Figure 10.3: Aggregated explanations for the correctly classified pairs of the group
"solvable by model number".

When looking at those pairs not solvable using model numbers, the BERT-
based models shift their focus to using the model name instead (Figure 10.4). The
median weight on the model name is higher than for Deepmatcher for these cases.
In conclusion, the BERT-based models seem to be able to shift their focus to strong
predictors such as model numbers if available and can adapt if the strongest predic-
tors, i.e. model numbers, are missing when compared to Deepmatcher, which does
not adapt based on the available predictors and focuses most on the model name in
both matching situations.

Concluding Remarks

The presented method is applicable to any matching classifier that can be explained
with the LIME/Mojito explanation methods. Although the annotation of strings
into domain-specific word classes has been done manually for the presented exper-
iments, future applications of this method could make use of LLMs to perform this
annotation automatically instead. The next section, presenting the second method
for aggregating local explanations to global insights, uses LLMs to generate struc-
tured explanations, as well as leverages their ability to perform information ex-
traction to generate attributes similar to the word classes presented above, showing
their ability for performing this task.
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Figure 10.4: Aggregated explanations for the correctly classified pairs of the group
"not solvable by model number".

10.4 Explanations for Model Decisions Using an LLM

The previously presented method allows for global insights into the matching sys-
tem’s decisions and is broadly applicable to machine learning models for entity
matching. The method relies on the faithfulness of the LIME/Mojito explanations,
which are based on approximating the original model locally using linear func-
tions, to the actual decision process inside the original model. The second method
presented in the following sections instead uses an LLM, which is queried for ex-
planations of its matching decisions in a structured format. This method does not
rely on an external explainability method for the model but instead uses the LLM
itself to explain its decision in a structured format. Although large language mod-
els are commonly trained to respond using natural language, forcing a structure on
the explanations of the model instead allows automatic parsing of the generated
explanations. These explanations can then be used for various downstream appli-
cations. For example, they allow to gain insights into singular model decisions
but can also be used to automatically aggregate explanations in a similar way as
in the first method to allow for global insights into the model decisions. Further-
more, structured explanations can be used to enhance fine-tuning data [Wadhwa
et al., 2024, Steiner et al., 2024] or to use an LLM to perform the creative process
of generating error classes (as presented in Chapter 11) and support error analysis.
All of these applications can directly support data engineers in understanding and
improving entity matching pipelines. The code for replicating these experiments is
available on GitHub2.

2https://github.com/wbsg-uni-mannheim/MatchGPT/tree/main/LLMForEM

https://github.com/wbsg-uni-mannheim/MatchGPT/tree/main/LLMForEM
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10.4.1 Generating Instance Explanations

For the generation of explanations, the LLM is first prompted to decide if a pair
of entity descriptions matches (see Chapter 9) and subsequently the conversation
is continued by directly asking the model to explain its decision using a second
prompt. If no restrictions are imposed on the explanation format, the model would
respond with natural language text that describes the different aspects that influ-
enced its decision [Nananukul et al., 2024]. Instead of allowing free-text expla-
nations, the model is instead prompted to organize its explanations into a fixed
structure, which will allow automatic parsing and aggregation of the generated ex-
planations.

Figure 10.5 shows examples of complete conversations for generating these
structured explanations for pairs from the Walmart-Amazon and DBLP-Scholar
datasets. After prompting and receiving a decision in the first exchange with the
model, the conversation continues by passing a second prompt (the second user
prompt in Figure 10.5). Specifically, a structured explanation format is requested
and provided as an example that includes all attributes of both product offers that
were used for the matching decision. As the descriptions of the record pairs are
highly textual with a limited amount of structure in the original attribute schema,
e.g. many important words for the matching decision are contained in the title
attribute of a product, enforcing a structure to the explanations allows for a clearer
comparison of which words were considered relevant to the matching decision.

This structure leads the model to perform information extraction implicitly us-
ing its knowledge of the domain. In addition to the extracted attributes, an impor-
tance value and a similarity value are also generated for the compared attributes.
The sign of the importance values is requested to be negative if the attribute com-
parison contributed to a non-match decision and vice versa. The importance and
similarity values are integral for a human to understand the decision process as
presented by the model.

Subsequently, an explanation is queried from the GPT4 model for each pair
in the test sets of both datasets for the best performing zero shot prompt for the
datasets and the prompts from Chapter 9 using the prompt shown in Figure 10.5.
The first response in the form of a structured explanation of the Walmart-Amazon
product pair in Figure 10.5 shows that the model can extract various attributes from
the serialized strings. The highest positive importance is assigned to the model
followed by the brand and the price. Although none of these strings perfectly
match, they are highly similar, the model correctly assigns them a high similarity
and positive importance value and considers them indications for matching product
offers. The model extracted the hard drive size from the first offer, which is missing
in the description of the second offer, and assigned this circumstance a low negative
importance score.

