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Abstract

This monograph starts with an upper triangular matrix with integer
entries and 1’s on the diagonal. It develops from this a spectrum of
structures, which appear in different contexts, in algebraic geometry,
representation theory and the theory of irregular meromorphic con-
nections. It provides general tools to study these structures, and it
studies sytematically the cases of rank 2 and 3. The rank 3 cases lead
already to a rich variety of phenomena and give an idea of the general
landscape. Their study takes up a large part of the monograph.
Special cases are related to Coxeter groups, generalized Cartan lattices
and exceptional sequences, or to isolated hypersurface singularities,
their Milnor lattices and their distinguished bases. But these make
only a small part of all cases. One case in rank 3 which is beyond
them, is related to quantum cohomology of P2 and to Markov triples.
The first structure associated to the matrix is a Z-lattice with a uni-
modular bilinear form (called Seifert form) and a triangular basis. It
leads immediately to an even and an odd intersection form, reflections
and transvections, an even and an odd monodromy group, even and
odd vanishing cycles. Braid group actions lead to braid group orbits
of distinguished bases and of upper triangular matrices.

Zusammenfassung

Diese Monographie beginnt mit einer oberen Dreiecksmatrix mit ganz-
zahligen Einträgen und Einsen auf der Diagonalen. Ausgehend davon
entwickelt sie ein Spektrum von Strukturen, die in verschiedenen math-
ematischen Kontexten auftreten – insbesondere in der algebraischen
Geometrie, der Darstellungstheorie und der Theorie der irregulären
meromorphen Zusammenhänge. Sie stellt allgemeine Werkzeuge zur
Untersuchung dieser Strukturen bereit und analysiert systematisch die
Fälle mit den Rängen 2 und 3. Bereits die Fälle mit Rang 3 führen
zu einer Fülle interessanter Phänomene und vermitteln einen Ein-
druck der allgemeinen Landschaft. Ihre Untersuchung nimmt einen
großen Teil der Monographie ein. Einige spezielle Fälle stehen in
Verbindung mit Coxeter-Gruppen, verallgemeinerten Cartan-Gittern
und exzeptionellen Sequenzen oder mit isolierten Singularitäten von
Hyperflächen, ihren Milnor-Gittern und ihren ausgezeichneten Basen.
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Diese speziellen Fälle machen jedoch nur einen kleinen Teil der
gesamten Theorie aus. Ein bemerkenswertes Beispiel im Rang 3 Fall,
das über diese hinausgeht, ist mit der Quantenkohomologie von P2

sowie mit Markov-Tripeln verbunden. Die erste Struktur, die mit der
Matrix assoziiert ist, ist ein Z-Gitter mit einer unimodularen Bilin-
earform (der sogenannten Seifertform) und einer triangulären Basis.
Diese Struktur führt unmittelbar zu einer geraden und einer unger-
aden Schnittform, Spiegelungen und Transvektionen, einer geraden und
einer ungeraden Monodromiegruppe sowie geraden und ungeraden ver-
schwindenden Zykel. Die Wirkung der Zopfgruppe erzeugt Bahnen von
ausgezeichneten Basen sowie von oberen Dreiecksmatrizen.
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CHAPTER 1

Introduction

This thesis develops many structures, starting from a single upper
triangular n × n matrix S with integer entries and diagonal entries
1. The structures are introduced and are called playing characters in
section 1.1.

Section 1.2 tells about the results in this thesis. The thesis pro-
vides general tools and facts. It treats the cases n = 2 and n = 3
systematically.

1.1. Playing characters

HZ will always be a Z-lattice, so a free Z-module of some finite
rank n ∈ N = {1, 2, 3...}. Then L will always be a nondegenerate
bilinear form L : HZ × HZ → Z. It is called a Seifert form. The pair
(HZ, L) is called a bilinear lattice. If for some Z-basis e ∈ M1×n(HZ)
of HZ the determinant detL(et, e) is 1 the pair (HZ, L) is called a
unimodular bilinear lattice. The notion bilinear lattice is from [HK16].
In chapter 2 we develop the following structures for bilinear lattices,
following [HK16]. Though in this introduction and in the chapters
3–7 we restrict to unimodular bilinear lattices.

T uni
n (Z) := {S ∈Mn×n(Z) |Sij = 0 for i > j, Sii = 1}

denotes the set of all upper triangular matrices with integer entries and
1’s on the diagonal.

Let (HZ, L) be a unimodular bilinear lattice of rank n. A basis e
of HZ is called triangular if L(et, e)t ∈ T uni

n (Z). The transpose in the
matrix is motivated by the case of isolated hypersurface singularities.
The set of triangular bases is called Btri. By far not every unimodular
bilinear lattice has triangular bases. But here we care only about those
which have.

For fixed n ∈ N there is an obvious 1-1 correspondence be-
tween the set of isomorphism classes of unimodular bilinear lattices
(HZ, L, e) with triangular bases and the set T uni

n (Z), given by the map
(HZ, L, e) 7→ S := L(et, e)t. To a given matrix S ∈ T uni

n (Z) we always
associate the corresponding triple (HZ, L, e).
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Let a unimodular bilinear lattice (HZ, L, e) with a triangular basis
e be given, with matrix S = L(et, e)t ∈ T uni

n (Z). The following objects
are associated to this triple canonically. The names are motivated by
the case of isolated hypersurface singularities.

(i) A symmetric bilinear form I(0) : HZ × HZ → Z and a skew-
symmetric bilinear form I(1) : HZ ×HZ → Z with

I(0) = Lt + L, so I(0)(et, e) = S + St,

I(1) = Lt − L, so I(1)(et, e) = S − St,

which are called even respectively odd intersection form.
(ii) An automorphism M : HZ → HZ which is defined by

L(Ma, b) = L(b, a), so M(e) = e · S−1St,

and which is called the monodromy. It respects L (and I(0)

and I(1)) because L(Ma,Mb) = L(Mb, a) = L(a, b).
(iii) Six automorphism groups

O(k) := Aut(HZ, I
(k)) for k ∈ {0; 1},

GM
Z := Aut(HZ,M) := {g : HZ → HZ automorphism | gM =Mg},

G
(k)
Z := Aut(HZ, I

(0),M) = O(k) ∩GM
Z for k ∈ {0; 1},

GZ := Aut(HZ, L) = Aut(HZ, L, I
(0), I(1),M).

(iv) The set of roots

R(0) := {a ∈ HZ |L(a, a) = 1},

and the set

R(1) := HZ.

(v) For k ∈ {0; 1} and a ∈ R(k) the reflection (if k = 0) respec-

tively transvection (if k = 1) s
(k)
a ∈ O(k) with

s(k)a (b) := b− I(k)(a, b)a for b ∈ HZ.

(vi) For k ∈ {0; 1} the even (if k = 0) respectively odd (if k = 1)
monodromy group

Γ(k) := ⟨s(k)e1
, ..., s(k)en ⟩ ⊂ O(k).

(vii) For k ∈ {0; 1} the set of even (if k = 0) respectively odd (if
k = 1) vanishing cycles

∆(k) := Γ(k){±e1, ...,±en} ⊂ R(k).
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The definitions of all these objects require only S ∈ SLn(Z) and
e1, ..., en ∈ R(0), not S ∈ T uni

n (Z). But the formula (Theorem 2.6)

s(k)e1
...s(k)en = (−1)k+1M for k ∈ {0; 1}

depends crucially on S ∈ T uni
n (Z).

The even data I(0), O(0),Γ(0) and ∆(0) are in many areas more impor-
tant and are usually better understood than the odd data I(1), O(1),Γ(1)

and ∆(1). But in the area of isolated hypersurface singularities both
turn up.

For k ∈ {0; 1} the group Γ(k) contains all reflections/transvections

s
(k)
a with a ∈ ∆(k). In the case of a bilinear lattice which is not unimod-
ular this holds for k = 0, but not for k = 1 (Remark 2.9 (iii)). This is
one reason why we restrict in the chapters 3–7 to unimodular bilinear
lattices.

Section 3.2 gives an action of a semidirect product Brn ⋉ {±1}n of
the braid group Brn of braids with n strings and of a sign group {±1}n
on the set (R(k))n for k ∈ {0; 1}. It is compatible with the Hurwitz
action of Brn on (Γ(k))n with connecting map

(R(k))n → (Γ(k))n, v = (v1, ..., vn) 7→ (s(k)v1
, ..., s(k)vn ).

Both actions restrict to the same action on Btri. Especially, one obtains
the orbit

Bdist := Brn ⋉ {±1}n(e) ⊂ Btri

of distinguished bases of HZ. The triple (HZ, L,Bdist) (up to isomor-
phism) is in many cases a canonical object, whereas the choice of a
distinguished basis e ∈ Bdist is a true choice. The question whether
Bdist = Btri or Bdist ⫋ Btri is usually a difficult question. The subgroup

GB
Z := {g ∈ GZ | g(Bdist) = Bdist}

is in many important cases equal to GZ. But if Bdist ⫋ Btri, then
GB

Z ⫋ GZ is possible.
The action of Brn ⋉ {±1}n on Btri is compatible with an action on

T uni
n (Z). The orbit of S is called

Sdist := Brn ⋉ {±1}n(S) ⊂ T uni
n (Z),

the matrices in it are called distinguished matrices. As {±1}n is the nor-
mal subgroup in the semidirect product Brn ⋉ {±1}n, one can first di-
vide out the action of {±1}n. One obtains actions of Brn on Btri/{±1}n
and on T uni

n (Z)/{±1}n. It will be interesting to determine the stabi-
lizers (Brn)e/{±1}n of e/{±1}n and (Brn)S/{±1}n of S/{±1}n.
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1.2. Results

Section 1.1 associated to each matrix S ∈ T uni
n (Z) an impressive list

of algebraic-combinatorial data. For a given matrix S there are many
natural questions which all aim at controlling parts of these data, for
example:

(i) What can one say about the Z-lattice (HZ, I
(0)) with the even

intersection form, e.g. its signature?
(ii) What can one say about the Z-lattice (HZ, I

(1)) with the odd
intersection form?

(iii) What are the eigenvalues and the Jordan block structure of
the monodromy M?

(iv) How big are the groups GZ, G
(0)
Z , G

(1)
Z and GM

Z ?
(v) How good can one understand the even monodromy group

Γ(0)? Is it determined by the pair (HZ, I
(0)) alone?

(vi) How good can one understand the odd monodromy group Γ(1)?
Is it determined by the pair (HZ, I

(1)) alone?
(vii) Is ∆(0) = R(0) or ∆(0) ⫋ R(0)? How explicitly can one control

these two sets? How explicitly can one control ∆(1)?
(viii) Is there an easy description of the set Bdist of distinguished

bases? Is Bdist = Btri or Bdist ⫋ Btri?
(ix) Is GB

Z = GZ or GB
Z ⫋ GZ?

In this thesis we concentrate on general tools and on the cases of
rank 2 and rank 3. The cases of rank 2 are already interesting, but
still very special. The cases of rank 3 are still in some sense small, but
they show already a big variety of different types and phenomena. We
consider them as sufficiently general to give an idea of the landscape
for arbitrary rank n ∈ N. The large number of pages of this thesis is
due to the systematic study of all cases of rank 3.

Here the singularity cases form just two cases (A3, A2A1), and also
the cases from generalized Cartan lattices form a subset which one can
roughly estimate as one third of all cases, not containing some of the
most interesting cases (H1,2, P2).

Examples 1.1. In the following examples, some matrices in
T uni
2 (Z) and T uni

3 (Z) are distinguished. They cover the most important
cases in T uni

2 (Z) and T uni
3 (Z). This will be made precise in Theorem

1.2, which gives results on the braid group action on T uni
3 (Z).

S(A2
1) S(A2) S(P1) S(x) for x ∈ Z S(A3

1)(
1 0
0 1

) (
1 −1
0 1

) (
1 −2
0 1

) (
1 x
0 1

) 1 0 0
0 1 0
0 0 1


4



S(P2) S(A2A1) S(A3) S(P1A1)1 −3 3
0 1 −3
0 0 1

 1 −1 0
0 1 0
0 0 1

 1 −1 0
0 1 −1
0 0 1

 1 −2 0
0 1 0
0 0 1


S(−l, 2,−l) S(x1, x2, x3)

S(Â2) S(H1,2) for l ≥ 3 for x1, x2, x3 ∈ Z1 −1 −1
0 1 −1
0 0 1

 1 −2 2
0 1 −2
0 0 1

 1 −l 2
0 1 −l
0 0 1

 1 x1 x2
0 1 x3
0 0 1


The notations A2

1 , A2, A
3
1, A2A1, A3 and Â2 are due the facts that

(HZ, I
(0)) is in these cases the corresponding root lattice respectively

in the case Â2 the affine root lattice of type Â2. The notations P1 and
P2 come from the quantum cohomology P1 and P2, so from algebraic
geometry. The notation H1,2 is related to a Hurwitz space, so it also
comes from algebraic geometry.

A large part of this thesis is devoted to answering the questions
above for the cases of rank 2 and 3. Though the chapters 2, 3 and the
sections 5.1, 6.1 and 7.1 offer also a lot of background material and
tools. In the following, we present some key results from the chapters
4 to 7.

The action of Br3 ⋉ {±1}3 on T uni
3 (Z) boils down to an action of

PSL2(Z) ⋉ Gsign on T uni
3 (Z) where Gsign ∼= {±1}2 comes from the

action of the sign group {±1}3. As the action of PSL2(Z) is partially
nonlinear, it is good to write it as a semidirect product PSL2(Z) ∼=
Gphi ⋊ ⟨γ⟩ where γ acts cyclically and linearly of order 3 and Gphi is a
free Coxeter group with 3 generators which act nonlinearly.

The sections 4.2–4.4 analyze the action on T uni
3 (Z) carefully. The

first result Theorem 4.6 builds on coarser classifications of Krüger
[Kr90, §12] and Cecotti-Vafa [CV93, Ch. 6.2]. The following the-
orem gives a part of Theorem 4.6.

Theorem 1.2. (Part of Theorem 4.6)
(a) The characteristic polynomial of S−1St and of the monodromy

M of (HZ, L, e) for S = S(x) ∈ T uni
3 (Z) with x ∈ Z3 is

pch,M = (t− 1)(t2 − (2− r(x))t+ 1),

where r : Z3 → Z, x 7→ x21 + x22 + x23 − x1x2x3.
The characteristic polynomial and r(x) are invariants of the Br3 ⋉
{±1}3 orbit of S(x). All eigenvalues of pch,M are unit roots if and only
if r(x) ∈ {0, 1, 2, 3, 4}.
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(b) For ρ ∈ Z − {4} the fiber r−1(ρ) ⊂ Z3 consists only of finitely
many Br3 ⋉ {±1}3 orbits. The following table gives the symbols in
Example 1.1 for the fibers over r ∈ {0, 1, 2, 3, 4}, so there are only
seven orbits plus one series of orbits over r ∈ {0, 1, 2, 3, 4}.
r(x) 0 1 2 3 4

A3
1,P2 A2A1 A3 − P1A1, Â2,H1,2, S(−l, 2,−l) with l ≥ 3

With the help of certain (beautiful) graphs, in Theorem 4.13 the
stabilizers (Br3)S/{±1}3 are calculated for certain representatives of all
Br3 ⋉ {±1}3-orbits in T uni

3 (Z). We work with 14 graphs and 24 sets of
representatives.

Lemma 5.8 gives informations on the characteristic polynomial and
the signature of I(0) in all rank 3 cases.

Lemma 1.3. (Lemma 5.8 (b))
Consider x ∈ Z3 with r = r(x) < 0 or > 4 or with S(x) one of the

cases in the table in Theorem 1.2. Then pch,M = (t − λ1)(t − λ2)Φ1

and sign I(0) are as follows (Φm = the cyclotomic polynomial of m-th
primitive unit roots).

r(x) pch,M sign I(0) S(x)
r < 0 λ1, λ2 > 0 (+−−) S(x)
r = 0 Φ3

1 (+ + +) S(A3
1)

r = 0 Φ3
1 (+−−) S(P2)

r = 1 Φ6Φ1 (+ + +) S(A2A1)
r = 2 Φ4Φ1 (+ + +) S(A3)
r = 4 Φ2

2Φ1 (+ + 0) S(P1A1)

r = 4 Φ2
2Φ1 (+ + 0) S(Â2)

r = 4 Φ2
2Φ1 (+ 0 0) S(H1,2)

r = 4 Φ2
2Φ1 (+ 0 −) S(−l, 2,−l) with l ≥ 3

r > 4 λ1, λ2 < 0 (+ +−) S(x)

Chapter 5 analyzes the groups GZ, G
(0)
Z , G

(1)
Z and GM

Z in all rank
3 cases. This leads into an intricate case discussion. The case H1,2

is different from all other cases as it is the only case where GZ is not
abelian and where the subgroup {±Mm |m ∈ Z} does not have finite
index in GZ. The automorphism Q ∈ GQ := Aut(HQ, L) is defined for
r(x) ̸= 0. It is id on ker(M − id) and − id on ker(M2− (2− r)M + id)
(Definition 5.9). It is only in a few cases in GZ (Theorem 5.11).

Theorem 1.4. (Part of the Theorems 5.11, 5.13, 5.14, 5.16, 5.18,
3.28)

(a) In the Br3 ⋉ {±1}3 orbit of S(H1,2)

GZ ∼= SL2(Z)× {±1}, M = Q,

6



and the subgroup {±Mm |m ∈ Z} = {± id,±Q} has infinite index in
GZ.

(b) In all other rank 3 cases the subgroup {±Mm |m ∈ Z} has finite
index in GZ and GZ is abelian. Then one of the five possibilities holds,

GZ = O3(Z), (1.1)

GZ = {id, Q} × {±(M root)m |m ∈ Z}, (1.2)

GZ = {±(M root)m |m ∈ Z}, (1.3)

GZ = {id, Q} × {±Mm |m ∈ Z}, (1.4)

GZ = {±Mm |m ∈ Z}, (1.5)

where M root is a root of ±M or of MQ. The following table gives the
index [GZ : {±Mm |m ∈ Z}] ∈ N and informations on M root.

matrix index M root

(1.1) S(A3
1) 24

(1.2) S(x, 0, 0) with x < 0 4 (M root)2 =MQ

(1.2) S(−l, 2,−l) with l even l2 − 4 (M root)l
2/2−2 =MQ

(1.2) S(4, 4, 4) and S(5, 5, 5) 6 (M root)3 = −M
(1.2) S(4, 4, 8) 4 (M root)2 =M
(1.3) S(P2) 3 (M root)3 =M

(1.3) S(Â2) and S(x, x, x) 3 (M root)3 = −M
with x ∈ Z− {−1, 0, ..., 5}

(1.3) S(−l, 2,−l) with l odd l2 − 4 (M root)l
2−4 = −M

(1.3) S(2y, 2y, 2y2) with x ∈ Z≥3 2 (M root)2 =M
(1.4) S(3, 3, 4) and S(x, x, 0) 2

with x ∈ Z≥2

(1.5) S(A3) and S(x) 1
in other Br3 ⋉ {±1}3 orbits

(c) GZ = GB
Z holds for all rank 3 cases except four cases, the Br3 ⋉

{±1}3 orbits of S(x) with

x ∈ {(3, 3, 4), (4, 4, 4), (5, 5, 5), (4, 4, 8)}.
In these four cases Q ∈ GZ −GB

Z.

Though in higher rank it is easier to construct matrices S with
GB

Z ⫋ GZ (Remarks 3.29).
Chapter 6 studies the even and odd monodromy groups and the sets

of even and of odd vanishing cycles in the rank 2 and rank 3 cases. The
following theorem catches some of the results on the even monodromy
group Γ(0) and the set ∆(0) of even vanishing cycles for the rank 3 cases.
The group O(0),∗ (Definition 6.4) is a certain subgroup of O(0) which

7



is determined only by (HZ, I
(0)) (so independently of B). Part (b)

discusses only the (in general difficult) problem whether ∆(0) = R(0) or
∆(0) ⫋ R(0). Theorem 6.14 contains many more informations on ∆(0).
Theorem 6.11 contains many more informations on Γ(0) than part (a)
below. Remarkably, Γ(0) ∼= GfCox,3 (the free Coxeter group with three
generators) holds not only for the Coxeter cases x ∈ Z3

≤−2 (which all
satisfy r(x) > 4), but also in all cases x ∈ Z3 with r(x) < 0 and in the
case P2.

Theorem 1.5. (a) (Part of Lemma 2.11 and Theorem 6.11)
(i) (Part of Lemma 2.11) The case An

1 , n ∈ N:

Γ(0) ∼= {±1}n, Γ(1) = {id}, ∆(0) = R(0) = ∆(1) = {±e1, ...,±en}.

(ii) The cases with r(x) > 0 and the cases A3, Â2, A2A1,P1A1: They
contain all reducible rank 3 cases except A3

1. Then Γ(0) is a Coxeter
group. If x ∈ Z3

≤−2 then Γ(0) ∼= GfCox,3.

(iii) The cases A3, Â2,H1,2: Then Γ(0) = O(0),∗.

(iv) The cases S(−l, 2,−l) with l ≥ 3: Then Γ(0)
1:l
⊂ O(0),∗.

(v) The cases P2 and x ∈ Z3 with r(x) < 0: Then Γ(0) ∼= GfCox,3.
(b) (Part of Theorem 6.14)

(i) ∆(0) = R(0) holds in the following cases: A3, Â2,P2, all S(x)
with x ∈ {0,−1,−2}, all reducible cases.

(ii) ∆(0) ⫋ R(0) holds in the following cases: H1,2, all S(−l, 2,−l)
with l ≥ 3, S(3, 3, 4), S(4, 4, 4), S(5, 5, 5), S(4, 4, 8).

(iii) In the cases of the other Br3 ⋉ {±1}3 orbits in T uni
3 (Z), we do

not know whether ∆(0) = R(0) or ∆(0) ⫋ R(0) holds.

Let En denote the n × n unit matrix. Given S ∈ T uni
n (Z) with

associated triple (HZ, L, e), consider the matrix S̃ := 2En−S ∈ T uni
n (Z)

with the associated triple (HZ, L̃, e). Then L̃, Ĩ
(0) and M̃ are far from

L, I(0) and M , but Ĩ(1) = −I(1), Γ̃(1) = Γ(1) and ∆̃(1) = ∆(1) (Remarks

4.17). For example the cases A3 and Â2 are related in this way, and
also the Coxeter case (−2,−2,−2) and the case H1,2 are related in this
way (in both cases after an action of Br3 ⋉ {±1}3).

This motivates in the rank 3 cases to consider the action of the
bigger group (Gphi ⋉ G̃sign) ⋊ ⟨γ⟩ on Z3 where G̃sign is generated by
Gsign and the total sign change δR : x 7→ −x. Lemma 4.18 gives
representatives for all orbits of this action on Z3 (respectively T uni

3 (Z)).
Still it is difficult to see for a given triple x ∈ Z3 in which orbit it is.

We had for some time the hope that the beautiful facts on the
even monodromy group Γ(0) for the Coxeter cases x ∈ Z3

≤0 would have
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analoga for the odd monodromy group Γ(1), but this does not hold in
general. In the case (−2,−2,−2) Γ(0) ∼= GfCox,3, but in the case H1,2

not, and in both cases together Γ(1) ̸∼= Gfree,3. On the other hand
Γ(1) ∼= Gfree,3 for x ∈ B1, where B1 ⊂ Z3 is as follows.

B1 := (Gphi ⋉ G̃sign)⋊ ⟨γ⟩({x ∈ Z3 − {(0, 0, 0)} | r(x) ≤ 0}),
B2 := {x ∈ Z3 − {(0, 0, 0)} |S(x) is reducible},
B3 := {(0, 0, 0)}.

Though the set B1 is difficult to understand (see the Examples 4.20).
It contains (3, 3, 3), so the orbit of P2. B2 and B3 consist of the triples
x with reducible S(x), so with two or three zero entries.

Consider x ∈ Z3 − B3. The radical Rad I(1) has rank 1, so the

quotient lattice HZ
(1)

:= HZ/Rad I
(1) has rank 2. Denote by Γ

(1)
s the

image of Γ(1) under the natural homomorphism Γ(1) → Aut(HZ
(1)
) and

by Γ
(1)
u the kernel of it. There is an exact sequence

{1} → Γ(1)
u → Γ(1) → Γ(1)

s → {1}.

Denote by ∆(1) ⊂ HZ
(1)

the image of ∆(1) in HZ
(1)
. Often ∆(1) is easier

to describe than ∆(1).
The long Theorems 6.18 and 6.21 offer detailed results about Γ(1)

and ∆(1) for the representatives in Lemma 4.18 of the (Gphi⋉G̃sign)⋊⟨γ⟩
orbits in Z3. The next theorem gives only a rough impression.

Theorem 1.6. Consider S = S(x) ∈ T uni
3 (Z) and the associated

triple (HZ, L, e).
(a) (Part of Theorem 6.18) Consider x ̸= (0, 0, 0).

Γ(1) ∼= Gfree,3 ⇐⇒ x ∈ B1,

Γ(1)
u = {id} ⇐⇒ x ∈ B1 ∪B2,

Γ(1)
u
∼= Z2 ⇐⇒ x ∈ Z3 − (B1 ∪B2 ∪B3),

Γ(1)
s
∼= one of the groups SL2(Z), Gfree,2, Gfree,2 × {±1}

for x ∈ Z3 − (B1 ∪B3).

(b) (Part of Theorem 6.21)

(i) In the cases of A3 and Â2 ∆(1) = HZ
(1),prim

, so ∆(1) is the set of

primitive vectors in HZ
(1)
, and ∆(1) is the full preimage in HZ of ∆(1).

(ii) Though in many other cases ∆(1) ̸⊂ HZ
(1),prim

, and ∆(1) is

not the full preimage in HZ of ∆(1), but each fiber has infinitely many
elements.
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(iii) But for x ∈ B1 the map ∆(1) → ∆(1) is a bijection. Especially

for P2 ∆(1) is easy to describe (Theorem 6.21 (h)), but ∆(1) not.

Chapter 7 studies the set Bdist = Brn ⋉ {±1}n(e) of distinguished
bases for a given triple (HZ, L, e). In general, it is difficult to charac-
terize this orbit in easy terms. We know that the inclusions in (3.3)
and (3.4) hold. We are interested when they are equalities.

Bdist ⊂ {v ∈ (∆(0))n | s(0)v1
...s(0)vn = −M}, (3.3)

Bdist ⊂ {v ∈ (∆(1))n | s(1)v1
...s(1)vn =M}. (3.4)

In general, this is a difficult question. In the rank 3 cases Theorem 7.3
and Theorem 7.7 give our results for (3.3) and (3.4).

Theorem 1.7. Consider S(x) ∈ T uni
3 (Z) and the associated triple

(HZ, L, e).
(a) (Part of Theorem 7.3)
(3.3) is an equality for all cases except for x in the Br3 ⋉ {±1}3

orbit of H1,2. There the right hand side of (3.3) consists of countably
many Br3 ⋉ {±1}3 orbits.

(b) (Part of Theorem 7.7)
(i) The inclusion in (3.4) is an equality ⇐⇒ x ∈ B1 ∪B2.

(ii) The cases A3, Â2, H1,2 and S(−l, 2, l) with l ≥ 3 are not in B1.
But there the inclusion in (3.4) becomes an equality if one adds on the
right hand side of (3.4) the condition

∑n
i=1 Zvi = HZ.

The last section 7.4 of chapter 7 builds on Theorem 4.16 which
determined for a representative S ∈ T uni

3 (Z) of each Br3 ⋉ {±1} orbit
in T uni

3 (Z) the stabilizer (Br3)S/{±1}3 . Theorem 7.11 determines in
each of these cases the stabilizer (Br3)e/{±1}3 . The graphs G1, ...,G14
in section 4.4 used the groups Gphi ⋊ ⟨γ⟩. At the end of section 7.4
different graphs, which use the group Br3, are introduced for the orbits
of matrices as well as the orbits of triangular bases. For the cases of

finite orbits and for the case Â2 the graphs are given explicitly. In
the case of A3 the orbit Sdist/{±1}3 has four elements and the orbit
Bdist/{±1}3 has 16 elements.
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CHAPTER 2

Bilinear lattices and induced structures

This chapter fixes the basic notions, a bilinear lattice and its as-
sociated data, namely a Seifert form, an even and an odd intersection
form, a monodromy, the roots, the triangular bases, an even and an
odd monodromy group, the even and the odd vanishing cycles. The
notion of a bilinear lattice and the even part of the associated data are
considered in [HK16]. The more special case of a unimodular bilinear
lattice and even and odd data are considered since long time in singu-
larity theory [AGV88][Eb01]. In this paper we are mainly interested
in unimodular bilinear lattices. Only this chapter 2 treats the general
case, partially following [HK16].

Notations 2.1. In these notations, R will be either the ring Z or
one of the fields Q, R or C. Later we will work mainly with Z. If R = Z
write R̃ := Q, else write R̃ := R.

