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Abstract

This monograph starts with an upper triangular matrix with integer
entries and 1’s on the diagonal. It develops from this a spectrum of
structures, which appear in different contexts, in algebraic geometry,
representation theory and the theory of irregular meromorphic con-
nections. It provides general tools to study these structures, and it
studies sytematically the cases of rank 2 and 3. The rank 3 cases lead
already to a rich variety of phenomena and give an idea of the general
landscape. Their study takes up a large part of the monograph.
Special cases are related to Coxeter groups, generalized Cartan lattices
and exceptional sequences, or to isolated hypersurface singularities,
their Milnor lattices and their distinguished bases. But these make
only a small part of all cases. One case in rank 3 which is beyond
them, is related to quantum cohomology of P? and to Markov triples.
The first structure associated to the matrix is a Z-lattice with a uni-
modular bilinear form (called Seifert form) and a triangular basis. It
leads immediately to an even and an odd intersection form, reflections
and transvections, an even and an odd monodromy group, even and
odd vanishing cycles. Braid group actions lead to braid group orbits
of distinguished bases and of upper triangular matrices.

Zusammenfassung

Diese Monographie beginnt mit einer oberen Dreiecksmatrix mit ganz-
zahligen Eintrdgen und Einsen auf der Diagonalen. Ausgehend davon
entwickelt sie ein Spektrum von Strukturen, die in verschiedenen math-
ematischen Kontexten auftreten — insbesondere in der algebraischen
Geometrie, der Darstellungstheorie und der Theorie der irregularen
meromorphen Zusammenhénge. Sie stellt allgemeine Werkzeuge zur
Untersuchung dieser Strukturen bereit und analysiert systematisch die
Falle mit den Rangen 2 und 3. Bereits die Falle mit Rang 3 fiihren
zu einer Fille interessanter Phanomene und vermitteln einen Ein-
druck der allgemeinen Landschaft. Thre Untersuchung nimmt einen
groffen Teil der Monographie ein. Einige spezielle Falle stehen in
Verbindung mit Coxeter-Gruppen, verallgemeinerten Cartan-Gittern
und exzeptionellen Sequenzen oder mit isolierten Singularitdten von
Hyperflachen, ihren Milnor-Gittern und ihren ausgezeichneten Basen.
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Diese speziellen Falle machen jedoch nur einen kleinen Teil der
gesamten Theorie aus. Ein bemerkenswertes Beispiel im Rang 3 Fall,
das iiber diese hinausgeht, ist mit der Quantenkohomologie von P2
sowie mit Markov-Tripeln verbunden. Die erste Struktur, die mit der
Matrix assoziiert ist, ist ein Z-Gitter mit einer unimodularen Bilin-
earform (der sogenannten Seifertform) und einer trianguldren Basis.
Diese Struktur fithrt unmittelbar zu einer geraden und einer unger-
aden Schnittform, Spiegelungen und Transvektionen, einer geraden und
einer ungeraden Monodromiegruppe sowie geraden und ungeraden ver-
schwindenden Zykel. Die Wirkung der Zopfgruppe erzeugt Bahnen von
ausgezeichneten Basen sowie von oberen Dreiecksmatrizen.
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CHAPTER 1

Introduction

This thesis develops many structures, starting from a single upper
triangular n x n matrix S with integer entries and diagonal entries
1. The structures are introduced and are called playing characters in
section 1.1.

Section 1.2 tells about the results in this thesis. The thesis pro-
vides general tools and facts. It treats the cases n = 2 and n = 3
systematically.

1.1. Playing characters

Hy will always be a Z-lattice, so a free Z-module of some finite
rank n € N = {1,2,3...}. Then L will always be a nondegenerate
bilinear form L : Hy x Hy — 7. It is called a Seifert form. The pair
(Hz, L) is called a bilinear lattice. If for some Z-basis e € My, (Hz)
of Hz the determinant det L(e',¢) is 1 the pair (Hyz, L) is called a
unimodular bilinear lattice. The notion bilinear lattice is from [HK16].
In chapter 2 we develop the following structures for bilinear lattices,
following [HK16]. Though in this introduction and in the chapters
3-7 we restrict to unimodular bilinear lattices.

Te(Z) = {S € Muun(Z)| Sy =0 for i > j, S =1}

denotes the set of all upper triangular matrices with integer entries and
1’s on the diagonal.

Let (Hz, L) be a unimodular bilinear lattice of rank n. A basis e
of Hy is called triangular if L(e',e)" € T*™(Z). The transpose in the
matrix is motivated by the case of isolated hypersurface singularities.
The set of triangular bases is called B". By far not every unimodular
bilinear lattice has triangular bases. But here we care only about those
which have.

For fixed n € N there is an obvious 1-1 correspondence be-
tween the set of isomorphism classes of unimodular bilinear lattices
(Hz, L, e) with triangular bases and the set T"“"(Z), given by the map
(Hz,L,e) — S := L(e',e)'. To a given matrix S € T'"(Z) we always
associate the corresponding triple (Hz, L, e).
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Let a unimodular bilinear lattice (Hz, L, e) with a triangular basis
e be given, with matrix S = L(e', e)! € T“"(Z). The following objects
are associated to this triple canonically. The names are motivated by
the case of isolated hypersurface singularities.

(i) A symmetric bilinear form I*) : H; x H; — Z and a skew-
symmetric bilinear form [ M. H, x H; — Z with
1O — L'+ L so IOt e) =85+ S,
= L'— L, solIW(e e)=5-5",

Y

which are called even respectively odd intersection form.
(ii) An automorphism M : Hz — Hyz which is defined by

L(Ma,b) = L(b,a), so M(e)=¢-S'5",

and which is called the monodromy. It respects L (and I©
and IM) because L(Ma, Mb) = L(Mb,a) = L(a,b).
(iii) Six automorphism groups

oW = Aut(Hgz, I®) for k € {0;1},
G = Aut(Hz, M) :={g: Hy — Hy automorphism |gM = Mg},
G¥ = Aut(Hg, IO, M) =0® nGY  for k € {0;1},

Gz = Aut(Hy, L) = Aut(Hyz, L, 10, 1V M).
(iv) The set of roots
RY .= {a € Hy| L(a,a) = 1},
and the set
R(l) = Hz.
(v) For k € {0;1} and @ € R™ the reflection (if k = 0) respec-
tively transvection (if k = 1) s e OW with
s® (b)) :=b— 1™ (a,b)a for b€ Hy.
(vi) For k € {0;1} the even (if k = 0) respectively odd (if k = 1)
monodromy group

r® .= (s® sk c oW,

e ’°
(vii) For k € {0;1} the set of even (if & = 0) respectively odd (if
k = 1) vanishing cycles
AW —T® e +e,} c R®.
2



The definitions of all these objects require only S € SL,(Z) and
€1y, en € RO not S € T'"(Z). But the formula (Theorem 2.6)
s s = (=1)M'M  for k € {0;1}

el e

depends crucially on S € T""(Z).

The even data 1?0, O©) T and A©® are in many areas more impor-
tant and are usually better understood than the odd data IV, O T(1)
and A, But in the area of isolated hypersurface singularities both
turn up.

For k € {0;1} the group I'® contains all reflections/transvections
s with @ € A®. In the case of a bilinear lattice which is not unimod-
ular this holds for £ = 0, but not for £ = 1 (Remark 2.9 (iii)). This is
one reason why we restrict in the chapters 3-7 to unimodular bilinear
lattices.

Section 3.2 gives an action of a semidirect product Br,, x {£1}" of
the braid group Br,, of braids with n strings and of a sign group {£1}"
on the set (R®)" for k € {0;1}. It is compatible with the Hurwitz
action of Br,, on (I'®)" with connecting map

(RO — (TN g = (v, ..., 0,) = (s, ..., s,

v1 0?7 Un

Both actions restrict to the same action on B¢, Especially, one obtains
the orbit

Bt .= Br, x {£1}"(e) C B

of distinguished bases of Hz. The triple (Hz, L, BY) (up to isomor-
phism) is in many cases a canonical object, whereas the choice of a
distinguished basis e € B% is a true choice. The question whether
Bést = B or B4t G B is usually a difficult question. The subgroup

Gg = {g c GZ’Q(BdiSt) _ Bdist}

is in many important cases equal to Gz. But if B# G B’ then
G5 S Gy is possible.

The action of Br, x {1}" on B is compatible with an action on
Tu"(Z). The orbit of S is called

St .= Br, x {£1}"(S) c T""(Z),

the matrices in it are called distinguished matrices. As {£1}" is the nor-
mal subgroup in the semidirect product Br,, x {+1}", one can first di-
vide out the action of {#1}". One obtains actions of Br,, on B"*/{£1}"
and on T“"(Z)/{£1}". Tt will be interesting to determine the stabi-
lizers (Bry,)e/q+1)» of e/{£1}" and (Bry,)g/qx1y» of S/{£1}".
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1.2. Results

Section 1.1 associated to each matrix S € T*"(Z) an impressive list
of algebraic-combinatorial data. For a given matrix S there are many
natural questions which all aim at controlling parts of these data, for
example:

(i) What can one say about the Z-lattice (Hz, I”)) with the even
intersection form, e.g. its signature?

(ii) What can one say about the Z-lattice (Hz, I")) with the odd
intersection form?

(iii) What are the eigenvalues and the Jordan block structure of

the monodromy M?
(iv) How big are the groups Gz, GY), G and GM?
(v) How good can one understand the even monodromy group
I®? Is it determined by the pair (Hz, I”)) alone?
(vi) How good can one understand the odd monodromy group I'")?
Is it determined by the pair (Hz, ")) alone?
(vii) Is A = RO or A© - R©? How explicitly can one control
these two sets? How explicitly can one control A(D)?
(viii) Is there an easy description of the set B%*! of distinguished
bases? Is B#s" = B! or B & B'""?

(ix) Is G§ = Gz or G§ S Gy?

In this thesis we concentrate on general tools and on the cases of
rank 2 and rank 3. The cases of rank 2 are already interesting, but
still very special. The cases of rank 3 are still in some sense small, but
they show already a big variety of different types and phenomena. We
consider them as sufficiently general to give an idea of the landscape
for arbitrary rank n € N. The large number of pages of this thesis is
due to the systematic study of all cases of rank 3.

Here the singularity cases form just two cases (As, AsA;), and also
the cases from generalized Cartan lattices form a subset which one can
roughly estimate as one third of all cases, not containing some of the
most interesting cases (H; ., P?).

ExAamMPLES 1.1. In the following examples, some matrices in
Ty (Z) and Ti™(Z) are distinguished. They cover the most important
cases in T¢"(Z) and Ty (Z). This will be made precise in Theorem
1.2, which gives results on the braid group action on T3 (Z).

S(A?)  S(Ay) SPY  S(x)forzxeZ  S(A3

)
GG 6D @ (o



S(P?) S(AzA7) S(As) S(P'A))
1 -3 3 1 -1 0 1 -1 0 1 -2 0
0O 1 -3 0O 1 0 0O 1 -1 0O 1 0
0 0 1 0 0 1 0 0 1 0 0 1
S(—Z,Q,—Z) S($1,ZL‘2,$3)
S(gQ) S(Hi2) for [ >3 for x1, 29,23 € Z
1 -1 -1 1 -2 2 1 =1 2 1 21 2o
0o 1 -1 0 1 =2 0o 1 -l 0 1 =z5
0 O 1 0 O 1 0O 0 1 0 0 1

The notations A? | Ay, A3, AyA;, Az and A, are due the facts that
(Hz, 1) is in these cases the corresponding root lattice respectively
in the case 121\2 the affine root lattice of type 121\2. The notations P and
P? come from the quantum cohomology P! and P2, so from algebraic
geometry. The notation H, s is related to a Hurwitz space, so it also
comes from algebraic geometry.

A large part of this thesis is devoted to answering the questions
above for the cases of rank 2 and 3. Though the chapters 2, 3 and the
sections 5.1, 6.1 and 7.1 offer also a lot of background material and
tools. In the following, we present some key results from the chapters
4to7.

The action of Brz x {£1}3 on T{"(Z) boils down to an action of
PSLy(Z) x G¥9" on T¢™(Z) where G¥9" = {£1}? comes from the
action of the sign group {£1}3. As the action of PSLy(Z) is partially
nonlinear, it is good to write it as a semidirect product PSLy(Z) =
GPM % () where 7 acts cyclically and linearly of order 3 and GP™ is a
free Coxeter group with 3 generators which act nonlinearly.

The sections 4.2-4.4 analyze the action on T3 (Z) carefully. The
first result Theorem 4.6 builds on coarser classifications of Kriiger
[Kr90, §12] and Cecotti-Vafa [CV93, Ch. 6.2]. The following the-

orem gives a part of Theorem 4.6.

THEOREM 1.2. (Part of Theorem 4.6)
(a) The characteristic polynomial of S™*St and of the monodromy
M of (Hz, L,e) for S = S(z) € Ty (Z) with x € Z? is
Penyy = (E—1)(* =2 —r(x)t+1),
where 7P =7, x>+ rs+as— 17078
The characteristic polynomial and r(z) are invariants of the Brs X

{£1}3 orbit of S(x). All eigenvalues of pen ar are unit roots if and only
if r(z) € {0,1,2,3,4}.



(b) For p € Z — {4} the fiber r—(p) C Z3 consists only of finitely
many Brz x {£1}3 orbits. The following table gives the symbols in
Ezample 1.1 for the fibers over r € {0,1,2,3,4}, so there are only
seven orbits plus one series of orbits over r € {0,1,2,3,4}.

ri@)| 0 | 1 |2]3] 4
| A3 P2 | ApAy | Ay | — | PYAy, Ay, Moo, S(—1,2,—1) with [ >3
With the help of certain (beautiful) graphs, in Theorem 4.13 the
stabilizers (Brs) s/{+133 are calculated for certain representatives of all
Brs x {£1}*-orbits in T¢"(Z). We work with 14 graphs and 24 sets of
representatives.

Lemma 5.8 gives informations on the characteristic polynomial and
the signature of (%) in all rank 3 cases.

LEMMA 1.3. (Lemma 5.8 (b))

Consider x € Z* with r = r(x) < 0 or > 4 or with S(z) one of the
cases in the table in Theorem 1.2. Then pey = (t — A)(t — A2) Py
and sign I©) are as follows (®,, = the cyclotomic polynomial of m-th
primitive unit roots).

(L) penns sign 10 S(z)

r<0 )\1,)\2>0 (+——) S(i)

r=0 o3 (+++) S(A3)

r=0 @3 (+—-) S(P?)

r=1 ®&gd, (+4++) S(AyAy)

r=2 @4@1 ("— + +) S(Ag)

r = 4 (I)gq)l (+ 0 0) S(HLQ)

r=4 @i, (+0—-) S(—1,2,—1) with [ >3
r>4 A, <0 (++-) S(x)

Chapter 5 analyzes the groups GZ,G(ZO), G(Zl) and GJ! in all rank
3 cases. This leads into an intricate case discussion. The case H; o
is different from all other cases as it is the only case where Gz is not
abelian and where the subgroup {+M™ | m € Z} does not have finite
index in Gz. The automorphism @ € Gg := Aut(Hg, L) is defined for
r(z) # 0. It is id on ker(M —id) and —id on ker(M? — (2 — r)M +id)
(Definition 5.9). It is only in a few cases in Gz (Theorem 5.11).

THEOREM 1.4. (Part of the Theorems 5.11, 5.13, 5.14, 5.16, 5.18,
3.28)

(a) In the Brz x {£1}3 orbit of S(Hi2)

Gz = SLy(Z) x {£1}, M =Q,
6



and the subgroup {£xM™|m € Z} = {£id, £Q} has infinite index in
Gz.

(b) In all other rank 3 cases the subgroup {£M™ | m € Z} has finite
index in Gz and Gy is abelian. Then one of the five possibilities holds,

Gz = 04(2), (1.1)
Gz = {id,Q} x {£(M™)" | m € Z}, (1.2)
Gy = {E(M™Y)"|m e Z}, (1.3)
Gy, = {id,Q} x {£M™|m € Z}, (1.4)
Gy = {£M™|meZ), (1.5)

where M™% is a root of =M or of MQ. The following table gives the
index [Gy : {£M™|m € Z}] € N and informations on M.

matrix index M7
(1.1) S(AD 24
(1.2) S(x,0,0) with z <0 4 (M™% = MQ
(1.2) S(—1,2,~1) with I even =4 (Mot 2=2 = MQ
(1.2) S(4,4,4) and S(5,5,5) 6 (Mmoot = — M
(1.2) S(4,4,8 4 (MmN = M
(]_3) S(]P)2) 3 (Mroot)?) — M
(1.3) S(A\g) and S(z,x, ) 3 (M7 = —M
with x € Z — {-1,0,...,5}
(1.3) S(—1,2, 1) with [ odd 2—4 (Moo=t = _M
(1.3) S(2y,2y,2y?) with x € Zs3 2 (M7 = M
(1.4) S5(3,3,4) and S(x,z,0) 2
with € Zy
(1.5) S(A3) and S(z) 1

in other Bry x {#1}? orbits

(¢c) Gz = G5 holds for all rank 3 cases except four cases, the Brz x
{£1}3 orbits of S(x) with

z€{(3,3,4),(4,4,4),(5,5,5),(4,4,8)}.
In these four cases Q € Gz — G5.

Though in higher rank it is easier to construct matrices S with
G7 S Gz (Remarks 3.29).

Chapter 6 studies the even and odd monodromy groups and the sets
of even and of odd vanishing cycles in the rank 2 and rank 3 cases. The
following theorem catches some of the results on the even monodromy
group I'®© and the set A of even vanishing cycles for the rank 3 cases.
The group O©* (Definition 6.4) is a certain subgroup of O} which

7



is determined only by (Hz, I”)) (so independently of B). Part (b)
discusses only the (in general difficult) problem whether A©®) = R(©) or
A©) G R Theorem 6.14 contains many more informations on A©
Theorem 6. 11 contams many more informations on I'® than part (a )
below. Remarkably, ['(?) & G/€9%:3 (the free Coxeter group with three
generators) holds not only for the Coxeter cases z € Z2 _, (which all
satisfy r(z) > 4), but also in all cases z € Z® with r(z) < O and in the
case P2

THEOREM 1.5. (a) (Part of Lemma 2.11 and Theorem 6.11)
(z) (Part of Lemma 2.11) The case A}, n € N:

b2 (1), TOW = {id}, A® =RO =AW = {4¢, .. +e,}.
(ii) The cases with r(z) > 0 and the cases As, As, A2A1, P'A;: They

contain all reducible rank 3 cases except A3. Then T is a Coxeter
group. If x € Z%_Q then T0) o>~ G fCoxz,3
(111) The cases Ag,A},HM: Then T©) = O0)*

(iv) The cases S(—1,2,—1) with | > 3: Then I'° ) O O

(v) The cases P? and x € 7% with r(z) < 0: Then I'C chox?’

(b) (Part of Theorem 6.14)

(i) AO) = R(O holds in the following cases: As, Ay, P?, all S(z)
with x € {0,—1,—2}, all reducible cases.

(ii) A S RO holds in the following cases: Mz, all S(—1,2,—1)
with 1> 3, 5(3,3,4), S(4,4,4), 5(5,5,5), S(4, 4, 8).

(iii) In the cases of the other Brz x {£1}3 orbits in Ty™(Z), we do
not know whether A©® = R©) or A©) S RO holds.

Let E, denote the n x n unit matrix. Given S € T*"(Z) with
associated triple (Hz, L, e), consider the matrix S := 2E, —S € Ti(Z)
with the associated triple (Hz, L, ¢e). Then L, 10 and M are far from
L, 19 and M, but IO = -1, P<1> =T® and A® = A® (Remarks
4.17). For example the cases A3 and ZZ are related in this way, and
also the Coxeter case (—2, —2, —2) and the case H; 2 are related in this
way (in both cases after an action of Brs x {£1}3).

This motivates in the rank 3 cases to consider the action of the
bigger group (GPM x G*9") x (v) on Z3 where G*9" is generated by
G*¥" and the total sign change 6% : z +— —z. Lemma 4.18 gives
representatives for all orbits of this action on Z? (respectively T3 (Z)).
Still it is difficult to see for a given triple z € Z? in which orbit it is.

We had for some time the hope that the beautiful facts on the
even monodromy group I'® for the Coxeter cases z € Z2, would have

8



analoga for the odd monodromy group I'V), but this does not hold in
general. In the case (—2,—2,—2) ' = GfC°%3 hut in the case Hi,
not, and in both cases together T 22 G773 On the other hand
W >~ @frees for x € By, where B; C Z? is as follows.

B = (G" & G x (y)({z € Z° = {(0,0,0)} [ r(z) < 0}),
By = {ze€Z®-{(0,0,0)}|S(z) is reducible},
Bs = {(0,0,0)}.

Though the set B is difficult to understand (see the Examples 4.20).
It contains (3,3, 3), so the orbit of P2. B, and Bs consist of the triples
z with reducible S(z), so with two or three zero entries.

Consider z € Z* — B;. The radical Rad I!) has rank 1, so the

quotient lattice " = Hy/Rad I has rank 2. Denote by I't"” the
image of I'™ under the natural homomorphism '™ — Aut(FZ(l)) and
by ' the kernel of it. There is an exact sequence

{1} - TW - 1® 5 1M 5 1}

Denote by A ¢ H_Z(l) the image of A in FZ(U. Often A() is easier
to describe than A,

The long Theorems 6.18 and 6.21 offer detailed results about ra
and AW for the representatives in Lemma 4.18 of the (GP" x G*9™) xt ()
orbits in Z3. The next theorem gives only a rough impression.

THEOREM 1.6. Consider S = S(x) € Ta™(Z) and the associated
triple (Hz, L, e).
(a) (Part of Theorem 6.18) Consider x # (0,0,0).
F(l) ~ Gfree,?) = € B17
'V = {id} <= z€B UB,,

IV ~7? «— 2€7— (BUByUDBy),

IV = one of the groups SLy(Z), GIe% GIree? x {£1}
for x € Z° — (B, U By).
(b) (Part of Theorem 6.21)
(i) In the cases of Az and Ay AD = H_Z(l)’pﬂm, so AW is the set of
primitive vectors in qu)’ and AW s the full preimage in Hy ofm.
(ii) Though in many other cases A1 ¢ E(l)’pﬂm, and AW s

not the full preimage in Hy of A, but each fiber has infinitely many
elements.



(i4i) But for x € By the map AW — AW s a bijection. Especially
for P2 AW s easy to describe (Theorem 6.21 (h)), but AWM not.

Chapter 7 studies the set BY* = Br,, x {+1}"(e) of distinguished
bases for a given triple (Hz, L,e). In general, it is difficult to charac-
terize this orbit in easy terms. We know that the inclusions in (3.3)
and (3.4) hold. We are interested when they are equalities.

BYst « {v e (A(O))” | 81(}?)”‘81()(31) = —-M}, (3.3)
Blst — [y e (AD)| 81()11)“,8&) = M}. (3.4)

In general, this is a difficult question. In the rank 3 cases Theorem 7.3
and Theorem 7.7 give our results for (3.3) and (3.4).

THEOREM 1.7. Consider S(z) € T¥™(Z) and the associated triple
(Hz, L, Q).

(a) (Part of Theorem 7.3)

(3.3) is an equality for all cases except for x in the Bry x {£1}3
orbit of H12. There the right hand side of (3.3) consists of countably
many Bry x {£1}® orbits.

(b) (Part of Theorem 7.7)

(i) The inclusion in (3.4) is an equality <= x € By U Bs.

(ii) The cases Az, As, Hi2 and S(—1,2,1) with | > 3 are not in B;.
But there the inclusion in (3.4) becomes an equality if one adds on the

right hand side of (3.4) the condition Y. | Zv; = Hy,.

The last section 7.4 of chapter 7 builds on Theorem 4.16 which
determined for a representative S € T¢™(Z) of each Brz x {£1} orbit
in T3"(Z) the stabilizer (Brs)g/(z13s. Theorem 7.11 determines in
each of these cases the stabilizer (Brs)e/{+13s. The graphs Gi,...,Giy
in section 4.4 used the groups GP" x (v). At the end of section 7.4
different graphs, which use the group Brs, are introduced for the orbits
of matrices as well as the orbits of triangular bases. For the cases of
finite orbits and for the case A, the graphs are given explicitly. In
the case of Az the orbit S /{+1}?® has four elements and the orbit
Bdist [{+1}3 has 16 elements.
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CHAPTER 2

Bilinear lattices and induced structures

This chapter fixes the basic notions, a bilinear lattice and its as-
sociated data, namely a Seifert form, an even and an odd intersection
form, a monodromy, the roots, the triangular bases, an even and an
odd monodromy group, the even and the odd vanishing cycles. The
notion of a bilinear lattice and the even part of the associated data are
considered in [HK16]. The more special case of a unimodular bilinear
lattice and even and odd data are considered since long time in singu-
larity theory [AGV88|[EbO01]. In this paper we are mainly interested
in unimodular bilinear lattices. Only this chapter 2 treats the general
case, partially following [HK16].

NOTATIONS 2.1. In these notations, R will be either the ring Z or
one of the fields Q, R or C. Later we will work mainly with Z. If R = Z
write R := Q, else write R := R.

In the whole paper, Hr 2 {0} is a finitely generated free R-module,
so a Z-lattice if R = Z, and a finite dimensional R-vector space if R is
Q, R or C. Its rank will usually be called n € N = {1,2,3,...} (it is its
dimension if R is Q, R or C). If R; and R5 are both in the list Z, Q, R, C
and R; is left of Ry and Hpg, is given, then Hpg, := Hp, ®g, Ra.

In the whole paper, L : Hrp X Hrp — R will be a nondegenerate
R-bilinear form. If U C Hg is an R-submodule, then U+ := {b €
Hgr|L(U,b) = 0} and *U := {a € Hgr|L(a,U) = 0}. In the case
R =7, U"* and U are obviously primitive Z-submodules of Hy.

In Lemma 2.2 we will start with Hg and a symmetric R-bilinear
foom I : Hp x Hp — R or a skew-symmetric R-bilinear form
IN: Hp x Hr — R. With the square brackets in the index we distin-
guish them from the bilinear forms I and IV, which are induced in
Definition 2.3 by a given bilinear form L. Though later they will be
identified.

Suppose that M : Hr — Hpg is an automorphism. Then
Mg, M,,N : Hz — Hg denote the semisimple part, the unipotent
part and the nilpotent part of M with M = MM, = M,M, and
N = log M, e™ = M,. Denote Hy := ker(M, — X -id) : Hc — Hec.

11



For m € N denote by ®,, € Z[t] the cyclotomic polynomial whose
zeros are the primitive m-th unit roots.

The following lemma is elementary and classical. We skip the proof.

LEMMA 2.2. Let R € {Q,R,C} and let Hg be an R-vector space of

dimension n € N.
(a) Let IV : Hr x Hp — R be a symmetric bilinear form. Consider
a € Hr with I'%a,a) # 0. The map

211% (a, b)

0] . Op) . =p— 2=\ 7
st': Hp — Hg, sU'(b):=0b (4. a) a,

is a reflection, so it is in Aut(H,,I'0), it fives the codimension 1
subspace {b € Hp|I%a,b) = 0} and it maps a to —a. Especially
(s2 = id.

(b) Let 1M : Hp x Hy — R be a skew-symmetric bilinear form.
Consider a € Hg. The map

s Hy — Hg,  sW(b) :=b— 1" (a,b)a,
is in Aut(Hg, IM) with
(st)=1 (D) = b+ 1"(a, b)a.

It isid if a € Rad(IM). If a ¢ Rad(IM) then it fizes the codimension 1
subspace {b € Hg | I (a,b) = 0}, and st —id is nilpotent with a single
2 x 2 Jordan block. Then it is called a transvection.

(¢c) Fir k € {0;1} and consider I™ as in (a) or (b). An element
g € Aut(Hg, I™) and an element a € Hg with I%(a,a) # 0 if k = 0
satisfy

k] —1 _ ([K
a9 = S4a)

DEFINITION 2.3. (a) [HK16, ch. 2] A bilinear lattice is a pair
(Hz, L) with Hz a Z-lattice of some rank n € N together with a
nondegenerate bilinear form L : Hz x Hy — Z. If det L(e',e) = 1
for some Z-basis ¢ = (ey,...,e,) of Hz then L and the pair (Hyz, L)
are called unimodular. The bilinear form is called Seifert form in this

paper.
(b) A bilinear lattice induces several structures:

(i) [HK16, ch. 2] A symmetric bilinear form
IO =L' 4+ L:Hyx Hy - Z, so19(a,b) = L(b,a) + L(a,b),

which is called even intersection form.
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(ii) A skew-symmetric bilinear form
IW ="'~ L:H;xHy, -7, solI%(a,b)=L(ba)— L(a,b),
which is called odd intersection form.
(i) [HK16, ch. 2] An automorphism M : Hy — Hg which is
defined by
L(Ma,b) = L(b,a) for a,be Hy,

which is called monodromy.
(iv) Six automorphism groups

O®) = Aut(Hz, I®)  for k € {0;1},
Gy = Aut(Hgz, M) :={g: Hy — Hy automorphism |gM = Mg},
G = Aut(Hz, IO M) =0 nGM  for k € {0;1},

Gz = Aut(Hz, L).

(v) [HK16, ch. 2] The set R®) C Hy of roots,
L(a,b) L(b,a)
L(a,a)’ L(a,a)
(vi) [HK16, ch. 2] The set B of triangular bases,

RY = {a € Hy| L(a,a) > 0;

€ Z for all b € Hy}.

B" = {e=(e1,...en) € (RO)"| @) Ze; = Hy, L(es ;) = 0 for i < j}.
=1

(c) Let n € Nand R € {Z,Q,R,C}. The sets T and T""(R) of
upper triangular matrices are defined by

Tem(R) = {S = (si;) € Musn(R) | sii=1,5;=0fori> j},
Téri = {8 = (sij) € Mpxn(Z) | si €N, s;;=0fori>j
% 5 e 7 for i # 5}
Sii Sii
Obviously T*"(Z) C T,

REMARKS 2.4. (i) There are bilinear lattices with B = (). We are
interested only in bilinear lattices with B # ().

(i) A triangular basis e € B is called in [HK16] a complete
exceptional sequence.

(iii) In the case B # (), [HK16] considers the bilinear form L'
(with Lf(a,b) = L(b,a)). Our choice L is motivated by singularity
theory. Also the names for L, I, IV and M, namely Seifert form,
even intersection form, odd intersection form and monodromy are mo-
tivated by singularity theory. The roots in R(® are in [HK16] also
called pseudo-real roots.
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(iv) In this paper we are mainly interested in the cases of unimod-
ular bilinear lattices with B¢ # (). Singularity theory leads to such
cases.

(v) [HK16] is mainly interested in the cases of generalized Cartan
lattices. A generalized Cartan lattice is a triple (Hg, L, ¢) with (Hz, L)
a bilinear lattice and e € B"* with L(e;, e;) <0 for i > j.

REMARKS 2.5. (i) The classification of pairs (Hg, L) and pairs
(Hc, L) with L a nondegenerate bilinear form on Hy respectively Hg
is well understood. Such a pair decomposes into an orthogonal sum
of irreducible pairs. This and the classification of the irreducible pairs
over R is carried out in [Ne98] and, more explicitly, in [BH19].

In both references it is also proved that a pair (Hg, L) of rank n € N
up to isomorphism is uniquely determined by an unordered tuple of
n spectral pairs modulo 2Z, i.e. by n pairs ([a1],11), ..., ([an], 1) €
R/2Z x Z. Here ay, ..., o, € R. The eigenvalues of the monodromy M
are the numbers e=2™1  e~2men  The numbers U, ..., 1, determine
the Jordan block structure, see [BH19] for details.

The classification over C follows easily. Though it was carried out
before in [G094-1][G094-2|, and it is formulated also in [CDG24,
Theorem 4.22].

(ii) A unimodular bilinear lattice (Hz, L) is called in [CDG24]| a
Mukai pair. In [CDG24, 4.1-4.4] basic results of Gorodentsev for R =
Z or R = C are rewritten. The monodromy is there called canonical
operator. A triangular basis is there called exceptional.

(iii) The classification over Z, so of unimodular bilinear lattices
(Hz, L), is wide open for larger n. The case n = 3 is treated in great
detail in this thesis.

LEMMA 2.6. (a) Let (Hz, L) be a bilinear lattice of rank n € N.

(i) Let ¢ = (e1,...,e,) be a Z-basis of Hyz. Define S :=
Li(e'e) = L(e', e)t € Myuxn(Z) N GL,(Q). Then

10 e) =S+ 8", IW(e'e) =S58, M(e)=eS'S".
(ii)
19(a,b) = L((M +id)a,b), RadI©® =ker((M +id) : Hy — Hy),
IW(a,b) = L((M —id)a,b), RadIY =ker((M —id) : Hy — Hy).

(iii)
G(O)
Gz = Aut(Hyz, L, 19 10 M) G(Z” c GH.
Z
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(iv) M € Gz if (Hz, L) is unimodular or if B # ().
(v) If a € R then

s = s and s = st , s0 s() =b—

are in O©) respectively O™
(vi) [HK16, Lemma 2.1] If a,b € R© then s (b) € RO (but
not necessarily si (b) € R©).

(vii) If a,b € R©) with L(a,b) =0 then
L(sib,s08) = L(b,0),  sV(0) € RO, s =55 ()7

(b) The map

(Hgz, L) is a bilinear

: : tri
{(Hz, L,e)| lattice of rank n, e € B }/isomorphism — T,

s a bijection and restricts to a bijection

(Hz, L) is a unimodular

bilinear lattice of rank n, e € B Hisom. — T (Z).

{(Hz, L.¢e) |
(c) [HK16, Lemma 3.10] Let (Hz, L) be a unimodular bilinear lat-
tice with B % 0. Then

O — {4 € Hy| L(a,a) = 1}.

(d) Let (Hz, L) be a unimodular bilinear lattice with B # (). De-
fine for a € Hy st = sl e OW. This definition is compatible with
the definition of s& for a € R© in part (a) (v). Furthermore now for
a,b € Hy

- _
S0 = °

Proof: (a) (i) The defining equation for M can be written as
L((Me)t,e) = L(e, e)t, which implies Me = ¢S~1S%. The rest is trivial.

(ii) Trivial.

(iii) g € Gz commutes with M because

L(gMa, gb) = L(Ma,b) = L(b,a) = L(gb, ga) = L(Mga, gb).

D5 ()

Of course it respects I and IO, Therefore Gz =
Aut(Hg, L, 10 T M), The rest is trivial.

(iv) The calculation L(Ma, Mb) = L(Mb,a) = L(a,b) shows that
M respects L. It remains to show M € Aut(Hzy).
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This is clear if (Hz, L) is unimodular. Suppose B # () and (H.
not unimodular. Consider ¢ € B S := L(e',e)' € T and
diag(s11, .- Snn) € Myxn(Z). Then D718, SD™! € T""(Z) and

S5t — DDt = (D18)H(SDY) € GL.(Z),
so M € Aut(Hy).

(v) If a € R and b € Hy, then 5837 isz)) €Z,so

210 (a,b) IM(a,b)
I0(a,a)’ L(a,a)

€ Z and s9(b), stV (), (s\V)"1(b) € Hy.

Zs
D :

o

(vi) L(s (1), s (b )) L(b, b) because s € G and I = L' L

(in general L(s$”(b), s (b)) # L(b,b)). For ¢ € Hy

L (b)) Lb— Hepita,)
LsOw),sOw) L(b,)

L(b,c) L(a,b)+ L(b,a) L(a,c)

= - €z,

L(b,b) L(b,b) L(a,a)

and analogously s (0)(b) s (b)) S

(vii) I™W(a,b) = L(b,a) because of L(a,b) = 0.

LED0L0) = L0 T - 1
— L(bb) - ﬁéz ZiL(b, 004 (_§(<Z: Z;
= L(b,b).
For c € Hy
LsP®),c)  Lb- frsac)
L(s ), s @) L0.)
L(b,c) L(b,a) L(a,c)

so s (b) € RO, Finally

1 - 1] —
s W = sl ()T
Lemma 2.2 (c) [1} [l]

‘” (b/+/L(bb)) s$V(6)/+/L(b,b)
_ Sl A
<1> /, / (1) (1 (1)
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(b) Starting with S € T/ one can define Hy := M, y;(Z) with
standard Z-basis e = (ey, ..., €,), and one can define L : Hz X Hy — 7
by L(ef,e) = S*. Then ¢ € B™.

If (Hz,L) is unimodular then +1 = detL(ele) =
L(ey,e1)...L(en,e,) and L(e;e;) € N, so L(e,e;)) = 1 and
L(e', e)' € T"™(Z). The rest is trivial.

(¢) The inclusion R©®) > {a € Hz| L(a,a) = 1} is obvious. Consider
e € B'"'. By part (b), the matrix S := L(ef, ) is in T"(Z). Consider
aroot a =31 ae; € RO, Then

(L(a,e1),....L(a,e,)) = (a1,...,an)S,
so ged(L(a,er), ..., L(a,e,)) = ged(aq, ..., ap).

But L(a, a) divides ged(L(a, e1), ..., L(a, e,)) because a is a root. There-
fore L(a, a) divides each a;. Thus L(a, a)? divides 3 7, 377 | cisija; =
L(a,a), so L(a,a) = 1.

(d) By part (c) L(a,a) = 1 for a € R, O

Up to now, the triangular shape of the matrix L(e’,e)’ € T has
not been used. It leads to the result in Theorem 2.7. In algebraic
geometry and the theory of meromorphic differential equations, this
result is well known, it is a piece of Picard-Lefschetz theory. In the
frame of singularity theory, it is treated in [AGV88| and [Eb01]. An
elementary direct proof for a unimodular lattice is given in [BH20].
The case k = 0 is proved in [HK16].

THEOREM 2.7. Let (Hyz, L, e) be a bilinear lattice with a triangular
basis e. Let k € {0,1}. Then

sM 0 = (Z1)k+ g,

e1 *""Zen

Proof: The case £ = 0 is a special case of Proposition 2.4 in
[HK16]. The case k = 1 can be proved by an easy modification of
Lemma 2.3 (5) and Proposition 2.4 in [HK16]. Both cases are proved
for a unimodular bilinear lattice in [BH20, Theorem 4.1]. O

In Picard-Lefschetz theory and singularity theory also the following
notions are standard.

DEFINITION 2.8. Let (Hgz, L,¢e) be a bilinear lattice with a trian-

gular basis e. It induces several structures:

(a) The even monodromy group T© = (s, ., 5&0)) c 00,

n

(b) The odd monodromy group TV := ( b ...,sé?) c oW,

(c) The set A© :=TO{4e, ... 4e,} C Hy of even vanishing
cycles.
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(d) The set AW :=T'W{te, ..., +e,} C Hy of odd vanishing
cycles.

REMARKS 2.9. (i) The even vanishing cycles are roots, i.e. A C
RO because of Lemma 2.6 (a) (vi). In general A ¢ RO®). The name
vanishing cycles for the elements of A® and AM and the name mon-
odromy group stem from singularity theory. In [HK16] the elements of
A are called real roots. T and A™) are not considered in [HK16].

(i) A matrix S € T or T""(Z) determines by Lemma 2.6 (b) a
bilinear lattice (Hz, L, e) with a triangular basis (up to isomorphism).
This leads to the program to determine for a given matrix S the data
10 10 G, GO ¢V G¥ 17O 1O A and AD. One should start
with relevant invariants like sign I(®, Rad I©, Rad IV, the character-
istic polynomial and the Jordan normal form of M.

(iii) The odd monodromy group I')) arises naturally in many cases
where (Hgz, L) is a unimodular bilinear lattice, for example in cases
from isolated hypersurface singularities. But it is not clear whether
it is natural in cases where (Hyz, L) is a bilinear lattice which is not
unimodular. Theorem 2.7 is positive evidence. But the following is
negative evidence. The monodromy group

1 .
T — @LJ/\/myz e{1,....n})

contains because of Lemma 2.2 (¢) all transvections st

for
g(ei)/+/ L(ei.eq)
g € T Only in the unimodular cases these coincide with the transvec-
tions si for a € AV, We will only consider the unimodular cases.

(iv) We will work on this program rather systematically in the chap-
ters 5 and 6 for S € T¢™(Z) and S € T¥™(Z).

Definition 2.10 and Lemma 2.11 discuss the case when a unimodular
bilinear lattice (Hz, L, e) with triangular basis is reducible. Then also
the monodromy groups, the set of roots and the sets of vanishing cycles
split. But beware that here reducibility involves not only (Hz, L), but
also e.

DEFINITION 2.10. (a) Let (Hz, L, ) be a unimodular bilinear lattice
of rank n € N with a triangular basis e. Let {1,...,n} =1I; U I, be a
decomposition into disjoint subsets such that

L(€Z‘,€j) = L(ej,ei) =0 for:e ]1, j S ]2.

Then the triple (Hy, L, e) is called reducible. If such a decomposition
does not exist the triple is called irreducible.
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(b) A matrix S € T*"(Z) is called reducible if the triple (Hz, L, ¢)
(which is unique up to isomorphism) is reducible, where (Hyz, L) is a
unimodular bilinear lattice and e is a triangular basis with S = L(e’, e)".

LEMMA 2.11. Keep the situation of Definition 2.10. Forl € {1,2}
let oy : {1,2,...,|I}|} — I, be the unique bijection with o,(i) < oy(j) for
1 < j. Define

e = (ern €20 enlt) = (€oy(1)s €o1(2)s - Coy(|T1])s
|1;]
HZ,l = @Z * €l Ll = LlHZ,l'
i—1

Then (Hyzy, Ly, €;) ts a unimodular bilinear lattice with triangular basis.
The decomposition Hyz = Hzy @ Hzo is left and right L-orthogonal.
Denote by FZ(O), Fl(l), AZ(O), Al(l) and RZ(O) the monodromy groups and
sets of vanishing cycles and roots of (Hz,, Li,€;). Denote by J\A/[/l the

automorphism of Hy which extends the monodromy M; on Hz,; by the
identity on Hy m,, where {l,m} ={1,2}. Then

r® = % s,
R® = R"yRP
AW = AP U AP,

M - MEMQ = ]/\\4-/2]/\\4/1.

The proof is trivial. Because of this lemma, we will study the
monodromy groups and the sets of vanishing cycles only for irreducible
triples. In the Examples 1.1 this excludes the cases S(A?3), S(A?),
S(A3A;), S(P*Ay) and all cases S(zy,xo,x3) where two of the three
numbers x1, X9, T3 are zero.

The following lemma treats the cases S(A7}) := E, for n € N. It is

a trivial consequence of the special case S(A1) = (1) € Mix1(Z) and
Lemma 2.11, but worth to be stated.

LEMMA 2.12. The case A} for any n € N:

Hy=@PZ-e;, S=8(A}) =E,, I10=2L, I1Y=0,
=1
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the reflections st with sé?)(ej) = { e_je i; f ;7 } commute, the

transvections sg) are 38) =id,
rO = {TIED (0, s l) € {05137} = {£137,
i=1

r® — {jd}7
AO = RO = fie e} =AD.
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CHAPTER 3

Braid group actions

In the sections 3.2-3.4 a unimodular bilinear lattice (Hz, L) of some
rank n > 2 is considered. The braid group Br, is introduced in section
3.1. It acts on several sets of n-tuples and of matrices associated to
(Hz, L).

Section 3.1 starts with the Hurwitz action on G™ where G is a group.
Results of Artin, Birman-Hilden and Igusa-Schiffler for G a free group,
a free Coxeter group or any Coxeter group are cited and applied. This
is relevant as many of the monodromy groups I'V and T of rank 2
or rank 3 unimodular bilinear lattices with triangular bases are such
groups.

It turns out that the Hurwitz action of Br, on (O®)" lifts to an
action of a semidirect product Br, x {£1}" on sets of certain n-tuples
of cycles in Hy. This is discussed in section 3.2.

Most important is the set B of triangular bases of (Hz, L) (if this
set is not empty) and the subset B%* = Br,, x {+1}"(e) of a chosen
triangular basis e. Section 3.3 poses questions on the characterization
of such a set Bt of distinguished bases which will guide our work in
chapter 7. It also offers several examples with quite different properties.

Section 3.4 connects the group Br, x {£1}" via its action on the
orbit of a triangular basis e with the group Gz. There is a group an-
tihomomorphism Z : (Br, x {£1}")s — Gz, where (Br, x {£1}")s
denotes the stabilizer of a matrix S € T“"(Z). In this way certain
braids induce automorphisms in GGz, and in many cases these automor-
phisms generate Gy, i.e. Z is surjective. Theorem 3.26 (b) states the
well known fact Z((61"*om°")") = (—=1)¥1 M for k € {0;1}. Theorem
3.26 (c) gives a condition when Z(6'~%07°°!) is in Gz and thus an n-th
root of (—1)*1M. Theorem 3.28 states that for almost all cases with
rank < 3 the map Z is surjective. The exceptions are only four cases.

3.1. The braid group and the Hurwitz action, some classical
results

Choose n € Z>5. The braid group Br,, of braids with n strings was
introduced by Artin [Ar25]. Here we take a purely algebraic point
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of view. Artin [Ar25, Satz 1] showed that Br, is generated by n —
1 elementary braids oy, ...,0,_1 and that all relations come from the
relations
oi0; = ojo; fori,je{l,...,n—1} with |i —j| > 2,
0;0;4+10; = 0;4+10;0;4+1 for i € {1, = 2}
He also showed [Ar47, Theorem 19] that the center of Br, is
Center(Br,) = (¢™"),

where

root . mon

0" = 0y 10p_9...0001, 0" = (a")",

An important action of Br,, is the Hurwitz action on the n-th power
G" for any group G. The braid group Br, acts via

oi(g1, - 9n) = (91, ---agi—lagz‘gi—i-lgi_l)giygi-i-?a ey Gn),s
0[1(917 e Gn) = (g1, ~-~>gz‘—la9¢+17gff1gigi+1agi+27 vy Gn)-
The fibers of the map

T G =G, g=(91,-,9n) = 91.--Gn,

are invariant under this action,

Ta(g) = ma(0ig) = (o, 'g).
We will study this action for n = 3 in the cases of the monodromy
groups for the rank 3 unimodular bilinear lattices. The following results
in Theorem 3.2 of Artin [Ar25] and Birman-Hilden [BH73] will be
relevant.

DEFINITION 3.1. (a) Let G/™*" be the free group with n generators
T1,...,T,. Let
n
A(GIreem) .= U{wxiwfl |w € GIreeny
i=1
be the set of elements conjugate to z1,...,x,. Obviously
Br,, (w1, ..., 1)) C A(GIreem)n,
(b) Let G7¢n be the free Coxeter group with n generators
T1,...,T,, so all relations are generated by the relations z? = ... =
22 =e. Let

A(ch'ow,n) = U{wxiw—l |w c GfC’ox,n}
i=1
be the set of elements conjugate to zq,...,x,. Obviously
Bra (1, s 7a)) © A(GIO).
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THEOREM 3.2. (a) [Ar25, Satz 7 and Satz 9] Br,, acts simply tran-
sitively on the set of tuples

{(wi, ..., wp) € A(GI™™™ |wy...w, = 1.2, )}

(b) [BH73, Theorem 7] Br, acts simply transitively on the set of
tuples

{(wy, ..., w,) € A(chox’")” |wy..w, = x1...2, }.

REMARKS 3.3. (i) Both results were reproved by Kriiger in [Kr90,
Satz 7.6].

(ii) Theorem 1.31 in [KTO08] gives a weaker version of Artin’s re-
sult Theorem 3.2 (a). Theorem 1.31 in [KTO08] is equivalent to the
statement that Br, acts simply transitively on the set of tuples

{(wy, ..., wn) € AGI™™)™ | wy..w, = 2.2,

wy, ..., w, generate GYT¢™ a permutation

o € 5, exists with w; conjugate to ,(;)}.

(iii) The formulation of Theorem 1.31 in [KT08] is different. There
a group automorphism ¢ of G/™*" is called a braid automorphism if
o(xy..2,) = 1...¢, and if a permutation o € S,, with ¢(z;) conjugate

to x,(; exists. The group of all braid automorphisms is called Br,,.
Theorem 1.31 in [KTO08] states that the map

Z :{of', ... o'} = Br, with

ey U1

(Z(0:) (1), ..., Z:(ai)(xn)) = o7 Nxy, .o ),
(Z(O’i_l)(l’l), ey Z(Ji_l)(xn)) = 0i(T1, ..y Ty),

extends to a group isomorphism Br,, — E;n
(iv) In order to understand the equivalence of the statements in (ii)

and (iii), it is crucial to see that the extension Z : Br, — Br,, which is
defined by

(Z(B)(x1), ..., Z(B)(x,)) = B (21, ...,3,) for 3 € Br,

is a group homomorphism. This follows from the equations

Z(Bo;) = Z(8)Z(0;) and  Z(Bo; ") = Z(B)Z(0; )

2

23



for 5 € Br,, and ¢ € {1,....n — 1}. The first equation holds because of

(Z(Bo)(x1), ... Z(Bo) ()
= (Boy) Hx1, s )

= 0, (Z(B)(x1), ., Z(B)(xa))

1), Z(B)(@im), Z(B) (win1),
2i01)) " Z(8) (i) Z(B) (1), Z(B) (wixa), .. Z(B)(wn))
1), Z(B)(@im1), Z(B)(win1),
Z(B)(Tis2), .. Z(B) ()

= (Z(B)Z(0:)(@1), s Z(B) Z(03) (x1)).

The second equation is proved by a similar calculation.

=
+
=
B
3
+
=
N

EXAMPLE 3.4. Theorem 3.2 will be applied in the following situa-
tion, which in fact arises quite often.

Consider a unimodular bilinear lattice (Hz, L, e) of rank n > 2 with
triangular basis e such that for some k € {0, 1} the following holds:

) _ G7Corn  with generators sgf), . sé?l) if k=0,
GJreem  with generators sg), . séi) if k=1

Then in the notation of Definition 3.1
A(GIOmmy = [0 v e AO}Y  if k=0,
A(GIreemy = (s v e AW} if k=1.
By Theorem 3.2, two statements hold:
(1) The set

{(s k) v )\vl,.. v, € A®)

k
§) —

L5t st = (

_1)I<:+1M}

is a single orbit under the Hurwitz actlon of Br,.
(2) The stabilizer of any such tuple (sv1 . sgn ) under the Hur-

witz action of Br, is {id}.

Theorem 3.2 (b) concerns a free Coxeter group with n generators.
The transitivity of the action generalizes to arbitrary Coxeter groups
and can be applied to generalize the statement (1) in Example 3.4, as
is explained in the following.

DEFINITION 3.5. (Classical, e.g [Hu90, 5.1]) A Cozeter system
(W, S9¢™) consists of a group W and a finite set S9" = {sq,...,s,} C W
for some n € N of generators of the group such that there are generating
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relations as follows. There is a subset I C {(i,7) € {1,....,n}?*|i < j}

and a map a : I — Z>, such that the generating relations are
st=.=s=1 1= (SiSj)a(i’j) for (i,75) € I.

The group W is then called a Coxeter group.

The following theorem was proved by Deligne [De74] for the ADE
Weyl groups and in general by Igusa and Schiffler [IS10]. A short proof
was given by Baumeister, Dyer, Stump and Wegener [ BDSW14].

THEOREM 3.6. [De74][IS10][BDSW14] Let (W, S97) with S9en =
{s1,...,$n} be a Coxeter system with n > 2. Define A(W,S9%") =
UL {wsiw™|w e W}. The set

{(wy, ..., wy,) € AW, S |wy...wy,, = S1...8, }
15 a single orbit under the Hurwitz action of Br,.

Part (a) of the following theorem is classical if S;; € {0, —1, —2} for
i < 7 and due to Vinberg [Vi71] in the general case.

THEOREM 3.7. Let (Hz, L) be a unimodular bilinear lattice of rank
n > 2 and let e be a triangular basis such that the matriz S = L(e', e)' €
Tu"(Z) satisfies Si; < 0 fori < j.

(a) (Classical for S;; € {0,—1,—2}, [Vi71, Proposition 6, Theorem
1, Theorem 2, Proposition 17] for S;; < 0) The pair (T, {sé?), s sé‘,{)})
1s a Coxeter system with

I = {(,5) e{l,...,n}*|i<jS;€{0,—1}} and
. 2 ifS; =0,
alij) = {3 if Sy = —1.
(b) The set

(@129 € ({52 [0 € AOY)" [ g1 g = 1)

is a single orbit under the Hurwitz action of Br,,.
Proof of part (b): Observe
ATO {50, 50 = {500 € A0},

0 9ep,

Apply Theorem 3.6. U

REMARKS 3.8. (i) The transitivity result in part (b) holds also for a
bilinear lattice (Hz, L) which is not necessarily unimodular, if it comes
equipped with a triangular basis e with L(e;,e;) < 0 for ¢ > j. This
is the case of a generalized Cartan lattice (Remark 2.4 (v)). This is
crucial in [HK16].
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(ii) Especially in the case of a unimodular bilinear lattice (Hz, L, ¢)
with triangular basis e and matrix S = L(e, e)! € T*"(Z) with S;; <
—2 for all i < j we have [(©) = G/Cozn with generators s\, ..., s,

(iii) Theorem 6.11 (g) gives in the case n = 3 I'® = G793 with
generators s,(a?), 3,(32), 322) also in the following cases: if S;; > 3 for ¢ < j

and if additionally
2519 < 51353, 2813 < 512523, 2523 < S12513.

(iv) Theorem 6.18 (g) gives in the situation of part (iii) also 'V =
G7ree3 with generators 38), sg), sg).

(v) Though in the situation of part (ii) there are cases with I'™) =
Gfreem and there are cases with '™ #£ G/7"  The odd cases are
more complicated than the even cases. For the cases with n = 3 see

the Remarks 4.17, Lemma 4.18 and Theorem 6.18.

3.2. Braid group action on tuples of cycles

Consider a unimodular bilinear lattice (Hz, L) of some rank n > 2
and the groups OW) = Aut(Hz, I®) for k € {0;1}. Recall that here
the set of roots R is

RO ={5¢c Hy|L(6,6) =1}

In order to treat the even case k = 0 and the odd case k = 1 uniformly,
we define

R(l) = Hz.
The Hurwitz action of Br, on (O%®)" restricts because of
sgk)sgk)(sgk))’l = 3(2)(1)) for a,be R® (3.1)

(Lemma 2.2 (c)) to an action on the subset ({s\ |v € RO},

It turns out that this action has a natural lift to an action of a
certain semidirect product Br, x {£1}" on the set (R*)". Here the
sets (R™)™ and ({sgk) |v € R® )™ are related by the map

m (RO = ({57 v e ROY" C (0M)",
v=(v1,.0,) = (s s,
Recall also the map
T - (O(k))n — O(k)a (gla 7gn) = g1---Gn

which was defined for an arbitrary group before Definition 3.1.
Furthermore it turns out that both actions, for £ = 0 and for k = 1,

restrict to the same action on the set B of triangular bases if this set

is not empty. This is the action in which we are interested most. In the
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case of a unimodular bilinear lattice from singularity theory, it is well
known [EbO01, 5.7) [AGV88, §1.9] and has been studied by A’Campo,
Brieskorn, Ebeling, Gabrielov, Gusein-Zade, Kriiger and others. In fact
it works also for bilinear lattices with B # () which are not necessarily
unimodular, see Remark 3.14.

Finally, the actions induce actions of Br, x {£1}" on several spaces
of matrices. The purpose of this section is to fix all these well known
actions.

Lemma 3.9 presents the semidirect product Br,, x {£1}". Lemma
3.10 gives its action on (R®)". Lemma 3.11 gives its action on B if
this set is not empty.

LEMMA 3.9. Fizn € Z>s.
(a) The multiplicative group {£1}" is called sign group. It is gen-

Kronecker symbol) for j € {1,...n}.
(b) The following relations define a semidirect product Br,, x {+1}"
of Br,, and {£1}™ with {£1}" as normal subgroup,

ajéiaj_l = ¢§ forie{l,...,n}—{j,7+1},
O'j(SjO'j_l = 5j+17 O'j(Sj+1O']-_1 = 5j-
In the following Br,, x {£1}" always means this semidirect product.

Proof: Part (a) is a notation. Part (b) requires a proof. We have
the exact sequence

{1} — Br?""® — Br,, — 5,, = {1}

where Br?""® C Br, is the normal subgroup of pure braids (and o; € Br,

maps to the transposition (i i +1) € S,,). The natural action of S,, on
{13,

Spdaie=(e1,...,6n) = (Ea1(1)s s Ea-1(n)) =t Q.E
lifts to an action of Br,, on {+1}", ¢ : € = o.. This action can be used

to define a semidirect product of Br,, and {£1}" by ceo™! := g.e. It
is the semidirect product in part (b). U

LEMMA 3.10. Let (Hz, L) be a unimodular bilinear lattice of rank
n>2. Fizk e {0,1}.

(a) The following formulas define an action of the semidirect prod-
uct Br, x {£1}" from Definition 3.9 (b) on the set (R*))",

aj(y) = (Ul,...,Uj_l,S,l(}];)(Uj+1),Uj,Uj+2,...,Un),
0-;1(2> = (Ulw"avj—lavj—i-h(Sg)ljzrl)il(Uj)?Uj-i-%"'7Un)7
(5]@) = (U17...,Uj_1,—vj,Uj+1,...7Un)7
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forv = (v, ...,

of Br,, x {£1}" on (R™
on (O®)n

, so the diagram

(RO)"

|

(O(k)

v,) € (R®)™,
(b) The map R (R

9j

s

9j

»——

(R

o

(o®)r

Nr — (O™ 4s compatible with the action
)" from part (a) and the Hurwitz action of Bry,

commutes. Here the sign group {£1}" acts trivially on (O®))". Espe-
cially, each orbit in (R¥)" is contained in one fiber of the projection

Ty, © i (R(k))” — O

Proof: (a) We denote the actions in part (a) by O'](-k), (0; )™ and

5J(-k) (of course 53(-0) = 55»1)). The identities
Jj(-k)(ajfl)(k) = (0;1)(k)a§k) =id forje{l,.,n—1}
afk)a](k) = a(k)agk) for |t — j| > 2,
o5 (oYW =6 fori e {1,...n} — {5,j + 1},
R -
aj(k)éj(-i)l( Hk) = ](.k) for je{1,...,n—1}
are obvious or easy to see. The identities
a(k)al(_]? k) = al(_’i)la(k)al(Jr)l fori e {1,...,n -2}

are proved by the following calculation with v € (R*)™,
k
ool (v)

(k)

v; (Vi41), Vis Vita, Vigs-..)

(k) (Ui+2>7 () Ui—i—?n )

(Vit1), Sy,
- Vi1, 85(’?>(U-+1)(S(k) (viya)) s (Vit1), Vis Vigs, )

q()k)S(LL( (k)) ‘(s 1(1k)( i+2)),sg’f)(viﬂ),vi,ng,...)
(Uz+2)) )( Vit1), Vi, Vi3, --)

(k’)( (k) 1()
( ’Ul+1 (UZ"FQ)

Vi1, S

(k)

s Vis1, Sy,

(%)

) v,

y Ui—1,S

(-
== ( ; Vi—1, S
k
U£+)1<
k
Uz(+)10( )(

k) _(k) _(k
Uz+)1‘7 )01(+)1

% 'Uerl

()

Vi

; Vi—1, ) U17UZ+1701+37"')

k
» Vi—1, Vi, 87(,1.11 (Vit2); Vig1, Vigs, ---)

().
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The maps a](-k) and 5i(k) satisfy all relations between the generators o;
and §; of the group Br, x {#1}". Therefore the formulas in part (a)
define an action of this group on the set (R®))".

(b) The actions are compatible because of (3.1). The sign group
acts trivially on (O®)" because s = s® for v € R®. Each orbit of
the Hurwitz action on (O®)™ is contained in one fiber of the map 7,
as was remarked in section 3.1. U

LeEMMA 3.11. Let (Hz, L) be a unimodular bilinear lattice with
nonempty set B of triangular bases. The actions in Lemma 3.10
of Br, x {£1}" on (RO)" and on (RW)™ both restrict to the same
action on B, This action can also be written as follows,

Uj(y) = (Ula"'avj—lavj-i-l _L(Uj-i-lavj)vj?vjavj-i-?v"'7Un)7
Oj_l(y) - <U17 cery V=1, Vj41, U5 — L(Uj+1,Uj>Uj+1, Vj42, "'7UTL>7
5](Q) = (vl,...,vj_l,—vj,vj+1,...,vn),

forv = (vi,...,v,) € B

Proof: v € B" implies L(vj,v;11) = 0 and 2L(v;,v;) = 2 =
IO (v;,v;). Recall I®© = L + L* and IV = L' — L. Therefore

s (i) = v = 1005, 0501)05 = Vi — Lvj11,05)1;,
(s )M w) = vy = (D)MW (010, 05)v501 = v — L(vj41,05)v41.

