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Abstract
In recent years, various interacting particle samplers have been developed to sample from complex target distributions,
such as those found in Bayesian inverse problems. These samplers are motivated by the mean-field limit perspective and
implemented as ensembles of particles that move in the product state space according to coupled stochastic differential
equations. The ensemble approximation and numerical time stepping used to simulate these systems can introduce bias and
affect the invariance of the particle system with respect to the target distribution. To correct for this, we investigate the use
of a Metropolization step, similar to the Metropolis-adjusted Langevin algorithm. We examine Metropolization of either the
whole ensemble or smaller subsets of the ensemble, and prove basic convergence of the resulting ensemble Markov chain to
the target distribution. Our numerical results demonstrate the benefits of this correction in numerical examples for popular
interacting particle samplers such as ALDI, CBS, and stochastic SVGD.

Keywords Metropolis–Hastings · Interacting particle systems · Bayesian inference

1 Introduction

Generating samples or computing expectations with respect
to a given target distribution π in Rd is a ubiquituous task in
applied mathematics, computational physics, statistics, and
data science. Applications are broad and include for exam-
ple Bayesian inference, generative modeling, and hypothesis
testing and model fitting.

Various methods tackling this problem have been pro-
posed and analyzed in the literature. A classical and nowa-
days standardmethod isMarkov-ChainMonteCarlo (MCMC)
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(Brooks et al. 2011) and, in particular, the popularMetropolis–
Hastings (MH) algorithm (Metropolis et al. 1953; Hastings
1970). Recently, novel approaches that couple the target
distribution with a reference distribution π0 through a deter-
ministic “transport map” have emerged, such as polynomial
transports (Marzouk et al. 2016; Jaini et al. 2019), tensor-train
transports (Dolgov et al. 2020), normalizing flows (Rezende
and Mohamed 2015), and neural ODEs (Chen et al. 2018).
The resulting sampling methods aim to transform initial
iid samples following the reference distribution to samples
(approximately) following the target distribution by applying
the transport map samplewise.

Another way to achieve such a transformation of an initial
ensemble of particles or samples following π0 is by applying
suitable stochastic dynamics to the ensemble which for time
t → ∞ yield particles approximately distributed according
to the target π . The resulting ensemble dynamics are often
interacting, i.e., the drift or diffusion term for each particle
depends on the whole ensemble. Such stochastic interacting
particle systems emerge from various ideas and approaches:
(i) as ensemble approximations of π -invariant stochastic
differential equations of Langevin or McKean–Vlasov type
(Garbuno-Inigo et al. 2020a, b; Grenander and Miller 1994),
(ii) by adaptingmethods from particle swarm optimization to
construct samplers (Carrillo et al. 2022), or (iii) fromgradient
flows to minimize some objective quantifying the difference
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between the targetπ and a current approximationπt (Liu and
Wang 2016), (Nüsken and Renger 2023; Gallego and Insua
2018). For each of these approaches we consider a particu-
lar example in this work: (i) an affine invariant interacting
Langevin sampler (ALDI) (Garbuno-Inigo et al. 2020a, b),
(ii) a consensus-based sampler (CBS) (Carrillo et al. 2022),
and (iii) a stochastic version of Stein variational gradient
descent (SVGD) (Gallego and Insua 2018).

In practice, simulating the resulting stochastic dynam-
ical system requires a time discretization and a suitable
numerical integration scheme. For example, approximating
the Langevin dynamics via the Euler–Maruyama scheme
leads to the so-called unadjusted Langevin algorithm (ULA)
(Roberts and Tweedie 1996). For ULA it can be shown
that the time-stepping scheme causes a bias, so that the
limiting distribution has an error of the size of the time
discretization step, see e.g. (Vempala and Wibisono (2019),
Theorem 2). The Metropolis-adjusted Langevin algorithm
(MALA) circumvents this problem by introducing an MH
acceptance/rejection-step after each Langevin update (Besag
1994; Roberts and Tweedie 1996).

In this paper, we propose a similar approach for recent
interacting particle systems with M ∈ N particles. That is,
we view the time-discrete interactive update of the particles
as a proposal within anMH scheme. This results in aMarkov
chain in the M-fold product space, Rd × · · · × R

d = R
Md ,

that corrects for the bias introduced by the time-discretization
of the ensemble dynamics. Compared to non-interacting
Markov chains, we see several potential advantages. The use
of an entire ensemble of particles enables the simultaneous
exploration of a broader area, helping to avoid getting stuck
in a singlemode.Additionally, the information obtained from
thewhole particle system can be used to infer important prop-
erties of the target distribution, such as its local curvature, and
provide proposals that are better adapted to it—similarly to
adaptive MCMC, see e.g., Radu and Yang (2009). Another
significant advantage is that particle methods are inherently
parallelizable, as each particle can be updated independently
before interaction steps, allowing for efficient implemen-
tation. Consequently, they provide a natural approach to
parallelize Markov chain Monte Carlo sampling.

The concept of ensembleMCMCwas introduced inChris-
ten and Fox (2010), Goodman and Weare (2010), where
particles, referred to as “walkers”, are updated individually
using so-called walk or stretch moves that involve only two
of the M particles. Although, earlier instances of algorithms
which propagate ensembles of particles where the moves
are constructed using the current ensemble can be found
in Gilks et al. (1994), Braak (2006). Following Goodman
and Weare (2010) further ensemble MCMC algorithms have
been proposed in recent years (Clarté et al. 2022; Coullon
and Webber 2021; Dunlop and Stadler 2022; Leimkuh-
ler et al. 2018; Zhang and Sutton 2011; Zhu 2019). In

the works (Coullon and Webber 2021; Dunlop and Stadler
2022; Leimkuhler et al. 2018; Zhang and Sutton 2011; Zhu
2019) the ensemble is used to estimate the target covari-
ance empirically. The ensemble covariance is then applied
as a preconditioner or covariance for proposing new states,
e.g., based on a Gauss-Newton update or the (generalized)
preconditioned Crank-Nicolson proposal (Cotter et al. 2013;
Rudolf and Sprungk 2018). Similar to Goodman and Weare
(2010), the authors of Coullon and Webber (2021), Dun-
lop and Stadler (2022), Leimkuhler et al. (2018), Zhang
and Sutton (2011) use a sequential particle-wise update and,
hence,Metropolization. The updating schemes inClarté et al.
(2022), Zhu (2019) are slightly different, since there the par-
ticle to be updated is chosen at random according to suitable
algorithm-dependent probabilities, but still one particle at a
time is evolved.

Outline The remainder of this paper is organized as follows:
In this section, we explain interacting particle systems and
present our main ideas, describe our contributions, and intro-
duce notation. In Sect. 2, we present several Metropolization
strategies for interacting particle systems and provide conver-
gence results for each of them. Section3 discusses common
examples of interacting particle systems that are based on
various underlying stochastic dynamics, and we explain how
they align with our Metropolization schemes. Finally, in
Sect. 4 we report on numerical results for all presented inter-
acting particle methods. Moreover, for the convenience of
the reader, in Sect.A we review the basic methodology of
the Metropolis–Hastings algorithm, and also discuss classic
results related to its convergence which are required in the
main text.

Notation and conventions Throughout we consider an
underlying probability space (�,F ,P), Rd to be equipped
with the Borel σ -algebra B(Rd), and we assume the target
probability distribution π on Rd to be absolutely continuous
with respect to Lebesgue measure. By abuse of notation, we
use the same symbols to denote the Lebesgue densities and
the corresponding distributions they represent.Moreover, we
denote by P(Rd) the set of probability densities on R

d . As
usual, N(μ,�) stands for a normal distribution with mean
μ ∈ R

d and covariance matrix � ∈ R
d×d , and U([0, 1])

denotes a uniform distribution on [0, 1].
For a transition kernel P : R

d × B(Rd) → [0, 1], and
a measure μ on R

d we use the usual notation μP for the
measure

μP(A) :=
∫

Rd

P(z, A)μ(dz) ∀A ∈ B(Rd) (1)
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and inductively μPk := (μPk−1)P for all k ≥ 2. Moreover,
we denote by L1

μ(R) the Lebesgue space of μ-integrable
functions F : R

d → R. Similarly L2
μ(R) stands for the

square integrable functions w.r.t. the measure μ. For F ∈
L1

μ(R) we write Eμ[F] := ∫
Rd

F(x)μ(dx) and additionally

Vμ[F] := Eμ[(F − Eμ[F])2] in case F ∈ L2
μ(R).

We write C(Rd) ⊂ R
d×d for the set of symmetric positive

semidefinite matrices of size d × d. The set of all symmetric
positive definite matrices is denoted by C+(Rd). For C ∈
C(Rd), we write

√
C to denote the unique square root of C

in C(Rd). The n-dimensional identity matrix is denoted by
Idn ∈ R

n×n .
We use boldface notation x to denote vectors inRMd . They

are always interpreted as an ensemble of M vectors in R
d

which in turn are denoted by x (1), . . . , x (M). The ensemble
excluding the i th particle will be denoted by x−(i). More
precisely

x :=
⎛
⎜⎝

x (1)

...

x (M)

⎞
⎟⎠ ∈ R

Md and

x−(i) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x (1)

...

x (i−1)

x (i+1)

...

x (M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
M(d−1). (2)

For randomvariablesweuse upper case notation, for example
X = ((X (1))	, . . . , (X (M))	)	. The notation X = x signi-
fies that a draw of this random variable yielded the value x
and we use X (i) ∈ R

d or X ∈ R
Md as shorthand notation

for X (i) being an R
d -valued and X being an R

Md -valued
random variable, respectively.

1.1 Interacting particle systems

The starting point of our method are dynamical systems that
transform a single particle X0 ∼ π0 at time t = 0 into a
particle following the target distribution π as t → ∞. The
dynamics of the particle are described by a stochastic dif-
ferential equation (SDE) of McKean–Vlasov type (Pathiraja
et al. 2021):

dXt = φ(Xt , πt )dt +√
σ(Xt , πt )dBt , (3)

where πt : Rd → [0,∞) is the probability density of Xt ∈
R
d at time t , Bt ∈ R

d is a (standard) Brownian motion,
φ : Rd × P(Rd) → R

d is referred to as the drift, and σ :
R
d×P(Rd) → C(Rd) is the diffusion.Moreover, we assume

existence of a unique strong solution Xt of (3) throughout
the paper.

Example 1.1 (Langevin dynamics). One classical example of
(3) is

dXt = C∇ logπ(Xt )dt + √
2CdBt (4)

for a fixed covariance matrix C ∈ C+(Rd). The density πt

of Xt satisfies the corresponding Fokker–Planck equation

∂tπt = ∇ · (πtC∇ log(π)) + Tr(C∇2πt ),

which describes the gradient flow in the space of probability
measures w.r.t. the Wasserstein metric (Jordan et al. 1998).
Under suitable assumptions (π satisfies a Poincaré inequal-
ity) one can show exponential convergence of πt to π as
t → ∞, e.g., Markowich and Villani (2000).

Note that the drift and diffusion in (4) are independent
of πt . This is in contrast to the closely related “Kalman-
Wasserstein dynamics” (Garbuno-Inigo et al. 2020a):

Example 1.2 (Kalman-Wasserstein dynamics). Choosing C
in (4) as

C(πt ) :=
∫

Rd

(x − m(πt ))(x − m(πt ))
	πt (x) dx ∈ C(Rd),

m(πt ) :=
∫

Rd

xπt (x) dx ∈ R
d (5a)

yields a McKean–Vlasov Langevin dynamic of the form (3)
with

φ(x, ρ) = C(ρ)∇ logπ(x), σ (x, ρ) = 2C(ρ), (5b)

for x ∈ R
d and ρ ∈ P(Rd).

For strongly log-concave target measures π and under
the additional assumption that C(πt ) does not degenerate,
the resulting Markov process (Xt )t≥0 is ergodic with unique
invariant distribution π and there is exponential convergence
of πt to π in the Kullback–Leibler divergence KL(πt ‖π)

as t → ∞ (Garbuno-Inigo et al. (2020a), Proposition 2).
Potential advantages of replacing C by C(πt ) are (i) faster
convergence of πt → π due to the preconditioning and (ii)
affine-invariance of the resulting dynamics, see Garbuno-
Inigo et al. (2020b), Leimkuhler et al. (2018).

Ensemble discretization Solving (3) by numerical methods
requires discretization. In terms of the distribution πt , this is
achieved by replacing πt with the empirical distribution of
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an ensemble of M ∈ N particles X (i)
t ∈ R

d , i = 1, . . . , M ,
initialized iid as X (i)

0 ∼ π0, i = 1, . . . , M , at time t = 0. The
particles are collected into a vector X t ∈ R

Md representing
the state of the whole ensemble (cf. (2)). Equation (3) then
formally becomes a coupled system of SDEs

dX t = �(X t ) dt +√
�(X t ) dBt , (6)

for some suitable drift, diffusion, and standard Brownian
motion

� : RMd → R
Md , � : RMd → C(RMd), Bt ∈ R

Md .

Again, we assume well-definedness of the solution X t of (6)
throughout.

Example 1.3 (Interacting Langevin Dynamics). We continue
the example of McKean–Vlasov Langevin dynamics from
Example 1.1

dXt = C(πt )∇ logπ(Xt )dt +√
2C(πt )dBt . (7)

The computation of C(πt ) in (5a) requires to approximate
an integral w.r.t. πt . Using Monte Carlo integration based
on an ensemble of M particles following these dynamics we
obtain the ensemble version (Garbuno-Inigo et al. 2020a) of
the mean-field dynamics (7)

dX (i)
t = C(X t )∇x logπ(X (i)

t ) dt +√
2C(X t )dB

(i)
t

i ∈ {1, . . . , M}, (8)

where

C(X t ) := 1

M

M∑
i=1

(
X (i)
t − m(X t )

) (
X (i)
t − m(X t )

)	 ∈ C(Rd ),

m(X t ) := 1

M

M∑
i=1

X (i)
t ∈ R

d (9)

denote the empirical covariance and mean of the ensemble
X t . Note that the system of SDEs (8) is completely coupled
since individual particles interact via C(X t ).