In the explanation for the DBLP-Scholar pair (lower part of Figure 10.5, the
authors match perfectly, which the model also sees as important evidence for a
match by assigning a positive importance of 0.3. The model further correctly as-
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Figure 10.5: Conversation instructing the model to match an entity pair and
subsequently asking for a structured explanation of the matching decision. Top:
Walmart-Amazon, bottom: DBLP-Scholar.
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Table 10.2: Aggregated structured explanations for Non-Matches and Matches on
the DBLP-Scholar and Walmart-Amazon datasets.

Matches Non-Matches

Attribute Freq.
Mean

Import.
St.Dev. Freq.

Mean
Import.

St.Dev.

DBLP-Scholar

title 0.96 0.59 0.40 0.95 -0.40 0.38
authors 0.78 0.65 0.40 0.68 -0.66 0.34
conference 0.50 0.35 0.37 0.29 -0.11 0.29
year 0.46 0.26 0.37 0.43 -0.16 0.25
journal 0.14 0.40 0.43 0.05 -0.15 0.25

Walmart-Amazon

brand 0.98 0.78 0.34 0.99 -0.04 0.34
price 0.92 -0.03 0.27 0.86 -0.16 0.25
model 0.81 0.63 0.51 0.82 -0.77 0.37
color 0.24 0.23 0.31 0.35 -0.06 0.23
product type 0.12 0.64 0.48 0.11 -0.42 0.50

signs a high negative importance to year and conference, which are reasonably
different to support a non-match decision. Although the title overlaps in all but
two words, the model still uses this as the most important evidence for predicting
non-match. A sample of the generated explanations was manually verified against
the corresponding model decisions by a human, confirming the connection between
the explanations and the model decisions.

To evaluate the meaningfulness of the similarity values created by the model
in the structured explanations, their Pearson correlation is calculated with the string
similarity metrics Cosine and Generalized Jaccard. For the test sets of both datasets,
the metrics are applied to each extracted attribute found in each explanation, and
the correlation between them and the generated similarities is calculated. The sim-
ilarities generated by the model have a strong positive correlation between 0.75-
0.85 and 0.73-0.83 with Cosine and Generalized Jaccard, respectively, across all
datasets. These results show that the model-generated similarity values have mean-
ing, as they have a high correlation with standard string similarity metrics.

10.4.2 Aggregating Instance Explanations

After generating the local explanations for each pair of records in the test sets,
the next step is to aggregate the local explanations into global insights. Structured
explanations can be parsed to automatically extract attributes, importance scores,
and similarity values. The extracted values can then be aggregated by attribute
and the average importance scores for all attributes deemed relevant by the model
for its decision can be calculated. An example of five of these aggregated average
importances can be seen in Table 10.2 for both datasets. These five attributes were
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selected by a domain expert as they represent the most relevant attributes used to
distinguish entities in the respective domains. The model frequently assigned high
importance to the brand and model for matches, while the price was not considered
relevant to the decisions on average. For non-matches, the model focuses on the
model attribute with a more neutral importance on the brand attribute. For DBLP-
Scholar, the model’s focus is on differences and similarities of the title and author
attributes of the publications for both matches and non-matches, while conference
and year information only contribute to a lesser extent to the matching decisions.

10.5 Conclusion

This chapter contributed two methods for aggregating local explanations into global
model insights to the field of entity matching. The first method is based on the ag-
gregation of local explanations created by the Mojito framework [Di Cicco et al.,
2019] into global insights into the model decisions by aggregating the feature
importances of a set of manually annotated domain-specific word classes. The
method was applied to the Deepmatcher [Mudgal et al., 2018], BERT [Devlin et al.,
2019] and JointBERT entity matching methods to understand and differentiate how
these systems perform entity matching. The results showed that Transformer-based
methods are more capable of focusing on the most relevant predictors like model
numbers if available, while falling back to other predictors such as the model name
and brand if the model number is not listed in both records of a pair. The Deep-
matcher system, on the other hand, showed a more even distribution of the im-
portances attributed to these word classes. As this method is model-agnostic, it
is applicable to any entity matching method for which explanations can be gener-
ated with LIME/Mojito. Furthermore, as an avenue for future work, LLMs could
be used to automate the process of annotating word classes, allowing for easier
scaling of the method by removing the manual process of annotation.

The second method leveraged the generative nature of an LLM to provide ex-
planations for its own decisions in a structured format, including similarity and
importance scores for the relevant attribute comparisons instead of free natural lan-
guage text. This structured format allows to parse the explanations automatically.
Due to the LLM inherent attribute extraction occurring as part of the explanation
generation, the extracted attributes and their importances can be further aggregated
to generate global insights into what features the LLM bases its decision on. This
method is easily scalable to larger amounts of record pairs compared to the first
presented method, as no annotation of domain-specific word classes or attributes is
necessary. The usefulness of the model-generated similarity scores is supported by
the high correlation of the model-generated similarity scores with string similarity
metrics like Generalized Jaccard.