So 0;(v) and o;'(v) are given by the formulas in Lemma 3.11. It
remains to see that the images are again in B"?. They are in (R®)"
because of the even case k = 0. They form Z-bases of Hz; because v is
a Z-basis of Hy. They are triangular bases because

L(oj(v)j,0(v)j41) = L(vjp1 — L(vjy1,v5)v5,v5) = 0,
L(Ufl(ﬂ)ja Ufl@)jﬂ) = L(UjJrla Vi — L<Uj+17 Uj)UjJrl) = 0.
Of course §;(v) € B, O

DEFINITION 3.12. Fix n € Nand R € {Z,Q,R,C}.

(a) Recall the definition of the set T“"(R) of upper triangular n x n
matrices with entries in R and 1’s on the diagonal in Definition 2.3
(c). Additionally we define the sets of symmetric and skewsymmetric
matrices

TO(R) = {A€ My(R)| A = A, A, =2},
TO(R) = {A€ My (R)| A" = —A}.
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(b) For a € Z define the n X n matrix

1

Ch,j(a)

=
S =

1

which differs from the unit matrix only in the positions (j,7), (7,7 +
1),(i+1,5),( +1,5+1). Its inverse is

with —a at the position (j + 1,7 +1).

LEMMA 3.13. Fizn € Zss and R € {Z,Q,R,C}.

(a) The following formulas define an action of the semidirect prod-
uct Br, x {£1}" on each of the sets of matrices T,go)(R), qu,l)(R) and
Ty (R),

o

](A) Cn’J(_A]7]+1) -A- Cn,j<_A],]+1> for j € {1, ey — 1},
O'j_l(A) = O}
(4)

n,j(Aj,j+1) 'A'C;;(Aj,j+1) fOI'j S {1,...,’[’L— 1},
55(4) = diag(((—1)™)s

=1,...,

for j € {1,...,n}.
(b) Let (Hz, L) be a unimodular bilinear lattice of rank n.
(i) Fiz k € {0;1}. The map

(R — T(Z), v TP ),

is compatible with the actions of Br, x {£1}" on (R®)™ and on TT(Lk)(Z).
(1) Suppose that B is not empty. The map

Btri N T#nz(z)’ v L(yt,y)t,

is compatible with the actions of Br, x {+1}" on B and on T*"(Z)

Proof: (a) For A € T\¥(Z) there is a unique matrix § € T"™(Z)

with A = S+(—1)*S?. Consider a unimodular bilinear lattice (Hz, L, ¢)
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with a triangular basis e with matrix S = L(e', ¢)’. Then

o;(e) (€515 €501 = 5534165 €55 €12, )
= e Cnj(=5jj+1),
o;t(e) = (. ejo1,€41,€5 — Sjjt1€41,€j4a, )
e Cr i (Sii41);
dile) = (.o, em1, —€ €541, ...)

o

Observe that C), j(a) for a € Z is symmetric. Therefore for k£ € {0;1}

I%(o;(e)",05(e)) = Cuj(—Sjjs1) - I1W(e" €) - Crj(=Sjj41),
1Mo (e) 7' (e) = Cpi(Sjje1) - I1W(e' e) - i (S)j41),

19 n,j
similarly for L instead of I*), and also similarly for the action of d;.
This shows part (a) for R = Z. Changing the set of scalars does not
change the matrix identities which say that the group Br, x {£+1}"
acts.
(b) This follows from the proof of part (a). O

REMARKS 3.14. Let (Hz, L) be a bilinear lattice, not necessarily
unimodular.

(i) The action of Br, x {+1}" on (R®)" in Lemma 3.10 (a) works
also in this case. It restricts as in Lemma 3.11 to an action on B, if
this set is not empty, though here for v € B

L(vj41,0;
aj(y) = (?)1, vy Uj—1, V541 — WUJ‘, Vi, Vj42, ey Un),
L(vji1,v;)
L(vjt1,vj41)

(ii) The action of Br, x {£1}" in Lemma 3.10 on (R™")" does not
generalize. In Lemma 2.6 (a) (v) we defined in the case of a general

bilinear lattice s.” only for a € R(®). We defined s for any a € R
in Lemma 2.6 (d) only in the case of a unimodular bilinear lattice.

(iii) On the other hand, part (a) (vii) of Lemma 2.6 says that the
action in Lemma 3.10 for k = 1 works for v € B¥*. Though at the end
this is just the action in (i) above.

(iv) The action in (i) on B'* is compatible with an action on the
set T!" of matrices in Lemma 2.3 (c), which generalizes the action in
Lemma 3.13 (a). Here C, ;(—S;1+1) and C;;(Sj7j+1) in Lemma 3.13

(a) have to be replaced by C’n](—%) and C;;(M)

Sjt1,5+1

Uj_l(y) = (V1,0 Vj1, Vjg1, V5 — Vji15 Vjg2, vy Un)-
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{£1}" is the normal subgroup in the semidirect product Br, x
{£1}". Therefore, if Br, x {+1}" acts on some set 3, the group Br,
acts on the quotient ¥/{£1}". Often it is good to consider this quotient
and the action of Br,, on it.

LEMMA 3.15. Let (Hz, L) be a unimodular bilinear lattice of some
rank n > 2. Fiz k € {0;1}.
(a) The map

7®  (RO) 5 ({50 |y € RO ¢ (0B, s (sB) . s

n vy 0t vn)?

factors into maps

k k ) {1y (k) k
(RW)r —— (R /{1 ——— ({sy |v € RW})".

Br, acts on the quotient (R®)"/{£1}", and the second map
W,(lk)/{:l:l}n is Br,, equivariant. The image of v in (R®)"/{£1}" is
denoted by v/{£1}".

(b) The second map

T AL (RO) £} = ({57 [0 € R}

in part (a) is a bijection if k =0 or if k = 1 and Rad IV = {0}.

(¢) Consider the case k =1 and Rad IV 2 {0}. Consider a trian-
gular basis e € B and the induced set AV of odd vanishing cycles.
The second map restricts to a Br,, equivariant bijection

(AW LY = ({siV o € ADY™, v (s, s0)),

v1 )T T

if (Hz, L, e) is either irreducible or reducible with at most one summand
of type A;.

Proof: Part (a) is trivial. (b) Suppose & = 0 or (k = 1 and
RadI® = {0}). If k = 1 and v = 0 then s{" = id. If ¥ = 0 and
veE R orif k=1and ve RV — {0} then v ¢ Rad I™ and s\ # id

for any v € R®). Then one can recover v from sq(,k), essentially because

of
{0} (s —id)(Hz) C Zw.

(c) If (Hyz, L,e) is irreducible then A® N RadI™ = ), and the
argument of part (b) holds. If (Hz, L,e) is reducible with only one
summand of type A; then for a unique j € {1,...,n} ¢; € Rad I'Y), and
then A N Rad I® = {+e;}. Then v € AW satisfies 58" = id if and
only if v = fe;. So also then one can recover £v from s for any
ve AW, O
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REMARKS 3.16. (i) Consider the action of Br, on T“*(Z). The
elementary braid o; maps S = (S;;) € T*"(Z) to

O-J(S) = C”J(_SJJ-‘Fl) -5 CTL,]<_S_]7]+1)
with ( ()i i(S)jit ) _ (1 —Sj,j+1) .

0i(S)jr1; 05(S) 41541 0 1

(ii) Especially, in the case n = 2 ¢y, d5 and o7 all map S = ((1] 9{)

to (é _13:), so the Bry x {£1}? orbit equals the Bry orbit and the

(01) orbit and consists only of S = ((1) ‘716) and (é —Ix)

(iii) Under rather special circumstances, also in higher rank n the
sign group action is eaten up by the braid group action. Ebeling proved
the following lemma.

LEMMA 3.17. Let (Hz, L) be a unimodular bilinear lattice and e €
B a triangular basis with S = L(e', e)t € T (Z).

(a) [Eb83, proof of Prop. 2.2] Suppose S; 41 =€ € {£1} for some
je{l,..,n—1}. Then

3e

o (e) = b;(e), o7 (e) = b le).

(b) [Eb83, Prop. 2.2] Suppose S;; € {0,1,—1} for all i,j and that
(Hgz, L) is irreducible. Then the orbit of e under Br,, coincides with the
orbit of e under Br,, x {£1}".

3.3. Distinguished bases

In this section we continue the discussion of the braid group ac-
tion on B'*. Now we fix one triangular basis e. Definition 3.18 gives
notations. The Remarks 3.19 pose questions on the orbit of e under
Br,, x {£1}". The questions will guide the work which will be done in
chapter 7.

DEFINITION 3.18. Let (Hz, L) be a unimodular lattice of rank n > 2
with nonempty set B of triangular bases.
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Given a triangular basis e € B and k € {0,1}, we are interested
in the following orbits:

the set B¥* = Br, x {#1}"(e) of distinguished bases,
the set R®4ist .— Br (W (e)) of distinguished tuples of
reflections or transvections,
the set S := Br, x {£1}"(S) of distinguished matrices,

where S = L(¢', e)' € T'"(Z),

the quotient sets Bt /{+1}" and S¥*'/{+1}", which are Br,, orbits.
We are also interested in the stabilizers in Br,, of the points e/{+1}" €
Bist [{+1}" and S/{£1}" € S¥5*/{+1}", namely the groups

(Brn)e/f+1yn C (Bra)s/q+1yn C Bry.

REMARKS 3.19. In the situation of Definition 3.18 the following
constraints on the set B¥** of distinguished bases are clear from what
has been said,

Bt BTN (AN (AN {v e (Hy)" ZZ% Hz}

N (1 0 ¥ (=M) N (7, 0 7)™ (M), (3.2)

where m, o m” s (RM)" = O®, v si.s).

An interesting problem is which - if any - of these constraints are
sufficient to characterize the orbit B%st. We are most interested in the
questions whether the inclusions

Bist < {ve (AN |7, 0xO@w) = —M}, (3.3)
BYt v e (AN |7, 0nW(v) = M}, (3.4)

are equalities. We will study this problem systematically in chapter 7
for n = 2 and n = 3. In this section 3.3 we give some examples.

REMARKS 3.20. Consider a unimodular bilinear lattice (Hz, L) of
rank n > 2 and k € {0;1}.

(i) Two basic invariants of the Br, x {£1}" orbit of a tuple v €
(R are the product (m, o ﬂ,gk))(y)) = s s e O® and the
sublattice > | Zv; C Hz, namely

(7 0 7N (05 (v)) = (1 0 7)) (v)  and Z Zo;(v Z ZLv;.

(ii)) A triangular basis e € B induces the even and odd mon-

odromy groups I'® and T'* and the sets A® and A® of even and
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odd vanishing cycles. Each distinguished basis v € B%** induces the
same even and odd monodromy groups I'® and I'™V and the same sets
A©® and AM of even and odd vanishing cycles. This is obvious from
the action of Br,, x {£1}" on B¥** the Hurwitz action of Br,, on R*)dist
and the definition of I'® and A®). So they are invariants of the set
Bt of distinguished bases.

We did not mention the monodromy M, because it is by Theorem
2.7 an invariant of (Hgz, L) if B # (), so it does not depend on the
choice of a Br,, x {£1}" orbit in B,

(iii) A matrix S € T“"(Z) determines a triple (Hz, L,e) with
(Hz, L) a unimodular bilinear lattice and e a triangular basis with
S = L(e'e)' up to isomorphism. For a second matrix S in the
Br, x {£1}" orbit of S then a triangular basis € of (Hz, L) with
S = L(¢",2)! exists (but it is not unique in general). Therefore the triple
(Hz, L, B%") and all induced data depend only on the Br, x {41}" or-
bit S%st of S. These induced data comprise R, '@ TM  A© and
AW,

(iv) Choose a triangular basis e. Then s € T® for § € A®.
This follows from the definition of a vanishing cycle and from formula
3.2. It also implies that the set (A®))" is invariant under the action of
Br, x {£1}" on (R®).

REMARKS 3.21. (i) Consider a unimodular bilinear lattice which is
not a lattice of type A7 and a fixed triangular basis e. Then A(® ¢ R(©),
but A® ¢ RO by Corollary 6.22 (a). Nevertheless B#* ¢ (A©® N
AM)" 5o many odd vanishing cycles do not turn up in bases in the
braid group orbit of ¢, i.e. in distinguished bases.

(ii) In all cases except A7 A1) ¢ A© because AV ¢ R, In some
cases A c AWM in many cases A® ¢ A, See Corollary 6.22.

Given a unimodular bilinear lattice (Hz, L), any element g € O®)
acts on (R™)" by g(v) := (g(v1), ..., g(vn)). Part (a) of the next Lemma
3.22 says especially that this action commutes with the action of Br,, x
{£1}" on (R®)". Part (b) gives implications, which will be used to
construct the interesting Examples 3.23 (i) and (ii).

LEMMA 3.22. Let (Hyz, L) be a unimodular bilinear lattice. Fiz k €
{0,1}.
(a) If g € O™ and (a, €) € Br,, x {£1}" then for v € (R®))"
9((a,e)(v)) = (a,e)(9(v),
(momP)(g()) = go(mon)(v)og™.
Here g(v) means (g(v1),...,g(vyn)), and similarly for g((o,€)(v)).
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(b) If g€ G — Gy and ¢ € B then

Q(Q) §é Btri,
so especially g(e) ¢ Br, x {£1}"(e),
but (m o) (g(e)) = (muom!)(e) = (~1)* M.
Proof (a) ¢g((id,e)(v)) = (id,e)(g(v)) is trivial. Consider («,¢) =

(0,(1,...,1)) = 0;.

9(o;(v)) = (g(vl)7"'7g(vj—l)ﬂgsz()];)(vj+l)7g<vj>7g(vj+2>7"'79(“”))

(g(vl)w"'ag(vj—l)aSélzij)(gvjﬁ—l)vg(vj)7g(vj+2)7"'ag(vn))

= 0;(9(v)),

because of gsir gt = sgaj) (Lemma 2.2 (c)).

k k _
(mao ) (g)) = s\ s = (gsPg™)...(g5Wg7")

= gsf)’f)...sz(}]z)g* =go(mo Wﬁk))(y) og !
(b) Suppose g € G(Zk) — Gz and e € B, Then gMg~! = M and
(mmom)(g(e) @ go(mmomd)(e)og™!
= g((=D)"'M)g™" = (=1)"*'M = (m, o (") (e).
e)t € Tv(Z), I® = [t + (—1)*L and

—

Furthermore S = L(¢,

= IW(et e) =8+ (—1)kS" because g € G(Zk),
, # LI\ =S beeawse g ¢ G,
so L(g(e)',9(e)) ¢ T,"(Z),
so g(e) € B, so g(e) ¢ Br, x {£1}"(e). 0
EXAMPLES 3.23. Let (Hz, L) be a unimodular bilinear lattice of
rank n > 2, e € B a triangular basis, S = L(¢',¢e)! € T""(Z) and
ke {0,1}.
(i)k=1,n=3,5=95(-3,3,-3) = S(P?), the odd case P2. To
carry out this example we need two results which will be proved later,
Theorem 5.14 (b) and Theorem 6.21 (h).

By Theorem 5.14 (b) (i) there is a root M™ € Gz of the mon-
odromy with (M"™°)3 = M and

Gt {£(M (id +a(M™ —id)?) |1, a € Z}
Gz = {£(M™") |1 € Z}.
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Also, here Rad IV = Zf; with f; = e; + es + e5. The shape of M7
in Theorem 5.14 (b) shows

3 -3 1
(M —id)*(e) =e(|1 0 0] —E3)*= f3(1,-2,1).
0 1 0
For example ¢ := id +(M"° —id)? € G’(Zl) — (G, satisfies

gle) = e+ f3(1,-2,1),

0 -3 3
1D(gle)gle)) = IW(ehe)=5-5"=|3 0 -3]|,
3 3 0
3 -7 5
L(g(e)' g(e)) = [-4 9 -T7],
2 -4 3
M (0
SgtenSolen)Soles) = M
gler), gles),g(es) ¢ RO, because 3 # 1 and 9 # 1,
gler), glez), gles) ¢ AW,

The last claim g(e;) ¢ AM holds because of g(e;) # e, but g(e;) €
e; + Zfs, and because the projection Hy — Hz/Zfs restricts to an
injective map A — Hy /7 fs by Theorem 6.21 (h).

(i) k=0,n=3,5 = 5(-2,2,-2) = S(H1.2), the even case H;».
To carry out this example we need two results which will be proved
later, Theorem 5.14 (a) and Theorem 6.14 (e).

Recall Theorem 5.14 (b) (i),

(Hz,L) = (Hza,L1)® (Hzz, Le)
with HZ,I = Zfl D ng = ker (DQ(M>, HZ,Q = Zf3 = ker él(M),
1 01

(fi,for f3) = e|1 1 1],
01 1

GY = Gy x Gy 2 Gy =Gy x Gz
with G(Z(?)l = Aut(HZJ_) 2 GZ,l = {g € Aut(Hz,l) | detg = 1},
Gy = Ggo={Fidlz}.
37



For example g := ((f1, f2, f3) = (f1,—f2, [3)) € G(ZO) — (g satisfies

gle) = g(fs—fo,—fs+fi+ fo, fs— f1)
(fs+ fo, —fs+ f1— fo, fs — f1)

= §+f2<2,_270>7
© (0 O
Sg(er)Sg(en)Soles) = M
IOg(e),gle)) = 19(e)=5+5",
1 0 0
L(g(e)' g9(e))" = -2 1 0| =5#S=L(e),
9 —2 1

The last claim g(e;) € A holds because of Theorem 6.14 (e). There-
fore

gle) € o € (AP | (ry o 7)) = ~M, 3 2 = Hy).

Especially, here the inclusion in (3.3) is not an equality. In a certain
sense, this example is the worst case within all cases S(z) with k£ =0,
n = 3 and eigenvalues of M unit roots. See Theorem 7.3 (b).

(iii) n € N, S = E,,, the even and odd case A}. Compare Lemma
2.12.

AO — RO _ A1) — {zxes, ..., ten},
M = id,
BYt = {(e1€5(1), s En€o(m)) | €1, -y En € {£1},0 € Sy},
= {ve (A" [(mom)(e) = —M = —id}
The last equality follows from —M = —id and

§O|z,, = —id, s

€i =

Zj;&i Zej — id.
Here the inclusion in (3.3) is an equality. On the contrary, the inclusion
(3.4) is not an equality, the set

{ve (AW (r,om)(v) = M = id}

is much bigger than B#*! if n > 2, it consists of many Br, x {+1}"
orbits. Each of these orbits contains a unique one of the following
tuples,

(el(l),el@), ...,el(n)) with 1 S l(l) S l(2) S L < l(n) <n.

38



This follows from sez =id.

The braids act just by permutations on the Br,, orbit B%st/{4+1}".
Therefore the stabilizer of e/{£1}" is the group Brf"" of pure braids.
The stabilizer of S/{£1}" is the whole group Br,,.

(iv) Reconsider Example 3.4, so a case where

GJreem  with generators 38), e s if k= 1.

n

k) _ { G/Corn  with generators sg?), . 36 O if = 0,

In the notation of Definition 3.1 A(G/9°rn) = {sgo) 10 € AO}if k=0
and A(GIreen) = {s; (1 |5 € AW} if k = 1. By Theorem 3.2

RELE — (s, s®) [0 € (AW, s s®) = (—1)F 101},

’U17 7v

Furthermore, the shape of IT'®) shows that (Hyz, L,e) is irreducible.
Lemma 3.15 (b) or (c) applies. Therefore

de’st _ {Q c (A(k))n | Sglf)...s(k) — (_1)k+1M}

Un

So in this case only the constraints v € (A®)" and s A

(—=1)*M in the Remarks 3.19 are needed in order to characterize
the orbit B!, The inclusions in (3.3) and (3.4) are here equalities.
By Theorem 3.2 the stabilizer of 7" (¢) and of ¢/{+1}" is {id} C
Br,,. The size of the stabilizer (Br,,)s/{+1}» depends on the case. Theo-
rem 7.11 gives cases with n = 3 where it is (5901) or (0907) or (™).
(v) Suppose S;; <0 for i < j, so (Hz, L,e) is a generalized Cartan
lattice as in Theorem 3.7. By Theorem 3.7 (b)

REHO = {(g1,,90) € ({53” |6 € AV} 1.9 = =M}
With Lemma 3.15 (b) this implies
Bdist _ {y c (A(O))n ’ S,gk) (k) — M}

Also here only the two constraints v € (A©®)" and s s = M in
the Remarks 3.19 are needed in order to characterize the orbit B4t
The inclusion in (3.3) is here an equality.

3.4. From Br, x {+1}" to Gy

Definition 3.24 gives a map Z : Br, x {£1}" — Aut(Hz), which
restricts to a group antihomomorphism Z : (Br,, x {£1}")s — Gz. The
definition and the restriction to a group antihomomorphism are classi-
cal. Lemma 3.25 provides basic facts around this map. Also Theorem
3.26 (b) is classical. It states that Z((61 *o")") = (—=1)k+1 M.

Theorem 3.26 (c) gives a condition when Z(5.7%07°") € Gz. Then
this is an n-th root of (—1)* M. Theorem 3.26 (c) embraces Theorem
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4.5 (a)+(b) in [BH20]. It gives more because in [BH20| no braids are
considered. The braids allow a new and more elegant proof than the
one in [BH20]. Theorem 3.26 (c) will be used in the discussion of the
groups GGz in many cases in chapter 5.

DEFINITION 3.24. Let (Hz, L, e) be a unimodular bilinear lattice of
rank n > 2 with a triangular basis e. For («,¢) € Br,, x {£1}" define

an automorphism Z((«,¢)) € Aut(Hz) by the following action on the
Z-basis e of Hy,

Z :Br, x {£1}" — Aut(Hyz),
(@ e) = Z((a,e)) = (¢ = (a,¢)(e)).
LEMMA 3.25. Let (Hyz, L, e) be a unimodular bilinear lattice of rank
n > 2 with a triangular basis e.
(a) For (a,€) € Br,, x {£1}"
Z((a,e)) € Gz <= Z((a,e)) € GY) = Z((a,e)) € GY.
(b) The stabilizer of S in Br,, x {£1}" is
(Br, x {£1}")s = {(a,e) € Br,, x {£1}"| Z((av, €)) € Gz}

(c) The restriction of the map Z to the stabilizer (Br, x {+1}")g
1$ also denoted Z,

Z (Brn X {:l:l}n)s — Gz.

It is a group antihomomorphism with kernel the stabilizer (Br, X
{£1}")c of e.

(d) The triple (Hz, L, BY") with B4 = Br, x {£1}"(e) the set of
distinguished bases (Definition 3.18) gives rise to the subgroup G5 of
GZ7

GE = Aut(Hz, L, BY") .= {g € G | g(B"™") = B!} C Gy,

It does not depend on e, but only on the triple (Hz, L, B¥'). Then G5
is the image of (Br,, x {£1}")s under Z in Gy,

GE = Z((Br, x {£1}")s) C Ga.

(e) The subgroup Z(({£1}")s) of G5 is a normal subgroup of G5,
and the group antihomomorphism Z in part (c) induces a group anti-
homomorphism

Z + (Bra)s/eye — GZ/Z(({£1}")s)
with kernel (Bry,)e {1y, which is isomorphic to (Br, x {£1}"),.
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(f) Suppose that (Hz, L, e) is irreducible (Definition 2.10 (a)). Then

{£11s = {(L 1), (=1, =11,
Z((~1,...,-1)) = —ide Gy,
)

Z(({£1}")s) = {£id}.

{£id} is a normal subgroup of Gz. The group antihomorphism Z in
part (d) becomes

Z : (Brp)s/qayn — Gz /{£id}
with kernel (Bry,)e/(x1y» and image G5 /{£1id}.
Proof: (a) Fix k € {0,1} and («a,¢) € Br,, x {1}". Then
Z((@e) € G = I9((@2)(e)', (@.2)(e) = S+ (-1)*S"

If this equality holds then I® = L' + (=1)*L and
L{(o,€)(@)" (,e)(©))* € Te(Z) imply L((a, €)(e)', (a,€)(e))* = S, 50
Z((a,€)) € Gy.

(b) Trivial with the compatibility of the actions of Br, x {+1}" on
Bdist and on T“"(Z) in Theorem 3.4 (d).

(¢) The following calculation shows that the map Z : (Br, x
{£1}")s — Gz is a group antihomomorphism,

Z((a,)(B,€))(e) (v, €)(8,€)(e)
(a, €)(Z((8,€))(en), ., Z((B,€))(en))

Y Z2((8,9) (e 2)(e) = Z((8,9) Z((ev,2))(e)-

It is trivial that the kernel of this map Z is (Br, x {£1}")..

(d) Gz € Z((Br,, x {£1}")5): Consider g € G5. Then g(e) € B#s
comes with same matrix S as e because g respects L. There is a pair
(a,e) € Br, x {£1}" with Z((a,€))(e) = (a,e)(e) = g(e). Therefore
9= Z((02).

Gz O Z((Br, x {£1}")s): Consider (a,e) € (Br, x {£1}")g,
(B,€) € Brpyx{£1}"and v := (3,)(e). We have to show Z((a,¢))(v) €
Bdist This is rather obvious with the commutativity of the actions of
O™ and Br, x {#£1}" in Lemma 3.22 (a),

Z((a,e))w) = Z((a,€))(8,8)(e)

29 (8,8 Z((a, £)) (e)
= (8,8 (e, €)(e).

41

[

3.2

[\
—~



(e) Elementary group theory gives the group isomorphisms
(Br, x {£1}")s
(Brn)S +1}n = )
e {=1)7)s

= (Br, x {£1}"),

Here use ({£1}"). = {(1,...,1)}. {£1}" is a normal subgroup of Br,, x
{£1}". Therefore ({£1}")s is a normal subgroup of (Br, x {£1}")s.
Therefore Z(({£1}")s) is a normal subgroup of G5. Therefore Z is
well defined. Its kernel is still (Bry,)e/qz1)n = (Br, x {£1}"), because
(Br, x {£1}"), N ({£1})s = ({£117), = {(1, ... D},

(f) If (Hz, L,e) is irreducible, then the following graph is con-
nected: its vertices are eq,...,e,, and it has an edge between e; and
e; for i < j if S;j(= L(ej,e;)) # 0. Therefore then ({£1}")g =
{(1,..,1),(—1,...,—=1)}. Everything else follows from this and from
part (d). O

The antihomomorphism Z : (Br, x {£1}")s — Gz is not always
surjective, but in many cases. See Theorem 3.28 and the Remarks
3.29. Theorem 3.26 (b) writes (—1)*"1M as an image of a braid by Z.
Theorem 3.26 (c) gives conditions when it has an n-th root which is
also an image of a braid by Z.

THEOREM 3.26. Let (Hyz, L,e) be a unimodular bilinear lattice of
rankn > 2 with a triangular basis e and matriz S = L(e', e)t € T (Z).
Fiz k € {0,1}. Recall from chapter 3.1

0" = 0, 10,_9...0901 € Br,,
O_mon . (O_root)n
* b
center(Br,) = (o™").

(a)
5711_k0T00t (ﬁ) — Z(dl—ka_root)(g)
= (Se]f)<€2)7 ng) (63)7 eey ng)(en)v Sglf) (61))

ey Q .
—4n-1 .- —qQ1 ‘ —40
with R = r
n—1
o —Qn—; iti=1,
50 fiyj { Sy ifi>2



where qo = (—1)%, gny1-; = S1; for j € {2,...,n}.
(b)
2 ) = (<1,
so especially (17%¢™°)" ¢ (Br, x {£1}")s.
(c) Write qo = (=1)%, gny1-; = S1j for j € {2,...,n} as in part (a)

and additionally g, := 1. Suppose g,—; = qog; for j € {1,...,n — 1},
and suppose that S has the following shape,

I gna - q1
S = ' ,
dn—1
1
_ 0 if ¢ > 7,
so S = { Iy ifi <],
Then
Mroot — Z(érll—ko_root) c GZ
with (M™°)" = (=1)"" M.

M7 s regqular and cyclic and has the characteristic polynomial
q(t) == > 0 qit" € Z[t].

Proof: (a) The second line follows from the definition of the action
of 61 %57 on e. For the third line observe sgf)(ej) = e; — Syje; for

j>2and sgf)(el) = —qoe;.
(b) Use part (a) and

s(]f,z) (s(k)(ej)) — S(k)s(k)(s(k))—ls(k)(ej) _ sé’f)s(’“)(ej)

ey (e2) €1 el “ez \Tey e1 e
to find
(571L—k0root)2(§) — (S(k)s(k)(e?))’ S(k)S(k)(en) s(k)s(k)(el) S(k)s(k)(@))'

€1 “e2 Tty Ter Teg 7 Ter Tez 77er Te2

One continues inductively and finds

(827 0o () = (s8)..sB)(ey), ... sB) s (e,)) = (1)1 M (e),

e1 sy ey en

<0 Z((éi—ky«oot)n) — (—1)k+1M.
(c) If S is as in part (c) then

—~
—

TR (§1kgreot(e)t §l=kgroot(e)) = T®((ey es ... en e1)!, (€2 €5 ... €y €1))

S+ (-1)rs' =1V(e e).
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Here & uses s e 0®) | and @ uses that I®) (el e) = S+ (—1)FS* and
that S is as in part (c).
Therefore M := Z(§1-*gmot) € G(Zk), so by Lemma 3.25 (a)

M™ € Gy and 81Fg™% € (Br, x {£1}")s.
Also
(Mroot)n — (Z((Si_kO'TOOt))n — Z((éé—kgroot)n) — (_l)k—}—lM

Let e* be the Z-basis of Hz which is left L-dual to the Z-basis e, so
with L((e*)!,e) = E,. Remark 4.8 in [BH20] says

‘ —4o

Mroote* — e*R—t — 6* .
- B E, 1 :
—Adn-1

The matrix R~" is the companion matrix of the polynomial ¢(¢). There-
fore M is regular, cyclic with generating vector ¢ = e} and has the

characteristic polynomial ¢(t). O

REMARKS 3.27. The main part of part (c) of Theorem 3.26 has also
the following matrix version: For ¢(t) = Y ¢;t' € Z[t] with ¢, = 1,
qo = (—1)* for some k € {0;1} and ¢,_; = qog; the matrix R in part
(a) and the matrix S in part (c) of Theorem 3.26 satisfy

R" = (—1)k+1S_1St.

A proof using matrices of this version of part (c¢) of Theorem 3.26 was
given in [BH20, Theorem 4.5 (a)+(b)]. The proof here with the braid
group action is more elegant.

The antihomomorphism Z : (Br,, x {£1}")s — Gz is not surjective
in general. A simple example with n = 4 is given in the Remarks 3.29.
But it is surjective in the case n = 1, in all cases with n = 2 and in
almost all cases with n = 3. Theorem 3.28 gives precise statements. Its
proof requires first a good control of the braid group action on T3 (Z),
which is the subject of chapter 4 and second complete knowledge of the
group Gz for all cases with n < 3, which is the subject of chapter 5.
Theorem 3.28 is proved within the theorems in chapter 5 which treat
the different cases with n € {1, 2,3}, namely Lemma 5.4 (the cases A7),
Theorem 5.5 (the rank 2 cases), Theorem 5.13 (the reducible rank 3
cases), Theorem 5.14 (the irreducible rank 3 cases with all eigenvalues
in S'), Theorem 5.16 (some special other rank 3 cases), Theorem 5.18
(the rest of the rank 3 cases).
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THEOREM 3.28. Let (Hyz, L,e) be a unimodular bilinear lattice of
rank n < 3 with triangular basis e and matriz S = L(e', e)t € T (Z).
The group antihomomorphism Z : (Br, x {£1}")s — Gy is not surjec-
tive in the four cases with n = 3 where S is in the Bry x {£1}3 orbit

of S(z) with
x€{(3,3,4),(4,4,4),(5,5,5), (4,4,8)},

so then Gy, 2 GB. It is surjective in all other cases withn < 3, so then
Gz =GE.

REMARKS 3.29. (i) Contrary to Theorem 3.28 for the cases n =
1,2,3, it is in the cases n > 4 easy to find matrices S € T""(Z) such
that the group antihomomorphism Z : (Br, x {£1}")s — G is not
surjective. Though the construction which we propose in part (ii) and
carry out in one example in part (iii) leads to matrices which are rather
particular. For a given matrix S it is in general not easy to see whether
Z is surjective or not.

(ii) Consider a reducible unimodular bilinear lattice (Hz, L,e) of
rank n with triangular basis e and matrix S = L(¢',e)t € T (Z).
There are an L-orthogonal decomposition Hy = @3.:1 Hy ; with [ > 2
and rank Hz; > 1 and a surjective map « : {1,...,n} — {1,...,{} with
e; € Hy o(). Then for k € {0,1}

IT'®e;} C Hzap),

!
so AW ¢ U Hy, ;.

j=1

Especially any g € G5 C G maps each e; to an element of Ué.zl Hy ;.
This does not necessarily hold for any g € Gz. Part (iii) gives an
example.

(iii) Consider the unimodular bilinear lattice (Hz, L,e) of rank 4
with triangular basis e and matrix

1 200

_ t t 0 1 O O unt,4

S =L, e) = 00 1 2 e T 7).
00 01

Then HZ = HZ,l D HZ’Q with HZJ = Zel D Zeg and HZ’Q = Z€3 D 264.
The Z-linear map ¢ : H;, — Hy with
(g9(e1), g(e2), g(e3), gles)) = (e1 + (e3 — €a), €2 + (€3 — €a),
es + (€1 — ea),es + (61 — €2))
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is not in G5 because g(e1), g(ea), gles), gles) € Hz1UHz. But g € Gy
because

L(e; —eg,e1 —e3) = 0= Lies — eq,e3 — €y),
so  L(g(ei),g(e;)) = L(e;,ej) for {i,j} € {1,2} or {4,5} C {3,4},
and also
L(g(ei), g(ej)) = L(ei, e5) for (i, 5) € ({1,2} x {3,4}) U ({3,4} x {1,2}).
So here g € Gz — G, so GF S Gy.
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CHAPTER 4

Braid group action on upper triangular 3 x 3
matrices

The subject of this chapter is the case n = 3 of the action in Lemma
3.13 of Br,, x {£1}" on the matrices in T*"(Z).

In section 4.1 the action on T¢"(R) is made concrete. The (quo-
tient) group of actions is given in new generators. It is

(GP 5 G¥I7) 3 (7) 2 (GP 1 () w G,

where GP" is a free Coxeter group with three generators, G*9" is the
group of actions in T¢"(R) which the sign group {41} induces, and
7 acts cyclically of order 3. In fact, GP" x (v) & PSLy(Z), so we have
a nonlinear action of PSLy(Z), but this way to look at it is less useful
than the presentation as GP" x (7).

The action on T¢"(Z) had been studied already by Kriiger [Kr90,
§12] and by Cecotti-Vafa [CV93, Ch. 6.2]. Section 4.2 recovers and
refines their results. Like them, it puts emphasis on the cases where the
monodromy of a corresponding unimodular bilinear lattice has eigen-
values in S1. Section 4.2 follows largely Kriiger [Kr90, §12].

Section 4.3 uses pseudo-graphs to systematically study all cases, not
only those where the monodromy has eigenvalues in S*. This goes far
beyond Kriiger and Cecotti-Vafa.

The results of section 4.3 and the pseudo-graphs are used in section
4.4 to determine in all cases the stabilizer (Brs x {41}%)g respectively
the stabilizer (Brs)g/¢+1}3. Section 7.4 will build on this and determine
the stabilizer (Brs). ;1133 of a distingushed basis e € Baist for any
unimodular bilinear lattice of rank 3 with a fixed triangular basis.

Section 4.5 starts with the observation that a matrix S € T“"(Z)
and the matrix S € T'"(Z) with S;; = —S;; for i < j lead to uni-
modular bilinear lattices with the same odd monodromy groups and
the same odd vanishing cycles. This motivates to study the action on
T (Z) which extends the action of Br, x {#1}" by this global sign
change. Section 4.5 carries this out in the case n = 3 and gives stan-
dard representatives for each orbit. Though examples show that the
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action is rather wild. Similar looking triples in Z* are in the orbits of
very different standard representatives.

4.1. Braid group action on real upper triangular 3 x 3
matrices

The action of Brg x {£1}® on T¥"(Z) will be studied in the next
sections. It extends to an action on T5™(R) = R? which will be studied
here. By Theorem 3.4 (d), o; acts on T5™(Z) by

1 1 =z —r;1 1 0 1 z1 z9 —r; 1 0
o: 10 1 z3| 1 00 0 1 x5 1 00
0 0 1 0 01 0 0 1 0 01
1 —zy 23— 2129
= 0 1 i)
0 O 1

It extends to an action on T¢(R). With the isomorphism

i i)

T3 | — (xla {23'2,$3) for R € {Z7 QaRv C}

—_

1
Tv(R) — R, [0 1

0 0
this gives the action

oF R} 5 R (21,29, 73) — (=21, 23 — 179, T2).

Analogously
()R - R3, (31,29, 23) > (=21, 73, 19 — T173),
o5 i RY = R (11,19, 13) = (29 — 2123, Ty, —T3),
(05) ViR = R3, (21,29, 23) > (19, 71 — 2073, —73),
R = R3 (21,2, 23) = (—21, —Ta, T3),
6y RY = R (21,2, 23) > (—21, 2o, —T3),
o8 R = R (xy,29,73) = (21, —T2, —3)

One sees
55 = 511[{5]15 and G®9" .= (5?,55) ~ {il}Q.

The group (o}, o5) x G¥9" C Aut,e(R?) of polynomial automorphisms
of R? will be more transparent in other generators.
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DEFINITION 4.1. Define the polynomial automorphisms of R3

01 RP = R (21,29, 73) > (2223 — 21, T3, Ta),

0o 1 RP = R (21,29, 73) > (T3, 5103 — To, T1),

03 : R* = R (21,29, 23) = (T2, 71, 1175 — T3),
7R 5 R (21,29, 23) = (23, 71, 72),

and the group GP" := (1, 2, p3) C Aut,u(R?).

THEOREM 4.2. (a) The group GP" is a free Coxeter group with the
three generators @i, pa, p3, so GPM = G/Cow3,

(b) (v) = Z/3L= A3 C Ss.

(c) (o1, 05) X G = (GPM x G*'9") %1 (7).

Proof: (a) ¢? = ¢2 = 2 = id is obvious, and also that
(2,2,2) € R? is a fixed point of GP*. We will show that the group

(d(2,2,2)01, d(2,2,2)P2, d(2,2,2)p3) of induced actions on the tangent space

T(2,22)R? is a free Coxeter group with three generators. This will imply
Gphi (Y] GfCow,S.

Affine linear coordinates (71, T2, Z3) on R? which vanish at (2,2, 2)
with

('Ila T, xS) - (2 + flv 2 + %27 2 + %3> = <2’ 27 2) + (Ela E27 f3)
are also linear coordinates on 7| (27272)1[%3. We have

@1((27 27 2) + (517 f2753)) = (27 25 2) + (§2§3 + 2§2 + 253 - fla f37%2)7

-1 0 0
d(2,2,2)901(517§52, T3) = (T1,72,73) [ 2 0 1 )
2 10

and analogously

0 2 1
d(2,2,2)¢2(51,52,§3) = (55175527553) 0 -1 01,

1 2 0

01 2
d(2,2,2)<ﬂ3(:’51,5527353) = (517552,553) o 2

0 0 —1

The group GP" respects the fibers of the map
rr:R* = R, (21,20, 23) — 22 + 23 + x% — X1X93.

The group (d(2,2.2)%1, d2,2,.2)P2, d(2,2,2)p3) respects the tangent cone at
(2,2,2) of the fiber r5'(4). This tangent cone is the zero set of the
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quadratic form

. ™3

qr3,222) : R® — R,
~ o~ ~ ~ 2 2| o~ o~ ~ ~ ~ ~
(T1,T9,T3) +— —T] — Ty — T3+ 2T1T9 + 20103 + 2T273.

This quadratic form is indefinite with signature (4, —, —). As in The-
orem A.4, its cone of positive vectors is called K. Consider the six
vectors

v = (1,1,0), vy = (1,0,1), v = (0,1,1),
U}1:U1+Ug, U}2:U1+03, w3:1}2+?}3.
Then

U1, V2, U3 G@]C, w1, W, W3 GIC,
d(2,22)p1 1 V1 > Vg, W1 > Wy,
d(2,2,2)802 101 £ U3, W > Wa,
d(2,2,2)P3 1 V2 <> U3, W3 > Ws.

Compare Theorem A.4. In the model K/R* of the hyperbolic plane,
d2,2,2); for i € {1,2,3} gives a rotation with angle 7 and elliptic fixed
point R*w;, which maps the hyperbolic line with euclidean boundary
points R*v;&R*vy respectively R*v1&R*v3 respectively R*v,&R*v3 to
itself

Theorem A.2 (b) applies and shows (dpoopi|i € {1,2,3}) =
G703 Figure 4.1 illustrates this.

FIGURE 4.1. G7¢°3 generated by 3 elliptic Mobius
transformations, an application of Theorem A.2 (b)

(b) Trivial.
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(c¢) The equality of groups
<O-IIR7 U§> X GSign = <<101ﬂ ¥Y2,¥3,7, 6I1R7 55)

follows from

v = Syonor, (4.1)
pro= 6y (o) (4.2)
P2 = Oiyoy = o5y (o0) (4.3)
w3 = dyqo7. (4.4)
and
o =1 15R803; a5 =710 s (4.5)
GPM fixes (2,2,2), and therefore GPM N G*9" = {id}. As G*9" is a

normal subgroup of (of, %) x G*9" it is also a normal subgroup of

<S017 Y2, ¥3, 5%{7 55)7 S0 <¢17 P2, ¥3, 5]%%7 6§> - Gphi X Gsign' More preCisely
pids ot =6, for (i,5,k) € {(1,3,3),(2,2,2),(3,1,1),
(1,1,2),(1,2,1),(2,1,3),(2,3,1),(3,2,3),(3,3,2)}.
We claim v ¢ GPM x G*9". If v were in GPM x G*9" then v € GPI
as v fixes (2,2,2). But all elements of finite order in GPM = G/Coz3
have order two, though ~ has order three. Hence v ¢ GP" and ~ ¢
Gphi % Gsign'
The claim and
Y17 = 2, 0y = s, 10T = :
YOy =05, Yoy = 6F, 0sy Tt = 0y, (4.7)

show

(p1, 02,03, 01, 05, v) = (GP" x G*9™) % (7). O

4.2. Braid group action on integer upper triangular 3 x 3
matrices

In this section we will give a partial classification of the orbits of the
action of Brz x {£1}* on T4 (Z). This refines results which were ob-
tained independently by Kriiger [Kr90, §12] and Cecotti-Vafa [CV93,
Ch. 6.2] (building on Mordell [Mo069, p 106 ff]).

The refinement consists in the following. By Theorem 4.2 the action
of Brz x {1}3 on T¥"(Z) coincides with the action of (GP" x G59™) x
(7). For reasons unknown to us, Kriiger and Cecotti-Vafa considered
the action of the slightly larger group (GP" x G*9") x (7, y,) with

Yo R 5 R?, (21,29, 23) = (29, 21,23), s0 (7,72) = Ss.
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Thus they obtained a slightly coarser classification. Nevertheless The-
orem 4.6 is essentially due to them (and Mordell [Mo069, p 106 ff]).
The following definition and lemma prepare it. They are due to Kriiger
[Kr90, §12].

DEFINITION 4.3. [Kr90, Def. 12.2] For x = (z, %9, 73) € R we
set as usual ||z|| := /2?2 + 22 + 22 A tuple x € R3 is called a local
mainimum if

lzll < min([loy @), [(ex) @)1, lloz @)1, [1(o2) ™ @)]])-

This is obviously equivalent to

]| < min(lley (@) [[e2(2)]], les()]])-
LEMMA 4.4. [Kr90, Lemma 12.3] x € R? is a local minimum if
and only if it satisfies (i) or (ii),
(1) 12903 <0,
(i1) x1w923 > 0, 2|x1| < |maws|, 2|za] < |z123], 2|23| < |T120].
In the case (ii) also |x1] > 2, |x3] > 2 and |x3| > 2 hold.

Proof: z € R? is a local minimum if for all 7, j, k with {7, 5,k} =
{1,2,3}

2, .2, .2 _ 2 2 2
v; i+ xy, < o+ + (v — 2iy)

holds, which is equivalent to

2

20,151 < x ;.

1st case, r1xox3 < 0: Then x is a local minimum.
2nd case, z175x3 > 0: Then the condition 2x;x;2p < a7} is
equivalent to

2]ap| < [ziwy|.
These three conditions together imply

Alag] < 2lwillay| < il |zil|oel,  s0 4 <’ 502 < ayl. 0

The square ||.||?> : Z* — Zs¢ of the norm has on Z? values in Zs,.
Therefore each Brg x {£1}3 orbit in Z* has local minima. Kriiger
showed that the only Brs x {41} orbits in R® without local minimal
are of the following shape. We will not use this result, but we find it
interesting enough to cite it.
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THEOREM 4.5. [Kr90, Theorem 12.6] Let x € R® whose Brz
{£1}3 orbit does not contain a local minimum. Then

r1xexs >0, 2 < min(|zq], ||, |z3]),
4 =rg(z)(= o] + 23 + 13 — 1120973).

Furthermore, there is a sequence (Vn)nen with ¥, € {1, P2, p3} with
Un # WUni1 such that the sequence (z(”))neNU{o} with 9 = z and
£ =, (200) satisfies

[z < |lz™)||  for all n € NU {0},
T (127, o) 257 = (2,2,2).

Now we come to the classification of Br x {£1}* orbits in Z*. The
following result is except for its part (f) a refinement of [Kr90, Theorem
12.7] and of [CV93, Ch 6.2]. The proof below follows (except for the
part (f)) the proof in [Kr90]. Recall that each Brzx {+1}? orbit in R? is
contained in one fiber of the map rg : R* — R, z — 23 +a3+23—117973.

THEOREM 4.6. (a) Each fiber of
r: 73 =7, r(z) =2 + 23 + 23 — 112973

except the fiber r=1(4) contains only finitely many local minima.

(b) Each fiber of v : Z3 — 7 except the fiber r—1(4) consists of only
finitely many Brz x {£1}3 orbits.

(c) For p € Zy, each local minimum x € r~—(p) satisfies T1x913 >
0 and |x1| > 3, |xo| > 3, |x3] > 3.

(d) For p € N — {4}, each local minimum x € r~(p) satisfies
T1X2T3 S 0.

(e) The following table gives all local minima in r~({0,1,2,3,4}).
The local minima in one Brs x {£1}* orbit are in one line. The last
entry in each line is one matriz in the corresponding orbit in Ta"(Z).

r=3 — —

r=0 (0,0,0) S(A7)
r=0 (3,3,3),(-3,-3,3),(-3,3,-3),(3,-3,-3)  S(P?)
r=1 (%£1,0,0),(0,£1,0),(0,0,+£1) S(AyAy)
r=2 (£1,£1,0),(£1,0,+£1), (O,jzl,jzl) S(As)
r=4 (£2,0,0),(0,£2,0),(0,0,+2) S(PTA;)
r=4 (-1,-1,-1),(1,1,-1),(1,-1,1),(—1,1,1) S(A\g)
r=4 (2,2,2),(-2,-2,2),(-2,2,-2),(2,-2,-2) S(Hi2)

{ r=4 } (512>€2l,€3l)>(51175227531)7(51175217532) } S(=1,2,—

| € Z>3 for €1,e9,65 € {£1} with g169e3 =1
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So there are seven single Bry x {1} orbits and one series with pa-
rameter | € Zss of Bry x {1} orbits with r € {0,1,2,3,4}. These
are the most interesting orbits as the monodromy matriz S(z)~ 1S (x)!
for x € R3 has eigenvalues in St if and only if r(z) € [0, 4].

(f) For a given local minimum x € Z> the set of all local minima
in the Brz x {£1}3 orbit of z is either the set G59™ x (v)(z) or the set
G*9" % (v, v9)(x) (see Theorem 4.13 (b) for details).

Proof: (a) Fix p € Z — {4}. Let z € Z* be a local minimum with
r(z) = p.

1st case, x179x3 < 0: Then p = r(z) = 2% + 23 + 22 — 17203 >
|z|[?, so p > 0. The closed ball of radius /p around 0 in R? intersects
Z? only in finitely many points.

2nd case, z1z2x3 > 0: We can suppose z; > 0 for i € {1,2,3}
because of the action of G*%" on R?® and Z3. Lemma 4.4 says 2x; <
Toly, 2ry < T1X3, 23 < wX9, x; > 2 for i € {1,2,3}.

We can suppose 1 = min(zy,zg,x3) (the other cases are analo-
gous). If xy = 2 then 4 # p = r(z) = 4+ 23+ 23—2x913 = 4+ (19 —13),
SO T # x3, which is a contradiction to 2ze < zyx3 = 213, 203 < 1129 =
2x5. Therefore z; > 3.

We can suppose 1 < x5 < x3 (the other cases are analogous).

1 1

p = r(x) =23 +a5+ (13— §x1x2)2 — fox%
1 1
< ri a4 (2 — §x1x2)2 — Zx%xg (because g < x3 < §x1w2)

= 2+ 208 — x5 = (21— 2)(2, +2—23) + 4

< (1 —2(x+2—23) +4=—(z; - 2)(2; —2)(z, + 1)+ 4
-3-2)3-2)(3+1)+4=0,

—<l’1 —2>3+4

This implies p < 0 and 1 < 2+ /4 — p, so x; is one of the finitely

many values in Z N [3,2 4+ /4 — p).
The inequality p < (z1 — 2)(z; + 2 — 23) + 4 implies

IN

.Z'%S p2+x1+27

xr1 —

S0 T3 is one of the finitely many values in Z N [z, f;g +x1 + 2]

Because of x3 < %1711'2 also x3 can take only finitely many values.

(b) Each Brs x {&1}2 orbit in Z? is mapped by ||.]|* to a subset of
Z>o. A preimage in this orbit of the minimum of this subset is a local
minimum. Therefore (a) implies (b).
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(c) Suppose p < 0 and z € r*(p) is a local minimum. 0 > p =
|lz||* — x1z9w3 implies x93 > 0. Lemma 4.4 gives || > 2.

If 71 = 2¢ with e € {£1} then p = r(z) =4+ (22 —ex3)? > 4, a
contradiction. So |z1| > 3. Analogously |zs| > 3 and |z3| > 3.

(d) Suppose p € N—{4} and z € r~!(p) is a local minimum. In the
second case xixaxrs > 0 in the proof of part (a) we concluded p < 0.
Therefore we are in the first case in the proof of part (a), so 12923 < 0.

(e) Suppose p € {0,1,2,3,4}, and z € r~!(p) is a local minimum.

In the cases p € {1,2,3} by part (d) x12223 < 0 and p = r(z) =
T2 + 23 + 22 + |z17273], S0 in these cases all z; # 0 is impossible, so
some x; = 0, so p = r(z) = 27 4+ 23 where {i,j,k} = {1,2,3}.

The case p = 3: 3 = x? + 7 is impossible, the case p = 3 is
impossible, r~1(3) = .

The case p = 1: 1 = 27 + 2 is solved only by (z;,2;) €
{(£1,0), (0, £1)}. The six local minima (+1,0,0), (0,+1,0), (0,0, £1)
are in one orbit of Brz x {4-1}3 because v(1,0,0) = (0, 1,0), v(0,1,0) =
(0,0,1).

The case p = 2: z5+x{ = 2is solved only by (z;, 7x) € {(£1,£1)}.
The twelve local minimal (41, 41, 0), (£1,0,41), (0, £1, £1) are in one
orbit of Bry x {41} because v(1,1,0) = (0,1,1), v(0,1,1) = (1,0, 1).

The case p = 0: We use the proof of part (a).

1st case, zizo13 < 0: 0 = p = [|z]|* — m120m3 > ||2]|?, S0 T =
(0,0,0). Tts Brz x {£1}3 orbit consists only of (0,0,0).

2nd case, r1zox3 > 0: We can suppose x; > 0 for each i € {1,2,3}.
Suppose z; < z; < xy for {i,j,k} = {1,2,3}. The proof of part (a)
gives

3<3; <24 /4—p=2+ 4, sox; =3

and

4 —
SZZEZSZEJS\/ p+$i+2:3,SOZ‘j:3.
0=r(z) =949+ — 9z, = (z — 3)(zx — 6) and z), < Loz, = 5
show zy = 3. The four local minima (3,3,3), (—=3,-3,3), (—3,3,—3)
and (3, —3,—3) are in one Brs x {41} orbit because of the action of
Gsign.

The case p = 4:

1st case, some z; = 0: Then with {i,7,k} = {1,2,3} 4 = r(z) =
23 4 ;. This is solved only by (z;,zx) € {(£2,0),(0,42)}. The six
local minima (£2,0,0), (0, £2,0), (0,0,+2)} are in one Brz x {£1}3
orbit because v((2,0,0)) = (0,2,0), v((0,2,0)) = (0,0,2).
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2nd case, all z; # 0 and zymex3 < 0: 4 =
r(z) =z} + x5 + x5 + |rizews|, so (@1, @0,x3) €
{(-1,-1,-1),(1,1,-1),(1,—1,1),(—=1,1,1)}. These four local
minima are in one Brs x {41} orbit because of the action of G*¥".

3rd case, all x; # 0 and zi2x923 > 0: We can suppose z; > 0 for
each i € {1,2,3} and z; < z; < xy for some ¢, 7,k with {i,7,k} =
{1,2,3}. As in the proof of part (a) we obtain the estimate

4=p=r(z) < —(x;—2)%+4, sowx =2,
and
d=p=r(zr) =4+ (z; —x)? sol:=x;=mx4>2.
For | = 2 the four local minima
(2,2,2),(=2,-2,2), (~2,2,-2), (2, —2, —2)
and for [ > 3 the 24 local minima
(€12, e9l,e3l), (g1, 22, e3l), (e1l, €2l, £32)
with e, 69,65 € {1}, 616065 = 1,

are in one Brz x {£1}3 orbit because of the action of G*¥" and 7.

It remains to see that local minima in different lines in the list in
part (e) are in different Bry x {£1}3 orbits. One reason is part (f).
Another way to argue is given in the Remarks 4.7.

(f) See Lemma 4.10 (e). O

REMARKS 4.7. Part (f) of Theorem 4.6 is strong and allows easily
to see when Brz x {£1}3 orbits are separate. Nevertheless it is also
interesting to find invariants of the orbits which separate them.

Now we discuss several invariants which help to prove the claim
that local minima in different lines in the list in part (e) are in different
Brs x {£1}3 orbits.

The number r(z) € Z is such an invariant. Furthermore the set
{(0,0,0)} is a single orbit and thus different from the orbit of S(P?).
Therefore the claim is true for the lines with r € {0, 1,2, 3}.

It remains to consider the 3 + oo lines with » = 4. Certainly the
reducible case S(P'A;) is separate from the other cases, which are all
irreducible. The signature of I(¥) is an invariant. It is given in Lemma
5.7. It allows to see that the orbits of S(As), S(H12) are different from
one another and from the orbits of S(—[,2, —!) for [ > 3. In order to see
that the orbits of S(—[,2,—[) for [ > 3 are pairwise different, we can
offer Lemma 7.10, which in fact allows to separate all the lines with

r = 4. It considers the induced monodromy on the quotient lattice
Hy/Rad I,
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REMARKS 4.8. Kriiger [Kr90, §12] and Cecotti-Vafa [CV93, Ch.
6.2] considered the action of the group (GP" x G*9") x1 (v,7) with
o @ R® — R3 (11, 29,73) = (72, 21,73), 50 {7,7%) = S3 which is
slightly larger than (GP" x G*9") x (). Because of

BP1Ys = P2 e = 01, Y = s et =

we have
Brs x {£1}%(72(z)) = 72(Brs x {£1}°(2)).

Especially, the Brsx {41} orbit of 2 coincides with the (GP" x G*9™) x
(7,72) orbit of z in the following cases:

(i) if x; = z; for some i # j,
(ii) if z; = 0 for some i (observe d5v@1 (1, x2,0) = (79, 21,0)),
(iii) if z = (21, 22, $2122) with |2;] > 3 and |z1] # |22 (observe
p3(z) = (22, 71, %%362))‘
In Lemma 4.12 24 sets (1, ..., Cy4 of local minima are considered. The
only local minima z € U?il C; which satisfy none of the conditions
(i), (ii) and (iii) are those in Cig U Cag U Cay. Theorem 4.13 (b) shows
that in these cases the Bry x {£1}? orbits of z and of y»(z) are indeed
disjoint.

Especially all orbits in the fibers r~(p) with p € {0,1,2, 3,4} con-
tain local minima which satify (i), (ii) or (iii), so there the classifica-
tions in Theorem 4.6 and the classification by Kriiger and Cecotti-Vafa
coincide.

We do not know whether for z € Cig U Cy U Cyy and o(z) the
corresponding unimodular bilinear lattices with sets of distinguished
bases are isomorphic or not.

For z and ~,(x) in one Bry x {£1}? orbit they are isomorphic, see
Remark 3.20 (iii).

4.3. A classification of the Brs x {4+1}® orbits in Z3

This section refines the results of section 4.2 on the braid group
action on integer upper triangular 3 x 3 matrices. Using pseudo-graphs,
it gives a classification of all orbits of Brz on Z3/{+1}3. Definition 4.9
makes precise what is meant here by a pseudo-graph, and it defines a
pseudo-graph G(z) for any local minimum z € Z3.

As Brg x {#1}® and (GP" x {£1}3) x (v) are semidirect products
with normal subgroups {#1}3, the groups Brz and GP" x () act on
73 ]{+1}3.
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DEFINITION 4.9. (a) For any set V, P(V) denotes its power set, so
the set of all its subsets, and Py (V) for some k € N denotes the set of
all subsets with & elements. We will use only P;(V) and Py(V).

(b) A pseudo-graph is  here a  tuple G =
(V, Vo, Vi, Vo, v0, &1, €2, E3, E,) with the following ingredients:

V is a non-empty finite or countably infinite set of vertices.

Vo, V1, Ve C V are pairwise disjoint subsets, Vy is not empty (the
sets Vi and V, may be empty, the union Vy U V; UV, can be equal to
V or a proper subset of V).

vg € Vp is a distinguished vertex in V.

E1,E2,E C P1(V) U Py(V) are sets of undirected edges. A subset
of V with two elements means an edge between the two vertices. A
subset of V with one element means a loop from the vertex to itself.

E, = {(vo,v1), (vg,vg)} for some vy,v5 € V, is a set of two or one
directed edges, one only if v; = va = g, and then it is a directed loop.

(¢) An isomorphism between two pseudo-graphs G and G is a bijec-
tion ¢ : V — V with ¢(vg) = vy which induces bijections ¢ : V; — V;,
¢:& =& and ¢: & — &,

(d) Gly,uy, denotes the restriction of a pseudo-graph G to the vertex
set Vo U Vy, so one deletes all vertices in V — (V, U V;) and all edges
with at least one end in V — (V, U V;). Analogously, G|y, denotes the
restriction of a pseudo-graph G to the vertex set V.

(e) Define
Lo = {z/{£1}’|z € Z? is a local minimum},
Ly = {y/{£1}*|y € Z® with |y;| = 1 for some i} — Lq,

Lo = Z3/{£1} — (LoULy).

(f) A pseudo-graph G(z) is associated to a local minimum z € Z?
in the following way:

V = Bry(z/{x1}?) c Z3/{£1}3,

Vo = VN Lyis the set of sign classes in V' of local minima,

Vi = VNL,

Vo == {weVNnLylanie {1,2,3} with p;(w) € Vo UV exists},
vy = xz/{E1}3,

E = {{w,pi(w)}|weV} forie{l,2,3},
& = {(vo,7(v0)), (v (v0), v0)}-
(g) An infinite tree (W, F) consists of a countably infinite set W of

vertices and a set F C Po(W) of undirected edges such that the graph
is connected and has no cycles. A (2,00 x 3)-tree is an infinite tree
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with a distinguished vertex with two neighbours such that any other
vertex has three neighbours.

The next lemma gives already structural results about the pseudo-
graphs G(z) for the local minima z € Z®. Theorem 4.13 and the
Remarks 4.14 will give a complete classification of all isomorphism
classes of pseudo-graphs G(z) for the local minima z € Z3.

LEMMA 4.10. Let x € Z3 be a local minimum with pseudo-graph
g(@) = (V, Vo, Vl, VQ, Vo, 51, 52, 53, 57)

(a) (z and G(z) are not used in part (a)) For w € Ly, there are
i,k with {1, 5, k} = {1,2,3} and [jg;(w)|| < [[wll, f|¢;(w)]| > [lwl],
[o(w)ll > [l ¢5(w) € Lz, pelw) € Lz and pj(w) # ge(w)

(b) Let w € Vs, so especially w € Ly. Choose i, j, k as in part (a).
The edge which connects w € Vo with Vo U Vy is in &. After deleting
this edge, the component of the remaining pseudo-graph which contains
w is a (2,00 X 3)-tree with distinguished vertex w and all vertices in

Ls.
(c) The pseudo-graph G(x) is connected.
(d) The pseudo-graph G(z)|v,uy, s connected.
(e) The pseudo graph G(z)|y,uy, is finite, and
= (1(wo) or Vo= (7,72)(v0).