In the whole paper, HR ⫌ {0} is a finitely generated free R-module,
so a Z-lattice if R = Z, and a finite dimensional R-vector space if R is
Q, R or C. Its rank will usually be called n ∈ N = {1, 2, 3, ...} (it is its
dimension if R is Q, R or C). If R1 and R2 are both in the list Z,Q,R,C
and R1 is left of R2 and HR1 is given, then HR2 := HR1 ⊗R1 R2.

In the whole paper, L : HR × HR → R will be a nondegenerate
R-bilinear form. If U ⊂ HR is an R-submodule, then U⊥ := {b ∈
HR |L(U, b) = 0} and ⊥U := {a ∈ HR |L(a, U) = 0}. In the case
R = Z, U⊥ and ⊥U are obviously primitive Z-submodules of HZ.

In Lemma 2.2 we will start with HR and a symmetric R-bilinear
form I [0] : HR × HR → R or a skew-symmetric R-bilinear form
I [1] : HR ×HR → R. With the square brackets in the index we distin-
guish them from the bilinear forms I(0) and I(1), which are induced in
Definition 2.3 by a given bilinear form L. Though later they will be
identified.

Suppose that M : HR → HR is an automorphism. Then
Ms,Mu, N : HR̃ → HR̃ denote the semisimple part, the unipotent
part and the nilpotent part of M with M = MsMu = MuMs and
N = logMu, e

N =Mu. Denote Hλ := ker(Ms − λ · id) : HC → HC.
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For m ∈ N denote by Φm ∈ Z[t] the cyclotomic polynomial whose
zeros are the primitive m-th unit roots.

The following lemma is elementary and classical. We skip the proof.

Lemma 2.2. Let R ∈ {Q,R,C} and let HR be an R-vector space of
dimension n ∈ N.

(a) Let I [0] : HR×HR → R be a symmetric bilinear form. Consider
a ∈ HR with I [0](a, a) ̸= 0. The map

s[0]a : HR → HR, s[0]a (b) := b− 2I [0](a, b)

I [0](a, a)
a,

is a reflection, so it is in Aut(Hr, I
[0]), it fixes the codimension 1

subspace {b ∈ HR | I [0](a, b) = 0} and it maps a to −a. Especially

(s
[0]
a )2 = id.
(b) Let I [1] : HR × HR → R be a skew-symmetric bilinear form.

Consider a ∈ HR. The map

s[1]a : HR → HR, s[1]a (b) := b− I [1](a, b)a,

is in Aut(HR, I
[1]) with

(s[1]a )−1(b) = b+ I [1](a, b)a.

It is id if a ∈ Rad(I [1]). If a /∈ Rad(I [1]) then it fixes the codimension 1

subspace {b ∈ HR | I [1](a, b) = 0}, and s[1]a − id is nilpotent with a single
2× 2 Jordan block. Then it is called a transvection.

(c) Fix k ∈ {0; 1} and consider I [k] as in (a) or (b). An element
g ∈ Aut(HR, I

[k]) and an element a ∈ HR with I [0](a, a) ̸= 0 if k = 0
satisfy

g s[k]a g−1 = s
[k]
g(a).

Definition 2.3. (a) [HK16, ch. 2] A bilinear lattice is a pair
(HZ, L) with HZ a Z-lattice of some rank n ∈ N together with a
nondegenerate bilinear form L : HZ × HZ → Z. If detL(et, e) = 1
for some Z-basis e = (e1, ..., en) of HZ then L and the pair (HZ, L)
are called unimodular. The bilinear form is called Seifert form in this
paper.

(b) A bilinear lattice induces several structures:

(i) [HK16, ch. 2] A symmetric bilinear form

I(0) = Lt + L : HZ ×HZ → Z, so I(0)(a, b) = L(b, a) + L(a, b),

which is called even intersection form.
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(ii) A skew-symmetric bilinear form

I(1) = Lt − L : HZ ×HZ → Z, so I(1)(a, b) = L(b, a)− L(a, b),
which is called odd intersection form.
(iii) [HK16, ch. 2] An automorphism M : HQ → HQ which is
defined by

L(Ma, b) = L(b, a) for a, b ∈ HQ,

which is called monodromy.
(iv) Six automorphism groups

O(k) := Aut(HZ, I
(k)) for k ∈ {0; 1},

GM
Z := Aut(HZ,M) := {g : HZ → HZ automorphism | gM =Mg},

G
(k)
Z := Aut(HZ, I

(0),M) = O(k) ∩GM
Z for k ∈ {0; 1},

GZ := Aut(HZ, L).

(v) [HK16, ch. 2] The set R(0) ⊂ HZ of roots,

R(0) := {a ∈ HZ |L(a, a) > 0;
L(a, b)

L(a, a)
,
L(b, a)

L(a, a)
∈ Z for all b ∈ HZ}.

(vi) [HK16, ch. 2] The set Btri of triangular bases,

Btri := {e = (e1, ..., en) ∈ (R(0))n |
n⊕

i=1

Zei = HZ, L(ei, ej) = 0 for i < j}.

(c) Let n ∈ N and R ∈ {Z,Q,R,C}. The sets T tri
n and T uni

n (R) of
upper triangular matrices are defined by

T uni
n (R) := {S = (sij) ∈Mn×n(R) | sii = 1, sij = 0 for i > j},

T tri
n := {S = (sij) ∈Mn×n(Z) | sii ∈ N, sij = 0 for i > j,

sij
sii
,
sji
sii
∈ Z for i ̸= j}.

Obviously T uni
n (Z) ⊂ T tri

n .

Remarks 2.4. (i) There are bilinear lattices with Btri = ∅. We are
interested only in bilinear lattices with Btri ̸= ∅.

(ii) A triangular basis e ∈ Btri is called in [HK16] a complete
exceptional sequence.

(iii) In the case Btri ̸= ∅, [HK16] considers the bilinear form Lt

(with Lt(a, b) = L(b, a)). Our choice L is motivated by singularity
theory. Also the names for L, I(0), I(1) and M , namely Seifert form,
even intersection form, odd intersection form and monodromy are mo-
tivated by singularity theory. The roots in R(0) are in [HK16] also
called pseudo-real roots.
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(iv) In this paper we are mainly interested in the cases of unimod-
ular bilinear lattices with Btri ̸= ∅. Singularity theory leads to such
cases.

(v) [HK16] is mainly interested in the cases of generalized Cartan
lattices. A generalized Cartan lattice is a triple (HZ, L, e) with (HZ, L)
a bilinear lattice and e ∈ Btri with L(ei, ej) ≤ 0 for i > j.

Remarks 2.5. (i) The classification of pairs (HR, L) and pairs
(HC, L) with L a nondegenerate bilinear form on HR respectively HC
is well understood. Such a pair decomposes into an orthogonal sum
of irreducible pairs. This and the classification of the irreducible pairs
over R is carried out in [Ne98] and, more explicitly, in [BH19].

In both references it is also proved that a pair (HR, L) of rank n ∈ N
up to isomorphism is uniquely determined by an unordered tuple of
n spectral pairs modulo 2Z, i.e. by n pairs ([α1], l1), ..., ([αn], ln) ∈
R/2Z× Z. Here α1, ..., αn ∈ R. The eigenvalues of the monodromy M
are the numbers e−2πiα1 , ..., e−2πiαn . The numbers l1, ..., ln determine
the Jordan block structure, see [BH19] for details.

The classification over C follows easily. Though it was carried out
before in [Go94-1][Go94-2], and it is formulated also in [CDG24,
Theorem 4.22].

(ii) A unimodular bilinear lattice (HZ, L) is called in [CDG24] a
Mukai pair. In [CDG24, 4.1–4.4] basic results of Gorodentsev for R =
Z or R = C are rewritten. The monodromy is there called canonical
operator. A triangular basis is there called exceptional.

(iii) The classification over Z, so of unimodular bilinear lattices
(HZ, L), is wide open for larger n. The case n = 3 is treated in great
detail in this thesis.

Lemma 2.6. (a) Let (HZ, L) be a bilinear lattice of rank n ∈ N.
(i) Let e = (e1, ..., en) be a Z-basis of HZ. Define S :=
Lt(et, e) = L(et, e)t ∈Mn×n(Z) ∩GLn(Q). Then

I(0)(et, e) = S + St, I(1)(et, e) = S − St, M(e) = eS−1St.

(ii)

I(0)(a, b) = L((M + id)a, b), Rad I(0) = ker((M + id) : HZ → HZ),

I(1)(a, b) = L((M − id)a, b), Rad I(1) = ker((M − id) : HZ → HZ).

(iii)

GZ = Aut(HZ, L, I
(0), I(1),M) ⊂

{
G

(0)
Z

G
(1)
Z

}
⊂ GM

Z .
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(iv) M ∈ GZ if (HZ, L) is unimodular or if Btri ̸= ∅.
(v) If a ∈ R(0) then

s(0)a := s[0]a and s(1)a := s
[1]

a/
√

L(a,a)
, so s(1)a (b) = b− I(1)(a, b)

L(a, a)
a,

are in O(0) respectively O(1).

(vi) [HK16, Lemma 2.1] If a, b ∈ R(0) then s
(0)
a (b) ∈ R(0) (but

not necessarily s
(1)
a (b) ∈ R(0)).

(vii) If a, b ∈ R(0) with L(a, b) = 0 then

L(s(1)a b, s(1)a b) = L(b, b), s(1)a (b) ∈ R(0), s
(1)

s
(1)
a (b)

= s(1)a s
(1)
b (s(1)a )−1.

(b) The map

{(HZ, L, e) |
(HZ, L) is a bilinear
lattice of rank n, e ∈ Btri }/isomorphism→ T tri

n

is a bijection and restricts to a bijection

{(HZ, L, e) |
(HZ, L) is a unimodular
bilinear lattice of rank n, e ∈ Btri }/isom.→ T uni

n (Z).

(c) [HK16, Lemma 3.10] Let (HZ, L) be a unimodular bilinear lat-
tice with Btri ̸= ∅. Then

R(0) = {a ∈ HZ |L(a, a) = 1}.

(d) Let (HZ, L) be a unimodular bilinear lattice with Btri ̸= ∅. De-

fine for a ∈ HZ s
(1)
a := s

[1]
a ∈ O(1). This definition is compatible with

the definition of s
(1)
a for a ∈ R(0) in part (a) (v). Furthermore now for

a, b ∈ HZ

s
(1)

s
(1)
a (b)

= s(1)a s
(1)
b (s(1)a )−1.

Proof: (a) (i) The defining equation for M can be written as
L((Me)t, e) = L(e, e)t, which impliesMe = eS−1St. The rest is trivial.

(ii) Trivial.
(iii) g ∈ GZ commutes with M because

L(gMa, gb) = L(Ma, b) = L(b, a) = L(gb, ga) = L(Mga, gb).

Of course it respects I(0) and I(1). Therefore GZ =
Aut(HZ, L, I

(0), I(1),M). The rest is trivial.
(iv) The calculation L(Ma,Mb) = L(Mb, a) = L(a, b) shows that

M respects L. It remains to show M ∈ Aut(HZ).
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This is clear if (HZ, L) is unimodular. Suppose Btri ̸= ∅ and (HZ, L)
not unimodular. Consider e ∈ Btri, S := L(et, e)t ∈ T tri

n and D :=
diag(s11, ..., snn) ∈Mn×n(Z). Then D−1S, SD−1 ∈ T uni

n (Z) and

S−1St = S−1DD−1St = (D−1S)−1(SD−1)t ∈ GLn(Z),

so M ∈ Aut(HZ).

(v) If a ∈ R(0) and b ∈ HZ then L(a,b)
L(a,a)

, L(b,a)
L(a,a)

∈ Z, so

2I(0)(a, b)

I(0)(a, a)
,
I(1)(a, b)

L(a, a)
∈ Z and s(0)a (b), s(1)a (b), (s(1)a )−1(b) ∈ HZ.

(vi) L(s
(0)
a (b), s

(0)
a (b)) = L(b, b) because s

(0)
a ∈ G(0)

Z and I(0) = Lt+L

(in general L(s
(1)
a (b), s

(1)
a (b)) ̸= L(b, b)). For c ∈ HZ

L(s
(0)
a (b), c)

L(s
(0)
a (b), s

(0)
a (b))

=
L(b− L(a,b)+L(b,a)

L(a,a)
a, c)

L(b, b)

=
L(b, c)

L(b, b)
− L(a, b) + L(b, a)

L(b, b)

L(a, c)

L(a, a)
∈ Z,

and analogously L(c,s
(0)
a (b))

L(s
(0)
a (b),s

(0)
a (b))

∈ Z.
(vii) I(1)(a, b) = L(b, a) because of L(a, b) = 0.

L(s(1)a (b), s(1)a (b)) = L(b− L(b, a)

L(a, a)
a, b− L(b, a)

L(a, a)
a)

= L(b, b)− L(b, a)

L(a, a)
L(b, a)− 0 + (−L(b, a)

L(a, a)
)2L(a, a)

= L(b, b).

For c ∈ HZ

L(s
(1)
a (b), c)

L(s
(1)
a (b), s

(1)
a (b))

=
L(b− L(b,a)

L(a,a)
a, c)

L(b, b)

=
L(b, c)

L(b, b)
− L(b, a)

L(b, b)

L(a, c)

L(a, a)
∈ Z,

so s
(1)
a (b) ∈ R(0). Finally

s(1)a s
(1)
b (s(1)a )−1 = s(1)a s

[1]

b/
√

L(b,b)
(s(1)a )−1

Lemma 2.2 (c)
= s

[1]

s
(1)
a (b/
√

L(b,b))
= s

[1]

s
(1)
a (b)/

√
L(b,b)

= s
[1]

s
(1)
a (b)/

√
L(s

(1)
a (b),s

(1)
a (b))

= s
(1)

s
(1)
a (b)

.
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(b) Starting with S ∈ T tri
n , one can define HZ := Mn×1(Z) with

standard Z-basis e = (e1, ..., en), and one can define L : HZ ×HZ → Z
by L(et, e) = St. Then e ∈ Btri.

If (HZ, L) is unimodular then ±1 = detL(et, e) =
L(e1, e1)...L(en, en) and L(ei, ei) ∈ N, so L(ei, ei) = 1 and
L(et, e)t ∈ T uni

n (Z). The rest is trivial.
(c) The inclusion R(0) ⊃ {a ∈ HZ |L(a, a) = 1} is obvious. Consider

e ∈ Btri. By part (b), the matrix S := L(et, e)t is in T uni
n (Z). Consider

a root a =
∑n

i=1 αiei ∈ R(0). Then

(L(a, e1), ..., L(a, en)) = (α1, ..., αn)S,

so gcd(L(a, e1), ..., L(a, en)) = gcd(α1, ..., αn).

But L(a, a) divides gcd(L(a, e1), ..., L(a, en)) because a is a root. There-
fore L(a, a) divides each αi. Thus L(a, a)

2 divides
∑n

i=1

∑n
j=1 αisijαj =

L(a, a), so L(a, a) = 1.
(d) By part (c) L(a, a) = 1 for a ∈ R(0). □

Up to now, the triangular shape of the matrix L(et, e)t ∈ T tri
n has

not been used. It leads to the result in Theorem 2.7. In algebraic
geometry and the theory of meromorphic differential equations, this
result is well known, it is a piece of Picard-Lefschetz theory. In the
frame of singularity theory, it is treated in [AGV88] and [Eb01]. An
elementary direct proof for a unimodular lattice is given in [BH20].
The case k = 0 is proved in [HK16].

Theorem 2.7. Let (HZ, L, e) be a bilinear lattice with a triangular
basis e. Let k ∈ {0, 1}. Then

s(k)e1
...s(k)en = (−1)k+1M.

Proof: The case k = 0 is a special case of Proposition 2.4 in
[HK16]. The case k = 1 can be proved by an easy modification of
Lemma 2.3 (5) and Proposition 2.4 in [HK16]. Both cases are proved
for a unimodular bilinear lattice in [BH20, Theorem 4.1]. □

In Picard-Lefschetz theory and singularity theory also the following
notions are standard.

Definition 2.8. Let (HZ, L, e) be a bilinear lattice with a trian-
gular basis e. It induces several structures:

(a) The even monodromy group Γ(0) := ⟨s(0)e1 , ..., s
(0)
en ⟩ ⊂ O(0).

(b) The odd monodromy group Γ(1) := ⟨s(1)e1 , ..., s
(1)
en ⟩ ⊂ O(1).

(c) The set ∆(0) := Γ(0){±e1, ...,±en} ⊂ HZ of even vanishing
cycles.

17



(d) The set ∆(1) := Γ(1){±e1, ...,±en} ⊂ HZ of odd vanishing
cycles.

Remarks 2.9. (i) The even vanishing cycles are roots, i.e. ∆(0) ⊂
R(0), because of Lemma 2.6 (a) (vi). In general ∆(1) ̸⊂ R(0). The name
vanishing cycles for the elements of ∆(0) and ∆(1) and the name mon-
odromy group stem from singularity theory. In [HK16] the elements of
∆(0) are called real roots. Γ(1) and ∆(1) are not considered in [HK16].

(ii) A matrix S ∈ T tri
n or T uni

n (Z) determines by Lemma 2.6 (b) a
bilinear lattice (HZ, L, e) with a triangular basis (up to isomorphism).
This leads to the program to determine for a given matrix S the data

I(0), I(1), GZ, G
(0)
Z , G

(1)
Z , GM

Z ,Γ
(0),Γ(1),∆(0) and ∆(1). One should start

with relevant invariants like sign I(0), Rad I(0), Rad I(1), the character-
istic polynomial and the Jordan normal form of M .

(iii) The odd monodromy group Γ(1) arises naturally in many cases
where (HZ, L) is a unimodular bilinear lattice, for example in cases
from isolated hypersurface singularities. But it is not clear whether
it is natural in cases where (HZ, L) is a bilinear lattice which is not
unimodular. Theorem 2.7 is positive evidence. But the following is
negative evidence. The monodromy group

Γ(1) = ⟨s[1]
ei/
√

L(ei,ei)
| i ∈ {1, ..., n}⟩

contains because of Lemma 2.2 (c) all transvections s
[1]

g(ei)/
√

L(ei,ei)
for

g ∈ Γ(1). Only in the unimodular cases these coincide with the transvec-

tions s
[1]
a for a ∈ ∆(1). We will only consider the unimodular cases.

(iv) We will work on this program rather systematically in the chap-
ters 5 and 6 for S ∈ T uni

2 (Z) and S ∈ T uni
3 (Z).

Definition 2.10 and Lemma 2.11 discuss the case when a unimodular
bilinear lattice (HZ, L, e) with triangular basis is reducible. Then also
the monodromy groups, the set of roots and the sets of vanishing cycles
split. But beware that here reducibility involves not only (HZ, L), but
also e.

Definition 2.10. (a) Let (HZ, L, e) be a unimodular bilinear lattice
of rank n ∈ N with a triangular basis e. Let {1, ..., n} = I1 ∪̇ I2 be a
decomposition into disjoint subsets such that

L(ei, ej) = L(ej, ei) = 0 for i ∈ I1, j ∈ I2.

Then the triple (HZ, L, e) is called reducible. If such a decomposition
does not exist the triple is called irreducible.
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(b) A matrix S ∈ T uni
n (Z) is called reducible if the triple (HZ, L, e)

(which is unique up to isomorphism) is reducible, where (HZ, L) is a
unimodular bilinear lattice and e is a triangular basis with S = L(et, e)t.

Lemma 2.11. Keep the situation of Definition 2.10. For l ∈ {1, 2}
let σl : {1, 2, ..., |Il|} → Il be the unique bijection with σl(i) < σl(j) for
i < j. Define

el := (e1,l, e2,l, ..., e|Il|,l) := (eσl(1), eσl(2), ..., eσl(|Il|),

HZ,l :=

|Il|⊕
i=1

Z · ei,l, Ll := L|HZ,l .

Then (HZ,l, Ll, el) is a unimodular bilinear lattice with triangular basis.
The decomposition HZ = HZ,1 ⊕ HZ,2 is left and right L-orthogonal.

Denote by Γ
(0)
l , Γ

(1)
l , ∆

(0)
l , ∆

(1)
l and R

(0)
l the monodromy groups and

sets of vanishing cycles and roots of (HZ,l, Ll, el). Denote by M̃l the
automorphism of HZ which extends the monodromy Ml on HZ,l by the
identity on HZ,m, where {l,m} = {1, 2}. Then

Γ(k) = Γ
(k)
1 × Γ

(k)
2 ,

R(0) = R
(0)
1 ∪̇ R

(0)
2 ,

∆(k) = ∆
(k)
1 ∪̇ ∆

(k)
2 ,

M = M̃1M̃2 = M̃2M̃1.

The proof is trivial. Because of this lemma, we will study the
monodromy groups and the sets of vanishing cycles only for irreducible
triples. In the Examples 1.1 this excludes the cases S(A2

1), S(A
3
1),

S(A2A1), S(P1A1) and all cases S(x1, x2, x3) where two of the three
numbers x1, x2, x3 are zero.

The following lemma treats the cases S(An
1 ) := En for n ∈ N. It is

a trivial consequence of the special case S(A1) = (1) ∈ M1×1(Z) and
Lemma 2.11, but worth to be stated.

Lemma 2.12. The case An
1 for any n ∈ N:

HZ =
n⊕

i=1

Z · ei, S = S(An
1 ) := En, I(0) = 2L, I(1) = 0,
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the reflections s
(0)
ei with s

(0)
ei (ej) =

{
ej if j ̸= i,
−ei if j = i,

}
commute, the

transvections s
(1)
ei are s

(1)
ei = id,

Γ(0) = {
n∏

i=1

(s(0)ei
)li | (l1, ..., ln) ∈ {0; 1}n} ∼= {±1}n,

Γ(1) = {id},
∆(0) = R(0) = {±e1, ...,±en} = ∆(1).
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CHAPTER 3

Braid group actions

In the sections 3.2–3.4 a unimodular bilinear lattice (HZ, L) of some
rank n ≥ 2 is considered. The braid group Brn is introduced in section
3.1. It acts on several sets of n-tuples and of matrices associated to
(HZ, L).

Section 3.1 starts with the Hurwitz action onGn whereG is a group.
Results of Artin, Birman-Hilden and Igusa-Schiffler for G a free group,
a free Coxeter group or any Coxeter group are cited and applied. This
is relevant as many of the monodromy groups Γ(1) and Γ(0) of rank 2
or rank 3 unimodular bilinear lattices with triangular bases are such
groups.

It turns out that the Hurwitz action of Brn on (O(k))n lifts to an
action of a semidirect product Brn ⋉ {±1}n on sets of certain n-tuples
of cycles in HZ. This is discussed in section 3.2.

Most important is the set Btri of triangular bases of (HZ, L) (if this
set is not empty) and the subset Bdist = Brn ⋉ {±1}n(e) of a chosen
triangular basis e. Section 3.3 poses questions on the characterization
of such a set Bdist of distinguished bases which will guide our work in
chapter 7. It also offers several examples with quite different properties.

Section 3.4 connects the group Brn ⋉ {±1}n via its action on the
orbit of a triangular basis e with the group GZ. There is a group an-
tihomomorphism Z : (Brn ⋉ {±1}n)S → GZ, where (Brn ⋉ {±1}n)S
denotes the stabilizer of a matrix S ∈ T uni

n (Z). In this way certain
braids induce automorphisms in GZ, and in many cases these automor-
phisms generate GZ, i.e. Z is surjective. Theorem 3.26 (b) states the
well known fact Z((δ1−kσroot)n) = (−1)k+1M for k ∈ {0; 1}. Theorem
3.26 (c) gives a condition when Z(δ1−kσroot) is in GZ and thus an n-th
root of (−1)k+1M . Theorem 3.28 states that for almost all cases with
rank ≤ 3 the map Z is surjective. The exceptions are only four cases.

3.1. The braid group and the Hurwitz action, some classical
results

Choose n ∈ Z≥2. The braid group Brn of braids with n strings was
introduced by Artin [Ar25]. Here we take a purely algebraic point
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of view. Artin [Ar25, Satz 1] showed that Brn is generated by n −
1 elementary braids σ1, ..., σn−1 and that all relations come from the
relations

σiσj = σjσi for i, j ∈ {1, ..., n− 1} with |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1 for i ∈ {1, ..., n− 2}.
He also showed [Ar47, Theorem 19] that the center of Brn is

Center(Brn) = ⟨σmon⟩,
where

σroot := σn−1σn−2...σ2σ1, σmon := (σroot)n.

An important action of Brn is the Hurwitz action on the n-th power
Gn for any group G. The braid group Brn acts via

σi(g1, ..., gn) := (g1, ..., gi−1, gigi+1g
−1
i , gi, gi+2, ..., gn),

σ−1
i (g1, ..., gn) := (g1, ..., gi−1, gi+1, g

−1
i+1gigi+1, gi+2, ..., gn).

The fibers of the map

πn : Gn → G, g = (g1, ..., gn) 7→ g1...gn,

are invariant under this action,

πn(g) = πn(σig) = πn(σ
−1
i g).

We will study this action for n = 3 in the cases of the monodromy
groups for the rank 3 unimodular bilinear lattices. The following results
in Theorem 3.2 of Artin [Ar25] and Birman-Hilden [BH73] will be
relevant.

Definition 3.1. (a) LetGfree,n be the free group with n generators
x1, ..., xn. Let

∆(Gfree,n) :=
n⋃

i=1

{wxiw−1 |w ∈ Gfree,n}

be the set of elements conjugate to x1, ..., xn. Obviously
Brn((x1, ..., xn)) ⊂ ∆(Gfree,n)n.

(b) Let GfCox,n be the free Coxeter group with n generators
x1, ..., xn, so all relations are generated by the relations x21 = ... =
x2n = e. Let

∆(GfCox,n) :=
n⋃

i=1

{wxiw−1 |w ∈ GfCox,n}

be the set of elements conjugate to x1, ..., xn. Obviously
Brn((x1, ..., xn)) ⊂ ∆(GfCox,n)n.
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Theorem 3.2. (a) [Ar25, Satz 7 and Satz 9] Brn acts simply tran-
sitively on the set of tuples

{(w1, ..., wn) ∈ ∆(Gfree,n)n |w1...wn = x1...xn}.

(b) [BH73, Theorem 7] Brn acts simply transitively on the set of
tuples

{(w1, ..., wn) ∈ ∆(GfCox,n)n |w1...wn = x1...xn}.

Remarks 3.3. (i) Both results were reproved by Krüger in [Kr90,
Satz 7.6].

(ii) Theorem 1.31 in [KT08] gives a weaker version of Artin’s re-
sult Theorem 3.2 (a). Theorem 1.31 in [KT08] is equivalent to the
statement that Brn acts simply transitively on the set of tuples

{(w1, ..., wn) ∈ ∆(Gfree,n)n |w1...wn = x1...xn,

w1, ..., wn generate Gfree,n, a permutation

σ ∈ Sn exists with wi conjugate to xσ(i)}.

(iii) The formulation of Theorem 1.31 in [KT08] is different. There
a group automorphism φ of Gfree,n is called a braid automorphism if
φ(x1...xn) = x1...xn and if a permutation σ ∈ Sn with φ(xi) conjugate

to xσ(i) exists. The group of all braid automorphisms is called B̃rn.
Theorem 1.31 in [KT08] states that the map

Z̃ : {σ±1
1 , ..., σ±1

n−1} → B̃rn with

(Z̃(σi)(x1), ..., Z̃(σi)(xn)) = σ−1
i (x1, ..., xn),

(Z̃(σ−1
i )(x1), ..., Z̃(σ

−1
i )(xn)) = σi(x1, ..., xn),

extends to a group isomorphism Brn → B̃rn.
(iv) In order to understand the equivalence of the statements in (ii)

and (iii), it is crucial to see that the extension Z̃ : Brn → B̃rn which is
defined by

(Z̃(β)(x1), ..., Z̃(β)(xn)) = β−1(x1, ..., xn) for β ∈ Brn

is a group homomorphism. This follows from the equations

Z̃(βσi) = Z̃(β)Z̃(σi) and Z̃(βσ−1
i ) = Z̃(β)Z̃(σ−1

i )
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for β ∈ Brn and i ∈ {1, ....n− 1}. The first equation holds because of

(Z̃(βσi)(x1), ..., Z̃(βσi)(xn))

= (βσi)
−1(x1, ..., xn)

= σ−1
i (β−1(x1, ..., xn))

= σ−1
i (Z̃(β)(x1), ..., Z̃(β)(xn))

= (Z̃(β)(x1), ..., Z̃(β)(xi−1), Z̃(β)(xi+1),

(Z̃(β)(xi+1))
−1Z̃(β)(xi)Z̃(β)(xi+1), Z̃(β)(xi+2), ..., Z̃(β)(xn))

= (Z̃(β)(x1), ..., Z̃(β)(xi−1), Z̃(β)(xi+1),

Z̃(β)(x−1
i+1xixi+1), Z̃(β)(xi+2), ..., Z̃(β)(xn))

= (Z̃(β)Z̃(σi)(x1), ..., Z̃(β)Z̃(σi)(xn)).