Considering the associated Fokker–Planck equation of
(8), it can be shown that the invariant distribution of the parti-
cles in (8) in generalmay have a bias, i.e. does not equalπ . To
address this issue, the authors in Nüsken and Reich (2019),
Garbuno-Inigo et al. (2020b) propose the following modifi-
cation called affine invariant Langevin dynamics (ALDI):

dX (i)
t = C(X t )∇ logπ(X (i)

t ) dt + d + 1

M
(X (i)

t − m(X t )) dt

+√
2C(X t )dB

(i)
t , i ∈ {1, . . . , M}. (10)

Denote by π t the density of X t . For strongly log-concave
target measures π and under additional assumptions such as
M > d + 1, one can guarantee π t → π in total variation as
t → ∞, where π(x) := ∏M

i=1 π(x (i)) (Garbuno-Inigo et al.
(2020b), Proposition 4.5).

Time discretization Besides discretizing the distribution, a
numerical time-stepping scheme to approximately simulate
(6) is required. For a fixed time step size h > 0, let ζ k ∼
N(0, IdMd), k ∈ N. Then theEuler–Maruyamadiscretization
of (6) reads

Xk+1 = Xk + h�(Xk) +√
h�(Xk)ζ k+1 (11)

with Xk = (X (1)
k , . . . , X (M)

k ) ∈ R
Md and initialized as

X (i)
0 ∼ π0 iid for i = 1, . . . , M .

Example 1.4 (UnadjustedLangevin algorithm).TheLangevin
dynamics (4) do not require an ensemble approximation.
However, we may consider M particles X (i)

t , i = 1, . . . , M ,
each individually following (4) without interaction. This can
be viewed as (non-interacting) ensemble dynamics of the
form (6). The corresponding time-discretized system is

X (i)
k+1 = X (i)

k + hC∇ logπ(X (i)
k )

+ √
2hCζ

(i)
k+1, i ∈ {1, . . . , M}, (12)

with ζ
(i)
k+1 ∼ N(0, Idd) iid. For C = Idd , this is known as

the (parallel) ULA (Grenander andMiller 1994; Roberts and
Tweedie 1996).

Example 1.5 (Unadjusted interacting Langevin dynamics).
For the interacting Langevin dynamics (10), we obtain the
time-discrete interacting particle system

X (i)
k+1 = X (i)

k + hC(Xk)∇ logπ(X (i)
k )

+ h
d + 1

M
(X (i)

k − m(Xk))

+√
2hC(Xk)ζ

(i)
k+1, i ∈ {1, . . . , M}, (13)

with ζ
(i)
k+1 ∼ N(0, Idd) and C(Xk) as in (9).

It is well-known that the introduction of the time dis-
cretization may lead to a bias, i.e. in general it does not hold
that X (i)

k converges in distribution to π as k → ∞. This
applies for example to ULA (Vempala and Wibisono 2019).

1.2 Main idea and contributions

Besag (1994) suggested in 1994 to correct the unadjusted
Langevin algorithm with a Metropolization to obtain a π -
invariant one-particle Markov chain (Xk)k∈N, which lead
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to MALA, whereas a similar Metropolization correction
already appeared in Rossky et al. (1978) for the Monte Carlo
simulation of Langevin-type dynamics from physics. We
adopt this idea to correct for the bias in general time-discrete
interacting particle systems (11). To this end, we view (11)
as the proposal mechanism for an ensemble Markov chain
(Xk)k∈N in the product state space R

Md . We propose to
apply Metropolization in three ways: (i) ensemble-wise, i.e.,
accept or reject the whole ensemble of all proposed particles,
(ii) particle-wise, i.e., accept or reject each proposed parti-
cle individually in a sequential manner, and (iii) block-wise,
i.e., accept or reject each block of particles individually in
a sequential manner. Here a block is understood as a fixed
subset of particles and identifiedwithb ⊂ {1, . . . , M}.Meth-
ods (i) and (ii) can be seen as a special case of (iii) with
either just one batch representing the whole ensemble, or
batches consisting of only one particle. The presentation in
Sect. 2 is therefore focused on the more general variant (iii).
A high-level version of the novel block-wiseMetropolization
is summarized in Algorithm 1.

Algorithm 1 Block-wise Metropolization

1: fix a partition
⋃L

j=1 b j = {1, . . . , M}
2: draw x0 ∈ R

Md according to ⊗M
i=1π0 and set initial ensemble state

X0 = x0
3: for k = 0, . . . , N do
4: given Xk = xk initialize x = (x (1), . . . , x (M)) by x = xk
5: for j = 1, . . . , L do
6: draw block proposal (y(i))i∈b j ∈ R

|b j |d according particle
proposals such as (12) or (13) based on current ensemble x

7: update (x (i))i∈b j = (y(i))i∈b j only with block acceptance
probability

8: end for
9: set Xk+1 = x
10: end for
11: return ensemble chain (Xk)

N+1
k=0

Besides the sequential updating of (blocks of) particles,
one might also consider a simultaneous version where the
proposal and acceptance/rejection for each particle takes
place in parallel and independently of the other particles.
Such a method is computationally appealing, as it enables
full parallelization over the whole ensemble. However, as
it turns out, a simultaneous Metropolization yields in gen-
eral a biased algorithm, i.e., the ensemble Markov chain
does not have the correct invariant measure. We discuss
this in detail in Sect.B. Nonetheless, under suitable assump-
tions on interaction structure of the particle system one can
allow for a simultaneous acceptance/rejection of the parti-
cles within each block in the sequential block updating. This
simultaneouswithin blockMetropolization potentially yields
a lower autocorrelation in the resulting ensemble Markov
chain than accepting/rejection the whole block and is dis-
cussed in Sect. 2.2. We emphasize the following potential

advantages of combining the Metropolis–Hastings mecha-
nism with interacting particle systems:

• Froman interacting particle sampling perspectivewe cor-
rect for the immanent bias of the particle dynamics due
to numerical time-stepping schemes and finite ensemble
approximations of φ(·, πt ) and σ(·, πt ) in (3). In partic-
ular, this allows in principle to take large time steps h in
(11) without provoking an instability of the time-discrete
dynamical system.

• From an MCMC sampling perspective the interacting
particle dynamics provide in each iteration not just one
new state xk ∈ R

d but M new states which can be com-
puted in parallel. This yields a computational advantage.
Moreover, in comparison to simply performing, e.g., par-
allel MALA, the interaction of the particles may yield
more efficient proposal kernels due to estimating, e.g., the
target covariance empirically by the ensemble, and, thus,
lead to more efficient MCMC sampling. In particular,
we obtain affine-invariant MCMCmethods if the under-
lying interacting particle dynamics are affine-invariant
themselves such as those proposed in Garbuno-Inigo
et al. (2020a, b), Carrillo et al. (2022). The benefit of
affine-invariance is an improved mixing, particularly, for
highly anisotropic target distributions since the proposal
is then adapted to the anisotropy, see e.g., Christen and
Fox (2010), Goodman and Weare (2010) for numerical
illustrations and Rudolf and Sprungk (2022) for a theo-
retical analysis of affine-invariant MCMC including the
independence of spectral gaps for arbitrarily anisotropic
Gaussian targets.

Finally, wewant to highlight that the purpose of the presented
framework is to introduce the Metropolis–Hastings mecha-
nism to a broad class of interacting particle systems. We do
not compare different interacting particle methods with each
other, nor do we compare the proposed framework to other
adaptive MCMC methods.

Contributions We summarize the main contributions of this
paper:

1. We propose a new MCMC method by combining a
Metropolization step with interacting particle dynamics
in the M-fold product state space.

2. We discuss several variants of this method for differing
sizes of the blocks which areMetropolized. Basic conver-
gence results as well as numerical indications suggesting
that suitable choices of block sizes lead to more efficient
sampling algorithms are presented.

3. We give several concrete examples based on differ-
ent particle dynamics, including the recently introduced
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stochastic SVGD (Nüsken and Renger 2023; Gallego and
Insua 2018), ALDI (Garbuno-Inigo et al. 2020a, b), and
CBS (Carrillo et al. 2022).

4. We present numerical experiments to compare the differ-
ent variants of our algorithm, demonstrating in particular
improved robustness and higher efficiency due to interac-
tion and (block-wise) Metropolization.

5. In the appendix, we provide counterexamples to show
that a simultaneous particle-wise Metropolization strat-
egy does in general not yield an unbiased algorithm.

2 Metropolis-adjusted interacting particle
sampling

Consider again an interacting particle system (6) resulting
from a finite ensemble approximation of suitable π -invariant
McKean–Vlasov dynamics as in (3), and its time discretiza-
tion (11) with step size h > 0, i.e.

Xk+1 = Xk + h�(Xk) +√
h�(Xk)ζ k+1. (14)

As motivated above time- and ensemble discretization intro-
duces a bias in the ensemble dynamics (14), i.e., the particle-
wisemarginals of the invariant measure of (14) are in general
not equal to π . This can be corrected my Metropolization
viewing (14) rather as a proposalmechanism in aMetropolis–
Hastings scheme.However, several ways how toMetropolize
are possible:

• Propose and accept/reject the ensemble as a whole,
• propose and accept/reject the individual particles,
• or propose and accept/reject blocks of particles as a
whole.

The first variant, referred to as ensemble wise Metropoliza-
tion, is maybe the most natural and offers the possibility of
parallelization. However, it may require rather small steps
sizes h in order to ensure that all proposed particle moves
are accepted. The second variant, referred to as particle-
wise Metropolization, on the other hand will allow in general
for larger step sizes for the same average acceptance rate,
but cannot be parallelized. The third variant, which we call
block-wise Metropolization, serves as the intermediate level
between the previous two extremes. This variant allows for
larger step sizes h than ensemble-wise Metropolization and
for parallelization over the blocks. To this end, we parti-
tion the ensemble of M particles into blocks of particles of
size B ≤ M . Thus, choosing B = M recovers the first
Metropolization variant and B = 1 the second one. We
therefore focus in our subsequent presentation on the case
of block-wise Metropolization.

Besides the sequential updating of blocks, cf. Gibbs sam-
pling, one could also consider a simultaneous Metropoliza-
tion, i.e., we propose and accept/reject the blocks in parallel.
This turns out to be biased again in general, which is
demonstrated in detail in Sect.B. However, under certain
assumptions we can allow for a modification of the block-
wiseMetropolization1 where rather than the block as awhole
each particle within the block is accepted or rejected indi-
vidually. This is called simultaneous within block-wise
Metropolization and may yield a better mixing, i.e., reduce
the autocorrelation in the ensembleMarkov chain, while still
maintaining the advantage of parallel computation. Previous
ensemble MCMC algorithms introduced in Goodman and
Weare (2010), Leimkuhler et al. (2018), Coullon and Web-
ber (2021), Dunlop and Stadler (2022) are only following
a particle-wise Metropolization, thereby not allowing for a
direct parallelization.

Throughout we assume the following:

Assumption 2.1 For each x ∈ R
Md the matrix �(x) ∈

R
Md×Md in (14) is invertible.

This assumptions ensures the existence of Lebesgue den-
sities of the corresponding ensemble proposal kernel onRMd

derived from Equation (14). Another important consequence
of the invertibility of �(x) is related to the so-called sub-
space property of the ensemble dynamics, see e.g. Iglesias
et al. (2013). This means that for certain� each particle X (i)

k
of the ensemble Markov chain (Xk)k∈N would remain in the
span of the initial ensemble V0 := span (X (1)

0 , . . . , X (M)
0 ),

and, thus, the ensemble Markov chain would not explore the
entire spaceRMd , but rather staywithin V0×· · ·×V0 = V M

0 .
However, if Assumption 2.1 is satisfied, the subspace prop-
erty does not hold (except for V0 = R

d ).

Remark 2.2 Assumption 2.1 is not necessarily satisfied in
common particle dynamics, in particular, if these dynam-
ics involve the empirical covariance matrix C(Xk) of the
ensemble, e.g.,

�(x) =
⎛
⎜⎝
C(x)

. . .

C(x)

⎞
⎟⎠ .

In these cases, �(x) may satisfy invertibility only for almost
every x ∈ R

Md . This can be addressed (both theoretically and
practically) by replacing �(x) with an almost everywhere
equal �̃(x) which satisfies invertibility for all x ∈ R

Md .

Remark 2.3 Equation (14) generates an ensemble Markov
chain (Xk)k∈N in the product state space RMd . We empha-
size that the dynamics of each individual particle (X (i)

k )k∈N,

1 We thank the anonymous reviewer for suggesting this variant of the
algorithm.
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i = 1, . . . , M , does not necessarily satisfy the Markov prop-
erty with respect to the filtrationF (i)

t = σ(X (i)
s , s ≤ t), since

the particle-wise drift and diffusion term may depend on the
entire ensemble Xk .

2.1 Block-wise metropolization

In the following, let � : RM d → R
d be given by

�(x) =
(

i

(
x (i), x−(i)

))
i=1,...,M

,

with 
i : Rd × R
(M−1)d → R

d and � : RM d → C(Rd) be
given by

�(x) =
(
�i, j

(
x (i), x ( j), x−(i, j)

))
i, j=1,...,M

where �i, j : Rd ×R
d ×R

(M−2)d → R
d×d . Given a “block”

b ⊆ {1, . . . , M} of indices, we denote for x ∈ R
Md

x(b) := (
x ( j))

j∈b ∈ R
|b|d and

x−(b) := (
x ( j))

j∈{1,...,M}\b ∈ R
(M−|b|)d .

Moreover, we introduce for any ensemble state x ∈ R
Md and

block b ⊆ {1, . . . , M} the following functions

�x−(b) (x(b)) :=
(

i

(
x(i), x−(i)

))
i∈b ∈ R

|b|d ,

�x−(b) (x(b)) :=
(
�i, j

(
x(i), x( j), x−(i, j)

))
i, j∈b ∈ R

|b|d×|b|d .