Proof: (a) Consider w = y/{£1}* € L;. Then |y;| > 2 for i €
{1,2,3} because w ¢ Lo U Ly. w ¢ Ly implies yiy2ys > 0. We can
suppose yi, Ya, Y3 € Zso. Observe for i, j, k with {7, j, k} = {1,2, 3}

los(WI* = llea(w)l®
= (W7 + (wave — v)* +ui) — (e — w:)* + 45 + i)
= (¥ —v)vi.

Consider the case 2 < y; < yo < y3. The other cases are analogous.
Then

sl < llo2@)]] < [l ()]l-
Because w ¢ Lo |l@s(y)|| < |lyll. Also @a(y) = (y3, y1y3 — 2, y1) with

> 2ys >y ity >2
= — Yo > —1 . ’
@2(@2 y1ys — Y2 > (1 )Z/3{ = ys > Uy if y, = 2.
Here y3 > y» if y1 = 2 because y = (2,2, y3) is not a local minimum.
Therefore [oa(y)]l > [yl and also [|e1(y)l] = [le2(m)ll > [lyll. Es-
pecially ¢o(y) and ¢1(y) are not local minima, so ©o(w) & Ly and

pr(w) & Lo.
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Obviously ¢o(y); > 2 and ¢1(y); > 2 fori € {1,2,3}, so pa(w) € Ly
and @1 (w) € L9. The inequality ¢o(w) # ¢;1(w) follows from

©a(y)2 > 2ys > y3 = p1(y) if y1 > 2,

Y)2
(Y =wys — v > —Dys=ys = w1(y)2  ify1 =2

(b) Because ¢;(w), pr(w) € Ly, the edge which connects w to VoUWV,
cannot be in &; or &, so it is in &;.

Using part (a) again and again, one sees that the component of
G(z) — (this edge) which contains w is a (2,00 x 3) tree.

(c) Any vertex w € V = (GP" x (v))(vg) is obtained from vy by
applying an element ¢ with ¢ € GP" and £ € {0,41}. As GP' is
a free Coxeter group with generators @i, @s, 3, applying ¥7¢ to v
yields a path in G(z) from vy to w.

(d) This follows from (b) and (c).

(e) Consider w = y/{+1}* € V;. Because w & Vo, y192y3 > 0. We
can suppose yi,ys2,ys € N, and one of them is equal to 1. Suppose
1=y <ys <ys. Then

03(y) = (Y2, 1,2 —y3), soya-1-(y2 —y3) <0,
so p3(w) € Vo, (4.8)
) = (Ys,ys — 2, 1),
50 po(w) € Vo UV (in Vy only if y3 = y2), (4.9)
o12(y) = (—y2, 1,43 — 42),
S0 p1pa(w) = @3(w) € V. (4.10)

P

<

Especially, each vertex in V; is connected by an edge to a vertex in V.

Therefore the main point is to show Vy = (7)(vo) or Vo = (7, 72) (vo)-
Then V, and V; are finite.

First case, the restricted pseudo-graph G(z)|y, is connected: Then
lw] = |Juo|| for each w € V,. This easily implies Vo = (7)(vo) or
Vo = (7:72)-

Second case, the restricted pseudo-graph G(z)ly, is not connected:
We will lead this to a contradiction. Within all paths in G(z)|yv,up,
which connect vertices in different components of G(z)|y,, consider a
shortest path. It does not contain an edge in &, because else one could
go over to a path of the same length with an edge in &, at one end
and between the same vertices, but dropping that edge would lead to
a shorter path. Because each vertex in V; is connected by an edge to
a vertex in V), a shortest path contains either one or two vertices in
V. The observations (4.8)—(4.10) lead in both cases to the vertices at
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the end of the path being in the same component of G(z)|y,, so to a
contradiction. d

ExXAMPLES 4.11. The following 14 figures show the pseudo-graphs
Gi, ..., Giy for 14 values vy = z/{£1}3 with z € Z* a local minimum.
The ingredients of the figures have the following meaning.

° a vertex in V),
® a vertex in Vi,
et a vertex in Vs together with the (2,00 x 3) tree (compare

Lemma 4.10 (b)),

- an edge in &;,

=3 an edge in &,.

The pseudo-graphs are enriched in the following way. Each vertex is
labeled with a value y of its sign class y/{%1}°. We have chosen y € N?
if 119255 > 0 (this holds for all y/{£1}> € VUV, and some y/{+1}* €
Vo) and y € Z2, if y1yoys < 0 (this holds for some y/{£1}* € V).
The vertex vy can be recognized by the edges in &, leading to and from
it. The sets C; are defined in Lemma 4.12. The relatlons G; : C; are
explained in Theorem 4.13.

(0,0,0)

FIGURE 4.2. G; : C; (43), Cy (Hi2). Herez =
(0,0,0) € Ch.
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3

FiGure 4.3. Gy : (5,Cy,C5, so the reducible cases
without A3.  Here z = (2,0,0) € C3UC,UCs, x < 0.

(-1,-1,0) (-1,0,-1)

(0,-1,-1)

FIGURE 4.4. G5: Cg (A3). Herez =(—1,0,—1).

(1,2,1)

FIGURE 4.5. G, : C; (A;). Here z = (—1,—1,—1).
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(2 =2,LD

FIGURE 4.6. G5 : (g, Cy. Here z = (1,2,1) ~
(=1,2, —1) with [ > 3.

FIGURE 4.7. G6 : 0107 011, 012. Here xr = (3, 3, 3) € 010.
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FIGURE 4.8. G7: Ci3. Here z = (4,4,8).

FIGURE 4.9. Gg: Cy4. Here x = (3,4,6).
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FicGure 4.10. Gg : 0157016702?”024- Here z =
(3,4,5) € Cis.

FIGURE 4.11. Gyo: Cy7.  Here z = (—2,—2,0).
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FIGURE 4.12. Gy;: Ci3. Here z = (—3,-2,0).

FIiGURE 4.13. G12 : Clg. Here T = (—2, —1, 0)
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FIGURE 4.14. Gi3: Cy. Herexz = (-2,—-1,-1).

Ficure 4.15. G14 : 021,022. Here X =
(—2,-2,-1) € Cyy.
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LEMMA 4.12. Consider the following 24 sets C;, i € {1,2, ...

of triples in Z3.

Ch
Cy
Cs
Cy
Cs

Cir
Cis

Co
C’21
C’22

Cas

024

{(0,0,0)}  (4),

{(272’2)} (Hl,Q)a

{(-1,0,0)} (A24,),

{(=2,0,0)} (P'A),

{(2,0,0) |z € Z<_3}

(the reducible cases without A2, A, A}, P'Ay),
{(=1,0,-1)} (4s),

{(-1,-1,-1)} (Ay),

{(— l,2, )|l € Z>3 odd},

{(=1,2,=1) |l € Z>4 even},

{@3, 3 3)} (P),

{(x,z,2) | x € Z>4},

{(z,z,2) |x € Z<_o},

{(2y,2y,2y°) |y € Lo},

{(z1, x9, 1x1x2 |3 < 1 < 9, k119 even},

1
{(Il,l‘l,l'g) | 3 <z < Ty < 51‘%}

U {(x1, 22, 29) |3 < 21 < 22},

1
{(x1,29,23) |3 <11 <29 <23 < 53:1:1:2}

1
U {(1'1,1'27[['3) ’3 <a9 <2 <23 < 51711‘2},

x1, e, —1) | < 29 < =2}

U {(x1, 29, —1) |29 < 27 < =2},
{(z1,21,23) | 21 < 23 < =2}

U {(z1, 22, ) |11 < 19 < —2},
{(x1, 29, 23) |21 < T9 < x5 < =2}

U {(z1, 22, 23) |22 < 21 <681:3 < =2},
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(a) Each triple in \J>2, C; is a local minimum. All z in one set
C; have the value in the following table or satisfy the inequality in the
following table,

p | i with r(z) = p for z € C;

0 |1, 10
1 |3
2 |6

4 |2, 4,7, 89
<011, 13, 14, 15, 16
> 45, 12, 17, 18, 19, 20, 21, 22, 23, 24

(b) The following table makes statements about the (7) orbits and
the (v, ) orbits of vo = x/{%1}* with z € | J72, C,

ie€{1,2,7,10,11,12} {(7)(vg) is ye-invariant

and has size 1

i€{3,4,5,6,8,9,13,15,17,20,21,23} | (7)(v) is ye-invariant

and has size 3

i € {14,16,18,19,22,24} {(7)(vg) is not ~yo-invariant
and has size 3,

(7, 72)(vp) has size 6

(c) The set of all local minima in Z> is the following disjoint union,

.....

U <Uie{14,18,19}UxeC¢(GSign ~ <%72>){£})'

Proof: Part (b) is trivial. The parts (a) and (c) follow with the
characterization of local minima in Lemma 4.4 and Theorem 4.6 (c)-
(e). O

THEOREM 4.13. (a) Z? is the disjoint union

-----

(b) Forvy = x/{#1}® with z € J7, C;, the set Vy = Brs(vg)NLy of
sign classes of local minima in the Bry x {£1}3 orbit of z is as follows,
Vo= (W(vy) ifie{L,.. 24} — {14,18,19},

Vo = (7,72)(vo) if i € {14, 18, 19}.
(¢) The set {G(z) |z € U2, Ci} of pseudo-graphs G(z) for x €

U?il C; consists of the 14 isomorphism classes G, ..., G4 in the FExam-
ples 4.11. All z in one set C; have the same pseudo-graph. The first

69



and second column in the following table give for each of the 14 pseudo-
graphs G; the set or the sets C; with G(z) = G; for x € C;. The third
and fourth column in the following table are subject of Theorem 4.16.

sets (Gp},n' X <7>)£/{i1}3 (Bl"3)z/{i1}3
G | C1 (AD), Cy (Hip) GP" x4 () Brj
Ga | C5,C4,C5 (red. cases) {p1,7 1 p3) (01,03)

g3 C16 (AS)

VL3, @2@1@3)

Gs | C7 (Ay)

g5 087 C19 ((_l727_l>)
Gs | Cro(P?), Ci1, Ciy
Q7 013 (eg (4, 4, 8))
gg 014(e.g. (3,4, 6))
gQ CV157 0167 0237 024

%902@1%03>
Y 1)

W ~
~—

NG

— o
RGN

/\/\/\/\/\/_‘\/\/\/\/\ —~
o0,

Gio | Ci7 (e-g. (—2,-2,0)) S o™, o9)
G | Cis (e.g. (—3,-2,0)) v psp1) oMo g3)
Gz | Cyg (e.g. (—2,-1,0)) Y o301, p3papr) | (0™, 03
Gis | Oy (e.g. (_27 -1, —1)) 902903%017903<P2901> o™men

Gia | Ca1, Co (e-g- (—2,—2,—1)) <902<P3901> Umon,f7§>

Proof: We start with part (c). It can be seen rather easily for all
x in one family C; simultaneously. We do not give more details.

(b) The pseudo-graphs Gg,Gy; and Gpy are the only of the 14
pseudo-graphs with |Vy| = 6. By inspection of them or by Lemma
4.10 (e), for them Vy = (v,72)(vo). The table in part (c) gives the
correspondence GS < 014, G11 e 0187 G12 e Clg. The other 11
pseudo-graphs satisfy [Vo| = 1 or [Vy| = 3, so in any case Vy = (77)(vo).

(a) Part (c) of Lemma 4.12 alone shows already that Z? is the union
given. Part (b) of Theorem 4.13 adds only the fact that this is a disjoint
union. U

REMARKS 4.14. (i) We have 14 pseudo-graphs G, ..., G4, but 24
sets (', ..., Uy because the separation into the sets shall be fine enough
for the table in Theorem 4.13 (c) and the tables in Lemma 4.12 (a) and
(b).

(ii) In the pseudo-graphs G; with [Vy| = 3 or |Vy| = 6 one can
choose another distinguished vertex vy € V), and change the set &, to
a set &£, accordingly. This gives a pseudo-graph G; which is not equal
to G, but closely related.

The graphs G5 and G, are related by such a change.

The following table shows for each G; except Gio the number of
isomorphism classes of pseudo-graphs obtained in this way (including
the original pseudo-graphs). In the cases Gg and Gy; there is [Vy| = 6,
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but because of some symmetry of the pseudo-graph without &,, there
are only 3 related pseudo-graphs.

Gi, i (1234567
1 3

related 13 31 3
pseudo-graphs

10 11 12 13 4|2
Gs 3 6 3 336

8 9
3 3

The total number 36 is the number of isomorphism classes of pseudo-
graphs G(z) for z € Z? a local minimum.

4.4. The stabilizers of upper triangular 3 x 3 matrices

The groups GP" x (v) and Brz act on Z3/{#1}*. The pseudo-
graphs in the Examples 4.11 and Theorem 4.13 offer a convenient way
to determine the stabilizers (GP" x (v)),, and (Brs),, for vy = z/{£1}?
with z € |J22, C; a local minimum.

The stabilizers of vy depend only on the pseudo-graph G; with
G = G(z). The results are presented in Theorem 4.16. The Remarks
4.15 prepare this.

REMARKS 4.15. (i) First we recall some well known facts about
the groups SLy(Z) and PSLy(7Z) and their relation to Brs. The group
SLy(Z) is generated by the matrices

1 -1 10
A1 = (0 1 ) and AQ = (1 1) .

Generating relations are
A1A2A1 = A2A1A2 and (A2A1)6 = EQ.

The group Brs is generated by the elementary braids ¢; and g5. The
only generating relation is 10907 = 020109. Therefore there is a sur-
jective group homomorphism

BI'3 — SLQ(Z), o1 — Al, 09 —> AQ,

with kernel ((0907)%) = ((6™")?). Tt induces a surjective group homo-
morphism

BI‘3 — PSLQ(Z), o1 [Al], 09 > [AQ],

with kernel (o™") because (AyA;)? = —Es.

(ii) The action of Brz x {£1}® on T3™(Z) and on Z? is fixed in the
beginning of section 4.1. One sees that 0™ = (g901)® acts trivially
on T3™(Z) and Z3. This can be checked directly. Or it can be seen as
a consequence of the following two facts.
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(1) The action of Brzx {£1}3 on (Brsx {£1}?)(z) for some z €
Z3 is induced by the action of Brs x {£1}® on the set B%! of
distinguished bases of a triple (Hz, L,e) with L(e*,e)t = S(z)
by S((a,e)(z)) = L((e,€)(e)', (@, €)(e))" for (a,e) € Bry x
{£1}3.

(2) For (a,g) = <0mon=<17171)) (Oé,E)(Q) = Z<<a75))<§) =
M(e) by Theorem 3.10, and L(M (e)t, M(e)) = L(e, e).

In any case the action of Brz x {£1}3 on Z? boils down to a nonlinear
action of PSLy(7Z) x G*9" where G*9" = (6%, 65%) catches the action of
{£1}3 on Z?, see section 4.1.

(iii) The shape of this nonlinear action led us in Definition 4.1 and
Theorem 4.2 to the group (GP" x G*9") x () = (GPM x1 (7)) x G=9".
In fact, GP" x (v) = PSLy(Z). This can be seen as follows.

The formulas (4.1)—(4.4) in the proof of Theorem 4.2 (c) give lifts to
Brs x {£1}3 of the generators ¢y, 9, 3 and 7 of GP* x (7). Dropping
the generators of the sign action in these lifts, we obtain the following
lifts to Brs,

I(7y) = 0201, 5(7171) 2101_102_1,
1) =1l(y)toy ' =01 057,

4.11
1(902) = l(’Y)Uz = 020102 = 0102071, ( )
l(€03) = l(’Y)Ul = 0207

The equality of groups in Theorem 4.2 (c¢) boils down after dropping
the sign action to an equality of groups

(R o5y =2 GPM xq (). (4.12)

As (o}0f)® = id, we obtain a surjective group homomorphism
PSLy(Z) — GPM x (y) with [A] ~ oFf.  The subgroup
([A1]71[A9] 72, [A2)[A1][As], [A2][A1)?) of PSLy(Z) is mapped to GPhE.
One easily calculates that this subgroup is the free Coxeter group
with three generators which was considered in Remark 6.12 (iv) and
which has index three in PSLy(Z). As GP' is also a free Coxeter
group with three generators and has index 3 in GP* x (), the map
PSLy(Z) — GPM x (7) is a group isomorphism.

(iv) For use in the proof of Theorem 4.16 we recall the formulas
(4.6)

P = P27, Yp2 = P37, YPs = P17, 413
-1 —1 -1 —1 -1 —1 ( . )
Y17 = 7 P2, @27 = 77 @3, @37 = 7 ¥,

from the proof of Theorem 4.2.
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(v) The relation o10901 = 090105 is equivalent to each of the two
relations

010201_1 = 02_10102 and 01_10201 = 020102_1
and induces for any m € Z the relations
ooy ot =0y 0Toy and o 'oY'oy = oy0toy (4.14)
Also this will be useful in the proof of Theorem 4.16.

THEOREM 4.16. Consider vy == z/{£1}> with z € | J2,C; C 7% a
local minimum, and consider the pseudo-graph G; with G; = G(z). The
entries in the third and fourth column in the table in Theorem 4.13,
which are in the line of G;, give the stabilizers (GP" x (7)), and (Brs),,
of vy.

Proof: First we treat the stabilizer (G x (7)),

The total set |G;| of the pseudo-graph G; means the union of ver-
tices and edges in an embedding of the pseudo-graph in the real plane
R? as in the figures in the Examples 4.11. The fundamental group
m(|G;],v0) is a free group with 0, 1, 3, 4, 5 or 6 generators. The num-
ber of generators is the number of compact components in R? — |G;]|.
A generator is the class of a closed path which starts and ends at vy
and turns once around one of these compact components. Any such
closed path induces a word in @1, ¢, ¢3,v and v~1. This word gives

an element of (GP" x (7y)),,. We obtain a group homomorphism
71-1(|gj’71}0) — (Gphi X <7>)v0‘

It is surjective because any element of (GP" x (v)),, can be written as
Yy¢ with ¢ € GPM and € € {0,£1}. The element ¥¢ leads to and
comes from a closed path in |G;| which starts and ends at .

In fact, this shows that we could restrict to closed paths which run
never or only once at the beginning through an edge in &,. But we will
not use this fact.

The following list gives for each of the 14 pseudo-graphs G, ..., G4
in the first line one word in 1, ¢, ¢3,v and v~ ! for each compact
component of R? — |G;|. In the following lines the relations (4.13) are
used to show that all these words are generated in GP* x (vy) by the
generators in the third column in the table in Theorem 4.13. The
generators are underlined.

gl : ﬂa ﬁ7 ﬂu 1
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Ga : 1, P37, VP2, VP2, 1Py Y1y

Yo1v = Yoz =17""es,
Yea = w3y = (7 les)
T ey = ¢,
Y3yl = 1.

G3 1 P17, P2037, VP2Ys VP1P2, VP3-

Y1y = T¥s,

P2037 = pavpa = Y102 = (V03)(p20103)

Yoy = Yo =7 o1 = a3yt = (ves) L

Ga: 7, 020193, P30201, P1P3P2.

Vo103 = Ypap1Y 1 = Yoy papr = P3pair,
Y o103y = Y 172 =7 pavpapr = 1036

Gs : v~ o1, vy, s

Yooy = Y1 =7,
vo3 = @1y =(v""p1)"

gﬁ . 1
Gr o @3, 7 'ory, vy
1 o
YooYy = $s,
Yoyt = s
Gs : id.
gg :id.

Gio : Y 12, Y37, Y1

Yoy = Yoy =7 L,
Yo = pay= (v Tp2) "
G = 7 s, Y12, papsy
Yo7 = YP1ve1 = Ve =7 s,
03yt = oy hor = v s
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Gia: P31, Y loser, YT leieseey,  veiey, ey
Vo137 "

T o1y = 70103701 = 7T 01701 = ©apair,
Y1027 = Ye1ver = Veser = v ez,
2037 = 0y o1 =7 w3,

V201037 = Y01y o1 = Y2y a1 = Papair.

Gis 1 Qap3p1, P3P201, ¥ lEsp1pry, Y lo1pspey, YP1e2esY L
Y1037

Y sy = YT sp1rer = 7 Ps1ese1 = 2301,
Y 103027 = Y1080 = 7T 0170201 = 03021,
YP102037 T = Y1027 01 = Y017 P31 = P23t
Yorp1057 " = Y217 o1 = Y02y 021 = P3paepr.

Gia : 20301, VL0310, V192037

Y o102y = papapr (see Gi),
Yo100037 T = oz (see Gis).

Therefore the stabilizer (GP" x (v)),, is as claimed in the third column
of the table in Theorem 4.13.

Now we treat the stabilizer (Brs),,. It is the preimage in Brz of
(GP" % (7)), under the surjective group homomorphism Brz — GP" x
(v) with kernel (¢™°™). So if (GP" % (7))v, = (g1, -+, Gm) and hy, ..., hp,
are any lifts to Brs of g1, ..., g then (Brs),, = (6™, hy, ..., hpn).

For any word in ¢y, @9, 03,7 and 7! we use the lifts in (4.11) to
construct a lift of this word.

The following list gives for each of the 14 pseudo-graphs Gy, ..., G4
for each generator of (GP" x (v)),, in the third column of the table
in Theorem 4.13 this lift and rewrites it using the relations (4.14).
The generators in the fourth column of the table in Theorem 4.13 are
underlined.

75



gl : Gphi ~ Br37

Go: 1 ooy loy? = og(0y oy oy oy = oy(07 oy oy oy
= (0301)(07 03 ')* = a1 (0™,
v s~ (07 oy ) (0007) = 0,
Gs: s~ (0201)(0907) = (020109)07 = (0103)07,
pap1p3 ~ (010901) (07 105 %) (0207) = _i
Gy : Y ~ 0307,
Y213 ~ 04,
Gs: y7lor e (o1t0y (010 0y7) = (07 0y P oaoioy !
(4;4)( mon) 1(01—1(7 101) L
Jo: v~ 0201,
gr ¥3 ~ UQ_U%,
Os: id ~ id,
Gy : id ~ id,
Gio: 7 ' (01_102—1)(020102) = 09,
Gt v s~ (07 0y )(0207) (07 '03%) = 03" = (03) 7,
Gio: v 'pspr ~ (03) 7,
pspapr ~ (0907)(010901) (07 05 ?) = 090705,
Gis = @apapr  ~ (010901)(0207) (07105 %) = (0109)%0,°
— (),

3 —1
P3P2p1  ~ 020109

Gia:  papspn wam””(o_é’)‘l-

Observe
(0201)3 o™ (0205)2 = og™mo",

Therefore the stabilizer (Br )vo is as claimed in the fourth column of
the table in Theorem 4.13. l

4.5. A global sign change, relevant for the odd case

REMARKS 4.17. (i) For S € T""(Z) consider a unimodular bilinear
lattice (Hz, L) with a triangular basis e = (e, ..., €,) with L(e', e)’ = S.
Consider also the matrix S € T (Z) with S,] = =S, fori < j.
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On the same lattice HZ and the same basas e we define a second
unimodular bilinear form L by L(e e) =S and denote all objects
associated to (Hz, L, e) with a tilde, I®)| Biri, T®) A,

Most of them differ a lot from the obJects assomated to (Hz, L, e).
But the odd intersection forms differ only by the sign. Therefore the
monodromies M and M are different (in general), but the odd mon-
odromy groups and the sets of odd vanishing cycles coincide:

7 __](1)’
03 = (s),
— in general

M = 3P0 03 % M=sVo. osD
but T — <~<1> 50y = (s, sy = P()’

ep ep r Se

AW = TWfge . ien} =TI W{tey, ..., +e,} = AW

Because of I =1® and A® = AD the global sign change from S
to S is interesting.

(ii) In this section we will study the action on Ti™(Z) of the ex-
tension of the action of Brz x {41} by this global sign change. Define

(SR . RS — Rg, (xl,mQ,x?,) — (_mla —Z2, _:E3)
and
GEm = (5R 0 6R) = {£1}°,

It is easy to see that the double semidirect product (GP" x G*9™) x ()
extends to the double semidirect product (GP" x G*9™) x1 (7).

LEMMA 4.18. Each (GPM x G%19) xt (v) orbit in Z? contains at least
one local minimum of one of the following types:
(a) x € Z>3 with 2z; < xjxy for {i,7,k} = {1,2,3}.
(b) (—1,2,—1) for somel € Z>s.

(c) (xl,xg,()) for some x1, 19 € Z>oy with 1 > x5.

Proof: In (c) we can restrict to x; > x4 because 65y (21, 22,0) =
($2,.T1,0). _

Each (GP" x G%9™) % (7) orbit consists of one or several (GP x
G*9") % () orbits and thus contains local minima.

Suppose that # € Z? is such a local minimum and is not
obtained with G*9" from a local minimum in (a), (b) or (c).
Then either z is a local minimum associated to 8(121\2), SO T €
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{(-1,-1,-1),(1,1,-1),(1,-1,1),(—=1,1,1)} or zxexs < O and
r(z) > 4.

In the first case 0%(—1,—1,—1) = (1,1,1) = ¢3(1, 1,0), so the orbit
contains a local minimum in (c).

In the second case r(6%(z)) = r(—z) = r(z) + 2z17273 < r(z). We
consider a local minimum z() in the Brz x {1} orbit of —z. If it is
not obtained with G**¥" from a local minimum in (a), (b) or (c), then
21 is a local minimum associated to S(z@) or mgl)xgl)xél) < 0 and
r(zM) > 4.

We repeat this procedure until we arrive at a local minimum ob-
tained with G*9" from one in (a), (b) or (c). This stops after finitely

many steps because r(zV)) = r(—z) < r(z). O

REMARK 4.19. Corollary 6.23 will say that the (GP" x G=9") xt ()
orbits of the local minima in the parts (b) and (c) of Lemma 4.18 are
pairwise different and also different from the orbits of the local minima
in part (a).

EXAMPLES 4.20. Given an element x € Z3, it is not obvious which
local minimum of a type in (a), (b) or (c) is contained in the (GP" x
éSi«"”) X (7y) orbit of z. We give four families of examples. An arrow
— between two elements of Z? means that these two elements are in
the same orbit.

(i) Start with (21, z9, —1) with x; > 25 > 0.

($1,902, —1) G'iin ($1,902» 1) aat (902 — Ty, 1,902) G’iin (5131 — T2, 1,1‘2)
= (ng(I1,$2>, 1,0)

(i) Start with (zq, 9, —2) with zy > x5 > 2.

(21,22,-2) 5 (21,22,2) B (205 — 21,2,22) = ...
(ged(xy,22),2,0) if 2y and
contain different powers of 2,
(—ged(xq, 22),2, — ged(xy,29))  if 2 and 24
contain the same power of 2

In order to understand the case discussion, observe that 2zo—xq and x»
contain the same power of 2 if and only if x; and x5 contain the same
power of 2. Furthermore 0 is divisible by an arbitrarily large power of
2.
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(iii) The examples in part (ii) lead in the special case ged (1, x2) = 1

to the following,
(x1,22,—2) —~ ... =» — (1,2,0) or (—1,2,—1)
— (2,1,0) or (1,1,0),

again depending on whether x; and x5 contain different powers of 2 or
the same power of 2.

(iv) Start with (=3, —3, —1) for some [ € Z>.
3,3,1) — (3,3,£(l —9))
3, 3,7) for some [ € {0,1,2,3,4}
3,3,0), (3,1,0), (—3,2,-3), (3,3,3) or (4,3,3).
(3,3,0) and (3,1,0) are in part (c), (—3,2,—3) is in part (b), and
(3,3,3) and (4, 3,3) are in part (a) of Lemma 4.18.

(—3,-3,-1) &
.
=

1

~— o~ o~
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CHAPTER 5

Automorphism groups

A unimodular bilinear lattice (Hz, L) comes equipped with four
automorphism groups Gz, G(ZO), G(Zl) and G of Hyz, which all respect
the monodromy M and possibly some bilinear form. They are the
subject of this chapter.

Section 5.1 gives two basic observations which serve as general tools
to control these groups under reasonable conditions. Another very
useful tool is Theorem 3.26 (c), which gives in favourable situations an
n-th root of (—1)¥ M in G7z. Section 5.1 treats also the cases A7.

Section 5.2 takes care of the rank 2 cases. It makes use of some
statements on quadratic units in Lemma B.1 (a) in Appendix B.

All further sections 5.3-5.7 are devoted to the rank 3 cases. Section
5.3 discusses the setting and the basic data. It also introduces the
special automorphism @) € Aut(Hg, L) which is id on ker(M —id) and
—id on ker(M? — (2 —r)M +id) and determines the (rather few) cases
where @) is in G.

The treatment of the reducible rank 3 cases in section 5.4 builds on
the rank 2 cases and is easy.

The irreducible rank 3 cases with all eigenvalues in St form the four
single cases Az, Ag, P2, Hyo and the series S(—1,2, —1) with [ € Zss3.
Here in section 5.5 third roots of the monodromy and in the series
S(—1,2,—1) even higher roots of the monodromy turn up.

The sections 5.6 and 5.7 treat all irreducible rank 3 cases with
eigenvalues not all in S* (1 is always one eigenvalue). Section 5.6 takes
care of those families of cases where Gz 2 {£M™ |m € Z}, section 5.7
of all others.

Section 5.6 is rather long. Here again roots of the monodromy turn
up, and statements on quadratic units in Lemma B.1 are used.

Section 5.7 is very long. The main result Gz = {+M™ |m € Z} in
these cases requires an extensive case discussion.

This chapter determines Gz in all cases with rank n < 3. An
application is a proof of Theorem 3.28, which says that in almost all
cases with rank n < 3 the map Z : (Br,, x {£1}")s — G is surjective,
the exception being four cases in section 5.6.
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5.1. Basic observations

Given a bilinear lattice (Hz, L), the most important of the four
automorphisms groups G2/, G(ZO), G’(Zl) and Gz in Definition 2.3 (b) (iv)
and Lemma 2.6 (a) (iii) is the smallest group Gz. But the key to it is
often the largest group GJ. We collect some elementary observations
on these groups.

LEMMA 5.1. Let Hy be a Z-lattice of some rank n € N and let
M : Hz — Hy be an automorphism of it.

(a) The characteristic polynomial pep p(t) € Z[t] of the automor-
phism M is unitary. Fach eigenvalue A\ € C of M is an algebraic
integer and a unit in the m’ng Ogpy C Q[ of algebraic integers in
Q[A], s0 in Ogyy. Also Ale by

(b) Suppose that M is regular, that means, M : Hc — Hc has for
each eigenvalue only one Jordan block.

(1) Then
@QMZ - End(Hg, M) = {g: Hy — Hg|gM = Mg}.

(ii) Consider a polynomial p(t) = I~ pit' € Q[t] and the
endomorphism g = p(M) € End(Hg, M) of Hy and Hc. Then
g has the eigenvalue p(\) on the generalized eigenspace Hy of
M with eigenvalue A. If g € End(Hz, M) then p(\) € Ogpy
for each eigenvalue \ of M. If g € G then p(\) € Oppy for
each eigenvalue \ of M.

(¢) Suppose that M is the monodromy of a bilinear lattice (Hz, L).
Suppose that M s regular.

(i) Then
GOuGY c {p(Mm sztl € Q[t], p(M) € End(Hz),

p(MN)p(A™1) =1 for each eigenvalue A of M}.

(11) If M is semisimple then Gy = G(ZO) = G(Zl), and this set is
equal to the set on the right hand side of (i).

Proof: (a) Trivial.
(b) (i) As M is regular, one can choose a vector ¢ € Hg with Hg =
@, QM’c. The inclusion Q[M] C End(Hg, M) is clear. Suppose

82



g € End(Hg,M). Write gc = p(M)c for some polynomial p(t) =
Sy pit' € QY] As

gM*c = M*gc = M*p(M)c = p(M)MFc
for each k € {0,1,...,n — 1}, g = p(M). Thus Q[M] = End(Hg, M).

(ii) Similar to part (a).

(c) (i) Suppose g = p(M) € G(Zk) for some k € {0;1} with p(t) =
S pit' € Q[t]. Recall Rad I™) = ker(M — (—1)¥1id : Hy — Hy).

For A # (—1)k*1 the generalized eigenspaces Hy and H,-1 are dual
to one another with respect to I*), and g has eigenvalue p()\) on Hy and
eigenvalue p(A™') on H,-1. That g respects I*) implies p(\)p(A™!) = 1.

For A = (—1)*', g restricts to an automorphism of the sublattice
Hy N Hy, of Hyz with determinant +1 = det(g|y,nm,) = p(A\)P™ 72 so
p(A) = £1.

(ii) Suppose additionally that M is semisimple and that g = p(M)
with p(t) = .10 pit’ € Q[t] satifies g € End(Hz) and p(\)p(A~!) = 1
for each eigenvalue A of M. As M is regular and semisimple, each eigen-
value has multiplicity 1. The (1-dimensional) eigenspaces Hy and Hy-1
are dual to one another with respect to L. The conditions p(A)p(A™!) =
1 imply that g respects L and also that det g = [ i envatue P(A) = E1.
Together with g € End(Hyz) this shows g € Gy. O

The situation in the following Lemma 5.2 arises surprisingly often.
One reason is Theorem 3.26 (c). See the Remarks 5.3 below.

LEMMA 5.2. Let Hy be a Z-lattice of some rank n € N, let M
Hy; — Hy and M"™° : H; — Hy be automorphisms of Hyz, and let
I € N and e € {£1} be such that the following holds: M is regular,

(Mroot)l — €M,

and M7™° s cyclic, that means, a wvector ¢ € Hy with
P, Z(M™")ic = Hy exists.
(a) Then M"™ is reqular, and

End(HZ, M) = End(HZ, MTOOt) — Z[MTOOtL
n—1

Aut(Hy, M) = Aut(Hz, M™) = {p(M"™") | p(t) = sz‘ti c 70|
i=0

p(k) € (Z|x])* for each eigenvalue x of M"™°'}.

(b) Suppose that M is the monodromy of a bilinear lattice (Hz, L)
and that the set of eigenvalues of M"™° is invariant under inversion,

that means, with k an eigenvalue of M™° also k=1 is an eigenvalue of
Mroot'
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(i) Then M™" € Gz and

n—1
G UGy Ap(re) | p(t) = Y pit’ € Zt),
=0
p(r)p(k~") =1 for each eigenvalue x of M},

(ii) If M is semisimple then Gy = G(ZO) = G(Zl), and this set is
equal to the set on the right hand side if (i).

Proof: (a) M™° is regular as M is regular and (M)l = eM.
This equation also implies Q[M] C Q[M"™*"]. As these Q-vector spaces
have both dimension n,

End(Hg, M) = Q[M] = Q[M"] = End(Hg, M"").

Then End(Hz, M) = End(Hz) N Q[M"™]. Consider g € End(Hz, M).
Choose a cyclic generator ¢ € Hy, with @) Z(M"™)ic = Hy. Write
g(c) = p(M™)c for some polynomial p(t) = S pit' € Z[t]. As in
the proof of Lemma 5.1, one finds g = p(M"™), so End(Hz, M) =
Z[M"™"]. The element g = p(M"™°") above is in Aut(Hz, M) if and
only if det g = +1, and this holds if and only if the algebraic integer
p(k) is a unit in Z[x| for each eigenvalue x of M"".

(b) (i) The main point is to show M"™" € Gz. As M and M are
both regular, the map x — ex' is a bijection from the set of eigenvalues
of M"° to the set of eigenvalues of M. For A = ex!, the generalized
eigenspaces Hy and H,-1 of M are the generalized eigenspaces of M7
with eigenvalues x and x~1. These two spaces are dual to one another
with respect to (¥ (if A # —1), I (if A # 1) and L.

Consider the decomposition of M into the commuting semisim-
ple part M °°" and unipotent part M!°* with nilpotent part N with
exp(N™°) = M!' and also the decomposition M = M,M, with
nilpotent part N with exp N = M,,.

Mot and M, respect L because they have eigenvalue £ and A on
H) and eigenvalue k! and A= on Hy-1.

As M and M, respect L, also M, respects L. Therefore N is an in-
finitesimal isometry. Because N = [N"%" also N"°° is an infinitesimal
isometry. Therefore M respects L. Thus also M™% = Moot Mfroot
respects L, so M"° € Gy.

Part (ii) and the rest of part (i) are proved as part (b) in Lemma
5.1. U

REMARKS 5.3. (i) The pair (Hz, M) in Lemma 5.2 is an Orlik
block if M7 is of finite order. They are important building blocks in
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the unimodular bilinear lattices (Hz, L) for many isolated hypersurface
singularities.

(ii) If the matrix S = L(e',e)' of a unimodular bilinear lattice
(Hz, L) with a triangular basis e has the special shape in Theorem
3.26 (c), then the monodromy (—1)**1M has by Theorem 3.26 (c) a
specific n-th root M"° € Gy. This situation is special, but it arises
surprisingly often, in singularity theory and in the cases in part (ii).

(iii) Theorem 3.26 (c) applies to all matrices S(z) = (1) 310 with
1 z ex

x € Z and to all matrices S= |0 1 =z | withz € Z and ¢ € {£1}.
0 0 1

It applies especially to the matrices S(A3), S(A,), S(H12) and
S(P?) in the Examples 1.1 and to the matrix S(—1,1, —1) in the Brs x
{£1}3 orbit of S(A3). Though it is not useful in the cases S(A?) and
S(H12) because their monodromies are not regular. In the case S(Aj3)
we will not use it as there the monodromy itself is cyclic.

The completely reducible cases A} for n € N can be treated easily,
building on Lemma 2.12.

LEMMA 5.4. Fizn € N and consider the case A} with S = S(A}) =
E,. Then

Gy =GY =~ 0,(2)={AcGL,({0;£1})|3 0 € S,
J e, ..., € {£1} such that A;; = ;0,0 },
GY =GM = Aut(Hy) = GL,(Z).
The map Z : (Br, x {£1}")s = Br,, x {£1}" — Gz is surjective.

Proof: The groups G(Zl) and GJ are as claimed because M = id and
IM = 0. The groups Gz and Gg) map the set R = {%ey, ..., £e,} to
itself and are therefore also as claimed.

The stabilizer of S = E,, is the whole group Br,, x {£1}". The
subgroup {£1}" gives all sign changes of the basis e = (ey, ..., €,). The
subgroup Br, gives under Z all permutations of the elements of the
tuple (ey, ..., e,). Therefore Z is surjective. O

5.2. The rank 2 cases

For x € Z consider the matrix S = S(x) = (é f) € Ty™(Z), and

consider a unimodular bilinear lattice (Hz, L) with a triangular basis
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e = (e1,es) with L(e!,e)' = S. Then
_ 2
Me = eS7'S'=¢ (1 g x) :
T 1
pert(t) = 2 —(2—aHt+1

2—22 1
with zeros A, = 236 + §x\/ 2 —4.

Theorem 3.26 (c) applies with (n, k, g0, 1) = (2,0, 1, z), namely

5,07 = S,0q € (Bry x {i1}2)5’
Moot . — 2(620'1) € GZ
. root — -t -1
with M™% = e < 1 0 )
and (M™)?* = —M.

Mot is regular and cyclic,

pCh,MTDOt (t) = t2 + :Ct + 1

r 1
with zeros ki = 5 + 5\/ 2 —4
with k7 = —\j = —ak; — 1, Ky + Ky = —2, K1kg = 1.

M is regular if x # 0. M and M"° are semisimple if z # +2. If
r = 41, M has eigenvalues e*>™/% and M7 has eigenvalues e*27%/3
respectively e*?7/6 If |z| > 3, M and M"™° have real eigenvalues
and infinite order. If x = £2, they have a 2 x 2 Jordan block with
eigenvalue —1 respectively —2.

THEOREM 5.5. (a) If x # 0 then

Gz = GY =G = {£(M™ |l ez},

oM _ Gz, if v # 43,
20T {4 Eid) L€ ZY if v = 43,

If x =0 then
G a0~ er 0 0 &
7==Gy = 05(Z) =1 0 &) \ey O |e1,62 € {£1}},

G = GY = Aut(Hy) = GLy(Z).

In all cases Gy = G5, so Z : (Bry x {£1}%)s — Gy is surjective.
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(b) Properties of I and I(V):

r=0: I =0, RadIW = Hy, L(c' e) = By, I19(c!, e) = 2E,.
r#0: RadI® ={0}.

|z <1: 19 is positive definite.

i
—|€2).

lz] =2: I is positive semi-definite, Rad I = Z(e; — |
T

lz] >2: I is indefinite, Rad I = {0}.

Proof: Part (b) is obvious.

The case x = 0 is the case A?. Tt is covered by Lemma 5.4.
Consider the cases z # 0 in part (a). We can restrict to z < 0
1 —x

0 1) So suppose z < 0.
We know {£(M™")!|l € Z} C Gz C GY. By Lemma 5.2 (a)

Gy = {p(M™) | p(t) = pit + po € Z[t], p(r1)p(k2) € {£1}}.

The map

because of L((e1, —es)", (e1, —€2))! =

Q2 : 7 — 4, (plypo) = p(/ﬁ)P(@) = P% — P1Pox +p(2)7

is a quadratic form. Lemma 5.2 (a) shows

Gyl ={p M + poid | (p1,po,e1) € Z° x {£1},Q2(p1,po) = €}
Lemma 5.2 (b) (ii) shows for z # —2

Gz = G(ZO) = G(Zl) = {p1MTOOt + poid | (p1,p0) € ZQ?QZ(pDPO) =1}

For x = —2 it shows only

GZ,GEJ),G(ZD C{pM"™ + poid | (p1,po) € Z*, Qa2(p1, po) = 1}

We discuss the cases x = —1, x = —2 and x < —3 separately.
The case © = —1: @, is positive definite, so Q2(p1,po) = —1 is
impossible, and

{(plva) | QQ(plva) = 1} = {:i:(()? 1)7 :i:(17 0)7 :i:(lv _1>}7
Gz =Gy =G = GY = {£id, £M"!, £(M™")?}.
Because of M? = —M7"°" this equals {+id, =M, +M?}.
The case x = —2: This follows from Lemma 5.6 below.

Remark: Here Q3 is positive semidefinite with Qs(p1,po) = (p1 +
po)®.  The solution (p1,po) = (p1,—p1 + €2) with &5 € {&1} of
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Q2(p1,po) = 1 corresponds to
PLM™ + (—p1 + e2)id = ey(id +eopr (M —id))
go(id +(M™° —id))=2P
82(M7“00t)82p1 .
The cases © < —3: The arguments above show
Gz = (Z]k])"
D Gz = {pik1+po € Z[ra] | (p1s1 + po)(prkz2 + po) = 1}.

So we need to understand the unit group of Z[x;] and the subgroup of
elements with norm 1. Both are treated in Lemma B.1 (a) in Appendix
B.

It remains to show Gz = G5 in all cases © € Z<_;. This follows

from Gz = {£(M"")! |l € Z} and
Z(6:185) = —id,  Z(8,01) = M. O

LEMMA 5.6. Let Hy be a Z-lattice of rank 2, and let M H; — Hy
be an automorphism with a 2x2 Jordan block and eigenvalue A € {£1}.

(a) Then a cyclic automorphism Moot Hy; — Hy with eigenvalue
1 and a number | € N with (M) = A\M ezist. They are unique.

Aut(Hyz, M) = {£(M™)' |1 € Z}.
(bﬁ)/[ff: Hy x Hy — 7 is an M -invariant bilinear form then it is
also M -invariant and
Aut(Hyz, M, I) = Aut(Hy, M) = {£(M"") |1 € Z}.
Proof: (a) There is a Z-basis f = (f1, f2) of Hz and an [ € N with

~ 11

-n(t )
Here f; is a generator of the rank 1 Z-lattice ker(ﬂ— Aid) C Hy. It is
unique up to the sign. It is a primitive element of Hz. An element f5
with Hy, = Zf1 @ Zf5 exists. It is unique up to sign and up to adding a
multiple of f;. The sign is fixed by [ in the matrix above being positive.
[ is unique.

Define M"™° : H; — Hy by

Mrooti:i <é i) )

Obviously (M)l = AM.
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Any g € Aut(Hz, ]TJ/) must fix Zf; = ker(ﬂ— Aid). Therefore it
must be up to the sign a power of Mroot,

(b) That M Mot respects I follows by the same arguments as M™% &
Gz in the proof of Lemma 5.2 (b) (i) (but now the situation is simpler,

as M and M" have a single 2 x 2 Jordan block). The rest follows
with part (a). O

5.3. Generalities on the rank 3 cases

For x = (z1,79,23) € Z? consider the matrix S = S(z) =
1 r1 T2
0 1 x3| € T¥™(Z), and consider a unimodular bilinear lattice
0 0 1
(Hyz, L) with a triangular basis e = (ey, €2, e3) with L(e’,e)* = S. Then

1 —x1 2123 — 29

0 O 1
1— 37% - 35% + T1T9x3 —x1 — T2T3 + wlflf% T1T3 — To
S-lgt = T — Toks 1— a2 —15 ,
T2 T3 1
Me = eSS,

2 1 X9

10 e) = S+ = (a1 2 23],
To XT3 2

0 il i)
[(1)(§t7§) = S5-— St =11 0 T3 |

—Xy —XI3 0

penar(t) = (t=1(# =2 —r(@)t+1),
where
r 72— 7, x=(v1,T0,3) > T]+ T3+ T3 — 117273,
For (z1,x9,23) # (0,0,0) define
1 s

fo = e | 7
ged(wr, g, 23) \ _

This is a primitive vector in Hy,.

Rad 10 *° @0 yer(0r —id) = { Lfs if (w1, 22, 25) # (0,0,0),
I = (0,0,0



Also
Pensist(t) = 2 —6t"+ (12 — 2] — a5 —23)t —2(4 — 1),

r(z)

L = = 10 =2L :
(f37f3> ng($1,$2,1’3>2’ (f37f3) (f37f3)
The eigenvalues of M are called
2—r 1
/\1/2: B :|:§ 7”(7’—4), /\3:1

with /\1 + )\2 =2 r, )\1)\2 =1.

The following Lemma gives implicitly precise information on p.j as
and sign 19 for all z € Z*. Implicitly, because one has to determine
with the tools from section 4.2 in the cases r(z) € {0,1,2,4} in which
Brs x {£1}3 orbit in Theorem 4.6 (e) the matrix S(z) is.

LEMMA 5.7. (a) r=1(3l) = 0 forl € Z — 3Z.
(b) Consider x € 73 with r = r(x) < 0 or > 4 or with S(x) one of
the cases in Theorem 4.6 (e). Then penar and sign IO gre as follows.

Peh,M sign [ © S(x)
r<0 )\1,)\2>0 (+——) S(g)
r=0 o3 (+++) S(A3)
r=0 o3 (+--) S(P?)
r=1 (I)G(I)l (+ + +) S(A2A1>
r = 2 @4@1 (+ + +) S(Ag)
r=4 00, (++ 0) S(As)
T = 4 @%@1 (+ 0 0) S(HLQ)
r=4 2, (+0 —) S(—1,2, —1) with > 3
r>4 )\1,)\2<0 (++_) S(g)

Proof: (a) If (3|21, 3|22, 3|z3) then 9|r.

If (3|z1, 3|z, 3 1 x3) then 3|(r — 1),3 ¢ r.

If (3|z1,31 29,31 23) then 3|(r —2),317.

If (312,34 22,31 x3) then 3|(z? + 23 + 22),3 1 r.
(b) The statements on p, s are obvious.

Rad 1 *7 &

In the cases with r = 4, one calculates p. ss¢(t) and reads off sign I ©
from the zeros of p., s4st(t). The case S(A}) = S(0,0,0) is trivial.
Consider the cases with r # 4 and z # (0,0,0). Then I® is
nondegenerate. The product of the signs in the signature of I
is the sign of det(S + S*) = 2(4 — r). Because of the 2’s on the
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diagonal of S + S* I©® cannot be negative definite. Also recall
O (fs, f3) = 2r(ged(zy, x9, 23))"2. This shows sign [® = (+ — —)
for r < 0, signI®© = (+ + —) for > 4 and signI®©) = (+ + 4) or
(+ ——) for r € {0,1,2}.
The classification of Bry x {£1} orbits in T¢"(Z) in Theorem 4.6
(e) says that for each of the cases r € {0, 1,2} there is only one orbit
(with z # (0,0,0) in the case r = 0), namely S(P?), S(A454;) and
S(A3). One checks the claims on sign I® = sign(S + S*) immediately.

REMARKS 5.8. (i) It is very remarkable that the fibers r~(1) and
r~Y(2) C Z3 of r : Z> — 7 consist each of only one orbit. If one looks
at the fibers of the real map

TR:R3—>R, gr—>xf+x§+x§—x1xgx3,

this does not hold. Each real fiber r5z'(p) with p € (0,4) has five
components, one compact (homeomorphic to a 2-sphere), four non-
compact (homeomorphic to R?). The four non-compact components
are related by the action of G*¥". It is remarkable that the fibers
re' (1) and r5 ' (2) C R? intersect Z* only in the central piece.

(ii) By penasr = (t—1)(t* — (2 —r(x))t + 1), the monodromy matrix
SISt for z € R and S = S(z) has all eigenvalues in S! if and only if
TR(Q) S [0,4]

(iii) The semialgebraic subvariety 75'([0,4]) C R?® was studied
n [BH20, 5.2]. It has a central piece which is G*¥" invariant and
which looks like a tetrahedron with smoothened edges and four other
pieces which are permuted by G*¥". Each other piece is homeo-
morphic to [0,1] x R? and is glued in one point (its only singular
point) to one of the vertices of the central piece. The four vertices
are (2,2,2),(2,-2,-2),(—2,2,—2),(—2,—2,2), so the elements of the
Brs x {1} orbit of (2,2,2).

For z inside the central piece S 4 S! is positive definite, on its
boundary except the vertices sign(S+S*) = (+40), at a vertex sign(S+
S*) = (4+00). On those boundary components of the other four pieces
which contain one of the vertices sign(S + S*) = (+0—) (except at
the vertex). On the interior of rg'(—00,4] except the central piece
sign(S + S*) = (+ — —). On the exterior of rg'(—00,4] sign(S + S*) =
(++—).

(iv) Due to Lemma 5.7 (b) and Theorem 4.6, the seven cases
S(A3), S(P?), S(AsA), S(As), S(P'A), S(Ay), S(Hy2) and the series
S(—1,2,—I1) for | > 3 give the only rank 3 unimodular bilinear lattices
where all eigenvalues of the monodromy are unit roots. In the sections
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5.4 and 5.5 we will focus on the reducible cases and these cases. In the
sections 5.6 and 5.7 we will treat the other cases.

The following definition presents a special automorphism ¢ in
Aut(Hg, L). Theorem 5.11 will say in which cases () is in Gz and
in which cases not. The determination of the group Gz in all irre-
ducible rank 3 cases in the sections 5.5-5.7 will build on this result.
It is preceded by Lemma 5.10 which provides notations and estimates
which will be used in the proof of Theorem 5.11 and also later.

DEFINITION 5.9. Consider z € Z? with r(z) # 0. Then Hy =
HQl D H@’g with H@J = ker(M2 — (2 - T‘(g))M + id : H@ — HQ) and
Hgo :=ker(M —id : Hy — Hg). This decomposition is left and right
L-orthogonal. Then () : Hy — Hg denotes the automorphism with
Qlry, = —id and Q|p,, = id. It is in Aut(Hg, L).

LEMMA 5.10. (a) For x € Z3—{(0,0,0)} write r := r(z) and define

g:=g(z) = ged(xy,z9,23) €N,
E = (fla %2753) = 9_12 S Z3'
Then f3 = —5361 + fgeg — %163, ng(%l,fg, 53) =1 and
T ~ ~ ~ o~ o~
g\, P TT+ T3 + 75 — 9713273, (5.1)

(b) Consider a local minimum (Definition 4.3) x € 724 with x; <
x; < xy for some i, 7,k with {i,7,k} = {1,2,3}. Then

24 (4=
7 < 2H@-n” (5.2)
g

4 —r

2

r; < xi_2+x,~+2, (5.3)
1 - g

r, < §xixj and xk§§ i (5.4)

Proof: (a) Trivial.

(b) Lemma 4.4 shows zj, < 1z;x;, which is (5.4). This is equivalent
to 7, < §7,7;. We also have 7; < 7; < 7, and we know r < 0 from
Theorem 4.6.
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The proof of (5.2) is similar to the second case in the proof of
Theorem 4.6 (a).

r ~ ~ 9~ ~ 9 ~
7 = BT+ @ - 5E) - T
g g° g
< T+ A+ (T - 55,;@)2 - fosz (because T; < T, < Z7;7;)

~ =2

= I +215 — gT,T;
2 2 4
= @Ti—g7 + )@ — )+ .
Ty 9 9
If z2; < %, then (5.2) holds anyway. If z; > % then we can further
estimate the last formula using —g75 < —gZ7. Then we obtain

r 2 2 4
= < (@ —gT+ )@ - 2)+
g° ( 9)( g) g°
- 25 - 1 4
= _g(fz - _)2(% + _) + )
2 4
< 9@ - P+
( g) p
- 2 4 —
so (z; — =) < 37“'
g g

This shows (5.2). The inequality (5.3) was proved within the second
case in the proof of Theorem 4.6 (a). O

THEOREM 5.11. Consider x € Z3 with r # 0. The automorphism
Q € Aut(Hg, L) which was defined in Definition 5.9 can be written in
two interesting ways,

2q> o -
Q = (e —e+ %f:’)(—ﬂ%@ — gT1T3, —11)), (5.5)
2
Q = id+2(M —id) + ;(M —id)% (5.6)
We have
2g> T
Qe Gy = TEZ = ?e{il,iZ}. (5.7)
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This holds if and only if z is in the Bry x {+1}® orbit of a triple in the
following set:
{(z,0,0) |z € N} (these are the reducible cases except A3),

U {(z,2,0)|x € N} (these cases include As),

U {(=1,2,=1)|l > 2 even} (these cases include H;5),

U {(3,3,4),(4,4,4),(5,5,5),(4,4,8)}.
So, within the cases with r € {0,1,2,3,4}, Q 1is not defined for A3 and
P?, and Q ¢ Gz for Ay and S(—1,2,—1) with | > 3 odd.

Proof: First we prove (5.5). The 2-dimensional subspace Hg; =
ker(M? — (2 — r)M + id) C Hg, on which @ is —id, can also be

characterized as the right L-orthogonal subspace Hg; = (Qf3)* to
Qfs. Forbzg-gtEHQ Withge(@?’

1 0 0 Y1
L(fg,b) = (—53,.%2,—.%1) il 1 O Y2
To w3 1 Y3
o o _ Y1
= (—$3,332 — gT173, —5171) Y2 |,
Ys
SO
1
Hg,={e- Qt ly € Q%0 = (—73,72 — 97173, —71) | v2 |} (5.8)
Y3

Denote the endomorphisms on the right hand sides of (5.5) and
(5.6) by Q) respectively Q9. The formulas (5.5) and (5.8) show
QP |y, = —id. Also
2g> - — e~ -
QPO (fs) = —fs + fsT(ﬁ + (T2 — g1 73)T2 + 37) = fo.

Therefore Q% = @, so (5.5) holds.
Now we prove (5.6). Because (M —id)(f3) = 0, we have Q9 (f3) =
f3. Consider b € Hg,. Then

0 = (M*—(2—7r)M+id)(b), so
(M —id)*(b) = —rM(b), so

QPI(B) = (id+2(M —id) + %(—rM))(b) = (—id)(b) = —b.

Therefore Q% = @, so (5.6) holds.
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(5.7) can be proved either with (5.6) and Lemma 5.17 below or with
(5.5), which is easier and which we do now. Observe ged(—2Z3, Ty —
9173, —21) = ged (T, T2, T3) = 1. Also, f3 is a primitive vector in Hy,.
This shows that Q(e;), Q(ez2), Q(e3) are all in Hy, if and only if @ € Z.
This shows (5.7).

It is easy to see that all triples in the set in Theorem 5.11 satisfy
T e {+1,+2}:

Lo =5 =1 Lo =2 <2
for even [ %((—Z,Q, 1)) = j—i =1,
S =T =2 S(a4 -5 -1
é((5,5,5)) - _2—‘20 — -2, %((4,4,8)) - _1—22 — 2.

The difficult part is to see that there are no other x € Z3 with r # 0
and 2z € {#£1, £2}. It is sufficient to consider local minima (Definition
4.3). The calculations

r 4
?((_172’ —1)) = 1= 4 foroddl>3
d L(-1,-1,-1) =2 4
an g2 9 9 - 1 -

deal with the other cases with r € {1,2,3,4}, see Theorem 4.6 (e).

Consider z € Z2, with z; < x; < xy, for some 14, j, k with {i, j, k} =
{1,2,3}. Then 5 = T2+ T2+ 72+ g|T12273] can be 1 or 2 only if 7, = 0
and 7; = 7; = —1. Then z = (—g, —g,0). This is in the Bry x {£1}?
orbit of (g, g,0).

Consider a local minimum x € Z3>3 with z; < z; < a;, for some
i,k with {4,7,k} = {1,2,3}. Suppose & € {—1,-2}. We have to
show z € {(3,3,4),(4,4,4),(5,5,5), (4,4,8)}. Of course z # (3,3,3)
because r # 0.

If g = 1 then r € {—1,-2}. One sees easily that r = —1 is
impossible and that » = —2 is only satisfied for = (3, 3,4).

From now on suppose g > 2. Write p := | 5| € {1,2}. (5.2) takes
the shape

~ 2 4
l’z§—+(8+—3)1/3
g g 9
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The only pairs (Z;,9) € N x Zso which satisfy this and z; = Z;,9 > 3
are in the following two tables,

C g |2]3]4]5

_ g |2]3[4]5]6
Pl

T 21111

p=2:

The following table discusses these nine cases. Three of them lead to
(4,4,4), (5,5,5) and (4,4,8), six of them are impossible. The symbol
® denotes impossible. The inequalities z; < z; < zj and (5.3) and
(5.4) are used, and also x; = gz; and x;, x5, € gN.

plgl—r|z|x a:? < i;_g +x+2 |z |z < %xixj Tk
11214 |2 |4 xj2 <10 ®

1139 |1 |3 |27<18 3 | <3 3®
114116 |1 |4 xJQ <16 4 |z, <8 4
1525 |1 |5 |27 <16+ 2 ®

21218 |2 |4 x? <12 ®

2318 |1 |3 a3 <27 3 |ap <3 3®
214132 |1 |4 :cf <24 4 | x <8 8
25|50 [1 |5 |23 <25 5 |z <1241 |5
21672 |1 |6 x? <27 ®

This finishes the proof of Theorem 5.11. [

5.4. The reducible rank 3 cases

Definition 2.10 proposed the notion of reducible triple (Hz, L, ¢e)
where (Hyz, L) is a unimodular bilinear lattice and e is a triangular ba-
sis. The following Remarks propose the weaker notion when a unimod-
ular bilinear lattice (Hz, L) (without a triangular basis) is reducible.
Then the groups GZ,G(ZO),G(ZU and G split accordingly if also the
eigenvalues of M split in a suitable sense.

REMARKS 5.12. (i) Suppose that a unimodular bilinear lattice
(Hz, L) splits into a direct sum Hy, & Hys which is left and right
L-orthogonal. Then the restrictions of L, 1 IM and M to Hy; are

called Li,]i(o),li(l) and M; for i € {1;2}. We say that (Hz, L) is re-
ducible and that it splits into the direct sum (Hz 1, L1) & (Hzz, Lo).

(ii) In the situation of (i), suppose that the eigenvalues of M; are
pairwise different from the eigenvalues of M,. Then any element of G}
respects the splitting. For {i,j} = {1,2} write G}; := G}/ (Hz,, L;).
Then

M _ M M
Gy = GZ,l X GZ,27
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and with analogous notations
Gz =Gz x Gz, Gy =Gy x Gpy, G = G5 x Gy,

(iii) There is only one unimodular bilinear lattice of rank 1. We call

it A;-lattice and denote the matrix S = S(A1) = (1) € Mi1x1(Z). Here
2 =GP =Gl =GM = {+id}.

(iv) Suppose that the characteristic polynomial pe, a(t) € Z[t] of
the monodromy M of a unimodular bilinear lattice (Hz, L) splits into
a product penamr = pip2 of non-constant polynomials p; and py with
ged(py,p2) = 1. Then kerp; (M) @ ker po(M) is a sublattice of finite
index in Hz, and the summands are left and right L-orthogonal to one
another. If the index is 1, we are in the situation of (ii). Theorem 5.14
will show that this applies to the cases S(H12) and S(—I,2, —I) with
I > 4 even, but not to the cases S(A;), S(A,) and S(—I,2, —1) with
[ >3 odd.

These remarks apply especially to the reducible 3 x 3 cases except
A3 (which is part of Lemma 5.4). This includes the two reducible cases
Ay A, and P'A; with eigenvalues in S?.

THEOREM 5.13. Consider x = (z,0,0) € Z* with x # 0 and
the unimodular bilinear lattice (Hyz, L,e) with triangular basis e with
L(e',e)' = S(z) € T3"(Z).

Then (Hyz, L, e) is reducible with the summands (Hza, L1, (€1, €3))
and (Hzo, Lo, e3) with Hyy = Zey @ Zey and Hzz = Zes. The first
summand is an irreducible rank two unimodular bilinear lattice with
triangular basis. Its groups Gz, 1, G(Zo,)l, G(Z{)l and G3', are treated in The-
orem 5.5. The second summand is of type Ay. See Remark 5.12 (iii)
for its groups.