The second equation is proved by a similar calculation.

Example 3.4. Theorem 3.2 will be applied in the following situa-
tion, which in fact arises quite often.

Consider a unimodular bilinear lattice (HZ, L, e) of rank n ≥ 2 with
triangular basis e such that for some k ∈ {0, 1} the following holds:

Γ(k) =

{
GfCox,n with generators s

(0)
e1 , ..., s

(0)
en if k = 0,

Gfree,n with generators s
(1)
e1 , ..., s

(1)
en if k = 1.

Then in the notation of Definition 3.1

∆(GfCox,n) = {s(0)v | v ∈ ∆(0)} if k = 0,

∆(Gfree,n) = {s(1)v | v ∈ ∆(1)} if k = 1.

By Theorem 3.2, two statements hold:

(1) The set

{(s(k)v1
, ..., s(k)vn ) | v1, ..., vn ∈ ∆(k), s(k)v1

...s(k)vn = (−1)k+1M}
is a single orbit under the Hurwitz action of Brn.

(2) The stabilizer of any such tuple (s
(k)
v1 , ..., s

(k)
vn ) under the Hur-

witz action of Brn is {id}.

Theorem 3.2 (b) concerns a free Coxeter group with n generators.
The transitivity of the action generalizes to arbitrary Coxeter groups
and can be applied to generalize the statement (1) in Example 3.4, as
is explained in the following.

Definition 3.5. (Classical, e.g [Hu90, 5.1]) A Coxeter system
(W,Sgen) consists of a groupW and a finite set Sgen = {s1, ..., sn} ⊂ W
for some n ∈ N of generators of the group such that there are generating
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relations as follows. There is a subset I ⊂ {(i, j) ∈ {1, ..., n}2 | i < j}
and a map a : I → Z≥2 such that the generating relations are

s21 = ... = s2n = 1, 1 = (sisj)
a(i,j) for (i, j) ∈ I.

The group W is then called a Coxeter group.

The following theorem was proved by Deligne [De74] for the ADE
Weyl groups and in general by Igusa and Schiffler [IS10]. A short proof
was given by Baumeister, Dyer, Stump and Wegener [BDSW14].

Theorem 3.6. [De74][IS10][BDSW14] Let (W,Sgen) with Sgen =
{s1, ..., sn} be a Coxeter system with n ≥ 2. Define ∆(W,Sgen) :=⋃n

i=1{wsiw−1 |w ∈ W}. The set

{(w1, ..., wn) ∈ ∆(W,Sgen)n |w1...wn = s1...sn}
is a single orbit under the Hurwitz action of Brn.

Part (a) of the following theorem is classical if Sij ∈ {0,−1,−2} for
i < j and due to Vinberg [Vi71] in the general case.

Theorem 3.7. Let (HZ, L) be a unimodular bilinear lattice of rank
n ≥ 2 and let e be a triangular basis such that the matrix S = L(et, e)t ∈
T uni
n (Z) satisfies Sij ≤ 0 for i < j.
(a) (Classical for Sij ∈ {0,−1,−2}, [Vi71, Proposition 6, Theorem

1, Theorem 2, Proposition 17] for Sij ≤ 0) The pair (Γ(0), {s(0)e1 , ..., s
(0)
en })

is a Coxeter system with

I = {(i, j) ∈ {1, ..., n}2 | i < j, Sij ∈ {0,−1}} and

a(i, j) =

{
2 if Sij = 0,
3 if Sij = −1.

(b) The set

{(g1, ..., gn) ∈
(
{s(0)v | v ∈ ∆(0)}

)n | g1...gn = −M}
is a single orbit under the Hurwitz action of Brn.

Proof of part (b): Observe

∆(Γ(0), {s(0)e1
, ..., s(0)en }) = {s

(0)
v | v ∈ ∆(0)}.

Apply Theorem 3.6. □

Remarks 3.8. (i) The transitivity result in part (b) holds also for a
bilinear lattice (HZ, L) which is not necessarily unimodular, if it comes
equipped with a triangular basis e with L(ei, ej) ≤ 0 for i > j. This
is the case of a generalized Cartan lattice (Remark 2.4 (v)). This is
crucial in [HK16].
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(ii) Especially in the case of a unimodular bilinear lattice (HZ, L, e)
with triangular basis e and matrix S = L(et, e)t ∈ T uni

n (Z) with Sij ≤
−2 for all i < j we have Γ(0) = GfCox,n with generators s

(0)
e1 , ..., s

(0)
en .

(iii) Theorem 6.11 (g) gives in the case n = 3 Γ(0) = GfCox,3 with

generators s
(0)
e1 , s

(0)
e2 , s

(0)
e3 also in the following cases: if Sij ≥ 3 for i < j

and if additionally

2S12 ≤ S13S23, 2S13 ≤ S12S23, 2S23 ≤ S12S13.

(iv) Theorem 6.18 (g) gives in the situation of part (iii) also Γ(1) =

Gfree,3 with generators s
(1)
e1 , s

(1)
e2 , s

(1)
e3 .

(v) Though in the situation of part (ii) there are cases with Γ(1) =
Gfree,n, and there are cases with Γ(1) ̸= Gfree,n. The odd cases are
more complicated than the even cases. For the cases with n = 3 see
the Remarks 4.17, Lemma 4.18 and Theorem 6.18.

3.2. Braid group action on tuples of cycles

Consider a unimodular bilinear lattice (HZ, L) of some rank n ≥ 2
and the groups O(k) = Aut(HZ, I

(k)) for k ∈ {0; 1}. Recall that here
the set of roots R(0) is

R(0) = {δ ∈ HZ |L(δ, δ) = 1}.
In order to treat the even case k = 0 and the odd case k = 1 uniformly,
we define

R(1) := HZ.

The Hurwitz action of Brn on (O(k))n restricts because of

s(k)a s
(k)
b (s(k)a )−1 = s

(k)

s
(k)
a (b)

for a, b ∈ R(k) (3.1)

(Lemma 2.2 (c)) to an action on the subset ({s(k)v | v ∈ R(k)})n.
It turns out that this action has a natural lift to an action of a

certain semidirect product Brn ⋉ {±1}n on the set (R(k))n. Here the

sets (R(k))n and ({s(k)v | v ∈ R(k)})n are related by the map

π(k)
n : (R(k))n → ({s(k)v | v ∈ R(k)})n ⊂ (O(k))n,

v = (v1, ..., vn) 7→ (s(k)v1
, ..., s(k)vn ).

Recall also the map

πn : (O(k))n → O(k), (g1, ..., gn) 7→ g1...gn

which was defined for an arbitrary group before Definition 3.1.
Furthermore it turns out that both actions, for k = 0 and for k = 1,

restrict to the same action on the set Btri of triangular bases if this set
is not empty. This is the action in which we are interested most. In the
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case of a unimodular bilinear lattice from singularity theory, it is well
known [Eb01, 5.7] [AGV88, §1.9] and has been studied by A’Campo,
Brieskorn, Ebeling, Gabrielov, Gusein-Zade, Krüger and others. In fact
it works also for bilinear lattices with Btri ̸= ∅ which are not necessarily
unimodular, see Remark 3.14.

Finally, the actions induce actions of Brn⋉{±1}n on several spaces
of matrices. The purpose of this section is to fix all these well known
actions.

Lemma 3.9 presents the semidirect product Brn ⋉ {±1}n. Lemma
3.10 gives its action on (R(k))n. Lemma 3.11 gives its action on Btri if
this set is not empty.

Lemma 3.9. Fix n ∈ Z≥2.
(a) The multiplicative group {±1}n is called sign group. It is gen-

erated by the elements δj = ((−1)δij)i=1,...,n ∈ {±1}n (here δij is the
Kronecker symbol) for j ∈ {1, ..., n}.

(b) The following relations define a semidirect product Brn⋉{±1}n
of Brn and {±1}n with {±1}n as normal subgroup,

σjδiσ
−1
j = δi for i ∈ {1, ..., n} − {j, j + 1},

σjδjσ
−1
j = δj+1, σjδj+1σ

−1
j = δj.

In the following Brn ⋉ {±1}n always means this semidirect product.

Proof: Part (a) is a notation. Part (b) requires a proof. We have
the exact sequence

{1} → Brpuren → Brn → Sn → {1}
where Brpuren ⊂ Brn is the normal subgroup of pure braids (and σi ∈ Brn
maps to the transposition (i i+ 1) ∈ Sn). The natural action of Sn on
{±1}n,

Sn ∋ α : ε = (ε1, ..., εn) 7→ (εα−1(1), ..., εα−1(n)) =: α.ε

lifts to an action of Brn on {±1}n, σ : ε 7→ σ.ε. This action can be used
to define a semidirect product of Brn and {±1}n by σεσ−1 := σ.ε. It
is the semidirect product in part (b). □

Lemma 3.10. Let (HZ, L) be a unimodular bilinear lattice of rank
n ≥ 2. Fix k ∈ {0, 1}.

(a) The following formulas define an action of the semidirect prod-
uct Brn ⋉ {±1}n from Definition 3.9 (b) on the set (R(k))n,

σj(v) = (v1, ..., vj−1, s
(k)
vj
(vj+1), vj, vj+2, ..., vn),

σ−1
j (v) = (v1, ..., vj−1, vj+1, (s

(k)
vj+1

)−1(vj), vj+2, ..., vn),

δj(v) = (v1, ..., vj−1,−vj, vj+1, ..., vn),

27



for v = (v1, ..., vn) ∈ (R(k))n.

(b) The map π
(k)
n : (R(k))n → (O(k))n is compatible with the action

of Brn⋉{±1}n on (R(k))n from part (a) and the Hurwitz action of Brn
on (O(k))n, so the diagram

(R(k))n
σj−−−→ (R(k))n

π
(k)
n

y yπ
(k)
n

(O(k))n
σj−−−→ (O(k))n

commutes. Here the sign group {±1}n acts trivially on (O(k))n. Espe-
cially, each orbit in (R(k))n is contained in one fiber of the projection

πn ◦ π(k)
n : (R(k))n → O(k).

Proof: (a) We denote the actions in part (a) by σ
(k)
j , (σ−1

j )(k) and

δ
(k)
j (of course δ

(0)
j = δ

(1)
j ). The identities

σ
(k)
j (σ−1

j )(k) = (σ−1
j )(k)σ

(k)
j = id for j ∈ {1, ..., n− 1}

σ
(k)
i σ

(k)
j = σ

(k)
j σ

(k)
i for |i− j| ≥ 2,

σ
(k)
j δ

(k)
i (σ−1

j )(k) = δ
(i)
i for i ∈ {1, ..., n} − {j, j + 1},

σ
(k)
j δ

(k)
j (σ−1

j )(k) = δ
(k)
j+1 and

σ
(k)
j δ

(k)
j+1(σ

−1
j )(k) = δ

(k)
j for j ∈ {1, ..., n− 1}

are obvious or easy to see. The identities

σ
(k)
i σ

(k)
i+1σ

(k)
i = σ

(k)
i+1σ

(k)
i σ

(k)
i+1 for i ∈ {1, ..., n− 2}

are proved by the following calculation with v ∈ (R(k))n,

σ
(k)
i σ

(k)
i+1σ

(k)
i (v)

= σ
(k)
i σ

(k)
i+1(..., vi−1, s

(k)
vi
(vi+1), vi, vi+2, vi+3...)

= σ
(k)
i (..., vi−1, s

(k)
vi
(vi+1), s

(k)
vi
(vi+2), vi, vi+3, ...)

= (..., vi−1, s
(k)

s
(k)
vi

(vi+1)
(s(k)vi

(vi+2)), s
(k)
vi
(vi+1), vi, vi+3, ...)

(3.1)
= (..., vi−1, s

(k)
vi
s(k)vi+1

(s(k)vi
)−1(s(k)vi

(vi+2)), s
(k)
vi
(vi+1), vi, vi+3, ...)

= (..., vi−1, s
(k)
vi
(s(k)vi+1

(vi+2)), s
(k)
vi
(vi+1), vi, vi+3, ...)

= σ
(k)
i+1(..., vi−1, s

(k)
vi
(s(k)vi+1

(vi+2)), vi, vi+1, vi+3, ...)

= σ
(k)
i+1σ

(k)
i (..., vi−1, vi, s

(k)
vi+1

(vi+2), vi+1, vi+3, ...)

= σ
(k)
i+1σ

(k)
i σ

(k)
i+1(v).
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The maps σ
(k)
j and δ

(k)
i satisfy all relations between the generators σj

and δi of the group Brn ⋉ {±1}n. Therefore the formulas in part (a)
define an action of this group on the set (R(k))n.

(b) The actions are compatible because of (3.1). The sign group

acts trivially on (O(k))n because s
(k)
v = s

(k)
−v for v ∈ R(k). Each orbit of

the Hurwitz action on (O(k))n is contained in one fiber of the map πn,
as was remarked in section 3.1. □

Lemma 3.11. Let (HZ, L) be a unimodular bilinear lattice with
nonempty set Btri of triangular bases. The actions in Lemma 3.10
of Brn ⋉ {±1}n on (R(0))n and on (R(1))n both restrict to the same
action on Btri. This action can also be written as follows,

σj(v) = (v1, ..., vj−1, vj+1 − L(vj+1, vj)vj, vj, vj+2, ..., vn),

σ−1
j (v) = (v1, ..., vj−1, vj+1, vj − L(vj+1, vj)vj+1, vj+2, ..., vn),

δj(v) = (v1, ..., vj−1,−vj, vj+1, ..., vn),

for v = (v1, ..., vn) ∈ Btri.

Proof: v ∈ Btri implies L(vj, vj+1) = 0 and 2L(vj, vj) = 2 =
I(0)(vj, vj). Recall I

(0) = L+ Lt and I(1) = Lt − L. Therefore

s(k)vj
(vj+1) = vj+1 − I(k)(vj, vj+1)vj = vj+1 − L(vj+1, vj)vj,

(s(k)vj+1
)−1(vj) = vj − (−1)kI(k)(vj+1, vj)vj+1 = vj − L(vj+1, vj)vj+1.

So σj(v) and σ−1
j (v) are given by the formulas in Lemma 3.11. It

remains to see that the images are again in Btri. They are in (R(0))n

because of the even case k = 0. They form Z-bases of HZ because v is
a Z-basis of HZ. They are triangular bases because

L(σj(v)j, σj(v)j+1) = L(vj+1 − L(vj+1, vj)vj, vj) = 0,

L(σ−1
j (v)j, σ

−1
j (v)j+1) = L(vj+1, vj − L(vj+1, vj)vj+1) = 0.

Of course δj(v) ∈ Btri. □

Definition 3.12. Fix n ∈ N and R ∈ {Z,Q,R,C}.
(a) Recall the definition of the set T uni

n (R) of upper triangular n×n
matrices with entries in R and 1’s on the diagonal in Definition 2.3
(c). Additionally we define the sets of symmetric and skewsymmetric
matrices

T (0)
n (R) := {A ∈Mn×n(R) |At = A,Aii = 2},
T (1)
n (R) := {A ∈Mn×n(R) |At = −A}.

29



(b) For a ∈ Z define the n× n matrix

Cn,j(a) =



1
. . .

a 1
1 0

. . .
1


which differs from the unit matrix only in the positions (j, j), (j, j +
1), (j + 1, j), (j + 1, j + 1). Its inverse is

C−1
n,j(a) =



1
. . .

0 1
1 −a

. . .
1


with −a at the position (j + 1, j + 1).

Lemma 3.13. Fix n ∈ Z≥2 and R ∈ {Z,Q,R,C}.
(a) The following formulas define an action of the semidirect prod-

uct Brn ⋉ {±1}n on each of the sets of matrices T
(0)
n (R), T

(1)
n (R) and

T uni
n (R),

σj(A) = Cn,j(−Aj,j+1) · A · Cn,j(−Aj,j+1) for j ∈ {1, ..., n− 1},
σ−1
j (A) = C−1

n,j(Aj,j+1) · A · C−1
n,j(Aj,j+1) for j ∈ {1, ..., n− 1},

δj(A) = diag(((−1)δij)i=1,...,n) · A · diag(((−1)δij)i=1,...,n)

for j ∈ {1, ..., n}.

(b) Let (HZ, L) be a unimodular bilinear lattice of rank n.
(i) Fix k ∈ {0; 1}. The map

(R(k))n → T (k)
n (Z), v 7→ I(k)(vt, v),

is compatible with the actions of Brn⋉{±1}n on (R(k))n and on T
(k)
n (Z).

(ii) Suppose that Btri is not empty. The map

Btri → T uni
n (Z), v 7→ L(vt, v)t,

is compatible with the actions of Brn ⋉ {±1}n on Btri and on T uni
n (Z).

Proof: (a) For A ∈ T (k)
n (Z) there is a unique matrix S ∈ T uni

n (Z)
with A = S+(−1)kSt. Consider a unimodular bilinear lattice (HZ, L, e)
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with a triangular basis e with matrix S = L(et, e)t. Then

σj(e) = (..., ej−1, ej+1 − Sj,j+1ej, ej, ej+2, ...)

= e · Cn,j(−Sj,j+1),

σ−1
j (e) = (..., ej−1, ej+1, ej − Sj,j+1ej+1, ej+2, ...)

= e · C−1
n,j(Sj,j+1),

δj(e) = (..., ei−1,−ei, ei+1, ...)

= e · diag(((−1)δij)i=1,...,n).

Observe that Cn,j(a) for a ∈ Z is symmetric. Therefore for k ∈ {0; 1}

I(k)(σj(e)
t, σj(e)) = Cn,j(−Sj,j+1) · I(k)(et, e) · Cn,j(−Sj,j+1),

I(k)(σ−1
j (e)t, σ−1

j (e)) = C−1
n,j(Sj,j+1) · I(k)(et, e) · C−1

n,j(Sj,j+1),

similarly for L instead of I(k), and also similarly for the action of δj.
This shows part (a) for R = Z. Changing the set of scalars does not
change the matrix identities which say that the group Brn ⋉ {±1}n
acts.

(b) This follows from the proof of part (a). □

Remarks 3.14. Let (HZ, L) be a bilinear lattice, not necessarily
unimodular.

(i) The action of Brn ⋉ {±1}n on (R(0))n in Lemma 3.10 (a) works
also in this case. It restricts as in Lemma 3.11 to an action on Btri, if
this set is not empty, though here for v ∈ Btri

σj(v) = (v1, ..., vj−1, vj+1 −
L(vj+1, vj)

L(vj, vj)
vj, vj, vj+2, ..., vn),

σ−1
j (v) = (v1, ..., vj−1, vj+1, vj −

L(vj+1, vj)

L(vj+1, vj+1)
vj+1, vj+2, ..., vn).

(ii) The action of Brn ⋉ {±1}n in Lemma 3.10 on (R(1))n does not
generalize. In Lemma 2.6 (a) (v) we defined in the case of a general

bilinear lattice s
(1)
a only for a ∈ R(0). We defined s

(1)
a for any a ∈ R(1)

in Lemma 2.6 (d) only in the case of a unimodular bilinear lattice.
(iii) On the other hand, part (a) (vii) of Lemma 2.6 says that the

action in Lemma 3.10 for k = 1 works for v ∈ Btri. Though at the end
this is just the action in (i) above.

(iv) The action in (i) on Btri is compatible with an action on the
set T tri

n of matrices in Lemma 2.3 (c), which generalizes the action in
Lemma 3.13 (a). Here Cn,j(−Sj,j+1) and C−1

n,j(Sj,j+1) in Lemma 3.13

(a) have to be replaced by Cn,j(−Sj,j+1

Sj,j
) and C−1

n,j(
Sj,j+1

Sj+1,j+1
).
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{±1}n is the normal subgroup in the semidirect product Brn ⋉
{±1}n. Therefore, if Brn ⋉ {±1}n acts on some set Σ, the group Brn
acts on the quotient Σ/{±1}n. Often it is good to consider this quotient
and the action of Brn on it.

Lemma 3.15. Let (HZ, L) be a unimodular bilinear lattice of some
rank n ≥ 2. Fix k ∈ {0; 1}.

(a) The map

π(k)
n : (R(k))n → ({s(k)v | v ∈ R(k)})n ⊂ (O(k))n, v 7→ (s(k)v1

, ..., s(k)vn ),

factors into maps

(R(k))n −−−→ (R(k))n/{±1}n π
(k)
n /{±1}n−−−−−−→ ({s(k)v | v ∈ R(k)})n.

Brn acts on the quotient (R(k))n/{±1}n, and the second map

π
(k)
n /{±1}n is Brn equivariant. The image of v in (R(k))n/{±1}n is

denoted by v/{±1}n.
(b) The second map

π(k)
n /{±1}n : (R(k))n/{±1}n → ({s(k)v | v ∈ R(k)})n

in part (a) is a bijection if k = 0 or if k = 1 and Rad I(1) = {0}.
(c) Consider the case k = 1 and Rad I(1) ⫌ {0}. Consider a trian-

gular basis e ∈ Btri and the induced set ∆(1) of odd vanishing cycles.
The second map restricts to a Brn equivariant bijection

(∆(1))n/{±1}n → ({s(1)v | v ∈ ∆(1)})n, v 7→ (s(1)v1
, ..., s(1)vn ),

if (HZ, L, e) is either irreducible or reducible with at most one summand
of type A1.

Proof: Part (a) is trivial. (b) Suppose k = 0 or (k = 1 and

Rad I(1) = {0}). If k = 1 and v = 0 then s
(1)
v = id. If k = 0 and

v ∈ R(0) or if k = 1 and v ∈ R(1) − {0} then v /∈ Rad I(k) and s
(k)
v ̸= id

for any v ∈ R(k). Then one can recover±v from s
(k)
v , essentially because

of

{0} ⫋ (s(k)v − id)(HZ) ⊂ Zv.

(c) If (HZ, L, e) is irreducible then ∆(1) ∩ Rad I(1) = ∅, and the
argument of part (b) holds. If (HZ, L, e) is reducible with only one
summand of type A1 then for a unique j ∈ {1, ..., n} ej ∈ Rad I(1), and

then ∆(1) ∩ Rad I(1) = {±ej}. Then v ∈ ∆(1) satisfies s
(1)
v = id if and

only if v = ±ej. So also then one can recover ±v from s
(1)
v for any

v ∈ ∆(1). □
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Remarks 3.16. (i) Consider the action of Brn on T uni
n (Z). The

elementary braid σj maps S = (Sij) ∈ T uni
n (Z) to

σj(S) = Cn,j(−Sj,j+1) · S · Cn,j(−Sj,j+1)

with

(
σj(S)jj σj(S)j,j+1

σj(S)j+1,j σj(S)j+1,j+1

)
=

(
1 −Sj,j+1

0 1

)
.

(ii) Especially, in the case n = 2 δ1, δ2 and σ1 all map S =

(
1 x
0 1

)
to

(
1 −x
0 1

)
, so the Br2 ⋉ {±1}2 orbit equals the Br2 orbit and the

⟨δ1⟩ orbit and consists only of S =

(
1 x
0 1

)
and

(
1 −x
0 1

)
.

(iii) Under rather special circumstances, also in higher rank n the
sign group action is eaten up by the braid group action. Ebeling proved
the following lemma.

Lemma 3.17. Let (HZ, L) be a unimodular bilinear lattice and e ∈
Btri a triangular basis with S = L(et, e)t ∈ T uni

n (Z).
(a) [Eb83, proof of Prop. 2.2] Suppose Sj,j+1 = ε ∈ {±1} for some

j ∈ {1, ..., n− 1}. Then

σ3ε
j (e) = δj(e), σ−3ε

j (e) = δj+1(e).

(b) [Eb83, Prop. 2.2] Suppose Sij ∈ {0, 1,−1} for all i, j and that
(HZ, L) is irreducible. Then the orbit of e under Brn coincides with the
orbit of e under Brn ⋉ {±1}n.

3.3. Distinguished bases

In this section we continue the discussion of the braid group ac-
tion on Btri. Now we fix one triangular basis e. Definition 3.18 gives
notations. The Remarks 3.19 pose questions on the orbit of e under
Brn ⋉ {±1}n. The questions will guide the work which will be done in
chapter 7.

Definition 3.18. Let (HZ, L) be a unimodular lattice of rank n ≥ 2
with nonempty set Btri of triangular bases.
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Given a triangular basis e ∈ Btri and k ∈ {0, 1}, we are interested
in the following orbits:

the set Bdist := Brn ⋉ {±1}n(e) of distinguished bases,

the set R(k),dist := Brn(π
(k)
n (e)) of distinguished tuples of

reflections or transvections,

the set Sdist := Brn ⋉ {±1}n(S) of distinguished matrices,

where S = L(et, e)t ∈ T uni
n (Z),

the quotient sets Bdist/{±1}n and Sdist/{±1}n, which are Brn orbits.
We are also interested in the stabilizers in Brn of the points e/{±1}n ∈
Bdist/{±1}n and S/{±1}n ∈ Sdist/{±1}n, namely the groups

(Brn)e/{±1}n ⊂ (Brn)S/{±1}n ⊂ Brn.

Remarks 3.19. In the situation of Definition 3.18 the following
constraints on the set Bdist of distinguished bases are clear from what
has been said,

Bdist ⊂ Btri ∩ (∆(0))n ∩ (∆(1))n ∩ {v ∈ (HZ)
n |

n∑
i=1

Zvi = HZ}

∩ (πn ◦ π(0)
n )−1(−M) ∩ (πn ◦ π(1)

n )−1(M), (3.2)

where πn ◦ π(k)
n : (R(k))n → O(k), v 7→ s

(k)
v1 ...s

(k)
vn .

An interesting problem is which - if any - of these constraints are
sufficient to characterize the orbit Bdist. We are most interested in the
questions whether the inclusions

Bdist ⊂ {v ∈ (∆(0))n | πn ◦ π(0)
n (v) = −M}, (3.3)

Bdist ⊂ {v ∈ (∆(1))n | πn ◦ π(1)
n (v) =M}, (3.4)

are equalities. We will study this problem systematically in chapter 7
for n = 2 and n = 3. In this section 3.3 we give some examples.

Remarks 3.20. Consider a unimodular bilinear lattice (HZ, L) of
rank n ≥ 2 and k ∈ {0; 1}.

(i) Two basic invariants of the Brn ⋉ {±1}n orbit of a tuple v ∈
(R(k))n are the product (πn ◦ π(k)

n )(v)) = s
(k)
v1 ...s

(k)
vn ∈ O(k) and the

sublattice
∑n

i=1 Zvi ⊂ HZ, namely

(πn ◦ π(k)
n )(σj(v)) = (πn ◦ π(k)

n )(v) and
n∑

i=1

Zσj(v)i =
n∑

i=1

Zvi.

(ii) A triangular basis e ∈ Btri induces the even and odd mon-
odromy groups Γ(0) and Γ(1) and the sets ∆(0) and ∆(1) of even and
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odd vanishing cycles. Each distinguished basis v ∈ Bdist induces the
same even and odd monodromy groups Γ(0) and Γ(1) and the same sets
∆(0) and ∆(1) of even and odd vanishing cycles. This is obvious from
the action of Brn⋉{±1}n on Bdist, the Hurwitz action of Brn onR(k),dist

and the definition of Γ(k) and ∆(k). So they are invariants of the set
Bdist of distinguished bases.

We did not mention the monodromy M , because it is by Theorem
2.7 an invariant of (HZ, L) if Btri ̸= ∅, so it does not depend on the
choice of a Brn ⋉ {±1}n orbit in Btri.

(iii) A matrix S ∈ T uni
n (Z) determines a triple (HZ, L, e) with

(HZ, L) a unimodular bilinear lattice and e a triangular basis with

S = L(et, e)t up to isomorphism. For a second matrix S̃ in the
Brn ⋉ {±1}n orbit of S then a triangular basis ẽ of (HZ, L) with

S̃ = L(ẽt, ẽ)t exists (but it is not unique in general). Therefore the triple
(HZ, L,Bdist) and all induced data depend only on the Brn⋉{±1}n or-
bit Sdist of S. These induced data comprise R(0), Γ(0), Γ(1), ∆(0) and
∆(1).

(iv) Choose a triangular basis e. Then s
(k)
δ ∈ Γ(k) for δ ∈ ∆(k).

This follows from the definition of a vanishing cycle and from formula
3.2. It also implies that the set (∆(k))n is invariant under the action of
Brn ⋉ {±1}n on (R(k))n.

Remarks 3.21. (i) Consider a unimodular bilinear lattice which is
not a lattice of type An

1 and a fixed triangular basis e. Then ∆(0) ⊂ R(0),
but ∆(1) ̸⊂ R(0) by Corollary 6.22 (a). Nevertheless Bdist ⊂ (∆(0) ∩
∆(1))n, so many odd vanishing cycles do not turn up in bases in the
braid group orbit of e, i.e. in distinguished bases.

(ii) In all cases except An
1 ∆(1) ̸⊂ ∆(0) because ∆(1) ̸⊂ R(0). In some

cases ∆(0) ⊂ ∆(1), in many cases ∆(0) ̸⊂ ∆(1). See Corollary 6.22.