2.1.1 Algorithm

Block proposal and transition kernel Given the current
ensemble state x ∈ R

Md we define a proposal kernel
Qx−(b) : R|b|d × B(R|b|d) → [0, 1] for the particles within a
block b ⊆ {1, . . . , M} by

Qx−(b) (z, ·) := N
(
z + h �x−(b) (z), h �x−(b) (z)

)
. (15)

Under Assumption 2.1, for every x−(b) ∈ R
(M−|b|)d ,

the proposal kernel Qx−(b) possesses a Lebesgue density
qx−(b) : R|b|d × R

|b|d → (0,∞)

qx−(b) (z, y)

= 1

det
(
2π h �x−(b) (z)

)1/2
exp

(
− 1

2h

∥∥∥�x−(b) (z)−1/2 (y − z − h�x−(b) (z)
)∥∥∥2

)
.

This allows to define block-wise acceptance probabilities of
the form

αx−(b) (z, y) :=
⎧⎨
⎩
min

(
1,

π(y) qx−(b) (y,z)
π(z) qx−(b) (z,y)

)
if π(z) qx−(b) (z, y) > 0

1 else

(16)

with y, z ∈ R
|b|d , where π(z) := ∏|b|

i=1 π(z(i)) for z ∈ R
|b|d .

Remark 2.4 For many relevant interacting particle methods
we have

�(x) =
⎛
⎜⎝


(x (1), x−(1))
...


(x (M), x−(M))

⎞
⎟⎠ ,

�(x) =
⎛
⎜⎝

�(x (1), x−(1))

. . .

�(x (M), x−(M))

⎞
⎟⎠ , (17)

with 
 : Rd × R
(M−1)d → R

d and � : Rd × R
(M−1)d →

C(Rd). In that case, for any block b = {i1, . . . , i|b|} we have
for z, y ∈ R

|b|d

qx−(b) (z, y) =
|b|∏
j=1

qx−(i j )

(
z( j), y( j)

)

where

qx−(i) (z, y) =
exp

(
− 1

2h

∥∥∥�(z, x−(i))−1/2
(
y − z − h
(z, x−(i))

)∥∥∥2
)

det
(
2π h �(z, x−(i))

)1/2 .

In other words, for any choice of block b = {i1, . . . , i|b|} the
proposal kernel takes a product form

Qx−(b) (z, ·) =
|b|⊗
j=1

Qx−(i j ) (z
( j), ·),

Qx−(i) (z, ·) := N
(
z + h 
(z, x−(i)), h �(z, x−(i))

)
.

(18)

Finally, we introduce the block MH transition kernel
Px−(b) : R|b|d × B(R|b|d) → [0, 1], x−(b) ∈ R

(M−|b|)d
describing the update of the |b| particles within a block b
by

Px−(b) (z, dy) := αx−(b) (z, y)Qx−(b) (z, dy) + rx−(b) (z)δz(dy),

where rx−(b) (z) := 1 − ∫
R|b|d

αx−(b) (z, y)Qx−(b) (z, dy). The

transition kernel Px−(b) is reversible w.r.t. π = �
|b|
i=1π by

construction for any x−(b) ∈ R
(M−|b|)d .
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Algorithm 2 Block-wise Metropolized interacting particle
sampling

Input:

• target density π on R
d

• a partition
⋃̇L

j=1b j = {1, . . . , M}
• ensemble dependent block proposal kernels Qx−(b j ) with den-

sity qx−(b j ) : R|b j |d × R
|b j |d → (0,∞) for arbitrary x−(b j ) ∈

R
(M−|b j |)d and j ∈ {1, . . . , L}

• initial probability distribution π0 on R
d

Output: ensemble Markov chain (Xk)k∈{1,...,N } in state space RMd

1: draw x0 ∼ ⊗M
i=1π0 and set initial state X0 = x0 ∈ R

Md

2: for k = 0, . . . , N do
3: given Xk = xk initialize x = (x (1)

k , . . . , x (M)
k )

4: for j = 1, . . . , L do
5: draw proposal y ∼ Qx−(b j ) (x

(b j ), ·)
6: compute block acceptance probability αx−(b j ) (x

(b j ), y) ∈
[0, 1] in (16)

7: draw u j ∼ U([0, 1]) and set

x(b j ) =
{
y if u j ≤ αx−(b j ) (x

(b j ), y)
x(b j ) else

8: end for
9: set Xk+1 = x
10: end for

Ensemble Update Consider now a partition of the ensemble
of M particles via

{1, . . . , M} =
⋃̇L

i=1
bi . (19)

We define transition kernels P(b j ) : RMd × B(RMd) →
[0, 1], which only update particles corresponding to the block
b j , via

P(b j )(x, dy) =
⊗
k /∈b j

δx (k) (dy(k)) ⊗ Px−(b j ) (x
(b j ), dy(b j )).

By construction each P(b j ), j = 1, . . . , L , is invariant
w.r.t. product target π = �M

i=1π .
The sequential block-wise Metropolization of the inter-

acting particle system (14) is defined as the sequential
application of the transition kernels P(b j ), i.e.,

P(x, dy) := P(b1) · · ·P(bL )(x, dy). (20)

An algorithmic description of P in (20) is given in Algo-
rithm 2. Moreover, in Fig. 1, we provide a graphical
illustration of the proposed method. We point out that P is
π -invariant since all P(b j ) are π -invariant, but in general P
is not π-reversible (cf. deterministic scan Gibbs sampling).

Remark 2.5 The definition of P can be modified to a palin-
dromic scan through the blocks, i.e.,

P(b1) · · ·P(bL )P(bL ) · · ·P(b1)(x, dy)

which thenyieldsπ -reversibility. Further commonapproaches
to obtain a reversible modification of P are selecting ran-
domlywhich of the (fixed) blocksb1, . . . ,bL is to be updated
in each step (cf. random scan Gibbs sampling)

L∑
j=1

1

L
P(b j )(x, dy)

or updating all blocks in a random order (cf. random sweep
Gibbs sampling)

∑
ψ∈�M

1

M ! P
(bψ(1)) · · ·P(bψ(M))(x, dy)

where�M denotes the set of all M ! permutationsψ : {1, . . . ,
M} → {1, . . . , M}.

Moreover, one could also think about generalizing the con-
struction by allowing for randomblocksb, i.e., updating each
time a random selection of |b| particles, where also the num-
ber |b| ∈ {1, . . . , M} could be drawn randomly in each step.
However, we focus in the following on deterministic blocks
and the deterministic scan block updating.

2.1.2 Convergence and ergodicity

Algorithm 2 and the associated transition kernel P corre-
spond to a Metropolis-within-Gibbs algorithm where the
blocks of particles x(b) are the “coordinates”. In order to show
convergence we can leverage on a classical result of Roberts
and Rosenthal (2006) about the ergodicity of Metropolis-
within-Gibbs algorithms:

Theorem 2.6 (Cf. Roberts and Rosenthal (2006)). Let the
π-invariant Markov chain (Xk)k∈N be generated by Algo-
rithm 2. Assume that for any b ⊆ {1, . . . , M} the Lebesgue
density ofQx−(b) satisfies qx−(b) (z, y) > 0 for all z, y ∈ R

|b|d
and all x−(b) ∈ R

(M−|b|)d . If

lim
n→∞P

(
∀i = 1, . . . , M ∃k ∈ {1, . . . , n} s.t. X (i)

k �= X (i)
0

∣∣∣ X0 = x
)

= 1

(21)

for all x ∈ R
Md, then (Xk)k∈N is ergodic and satisfies a law

of large numbers

SM
N (F) := 1

NM

N∑
k=1

M∑
i=1

F
(
X (i)
k

)

123



Statistics and Computing            (2025) 35:64 Page 9 of 31    64 

Fig. 1 Illustration of Algorithm 2: For the block of particles {•}, a joint proposal informed by the remaining blocks {�,�} is computed. The joint
proposal is then either accepted or rejected as a whole. This is sequentially repeated for each block

a. s.−−−−→
N→∞ Eπ [F] ∀F ∈ L1

π (R). (22)

The additional assumption (21) for ergodicity in Theo-
rem 2.6 is rather mild. It states that for any initial ensemble
X0 = x, the probability that each particle is updated at least
once during n steps tends to 1 as n → ∞. In practice, this
should be satisfied in any reasonable setting.

Remark 2.7 (Ensemble-wise Metropolization). For the spe-
cial case B = |b| = M , i.e., proposing and accept-
ing/rejecting the ensemble as a whole the resulting transition
kernel P = P(b) is a standard Metropolis–Hastings kernel.
Therefore, we can apply standard results and obtain the state-
ment of Theorem 2.6 without the technical assumption (21).

We note that the particles (X (i)
k )Mi=1 within the ensemble

Xk become iid π distributed as k → ∞, since the limit
distribution π is of product form. However, X (i)

k and X ( j)
k+1

do in general not become uncorrelated for i �= j as k → ∞,
which is due to the chains interacting:

Example 2.8 Let π = N(0, 1), M = 2 and consider the π =
π ⊗ π -invariant transition kernel

P(x, ·) = N

(
Ax,

1

2
I2

)
, A =

( 1
2

1
2

1
2 − 1

2

)
.

Then for theMarkov chain (Xk)k∈N generatedwith transition
kernel P holds for all k ∈ N that Xk ∼ π implies Xk+1 ∼ π ,
but Corr(X (1)

k , X (2)
k+1) = Corr(X (2)

k , X (1)
k+1) = 1

2 .

2.2 Simultaneous within blockmetropolization

We now discuss another sequential block Metropolization,
for which all particles within the block are accepted or
rejected individually. This allows for a full parallelization

within the blocks andmight improve themixingof the ensem-
ble Markov chain. However, this variant requires a structural
assumptions on the ensemble dynamics:

Definition 1 The particle dynamics (14) satisfy conditional
within-block-independence (CWBI) with respect to a par-
tition of the M particles into L non-empty, disjoint blocks
b1, . . . ,bL if for any ensemble state x ∈ R

Md and any cho-
sen block b ∈ {b1, . . . ,bL } we have for any i ∈ b with a
slight abuse of notation that


i

(
x (i), x−(i)

)
= 
i

(
x (i), x−(b)

)
,

and

�i,i

(
x (i), x (i), x−(i)

)
= �i,i

(
x (i), x−(b)

)

as well as for any j �= i , i, j ∈ b that

�i, j

(
x (i), x ( j), x−(i, j)

)
= 0.

Thus, conditioned on the particles x−(b) there is no interac-
tion between the particles x (i), i ∈ b, within the same block
b.

Remark 2.9 For many common interacting particle systems
the CWBI condition is not satisfied per se. However, one can
often modify the interacting particle dynamics for a given
block partition {b1, . . . ,bL} accordingly to satisfy CWBI.
We comment on these kinds of modifications in the next
chapter for the three popular interacting particle systems dis-
cussed there.
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2.2.1 Algorithm

Block proposal and transition kernel Fix again a block b =
{i1, . . . , i|b|} ⊆ {1, . . . , M}. Under the CWBI condition the
proposal kernel Qx−(b) takes the special product form (cf.
Remark 2.4)

Qx−(b) (z, dy) = Qx−(b),i1(z
(1), dy(1)) ⊗ · · ·

⊗ Qx−(b),i|b|(z
(|b|), dy(|b|)), (23)

where for i ∈ b, z ∈ R
d , and x(−b) ∈ R

(M−|b|)d

Qx−b,i (z, ·) := N
(
z + h 
i (z, x(−b)), h �i,i (z, x(−b))

)
.

(24)

This product structure allows to define particle-wise accep-
tance probabilities for i ∈ b

αx−(b),i (z, y) :

=
⎧⎨
⎩
min

(
1,

π(y) qx−(b),i (y,z)
π(z) qx−(b),i (z,y)

)
if π(z) qx−(b),i (z, y) > 0

1 else

(25)

where

qx−(b),i (z, y)

=
exp

(
− 1

2h

∥∥�i,i (z, x−(b))−1/2
(
y − z − h
i (z, x−(b))

)∥∥2)

det
(
2π h �i,i (z, x−(b))

)1/2 .

denotes the Lebesgue density of the kernel Qx−b,i in (24)
which is well-defined under Assumption 2.1.

We thendefineparticle-wise transitionkernels Px−(b),i : Rd

× B(Rd) → [0, 1], for the particles in block b

Px−(b),i (z, dy) : = αx−(b),i (z, y) Qx−(b),i (z, dy)

+rx−(b),i (z)δz(dy),

with rx−(b),i (z) := 1 − ∫
R|b|d

αx−(b),i (z, y) Qx−(b),i (z, dy) and

use them to define the following simultaneous-within-block
transition kernel P̃x−(b) : R|b|d ×B(R|b|d) → [0, 1], x−(b) ∈
R

(M−|b|)d

P̃x−(b) (z, dy) : = Px−(b),i1(z
(1), dy(1)) ⊗ · · ·

⊗Px−(b),i|b|(z
(|b|), dy(|b|)).

The transition kernel P̃x−(b) is in fact reversible w.r.t. π =
�

|b|
i=1π since for any A1, . . . , A|b|, B1, . . . , B|b| ∈ B(Rd)

we have

∫

A1×···×A|b|

P̃x−(b) (z, B1 × · · · × B|b|)π(dz)

=
|b|∏
j=1

∫

A j

P̃x−(b),i j (z
( j), Bj )π(dz( j))

=
|b|∏
j=1

∫

Bj

P̃x−(b),i j (z
( j), A j )π(dz( j))

=
∫

B1×···×B|b|

P̃x−(b) (z, A1 × · · · × A|b|)π(dz).

Ensembleupdate As for theprevious block-wiseMetropoliza-
tion we now apply the block-wise transition kernels sequen-
tially over all blocks and obtain the simultaneous-within-
block transition kernel

P̃(x, dy) := P̃(b1) · · · P̃(bL )(x, dy) (26)

where analogously to above

P̃(b j )(x, dy) =
⊗
k /∈b j

δx (k) (dy(k)) ⊗ P̃x−(b j ) (x
(b j ), dy(b j )).

Again, P̃ is π -invariant but in general not π -reversible. The
same approaches of random scan and random sweep can be
applied to derive reversible modifications of P̃. An algorith-
mic description of P̃ is given in Algorithm 3, and a graphical
illustration is provided in Fig. 2. We emphasize that P̃ is
block-wise sequential but within the blocks it performs an
simultaneous particle-wiseMetropolization.Wecomment on
the possibility of a simultaneous block-wise Metropolization
in Remark 2.11 and Sect.B.