The decompositions in Remark 5.12 (ii) hold for the groups G,
GV GV and GM. Here GM = Gy if x # 43 and Gz = G = G
always.

The map Z : (Brz x {£1}®)s — Gz is surjective.

Proof: The first point to see is that Remark 5.12 (ii) applies. It
does because the characteristic polynomials of the monodromies M;
and M, of the two summands are t> — (2 — 2%)t +1 and ¢ — 1, and here
x # 0, so that the eigenvalues of M; are not equal to the eigenvalue 1
of M.

The second point to see is the surjectivity of the map Z. This
follows from the surjectivity of the map Z in the irreducible rank 2
cases in Theorem 5.5 and in the case A; in Lemma 5.4. ]

97



5.5. The irreducible rank 3 cases with all eigenvalues in S*

Theorem 5.14 is the only point in this section. It treats the irre-
ducible rank 3 cases with all eigenvalues in S*.

THEOREM 5.14. Consider for each of the matrices S(P?), S(As),
S(As), S(Hi2) and S(—1,2,—1) for 1 > 3 in the Examples 1.1 a uni-

modular bilinear lattice (Hyz, L) with a triangular basis e with L(e', e)' =

S.

(a) The cases S(H12) and S(—1,2,—1) forl > 4 even: Then (Hyz, L)

is reducible (in the sense of Remark 5 12 (1)), Hy, = Hy1 @ Hy o with
Hy, = ker(M +id)? of rank 2
and Hzo := ker(M —id) of rank 1.

(Hz2, L) is an Aj-lattice. In all cases the decompositions in Remark
5.12 (i) hold for the groups G3!, G(ZO), G(Zl) and Gz. The groups G%,
G(Z(f)l, G(Zl,)l and Gz are as follows.

(i) S(Hi2): Hzy has a Z-basis [ = (f1, fo) with

GY, = GY) = Aut(Hz,) = GLy(Z),
Gz, = G(Zl)l = {g € Aut(Hz,)| det g = 1} = SLy(Z).

(i) S(=1,2,—1) for | > 4 even: Hy, has a Z-basis f = (f1, f2)
with

_ _ _ E
1 f) = ( f),ﬂq=i(0 _ﬁ)
Define M{** € Aut(Hg.) by M{*f = f (0 }) Then

(Mroot)12/2—2 = —M, and
Gz1 = Ggh = Gy = G2y = (£(M{™)" |m € 7).
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(b) The cases S(P2), S(As), S(As), S(—1,2,—1) with | > 3 odd:
Then (Hz, L) is irreducible.

Gz = GY = {£(M™)™ |m € Z}.
Here M"™° is defined by

M™" = Z(c"") in the case S(P?), (5.9)
M™" = M = Z(c™") in the case S(43), (5.10)
M™" = Z(850"°") in the case S(A,), (5.11)
M™% = (=M)o Z(égaflag_lal)(5_l2)/2

in the case S(—[,2,—I) forodd [ > 3.  (5.12)
It satisfies
Mrootg — ngoot,mat and (Mroot)m — €M

where M™% “m and ¢ are as follows:

S(P?) S5(As)
3 =3 1 0O 0 1
Mretmat [0 0 1 0 1
0 1 0 0 -1 1
(m, ) (3,1) (1,1)
S(Ay) S(—1,2,—1) with [ > 3 odd
11 -1 1-02 B—-1 —-1-1
Mrootmat 1 0 O % —21 21> -2 —2l
01 0 1—01? P-31 31
(m,e) (3,-1) (12 —4,-1)

M and M are reqular. M is cyclic. In the cases S(As), S(Ay)
and S(—1,2,—1) for 1l > 3 odd
Gz =GY =Gy =Gy = {£(M™")™ |m € Z}.
Some additional information:
(i) S(P?): sign I = (+ — =), Pehvt = Penpiroot = ®3, M and
MT° have a 3 x 3 Jordan block,
G = GY = {£(M) ™ (id +a(M™° —id)?) | m,a € Z} 2 G.
(ii) S(A3): signI© = (+ +4), powyy = ®s®1, M = M™%,
|Gz| = 8.
(ZZZ) S(A2> SlgIlI(O) — (+ + 0), pCh,M — q)g(bl; pch,MTODt ==
D2®y, M and M have a 2 x 2 Jordan block with eigenvalue
—1 respectively 1.
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(iv) S(=1,2,—1) with | > 3 odd: signI®) = (+0-), par =
PIDy, peprrroot = PPy, M and M™ have a 2 x 2 Jordan
block with eigenvalue —1 respectively 1.

(c) In all cases in this theorem the map Z : (Brs x {£1}3)s — Gz
is surjective, so Gz = G5.

Proof: (a) Recall
Hyo =ker(M —id) = Rad IV = Zfs, f3 = —Tseq + Toey — T1e.

We will choose a Z-basis f = (f1, fo) of Hz; := ker(M +id)*. Denote

z := (f1, fa, f3). In all cases it will be easy to see that E is a Z-basis of
Hy,. Therefore in all cases Hy = Hz 1 & Hyo.
(i) S(Hl,z)i Recall pep, v = (I)%(I)la

1 -2 2 1 -2 2 1
S=10 1 —2],8'"=(2 -3 2|, fs=el1
0O 0 1 2 =21 1
Define
1 0
fi=mell], for=el|l
0 1
Then
o 0 -1 0 (-1 0 0
L_,i)t: L 0 0),Mf=f{0 =1 0|, Hzg1 =2 DLf.
0 0 1 0 0 1

The claims on the groups G/}, G(Z%)l, G(Z?)l and Gz, follow from the shape
of the matrices of M, IV, I®) and L with respect to the basis f of Hy,.
(i) S(—1,2,—1) with [ > 4 even: Recall p., s = P3P,

1 -l 2 -3 —P+3l *-2 L
S=10 1 —=1], Stst= ! B o Cfa=ell
0 0 1 2 —1 1 L
Define
1 12—2
fl =€ 0 7f2::§ z
—1 0
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-1 0 ~1 2-2 9
~t~t 2 ~ ~ 2
Lif,f) =1 1-% o], Mf=f{0 -1 0f,
0o 0 1 0 0 1

Hy,=72fi ®Zfy, Hy = Hy1 @ Hyp,

My = M|y, , and M{°" have each a 2 x 2 Jordan block, M is cyclic
and (M7o)*/2=2 = _ M. Lemma 5.6 shows

GY, =GP = G = Gz = {£(M]*)™ |m € Z}.

(b) Recall
S(P?) S(As)
10 —15 6 0 0 1
S5t 6 -8 3 -1 0 1
3 =3 1 0O -1 1
Deh, M P O,
S(Az) S(=1,2,—1) with [ > 3 odd
-2 -1 2 -3 -PB+3l 12-2
S-1gt -2 0 1 l —2+1 l
-1 -1 1 2 -1 1
Peh, M (I)%(I)l @5@1

The case S(—I,2,—1) with [ > 3 odd will be treated separately
below. Theorem 3.26 (c) applies in the case S(P?) with £ = 1 and in

the case S(A\g) with & = 0. It shows in these cases (M"!)? = M.
By Theorem 3.26 (c) the matrices M"°°™ are as claimed in the cases

S(P?) and S(Ay). In the case Ay by definition M7 = M.

o~

In all three cases S(P?), S(A3z) and S(Ay) M™° is cyclic with cyclic
generator e;. In the cases S(P?) and S(A3) penarroot = pen- In the

case S(ﬁg) Penprroot = G2dg and pepar = P3¢1. Lemma 5.2 (a) shows in
all three cases

2
Gy = {p(M™")|p(t) =Y pit' € Z[],
i=0
p(k) € (Z|x])* for each eigenvalue x of M"™°'}.

(i) S(P?): M°" —id is nilpotent with (M7 —id)? = 0, (M —
id)? = 0. An element of Z[M™°!| can be written in the form

o id 4-q1 (M —id) + qo(M™° —id)? with qo, q1, 2 € Z.
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It is in Aut(Hz) if and only if ¢o € {£1}. Then it can be written as
qo( M) (id +Go(M™" — id)?) for some G € Z.

Therefore GY is as claimed.

Because (M —id)? = 0, (M —id)?(Hz) C ker(M™° —id) =
Rad I, Therefore id +G (M — id)? and thus any element of GJ/
respects 1, so G = G,

On the other hand, one easily checks that id +g (M — id)? re-
spects 1 only if ¢ = 0. Therefore

Gz =GP = {£(M™)" |m e Z} G Gy = GY.

(il) S(As): For p(t) = S22 pit' € Z[t] write p; := p()\;) for j €
{1, 2,3} for the eigenvalues of the element p(M) € Z[M] = End(Hz, M)

where A\ = i,\y = —i, A3 = 1 are the eigenvalues of M. Because
of (Z[i])* = {#1,+i}, one can multiply a given element of G} with
a suitable power of M and obtain an element with pu; = ps = 1.
Therefore

Gl = {M™ (id +my®4(M)) | my € {0,1,2,3},my € Z,
1+ my®y(1) € {£1}}.

This forces my € {0, —1}. The case my = —1 gives id +(—1)(M?+id) =
—M?. Therefore

{£M™|m € {0,1,2,3}} = {(£M™|m € Z} = G} = GY) = G = G

. Then

(el \V)

1
(ii)) S(As): Write f = (f1,f2) ==e | 1
1

root _ 1 1
g =1 ).
Hz, = ker®3(M) = ker ®3(M"™") = Zf, © Zf».
Lemma 5.6 implies
{9, | 9 € G2} = {£(M™ |,,,)™ | m € Z},
Gz ={£(M"")" |m € Z} x {9 € GF' | 9|, = id}.

But p(t) = 1 + q®3i(t) with ¢ € Z satisfies p(—1) = 1+ ¢-2? € {£1}
only if ¢ = 0. Therefore

{£(M™)™ |m e Z} = GY = GY = GY = Gy
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(iv) S(—1,2,—1) with [ > 3 odd: Recall f; and define (fy, f2) and
C_i = (dl, dg, dg) with

1 12-9 | 2—1—2 1P-1 1?-

s 2 2 2
(f1>f27f3):§ 0 [ 2 y QZZQ Z_Tl HTI I_Tl
-1 0 [ 0 Z—Tl 1

The matrix which expresses (f1, f2, f3) with e has determinant 4, the
matrix which expresses d with e has determinant 1. Therefore Zf; ®
Zfy @ Zfs is a sublattice of index 4 in Hy, and d is a Z-basis of Hy,.
One calculates

_ N -1 —I’+4 0
M(f1, f2, fs) = (fi,fos f3) | O -1 0
0 0 1

Especially
Zf, ® Lfsy = ker(M? +id)? D Zf, = ker(M +id) = Rad I©,
Observe
S301 oy toy € (Bry x {£1}?)s. (5.13)
Define
M = Z(d307 0y toy) € Gy (5.14)
Then M = (—=M) o M®~*)/2 € G. One calculates

Me = e+ fi(=1,1,-1), (5.15)
. ~ _ 1 20
M(f17.f27f3) = (fl)f?af?)) 010 3 (516)
0 0 1
N - 11 0
MTOOt(fl7f27f3) = (fl?f?af?)) 01 0 )
00 -1
(Mroot)l2f4 - M
(Mroot)Q — j\}[/
Finally, one calculates
00 -1
Mrootd:d 1 O 1
01 1
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Therefore M"° is cyclic with cyclic generator d; and regular. Lemma
5.2 (a) shows

Gz = {p(M™") | p(t) = Zpiti € Z[t],p(1),p(=1) € {£1}}.

As in the case S(A,) one finds with Lemma 5.6
{ngZ,l |g € G%} = {:l:(MTOOt|HZ,1>m ‘ m e Z}7
Gyl = {E(M™")" |m € Z} x {g € G3' | glu,, = id}.

But p(t) = 1 + q®3(t) with ¢ € Z satisfies p(—1) = 1+ ¢ - 2? € {+1}
only if ¢ = 0. Therefore

{£(M™ | m e Z} = GY = GY) = GY) = Gy

(¢) Of course Z(10203) = —id. In the cases in part (b) Gz =
{(M7™)™ |m € Z}. The definitions (5.9)-(5.12) show that Z is
surjective.

The case Hi2: Gz = SLy(Z) x {£1}. The group Gz is generated
by —id, hy and ho with

1 1
=~ J {0
0

ho = (f s f

SO R O

The cases S(—[,2,—1) with [ > 4 even: (5.13)—(5.16) hold also for

even [. With respect to the Z-basis f = (f1, f2, f3) = (f1, 5 fo, f3) of
Hy,

({110
Mi:i 010
0 01
One sees
GZ = <_1d7]/\\4/7Q>
with
(-1 0 © o
Q = (f=f|l 0 -1 0])=MoM*"/?
0O 0 1
= Z(c™™) o Z(6507 oy o), O



5.6. Special rank 3 cases with eigenvalues not all in S!

This section starts with a general lemma for all rank 3 cases with
eigenvalues not all in S'. It gives coarse information on the four
groups G ,G(ZO), G(Zl) and Gz. Afterwards Theorem 5.16 determines
these groups precisely for three series of cases and one exceptional case.
Theorem 5.18 in section 5.7 will treat the other irreducible cases with
eigenvalues not all in S*.

LEMMA 5.15. Fiz x € Z3 with r(z) < 0 or r(x) > 4. Then

(2:1) or (1:1) (finite:1)
GY ST G =60 =6l S {(£M 1 e 7Y

Proof: For p(t) = S22 pit’ € Q] write y1; := p()\;) for j €
{1,2,3}. Then p, us and pg are the eigenvalues of p(M) € End(Hg).
The monodromy is because of r(z) € Z — {0, 1,2, 3,4} and Lemma 5.7
semisimple and regular. Lemma 5.1 (c) (i) and (ii) applies and gives

Gy = {p(M)|p(t) :Zpiti € Q[t], (5.17)
p(M) € End(Hz), pups € {£1}, 13 € {£1}}
OGy = GY =G ={p(M)eGY | =1} (5.18)

Especially h € GY = h? € Gz. Also, End(Hg, M) = Q[M], and the

map

End(Hg, M) = Q[M] — QM) x Q,  p(M) = (1, i3)

is an isomorphism of (Q-algebras. This is a special case of the chinese
remainder theorem. @ is mapped to (—1,1).

Observe (—id) € Gz C G}, Therefore the subgroup {h € Gz | us =
1} has index 2 in Gz, and the subgroup {h € G¥ | u3 = 1} has index 2
in GY'. The map

{he Gyl lps=1} = Ogpyyy = m, (5.19)

is injective. The element —1 € O@[M] is in the image of the map in

(5.19) if and only if Q@ € G¥, and then it is the image of Q. By

Dirichlet’s unit theorem [BSh73, Ch. 2 4.3 Theorem 5] the group

Ofa, 1s isomorphic to the group {1} x Z. Therefore {h € GY | us =

1} is isomorphic to {#1} x Z if Q € G and to Z if Q ¢ GY. If
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Q € GY then because of @ € Aut(Hg, L) also @ € Gz. This and the
implication h € GM = h? € Gy show

(G Gzl =[{h € G |ns = 1} : {h € Gz | us = 1}] € {1,2}.

The group {£+M'|l € Z} C Gz C GJ! is isomorphic to {+1} x Z,
so it has a free part of rank 1, just as Gz and GY. Therefore [G7 :
{+M!'|l € Z}] < oo. O

Later we will see precisely how much bigger G}/ and Gz are than
{£M'"|l € Z}. In the majority of the cases they are not bigger, but
GY =Gy ={EM"|1 € Z}.

The following theorem determines the groups Gz and G > G, for
three series of triples and the exceptional case (3, 3,4). In Theorem 5.18
in section 5.7 we will see that the Bryx {£1}? orbits of these three series
and of the triple (3,3,4) are the only triples z with r(z) € Z.o U Z~4,
(Hgz, L, e) irreducible and not G = Gz = {+M'|l € Z}.

THEOREM 5.16. For each x € Z2 below fiz also the associated triple
(HZJ LaQ)

(a) Consider x = (z,z,z) with x € Z —{-1,0,1,2,3} and S =
S(x). Then d30901 € (Brs x {£1}3)s and by Theorem 3.26 (c) (with
k=0)

M™% .= Z(030901) € Gy with  (M"™"?)3 = —M.
Moot s cyclic with MT™°3(f3) = — f3. In the case v = 4 define also
Mroot,ﬁ = _(Mroot,3>2 o 2Mroot,3'
Then
Gz = GY ={xM™"1eZ} ifxd¢{4,5},
Gz = GY ={id,Q} x {£(M™" |l ez} ifx=05,
Gy = GY =G = {id, Q) x {£(M™"*)'|i € Z}
E QM — [id, Q) x {£(M™) |1 €7} itz —4.
]fl’ =4 then (Mroot,6)2 — _Mmot,?;‘
(b) Consider x = (2y,2y,2y*) with y € Z>y and S = S(z). Then
o902 € (Brz x {£1}3)s. By Lemma 3.25 (b)
M™% = Z(0907) € Gy.
It satisfies (M7™°%?)2 = M and M"™°?(f3) = —f3. In the case y = 2
define also
1

Mroot,4 — M — 2M7‘oot,2 - §ld )
4 4
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Then
Gz = GM ={£(M™")|lez} ify>3,
Gz = Gf =G = {id,Q} x {£(M™") |1 € Z}

1:2

C GY ={id,Q} x {£(M™"Y |1 eZ} ify=2.

]fy =92 then (Mroot 4) — Mroot,2 2
(¢) Consider x = (z,x,0) with x € Z>s and S = S(z). In the case

x = 2 define also
root, 2 1 1
M 2]\4 + = 1d

Then
Gy = Gy ={id,Q} x{£M'|le€Z} ifz>3,
Gz, = GY =GY) ={id,Q} x {M'|l € 2}
E QM = [id, Q) x {£(M™2) |1 €7} ita—2.
If v = 2 then (M™°%%)? = M.
(d) Consider x = (3,3,4). Then
Gy =Gy = {id,Q} x {+M"' |l € Z}.
(e) In all cases in (a)-(d) except for the four cases
z € {(4,4,4),(5,5,5),(4,4,8),(3,3,4)}
the map Z : (Brs x {£1}®)s — Gy is surjective so Gz, = GE. In the
four exceptional cases Q € Gz — G5.

Proof: In all cases in thls theorem r(z) < 0 or r(x) > 4, so Lemma
5.15 applies, so Gz = GZ = G(Z1 :

(a) S is as in Theorem 3.26 (c) with & = 0. Therefore d30507 is
in the stabilizer of S and M3 is in G, it is cyclic, and it satisfies
(Mroot3)3 = — M. Explicitly (by Theorem 3.26 (a))

—r —x —1
Mroot,S(Q) —e- 1 0 0
0O 1 0

One sees MT°43( f3) = — f3 where f3 = —e; + ey — e3, so its third eigen-
value is k3 = —1. The other two eigenvalues x; and ko are determined
by the trace —z = k1 + ko — 1 and the determinant —1 = kyka(—1) of
MToot3 The eigenvalues are

1_
K12 = Ty \/:U2—2x— k3 = —1.
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Because M and M7 are regular, Lemma 5.1 applies. It gives an
isomorphism of QQ-algebras

End(Hg, M) = End(Hg, M™°"?)
2
= {p(M™") |p(t) = > pit' € Q]} — Qlm]xQ
=0

p(M™"3) = (p(s1), p(—1)).

The image of —id is (—1,—1), the image of @ is (—1,1), the image
of M™% is (ki,—1). The image of G is a priori a subgroup of
Oy % {£1}. We have to find out which one. By Theorem 5.11
Q € G¥ (and then also Q € Gz) only for x € {4,5}.

Lemma 5.2 applies because M™% is cyclic. It shows
Gy = {p(M™"?) | p(t) = pat® + prt + po € Z]t] with
(p(k1), p(=1)) € Z[ra]" x {£1}},
Gz = {p(M™°3)|p(t) = pat® + pit + po € Z[t] with
(p(k1),p(—1)) € Z[k1]" x {£1} and p(k1)p(k2) = 1}.

Now Lemma B.1 (a) is useful. It says

{£6 1€z} for x ¢ {4, -2},
Zlki]* = {£(ki = 1) 1€z} forax=-2,
{£(k1 + 1)l €Z} forxz=4.

with
(k1 —1)(kg —1) = =1 and (k1 —1)* =4k, for z= -2,
(ki +D(ky+1)=—1 and (k; +1)*=—x; for z=4.

For z ¢ {4,5,—2} the facts —id, M™°"® € Gz and Q ¢ Gz show
that the image of Gz and G in Z[r,|* x {£1} = {£k! |l € Z} x {£1}
has index 2. Therefore then Gz = G} is as claimed.

For z = 5 the facts —id, M3 Q € Gy show that the image of
Gz and G¥ is Z[k]* x {£1} = {£x} |l € Z} x {&1}. Therefore then
Gz = G is as claimed.

Consider the case z = —2. If an automorphism p(M7°3) is in G
which corresponds to a pair (k; — 1,+£1), then p(k;) = k1 — 1 means
p(t) =t —1+1y(t* — 3t + 1) for some I, € Z. But then p(—1) =
—2+41y-5 ¢ {£1}. So G} does not contain such an automorphism.
G and Gz are as claimed, because Q ¢ G¥'.

Consider the case x = 4. The polynomial p(t) = —t? — 2t satisfies
p(—1) =1, p(k1) = =Kk —2K; = —(—3k1 —1) — 2Kk = K1+ 1. Therefore
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Mroott = p(M7Tot3) € GI. Because ; + 1 has norm —1, M"°S is not
in Gz. The groups G} and Gz are as claimed.

(b) Compare the sections 4.1 and 3.2 for the actions of Bry x {£1}3
on Z* and on Bést,

02071 (2y, 2y, 2y°)
= 0201(—2y, 2y — 2y - 2y, 2y) = 0201 (—2y, —2y°, 2y)
= 09(2y,2y — (—2y)(—2y2), —2y2) = 09(2y, 2y — 49°, —2y2)
= (2 —49°) — 2y - (=20, 2y, 2¢%) = (2y,2y,2°),

so 0307 is in the stabilizer of (2y, 2y, 2y?), so M"™°4? .= Z(040?) € Gy.

M72(¢) = 0302 (e)

= agal(sg?)(eg), e1,€3)

= 0901(e2 — 2yey, ey, €3)

= 0255 e, (€1), €2 = 2yer, €3)

= oa(er +2y(ex — 2yer), ea — 2yeq, e3)

= (1= 4y”)er +2yea, 0, o, (€3), €2 — 2ye1)

= ((1 —4y®)e; + 2yes, e3 + 2y*(es — 2yey), ea — 2yeq)
1—4y? —4y3 —2

= e- 2y 2y2 1 = e- Mroot,Q,mat.
0 1 0

The map Z : (Brg x {£1}3)s — Gz in Lemma 3.25 is a group antiho-
momorphism. By Theorem 3.26 Z(¢™") = M. Therefore

(M™")? = Z(0901)Z(0907) = Z(0901(010201)01)
= Z(0901(020102)01) = Z((0201)%) = Z(c™") = M.

One sees M™%2(f3) = —f3, where f3 = —ye; + €5 — e, so its third

eigenvalue is k3 = —1. The other two eigenvalues x; and ko are deter-
mined by the trace 1 — 2y% = k1 + ko — 1 and the product kiky = 1,
which holds because of M™"? € Gy (or because det M™% = —1).

The eigenvalues are

Ki2 = (1—92)iyvyz—2, Ry = —1.

109



Because M and M™% are regular, Lemma 5.1 applies. It gives an
isomorphism of QQ-algebras

End(Hg, M) = End(Hg, M""?)
2
= {p(M™*?) |p(t) = Y _pt' € Qlt]} — Qlw] x Q
=0

p(M"%) = (p(k1),p(—1)).

The image of —id is (—1,—1), the image of @ is (—1,1), the image
of M™°%? is (ki,—1). The image of G¥ is a priori a subgroup of
Oy X {£1}. We have to find out which one. By Theorem 5.11
Q € G} (and then also Q € G7z) only for y = 2.

Consider the decomposition Hy = Hg @ Hgz2 as in Definition 5.9
and the primitive sublattices Hz = Hg1NHy and Hy o = HgoNHz =
Zfs in Hy. The sublattice Hyz; is the right L-orthogonal subspace

(Zf3)* C Hy of Zfs, see (5.8):

21
Hzy = {e-2'2€Z%0=(—y,1 -2 —1) | 2 |}
Z3
= (fi.fo)z with fi=e1—yes, fa=ea+ (1—2y")es.
Write i: (fl?f?af?)) =c- M(Qvi)a
Mroot,Q(ﬁ) —e- Mroot,2,mat’ Mroot,2(i> — iMroot,Z,mat,i.
Then

L (-2 -y oy
Me, /)™ = -y -y -1 -1,
Y 22 -1 1

-2 +1 =2y O
M’/’oot,Q,mati — M(Q, i)_erOOt’Q’matM(Q, _) — Y 1 0
0 0o -1

Any element h = p(M) € GM with p(t) € Q[t] restricts to an auto-
morphism of Hz; which commutes with M root,2| Hz,» SO its restriction
to Hyz has the shape hly,, = aid +0M"?|y, | with a,b € Q with

10 -2 +1 -2
a<0 1)+b( y . )GGLQ(Z).
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This implies by € Z and a + b € Z. The eigenvalue p(k;) is

a+ bk =a+b(l—y*+y\/y2—2)
= (a+b)+by(—y+Vy>—2) € Z[\y? - 2]".

Now Lemma B.1 (b) is useful. It says
o +r! |l € Z} ify>3
2 * { 1 - 9%
Zlvy =2 {{i(1+\/§)l!leZ} if y = 2.
Furthermore ; has norm 1, 1++/2 has norm —1, and (1—1—\/5)2 = —Kso

if y=2.
Consider the cases y > 3. The map

G% — O(a[/ﬂ} X {:l:l}a p<MTOOt’2) = (p(’%1>7p<_1))7

has because of Q ¢ G as image the index 2 subgroup of {£x! |l €
Z} x {£1} which is generated by (k1,—1) and (=1, —1), because @ ¢
GH. Therefore then GY = Gy = {£(M™"?)! || € Z}.

Consider the case y = 2. Then Q € Gz C GJ!. Therefore then
Gz = {id, Q} x {£(Mm°t*)! || € Z}. The question remains whether
1 + /2 arises as eigenvalue p(k1) for an element p(M7°4?) € GM. It
does. MT°°%* has the first eigenvalue

—i(—3+2\/§)2 —2(=3+2V2) — z =1-2

with (1—+v/2)? = 3—2v/2 = —k; and the third eigenvalue —1 —2(—1)—

3 = 1. Therefore (M°*)% = —Mroot2 Moot is in G because
97 220 28 -15 =32 —4\ 4
M™4e) = el —~[-28 =63 -8 -2 4 8&8 1 -5
4 8 1 0o 1 0
5 9 1
= e|l—-1 -1 0
-1 -4 -1

Therefore then G} = {id, Q} x {£(M"") |1 € Z}.
(c) Observe r = 2z%. M has the eigenvalues \j, Ay, A3 with
Mp=(1-2")xzva? -2, N=1

Because M is regular, Lemma 5.1 applies. It gives an isomorphism of
Q-algebras

End(Hg, M)
={p(M)|p(t) = pt* + pit +po € Qt]} — QM| xQ
p(M) = (p(A1),p(1)).
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The image of —id is (—1, —1), the image of @ is (—1,1), the image of
M is (Aq,1). The image of G} is a priori a subgroup of Opp X {£1}.
We have to find out which one. By Theorem 5.11 Q € Gz C G3.

Consider the decomposition Hy = Hg1 @ Hgz2 as in Definition 5.9
and the primitive sublattices Hz, = Hg1NHy and Hy o = HgoNHz =
Zfs in Hy. The sublattice Hyz; is the right L-orthogonal subspace
(Zf3)*+ C Hy of Zfs, see (5.8):

21
Hzy = {e-2'|2€Z°,0=(0,1,-1) | = |}
<3

= <f1, f2>Z with f1 = €1, fg = eq + €3.
Write f = (f1, fa, f3) = e- M(e, f),
M(Q) —e- Mmat’ M(i) :iMmat,i.

Then
1 0 0 1 2 0 0
M(@)i) = 0 1 1 ) M(ﬁai)ilzg 01 1 )
01 —1 01 -1
1—222 —x —x
Mt — T 1 01,
T 0 1
1—222 =2z 0
M™M= M(e, f)"'M™ M(e, f) = T 1 0

The upper left 2 x 2-matrix in M™%/ coincides after identification
of z and y with the upper left 2 x 2-matrix in M7°°"?™@ in the proof
of part (b). Therefore we can argue exactly as in the proof of part (b).
Lemma B.1 (b) applies in the same way.

We obtain for z > 3 G = Gz = {id, Q} x {£M"'|l € Z} and for
r=2Gy={id,Q} x {xM'|l € Z}.

Consider the case x = 2. Then M"™°? has the first eigenvalue

1 1
N4+ =—142
SN+ 3 +2

with (=14 \/5)2 = 3—2v2 = —)\; and the third eigenvalue %—l—% =1.
Therefore (M7°%2)2 = QM. M2 is in G} because

-7 -2 =2\ -3 -1 -1
2 1 0 |+=B]=cl1 1 o0

2 o0 1/ 2 1 0 1
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Therefore GY = {id, Q} x {£(M™"?)! |l € Z} for x = 2.
(d) Here r = —2. M has the eigenvalues A1, Ay, A3 with
Mp=2+V3 N=L1

It is well known and can be seen easily either elementarily or with
Theorem B.6 that

Q € Gz C GM by Theorem 5.11. Recall the proof of Lemma 5.15. The
restriction of the map in (5.19) to the map

{id, @} x {M'|l € Z} — Oy,
is an isomorphism. Therefore the map in (5.19) is an isomorphism and
Gy =Gy = {id,Q} x {+M"' |l € 7).
(e) Observe in part (c)
Z(0o2)(e) = o2(e) = (e1, €5, €2),
so Z(o2)(f1, fa, f3) = (f1, f2 = f3),
so Z(oy) = —Q.
Now in all cases

—id = Z<516263)7 M = Z(O_mon>

and
in part (a) { ]C\meOt’g z {Zié(?\(j[zggt)’é)l |l € Z} for ¢ {4,5},
in part (b): { (A;Zoom z {Zj(ji\ji‘)’;w)l |l € Z} for y # 2,
in part (o) { S e,

This shows Gz = G5 in all but the four cases z €

{(4,4,4),(5,5,5), (4,4,8),(3,3,4)}. In these four cases Q € Gz. It
remains to see Q ¢ G5. We offer two proofs.

First proof: It uses that in these four cases the stabilizer of e in
Brs x {#+1}3 is {id}, which will be proved as part of Theorem 7.11. Tt
also follows from 'Y = G7¢3 in Theorem 6.18 (g) or ['¥) = G/C°73 in
Theorem 6.11 (g) and from Example 3.4 (respectively Theorem 3.2 (a)
or (b)). This implies that here Z : (Brs x {+1}?)s — Gz is injective.
Observe furthermore Q% = id. If Q = Z(f) for some braid 3, then
3% =id as Z is a group antihomomorphism. But there is no braid of
order two.
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Second proof: By formula (5.5) in Theorem 5.11 in the four cases

Qle) = —e+2f3(1,3,1) in the case z = (4,4,4),
Qle) = —e+ f3(1,4,1) in the case x = (5,5,5),
Qle) = —e+ f3(2,7,1) in the case x = (4,4,8),
Qle) = —e+ f3(4,9,3) in the case z = (3,3,4).

By Theorem 6.21 (g) the restriction to A® of the projection pri®) :

Hy — Fz(l) is injective. Therefore in all four cases Q(e;) ¢ AW for
i € {1,2,3}. But any automorphism in G5 maps each e; to an odd
vanishing cycle. Thus Q ¢ G5. O

5.7. General rank 3 cases with eigenvalues not all in S!

Theorem 5.18 below will show Gz = GY = {£M'|l € Z} in all
irreducible rank 3 with eigenvalues not all in S! which have not been
treated in Theorem 5.16. This result is simple to write down, but the
proof is long. It is a case discussion with many subcases. It builds
on part (b) of the technical Lemma 5.17 which gives necessary and
sufficient conditions when an endomorphism in End(Hg) of a certain
shape is in End(H7).

Any element of {h € G} | u3 = 1} can be written as h = q(M) with
q(t) = 14 qo(t — 1) + q1(t — 1)? with unique coefficients g, ¢ € Q, but
not all values qo, ¢1 € Q give such an element. Part (b) of the following
lemma says which integrality conditions on g9 and ¢; are necessary for
q(M) € End(Hz). Part (a) is good to know in this context.

LEMMA 5.17. Fiz x € Z* — {(0,0,0)} and the associated triple
(Hz, L,e). Recall g = ged(xy, w2, 23) and T; = g~ 'x;. Define

g1 = ng(Z[L‘l — T2X3, 2.1'2 — T123, 21’3 - .3511'2) eNU {0}7
g2 = ggl = ged(27) — 97273, 2Ty — 92173, 273 — gT1T2) € NU {0}.

(5.20)

(a) We separate three cases.
(i) Case (three or two of x1,xs,x3 are odd): Then g and gy are odd and

ged(ge, 7;) = ged(g2,9) = 1, g3 | (r —4).

(i1) Case (exactly one of x1,x2,x3 is odd): Then g is odd, go = 2(4)
and

ged($.3) =ged(Lo9) =1, (£)?|(r —9).
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(i1i) Case (none of x1,xo,x3 is odd): Then g and go are even. More
precisely, g = 0(4) only if  and 71,7, 73 are odd. Else go = 2(4).
Always
2.9=1 gle-4.

(b) Consider qo,q1 € Q, q(t) := 1+ qo(t —1) +q(t —1)? € Q[t] and
h =q(M) € Q[M]. Define ¢z := qo — 2q1 € Q.

Then h € End(Hyz, M) if and only if the following integrality con-
ditions (5.21)—(5.24) are satisfied.

god(2, ) = ged(

09 €L, (5.21)
G- 9% €L, (5.22)
qori — qrjxy € Z  for {i,j,k} ={1,2,3}, (5.23)
q(a} —2})eZ  for {i,jk} ={1,2,3}. (5.24)
If these conditions hold, then also the following holds,
qQo - g1 € Z. (5.25)
(¢) In part (b) the eigenvalue of q(M) on Hcy, is
= qM) =1 —rq)+(q—rq)(M —1)

= (I-qo)+ (90 —rq)\.

Proof: (a) g is odd in the cases (i) and (ii) and even in case (iii).
Therefore g, is odd in case (i) and even in the cases (ii) and (iii), and
furthermore % is odd in case (ii). Also % odd in case (iii) almost
always, namely except when I and 7,7, 73 are odd, as can be seen
from the definition (5.20) of go. Here observe that at least one of
71, T, T3 is odd because ged(Ty, To, T3) = 1.

Now we consider first case (iii). A common divisor of £ and 7,
would be odd. Because of the second term 2z, — gz173 and the third
term 273 — gr1To in (5.20) it would also divide 7o and z3. This is
impossible because of ged(Z1,72,73) = 1. Therefore ged(%,7,) = 1.
Analogously for 7o and 3.

A common divisor of & and § would be odd. Because of all three
terms in (5.20) it would divide 71, Z9, 3. Therefore ged(£,2) = 1.

202
For i, 7, k with {i, j, k} = {1, 2,3} observe
2(2T; — gT;Tx) + gTk(2T; — gT:Tx) = T;(4 — 27), (5.26)
Ar —4) = ¢°(27; — g7;53,)° — (4 — 27)(4 — 27). (5.27)
(5.26) and ged(%2,7;) = 1 imply in case (iii) that 2 divides 471 (4 —x7).
This and (5.27) imply that (£)? divides “32, so g3 divides r — 4.
The claims for the cases (i) and (ii) follow similarly.
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(b) Recall the shape of M™ € Ms,3(Z) with Me = eM™* from
the beginning of Section 5.3. It gives

—X? — T3+ T T3 —T) — Tolz + T1T5  T1T3 — To

M _ B, = T1 — ToT3 —3 —5 ,
) T3 0
1 Tr1 T2 0 —T1 —X2
0 1 T3 (Mmat — Eg) = T 0 —xs |,
0 0 1 Ty T3 0
1 0 0 —x? —m1 T1T3 — Ty
Mm@ gyl 0 1 o)l=(a= 0 —ay
—Xy —XI3 1 ) I3 0

Now
q(M) € End(Hz) <= q(M™™) — E3 € M3,3(Z),

and this is equivalent to the following matrix being in M3y3(Z),

1 21 z9 1 0 O
0 1 3 (q(Mm“t) — E3) 0 1 0
0 0 1 —X2 —XI3 1
0 —Xr1 —XT2
= T 0 —X3
i) I3 0
1 0 0 —x? -] T1T3 — Ty
qo 0 1 0] + a1 T 0 —T3
—X2 —XI3 1 i) I3 0
3 —T1 + Toxz —To
2
= qo | 1 —+ XoX3 X3 —I3
i) T3 0
2 2
—T] — Ty —X2X3 Tr1T3
3 2 2 2
+ ¢ —T] — XT3 —T] — X3 TiT3 — T1T2
2 2 2
—T{T2 + T123 —T1ZTo T1Tok3 — Ty — T3

This gives nine scalar conditions, which we denote by their place [a, b]
with a,b € {1, 2,3} in the matrix, so for example [2, 1] is the condition
qo(z1+29w3) + q1(—23 — x223) € Z. These nine conditions are sufficient
and necessary for ¢(M) € End(Hy).

The following trick allows an easy derivation of implied conditions.
Recall the cyclic action v : Z® — Z3, x — (x3, 71, 72). It lifts to an ac-
tion of Brz x {+1}? on triangular bases of (Hz, L). Therefore together

with M™* = S(z)~1S(z)" also the matrix M™* := S(y(z))"1S(y(x))*
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is a monodromy matrix. Integrality of q(M™) is equivalent to in-
tegrality of q(M™). Therefore if the nine conditions hold, also the
conditions hold which are obtained from the nine conditions by replac-
ing (x1, 9, x3) by (x3,21,2) or by (z9,23,21). In the following [a, b]
denotes all three so obtained conditions, so for example [2, 1] denotes
the conditions

qo(z; + xjz8) + Q1(—x§’ —xjz;) €L
for (i, 5,k) € {(1,2,3),(3,1,2), (2,3, 1)}.

We have to show the following equivalence:
the conditions [a, b] for a,b € {1,2,3} <= the conditions (5.21) — (5.24).

—: [1,3] and [3,2] are equivalent to one another and to (5.23).

[ : } says ql(:v —7) € Z. One derives qi(z] — 27) € Z, which is
(5.24).

[1,1] and (5.24) give qa? € Z, so qaged(x?, 13, 22) = qug* € 7Z
which is (5.21).

The derivation of ¢1gg; € Z is laborious and goes as follows:

3, 1]&[1, 3] imply ¢12;(2z; — z;z;) € Z.
3,2]&[2, 3] imply ¢12;(2z; — z;x)) € Z.
3,3]&(5.24) imply q12;(2z; — z;x1) € Z.
One sees ¢ x;91 € Z and then ¢199, € 7Z.
<=: (5.23) gives [1, 3] and [3,2].

(5.21) and (5.24) give [1, 1] and [2,2].

(5.23) reduces [1,2], [2,1], [2,3] and [3,1] to gezjTk, qoT;xr — 13,
qxi(xizy — 2z;) and gz (—x;2; + 2xy). The first follows from (5.21),
the third and fourth follow from (5.22). The second reduces with (5.24)
to x;(qorr, — quz;x;), which follows from (5.23).

(3, 3] reduces with (5.24) to ¢iz;(x;x; — 2z;) which follows from
(5.22).

The equivalence of the conditions [a, b] with the conditions (5.21)—
(5.24) is shown.

It remains to show how (5.21)-(5.24) imply (5.25). One combines
two times (5.23), 2qox; — 2q1xjx) € Z, with (5.21), (g0 — 2q1)xjz € Z,
and obtains qo(2z; — z;xi) € Z.

(¢) Recall

(t—A)(t— o) =t"— (2—1)t+1,

SO M+ =2—1r Ml =1,

M=02-rA -1, (A —1)72=(-7)\,
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SO
o= T+gM —1)+aqa(h —1)?
= (1—=rq)+ (g —rq)(M —1). O
THEOREM 5.18. Consider a triple x € 7* with r(z) € Z<oU Z4
which is neither reducible nor in the Brs x {£1}3 orbit of a triple in

Theorem 5.16. More explicitly, the triple x is any triple in Z3 which is
not in the Bry x {&1}3 orbits of the triples in the following set,

{(,0,0) [ € Z} U {(r,2,0) | 7 € ) U{(29,20,2 |y € T}
U{(z,z,0) |z € Z} U{(—1,2,=1) |l € Z>3} U{(3,3,4)}.
Consider the associated triple (Hz, L, e) with L(e',e)' = S(x). Then
Gg=GY ={£M' |l €7}
The map Z : (Brs x {£1}3)s — Gz is surjective, so Gz = G5.

Proof: The surjectivity of Z follows from Gz = {£M'|] € Z},
—id = Z(016203) and M = Z(¢™°"). The main point is to prove
G ={+M'"|l € Z}.

Theorem 5.11 says for which z the automorphism () of Hg in Def-
inition 5.9 is in GY. They are all excluded here. So here Q ¢ G¥'.

We use the notation ¢ = g(z) in Lemma 5.10 and the notations
from the beginning of section 5.3. Especially r := r(z) € Zo U Z=u4,
and A3 = 1 and A\y;p = 355 £ \/r(r —4) are the cigenvalues of the
monodromy.

The proof of Lemma 5.15 gives a certain control on G3 and Gy.
Recall the notations there. For p(t) = Y27 pit' € Q[t] write ju; :=
p(A;) for the eigenvalues of p(M) € End(Hg). Recall (5.17), (5.18),
the isomorphism of Q-algebras

Bnd(Hg, M) = {p(M) [p(t) = 3_pt' € Qlf]} — QM]xQ,

p(M) = (p(M\1),p(1)),

and its restriction in (5.19), the injective group homomorphism

{he G lus=1} = Opyy h=p(M) = py =p(h1). (5.28)
The image of @ € End(Hg, M) in Q[\] x Q is (—1,1). Because Q ¢
G the image in (5.28) does not contain —1, so it is a cyclic group.
It contains A; which is the image of M. Therefore the group {h €

GM'| us = 1} is cyclic. It has two generators which are inverse to one
another. We denote by hge, the generator such that a positive power
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of it is M, namely (hge,)'sm = M for a unique number [, € N. We
have to prove lge, = 1.

We will argue indirectly. We will assume the existence of a root
h = p(M) € G with h! = M for some [ > 2, first eigenvalue p; =
p(A\1) and third eigenvalue sz = p(1) = 1. Then p! = )\ and p; =
(1 — qo) + (g0 — rq1) M for certain qg, 1 € Q which must satisfy the
properties in (5.21)—(5.24). We will come to a contradiction.

We can restrict to z in the following set, as the Bry x {£1}? orbits
of the elements in this set are all  which we consider in this theorem:

Consider the two sets Y7 and Y;; C Z3,

Y, = {zeZij|z <xp <as)
- [{(2,0,0)|z € Zoo} U {(z,2,2) |z € Zo}
U{(z,2,0) |z € Zo}],
Vi = {zeZi|a < xy < 13,225 < 1175}
- {(z,z,3)|z € Z>s}
U {(2y,2y,2¢%) |y € Z22} U{(3,3,4)}].

All triples z in this theorem are in the Brz x {41} orbits of the triples
in YUY U{z| (z2, 1, 23) € YUY} We will restrict to z € Y;UY .
For z with (z9,x1,23) € Y7 UY]s, one can copy the following proof and
exchange r1 and x,.
Because the triples (z, z, x) are excluded, z; < x3 and 77 < T3.
We will assume the existence of a unit 4, € O, ) with ph =\ for
some | > 2 and some norm N (u1) € {£1}. The integrality conditions
in Lemma 5.17 (b) for qo, q1,¢2 € Q with p1 = (1 — qo) + (g0 — rq1) M
and ¢ = qo — 2¢q; will lead to a contradiction. The proof is a case
discussion. The cases split as follows.
Case I. x € Y7.
Subcase I.1: { > 3 odd.
Subcase [.2: [ = 2.
Case II: z € Y77.
Subcase I1.1: [ > 3 odd.
Subcase 11.2: | = 2.
Subcase 11.2.1: N () = 1:
Subcase 11.2.1.1: py = K, for some a € Zx3.
Subcase 11.2.1.2: 1y = —k, for some a € Z>3.
Subcase 11.2.2: M () = —1.
The treatment of the cases I, II.1 and I1.2.2 will be fairly short.
The treatment of the cases I1.2.1 will be laborious.
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Lemma C.2 prepares all cases with N (1) = 1. Consider such a
case. Suppose 1 = K, for some a € Z<_3UZ>3. Compare Lemma C.2
(c) and Lemma 5.17 (c):

qo = QO,l<a>7 1 = Ch,z(a), g2 = QZ,Z(CL)7 r= T’z(a)-

The integrality condition (5.21) g2¢* € Z together with (C.6) and (C.5)
tells that r/(2 — a) = r(a)/(2 — a) divides g°.

For [ > 3 odd r/(2 — a) is itself a square by (C.4), and g can be
written as g = 173 with 71,73 € Nand 7% = r/(2 —a). For [ = 2
r/(2—a) = a+2, and g can be written as g = y1727y3 with vq, 72,73 € N,
Yo squarefree, and a + 2 = 379, s0 g° = (a + 2)Y973.

On the other hand ¢* divides r = r;(a) by Lemma 1.3. (5.1) takes
the shape

(5.29)

2—a : :
UV S 2 if [ > 3 is odd,
r]+ T3+ X3 — gr1xoT3 = ? = { 3£§ =9

This equation will be the key to contradictions in the cases discussed
below. The absolute value of the left hand side will be large, the
absolute value of the right hand side will be small. Now we start the
case discussion.

Case 1.1,z € Y7, 1 > 3 odd: N(p11)" = N(\1) = 1 and [ odd imply
N(p1) = 1. Here Ay € (—1,0), so p; € (—1,0), so p1 = K, for some
a € Z<_3. By the discussion above g = v17y3, 71 = |b(l+1)/2 + b(l,l)/gl,
and (5.29) holds.

Case I.1.1, all z; < 0: We excluded the triples (z, z, ). Therefore
fl S —2. For [ Z 3 Y1 = ’b(l+1)/2 + b(l—l)/2| Z |b2 + b1’ = |a| -1 by
Lemma C.2 (b). Now by (5.29)

la] +2 > 272a 229 +44+1+1=2m7+622(lal—1)+6,
3

a contradiction.
Case 1.1.2, 23 = 0: The integrality conditions (5.23) and (5.24)
say here

QT1, QT2 1T € L, qury, 3 €L, 50 qg° €7
(which is a bit stronger than (5.22)). q1¢*> € Z means

(bi(a) — by_1(a) — 1)g? _ bi(a) = bi—a(a) — 1
rbi(a) bi(a)(2 = a)/3

But W € (1,2) because of Lemma C.2 (b), and % eN, a
3

contradiction.

€ Z.
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Case 1.2, z € Y7, | = 2: Here \; < 0. Therefore p? = \; is
impossible.

Case I1.1, z € Y7, | > 3 odd: N(u1)! = N(\;) = 1 and [ odd
imply N (p1) = 1. Here Ay > 1,80 g > 1, 50 11 = K, for some a € Z>3.
By the discussion above g = 71793, 71 = bus1y/2 + bu—1y/2, and (5.29)
holds. The proof of Lemma 5.10 (b) gives the first inequality below,

a%%z - ‘g%’ > g732 — 7 — 232 > 2(gF — 3),
o a—2 > YTyt — 3),
so (1375 —1)3 > (V375 — DmysTy + 132 — (a+1). (5.30)
Observe with Lemma C.2 (b)

M =bayry2 +ba-1)y2 = b2+ by =a+12=>4.

Therefore the inequality (5.30) can only hold if v3 = 75 = 7; = 1 and
v1=a-+1,s0l=3. Then also g = 1173 =a+ 1.

a_22 :’%':9%3—:z”§—1—1:(a+1—§53)553—2,
Y3 g
0 = (Z3—1)(73—a).
We excluded the triples (z,z,x), so 23 > 1. But also 23 < §7,7, =
“—;rl < a. A contradiction.
Case I1.2, x € Yi;, | = 2: Then N(u;) = &1 for some e, € {£1}.
Also Ay > 1 and eypq > 1 for some €3 € {£1}. Then p, is a zero of a

polynomial #? — e5at + &;, namely

1
U = 82(% + 5 a? — 4&?1) Wlth{

conj

p1 + ™ = esa,  pap’

Comparison with

a—2 =

CLGZZg if€1:1,
aeN if51:—17

nj __ 2 _
=£&1, M =&20alU1 —Eq.

2—r 1
A= 5 —|—§ r(r—4)
2 _ 92
— Iu/%:a 9 1+g CL2—4€1
= a1 — &1
shows
r o= —a"+2( +1),
€1€ €
H1 = 242N\
a a

= (1—=qo) + (g0 —rq1) i,
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with

a — £1&9
Q = ——»
a
e2(e1+1)—a
q1

a(a? —2(e; + 1))
Case I1.2.1, N(p11) = 1: Then &1 =1 and

r o= —a*+4=(2-a)2+a),
a— &9
o = )
a
25— a -1
no= ala® —4)  a(a+2e;)’
B 90 — a+ &9
G = Qo Q1_a+252‘

Write a+ 2e5 = 27, with 1,72 € N and 7, squarefree. The integrality
condition (5.21) qag* € Z tells

g=m%ys with a+42e =777, ¢*=(a+28)%y;, (5.31)
for some 3 € N. The conditions r < 0 and ¢?|r tell

a%§2: ékwm@@—ﬁ—ﬁ—@eN (5.32)
Vo divides a + 2e5 and a — 25, so it divides 4. As it is squarefree,
72 € {1,2}. Also ged(g,a) = ged(y17273,a) € {1,2} as a + 25 = viv,
and vyvs divides a — 2e5.

The integrality conditions (5.23), goz; — 1z;2% € Z tell

T; r:rp = x; + —(—geax; xT;xy) € 7,
alat 259" k +a( 9e2Ti + V2 V3T Tx)
so after multiplying with ~; E(—( + 2e9)e9; + gT;7k) € Z,
a
SO E(—257} + gz,71) € Z,
a
SO Egg €.
a
This is a bit stronger than the integrality condition (5.22) q19°%g> € Z
2
which says 2239, € Z. We can improve it even more, to
1 - -~

% €L, (-2 +gE7) € L. (5.33)

by the following case discussion: If a = 1(2), then 73 = 1(2), so
ged(a,y3) = 1, so (5.33) holds. It a = 0(4), then a — 25 = 2(4),
so 13 = 1(2), so ged(a,y3) = 1, so (5.33) holds. If a = 2(4), then a
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priori 2g, € Z. But then ¢ = 1(2) and g = 0(2), so g2 = 0(2), so (5.33)
holds.

Finally, the integrality conditions (5.24) qi(z} — 27) say

a
2

2
PR _P) e (5.34)
a

The following estimate which arises from (5.2) will also be useful:

5 (2+ (4_01/3)2 (2+a2/3)2 B 4_|_4a2/3 +(I4/3

o= g S g
4423 +2a+a"?  (a+2)(2+a/?) (5.35)
- g2 (a+ 2e9)v273 '
Case I1.2.1.1, g5 = 1, 3 = K, for some a € Z>3: The estimate
(5.35) says
o 2+a'/
7 < | +a | <|2+a?| <a (recall a € Zs3). (5.36)

Yory3

Recall that x is a local minimum, so 2z3 < gr172 and that ; < 75 < T3
and 1 <7; < 73 (as (z,z,z) is excluded).

Case I1.2.1.1.1, 273 < g7172: Then (5.33) gives the existence of
a € N with gz,7y = aa + 223. With this we go into (5.32),

a— 2

73)
’72’732,

=  aaZs— 7+ (75— 75

(5.36) _ T3>2
> aars—a+0 > a,

a contradiction.
Case 11.2.1.1.2, 273 = gZ,79, 71 > 2: (5.32) takes the shape

a—2 . . fl . .
3 = i’g — .’17% — ZL’; = gg( )2 2 72 2
Y273

> (¢?—2)72 > ((a +2) — 2)72 = a2 > q,

a contradiction.
Case 11.2.1.1.3, 273 = gT,T2, ; = 1: Write 74 := ¥v3. Then
(5.32) takes the shape

-2 . . 1 ~
¢ = x%—l—x%:(Z(a+2)74—1)x§—1,
V4
To>1 1
=z gla+2)n-2
(i —4)a < =207 —4) +8(n —2).
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If 74 > 2 then a < =2+ -2~ < —2 4+ & a contradiction. Therefore

Ya+2 — 57
74 € {1,2}. If 74 = 1 then (5.32) becomes
-2 ~
a—2 = a4 73 —1, so 4= (a—2)(T5—4),

which has no solution (a,zs) € Z>3 x N, so a contradiction.

If 74 = 2 then (5.32) is solved with Zo = 1 and a € Z>j3 arbitrary.
Then 7, =1, %2 =2, 13=1,9=2m, T3 =% =m, 2= (2N, 2m,27}).
These cases are excluded.

Case I1.2.1.2, gy = —1, j11 = —K, for some a € Z>3: The estimates
(5.35) say here

(a+2)(2 +a'/?)
(a—2)7273

<
(a—2)773

. (5.37)

This implies
i <a if a>8. (5.38)

We treat small a first. Recall 79 € {1,2} and a = ¥y + 2. So if
a < 9 then a € {3,4,6}. The following table lists constraints for
a € {3,4,6}. For z; (5.37) gives an upper bound and § <8 =1

gives a lower bound. Recall the conditions a — 2 = v, and j;;% eN.
3
a 3 4 6
(71772773) (1’171) (17271) (27171) or (27172)

Yoy2 1 2 lor4

g 1 2 2or4

3 3 3 .3

52/3 2 3 5 5 o Z

@ra?)” | 16,64.. | 10,21.. 7,03..

T 3or4 2 2or 1

This gives five cases (a,71) € {(3,3),(3,4),(4,2),(6,2),(6,1)} with
a < 9. We treat these cases first and then all cases with « > 10.
Because of (5.33) a number o € Zso with g7172 = aa + 273 exists.
Then (5.32) becomes
02 _ iy - B+ (B ). (5.39)
273

Also recall (5.34) 7277%(553 —T}) €L
Case 11.2.1.2.1, (a,v1,72,73,9,21) = (3,1,1,1,1,3): (5.39) says

5=3ars3 — 9+ (T3 — T3).
(5.34) says that 3 divides 75 — 73. A contradiction.
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Case 11.2.1.2.2, (a,71,72,73,9,%1) = (3,1,1,1,1,4): (5.39) says
5=3aT3 — 16 + (T2 — 73).

gT1Ty = 49 = aa + 273 implies that « is even. This and z3 > 7, =4
and (5.39) show o = 0, s0 275 = T3, s0 5 = 0—16+ 373, a contradiction.
Case 11.2.1.2.3, (a,71,72,73,9,%1) = (4,1,2,1,2,2): (5.39) says

3=4daT; —4+ (75— 13).
(5.34) says that 2 divides 72 — 73. A contradiction.
Case 11.2.1.2.4, (a,v1,72,73,9,21) = (6,2,1,1,2,2): (5.39) says
8 = 6aTs — 4+ (T3 — 73).
T3> 7 =2 and (5.39) imply a = 0, so 12 = 72 — 73. Only 7o = 2 and
T3 = 4 satisfy this. But then ged(7y, 72, 73) = 2 # 1, a contradiction.
Case 11.2.1.2.5, (a,v1,72,73,9,21) = (6,2,1,2,4,1): (5.39) says
2 =6a7s — 1 + (75 — 73).

It implies &« = 0 and T3 = 1, 3 = 2, so z = (4,4,8). This case was
excluded in Theorem 5.18.

Case 11.2.1.2.6, a > 10:

Case 11.2.1.2.6.1, a > 0: (5.38) gives 22 < a. This and (5.39)
and 73 > 77 > 1l show a =1, 13 = 2, 11 = 1, 79 = 13 = 1, so
a+2=2a—1+(4—7%). A contradiction to a > 10.

Case I1.2.1.2.6.2, a = 0, 7; > 2: (5.39) says

a—+ 2 . . 1 .
5 = T3 17— T3 = ((a— 2y 77 — )T — 71,
V273 4

so a+2 > ((a—2)—172—72> ((a—2) —2)4,
so 3a < 18, a <6,

a contradiction.
Case 11.2.1.2.6.3, a = 0, 7; = 1: Write 4 := 7975. Then (5.39)
says

a+2 . - 1 ~
= BH-1-T=((a-2nu; -3 -1,
V4 4
4 2
Vi oa—2- Y
The right hand side must be > 1. This means
4
’YZ(G—2—7—) < 4la+2+ ),
4

(i —4a < 2(yf—4)+8(y4+2).
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If v4 > 2 then a < 2+ %, which is in contradiction to a > 10, as
74 = 3 would mean 9 = 3, which is impossible. Therefore 4 € {1, 2}.

If 74 = 1 then (5.40) says 73 = 4253 = 4 + 25 But the right hand
side is not a square for any a > 10, a contradiction.

If 74 = 2 then (5.40) says T3 = £}, which is also not a square for
any a > 10, a contradiction.

Case I1.2.2, N(u1) = &1 = —1: Recall the formulas for r, gy and

¢1 at the beginning of case 11.2. Now

r o= —a°,
a—+ €9
do = ’
a
B —1
¢ = ?7
a’® + eqa + 2
Qg = ———— .

a2
The integrality condition (5.21) ¢29* € Z says % | g if a = 2(4) and a| g
if a = 1(2) or a = 0(4). Also g*|r = —a®. Therefore g = a or g = £,
and g = § only if @ = 2(4). The case g = a means 7 =1 which
implies by Lemma 5.11 () € Gz. But all such cases are excluded in
Theorem 5.18.

Therefore g = § and a = 2(4). The integrality condition (5.22)
119°g2 € Z says 2 € 7. But g, = 0(4) and g = 1(2) are together im-
possible in view of the definition go = ged (271 —gT2T3, 2T —gT1 T3, 2T3—
gZ1%9) and ged (T, T2, 73) = 1. A contradiction.

Therefore in all cases the assumption that a nontrivial root p; of
A1 exists which satisfies the integrality conditions (5.21)—(5.24) leads

O

to a contradiction. Theorem 5.18 is proved

REMARK 5.19. The results in this chapter give complete results on
Gy and G% D (g for all unimodular bilinear lattices of rank 3.

The reducible cases: Lemma 5.4, Theorem 5.13.

The irreducible cases with r € {0,1,2,4}: Theorem 5.14

The irreducible cases with r € Z.qUZ~4 and G} 2 {£M'|l € Z}:
Theorem 5.16.

The irreducible cases with r € Z.gUZ~4 and GY = {+M'|l € Z}:
Theorem 5.18.
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CHAPTER 6

Monodromy groups and vanishing cycles

This chapter studies the monodromy groups I'® and T'™ of the
unimodular bilinear lattices (Hz, L,e) with triangular basis e which
have rank 2 or 3. In rank 3 the even as well as the odd cases split into
many different case studies. They make the chapter long. "

Section 6.1 considers for k € {0;1} the quotient lattice Hy Vo=

Hz/Rad I® and the induced bilinear form " on it. Because T'®)
acts trivially on Rad I®) it acts on this quotient lattice and respects

™. The homomorphism I'*) — Aut(FZ(l)j(k)) has an image ng),
the simple part of T®) and a kernel Fq(f), the wnipotent part of T®).
There is the exact sequence

{id} = T - T® 5 1® 5 fid}.

We will study I'® together with '™ and T, Also the natural homo-
morphism j*) : H, — HY := Homy(Hz,Z) and in the even case the
spinor norm will be relevant. Section 6.1 fixes more or less well known
general facts.

Section 6.2 treats the rank 2 cases. The even cases A} and A, are
classical and easy. In the other even cases I'© = GfCo»2 There we
can characterize A©® arithmetically and geometrically. In the odd case
Ay T = S[,(Z). In the other irreducible odd cases TV = Gfree?,
The matrix group [ c SLy(Z) is a Fuchsian group of the second
kind, but has infinite index in SLs(Z) in most cases. We do not have
a characterization of A" which is as nice as in the even cases.

The long Theorem 6.11 in section 6.3 states our results on the even
monodromy group I'® in the rank 3 cases. The results are detailed

except for the local minima z € Z2; with r(z) < 0 where we only
state T 2 1" & GfCor3 anq 1Y = {id}. It is followed by Theorem
6.14 which gives the set A© of even vanishing cycles in many, but not
all cases. Especially in the cases of the local minima x € Z‘; with

r(z) < 0 we know little and only state A(®) = R in the case (3,3, 3),
but A© G RO in the four cases (3,3,4), (4,4,4), (5,5,5) and (4,4, 8).
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The result A© = R©) in the case (3,3, 3) seems to be new . Its proof
is rather laborious.