Given a unimodular bilinear lattice (HZ, L), any element g ∈ O(k)

acts on (R(k))n by g(v) := (g(v1), ..., g(vn)). Part (a) of the next Lemma
3.22 says especially that this action commutes with the action of Brn⋉
{±1}n on (R(k))n. Part (b) gives implications, which will be used to
construct the interesting Examples 3.23 (i) and (ii).

Lemma 3.22. Let (HZ, L) be a unimodular bilinear lattice. Fix k ∈
{0, 1}.

(a) If g ∈ O(k) and (α, ε) ∈ Brn ⋉ {±1}n then for v ∈ (R(k))n

g((α, ε)(v)) = (α, ε)(g(v)),

(πn ◦ π(k)
n )(g(v)) = g ◦ (πn ◦ π(k)

n )(v) ◦ g−1.

Here g(v) means (g(v1), ..., g(vn)), and similarly for g((α, ε)(v)).
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(b) If g ∈ G(k)
Z −GZ and e ∈ Btri then

g(e) /∈ Btri,

so especially g(e) /∈ Brn ⋉ {±1}n(e),
but (πn ◦ π(k)

n )(g(e)) = (πn ◦ π(k)
n )(e) = (−1)k+1M.

Proof (a) g((id, ε)(v)) = (id, ε)(g(v)) is trivial. Consider (α, ε) =
(σj, (1, ..., 1)) = σj.

g(σj(v)) = (g(v1), ..., g(vj−1), gs
(k)
vj
(vj+1), g(vj), g(vj+2), ..., g(vn))

= (g(v1), ..., g(vj−1), s
(k)
g(vj)

(gvj+1), g(vj), g(vj+2), ..., g(vn))

= σj(g(v)),

because of gs
(k)
vj g

−1 = s
(k)
g(vj)

(Lemma 2.2 (c)).

(πn ◦ π(k)
n )(g(v)) = s

(k)
g(v1)

...s
(k)
g(vn)

=
(
gs(k)v1

g−1
)
...
(
gs(k)vn g

−1
)

= gs(k)v1
...s(k)vn g

−1 = g ◦ (πn ◦ π(k)
n )(v) ◦ g−1.

(b) Suppose g ∈ G(k)
Z −GZ and e ∈ Btri. Then gMg−1 =M and

(πn ◦ π(k)
n )(g(e))

(a)
= g ◦ (πn ◦ π(k)

n )(e) ◦ g−1

= g
(
(−1)k+1M

)
g−1 = (−1)k+1M = (πn ◦ π(k)

n )(e).

Furthermore S = L(et, e)t ∈ T uni
n (Z), I(k) = Lt + (−1)kL and

I(k)(g(e)t, g(e)) = I(k)(et, e) = S + (−1)kSt because g ∈ G(k)
Z ,

L(g(e)t, g(e))t ̸= L(et, e)t = S because g /∈ GZ,

so L(g(e)t, g(e)) /∈ T uni
n (Z),

so g(e) /∈ Btri, so g(e) /∈ Brn ⋉ {±1}n(e). □

Examples 3.23. Let (HZ, L) be a unimodular bilinear lattice of
rank n ≥ 2, e ∈ Btri a triangular basis, S = L(et, e)t ∈ T uni

n (Z) and
k ∈ {0, 1}.

(i) k = 1, n = 3, S = S(−3, 3,−3) = S(P2), the odd case P2. To
carry out this example we need two results which will be proved later,
Theorem 5.14 (b) and Theorem 6.21 (h).

By Theorem 5.14 (b) (i) there is a root M root ∈ GZ of the mon-
odromy with (M root)3 =M and

G
(1)
Z = {±(M root)l(id+a(M root − id)2) | l, a ∈ Z}

⫌ GZ = {±(M root)l | l ∈ Z}.
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Also, here Rad I(1) = Zf3 with f3 = e1 + e2 + e3. The shape of M root

in Theorem 5.14 (b) shows

(M root − id)2(e) = e(

3 −3 1
1 0 0
0 1 0

− E3)
2 = f3(1,−2, 1).

For example g := id+(M root − id)2 ∈ G(1)
Z −GZ satisfies

g(e) = e+ f3(1,−2, 1),

I(1)(g(e)t, g(e)) = I(1)(et, e) = S − St =

 0 −3 3
3 0 −3
−3 3 0

 ,

L(g(e)t, g(e))t =

 3 −7 5
−4 9 −7
2 −4 3

 ,

s
(1)
g(e1)

s
(1)
g(e2)

s
(1)
g(e3)

= M,

g(e1), g(e2), g(e3) /∈ R(0), because 3 ̸= 1 and 9 ̸= 1,

g(e1), g(e2), g(e3) /∈ ∆(1).

The last claim g(ej) /∈ ∆(1) holds because of g(ej) ̸= ej, but g(ej) ∈
ej + Zf3, and because the projection HZ → HZ/Zf3 restricts to an
injective map ∆(1) → HZ/Zf3 by Theorem 6.21 (h).

(ii) k = 0, n = 3, S = S(−2, 2,−2) = S(H1,2), the even case H1,2.
To carry out this example we need two results which will be proved
later, Theorem 5.14 (a) and Theorem 6.14 (e).

Recall Theorem 5.14 (b) (i),

(HZ, L) = (HZ,1, L1)⊕ (HZ,2, L2)

with HZ,1 = Zf1 ⊕ Zf2 = kerΦ2(M), HZ,2 = Zf3 = kerΦ1(M),

(f1, f2, f3) = e

1 0 1
1 1 1
0 1 1

 ,

G
(0)
Z = G

(0)
Z,1 ×G

(0)
Z,2 ⫌ GZ = GZ,1 ×GZ,2

with G
(0)
Z,1 = Aut(HZ,1) ⫌ GZ,1 = {g ∈ Aut(HZ,1) | det g = 1},

G
(0)
Z,2 = GZ,2 = {± id |Zf3}.
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For example g := ((f1, f2, f3) 7→ (f1,−f2, f3)) ∈ G(0)
Z −GZ satisfies

g(e) = g(f3 − f2,−f3 + f1 + f2, f3 − f1)
= (f3 + f2,−f3 + f1 − f2, f3 − f1)
= e+ f2(2,−2, 0),

s
(0)
g(e1)

s
(0)
g(e2)

s
(0)
g(e3)

= −M,

I(0)(g(e)t, g(e)) = I(0)(et, e) = S + St,

L(g(e)t, g(e))t =

 1 0 0
−2 1 0
2 −2 1

 = St ̸= S = L(et, e)t,

g(e) /∈ Btri, so g(e) /∈ Bdist,

g(e1), g(e2), g(e3) ∈ ∆(0).

The last claim g(ej) ∈ ∆(0) holds because of Theorem 6.14 (e). There-
fore

g(e) ∈ {v ∈ (∆(0))3 | (π3 ◦ π(0)
3 )(v) = −M,

3∑
i=1

Zvi = HZ}.

Especially, here the inclusion in (3.3) is not an equality. In a certain
sense, this example is the worst case within all cases S(x) with k = 0,
n = 3 and eigenvalues of M unit roots. See Theorem 7.3 (b).

(iii) n ∈ N, S = En, the even and odd case An
1 . Compare Lemma

2.12.

∆(0) = R(0) = ∆(1) = {±e1, ...,±en},
M = id,

Bdist = {(ε1eσ(1), ..., εneσ(n)) | ε1, ..., εn ∈ {±1}, σ ∈ Sn},
= {v ∈ (∆(0))n | (πn ◦ π(0)

n )(e) = −M = − id}
The last equality follows from −M = − id and

s(0)ei
|Zei = − id, s(0)ei

|∑
j ̸=i Zej = id .

Here the inclusion in (3.3) is an equality. On the contrary, the inclusion
(3.4) is not an equality, the set

{v ∈ (∆(1))n | (πn ◦ π(1)
n )(v) =M = id}

is much bigger than Bdist if n ≥ 2, it consists of many Brn ⋉ {±1}n
orbits. Each of these orbits contains a unique one of the following
tuples,

(el(1), el(2), ..., el(n)) with 1 ≤ l(1) ≤ l(2) ≤ ... ≤ l(n) ≤ n.
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This follows from s
(1)
ei = id.

The braids act just by permutations on the Brn orbit Bdist/{±1}n.
Therefore the stabilizer of e/{±1}n is the group Brpuren of pure braids.
The stabilizer of S/{±1}n is the whole group Brn.

(iv) Reconsider Example 3.4, so a case where

Γ(k) =

{
GfCox,n with generators s

(0)
e1 , ..., s

(0)
en if k = 0,

Gfree,n with generators s
(1)
e1 , ..., s

(1)
en if k = 1.

In the notation of Definition 3.1 ∆(GfCox,n) = {s(0)δ | δ ∈ ∆(0)} if k = 0

and ∆(Gfree,n) = {s(1)δ | δ ∈ ∆(1)} if k = 1. By Theorem 3.2

Rdist,(k) = {(s(k)v1
, ..., s(k)vn ) | v ∈ (∆(k))n, s(k)v1

...s(k)vn = (−1)k+1M}.
Furthermore, the shape of Γ(k) shows that (HZ, L, e) is irreducible.
Lemma 3.15 (b) or (c) applies. Therefore

Bdist = {v ∈ (∆(k))n | s(k)v1
...s(k)vn = (−1)k+1M}.

So in this case only the constraints v ∈ (∆(k))n and s
(k)
v1 ...s

(k)
vn =

(−1)k+1M in the Remarks 3.19 are needed in order to characterize
the orbit Bdist. The inclusions in (3.3) and (3.4) are here equalities.

By Theorem 3.2 the stabilizer of π
(k)
n (e) and of e/{±1}n is {id} ⊂

Brn. The size of the stabilizer (Brn)S/{±1}n depends on the case. Theo-
rem 7.11 gives cases with n = 3 where it is ⟨σ2σ1⟩ or ⟨σ2σ2

1⟩ or ⟨σmon⟩.
(v) Suppose Sij ≤ 0 for i < j, so (HZ, L, e) is a generalized Cartan

lattice as in Theorem 3.7. By Theorem 3.7 (b)

Rdist,(0) = {(g1, ..., gn) ∈
(
{s(0)δ | δ ∈ ∆(0)}

)n | g1...gn = −M}.
With Lemma 3.15 (b) this implies

Bdist = {v ∈ (∆(0))n | s(k)v1
...s(k)vn = −M}.

Also here only the two constraints v ∈ (∆(0))n and s
(k)
v1 ...s

(k)
vn = −M in

the Remarks 3.19 are needed in order to characterize the orbit Bdist.
The inclusion in (3.3) is here an equality.

3.4. From Brn ⋉ {±1}n to GZ

Definition 3.24 gives a map Z : Brn ⋉ {±1}n → Aut(HZ), which
restricts to a group antihomomorphism Z : (Brn⋉{±1}n)S → GZ. The
definition and the restriction to a group antihomomorphism are classi-
cal. Lemma 3.25 provides basic facts around this map. Also Theorem
3.26 (b) is classical. It states that Z((δ1−k

n σroot)n) = (−1)k+1M .
Theorem 3.26 (c) gives a condition when Z(δ1−k

n σroot) ∈ GZ. Then
this is an n-th root of (−1)k+1M . Theorem 3.26 (c) embraces Theorem
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4.5 (a)+(b) in [BH20]. It gives more because in [BH20] no braids are
considered. The braids allow a new and more elegant proof than the
one in [BH20]. Theorem 3.26 (c) will be used in the discussion of the
groups GZ in many cases in chapter 5.

Definition 3.24. Let (HZ, L, e) be a unimodular bilinear lattice of
rank n ≥ 2 with a triangular basis e. For (α, ε) ∈ Brn ⋉ {±1}n define
an automorphism Z((α, ε)) ∈ Aut(HZ) by the following action on the
Z-basis e of HZ,

Z : Brn ⋉ {±1}n → Aut(HZ),

(α, ε) 7→ Z((α, ε)) = (e→ (α, ε)(e)).

Lemma 3.25. Let (HZ, L, e) be a unimodular bilinear lattice of rank
n ≥ 2 with a triangular basis e.

(a) For (α, ε) ∈ Brn ⋉ {±1}n

Z((α, ε)) ∈ GZ ⇐⇒ Z((α, ε)) ∈ G(0)
Z ⇐⇒ Z((α, ε)) ∈ G(1)

Z .

(b) The stabilizer of S in Brn ⋉ {±1}n is

(Brn ⋉ {±1}n)S = {(α, ε) ∈ Brn ⋉ {±1}n |Z((α, ε)) ∈ GZ}.

(c) The restriction of the map Z to the stabilizer (Brn ⋉ {±1}n)S
is also denoted Z,

Z : (Brn ⋉ {±1}n)S → GZ.

It is a group antihomomorphism with kernel the stabilizer (Brn ⋉
{±1}n)e of e.

(d) The triple (HZ, L,Bdist) with Bdist = Brn ⋉ {±1}n(e) the set of
distinguished bases (Definition 3.18) gives rise to the subgroup GB

Z of
GZ,

GB
Z := Aut(HZ, L,Bdist) := {g ∈ GZ | g(Bdist) = Bdist} ⊂ GZ.

It does not depend on e, but only on the triple (HZ, L,Bdist). Then GB
Z

is the image of (Brn ⋉ {±1}n)S under Z in GZ,

GB
Z = Z((Brn ⋉ {±1}n)S) ⊂ GZ.

(e) The subgroup Z(({±1}n)S) of GB
Z is a normal subgroup of GB

Z,
and the group antihomomorphism Z in part (c) induces a group anti-
homomorphism

Z : (Brn)S/{±1}n → GB
Z/Z(({±1}n)S)

with kernel (Brn)e/{±1}n, which is isomorphic to (Brn ⋉ {±1}n)e.
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(f) Suppose that (HZ, L, e) is irreducible (Definition 2.10 (a)). Then

({±1}n)S = {(1, ..., 1), (−1, ...,−1)},
Z((−1, ...,−1)) = − id ∈ GZ,

Z(({±1}n)S) = {± id}.

{± id} is a normal subgroup of GZ. The group antihomorphism Z in
part (d) becomes

Z : (Brn)S/{±1}n → GZ/{± id}

with kernel (Brn)e/{±1}n and image GB
Z/{± id}.

Proof: (a) Fix k ∈ {0, 1} and (α, ε) ∈ Brn ⋉ {±1}n. Then

Z((α, ε)) ∈ G(k)
Z ⇐⇒ I(k)((α, ε)(e)t, (α, ε)(e)) = S + (−1)kSt.

If this equality holds then I(k) = Lt + (−1)kL and
L((α, ε)(e)t, (α, ε)(e))t ∈ T uni

n (Z) imply L((α, ε)(e)t, (α, ε)(e))t = S, so
Z((α, ε)) ∈ GZ.

(b) Trivial with the compatibility of the actions of Brn ⋉ {±1}n on
Bdist and on T uni

n (Z) in Theorem 3.4 (d).
(c) The following calculation shows that the map Z : (Brn ⋉

{±1}n)S → GZ is a group antihomomorphism,

Z((α, ε)(β, ε̃))(e) = (α, ε)(β, ε̃)(e)

= (α, ε)(Z((β, ε̃))(e1), ..., Z((β, ε̃))(en))
3.22 (a)
= Z((β, ε̃))(α, ε)(e) = Z((β, ε̃))Z((α, ε))(e).

It is trivial that the kernel of this map Z is (Brn ⋉ {±1}n)e.
(d) GZ ⊂ Z((Brn ⋉ {±1}n)S): Consider g ∈ GB

Z. Then g(e) ∈ Bdist

comes with same matrix S as e because g respects L. There is a pair
(α, ε) ∈ Brn ⋉ {±1}n with Z((α, ε))(e) = (α, ε)(e) = g(e). Therefore
g = Z((α, ε)).

GZ ⊃ Z((Brn ⋉ {±1}n)S): Consider (α, ε) ∈ (Brn ⋉ {±1}n)S,
(β, ε̃) ∈ Brn⋉{±1}n and v := (β, ε̃)(e). We have to show Z((α, ε))(v) ∈
Bdist. This is rather obvious with the commutativity of the actions of
O(k) and Brn ⋉ {±1}n in Lemma 3.22 (a),

Z((α, ε))(v) = Z((α, ε))(β, ε̃)(e)
3.22(a)
= (β, ε̃)Z((α, ε))(e)

= (β, ε̃)(α, ε)(e).
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(e) Elementary group theory gives the group isomorphisms

(Brn)S/{±1}n ∼=
(Brn ⋉ {±1}n)S

({±1}n)S
,

(Brn)e/{±1}n ∼=
(Brn ⋉ {±1}n)e

({±1}n)e
∼= (Brn ⋉ {±1}n)e

Here use ({±1}n)e = {(1, ..., 1)}. {±1}n is a normal subgroup of Brn⋉
{±1}n. Therefore ({±1}n)S is a normal subgroup of (Brn ⋉ {±1}n)S.
Therefore Z(({±1}n)S) is a normal subgroup of GB

Z. Therefore Z is
well defined. Its kernel is still (Brn)e/{±1}n ∼= (Brn ⋉ {±1}n)e because
(Brn ⋉ {±1}n)e ∩ ({±1}n)S = ({±1}n)e = {(1, ..., 1)}.

(f) If (HZ, L, e) is irreducible, then the following graph is con-
nected: its vertices are e1, ..., en, and it has an edge between ei and
ej for i < j if Sij(= L(ej, ei)) ̸= 0. Therefore then ({±1}n)S =
{(1, ..., 1), (−1, ...,−1)}. Everything else follows from this and from
part (d). □

The antihomomorphism Z : (Brn ⋉ {±1}n)S → GZ is not always
surjective, but in many cases. See Theorem 3.28 and the Remarks
3.29. Theorem 3.26 (b) writes (−1)k+1M as an image of a braid by Z.
Theorem 3.26 (c) gives conditions when it has an n-th root which is
also an image of a braid by Z.

Theorem 3.26. Let (HZ, L, e) be a unimodular bilinear lattice of
rank n ≥ 2 with a triangular basis e and matrix S = L(et, e)t ∈ T uni

n (Z).
Fix k ∈ {0, 1}. Recall from chapter 3.1

σroot := σn−1σn−2...σ2σ1 ∈ Brn,

σmon := (σroot)n,

center(Brn) = ⟨σmon⟩.
(a)

δ1−k
n σroot(e) = Z(δ1−k

n σroot)(e)

= (s(k)e1
(e2), s

(k)
e1
(e3), ..., s

(k)
e1
(en), s

(k)
e1
(e1))

= e ·R

with R :=


−qn−1 . . . −q1 −q0

En−1


so Rij =

{
−qn−j if i = 1,
δi−1,j if i ≥ 2,
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where q0 = (−1)k, qn+1−j = S1j for j ∈ {2, ..., n}.
(b)

Z((δ1−k
n σroot)n) = (−1)k+1M,

so especially (δ1−k
n σroot)n ∈ (Brn ⋉ {±1}n)S.

(c) Write q0 = (−1)k, qn+1−j = S1j for j ∈ {2, ..., n} as in part (a)
and additionally qn := 1. Suppose qn−j = q0qj for j ∈ {1, ..., n − 1},
and suppose that S has the following shape,

S :=


1 qn−1 . . . q1

. . . . . .
...

. . . qn−1

1

 ,

so Sij =

{
0 if i > j,
qn−(j−i) if i ≤ j,

Then

M root := Z(δ1−k
n σroot) ∈ GZ

with (M root)n = (−1)k+1M.

M root is regular and cyclic and has the characteristic polynomial
q(t) :=

∑n
i=0 qit

i ∈ Z[t].

Proof: (a) The second line follows from the definition of the action

of δ1−k
n σroot on e. For the third line observe s

(k)
e1 (ej) = ej − S1je1 for

j ≥ 2 and s
(k)
e1 (e1) = −q0e1.

(b) Use part (a) and

s
(k)

s
(k)
e1

(e2)
(s(k)e1

(ej)) = s(k)e1
s(k)e2

(s(k)e1
)−1s(k)e1

(ej) = s(k)e1
s(k)e2

(ej)

to find

(δ1−k
n σroot)2(e) = (s(k)e1

s(k)e2
(e3), ..., s

(k)
e1
s(k)e2

(en), s
(k)
e1
s(k)e2

(e1), s
(k)
e1
s(k)e2

(e2)).

One continues inductively and finds

(δ1−k
n σroot)n(e) = (s(k)e1

...s(k)en (e1), ..., s
(k)
e1
...s(k)en (en)) = (−1)k+1M(e),

so Z((δ1−k
n σroot)n) = (−1)k+1M .

(c) If S is as in part (c) then

I(k)(δ1−k
n σroot(e)t, δ1−k

n σroot(e))
(1)
= I(k)((e2 e3 ... en e1)

t, (e2 e3 ... en e1))
(2)
= S + (−1)kSt = I(k)(et, e).
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Here
(1)
= uses s

(k)
e1 ∈ O(k), and

(2)
= uses that I(k)(et, e) = S+(−1)kSt and

that S is as in part (c).

Therefore M root := Z(δ1−k
n σroot) ∈ G(k)

Z , so by Lemma 3.25 (a)

M root ∈ GZ and δ1−k
n σroot ∈ (Brn ⋉ {±1}n)S.

Also

(M root)n = (Z(δ1−k
n σroot))n = Z((δ1−k

n σroot)n) = (−1)k+1M.

Let e∗ be the Z-basis of HZ which is left L-dual to the Z-basis e, so
with L((e∗)t, e) = En. Remark 4.8 in [BH20] says

M roote∗ = e∗R−t = e∗ ·


−q0
−q1

En−1
...

−qn−1

 .

The matrix R−t is the companion matrix of the polynomial q(t). There-
fore M root is regular, cyclic with generating vector c = e∗1 and has the
characteristic polynomial q(t). □

Remarks 3.27. The main part of part (c) of Theorem 3.26 has also
the following matrix version: For q(t) =

∑n
i=0 qit

i ∈ Z[t] with qn = 1,
q0 = (−1)k for some k ∈ {0; 1} and qn−j = q0qj the matrix R in part
(a) and the matrix S in part (c) of Theorem 3.26 satisfy

Rn = (−1)k+1S−1St.

A proof using matrices of this version of part (c) of Theorem 3.26 was
given in [BH20, Theorem 4.5 (a)+(b)]. The proof here with the braid
group action is more elegant.

The antihomomorphism Z : (Brn⋉{±1}n)S → GZ is not surjective
in general. A simple example with n = 4 is given in the Remarks 3.29.
But it is surjective in the case n = 1, in all cases with n = 2 and in
almost all cases with n = 3. Theorem 3.28 gives precise statements. Its
proof requires first a good control of the braid group action on T uni

3 (Z),
which is the subject of chapter 4 and second complete knowledge of the
group GZ for all cases with n ≤ 3, which is the subject of chapter 5.
Theorem 3.28 is proved within the theorems in chapter 5 which treat
the different cases with n ∈ {1, 2, 3}, namely Lemma 5.4 (the cases An

1 ),
Theorem 5.5 (the rank 2 cases), Theorem 5.13 (the reducible rank 3
cases), Theorem 5.14 (the irreducible rank 3 cases with all eigenvalues
in S1), Theorem 5.16 (some special other rank 3 cases), Theorem 5.18
(the rest of the rank 3 cases).
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Theorem 3.28. Let (HZ, L, e) be a unimodular bilinear lattice of
rank n ≤ 3 with triangular basis e and matrix S = L(et, e)t ∈ T uni

n (Z).
The group antihomomorphism Z : (Brn⋉{±1}n)S → GZ is not surjec-
tive in the four cases with n = 3 where S is in the Br3 ⋉ {±1}3 orbit
of S(x) with

x ∈ {(3, 3, 4), (4, 4, 4), (5, 5, 5), (4, 4, 8)},

so then GZ ⫌ GB
Z. It is surjective in all other cases with n ≤ 3, so then

GZ = GB
Z.

Remarks 3.29. (i) Contrary to Theorem 3.28 for the cases n =
1, 2, 3, it is in the cases n ≥ 4 easy to find matrices S ∈ T uni

n (Z) such
that the group antihomomorphism Z : (Brn ⋉ {±1}n)S → GZ is not
surjective. Though the construction which we propose in part (ii) and
carry out in one example in part (iii) leads to matrices which are rather
particular. For a given matrix S it is in general not easy to see whether
Z is surjective or not.

(ii) Consider a reducible unimodular bilinear lattice (HZ, L, e) of
rank n with triangular basis e and matrix S = L(et, e)t ∈ T uni

n (Z).
There are an L-orthogonal decomposition HZ =

⊕l
j=1HZ,j with l ≥ 2

and rankHZ,j ≥ 1 and a surjective map α : {1, ..., n} → {1, ..., l} with
ei ∈ HZ,α(i). Then for k ∈ {0, 1}

Γ(k){ei} ⊂ HZ,α(i),

so ∆(k) ⊂
l⋃

j=1

HZ,j.

Especially any g ∈ GB
Z ⊂ GZ maps each ei to an element of

⋃l
j=1HZ,j.

This does not necessarily hold for any g ∈ GZ. Part (iii) gives an
example.

(iii) Consider the unimodular bilinear lattice (HZ, L, e) of rank 4
with triangular basis e and matrix

S = L(et, e)t =


1 2 0 0
0 1 0 0
0 0 1 2
0 0 0 1

 ∈ T uni,4(Z).

Then HZ = HZ,1 ⊕HZ,2 with HZ,1 = Ze1 ⊕ Ze2 and HZ,2 = Ze3 ⊕ Ze4.
The Z-linear map g : HZ → HZ with

(g(e1), g(e2), g(e3), g(e4)) = (e1 + (e3 − e4), e2 + (e3 − e4),
e3 + (e1 − e2), e4 + (e1 − e2))
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is not in GB
Z because g(e1), g(e2), g(e3), g(e4) /∈ HZ,1∪HZ,2. But g ∈ GZ

because

L(e1 − e2, e1 − e2) = 0 = L(e3 − e4, e3 − e4),
so L(g(ei), g(ej)) = L(ei, ej) for {i, j} ⊂ {1, 2} or {i, j} ⊂ {3, 4},
and also

L(g(ei), g(ej)) = L(ei, ej) for (i, j) ∈ ({1, 2} × {3, 4}) ∪ ({3, 4} × {1, 2}).
So here g ∈ GZ −GB

Z, so G
B
Z ⫋ GZ.
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CHAPTER 4

Braid group action on upper triangular 3× 3
matrices

The subject of this chapter is the case n = 3 of the action in Lemma
3.13 of Brn ⋉ {±1}n on the matrices in T uni

n (Z).
In section 4.1 the action on T uni

3 (R) is made concrete. The (quo-
tient) group of actions is given in new generators. It is

(Gphi ⋉Gsign)⋊ ⟨γ⟩ ∼= (Gphi ⋊ ⟨γ⟩)⋉Gsign,

where Gphi is a free Coxeter group with three generators, Gsign is the
group of actions in T uni

3 (R) which the sign group {±1}3 induces, and
γ acts cyclically of order 3. In fact, Gphi ⋊ ⟨γ⟩ ∼= PSL2(Z), so we have
a nonlinear action of PSL2(Z), but this way to look at it is less useful
than the presentation as Gphi ⋊ ⟨γ⟩.

The action on T uni
3 (Z) had been studied already by Krüger [Kr90,

§12] and by Cecotti-Vafa [CV93, Ch. 6.2]. Section 4.2 recovers and
refines their results. Like them, it puts emphasis on the cases where the
monodromy of a corresponding unimodular bilinear lattice has eigen-
values in S1. Section 4.2 follows largely Krüger [Kr90, §12].

Section 4.3 uses pseudo-graphs to systematically study all cases, not
only those where the monodromy has eigenvalues in S1. This goes far
beyond Krüger and Cecotti-Vafa.

The results of section 4.3 and the pseudo-graphs are used in section
4.4 to determine in all cases the stabilizer (Br3 ⋉ {±1}3)S respectively
the stabilizer (Br3)S/{±1}3 . Section 7.4 will build on this and determine
the stabilizer (Br3)e/{±1}3 of a distingushed basis e ∈ Bdist for any
unimodular bilinear lattice of rank 3 with a fixed triangular basis.

Section 4.5 starts with the observation that a matrix S ∈ T uni
n (Z)

and the matrix S̃ ∈ T uni
n (Z) with S̃ij = −Sij for i < j lead to uni-

modular bilinear lattices with the same odd monodromy groups and
the same odd vanishing cycles. This motivates to study the action on
T uni
n (Z) which extends the action of Brn ⋉ {±1}n by this global sign

change. Section 4.5 carries this out in the case n = 3 and gives stan-
dard representatives for each orbit. Though examples show that the
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action is rather wild. Similar looking triples in Z3 are in the orbits of
very different standard representatives.