2.2.2 Convergence and ergodicity

Since the transition kernels P̃x−(b) are not of MH form
but products of particle-wise MH kernels we can not directly
apply Theorem2.6. However, themain idea for the ergodicity
proof of Metropolis-within-Gibbs algorithms in Roberts and
Rosenthal (2006) can be carried over to P̃.

Theorem 2.10 Let the π -invariant Markov chain (Xk)k∈N
be generated by Algorithm 3. Assume that for any b ⊆
{1, . . . , M} theLebesguedensity ofQx−(b) satisfiesqx−(b) (z, y)
> 0 for all z, y ∈ R

|b|d and all x−(b) ∈ R
(M−|b|)d . If

lim
n→∞P

(
∃k ∈ {1, . . . , n} s.t. ∀i = 1, . . . , M holds X(i)

k

�= X(i)
k−1

∣∣∣ X0 = x
)

= 1 (27)
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Fig. 2 Illustration of Algorithm 3: For each particle• in the block {•}, an individual proposal informed by the remaining blocks {�,�} is computed.
The proposals are independently accepted or rejected in parallel. This is sequentially repeated for each block

Algorithm 3 Simultaneous-within-block Metropolized
interactive particle sampling

Input:

• target density π on R
d

• a partition
⋃̇L

j=1b j = {1, . . . , M}
• ensemble dependent block proposal kernelsQx−(b j ) of form (23)

with density qx−(b j ) : R|b j |d × R
|b j |d → (0,∞) for arbitrary

x−(b j ) ∈ R
(M−|b j |)d and j ∈ {1, . . . , L}

• initial probability distribution π0 on R
d

Output: ensemble Markov chain (Xk)k∈{1,...,N } in state space RMd

1: draw x0 ∼ ⊗M
i=1π0 and set initial state X0 = x0 ∈ R

Md

2: for k = 0, . . . , N do
3: given Xk = xk initialize x = (x (1)

k , . . . , x (M)
k )

4: for j = 1, . . . , L do
5: ∀i ∈ b j : draw proposal y(i) ∼ Qx−(b j ),i

(x (i), ·) independently
6: ∀i ∈ b j : compute particle acceptance probability

αx−(b j ),i
(x (i), y(i)) ∈ [0, 1]

7: ∀i ∈ b j : draw ui ∼ U([0, 1]) independently and set

x (i) =
{
y(i) if ui ≤ αx−(b j ),i

(x (i), y(i))

x (i) else

8: end for
9: set Xk+1 = x
10: end for

for all x ∈ R
Md, then (Xk)k∈N is ergodic and satisfies a law

of large numbers (22).

Proof Ergodicity and a strong law or large numbers hold for
any inital distribution if the Markov chain (Xk)k∈N is aperi-
odic, irreducible andHarris recurrent, see Robert and Casella
(2004), Section 6 for statements and definitions. The first two
are easy to verify for P̃ and the third is, given irreducibility,
equivalent to

P (Xn ∈ A for all n ∈ N | X0 = x) = 0

∀x ∈ R
Md ∀A ∈ B(RMd) : π(A) = 0,

see Roberts and Rosenthal (2006), Theorem 6. Since π and
thus π are absolutely continuous w.r.t. the Lebesguemeasure
and qx−(b) > 0 we have for any x ∈ R

Md and A ∈ B(RMd)

with π(A) = 0 that

P

(
Xk ∈ A | X(i)

k �= X(i)
k−1 ∀i, X0 = x

)
= 0.

Thus, by introducing the event Dn := {∀k ∈ {1, . . . , n} ∃i ∈
{1, . . . , M} : X(i)

k = X(i)
k−1}, i.e., in each iteration k =

1, . . . , n there is at least on particle which does not move,
we have by law of total probability

P (Xn ∈ A | X0 = x) ≤ P (Dn | X0 = x) .

Thus, since

P (Xn ∈ A ∀n ∈ N | X0 = x) ≤ lim
n→∞P (Xn ∈ A | X0 = x)

≤ lim
n→∞P (Dn | X0 = x) ,

we have that (27) ensures Harris recurrence. ��
Again, the additional assumption (27) for ergodicity can

be considered rather mild. Here it states that for any ini-
tial ensemble X0 = x, the probability that all particles are
updated during one step with P̃ tends to 1 as n → ∞. Again,
this should be satisfied in any reasonable setting. However,
note that (27) is a stronger assumption than (21) for the ergod-
icity of block-wise Metropolization in Theorem 2.6.

Remark 2.11 (Simultaneousblock-wiseMetropolization). For
interacting particle systems described by (14) it seems
unintuitive to update the blocks in the ensemble sequen-
tially, i.e., to use a different drift and diffusion term for
each of the blocks due to interaction and the sequentially
updated ensemble. Moreover, from a computational per-
spective, a simultaneous (rather than sequential) block-wise
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Metropolization would be most desirable as it allows for the
parallel processing of all particles within the ensemble: this
method, in each step of the algorithm, decides for each block
in the ensemble independently, whether the proposal for this
block is accepted or rejected. Formally, this is described by
the ensemble transition operator

Psim(x, dy) = Px−(b1) (x(b1), dy(b1))

⊗ · · · ⊗ Px−(bL ) (x(bL ), dy(bL )).

Also P̃sim can be defined analogously. However, it turns out
that this approach in general fails to ensure ergodicity and
even π-invariance. A detailed discussion including coun-
terexamples for the case where all blocks have size one is
provided in Sect.B.

2.3 Asymptotic variance

2.3.1 General case

Let (X̃k)k∈N be a π -invariant ensemble Markov chain start-
ing in stationarity X̃0 ∼ π , and let F ∈ L2

π (R). Then
the asymptotic variance of the path-average estimator of an
ensemble Markov SM

N (F), see (22), is defined by

σ 2
F := lim

N→∞ N V

[
SM
N (F)

]
,

and, in case of existence, also given by

σ 2
F = Vπ [F]

M

[
1 + 2

∞∑
k=1

Corr

(
1

M

M∑
i=1

F
(
X̃ (i)
0

)
,

1

M

M∑
j=1

F
(
X̃ ( j)
k

)⎞⎠
⎤
⎦ . (28)

This follows fromSM
N (F) = 1

N

∑N
k=1 G(X̃k)whereG(x) :=

1
M

∑M
j=1 F(x (i)) with Vπ [G] = 1MVπ [F]. By standard

MCMCarguments, we can further obtain a central limit theo-
rem forSM

N (F). For the case of reversible ensemble transition
kernelsP, i.e., for ensemble-wiseMetropolization or the vari-
ants explained in Remark 2.5, we have given the assumptions
of Theorem 2.6 and that σ 2

F in (28) is finite that

√
N
(
SM
N (F) − Eπ [F]

) L−−−−→
N→∞ N

(
0, σ 2

F

)
. (29)

The same holds for reversible P̃ under the assumptions of
Theorem 2.10 and σ 2

F < ∞.
Moreover, also for the non-reversible transition kernels

Pseq and P̃seq a central limit theorem (29) with σ 2
F as in

(28) can be derived given additional sufficient conditions. For

the latter we refer again to (Roberts and Rosenthal (2004),
Section 5) for more details.

2.3.2 Comparison to non-interacting particles

Let us consider the special case of non-interacting parti-
cles, i.e., we assume for the moment that (X̃ (i)

k )k∈N are
mutually independent π -reversible Markov chains for all
i = 1, . . . , M starting in stationarity X̃ (i)

0 ∼ π iid. Then
the estimator

SM
N (F) = 1

M

M∑
i=1

(
1

N

N∑
k=1

F(X (i)
k )

)

is simply an average of M iid path average estimators
1
N

∑N
k=1 F(X (i)

k ), i = 1, . . . , M , of the independent particle

Markov chains (X (i)
k )k∈N and, thus, its asymptotic variance

σ 2
F can be written as

σ 2
F = Vπ [F]

M

[
1 + 2

∞∑
k=1

Corr
(
F
(
X (i)
0

)
, F

(
X (i)
k

))]

with arbitrary i ∈ {1, . . . , M}. Thus, for non-interacting par-
ticles and sufficiently large N we have

V(SMN (F)) ≈ V(SM
N (F))

where SMN (F) is the estimator based on MN iterates of a
one-particle Markov chain (X̃ (i)

k )k∈N, as already mentioned
in Goodman and Weare (2010). Thus, sampling based on
non-interacting particle systems has the only advantage of
parallel computation.

In our numerical experiments, see Sect. 4, we observe that
the interaction of the M particles can give improvements in
the form

V(SMN (F)) > V(SM
N (F))

due to allowing each particle chain (X (i)
k )k∈N to take larger

steps resulting from exploiting approximate information on
π provided by the ensemble in the proposal kernelsQ. How-
ever, a rigorous proof of this statement is beyond the scope
of this work.

3 Algorithmic examples

In this sectionwe discuss several interacting particlemethods
which can be used to build proposals for the Metropoliza-
tion schemes presented in Sect. 2. They are inspired from
continuous-time systems (3), which we translate into a time-
discrete interacting particle system through ensemble and
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time discretization. For each example we check if Assump-
tion 2.1 is satisfied and comment on modifications for the
CWBI condition.

3.1 Parallel Metropolis-adjusted Langevin algorithm
(pMALA)

For comparison we start with a non-interacting system,
namely parallel MALA. This will serve to illustrate the ben-
efits of interaction of particles in our numerical examples.

Ensemble update and proposal density Recall the particle-
wise update scheme from Example 1.4 arising from dis-
cretization of the Langevin dynamics introduced in Exam-
ple 1.1 and Example 1.4, i.e.

X (i)
k+1 = X (i)

k + h∇ logπ(X (i)
k ) + √

2hζ
(i)
k+1,

k ∈ N, j = 1, . . . , M, (30)

with iid ζ
(i)
k+1 ∼ N(0, Idd). This system satisfies CWBI for

any block partition due to the non-interaction of the particles
and for any block b the corresponding proposal kernelQx−(b)

has the product form (23)with (x−(b)-independent)Lebesgue
density

qx−(b),i (x, y) = q(x, y) = 1

(4hπ)d/2

exp

(
− 1

4h
‖ (y − (x + h∇ logπ(x))) ‖2

)
, x, y ∈ R

d ,

i.e., 
i (x, x−(i)) = ∇ logπ(x) and �i,i (x, x, x−(i)) = 2Idd
in (17). Hence, besides CWBI also Assumption 2.1 is satis-
fied.

3.2 Metropolis-adjusted ALDI (MA-ALDI)

We continue with the ALDI discretization introduced in
Example 1.3 for the continuous Wasserstein dynamics
described by (5).

Ensemble update andproposal density In order to avoid the
subspace property, see Iglesias et al. (2013), we introduce a
sightly modified version of the update scheme (10):

X (i)
k+1 = X (i)

k + h(γ Idd + (1 − γ )C(Xk))∇ logπ(X (i)
k )

+ h(1 − γ )
d + 1

M
(X (i)

k − m(Xk))

+√
2h(γ Idd + (1 − γ )C(Xk))ζ

(i)
k+1. (31)

Here, ζ
(i)
k+1 ∼ N(0, Idd) iid for all i = 1, . . . , M and k ≥

0, and γ ∈ [0, 1] is a fixed parameter that determines the
contribution of the covariance matrix C(Xk) in the update.

When γ = 0, the update scheme (31) reduces to the
ALDI method (10), while γ = 1 corresponds to the pMALA
method discussed in Example 1.4 or the previous subsec-
tion. By choosing γ ∈ [0, 1], we enable a smooth transition
from pMALA to MA-ALDI. Additionally, the term γ Id
in �γ (x (i), x−(i)) := 2(γ Id + (1 − γ )C(x)) serves as
regularization and guarantees the positive-definiteness of
�γ (x (i), x−(i)) ∈ C+(Rd) for all x ∈ R

Md when γ > 0,
which breaks the well-known subspace property (Iglesias
et al. 2013). In other words, this regularization acts as a stabi-
lization of possible degeneration of the particle system also
known as the ensemble collapse. Moreover, this interacting
particle system satisfies the assumptions in Remark 2.4 with
� = �γ from above and 
 = 
γ where


γ (x (i), x−(i)) = (γ Id + (1 − γ )C(x))∇ logπ(x (i))

+h(1 − γ )
d + 1

M
(x (i) − m(x)).

I.e., the block proposal kernel takes the a product form (18)
where the proposal density qx−(i) of Qx−(i) in (18) is given
by

qx−(i) (z, y)

= 1

det(
√
2π h �γ (z, x−(i)))

exp

(
− 1

4h
‖�γ (z, x−(i))−1/2

(
y − (z + h
γ (z, x−(i)))

)
‖2
)

.

The regularization of the covariance is not necessary,
i.e., we can allow for γ = 0, if C(Xk) ∈ C+(Rd) for all
k ∈ N. The latter necessarily requires having M ≥ d + 1
particles X (i)

k , since rank(C(Xk)) ≤ M − 1. Note that
C(Xk) ∈ C+(Rd) implies that C(Xk+1) ∈ C+(Rd) almost
surely for (31) with γ = 0 within Algorithm 3. This holds
since the probability of proposing blocks of particles which
lie in (a finite union) of strict subspaces ofR|b| is zero. Thus,
we introduce:

Assumption 3.1 At least one of the following conditions is
met: (i) γ > 0 or (ii) M > d and for the initial ensemble
x0 ∈ R

Md it holds that C(x0) ∈ C+(Rd).

Given Assumption 3.1 the crucial Assumption 2.1 is sat-
isfied for ALDI. Finally, it is worth mentioning that the
algorithm can be further adapted to eliminate the need for
computing the gradients of logπ . Additional details on this
adjustment are provided in Appendix C.