Both methods allow more global insight into decisions of neural matching
methods compared to existing methods. The next chapter presents how structured
explanations can be used to automate the error analysis process in entity matching.



Chapter 11

Automatic Error Analysis for
Entity Matching

11.1 Introduction

Error analysis in entity matching involves manually inspecting errors made by
matching systems and deriving a set of error classes to categorize them. These
error classes are created along the types of error, false positives and false nega-
tives, and are used as a classification for why certain errors occur across record
pairs. This information is useful to decide on improvements in the entity matching
pipeline, e.g. by changing data pre-processing or parameters of model training.
Examples for such error classes could be, for the product domain, "model ignores
small differences in model number leading to wrong classification as match" or, for
the publication domain, "model is confused by noise in the year attribute leading
to missing actual matches although all other attributes match". More examples of
error classes will be presented later in Tables 11.1 and 11.2.

Deriving these error classes is a creative task that requires good reasoning capa-
bilities. Although there are tools to facilitate manual inspection of errors1, the task
of generating error classes was not previously automated. This chapter contributes
a method for automating error analysis to the field of entity matching. Specifically,
the method demonstrates that an LLM can perform this creative task and derive
meaningful error classes from the errors and associated structured explanations
created before in Section 10.4. A qualitative analysis shows that LLM-generated
error classes can be helpful in understanding why a model makes wrong decisions.
Furthermore, an analysis of the ability of the LLM to sort errors into the created
error classes shows that the LLM is capable of performing this task with a mean
accuracy of 80%. This information can then subsequently be used to improve
the matching system. The code for replicating these experiments is available on
GitHub2.

1https://github.com/olehmberg/winter
2https://github.com/wbsg-uni-mannheim/MatchGPT/tree/main/LLMForEM

195

https://github.com/olehmberg/winter
https://github.com/wbsg-uni-mannheim/MatchGPT/tree/main/LLMForEM


196 CHAPTER 11. AUTOMATIC ERROR ANALYSIS

In summary, the contribution of this chapter is:

• Method for Automating Error Analysis with LLMs: A method that uses
an LLM to automatically identify potential causes of matching errors by an-
alyzing explanations of wrong decisions and generating error classes, which
was a manual creative task performed by humans beforehand. The LLM is
also used to automatically sort errors into the generated error classes, reach-
ing a mean accuracy of 80%, which can support data engineers in debugging
and improving matching systems.

Section 11.2 presents an overview of related work for explaining model deci-
sions in the field of entity matching. Section 11.3 presents the method for automat-
ically generating error classes with an LLM. Section 11.4 evaluates the model’s
accuracy for assigning errors to the generated error classes. Finally, Section 11.5
summarizes the contributions and findings of this chapter.

The work presented in this chapter has been published in [Peeters et al., 2025].

11.2 Related Work

The analysis of errors made by entity matching systems is crucial for data engi-
neers trying to improve entity matching pipelines. This process usually involves a
large amount of manual work as it requires looking at large amounts of erroneous
decisions made by a matching model and subsequently deriving steps to reduce or
eliminate possible error sources. This error reporting process can be supported by
tools like WInte.r3 that automatically collects erroneous matching decisions and
presents them to the user in a format that allows to view created matching rules
and corresponding similarity values. Using this view, users can create error classes
based on an analysis of the presented information and subsequently sort the er-
rors made into these classes. Once this process is completed, the user has a clear
overview of what kind of errors happen and how often they occur. Unfortunately,
WInte.r does not support error analysis for deep neural matching methods.

Data engineers can be further supported by using explainability methods like
those presented in Chapter 10 to obtain local or global explanations for model
decisions [Ebaid et al., 2019, Di Cicco et al., 2019, Baraldi et al., 2023, Paganelli
et al., 2022]. While these methods provide explanations, the task of error analysis
still remains mostly manual as the engineers have to create a set of error classes
that represent all of the single erroneous decisions in an aggregated form, which
requires creative abilities that the mentioned supportive systems do not possess.

Lu et al. [Lu et al., 2023a] take a step toward automated error analysis by aug-
menting a model-based evaluation score [Sai et al., 2022] to automatically classify

3https://github.com/olehmberg/winter

https://github.com/olehmberg/winter
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Table 11.1: GPT4-turbo generated error classes for the DBLP-Scholar dataset and
manually annotated number of errors falling into each class.

False Negatives (26 overall) # errors

1. Year Discrepancy: Differences in publication years lead to false negatives,
even when other attributes match closely.

8

2. Venue Variability: Variations in how the publication venue is listed (e.g.,
abbreviations, full names) cause mismatches.

14

3. Author Name Variations: Differences in author names, including initials,
order of names, or inclusion of middle names, lead to false negatives.

9

4. Title Variations: Minor differences in titles, such as missing words or
different word order, can cause false negatives.

11

5. Author List Incompleteness: Differences in the completeness of the author
list, where one entry has more authors listed than the other.