4.1. Braid group action on real upper triangular 3× 3
matrices

The action of Br3 ⋉ {±1}3 on T uni
3 (Z) will be studied in the next

sections. It extends to an action on T uni
3 (R) ∼= R3 which will be studied

here. By Theorem 3.4 (d), σ1 acts on T uni
3 (Z) by

σ1 :

1 x1 x2
0 1 x3
0 0 1

 7→

−x1 1 0
1 0 0
0 0 1

1 x1 x2
0 1 x3
0 0 1

−x1 1 0
1 0 0
0 0 1


=

1 −x1 x3 − x1x2
0 1 x2
0 0 1

 .

It extends to an action on T uni
3 (R). With the isomorphism

T uni
3 (R)

∼=−→ R3,

1 x1 x2
0 1 x3
0 0 1

 7→ (x1, x2, x3) for R ∈ {Z,Q,R,C}

this gives the action

σR
1 : R3 → R3, (x1, x2, x3) 7→ (−x1, x3 − x1x2, x2).

Analogously

(σR
1 )

−1 : R3 → R3, (x1, x2, x3) 7→ (−x1, x3, x2 − x1x3),
σR
2 : R3 → R3, (x1, x2, x3) 7→ (x2 − x1x3, x1,−x3),

(σR
2 )

−1 : R3 → R3, (x1, x2, x3) 7→ (x2, x1 − x2x3,−x3),
δR1 : R3 → R3, (x1, x2, x3) 7→ (−x1,−x2, x3),
δR2 : R3 → R3, (x1, x2, x3) 7→ (−x1, x2,−x3),
δR3 : R3 → R3, (x1, x2, x3) 7→ (x1,−x2,−x3).

One sees

δR3 = δR1 δ
R
2 and Gsign := ⟨δR1 , δR2 ⟩ ∼= {±1}2.

The group ⟨σR
1 , σ

R
2 ⟩⋉Gsign ⊂ Autpol(R3) of polynomial automorphisms

of R3 will be more transparent in other generators.
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Definition 4.1. Define the polynomial automorphisms of R3

φ1 : R3 → R3, (x1, x2, x3) 7→ (x2x3 − x1, x3, x2),
φ2 : R3 → R3, (x1, x2, x3) 7→ (x3, x1x3 − x2, x1),
φ3 : R3 → R3, (x1, x2, x3) 7→ (x2, x1, x1x2 − x3),
γ : R3 → R3, (x1, x2, x3) 7→ (x3, x1, x2),

and the group Gphi := ⟨φ1, φ2, φ3⟩ ⊂ Autpol(R3).

Theorem 4.2. (a) The group Gphi is a free Coxeter group with the
three generators φ1, φ2, φ3, so G

phi ∼= GfCox,3.
(b) ⟨γ⟩ ∼= Z/3Z ∼= A3 ⊂ S3.
(c) ⟨σR

1 , σ
R
2 ⟩⋉Gsign = (Gphi ⋉Gsign)⋊ ⟨γ⟩.

Proof: (a) φ2
1 = φ2

2 = φ2
3 = id is obvious, and also that

(2, 2, 2) ∈ R3 is a fixed point of Gphi. We will show that the group
⟨d(2,2,2)φ1, d(2,2,2)φ2, d(2,2,2)φ3⟩ of induced actions on the tangent space
T(2,2,2)R3 is a free Coxeter group with three generators. This will imply
Gphi ∼= GfCox,3.

Affine linear coordinates (x̃1, x̃2, x̃3) on R3 which vanish at (2, 2, 2)
with

(x1, x2, x3) = (2 + x̃1, 2 + x̃2, 2 + x̃3) = (2, 2, 2) + (x̃1, x̃2, x̃3)

are also linear coordinates on T(2,2,2)R3. We have

φ1((2, 2, 2) + (x̃1, x̃2, x̃3)) = (2, 2, 2) + (x̃2x̃3 + 2x̃2 + 2x̃3 − x̃1, x̃3, x̃2),

d(2,2,2)φ1(x̃1, x̃2, x̃3) = (x̃1, x̃2, x̃3)

−1 0 0
2 0 1
2 1 0

 ,

and analogously

d(2,2,2)φ2(x̃1, x̃2, x̃3) = (x̃1, x̃2, x̃3)

0 2 1
0 −1 0
1 2 0

 ,

d(2,2,2)φ3(x̃1, x̃2, x̃3) = (x̃1, x̃2, x̃3)

0 1 2
1 0 2
0 0 −1

 .

The group Gphi respects the fibers of the map

rR : R3 → R, (x1, x2, x3) 7→ x21 + x22 + x23 − x1x2x3.

The group ⟨d(2,2,2)φ1, d(2,2,2)φ2, d(2,2,2)φ3⟩ respects the tangent cone at
(2, 2, 2) of the fiber r−1

R (4). This tangent cone is the zero set of the
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quadratic form

qR3,(2,2,2) : R3 → R,
(x̃1, x̃2, x̃3) 7→ −x̃21 − x̃22 − x̃23 + 2x̃1x̃2 + 2x̃1x̃3 + 2x̃2x̃3.

This quadratic form is indefinite with signature (+,−,−). As in The-
orem A.4, its cone of positive vectors is called K. Consider the six
vectors

v1 = (1, 1, 0), v2 = (1, 0, 1), v3 = (0, 1, 1),

w1 = v1 + v2, w2 = v1 + v3, w3 = v2 + v3.

Then

v1, v2, v3 ∈ ∂K, w1, w2, w3 ∈ K,
d(2,2,2)φ1 : v1 ↔ v2, w1 7→ w1,

d(2,2,2)φ2 : v1 ↔ v3, w2 7→ w2,

d(2,2,2)φ3 : v2 ↔ v3, w3 7→ w3.

Compare Theorem A.4. In the model K/R∗ of the hyperbolic plane,
d(2,2,2)φi for i ∈ {1, 2, 3} gives a rotation with angle π and elliptic fixed
point R∗wi, which maps the hyperbolic line with euclidean boundary
points R∗v1&R∗v2 respectively R∗v1&R∗v3 respectively R∗v2&R∗v3 to
itself

Theorem A.2 (b) applies and shows ⟨d(2,2,2)φi | i ∈ {1, 2, 3}⟩ ∼=
GfCox,3. Figure 4.1 illustrates this.

Figure 4.1. GfCox,3 generated by 3 elliptic Möbius
transformations, an application of Theorem A.2 (b)

(b) Trivial.
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(c) The equality of groups

⟨σR
1 , σ

R
2 ⟩⋉Gsign = ⟨φ1, φ2, φ3, γ, δ

R
1 , δ

R
2 ⟩

follows from

γ = δR3 σ
R
2 σ

R
1 , (4.1)

φ1 = δR1 γ
−1(σR

2 )
−1, (4.2)

φ2 = δR1 γσ
R
2 = δR3 γ

−1(σR
1 )

−1, (4.3)

φ3 = δR3 γσ
R
1 . (4.4)

and

σR
1 = γ−1δR3 φ3, σR

2 = γ−1δR1 φ2. (4.5)

Gphi fixes (2, 2, 2), and therefore Gphi ∩ Gsign = {id}. As Gsign is a
normal subgroup of ⟨σR

1 , σ
R
2 ⟩ ⋉ Gsign, it is also a normal subgroup of

⟨φ1, φ2, φ3, δ
R
1 , δ

R
2 ⟩, so ⟨φ1, φ2, φ3, δ

R
1 , δ

R
2 ⟩ = Gphi⋉Gsign. More precisely

φiδ
R
j φ

−1
i = δRk for (i, j, k) ∈ {(1, 3, 3), (2, 2, 2), (3, 1, 1),

(1, 1, 2), (1, 2, 1), (2, 1, 3), (2, 3, 1), (3, 2, 3), (3, 3, 2)}.
We claim γ /∈ Gphi ⋉ Gsign. If γ were in Gphi ⋉ Gsign then γ ∈ Gphi

as γ fixes (2, 2, 2). But all elements of finite order in Gphi ∼= GfCox,3

have order two, though γ has order three. Hence γ /∈ Gphi and γ /∈
Gphi ⋉Gsign.

The claim and

γφ1γ
−1 = φ2, γφ2γ

−1 = φ3, γφ3γ
−1 = φ1, (4.6)

γδR1 γ
−1 = δR3 , γδ

R
2 γ

−1 = δR1 , γδ
R
3 γ

−1 = δR2 , (4.7)

show

⟨φ1, φ2, φ3, δ
R
1 , δ

R
2 , γ⟩ = (Gphi ⋉Gsign)⋊ ⟨γ⟩. □

4.2. Braid group action on integer upper triangular 3× 3
matrices

In this section we will give a partial classification of the orbits of the
action of Br3 ⋉ {±1}3 on T uni

3 (Z). This refines results which were ob-
tained independently by Krüger [Kr90, §12] and Cecotti-Vafa [CV93,
Ch. 6.2] (building on Mordell [Mo69, p 106 ff]).

The refinement consists in the following. By Theorem 4.2 the action
of Br3⋉{±1}3 on T uni

3 (Z) coincides with the action of (Gphi⋉Gsign)⋊
⟨γ⟩. For reasons unknown to us, Krüger and Cecotti-Vafa considered
the action of the slightly larger group (Gphi ⋉Gsign)⋊ ⟨γ, γ2⟩ with

γ2 : R3 → R3, (x1, x2, x3) 7→ (x2, x1, x3), so ⟨γ, γ2⟩ ∼= S3.

51



Thus they obtained a slightly coarser classification. Nevertheless The-
orem 4.6 is essentially due to them (and Mordell [Mo69, p 106 ff]).
The following definition and lemma prepare it. They are due to Krüger
[Kr90, §12].

Definition 4.3. [Kr90, Def. 12.2] For x = (x1, x2, x3) ∈ R3 we

set as usual ∥x∥ :=
√
x21 + x22 + x23. A tuple x ∈ R3 is called a local

minimum if

∥x∥ ≤ min(∥σR
1 (x)∥, ∥(σR

1 )
−1(x)∥, ∥σR

2 (x)∥, ∥(σR
2 )

−1(x)∥).

This is obviously equivalent to

∥x∥ ≤ min(∥φ1(x)∥, ∥φ2(x)∥, ∥φ3(x)∥).

Lemma 4.4. [Kr90, Lemma 12.3] x ∈ R3 is a local minimum if
and only if it satisfies (i) or (ii),

(i) x1x2x3 ≤ 0,
(ii) x1x2x3 > 0, 2|x1| ≤ |x2x3|, 2|x2| ≤ |x1x3|, 2|x3| ≤ |x1x2|.

In the case (ii) also |x1| ≥ 2, |x2| ≥ 2 and |x3| ≥ 2 hold.

Proof: x ∈ R3 is a local minimum if for all i, j, k with {i, j, k} =
{1, 2, 3}

x2i + x2j + x2k ≤ x2i + x2j + (xk − xixj)2

holds, which is equivalent to

2xixjxk ≤ x2ix
2
j .

1st case, x1x2x3 ≤ 0: Then x is a local minimum.
2nd case, x1x2x3 > 0: Then the condition 2xixjxk ≤ x2ix

2
j is

equivalent to

2|xk| ≤ |xixj|.

These three conditions together imply

4|xk| ≤ 2|xi||xj| ≤ |xi||xi||xk|, so 4 ≤ |xi|2, so 2 ≤ |xi|. □

The square ∥.∥2 : Z3 → Z≥0 of the norm has on Z3 values in Z≥0.
Therefore each Br3 ⋉ {±1}3 orbit in Z3 has local minima. Krüger
showed that the only Br3 ⋉ {±1}3 orbits in R3 without local minimal
are of the following shape. We will not use this result, but we find it
interesting enough to cite it.
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Theorem 4.5. [Kr90, Theorem 12.6] Let x ∈ R3 whose Br3 ⋉
{±1}3 orbit does not contain a local minimum. Then

x1x2x3 > 0, 2 < min(|x1|, |x2|, |x3|),
4 = rR(x)(= x21 + x22 + x23 − x1x2x3).

Furthermore, there is a sequence (ψn)n∈N with ψn ∈ {φ1, φ2, φ3} with
ψn ̸= ψn+1 such that the sequence (x(n))n∈N∪{0} with x(0) = x and

x(n+1) = ψn(x
(n)) satisfies

∥x(n+1)∥ < ∥x(n)∥ for all n ∈ N ∪ {0},
lim
n→∞

(|x(n)1 |, |x
(n)
2 |, |x

(n)
3 |) = (2, 2, 2).

Now we come to the classification of Br3⋉ {±1}3 orbits in Z3. The
following result is except for its part (f) a refinement of [Kr90, Theorem
12.7] and of [CV93, Ch 6.2]. The proof below follows (except for the
part (f)) the proof in [Kr90]. Recall that each Br3⋉{±1}3 orbit in R3 is
contained in one fiber of the map rR : R3 → R, x 7→ x21+x

2
2+x

2
3−x1x2x3.

Theorem 4.6. (a) Each fiber of

r : Z3 → Z, r(x) = x21 + x22 + x23 − x1x2x3
except the fiber r−1(4) contains only finitely many local minima.

(b) Each fiber of r : Z3 → Z except the fiber r−1(4) consists of only
finitely many Br3 ⋉ {±1}3 orbits.

(c) For ρ ∈ Z<0, each local minimum x ∈ r−1(ρ) satisfies x1x2x3 >
0 and |x1| ≥ 3, |x2| ≥ 3, |x3| ≥ 3.

(d) For ρ ∈ N − {4}, each local minimum x ∈ r−1(ρ) satisfies
x1x2x3 ≤ 0.

(e) The following table gives all local minima in r−1({0, 1, 2, 3, 4}).
The local minima in one Br3 ⋉ {±1}3 orbit are in one line. The last
entry in each line is one matrix in the corresponding orbit in T uni

3 (Z).

r = 3 − −
r = 0 (0, 0, 0) S(A3

1)
r = 0 (3, 3, 3), (−3,−3, 3), (−3, 3,−3), (3,−3,−3) S(P2)
r = 1 (±1, 0, 0), (0,±1, 0), (0, 0,±1) S(A2A1)
r = 2 (±1,±1, 0), (±1, 0,±1), (0,±1,±1) S(A3)
r = 4 (±2, 0, 0), (0,±2, 0), (0, 0,±2) S(P1A1)

r = 4 (−1,−1,−1), (1, 1,−1), (1,−1, 1), (−1, 1, 1) S(Â2)
r = 4 (2, 2, 2), (−2,−2, 2), (−2, 2,−2), (2,−2,−2) S(H1,2){

r = 4
l ∈ Z≥3

} {
(ε12, ε2l, ε3l), (ε1l, ε22, ε3l), (ε1l, ε2l, ε32)
for ε1, ε2, ε3 ∈ {±1} with ε1ε2ε3 = 1

}
S(−l, 2,−l)
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So there are seven single Br3 ⋉ {±1}3 orbits and one series with pa-
rameter l ∈ Z≥3 of Br3 ⋉ {±1}3 orbits with r ∈ {0, 1, 2, 3, 4}. These
are the most interesting orbits as the monodromy matrix S(x)−1S(x)t

for x ∈ R3 has eigenvalues in S1 if and only if r(x) ∈ [0, 4].
(f) For a given local minimum x ∈ Z3 the set of all local minima

in the Br3 ⋉ {±1}3 orbit of x is either the set Gsign ⋊ ⟨γ⟩(x) or the set
Gsign ⋊ ⟨γ, γ2⟩(x) (see Theorem 4.13 (b) for details).

Proof: (a) Fix ρ ∈ Z− {4}. Let x ∈ Z3 be a local minimum with
r(x) = ρ.

1st case, x1x2x3 ≤ 0: Then ρ = r(x) = x21 + x22 + x23 − x1x2x3 ≥
∥x∥2, so ρ ≥ 0. The closed ball of radius

√
ρ around 0 in R3 intersects

Z3 only in finitely many points.
2nd case, x1x2x3 > 0: We can suppose xi > 0 for i ∈ {1, 2, 3}

because of the action of Gsign on R3 and Z3. Lemma 4.4 says 2x1 ≤
x2x3, 2x2 ≤ x1x3, 2x3 ≤ x1x2, xi ≥ 2 for i ∈ {1, 2, 3}.

We can suppose x1 = min(x1, x2, x3) (the other cases are analo-
gous). If x1 = 2 then 4 ̸= ρ = r(x) = 4+x22+x

2
3−2x2x3 = 4+(x2−x3)2,

so x2 ̸= x3, which is a contradiction to 2x2 ≤ x1x3 = 2x3, 2x3 ≤ x1x2 =
2x2. Therefore x1 ≥ 3.

We can suppose x1 ≤ x2 ≤ x3 (the other cases are analogous).

ρ = r(x) = x21 + x22 + (x3 −
1

2
x1x2)

2 − 1

4
x21x

2
2

≤ x21 + x22 + (x2 −
1

2
x1x2)

2 − 1

4
x21x

2
2 (because x2 ≤ x3 ≤

1

2
x1x2)

= x21 + 2x22 − x1x22 = (x1 − 2)(x1 + 2− x22) + 4

≤ (x1 − 2)(x1 + 2− x21) + 4 = −(x1 − 2)(x1 − 2)(x1 + 1) + 4

≤
{
−(3− 2)(3− 2)(3 + 1) + 4 = 0,
−(x1 − 2)3 + 4.

This implies ρ ≤ 0 and x1 ≤ 2 + 3
√
4− ρ, so x1 is one of the finitely

many values in Z ∩ [3, 2 + 3
√
4− ρ].

The inequality ρ ≤ (x1 − 2)(x1 + 2− x22) + 4 implies

x22 ≤
4− ρ
x1 − 2

+ x1 + 2,

so x2 is one of the finitely many values in Z ∩ [x1,
√

4−ρ
x1−2

+ x1 + 2].

Because of x3 ≤ 1
2
x1x2 also x3 can take only finitely many values.

(b) Each Br3 ⋉ {±1}3 orbit in Z3 is mapped by ∥.∥2 to a subset of
Z≥0. A preimage in this orbit of the minimum of this subset is a local
minimum. Therefore (a) implies (b).
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(c) Suppose ρ < 0 and x ∈ r−1(ρ) is a local minimum. 0 > ρ =
∥x∥2 − x1x2x3 implies x1x2x3 > 0. Lemma 4.4 gives |x1| ≥ 2.

If x1 = 2ε with ε ∈ {±1} then ρ = r(x) = 4 + (x2 − εx3)2 ≥ 4, a
contradiction. So |x1| ≥ 3. Analogously |x2| ≥ 3 and |x3| ≥ 3.

(d) Suppose ρ ∈ N−{4} and x ∈ r−1(ρ) is a local minimum. In the
second case x1x2x3 > 0 in the proof of part (a) we concluded ρ ≤ 0.
Therefore we are in the first case in the proof of part (a), so x1x2x3 ≤ 0.

(e) Suppose ρ ∈ {0, 1, 2, 3, 4}, and x ∈ r−1(ρ) is a local minimum.
In the cases ρ ∈ {1, 2, 3} by part (d) x1x2x3 ≤ 0 and ρ = r(x) =

x21 + x22 + x23 + |x1x2x3|, so in these cases all xi ̸= 0 is impossible, so
some xi = 0, so ρ = r(x) = x2j + x2k where {i, j, k} = {1, 2, 3}.

The case ρ = 3: 3 = x2j + x2k is impossible, the case ρ = 3 is

impossible, r−1(3) = ∅.
The case ρ = 1: 1 = x2j + x2k is solved only by (xj, xk) ∈

{(±1, 0), (0,±1)}. The six local minima (±1, 0, 0), (0,±1, 0), (0, 0,±1)
are in one orbit of Br3⋉{±1}3 because γ(1, 0, 0) = (0, 1, 0), γ(0, 1, 0) =
(0, 0, 1).

The case ρ = 2: x2j+x
2
k = 2 is solved only by (xj, xk) ∈ {(±1,±1)}.

The twelve local minimal (±1,±1, 0), (±1, 0,±1), (0,±1,±1) are in one
orbit of Br3 ⋉ {±1}3 because γ(1, 1, 0) = (0, 1, 1), γ(0, 1, 1) = (1, 0, 1).

The case ρ = 0: We use the proof of part (a).
1st case, x1x2x3 ≤ 0: 0 = ρ = ∥x∥2 − x1x2x3 ≥ ∥x∥2, so x =

(0, 0, 0). Its Br3 ⋉ {±1}3 orbit consists only of (0, 0, 0).
2nd case, x1x2x3 > 0: We can suppose xi > 0 for each i ∈ {1, 2, 3}.

Suppose xi ≤ xj ≤ xk for {i, j, k} = {1, 2, 3}. The proof of part (a)
gives

3 ≤ xi ≤ 2 + 3
√

4− ρ = 2 +
3
√
4, so xi = 3

and

3 = xi ≤ xj ≤
√

4− ρ
xi − 2

+ xi + 2 = 3, so xj = 3.

0 = r(x) = 9 + 9 + x2k − 9xk = (xk − 3)(xk − 6) and xk ≤ 1
2
xixj = 9

2

show xk = 3. The four local minima (3, 3, 3), (−3,−3, 3), (−3, 3,−3)
and (3,−3,−3) are in one Br3 ⋉ {±1}3 orbit because of the action of
Gsign.

The case ρ = 4:
1st case, some xi = 0: Then with {i, j, k} = {1, 2, 3} 4 = r(x) =

x2j + x2k. This is solved only by (xj, xk) ∈ {(±2, 0), (0,±2)}. The six

local minima (±2, 0, 0), (0,±2, 0), (0, 0,±2)} are in one Br3 ⋉ {±1}3
orbit because γ((2, 0, 0)) = (0, 2, 0), γ((0, 2, 0)) = (0, 0, 2).
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2nd case, all xi ̸= 0 and x1x2x3 < 0: 4 =
r(x) = x21 + x22 + x23 + |x1x2x3|, so (x1, x2, x3) ∈
{(−1,−1,−1), (1, 1,−1), (1,−1, 1), (−1, 1, 1)}. These four local
minima are in one Br3 ⋉ {±1}3 orbit because of the action of Gsign.

3rd case, all xi ̸= 0 and x1x2x3 > 0: We can suppose xi > 0 for
each i ∈ {1, 2, 3} and xi ≤ xj ≤ xk for some i, j, k with {i, j, k} =
{1, 2, 3}. As in the proof of part (a) we obtain the estimate

4 = ρ = r(x) ≤ −(xi − 2)3 + 4, so xi = 2,

and

4 = ρ = r(x) = 4 + (xj − xk)2, so l := xj = xk ≥ 2.

For l = 2 the four local minima

(2, 2, 2), (−2,−2, 2), (−2, 2,−2), (2,−2,−2)
and for l ≥ 3 the 24 local minima

(ε12, ε2l, ε3l), (ε1l, ε22, ε3l), (ε1l, ε2l, ε32)

with ε1, ε2, ε3 ∈ {±1}, ε1ε2ε3 = 1,

are in one Br3 ⋉ {±1}3 orbit because of the action of Gsign and γ.
It remains to see that local minima in different lines in the list in

part (e) are in different Br3 ⋉ {±1}3 orbits. One reason is part (f).
Another way to argue is given in the Remarks 4.7.

(f) See Lemma 4.10 (e). □

Remarks 4.7. Part (f) of Theorem 4.6 is strong and allows easily
to see when Br3 ⋉ {±1}3 orbits are separate. Nevertheless it is also
interesting to find invariants of the orbits which separate them.

Now we discuss several invariants which help to prove the claim
that local minima in different lines in the list in part (e) are in different
Br3 ⋉ {±1}3 orbits.

The number r(x) ∈ Z is such an invariant. Furthermore the set
{(0, 0, 0)} is a single orbit and thus different from the orbit of S(P2).
Therefore the claim is true for the lines with r ∈ {0, 1, 2, 3}.

It remains to consider the 3 +∞ lines with r = 4. Certainly the
reducible case S(P1A1) is separate from the other cases, which are all
irreducible. The signature of I(0) is an invariant. It is given in Lemma

5.7. It allows to see that the orbits of S(Â2), S(H1,2) are different from
one another and from the orbits of S(−l, 2,−l) for l ≥ 3. In order to see
that the orbits of S(−l, 2,−l) for l ≥ 3 are pairwise different, we can
offer Lemma 7.10, which in fact allows to separate all the lines with
r = 4. It considers the induced monodromy on the quotient lattice
HZ/Rad I

(1).
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Remarks 4.8. Krüger [Kr90, §12] and Cecotti-Vafa [CV93, Ch.
6.2] considered the action of the group (Gphi ⋉ Gsign) ⋊ ⟨γ, γ2⟩ with
γ2 : R3 → R3, (x1, x2, x3) 7→ (x2, x1, x3), so ⟨γ, γ2⟩ ∼= S3 which is
slightly larger than (Gphi ⋉Gsign)⋊ ⟨γ⟩. Because of

γ2φ1γ
−1
2 = φ2, γ2φ2γ

−1
2 = φ1, γ2φ3γ

−1
2 = φ3, γ2γγ

−1
2 = γ−1,

we have

Br3 ⋉ {±1}3
(
γ2(x)

)
= γ2

(
Br3 ⋉ {±1}3(x)

)
.

Especially, the Br3⋉{±1}3 orbit of x coincides with the (Gphi⋉Gsign)⋊
⟨γ, γ2⟩ orbit of x in the following cases:

(i) if xi = xj for some i ̸= j,
(ii) if xi = 0 for some i (observe δR3 γφ1(x1, x2, 0) = (x2, x1, 0)),
(iii) if x = (x1, x2,

1
2
x1x2) with |xi| ≥ 3 and |x1| ≠ |x2| (observe

φ3(x) = (x2, x1,
1
2
x1x2)).

In Lemma 4.12 24 sets C1, ..., C24 of local minima are considered. The
only local minima x ∈

⋃24
i=1Ci which satisfy none of the conditions

(i), (ii) and (iii) are those in C16 ∪ C22 ∪ C24. Theorem 4.13 (b) shows
that in these cases the Br3 ⋉ {±1}3 orbits of x and of γ2(x) are indeed
disjoint.

Especially all orbits in the fibers r−1(ρ) with ρ ∈ {0, 1, 2, 3, 4} con-
tain local minima which satify (i), (ii) or (iii), so there the classifica-
tions in Theorem 4.6 and the classification by Krüger and Cecotti-Vafa
coincide.

We do not know whether for x ∈ C16 ∪ C22 ∪ C24 and γ2(x) the
corresponding unimodular bilinear lattices with sets of distinguished
bases are isomorphic or not.

For x and γ2(x) in one Br3 ⋉ {±1}3 orbit they are isomorphic, see
Remark 3.20 (iii).

4.3. A classification of the Br3 ⋉ {±1}3 orbits in Z3

This section refines the results of section 4.2 on the braid group
action on integer upper triangular 3×3 matrices. Using pseudo-graphs,
it gives a classification of all orbits of Br3 on Z3/{±1}3. Definition 4.9
makes precise what is meant here by a pseudo-graph, and it defines a
pseudo-graph G(x) for any local minimum x ∈ Z3.

As Br3 ⋉ {±1}3 and (Gphi ⋉ {±1}3)⋊ ⟨γ⟩ are semidirect products
with normal subgroups {±1}3, the groups Br3 and Gphi ⋊ ⟨γ⟩ act on
Z3/{±1}3.
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Definition 4.9. (a) For any set V , P(V) denotes its power set, so
the set of all its subsets, and Pk(V) for some k ∈ N denotes the set of
all subsets with k elements. We will use only P1(V) and P2(V).

(b) A pseudo-graph is here a tuple G =
(V ,V0,V1,V2, v0, E1, E2, E3, Eγ) with the following ingredients:
V is a non-empty finite or countably infinite set of vertices.
V0,V1,V2 ⊂ V are pairwise disjoint subsets, V0 is not empty (the

sets V1 and V2 may be empty, the union V0 ∪ V1 ∪ V2 can be equal to
V or a proper subset of V).

v0 ∈ V0 is a distinguished vertex in V0.
E1, E2, E3 ⊂ P1(V) ∪ P2(V) are sets of undirected edges. A subset

of V with two elements means an edge between the two vertices. A
subset of V with one element means a loop from the vertex to itself.
Eγ = {(v0, v1), (v2, v0)} for some v1, v2 ∈ V0 is a set of two or one

directed edges, one only if v1 = v2 = v0, and then it is a directed loop.

(c) An isomorphism between two pseudo-graphs G and G̃ is a bijec-

tion ϕ : V → Ṽ with ϕ(v0) = ṽ0 which induces bijections ϕ : Vi → Ṽi,
ϕ : Ej → Ẽj and ϕ : Eγ → Ẽγ.

(d) G|V0∪V1 denotes the restriction of a pseudo-graph G to the vertex
set V0 ∪ V1, so one deletes all vertices in V − (V0 ∪ V1) and all edges
with at least one end in V − (V0 ∪ V1). Analogously, G|V0 denotes the
restriction of a pseudo-graph G to the vertex set V0.

(e) Define

L0 := {x/{±1}3 |x ∈ Z3 is a local minimum},
L1 := {y/{±1}3 | y ∈ Z3 with |yi| = 1 for some i} − L0,

L2 := Z3/{±1}3 − (L0 ∪ L1).