123



   64 Page 14 of 31 Statistics and Computing            (2025) 35:64 

Simultaneous-within-block implementation In the follow-
ing, we want to present a heuristic modification of the inter-
acting particle dynamic (31) allowing for a simultaneous-
within-block implementation satisfying the product form
(18). We consider again a partition {1, . . . , M} = ∪L

j=1b j

with |b j | ≥ 2. In order to guaranteeCWBI condition, i.e., that
there is no interaction between the particles within a block,
we will exclude these particles from the empirical approxi-
mation of the mean and covariances. That is, we define the
block-wise empirical means and covariances as

C
X

−(b j )
k

(Xk) = 1

M − |bi |
M∑

i=1, i /∈b j

(
X (i)
k − m

X
−(b j )
k

(Xk)
)

(
X (i)
k − m

X
−(b j )
k

(Xk)
)	

,

m
X

−(b j )
k

(Xk) = 1

M − |b j |
M∑

i=1, i /∈b j

X (i)
k .

Finally, we replace the update scheme (31) by the block-wise
update

X (i)
k+1 = X (i)

k + h(γ Idd + (1 − γ )C
X

−(b j )
k

(Xk))∇ logπ(X (i)
k )

+ h(1 − γ )
d + 1

M
(X (i)

k − m
X

−(b j )
k

(Xk))

+
√
2h(γ Idd + (1 − γ )C

X
−(b j )
k

(Xk))ζ
(i)
k+1,

i ∈ b j , j = 1, . . . , L . (32)

3.3 Metropolis-adjusted consensus based sampling
(MA-CBS)

Motivated by the consensus based optimization (CBO)
scheme (Pinnau et al. 2017), the authors of Carrillo et al.
(2022) propose a modification leading to the so-called con-
sensus based sampling (CBS) method. While CBO aims to
find a globalminimizer of some objective functionV : Rd →
R+, CBS aims to generate approximate samples from mea-
sures of the form π(x) ∝ exp(−V(x)), x ∈ X = R

d . It
is worth noting that the algorithm generates samples from a
Gaussian approximation of the target measure, i.e. in gen-
eral π is not an invariant measure of the corresponding SDE
(Carrillo et al. 2022).

The theoretical study of CBS in Carrillo et al. (2022) was
based on its continuous-time formulation in the mean-field
limit represented by the McKean–Vlasov SDE

dXt = −(Xt−mπ (πt )) dt+
√
2λ−1Cπ (πt ) dBt , X0 ∼ π0,

(33)

i.e., φ(x, ρ) = −(x −mπ (ρ)) and σ(x, ρ) = 2λ−1Cπ (ρ) in
(3). Here Bt is a d-dimensional Brownianmotion, πt denotes
the probability density function of the state Xt , t ≥ 0, and
mπ (ρ), Cπ (ρ) denote the weighted mean and covariance of
a probability distribution ρ defined as

mπ (ρ) = 1∫
Rd

ρ(x)π(x) dx

∫

Rd

x π(x) ρ(x) dx,

Cπ (ρ) = 1∫
Rd

ρ(x)π(x) dx

∫

Rd

(
(x − mπ (ρ))(x − mπ (ρ))	

)
π(x) ρ(x) dx .

To give a better intuition of the dynamical system one may
derive the evolution of the (unweighted)mean and covariance
defined in (5a) of the solution to (33), which are given by

∂t (m(πt )) = −m(πt ) + mπ (πt )

∂t (C(πt )) = −2C(πt ) + 2
1

λ
Cπ (πt ) .

One important property of CBS is the property that once
initialized with a Gaussian distribution, the law πt remains
Gaussian. In this case, finding a stationary distribution of
(33) corresponds to finding a Gaussian approximation of the
target measure π perserving the mean and covariance. Under
certain conditions, such as the convexity of the potential,
the existence of a Gaussian steady state can be established
(Carrillo et al. (2022), Theorem 2). In the one-dimensional
setting, this steady state is arbitrarily close to the Laplace
approximation of π∗ (Carrillo et al. (2022), Theorem 3).

Ensemble update and proposal density Discretizing (33)
by the Euler–Maruyama scheme in time and using an ensem-
ble as empirical approximation forπt weobtain the following
update

X (i)
k+1 = X (i)

k − h(X (i)
k − mπ (Xk)) +√

4hCπ (Xk)ζ
(i)
k+1,

i = 1, . . . , M, k ∈ N,

where ζ
(i)
k+1 ∼ N(0, Idd) iid and

mπ (x) = 1∑M
i=1 π(x (i))

M∑
i=1

π(x (i))x (i),

Cπ (x) = 1∑M
i=1 π(x (i))

M∑
i=1

π(x (i))

(
(x (i) − mπ (x))(x (i) − mπ (x))	

)
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denote the weighted empirical mean and covariance of the
ensemble x ∈ R

Md . We mention that in the original work
(Carrillo et al. (2022)) the authors introduced a rescaled time,
so that our system slightly differs from the one in Carrillo
et al. (2022). The proposed Metropolization is applicable to
both discrete time systems.

Similar to the ALDI method the weighted empirical
covariance Cπ (Xk) is not necessarily positive definite. We
can again either use sufficiently many particles M > d or
introduce a regularization of the covariance which yields the
update

X (i)
k+1 = X (i)

k − h(X (i)
k − mπ (Xk))

+√
4h(γ Id + (1 − γ )Cπ (Xk))ζ

(i)
k+1, (34)

for i = 1, . . . , M, k ∈ N, with γ ∈ [0, 1] fixed. Also (34)
satisfies the assumptions of Remark 2.4 with 
 = 
γ and
� = �γ where


γ (x (i), x−(i)) = x (i) − h(x (i) − mπ (x))

and

�γ (x (i), x−(i)) = 2(γ Idd + (1 − γ )Cπ (x)),

i.e., the particle-wise proposal densities in the product block
proposal kernel (18) are

qx−(i) (z, y)

= 1

det(
√
2π h �γ (z, x−(i)))

exp

(
− 1

4h
‖�γ (z, x−(i))−1/2

(
y − (z + h
γ (z, x−(i)))

)
‖2
)

.

3.4 Metropolis-adjusted Stein variational gradient
descent (MA-SVGD)

Stein variational gradient descent (SVGD) is a non-parametric
particle-based Bayesian inference method that aims to
approximate a target distribution (Liu and Wang (2016)).
The algorithm can formally be viewed as a particle and time-
discretization of the mean field equation

dXt = 
(Xt , πt )dt, X0 ∼ π0,


(x, ρ) =
∫

Rd

[
K (y, x)∇ logπ(y) + ∇y K (y, x)

]
πk(dy)

(35)

whereπt denotes the distribution of Xt and K is a fixed kernel
function (Korba et al. 2020; Liu 2017).

The deterministic interacting particle system termed
SVGDand originally proposed in Liu andWang (2016) reads

X (i)
k+1 = X (i)

k + hk+1
(X (i)
k , Xk),


(x, x) = 1

M

M∑
j=1

K (x( j), x)∇ logπ(x( j)) + ∇x ( j)K (x( j), x)

where hk > 0 denote the step size in the kth step. While this
method has shown promising results in certain applications,
in practice it requires a careful tuning of the kernel function
and convergence in high dimensions tends to be slow. More-
over, convergence results have only been established for the
long time behavior of themean field limit in continuous time,
where exponential convergence of the Kullback–Leibler
divergence was shown under strong assumptions on the
underlying kernel K and the target π (Korba et al. 2020;
Duncan et al. 2023). In fact, these results suggest that for
many standard kernels K exponential convergence to equi-
librium is not possible, or convergence is not guaranteed
(also see (Gorham and Mackey (2017), Theorem 6)). This
makes Metropolization of a stochastic variant a compelling
option to ensure convergence. We also mention that, in
the finite-particle regime, the convergence of the kernelized
Stein discrepancy (KSD) has recently been established under
relaxed assumptions on the kernel (Shi and Mackey 2023).
However, the obtained convergence rate remains notably
slow.

Ensemble update and proposal density Motivated by
the Langevin dynamics, a stochastic version of SVGD has
recently been proposed in Gallego and Insua (2018). This
approach is driven by a π -invariant coupled system of SDEs
(Nüsken and Renger 2023; Gallego and Insua 2018) that
describes the time-continuous dynamics of the ensemble X t .
Notably, the mean field limit for M → ∞ of this system of
SDEs is the same as in (35). We shortly recall the dynamics
from Gallego and Insua (2018) and refer to this paper for
further explanations and details.

The stochastic particle dynamics reads

Xk+1 = Xk + h�(Xk) +√
h�(Xk)ζk+1, (36)

where ζk ∼ N(0, IdMd),

�(x) := (
(x (1), x(−1)), . . . , 
(x (M), x(−M)))	,


(x ( j), x−( j)) := 1

M

M∑
i=1

K (x ( j), x (i))∇ logπ(x (i))

+ ∇x (i)K (x ( j), x (i)),

123



   64 Page 16 of 31 Statistics and Computing            (2025) 35:64 

and

�(x) = 2

M
S	 diagd(K(x), . . . ,K(x))S.

Here the positive definite matrixK(x) ∈ C+(Rd) is given by

K(x)i, j = K (x (i), x ( j)) ∀ i, j = 1, . . . , M, (37)

and S ∈ R
Md×Md denotes a permutation matrix defined by

S =
⎛
⎜⎝
11,1 . . . 1M,1
...

. . .
...

11,d . . . 1M,d

⎞
⎟⎠ , 1k,� ∈ R

M×d with

(1k,�)n,m =
{
1 if k = n, � = m

0 else.

Note that S is an orthogonal matrix such that S	S = SS	 =
IdMd , and it holds that

√
h�(x) = √

2h/MS	 diagd(
√
K(x), . . . ,

√
K(x))S.

Moreover, letting Ki j := K (x (i), x ( j)) Idd ∈ R
d×d , we can

write

�(x) = 2

M

⎛
⎜⎝
K11 · · · K1M
...

. . .
...

KM1 . . . KMM

⎞
⎟⎠ .

This definition of the diffusion ensures that the associated
Fokker–Planck equation of (36), as h → 0, admits π as
a stationary solution even for the finite particle setting (Gal-
lego and Insua (2018), Proposition 2). This is complementary
to SVGD viewed as finite particle approximation of (35)
(Gallego and Insua (2018), Proposition 3). It is worthwhile
to mention that (36) does not satisfy the assumptions of
Remark 2.4. However, the associated block proposal ker-
nels Qx−(b) possess positive Lebesgue densities, since K(x)
and, therefore, �(x) is positive definite for distinct particles
x (i) �= x ( j), i �= j . Hence, Assumption 2.1 is given as long
as are particles in the ensemble are distinct.

Remark 3.2 Similar to CBS and ALDI, we can improve the
stability of the system by introducing regularization in order
to avoid the kernel matrix K(x) from becoming close to sin-
gular in case the particles collapse. To do so, one can replace
�(x) by �γ (x) := γ IdMd + (1− γ )�(x), γ ∈ (0, 1). How-
ever, in our numerical examples such a regularization was
not necessary and, hence, not applied.

4 Numerical experiments

To evaluate the performance of our proposed Metropolis-
adjusted interactive particle sampling (MA-IPS)methods,we
conduct three numerical experiments inwhichwe implement
(MA-)ALDI, (MA-)SVGD, and (MA-)CBS. The implemen-
tation was done in MATLAB and we utilized the discrete
dynamics (31), (34), and (36) for the unadjusted algorithms,
along with the corresponding Metropolis-adjusted methods
based on Algorithms 2 and 3. We adhere to the following
naming conventions for our algorithms:

• ALDI corresponds to the chain generated by (31), CBS
corresponds to the chain generated by (34), and SVGD
corresponds to the chain generated by (36),

• pMALA corresponds to parallel MALA, i.e. to M inde-
pendent chains each generated by Algorithm 4 with
proposal (30),

• weuse theprefixMA, to indicate that it’s theMetropolized
version of an algorithm,

• we use the suffix bw to indicate block-wise Metropoliza-
tion as in Algorithm 2, e.g. MA-ALDI-bw corresponds
to Algorithm 2 with proposal (31).

• we use the suffix ew to indicate the special case of
ensemble-wise Metropolization as in Algorithm 2 with
L = 1, e.g. MA-ALDI-ew corresponds to Algorithm 2
with L = 1 and proposal (31),

• we use the suffix pw to indicate the special case of
particle-wise sequential Metropolization as in Algo-
rithm 2 with L = 1, e.g. MA-ALDI-pw corresponds to
Algorithm 2 with |b j | = B = 1, j = 1, . . . , L = M ,
and proposal (31),

• we use the suffix sim-bw to indicate the simultaneous
within blockMetropolization as in Algorithm 3, e.g.MA-
ALDI-sim-bw corresponds to Algorithm 3 with proposal
(32).

Let us briefly describe the three experiments below:

1. The first experiment illustrates the bias of the unadjusted
interactive particle samplers for a one-dimensional non-
Gaussian target distribution, thus, emphasizing the need
for Metropolization.

2. The second experiment is a more detailed study of MA-
IPS using a four-dimensionalmultivariate Gaussian target
distribution. It demonstrates the benefits of interaction
(compared to independent parallel Markov chains) and
compares the performance of the variousMetropolization
schemes, in particular, under consideration of paralleliza-
tion. Moreover, also the optimal tuning of the considered
MA-IPS methods is studied empirically by the relation
of the average acceptance rate and the obtained mean
squared error of SM

N (F) for a chosen F .
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3. The final experiment applies the MA-IPS methods to a
multivariate non-Gaussian target distribution and con-
firms our observations in the Gaussian setting.

In the second and third experiments, we place detailed
focus on the comparison of MA-ALDI and pMALA due
to their natural relationship. For CBS and SVGD, we com-
pare only the Metropolis-adjusted and unadjusted versions.
The MA-CBS algorithm utilizes only zeroth-order informa-
tion, such that making a fair comparison would correspond
to a (parallel) random walk MH algorithm. The algorithm
MA-SVGD requires additional hyperparameter tuning, par-
ticularly in selecting an underlying kernel K , complicating
direct comparisons with pMALA and MA-ALDI.

Computational complexity In many applications, such as
PDE driven inverse problems, the main computational cost
stems from the evaluations of the target distribution π and
it’s gradient. All other computations can be considered as
relativelyminor overhead. In all variants of our algorithm, the
evaluations of π and its gradient can be performed in parallel
within each block for each sweep through the ensemble.