11

False Positives (26 overall) # errors

1. Overemphasis on Title Similarity: High similarity in titles leading to false
positives, despite differences in other critical attributes.

15

2. Author Name Similarity Overreach: False positives due to high similarity
in author names, ignoring discrepancies in other attributes.

16

3. Year and Venue Ignored: Cases where the year and venue match or are
close, but other discrepancies are overlooked.

5

4. Partial Information Match: Matching based on partial information, such
as incomplete author lists or titles, leading to false positives.

19

5. Misinterpretation of Publication Types: Confusing different types of
publications (e.g., conference vs. journal) when other attributes match.

9

translation errors into a set of given error classes and subsequently refine the trans-
lation based on the errors found. In follow-up work, Lu et al. [Lu et al., 2023b]
proposed error analysis prompting and showed that GPT4 can produce a human-
like evaluation of machine translations. For this, they have the model break down
the translations of a sequence into smaller sequences, assign machine-generated
error classes to the translated text and subsequently score the translations based on
the found errors. The authors conclude that this process significantly improves the
model-based scoring of LLM translations. A direction of research related to error
analysis is dedicated to the self-improvement of LLMs [Pan et al., 2024] aimed
at addressing their inherent drawbacks such as hallucination, unfaithful reasoning,
and the generation of toxic content.

11.3 Discovery of Error Classes

For automatically discovering error classes with the presented method, all erro-
neous decisions, together with the structured explanations of these decisions, must
be collected. For this experiment, this is done for the zero-shot prompts and expla-
nations used in Section 10.4. In the second step, a prompt is passed to the OpenAI
GPT4-turbo model, which asks for the synthesis of error classes for false positive
and false negative cases separately. Subsequently, the collected erroneous pairs
together with their GPT4 created explanations are listed in the prompt. These are
26 false positives and 26 false negatives for the DBLP-Scholar test set and 26 false
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Table 11.2: GPT4-turbo generated error classes for the Walmart-Amazon dataset
and manually annotated number of errors falling into each class.

False Negatives (15 overall) # errors

1. Model Number Mismatch: The system fails when there are slight
differences in model numbers or product codes, even when other
attributes match closely.

9

2. Attribute Missing or Incomplete: When one product listing
includes an attribute that the other does not, the system may
fail to recognize them as a match.

9

3. Minor Differences in Descriptions: Small differences in product
descriptions or titles can lead to false negatives, such as slightly
different wording or the inclusion/exclusion of certain features.

11

4. Price Differences: Even when products are very similar, significant
price differences can lead to false negatives, as the system might
weigh price too heavily.

12

5. Variant or Accessory Differences: Differences in product variants
or accessories included can cause false negatives, especially if the
system does not adequately account for these variations being minor.

7

False Positives (26 overall) # errors

1. Overemphasis on Matching Attributes: The system might give too
much weight to matching attributes like brand or model number,
leading to false positives even when other important attributes differ.

23

2. Ignoring Minor but Significant Differences: The system fails to
recognize important differences in product types, models, or
features that aresignificant to the product identity.

21

3. Misinterpretation of Accessory or Variant Information: Including or
excluding accessories or variants in the product description can lead to
false positives if the system does not correctly interpret these differences.

8

4. Price Discrepancy Overlooked: The system might overlook significant
price differences, assuming products are the same when they are not,
particularly if other attributes match closely.

14

5. Condition or Quality Differences: Differences in the condition or
quality of products (e.g., original vs. compatible, new vs. refurbished)
are not adequately accounted for, leading to false positives.

2
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Figure 11.1: Prompt used for the automatic generation of error classes given false
positives and false negatives.

positives and 15 false negatives for the Walmart-Amazon test set from Section 9.3.
An example of this prompt and part of the answer of the LLM is presented in
Figure 11.1.

Tables 11.1 and 11.2 show the resulting generated error classes for both datasets
and, for each class, the number of errors that fall into these classes. The latter were
manually annotated by three domain experts.

The summary numbers from the manual annotations show that the automat-
ically created error classes are relevant and cover frequent and rarer errors. For
example, for the DBLP-Scholar dataset, the first error class of false positives ref-
erences putting too much emphasis on the similarity of publication titles, which is
deemed correct by a human annotator for 15 of the 26 errors, while the third error
class is relevant only for 5 of the errors, namely those where the model seemed to
put too much emphasis on matching year and venue information in the pairs while
ignoring crucial difference in the other attributes.
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Figure 11.2: Prompt used for the classification of errors into the generated error
classes.

11.4 Assignment of Errors to Error Classes

This final experiment investigates whether GPT4-turbo can explicitly categorize
errors into the created error classes it has generated. Such a categorization allows
data engineers to drill down from the error classes to concrete example errors,
which might give them hints on how to address the problem and improve the pre-
processing or the matching system itself. The prompt shown in Figure 11.2 is used
to prompt the LLM to categorize errors. Each prompt presents the error classes
and, subsequently, the correct and predicted labels, and, finally, one pair of en-
tity descriptions with its GPT4-created explanation. The model is asked to pick
all error classes that apply to the pair and to provide a confidence value for each
prediction.