Section 6.4 treats the odd monodromy group I'V) and the set of odd
vanishing cycles A(M in the rank 3 cases. The long Theorem 6.18 fixes
the results on '™, The even longer Theorem 6.21 fixes the results on
AWM Also their proofs are long. They are preceded by two technical
lemmas, the second one helps to control I'Y. Similar to the even
rank 3 cases, in the case of a local minimum z € Z3, with r(z) < 0

I = M) o Gireed and T = {id}. In the same case, interestingly,
the map A — FZ(U is injective. This leads in this case to the problem

how to recover an odd vanishing cycle from its image in H_Z(l). One
solution is offered in the most important case z = (3,3, 3) in Lemma
6.26. One general application of the Theorems 6.18 and 6.21 is given
in Corollary 6.23. It allows to separate many of the orbits of the bigger
group (GPM x G*9") x () which acts on T¢"(Z) and Z3 in Lemma

4.18.

6.1. Basic observations

Let (Hyz, L,e) be a unimodular bilinear lattice of rank n € N with
a triangular basis e. Definition 2.8 gave two monodromy groups I'¥)
and T'™ and two sets A(® and A of vanishing cycles. Later in this
chapter they shall be studied rather systematically in essentially all
cases with n = 2 or n = 3. For that we need some notations and
basic facts, which are collected here. Everything in this section is well
known. Most of it is stated in the even case in [Eb84] and in the odd
case in [Ja83].

DEFINITION 6.1. Let (Hz, L) be a unimodular bilinear lattice of
rank n € N. In the following k € {0;1}. Denote

O® .= Aut(Hyz, I®™) the group of automorphisms of Hy,
which respect 1.
H! := Hom(Hyz, Z) the dual lattice.
i® . Hy — HY aw— (b= 1M (a,b)).
t® . 0W S Aut(HE), g (I—log™).
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;" = Hy/RadI®, Hp" .= Hp/Radg I®.

prf ) G(k) CHy — 1Y, a—a®, the projection.
7R Fz(k) X Fz(k) — 7 the bilinear form on Fz(k)
which is induced by I,
Fz(k)’ﬁ = Hom(?z(k), Z) the dual lattice.
OWFed .= L5€ OW | glpaa s = id}.
prA’(k) _ U . Q) Rad _, Aut(FZ(k)j(k)), g7,

the natural map to the set of induced automorphisms.

For any subgroup G*) ¢ O®)-fed define

G = prA®(G®Y c Aut (Y, 1Y),
G® = ker(pr®® . g® - Aut(ﬁz(k)j(k))).

G is called the simple part of G®, and G is called the unipotent
part of G,

LEMMA 6.2. Let (Hyz, L,¢e) be a unimodular bilinear lattice of rank
n € N with a triangular basis e.

(a) The map t® : O®) — Aut(HY) is a group homomorphism.
For g € OW t®)(g) maps j¥(Hyz) C H% to itself, so it induces an
automorphism 7 (g) € Aut(H:/j W (Hy)). The map

7™ 0® 5 Aut(HE /5% (Hy))
15 a group homomorphism.

(b) For a € RY) if k =0 and for a € Hy if k = 1 the reflection or
transvection s € O® is in ker 7(¥). Therefore T*) C ker 7(F).

(c) ker 7¥) Q) Rad,

(d) The horizontal lines of the following diagram are exact se-
quences.

i} - i 5 1w 5 P L

I N A a I
{id} — (ker7®), — kert® — (kert®), — {id}
I N N N I

{id} - oW o oWk oPFd Ty tiqy
The second and third exact sequence split non-canonically.

ng),Rad _ Aut(?z(k)j(k))
129



(e) The map

T:H" @ Rad I — O@Hed,

Zli ®r, — (a—a+ Zli(a(k))ri),

shorter: b+~ (a+ a+ h(@®)),

1 an isomorphism between abelian groups with
T(hy + hy) =T(hy) o T(hy), T(h)™* =T(=h).
It restricts to an isomorphism

7.7% (Fz(k)) ® Rad I® — (ker7®),,,

i

where j(k) : Fz(k) — Fz(k)’ 1s the map

ar (b T(k)(a, b)) for an arbitrary b € Fz(k).

(k)

(f) For g € OW-Fad g ¢ ;™ r € Rad I®

—(k) _ —(k)
goT(1 (@ @r)og =T(G" Ga) @r).
(9) Analogously to t*) and %) there are the group homomorphisms

i oWRad = Auy(H; P TY) = Aw(EF), g (L log™),

and 7®) : OWed o Au(, " 50 ().
) and 7*) satisfy
(ker 7)), = ker 7%

Proof: (a) The map ¢ is a group homomorphism because

t®(g1g2)(1) =10 (g1g2) " =10 gst o gt =P (g1)t®) (g2)(0).

t™)(g) maps j*) (Hz) to itself because

tD(g) (P (a) = iP(a)og =1M(a,g7'())
= 1%(g(a), () = i (g(a)).

k) is a group homomorphism because t*) is one.

A
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(b) Choose | € HE and b € Hy. Then

(W (s8N @) = D) = Lo (sf)™ () [(b)
(b= (=1)* 1" (a,b)a) — 1(b)
(=D)* ™ (a,0)l(a)
= V(=D (a)a)(b),
so t (s (1) =1 = jW((=1)*U(a)a) € jV(Hz),
SO T()(Sak) = id,

SO s((l € ker (%)

(c) Let g € ker 7®) and let r € Rad I®). Also ¢~ € ker 7). Choose
I € H:. Now 7 (g~1) = id implies

t® (g (1) —1=3j®(a) for some a € Hy,
0=1%(a,r) =P (a)(r) = (P (g~ — D) = U(g —id)(r)).

Because [ is arbitrary, (g —id)(r) = 0, so g(r) = r, so g € OW)Rad,

(d) The exact sequences are obvious. Choose an arbitrary splitting

—~ (k
of Hy as Z-module into Rad I'® and a suitably chosen Z-module HZ( ),

Hy = Rad I™ @ 11,

The projection pr®) . H, — Fz(k) restricts to an isomorphism

(k)

er’(k) : (Ifj\@ ,I(k)|~(k)) — (E(k)j(k)).

Via this isomorphism, any element of Aut(H. o0 T (k)) lifts to an element

of OW-Rad  This shows O = Au t(HZ( ! ](k)), and it gives a non-
canonical splitting of the third exact sequence. The end of the proof
of part (g) will show that this splitting restricts to a non-canonical
splitting of the second exact sequence.

(e) The fact 7®) = 0 for » € Rad I®) easily implies that T is a
group homomorphism with 7'(hy + he) = T'(hy)T'(hs) and with image
in Q1

Consider g € O Then G|Raq 7w = id and (g—id)(a) € Rad I®)
for any @ € Hz. If b € a + RadI® then (g —id)(a — b) = 0, so
(g—id)(b) = (9—id)(a). Thus there is an element h € H_Z(k)’ﬁ®Rad I
with h(@®) = (g —id)(a) for any a € Hz, so T'(h)(a) = a + h(@®) =
g(a), so T'(h) =

Choose a Z-basis 71, ..., 7, of Rad I®) and linear forms Iy, ..., 1, €
HE with I;(r;) = 6;;. Then any r € Rad I®) satisfies r = Y7 L;(r)r;.
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Consider h € Hz"* @ Rad I®) with T(h) € (ker 7®),. Then
tO(T ) (L) —1; = j®(a;) for some a; € Hy, and also
tO(TR)L) =1l = LioT(h) ™ =1, =1;0T(=h) -,

= Lo (id=h(()") = 1 = —L(h()")).
For b € Hy h(6") € Rad I™, so

h@") = S LnE )= =3O @) )

soh € f(k) (Fz(k)) ® Rad I®).
Going backwards through these arguments, one sees that any h €

j(k) (Fz(k)) ® Rad I® satisfies T'(h) € (ker 7*)),.
(f) For b € Hy

(goT(GP@er)og ™)) = glg7 ®) + T (g 10) "))
= b+ T@G(), 5"y
= TG (g(a) @ r)(b).

(g) The projection pr>®") = ()" : H, — Hy " induces the embed-
ding
i®) Fz(km — H%, [ — loprh®)
with  Im(@i®) = {l € H.|l|guq 0 = 0}
and  jO(Hy) = @GO E"Y)) c In(@®).

The three lattices
HE 5 Im(i%) o j® (Hy)

have ranks n, n—rk Rad I®), n—rk Rad I®) and are for each g € O*):Rad
invariant under the map t®)(g) = (I~ 1o g™').

This map acts trivially on the quotient HE/Im(i®)). It acts triv-
ially on the quotient Im(i®))/j*)(Hy) if and only if g*) € ker 7). It
acts trivially on the quotient H%/j(k)(HZ) if and only if g € ker7®).
Therefore (ker 7)), ¢ 7*). It remains to find for each § € ker 7¥) an
element g € ker 7% with g*) = .

Choose a Z-basis 11,...,r, of Hz such that ry,...,r, (with m =

—~ (k
rk Rad I®)) is a Z-basis of Rad I*). Then H; = Rad I®¥) @ HZ( ) with
—(k —~ (k -
HZ( ) @?:mﬂ Z - r; is a splitting of Hz, with HZ( = Hz(k).
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Consider the dual Z-basis Iy, ...,1, of HE with [;(r;) = &;;. Then
An element g € olk)-fad

—~ (k k
with g(H" (

has a unique lift to an element g € O%)-fed

) = PE ). This splitting of the third exact sequence in

part (d) was used already in the proof of part (d). We claim that
g € ker 7™ if § € ker 7®). We have

l—ljog™ ' € jW(Hy) forje{m+1,..,n}
because of § € ker 7,
li—liogt = 0 forie{l,..m}.

This shows the claim. Therefore (ker 7(®), = ker 7®). The claim also
shows that the non-canonical splitting of the third exact sequence in
part (d) restricts to a non-canonical splitting of the second exact se-
quence in part (d). O

REMARKS 6.3. (i) The exact sequence {id} — rY - re -

¥ — {id} splits sometimes, sometimes not. When it splits and when
Fq(f), ng) and the splitting are known, then also I'® is known.

(ii) Suppose that one has a presentation of ng), namely an isomor-
phism

ng) i) <gla <5 9n ’ wl(gla "'>gm)7 "'7wm<gla 7gn)>7

- Lt +1
where w1(g1....s Gn)y s Wi (g1, ..., gn) are certain words in gi ..., g .

Then the group ' is the normal subgroup of I'®) generated by the
elements wl(s(e]f), . sgﬁ)),..., wm(sgf), s sgi)). In many of the cases with
n =2 or n = 3 we have such a presentation.

(iii) The symmetric bilinear form 7% on FZ(O)

It is well known that for any g € Aut(H_R(O),T(O)) some m € N and

elements aq,...,a,, € FR(O) with 7(0)(ai,ai) € R* and g = E((Z?)...E((I?I)L
exist and that the sign

is nondegenerate.

al(g) = [[ sienT”(as, a)) € {£1}

i=1
is independent of m and ay, ..., a,,. This sign a(g) € {£1} is the spinor

norm of g. The map & : Aut(H_R(D),T(O ) — {£1} is obviously a group
homomorphism.
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DEFINITION 6.4. Keep the situation of Definition 6.1. Define the
spinor norm homomorphism
o:OORd 11V 6(g) :=5(7).
Define the subgroup O®)* of O®*)Fad

O(k)’* L ker T(l) if k= 1,
- ker 7 Nkero if k = 0.

REMARKS 6.5. (i) For a € R© of course o(s\)) = 1. Therefore
I'® C kero. Thus

r® co®* for ke {0;1}.
(ii) For g € (ker 7©), o(g) = 1 because g = id. Therefore
OW* — (ker7™), for k € {0;1}.

REMARKS 6.6. Finally we make some comments on the sets of van-
ishing cycles in a unimodular bilinear lattice (Hz, L, ¢) with a triangular
basis. '

(i) Let H,"™ denote the set of primitive vectors in Hy, i.e. vectors

a € Hy — {0} with Za = Qa N Hz, and analogously E(k)’prim. Then

A(O) C R(O) C ngim’ A(l) C Hg”m,
Z(O) C }_%(0) - H—Z(O),pm’m’ where Z(k) — er’(k)(A(k))

Here R© < HE™™ and R ¢ H_Z(O)’pmm because of 2 = IV(a,a) =

70 @®,a®) for a € R®. Furthermore

e_@(l) e Fz(l)m?"im Fgl){a(l)} c Fz(l),prim'

,prim

Whether or not g;(!) € FZ(U , that depends on the situation. Z(l) C

(1) prim

Hy, may hold or not.
(ii) In general, an element a € Hy, satisfies

(k) prim

a® e Hy — a-+RadI® c HI™

(iii) The set A" Fz(k) is often simpler to describe than the set

A® . The control of A™ is a step towards the control of A®).
(iv) Given a € A® it is interesting to understand the three sets

(1) (2)
(a+RadI®) N A® 5 (¢ 4+ Rad IM) nT®{a} S5 T {a}.

1) (2
The next lemma makes comments on the inclusions D and D.
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LEMMA 6.7. Keep the situation in Remark 6.6 (iv).

1) _
(a) In O equality holds if and only if the image in Hz(k) of any T'*)
orbit different from '™ {a} is different from Fé’“){a(k)}.
(b) The following is an inclusion of groups,

3
Stabpw (@®) © T'® . Stabpw (a).

@) 3
In D equality holds if and only if in O equality holds.
Proof: Trivial. U

6.2. The rank 2 cases

1 =z
01
and consider a unimodular bilinear lattice (Hz, L) with a triangular
basis e = (e1,ez) with L(ef,e)’ = S. Recall the formulas and the
results in section 5.2, especially M"™° : H; — Hyz and its eigenvalues
Iil/g = _TI + %\/[EQ —4.

We can restrict to @ < 0 because of L((er,—es)’, (€1, —€2))" =

1 —z
(O 1 > So suppose = < 0.

First we consider the even cases. Then I'®) is a Coxeter group, and
I'® and A are well known. Still we want to document and derive
the facts in our way.

For z € Z—{0} consider the matrix S = S(z) = € Tym(Z),

THEOREM 6.8. (a) We have

e = e- g Jmat with

S(O),mat _ ( 1 —33'> (0),mat: < 1 O)
e Ses —x —1)’

F(O) o ),mat . . <8(0) ;mat S(O),mat> C GLQ(Z)7

€1 ) Teg

RO — {ylel +yes € Hy |1 =12 + 2y1ys + y2).

(b) The case x = —1: (Hz, 1) is the Ay root lattice. T© = Dg
1s a dihedral group with six elements, the identity, three reflections and
two rotations,

TO — (id, 5O, 50, §05040 040 00 pO)mat

- 617 62’ e1 ez “e1 ? Ter Tex ? “e2 Te1

()DL
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The set A of vanishing cycles coincides with the set R of roots
and 1s

A® = RO — {4e) dey, +(e; + €9)}

The following picture shows the action of T'© on A©®). One sees the
action of Dg on the vertices of a reqular 6-gon.

A\

e e te; $©
ez
(0) _(0)
Se, Se,
—e, X e,
(0) _(0)
Se, Se,

(0 ((0) (0)

e; “ezx “ep

—€ —éz —e,

/ )]

FIGURE 6.1. A regular 6-gon, actions of Dg and D1

One sees also the action of Dis on the regular 6-gon. This fits to
the following.
Ds = TO = ker 70 = 0O+ & 0O = p,.
(c) The case v = —2: T = GFCr2 js g free Cozeter group with

the two generators sé?) and s&‘;). Here

RadI© =Zf, with fi =e +e,.

The set A©) of vanishing cycles coincides with the set R of roots and
18

A® = RO = fyie; +yes € Hy |1 = (y1 — o)}
— (e +Zf) U (e + I,
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It splits into the two disjoint orbits

FOe} =TO{—e;} = (&1 +Z2f1) U (—es + Z2f),
F(O){eg} = F(O){—ez} = (62 + szl) U <—€2 + Z2f1)
sé?) acts on A9 by permuting vanishing cycles horizontally, so by
adding +2e;. sg) acts on A by permuting vanishing cycles verti-
cally, so by adding +2es, see the following formulas and Figure 6.2.
Fore e {£1} and m € Z
sg?) (eey +mfi) = —eey +mfy, sg(l))(geg +mfi) = —eeq + (m + 2¢) f1,

sgg)(gel +mf1) = —eer + (m+ 2¢) fi, sgg) (eeq +mf1) = —ces + mfi.

Y2 .
Ya2=W
3 [ ]
2 . .
1-4 °
T T * T T B4
3 2 1 1 2 3
L] -1-4
. * -2 ()
Sez
. -3
x=—-2 S(O)
€1

FIGURE 6.2. Even vanishing cycles in the case S = <(1) _12)

(0),mat

The matrix group T’ 15 given by the following formulas form € Z,

2m +1 —2m
(0) ((0)ym —
s = (Pt ),

(0) ((0)ym o(0) () — —2m—1 2m+2
(861 Seq ) Seq <§) - Q( —2m 2m+1/)"

(d) The cases v < —3: T'\O = GFC=2 ys g free Coxeter group
with the two generators sg?) and sg). The set A©) of vanishing cycles

coincides with the set R of roots. More information on A©:
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(i) Recall Lemma B.1 (a). The map
w:A® 5 {units in Z[k] with norm 1} = {+&! |l € Z}
Yyie1 + Y22 Y1 — Kiya,
1s well defined and a bijection with

s (u™M ewy)) = u M (—eny'), s (ut(ery)) = ut (—eni ),

for e € {£1}, 1 € Z. Especially, A©) splits into the two disjoint orbits
IOfe} and TO{e,}.

(i) The matriz group T©™% is given by the following formulas for
m € 7,
0) .(0)\m _ n —Y2 — (=L (em2my  —1( —2m+]
s = e(, T ) = ),

-1 —2m
where u™ (k] “™) = y1 — K1Y,

(sWs)s(e) = g@; y_jy) = (™ =k ") 0 (52 7)

where u (=K %™) = y1 — K1l

(iii) A©) C Hp = R? is part of the hyperbola {yie; + yrea €
Hy | (y1 — k1y2)(y1 — Koy2) = 1} with asymptotic lines yo = koyy and
Yo = K1y1. Both branches of this hyperbola are strictly monotonously
increasing. The lower right branch is concave and contains the points
u"Y(KY) for | € Z, the upper left branch is convex and contains the
points u=t(—k!) for | € Z. The horizontal respectively vertical line
through a vanishing cycle a € A intersects the other branch of the

hyperbola in sé?)(a) respectively sgg)(a). See Figure 6.3.

(iv) Denote by 39 TO gnd AO the objects for x = —2 and as
usual by s, O and A© the objects for an x < —3.

The map 5(6(2) > sé?)
The map

extends to a group isomorphism [ — o,

A0y AO)
e (1__ l) —u (kL) e (l _l 1) = u (=K forl e Z,

is a bijection. The bijections T'© — T© and A — AO gre compat-
wble with the action of T'© on A© gnd of TO) on A,
(e) More on the cases x < —2: The automorphism g1 : H; — Hy,
with g5 €1 <> ey is in O, The set {&id, +£g,5} is a subgroup of
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3
8 Ko _
/Y2 = K11
— 2 Vo2 = K2Yq
L3 e ._
0 K1, K1?
—K
1--.
¥l .Kl_l
T 3 5N
b1 N
.0
L kT
3 KI
x=-3
s €Y1t ey, =Yy —KiY

FIGURE 6.3. Even vanishing cycles in the case S = <(1) _13)

O with
IO = ker 7@ = 0O+ & OO = 7O 54 {xid, £g12}.
Proof: (a) Everything except possibly the shape of R(®) is obvious.

RO = {y1e1 + yoe0 € Hyz |2 = ](0)(9161 + Yo, Y161 + Y2e2) }

2 x
= {91614-92626Hz|2:(y1 y2) (:17 2> (g;)}

= {yie1 +1pe2 € Hz |1 = Z/% + xy1y2 + yS}

(b) This is classical and elementary. R(*) = {#e;, £eq, (61 +€3)}.
The actions of sg?) and sé? on this set extend to the action of the
dihedral group Dg on the vertices of a regular 6-gon. Therefore A©) =
R© and I'® = Dy,

0 =~ Dy, is obvious as the vanishing cycles form the vertices of
a regular 6-gon in (Hz,I®). It remains to show for some element

g€ 0® —TO g ¢ kerr©,
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Consider the reflection g € O with g(e) = (e1, —e; — ey) and the
linear form [ : Hy — Z with I(e) = (1,0). Then
)

tg)() =log™, (log™)(e) = (er). U(—e1 — e2)) = (1,-1),
(I=log™")(e) =(0,1),
l=log™ ¢ Hz) = (e (2,-1), (e~ (-1,2)),

so g ¢ ker (0,

(c) and (d) The group I'® for z < —2: Recall the Remarks and
Notations A.1. The matrices s = _01 —1x and sOmat =
1 0 . 1 . 0 . .

. 1 have the eigenvectors 0 respectively 1 with eigen-

value —1 and the eigenvectors <_$1/ 2) respectively (_21/ :v) with

eigenvalue 1

Therefore (52 and p(s'2™") € Isom(H) are reflections along
the hyperbolic line A(oo —%) respectively A(0, —%) As v < =2, we
have —2 < —% 's0 A(0, ——) NA(—%,00) = 0, see the pictures in Figure
6.4.

H 00 H 00
0 _ x_l 0 _z X
“x 2 x 2
x=-=2 x < -3

FIGURE 6.4. Fundamental domain in H of T'©mat for
r=—-2and z < -3

Theorem A.2 (a) applies and shows that (1 (s2"™"), u(s2™)) ¢
Isom(H) is a free Coxeter group with the two given generators. There-
fore also I'®) is a free Coxeter group with the two generators s( ) and

(0)

Sey -
(c) The set A© for x = —2:
= (a1 +2Zf1) U (ea +Zf).
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For m € Z, € € {£1},

sg? (eer +mf1) = —eel +mf,
3((32)(562+mf1) = —cey +mfi,
sOsO(e; +mfi e +mfi) = (er+ (m+2)f1,ea+ (m—2)f1).
)

This shows all claims on A® in part (c).

(d) (i) Recall ky + Ky = —x, kikp = 1,0 = k2t ak;+1, kg = K] * =
—R] — T, K1 = —Kg — T.

Because of R©) = {yje; +yses € Hy |1 = y? + zy1y2 + 43} the map

w:RY® — {the units with norm 1 in Z[x,]}
yier + Y22 Y1 — K1Y
is well defined and a bijection. Because of Lemma B.1 (a)
{the units with norm 1 in Z[r,]} = {k! |1 € Z}.
Now
SO (er))) =uH(—en7!) and sQ(ul(ekl)) = v (—ex?™)

el €2
follow from
—Y1 — x?h)

we(l)=e (5 7)) )

(—y1 — 2y2) — K1y = —(y1 — Kava) = —(y1 — K1y2) ",
K1

et (% 2 ()= (at)

y1 — ki(—zy1 — y2) = k1((k2 + 2)y1 + v2) = K1(—K1y1 + yo)
= —/ﬁ(m — Kalp) = —/@1(3/1 — K1Y2)~ !

This shows A® = RO and that A© splits into the two disjoint orbits

0fe;} and T'O{e,}.
(iil) The formulas in part (i) show immediately

(sDsNm(yu=1(erl)) = ul(erl®™) for m € Z, ¢ € {£1}. To-
gether with u(e;) = 1 and wu(ey) = —k; this implies the formulas in
part (ii).

(iv) This follows from the formulas for the action of é{e?) on R© and
of sg?) on RO,

(iii) First we consider the lower right branch of the hyperbola.
There y; — k1y2 > 0 and y; — koys > 0. We consider y, as an im-
plicit function in y;. The equation

=92 +ayiyo +¥5 = (11 — K192) (Y1 — Kayo)
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implies
0 = (y1— rye)(1 — Kayy) + (Y1 — Kay2)(1 — K1ys)

= [(y1 = K1y2) + (Y1 — K2y2)] = [(y1 — Kiye) k2 + (Y1 — Kay2)kalys,
S0 yo >0 and (1 — kyys)(1 — Kays) < 0,
0 = (y1— m1y2)(—h2ys) + 2(1 — K1ys) (1 — Kayh)
+(y1 — Kay2) (= k1Y)
= —[(y1 — map)k2 + (1 — Kaya)kalys + 2(1 — Kayy) (1 — Kays),
SO Yy < 0.

Therefore the lower right branch of the hyperbola is strictly
monotonously increasing and concave. The upper left branch is
obtained from the lower right branch by the reflection Hp —
Hg, (y1,y2) — (y2,v1), along the diagonal. Therefore it is strictly
monotonously increasing and convex.

By definition 32?) maps each horizontal line in Hg to itself, and 522)
maps each vertical line in Hy to itself. As they map A® = RO to
itself, this shows all statements in (iii).

(e) Obviously g1, € O© and {#id, +g;5} is a subgroup of O
Recall

HﬁDj
with % (e1)(e) =
l

(Hz) = (79(er), 5% (e2))
(2,2),77(e2)(e) = (2,2).
1,0). Then
(1= Lo (—id))(e) = 2(e) = (2.0),
so I—lo(—id)t ¢ jO(Hy),so —id ¢ kerr®
(1—1 091,2>(§) = (1,-1),
so l—logi, ¢ §O(Hz), 50 g15 ¢ ker 7©

Define | € H, with I(e) =

Denote for a moment by OO the subgroup of O which is generated
by {+id, £¢15} and T©. We just saw
(ker 7)) N 00 =10,
so 0O =T x {+id, +g,,}.
It remains to show that this subgroup is O©).

By the parts (c) and (d) (iii) the set A® = RO splits into two ['®)
orbits, I'©{e;} and T@{e,}. The element g, interchanges them, so
A©® = RO is a single O orbit.

Therefore each element of OO can be written as a product of an
element in O and an element g € O©) with g(e;) = e;. It is sufficient
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to show g € O©. Observe that the set {v € Hy | I®(v,v) > 0} consists
of two components, with e; in one component and ey in the other
component. Because of g(e;) = e, g(eg) is in the same component
as ey. Now Hy = Zey + Zg(es) shows g(es) € {eg,sgf)(—eg)} and
g € {id, —s?}. Therefore O© = 0O, 0

REMARKS 6.9. (i) By part (iv) of Theorem 6.8 (d) the pairs
(T A©) with the action of I'® on A are isomorphic for all z < —2.
This is interesting as in the case = —2 the set A and this action
could be written down in a very simple way.

The parts (i) and (iii) of Theorem 6.8 (d) offered two ways to control
the set A© and this action also for z < —3, a number theoretic way
and a geometric way. But both ways are less simple than A in the
case ¥ = —2.

(ii) In the odd cases the situation will be partly similar, partly
different. The pairs (I'V, AM) with the action of T on A® are
isomorphic for all < —2. In the case © = —2 the set AM and this
action can be written down in a fairly simple way. But we lack analoga
of the parts (i) and (iii) in Theorem 6.8 (d). We do not have a good
control on the sets AM for z < —3.

(iii) For each x < —2 and i € {1,2} Stabpo(e;) = {id}, so the
map ['®© — T®fe} ~ = 7(e;), is a bijection. The action of T'® on
I'©fe;} shows again immediately that I'® is a free Coxeter group with

generators sé?) and 322).

Now we come to the odd cases. As before we restrict to = € Zg.

THEOREM 6.10. (a) We have

oW = SI,(7),
I'(z):={A e SLy(Z)| A= Eymodux},

-
@D
—
\]
C)
12

: sg)’m“t with

= €
1 —x 10
(1),mat _ (1),mat __
%o - (0 1)’ Sz _(g; 1)’

F(l),mat — <S(1),mat 5(1)’mat> C SLQ(Z)a

el )’ ~ e
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The map from AW to its image in R =RU {o0} under the composition
C: AW S R of maps

A —  (R*AW)/R* = {lines through vanishing cycles}
< (Hg — {0})/R* = {lines in Hp} —> R,
R*e (yll) =y, Rfe; — 00,
15 two-to-one.
(b) The case v = —1: TWmat = S, (7).
AW =TWfe1} = {yrer + yoeo € Hy | ged(yr, yo) = 1} = H™,

where HY™ denotes the set of primitive vectors in Hy. The image
C(AM) C R is Q = QU {o0}.
(c) The case v = —2: T'W = GIree2 s g free group with the two

(1) (1)

generators Se,, and Se, . mat 4

The (isomorphic) matriz group I'"):

pmat - {(CCL Z) € SLy(Z)|la=d=1(4), b=c=0(2)}.

It is a subgroup of index 2 in the principal congruence subgroup
r(2) = {(Cé Z) la=d=1(2), b=c=0(2)}

of SLy(Z). The set AW =TW{te;, +ey} is

Y= {yier +yoea € HY™ |y + 4o = 1(2)}.
It splits into the four disjoint orbits

ey} = {mer+ e € ngim |y1 = 1(4), 92 = 0(2)}
TW{—e;} = {yres +yoes € HY™ |y = 3(4), 50 = 0(2)}
Wled = {yier +yea € HY ™ |yy = 0(2), 95 = 1(4)}
(1){—62} = {ye1 +iper € Hpmm |y1 = 0(2), 92 = 3(4)}

The set HY™ of primitive vectors is the disjoint union of A® and the

set
{yre1 + 1262 € HY'™ |yy =y = 1(2)}.
The image C(AM) C R is
{oo}U{g|a € Z,beN,ged(a,b)=1,a=0(2) or b=0(2)} C Q,

and is dense in R.
(d) The cases x < —3.
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(i) T = Gfree2 s q free group with the two generators sg) and
(1)

862 .
(i) The matriz group T 1s a Fuchsian group of the second
kind. It has infinite index in the group

{(Z 2) € SLy(Z)|a=d=1(b=c=0()}

which has finite index in SLy(Z).

(i) The image C(AM) C
dense in R.

(iv) Denote by S“g), TD and AD the objects for v = —2 and as
before by s, T® and AD the objects for an x < —3.

The map 55 — s extends to a group isomorphism TV — T,
which maps the stabilizer <§2)> of e; in 'O ¢o the stabilizer (38)) of e;
in TW. The induced map

(1),mat

R is a subset of @ which is nowhere

AD 5 A, v(ge;) — v(ge;) for e € {£1},5 +— 7,
is a bijection. The bijections f(1)~—> IO gnd AD — AW gre com-
patible with the actions of T'M on AM and of TW on AW . Especially,
AW splits into the four disjoint orbits TMW{e;}, TMW{—e;}, TW{ey},
F(l){—eg}.
(e) In the case A? A© = AW = {+e; +es}. In all other rank 2
cases A G AW,

Proof: (a) Because of I (et e) = (_Ox g) we have O(1) =
SLy(Z). In order to see ker7™ =2 I'(z), consider the generators
I, 1y € HS of HY with I;(e) = (1,0) and Iy(e) = (0,1). Observe first

i (e))(e) = (0,2), jV(e2)(e) = (=,0), so jV(Hz) = zHj,
and second that g € O with g~!(e) = e - (CCL Z) satisfies

(h—lLog (e
(lo—log")(e

so g € ker 7 if and only if <CCL 2 = Eymodz.

) = (1—&,6),
) = <_C71_d)7

It remains to prove that the line R - C Hy through a vanishing
cycle § € AW intersects A1) only in 4§. To prove this we can restrict
to § = e;. There it follows from the fact that any matrix A € SLy(Z)
with a zero in an entry A;; has entries A; j11(2), Aiv1(2); € {£1}.
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(b) TWmat — §1,(Z) is well known. The standard arguments for
this are as follows. The group u(I'V™@) C Isom(H) is generated by

e =y 1)) = rrat)

u(S((;),matsg),matsf(i),mat> _ M((_Ol (1))) _ (Z — —Z_l).

One sees almost immediately that it acts transitively on @ and that the

stabilizer (u(sg)’mat)) of oo in p(I'™M™) coincides with the stabilizer

of 0o in p(SLy(Z)). Therefore u(DM™mat) = ((SLy(Z)). But —FE, €
2
[(M)mat hecause of (_01 (1)) = —F,. Therefore ()™t = S, (7).

The fact that u(SLy(Z)) acts transitively on Q shows C(AW) = Q.
Together with —FEy € SLy(Z) this shows

A(l) — F(l){el} _ ngz’m.

(c) and (d) The group I'™ for 2 < —2: Recall the Remarks and
Notations A.1. The elements

s (s TN = G0 ad

s (3 O)) = o)

xz+ 1

of Isom(H) are parabolic with fixed points oo respectively 0 on R.
Observe

pls ™) 1) =1+ a,  plsy™)(1) = (L+a) ™,
1+z) ' >1+2 forz<-2.

Therefore (s =1 (A(o0, 1)) = A(oco,1 + z) and
u(sg)’mat)(A(O,l)) = A(0,(1 + z)™!') do not intersect. See Fig-
ure 6.5
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H H
—1=1+x 0 1 1+x (1+x)t0 1
=(1+x)?
x=—-2 x <=3

FIGURE 6.5. Fundamental domain in H of T'Wmat for
r=-—-2and z < -3

Theorem A.2 (c) applies and shows that p(I'")™) is a free group
with the two generators (s and p(st™). Therefore also I'")
is a free group with the two generators sei) and sg). As therefore
the map [Mmat —y (T1)mat) i an isomorphism, —FE, ¢ TM™mat and
—id ¢ T,

Theorem A.2 (c) says also that the contractible open set F whose
hyperbolic boundary consists of the four hyperbolic lines which were
used above, A(1 + z,00), A(oo, 1), A(1,0), A0, (14 z)71), is a funda-
mental domain for p(I'M™e), If x = —2 then its euclidean boundary
in C consists of these four hyperbolic lines and the four points oo, 1,
0, -1 =14z = (1+x)"'. If z < —3 then its euclidean boundary
consists of these four hyperbolic lines, the three points co, 1, 0, and
the interval [1 + z, (14 z)7'].

(c) TMmat and AM for & = —2: The following facts together imply
p(Pmaty — (0(2));

rWmat « 7(2), [SLy(Z):T(2)] =6, —E,cTl(2),

(hyperbolic area of the fundamental domain F of p(TM™met)) = 27,

(hyperbolic area of a fundamental domain of p(SLy(Z))) = %

Therefore either T()ma = T'(2) or T(™at i5 a subgroup of index 2 in
['(2). But I'M™ma is certainly a subgroup of the subgroup

of I'(2) and does not contain —FE,. Therefore V)™ coincides with
this subgroup of I'(2) and has index 2 in I'(2).
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Therefore the orbits T™M{e;}, TW{—e;}, TW{ey}, TW{—ey} are
contained in the right hand sides of the equations in part (c¢) which
describe them and are disjoint. It remains to show equality.

We restrict to W {e;}. The argument for TV {e,} is analogous,
and the equations for M {—¢;} and T™W{—e,} follow immediately.

Suppose y1,y3 € Z with y; = 1(4), y3 = 0(2), ged(y1,y3) = 1. We

have to show e <zl> € F(l){el}. For that we have to find y,,y4 € Z
3

Y3 Ya

The condition ged(y1,ys) implies existence of yo, Yy € Z with 1 =
Y191 — Y23

Ist case, yo = 0(2): Then 1 = 3154 — yay3 shows ys = 1(4), and
(Y2, Y1) = (Y2, Ya) works.

2nd case, yo = 1(2): Then (y2,y4) = (Yo + y1,Us + y3) satisfies
1 = 1194 — yoy3 and y2 = 0(2), so we are in the 1st case, so (y2,ys)
works.

Therefore the orbit TV {e;} is as claimed the set {yie; + yaes €
H™ [y = 1(4), 32 = 0(2)}-

The statements on HY™™ and C'(A®) are clear now, too.

(d) TWmat and AM for » < —3: Part (i) was shown above.

(ii) The euclidean boundary of the fundamental domain F above
of p(I'Mmat) contains the real interval [(1+ ), 1 + x]. Therefore its
hyperbolic area is oo, V™ ig a Fuchsian group of the second kind,
and the index of W™ in S[,(7Z) is oo (see e.g. [Fo51, 34.] [Be83,
§5.3, §8.1]).

(iii) The set C(AM) C R is the union of the u(I'M™e) orbits of oo
and 0 in R. Because TMmat ig 4 FuchAsian group of the second kind,
these two orbits are nowhere dense in R (see e.g. [Fo51] [Be83]). For
example, they contain no point of the open interval ((1+xz)7!, (1+1x))
and of its p(T'(M)™at) orbit,.

1)

(iv) The groups I'D and T® are free groups with generators Eﬁl ,

§§? and sg), Sg). Therefore there is a unique isomorphism r® —rm

with §£}) — 38). The other statements follow immediately.

(e) The case x = 0, so A%

with (yl y2) € I'M, so with 1 = yyys — vous, ya = 1(4), yo = 0(2).

A(O) = A(l) = {:I:el, :|:€2}.
The case © = —1, so Ay:

A(O) = {:i:el, :i:eg, :|:(61 + 62)} g Hgmm == A(l)
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The case z = —2, so P'A;:

A = (e +Zf1)U(ey + Zfy)
{ylel + Yoo € Hpmm i+ =1(2)} = AW

The cases © < —3: Recall sel 362 =-M = —561)5,(52 . Therefore for
m € Z,e € {£1}
(ss)™(e) = (—=sisl))™(e) € (A(”)
(55 s (er) = —(—si) 62) (e1) €
(5550 (ea) = (sQ)s)™ sl (e )EA
= —(=s)sl))™H (e) € AT

This shows A® ¢ AM. For example (sgl)) Y(eg) = zey + ey satisfies

L(zey + ey, eq +e3) = (x 1) <i ?) (f) =222 +1#1,

0 1
SOA()gA(). 0

6.3. The even rank 3 cases

For z = (z1,79,73) € Z* consider the matrix S = S(z) =
1 1 T2
0 1 x3| € T¥™(Z), and consider a unimodular bilinear lattice
0 0 1
(Hz, L) with a triangular basis e = (eq,eq,e3) with L(ef,e)t = S.
In this section we will determine in all cases the even monodromy
group T = (s¢, © sé?,sé?) and in many, but not all, cases the set
A© =10 {iel, j:ez, +es} of even vanishing cycles. The cases where
we control A well contain all cases with r(z) € {0,1,2,4} (3 does
not turn up).
The group Brz x {£1}* acts on the set Bt” of triangular bases of
(Hz, L), but this action does not change I'® and A(®). Therefore the
analysis of the action of Bry x {£1}* on T4 (Z) in Theorem 4.6 allows

to restrict to the matrices S(z) with z in the following list:
S(z) with z € Z% and r(z) > 4,
S(A}), S(P?), S(As4y), S(43), S(P'A), S(Ay), S(Hay),
S(—1,2,—1) for [ > 3,

S(z )WlthIEZ 3 and r(z) < 0 and
x; < Yajay for {4, 4, k} = {1,2,3}.
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The following of these matrices satisfy x € Z?§03

S(z) with z € Z% and r(z) > 4,
S(A3), S(AsA4,), S(A;), S(P'A;), S(A,).

These are all Coxeter matrices. Their even monodromy groups I'®)
are Coxeter groups and are well known. The cases with z € {0,1,2}3
are classical, the extension to all x € Z3, has been done by Vinberg
[Vi71, Prop. 6, Thm. 1, Thm. 2, Prop. 17]. If we write (zy, 2y, 73) =
(St2, S13, S23) then the following holds [Hu90, 5.3+5.4] [Vi71] [BBO05,
4.14+4.2]: All relations in T'© = <s§?), sEfj), sé?) are generated by the
relations

(s =id  forie {1,2,3}, (6.1)

(sé?)sé?))Z =id  for {i,j,k} = {1,2,3} with s;; =0 (6.2)
[equivalent: sg?) and sgj)_) commute],

(sWsi)? =id  for {i, 5, k} = {1,2,3} with s;; = =1, (6.3)

no relation for {i,j,k} = {1,2,3} with s;; < —2.

Especially, I'(0) & GfCo%:3 i g free Coxeter group with three generators
ifz ez,

In Theorem 6.11 we recover this result, we say more
about the Coxeter groups with r € {0,1,2,4}, so the cases
S(A3), 5(AyA1), S(As), S(PLA;), S(A), and we treat also the other
cases where I'® is not a Coxeter group.

The only cases where Rad I® 2 {0} are the cases with r(z) = 4,

so the cases S(P'A;), S(Ay), S(His) and S(—1,2,—1) with [ > 3. In
these cases, we have the exact sequence

{1} =T 1@ 70O 5 1} (6.5)
in Lemma 6.2 (d).
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THEOREM 6.11. (a) We have

-1 —z1 —x
sWe = e-sOmi with sOme=|( 0 1 0 ],
0 0 1
1 0 0 1 0 0
sg(;)vm‘“f = | -2 -1 —wx3], ség)’m“t =10 1 0],
0 0 1 —Ty —I3 -1
F(O) ~ F(O),mat — <S£?),mat75$),mat7 Sgg),mat> c GLg(Z),

RO = {y1e1 + yae2 + yses € Hy |
1=y +ys + 93 + 2112 + Toy1ys + T3yoys )

(b) In the cases S(z) with x € Z2, and r(z) > 4 and in the reducible

cases S(A3), S(A3A;), S(P*A}), all relations in T'©) are generated by the
relations in (6.1)—(6.4). Especz'ally

DO(AD) 2= TO(A) x TO(A) x TO(4)) 2 (GO = (41
F(O)(AgAl) = F (A2 ( ) = D6 X {:l:l} Sg X {:l:l}
rOmpeta,) rOpty x 0 (Al) ch"“ x {£1}.

(c) In the case S(A3) the group T'©) is the Weyl group of the root
system As, so T'©) _IE\GI"T( ) = OW0) NS .

(d) In the case S(Ay) the group T'©) is the Weyl group of the affine
root system As. More concretely, the following holds.

I
I

RadI® = Zf with f; = e; + ey + €3,
7Y = 769 o 75,
Fgo) _ (kerT(O))u _ TG(O) (FZ(O)) ® Zf1)
_ (T(E(O) (_(0)) ® fl),T(j(O) (6_2(0)) ® f1)> ~ 72  with
TG @) ® fi)e) = e+ A2, -1,-1),
TGV @) © fi)e) = e+ fi(-1,2,-1),
o - (kerT(O))u & O0):rad T(FZ(O) ‘9 Zh),
r'? = (kerr©), =2TO(Ay)) = Dy = S5,
1:2 )

P(O) C O§0),Rad — Au t(FZ(O 77(0)> ~ D12,

ro = kerr©® =0 C O(O ),Rad
The exact sequence (6.5) splits non-canonically with " =~ <s£?), 322)> C
©) (for exzample).
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The exact sequence (6.5) splits non-canonically with r?

and _M(f17f27f3) =
© = {(f17f27f3) —

r©

case S(Hi2):

The following holds.

Zfs d Rad I'? with f3=e1 4+ es + es,

ZE(O),

Zf1 B Zfy with fi = ey +eq, fo=es+ e3,

(ker 7)), —T( 7O m@Y )®R d19)

TGO 0 1), TGOEY) @ f2)) =22 with
Tﬂ% )@ )1, for f3) = (fr for 3+ 210),
TGOF") @ 1) (fr, for f5) = (s for s+ 212),
ORad — (H, O @ Rad 1),

(ker 7®), = O &“&ﬂw 1) = {£1},

ker 70 = 0© C 0\0)Fad

O ),Rad __

= (-M) C
(fl?fQu _f3>'

(f1, fa,efs + 281 f1 + 262 f2) | € € {£1}, 81, B2 € Z}.

Therefore

(f) The cases S(—1,2,—1) with | > 3: The following holds.
Rad I = Zf with fi =e; — es,
FZ(O) _ Ze_l(O) @Z@(O)’
7(0)((6—1(0)75(0))t’ @G0, 50)) = <—2l —2l) |
I = (@@ e 1), 7671 @ f)) 22 with
TG%—>®ﬁx> e+ fi(2,-1,2)
TG (16 ) @ fi)(e) = e + fi(—12,21, %),
r© < (kerT(O))ul(C OO fad =~ 72
IO = pO(5(_)) = Giw2,
I — (ker7®), Nkerz & O\0):Rad
r® E oos ME 50).Raa
The exact sequence (6.5) splits non-canonically with " =~ <s£?), 322)> C

©) (for exzample).
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(9) The case S(P*) and the cases S(z) with x € Z34, r(z) < 0 and
v < tajay for {i, gk} = {1,2,3}: TO = GIC23 s g free Cozeter

group with the three generators sé?), ség), 22).

Proof: (a) This follows from the definitions in Lemma 2.6 (a) and
in Definition 2.8. Especially

W n n
RY = {e|w| €eHr|2=1"|w|)\e|w])
Y3 Ys3 Y3
U1 2 mm T2 Y1
= {e|w| €Hz|2=(v2ys) |21 2 a3) [92]}
Y3 Ty T3z 2 Ys

(b) First we consider the cases S(x) with z € Z2; and r(z) > 4.
By Lemma 5.7 (b) sign I = (+ 4+ —). We will apply Theorem A.4
with I := —TO® which has signature sign ") = (+ — —).

The vectors eq, es, €3 are negative with respect to 1. By Theorem
A4 (c) (vi) the reflection s acts on the model IC/R* of the hyperbolic
plane as reflection along the hyperbolic line ((Re;)*t N K)/R* C K/R*.
The corresponding three planes (Re;)*, (Re)t and (Rez)® in Hg in-
tersect pairwise in the following three lines
(Re) N (Rep)t =Ry, gt = (=225 + 2125, —224 + T179,4 — 17),
(Rel)l N (R@g)J‘ = Ryp], ym = (-21’1 + 2273, 4 — 2133 + ZEll’Q),
(Reg) N (Reg)t =Ry, B = (4 — 22, —22, + 2925, —2:62 + z23).

T € Z<0 and y!! = 0 would imply x5 = 23 = 0, 2, = =2, r(z) = 4.
But 7(z) > 4 by assumption. Therefore y!!) # 0. Analogously y!? # 0
and 4B #£ 0.

One calculates

I[O}(ym,y[ﬂ) = 24— xf)(r@) —4) forie{1,2,3}
<0 forax; < -2,
>0 forx; € {0,—1}.

Therefore two of the three hyperbolic lines ((Re;)* N K)/R* (j €

{1,2,3}) intersect in K/R* if and only if the corresponding z; is 0
or —1.

Claim: If z; € {0,—1} then the angle between the two hyperbolic
lines at the intersection point R*yl € IC/R* is 5z =0 and 3 of
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We prove the claim in an indirect way. Observe in general

-1 0 —x9 1 0 0

2 =0= (sQmats@Omay? — (10 1 0 |[0 -1 —z;3])?
0O 0 1 0 O 1
1 0 —m\°
= 0 -1 —T3 :Eg, (66)
0 0 1
; -1 1 —xz9 1 0 0
xlz—li(sg?)’m“tség)’mat) = ({0 1 0 0 —1 —a3|)?®

0 0 1 0 0 1

-1 -1 —T9 — I3 ’

= 0 —1 —x3 = Eg, (67)
0 O 1

and analogously for x5 and x3. Therefore the angle between the hyper-
bolic lines must be 7 if z; = 0 and ¥ or 2{ if z; = —1. But in the case
r1 = x9 = w3 = —1 the three intersection points are the vertices of a
hyperbolic triangle, so then the angles are all Z. Deforming z, and z3
does not change the angle at R*yll, so it is z if z; = —1. This proves
the Claim. (O)

Now Theorem A.2 (a) shows that in the group of automorphisms
of K/R* which is induced by I'® all relations are generated by the
relations in (6.1)—(6.4). Therefore this holds also for I'®) itself.

Now we consider the three reducible cases S(A%), S(A3A;) and
S(P'A;). Lemma 2.11 gives the first isomorphisms in part (b) for
rO(A3), TO(A,4,) and TO(P'4;). Lemma 2.12 (for A;) and The-
orem 6.8 (b) and (c) give the second isomorphisms in part (b). The
isomorphisms show in these three cases that all relations in T'®) are
generated by the relations in (6.1)(6.4).

(c) It is classical that in the case of the Aj root lattice the mon-
odromy group I'®) is the Weyl group and is ker 7(® 22 5.

(d) The proof of Theorem 5.14 (b) (iii) shows

Rad IV = ker ®y(M) = ker &, (M) = Z.f,,
7Y = 769 o 750,
—=(0), (0} — —0) — 2 -1
(@, &), @, &) = (—1 2 ) |
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SO (FZ(O),T(O)) is an As root lattice. This was treated in Theorem 6.8
(b). We have

O(O),Rad _ ( )g D12’

& <>_€2<>
ROM"V. 1) = {+50, 150, 150,

PO =10 = (s,52) = 10(4) 2 Ds = 55,

'Y = (ker7®), 1C2 OO fad
Observe also
sDs0 5050 (e)
1 0 O -1 11 1 0 O 1 0 O
= el -1 1 0 1 0 1 -1 1 01 O
0 0 1 0 01 0 0 1 1 1 -1

= ¢+ A(L1,-2) =T(G"(-&") @ f)(e).

so T(jO(—ez®) @ f;) € TY. Compare Lemma 6.2 (f) and re-

call that T'") acts transitively on {1, £ +25@}. Therefore

TG” &) @ fr) e T for j € {1,2,3} with
1G7@E") @ f)le) = et Ai(2,-1,-1),
TG7@") @ f)e) = et fi(-1.2.-1),

S0

rY = 7GVHE") e f) = (kerr®),

c T(H(O ® f1) = )RadNZQ

T(FZ(OM ® f1) is generated by
(e~ e+ fi(1,-1,0)) and (e—e+ f1(0,1,—-1)).

Therefore F(O C OL0)Rad
1:3

1:2
Together 'Y = (keI‘TO)>S c OO and T = (kerr®), C

O0)Rad ) o

' =ker7® C o O0),fad

(6.7) and x; = —1 show <s§?), sé?) >~ Dy, so TV = (s&?), 822)) c IO,
the exact sequence (6.5) splits non-canonically.

155



(e) Recall from the proof of Theorem 5.14 (a) (i) that

f (flaf27f3> =

O = =
— = O
—_

is a Z-basis of Hz and

Also observe

e] ‘Radﬂo)
D)
Q(fs)
()

T0) — F( )
Therefore

T0) 5 4050

€1 e2

0 5 4000

€3 62

SO
r

nz

Rad I = Zfi®Zf,,
H;, = Zf;®Radl®
— —(0
7” = 25°

id  forie {1,2,3},

—f3+2f2,

—f3+2fi+2f,

—f3+ 2/,

{+id} = (ker7©), = OOflad =2 TO)(A)) = {41},

— (f = f+2£(0,0,1)) = TG (") ® fu),
— (f = [+2£(0,0,1) = TGV H") @ 1),

(ker @), = TGV (") ® Rad 1)
O(O),Rad _ T(FZ
<Uef+ﬁmaanez+ﬁman»gw.

(0), ® R,&d] 0))

Together the statements on " and 1 imply

' = ker 7© C O\0)fad,

The exact sequence (6.5) splits non-canonically with r? = = {id} =
(=M) c T (for example).
(f) Recall from the proof of Theorem 5.14 (a) (ii) and (b) (iv)
Rad 1 Zf with fi=e —e3, so
Y 7e1© @ 75O

—(0) _ 2 -l
(@, <”><ﬁmxﬂw>=(_l 2)-
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Observe

11 -2 1 0 0
S((E?Lmat _ 0 1 0 7 Sgg),mat — 7 =1 1 7
0 0 1 0 0 1

0] _ o o [—1
O (0 50 — 500, ()):(61(>’62<o>)(0 1))

Theorem 6.8 (d) shows
T0) = F(O) ~ F(O)(S(_l)> o GfCoz,2.

Therefore with respect to the generators s(el), sé? and 3(62), all relations

in T are generated by the relations
(s0) = (s2) = s s = id.

Therefore F 2 is generated by the set {gs&?)sgg)g’l |g € T} of conju-
gates of se1 s63 . Observe

-1 1 1 0 0
sWsWe) = el 0 1 0 1 0
0 O -2 1 -1
3 —
= ¢ O _6+f1( 2)7
50 5()sey = T(J(O) )@ fo),

and recall Lemma 6.2 (f). The Z-lattice generated by the I'® orbit of
ey is Zey @ Zley @ Z ged(2,1)es. Therefore

MO = (1G" @) @ 7)., 7G" (15m")  fi) = 2 with

TG (15 9)) ® fi)(e) = e+ fi(—=1%,21,—1?).
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Compare

(kerr®), = TGOM@Y) @ 1)

- 1@ @ £), TGV @) @ £)),

O(0)Rad  _ T(]—_I_Z(O)’ti ® f1)
<(§ = e+ fl(lv 07 1))7 <§ e+ f1(07 17 O>)>

Therefore

1 2

ro ¢ (ker 7(9),, :(ZC74) OO)Rad ~ 72

Theorem 6.8 (e) shows also

1:4
'O = (ker 7)), Nkerz € OO)-Fad

S S

Therefore

F(O) lcl O(O),* 1:4(2_4) O(O),Rad'

(g) By Lemma 5.7 (b) sign I = (+ — —). We will apply Theorem
A4 with I = 1© and Theorem A.2 (b). The vectors e, e, and es
are positive. By Theorem A.4 (c) (vii) the reflection s acts on the
model IC/R* of the hyperbolic plane as an elliptic element of order 2
with fixed point R*e; € IC/R*.

Consider the three vectors vy, ve,v3 € Hz C Hp

U1 = —I3€1 + T2e2 + T1€3,
Uy = Tze] — Tgez + T1€3,
Vg = X361+ ToCy — Tri€s3,

and observe

V1 + vy = 217163, V1 + V3 = 233'262, Vg + V3 = 21’361,
19w, 0) = r(z) <0,

The three planes Rv; @ Ruy, Ruy @ Rug and Rvy @ Rvs contain the
lines Res, Rey respectively Re;. Two of the three planes intersect
in one of the lines Rv;, Rvy, and Rws, and these three lines do not
meet K. Therefore the three hyperbolic lines ((Rvy & Ruvg) N K)/R*,
((Rv; ® Ruz) NK)/R* and ((Ruy @ Ruz) N K)/R* in L/R* contain the
points R*e3, R*ey respectively R*e; and do not meet.

Now Theorem A.2 (b) shows that the group of automorphisms of
IC/R* which is induced by I'®) is isomorphic to Gf“°*3. Therefore also
I'©) itself is isomorphic to GFC®3. 0
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REMARKS 6.12. (i) In part (g) of Theorem 6.12 we have less infor-
mations than in the other cases. We do not even know in which cases
in part (g) I'® = O respectively I'® & O© holds.

(ii) In the case of S(P?), the proof of Theorem 6.11 (g) gave three
hyperbolic lines in the model IC/R* which form a degenerate hyperbolic
triangle, so with vertices on the euclidean boundary of the hyperbolic
plane. These vertices are the lines R*vy, R*vy, R*v3, which are isotropic
in the case of S(P?) because there I (v;,v;) = r(z) = 0. The reflec-
tions 353?), sé‘;), 322) act as elliptic elements of order 2 with fixed points
on these hyperbolic lines. Therefore the degenerate hyperbolic triangle
is a fundamental domain of this action of T'“).

(iil) Milanov [Mi19, 4.1] had a different point of view on I'® in the
case of S(P?). He gave an isomorphism I'® 2 U to a certain subgroup
U of index 3 in PSLy(Z). First we describe U in (iv), then we present
our way to see this isomorphism in (v).

(iv) The class in PSLy(Z) of a matrix A € SLy(Z) is denoted by
[A]. Tt is well known that there is an isomorphism of the free product
of Z/27 and 7. /37 with PSLy(7Z),

(a]a® =e)x (B]|B° =€) = PSLy(7Z),

anl(§ S em1(7 O

Consider the character
X <a | o? = €> * <ﬁ ‘ 63 — €> — {1,62ﬂ/3,62m2/3}, a—1, B e2ﬂi/3,

and the corresponding character X on PSLy(Z). Then

U = kerY C PSLs(Z),

kerx = (a,Baf? %)
with o~ [F], Baf? ~ [F), B*aB ~ [F3] and

0 —1 1 -2 ~1 -1
ae (i) e E) s (G

It is easy to see kery = GF¢°*3 with the three generators o, Saf?,
B%af3. Tt is well known and easy to see that

(Fy, Fy, F3) = {(? Z) € SLy(Z)|a=d=0mod3 or b= cmod 3}.

The Mébius transformations p(F), p(Fz), pu(F3) are elliptic of order

2 with fixed points 2y =1, 20 = —1 414, 23 = _% 4 %2
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The hyperbolic lines [; := A(00,0) Iy := A(—1,00), I3 := A(0,—1)
(notations from the Remarks and Notations A.1 (iii)) form a degenerate
hyperbolic triangle, and /; contains z;.

(v) Consider the matrices

21721 —297%9 223723 1 -2 1
B := [Re(z1) —Re(z2) 2Re(z3) | =[0 1 -1 and
1 -1 2 1 -1 2
1 1 3 1
B! = —|-1 1 1
2\-1 -1 1
One checks
0 0 1 2 =3 3
B'[0 -2 0|B = -3 2 =3]=5(P*+S(P?,
1 0 0 3 =3 2
B'O(F)B = —sOmi forie {1,2,3}

(see Theorem A.4 (i) for ©). The Z-basis e of Hyz and the R-basis f in
Theorem A.4 of Hg are related by e = f - B. The tuple (v1,vs,v3) in
the proof of Theorem 6.11 (g) is

3 -3 =3
(v1,v9,v3) = e| 3 —3 3
-3 =3 3

3 -3 =3 1 01

- fB-|3 -3 3|=f(6[-100

a -3 -3 3 a 1 10

Finally observe that ¢ : H — K/R* in Theorem A.4 extends to the
euclidean boundary with

1 01
(9(=1),9(0), d(c0)) =R*- f- [ =1 0 0
1 10

So the points —1, 0, oo are mapped to the points R*v;, R*vy, R*v3. The
groups [(©mat — (Omat) ;o 1 9 31 and (—sD™ i e {1,2,3})
are isomorphic because I'©™% does not contain —Fj5 because else it
would not be a free Coxeter group with three generators.

Therefore the group U = ([F1], [F3], [F3]) C PSLy(Z) is isomorphic
to the group (B-'O(F,)B|i € {1,2,3}) = (—s"™ |i € {1,2,3}) and
to the groups I'@ma and TO),
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Now we turn to the study of the set R of roots and the subset
A® c RO of vanishing cycles. For the set R(®) Theorem 6.11 (a) gave
the general formula R = {yie1 +yaes +yses € Hz |1 = Q3(y1, y2, y3)}
with the quadratic form

Qs : AR Z, (y1,y2,y3) — y? + y% + yg + T1Y1Y2 + T2Y1Y3 + T3Y2Y3.

It gave also a good control on I'® for all cases S(x) with x € Z3.

With respect to A© and R© we know less. We have a good control
on them for the cases with r(z) € {0,1,2,4} and the reducible cases,
but not for all other cases. Theorem 6.14 treats all cases except those
in the Remarks 6.13 (ii).

REMARKS 6.13. (i) The cases S(H12), S(—(,2,—1) for [ > 3 and
the four cases S(3,3,4), S(4,4,4), S(5,5,5), S(4,4,8) (more precisely
their Brz x {41} orbits) are the only cases in rank 3 where we know
A0 RO,

(ii) We do not know whether A© = R® or A € R© in the
following cases:

(a) All cases S(z) with r(z) < 0 except the four cases S(3,3,4),
S(4,4,4), S(5,5,5), S(4,4,8). With the action of Bry x {41}3
and Theorem 4.6 (c) they can be reduced to the cases S(z)
with z € Z33, r(z) <0, z; < sy for {4, 5, k} = {1,2,3}.

(b) The irreducible cases S(x) with z € Z2%,, r(z) > 4 and
< ¢ {0? -1, _2}3'

THEOREM 6.14. (a) Consider the reducible cases (these include
S(A43), S(A34y), S(P'Ay)). More precisely, suppose that z =
(1,0,0). Then the tuple (Hgz, L,e) splits into the two tuples (Zey ®
Zeg, L|ge,azes, (€1,€2)) and (Zes, L|ze,, e3) with sets Aﬁo) = REO) C
Zey ® Zey and AY) = RY) = {+e;} C Zes of vanishing cycles and
roots, and

AO = AP U AY = RO = R U RY.

Ago) = Rgo) is given in Theorem 6.8.
(b) Consider S(z) with x € {0,—1,—2}* and r(z) > 4. Then
0) — RO
(c) The case S(Aj3) is classical. There

Al

A(O) = R(O) = {:I:el, :i:eg, :i:€3, j:(el + 62), :t(eg + 63), :|:(61 + €9 + 63)}.
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(d) The case S(A3): Recall Rad I©) = Zf, with fi = e + €3 + e.
There

A©

RO — F(O){el}
= (ke +Zf1) U (Fey +Zf1) U (es + Zf1).