In terms of the ensemble size M , the number of blocks L ,
and the spatial dimensiond, in theworst case the computation
of the square root of all empirical covariances in one step
of the algorithm behaves like O(LMd3), i.e. linear in the
ensemble size M and the number of blocks L , and cubic in
d.

4.1 One-dimensional example: bimodal distribution

We study the effect of Metropolization on interacting par-
ticle systems for ALDI, CBS, and SVGD, by comparing
the performance of each method with and without ensem-
ble Metropolization.

As a target we consider the (unnormalized) probability
density

π(x) ∝ exp

(
− 1

2σ 2 |x2 − 1|2
)

· exp
(

−1

2
|x − m0|2

)
x ∈ R,

with σ = √
0.5 and m0 = 0.8. This target density corre-

sponds to the posterior density in a Bayesian inverse problem
with Gaussian prior distribution N(m0, 1), forward model
G(x) = x2 and additive Gaussian noise with zero mean and
variance σ 2.

For each particle sampling method we have simulated
Nburn = 104 iterations of burn-in followed by another
N = 105 iterations. Both, theMetropolis-adjusted and unad-
justed variant, were implemented with M = 10 particles,
same realization of the iid initialization X ( j)

0 ∼ N(m0, 1),
j = 1, . . . , M and same step size h > 0 in the Euler–

Table 1 Comparison of theMSE for adjusted and unadjusted ALDI for
various step sizes

h MA-ALDI-ew (Unadjusted) ALDI

Acceptance rate MSE MSE

0.01 0.93 0.0067 0.0054

0.04 0.82 0.005 0.018

0.0725 0.7 0.006 –

0.1 0.61 0.0045 –

0.125 0.5 0.0038 –

Maruyama scheme. For bothALDIversionsweused step size
h = 0.0725 and for bothCBSversions the step size h = 0.05.
For both SVGD versions we used step size h = 0.0001 and
the Gaussian kernel

ks(x1, x2) = exp

(
− 1

2s2
|x1 − x2|2

)

with s = 0.01.
In Figs. 3, 4, 5 we compare the histograms of the par-

ticles obtained by the Metropolis-adjusted and unadjusted
algorithms accumulated over all N iterations. For all three
interactive particle methods, the invariant measures of the
unadjusted implementations exhibit a visible bias relative
to the target π , whereas this bias is not present for their
Metropolized counterparts. It is worth mentioning again that
the unadjusted CBS algorithm only produces a Gaussian
approximation.

Finally, in Table 1 we compare the results of both ALDI
versions for different choices of step sizes h. Here, we
averaged over 10 seeds and computed both the averaged
acceptance rate and the mean squared error (MSE) for esti-
mating Eπ [X2] = ∫

R

x2π(x) dx using an average over the

entire chain. Note that unadjusted ALDI lacks stability when
the step size h is too large, causing various simulated paths
to diverge to infinity. This is the case when h ≥ 0.0725.

4.2 Multivariate Gaussian distribution

We now consider a 4-dimensional multivariate Gaussian tar-
get distribution N(0,C) with target density

π(x) ∝ exp

(
−1

2
‖C−1/2x‖2

)
,

C = diag(1, 0.1, 0.01, 0.001).

As the coordinates are weighted differently, we expect a pos-
itive effect from the ensemble preconditioner. In this section
we illustrate the benefits of interaction, compare ensemble-
wise to particle-wise Metropolization (for MA-ALDI), and
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Fig. 3 Comparison of MA-SVGD-ew and SVGD with M = 10 particles and step size h = 0.0001. MA-SVGD-ew achieved an acceptance rate of
53%

Fig. 4 Comparison of MA-ALDI-ew and ALDI with M = 10 particles and step size h = 0.0725. MA-ALDI-ew achieved an acceptance rate of
70%

Fig. 5 Comparison of MA-CBS-ew and CBS with M = 10 particles and step size h = 0.05. MA-CBS-ew achieved an acceptance rate of 52%

consider optimal tuning of MA-ALDI, MA-CBS, and MA-
SVGD by controlling the acceptance rate.

To this end, we consider the quantity of interest f (x) =
x	C−1x where for X ∼ π we have f (X) ∼ χ2

4 . Our goal is
then to estimate

Pref := P( f (X) ≤ q0.5) = Eπ

[
1(−∞,q0.5]( f (X))

] = 1

2
(38)

where q0.5 denotes the 0.5-quantile of the χ2
4 distribution and

1A the indicator function of a set A. Let us mention that the
presented results below are very similar when we directly
estimate Eπ [ f (X)] rather than Pref . The corresponding esti-
mators based on ensemble Markov chains (Xk)k∈N are then

P̂N := 1

N

N∑
k=1

F(Xk), F(x) := 1

M

M∑
i=1

1(−∞,q0.5]( f (x(i))) ∈ R.
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For evaluating the efficicency of these estimators we also
compute the associated autocorrelations Corr(F(X1),

F(X1+k)) ≈ ρk := ck/c0 where

ck := 1

N − k

N−k∑
i=1

(
F(X i ) − P̂N

) (
F(X i+k) − P̂N

)

since the ρk yield information about the asymptotic variance
(47) in the central limit theorem.

Superiority of interacting particles In Fig. 6, we com-
pare MA-ALDI-ew for different values of the covariance
regularization parameter γ ∈ {0.001, 0.1, 1} to pMALA,
in order to show the improved performance for proposals
generated by interacting particle systems. All variants are
initialized by iid samples of the initial distribution N(0, 5 ·
Id). Note that for γ = 1 the proposal of MA-ALDI-ew
and pMALA are in fact the same, but MA-ALDI-ew uses
ensemble-wiseMetropolizationwhile pMALAuses particle-
wise Metropolization.

Figure 6a shows the evolution of P̂N averaged over
100 independent runs for each method. For each method,
we tuned the step size h such that the average accep-
tance rate was around 50%. To be more precise, we have
applied h ∈ {0.07, 0.008, 0.0008} for the corresponding γ ∈
{0.001, 0.1, 1} and h = 0.0023 for pMALA. Each method
is implemented using M = 10 particles. For γ = 0.001 and
γ = 0.1 the MA-ALDI-ew based estimators converge much
faster than pMALA. This observation is confirmed by the
significantly faster decaying autocorrelation depicted on the
right plot in Fig. 6. On the other hand for γ = 1 it is observed
that MA-ALDI-ew performs worse than pMALA, suggest-
ing that for γ = 1 the particle-wise Metropolization is more
effective than ensemble-wise Metropolization.

Superiority of particle- and block-wise Metropolization In
Figs. 7 and 8we compare the ensemble-wiseMetropolization
MA-ALDI-ewwith theparticle- andblock-wiseMetropoliza-
tions MA-ALDI-pw and MA-ALDI-bw for γ = 0.001.
Moreover, we compare the heuristic simultaneous within
block-wise variant of MA-ALDI based on the proposal (32)
satisfying the product form (18). The results are obtained by
averaging over 10 independent runs of the corresponding
methods, where each variant is initialized by iid sam-
ples of the initial distribution N(0, 0.01 · Id). We have
again tuned the step size h for all three MA-ALDI ver-
sions such that an acceptance rate of approximately 50%
is achieved. Note that we have increased the ensemble size
to M = 100 in this experiment. Similar as for γ = 1,
the particle-wiseMetropolization outperforms the ensemble-

wise Metropolization also for γ = 0.001 and γ = 0.1. We
observe a clear benefit of applying particle- and block-wise
Metropolization in Fig. 7a, where we do not take into account
possibilities for parallel computing.The result changes,when
allowing access to multiple cores, such that the computa-
tion of the ensemble- and block-wise Metropolization can be
done in parallel. Here, we assume that the primary computa-
tional cost arises from evaluating π and its gradient, making
the assumption of full parallelism reasonable. In Fig. 8, we
observe a clear advantage of block-wise Metropolization the
more cores we incorporate. In addition, Table 2 shows the
estimated integrated autocorrelation scaled by the associated
cost of the applied algorithm, i.e. the quantity

c(int_ac, B, cores) = int_ac · N · M · 1

min{cores, B} . (39)

Here we assume all blocks in (19) to be of equal size
|b j | = B ∈ N for all j = 1, . . . , L (and thus M = LB is
a multiple of B). Moreover, cores ∈ N refers to the number
of processors available for parallelization, N is the number
of iterations, and int_ac refers to the estimated integrated
autocorrelation. Note that ensemble-wise Metropolization
and parallel MALA correspond to B = M and particle-
wise Metropolization corresponds to B = 1. Notably
the MA-ALDI-sim-bw benefits from both the particle-wise
acceptance schedule and parallelization within the blocks
resulting in the overall best performance.

Optimal tuning Finally, We study the dependence of the
mean squared error (MSE) of SM

N (F) on the average accep-
tance rate for the considered ensemble-wise MA-IPS in
Fig. 9. Here, we control the acceptance rate through the step
size h of the Euler–Maruyama scheme. The MSE was esti-
mated over 100 independent chains of length 5 ·104 for each
method and step size. In this experiment, we initialize each
variant by an iid sample of the initial distribution N(0, 5 · Id)
with ensemble size M = 10. We observe slightly different
optimal average acceptance rates for MA-SVGD-ew, MA-
ALDI-ew (γ = 0.001), and MA-CBS-ew (γ = 0), with
MA-ALDI-ew notably performing most sensitive w.r.t. the
acceptance rate, but also achieving the smallest MSE—by an
order of magnitude smaller compared to MA-SVGD-ew and
two orders of magnitude compared to MA-CBS-ew. Note
that we have applied γ > 0 for MA-ALDI-ew to avoid
numerical instabilities due to the small number of particles
M . In Fig. 10, we show the expected MSE in dependence of
the applied step size h, where we compare the Metropolis-
adjusted and unadjusted variants (UA). We again observe
thatMetropolization significantly improves the performance.
Finally, for MA-SVGD-ew we can additionally control the
acceptance rate through the kernel function:Weuse theGaus-
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Fig. 6 Estimation of Pref in (38) and the corresponding estimated autocorrelation using either pMALA or MA-ALDI-ew for different choices of
γ . For each method the step size h was tuned to obtain an acceptance rate of approximately 50%

Table 2 Comparison of the
quantity in (39) measuring the
computational efficiency of the
method for different numbers of
cores available and different
variants of Metropolization
(γ = 0.001)

Cores ew bw, B = 50 sim-bw, B = 50 bw, B = 25 pw pMALA

1 2077.8 631.92 169.89 409.56 257.39 9529.58

25 83.11 25.28 6.8 16.38 257.39 381.18

50 41.56 12.64 3.4 16.4 257.39 190.59

100 20.78 12.64 3.4 16.4 257.39 95.3

h 0.06 0.15 0.8 0.225 0.8 0.0023

Fig. 7 Estimation of Pref in (38) and the corresponding estimated autocorrelation for different versions ofMA-ALDI with γ = 0.001, and pMALA.
For all variants the step size h was tuned to obtain an acceptance rate of approximately 50%

sian kernel

ks(x1, x2) ∝ exp

(
− 1

2s2
‖x1 − x2‖2

)
,

and can also steer the performance of (MA-)SVGD by the
variance parameter s2. The results are shown in Fig. 11. The
optimal average acceptance rate seems to be almost the same
as for tuning h (right). The dependence of theMSE and aver-
age acceptance rate is explicitly shown in the middle and
right plot of Fig. 11.

4.3 ODE-based nonlinear inverse problem

We consider the one-dimensional elliptic equation

{
d
ds

(
eθ(s) d

ds p(s)
) = 0 s ∈ D := (0, 1)

p(0) = 0, p(1) = 2
(40)

and the inverse problem of recovering the unknown coeffi-
cient θ(·) ∈ L∞(D) fromnoisy observations y = F(θ)+ξ ∈
R

K , where ξ ∈ R
K denotes observational noise. Denote

by H1(D) the standard Sobolev space of L2(D)-integrable
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Fig. 8 Same estimation of Pref in (38) as in Fig. 7 but with different assumptions on accessible cores

Fig. 9 Comparison of the expected MSE depending on the chosen step size h for MA-SVGD-ew (left), MA-ALDI-ew with γ = 0.001 (middle),
and MA-CBS-ew with γ = 0 (right)

Fig. 10 Comparison of the expected MSE depending on the chosen step size h rate for SVGD (left), ALDI with γ = 0.001 (middle), and CBS
with γ = 0 (right)

Fig. 11 Comparison of the expected MSE depending on the expected acceptance rate and the choice of kernel variance for MA-SVGD-ew
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functions whose derivatives are also L2(D)-integrable (see,
e.g., Adams and Fournier (2003)). The forward operator
F : L∞(D) → R

K is defined by F = O ◦ G - the solu-
tion operator G : L∞(D) → H1(D) of (40) composed
with the linear observation operatorO : H1(D) → R

K pro-
viding function values of K equidistant observation points
sk = k

K+1 , k = 1, . . . , K , such that for p ∈ H1(D) we have
Op(·) = (p(s1), . . . , p(sK ))	. The solution of (40) is given
in closed form by

p(s) = G(θ)(s) = 2Is(e
−θ(·))/I1(e−θ(·)) (41)

where Is( f (·)) :=
s∫
0

f (s) ds.

We consider a Gaussian process prior for θ given by

θ(·, x) = Bφx :=
d∑

i=1

xiφi (·),

where φi (s) =
√
2

π
sin(iπs) and xi ∼ N(0, λi ) indepen-

dently with λi = i−2. Thus, the resulting inverse problem
is to recover the coefficients x = (x1, . . . , xd)	 ∈ R

d with
prior information N(0, �0), where �0 = diag(λ1, . . . , λd).
Assuming additive Gaussian noise ξ ∼ N(0, �), � =
0.012 · Id, the resulting (unnormalized) posterior density is

π(x) ∝ exp

(
−1

2
‖�−1/2(y − F(Bφx))‖2 − 1

2
‖�−1/2

0 x‖2
)

.

For the numerical implementationwe replaceG by a numeri-
cal solution operator for (40) on the grid Dδ ⊂ D with mesh
size δ = 2−10 and restriction of the unknown parameter
θ(·, x) to Dδ . More specifically, we apply a trapezoidal rule
to approximate the integrals in (41) and compute the exact
gradient of this numerical formula with respect to x ∈ R

d .
We consider a partially observed system with K = 4 and
d = 5 terms in the Gaussian process model.