Table 11.3 shows the accuracy values the GPT4-turbo model reaches on this
task. On average, the model achieves a mean accuracy of more than 80% for most
types of errors. Only the mean accuracy on Walmart-Amazons false positives is
lower which is caused by the low accuracy of the first error class Overemphasis on
Matching Attributes as the domain experts disagreed with the models classification
in the first error class, more specifically the model rarely assigned this class while
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Table 11.3: Accuracy of GPT4 for classifying errors into the created error classes.

Walmart-Amazon DBLP-Scholar

Error class FP FN FP FN

1 34.62 86.67 92.31 96.15
2 84.62 73.33 76.92 92.31
3 84.62 73.33 76.92 73.08
4 76.92 100 100 88.46
5 84.62 86.67 92.31 88.46

Mean 73.08 84.00 87.69 87.69

the domain experts considered it relevant in 23 out of 26 cases. Apart from this dis-
agreement, the model can accurately categorize errors, which shows the usefulness
of LLMs for automating error analysis and supporting data engineers.

11.5 Conclusion

This chapter introduced a method for automatically generating error classes from
matching errors using LLMs. The LLM GPT4-turbo was shown to be capable
of performing the creative task of automatically deriving meaningful error classes
from a set of matching errors in combination with their LLM-created structured ex-
planations for the product and bibliographic matching domains. This automation
of error analysis and the resulting error classes can support data engineers by point-
ing them to issues that they may otherwise have overlooked. The presented method
is the first to automate this part of the error analysis process for entity matching.
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Chapter 12

Conclusion

This chapter summarizes the contributions of this thesis to the field of entity match-
ing, outlines the research impact, and discusses open issues and future directions.
Section 12.1 first summarizes each part of this thesis and their contributions. Sec-
tion 12.2 discusses the research impact of the thesis. Finally, Section 12.3 discusses
open issues and future research directions that remain or were discovered as part
of the work on this thesis.

12.1 Summary and Contributions

The following sections summarize the findings of each part of the thesis separately
and highlight the contributions made to the field of entity matching. The structure
of the following sections follows the same order as the structure of the thesis.

Part II: The Semantic Web as a Source of Training Data for Product Matching

This part of the thesis focused on the usefulness of using product identifiers an-
notated with Schema.org annotations in the Common Crawl as distant supervision
by deriving labeled pairs for the product matching task. The research spanned
the subsequent creation and evaluation of two large-scale benchmarks for product
matching.

Chapter 4 first presented a process for clustering product offers using prod-
uct identifiers such as GTINs and MPNs found in the Schema.org annotations in
the Common Crawl. This process ensures high-quality clustering through vari-
ous cleansing steps, resulting in the WDC Training Dataset for Large-Scale Prod-
uct Matching. This dataset contains 26 million product offers from 79 thousand
websites, grouped into 16 million clusters. Profiling this corpus demonstrated the
potential to generate and automatically label a vast number of matching and non-
matching pairs, making it the largest publicly available source of labeled data for
product matching at its time of creation. The diversity and scale of this dataset
exceeds previous benchmarks.
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Building on this foundation, the first contribution of this part, the WDC LSPM
benchmark was introduced, offering comprehensive training, validation, and test-
ing splits for product categories such as computers, cameras, watches, and shoes.
The benchmark’s varying training set sizes, ranging from 2,000 to 65,000 labeled
pairs, provide a robust resource for evaluating multi-source entity matching sys-
tems. The largest combined set contains over 210,000 pairs, making it the most
extensive and diverse benchmark of its kind at the time of creation. This bench-
mark also includes a specialized test set for the computers category that contains a
set of matching challenges, facilitating more fine-grained evaluation.

Further experiments demonstrated the effectiveness of using the WDC LSPM
benchmark and additional training pairs for training both neural and non-neural
product matchers. In particular, the Deepmatcher [Mudgal et al., 2018] RNN
model achieved a performance of more than 90% F1, further improving with end-
to-end training of the fastText embeddings. Comparisons with non-neural baselines
confirmed the advantages of deep neural networks in handling highly textual data.
Continued fine-tuning using relevant pairs from the dataset maintained high per-
formance also for new products, highlighting the utility of Schema.org annotated
product identifiers on the Web as distant supervision for ongoing model improve-
ment.

The research also explored the impact of label noise on model performance,
revealing that while a 6% noise level does not hinder high-performance training,
higher noise levels significantly degrade performance. Furthermore, experiments
with the BERT [Devlin et al., 2019] transformer model underscored the value of
large amounts of diverse training pairs sourced from Schema.org annotations on
the Web, showing notable performance improvements when combining masked
language modeling with the product matching task. This led to an F1 performance
increase of more than 97% for the computers category of the WDC LSPM bench-
mark (see Section 4.7.5).