(e) The case S(Hi2): Recall (fi,f2, f3) = e

O = =
[

1
1] and
1
Rad I©) = Zf, ® Zf,. The set of roots is
RO = +e; + Rad IV = (¢; + Rad 1) U (—e; + Rad 1),
with
e1 + Rad I = —¢;, + Rad I = ¢35 + Rad I) = f; + Rad I?.
It splits into the four T orbits
IOfe;} =4e, +2Rad1?,  TO{ey} = +ey + 2Rad IV,
IOfes} = +e5+2Rad IV, TO{fs} = +f;+2Rad 1.
The set A©) of vanishing cycles consists of the first three of these sets,
A =TOLy UTO ey} UTOes},
so A S RO,
(f) The cases S(—1,2,—1) with [ > 3: Recall RadI®) = Zf, with
fi = e —e3. As the tuple (FZ(O),T(O), (21,55 )) is isomorphic to the
1

corresponding tuple from the 2 x 2 matriz S(—1) = 0 _1[ , its sets of

roots and its set of even vanishing cycles coincide because of Theorem
6.8. These sets are called R (S(—1)). Then

RO = {fie, + foes € HY |71e19 + 1283 € RO(S(~1))} + Rad I,

The cases with | even: RO splits into the following | + 2 T orbits,
rOfe}, TOes}, TOey +mfi} form € {0,1,...,1 — 1}

The set A of vanishing cycles consists of the first three IT'©) orbits,

AO =TV UTOes} UTO ey},

The cases with | odd: R splits into the following | + 1 T'©) orbits,
FOfe;} =TO0es}, TOfey +mfy} for m e {0,1,...,1 — 1}.

The set A of vanishing cycles consists of the first two T'©) orbits,

AO =TOfe 1§ TOfe,}
In both cases A© G RO,
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(9) The case S(P?). Then A©® = RO and R splits into three
'O orbits,

RO = 1O} UTO{ed UTO 3} with
Ofe} © +e;+3Hy forie {1,2,3}

(but we would like to have a better control on R©).
(h) The cases S(3,3,4), S(4,4,4), S(5,5,5) and S(4,4,8). Then

0 0
A© ¢ RO

Proof: (a) The splittings A© = A (J A and R = RY Y RY
are part of Lemma 2.11. Lemma 2.12 glves for Ay A R(O) {£es}.

Theorem 6.8 gives for any rank 2 case Al = Rgo).

(b) The cases where (Hyz, L, e) is reducible are covered by part (a).
In any irreducible case, the bilinear lattice (Hz, L,e) with triangular
basis is hyperbolic in the sense of the definition before Theorem 3.12 in

[HK16], because (¥ is indefinite, but the submatrices (2), (062 J;),
1

2z , 2T of the matrix I(¥(¢!, e) are positive definite or
) 2 T3 2
positive semidefinite. Theorem 3.12 in [HK16] applies and gives A©) =
RO,
(c) This is classical. It follows also with

Qs(y1,y2,y3) = 2(yi + Y5 + Y5 — Y1y2 — Yoys)
= yi+ W — )+ (v2 —y3)> + v

and the transitivity of the action of I'® on R

(d) The quotient lattice (FZ(O),T(O)) is an A, lattice with set of roots
{61, £ £25}. Therefore

RO = (xe; + Zf1) U (fea + Zf1) U (Les + Zfy).

(One can prove this also using 2Q3 = (y1 —v2)*+ (y1 —y3)*+ (y2 —1y3)%.)
F§°> = D¢ acts transitively on the set {j:e_l(o), 450 450 } The

(0)

group I';,’ & 7Z? contains the elements

(e—e+ fi1(2,-1,-1)) and (e e+ fi(—1,2,-1)).

Therefore it acts transitively on each of the six sets ce; + Zf; with
e € {£1}, 4 € {1,2,3}. Thus I'® acts transitively on R(® so A0 =

(0){61}_
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(e) The quotient lattice (FZ(O),T(O)) is an A, lattice with set of roots
{+e7®}. Therefore

RO = +e; + Rad IV = (¢; + Rad I?) U (—¢; + Rad 1)

(One can prove this also using Q3 = (y; — y2 +u3)%.) s (0) exchanges e;

and —e;, and se1 maps f3 to —fs+2f,. I’ O >~ 72 §5 generated by the
elements

((f1s fo, f3) = (f1 fos f3 +211)) = (e = e+ f1(2,-2,2)),

((f1s fos f3) = (f1, fo, f3 + 2f2)) = (e = e + fa(2,—2,2)).
Therefore R splits into the four I'®) orbits

IOfe;} = 4e +2RadI?, TOfe,} = 4ey +2Rad IV,

IOfes} = 4es+2RadI©@, TO{fs} =+ f;+2Rad 1?

A consists of the first three of them. o 0
(f) The set of roots of the quotient lattice (HZ( ),I( )) is called
R(O)(S (—=1)). Theorem 6.8 describes it. Therefore

= {y161 + y262 € Hy | y1€1 + y262 6 R(O)(S<—l))} + Rad I(O)

By Theorem 6.8 (d) (iv) and (c), R©®(S(=1)) splits into the two I'"
orbits TV {e7©@} and I'Y {25}, and the action of I'”) on each of these
two orbits is simply transitive. 'Y ~72 s generated by the elements

(e e+ f1(2,—1,2)) and (e — e + fi(—1%,21, —1?)).
Therefore for m € {0,1,...,1 — 1}
TOfey +mfi} N (ex+ Zf1) = ex +mfi + ZLfr.
If [ is odd then 1 = ged(2,1%) and
F(O){el} Del+2Zfi Des=e — fi, so F(O){el} = F(O){€3}.
If [ is even then 2 = ged(2,7%) and
(O){el} N(e1 +2Zf)) = el +Z2f, B ez, so r© {el} N1 {63} 0.

This shows all claims.

The matrices s € My, 5(Z) with se — ¢ sOmat are
(2) i 3x3 [
-1 3 -3
sOmat =10 1 0|,
0 0 1
1 0 0 1 0 O
sOmat = 13 —1 3], sOmat 0 1 0
0 0 1 -3 3 -1



One sees ['0{e;} C de; + 3Hy for i € {1,2,3}. Therefore A© splits
into three I'? orbits,

A(O) = T(O){el} U F(O){eg} U P(O){eg}.

It remains to show A(® = R© Write € = (e;, —es, €3), so that

B 1 3 3 L 2 3 3
LEet=5=101 3| and I9E 8 =5+5"=(3 2 3
0 01 3 3 2
The quadratic form @3 : 73 — 7 with

_ 1 (0 (0 1 2 33 (0
Qsy) = IOCE|w|)elw])=ziwy) [3 2 3| |

2 2
Ys Y3 3 3 2 Y3

= yi+vs + 5+ 3(1ye + v1Ys + Ya2ys3)

can also be written in the following two ways which will be useful below,

@3(@ = (1 +y2) (1 +y3) + (Y1 +v2)(v2 +y3) + (y1 + y3) (Y2 +G33)

~ 3 1
Qs(y) = 5(2/1 + o+ y3) — §(yf + 5 +y5)- (6.9)

We have R = {y16] + 1265 + y363 € Hy | Qs(y) = 1}. Define

3
lall == \/y? +v3+ 43 for a=) we € H.

=1

Claim: For any a € R©) — {+e;, +ey, *e3} an index i € {1,2,3}
with

159 (a)]| < al
exists.

The Claim implies A©® = R©) because it says that any a € R
can be mapped by a suitable sequence of reflections in {52?), s§2>, 522)}
to ey or ey or ez. It remains to prove the Claim.

Proof of the Claim: Suppose a € R — {£e;, +-ey, te3} satisfies
||s$)(a)|| > a for any i € {1,2,3}. Write a = y1€1 + y2€3 + yse3. For j
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and k with {7, j, k} = {1,2,3}
IsO(a)]| > flal <= s (a)]* = |lal?
= (—yi =3y —3u) T uE > v+
> 6yi(y; +yr) +9y; +yr)* >0

3(yj +yk) = =2y if y; +yr >0,
— 3(yj +yk) < =2y if y; +uyr <O,
no condition if y; +yr = 0.

yj + yr = 0 is impossible because else by formula (6.8)
1=Qs(y) = (i + i) Wi +un) = i + ) (Wi — y3) = v — v,

S0 Y; = :l:17yj =Y = 07
which is excluded by a € R — {£e;, ey, +es}t. Also (y1 + yo >
0,91 +ys > 0,92 +y3 > 0) and (y1 +y2 < 0,41 +y3 < 0,92 +y3 < 0)
are impossible because of 1 = Q3(y) and (6.8).

We can suppose
BiF+y2>0, yitys>0 y2t+ys <0, y1 2y 2> ys.
Then
v >0, yeZN[-y+1,-1], y€l[-ys—1,u3,
3(y1 + y2) > —2ys3  because of y; + yo > 0,
3(y2 +ys) < =21 because of y; + y3 < 0,

SO
yi > 3y t+yatuys) >ys > -y + 1> —y,
il > 3y + e+ sl
i > 9ty +us)
~ 6.9 3 1
Qs(y) = §(y1—|—yg+y3)2—§(yf+y§+y§)

1

1
gyf — §(yf + 5+ y3) <0,

a contradiction. Therefore an a € R© — {&e;, +ey, +e3} with
1s2(a)|| > [la|| for each i € {1,2,3} does not exist. The Claim is
proved.

(h) By Theorem 6.11 (g) T'(®) is a free Coxeter group with generators

sé?), ség) and 5(6(3)). By Example 3.23 (iv) equality holds in (3.3), so

Bt = fy € (A | 505050 — _ 1}

v1 Tv2 TU3
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(see also Theorem 7.2 (a)). By Theorem 5.16 (a)+(b)+(d)+(e) @ €
Gz — G5. Lemma 3.22 (a) and QMQ~! = M give

0) (0 (0 1 -1
SQ(e1)5Q(e2) Q(es Q8€1 62 63 Q Q(_M)Q = —M.

If Q(ey1), Q(ez), Q(es) were all in A® then equahty in (3.3) would im-
ply (Q(e1),Q(es),Q(e3)) € BYst and Q € G5, a contradiction. So
Q(e1),Q(ez), Q(es) are not all in A®. But of course they are in R(©.
0J

REMARKS 6.15. (i) In view of Remark 6.13 (ii) it would be desirable
to extend the proof of A®) = R in part (g) of Theorem 6.11 to other
cases. The useful formulas (6.8) and (6.9) generalize as follows:

(21 + 22 + 23)Q3(y) = (x1 + 22 + x3) (Y5 + 3 + u3)
—T1Tay; — T1T3Y5 — Takays + (T1y2 + Tays) (T1y1 + T3y3)

+(212 + 12y3) (T2y1 + 23Yy2) + (21y1 + T3y3) (T2y1 + T3Y2).

If x € (Z — {0})? then

2@3(%) = $1$2$3(y1 + % + %) (.1711‘2.273 — 21‘3) (yl)
T3 i) T1 T3

2
— (r1x073 — 2x§)<%> — (x93 — Qx%) <%> )
T T

Also the rephrasing in the proof of part (g) of the inequality || s (a)|| >
|la|]| generalizes naturally. But the further arguments do not seem to
generalize easily.

(i) In view of Theorem 6.14, we know the following for n = 3:

A® = RO i the cases S(z) with z € {0, -1, -2} with r(z) > 4,
in all reducible cases
and in the cases As, 121\2, P2

A C RO in the cases Hyia, S(—1,2, 1) with I > 3,
5(3,3,3), S(4,4,4), S(5,5,5) and S(4,4,8).

In the following cases with n = 3 we do not know whether A(®) = R(©)
or A© S RO holds: All cases z € Z* with r(z) < 0 except four cases
and many cases x € Z* with r(z) > 4.
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6.4. The odd rank 3 cases

1 1 X2
For z € Z? consider the matrix S = S(z) = |0 1 a3]| €
0 0 1

Ti™(Z), and consider a unimodular bilinear lattice (Hz, L) with a tri-
angular basis e = (ey, e, €3) with L(e!,e)t = S.
In this section we will determine in all cases the odd monodromy

group IT'M = <sg), s, s§§)> C OW and in many, but not all cases the

set AV =TWl+e) +ey Fe3} of odd vanishing cycles.

Recall Remark 4.17. The group '™ and the set A() are determined
by the triple (Hz, IV, ¢e), and here I(!) is needed only up to the sign.
By Remark 4.17 and Lemma 4.18 we can restrict to z in the union of
the following three families. It will be useful to split each of the first
two families into the three subfamilies on the right hand side.

(1,0,0) : reducible cases,
(21, 22,0) with 21 > 29 > 0, (1,1,0) :  As and A,
(1, 9,0) with 2 < 1 > x5 > 0,

(—1,2,—1) with | = 0(4),
(—1,2,—1) with [ > 2, (—1,2,—1) with [ = 2(4) (this includes H;2),
(—1,2,—1) with [ = 1(2),

(21,29, v3) € Z2 4 with 2z; < zj2y for {i, 5, k} = {1,2,3}
i (this includes P?).
Recall
T = (T1, B9, 73) := ged (21, T, 23) ' (21, 79, 23)  for z # (0,0,0).
Recall from section 5.3 the definition
f3 = —T3e1 + Toeg — T1e3 € Hgim for x # (0,0,0)
and the fact
rad 10— { 2000
Therefore in all cases except z = (0,0, 0) the exact sequence
{1} > TP 51O 5 17® - {1} (6.10)

in Lemma 6.2 (d) is interesting.

LEMMA 6.16. Suppose x1 # 0 (this holds in the three families above
except for the case x = (0,0,0)).
(a) The sublattice Zet™W + Ze;(V C FZ(I) has index T in Fz(l).
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(b) W is nondegenerate. For each Z-basis b = (b1, by) ofﬁz(l)
7(1) (l_)tal_)) = Eng(xb T2, 1'3) <(1) _01)

for some € € {£1}. Also O fad o SLy(Z).
(c)

e € ged(@, ) Hz P, &M € ged(F, 75 He T
@(1) € ng(fzﬁs)FZ(l)’mm if (Z2,73) # (0,0), else 6_3(1) = 0.
Proof: (a)
Y = zaW+ 250 + e
1, - -
= Ze_l(l) + Za(l) + Z~_(_$Sa(1) + $2@(1))
T
= ZeaW 4+ Z&W + ZéhQ with
T
o Ty __ To__
5 = ng(I'Q,J,’g), h2 = _?361(1) + ?262(1)-

The element hy is in (Zer™ + Zez;™M)P ™. One can choose a second
element hy € ZerM + Zez(M) with Zer™M @ Ze; V) = Zh, @ Zhs. Then
1
Zho + ZéhQ =7Z—hs
X1 X1
because ged(71,£) = 1. Therefore
1:1

Hz(l) = (Zhy + Zhs) + Zéhz = Zhy ® Z—hy O Zhy @ ZLhs,.
T T

(1

(b) T )(6_1(1),5(1)) = 1 # 0. With part (a) one sees

I(l) (bl, bg) = ﬂ:% = :l:ng(ZCl, .I'Q,LCg).
1

A rank two lattice with a nondegenerate skew-symmetric bilinear form
has an automorphism group isomorphic to SLo(Z).
(¢) The proof of part (a) and 1 = ged(73, ged (T, To)) show
o -7 1
@6_1(1) N HZ(I) = Ze_l(l) + Z%e_l(l) = ZTe_l(l)-
ged(7y, Z2) ged(7y, 2)

(L).prém. Analogously &M €

This shows e € gcd(Z1,72)Hy
~ o~ 77 (1),prim
ng(ZEI,CL’?,)HZ( P .
If (T2, 73) = (0,0) then —7155") = Y = 0, s0 &0 = 0. If
Ty # 0 or T3 # 0, formulas as in the proof of part (a) hold also for
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ZerM) + Zez W respectively Ze;M 4+ ZezW. In both cases one shows
&3V € ged(To, 'fg)FZ(l)’p”m as above. d

In Theorem 6.18 we will consider in many cases the three groups
rY c (kerr®), c O Their descriptions in Lemma 6.2 (e)
simplify because now Rad IV = Zfs if 2 # (0,0,0). In the cases
z = (—1,2,—1) with [ = 2(4) also the larger group

2:1
OVt = (g € OWFd |5 = +1d} 5 O-Fad

will be considered. The following Lemma fixes notations and gives a
description of O™ similar to the one for O™ in Lemma 6.2 (e).

It makes also OQ(LI)’Rad and (ker 7(1)),, more explicit, and, under some
condition, I'Y and I N O,

LEMMA 6.17. Suppose x1 # 0. Denote

Homg(Hz,Z) = {\: Hz — Z|\ is Z-linear, \(f3) = 0},
Homy(Hyz,Z) = {\: Hy — Z|\is Z-linear, \(f3) = 2},

t¥: Hy — Hy, with ¢ (a) = a+ M a)fs for A € Homy(Hz,Z),
t\ 1 Hy — Hy with ¢, (a) = —a+ A(a)fs for A\ € Homy(Hy, Z).

(a) Then tf € OV for X € Homo(Hy, Z), t;, € 0L -0 e
for X € Homy(Hyz, Z). The maps

Homg(Hyz, Z) — OWRed X t7)

u

Homy(Hz, Z) — O — oWBed x4

are bijections, and the first one is a group isomorphism. For Ay, Ag €
Homo(Hz,Z) and A3, \y € Homy(Hz, Z)

tL © til = t;\r2+>\1’ t;:a © t;\r1 = t;3+>\1’

t;\i_l © t>_\3 = t:)\1+>\3’ t;4 © tgs = ti—M-ﬁ-)\s’

and especially (¢} )* =id.
(b)
(ker 7)., = {t7 | Ae) € (0,21, 1), (—21,0, x3), (22, 73,0))7}.

(c) If T s the normal subgroup generated by t; for some A\ €
Homg(Hz, Z), then TS = {t}'| A(e) € L} where L C 73 is the smallest
sublattice with A (e) € L and L - (s C L fori € {1,2,3}.
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(d) If TV N O?’Rad is the normal subgroup generated by ty —for
some A\ € Homy(Hz,7Z), then
T = {tf|\e) €L} and
PO Tl = {1 [Ae) € M(e) + L}

where L C 72 is the smallest sublattice with \i(e) — A1 (e) - (sell.)’mat)il €
L and L- ({9 % C L fori € {1,2,3}.

Proof: (a) By definition ¢t = T(A ® f3) where X € Fz(l denotes
the element which is induced by A. The map Homg(Hz, Z) — O&4
an isomorphism by Lemma 6.2 (e). The proofs of the other statements
are similar or easy.

(b) The row vectors (0,x1,z2), (—21,0,23), (—z2, —x3,0) are the
rows of the matrix I (ef,e). Because of this and Lemma 6.2 (e)

(ker 7)), is as claimed.
(c) This follows from
I = (g 'ot] oglgelW),
t+
Aog?

and Ao (sV)F(e) = Ae) - (s{meh)*

for A € Homy(Hz,Z).
(d) Similar to the proof of part (c). O

g totiog

The following theorem gives '™ for z in one of the three families
above and thus via Remark 4.17 and Lemma 4.18 in principle for all
z € 7Z3. Though recall that it is nontrivial to find for a given z € Z3
an element in one of the three families above which is in the (GP" x

G5'9") %1 (~) orbit of z.
THEOREM 6.18. (a) We have

sg)g = e- s@?»mat with sg)’m“t =0 1 0 ,
0 O 1
1 0 O 1 0 0
sg)’m“t ry 1 —x3], sg)mat =10 1 0],
0 0 1 Ty X3 1
F(l) ~ F(l),mat _ <St(31),mat’ Sg),mat75g),mat> C SLg(Z)

(b) In each reducible case x = (z1,0,0)
P = TW(S(—a1)) x TV (A1) 2 TO(S(=a1)) x {1},
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and T (S(—m1)) is given in Theorem 6.10, with
LW(s(0)) = 1A = {13,
LW(S(-1)) = TW(Ay) = SLy(Z),
TS (—xy)) GIree?  for x> 2.
Also TW =TV gpd T = {id}.
(c) The case z = (1,1,0): (This is the case of Az and As.)
Radf(l) = ng with fg = €9 — €3,
Fz(l) _ Za(l) @ Za(l),
I = (kerrW), = O = {t1 | X € (M, o)z} = 77,
with  Ai(e) = (1,0,0), A2(e) = (0,1,1),
'Y = (kerrW), = Ol = g1,(7),
' — kerr® = o) Rad

112

12

12

The exact sequence (6.10) splits non-canonically with )
(s s c T (for exzample).
(d) The cases x = (x1,x2,0) with 2 < x1 > x9 > 0: Write

T12 = ng(xl,fg) = g = ?
T i)
Then
Rad I(l) = Zf3 with fg = 5262 — 5163,
N 1 1 N
HZ(l) = Ze_l(l) P ZQQ with gs ‘= 76(1) - N_%(l) S HZ(l)J
T )

IV = {t7]he (A, \)z} =272 with
A(e) = 2127172(1,0,0),  Aa(e) = z122(0, 71, Zo),
(ker 7MY, = {tF|A(e) € (212(1,0,0), (0,21, 7))z},
O et — {5 | Ae) € ((1,0,0), (0,71, 7))z},

() (L)

~ Gree2 if T19 > 1
o SLQ(Z) if T12 = 1.
This matriz group has finite index in SLo(Z) if and only if x12 € {1,2}.
The ezact sequence (6.10) splits non-canonically.
(e) The cases x = (—1,2,—1) with | > 2 even:
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(This includes the case v = (—2,2,—2) which is the case of Hiz.)

Rad I(l) = ng with f3 = £(61 + 63) + €9,

2
. I
Y = zaW ez50, 7= —5 (e +&),

o~ S M~ (1 =2 1 0\, 12
(s,s)) = <s£1>,s£3>>:<(0 1),<2 1)>cr(2),

<3(1) 3(1)> > Glree?

(kerT(l))u = {tj\- | )‘(Q) < <(_27072)7 <_27l70>>Z}7
OPH = {1 Ae) € ((~1,0,1), (-1 5.0))z).

(i) The cases with | = 0(4): T = (s sy = Gfree2 The
1) ~ (1) [

isomorphism T's’ = (s¢, ,se?> c T'D gives a splitting of the exact
sequence (6.10). Here —id ¢ T,
IV = {Fhe (A, \)z} =272 with
M(e) = (—=1,0,1), Xa(e) = (21, —1%,0).

(ii) The cases with | = 2(4): Here —id € ri.

W T (1 =2\ (1 0\ (=1 0
ry = (88),8£§),—ld>=<(0 1>7<2 1>’<o —1>>:F(2>
> GJree? x {41},

The isomorphism Fgl)/{i—id} = <3£P,s£§)) c I'D gives a splitting of
the exact sequence

{1} 5 1O O Fed v — 7MW /{4id} — {1},

T = [N e (20, \)z} 2 7% with
Me) = (=1,0,1),  Xole) = (21, —1%,0),
TO AW T — X e Ay + (2M1, Ao)z}  with
As(e) = (=1,2,1),  As(fs) =2.
(f) The cases x = (—1,2,—1) with | > 3 odd:

Rad IV = Zfs with f5=1(e; +es) + 2es,
— 1 l
HZ(l) = Ze_l(l) b Zﬁ(l) with go ‘= 5(61 + 63) — §f3 € Hz,
¢ = (e1, g2, f3) Iis a Z-basis of Hz.
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Consider

l*l

5= (sWs)SF s e T,

€3 ~€1

Then

OO 2 (sl 57) = (s, 0)  SL(2),
and the isomorphism Fg) i (sg),&;) C T'W gives a splitting of the
exact sequence (6.10).
T = (] he (A, Aoz} 2 7Z2 with
Al( )_< 1,0 l) )‘2< ):<2l>_l270)7

(keI‘T(l)) = 01(1, ) Rad {t+ | )‘( ) <(_1a 0, 1)7 (27 _la O>>Z}

(9) The cases x € 734 with 2x; < xjxy, for {i,j,k} = {1,2,3}:

(This includes the case x = (3,3,3) which is the case of P2.)

Rad [(1) = Zf3 with f3 = —§3€1 + 5262 — fleg,
rY = {id} G (kerr), =72,
1-\(1) ~ Fgl) ~ Gf’/‘ee,?)’

IO and T are e free_groups with the three generators sg), sg), 3(6?

respectively SS), sg) , sﬁ?.

Proof: (a) This follows from the definitions in Lemma 2.6 (a) and
in Definition 2.8.

(b) This follows from Lemma 2. 11 and Lemma 2.12.
(e)—(f) In (c)~(f) (ker 7™), and O™ are calculated with Lemma
6.17 (a) and (b).
(c) The first statements Rad I = Zf; and E(l) = ZetV @ ZezM
are known respectively obvious.
Also (eq, ey, f3) is a Z-basis of Hz. With respect to this basis
1 -1
38)(61, ez, f3) = (er,e2, f3) [0 1
0 0

3(1)(617627f3) (€1, €2, f3)

[ R
R oo P eC

0
1
0
This shows (séf,sé?} = (@, :) =~ SLy(Z). Together with Lemma
6.16 (b) and Lemma 6.2 (d) we obtain

0 = (500, 50 = (ker 70, = QWi = 51,(7),
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(1) ~

and that the exact sequence (6.10) splits non-canonically with T’

(s, s4)) c T,
From the actions of 38 and s(ei) on (ey, ey, f3) and from

sD((er,ea, f3)) = (en,en f3) | 1

one sees that the map

((er, €2, fa) > (en,e2, fo)

is in F and that

Also
<Sg))_lot)\1 N (Q) = (17_17_1)7
and therefore £, = tj\Ll — t+ e e Y. But of) 7 = (1., 13,)z, so

FS) (kerT ) —O(l)R“d (tj{l,ﬁ)

In the diagram of exact sequences in Lemma 6.2 (d) the inclusions in
the second and fourth columns are bijections, so also the inclusions in

the middle column,
O (1),Rad )

T1e5M). Lemma 6.16 (c) gives
D s in 7P, Thus

I = kerr® =

(d) f3 = Toeg — T1e3 implies Tyez ™V
a®eni""" s0 9= 1w
FZ(I) — 750 + 7250 + 75V =

0 1 171

Choose y1,ys € Z with 1 = 1,72 + 1,75 and define
1 1 1
( ))y1(3£3))y2 e W,

(_1) . 1 —T12 (1) 1 O ﬁ o 1 0
B ( ) 9_9( 1)’ Ses =9\ o7y 1)

54 = (5,
Then
_ 10 t t L o0
19=9 (3712 1) spe=e- sy with sy = [ ypzp 1 0
Yors 0 1
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OISR

363) and sg are powers of 5z, so e = (@, S4), SO
w1 —x 1 0 ma
L= <(0 112) ’ (m 1)> = T (S(—15)) C SLs(Z).

The matrix group IV (S(—x5)) was treated in Theorem 6.10 (b)-

(d):

1 —z 1 0 >~ Gfree2  if gy > 1
(1),mat o ~ 12 2 ’
F (S( le)) - <(0 1 > ) <x12 1)> { = SL2(Z) lf T19 = ]_

The case 715 > 1: Then TV = (sg),s_@ and <s£j>,s4> c T are

free groups with the two given generators. Then (sg), s4) € T gives
a splitting of the exact sequence (6.10). The generating relations in

'Y with respect to the four elements sg), sg), sg? and sy are

2 =2

362) = (50)™, S(e};) = (52)". (6.11)

Therefore I'} is the normal subgroup of '™ generated by the elements
=2 ~2
sy (s5) 7t and sy (sty) 1 o

The case z15 = 1: Then TV = (s 57) = SL,(Z)

Claim: Also (sg),&l) = Sy (7).

Proof of the Claim: The generating relations in S Ly (Z) with respect
——mat i
to the generators 38) = (1 1) and 57t = (1 0) are

0 1 11
———mat ——mat ——mat ———mat
(1) —mat (1) —mat (1) —mat (1) —mat\6
Sep S4 Sey = 84 Sey S4 and F, = (561 S4 ) .

One checks with calculations that they lift to ['()mat,

(1),mat ;mat _(1),mat __ _mat ,(1),mat ;mat _ ((1),mat ;mat\6
Sg, " sy g, = 54" "5, """ s and  Ej = (si)mspet)”. (D)

), s,) C T gives a splitting of the exact

g

Because of the Claim, (58

sequence (6.10)_. The generating relations in I's” with respect to the

four elements 58), sg), sg) and s; are the relations between sg) and sy

in the proof of the Claim and the relations in (6.11). The relations in
the proof of the Claim lift to I'). Therefore again 'Y is the normal
subgroup of I'M) generated by the elements sff (s~ and sfg(sg))_l.

Back to both cases x5 > 1 together: We have to determine

these two elements of T'). The first one is given by the following
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calculation,

1 0 0 00 1 00
= € ylxlff 1 0 —l’l 1 0 =€ —ZEl—f-ylZL’lE% 10
ygﬁgﬁ 0 1 0 1 ygIgfg 0 1
1 0 0
= e| @3 1 0] =e+ f3(—y2212717,0,0),
ygmgx% 0 1

so 571 (s1) 1 (e) = £

€2 —YaA1”

A similar calculation gives

2
T3 y-1 __ +
Sy (Sgg) ) - tyl A1”

Observe ged(y1,y2) = 1. Therefore I'" is the normal subgroup of 'V
generated by ¢} . Lemma 6.17 (c) and the calculations
Ao st (e) = 21971 Ta (1, —a1, —9),
SO <)\1 )\1 o 5(1)>Z = <)\1, )\2>Z,
Ao (s0)) ™, Ao o (s € (A, o)z,
give
Fz(}) - {ti_ ’ )\ € <)\17 )\2>Z}-
(e) The first statements Rad I("V) = Zf3, f3 = L(e1 + e3) + 2 and
(1)

H; ' =ZegW @ Ze;™V are obvious, also

— ——mat ——ma _
s/ @M aml) = @, &0)sl) with s =<(1) 12),

——mat 1 E _E —mat 1 O
Sg) - ( _E 2 _2E> ) Sg}%) = (2 1) :
2 2

mat ————mat

By Theorem 6.10 (c) (sl st ) = Gfree2 and therefore
<S(1) S > Gfree 2

e; ?“es

We have

——mat

((1) ?) mod4 if [ =0(4),
——mat
(g §) mod4 if I =2(4).
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t ——mat

——mat —m
If I = 0(4) then by Theorem 6.10 (c) sg) € (38) 3%) ), so then
i = (s é?,séf,,>> and the isomorphism I'{"Y = (s o sé},,)> c '™ gives a
splitting of the exact sequence (6.10).
——mat —mat
Ifl = 2( ) then by Theorem 6.10 (c) s&) & (s't s sgd) ), SO

then (s |z € {1 2,3}) = I® = Gfree2 5 {41}, —id € TV, and
the isomorphism I'§ /{j: id} = (sg), s£§)> C I'M gives a splitting of the
exact sequence in part (ii).

Claim: T} if [ = 0(4) and T® N O if | = 2(4) is the normal

2
subgroup generated by s4 := (sé?sél’)l /452).

Proof of the Claim: Consider the Z-basis € := (e, €1 + e3, f3) of Hy.

1 -2 0 1 00 1 9
sVe = 2lo 1 o], se=e(2 1 0],se=2|2 3
0 0 1 1001 0 0
10 o\""/1 00
si8 = ¢l 2 -10 210
0 0 1 101
1 0 o\N"*/1 00\/1 00
= ¢(0 -10 L 102 10
0 0 1 0 0 1)\~ 01
10 O\"?/1 0 0 —)¥2 0 0
= ¢l 0 —-10 01 0l=¢l o (-0 of,
0 0 1 101 —z 0 1

S4€ = (_1>l/2§ + fa(=1,1 - <_1)l/2a 1),

B { t; e it 1= 0(4),

6.12
tAeF Y oW i = 2(4). (6.12)

The splittings above of the exact sequences give semidirect products

) T % (s, sy if | = 0(4),
T A OWAe s (50 Dy if 1 = 2(4).

sg) turns up linearly in s4. Therefore I'V) = (sg), sg), s4). Together
these facts show that T'{" respectively TW 0 O i the normal
subgroup generated by s,. This finishes the proof of the Claim. (0J)
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Now we can apply Lemma 6.17 (c) if [ = 0(4) and Lemma 6.17 (d)

if [ = 2(4). The following calculations show the claims on IS and (in
the case [ = 2(4)) T n oM.
The case [ = 0(4):

A1 o Sg)(ﬁ) = (_l7 _l27 31)7
SO )\1 o Sg) = 3)\1 + )\2,
A1 o (Sgi))ilv Ag 0 (Sg))il € (M, \a)z.
The case [ = 2(4):

Azos(e) = (—1,2 —1%30),
SO A3 0 38) = A3+ 2A\1 + Ao,
Aso (s8)He) = (1,2, -1),

SO A3 0 (sg))_l = A3 — 2\,

Az o (st)F € Ay + (201, \a)z,

2A\10 (SS))ﬂ» Az 0 (Sgl)>i1 € (2X\1, \2)z.

i

(f) Rad IV = Zf3 is known. ey = —%(el +e3)+ %fg shows FZ(I)
ZetW @ Z(3 (et +23M)). We have

1 1
e=e|l0 -1 2 e=¢|0 -1 2
0 =2 0

S0 € is a Z-basis of Hy,.

First we calculate s, with respect to the Q-basis z = (eq, %(61 +
63)7 f3) of HQ7

B (-1 =10\ (/1 =1 0\ o, /1 00
se(f) = f({ 4 3 oflo 1 o))" | 10
0 0 1/\0 0 1 -1 01
21

(-1 0 0y " /1 00

= f14 -10 ? 10

0 0 1 -101
[/ 1 00 1 00 (/1 00
= fl1- 10”2 10]=fl1 10
0 01/ \-fo01 -1 01



Therefore

sa(€) =¢ , sVE =¢ (6.13)

O ==
o = O
— o O
S O =
O

_— o O

Thus
PO = (s, 53) = (s, 1) T,

and this isomorphism gives a splitting of the exact sequence (6.10).
(6.13) shows that the group <5$), s4) contains an element s; with

3 1 0
ss(e)=¢e|—4 -1 0],
0 0 1
thus
3 1 0\ /-1 -10 1 00
s550@ = 2|—4 -1 0|4 3 o]=2|0 1 0],
0 0 1 2 1 1 2 1 1

sssiy(e) = e+ f3(2l,—1%,0),
s5sg) = tf, with X(e) = (21, —1%,0).
Also
r® — <5(1) s 5(1)> (54 s 5(1)> (54, gl)’t+>

er 1 5ey 1 5ey 1561 1 Sey
SO Fq(}) is the normal subgroup generated by tj\;.
Now we can apply Lemma 6.17 (c¢). The following formulas show
= {thIh e M)zl
(21, —1%,0)s)mat = (21,12, —4l) = (21, —1%,0) + (0,22, —41),
2(21, —1%,0) + (0,217, —4l) = (41 0, —4l),
(20, —12,0)s{)mat = (21, —12,0) + (13,0, —1*)
gcd(4l P)y=1, so\ € F(l)
Ao () A 0 (sU)H € (Ar, Aoz

(g) Because of the cyclic action of y € (GPM x G=9") %t (y) on Z?,
we can suppose xl = maX(xl,xQ,xg) With respect to the Q-basis

(erV, &zW) of H , 2), sg and 863) take the shape sg )(61(1) &) =
(etM),e <>)B with
2

_ (1 —= _ (1 0 _(l-mr -2
Bl_(o 1)’ B2_($1 1)’ B3_( = 1+—>

x1

)
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We will show that the group (p, u2, p3) of Mobius transformations
wi = u(B;) is a free group with the three generators puq, pa, pig. This
implies first Fgl) ~ Gfree3 and then TW = FS) >~ GIreed and Fq(}) =
{id}.

We will apply Theorem A.2 (¢). pq, u2 and ug are parabolic,

= (z =z — xl) with fixed point oo,
Lo = <z —> > with fixed point 0,
12+ 1
2
(1 - %) - :;_:1; (371 — l’g.’l?g)z — LIT%
M3 = <2:l—> 22 = >
2zt (14 282) 132 + (21 + x273)
with fixed point — ﬁ
o)
Consider
1
= (1) =1- =y (1) =
ry = (1) Ty, T2 = py (1) 1— 2,

(11 — mow3)(1 — 1) — 23
23(1 — x1) + (21 + zow3)

It is sufficient to show the inequalities

ry = pug(r1) =

—oo<r1<—ﬁ<r3§r2<0<1<oo. (6.14)
Lo
(0 0] [00)
H1
i3 Ht
/ﬁ\/\ m

41 _X T3 ) 0 1
Xy

FIGURE 6.6. G/™*3 generated by three parabolic
Mobius transformations, an application of Theorem A.2

()

Then Theorem A.2 (c) applies. Compare Figure 6.6.
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We treat the case x = (3,3, 3) separately and first. Then

T3 1 1
3 — (=9 —1.— = _—
(rla $27T37T2) ( ; 9 2’ 2)7

so then (6.14) holds.
From now on we suppose z; > 4. The inequality ro < 0 is trivial.

Consider the number

Ty + T3 Ty X3 x3 .
Ty = —_——— = - — < =, with IU3(7”4) = Q.

We will show in this order the following claims:
x3

(i) 1 < ry, which implies r; < —5.
(ii) r3 € (=32, 00).
(iii) The numerator (zoxs — z1)(x; — 1) — 23 of r3 is positive.
(iv) The denominator z3(1 — x1) + (21 + x2x3) of 73 is negative.
(v) r3 < 9.

Together (i)—(v) and ry < 0 show (6.14).
Two of the three inequalities 2z; < x;xy for {i,j,k} = {1,2,3} in

the assumption on x can be improved,

r1xgy > 3x1 > 3wy, X173 > 311 > 319,  We keep  xox3 > 214.

(i) holds because

T x

re<ry <= 1<a:1——;——3 and

T T x T 5x 20
P S A
T3 T 9 3 9 9

(ii) 1 < rq and p3(re) = oo imply r3 = p3(r1) € (=32, 00).

(iii) holds because

x2 x3 1
($2$3—I1)($1—1)—I§>0 < :101—1>—3:_—:qu
Tol3 — T1 T9 1 — P

T3 1 I 1 2I1 2]}1
dz=2— <= = —, —1>— <« > 4.
RS T 3~ =
xroTs3
(iv) holds because
x%($1—1)—($1+$2$3)>0<:>ZE1—1>L§2$3:E1+ i
€Ty To T3
T3 Ty Ty 1 Ty T
d —(1 <—=1+=)=— 1> =<z >4
and “(1+ )< 3(+3)=5, = g T =



(ii)~(iv) show r3 € (—%,0). Now
rg<ry = [(w2w5—a1)(x1 — 1) — 23] (z1 — 1)
—[a3(z1 — 1) = (21 + z223)] > 0.
The right hand side is
g(x1, 19, 73) 1= (w3 — 21) (21 — 1)? — (23 + 23) (21 — 1) + (21 + T273).

This is symmetric and homogeneous of degree 2 in x5 and x3.

0
99 (z) = (z1 — 1)%25 — 2(2, — Dag + 3,
31’2
so for fixed x; and x5 g(x) takes its maximum in
—1)? —1 3 —1
338 _ (%1 ) T3 +$3 . $3<$1 ) T3 (%1 ) > 2,

= >
2 — 1) > T 2m -1 2

and is monotonously increasing left of x9.
Because of the symmetry we can restrict to the cases x1 > x9 > x3.
Then g(z) takes for fixed x; and z3 its minimum in xs = 3.

G(x1, 3) := g(wy, w3, 73) = 23(71 — 2)* — (21 — 1)%71 + 771

g takes for fixed x; its minimum at the minimal possible x3, which is
r9 := max(3,/2z;) because of 21 < zox3 = 22

3(4,3)=4>0 if 2y = 4,

:(j(:cl, xg) = g(ZL‘l, RV 2ZL‘1) = ZE:{) — 61‘% + 81’1
:ZL'l(Il—2)(£L‘1—4) >0 lffl'l > 5.

Therefore r3 < 15 and (6.14) is proved. O

REMARKS 6.19. (i) In the proof of part (g) of Theorem 6.18 the
hyperbolic polygon P whose relative boundary is the union of the six
arcs
Afoo,m), Alr, ==2), A(=22 ), A(ra,0), A(0,1), A(L,00),

2 2
is a fundamental domain for the action of the group (u1, fo, 13) on the
upper half plane H.

(ii) In part (g) of Theorem 6.18 the case x = (3,3, 3) is especially
interesting. It is the only case within part (g) where r3 = 3, so the only
case in part (g) where the hyperbolic polygon P has finite hyperbolic
area. In this case

wrm=(o 7). 1) (3 7o

183



Now we turn to the study of the set A of odd vanishing cycles.
The shape of A and our knowledge on it are very different for different
x € 73,

REMARKS 6.20. (i) In the cases in the parts (c¢)—(f) of Theorem
6.21 we will give A®) rather explicitly. There AD s known, and we
can give a subset of A explicitly which maps bijectively to A,

Furthermore T\ = Z2, and for € € {£1} and i € {1,2,3} there is
a subset F.; C Zfs with

A(l) N (861' + Zf3) = ¢e; + Faﬂ' and
AV N (a+Zfs) = a+ F.; forany a € TW{ee;}.
In many, but not all cases F.; C Zfs is a sublattice.

(ii) On the contrary, in the cases in part (g) of Theorem 6.21 we
know rather little. There I} = {id}, and remarkably the projection
AW 5 AD c TV is a bijection. In the case z = (3,3,3) we know
AWM. But the lift a € AW of an element @ € A® is difficult to
determine. See Lemma 6.26.

THEOREM 6.21. (a) (Empty: (b)—(g) shall correspond to (b)—(g) in
Theorem 6.18.)
(b) In each reducible case x = (z1,0,0)

AV = AW N (Zey @ Zey) U {Fes}
with A(l) N (Zel D ZGQ) = A(l)(S(—ﬁl)),
and A (S(—x1)) is given in Theorem 6.10.
(¢) The case z = (1,1,0):

A(l) _ ]_‘I—Z(l),prim7
AW = (prt ) THAW) = (Zey © Zeo)™™ + Lfs C HY™,
AL = TW e
AD and AW consist each of one orbit.
(d) The cases x = (x1,x2,0) with 2 < xy > x9 > 0: Recall x15 :=

ng(ZE‘l,Ig).
(i) The cases with x15 =1 and xy > 1: Then x1 = T, 9 = Ty and

x1 > 19 > 1. Choose yy,ys € Z with 1 = ylx% + nyg. AW consists of
the three orbits

(1),prim

r"eM} = Hy :
Fg1){e—2(1)} _ xlﬁz(l),prim’
FS){%(l)} _ xQFZ(l),pMm'
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A(l) consists of five orbits:
Wled =W {te}, T'W{eey}, TW{ees} with e € {£1}.
Here
AW N (e1 + Zfs) =T e} N (er + Zf3)
=T {e1} = €1 + Zayaa f,
AW N (cey + Zf3)
- (r<1>{geg} N (ces + Z fg)) ¥ (rm{—eeg} N (ces + Z fg))

= <€€2 + fong;:,) U (862 — £2yoTo f3 + Z.’L’%l’gfg) ,

AW N (e + Zf3)
= (F(l){geg} N (ees + Zf3)> U (F(l){—aeg} N (ees + ng)
= (663 + leﬂ?%f3)> U <563 + 2121 f3 + leng:g).
@Th@ cases with xo = 1: Then ©1 = T > 9 = Ty = 12 = 1.
AW consists of the two orbits
Fg1){€_1(1)} _ F(l {iel 4t } _ E(l),prim7
I} = D{Em®) = o
AW consists of three orbits,
TWie} =TW{xe,, +es}, TW{ee,), withe € {£1}.
Here
Vet +2Zf) =T {ei} N (er + Zf3) =TV {e} = e1 + Zan f5,
)N (cey + Zf3)
= (P(l){€€2} N (geq + Zf3)> U (F(l){—562} N (cep + Zf3)>

= (562 + szf;g) U <€62 —e2f3 + Zaﬁfg).

(11i) The cases with x15 > 1 and :L‘l > 29 > 1: Then 11 > 29 > 1.
Recall from Theorem 6.18 (s) go = = &) = —e & e Hy 7" Here
A0 FZ(I) consists of the six orbits (with e € {+1})

(e} ¢ O

IO} = 7T W{ego} € 7 H 7™,

IO} = 7l W{egy} € Tl 7"
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Theorem 6.10 (c¢) and (d) describe the orbits I’gl){e_l(l)} and Fgl){gg}.
Also AW consists of siz orbits.

A(l) N (561 + Zf3) = ¢ce1+ Z$1251§2f3,
AV N (cey + Zfs) = ceq + Zxixo7 f,
A(l) N (863 + Zf3) = ¢ces+ lexQEQfg.

(iv) The cases with xy = 19 > 2: Then 119 = 11 = Ty, Ty = Ty = 1,
&) =W = gy, Then AW C Fz(l)
ec{+£1})

consists of the four orbits (with

SIS
Wiz = TW{eg,} c Hy

(1) prim

Theorem 6.10 (c) and (d) describe these orbits. AW consists of six
orbits.

AL N (e +Zf3) = F(l){eel} N(ee1 + Zfs) = Ff}){eel}
=£ceq + Z$1f3,
AW N (gey + Zf3) = AYD N (ces + Zfs)

= <F(1){562} N (eex + Zf3)> U (F(l){563} N (eez + Zf?’))

= (562 + Z.T%fg) U <€€2 —efs+ ZQ?%fs)-

(e) The cases x = (—1,2,—1) with | > 2 even: Consider ¢ € {£+1}.
(i) The cases with | = 0(4): AW consists of siz orbits,

F(l){gel} {3/161 + y2€3 € HQ”’" | Y1 = 5(4)> Yo = O(2>} + Zl f3,

F(l){&?@:a} = {Z/1e1 + y2€3 € HE”’” | Y1 = 0(2)72/2 = 5(4)} + Zl s,
l rim

IWice,} = 5{.@161 +yses € HY'™ |y = 1(2),y2 = 1(2)}
+efs+ 21 fs.

AWM consists of five orbits, IV {ezM} = IV {—g; VY.
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(i) The cases with | = 2(4): AW consists of siz orbits,
I {eer} = ({y161 +yses € HY™ |y = (4),y2 = 0(2)} + ZQZfs)
U({y161 +yses € HY'™ |yy = —e(4), 42 = 02)} + 1fs + Z21fs ),

(1){563} = <{Z/1€1 + Ya2e3 € ngim Y1 =0(2),y2 =e(4)} + Z2lfz>

U({y161 Fypes € HE™ [y = 0(2), 90 = —(4)} + 1fs + meg)
l LM
W{ees} = S{mer +yaes € HE™ [y = 1(2), 30 = 1(2)}
+5f3 + Zl2f3.
Especially

AV N (cey + Zfs) = eey + Zlfs
(1){661} N (561 + ng) = ¢ge1+ Z2lf3,
and similarly for ees. AW consists of three orbits, Fﬁ”{?ﬁ”}
MV {—&M} forie {1,2,3}.

(f) The cases x = (—1,2,—1) with | > 3 odd: AWM consists of three
orbits (with e € {£1})

(1){61} = F(l){j:el, :|:€3} = (Zel o, Z92>prim + Zlfg,

. 1172
Wlcey,} = U(Zey ® Zgy)P" ™ + fs+ ZI2 fs.

AW consists of two orbits, T\ {ezM} = IV {—g; W},
(9) The cases x € 725 with 2x; < xjxy, for {i,j,k} = {1,2,3}: AW
and A®) consist each of siz orbits,

W fee;}  respectively T'V{eg;V}  for (g,4) € {£1} x {1,2,3}.
The projection A1) — AD s q bijection.
(h) The case x = (3,3,3): In this subcase of (g) the statements in
(g9) hold, and
TWlce,} € ee; + 3Hy, TW{egW) = (e5V) + 3H, " yorim
fore e {£1}, i€ {1,2,3}.

Proof: (b) The splitting of A® follows with Lemma 2.11. The
first and second subset are treated by Theorem 6.10 and Lemma 2.12.

() AD = H;"™ follows with Tt = SL,(Z) and Theorem 6.10 (b).
AW s the full preimage in Hyz, because T = O = {1 A(e) €
((1,0,0),(0,1,1))z}-
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(d) (i) All statements on AD follow from I't"” = SL,(Z) and &5 =
199, €3V = 905.

Recall the definition and the properties of s, € I'™ in the proof of
Theorem 6.18.

For AM we have to use Lemma 6.7.

3

Claim 1: For a € {+£e;, teqs,+e3} equality in O in Lemma 6.7
holds.

Proof of Claim 1: Suppose h € Stabra) (@"). Then

—
he Stabru)(a(l)) = <S_§1)> lf a € {*e},
s (s1)  if a € {xeq, £es},

so for a suitable [ € Z

E(@)l =id and A(s!) €T for a € {£e},
h(E)! =id and h(sy)' €T for a € {#ey, +es}.
As sé? € Stabpa)(ge1) and sy € Stabpa)(eeg) = Stabpa) (ge3)
h € TWStabpa (a).
(m)
By Lemma 6.7 (b)
T'W{ee;} N (ce; + Zfs) = TV {ee;}. (6.15)
Claim 2: (38)3438))2 = t,, with A3 € Homy(Hz,Z), A\3(e) =
(0, 2yawa, —2y171).

Proof of Claim 2: This is a straightforward calculation with sg)’mat
and s (0O)
Therefore

TWei} = TW{—e},
AV (er+Zf;) = Tei} N (er +Zfs) =TV {er}
= e+ Zxixafs.
Also
F(l){ez} > —e + 2y272 f3, F(l){ea} > —e3 — 2171 fs.

This together with (6.15) and the shape of T\’ shows the statements
on AW N (gey + Zf3) and AN N (ges + Zfs).

(i) All statements on A follow from ) =~ SLy(Z) and e&3M) =
2199 and g3V = g.
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For A® we have to use Lemma 6.7. Claim 1 in the proof of part
(i), its proof and the implication (6.15) still hold. Now we can choose

(y1,92) = (0,1), s0 84 = 363 . One calculates

0 —T1 -1
Sg)ség)sg) e=el|l0 1 0
1 —X1 0

Therefore TM{e;} = TM{+e, +e3}).

Claim 2 in the proof of part (i) still holds. It gives (sél)sg) sg)) =
ty, With A3 € Homy(Hz,Z), A3(e) = (0,2,0). Especially t, (—ez) =
es — 2f3.

This fact, (6.15) and the shape of Y imply the statements on
AW N (e; + Zf3) and A N (eey + Zfs).

(iii) and (iv) By Theorem 6.18 (d) I =~ 1 (S(=215)). By The-
orem 6.10 (c) and ( ) T {+e® ,£g2} consists of the four orbits
I‘gl){ee )} and I {592} Wlth e € {£1}. Therefore if x; > x5 then
A consists of the six orbits in (iii), and if z; = mg then A consists of
the four orbits TV {eer®} and T {ee;0} = TN {eezM} = I {eg, ).

For AM we have to use Lemma 6.7. Claim 1 in the proof of part
(i), its proof and the implication (6.15) still hold.

In the case 2, > x5, A consists of six orbits. Part (a) of Lemma
6.7, (6.15) and the shape of 'Y imply the statements on A N (ee; +
Zf3) in part (iii).

In the case 1 = o, A® consists of four orbits. Then e3 = e — f3,
(6.15) and the shape of 'Y imply the statements on AM N (ce; +7Zf3)
in part (iv).

(e) Theorem 6.10 (c) and

1 -2 10
38)(61763) = (617€3> (0 1 ) ) 8((3?(61763) = (61763) (2 1) )

imply

(st st et = {mer +yees € HY™ |y1 = e(4), 52 = 0(2)},

(s s eest = {yrer + yoes € HE™ [y1 = 0(2)), 42 = 2(4)}.

In the case (i), the semidirect product ') = 'Y <s£?, 523)> and
the shape of T'Y) show that T {ee;} and T {ees} are as claimed.

In the case (ii), the semidirect product I® = W n QP 5
(s sy and the shape of TM N O show that T {ee,} and

(D{ees} are as claimed.
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The following fact was not mentioned in Theorem 6.10 (c):

{yre1 +yoes € HY™ [yr = 1o = 1(2)} = (s, s0)) {ex + e},

so this set is a single (sg), sg)) orbit. We skip its proof (it contains the

observation sé?sg)(el +e3) = —e; — e3).
This fact, the semidirect products above of '™ the shape of i
in case (i) and of T N O™ in case (ii), and ey = —Lle1+e3)+ f3

show in case (i) and case (ii) that TV {ee,} is as claimed.
(f) Theorem 6.10 (b), € = (e1, g2, f3),

1 -1 0 100
W@ = elo 1 0], w@=2g(11 0],
0 0 1 001
_ ]2
e5 = —e1+2¢o+1fs and ey = —lgy + 5 3
imply
(&) sa)(er) = (Zey @ Zgo)"™,
(s, sa)(e3) = (Zey ® Zgo)""™ +1fs,
R ey
(W, s0)(e2) = U(Zer ® Zgo)"™ + ———fs.

2

The semidirect product 'V = M x (sg),&;) and the shape of i
show (with ¢ € {£1})

F(l){el} = F(l){iel, :l:@g} = (Z@l D ZgQ>p7“im + Zlfg,

— ]2
5 fa+ ZI fs.

(g) In the proof of part (g) of Theorem 6.18 the hyperbolic polygon
P with the six arcs in Remark 6.19 was used. It is a fundamental
polygon of the action of the group (u1, po, u3) on H. Here py, pio, i3
are parabolic Mobius transformations with fixed points oo, 0 and —i—i-
These fixed points are cusps of P. This geometry implies

~ 1
TWicey} = U(Zey @ Zgo)P"™ + ¢

Stabwl,u%m)(oo) = <:u1>a
Stab(mauz,us)(()) = <:u2>a

xr
Stab(#l,#2,u3> (__3> = <:u3>'

)
As (pq, pa, p13) = r (=2 GIree3) with pi; ~ s this implies

Stabyn ({£51}) = (s) = Stabyn (&) for i € {1,2,3}.
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Especially —&;(!) ¢ F&”(a%, so the orbits Fgl){e_i(l)} and Fgl){—e_i(l)}
are disjoint.

The cusps oo, 0 and —22 of the fundamental domain P of the
group (fi1, fi2, 3y are in disjoint orbits of (uy, o, u3). Therefore the
sets T {+erM}, T {61} and TV {+ezM} are disjoint. Therefore
AD consists of the six disjoint orbits [{”{eg;V} with (e,4) € {£1} x
{1,2,3}. Therefore also A consists of the six orbits IV {ee;} with
(e.i) € {£1} x {1,2,3}.

. L@ @

Claim: For a € {+4e;,+ey, tes} equality in O and DO before
Lemma 6.7 holds.

1
Proof of the Claim: Equality in (D) holds because of Lemma 6.7
(a) and because A and AM) each consist of six orbits.

(2) (3)
Equality in D is by Lemma 6.7 (b) equivalent to equality in D.
_ Here T = TV(= Gfreed) T = {id}, the lift si) € TO of
sg) cTW is in Stabpa) (€e;), and therefore

Stabﬂl)(ae_i(l)) = <S£21_)> = Stabr(l)(eei) = F(ul) . Stabr(l)(eei),

so equality in (33) holds. The Claim is proved. (0O)
The Claim and I'{” = {id} show
(eei +Zf3) N AW = ge,.
Therefore the projection A® — AD s a bijection.
(h) In the case z = (3,3, 3)
I=(1,1,1), fs=—e1+ex—es 85" = —&1 + &Y,
E(l) _ Ze_l(l) o Z@(l).
Recall that the matrices By, By, B3 in the proof of Theorem 6.18 (2)

with sg) (e, &W) = (e, & M) B; are here

1 -3 10 2 -3
me(o ) =0 (3 7))

and generate I'(3). Because s.(gll.)’mat = F3mod 3 and B; = Fymod 3,

I'Wee;} Cee;4+3H, and I'V{eg;V} c g5V + 3,

It remains to show IV {zM} = (5O + SH_Z(l))p”m. This is equiv-
alent to the following three statements:
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(i) For (a1, as) € Z? with (ay,a3) = (1,0) mod 3 and ged(ay, az) =
1 a pair (ag,a4) € Z* with (Z; Zi) € I'(3) exists.

(i1) For (ag,ay) € Z* with (ag,as) = (0,1) mod 3 and ged(as, ay) =
1 a pair (ay,a3) € Z* with (Z; Zi) € I'(3) exists.

(iii) For (b1, by) € Z* with (by, by) = (—1,1) mod 3 and ged(by, by) =

1 a matrix <a1 a2> € I'(3) with <—a1 +ax) _ (b exists.
as Qyq —as + ay bg
(i) is proved as follows. There exist (az, ay) € Z* with 1 = ayay — asas.
Thus ay = 1(3). Let ax = r(3) with r € {0,1,2}. Choose (ag,a4) :=
(a3 — ray, ay — raz). The proofs of (ii) and (iii) are similar.
The proof of Theorem 6.21 (h) is finished. O

In quite some cases A c AD but nevertheless in general A© ¢
A Corollary 6.22 gives some details.

COROLLARY 6.22. (a) A® = AW holds only in the cases A7, so
the cases with S = E,, for some n € N. In all other cases A ¢ RO,

(b) A© S AW in the cases n =2 except A3, in the reducible cases
with n = 3 except A3 and in the case As.

(c) AO ¢ AW holds in the following cases with n = 3: Ay, Hio,
S(—1,2,—1) with | > 3 and P?.

Proof: (a) In the cases A7 A® = AW = {4¢,, ..., +e,} by Lemma
2.12. In a case with S € T'""(Z) — {E,} there is an entry S;; # 0 for
some i < j, so L(ej,e;) # 0. We can restrict to the rank 2 unimod-
ular bilinear lattice (Ze; + Ze;, L|ze,4ze,, (€, €;)) with triangular basis
(€i,e;). Part (e) of Theorem 6.10 shows that it has odd vanishing cycles
which are not roots. They are also odd vanishing cycles of (Hz, L, e),
so then AM ¢ RO 5 A0,

(b) For the cases n = 2 see Theorem 6.10 (e). The reducible cases
with n = 3 follow from the case A; and the cases with n = 2. In the
case Az the twelve elements of A() are given in Theorem 6.14 (c). The
set AM is by Theorem 6.21 (c)

(er,(l))fl(FZ(l)vprim) +7fs

which contains Aio) as a strict subset.
(c) The case Ay: With z = (=1, —1,—1) we have f; = e; + ez + €3
and f3 = e; — es + e3. By Theorem 6.14 (d)
A(O) = (:|:61 + Zfl) U (:i:eg + Zfl) U (:i:eg + Zfl)
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By Theorem 6.21 (c)
AD — (er,(1))—1(FZ(1),pMm) +7fs
Here for example for m € Z — {0, —1}
A s ey +mfi = (2m+ ey +mfs ¢ AW,

The case Hy2: With z = (—2,2, —2) we have Rad IO = Z(e; +
ey) @ Z(eg + e3) and f3 = e + e3 + e3. By Theorem 6.14 (e)

AY = (fe; + 2Rad I'V) U (fey + 2Rad I'V) U (de5 + 2Rad I?).
By Theorem 6.21 (e) (ii)
AW C (Zey + Zes)P™™ + L fs.
Here for example

A© > e+ 6(61 + 62) + 4(62 + 63)
= (—3)61 + (-6)63 —+ ]_0f3 ¢ (Zel —+ Zeg)p”m + ng

This element is not contained in AM) because by Theorem 6.21 (e)
AW ¢ ((Zel 4 Zeg)Pm 4 7, f3> v <é(Zel ¥ ZesPm 4 7, f3>.
The cases S(—1,2, —1): Recall Rad (¥ = Zf,, fi = e1 — es,
f3= %([61 + 2e9 + leg) if [ > 3 is even,

Jo=lert2etles | o) 940 0da.
g2 = 5(e1+e3) — e

Consider the element

hi(er) —larfi = hi(er —layfi) € Hz with
hy = (sWs0)3 1O,
1
ap = 5(55 — 4P +3l) € Z

By Theorem 6.11 (f) 77" (&) ® f) and TG (1&59) ® f) € T
with

T(E(O)(e_l(o)) ® fi)ler) = e +2f1,

TG1E") © fi)(e) = e —Ph,
SO

A©) { e1 +27Zf; if [ is even,

e1+ Zf, if is odd.
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Therefore hyi(ey) — lay fi = hi(e1 — lar fi) € A®. One calculates

hi(er) —larfy = (s8s0)(er) —lar fo
-1 71 2\ /1 0 O 1
=0 1T O}l =1 1]P*[0]) —laf
0 01/ \0 0 1 0
21 -1 2-2\°/1
= € [ -1 l 0 —la1f1
0 0 1 0
1 —51*+ 6021
= € 15—4l3+3l —la1f1
0

aifs if [ is odd.