We apply different versions of MA-ALDI with different
choices of γ ∈ {0.001, 0.1, 1} and compare them to pMALA.
All variants have been implemented with an ensemble-size
M = 10. For the comparison of the different schemes, we
consider the quantity of interest

f (x) :=
1∫

0

eθ(s,x) ds = I1(e
θ(·,x)) (42)

where the integral I1(eθ(·,x)), x ∈ R
d , is again approximated

by a trapezoidal rule, and use SM
N ( f ) as estimator for the pos-

terior expectation π( f ). The corresponding autocorrelation
is estimated as in the previous section. Moreover, the MSE
of SM

N ( f ) computed by averaging over 100 seeds, where we

use a reference value for π( f ) based on running the (single
chain) preconditioned Crank-NicolsonMetropolis algorithm
(Cotter et al. 2013) for Nref = 107 iterations. The resulting
estimated MSE and autocorrelation are plotted in Fig. 12.
Again, we observe that MA-ALDI outperforms pMALA. In
particular, the particle-wise MA-ALDI with highest inter-
action (γ = 0.001) performs best among all considered
algorithms.

Moreover, we show the resulting posterior approxima-
tion averaged over the realized Markov chains pushed
forward through the truncated KL-expansion, i.e., θ̂k =
BφXk . In Fig. 13 we plot the pointwise mean 1

N

∑Nburn+N
k=Nburn

θ̂k
plus/minus the pointwise empirical standard deviation. Here,
we used again a burn-in of Nburn = 103 iterations but then
only take N = 200 iterations.We observe a smaller deviation
to the posterior (approximated by the preconditioned Crank-
Nicolson Metropolis) for MA-ALDI-ew (γ = 0.001) than
for pMALAwhich illustrates again the faster convergence of
the Metropolis-adjusted interacting particle system.

5 Conclusion

The success of MCMC methods, particularly in anisotropic
and nonlinear problems, heavily relies on the quality of the
proposal distribution. Ideally, additional information on the
target distribution, such as its covariance, should be used.
While this is not available in practice, it can for example be
estimated along the path of the chain which has led to the
developement of adaptive MCMC methods. In the present
work, we consider an alternative approach that evolves an
ensemble of M ∈ N interacting particles and leverages
the information gained by the entire ensemble to gener-
ate a proposal for the next update. One key advantage is
that this method provides an effective and natural means of
parallelization which takes full advantage of the additional
information provided by the ensemble. This can be crucial in
the treatment of real-world problems. For instance, in engi-
neering and science, solving a (Bayesian) inverse problems
often involves simulating a complex physical process at each
step of the chain. Each of these simulations can take min-
utes or even hours to complete, which renders any sequential
algorithm and any MCMC approach that mixes only slowly
infeasible.

The present study investigated fundamental variants of
Metropolizing interacting particle systems that evolve M ∈
N particles based on some SDE of McKean–Vlasov type.
To this end, we partition the ensembles into blocks of equal
size and sequentially propose and accept or reject all par-
ticles in each block as a whole. This includes as special
cases the ensemble- and particle-wiseMetropolizationwhere
either the entire ensemble is considered as one block and
each individual particle is taken as a block. While sequen-
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Fig. 12 MSE for estimating π( f )with f as in (42) and the correspond-
ing estimated autocorrelation for different versions ofMA-ALDI and γ ,
and pMALA. For MA-ALDI-ew and pMALA the step size h was tuned

to obtain an acceptance rate of approximately 50%. For MA-ALDI-pw
we use the same h as for MA-ALDI-ew

Fig. 13 Posterior approximation (averaged over 200 iterations after burn-in) for MA-ALDI-ew with γ = 0.001 and pMALA. The step size h was
chosen such that the acceptance rate is approximately 50%

tial particle-wise updating has been proposed and discussed
previously, e.g., in Coullon and Webber (2021), Dunlop
and Stadler (2022), Goodman and Weare (2010), Leimkuh-
ler et al. (2018), the ensemble- and sequential block-wise
Metropolziation are novel to the best of our knowledge.
These two variants also allow for the parallel computa-
tion of the likelihood for each particle in the block. For
suitable interactive particle systems which satisfy a condi-
tional independence of particles within each block we also
proposed a simultaneous Metropolization within the block,
i.e., each particle is updated and accepted/rejected indepen-
dently and in parallel to the other particles of the block.
This allows for a further exploitation of parallelization and
also can improve the mixing of the ensemble Markov chain.
In general, all discussed variants allow for the construction
of affine-invariant MCMC methods through affine-invariant
particle dynamics. Furthermore, we provide a theoretical

analysis of the Metropolized interacting particle sampling
methods, establishing basic ergodicity under mild and com-
mon assumptions. Finally, in the appendix we also discuss
why a simultaneous updating of the blocks (instead of
sequential updating) does in general not yield the correct
invariant distribution.

We presented a detailed empirical study comparing these
methods for several common particle dynamics. Our findings
show that the interaction of the particles can significantly
improve mixing compared to trivially running M indepen-
dent MCMC chains (in parallel). Moreover, depending on
the situation, we observed that the particle- and block-wise
Metropolization seem to outperform the ensemble-wise vari-
ant. Overall, our study suggests that proposals based on inter-
acting particle systems can provide significant improvements
over traditional MCMC methods. However, comparing the
proposed methods to established adaptive MCMC methods,
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such as preconditioned MALA with online covariance esti-
mation, is left for future work.

Other possible directions for futurework include addition-
ally using the history of theMarkov chain, e.g., estimating the
target covariance also along the path of the ensemble chain
which may reduce the estimation error for the covariance.
Also the application of localization techniques as discussed
e.g., in Huang et al. (2022), Reich and Weissmann (2021)
within theMA-IPS approach seems beneficial. Finally, while
we provide basic convergence results, a solid theoretical
analysis of the superiority of interacting ensembles over
independent, parallel Markov chains remains an open and
interesting avenue for future work.

A Preliminaries onMarkov chain Monte
Carlo

We recall the basic terminology and ideas of MCMC sam-
pling required in the following.

Throughout letπ be a given absolutely continuous (target)
probability distribution onRd with the Lebesgue density also
denoted by π : R

d → [0,∞). To approximately sample
from π , we construct a Markov chain (Xk)k∈N ⊆ R

d that
converges to π in distribution as k → ∞. We denote the
associated transition kernel by P : Rd × B(Rd) → [0, 1],
i.e., the chain is characterized by Xk = x implying Xk+1 ∼
P(x, ·). Note that if X0 ∼ π0 for some initial distribution π0

then Xk ∼ π0Pk , (cf. (1)).
We say that

• π is an invariant measure of P iff

π = π P,

in which case we call P and (Xk)k∈N π -invariant,
• the Markov chain is π -reversible iff it satisfies the
detailed balance condition

∫

A

P(x, B)π(dx) =
∫

B

P(z, A)π(dz) ∀A, B ∈ B(Rd),

(43)

• the Markov chain is ergodic iff it holds

lim
k→∞ dTV(π0P

k, π) = 0, (44)

where π0 is the initial distribution and dTV stands for the
total variation distance,

• the Markov chain satisfies a strong law of large numbers
iff

SN (F) := 1

N

N∑
k=1

F(Xk)
a. s.−−−−→

N→∞ Eπ [F] ∀F ∈ L1
π (R),

(45)

• the Markov chain satisfies a central limit theorem (CLT)
for F ∈ L2

π (R) iff the asymptotic variance of SN (F) is
finite

σ 2
F = lim

N→∞ N V [SN (F)] ∈ (0,∞)

and

√
N (SN (F) − Eπ [F]) L−−−−→

N→∞ N
(
0, σ 2

F

)
. (46)

Due to Xk ∼ π0Pk , the Markov chain (Xk)k∈N can be
interpreted as the realization of a fixed point iteration under
the mapping P . Hence π being an invariant measure of P
is a necessary condition to obtain ergodicity. Additionally,
let us mention that π -reversibility is sufficient to ensure π -
invariance the latter following from (43) with B = R

d .
While a strong law of large numbers holds under mild

conditions, the central limit theorem is more nuanced. First
note that, the asymptotic variance of SN (F) can be expressed
as

σ 2
F = Vπ [F]

[
1 + 2

∞∑
k=1

Corr(F(X̃0), F(X̃0+k)

]
. (47)

where (X̃k)k∈N denotes the Markov chain with the same π -
invariant transition kernel P but starting in stationarity X̃0 ∼
π . However, in general neither the finiteness of σ 2

F nor a
CLT (46) is a given. A classical result (Kipnis and Varadhan
(1986)) states that for reversible, irreducible and aperiodic
Markov chains the finiteness of σ 2

F also yields a CLT (46).
Moreover, several other non-trivial conditions for (46) can
be given. We refer to Roberts and Rosenthal (2006), Section
5 for more details.

A.1 Metropolis–Hastings algorithm

The key question is how to obtain transition kernels that
ensure ergodicity and a strong law of large numbers. The
MH algorithm (Metropolis et al. 1953; Hastings 1970) is a
standard method achieving this under rather mild assump-
tions.

The algorithm is based on a proposal kernel Q : Rd ×
B(Rd) → [0, 1], that assigns a probability measure Q(x, ·)

123



Statistics and Computing            (2025) 35:64 Page 25 of 31    64 

Algorithm 4 Metropolis-Hastings
Input:

• target density π on R
d

• proposal kernel Q with density q : Rd × R
d → (0,∞)

• initial probability distribution π0 on R
d

Output: Markov chain (Xk)k∈{1,...,N } in state space Rd

1: draw x0 ∼ π0 and set initial state X0 = x0
2: for k = 0, . . . , N do
3: given Xk = xk draw proposal yk+1 ∼ Q(xk , ·)
4: compute acceptance probability α(xk , yk+1) in (48)
5: draw u ∼ U([0, 1]) and set

Xk+1 =
{
yk+1 if u ≤ α(xk , yk+1)

xk else

6: end for

on R
d to every x ∈ R

d , in combination with an acceptance-
rejection step. Throughout, we assume that Q(x, ·) possesses
a Lebesgue density for each x ∈ R

d , i.e. there exists q :
R
d × R

d → [0,∞) such that

Q(x, A) =
∫

A

q(x, y) dy ∀A ∈ B(Rd).

In the kth step, if Xk = xk and yk+1 is a proposed value
drawn fromQ(xk, ·), then Xk+1 is set to yk+1 with probability
α(xk, yk+1) defined as follows:

α(xk , yk+1) :

=
{
min

(
1, π(yk+1)q(yk+1,xk )

π(xk)q(xk ,yk+1)

)
if π(xk)q(xk , yk+1) > 0

1 otherwise.

(48)

If Xk+1 is not set to yk+1, it is set to xk . The resulting tran-
sition kernel is

P(x, dy) = α(x, y)q(x, y)dy + r(x)δx (dy),

r(x) := 1 −
∫

Rd

α(x, y)q(x, y)dy. (49)

It can easily be checked that P is in fact π -reversible. We
present the full algorithm in Algorithm 4 and refer to (Robert
and Casella (2004), Section 7.3) for more details.

It is left to choose a suitable proposal kernel Q. As The-
orem A.1 shows ergodicity is already ensured if Q(x, ·)
has a positive Lebesgue density q, i.e. q(x, y) > 0 for all
x, y ∈ R

d . Nonetheless, in practice the efficiency of the
algorithm crucially depends on the choice of Q. A standard
(albeit crude) proposal satisfying the positivity condition is
Q(x, ·) = N(x, hIdd), h > 0, also known as RandomWalk-
MH algorithm.

Theorem A.1 Robert and Casella (2004), Section 6.7.2 and
7.3.2. Let π be absolutely continuous with respect to the
Lebesgue measure and let Q possess a positive Lebesgue
density q : Rd × R

d → (0,∞), and let π0 be any initial
probability distribution. Then, the Markov chain (Xk)k∈N
generated by Algorithm 4 with X0 ∼ π0

1. Is ergodic (44) and satisfies a strong law of large num-
bers (45),

2. Satisfies the central limit theorem (46) for any F ∈
L2

π (R) for which σ 2
F in (47) is nonzero and finite.

A.2 Metropolis-adjusted Langevin algorithm

A popular proposal kernel Q is obtained through the Euler-
Maruyama discretization

Xk+1 = Xk+h∇ logπ(Xk)+
√
2hξk+1, ξk+1 ∼ N(0, Idd)

(50)

of the Langevin dynamics (4) (with C = Idd ) introduced in
Example 1.1. Here h > 0 is a fixed step size, and generating
a Markov chain (Xk)k∈N through (50) is also known as the
unadjusted Langevin algorithm (ULA). While the continu-
ous dynamics (4) has π as an invariant distribution, see e.g.,
Pavliotis (2014), it is known that theMarkov chain (50) has a
bias that scales linearly in h (Vempala and Wibisono (2019),
Theorem 2).

Nevertheless, the continuous-time result suggests using
(50) as the proposal mechanism, yielding a proposal kernel
Q with positive Lebesgue density

q(x, y) = 1

(4πh)d/2 exp

(
− 1

4h
‖y − x − h∇ logπ(x)‖2

)
.

Algorithm 4 with this choice of proposal kernel is known
as MALA. According to Theorem A.1, and contrary to the
Markov chain (50), the Metropolised Markov chain gener-
ated by Algorithm 4 necessarily does have π as its invariant
distribution. Moreover, it satisfies ergodicity and a law of
large numbers. Furthermore, a common rule of thumb for
choosing the step size h is to achieve an average acceptance
rate ᾱ = ∫

Rd

∫
Rd

α(x, y)q(x, y)dy π(x)dx of roughly 57.4%.

Given suitable assumptions this tuning of h can indeed be
shown to be optimal in terms of a small asymptotic variance
σ 2
F in (46) for sufficiently large d, see Roberts and Rosenthal

(2001).
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B On simultaneous block-wise
metropolization

From a computational viewpoint, it would be advantegous to
decide for each block independently and in parallel whether
to accept or reject it, as this facilitates the embarassingly par-
allel processing of all M particles in the ensemble in each
step of the algorithm. However, as we illustrate in the fol-
lowing, the corresponding “simultaneous” transition kernel
is in general not invariant with respect to the product target
measure π or even an M-coupling of π .