Chapter 5 presented the second contribution, the WDC Products benchmark.
This benchmark builds on the work from Chapter 4 by providing a multi-dimensional
benchmark created using Schema.org annotated product identifiers as distant su-
pervision. This benchmark, derived from the December 2020 Common Crawl,
includes 27 variants to evaluate systems in the dimensions (1) amount of corner
cases, (2) amount of unseen entities in the test set, and (3) development set size. It
uniquely supports both pair-wise and multi-class matching tasks, offering the first
fine-grained evaluation framework along these three dimensions for entity match-
ing.

In conclusion, the WDC LSPM and WDC Products benchmarks provide new
resources for the research community, complementing the existing benchmarks
with larger and more diverse benchmarks, as well as fine-grained evaluation along
various matching challenges, supporting the development and assessment of more
accurate and robust product matching systems.
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Part III: Deep Neural Networks for Entity Matching

This part of the thesis has made several contributions to the field of supervised en-
tity matching, particularly through the exploration and enhancement of Transformer-
based models using the benchmarks presented in Part II in combination with ex-
isting entity matching benchmarks. The work has addressed challenges in cross-
lingual entity matching, as well as proposed the dual-objective learning method
JointBERT, the supervised contrastive learning method R-SupCon, and an exten-
sive evaluation of prompting techniques and fine-tuning for generative large lan-
guage models.

Chapter 6 contributed the first evaluation of cross-lingual fine-tuning using
mono- and multi-lingual Transformers for product matching. It showed that in-
corporating English-language offer pairs into the training set significantly improves
performance for a low-resource language, which was German in these experiments.
Multilingual BERT, pre-trained on large amounts of text in multiple languages,
achieved higher performance than mono-lingual models. This approach also high-
lighted the potential to reduce labeling costs by leveraging automatically created
training pairs from high-resource languages such as English by using Schema.org
annotations as distant supervision, thus contributing to more efficient data integra-
tion processes.

Chapter 7 contributed JointBERT, a dual-objective fine-tuning method for Trans-
formers. By leveraging both binary matching labels and entity group information
as part of its dual-objective training approach, JointBERT outperformed state-of-
the-art models like Ditto by 1-5% in F1 score for seen entities on the bench-
marks WDC LSPM and DI2KG-monitor, provided multiple entity descriptions
were available for each entity. This method is particularly applicable in scenarios
where available entity identifiers in entity descriptions facilitate the discovery of
entity groups, such as product identifiers in the product domain. However, Joint-
BERT showed reduced performance for unseen entities, indicating that it is best
used in contexts with available training data for each entity.

Chapter 8 contributed R-SupCon, a method for supervised contrastive learning
that improved matching performance on multiple benchmarks by 0.8-8.8% in F1
score setting a new state-of-the-art for the Abt-Buy, Amazon-Google and WDC
LSPM computers benchmarks at the time of contribution. This method uses a
supervised contrastive pre-training stage that generates a large amount of record
pairings inside the training batches using entity group information similar to Joint-
BERT. This is followed by a cross-entropy fine-tuning stage for classification of
record pairs. R-SupCon is especially effective with smaller training sets. Ex-
periments with benchmarks containing duplicates in each source further showed
the importance of the proposed source-aware sampling strategy to avoid introduc-
ing label noise. Comparisons with other contrastive methods like DAEM [Bai
et al., 2023] and Sudowoodoo [Wang et al., 2023] underlined the performance of
R-SupCon, particularly due to its effective use of entity group information and
source-aware sampling.
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Chapter 9 contributed a comparison of the effectiveness of different prompt-
ing techniques and fine-tuning of generative LLMs and compared the performance
of these models with PLMs like Ditto [Li et al., 2020]. The experiments showed
that the best prompt needs to be estimated for each model/dataset combination.
The most powerful LLMs offer robust performance across different prompts and
datasets while requiring no or only a few training examples in the form of few-shot
examples or provided matching rules derived from examples. The evaluation pro-
vided insights into the trade-offs between LLMs and PLMs, particularly in terms of
zero-shot performance, training data requirements, and computational costs. The
chapter concluded that LLM-based matchers are preferable for scenarios involving
unseen entities and costly training data acquisition, whereas PLM-based matchers
are suitable for tasks with sufficient training data and low availability of computa-
tional resources.

Part IV: Explainability and Error Analysis for Entity Matching

The research presented in this part of the thesis focused on explainability of neural
entity matching models decisions and the potential of automating error analysis
with LLMs.

Chapter 10 contributed two novel methods for aggregating local explanations
to derive global insights into model decisions. The first method, leveraging the
Mojito framework, aggregates feature importances of annotated domain-specific
word classes to generate global explanations. Applied to the Deepmatcher, BERT,
and JointBERT entity matching methods, this approach revealed how these sys-
tems prioritize different predictors in different situations, highlighting the adapt-
ing focus of Transformer-based methods on relevant features like model numbers,
compared to the more constant importance scores of the Deepmatcher system. No-
tably, this model-agnostic method is versatile and can be used together with any
entity matching system for which the LIME/Mojito methods can be applied.