(f) A pseudo-graph G(x) is associated to a local minimum x ∈ Z3

in the following way:

V := Br3(x/{±1}3) ⊂ Z3/{±1}3,
V0 := V ∩ L0 is the set of sign classes in V of local minima,

V1 := V ∩ L1,

V2 := {w ∈ V ∩ L2 | an i ∈ {1, 2, 3} with φi(w) ∈ V0 ∪ V1 exists},
v0 := x/{±1}3,
Ei := {{w,φi(w)} |w ∈ V} for i ∈ {1, 2, 3},
Eγ := {(v0, γ(v0)), (γ−1(v0), v0)}.
(g) An infinite tree (W ,F) consists of a countably infinite setW of

vertices and a set F ⊂ P2(W) of undirected edges such that the graph
is connected and has no cycles. A (2,∞ × 3)-tree is an infinite tree
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with a distinguished vertex with two neighbours such that any other
vertex has three neighbours.

The next lemma gives already structural results about the pseudo-
graphs G(x) for the local minima x ∈ Z3. Theorem 4.13 and the
Remarks 4.14 will give a complete classification of all isomorphism
classes of pseudo-graphs G(x) for the local minima x ∈ Z3.

Lemma 4.10. Let x ∈ Z3 be a local minimum with pseudo-graph
G(x) = (V ,V0,V1,V2, v0, E1, E2, E3, Eγ).

(a) (x and G(x) are not used in part (a)) For w ∈ L2, there are
i, j, k with {i, j, k} = {1, 2, 3} and ∥φi(w)∥ < ∥w∥, ∥φj(w)∥ > ∥w∥,
∥φk(w)∥ > ∥w∥, φj(w) ∈ L2, φk(w) ∈ L2 and φj(w) ̸= φk(w).

(b) Let w ∈ V2, so especially w ∈ L2. Choose i, j, k as in part (a).
The edge which connects w ∈ V2 with V0 ∪ V1 is in Ei. After deleting
this edge, the component of the remaining pseudo-graph which contains
w is a (2,∞ × 3)-tree with distinguished vertex w and all vertices in
L2.

(c) The pseudo-graph G(x) is connected.
(d) The pseudo-graph G(x)|V0∪V1 is connected.
(e) The pseudo-graph G(x)|V0∪V1 is finite, and

V0 = ⟨γ⟩(v0) or V0 = ⟨γ, γ2⟩(v0).

Proof: (a) Consider w = y/{±1}3 ∈ L2. Then |yi| ≥ 2 for i ∈
{1, 2, 3} because w /∈ L0 ∪ L1. w /∈ L0 implies y1y2y3 > 0. We can
suppose y1, y2, y3 ∈ Z≥2. Observe for i, j, k with {i, j, k} = {1, 2, 3}

∥φj(y)∥2 − ∥φi(y)∥2

= (y2i + (yiyk − yj)2 + y2k)− ((yjyk − yi)2 + y2j + y2k)

= (y2i − y2j )y2k.
Consider the case 2 ≤ y1 ≤ y2 ≤ y3. The other cases are analogous.
Then

∥φ3(y)∥ ≤ ∥φ2(y)∥ ≤ ∥φ1(y)∥.

Because w /∈ L0 ∥φ3(y)∥ < ∥y∥. Also φ2(y) = (y3, y1y3 − y2, y1) with

φ2(y)2 = y1y3 − y2 ≥ (y1 − 1)y3

{
≥ 2y3 > y2 if y1 > 2,
= y3 > y2 if y1 = 2.

Here y3 > y2 if y1 = 2 because y = (2, y2, y3) is not a local minimum.
Therefore ∥φ2(y)∥ > ∥y∥, and also ∥φ1(y)∥ ≥ ∥φ2(y)∥ > ∥y∥. Es-

pecially φ2(y) and φ1(y) are not local minima, so φ2(w) /∈ L0 and
φ1(w) /∈ L0.
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Obviously φ2(y)i ≥ 2 and φ1(y)i ≥ 2 for i ∈ {1, 2, 3}, so φ2(w) ∈ L2

and φ1(w) ∈ L2. The inequality φ2(w) ̸= φ1(w) follows from

φ2(y)2 ≥ 2y3 > y3 = φ1(y)2 if y1 > 2,

φ2(y)2 = y1y3 − y2 > (y1 − 1)y3 = y3 = φ1(y)2 if y1 = 2.

(b) Because φj(w), φk(w) ∈ L2, the edge which connects w to V0∪V1
cannot be in Ej or Ek, so it is in Ei.

Using part (a) again and again, one sees that the component of
G(x)− (this edge) which contains w is a (2,∞× 3) tree.

(c) Any vertex w ∈ V = (Gphi ⋊ ⟨γ⟩)(v0) is obtained from v0 by
applying an element ψγξ with ψ ∈ Gphi and ξ ∈ {0,±1}. As Gphi is
a free Coxeter group with generators φ1, φ2, φ3, applying ψγ

ξ to v0
yields a path in G(x) from v0 to w.

(d) This follows from (b) and (c).
(e) Consider w = y/{±1}3 ∈ V1. Because w /∈ V0, y1y2y3 > 0. We

can suppose y1, y2, y3 ∈ N, and one of them is equal to 1. Suppose
1 = y1 ≤ y2 ≤ y3. Then

φ3(y) = (y2, 1, y2 − y3), so y2 · 1 · (y2 − y3) ≤ 0,

so φ3(w) ∈ V0, (4.8)

φ2(y) = (y3, y3 − y2, 1),
so φ2(w) ∈ V0 ∪ V1 (in V0 only if y3 = y2), (4.9)

φ1φ2(y) = (−y2, 1, y3 − y2),
so φ1φ2(w) = φ3(w) ∈ V0. (4.10)

Especially, each vertex in V1 is connected by an edge to a vertex in V0.
Therefore the main point is to show V0 = ⟨γ⟩(v0) or V0 = ⟨γ, γ2⟩(v0).

Then V0 and V1 are finite.
First case, the restricted pseudo-graph G(x)|V0 is connected: Then

∥w∥ = ∥v0∥ for each w ∈ V0. This easily implies V0 = ⟨γ⟩(v0) or
V0 = ⟨γ, γ2⟩.

Second case, the restricted pseudo-graph G(x)|V0 is not connected:
We will lead this to a contradiction. Within all paths in G(x)|V0∪V1

which connect vertices in different components of G(x)|V0 , consider a
shortest path. It does not contain an edge in Eγ, because else one could
go over to a path of the same length with an edge in Eγ at one end
and between the same vertices, but dropping that edge would lead to
a shorter path. Because each vertex in V1 is connected by an edge to
a vertex in V0, a shortest path contains either one or two vertices in
V1. The observations (4.8)–(4.10) lead in both cases to the vertices at
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the end of the path being in the same component of G(x)|V0 , so to a
contradiction. □

Examples 4.11. The following 14 figures show the pseudo-graphs
G1, ...,G14 for 14 values v0 = x/{±1}3 with x ∈ Z3 a local minimum.
The ingredients of the figures have the following meaning.
• a vertex in V0,
⊗ a vertex in V1,

a vertex in V2 together with the (2,∞× 3) tree (compare
Lemma 4.10 (b)),

i
—– an edge in Ei,
γ→— an edge in Eγ.

The pseudo-graphs are enriched in the following way. Each vertex is
labeled with a value y of its sign class y/{±1}3. We have chosen y ∈ N3

if y1y2y3 > 0 (this holds for all y/{±1}3 ∈ V1∪V2 and some y/{±1}3 ∈
V0) and y ∈ Z3

≤0 if y1y2y3 ≤ 0 (this holds for some y/{±1}3 ∈ V0).
The vertex v0 can be recognized by the edges in Eγ leading to and from
it. The sets Ci are defined in Lemma 4.12. The relations Gj : Ci are
explained in Theorem 4.13.

Figure 4.2. G1 : C1 (A3
1), C2 (H1,2). Here x =

(0, 0, 0) ∈ C1.

61



Figure 4.3. G2 : C3, C4, C5, so the reducible cases
without A3

1. Here x = (x, 0, 0) ∈ C3 ∪ C4 ∪ C5, x < 0.

Figure 4.4. G3 : C6 (A3). Here x = (−1, 0,−1).

Figure 4.5. G4 : C7 (Â2). Here x = (−1,−1,−1).
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Figure 4.6. G5 : C8, C9. Here x = (l, 2, l) ∼
(−l, 2,−l) with l ≥ 3.

Figure 4.7. G6 : C10, C11, C12. Here x = (3, 3, 3) ∈ C10.
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Figure 4.8. G7 : C13. Here x = (4, 4, 8).

Figure 4.9. G8 : C14. Here x = (3, 4, 6).
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Figure 4.10. G9 : C15, C16, C23, C24. Here x =
(3, 4, 5) ∈ C16.

Figure 4.11. G10 : C17. Here x = (−2,−2, 0).
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Figure 4.12. G11 : C18. Here x = (−3,−2, 0).

Figure 4.13. G12 : C19. Here x = (−2,−1, 0).
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Figure 4.14. G13 : C20. Here x = (−2,−1,−1).

Figure 4.15. G14 : C21, C22. Here x =
(−2,−2,−1) ∈ C21.
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Lemma 4.12. Consider the following 24 sets Ci, i ∈ {1, 2, ..., 24},
of triples in Z3.

C1 = {(0, 0, 0)} (A3
1),

C2 = {(2, 2, 2)} (H1,2),

C3 = {(−1, 0, 0)} (A2A1),

C4 = {(−2, 0, 0)} (P1A1),

C5 = {(x, 0, 0) |x ∈ Z≤−3}
(the reducible cases without A3

1, A2A1,P1A1),

C6 = {(−1, 0,−1)} (A3),

C7 = {(−1,−1,−1)} (Â2),

C8 = {(−l, 2,−l) | l ∈ Z≥3 odd},
C9 = {(−l, 2,−l) | l ∈ Z≥4 even},
C10 = {(3, 3, 3)} (P2),

C11 = {(x, x, x) |x ∈ Z≥4},
C12 = {(x, x, x) |x ∈ Z≤−2},
C13 = {(2y, 2y, 2y2) | y ∈ Z≥2},

C14 = {(x1, x2,
1

2
x1x2 | 3 ≤ x1 < x2, x1x2 even},

C15 = {(x1, x1, x3) | 3 ≤ x1 < x3 <
1

2
x21}

∪ {(x1, x2, x2) | 3 ≤ x1 < x2},

C16 = {(x1, x2, x3) | 3 ≤ x1 < x2 < x3 <
1

2
x1x2}

∪ {(x1, x2, x3) | 3 ≤ x2 < x1 < x3 <
1

2
x1x2},

C17 = {(x, x, 0) |x ∈ Z≤−2},
C18 = {(x1, x2, 0) |x1 < x2 ≤ −2},
C19 = {(x,−1, 0) |x ∈ Z≤−2},
C20 = {(x,−1,−1) |x ∈ Z≤−2},
C21 = {(x, x,−1) |x ∈ Z≤−2},
C22 = {(x1, x2,−1) |x1 < x2 ≤ −2}

∪ {(x1, x2,−1) |x2 < x1 ≤ −2},
C23 = {(x1, x1, x3) |x1 < x3 ≤ −2}

∪ {(x1, x2, x2) |x1 < x2 ≤ −2},
C24 = {(x1, x2, x3) |x1 < x2 < x3 ≤ −2}

∪ {(x1, x2, x3) |x2 < x1 < x3 ≤ −2}.
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(a) Each triple in
⋃24

i=1Ci is a local minimum. All x in one set
Ci have the value in the following table or satisfy the inequality in the
following table,

ρ i with r(x) = ρ for x ∈ Ci

0 1, 10
1 3
2 6
4 2, 4, 7, 8, 9
< 0 11, 13, 14, 15, 16
> 4 5, 12, 17, 18, 19, 20, 21, 22, 23, 24

(b) The following table makes statements about the ⟨γ⟩ orbits and
the ⟨γ, γ2⟩ orbits of v0 = x/{±1}3 with x ∈

⋃24
i=1Ci,

i ∈ {1, 2, 7, 10, 11, 12} ⟨γ⟩(v0) is γ2-invariant
and has size 1

i ∈ {3, 4, 5, 6, 8, 9, 13, 15, 17, 20, 21, 23} ⟨γ⟩(v0) is γ2-invariant
and has size 3

i ∈ {14, 16, 18, 19, 22, 24} ⟨γ⟩(v0) is not γ2-invariant
and has size 3,

⟨γ, γ2⟩(v0) has size 6

(c) The set of all local minima in Z3 is the following disjoint union,(⋃̇
i∈{1,...,24}−{14,18,19}

⋃̇
x∈Ci

(Gsign ⋊ ⟨γ⟩){x}
)

∪̇
(⋃̇

i∈{14,18,19}

⋃̇
x∈Ci

(Gsign ⋊ ⟨γ, γ2⟩){x}
)
.

Proof: Part (b) is trivial. The parts (a) and (c) follow with the
characterization of local minima in Lemma 4.4 and Theorem 4.6 (c)–
(e). □

Theorem 4.13. (a) Z3 is the disjoint union⋃̇
i∈{1,...,24}

⋃̇
x∈Ci

(Br3 ⋉ {±1}3)(x).

(b) For v0 = x/{±1}3 with x ∈
⋃24

i=1Ci, the set V0 = Br3(v0)∩L0 of
sign classes of local minima in the Br3⋉{±1}3 orbit of x is as follows,

V0 = ⟨γ⟩(v0) if i ∈ {1, ..., 24} − {14, 18, 19},
V0 = ⟨γ, γ2⟩(v0) if i ∈ {14, 18, 19}.

(c) The set {G(x) |x ∈
⋃24

i=1Ci} of pseudo-graphs G(x) for x ∈⋃24
i=1Ci consists of the 14 isomorphism classes G1, ...,G14 in the Exam-

ples 4.11. All x in one set Ci have the same pseudo-graph. The first
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and second column in the following table give for each of the 14 pseudo-
graphs Gj the set or the sets Ci with G(x) = Gj for x ∈ Ci. The third
and fourth column in the following table are subject of Theorem 4.16.

sets (Gphi ⋊ ⟨γ⟩)x/{±1}3 (Br3)x/{±1}3

G1 C1 (A3
1), C2 (H1,2) Gphi ⋊ ⟨γ⟩ Br3

G2 C3, C4, C5 (red. cases) ⟨φ1, γ
−1φ3⟩ ⟨σ1, σ2

2⟩
G3 C6 (A3) ⟨γφ3, φ2φ1φ3⟩ ⟨σ1σ2, σ3

1⟩
G4 C7 (Â2) ⟨γ, φ2φ1φ3⟩ ⟨σ2σ1, σ3

1⟩
G5 C8, C9 ((−l, 2,−l)) ⟨γ−1φ1⟩ ⟨σmon, σ−1

1 σ−1
2 σ1⟩

G6 C10(P2), C11, C12 ⟨γ⟩ ⟨σ2σ1⟩
G7 C13 (e.g. (4, 4, 8)) ⟨φ3⟩ ⟨σ2σ2

1⟩
G8 C14(e.g. (3, 4, 6)) ⟨id⟩ ⟨σmon⟩
G9 C15, C16, C23, C24 ⟨id⟩ ⟨σmon⟩
G10 C17 (e.g. (−2,−2, 0)) ⟨γ−1φ2⟩ ⟨σmon, σ2⟩
G11 C18 (e.g. (−3,−2, 0)) ⟨γ−1φ3φ1⟩ ⟨σmon, σ2

2⟩
G12 C19 (e.g. (−2,−1, 0)) ⟨γ−1φ3φ1, φ3φ2φ1⟩ ⟨σmon, σ2

2, σ2σ
3
1σ

−1
2 ⟩

G13 C20 (e.g. (−2,−1,−1)) ⟨φ2φ3φ1, φ3φ2φ1⟩ ⟨σmon, σ3
2, σ2σ

3
1σ

−1
2 ⟩

G14 C21, C22 (e.g. (−2,−2,−1)) ⟨φ2φ3φ1⟩ ⟨σmon, σ3
2⟩

Proof: We start with part (c). It can be seen rather easily for all
x in one family Ci simultaneously. We do not give more details.

(b) The pseudo-graphs G8, G11 and G12 are the only of the 14
pseudo-graphs with |V0| = 6. By inspection of them or by Lemma
4.10 (e), for them V0 = ⟨γ, γ2⟩(v0). The table in part (c) gives the
correspondence G8 ↔ C14, G11 ↔ C18, G12 ↔ C19. The other 11
pseudo-graphs satisfy |V0| = 1 or |V0| = 3, so in any case V0 = ⟨γ⟩(v0).

(a) Part (c) of Lemma 4.12 alone shows already that Z3 is the union
given. Part (b) of Theorem 4.13 adds only the fact that this is a disjoint
union. □

Remarks 4.14. (i) We have 14 pseudo-graphs G1, ...,G14, but 24
sets C1, ..., C24 because the separation into the sets shall be fine enough
for the table in Theorem 4.13 (c) and the tables in Lemma 4.12 (a) and
(b).

(ii) In the pseudo-graphs Gj with |V0| = 3 or |V0| = 6 one can
choose another distinguished vertex ṽ0 ∈ V0 and change the set Eγ to

a set Ẽγ accordingly. This gives a pseudo-graph G̃j which is not equal
to Gj, but closely related.

The graphs G5 and G10 are related by such a change.
The following table shows for each Gj except G10 the number of

isomorphism classes of pseudo-graphs obtained in this way (including
the original pseudo-graphs). In the cases G8 and G11 there is |V0| = 6,
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but because of some symmetry of the pseudo-graph without Eγ, there
are only 3 related pseudo-graphs.

Gi, i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
∑

related 1 3 3 1 3 1 3 3 3 G5 3 6 3 3 36
pseudo-graphs

The total number 36 is the number of isomorphism classes of pseudo-
graphs G(x) for x ∈ Z3 a local minimum.

4.4. The stabilizers of upper triangular 3× 3 matrices

The groups Gphi ⋉ ⟨γ⟩ and Br3 act on Z3/{±1}3. The pseudo-
graphs in the Examples 4.11 and Theorem 4.13 offer a convenient way
to determine the stabilizers (Gphi⋉⟨γ⟩)v0 and (Br3)v0 for v0 = x/{±1}3
with x ∈

⋃24
i=1Ci a local minimum.

The stabilizers of v0 depend only on the pseudo-graph Gj with
Gj = G(x). The results are presented in Theorem 4.16. The Remarks
4.15 prepare this.

Remarks 4.15. (i) First we recall some well known facts about
the groups SL2(Z) and PSL2(Z) and their relation to Br3. The group
SL2(Z) is generated by the matrices

A1 :=

(
1 −1
0 1

)
and A2 :=

(
1 0
1 1

)
.

Generating relations are

A1A2A1 = A2A1A2 and (A2A1)
6 = E2.

The group Br3 is generated by the elementary braids σ1 and σ2. The
only generating relation is σ1σ2σ1 = σ2σ1σ2. Therefore there is a sur-
jective group homomorphism

Br3 → SL2(Z), σ1 7→ A1, σ2 7→ A2,

with kernel ⟨(σ2σ1)6⟩ = ⟨(σmon)2⟩. It induces a surjective group homo-
morphism

Br3 → PSL2(Z), σ1 7→ [A1], σ2 7→ [A2],

with kernel ⟨σmon⟩ because (A2A1)
3 = −E2.

(ii) The action of Br3 ⋉ {±1}3 on T uni
3 (Z) and on Z3 is fixed in the

beginning of section 4.1. One sees that σmon = (σ2σ1)
3 acts trivially

on T uni
3 (Z) and Z3. This can be checked directly. Or it can be seen as

a consequence of the following two facts.
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(1) The action of Br3⋉{±1}3 on (Br3⋉{±1}3)(x) for some x ∈
Z3 is induced by the action of Br3 ⋉ {±1}3 on the set Bdist of
distinguished bases of a triple (HZ, L, e) with L(e

t, e)t = S(x)
by S((α, ε)(x)) = L((α, ε)(e)t, (α, ε)(e))t for (α, ε) ∈ Br3 ⋉
{±1}3.
(2) For (α, ε) = (σmon, (1, 1, 1)) (α, ε)(e) = Z((α, ε))(e) =
M(e) by Theorem 3.10, and L(M(e)t,M(e)) = L(et, e).

In any case the action of Br3 ⋉ {±1}3 on Z3 boils down to a nonlinear
action of PSL2(Z)⋉Gsign where Gsign = ⟨δR1 , δR2 ⟩ catches the action of
{±1}3 on Z3, see section 4.1.

(iii) The shape of this nonlinear action led us in Definition 4.1 and
Theorem 4.2 to the group (Gphi ⋉Gsign)⋊ ⟨γ⟩ = (Gphi ⋊ ⟨γ⟩)⋉Gsign.
In fact, Gphi ⋊ ⟨γ⟩ ∼= PSL2(Z). This can be seen as follows.

The formulas (4.1)–(4.4) in the proof of Theorem 4.2 (c) give lifts to
Br3⋉ {±1}3 of the generators φ1, φ2, φ3 and γ of Gphi⋉ ⟨γ⟩. Dropping
the generators of the sign action in these lifts, we obtain the following
lifts to Br3,

l(γ) = σ2σ1, l(γ−1) = σ−1
1 σ−1

2 ,
l(φ1) = l(γ)−1σ−1

2 = σ−1
1 σ−2

2 ,
l(φ2) = l(γ)σ2 = σ2σ1σ2 = σ1σ2σ1,
l(φ3) = l(γ)σ1 = σ2σ

2
1.

 (4.11)

The equality of groups in Theorem 4.2 (c) boils down after dropping
the sign action to an equality of groups

⟨σR
1 , σ

R
2 ⟩ ∼= Gphi ⋊ ⟨γ⟩. (4.12)

As (σR
2 σ

R
1 )

3 = id, we obtain a surjective group homomorphism
PSL2(Z) → Gphi ⋊ ⟨γ⟩ with [Ai] 7→ σR

i . The subgroup
⟨[A1]

−1[A2]
−2, [A2][A1][A2], [A2][A1]

2⟩ of PSL2(Z) is mapped to Gphi.
One easily calculates that this subgroup is the free Coxeter group
with three generators which was considered in Remark 6.12 (iv) and
which has index three in PSL2(Z). As Gphi is also a free Coxeter
group with three generators and has index 3 in Gphi ⋊ ⟨γ⟩, the map
PSL2(Z)→ Gphi ⋊ ⟨γ⟩ is a group isomorphism.

(iv) For use in the proof of Theorem 4.16 we recall the formulas
(4.6)

γφ1 = φ2γ, γφ2 = φ3γ, γφ3 = φ1γ,
φ1γ

−1 = γ−1φ2, φ2γ
−1 = γ−1φ3, φ3γ

−1 = γ−1φ1,

}
(4.13)

from the proof of Theorem 4.2.
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(v) The relation σ1σ2σ1 = σ2σ1σ2 is equivalent to each of the two
relations

σ1σ2σ
−1
1 = σ−1

2 σ1σ2 and σ−1
1 σ2σ1 = σ2σ1σ

−1
2

and induces for any m ∈ Z the relations

σ1σ
m
2 σ

−1
1 = σ−1

2 σm
1 σ2 and σ−1

1 σm
2 σ1 = σ2σ

m
1 σ

−1
2 . (4.14)

Also this will be useful in the proof of Theorem 4.16.

Theorem 4.16. Consider v0 := x/{±1}3 with x ∈
⋃24

i=1Ci ⊂ Z3 a
local minimum, and consider the pseudo-graph Gj with Gj = G(x). The
entries in the third and fourth column in the table in Theorem 4.13,
which are in the line of Gj, give the stabilizers (Gphi⋊⟨γ⟩)v0 and (Br3)v0
of v0.

Proof: First we treat the stabilizer (Gphi ⋊ ⟨γ⟩)v0 .
The total set |Gj| of the pseudo-graph Gj means the union of ver-

tices and edges in an embedding of the pseudo-graph in the real plane
R2 as in the figures in the Examples 4.11. The fundamental group
π1(|Gj|, v0) is a free group with 0, 1, 3, 4, 5 or 6 generators. The num-
ber of generators is the number of compact components in R2 − |Gj|.
A generator is the class of a closed path which starts and ends at v0
and turns once around one of these compact components. Any such
closed path induces a word in φ1, φ2, φ3, γ and γ−1. This word gives
an element of (Gphi ⋊ ⟨γ⟩)v0 . We obtain a group homomorphism

π1(|Gj|, v0)→ (Gphi ⋊ ⟨γ⟩)v0 .

It is surjective because any element of (Gphi ⋊ ⟨γ⟩)v0 can be written as
ψγξ with ψ ∈ Gphi and ξ ∈ {0,±1}. The element ψγξ leads to and
comes from a closed path in |Gj| which starts and ends at v0.

In fact, this shows that we could restrict to closed paths which run
never or only once at the beginning through an edge in Eγ. But we will
not use this fact.

The following list gives for each of the 14 pseudo-graphs G1, ...,G14
in the first line one word in φ1, φ2, φ3, γ and γ−1 for each compact
component of R2 − |Gj|. In the following lines the relations (4.13) are
used to show that all these words are generated in Gphi ⋊ ⟨γ⟩ by the
generators in the third column in the table in Theorem 4.13. The
generators are underlined.

G1 : φ1, φ2, φ3, γ.
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G2 : φ1, φ3γ, γφ2, γ
−1φ2γ, γφ3γ

−1, γφ1γ.

γφ1γ = γ2φ3 = γ−1φ3,

γφ2 = φ3γ = (γ−1φ3)
−1,

γ−1φ2γ = φ1,

γφ3γ
−1 = φ1.

G3 : φ1γ, φ2φ3γ, γφ2γ, γφ1φ2, γφ3.

φ1γ = γφ3,

φ2φ3γ = φ2γφ2 = γφ1φ2 = (γφ3)(φ2φ1φ3)
−1,

γφ2γ = γ2φ1 = γ−1φ1 = φ3γ
−1 = (γφ3)

−1.

G4 : γ, φ2φ1φ3, φ3φ2φ1, φ1φ3φ2.

γφ2φ1φ3γ
−1 = γφ2φ1γ

−1φ1 = γφ2γ
−1φ2φ1 = φ3φ2φ1,

γ−1φ2φ1φ3γ = γ−1φ2φ1γφ2 = γ−1φ2γφ3φ2 = φ1φ3φ2.

G5 : γ−1φ1, γφ2γ, γφ3.

γφ2γ = γ2φ1 = γ−1φ1,

γφ3 = φ1γ = (γ−1φ1)
−1.

G6 : γ.
G7 : φ3, γ

−1φ1γ, γφ2γ
−1.

γ−1φ1γ = φ3,

γφ2γ
−1 = φ3.

G8 : id.
G9 : id.
G10 : γ−1φ2, γφ3γ, γφ1.

γφ3γ = γ2φ2 = γ−1φ2,

γφ1 = φ2γ = (γ−1φ2)
−1.

G11 : γ−1φ3φ1, γφ1φ2γ, φ2φ3γ
−1.

γφ1φ2γ = γφ1γφ1 = γ2φ3φ1 = γ−1φ3φ1,

φ2φ3γ
−1 = φ2γ

−1φ1 = γ−1φ3φ1.
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G12 : φ3φ2φ1, γ−1φ3φ1, γ−1φ1φ3φ2γ, γφ1φ2γ, φ2φ3γ
−1,

γφ2φ1φ3γ
−1.

γ−1φ1φ3φ2γ = γ−1φ1φ3γφ1 = γ−1φ1γφ2φ1 = φ3φ2φ1,

γφ1φ2γ = γφ1γφ1 = γ2φ3φ1 = γ−1φ3φ1,

φ2φ3γ
−1 = φ2γ

−1φ1 = γ−1φ3φ1,

γφ2φ1φ3γ
−1 = γφ2φ1γ

−1φ1 = γφ2γ
−1φ2φ1 = φ3φ2φ1.

G13 : φ2φ3φ1, φ3φ2φ1, γ−1φ3φ1φ2γ, γ−1φ1φ3φ2γ, γφ1φ2φ3γ
−1,

γφ2φ1φ3γ
−1.

γ−1φ3φ1φ2γ = γ−1φ3φ1γφ1 = γ−1φ3γφ3φ1 = φ2φ3φ1,

γ−1φ1φ3φ2γ = γ−1φ1φ3γφ1 = γ−1φ1γφ2φ1 = φ3φ2φ1,

γφ1φ2φ3γ
−1 = γφ1φ2γ

−1φ1 = γφ1γ
−1φ3φ1 = φ2φ3φ1,

γφ2φ1φ3γ
−1 = γφ2φ1γ

−1φ1 = γφ2γ
−1φ2φ1 = φ3φ2φ1.

G14 : φ2φ3φ1, γ
−1φ3φ1φ2γ, γφ1φ2φ3γ

−1.

γ−1φ3φ1φ2γ = φ2φ3φ1 (see G13),
γφ1φ2φ3γ

−1 = φ2φ3φ1 (see G13).