To simplify the discussion, we focus on the special case
where all blocks are of size one, i.e. the particle-wise variant.
Moreover, we assume the setting of Remark 2.4, i.e., the
ensemble-wise proposal kernel would take a product form

Q(x, dy) = Qx−(1) (x (1), dy(1))⊗· · ·⊗Qx−(M) (x (M), dy(M)),

where

Qx−(z, ·) := N(z + h 
(z, x−), h �(z, x−))

∀z ∈ R
d , x− ∈ R

(M−1)d .

Under Assumption 2.1, i.e., �(z, x−) is regular for any z ∈
R
d and x− ∈ R

(M−1)d , Qx−(z, ·) possesses the Lebesgue
density

qx−(z, y)

= 1

det
(
2π h �(z, x−)

)1/2
exp

(
− 1

2h

∥∥∥�(z, x−)−1/2 (y − z − h
(z, x−)
)∥∥∥2

)
> 0.

(51)

We then introduce the acceptance probability for the i th par-
ticle as

αx−(i) (x (i), y)

:=
⎧⎨
⎩
min

(
1,

π(y) qx−(i) (y,x (i))

π(x (i)) qx−(i) (x (i),y)

)
if π(x (i)) qx−(i) (x (i), y) > 0

1 else.

(52)

Finally, we consider particle-wise transition kernels

Px−(i) (x (i), dy) := αx−(i) (x (i), y) Qx−(i) (x (i), dy)

+ rx−(i) (x (i))δx (dy). (53)

Applying these to the i th particle for each i ∈ {1, . . . , M}
simultaneously instead of sequentially yields the transition
kernel Psim : RMd × B(RMd) → [0, 1]

Algorithm5Simultaneous particle-wiseMetropolized inter-
active particle sampling

Input:

• target density π on R
d

• ensemble dependent proposal kernel Qx− with density qx− :
R
d × R

d → (0,∞) in (51)
• initial probability distribution π0 on R

d

Output: ensemble Markov chain (Xk)k∈{1,...,N } in state space RMd

1: draw x0 ∼ ⊗M
i=1π0 and set initial state X0 = x0 ∈ R

Md

2: for k = 0, . . . , N do
3: ∀i : given Xk = xk draw proposal y(i) ∼ Qx−(i)

k
(x (i)

k , ·) indepen-
dently

4: ∀i : compute particle acceptance probability αx−(i)
k

(x (i)
k , y(i)) ∈

[0, 1] in (52)
5: ∀i : draw ui ∼ U([0, 1]) independently and set

X (i)
k+1 =

{
y(i) if ui ≤ αx−(i)

k
(x (i)

k , y(i))

x (i)
k else

6: end for

Psim(x, dy) = Px−(1) (x (1), dy(1))⊗· · ·⊗Px−(M) (x (M), dy(M)).

(54)

The associated algorithmic description is given in Algo-
rithm 5.

As for the sequential updates discussed in Sect. 2.1, π -
reversibility does not hold, since in general

M∏
i=1

(
αx−(i) (x (i), y(i)) qx−(i) (x (i), y(i)) π(x (i))

)

�=
M∏
i=1

(
αy−(i) (y(i), x (i)) qy−(i) (y(i), x (i)) π(y(i))

)

for x, y ∈ R
Md with x (i) �= y( j) for all i, j = 1, . . . , M—

except for the case of noninteraction, i.e., qx− = q and,
thus, αx− = α does not depend on the other particles in the
ensemble.

Regarding the π invariance of Psim, it is worth noting that
each Px−(i) is π -invariant. However, due to the interaction,
this does not directly imply π invariance of Psim. Although,
the particle-wisemarginals ofπ andπPsim coincide as shown
below in Proposition B.1 the product transition kernel Psim

is in general not π invariant as illustrated by several coun-
terexamples below.

Proposition B.1 For the transition kernel Psim : R
Md ×

B(RMd) → [0, 1] given in (54) associated to Algorithm 5we
have that πPsim is an M-coupling of π , i.e. the particle-wise
marginals of X ∼ πPsim are X (i) ∼ π for all i = 1, . . . , M.

Proof For any i = 1, . . . , M and any Ai ∈ B(Rd) we have

πPsim(Rd × · · · × R
d × Ai × R

d × · · · × R
d)
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=
∫

RMd

Psim(x,Rd × · · ·

× R
d × Ai × R

d × · · · × R
d)π(dx)

=
∫

RMd

Px−(i) (x (i), Ai ) π(dx)

=
∫

R(M−1)d

⎛
⎜⎝
∫

Rd

Px−(i) (x (i), Ai ) π(dx (i))

⎞
⎟⎠ ⊗

j �=i

π(dx ( j))

=
∫

R(M−1)d

π(Ai )
⊗
j �=i

π(dx ( j)) = π(Ai )

due to the π -invariance of Px− for any x− ∈ R
(M−1)d . ��

Example B.2 Let us consider a discrete state space X =
{x1, x2} of two elements x1 �= x2 and the uniformdistribution
π(x1) = π(x2) = 1

2 on X as the target measure. Consider
parametrized proposal kernels Qz : X × X → [0, 1] with
parameter z ∈ X which we write as right stochastic matrices
Qz ∈ [0, 1]|X | where the element qi j of Qz in the i th row and
j th column denotes the probability Qz(xi , x j ):

Qx1 =
(
2/3 1/3
2/3 1/3

)
, Qx2 =

(
1/2 1/2
1/2 1/2

)
.

The resulting parametrized acceptance probabilities αz : X×
X → [0, 1] are given by (cf. (48))

αx1(x, y) =
{
1/2, if x = x2, y = x1
1, else

, αx2(x, y) ≡ 1,

and the rejection probabilies by (cf. (49))

rx1(x) =
{
1/3, x = x1
0, x = x2

, rx2(x) ≡ 0.

This yields as π -invariant MH transition kernel Pz : X ×
X → [0, 1] again written as right stochastic matrices Pz
(cf. (49))

Px1 =
(
2/3 1/3
2/3 1/3

)
, Px2 =

(
1/2 1/2
1/2 1/2

)
.

The resulting product transition kernel

Psim(x, y) = Px (2) (x (1), y(1)) · Px (1) (x (2), y(2))

is then, written as well as a (4 × 4)-right stochastic matrix
where the rows and columns in the matrix correspond to the

lexicographically ordered states (x1, x1), (x1, x2), (x2, x1),
(x2, x2) in X 2,

Psim �

⎛
⎜⎜⎝
4/9 2/9 2/9 1/9
1/6 2/6 1/6 2/6
1/6 2/6 1/6 2/6
1/4 1/4 1/4 1/4

⎞
⎟⎟⎠ .

The associated invariant measure ν : X 2 → [0, 1] is given
by

ν(x1, x1) = 45

173
, ν(x1, x2) = 49

173
, ν(x2, x1) = 35

173
,

ν(x2, x2) = 44

173

which does not correspond to π ≡ 1
4 . Moreover, also the

particlewise marginals ν(i) of ν do not coincide with π :

ν(1)(x1) = 94

173
, ν(1)(x2) = 79

173
, ν(2)(x1) = 80

173
,

ν(2)(x2) = 93

173
.

Example B.3 Let us consider the continuous state spaceX =
R equipped with the triangular target distribution π given by
the Lebesgue density

π(x) =
{

1
2 + 2min{x, 1 − x}, if x ∈ [0, 1]
0, else.

Again, we consider an ensemble Markov chain of M = 2
interacting particles Xk = (X (1)

k , X (2)
k )	 ∈ R

2. As ensemble
proposal kernel we choose the following

Q(x, dy) = Qx (2) (x (1), dy(1)) ⊗ Qx (1) (x (2), dy(2)),

Qz(x, dy) = N

(
x + z

2
,
1

4

)
,

which corresponds particle-wise to N (m(Xk), h) for h = 1
4 .

Consider the transition kernel Psim resulting from particle-
wise Metropolization. Note that for M = 2 we can decom-
pose Psim as follows

Psim((x1, x2), dy1, dy2)

= αx2(x1, y1)αx1(x2, y2)qx2(x1, y1)qx1(x2, y2)dy1dy2

+ αx2(x1, y1)rx1(x2)qx2(x1, y1)dy1δx2(dy2)

+ rx2(x1)αx1(x2, y2)qx1(x2, y2)dy2δx1(dy1)

+ rx2(x1)rx1(x2)δx1(dy1)δx2(dy2)

where qz denotes the Lebesgue density of Qz . We then dis-
cretize the state space to obtain a transition matrix Psim ∈
R
n×n and compute its invariant measure as approximation

123



   64 Page 28 of 31 Statistics and Computing            (2025) 35:64 

to the true invariant measure of the operator Psim. Since
αz(x, y) = 0 for y /∈ [0, 1] it suffices to discretize [0, 1]2.
Here we use a uniform grid with grid size �x = 0.01 in
each dimension. Thus, n = 1012.The invariant measure of
the matrix Psim ∈ R

n×n is then computed numerically and
rearranged to yield π inv ∈ [0, 1]101×101. It is displayed in
comparison to an analogously discretized version of the true
product target π = π ⊗ π in Fig. 14. We do notice a bias,
although a small one of relative size 10−3 to 10−2. Since the
crucial object for sampling purposes is not necesarilly the
invariant measure in the ensemble space but the particle-wise
marginals of it we also compare these in Fig. 15. However,
the results are similar here. A small bias is observable, again
the relative size compared to the true target are of order 10−3.

Example B.4 We provide another numerical example similar
to the previous one. Here again,X = R but now π = U[0, 1]
is the uniform distribution on [0, 1]. We consider M = 2
interacting particles Xk = (X (1)

k , X (2)
k )	 ∈ R

2 based on the
following ensemble proposal kernel

Q(x, dy) = Qx (2) (x (1), dy(1)) ⊗ Qx (1) (x (2), dy(2)),

Qz(x, dy) = N

(
x,

1

4

(
0.01 + 0.99

2
(z − x)2

))

which corresponds particle-wise to N(x, h(γ + (1 − γ )

C(Xk))) with γ = 0.01 and h = 1
4 . Analogously, we

discretize the state space or [0, 1]2, respectively, using a
uniform grid with grid size �x = 0.01 and compute numer-
ically the invariant measure of the resulting transition matrix
Psim ∈ R

101×101. The results are shown in Figs. 16 and 17.
Also for this example we do notice a bias which is even larger
than in the previous example, i.e., we observe a relative error
of order 10−2 to 10−1 for the joint target and 10−2 for the
particle-wise marginals.

We suspect that the bias of simultaneous particle-wise
Metropolization is larger for smaller ensemble sizes than for
bigger ones. In particular, the bias may vanish as M → ∞
for suitable interacting particle systems, i.e., if the dynam-
ics of each particle converge to their only time-discretized
mean field limit as M → ∞, then the corresponding pro-
posal distributions Qx−(i) (x (i), ·) should also converge to
a limit proposal distribution Q∞(x (i), ·) which does not
depend on the other particles anymore, e.g., Q∞(x (i), ·) =
N(x (i) + hC(πt )∇ logπ(xi ), 2 hC(πt )) in case of ALDI.
However, for independent proposal kernels Qx−(i) (x (i), ·) =
Q(x (i), ·) the transition kernel of simultaneous particle-wise
Metropolization Psim is in fact π-invariant. Therefore, we
suspect that the bias of Psim is largest for the M = 2 particle
case considered in the numerical counterexamples above.

C Derivative-free implementation of
MA-ALDI

Froman inverse problemperspective, the interactingLangevin
system (8) can alsobeviewedasmodificationof the ensemble
Kalman inversion (EKI) (Iglesias et al. (2013)) and allows for
derivative-free implementations avoiding the computation of
∇ logπ . Let π be of the form

π(x) ∝ exp(−1

2
‖�−1/2(G(x) − z)‖2),

where G : Rd → R
dz is a possibly nonlinear differentiable

mapping, z ∈ R
dz , and � ∈ C+(Rdz ). Then ∇ logπ com-

putes as

∇ logπ(x) ∝ −∇G(x)�−1(G(x) − z),

for x ∈ R
d . The key idea of the derivative-free implementa-

tion is to apply the approximation

C(x)∇G(x)�−1(G(x) − z) ≈ CxG(x)�−1(G(x) − z)

within the particle system, where

CxG(x) := 1

M

M∑
i=1

(G(x(i)) − m(G(x))(x(i) − m(x))	,

m(G(x)) := 1

M

M∑
i=1

G(x (i)).

Using a second order Taylor expansion, one can show that
the approximation error scales with the spread of the particle
system (Weissmann (2022), Lemma 4.5). The derivative-free
modification of (8)

dX (i)
t = −CxG(X t )�

−1(G(X (i)
t ) − z) +√

2C(X t )dB
(i)
t ,

i ∈ {1, . . . , M}, (55)

is often referred to the Ensemble Kalman sampler (EKS)
(Garbuno-Inigo et al. (2020a)). Note that for linear maps G
both (8) and (55) coincide. For nonlinear maps G and hence,
non-Gaussian distributions π , localisation of the empirical
covariance helps to improve the approximation of π through
the EKS (Reich and Weissmann (2021)). Finally, one can
similarly apply our proposed Metropolis-adjusted scheme to
EKS in order to reduce the resulting bias through avoiding
computation of derivatives.
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Fig. 14 Comparison true product target and numerically computed invariant measure of simultaneous particle-wise Metropoliziation Psim for
M = 2 particles in Example B.3

Fig. 15 Comparison true product target and numerically computed invariant measure of simultaneous particle-wise Metropoliziation Psim for
M = 2 particles in Example B.3

Fig. 16 Comparison true product target and numerically computed invariant measure of simultaneous particle-wise Metropoliziation Psim for
M = 2 particles in Example B.4

Fig. 17 Comparison true product target and numerically computed invariant measure of simultaneous particle-wise Metropoliziation Psim for
M = 2 particles in Example B.4
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