The second method uses the generative capabilities of an LLM to create struc-
tured explanations of its own decisions that include model-generated similarity and
importance scores for relevant attribute comparisons. This structured format en-
ables automatic parsing and aggregation of attributes and their importances, facili-
tating the generation of global insights into the features influencing LLM decisions.
Finally, the model-generated similarity scores demonstrated high correlation with
established string similarity metrics like Generalized Jaccard providing increased
trust into the provided explanations.

Chapter 11 presented a novel method for automating the generation of error
classes from matching errors using LLMs. This chapter demonstrated the LLM’s
capability to creatively derive meaningful error classes from sets of matching er-
rors and their structured explanations in both product and bibliographic domains.
The automated error analysis process can support data engineers in identifying and
addressing issues, presenting the first approach to automating error classification
in entity matching.
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12.2 Research Impact

This section discusses the impact of the benchmarks and methods presented in
this thesis on other research efforts. Especially the WDC LSPM benchmark has
been adopted in the evaluation of entity matching methods in the community and
has been part of the evaluation of pioneering work like the Ditto [Li et al., 2020]
matching system. The following paragraphs are not an exhaustive list but list some
of the higher-profile publications in terms of citations and very recent work that
has used the benchmarks and methods presented in this thesis.

The WDC LSPM benchmark was released in 2019 and has been used in the
evaluation of the pioneering Ditto [Li et al., 2020,Li et al., 2021] matching system,
which was one of the first entity matching systems using PLMs. The benchmark
was also used to evaluate the DADER system for domain adaptation [Tu et al.,
2022], the HierGAT system using hierarchical graph attention [Yao et al., 2022]
and the FlexER system [Genossar et al., 2023]. The benchmark continues to be
used also in very recent work in entity matching [Sun et al., 2024, Alves et al.,
2024, Zhang et al., 2024b].

The WDC Products benchmark was released at the end of 2022 and has been
used so far for the evaluation of the entity matching systems APrompt4EM [Xia
et al., 2024] , GraLMatch [de Meer Pardo et al., 2025] and SETEM [Ding et al.,
2024]. WDC Products has also been used for evaluating blocking methods as part
of the SC-Block [Brinkmann et al., 2024] system.

The work on cross-lingual matching presented in Chapter 6 has been cited as
inspiration in similar works [Możdżonek et al., 2022], where especially Alves et
al. [Alves et al., 2024] perform a broader evaluation of multi-lingual Transformers
for the transfer to the Portuguese language using additional English training data.
This work also uses the WDC LSPM benchmark for this purpose.

The JointBERT method presented in Chapter 7 has been cited in the following
recent works on entity matching [Paganelli et al., 2022,Zeakis et al., 2023,Li et al.,
2023b,Wang et al., 2023,Genossar et al., 2023]. JointBERT has directly influenced
the works of Ye et al. [Ye et al., 2022] and Zhang et al. [Zhang et al., 2024b] who
proposed JointMatcher and EMBA respectively. Both systems are built directly on
the dual-objective training method introduced by JointBERT.

The R-SupCon method presented in Chapter 8 has been cited in the follow-
ing recent publications [Almagro et al., 2023, Paganelli et al., 2023, Xia et al.,
2024, de Meer Pardo et al., 2025, Huang et al., 2024]. Paganelli et al. [Paganelli
et al., 2023] use R-SupCon as part of their experimental evaluation of various entity
matching models and conclude that it is the only method in their experiments that
provides embeddings whose similarity directly relates to matches or non-matches
compared to the other investigated methods such as Ditto [Li et al., 2020]. Al-
magro et al. [Almagro et al., 2022] directly build on R-SupCon and introduce an
additional hard negative mining method to the batch building process showing that
this further improves performance over default R-SupCon. In the area of blocking
for entity matching, Brinkmann et al. [Brinkmann et al., 2024] use the pre-training
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stage of R-SupCon as part of a blocking scheme in combination with nearest neigh-
bor search that runs 1.5-4 times faster than previous blocking methods on various
datasets.

The work on the evaluation of prompting techniques and fine-tuning for LLMs
presented in Chapter 9 has been cited by several research works on entity matching
that are concurrently investigating LLMs [Remadi et al., 2024, Fan et al., 2024b,
Wadhwa et al., 2024, Wang et al., 2024, Huang and Zhao, 2024].

12.3 Open Issues and Future Research Directions

This section discusses open issues regarding the topics presented in this thesis and
directions for future work in the area of benchmarks and methods for entity match-
ing.