Therefore the stabilizer (Gphi⋊ ⟨γ⟩)v0 is as claimed in the third column
of the table in Theorem 4.13.

Now we treat the stabilizer (Br3)v0 . It is the preimage in Br3 of
(Gphi⋊ ⟨γ⟩)v0 under the surjective group homomorphism Br3 → Gphi⋊
⟨γ⟩ with kernel ⟨σmon⟩. So if (Gphi⋊ ⟨γ⟩)v0 = ⟨g1, ..., gm⟩ and h1, ..., hm
are any lifts to Br3 of g1, ..., gm then (Br3)v0 = ⟨σmon, h1, ..., hm⟩.

For any word in φ1, φ2, φ3, γ and γ−1 we use the lifts in (4.11) to
construct a lift of this word.

The following list gives for each of the 14 pseudo-graphs G1, ...,G14
for each generator of (Gphi × ⟨γ⟩)v0 in the third column of the table
in Theorem 4.13 this lift and rewrites it using the relations (4.14).
The generators in the fourth column of the table in Theorem 4.13 are
underlined.
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G1 : Gphi ⇝ Br3,

G2 : φ1 ⇝ σ−1
1 σ−2

2 = σ2(σ
−1
2 σ−1

1 σ−1
2 )σ−1

2 = σ2(σ
−1
1 σ−1

2 σ−1
1 )σ−1

2

= (σ2
2σ1)(σ

−1
1 σ−1

2 )3 = σ2
2σ1(σ

mon)−1,

γ−1φ3 ⇝ (σ−1
1 σ−1

2 )(σ2σ
2
1) = σ1,

G3 : γφ3 ⇝ (σ2σ1)(σ2σ
2
1) = (σ2σ1σ2)σ

2
1 = (σ1σ2)σ

3
1,

φ2φ1φ3 ⇝ (σ1σ2σ1)(σ
−1
1 σ−2

2 )(σ2σ
2
1) = σ3

1,

G4 : γ ⇝ σ2σ1,

φ2φ1φ3 ⇝ σ3
1,

G5 : γ−1φ1 ⇝ (σ−1
1 σ−1

2 )(σ−1
1 σ−2

2 ) = (σ−1
1 σ−1

2 )3σ2σ1σ
−1
2

(4.14)
= (σmon)−1(σ−1

1 σ−1
2 σ1)

−1,

G6 : γ ⇝ σ2σ1,

G7 : φ3 ⇝ σ2σ
2
1,

G8 : id ⇝ id,

G9 : id ⇝ id,

G10 : γ−1φ2 ⇝ (σ−1
1 σ−1

2 )(σ2σ1σ2) = σ2,

G11 : γ−1φ3φ1 ⇝ (σ−1
1 σ−1

2 )(σ2σ
2
1)(σ

−1
1 σ−2

2 ) = σ−2
2 = (σ2

2)
−1,

G12 : γ−1φ3φ1 ⇝ (σ2
2)

−1,

φ3φ2φ1 ⇝ (σ2σ
2
1)(σ1σ2σ1)(σ

−1
1 σ−2

2 ) = σ2σ
3
1σ

−1
2 ,

G13 : φ2φ3φ1 ⇝ (σ1σ2σ1)(σ2σ
2
1)(σ

−1
1 σ−2

2 ) = (σ1σ2)
3σ−3

2

= σmon(σ3
2)

−1,

φ3φ2φ1 ⇝ σ2σ
3
1σ

−1
2 ,

G14 : φ2φ3φ1 ⇝ σmon(σ3
2)

−1.

Observe

(σ2σ1)
3 = σmon, (σ2σ

2
1)

2 = σmon.

Therefore the stabilizer (Br3)v0 is as claimed in the fourth column of
the table in Theorem 4.13. □

4.5. A global sign change, relevant for the odd case

Remarks 4.17. (i) For S ∈ T uni
n (Z) consider a unimodular bilinear

lattice (HZ, L) with a triangular basis e = (e1, ..., en) with L(e
t, e)t = S.

Consider also the matrix S̃ ∈ T uni
n (Z) with S̃ij = −Sij for i < j.
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On the same lattice HZ and the same basis e we define a second

unimodular bilinear form L̃ by L̃(et, e)t = S̃ and denote all objects

associated to (HZ, L̃, e) with a tilde, Ĩ(k), B̃tri, Γ̃(k), ∆̃(k).
Most of them differ a lot from the objects associated to (HZ, L, e).

But the odd intersection forms differ only by the sign. Therefore the

monodromies M and M̃ are different (in general), but the odd mon-
odromy groups and the sets of odd vanishing cycles coincide:

Ĩ(1) = −I(1),
so s̃(1)ei

= (s(1)ei
)−1,

M̃ = s̃(1)e1
◦ ... ◦ s̃(1)en

in general

̸= M = s(1)e1
◦ ... ◦ s(1)en ,

but Γ̃(1) = ⟨s̃(1)e1
, ..., s̃(1)en ⟩ = ⟨s

(1)
e1
, ..., s(1)en ⟩ = Γ(1),

∆̃(1) = Γ̃(1){±e1, ...,±en} = Γ(1){±e1, ...,±en} = ∆(1).

Because of Γ̃(1) = Γ(1) and ∆̃(1) = ∆(1) the global sign change from S

to S̃ is interesting.
(ii) In this section we will study the action on T uni

3 (Z) of the ex-
tension of the action of Br3⋉ {±1}3 by this global sign change. Define

δR : R3 → R3, (x1, x2, x3) 7→ (−x1,−x2,−x3)

and

G̃sign := ⟨δR1 , δR2 , δR⟩ ∼= {±1}3.

It is easy to see that the double semidirect product (Gphi⋉Gsign)⋊ ⟨γ⟩
extends to the double semidirect product (Gphi ⋉ G̃sign)⋊ ⟨γ⟩.

Lemma 4.18. Each (Gphi⋉G̃sign)⋊⟨γ⟩ orbit in Z3 contains at least
one local minimum of one of the following types:

(a) x ∈ Z3
≥3 with 2xi ≤ xjxk for {i, j, k} = {1, 2, 3}.

(b) (−l, 2,−l) for some l ∈ Z≥2.
(c) (x1, x2, 0) for some x1, x2 ∈ Z≥0 with x1 ≥ x2.

Proof: In (c) we can restrict to x1 ≥ x2 because δ
R
3 γφ1(x1, x2, 0) =

(x2, x1, 0).

Each (Gphi ⋉ G̃sign) ⋊ ⟨γ⟩ orbit consists of one or several (Gphi ⋉
Gsign)⋊ ⟨γ⟩ orbits and thus contains local minima.

Suppose that x ∈ Z3 is such a local minimum and is not
obtained with Gsign from a local minimum in (a), (b) or (c).

Then either x is a local minimum associated to S(Â2), so x ∈
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{(−1,−1,−1), (1, 1,−1), (1,−1, 1), (−1, 1, 1)} or x1x2x3 < 0 and
r(x) > 4.

In the first case δR(−1,−1,−1) = (1, 1, 1) = φ3(1, 1, 0), so the orbit
contains a local minimum in (c).

In the second case r(δR(x)) = r(−x) = r(x) + 2x1x2x3 < r(x). We
consider a local minimum x(1) in the Br3 ⋉ {±1}3 orbit of −x. If it is
not obtained with Gsign from a local minimum in (a), (b) or (c), then

x(1) is a local minimum associated to S(Â2) or x
(1)
1 x

(1)
2 x

(1)
3 < 0 and

r(x(1)) > 4.
We repeat this procedure until we arrive at a local minimum ob-

tained with Gsign from one in (a), (b) or (c). This stops after finitely
many steps because r(x(1)) = r(−x) < r(x). □

Remark 4.19. Corollary 6.23 will say that the (Gphi⋉ G̃sign)⋊ ⟨γ⟩
orbits of the local minima in the parts (b) and (c) of Lemma 4.18 are
pairwise different and also different from the orbits of the local minima
in part (a).

Examples 4.20. Given an element x ∈ Z3, it is not obvious which
local minimum of a type in (a), (b) or (c) is contained in the (Gphi ⋉
G̃sign) ⋊ ⟨γ⟩ orbit of x. We give four families of examples. An arrow
7→ between two elements of Z3 means that these two elements are in
the same orbit.

(i) Start with (x1, x2,−1) with x1 ≥ x2 > 0.

(x1, x2,−1)
G̃sign

7→ (x1, x2, 1)
φ17→ (x2 − x1, 1, x2)

G̃sign

7→ (x1 − x2, 1, x2)
7→ ... 7→ (gcd(x1, x2), 1, 0).

(ii) Start with (x1, x2,−2) with x1 ≥ x2 ≥ 2.

(x1, x2,−2)
G̃sign

7→ (x1, x2, 2)
φ17→ (2x2 − x1, 2, x2) 7→ ...

7→


(gcd(x1, x2), 2, 0) if x1 and x2

contain different powers of 2,
(− gcd(x1, x2), 2,− gcd(x1, x2)) if x1 and x2

contain the same power of 2

In order to understand the case discussion, observe that 2x2−x1 and x2
contain the same power of 2 if and only if x1 and x2 contain the same
power of 2. Furthermore 0 is divisible by an arbitrarily large power of
2.
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(iii) The examples in part (ii) lead in the special case gcd(x1, x2) = 1
to the following,

(x1, x2,−2) 7→ ... 7→ 7→ (1, 2, 0) or (−1, 2,−1)
7→ (2, 1, 0) or (1, 1, 0),

again depending on whether x1 and x2 contain different powers of 2 or
the same power of 2.

(iv) Start with (−3,−3,−l) for some l ∈ Z≥2.

(−3,−3,−l) δR7→ (3, 3, l) 7→ (3, 3,±(l − 9))

7→ (3, 3, l̃) for some l̃ ∈ {0, 1, 2, 3, 4}
7→ (3, 3, 0), (3, 1, 0), (−3, 2,−3), (3, 3, 3) or (4, 3, 3).

(3, 3, 0) and (3, 1, 0) are in part (c), (−3, 2,−3) is in part (b), and
(3, 3, 3) and (4, 3, 3) are in part (a) of Lemma 4.18.
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CHAPTER 5

Automorphism groups

A unimodular bilinear lattice (HZ, L) comes equipped with four

automorphism groups GZ, G
(0)
Z , G

(1)
Z and GM

Z of HZ, which all respect
the monodromy M and possibly some bilinear form. They are the
subject of this chapter.

Section 5.1 gives two basic observations which serve as general tools
to control these groups under reasonable conditions. Another very
useful tool is Theorem 3.26 (c), which gives in favourable situations an
n-th root of (−1)k+1M in GZ. Section 5.1 treats also the cases An

1 .
Section 5.2 takes care of the rank 2 cases. It makes use of some

statements on quadratic units in Lemma B.1 (a) in Appendix B.
All further sections 5.3–5.7 are devoted to the rank 3 cases. Section

5.3 discusses the setting and the basic data. It also introduces the
special automorphism Q ∈ Aut(HQ, L) which is id on ker(M − id) and
− id on ker(M2− (2− r)M +id) and determines the (rather few) cases
where Q is in GZ.

The treatment of the reducible rank 3 cases in section 5.4 builds on
the rank 2 cases and is easy.

The irreducible rank 3 cases with all eigenvalues in S1 form the four

single cases A3, Â2, P2, H1,2 and the series S(−l, 2,−l) with l ∈ Z≥3.
Here in section 5.5 third roots of the monodromy and in the series
S(−l, 2,−l) even higher roots of the monodromy turn up.

The sections 5.6 and 5.7 treat all irreducible rank 3 cases with
eigenvalues not all in S1 (1 is always one eigenvalue). Section 5.6 takes
care of those families of cases where GZ ⫌ {±Mm |m ∈ Z}, section 5.7
of all others.

Section 5.6 is rather long. Here again roots of the monodromy turn
up, and statements on quadratic units in Lemma B.1 are used.

Section 5.7 is very long. The main result GZ = {±Mm |m ∈ Z} in
these cases requires an extensive case discussion.

This chapter determines GZ in all cases with rank n ≤ 3. An
application is a proof of Theorem 3.28, which says that in almost all
cases with rank n ≤ 3 the map Z : (Brn⋉ {±1}n)S → GZ is surjective,
the exception being four cases in section 5.6.
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5.1. Basic observations

Given a bilinear lattice (HZ, L), the most important of the four

automorphisms groups GM
Z , G

(0)
Z , G

(1)
Z and GZ in Definition 2.3 (b) (iv)

and Lemma 2.6 (a) (iii) is the smallest group GZ. But the key to it is
often the largest group GM

Z . We collect some elementary observations
on these groups.

Lemma 5.1. Let HZ be a Z-lattice of some rank n ∈ N and let
M : HZ → HZ be an automorphism of it.

(a) The characteristic polynomial pch,M(t) ∈ Z[t] of the automor-
phism M is unitary. Each eigenvalue λ ∈ C of M is an algebraic
integer and a unit in the ring OQ[λ] ⊂ Q[λ] of algebraic integers in
Q[λ], so in O∗

Q[λ]. Also λ
−1 ∈ O∗

Q[λ].

(b) Suppose that M is regular, that means, M : HC → HC has for
each eigenvalue only one Jordan block.

(i) Then

Q[M ] =
n−1⊕
i=0

QM i !
= End(HQ,M) := {g : HQ → HQ | gM =Mg}.

(ii) Consider a polynomial p(t) =
∑n−1

i=0 pit
i ∈ Q[t] and the

endomorphism g = p(M) ∈ End(HQ,M) of HQ and HC. Then
g has the eigenvalue p(λ) on the generalized eigenspace Hλ of
M with eigenvalue λ. If g ∈ End(HZ,M) then p(λ) ∈ OQ[λ]

for each eigenvalue λ of M . If g ∈ GM
Z then p(λ) ∈ O∗

Q[λ] for
each eigenvalue λ of M .

(c) Suppose that M is the monodromy of a bilinear lattice (HZ, L).
Suppose that M is regular.

(i) Then

G
(0)
Z ∪G

(1)
Z ⊂ {p(M) | p(t) =

n−1∑
i=0

pit
i ∈ Q[t], p(M) ∈ End(HZ),

p(λ)p(λ−1) = 1 for each eigenvalue λ of M}.

(ii) If M is semisimple then GZ = G
(0)
Z = G

(1)
Z , and this set is

equal to the set on the right hand side of (i).

Proof: (a) Trivial.
(b) (i) As M is regular, one can choose a vector c ∈ HQ with HQ =⊕n−1

i=0 QM ic. The inclusion Q[M ] ⊂ End(HQ,M) is clear. Suppose
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g ∈ End(HQ,M). Write gc = p(M)c for some polynomial p(t) =∑n−1
i=0 pit

i ∈ Q[t]. As

gMkc =Mkgc =Mkp(M)c = p(M)Mkc

for each k ∈ {0, 1, ..., n− 1}, g = p(M). Thus Q[M ] = End(HQ,M).
(ii) Similar to part (a).

(c) (i) Suppose g = p(M) ∈ G(k)
Z for some k ∈ {0; 1} with p(t) =∑n−1

i=0 pit
i ∈ Q[t]. Recall Rad I(k) = ker(M − (−1)k+1 id : HZ → HZ).

For λ ̸= (−1)k+1 the generalized eigenspaces Hλ and Hλ−1 are dual
to one another with respect to I(k), and g has eigenvalue p(λ) onHλ and
eigenvalue p(λ−1) onHλ−1 . That g respects I(k) implies p(λ)p(λ−1) = 1.

For λ = (−1)k+1, g restricts to an automorphism of the sublattice
Hλ ∩ HZ of HZ with determinant ±1 = det(g|Hλ∩HZ) = p(λ)dimHλ , so
p(λ) = ±1.

(ii) Suppose additionally that M is semisimple and that g = p(M)
with p(t) =

∑n−1
i=0 pit

i ∈ Q[t] satifies g ∈ End(HZ) and p(λ)p(λ
−1) = 1

for each eigenvalue λ ofM . AsM is regular and semisimple, each eigen-
value has multiplicity 1. The (1-dimensional) eigenspaces Hλ and Hλ−1

are dual to one another with respect to L. The conditions p(λ)p(λ−1) =
1 imply that g respects L and also that det g =

∏
λ eigenvalue p(λ) = ±1.

Together with g ∈ End(HZ) this shows g ∈ GZ. □

The situation in the following Lemma 5.2 arises surprisingly often.
One reason is Theorem 3.26 (c). See the Remarks 5.3 below.

Lemma 5.2. Let HZ be a Z-lattice of some rank n ∈ N, let M :
HZ → HZ and M root : HZ → HZ be automorphisms of HZ, and let
l ∈ N and ε ∈ {±1} be such that the following holds: M is regular,

(M root)l = εM,

and M root is cyclic, that means, a vector c ∈ HZ with⊕n−1
i=0 Z(M root)ic = HZ exists.
(a) Then M root is regular, and

End(HZ,M) = End(HZ,M
root) = Z[M root],

Aut(HZ,M) = Aut(HZ,M
root) = {p(M root) | p(t) =

n−1∑
i=0

pit
i ∈ Z[t],

p(κ) ∈ (Z[κ])∗ for each eigenvalue κ of M root}.
(b) Suppose that M is the monodromy of a bilinear lattice (HZ, L)

and that the set of eigenvalues of M root is invariant under inversion,
that means, with κ an eigenvalue of M root also κ−1 is an eigenvalue of
M root.
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(i) Then M root ∈ GZ and

G
(0)
Z ∪G

(1)
Z ⊂ {p(M root) | p(t) =

n−1∑
i=0

pit
i ∈ Z[t],

p(κ)p(κ−1) = 1 for each eigenvalue κ of M root}.

(ii) If M is semisimple then GZ = G
(0)
Z = G

(1)
Z , and this set is

equal to the set on the right hand side if (i).

Proof: (a) M root is regular as M is regular and (M root)l = εM .
This equation also implies Q[M ] ⊂ Q[M root]. As these Q-vector spaces
have both dimension n,

End(HQ,M) = Q[M ] = Q[M root] = End(HQ,M
root).

Then End(HZ,M) = End(HZ) ∩Q[M root]. Consider g ∈ End(HZ,M).
Choose a cyclic generator c ∈ HZ with

⊕n−1
i=0 Z(M root)ic = HZ. Write

g(c) = p(M root)c for some polynomial p(t) =
∑n−1

i=0 pit
i ∈ Z[t]. As in

the proof of Lemma 5.1, one finds g = p(M root), so End(HZ,M) =
Z[M root]. The element g = p(M root) above is in Aut(HZ,M) if and
only if det g = ±1, and this holds if and only if the algebraic integer
p(κ) is a unit in Z[κ] for each eigenvalue κ of M root.

(b) (i) The main point is to show M root ∈ GZ. As M and M root are
both regular, the map κ 7→ εκl is a bijection from the set of eigenvalues
of M root to the set of eigenvalues of M . For λ = εκl, the generalized
eigenspaces Hλ and Hλ−1 ofM are the generalized eigenspaces ofM root

with eigenvalues κ and κ−1. These two spaces are dual to one another
with respect to I(0) (if λ ̸= −1), I(1) (if λ ̸= 1) and L.

Consider the decomposition of M root into the commuting semisim-
ple partM root

s and unipotent partM root
u with nilpotent part N root with

exp(N root) = M root
u , and also the decomposition M = MsMu with

nilpotent part N with expN =Mu.
M root

s and Ms respect L because they have eigenvalue κ and λ on
Hλ and eigenvalue κ−1 and λ−1 on Hλ−1 .

As M and Ms respect L, also Mu respects L. Therefore N is an in-
finitesimal isometry. Because N = lN root, also N root is an infinitesimal
isometry. Therefore M root

u respects L. Thus also M root = M root
s M root

u

respects L, so M root ∈ GZ.
Part (ii) and the rest of part (i) are proved as part (b) in Lemma

5.1. □

Remarks 5.3. (i) The pair (HZ,M
root) in Lemma 5.2 is an Orlik

block if M root is of finite order. They are important building blocks in
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the unimodular bilinear lattices (HZ, L) for many isolated hypersurface
singularities.

(ii) If the matrix S = L(et, e)t of a unimodular bilinear lattice
(HZ, L) with a triangular basis e has the special shape in Theorem
3.26 (c), then the monodromy (−1)k+1M has by Theorem 3.26 (c) a
specific n-th root M root ∈ GZ. This situation is special, but it arises
surprisingly often, in singularity theory and in the cases in part (ii).

(iii) Theorem 3.26 (c) applies to all matrices S(x) =

(
1 x
0 1

)
with

x ∈ Z and to all matrices S =

1 x εx
0 1 x
0 0 1

 with x ∈ Z and ε ∈ {±1}.

It applies especially to the matrices S(A3
1), S(Â2), S(H1,2) and

S(P2) in the Examples 1.1 and to the matrix S(−1, 1,−1) in the Br3⋉
{±1}3 orbit of S(A3). Though it is not useful in the cases S(A3

1) and
S(H1,2) because their monodromies are not regular. In the case S(A3)
we will not use it as there the monodromy itself is cyclic.

The completely reducible cases An
1 for n ∈ N can be treated easily,

building on Lemma 2.12.

Lemma 5.4. Fix n ∈ N and consider the case An
1 with S = S(An

1 ) =
En. Then

GZ = G
(0)
Z
∼= On(Z) = {A ∈ GLn({0;±1}) | ∃ σ ∈ Sn

∃ ε1, ..., εn ∈ {±1} such that Aij = εiδiσ(j)},

G
(1)
Z = GM

Z = Aut(HZ) ∼= GLn(Z).

The map Z : (Brn ⋉ {±1}n)S = Brn ⋉ {±1}n → GZ is surjective.

Proof: The groupsG
(1)
Z andGM

Z are as claimed becauseM = id and

I(1) = 0. The groups GZ and G
(0)
Z map the set R(0) = {±e1, ...,±en} to

itself and are therefore also as claimed.
The stabilizer of S = En is the whole group Brn ⋉ {±1}n. The

subgroup {±1}n gives all sign changes of the basis e = (e1, ..., en). The
subgroup Brn gives under Z all permutations of the elements of the
tuple (e1, ..., en). Therefore Z is surjective. □

5.2. The rank 2 cases

For x ∈ Z consider the matrix S = S(x) =

(
1 x
0 1

)
∈ T uni

2 (Z), and

consider a unimodular bilinear lattice (HZ, L) with a triangular basis
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e = (e1, e2) with L(e
t, e)t = S. Then

Me = eS−1St = e

(
1− x2 −x
x 1

)
,

pch,M(t) = t2 − (2− x2)t+ 1

with zeros λ1/2 =
2− x2

2
± 1

2
x
√
x2 − 4.

Theorem 3.26 (c) applies with (n, k, q0, q1) = (2, 0, 1, x), namely

δ2σ
root = δ2σ1 ∈ (Br2 ⋉ {±1}2)S,

M root := Z(δ2σ1) ∈ GZ

with M roote = e

(
−x −1
1 0

)
and (M root)2 = −M.

M root is regular and cyclic,

pch,Mroot(t) = t2 + xt+ 1

with zeros κ1/2 = −x
2
± 1

2

√
x2 − 4

with κ2i = −λi = −xκi − 1, κ1 + κ2 = −x, κ1κ2 = 1.

M is regular if x ̸= 0. M and M root are semisimple if x ̸= ±2. If
x = ±1, M has eigenvalues e±2πi/6 and M root has eigenvalues e±2πi/3

respectively e±2πi/6. If |x| ≥ 3, M and M root have real eigenvalues
and infinite order. If x = ±2, they have a 2 × 2 Jordan block with
eigenvalue −1 respectively −x

2
.

Theorem 5.5. (a) If x ̸= 0 then

GZ = G
(0)
Z = G

(1)
Z = {±(M root)l | l ∈ Z},

GM
Z =

{
GZ if x ̸= ±3,
{±(M root + x

|x| id)
l | l ∈ Z} if x = ±3.

If x = 0 then

GZ = G
(0)
Z
∼= O2(Z) = {

(
ε1 0
0 ε2

)
,

(
0 ε1
ε2 0

)
| ε1, ε2 ∈ {±1}},

G
(1)
Z = GM

Z = Aut(HZ) ∼= GL2(Z).

In all cases GZ = GB
Z, so Z : (Br2 ⋉ {±1}2)S → GZ is surjective.
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(b) Properties of I(0) and I(1):

x = 0 : I(1) = 0, Rad I(1) = HZ, L(e
t, e)t = E2, I

(0)(et, e) = 2E2.

x ̸= 0 : Rad I(1) = {0}.
|x| ≤ 1 : I(0) is positive definite.

|x| = 2 : I(0) is positive semi-definite, Rad I(0) = Z(e1 −
x

|x|
e2).

|x| > 2 : I(0) is indefinite, Rad I(0) = {0}.

Proof: Part (b) is obvious.
The case x = 0 is the case A2

1. It is covered by Lemma 5.4.
Consider the cases x ̸= 0 in part (a). We can restrict to x < 0

because of L((e1,−e2)t, (e1,−e2))t =
(
1 −x
0 1

)
. So suppose x < 0.

We know {±(M root)l | l ∈ Z} ⊂ GZ ⊂ GM
Z . By Lemma 5.2 (a)

GM
Z = {p(M root) | p(t) = p1t+ p0 ∈ Z[t], p(κ1)p(κ2) ∈ {±1}}.

The map

Q2 : Z2 → Z, (p1, p0) 7→ p(κ1)p(κ2) = p21 − p1p0x+ p20,

is a quadratic form. Lemma 5.2 (a) shows

GM
Z = {p1M root + p0 id | (p1, p0, ε1) ∈ Z2 × {±1}, Q2(p1, p0) = ε}.

Lemma 5.2 (b) (ii) shows for x ̸= −2

GZ = G
(0)
Z = G

(1)
Z = {p1M root + p0 id | (p1, p0) ∈ Z2, Q2(p1, p0) = 1}.

For x = −2 it shows only

GZ, G
(0)
Z , G

(1)
Z ⊂ {p1M

root + p0 id | (p1, p0) ∈ Z2, Q2(p1, p0) = 1}.

We discuss the cases x = −1, x = −2 and x ≤ −3 separately.
The case x = −1: Q2 is positive definite, so Q2(p1, p0) = −1 is

impossible, and

{(p1, p0) |Q2(p1, p0) = 1} = {±(0, 1),±(1, 0),±(1,−1)},
GZ = G

(0)
Z = G

(1)
Z = GM

Z = {± id,±M root,±(M root)2}.

Because of M2 = −M root this equals {± id,±M,±M2}.
The case x = −2: This follows from Lemma 5.6 below.
Remark: Here Q2 is positive semidefinite with Q2(p1, p0) = (p1 +

p0)
2. The solution (p1, p0) = (p1,−p1 + ε2) with ε2 ∈ {±1} of
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Q2(p1, p0) = 1 corresponds to

p1M
root + (−p1 + ε2) id = ε2(id+ε2p1(M

root − id))

= ε2(id+(M root − id))ε2p1

= ε2(M
root)ε2p1 .

The cases x ≤ −3: The arguments above show

GM
Z
∼= (Z[κ1])∗

⊃ GZ ∼= {p1κ1 + p0 ∈ Z[κ1] | (p1κ1 + p0)(p1κ2 + p0) = 1}.
So we need to understand the unit group of Z[κ1] and the subgroup of
elements with norm 1. Both are treated in Lemma B.1 (a) in Appendix
B.

It remains to show GZ = GB
Z in all cases x ∈ Z≤−1. This follows

from GZ = {±(M root)l | l ∈ Z} and
Z(δ1δ2) = − id, Z(δ2σ1) =M root. □

Lemma 5.6. Let HZ be a Z-lattice of rank 2, and let M̃ : HZ → HZ
be an automorphism with a 2×2 Jordan block and eigenvalue λ ∈ {±1}.

(a) Then a cyclic automorphism M̃ root : HZ → HZ with eigenvalue

1 and a number l ∈ N with (M̃ root)l = λM exist. They are unique.

Aut(HZ, M̃) = {±(M̃ root)l | l ∈ Z}.

(b) If Ĩ : HZ ×HZ → Z is an M̃-invariant bilinear form then it is

also M̃ root-invariant and

Aut(HZ, M̃ , Ĩ) = Aut(HZ, M̃) = {±(M̃ root)l | l ∈ Z}.

Proof: (a) There is a Z-basis f = (f1, f2) of HZ and an l ∈ N with

M̃f = fλ

(
1 l
0 1

)
.

Here f1 is a generator of the rank 1 Z-lattice ker(M̃ −λ id) ⊂ HZ. It is
unique up to the sign. It is a primitive element of HZ. An element f2
with HZ = Zf1⊕Zf2 exists. It is unique up to sign and up to adding a
multiple of f1. The sign is fixed by l in the matrix above being positive.
l is unique.

Define M̃ root : HZ → HZ by

M̃ rootf = f

(
1 1
0 1

)
.

Obviously (M̃ root)l = λM̃ .
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Any g ∈ Aut(HZ, M̃) must fix Zf1 = ker(M̃ − λ id). Therefore it

must be up to the sign a power of M̃ root.