This element is not contained in A®") because (—I* + 31> — 1) ¢
{+1,+L, £} and because by Theorem 6.21 (e) and (f)

— (<1 32— e + { 2a1fs if [ is even,

AL ((Ze1 + Zes)Pm 4 7, fg) U (é(Zel + Zes)Pm 4 7, f3)
if [ is even,
AL ¢ ((261 + Zgo)P™ 4 Z j},) U (Z(Zel + Zgo)P"™ 4 Z f3>
if [ is odd.
The case P%: With z = (—3,3,—3) we have f3 = e; + ey + e3.
AV 5 S(0)2e)

1 0 0 10 0 1 0 O 1 1
= ¢e¢|l0 1 0 3 1 -3 31 =3 0] =¢e| 6
3 =3 1 0 0 1 00 1 0 —15

By Theorem 6.21 (g) the projection A® — A is a bijection. There-
fore

AW A (e + 6ey — 15e3) + 9f5 = 10e; + 15e, — Ges.
On the other hand
L(10€1 + 1562 — 663, 1061 + 1562 — 663)
1 0 0\ /10
= (10 15 =6) | -3 1 0] [15] =1,
3 -3 1) \-6
s0 10e; + 15ey — ez € RO = A©), O
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Consider a triple z € Z3 and a corresponding unimodular bilin-
ear lattice (Hz, L,e) with a triangular basis e with L(e!,e)t = S(z).
The Remarks 4.17 explained that the tuple (Hz, =11, M A®M) de-
pends only on the (GP* x G*i9") x (~) orbit of z € Z3. Lemma 4.18
gave at least one element of each orbit of this group in Z3. Theo-
rem 6.18 and Theorem 6.21 gave detailed information on the tuple
(Hz, 10, T AM) for the elements in Lemma 4.18 (b)+(c) and
rather coarse information for the elements in Lemma 4.18 (a).

The next corollary uses this information to conclude that the (GP"x
G*'9) %1 () orbits of the elements in Lemma 4.18 (b)+(c) are pairwise
different and also different from the orbits of the elements in Lemma
4.18 (a), because the corresponding tuples (Hz, £1M TM AM) are
not isomorphic. As Theorem 6.18 and Theorem 6.21 give only coarse
information on the cases in Lemma 4.18 (a), also Corollary 6.23 is vague
about them.

The set of local minima in Lemma 4.18 (b)+(c) and (3, 3, 3) is called
A1, the set of local minima in Lemma 4.18 (a) without (3, 3, 3) is called
A27

Al = {(37 37 3)} U {(_l> 27 _Z) ’ [ > 2}
U{(I'l, T2, O) | T1,To € Zzo,dfl > 1'2},
Ay = {x€Z3,|2x; < ajmy for {i,j,k} = {1,2,3}} — {(3,3,3)}.

COROLLARY 6.23. Consider x and x € Ay orx € Ay and T € A,.
Suppose x # T. Then the tuples (Hz, 210 T AMY of 2 and T are
not isomorphic. Consequently, the (GP" x éSign) X () orbits of x and
T are disjoint.

Proof: In the following, (b), (¢), (d), (d)(i), (d)(ii), (d)(iii), (d)(iv),
(e), (e)(i), (e)(ii), (), (g), (h)(C (g)) mean the corresponding families
of cases in Theorem 6.21. Of course, (c¢) and (h) are single cases.
We will first discuss how to separate the families by properties of the

isomorphism classes of the tuples (Hz, £1®, '™ AM) and then how
to separate the cases within one family.

The pair (FI(}),FS)) gives the following incomplete separation of
families,

Fq(}) =9 Fgl) &7 families
{id} GIreed (9)
{id} %2 GIrees (0)
z? SLy(Z) (c), (d)(3) + (i2), (f)
72 SLy(Z) x {£1} (e)(i1)
72 I | (d) i) + (i), (€) ()



The fundamental polygon P in Remark 6.19 (ii) has finite area in the
case (h) (i.e. z = (3,3,3)) and infinite area in the other cases in (g).
So it separates the case (h) from the other cases in (g).

The number of Brz x {£1}® orbits in A()) separates the families
(c),(d),(e)(i),(f) almost completely:

[{orbits in AD}|| 1 2 3 4 5 6
(e) | (d)(id), (f) | (d)(@) | (d)(iv) | (e)(i) | (d)(iid)

families

The separation of the family (d)(ii) from the family (f) is more
difficult and can be done as follows. In both families of cases AV
consists of three orbits, and A consists of two orbits. The two orbits
T {ey} and TD{—e,} unite to a single orbit IV {1} = TV {—g (M1,
The set

{neN | there exists a; € I'M{e,} and € € {£1}
with a; + enfs € TW{—ey}}

is well defined. Its minimum is 2 in each case in (d)(ii) because there
1 > 29 =1 and

F(l){eg} N (62 + ng) = e9 + Z.ﬁlf%fg,
F(l){—GQ} N (62 + ng) = €9 — 2f3 + ZZE%fg
[ts minimum is 1 in each case in (f) because there

14102
5 f3+ ZI* f,

—1+ 2

T e} N (ley +Zfs) = ley +

TO{—ex} N (les + Zfs) = les + + 71 fs.

It remains to separate within each family (b), (d), (e) and (f) the
cases ((c) and (h) are single cases). The pair (Fz(l), j:T(l)) and Lemma
6.16 (b) allow to recover ged(xy,xs,x3) which is as follows in these
families,

(b)

T

(d)

x12

family of cases (e) | (f)
ged(zq, z2, x3) 2|1

Within the family (b) this separates the cases. For the family (d)
we need additionally the pair (771, Z2) because (1, x2) = (T12T1, T12T2).

The pair (Z1, Z3) can be read off from AY ¢ FZ(I), more precisely, from
the relation of the TV orbits in AD to the set Fz(l) C Fz(l). In
the family (e) one can read off £, and in the family (f) one can read off [

from the relation of the Fgl) orbits in Z(l) to the set Hy, C Fz(l).
O

,prim

(1),prim
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REMARKS 6.24. Let (Hz, L) be a unimodular bilinear lattice of
rank n > 2, and let e be a triangular basis with matrix S = L(e’, e)’ €
T'"(Z). Recall Theorem 3.7 (a). If S; < 0 for i < j then
(O, {s&?), ey 322)}) is a Coxeter system, and the presentation in Def-
inition 3.15 of the Coxeter group I'¥ is determined by S. Especially
[0 > GfCorn if 5,0 < —2 for i < j.

One might hope for a similar easy control of '™ if S;; < 0 for i < j.
In the cases with n = 2 this works by Lemma 2.12 and Theorem 6.10:

{id} if =0,
M =~ {0 SLy(Z) ifx=—1,
GIree?if o < =2,

But in the cases with n = 3 this fails. The Remarks 4.17 show
IM(S(z)) 2 TMW(S(—2)) for any z € Z3. The cases S(Z) with z € Z2,
lead by the action of (GP" x G*9™) x () to all cases in Theorem 6.18.

Especially, the cases S(Z) with Z € Z32, contain the nice cases
in Theorem 6.18 (g) with T = G#re¢3 hut also many other cases.
Compare the family {(3,3,{) |l > 2} in the Examples 4.20 (iv) or the

case S = S(2,2,2) ~ S(=2,-2,-2) ~ S(Hiz) with T® far from
Gfree,3.

REMARKS 6.25. In the cases z € Z* in Lemma 4.18 (a), so z € Z3,
with 2z; < z;x) for {i,j,k} = {1,2,3}, Theorem 6.18 and Theorem
6.21 give rather coarse information,

IV = {id} and I'M =1 = Glreed by Theorem 6.18,
AW — AM) g a bijection by Theorem 6.21.

But it is nontrivial to determine the unique preimage in '™ of an
element of Fgl) and the unique preimage in A of an element of AQ).
This holds especially for the case z = (3,3,3) where ri I'(3) and
A are known. Part (c) of the following lemma gives for z = (3,3, 3)
at least an inductive way to determine the preimage in T'()maet of g

matrix in [(3) = TV

LEMMA 6.26. Consider the case x = (3,3,3). Denote by Lpz :
['3) — rWmat the inverse of the natural group isomorphism

F(l),mat R F(l) R Fgl) s F(3),
s{bmat y st s —— B
gmat y g N g \ gmat
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with

gle) = e-g™  and
§(6—1(1)76(1)) — (6_1(1),6_2(1)>'§mat
for g € TW . Define the subgroup of SLs(7Z)
-1 -1
G@3Y) = [FeSLyZ)|F=FEsmod3, F| 1 |=|1]}
—1 —1
Define the map (st for standard)
a b a b 1l—a+0
Ly :T(3) — Msys3(Z), < >»—> c d —l—c+d]|,
c d
00 1
and the three matrices
3 0 =3 0o 3 3
K = |-30 3|, K,=|0 -3 -3],
3 0 =3 0o 3 3
3 3 0
Ky = Ki+Ky=11-3 -3 0
3 3 0

(a) Ly is an injective group homomorphism Ly, : T'(3) — G333)

K K;=0 fori,je{1,23},
L (O)K; = K; for C € I'(3), i € {1,2,3},
G333 = [L,(C) + aK, + BK, | C € I'(3),, B € Z}.

The following sequence is an exact sequence of group homomorphisms,

iy — 72 — G3:33) — I(3) —— {1}
(a, ) ——  Es3+ ok + K,
Ly(C) +aK, + K, —— C

Lg 1s a splitting of this exact sequence.
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(b) TWmat « GB33) - aqnd Ly : T'(3) — TW™mat s another splitting
of the exact sequence in part (b). It satisfies

-3 =3
1 for B1 1 =3 s
0 0 1

0

1
0 0
1 fOI'BQ :13 ?),
0

0

1

3

100 5 g
Lp2(Bs) = Ly(Bs)+Kz=s1™m"=[0 1 0] forBy= ( )
331

—_

Lg2(B1) = Ly(By)=smet =

Lp2(By) = Lg(Bs) = Sg),mat _

SO W= OO

3 4

Lp:(By') = Lu(By') — K.
(c) An arbitrary element C' € I'(3) can be written in a unique way
as a product
C = C1B5'CyB2Cs...C B Cry i
with m € Zsg, C1,...,Cmy1 € (BF', BFY), €1,...,em € {1},
Then
Le2(C) = Ly(C) + Ky (lest(OgB?Cg...CmBngmH)
4o Loy(C3 B Ch. O B G

+...+ gmLst<Cm+1)> .

Proof: The parts (a) and (b) are easy.

(¢) By part (b) Lp2(C;) = Ly (C;) and Lp2(By’) = Ly (By’) +¢; K3,
SO

Lp2(C) = Lp2(Cy)Lp2(B5") Lp2(Cs)... Lp2 (Cyy) Lp2 (B5™ ) Lp2 (Chpy1)
= Lgu(C1)(Lat(B5') +e1K3)Lgt(Co)...
Lot (C)(Lst(B5™) + € K3) Lt (Crsi)-

Observe KgLSt(é)Kg = K3K5 = 0 for C e ['(3). Therefore if one
writes the product above as a sum of 2 terms, only the 1 4+ m terms

do not vanish in which K3 turns up at most once. This leads to the
claimed formula for Lpz(C). d
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CHAPTER 7

Distinguished bases in the rank 2 and rank 3 cases

In section 3.3 we introduced the set of distinguished bases of a
unimodular bilinear lattice (Hz, L, e) with a triangular basis. It is the
orbit B%st = Br,, x {£1}"(e) of ¢ under the group Br, x {+1}". We
also posed the question when this set can be characterized in an easy
way, more precisely, when the inclusions in (3.3) or (3.4) are equalities,

Bt {y e (A(O))” | 55)?)...81(2 = —M}, (3.3)
Bt {v e (AD)" | sV sD) = M} (3.4)

Theorem 3.2 (a) and (b) imply that (3.4) is an equality if IV is a free
group with generators 38), e s&) and that (3.3) is an equality if o
is a free Coxeter group with generators sgf), e sé?l) , see the Examples
(3.23) (iv). More generally, if (F(O),SQ), ...,sgg)) is a Coxeter system
(Definition 3.5) then by Theorem 3.6 (3.3) is an equality, see the Ex-
amples 3.23 (v). It is remarkable that the property Y ", Zv; = Hy,
which each distinguished basis v € B¥*! satisfies is not needed in the
characterization in these cases.

These are positive results. In the sections 3.1-3.3 we study system-
atically all cases of rank 2 and 3 and find also negative results.

In rank 2 in section 6.2 (3.3) is always an equality, and (3.4) is an
equality in all cases except the case A%

In the even rank 3 cases in section 7.2 (3.3) is in all cases except
the case H; 2 an equality. In the case H; s the set on the right hand
side contains Brz x {£1}? orbits of tuples v with arbitrary large finite
index [Hy, : 327, Zwv;] and two orbits with index 1, B and one other
orbit.

In the odd rank 3 cases in section 7.3 we understand the set By U By
of triples z € Z3 such that (3.4) is an equality, and we also know a set
B3 U By of triples z € Z? such that (3.4) becomes an equality if one
adds the condition Hz = Y";_, Zv;. But for z € Z* — U, B;, we know
little.

Section 7.4 builds on section 4.4 where for a unimodular bilinear
lattice (Hz, L, e) the stabilizer (Brs),/ri13s had been determined. It
determines the stabilizer (Brs)e/;113s. It uses the systematic results in
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chapter 5 on the group Gz and on the map Z : (Br, x {£1}")s — Gz
in the rank 3 cases.

In the sections 4.3 and 4.4 the pseudo-graph G(z) with vertex set an
orbit Bry(z/{£1}) and edge set from generators of the group G*" x ()
had been crucial. In section 7.4 we introduce a variant with the same
vertex set, but different edge set, namely (now) oriented edges coming
from the elementary braids o;-'. We also define the much larger o-
pseudo-graph with vertex set a set B4 /{£1}? of distinguished bases
up to signs and oriented edges coming from the elementary braids o;-".
We consider especially the examples where the set Brz(z/{£1}%) is
finite.

7.1. Distinguished bases in the rank 2 cases

In the rank 2 cases the inclusion (3.3) is always an equality, and the
inclusion (3.4) is almost always an equality, namely in all cases except
the case A?.

THEOREM 7.1. Let (Hz, L,e) be a unimodular bilinear lattice of

rank 2 with a triangular basis e = (ey, ea) with matriz S = S(x) =
(1) :16 = L(¢e',e)" with x € Z. Fiz k € {0,1}.

(a) The inclusion (3.3) respectively (3.4) in Remark 3.19 is an
equality in all cases except the odd case A%, so the case (k,z) = (1,0).
In that case the right hand side in (3.4) splits into the orbits of the
three pairs (e1,€1), (e1,€2), (€2, €2).

(b) The stabilizers in Bry of S/{£1}* and of e/{+1}? are

(BI"Q)S/{il}Q = BI‘Q and

(o) ifz =0,
(Brg)g/{ilp = <O':1))> if v € {:i:l},
Gd} it o] > 2.

Proof: (a) The even and odd cases A?: See the Examples 3.23 (iii).
The cases with |z| > 2: Theorem 6.8 (c)+(d) and Theorem 6.10
(c¢)+(d) show

k) GfCo»2  with generators sé?), ség) if k=0,
Gfre¢?  with generators sg), sg) if k=1.
The Examples 3.23 (iv) apply and give equality in (3.3) and (3.4).
The cases with x = +1: We can restrict to the case x = —1. The

even case is a simple case of Example 3.23 (v) (in the Remarks 7.2 we
will offer an elementary proof for the even case).
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It remains to show equality in (3.4) in the odd case (k,z) = (1, —1).
Consider v € (AM)? with sl = M. Let b := IW(vy,vy) € Z. If
b = 0 then vy = +v; and M = (31(,11))2 would have an eigenvalue 1, a
contradiction. Therefore b # 0 and Zwv, + Zwv, has rank 2. Then

M(v) = s(l)s(l)(g) = sfﬁ)(vl + bug, vo)

- U1 T2

_p2 _
= (vl—l—bUQ—bzvl,UQ—bvl):y(l bb 1b),

l=trM = (1-10%) +1, so b= £1. By possibly changing the sign of
V9, We can suppose b = —1 = z. Then

0 —1
(1) (4t _
I (Q ay) - (1 0 ) .

Therefore v is a Z-basis of Hz, and the automorphism g € Aut(Hy)
with (g(e1), g(e)) = (v1,v) is in O, By Lemma 3.22 (a)

gMg™t = go((mom)(e) og™ = (m o) () = sl = M,

v1 Cvg

sogMgt=M,sog¢€ G(Zl) = GY' NnOW. Theorem 5.5 can be applied

and gives (——),
a2 Gy Yoy |1 e 2y € Z(Bry x {£1)2).
Therefore v € B%st. This shows equality in (3.4).
(b) Because of o7 <(1) f) = ((1) —1m>7 the stabilizer (Bra)g/q11)2
is the whole group Bry = (01). If z =0,
(e1.€2) & (ez,e1) 7 (er,€2), 50 (Bra)espeny2 = (07)-
Ifx=-1,
(e1,€2) ™ (e1+ €, €1) > (—e2, €1 + €2) &> (€1, —€2),
50 (Bra)e/f+1y2 = (1)

If |z| > 2 Theorem 3.2 (a) or (b) and I'M) = GIree2 or T(0) = GfCon2
show (Bry)e/q+1y2 = {id}. O

REMARKS 7.2. (i) A direct elementary proof of equality in (3.3)
for the even case As, so (k,z) = (0,—1), is instructive. Recall from

Theorem 6.8 (b) that A = {+e;, +e,, +(e; +e2)}. The map 7T207Té0) :
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(A©)2 — T has the three values —M, M? and id and the three fibers

(romy)H(=M) = {(er Fes). (Fer + ea). Fer), (e, £(er + e2)}
— Bdist
(mao )N (M?) = {(Fes, %e1), (£(er + e2), +ea), (er, £(ey + €2)}
= BryKx {i1}2(62,€1)7
(mom”)Hid) = {(Fer,Fer), (Fea £er), (Fer + ea), £(er + e2)}.
This gives equality in (3.3) in the case (k,z) = (0, —1).

(ii) Also in the cases (k = 0,2 < —2) a direct elementary proof of
equality in (3.3) is instructive. Equality in (3.3) for (k,z) = (0,—2)
and Theorem 6.8 (d) (iv) imply equality in (3.3) for (k = 0,z < —3).
Therefore we restrict to the case (k,z) = (0, —2). Recall

Rad IV = Zf, with f, =ej + es.
By Theorem 6.8 (c)

A(O) = (61 + Zfl) U (—61 + Zfl) = (61 + Zfl) U (62 + Zfl)

One easily sees for by, by € Z

© o _ B
861+b1f1862+b2f1 - _M — bl + b2 — O,

thus
{ve (A(O))2 | 5050 — —M} = {%(e; +bf1), £(ea — bf1) | b € Z}.

v1 “vg

This set is a single Bry x {4-1}? orbit because of
520'1(61 + bfl, €y — bfl) = (61 + (b + 1)f1, €9 — (b -+ 1)f1) ]

7.2. Distinguished bases in the even rank 3 cases

In the even cases with n = 3 we have complete results on the
question when the inclusion in (3.3) is an equality. It is one in all cases
except the case H; .

THEOREM 7.3. Let (Hz, L,e) be a unimodular bilinear lattice of
rank 3 with a triangular basis e with matriz S = S(z) = L(e',e)t €
Tim(Z).

(a) Suppose S ¢ (Brs x {£1}3)(S(Hi2)). Then the inclusion in
(3.3) is an equality.

(b) Suppose S = S(Hi2) = S5(—2,2,—2). Recall the basis

1 01
(fi, for f3) = e|1 1 1| of Hy with RadIV = Zf, @© Zf, and
01 1

Rad I = Zfs. The set {v € (A©)3 ]| (730 Wéo))(y) = —M} splits
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into countably many orbits. The following list gives one representative
for each orbit,

. g1 0 e\ (N
g, - th —
(fs—=g1,—fs+ 91+ 92, fs — g2) Wi (92> (01 03> (f2>’
c1 € Nodd, ¢; € Z odd, c3 € {0,1,..., |ca] — 1}.

The sublattice (fs — g1, —f3 + g1 + g2, f3 — 92) = (f3,91,92) C Hz has
finite index ¢y - |co| in Hyz. It is Hy in the following two cases:
e=(fs—fo,—fs+ fi+ fo f3— f1)
S0 (91792701702703) (f27f1,17 170)7
(fs+ fo,—fs+ f1 = for f3 = f1),
50 (91,92, c1,¢2,¢3) = (—fa, f1, 1, —1,0)
(see also Example 3.23 (ii)) for the second case).

Y

Proof: (a) We can replace e by an arbitrary element ¢ € B%*!. By
Theorem 4.6 the following cases exhaust all Brz x {41} orbits except
that of H; o:

(A) (Hz, L,e) is irreducible with z € Z2,

(B) r(z) <0 and z # (0,0,0). -

(C) z = (21,0,0) with x; € Z<, so (Hz, L,e¢) is reducible (this
includes the case A3?).

(D) x = (—1,2,—1) with [ > 3.

The cases (A): T is a Coxeter group by Theorem 3.7 (a). Theorem
3.7 (b) applies.

The cases (B): By Theorem 6.11 (g) I'© is a free Coxeter group
with generators 321),322),322). Theorem 3.7 (b) or Example 3.23 (iv)
can be used.

The cases (C): Consider a triple v € (A©®)3 with sVsOsO — _pr.
The set A splits into the subsets AN (Ze, +Zey) and {:I:eg} Com-
pare —M\Ze3 = —id |z, with s |Z63 = —id |z, and s \Zes = 1d |z,
for a € A N (Ze, + Zey). All three v; € {Fe3} is impossible because
(363) # —M. Therefore there are 4,7,k with {i,7,k} = {1,2,3},

i < j, vi,v; € AO N (Zey + Zey) and vy, € {Fe3}. The reflection s

(0

acts trivially on Ze; + Ze; and commutes with s,,” and 31(,0.). Therefore

sOs 050 = 505050 — (150 7l0) (1) = —M = 55050,
SO 8(0)8(0) == S(O)S(O).
v; v e1 “e2

The reflections sq(h), 353), sg?) and ség) act trivially on Zes. The inclusion

in (3.3) is an equality because of Theorem 7.1 (a) for the rank 2 cases.
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The cases (D): The proof of these cases is prepared by Lemma 7.4
and Lemma 7.5. The proof comes after the proof of Lemma 7.5.

(b) The proof of part (b) is prepared by Lemma 7.6 and comes after
the proof of Lemma 7.6. (0O)

The following lemma is related to ¢ in Lemma 6.17. Recall also
§®) . Hy — H%, a+— I®(a,.), in Definition 6.1.

LEMMA 7.4. Let (Hz, L) be a unimodular bilinear lattice of rank
n €N. Fiz k € {0,1}. Suppose Rad I®) # {0} and choose an element
f € Rad I® — {0}. Denote

Homy ;(Hz, Z) := {\ : Hy — Z| X is Z-linear, A(f) = 0},
t)\ : HZ — HZ with t,\((l) =a-+ )\(G)f for \ € Homo,f(HZ,Z),
Then ty € O F  The map
Homyg ;(Hz, Z) — OF-Fad Xty

is an injective group homomorphism. For b € R® (with R = Hy,
see 3.9 (i)) and a € Z

k k k
31(;+)af - SZ(J o baj®r () = T(—1)kajo p) © Sl() )’
k k
570t = b Caaniow O S -
Proof: The proof is straightforward. We skip the details. U

The following lemma studies the Hurwitz action of Brs on triples
of reflections in G¢°®2. 1t is related to Theorem 3.2 (b).

LEMMA 7.5. As in Definition 3.1, GT¢°®2 denotes the free Cozeter
group with two generators z; and zy, so generating relations are zf =
2 =1

(a) Its set of reflections is

2
A(GTCom2) = U{wziw_l |w € GI9"?) = {(2129)" 2, | m € Z}.
i=1
The complement of this set is
GICom2 _ AN(GIO"2) = {(2129)™ | m € Z}.

A(GTCm2) respectively its complement consists of the elements which
can be written as words of odd respectively even length in z; and zs.
(b) The set

{(U)l, Wa, U)g) € (A(GfCO$’2)3 | W1WaW3 = 212221}
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1s the disjoint union of the following Brs orbits:

UmEZZOBr?) ((212221; (le2)1im21, (2122)17m21)) .

Proof: (a) Clear.
(b) The map

{(wl, wg,wg,) - (A(ch’oac,2>)3 | WL WaW3 = 21222’1} — ngl(Z)7
(U)l, Wa, w3) — (mb mZ)t

with wywe = (2129)™, wows = (2129)™2,

is a bijection because

212021 = (wywg)we(wows), so
wy = (wiwg) 212021 (wows) Y,
wy = (wiwy)wsy,
wy = wy(waws),

so a given column vector (mq,ms)" has a unique preimage.
The Hurwitz action of Brs on the set on the left hand side of the
bijection above translates as follows to an action on My (Z).

o1(wy, we, w3) = (wiwewy,wr,ws),
Wwewy - Wy = wWiW2 = (2122)m17
wiwy = (wyws)(waws) = (z122)™ ™2,
my my 1 0 my
o) = () =G0 G),
oo(wy, we, w3) = (wq,wawsws, ws),
wy - wowswy = (wiws)(wows) ™t = (z129)™ ™2,
Wowswy - wy = wrwz = (2122)"?,

ma o mp —mgo\ 1 -1 ma
72 mo o mo o 0 1 mo ’
So Brj acts as multiplication with matrices in SLy(Z) from the left on

Msy1(Z). Each orbit has a unique element of the shape (7(7;) with
m € Zxq. This element corresponds to
(712021, (m122)' ™21, (2122) "), U
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Proof of Theorem 7.3 (a) in the cases (D), z = (—[,2,—1) with
[ > 3: Recall from Theorem 6.11 (f)

Rad ](0) = Zfl with f1 = €1 — €3,

PS’) =~ G792 with generators z; = sé?) = 5,(32), 29 = ség).

Suppose v € (A®)3 with sV sV s = — M. We want to show v € Bt

or equivalently (31(,01), 31(2)’ 31(,2)) c R(0)dist_
0). (0) (0) (0)

First we look at the images in ['s’: sy," S0, S0y = 212221. Because
of Lemma 7.5 (b), we can make a suitable braid group action and then
suppose
(SS}P, 35,2), 35}3) = (212921, 7,7) With 7 = (2122)' ™2 for some m € Zx.
Write €5 := sg?)(eg) = ey + le; and observe

217721 = Sg?)Sgg)S((ag) = 5$)~

After possibly changing the signs of v; and wvs, 57()(1)) = sg) and 35,2’ =

r= si?) imply
vp=¢éey+arfi and wv3=ws+asf; for some ai,as € Z.

With Lemma 7.4 and f; = (f in Lemma 7.4) we calculate

M= s = SO
= 82?)5§2)8£?)tj<0>(e1) = Se”é)tjm)(el)’
M= D = D
= Sg)tﬂuj(‘))(@)Sgg)sgg)t*mj(m(w)
= St 01O (@) -ar O (1)1
SO
§Oer) = —a1j(&3) — agj @ (va).
Write

550 = be7 @ + byer®  with bi,by € Z.

By Theorem 6.14 (f) the tuple (FZ(O),T(O), (21, &™) is isomorphic

to the corresponding tuple from the 2 x 2 matrix S(—I) = (é _1[)
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The set of roots of this tuple is called R (S(—1)). It contains 5",
&, 2. By Theorem 6.8 (d)(i) the map

RO(S(=1)) — {units in Z[r;] with norm 1} = {£&" |m € Z}
et +p&m® =y — R,
is a bijection, where k1 = é + %\/m The norm of by — byky is

1= b2 — Ibyby + b2,

Now

(2,-0) = §Oer)(er, e2) = (—a1j(2) — a2jV(vs))(en, €2)
—ai((—1,2) +1(2,=1)) — az(br1(2, —1) + b2(—1,2))
= (—aql — agbl)(Q =)+ (—ay — agsbhs) (-1, 2).

SO
a; = —aghy, 1= —ayl — asby = as(bel — by),
as = =+1 and b = —as + bol.
Calculate
0 = —1+4+0%—1Ibby+b5=—1+ (—ag+ byl)(—ay) + b3
= by(by — asl).

We obtain the four solutions
(ay,a9,b1,b0) € {(0,1,—1,0),(0,—1,1,0),
(=1, 1,12 —1,0),(=1,—1,1 = 1*, =D}
In the case of the third solution
B0 = (- 0E + i = 50 ),
0) _ (0) 5(0) (0) ((0) (0) (0)

TS S50 0y T S S S S S
= (212)%21 = (z122) "2 with m = —1.
As m = —1 is not in the set Zsq, we can discard the third solution.

In fact, (212221, (2122)%21, (2122)2;1) is in the Brs orbit of (212921, 21, 21)
because (_01> is in the SLy(Z) orbit of ((1)) We can discard also the
fourth solution because its vector 73 differs from the vector 73(® in
the third solution only by the sign.

Also the vector 75°) in the first solution differs from the vector 75
in the second solution only by the sign.

The second solution gives 73 = &7 and thus for some by € Z

v=(€,e1 +bsfi,er +bsfi — f1) = (€2,e1 + b3 f1,e3 + b3 f1).
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The observation

0202(v) = 2(€2,e3 +b3f1 —2(er +b3f1),e1 + b3 f1)
= (ez,e1+ (b3 +1)f1,e3+ (b3 +1) 1)
shows v € Bry x {£1}3(éz,e1,e3). This orbit is B¥! because
(€2,€1,e3) = o1(e). O

Lemma 7.6 states some facts which arise in the proof of part (b) of
Theorem 7.3 and which are worth to be formulated explicitly.

LEMMA 7.6. Let (Hyz, L, e) be the unimodular bilinear lattice of rank
3 with triangular basis e with matriz S = S(Hi2) = S(—2,2,-2) =
L(e!,e)t. Recall Rad IV = Zf, + Zf, and R©®) = +f5 + Rad IV (The-
orem 6.14 (f)).

(a) For g1, ga, g3 € Rad I

(0) (0) (0)
fa—015 f3—925 f—g3

(b) The map
®: Myo(Z) — {ve (RO | (myom”)(v) = —M}/{£1},
A = (fs—g1,fs—g1—93 fs— 93)/{:‘:1}3

i () =4 (%),

1s a bijection. The action of Bry on the right hand side translates to
the following action on the left hand side,

o1 (A) = ([1) _11> A oy(A) = G (1]) A

(c) v € (RY)? with (73 0 wé N(v) = —M satisfies either (i) or (ii):
(i) There exists a permutation o € Sy with v; € T O{e, )} for
ie{1,2,3}.
(ii) Either vi,vy,v3 € TO{f3} or there exists a permutation
o € S3 and an | € {1,2,3} with v,qy € TO{fs} and
Vo(2); Vo(z) € IO}
(i) holds if and only if @~ (v/{£1}3) has an odd determinant.
(d) Let SLo(Z) act by multiplication from the left on {A €
Msyo(Z) | det A is odd}. Each orbit has a unique representative of the
shape

=-M < g2=g1+ s

(0 C2) with ¢ € Nodd, ey € Z odd, c5 € {0,1, ..., |ca| — 1}.

C1 C3
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Proof: (a) For g1, 92,93 € Rad I(®

0 . 0
8;3)_91|Rad1<0) = id, Sgcglgl(fg +92) = —(fs — 92 — 201),

0 0 0
Sgcslglsgrs)*gzsg%)*gs(f?’) =—f3+ 2(91 — g2+ 93)'

Compare —M |gaq o) = id, =M (f3) = —fs.

(b) @ is a bijection because of R® = +f; + Rad I'”) and part (a).
The action of Bry on the right hand side translates to the claimed
action on the left hand side because of the following,

So(fs—ag1, fs—g1—gs. fs—g3) = (fs—ag1+09s5fs— g1, f5— 93),

g—93y _ (1 -1\ (4
g3 0 1 g3)’
0209(fs — g1, f3— g1 — 93, f3—93) = (fs—g1,f3 =291 — 93, fs — g1 — 93),
g1 _ (L 0\ (o
g1+ g3 1 1) \gs)"
(c) Recall that by Theorem 6.14 (e)

IOfe;} = +e; +2Rad I, TO{f} = £f; +2Rad ¥,
(e1,€2,e3) = (fs — fo, —fa + f1 + fo, f3 = f1),
AO =170} UTOLe} UTOfes}, RO = A® JTOf £

Observe that g1, g2, g5 € Rad I©©) with g, = g + g3 satisfy either (i)’ or
(1),

(1)7 91,92, g3 §é 2 Rad [(0)7

(ii)” There exists a permutation o € S3 with g,(1) € 2Rad I and

9o(2) — 9o(3) € 2Rad 10,
v = (fs — g1, fs — g2, f3s — g3) satisfies (i) if (i)’ holds, and it satisfies
(i) if (ii)’ holds. If (?) = A (f 1) then (i)’ holds if and only if det A
2

f2
is odd.
(d) This is elementary. We skip the details. O

Proof of Theorem 7.3 (b): v € (A©)3 with (73 o ") (v) =
— M satisfies property (i) in Lemma 7.6 (c) because it does not satisfy
property (ii) in Lemma 7.6 (c). The parts (b) and (d) of Lemma 7.6

show that the set (A©@)3 N (5 0 7”)~1(=M) consists of countably
many orbits. The parts (b) and (d) of Lemma 7.6 also give the claimed
representative in each orbit. The rest is obvious. O
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7.3. Distinguished bases in the odd rank 3 cases

Also in the odd cases with n = 3 we have complete results on the
question when the inclusion (3.4) is an equality. It is one if and only if
x € By U By where

B, = {zeZ’—{(0,0,0)}
((GP" 5 G*'9™) >0 (1) (@) N~ (Zo) # 03,
By = {xe€Z-{(0,0,0)}]S(z) is reducible, i.e. there are 1,7,k

with {7,7,k} = {1,2,3} and z; # 0 = z; = 23},
By = {(0,0,0)},

By = {zeZ'|S(x) € (Brs x {£1}") ({S(4s), S(A2), S(Ma2))

O{S(=1,2,-0) |1 2 3} ),
B5 = Z3— (Bl UBQUBgUB4)

By is the set of x # (0,0,0) which give reducible cases. B; contains
r~Y(Z<o) — {(0,0,0)}, but is bigger. z € By if and only if the (GP" x
G*9") x (v) orbit of z contains a triple T € Z* as in Lemma 4.18 (a),
so with T € Z3 5 and 2%; < 7,7y, for {i,j, k} = {1,2,3}. The Examples
4.20 show that it is not so easy to describe B; more explicitly.

In Theorem 7.7 we show By C Z3 — (B;UByUBs). For z € B3U B,
the inclusion in (3.4) is not an equality, but we can add the constraint
S Zv; = Hy to (3.4) and obtain an equality. For z € By we do
not know whether (3.4) with the additional constraint 37 Zv; = Hy
becomes an equality.

THEOREM 7.7. Let (Hz, L,e) be a unimodular bilinear lattice of
rank 3 with a triangular basis e with matriz L(e',e)! = S(x) € T¥"(Z)
for some x € Z3.

(a) (Hz, L,e) is reducible if and only if x € By U Bs. Then Y =
{id}.

(b) The following conditions are equivalent:

(’L) s Bl.
(ZZ) F(l) o~ Gfree,S'
(111) (Hz, L, e) is irreducible and = {id}.

(¢) 2P = Uie{1,2,3,4,5}Bi-

(d) The inclusion in (3.4) is an equality <= z € By U Bs.

(e) Consider z = (0,0,0). The set {v € (ALY | (mgomi"”)(v) = M}
is (A3, It consists of ten Bry x {£1}> orbits, the orbit B¥s of
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e = (e1, ea,e3) and the orbits of the nine triples

(617 €1, 61)7 (ela €1, 62)7 (617 €2, 62)7 (627 €2, 62)7

(617 €1, 63)7 (617 €3, 63)7 (63, €3, 63)7 (627 €9, 63)7 <€2a €3, 63)-
(f) Consider x € B, U Bs. Then 'V ~ 72 The map
U {ve (ADP(monM)(v) = M} — NU{oo},

3
v <index of ZZvi in HZ>,
i=1

has infinitely many values. The set {v € (AM)?| (730 ng))(y) = M}
contains besides Bt infinitely many Brs x {£1}3 orbits.
(9) For x € B3 U By

3
B = {u e (AN)?| (my o mi)(v) = M, Y Zy = Hz}.
i=1

Proof: (a) Compare Definition 2.10 in the case n = 3. For r =

{id} see Theorem 6.18 (b).

(b) By the Remarks 4.17 the tuple (Hz, I, TW A®M) depends
up to isomorphism only on the (GP" x CNJSiQ”) x () orbit of . Lemma
4.18 gives representatives of each such orbit. Theorem 6.18 studies
their groups '™, Theorem 6.18 (b) treats € By U Bs. Theorem 6.18
(g) treats x € B;. Theorem 6.18 (c)—(f) treats z € Z3 — (B; U By U By).

One sees

F(l) ~ Gfree,3 — zc B17
'V ={id} <= z€B UBUDBs,

u

IV >~7? «— z€Z°- (BiUBUDB;).

(¢) BN By =0, BN By = and (0,0,0) ¢ B; U By U By are clear.
By N By = 0 follows from 'V (x) 2 G/7¢¢3 for x € By.

(d) The parts (e) and (f) will give =>. Here we show <, first for
x € By, then for z € Bs.

Let x € B;. Then by the Remarks 4.17 and Theorem 6.18 (g) T
is a free group with generators 58), sg) and sg). Example 3.23 (iv)
applies. N

Let x € B,. Because of the actions of v and G*9" (here G*9" is
sufficient) on By we can suppose z = (21,0,0) with x; € Z.o. Then
es € RadIW, stV = id, T = (sgi),sg)) and by Theorem 6.21 (b)
AW = AW N (Zey + Zey) U {£es}. The monodromy M has the
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characteristic polynomial (¢t — 1)(t> — (2 —r(z))t +1) = (t — 1)(t* —
(2 — 2t + 1), so three different eigenvalues.

Consider v € (AM)3 with sq()ll) o 37(,12) o 31(]? = M. Now vi,v9,v3 €
{%es3} is impossible because M # id. Two of vy, ve, v3 in {£ez} cannot
be because then M would have the eigenvalue 1 with multiplicity 3.

Claim: All three vy, vy, v3 € AW N (Ze; + Zey) is impossible.

Proof of the Claim: Suppose v, vs,v3 € AN (Ze, +Zey). First
we consider a case with z; < —2. By Theorem 6.18 (b) and Theorem
6.10 (c)+(d) TM = GFree? with generators s&) and st). There is a
unique group homomorphism

I — {£1} with s —1, s s —1.
Each 31(,? is conjugate to sg) or sg) and thus has image —1. Also their
product s&) o s%) o 31(,? has image —1. But M = sg) o sg) has image 1,
a contradiction.

Now consider the case 1 = —1. By Theorem 6.18 (b) and Theorem
6.10 (a)+(b) IV = SL,(Z) with s ~ ((1) }) and sty ~ (_11 ?)
It is well known that the group SLs(Z) is isomorphic to the group with
the presentation

(21,22 | 212201 = Tom129, 1= (2125)°)

L N 11 1 0
where ¢ 01 1
of the words in 27! and ' which are connected by these relations are

3 —3 and 12 — 0, so even. Therefore also in this situation there is a
unique group homomorphism

I — {£1} with s — -1, s - 1.

and xg — ) . The differences of the lengths

The argument in the case ') =2 Gf7¢¢2 goes here through, too. The
Claim is proved. (0)
Therefore a permutation o € S3 with v,(1), Ve(2) € AWN(Ze,+Zesy),
o(1) < 0(2) and v,(3) € {*es} exists. Then 51(,23) = id and
W) 1f — M) _ () ()

e1 “e2 v1 “v2 U3 Vo(1) " Vo(2)"
Because of Theorem 7.1 (vy(1), Up(2)) is in the Bry x {£1}* orbit of
(e1,e2). Therefore v is in (Brs x {£1}?)(e) = B%.
(e) See the Examples 3.23 (iii).
(f) TV = 72 for z € B, U Bs follows from Theorem 6.21 (c)-(f),
the Remarks 4.17, Lemma 4.18 and the definition of By and Bs. The
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last statement in (f) follows from the middle statement because the

sublattice Z?Zl Zv; C Hyz and its index in Hy are invariants of the
Brz x {1} orbit of v.
For the middle statement we consider

V= (61 -+ a(—fii’/g)fg, €9 -+ a(ig — :flxg)f;g, €3 + a(-%l)fg) with a € 7.
The next Lemma 7.8 implies

(momM)(v) = M,

3
, . r(z)

dex of S Zuv; in H ) - =
(m €x o ; v; In Hy ‘ +agcd(x1,x2,x3)2

and that for a suitable ay € N and any a € Zay v € (AW)3. As
r(z) # 0 for x € By U Bs, this shows that the map ¥ has countably
many values.

(g) Part (g) will be prepared by Lemma 7.10 and will be proved
after the proof of Lemma 7.10. O

LEMMA 7.8. Let (Hz, L,e) be a unimodular bilinear lattice of rank
3 with a triangular basis e with matriz L(e', e)t = S(x) for some z €
ZB - {(O, 07 0)} Recall Rad I(l) = ng with fg = —37/361 + 5262 — 5163
and (%1, To, %3) = ng(JZl, Ta, ZE3)71<I'1, Ta, Ig).
(a) For a = (ay,as,a3) € Z3
S)-Hllf3 © g)ﬁ-@fs © Sé?—i—%h =M
<— ((Il,ag,ag) S Z(—%g,%g —flﬂfg,—%l).

(b) For a = (ay,as,a3) = a(—x3,Ty — T1x3, —T1) with a € Z, the
index of S0 Ze; + a;fs) in Hy is |1 + amen

ged(z1,22,23)? ‘

(c) If T\ 22 Z2 then there is a number ag € N with
(61 + a(—%g,)fg, e + a(%g - %11‘3)]03, es + a(—fl)fg) S (A(l))g for a € Zao.
Proof: (a) With Lemma 7.4 and f3 = (f in Lemma 7.4) one cal-

culates

1) (1) (1) -1
Se1+a1f3 © 862+a2f3 © 863+a3f3 oM

= 757a1]'(1)(61) © Sg) ot © Sg) ot © Sg) oM™

=t

—a3j™) (es)

1
—a17 M (e1) © t—azj D (e2)—a2iM (e)(e1)i M (er) © Sgl)

—a2jM) (e2)

1 1 —1
O g1 (e5)— gD (e5)(e2)7V) (e2) © ng) © Séa) oM
= t_4
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with
A = ajW(er) + asj M (e2) + asl™M (ea, €1)5" (e1)
+asj P (es) + asl™ (es, €2) 7 (e2) + asl M (es, €1)1M (er)
+azIM (eg, e)IW (eg,e1)7 Y (e1)

— j(l)

<(a1 — a9y — 3o + azrir3)e; + (az — azws)es + a363>.
t_4 = id holds if and only if A = 0, so if and only if
(a1 — ag®y — as®y 4 aszix3)e; + (ay — asrs)es + ages € Rad I = Zf.
The ansatz that it is af; = a(—T3e; + Toea — T1e3) with a € Z gives
—aT, = a3, ATy = Gy — A3T3, —AT3 = A1 — (X1 — A3To + A3T1T3,
so (ay,as,a3) = a(—T3, Ty — T123, —T1).

(b) Write a = aged(zy, 22, x3)(—x3, 20 — 2123, —21) with @ =

ged(wy, w9, x3) "2a € ged(wy, T2, v3) "2Z. Then
(e1 +aifs, e2 + asfs, e3 + asfs)

L+ a(—as)(—x3) a(wz —aas)(—w3)  a(—a1)(—x3)
= € 5(—x3)x2 1 +5(£C2 — .I'll'g).Z'Q 5(—xl)x2
a(—z3)(—x1)  alze —mws)(—a1) 1+ a(—a1)(-21)

The determinant of this matrix is 1 + ar(z). The index of the lattice
Z?:1 Z(e; + a; f3) in Hy is the absolute value of this determinant.

(¢) Suppose D(Ll) >~ 72. Compare Lemma 6.17. The set
A = {\ € Homy(Hz,Z) |t} € TV}
is a sublattice of rank 2 in the lattice Hom(Hz,Z) of rank 2. For
ie€{1,2,3}
Ff}){ei} = {61‘ + )\(Gl)fg | AE A} C (Gi + ng) N A(l)
The triple (Hz, L, e) is irreducible because of 'Y =~ 72 and Theorem
7.7 (a). Therefore it is not reducible with a summand of type A;, and

thus {ej, €2, e3} NRad IM = (. Because of this and because A has finite
index in Homg(Hz, Z), there is a number b; € N with

Zbl = {b <Y/ | e; + bfg € F;l){el}}

For each a = (a1, ay, as) with a; € Zb; e; + a;fs € AD. Any number
ap € N (for example the smallest one) with

&0%3 € Zbl, ao(fg — f1$3) S sz, aofl € Zbs
works. 0
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REMARKS 7.9. If z € By U By then the map AM — A® is a
bijection by Theorem 6.18 (b)+(g). Therefore then
v = (ey +a(—T3) f3, €2 + a(Ty — T133) fs, €3 + a(—11) f3) € H}
for a € Z — {0} satisfies (73 o Wél))(y) = M, but v ¢ (AM)3. This fits
to Theorem 7.7 (d).
LEMMA 7.10. The Bry x {+1}® orbits in r='(4) C Z* are clas-
sified in Theorem 4.6 (e). They are separated by the isomorphism

classes of the pairs (FZ(I),M) for corresponding unimodular bilin-
ear lattices (Hz, L,e) with triangular bases e with L(e',e)! = S(z)

and r(z) = 4. More precisely, Fz(l) has a Z-basis (cy,cy) with

M(ey,ca) = (c1,c2) (_01 j) with a unique v € Zxo, which is as

1
follows:
S(x) | S(Hi2) | S(PTA) | S(Ay) | S(=1,2,-1) | S(—1,2,-1)
with [ = 0(2) | with [ = 1(2)
y oo |2 | 3| §-2 | £-4

2
The numbers v in this table are pairwise different.

Proof: S(H,2): See Theorem 5.14 (a) (i).

S(P'A;): By Theorem 5.13 (7", 31) = (Hy,, M,) which comes

from S(P!) = ((1) _12> with S(PY)~1S(P!)! = (:g ?) This mon-

odromy matrix is conjugate to (_01 _21> with respect to GLo(Z).
S(Ay): Compare Theorem 5.14 (b) (iii) and its proof:
J3 = e1—extes,
o = ze® 4+ 25,
-2 -1 2
Me = e|—-2 0 1],
-1 -1 1

— 1) ) -1 0
MW, e = @",&Y) (—3 —1>'

This monodromy matrix is conjugate to ( 0

GLy(Z).
S(—1,2,—1) with [ > 4,1 = 0(2): See Theorem 5.14 (a) (ii). Here

(" | BT) = (Hy,, M),

_31) with respect to
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S(—1,2,—1) with [ > 3,1 = 1(2): Compare Theorem 5.14 (b) (iv)
and its proof. Define elements a1, ay € Hyz,

. l+1 n [+1 —1f+1f
a; = 9 €1 T €2 9 63—21 23,
1~ 2 l

ay = —61—§f2—zf1—1f3-

The triple (aq, aq, f3) is a Z-basis of Hyz. The equality in the proof of
Theorem 5.14 (b) (iv),

ra ~ (=1 -4
M(flaf2):(flaf2)(0 1 ),
implies
-1 2 _
M(a_1(1),a_2(1)) — (a—Q(l)’a—2(1)) ( 01 l _14) . -

Proof of Theorem 7.7 (g): The case (0,0,0) is treated first and
separately. Compare part (e). Of the ten triples listed there, only the
triple v = (e, €9, €3) satisfies Y7 | Zv; = Hy. This shows part (g) in
the case z = (0,0,0).

Now consider x € B;. We can suppose

ze{(-1,0,—-1),(-1,—-1,-1),(—=2,2,-2)} U {(-1,2,-1) |l > 3},

which are the cases S(z) € {S(As), S(As), S(Hi2)}U{S(—1,2,—1)|1 >
3}. Consider v € (AM)3 with (3 0 75")(v) = M and v a Z-basis of
Hy;. We want to show v € B¥. We have

0 Yo Y2
IV o)==y 0 y3| =Sy — Sy forsomeyeZ
—y2 —ys 0

Define a new Seifert form L : Hy, x Hy, — Z by L(v',v)! = S(y) (only
at the end of the proof it will turn out that L = L). Then
L'—L=1W=r'—L.

v is a triangular basis with respect to (Hz, L). By Theorem 2.7 for

(Hz, L) (alternatively, one can calculate the product of the matrices of
(1) (1)
1 2

Svy 5 Svy, and siﬁ,) with respect to v)

My = (myomi")(v) = (s{V 0 sV 0 s(V)(v) = vS(y) " S (y)".
Then
3—r(z) =tr(M) = tr(S(y)'S(y)") =3 —r(y),



so r(x) = r(y). In the case of Az, 77'(2) is a unique Brg x {£1}* orbit.
In the cases of Ay, His and z € {(—1,2,—1)|1 > 3}, Lemma 7.10 and
Muv = vS(y)"'S(y)" show that y is in the same Brz x {:1}* orbit as z.
Therefore in any case there is an element of Brs x {£1}® which maps
v to a Z-basis w of Hy with

L(w', w)" = S().
Then
I, w) = S(z) - S(z)' = V().
Define an automorphism g € O by g(e) = w. Because of
M o= sDsMg) — (100

v Tv2 TU2 w1 w2 Tw3

. Jm M ) 1) (1) (1), —1 _ -1
= Sye1)Sg(ea)Sgles) = gsgl)3£2)3£3)g =gMy

g is in G(Zl). But for the considered cases of z

G(l) Theorgn 5.14 aQ

Theorem 3.28
Z Z =

Z(Brs x {£1}%).

Therefore there is an element of Brs x {£1}? which maps e to w.
Altogether v € Bry x {£1}%(e) = B*". (Now also L(v',v)" € T3™(Z)
and thus L = L are clear.)

7.4. The stabilizers of distinguished bases in the rank 3 cases

Let (Hz, L,e) be a unimodular bilinear lattice of rank 3 with a
triangular basis e with L(ef, e) = S(z) € T#™(Z) for some x € Z3. We
are interested in the stabilizer (Brs)./q+1ys. The surjective map

)

BUst — (Bry x {£1}%)(e) — (Bry x {£1}%)(2)

¢ — T with L(@,2)" = 5(2),

is Brz x {£1}3 equivariant. By Theorem 4.13 (a)

73 = Ugeufilc (Bry x {+1}%)(x).

(3

Therefore we can and will restrict to z € U?il C;.
The stabilizer (Brs)e/(+1}s is by Lemma 3.25 (e) the kernel of the
group antihomomorphism

Z : (Brg)g a1y — GE/Z(({£1}%),).
Here this simplifies to

Z : (Brs)yqeryp — Gz/Z(({£1}%).)
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because G5 = Gz in the reducible cases (and also in most irreducible
cases) and Z(({#1}?),) = {£id}, which is a normal subgroup of Gz,
in the irreducible cases by Lemma 3.25 (f).

Theorem 4.16 gives the stabilizer (Brs),/(+13s in all cases.

The

following Theorem 7.11 gives the stabilizer (Brs)/(+1}s in all cases.

THEOREM 7.11. Consider a local minimum x € C; C Z* for some

ie{l,..,

24} and the pseudo-graph G; with G; = G(z). In the follow-

ing table, the entry in the fourth column and in the line of C; is the

stabilizer (Brs)e/qa1ys.

from the table in Theorem 4.15.

sets

The first, second and third column are copied

(BT3)Q {£1}3 e/{£1}3
gl Cl (Ail))) BI‘3 Br pure
G | Oy (Hl,Z) Brj < o ) >
Gy | O3 (A2Ay) (01,03) (03, (™) ot 0" ay)
= <0—§7010—§01 ! 0—:1))>
Gy | Cy (P'A1),C5 (01,03) (a3, (™)~ 10%>
= (03, 010301‘ 9
Gz | Co (As) (0102, 07) (010 ) >
Gy | C7 (Az) (0201,0?> <‘7? ‘727‘7201‘72 1>
Gs | Cs, Co ((=1,2,=D)) | (o™, 07 05" 01) | (0™ 01 0h ov)
Gs | Cho (Pz), Ch, Chio (02U1> <d>
Q7 013 (eg (4, 47 8)) <0'20'%> <ld>
Gs | Ciy (e.g. (3,4,6)) (g™mom) (id)
Gy | Ci5, Cis, Caz, Oy (™) (id)
glO C(17 (e~g- (_2a 2a0)) <O_mon’0_2> <0—§>
Gu | Cis (e.g. (—3,-2,0)) (Umona<75> <‘7§>
Gio | Cho (e.g. (—2,—1,0)) (o™ o2 oy0i05 ") (0%,020102 )
ng CV20 (e'g' (_2a _17 _1)) <0m0n7 0—37 020—?0—2 > <0—:2))? 020102 1)
Gia | Ca1, Co (Umonagg> <‘7§>

Proof: The reducible case G; & C; (A?): Here z

(Brg)g/{il}a‘ = BI'3.

= (0,0,0) and

BY" = {(e1€0(1), 260(2), €3€0(3)) | €1, €2, €3 € {E1},0 € S5},

and Brs acts by permutation of the entries of triples on B4*!. Therefore
(Brg)g/{il}S is the kernel of the natural group homomorphism Bry —
S3, so it is the subgroup Bri“* of pure braids.

The case G, & Cy (Hio):

Here z = (2,2,2) ~ (—2,2,-2

) and

(Brs)y/+13s = Brs. Recall the case H;, in the proof of Theorem 5.14,

recall the Z-basis f of Hy = Hz1 @® Hyo, and recall
Gz ={g € Aut(Hz,1)| det g = 1} x Aut(Hzys)
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We found in the proof of Theorem 5.14 (c)

/1 -1 0 /100
0 0 1 001

The group antihomomorphism Z : (Brs),/(+1y» = Brs — Gz/{£id} =
SLy(Z) is surjective with Z(oy) = A; and Z(0y) = A,. It almost
coincides with the group homomorphism Bry — SLy(Z) in Remark
4.15 (i). Tt has the same kernel ((a™°")?).

The reducible cases G, & C5(A24;),Cy (PYA;),Cs: Here z =
(21,0,0) with 23 < —1 and (Brs), 1133 = (01,03). The quotient
group (Br3),/ra113/(Brs)e/qe1ys is by Theorem 3.28 (c) and Lemma
3.25 (e) isomorphic to the quotient group Gz/Z(({£1}3),). Here
Z((il}?))Q) = <(_1’ _17 _1)7 <_17 _17 1)) with

Z((-1,-1,-1)) = —id,
Z((-1,-1,1)) = (e (—e1,—e,e3)) = Q.

Define
—X1 -1 0
Mroot .= Z(0901) = (e € 1 0 0}),
0 0 1

and recall from Theorem 5.13 and Theorem 5.5

Gz = {E£(M™")'1 € Z} x {id, Q}.

Therefore
(Brs)y/qz1ys/ (Bra)e/nys = Go/Z(({£1})o) = {(M™)' |1 € Z}.
In the case C3(Ag4;) 1 = —1 and M"™ has order three, so the

quotient group (Brs)g/(+1y3/(Brs)e/q+132 is cyclic of order three with
generator the class o] of o1. In the cases Cy and C5 z; < —2 and
MT° has infinite order, so the quotient group (Brs), 11133/ (Brs)e/qa1ys
is cyclic of infinite order with generator the class [o4] of 7.

The cases Cy (P'A;),Cs: Theorem 7.1 (b) can be applied to the
subbasis (es, e3) with x3 = 0. It shows 03 € (Brs)./(s1ys. Therefore
(Brs)e/q+13s contains the normal closure of 03 in (Brs), 1133 = (01, 03).
This normal subgroup is obviously

(oot |1 € 7).

It can also be written with two generators, namely it is

2

(03, 010507 ") = {03, (6™") " a1).

01
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The equality of left and right side follows from

2 1 2 2 2

2 -1 _ - )

— O_mono_l

The equality of this group with (clo2o7'|l € Z) follows from

the fact that ¢™°" is in the center of Brsz. The quotient group

(o1,02)/{cto207" |1 € Z) is cyclic of infinite order with generator the
class [o1] of oy. Therefore

(Brs)e/iys = (o3, (0™ oy) = (03, 010507 ")
(010307 |1 € Z)

= (the normal closure of &3 in (01,03)).

The case C5 (A3 A;): Theorem 7.1 (b) can be applied to the subbasis
(e1,e2) with 1 = —1 and to the subbasis (eq, e3) with z3 = 0. It shows
o} and 05 € (Brs)e/qa1ys. Therefore (Brs)e 1133 contains the normal
closure of o} and 03 in (Br3), {11y = (01,03). The quotient group

(o1, 03)/(the normal closure of ¢} and o3 in {01, 05))
is cyclic of order three with generator the class [o1] of o1. Therefore
(Brs)e/+1)s = (the normal closure of o} and o3 in (o1, 03)).

It coincides with the subgroup generated by o} and by the normal
closure (03, (c™")"1o?) of 02 in (01, 032). Therefore

(Brs)e/erys = (03, (0™") oy, 07) = (03, (6™") o7, 0™ 0n).

The case G3& C(A3z): Here z = (—1,0,—1) and (Br3), 1133 =
(0109,03). By Theorem 5.14 (b) Gz = {+M'|l € {0,1,2,3}}, and M
has order four. By Theorem 3.28 and Lemma 3.25 (f), the antihomo-
morphism

7 (Br3)£/{i1}3/(Bl‘g)g/{il}S — Gz/{ﬂ: ld}
is an antiisomorphism. Therefore the quotient group
(Brs)g/+133/(Brs)e {133 is cyclic of order four.
Theorem 7.1 (b) can be applied to the subbasis (e, e5) with z; =
—1. Tt shows o} € (Brs)/(x133. Observe also

do102(e) = b1o1(er,es3+ ea,e9) = d1(e1 +ex + e3,€1,€2)
- (_61 _62_637€1a62) - _M_l(g)y
so Z(610109) = —M".

M and —M ! have order four. Therefore (0109)* € (Brs)e/q+133. Thus

(Brg)g/{il}s D) <(O'10'2)4, O'i))>
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We will show first that ((oy02)* 0%) is a normal subgroup of
(0109,0%) and then that the quotient group is cyclic of order four.
This will imply (Brs)e/qa1y = ((0102)%, 07).

Recall that 0™ = (0901)® = (0109)% generates the center of Brj.
Therefore

(0'10'2)l0'?(0'10'2)_l = (0102)410?(0102)_‘” € ((0102)4,0f> for any [ € Z.

Thus ((0102)*,0%) is a normal subgroup of (7,09, 07%). This also shows
that the quotient group (o071, 0%) /{(0109)%, 03) is cyclic of order four.
Therefore ((0102)*, 07) = (Brs)e/qs1}s-

The case G, & Cr (A3): Here z = (=1, -1, —1) and (Brs)y/qr1ys =
(0901,03). By Theorem 5.14 (b) Gz = {£(M™"! |l € Z}, and M"
has infinite order. By Theorem 3.28 and Lemma 3.25 (f), the antiho-
momorphism

7z (Brg)g/{il}s/(Br3)§/{i1}3 — Gz/{:l: ld}

is an antiisomorphism. By Theorem 3.26 (c) and Theorem
5.14 (b) Z(d30901) = M".  Therefore the quotient group
(Brs)g/+133/(Brs)e/q+1ys is cyclic of infinite order with generator the
class [o901] of 0907.

Theorem 7.1 (b) can be applied to the subbasis (e, e5) with z; =
—1. It shows o} € (Brs)/s+13s. Therefore (Brs)./(11}s contains the
normal closure of % in (0901, 0%). We will first determine this normal
closure and then show that it equals (Brs)e/ri13s.

As 0™ = (0901)> generates the center of Brs,

(0901) 303 (0901) 7 = (0301)°0% (0901) ¢ for e € {0;+1},1 € Z.

One sees

(0901)01(0900) ™" = 090105, so
(0201)07 (0201) 020705 ",
_ 1 414) N
(09071) 101(0201) = o] 1(02 10102)01 1y 0B 1(010201 1)01 =09, SO
(0901) to}(0901) = o5,

Therefore the normal closure of o in (090, 0%) is (03,03, oo0305 ).

The quotient group is an infinite cyclic group with generator the class
[0901] of g901. Therefore
(Br3)g/{ﬂ:1}3 - <0-?70-§70-20-?0-2_1>
= (the normal closure of o3 in (501, 0%)).
The cases G5 & Cs: Here x = (—1,2,—1) with [ > 3 odd and
(Brs)y/qz1ys = (o™, o toy o).
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By Theorem 5.14 (b) Gz = {£(M"")!|l € Z} with M"°" as in
Theorem 5.14 (b) with (M7°")*~4 = — M. Because [ is odd, the cyclic
group Gz/{£id} with generator [M"°"] can also be written as

Go/{£id} = (M, [(M™)?])  with [M] = [M7]",
By Theorem 3.28 and Lemma 3.25 (f), the antihomomorphism

e (Brg)g/{il}:s — Gz/{ﬂ: ld}

is surjective with kernel (Brs)./+1ys. By the proof of Theorem 5.14
(b)(iv) [M] = Z(0™") and [(M")?] = Z(o; 05 o). The single rela-
tion between [M] and [(M™°)?] is [id] = [M2([(M7°)2])*"*. There-
fore the kernel (Brs)./q+13s of the group antihomomorphism Z above
is generated by (0™")%(o7 05 a1)4 ™ = (6™")207 1ok 4o

The cases Gg& Cy: Here x = (—1,2,—1) with [ > 4 even and
(Brs)y/(z1ys = (0™, 07 05 oq).
By Theorem 3.28 and Lemma 3.25 (f), the antihomomorphism

Z (Brg)&/{il}s — Gz/{ﬂ: ld}

is surjective with kernel (Brs)e 14133
By Theorem 5.14 (a) and the proof of Theorem 5.14 (c)

Gz = (~id,M,Q)
with M = Z(607'05'01), Q= Z(a" ") Z(d507 03 on)* /2,

M and () commute, M has infinite order, () has order two. There-
fore the kernel (Brs)/(+13s of the group antihomomorphism Z above is
generated by (6™ (o7 oy o1 )2/2)2 = (0™ 207 6k Aoy

The cases Gs& Cyo (P?),C11,Cro: Here (Brs)g/qe1ys = (0201).
Here Z(oq01) = M™° is a third root of the monondromy. The
monodromy M and M7 have infinite order. Therefore the kernel

(Brs)e/qe1ys of the group antihomomorphism

Z (BI‘3)§/{:|:1}3 = <O'20'1> — Gz/{ﬂ: ld}
is (id).