Although both benchmarks presented in this thesis improve the field of bench-
marking entity matching systems with their size, diversity, and fine-grained eval-
uation, some open issues remain. The matching challenges in WDC Products for
example are not exhaustive. Additional challenges may include cross-language
matching, for which no large publicly available benchmark covering multiple lan-
guages exists to the best of the authors’ knowledge, or varying structuredness in
the available schemata of each source. Both WDC benchmarks present very textual
matching tasks, although multiple modalities may be relevant. For example, prod-
uct images may have a significant impact on matching performance when com-
paring textual corner cases like a mobile phone and an accessory for that specific
phone where the textual descriptions can be highly similar, but the images may
clearly refer to different products. Finally, both benchmarks presented cover only
the product domain, while many benchmarks from different domains are required
for a comprehensive evaluation of entity matching methods and their transferabil-
ity. Current publicly available benchmarks for domains like publications, restau-
rants, and companies face the same shortcomings as previous product matching
benchmarks, leading to a research gap and the need for larger, more diverse bench-
marks that allow for fine-grained evaluation of matching challenges, which may
also be specific to the relevant domain. The continued adoption of Schema.org
and the availability of many different entity classes in the vocabulary such as Lo-
calBusiness, Movie, or Restaurant could be leveraged in the future to build more
benchmarks using distant supervision similar to the product-based WDC bench-
marks to close this gap.

The cross-language learning experiments with multi-lingual Transformers have
shown the potential of such models in combination with training examples from a
high-resource language like English to improve matching performance for German
when the amount of available German training data is scarce. Future work in this
area could extend the evaluations to more languages from different cultures with a
vastly different language-historical background, such as, for example, Asian lan-
guages. Method-wise, additional focus could be directed towards leveraging more
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sophisticated multilingual embeddings, large language models and transfer learn-
ing techniques that have been proven to work well from the area of natural language
processing to enhance the performance of entity matching systems across diverse
languages and dialects. For example, LLMs could be combined with a retrieval-
augmented generation approach to select in-context examples from other languages
to improve matching performance in low-resource languages. Furthermore, ad-
dressing the challenges of cultural and contextual variations in multilingual data
could further improve the robustness of these models on other entity matching do-
mains.

The advances in deep learning, especially the Transformer-based language
models, have led to most recent entity matching methods adopting these mod-
els which has led to new state-of-the-art results on most publicly available entity
matching benchmarks. During the experiments with PLM- and LLM-based mod-
els in this thesis, a set of unsolved challenges has crystallized that are avenues
for future work on entity matching methods. As shown in this thesis, PLM-based
methods struggle with unseen entities, which is a highly relevant challenge for
real-world use-cases. While these methods achieve higher matching performance
levels compared to non-neural methods on such entities, there is still a significant
loss of performance visible in such situations or when applying models in other
domains. Due to the high zero-shot performance of LLMs for entity matching,
matching methods built on these models could be better suited for handling this
case, although the application of LLMs at scale in practice can prove challenging
due to the high costs of LLM-based methods.

Future work may focus on building an entity matching system that solves the
disadvantages of each method while preserving the advantages. The presented
prompting experiments showed that LLMs have the potential to solve two of these
shortcomings by requiring only a few training examples to match or exceed the per-
formance of PLMs while performing better for unseen entities, even after domain-
specific fine-tuning. These advantages come with a higher cost regarding infras-
tructure and operational costs, either locally or as a hosted solution. A system that
combines both LLMs and PLMs in a way that each type of model can take ad-
vantage of their strengths could be a potential next step in neural entity matching
methods. Especially, the general connections between different dimensions like
operational costs, model size, the impact of the training method (pre-training and
fine-tuning) on the final matching performance in different settings should be a
focus of research. The strong zero-shot performance of LLMs further prompts a
need for research into the question in how far the existing benchmark datasets are
contaminated due to inclusion in the pre-training data of the models. Regarding
training data selection for pre-training and fine-tuning, a research direction of in-
terest may be to investigate what a good training set should cover to achieve high
performance on seen and unseen entities while minimizing the amount of required
labeled training pairs.

Finally, the explainability of entity matching models is crucial for gaining trust
in model decisions. Although this thesis introduced methods for aggregating lo-
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cal explanations into global insights, there is still a need for more intuitive and
user-friendly explanation techniques. Future research could investigate the faith-
fulness [Jacovi and Goldberg, 2020] of LLM generated explanations to the actual
model decisions in more depth, as well as the usage of LLMs also for explaining
other model types like PLMs. For usability in practical use-cases the development
of interactive visualization tools that provide more granular insights into model
decisions are a logical next step. Explainability methods could further be a tool
to facilitate the research into what a training set for pre-training and fine-tuning
should cover to achieve high matching performance in seen and unseen scenar-
ios. Automation of error analysis using LLMs, as demonstrated in this thesis, is
another promising direction. However, broader experiments on more entity match-
ing domains are needed to gauge the general accuracy and efficiency of error class
generation and error classification for a wide range of use-cases. Future work
could focus on integrating more sophisticated machine learning techniques, such
as meta-learning and active learning, to refine error class generation and classifica-
tion processes.
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