The cases G; & C3(e.g. (4,4,8)): Here (Brs)y/qr1ys = (0207).
Here Z(oy01) = M™°" is a root of the monondromy. The monodromy
M and M7 have infinite order. Therefore the kernel (Brs)./(s13s of
the group antihomomorphism

72 (Brg)z/{ﬂ}s = <0’20'%> — Gz/{ﬂ: ld}
is (id).
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The cases gg & 014, gg & 015, 0167 023, 0242 Here (Brg)z/{il}ﬁ =
(o). The monodromy M = Z(c™°") has infinite order. Therefore
the kernel (Brs)./{11ys of the group antihomomorphism

7 . (BI‘3)£/{:|:1}3 = <0’m0n> — Gz/{ﬂ: ld}
is (id).
The cases 910&017 (e.g. (—2,—2,0) . Here (Brg)z/{il}s =
(o™ a9). Recall from Theorem 5.16 (c) that

Gz = {id, Q} x {+M' [l € Z} = (~id, Q, M),

@ and M commute, @ has order two, M has infinite order, —Q = Z(03)
(see the proof of Theorem 5.17 (¢)), M = Z(¢™"). Therefore the kernel
(Brs)e/qa1ys of the group antihomomorphism

YA (Brg)z/{il}B = <0mon’02> — Gz/{ild}

is (03).

The cases G1 & Cig, G12 & Chg, Gi3 & Cop, G14 & Cy1, Cap: By Theo-
rem 4.16 in all cases (Br3),/r41}s is generated by ¢™" and some other
generators. We claim that the other generators are all in (Brs)e 113
Application of Theorem 7.1 (b) to the subbasis (eq, e3) shows this for
the following generators:

o5 in the cases G11&C'g and G1,&C1g because there z3 = 0;

o5 in the cases G13&Cqy and G14&Cy, Cyy because there z3 = —1.

o,' maps e to the basis (61,63,822)(62)). Therefore application

of Theorem 7.1 (b) to the subbasis (ej,e3) with x93 = —1 in the
cases G12&Chg and Gi3&Cag shows 20505 " € (Brs),/(z1)s. The claim
(other generators) C (Brs)./q+1}s is proved.

The monodromy M = Z(¢™°") has infinite order. Therefore the
kernel (Brs)e/¢+1}3 of the group antihomomorphism

Z : (Brs)g/qe1ys = (™", other generators) — Gz/{£id}
is (other generators). O

REMARKS 7.12. (1) In the cases g6&010,011,012, 97&013,
Gs & Cy14 and Gy & Ci5, Cig, Caz, Cas, the even monodromy group I'©)
is a free Coxeter group with three generators by Theorem 6.11 (b)
and (g). Example 3.23 (iv), which builds on Theorem 3.2, shows
(Brg)g/{il]j = <1d>

Using this fact, one derives also (Brs),/r11ys in the following way.
In all cases (Hz, L, e) is irreducible. The group antihomomorphism

Z (Brg)g/{ﬂ}s — Gz/{:lzld}
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is injective because the kernel is (Brz)./(+1ys = (id). By Theorem 3.28
7 is surjective in almost all cases. The proof of Theorem 3.28 provides
in all cases preimages of generators of Im(Z) C Gz/{#£id}. These
preimages generate (Brs)g/(+1}s.

So, the arguments here on one side and the Theorems 4.13, 4.16
and 7.11 on the other side offer two independent ways to derive the
stabilizers (Brs),/¢+1}s and (Brs)e/q+1)s in the considered cases.

(ii)) But the arguments in (i) cannot easily be adapted to the
other cases. In the cases Gig & Ci7, G11 & Cig, Gio & Chg, Gi3 & Cyp and
G14 & C51, Cs9, the even monodromy group '@ is a non-free Coxeter
group.

Theorem 3.2 (b) generalizes in Theorem 3.7 (b) to a statement on
the size of B#*, but not to a statement on the stabilizer (Bra)e/ra1ys.-

The cases G1, Go, Gz, G4 and G5 are with the exception of the re-
ducible cases C5 and the case Cy the cases with r(z) € {0, 1,3,4}. For
them it looks possible, but difficult, to generalize the arguments in (i).

The conceptual derivation of the stabilizer groups for all cases with
the Theorems 4.13, 4.16 and 7.11 is more elegant.

REMARKS 7.13. (i) The table in Theorem 7.11 describes the stabi-
lizer (Brs) ;132 by generators, except for the case G & Cy(A?) where
(Br)e/qs13s = Br§" . In fact

Brf"™ = (0},03,00010; ", 05 '0102)
(the normal closure of % in Brs),
because 0,020, = oy 030y, 0, 020y = 01020, by (4.14).

(ii) In some cases the proof of Theorem 7.11 provides elements so

that (Brs)e/¢+1}s is the normal closure of these elements in (Br3), /4133

elements (Brg)m/{il}s

Gy & Cs (AQAl) 0%703 <<71702>
G2 & Cy (ITAO,C&; o3 (01,03)
Gs & Cr (Az) ‘7% <U201701>

(iii) In the case G3& Cg(As), the stabilizer (Brs)e i1z =
((0102)%, 03) was determined already in [Yu90, Satz 7.3].

The pseudo-graph G(z) for z € U?il C; with vertex set V =
Brs(z/{£1}?) in Definition 4.9 (f), Lemma 4.10 and the Examples
4.11 had been very useful. All except two edges came from the genera-
tors 1, a2, @3 of the free Coxeter group GP" and two edges came from
v(vo) and v~ (vg). An a priori more natural choice of edges comes from
the elementary braids oy and os. It is less useful, but also interesting.
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DEFINITION 7.14. Let V be a non-empty finite or countably infinite
set on which Brs acts. The triple G,(V) = (V,&,&) with & =
{(v,01(v))|v € V} and & = {(v,02(v)) |v € V} is called o-pseudo-
graph of V. Here & and & are two families of directed edges. A loop
in & is an edge (v, 0;(v)) = (v,v).

REMARKS 7.15. (i) In a picture of a o-pseudo-graph, edges in &;
and in & are denoted as follows.

— :
an edge in &,

> an edge in &.

(ii) Consider a o-pseudo-graph G,(V). Because o, : V — V and
oy YV — V are bijections, each vertex v € V is starting point of one
edge in & and one edge in & and end point of one edge in £ and one
edge in &. The o-pseudo-graph is connected if and only if V is a single
Brjs orbit.

(iii) Let (Hz, L, e) be a unimodular bilinear lattice with a triangular
basis e with L(ef, e)! = S(z) for some z € Z*. Two o-pseudo-graphs are
associated to it, G, (B /{+1}?) and G,(Brs(z/{£1}?)). The natural
map

BYst /141 - Brg(z/{£1}%)
e/{£1}’ — Z/{£1}® with L(&,e)" = S(2),

is Brs equivariant and surjective. It induces a covering

Go(B™J{£1}") = G, (Brs(z/{£1}?))

of o-pseudo-graphs. This is even a normal covering with group of deck
transformations G5 /Z(({£1}3),) where G5 = Z((Brsx {£1}?),) C Gz
is as in Lemma 3.25 (e). Now we explain what this means and why it
holds.

The group G5 acts transitively on the fiber over z of the map
Bist — (Brs x {£1}3)(x). By Lemma 3.22 (a) the action of this group
G5 and the action of the group Brs x {41} on B%*' commute, so that
G5 acts transitively on each fiber of the map B%t — (Brsx {£1}%)(z).
Therefore the group GE/Z(({£1}?),) acts simply transitively on each
fiber of the covering G, (B¥!/{£1}?) — G,(Brs(z/{£1}?)) and is a
group of automorphisms of the o-pseudo-graph G, (B%*!/{£1}?). The
quotient by this group is the o-pseudo-graph G, (Brs(z/{£1}?)). These
statements are the meaning of the normal covering G, (B¥st/{£1}3) —
Go (Brs(z/{+1}?)).

(iv) In part (iii) the o-pseudo-graph G,(B%*'/{£1}3) contains no
loops, and for any v € B%*/{4+1}3 7,(v) # o4(v). The o-pseudo-graph
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x € Ol U C12 = {(ana 0)7 (272v 2)}7 AiHl,?

Two equivalent pictures for the cases
z=(2,0,0) € C3UC,UCs ={(7,0,0)|z < 0}
(AyA;,PL Ay, other reducible cases without A?)

(-1,-1,0)

(-1,0,-1)

L = (_1707 _1) € 067 A3

(2,1,1)

(1,2,1)

z=(—1,-1,-1) € 7, A,

FIGURE 7.1. Examples 7.16 (i): The o-pseudo-graphs
for the finite Brz orbits in Z3/{+1}3

G, (Brs(z/{£1}?)) contains loops in a few cases. It contains a vertex v
with o1 (v) = 09(v) only in the cases z = (0,0,0) (A3%) and z = (2,2,2)
(H12) where Brs(z/{£1}?) has only one vertex anyway.
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EXAMPLES 7.16. (i) By Theorem 4.13 (a) Z3/{+1}® consists of
the Brs orbits Bry(z/{#1}?) for z € U7, C;. Precisely for z €
UZ:1 C; such an orbit is finite. This led to the four pseudo-graphs
G1,3G2,G3, G4 in the Examples 4.11. The four corresponding o-pseudo-
graphs G, (Brz(z/{£1}?)) are listed in Figure 7.1. A vertex z/{£1}> €
Z3/{£1}? is denoted by a representative Z € Z2 U Z%,. The vertices
are positioned at the same places as in the pictures in the Examples
4.11 for Ql, gg, gg, g4.

(ii) The case Hiq, z = (2,2,2): Here Bra(z/{£1}?) = {z/{£1}*}
has only one vertex, but the group

GZ/Z(({£1}7),) = Gz/{*id} = SLy(Z)

is big. There is a natural bijection B#*/{£1}® — SLy(Z), and the
elementary braids o; and oy act by multiplication from the left with

the matrices A; = ((1) _11> and Ay = <} (1) on SLy(7Z). This gives

a clear description of the o-pseudo-graph G, (B¥!/{4+1}?). We do not
attempt a picture.

(iii) The reducible case A%, z = (0,0,0): Also here Brz(z/{+1}?) =
{x/{41}?} has only one vertex. The group

GZ/Z(({£1}7),) = Gz/{£1}® = O5(Z) [{£1}* = S

has six elements. Therefore B%s!/{41}3 has six elements, and ¢; and
o9 act as involutions. The right hand side of the first line in Figure 7.3
gives the o-pseudo-graph G, (B%*!/{£1}?). Part (iv) offers a different
description which applies also to A? if one sees it as A2A;.

(iv) The reducible cases, z € [J;c(345 Ci (24, P' Ay, other re-
ducible cases): Here (Hz, L,e) = (Hz1, L1, (€1, €2))®(Hza, Lo, e3) with
HZ,l = Z@l D Z€2 and HZ,Z = Z€3.

The group of deck transformations of the normal covering

Go (B! /[{£1}?) = Go(Brs(z/{£1}%)) is
GZ/Z(({£1})s) = Gz/{*1d, £Q} = {(M"™")' |1 € Z}.

Here M7 has order 3 in the case A3A; and infinite order in the other
cases. Therefore the o-pseudo-graph G,(B%s*/{£1}?) can be obtained
by a triple or infinite covering of the o-pseudo-graph G, (Brs(z/{+1}?).
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(e3,81,8;) < (é1.e3,€2) < (é1.82,€3)
S

FIGURE 7.2. In the reducible cases (without A?) one
sheet of the covering G, (B¥st/{41}3) —

Gy (Brs(z/{+1}?))

More concretely, the type of the covering is determined by the
Br; orbit of distinguished bases up to signs of (Hz1, L1, (e1,€2)). One
such distinguished basis modulo signs (€, €)/{£1}? gives rise to one
sheet in the covering G,(B¥'/{41}3) — G,(Brs(xz/{£1}?)). Figure
7.2 shows the part of a o-pseudo-graph which corresponds to one such
sheet.

The six pictures in Figure 7.3 show on the left hand side analo-
gous o1-pseudo-graphs for the distinguished bases modulo signs of the
rank 2 cases A7, A, and P!, and on the right hand side the o-pseudo-
graphs G, (B%st/{£1}3) for A3, A;A; and P'A; (respectively only a
part of the o-pseudo-graph in the case of P!A4;). The o-pseudo-graph
G, (B%st J[{£1}?) for z = (x,0,0) with < —2 looks the same as the
one for P1A;, though of course the distinguished bases are different.

(v) The case Az, x = (—1,0,—1): The o-pseudo-graph
G, (B¥st /{+1}?) was first given in [Yu90, page 40, Figur 6]. We recall
and explain it in our words. The group of deck transformations of the
normal covering G, (B¥/{£1}?) — G, (Brs(z/{£1}?)) is

G2)/Z(({£1}),) = Gz/{Fid} = {M'|1 € {0,1,2,3}}.
Here the monodromy M acts in the natural way,
M((e1, &, &) /{£1}’) = (M(&1), M (&), M(e3))/{£1}?),

on B%st /{4113 and has order four, M* = id. Here M and its powers
are

0 0 1 0 -1 1
M(e)=e|-1 0 1 ,M2(€)§<0 -1 0],

0 -1 1 1 -1 0

1 -1 0

Mie)=e|1 0 -1

1 0 0



(e1,ez)

(e2,€q)

(e1 +es,e1)

(e2,e1 +e3)

Ay

(es, e fiea+fi) (e —fuesex+f1) (e1 — fi. €2+ fi, €3)

(ex—fre2+ f1) ) . @ .-
(esYey, e2) (e1, e3,ez) e=(e, e,,e5)

e ~(e1.e2) )y

(es,er Hfie2 —f1) (es + /i, €382 5 f1) (e; + fr.ex — fi.e3)
(e1 + fi ez —f1) n

(ez e; H2f1, e —2f1) (e +2f1, e3,6;, 5 2f) -
(oo 2602 21) ) e e e
IED17f1:61‘|>62 PlAl

FIGURE 7.3. Examples 7.16 (iii): The o-pseudo-graphs
for distinguished bases modulo signs in the reducible
cases

Because of the shape of G,(Brs(z/{£1}?)),

bl,O — Q/{:i:l}3, bQ,O — O'lbl’o, b3’0 — U%bm? b4’0 — 0'2_1b1’0
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form one sheet of the fourfold cyclic covering gg(zs’dist /{i1}3) N
G, (Brs(z/{£1}?)). Define

b= M BY0) for 1€ {1,2,3}.

Then
B {£1y? = {b" i € {1,2,3,4},1 € {0,1,2,3}}
has sixteen elements. We claim for [ € {0, 1,2, 3}
O'1bl’l — b2’l, O'le’l — bg’l+3(m0d4),
0'1b2’l _ b3,l’ 0'2b2’l _ b2,l+2(m0d4)’
0'1b37l — bl’l, O'gb?”l — b4,l+1(m0d4)7

0.1b4,l — b4,l+2(m0d4)7

O‘2b4’l = bl’l.

It is sufficient to prove the claim for [ = 0. The equations ;b0 = b?9,
o b* = >0, oy b40 = b0 follow from the definitions of v*°, b3, 10,
The inclusion o} € (Brs)e/qs133) gives 010> = b0, It remains to show

0'1b4’0 — b4,27 O_le,O — b3,37 O_2b2,O — b2’2, 0_2b3,0 — b4’1.

One sees
i b ¢ Z with L(g,¢€) = S(z)
1 e/{£} e (—1,0,—1)
2 oi(e)/{£1}>  aile) = (e1 +egen,e3)  (1,-1,0)
3 oi(e)/{£1}® oi(e) = (—eq,e1 + ez e3) (—1,1,—1)
4 0—2_1<§)/{j:1}3 02_1(§) = <€17 €3, €2 + 63) (07 17 1)
o1b*? (e3,e1,e9 + e3)/{£1}> = M?p*0 = p*2,
O'le’o = (61,62 +€3,€2)/{:|:1}3 M3b30 = b33
0'2b2’0 = (61 +€2,€3,61)/{:|:1}3 M2b20 b2’2.

oob™? = b33, 09b™? = b1 and of € (Brs)e/qr1ys show o9b®? = b*0.
This implies 09b>° = b*!. The claim is proved. The o-pseudo-graph
G, (B¥st /{+1}?) is given in Figure 7.4.

(vi) The case Ay, z = (—1,—1,—1): The group of deck transfor-
mations of the normal covering G, (B%st/{41}3) — G,(Brs(x/{£1}?))
is

G2 /Z(({£1}°)e) = Gz/{xid} = {(M™")'|1 € Z}.
Here M™°" acts in the natural way on B4 /{£1}3. M has infinite
order and satisfies (M"™°")3 = —M. Recall f; = e; + ey + €3, Zf) =
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—>
N
b3'1Z{<_b“/ \\bz,o—<$b1'0

FIGURE 7.4. Example 7.16 (iv): The o-pseudo-graph
for distinguished bases modulo signs in the case A3

Rad I,

11
MT'OOt (Q) = ¢ 1 O
0

1
(M™")*(e) = e+ fi(1,0,-1).
Because of the shape of G, (Brs(z/{£1}?)),
b=/ {£1}3, 0?0 =", B0 =020 b0 = gyt

form one sheet of the infinite cyclic covering G,(B%/{£1}3) —
G, (Brs(z/{£1}?)). Define

bl o= (MY BH0)  for i€ {1,2,3,4}, 1 € Z — {0}.

Then

Bést /{4133 = [bi| i € {1,2,3,4},1 € Z}).
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We claim for [ € Z

Ulbl,l — b2’l, O'le’l — b4’l,

01b2’l — b3’l, 0'2b2’l — bl,l-{—l7

O'1b3’l — bl,l7 O'ng’l — b3,l+2’

o.lb4,l — b4’l+2, O.2b4,l — b2’l_1.
It is sufficient to prove the claim for [ = 0. The equations o,b%? = b??,

g1b%0 = B30, gyb10 = b1 follow from the definitions of 40, 130, p*0.
The inclusion 0} € (Brs)e/qs13s gives 010> = b0, It remains to show
0164,0 :b42,0'2620 :bll b30 b32 b40 b2 1

One sees

i b0 e Z with L(&,¢) = S(z)
L oe/{x} e (—1,—1,—-1)
2 0—1(§)/{:|:1}3 01<€) = (61 +€27617€3) (17_27_1)
3 oi(e)/{£1}’ of(e) = (—e2e1 +ez.e3) (—1,1,-2)
4 oy(e)/{£1}3 oa9(e) = (e1, €2 + €3, €2) (—=2,-1,1)
ob*? = (2e; + ey +es e, e0)/{£1Y?
= (e1+ fr,ea+es — fi,e0) [{£1}° = (M) = b*2,
O'2b2’0 (61 + €9, €1 + €3, 61)/{:i:1}3 MTOOtbl’O = b1’17
O'2b3’0 ( 62,261 —|—262 —|—€3,€1 +62)/{:|:1}3

= ( 62,61—|-€2—|-f1,—€3—|—f1)/{:i:1}3 ]\426)30_1)32
ogab®? = bbl implies 090>t = bY0. This, o9b'? = b*° and 02 S
Brs)./ri1s show o9b*® = b>~1. The claim is proved. A part of the
e/{£1}
o-pseudo-graph G, (B%st/{£1}?) is given in Figure 7.5.
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3 b3,l+1 b3'l+2

N RN VRN R

S N pil > b2 > pU+L__y p2itl s /bl" | N

FIGURE 7.5. Example 7.16 (v): A part of the o-pseudo-
graph for distinguished bases modulo signs in the case

Ay
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APPENDIX A

Tools from hyperbolic geometry

The upper half plane H = {z € C|S3(2) > 0} together with its
natural metric (whose explicit form we will not need) is one model of the
hyperbolic plane. In the study of the monodromy groups I'® and '
for the cases with n = 2 or n = 3, we will often encounter subgroups of
Isom(H). The theorem of Poincaré-Maskit [Po82|[Ma71] allows under
some conditions to show for such a group that it is discrete, to find a
fundamental domain and to find a presentation. Three special cases of
this theorem, which will be sufficient for us, are formulated in Theorem
A2,

Before, we collect basic facts and set up some notations in the
following Remarks and Notations A.1.

Subgroups of Isom(H) arise here in two ways. Either they come
from groups of real 2 x 2 matrices. This is covered by the Remarks and
Notations A.1 (v). Or they come from the action of certain groups of
real 3 x 3 matrices on R? with an indefinite metric. This will treated
in Theorem A .4.

REMARKS AND NOTATIONS A.1. (Some references for the following
material are [Fo51|[Le66]Be83|)

(i) Let n € N. Recall the notions of the free group G/m¢" with
n generators and of the free Coxeter group G/9°*" with n generators
from Definition 3.1.

(ii) C := CU{oo}, R := RU{oo}. The hyperbolic lines in H are the
parts in H of circles and euclidean lines which meet R orthogonally. For
any z1,2ze € HUR with z; # 25, denote by A(z1, 22) the part between
z1 and zy of the unique hyperbolic line whose closure in HU R contains
21 and zy. Here z; € A(zy, 20) if z; € H, but z; ¢ A(zy, 20) if z; € R.
Such sets are called arcs.

(iii) We simplify the definition of a polygon in [MaT71]. A hyperbolic
polygon P is a contractible open subset P C H whose relative bound-
ary in H consists of finitely many arcs Ay = A(z11,212), ..., Am =
A(zm 1, Zzm2) (Maskit allows countably many arcs). The arcs and the
points are numbered such that one runs through them in the order
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Ay, Ay and 219,212, %21, %22, o, Zm1, Zm,2 if one runs mathemati-
cally positive on the euclidean boundary of P in HU R. For A; and
Aip1 (with A1 := A;) there are three possibilities:
(a) zi2 = 2411 € H; then this point is called a vertez of P;
(b) zi2 = Zit1,1 € R;A R
(¢) zio € R ziy11 € R, zi0 # 241.1; then the part of R between
zio and 2,411 (moving from smaller to larger values) is in the
euclidean boundary of P between A; and A; .

In the second and third case A; N A;;1 = (. A polygon has no vertices
if and only if all arcs Al,/\..., A, are hyperbolic lines, and if and only if
all points 211, ..., Zm2 € R.

(iv) Denote

GIUV(R) = {A€GLy(R)|det A= —1},
GIFY(R) = {A € GLyR)|det A==41} = SLy(R)UGLS V(R),

and analogously Gléfl)(Z), GI5*Y(Z). Recall

Al (_01 [1)) A=det A- (_01 (1)) for A € GIS*V(R).

(v) The following map p : Gléﬂ)(R) — Isom(H) is a surjective
group homomorphism with kernel ker y = {+F>},

za+b ) b
u(A) = <z - CHd) it A= (i d) € SLy(R),

u(A) = (2 Z“ig) if A= (i Z) e LSV (R).

cz

wu(A) for A € SLy(R) is orientation preserving and is called a Mdbius

transformation. p(A) for A € GLg_l)(R) is orientation reversing.
If A€ SLy(R) — {£E,}, there are three possibilities:

(a) |tr(A)| < 2; then A has a fixed point in H (and the complex
conjugate number is a fixed point in —H) and is called elliptic.

(b) |tr(A)| = 2; then A has one fixed point in R and is called
parabolic.

(c) | tr(A)| > 2; then A has two fixed points in R and is called
hyperbolic.
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If A= CCL Z) € GL(z_l)(]R) with tr(A) = 0 then u(A) is a reflection

along the hyperbolic line
{zeH|z=p(A)(2)} ={2z € H|0 = c2Z — 2aRe(z) — b}
a a 1
(: zeH|0= (2= )(EF-2) - ) ifc;éO).

The theorem of Poincaré-Maskit starts with a hyperbolic polygon P
whose relative boundary in H consists of arcs Ay, ..., A,,, with an involu-
tion o € Sy, and with elements g1, ..., g, € Isom(H) with g;(A4;) = A
and gy = g; ! Under some additional conditions, it states that the
group G := (g1, ..., gm) C Isom(H) is discrete, that P is a fundamental
domain (i.e. each orbit of G in H meets the relative closure of P in
H, no orbit of G in H meets P in more than one point), and it gives
a complete set of relations with respect to ¢y, ..., 9, of G. Poincaré
[Po82] had the case when H/G is compact, Maskit [Ma71] general-
ized it greatly. In [MaT71] the relative boundary of P in H may consist
of countably many arcs. The following theorem singles out three spe-

cial cases, which are sufficient for us. Remark A.3 (ii) illustrates them
with pictures.

THEOREM A.2. [MaT7l1| Let P C H be a hyperbolic polygon whose
relative boundary in H consists of arcs Ay, ..., Ay with A; = A(zi122)
where one runs through these arcs and these points in the order
Ay, Ay and 211,21, %21, 22,25 - Zm1, Zm2 4f one runs mathemati-
cally positive on the euclidean boundary of P in H U R.

(a) Let I C {1,...,m} be the set of indices such that z; 5 is a vertex,
S0 zio = ziy11 € H, with Apyr = Ay and zpmi1, = 215 (I may be
empty). Suppose that at a verter z; o the arcs A; and A1 meet at an
angle I for some numbern; € Zy. Fori € {1,...,m} let g; € Isom(H)
be the ;eﬂection along the hyperbolic line which contains A;.

The group G := (g1, ..., gm) C Isom(H) is discrete, P is a funda-
mental domain, and the set of relations

@ =..=¢=id, (gigir)" =id foricI,

form a complete set of relations. Especially, if I = () then G is a free
Cozeter group with generators gi, ..., Gm.

(b) Let P C H have no vertices. Choose on each hyperbolic line
A; a point p;, and let g; be the elliptic element with fized point p; and
rotation angle .

The group G := (g1, ..., gm) C Isom(H) is discrete, P is a funda-
mental domain, and the set of relations g3 = ... = g2, = id a complete
set of relation, so G is a free Coxeter group with generators gy, ..., Gm.-
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(c) Let P C H have no vertices. Suppose that m is even. Suppose
212 = 2o fori € {1,2,...,%8}. Let g; fori € {1,2,...,%} be the
parabolic element with fized point zo;_1 o which maps Agi_q to Ay;.

The group G := (g1, ..., gm) C Isom(H) is discrete, P is a fundamen-
tal domain, and the group G is a free group with generators gy, ..., Gm.

=1 Z

REMARKS A.3. (i) The Cayley transformation C - C, (z —
maps the upper half plane H to the unit disk D = {z € C||z| < 1} Tt
leads to the unit disk model of the hyperbolic plane. The hyperbolic
lines in this model are the parts in D of circles and euclidean lines
which intersect 0D orthogonally.

(ii) The following three pictures illustrate Theorem A.2 in the unit
disk model instead of the upper half plane model.

FIGURE A.1. Three pictures for Theorem A.2

The surjective group homomorphism  : Glgﬂ)(R) — Isom(H) in
Remark A.1 (v) shows how to go from groups of real 2 X 2 matrices to
subgroups of Isom(H). The next theorem shows how to go from groups
of certain real 3 x 3 matrices to subgroups of Isom(H). It is classical.
But as we need some details, we prefer to explain these details and not
refer to some literature.
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THEOREM A.4. Let (Hg, I be a 3-dimensional real vector space
with a symmetric bilinear form I with signature (+——-).

(a) (Elementary linear algebra) A wvector v € Hg — {0} is called
positive if I (v, v) > 0, isotropic if I (v,v) = 0, negative if I (v, v) <
0. The positive vectors form a (double) cone K C Hg, the isotropic
vectors and the vector 0 form its boundary, the negative vectors form its
complement. The orthogonal hyperplanes (R -v)* satisfy the following:

(i) (R-v)t NK #£ 0 if v is negative.
(i) (R-v)t NI =R-v ifv is isotropic.
(iii) (R -v)t N K = {0} if v is positive.
K/R* denotes the lines in K, i.e. the 1-dimensional subspaces.

(b) (Basic properties of Aut(Hg, I'")) Let o : Aut(Hg, 1) — {£1}
be the spinor norm map (see Remark 6.3 (iii)). The group Aut(Hg, I
15 a real 3-dimensional Lie group with four components. The compo-
nents are the fibers of the group homomorphism

(det, o) : Aut(Hg, 1) — {£1} x {£1}.

—id € Aut(Hg, I'%) has value (det,o)(—id) = (—1,1). If v is posi-
tive then (det,a)(sgo)) = (—1,1). If v is negative then (det,a)(s&o)) =
(—=1,—1). An isometry g € Aut(Hg, I'%) maps each of the two compo-
nents of the cone K to itself if and only if g is in the two components
which together form the kernel of det -0, so if det(g)o(g) = 1.

(c) Choose a basis f = (f1, fa2, f3) of Hr with

0 0 1
19 fl=10 =2 0
1 0 0
(i) The map
0 b a®>  2ab b
0 : GISV(R) — Aut(Hzg), < )H(fo ac ad+be bd )
c d R 2
c 2cd d
is a group homomorphism with kernel ker® = {£EFE,} and image

ker(det -0 : Aut(Hg, I?)) — {£1}).
(11) The map
V:H— (Hr — {0})/R*, z— R*(zZf1 + Re(2) fa + f3),
is a bijection ¥ : H — K/R*.

(111) For A € Gléil)(R), the automorphism 9o u(A)od~! : /R* —
K/R* coincides with the action of O(A) on IC/R*.
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(iv) The natural maps
Aut(Hg, 1) /{£+id} <— ker(det-0) — Isom(H)
{£B} «— B, 04 — uA

are group somorphisms.

(v) For each hyperbolic line [ there is a negative vector v € Hg with
I(1) = ((R-v)t NK)/R*.

(vi) Let oy € Isom(H) be the reflection along a hyperbolic line I, and
let v be as in (v). The action of s on K/R* coincides with Yoo;09™".

(vii) Let 6, € Isom(H) be the elliptic element with fized point p € H
and order 2 (so rotation angle ). Let v € Hg be a positive vector with

R-v=19(p). The action of s on K/R* coincides with 9 0§, o 97

Proof: (a) and (b) are elementary and classical, their proofs are
skipped.

(c) (i) Start with a real 2-dimensional vector space Vg with basis
e = (e1, e2) and a skew-symmetric bilinear form 7!l on Vg with matrix

0 1
(et =
I (Q >§> -1 0/

The tensor product Vg ® Vg comes equipped with an induced sym-
metric bilinear form I® via (here I and J are finite index sets and
ai, bi, cj,d; € Vi)

[(0)(2 a; & bi, Z Cj X dj) = Z Z [[1](6L¢, Cj)]m(bi, dj)
iel jeJ iel jeJ
An element g € Aut(Hg) with ge = eA and A € Gléﬂ)(R) respects 1]
in the following weak sense:
I (9(v1),9(v2)) = detA- s (v1,v2),

(0 1 B (0 1
because A (_1 O)A = detA (_1 O)'

It induces an element O(g) € Aut(Va ® Vi, I©) via
é(g)(z a; @ b;) = Zg<ai) ® g(bi)-
icl icl
ThNe syx{lvmeN’crig part I:TR C Vk ® Vi of the tensor product has the
basis f = (f1, f2, f3) = (e1 @ e1,61 @ ex + 2 @ €1, €2 ® €3). One sees

L 0 0 1
19, f)=(0 -2 0
1 0 0

From now on we identify (Hpg, T(O)\ﬁR,z) with (Hg, 11, f).
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For an element g € Aut(Vk) with ge = eA with A = (Z Z) €

Glgﬂ)(R), the automorphism O(g) on Vi ® Vi restricts to an automor-
phism of the symmetric part Hg with matrix

N a’>  2ab b
O(g9)f =f|ac ad+bc bd
2 2cd

This fits to ©. It shows especially ©(A) € Aut(Hg, I'%).
The kernel of © is {+FE,}. The Lic groups GI™V(R) and
Aut(Hg, 1)) are real 3-dimensional. The Lie group GIS™(R)

has two components. (det,a)(@((é _01))) = (det,a)(sgg))

(—1,—1). Therefore the image of © consists of the two components
of Aut(Hg, I'”)) which together form the kernel of det-o. This finishes
the proof of part (i).

(ii) Define 9(z) := 2zf; + Re(2)fo + f5. It is a positive vector
because

199(2),0(2)) = 22 - 1 — 2(Re(2))? + 1 - 27 = 2(S(2))? > 0.
It is easy to see that ¥ is a bijection from H to K/R*.
(iii) In fact, 9(2) is the symmetric part of

(ze1 +e2) ® (Zeg + e2) = (e (i)) ® (e G)) e Ve® Ve.

a b
ForA:(C d

Fu(A)(2)
= (symmetric part of ¢ (")) & (¢ () P))

= |ez+d|™? (Symmetric part of (eA (i)) ® (eA (f) ))

) € GIFY(R)

a? 2ab b? 2z
= ez +d|7*f [ac ad+bc bd | | Re(2)
2 2cd d? 1
2Z
= |ez+ d|_2@(A)(i) Re(z)
1

= ez +d|2O(A)(V(2)).
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This shows part (iii). Part (iv) follows from part (iii).
(v) A hyperbolic line [ is the fixed point set of a reflection p(A) for

amatrix A = (¢ b € Gl(_l)(R), SO
c —a 2

I = {z€eH|z=puA)(2)} ={z € H|0 = czZ — 2aRe(z) — b}.

Observe

—b 2Z
czE—QaRe(z)—b:[[O](i a |,f|Re(z)]).
c 1

Therefore
00) = (R(=bfi +afs+cfs) NK) /R
(vi) and (vii) are clear now. 0

REMARKS A.5. (i) In the model K/R* of the hyperbolic plane,
the isometries of H are transformed to linear isometries of (Hg, I™).
The hyperbolic lines in H are transformed to linear hyperplanes in Hg
(modulo R*) which intersect K.

(ii) If one chooses an affine hyperplane in Hg which intersects one
component of I in a disk, this disk gives a new disk model of the
hyperbolic plane, which is not conformal to H and D (angles are not
preserved), but where the hyperbolic lines in H are transformed to the
segments in the new disk of euclidean lines in the affine hyperplane
which intersect the disk. The following picture sketches three hyper-
bolic lines in the unit disk D and in the new disk which is part of the
cone K.

unit disk ) new disk (in &)

F1GURE A.2. Two disk models of the hyperbolic plane
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APPENDIX B

Quadratic units via continued fractions

The purpose of this appendix is to prove Lemma B.1 with two
statements on the units in certain rings of algebraic integers. The
proof of Lemma B.1 will be given after the proof of Theorem B.6.

A convenient and very classical tool to prove this lemma is the the-
ory of continued fractions as best approximations of irrational numbers,
applied to the case of quadratic irrationals which are algebraic integers.

Theorem B.4 below cites standard results on the continued fractions
of real irrationals. It is prepared by the Definitions B.2 and B.3

Lemma B.5 provides the less well known formulas (B.2) and (B.3)
for the case of a quadratic irrational. Theorem B.6 describes the unit
group Z[a]* where « is a quadratic irrational and an algebraic integer,
in terms of the continued fractions of a.

LEMMA B.1. (a) Let © € Z>3, and let k1o = £ + 2v/x% — 4 be the
zeros of the polynomial t*—xt+1, s0 ki +Ky = T, Kiko = 1, K3 = Thy—1.
Then

Z]* = {£kt |1 € Z} if v € Z>y,
PEZY (=D 1eZ)y ifx=3.

k1 has norm 1. If x = 3 then (k1 —1)? = K1, and k1 — 1 has norm —1.

(b) Let © € Zxs, and let Nyjp = 2> — 1+ xv/x? — 2 be the zeros of
the polynomial t? — (222 —2)t + 1, s0 A + Xg = 22% — 2, A dg = 1, N2 =
(222 — 2)\; — 1. Then

:I:AZHEZ} ifz >3

2 _ * { 1 - Y%

Zlva® -2 {{i(1+\/§)l|l€Z} if 2 = 2.

A1 has norm 1. If x = 2 then (1 + \/5)2 =\, and 1 + V2 has norm
—1.

Theorem B.4 is mainly taken from several theorems in [Ail3, 1.2
and 1.3], but with part (b) from [Ca65, I 2.]. It is preceded by two
definitions. According to [Bu00, 5.9 Lagrange’s Theorem]|, this part
(b) is orginally due to Lagrange 1770. In fact, we will not use this part
(b), but we find it enlightening.
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DEFINITION B.2. Let # € R — Q be an irrational number.

(a) Define  recursively  sequences (@n)n>0, (01)n>0,
(Pr)n>—1, (@n)n>—1, (Tn)n>0 as follows:
Oy = 0,
ap = |0 €Z,
0, = ;ERM—Q for n € N,
Op—1— Ap_1
a, = |0, €N forneN,
(P-1,P0,9-1,9) = (1,a0,0,1),
Pn = QuPn-1+ Pno €7Z fornéeN,
Gn = GpQpn-1+ @2 € N forn e N,
Ty = % € Q forn € Zsy.

0,, and a,, are defined for all n € N, because each 6,,_; is in R — Q, so
en,1 — Qp_1 € (0, 1)
(b) Following [Ca65, Notation 2.| define

. 1
10| :== min(0 — 0], [0] — ) € (0, 5)
We are interested especially in the case when 6 € R — Q is a qua-

dratic irrational. We recall some notations for this case.

DEFINITION B.3. Let # € R — QQ be a quadratic irrational, i.e.
dimg Q[f] = 2. The other root of the minimal polynomial of 6 is
called 0" so 0 + 0" =: q; € Q and —00°" =: d; € Q. For any
a = a+ bl € QO] with a,b € Q write a®¥ := a + b0, Tt is the
algebraic conjugate of a. The algebra homomorphism

N:QF] - Q, ar aa®,

is the norm map. The number « is called reduced if & > 1 and o™ €
(—1,0). Recall that « is an algebraic integer if and only if a+a®" € Z
and N («) € Z and that in this case « is a unit in Z[«] if and only if
N(a) € {£1}.

THEOREM B.4. (Classical) In the situation of Definition B.2 the
following holds.

(a) [Ail3, 1.2] ay € Z, a, € N forn € N. Forn € Z>, the rational
number r,, is

1
Tn = Qo + - =: [ag, ay, ..., ay].
a + —L—

‘ 1
an—1tg,
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It is called partial quotient or continued fraction or n-th convergent of
0. These numbers approzimate 0,

ro<To<ry<..<0<..<rs5<r3<ry,

1
0 — 1, < —=.
This allows to write 8 = [ag,aq,...]| as an infinite continued fraction.

The numerator p, and the denominator q, of r, are coprime,
ged(pn,qn) = 1, and more precisely
Pnln-1 = Pn1¢n = (=1)"7" for n € Zx,.
The denominators grow strictly from n =1 on,
l=¢g<qg <@p<g<..

(b) [Ca65, 1 2.] The partial quotients r,, are in the following precise
sense the only best approximations of 0:
[pn — @] = @b forn €N,
lnrsfll < llgabll forneN,
g0l > ||gnd|| forn € Zsy and g € N with ¢ < ¢,41,
po —qof] = llgfll > [|¢:0] if ¢ > 1( = a1 > 1),

1 .
Do — qof| € (5, 1) and |po — qof| > ||@16|| if g1 =1( <= a1 =1).
In any case

’pn—i-l - C]n+19| < |pn - Qn9| for n € ZZO'

(c) [Ai13, Theorem 1.19] The partial quotients r, are also in the
following precise sense the only best approximations of 6: A rational
number § with p € Z,q € N and ged(p, q) = 1 satisfies

1
|0 — ]—9| <5z = (p,q) = (pn,qn) for a suitable n € Zs,.
q q -
(d) [Ai13, Theorem 1.17 and Proposition 1.18] The continued frac-
tion is periodic, i.e. there exist kg € Z>¢ and ki € N with

Apik, = an for n > ko,

if and only if 8 is a quadratic irrational, i.e. dimg Q0] = 2. Then one
writes [apay...| = [agay...apy—1Gkg g 11---Ohg 1y —1)- Furthermore, then kg
can be chosen as 0 if and only if 0 is reduced. In this case the continued
fraction [agay...] is called purely periodic.
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Lemma B.5 fixes useful additional observations for the case of a
quadratic irrational #. These observations are used in the proof of
Theorem B.6. It considers an algebraic integer « € R — Q which is a
quadratic irrational. We are interested in the group Z[a]* of units in
Z[a]. Theorem B.6 shows how to see a generator of this group (and a
quarter of its elements) in the continued fractions of a certain reduced
element 6 in Z[a]. Theorem B.6 is not new. For example, [Bu0O,
Theorem 8.13] gives its main part. But the proof here is more elegant
than what we found in the literature.

LEMMA B.5. Let 8 € R — Q be a quadratic irrational which s
reduced. Let [agai-..ar_1) be its purely periodic continued fraction of
some minimal length k € N. We consider the objects in Definition B.2
for this 6. Then

0n+k = 9n forn € Zzo. (Bl)

O is reduced form € {0,1,...,k— 1}, and its purely periodic continued
fraction is [@y,---ar_1G0---Gm_1). Write

B o= 040 Qo dy= —N(0) = 09 € Qs
B = pr-1— @10 € QA — Q.

Then forn € Z>_,
Prn+k — Qn-i-ke =5 (pn - Qne) (BQ)
and for n € Zx>q

_ —Pn—2Pn—1 +pn—2Qn—1dE) + Qn—ZQn—ldO + (_1)n9
N(pnfl - qn719>

Proof: The natural generalization of the notation [ag, a1, ..., @] to
numbers ay € R, ay, ..., a,, € Ry gives for n € Zs

On

(B.3)

enpn—l + Pn—2

0 = [a07a1a"'7an—176n] = 9 q +q ’
nin—1 n—2

see Proposition 1.9 in [Ail3]. One concludes that the continued frac-
tion of 6, is purely periodic, that 6, = 6, if n = kIl + m with
|l € Zso and m € {0,1,....,k — 1}, and that its continued fraction
iS [@p--Gp_1Gg--Gp_1]. Therefore 6, is reduced. Recall p, 1¢, o —
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Pn—2Gn—1 = (—1)". Inverting the equation above gives
0 - gqn—Z — Pn—2
=
0(_Qn—1) + Pn-1
(_pn—2 + Qn—29) (pn—l - qn_lgconj)
N(pn—l - Qn—lg)
—Pn—2Pn-1 + pnf2anldE) + QTL72Qn71dO + (_1)n9
N(pnfl - anle)

The formula 6 = 6, = e(e_q(,;;l# shows

(1,-0) (p’“ p“) — (Pt — GurB)(L, —6) = (1, ),

qk—1  Qqk—2

The inductive definition of p, and ¢, shows

Pn Pn-1) _ [Qo 1 aq 1 Qp 1
G Gn-1) \1 0J\1 0)7\1 0)°

With the periodicity a, + k£ = a,, we obtain
(1, —6) (pn+k pn1+k> — (1,-6) (]%1 pkz) ( n pn1)
Gn+k  dn-14k Q-1  qk—2 dn 4n-1
n  Pn—1
= 1,—-0 .
6( ) (Qn Qn—l)

This gives formula (B.2). O

THEOREM B.6. Let a € R — Q be a quadratic irrational and an
algebraic integer.

(a) There are a unique sign e, € {£1} and a unique number n,, € Z
such that 0 := eqa+ng is reduced. Then Zla] = Z[0], and any reduced

element 6 € Z[a] with Z[o] = Z[6] satisfies = 6. We consider the
objects in Definition B.2 for this 8. We define

ag = 0+0°Y €N,  dy:=-N(0)=-00"" €N,
B = pr1—qea0 € Z[0] - Z.
as in Lemma B.5. Then ag = ap and dy € {1,2,...,a0}.

(b) Then B is a unit and generates together with —1 the unit group
Zla]*, the l-th power of B is ' = pi_1 — qu_10 for | € Zso, and

{xA'llezy = Zla],
{Bl | l - ZZO} = Z[Oé]* N {pn—l — qn_19 | n e ZZO}‘

The element [ is uniquely characterized by the following properties:
(i) —1 and (B generate the unit group Z|al]*,
(ii) |B] < 1,
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(i) B =p—q0 withp € Z,q €N (namely p = pr—1,q = qx—1)-

Proof: (a) Choose €, € {£1} such that g,(a — a®™) > 0. Then
choose n, € Z such that e,a®" +n, € (—=1,0). Define 0 := e, + nq.
Then 6" = ¢,a%" + n, € (—1,0). Also § > 6°" and 66" €
Z — {0}. This shows 6 > 1, so 0 is reduced. Also Z[a]| = Z[6] is clear.

Any reduced element 6 € Zla] with Z[a] = Z[] has the shape
0 =¢c o+ na with €, € {£1} and n, € Z. The sign &, is because of
0>1>0> 0% the unique sign with 50( — QM) > 0, 50 £, = Eq.
Now 7, is the unique integer with £,a%™ +n, € (-1, O), SO Mg = Ny,
Therefore 0 = 6.

We have ap = |[0] = 0 + 0°°" = @y and dy = —00°" < qy, both
because 6« € (—1,0).

(b) We apply Lemma B.5. It tells us which of the elements p,, — ¢, 0
for n € Z> are units, in the following way.

Consider n € Zs and write n = Ik +m with | € Z>y, and m €
{0,1,...,k — 1}. Recall that 6, is reduced, that 6, = 6,, because of
formula (B.1) and that 6,, = 6 only for m = 0, because for m €
{1, ...,k — 1} the purely periodic continued fractions of 6 and 0, differ.
Recall also from formula (B.2) that

Pn—1 — anle - Bl(pmfl — qule).

If for some n € Zso N(pn_1 — ¢u—10) € {£1}, then by formula
(B.3) 0, satisfies Z[a] = Z[0] = Z[6,]. The uniqueness of # in part (a)
implies that then 6,, = 0, so m = 0. Therefore for n € Z>y — kZ>o,
N(Pn-1— qn10) ¢ {£1}, so then p, 1 — g,_10 is not a unit.

On the other hand, if n = kl, so m = 0, then #,, = #, and formula
(B.3) tells N (py_1 — gn10) = (—1)", 80 pr_1 — Gn_10 is a unit. In fact,
formula (B.2) tells p,_1 — ¢,_10 = 3. We see

{pn1 — qn10|n € Zso} NZ[O)* = {B'|l € Zxo}. (B.4)

It remains to see that —1 and (3 generate Z[0]*.

By Dirichlet’s unit theorem [BSh73, Ch. 2 4.3 Theorem 5], the set
Z[a]* is as a group isomorphic to {£1} x Z. It has two generators +3
with | + 8] < 1. They are the unique elements in Z[a]* with maximal
absolute value < 1. One of them has the shape p—¢f with ¢ € N. This
is called Za’ Then also p € N, because \Zﬂ =|p—qf| <1andqb > 1.

1st case, 6 € (1,2): Then ay =dy =1, and 0 = %5 is the golden
section with #2 = # + 1. This case is well known. Here the continued
fraction of @ is purely periodic with period 1 of length one, because
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ap =1 and
0, = (0o —ao) ' =0=0,.
Here 3 =1—60 = —0~! = 0" It is well known that
Zla]* =20 = {£0' |l € Z} = {£p" |1 € Z}
_ 2nd case, 0> 2: E = p—¢f is a unit, so 1 = N(p — ¢f). Also
18| <1 and € > 2 imply p > 2q. Therefore
1 1

a(p— q6=m) — q(p + ql6=))
1 1

q(2¢+0)  2¢*
By Theorem B.4 (¢) n € Zso with (p,q) = (pn, ¢n) exists. By (B.4) 3

is a power of 8, so = £. O

p
E-a -
q

The parts (a) and (b) in the following proof of Lemma B.1 serve
also as examples for Theorem B.6.

Proof of Lemma B.1: (a) Here

r>3=>2r>5=12>—-4 > 22—2z+1

=Vi2—4 € (z—1,12),
:>9_m1—1_$;2+%\/m E (q;—;,x—l)
and Hconj:/ﬁg—l:xQQ—%\/m € (—1,—%).
Observe
040" =3 -2, 00°" = —x + 2.
Therefore
O = 6, ap= 6] =2—2,

Qconj _ (ZE _ 2)

= o) = e ()

B -0 0

42 -2
a; = Leljzla

o a-2 _ @-2™—(@-2)
b = Gi-a) =Ty = —r 2 =9

0 = [z—2,1].
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The continued fraction of 6 is purely periodic with period z — 2,1 of
length 2 if # > 4 and purely periodic with period 1 if z = 3. The norm
of p—qb for p,q e Zis

N(p—qb) = (p—a0)(p — ¢6°") = p* —q(p + ¢)(z — 2) € Z.

It is £1 if and only if p — ¢f is a unit.

n 0 1 2 3
an, r—2 1 T — 2 1
(Pns Gn) (x—2,1) (z-1,1) (2*=2x,2—-1) (2*—2—1,2)
Np,—¢b) —x+2 1 —z+2 1

If x = 3 then 5 = py — qof = 1 — 6 in the notation of Lemma B.5,
so Z[0]* is generated by (—1) and S or =37 ' =60 =k, — 1, so

Z ={£(1 -0l € Z} = {+(k1 — 1)'|1 € Z}.

This is also consistent with the 1st case in the proof of part (b) of
Theorem B.6.

If x >4 then § = p; — @10 = v — 1 — 0 in the notation of Corollary
B.4, so Z[0]* is generated by (—1) and 8 or z — 1 — 6™ = k4, so

ZI0) = {£(x—1-0)" |l € Z} = {xK! |l € Z}.

This proves part (a) of Lemma B.1.

(b) The case x = 2 is treated separately and first. This case is well
known. Then 6 = 1++/2 € (2,3), 6« =1 —+/2 € (—1,0), s0 ag = 2.
The continued fraction of @ is purely periodic with period 2 of length
one, because a¢g = 2 and

b1 = (60— ao) " = (V2 - 1)7" = .
The element
po—q09:2—9:1_\/§:9conj
is a unit. This and Theorem B.6 (b) show
Zla] = Z[0) = {0 |l e Z} = {+(1 + V2)! |l € Z}.

Now we treat the cases z > 3. Here

1 1
1'23:>{L'2—2>£L‘2—33—|—Z:>\/$2—2>:B—§,

:>6’:(x—1)—|—\/x2—26(2x—g,2x—1)
, 1
and 0“% =(x—1)— Va2 —-2¢€ (-1, —5)
Observe

O+0°" =22 —2, 00 = -2z + 3.
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Therefore
00 = 9, QOIL90J:2I—2,

0
01 = (00 — (lo)_l = ... = or —3 S (1,2), ay = 1,
0y, = (91—a1)1:...:0%16(35—2,95—1), as = — 2,
0—1
63 = (92 — CLQ)il =..= or — 3 S (1,2), as = 1,
64 = (93—(13)71 = ... :6:90,

0 = [20—2,1,2—2,1].

The continued fraction of 6 1is purely periodic with period
20 — 2,1,z — 2,1 of length four. The norm of p — ¢ is

N(p—q0) = (p—g0)(p — ¢0°™) = p* + ¢* — q(p + ) (22 — 2).
It is £1 if and only if p — ¢f is a unit.

n 0 1 2 3
an, 20— 2 1 r— 2 1
(Prs @n) 2z —2,1) (2z—1,1) (22> —=3z,x—1) (22 —x—1,2)
N(pn—aq0) —2x+3 2 —2z + 3 1

We conclude with Theorem B.6 (and with the notation of Lemma B.5)
that
B=ps—qs0 =20 —2—1)—af= (2> — 1) —avVa2 —2= Xy

is together with (—1) a generator of Z[vz? — 2]* = Z[#]*. Therefore
also \; together with (—1) is a generator of Z[v/z? — 2]*. This proves
part (b) of Lemma B.1. O

REMARK B.7. In the situation of Theorem B.6, Satz 9.5.2 in [Ko97]
tells that the unit group Z[0]* is generated by —1 and gx_o+qx_160. This
is consistent with Theorem B.6 because of the following. Here
Oxpr—1+DPr—2  ODr—1 + Dr—2
OkGe—1 + Qr—>  Oqu—1+ Qr—2’

so 0 = %492 — (Pr-1 — Qr—2)0 — Pr—2,
but also 0 = 6% — ayf — dy,
S0 a4y = Gy = Pr—1 — C]k—27 dy = Pk-27
k-1 k-1
Ph-1— Qe = pr1 — qr_1(ag — 0) = g2 + qr_10-

H —
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APPENDIX C

Powers of quadratic units

The following definition and lemma treat powers of units of norm
1 in the rings of integers of quadratic number fields. Though these
powers appear explicitly only in Lemma C.2 (¢). Lemma C.2 will be
used in the proof of Theorem 5.18.

DEFINITION C.1. (a) Define the polynomials b;(a) € Z[a] for | €
Z>q by the following recursion.

bo:=0, bi:=1, b:=ab_y—b_o forleZs,. (C.1)

(b) Define for [ € Z>o the polynomial r; € Z[a] and for [ € N the
rational functions qoy, q14, 24 € Q(t),

ro = 0,
r; = —abj+2b1+2 forleN,
b —bi
do; = b—z’
b —=b—1
q11 = T
Qi = o1 — 2qu

(c) A notation: For two polynomials fi, fo € Zla], (fi, f2)z/a =
Zla]fy + Zla] fo C Z[a] denotes the ideal generated by f; and fs.

Remark: If (fi, f2)ziqy = Z[a] then for any integer ¢ € Z
ged(f1(e), fa(c)) = 1.

(d) For a € Z<_3UZs3 define K, := & +3va? — 4 and k& 1= ¢ —
%\/ a? — 4 as the zeros of the polynomial t*—at+1, so that xk,+k%" = a,
Kokl =1, k2 = ak, — 1. They are algebraic integers and units with
norm 1.

The following table gives the first twelve of the polynomials b;(a).
The software Maxima [Maxima22] claims that the factors in the prod-
ucts are irreducible polynomials as polynomials in Q[a]. We will not
use this claim.
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bp = 0
by = 1
by = a
(a+1)

(
be = (a—1)ala+1)(a®—3)
(a® —a* —2a + 1)(a® + a® — 2a — 1)
bs = a(a®—2)(a* — 4a* +2)
by = (a—1)(a+1)(a®—3a—1)(a®—3a+1)
by = a(a®>—a—1)(a*+a—1)(a* - 5a? +5)
by = (a®—a*—4a®+3a® +3a —1)(d® +a* — 4a® — 3a* + 3a + 1)
LEmMMA C.2. (a) For anyl € N

1=0b"—abb_1 + b, =b —b1b_1, (C.2)
(51—17 bl)Z[a] = (bl —bi—1, bl)z[a} = Z[a], (0-3)
(2 — a) (b(l+1)/2 -+ b(l,l)/g)z for [ odd,
r = { (2 —a)(a+2)b7, for [ even, (C.4)
(also I = 0)
(r-1/(2 = a),m/(2 = a))zq = Zla], (C.5)
and
r-1/(2 —a)

42,1 = 1— m.
(b) Fora € Z<_3

bi(a) € (-1)"'N for 1>1,

bi(a) =1, by(a) =a, |b(a)+bi(a)|=lal—1,
|by(a)| > 2|b_1(a)] > |b_1(a)] +1 for [>2
|bii1(a) + b(a)] > |by(a) + b_1(a)] for [>1.

For a € Z>3

bi(a) >0 for [>1,

bi(a) =1, by(a)=a, by(a)+bi(a)=0a+1,

bi(a) > 2b_1(a) for [>1,

biri(a) + b(a) > 2(b(a) + b—1(a)) for [>1.
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(c) Consider a € Z<_3UZ>3 andl € N. Then

I{fl = b(a)ke — bi_1(a), .
fa = (1=q0u(a) + (qo1(a) — ri(a)gri(a)) s, (C.8)
v o= 2D @ - ), (©9)

so K. is a zero of the polynomial t> — (2 — ry(a))t + 1.

a

Proof: (a) The recursive definition (C.1) of b; shows immediately
the equality of the middle and right term in (C.2), it shows

le — ablbl_l + bl2—1 = bl2—1 — abl_lbl_g + le_27

and it shows b2 — ab;by + b3 = 1. This proves (C.2). It implies (C.3).
The sequence (r;);en satisfies the recursion

ro=0, m=2—a, rm=ar1—1-2+22—a) forl>2.

For [ = 2 one verifies this immediately. For [ > 3 it follows inductively
with (C.1),
T, = —a(abl_l — bl_g) + Q(Gbl_g - bl_g) + 2
= a(—abl_l + 2()[_2 + 2) - (—abl_g + 261_3 + 2) + 2(2 - CL)
= arj_1 — 12+ 22— a).
Forl=1and [ =0 (C.4) is obvious. For odd [ =2k +1 > 3 as well as

even | = 2k > 2, one verifies (C.4) inductively with this recursion and
with (C.2), for odd [ =2k +1 > 3:

(2 — a)(bpy1 + bp)® — arg, + rop_1 — 2(2 — a)
= (2—a)[((aby, — by—1) + by)?]

—(2 —a)[a(a + 2)b — (b + bp_1)* + 2]
= (2 —a)207 — 2abyby_, + 207 | — 2]

0 (with (C.2)),

for even | = 2k > 2:

(2 —a)(a+2)b; — arg—1 + rop—2 — 2(2 — a)
= (2—a)[(a+2)b7]
—(2 —a)[a(by, + bp_1)* — (a + 2)b_; + 2]
= (2 —a)[2b? — 2abyby_1 + 27| — 2]
— 0 (with (C.2)).
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(C.5) claims for £ >0
((brs1 +0x)?, (@ +2)b3)z1a) = Za]
and  ((a+ 2)bi+1, (brgr + bk)2)Z[a] = Zla).
The following claim is basic: For fi, fa, f3 € Zlal
(f1, [3)z = (f2, f3)zia) = Zla] = (fif2, f3)z1q = Zla].
To see this claim consider 1 = oy f1 + asfs, 1 = B1fo + [of3. Then
1 = (oufi+ asfs)(Bifo+ Pafs)
= abififo+ afafi + onBafifs + b fafs.
The claim and (C.3) show that for (C.5) it is sufficient to prove
(@ + 2, bpg1 + b))z = Z[al.
This follows inductively in k with
bryi+ b = (a+2)by — (b +bx—1) and by + by = 1.
Finally, we calculate g ;:
g1 = (rb) " (ri(by — bi—1) — 2(by — by — 1))
= 1+ (nb) " (—(—aby + 2bi_1 + 2)bi_1) — 2b; + 2b,_1 + 2)
= 1+ (nb) " (bilaby — 2) = 2(bi_; — 1))
B { L+ () Y(abi_y — 2) — 2b,_5) (with (C.2)) for > 2,
- 1 for il =1
= 1- rl_lrl_l.

(b) All inequalities and signs follow inductively with (C.1).
(¢) (C.7) is true for [ = 1. It follows inductively in [ with the
following calculation, which uses x2 = ak, — 1.

kY = ga(bi(a)ke — bi—i(a))
= ba)(ar, — 1) = b_1(a)k,
= (abi(a) = bi1(a))ka — bi(a)
= b1(a)k, — bia).
The right hand side of (C.8) is
bi—1(a) 1 N
bi(a) ~ bi(a) *
which is s, by inverting (C.7). Writing r, = % + $v/a® — 4 gives for &,

,L{,fl _ U/bl(a) —221)[1(&) i bl(2a) \/m
One verifies that this equals the right hand side of (C.9). O
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Coxeter system, 24

cyclic endomorphism, 83

dihedral group, 135

distinguished basis, 34

distinguished matrix, 34

distinguished tuple of
reflections, 34

dual lattice, 128

elliptic Mobius transformation,
238

even intersection form, 12

even monodromy group, 17

even vanishing cycle, 17

free Coxeter group, 22
free group, 22
Fuchsian group, 145

generalized Cartan lattice, 14
generators of SLy(Z), 71
global sign change, 77

Hurwitz action, 22

hyperbolic bilinear lattice, 163
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hyperbolic transformation, 238
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Mobius transformation, 238
monodromy, 13
monodromy group, 18
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odd monodromy group, 17
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reduced number, 246
reducible triple, 18
reflection, 12

regular endomorphism, 82
root, 13

root of the monodromy, 43

Seifert form, 12
semidirect product, 27
semisimple part, 11
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spinor norm, 133
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transvection, 12
triangular basis, 13

unimodular bilinear lattice, 12
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upper half plane, 237

upper triangular matrix, 13
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Weyl group, 151