(b) That M̃ root respects Ĩ follows by the same arguments asM root ∈
GZ in the proof of Lemma 5.2 (b) (i) (but now the situation is simpler,

as M̃ and M̃ root have a single 2 × 2 Jordan block). The rest follows
with part (a). □

5.3. Generalities on the rank 3 cases

For x = (x1, x2, x3) ∈ Z3 consider the matrix S = S(x) =1 x1 x2
0 1 x3
0 0 1

 ∈ T uni
3 (Z), and consider a unimodular bilinear lattice

(HZ, L) with a triangular basis e = (e1, e2, e3) with L(e
t, e)t = S. Then

S−1 =

1 −x1 x1x3 − x2
0 1 −x3
0 0 1

 ,

S−1St =

1− x21 − x22 + x1x2x3 −x1 − x2x3 + x1x
2
3 x1x3 − x2

x1 − x2x3 1− x23 −x3
x2 x3 1

 ,

Me = eS−1St,

I(0)(et, e) = S + St =

 2 x1 x2
x1 2 x3
x2 x3 2

 ,

I(1)(et, e) = S − St =

 0 x1 x2
−x1 0 x3
−x2 −x3 0

 ,

pch,M(t) = (t− 1)(t2 − (2− r(x))t+ 1),

where

r : Z3 → Z, x = (x1, x2, x3) 7→ x21 + x22 + x23 − x1x2x3.
For (x1, x2, x3) ̸= (0, 0, 0) define

f3 := e
1

gcd(x1, x2, x3)

−x3x2
−x1

 .

This is a primitive vector in HZ.

Rad I(1)
2.5 (a)(ii)

= ker(M − id) =

{
Zf3 if (x1, x2, x3) ̸= (0, 0, 0),
HZ if (x1, x2, x3) = (0, 0, 0).
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Also

pch,S+St(t) = t3 − 6t2 + (12− x21 − x22 − x23)t− 2(4− r),

L(f3, f3) =
r(x)

gcd(x1, x2, x3)2
, I(0)(f3, f3) = 2L(f3, f3).

The eigenvalues of M are called

λ1/2 =
2− r
2
± 1

2

√
r(r − 4), λ3 = 1

with λ1 + λ2 = 2− r, λ1λ2 = 1.
The following Lemma gives implicitly precise information on pch,M

and sign I(0) for all x ∈ Z3. Implicitly, because one has to determine
with the tools from section 4.2 in the cases r(x) ∈ {0, 1, 2, 4} in which
Br3 ⋉ {±1}3 orbit in Theorem 4.6 (e) the matrix S(x) is.

Lemma 5.7. (a) r−1(3l) = ∅ for l ∈ Z− 3Z.
(b) Consider x ∈ Z3 with r = r(x) < 0 or > 4 or with S(x) one of

the cases in Theorem 4.6 (e). Then pch,M and sign I(0) are as follows.

pch,M sign I(0) S(x)
r < 0 λ1, λ2 > 0 (+−−) S(x)
r = 0 Φ3

1 (+ + +) S(A3
1)

r = 0 Φ3
1 (+−−) S(P2)

r = 1 Φ6Φ1 (+ + +) S(A2A1)
r = 2 Φ4Φ1 (+ + +) S(A3)
r = 4 Φ2

2Φ1 (+ + 0) S(P1A1)

r = 4 Φ2
2Φ1 (+ + 0) S(Â2)

r = 4 Φ2
2Φ1 (+ 0 0) S(H1,2)

r = 4 Φ2
2Φ1 (+ 0 −) S(−l, 2,−l) with l ≥ 3

r > 4 λ1, λ2 < 0 (+ +−) S(x)

Proof: (a) If (3|x1, 3|x2, 3|x3) then 9|r.
If (3|x1, 3|x2, 3 ∤ x3) then 3|(r − 1), 3 ∤ r.
If (3|x1, 3 ∤ x2, 3 ∤ x3) then 3|(r − 2), 3 ∤ r.
If (3 ∤ x1, 3 ∤ x2, 3 ∤ x3) then 3|(x21 + x22 + x23), 3 ∤ r.
(b) The statements on pch,M are obvious.

Rad I(0)
2.5 (a)(ii)

= ker(M + id) ⫌ {0} ⇐⇒ Φ2|pch,M ⇐⇒ r = 4.

In the cases with r = 4, one calculates pch,S+St(t) and reads off sign I(0)

from the zeros of pch,S+St(t). The case S(A3
1) = S(0, 0, 0) is trivial.

Consider the cases with r ̸= 4 and x ̸= (0, 0, 0). Then I(0) is
nondegenerate. The product of the signs in the signature of I(0)

is the sign of det(S + St) = 2(4 − r). Because of the 2’s on the
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diagonal of S + St, I(0) cannot be negative definite. Also recall
I(0)(f3, f3) = 2r(gcd(x1, x2, x3))

−2. This shows sign I(0) = (+ − −)
for r < 0, sign I(0) = (+ + −) for r > 4 and sign I(0) = (+ + +) or
(+−−) for r ∈ {0, 1, 2}.

The classification of Br3 ⋉ {±1} orbits in T uni
3 (Z) in Theorem 4.6

(e) says that for each of the cases r ∈ {0, 1, 2} there is only one orbit
(with x ̸= (0, 0, 0) in the case r = 0), namely S(P2), S(A2A1) and
S(A3). One checks the claims on sign I(0) = sign(S + St) immediately.
□

Remarks 5.8. (i) It is very remarkable that the fibers r−1(1) and
r−1(2) ⊂ Z3 of r : Z3 → Z consist each of only one orbit. If one looks
at the fibers of the real map

rR : R3 → R, x 7→ x21 + x22 + x23 − x1x2x3,

this does not hold. Each real fiber r−1
R (ρ) with ρ ∈ (0, 4) has five

components, one compact (homeomorphic to a 2-sphere), four non-
compact (homeomorphic to R2). The four non-compact components
are related by the action of Gsign. It is remarkable that the fibers
r−1
R (1) and r−1

R (2) ⊂ R3 intersect Z3 only in the central piece.
(ii) By pch,M = (t− 1)(t2− (2− r(x))t+1), the monodromy matrix

S−1St for x ∈ R3 and S = S(x) has all eigenvalues in S1 if and only if
rR(x) ∈ [0, 4].

(iii) The semialgebraic subvariety r−1
R ([0, 4]) ⊂ R3 was studied

in [BH20, 5.2]. It has a central piece which is Gsign invariant and
which looks like a tetrahedron with smoothened edges and four other
pieces which are permuted by Gsign. Each other piece is homeo-
morphic to [0, 1] × R2 and is glued in one point (its only singular
point) to one of the vertices of the central piece. The four vertices
are (2, 2, 2), (2,−2,−2), (−2, 2,−2), (−2,−2, 2), so the elements of the
Br3 ⋉ {±1}3 orbit of (2, 2, 2).

For x inside the central piece S + St is positive definite, on its
boundary except the vertices sign(S+St) = (++0), at a vertex sign(S+
St) = (+00). On those boundary components of the other four pieces
which contain one of the vertices sign(S + St) = (+0−) (except at
the vertex). On the interior of r−1

R (−∞, 4] except the central piece
sign(S + St) = (+−−). On the exterior of r−1

R (−∞, 4] sign(S + St) =
(+ +−).

(iv) Due to Lemma 5.7 (b) and Theorem 4.6, the seven cases

S(A3
1), S(P2), S(A2A1), S(A3), S(P1A1), S(Â2), S(H1,2) and the series

S(−l, 2,−l) for l ≥ 3 give the only rank 3 unimodular bilinear lattices
where all eigenvalues of the monodromy are unit roots. In the sections
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5.4 and 5.5 we will focus on the reducible cases and these cases. In the
sections 5.6 and 5.7 we will treat the other cases.

The following definition presents a special automorphism Q in
Aut(HQ, L). Theorem 5.11 will say in which cases Q is in GZ and
in which cases not. The determination of the group GZ in all irre-
ducible rank 3 cases in the sections 5.5–5.7 will build on this result.
It is preceded by Lemma 5.10 which provides notations and estimates
which will be used in the proof of Theorem 5.11 and also later.

Definition 5.9. Consider x ∈ Z3 with r(x) ̸= 0. Then HQ =
HQ,1 ⊕HQ,2 with HQ,1 := ker(M2 − (2− r(x))M + id : HQ → HQ) and
HQ,2 := ker(M − id : HQ → HQ). This decomposition is left and right
L-orthogonal. Then Q : HQ → HQ denotes the automorphism with
Q|HQ,1

= − id and Q|HQ,2
= id. It is in Aut(HQ, L).

Lemma 5.10. (a) For x ∈ Z3−{(0, 0, 0)} write r := r(x) and define

g := g(x) := gcd(x1, x2, x3) ∈ N,
x̃ := (x̃1, x̃2, x̃3) := g−1x ∈ Z3.

Then f3 = −x̃3e1 + x̃2e2 − x̃1e3, gcd(x̃1, x̃2, x̃3) = 1 and

g2 | r, r

g2
= x̃21 + x̃22 + x̃23 − gx̃1x̃2x̃3. (5.1)

(b) Consider a local minimum (Definition 4.3) x ∈ Z3
≥3 with xi ≤

xj ≤ xk for some i, j, k with {i, j, k} = {1, 2, 3}. Then

x̃i ≤
2 + (4− r)1/3

g
, (5.2)

x2j ≤
4− r
xi − 2

+ xi + 2, (5.3)

xk ≤
1

2
xixj and x̃k ≤

g

2
x̃ix̃j. (5.4)

Proof: (a) Trivial.
(b) Lemma 4.4 shows xk ≤ 1

2
xixj, which is (5.4). This is equivalent

to x̃k ≤ g
2
x̃ix̃j. We also have x̃i ≤ x̃j ≤ x̃k, and we know r ≤ 0 from

Theorem 4.6.
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The proof of (5.2) is similar to the second case in the proof of
Theorem 4.6 (a).

r

g2
= x̃2i + x̃2j + (x̃k −

g

2
x̃ix̃j)

2 − g2

4
x̃2i x̃

2
j

≤ x̃2i + x̃2j + (x̃j −
g

2
x̃ix̃j)

2 − g2

4
x̃2i x̃

2
j (because x̃j ≤ x̃k ≤

g

2
x̃ix̃j)

= x̃2i + 2x̃2j − gx̃ix̃2j

= (x̃i − gx̃2j +
2

g
)(x̃i −

2

g
) +

4

g2
.

If x̃i <
2
g
, then (5.2) holds anyway. If x̃i ≥ 2

g
then we can further

estimate the last formula using −gx̃2j ≤ −gx̃2i . Then we obtain

r

g2
≤ (x̃i − gx̃2i +

2

g
)(x̃i −

2

g
) +

4

g2

= −g(x̃i −
2

g
)2(x̃i +

1

g
) +

4

g2

≤ −g(x̃i −
2

g
)3 +

4

g2
,

so (x̃i −
2

g
)3 ≤ 4− r

g3
.

This shows (5.2). The inequality (5.3) was proved within the second
case in the proof of Theorem 4.6 (a). □

Theorem 5.11. Consider x ∈ Z3 with r ̸= 0. The automorphism
Q ∈ Aut(HQ, L) which was defined in Definition 5.9 can be written in
two interesting ways,

Q = (e 7→ −e+ 2g2

r
f3(−x̃3, x̃2 − gx̃1x̃3,−x̃1)), (5.5)

Q = id+2(M − id) +
2

r
(M − id)2. (5.6)

We have

Q ∈ GZ ⇐⇒
2g2

r
∈ Z ⇐⇒ r

g2
∈ {±1,±2}. (5.7)
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This holds if and only if x is in the Br3⋉ {±1}3 orbit of a triple in the
following set:

{(x, 0, 0) |x ∈ N} (these are the reducible cases except A3
1),

∪ {(x, x, 0) |x ∈ N} (these cases include A3),

∪ {(−l, 2,−l) | l ≥ 2 even} (these cases include H1,2),

∪ {(3, 3, 4), (4, 4, 4), (5, 5, 5), (4, 4, 8)}.

So, within the cases with r ∈ {0, 1, 2, 3, 4}, Q is not defined for A3
1 and

P2, and Q /∈ GZ for Â2 and S(−l, 2,−l) with l ≥ 3 odd.

Proof: First we prove (5.5). The 2-dimensional subspace HQ,1 =
ker(M2 − (2 − r)M + id) ⊂ HQ, on which Q is − id, can also be
characterized as the right L-orthogonal subspace HQ,1 = (Qf3)⊥ to
Qf3. For b = e · yt ∈ HQ with y ∈ Q3

L(f3, b) = (−x̃3, x̃2,−x̃1)

 1 0 0
x1 1 0
x2 x3 1

y1y2
y3


= (−x̃3, x̃2 − gx̃1x̃3,−x̃1)

y1y2
y3

 ,

so

HQ,1 = {e · yt | y ∈ Q3, 0 = (−x̃3, x̃2 − gx̃1x̃3,−x̃1)

y1y2
y3

}. (5.8)

Denote the endomorphisms on the right hand sides of (5.5) and
(5.6) by Q(5.5) respectively Q(5.6). The formulas (5.5) and (5.8) show
Q(5.5)|HQ,1

= − id. Also

Q(5.5)(f3) = −f3 + f3
2g2

r
(x̃23 + (x̃2 − gx̃1x̃3)x̃2 + x̃21) = f3.

Therefore Q(5.5) = Q, so (5.5) holds.
Now we prove (5.6). Because (M−id)(f3) = 0, we have Q(5.6)(f3) =

f3. Consider b ∈ HQ,1. Then

0 = (M2 − (2− r)M + id)(b), so

(M − id)2(b) = −rM(b), so

Q(5.6)(b) = (id+2(M − id) +
2

r
(−rM))(b) = (−id)(b) = −b.

Therefore Q(5.6) = Q, so (5.6) holds.
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(5.7) can be proved either with (5.6) and Lemma 5.17 below or with
(5.5), which is easier and which we do now. Observe gcd(−x̃3, x̃2 −
gx̃1x̃3,−x̃1) = gcd(x̃1, x̃2, x̃3) = 1. Also, f3 is a primitive vector in HZ.

This shows that Q(e1), Q(e2), Q(e3) are all in HZ if and only if 2g2

r
∈ Z.

This shows (5.7).
It is easy to see that all triples in the set in Theorem 5.11 satisfy

r
g2
∈ {±1,±2}:

r

g2
((x, 0, 0)) =

x2

x2
= 1,

r

g2
((x, x, 0)) =

2x2

x2
= 2,

for even l
r

g2
((−l, 2,−l)) = 4

4
= 1,

r

g2
((3, 3, 4)) =

−2
1

= −2, r

g2
((4, 4, 4)) =

−16
16

= −1,

r

g2
((5, 5, 5)) =

−50
25

= −2, r

g2
((4, 4, 8)) =

−32
16

= −2.

The difficult part is to see that there are no other x ∈ Z3 with r ̸= 0
and r

g2
∈ {±1,±2}. It is sufficient to consider local minima (Definition

4.3). The calculations

r

g2
((−l, 2,−l)) = 4

1
= 4 for odd l ≥ 3

and
r

g2
((−1,−1,−1)) = 4

1
= 4

deal with the other cases with r ∈ {1, 2, 3, 4}, see Theorem 4.6 (e).
Consider x ∈ Z3

≤0 with xi ≤ xj ≤ xk for some i, j, k with {i, j, k} =
{1, 2, 3}. Then r

g2
= x̃21+ x̃

2
2+ x̃

2
3+g|x̃1x̃2x̃3| can be 1 or 2 only if x̃k = 0

and x̃i = x̃j = −1. Then x = (−g,−g, 0). This is in the Br3 ⋉ {±1}3
orbit of (g, g, 0).

Consider a local minimum x ∈ Z3
≥3 with xi ≤ xj ≤ xk for some

i, j, k with {i, j, k} = {1, 2, 3}. Suppose r
g2
∈ {−1,−2}. We have to

show x ∈ {(3, 3, 4), (4, 4, 4), (5, 5, 5), (4, 4, 8)}. Of course x ̸= (3, 3, 3)
because r ̸= 0.

If g = 1 then r ∈ {−1,−2}. One sees easily that r = −1 is
impossible and that r = −2 is only satisfied for x = (3, 3, 4).

From now on suppose g ≥ 2. Write ρ := | r
g2
| ∈ {1, 2}. (5.2) takes

the shape

x̃i ≤
2

g
+ (

ρ

g
+

4

g3
)1/3.
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The only pairs (x̃i, g) ∈ N × Z≥2 which satisfy this and xi = x̃ig ≥ 3
are in the following two tables,

ρ = 1 :
g 2 3 4 5
x̃i 2 1 1 1

, ρ = 2 :
g 2 3 4 5 6
x̃i 2 1 1 1 1

The following table discusses these nine cases. Three of them lead to
(4, 4, 4), (5, 5, 5) and (4, 4, 8), six of them are impossible. The symbol
⊛ denotes impossible. The inequalities xi ≤ xj ≤ xk and (5.3) and
(5.4) are used, and also xi = gx̃i and xj, xk ∈ gN.

ρ g −r x̃i xi x2j ≤ 4−r
xi−2

+ xi + 2 xj xk ≤ 1
2
xixj xk

1 2 4 2 4 x2j ≤ 10 ⊛
1 3 9 1 3 x2j ≤ 18 3 xk ≤ 9

2
3 ⊛

1 4 16 1 4 x2j ≤ 16 4 xk ≤ 8 4
1 5 25 1 5 x2j ≤ 16 + 2

3
⊛

2 2 8 2 4 x2j ≤ 12 ⊛
2 3 18 1 3 x2j ≤ 27 3 xk ≤ 9

2
3 ⊛

2 4 32 1 4 x2j ≤ 24 4 xk ≤ 8 8
2 5 50 1 5 x2j ≤ 25 5 xk ≤ 12 + 1

2
5

2 6 72 1 6 x2j ≤ 27 ⊛

This finishes the proof of Theorem 5.11. □

5.4. The reducible rank 3 cases

Definition 2.10 proposed the notion of reducible triple (HZ, L, e)
where (HZ, L) is a unimodular bilinear lattice and e is a triangular ba-
sis. The following Remarks propose the weaker notion when a unimod-
ular bilinear lattice (HZ, L) (without a triangular basis) is reducible.

Then the groups GZ, G
(0)
Z , G

(1)
Z and GM

Z split accordingly if also the
eigenvalues of M split in a suitable sense.

Remarks 5.12. (i) Suppose that a unimodular bilinear lattice
(HZ, L) splits into a direct sum HZ,1 ⊕ HZ,2 which is left and right
L-orthogonal. Then the restrictions of L, I(0), I(1) and M to HZ,i are

called Li, I
(0)
i , I

(1)
i and Mi for i ∈ {1; 2}. We say that (HZ, L) is re-

ducible and that it splits into the direct sum (HZ,1, L1)⊕ (HZ,2, L2).
(ii) In the situation of (i), suppose that the eigenvalues of M1 are

pairwise different from the eigenvalues ofM2. Then any element of GM
Z

respects the splitting. For {i, j} = {1, 2} write GM
Z,i := GM

Z (HZ,i, Li).
Then

GM
Z = GM

Z,1 ×GM
Z,2,
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and with analogous notations

GZ = GZ,1 ×GZ,2, G
(0)
Z = G

(0)
Z,1 ×G

(0)
Z,2, G

(1)
Z = G

(1)
Z,1 ×G

(1)
Z,2.

(iii) There is only one unimodular bilinear lattice of rank 1. We call
it A1-lattice and denote the matrix S = S(A1) = (1) ∈M1×1(Z). Here
GZ = G

(0)
Z = G

(1)
Z = GM

Z = {± id}.
(iv) Suppose that the characteristic polynomial pch,M(t) ∈ Z[t] of

the monodromy M of a unimodular bilinear lattice (HZ, L) splits into
a product pch,M = p1p2 of non-constant polynomials p1 and p2 with
gcd(p1, p2) = 1. Then ker p1(M) ⊕ ker p2(M) is a sublattice of finite
index in HZ, and the summands are left and right L-orthogonal to one
another. If the index is 1, we are in the situation of (ii). Theorem 5.14
will show that this applies to the cases S(H1,2) and S(−l, 2,−l) with
l ≥ 4 even, but not to the cases S(A3), S(Â2) and S(−l, 2,−l) with
l ≥ 3 odd.

These remarks apply especially to the reducible 3× 3 cases except
A3

1 (which is part of Lemma 5.4). This includes the two reducible cases
A2A1 and P1A1 with eigenvalues in S1.

Theorem 5.13. Consider x = (x, 0, 0) ∈ Z3 with x ̸= 0 and
the unimodular bilinear lattice (HZ, L, e) with triangular basis e with
L(et, e)t = S(x) ∈ T uni

3 (Z).
Then (HZ, L, e) is reducible with the summands (HZ,1, L1, (e1, e2))

and (HZ,2, L2, e3) with HZ,1 = Ze1 ⊕ Ze2 and HZ,3 = Ze3. The first
summand is an irreducible rank two unimodular bilinear lattice with
triangular basis. Its groups GZ,1, G

(0)
Z,1, G

(1)
Z,1 and G

M
Z,1 are treated in The-

orem 5.5. The second summand is of type A1. See Remark 5.12 (iii)
for its groups.

The decompositions in Remark 5.12 (ii) hold for the groups GZ,

G
(0)
Z , G

(1)
Z and GM

Z . Here GM
Z = GZ if x ̸= ±3 and GZ = G

(0)
Z = G

(1)
Z

always.
The map Z : (Br3 ⋉ {±1}3)S → GZ is surjective.

Proof: The first point to see is that Remark 5.12 (ii) applies. It
does because the characteristic polynomials of the monodromies M1

and M2 of the two summands are t2− (2−x2)t+1 and t− 1, and here
x ̸= 0, so that the eigenvalues of M1 are not equal to the eigenvalue 1
of M2.

The second point to see is the surjectivity of the map Z. This
follows from the surjectivity of the map Z in the irreducible rank 2
cases in Theorem 5.5 and in the case A1 in Lemma 5.4. □
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5.5. The irreducible rank 3 cases with all eigenvalues in S1

Theorem 5.14 is the only point in this section. It treats the irre-
ducible rank 3 cases with all eigenvalues in S1.

Theorem 5.14. Consider for each of the matrices S(P2), S(A3),

S(Â2), S(H1,2) and S(−l, 2,−l) for l ≥ 3 in the Examples 1.1 a uni-
modular bilinear lattice (HZ, L) with a triangular basis e with L(et, e)t =
S.

(a) The cases S(H1,2) and S(−l, 2,−l) for l ≥ 4 even: Then (HZ, L)
is reducible (in the sense of Remark 5.12 (i)), HZ = HZ,1 ⊕HZ,2 with

HZ,1 := ker(M + id)2 of rank 2

and HZ,2 := ker(M − id) of rank 1.

(HZ,2, L2) is an A1-lattice. In all cases the decompositions in Remark

5.12 (ii) hold for the groups GM
Z , G

(0)
Z , G

(1)
Z and GZ. The groups GM

Z,1,

G
(0)
Z,1, G

(1)
Z,1 and GZ,1 are as follows.

(i) S(H1,2): HZ,1 has a Z-basis f = (f1, f2) with

L(f t, f)t =

(
0 −1
1 0

)
, I(0)(f t, f) =

(
0 0
0 0

)
,

I(1)(f t, f) =

(
0 −2
2 0

)
, Mf = f

(
−1 0
0 −1

)
,

GM
Z,1 = G

(0)
Z,1 = Aut(HZ,1) ∼= GL2(Z),

GZ,1 = G
(1)
Z,1 = {g ∈ Aut(HZ,1) | det g = 1} ∼= SL2(Z).

(ii) S(−l, 2,−l) for l ≥ 4 even: HZ,1 has a Z-basis f = (f1, f2)
with

L(f t, f)t =

(
0 −1
1 1− l2

4

)
, I(0)(f t, f) =

(
0 0

0 2− l2

2

)
,

I(1)(f t, f) =

(
0 −2
2 0

)
, Mf = f

(
−1 2− l2

2
0 −1

)
,

Define M root
1 ∈ Aut(HZ,1) by M

root
1 f = f

(
1 1
0 1

)
. Then

(M root
1 )l

2/2−2 = −M1 and

GZ,1 = G
(0)
Z,1 = G

(1)
Z,1 = GM

Z,1 = {±(M root
1 )m |m ∈ Z}.
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(b) The cases S(P2), S(A3), S(Â2), S(−l, 2,−l) with l ≥ 3 odd:
Then (HZ, L) is irreducible.

GZ = G
(0)
Z = {±(M root)m |m ∈ Z}.

Here M root is defined by

M root := Z(σroot) in the case S(P2), (5.9)

M root := M = Z(σmon) in the case S(A3), (5.10)

M root := Z(δ3σ
root) in the case S(Â2), (5.11)

M root := (−M) ◦ Z(δ3σ−1
1 σ−1

2 σ1)
(5−l2)/2

in the case S(−l, 2,−l) for odd l ≥ 3. (5.12)

It satisfies

M roote = eM root,mat and (M root)m = εM

where M root,mat, m and ε are as follows:

S(P2) S(A3)

M root,mat

3 −3 1
1 0 0
0 1 0

  0 0 1
−1 0 1
0 −1 1


(m, ε) (3, 1) (1, 1)

S(Â2) S(−l, 2,−l) with l ≥ 3 odd

M root,mat

1 1 −1
1 0 0
0 1 0

 1
2

1− l2 l3 − l −1− l2
−2l 2l2 − 2 −2l
1− l2 l3 − 3l 3− l2


(m, ε) (3,−1) (l2 − 4,−1)

M and M root are regular. M root is cyclic. In the cases S(A3), S(Â2)
and S(−l, 2,−l) for l ≥ 3 odd

GZ = G
(0)
Z = G

(1)
Z = GM

Z = {±(M root)m |m ∈ Z}.
Some additional information:

(i) S(P2): sign I(0) = (+ − −), pch,M = pch,Mroot = Φ3
1, M and

M root have a 3× 3 Jordan block,

G
(1)
Z = GM

Z = {±(M root)m(id+a(M root − id)2) |m, a ∈ Z} ⫌ GZ.

(ii) S(A3): sign I(0) = (+ + +), pch,M = Φ4Φ1, M = M root,
|GZ| = 8.

(iii) S(Â2): sign I(0) = (+ + 0), pch,M = Φ2
2Φ1, pch,Mroot =

Φ2
1Φ2, M and M root have a 2× 2 Jordan block with eigenvalue
−1 respectively 1.
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(iv) S(−l, 2,−l) with l ≥ 3 odd: sign I(0) = (+0−), pch,M =
Φ2

2Φ1, pch,Mroot = Φ2
1Φ2, M and M root have a 2 × 2 Jordan

block with eigenvalue −1 respectively 1.

(c) In all cases in this theorem the map Z : (Br3 ⋉ {±1}3)S → GZ
is surjective, so GZ = GB

Z.

Proof: (a) Recall

HZ,2 = ker(M − id) = Rad I(1) = Zf3, f3 = −x̃3e1 + x̃2e2 − x̃1e3.

We will choose a Z-basis f = (f1, f2) of HZ,1 := ker(M + id)2. Denote

f̃ := (f1, f2, f3). In all cases it will be easy to see that f̃ is a Z-basis of
HZ. Therefore in all cases HZ = HZ,1 ⊕HZ,2.

(i) S(H1,2): Recall pch,M = Φ2
2Φ1,

S =

1 −2 2
0 1 −2
0 0 1

 , S−1St =

1 −2 2
2 −3 2
2 −2 1

 , f3 = e

1
1
1

 .

Define

f1 := e

1
1
0

 , f2 := e

0
1
1

 .

Then

L(f̃
t
, f̃)t =

0 −1 0
1 0 0
0 0 1

 , Mf̃ = f̃

−1 0 0
0 −1 0
0 0 1

 , HZ,1 = Zf1 ⊕ Zf2.

The claims on the groupsGM
Z,1, G

(1)
Z,1, G

(0)
Z,1 andGZ,1 follow from the shape

of the matrices ofM, I(1), I(0) and L with respect to the basis f of HZ,1.

(ii) S(−l, 2,−l) with l ≥ 4 even: Recall pch,M = Φ2
2Φ1,

S =

1 −l 2
0 1 −l
0 0 1

 , S−1St =

l2 − 3 −l3 + 3l l2 − 2
l −l2 + 1 l
2 −l 1

 , f3 = e

 l
2
1
l
2

 .

Define

f1 := e

 1
0
−1

 , f2 := e

 l2−2
2
l
2
0

 .
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Then

L(f̃
t
, f̃)t =

0 −1 0

1 1− l2

4
0

0 0 1

 , Mf̃ = f̃

−1 2− l2

2
0

0 −1 0
0 0 1

 ,

HZ,1 = Zf1 ⊕ Zf2, HZ = HZ,1 ⊕HZ,2,

M1 =M |HZ,1 and M root
1 have each a 2× 2 Jordan block, M root

1 is cyclic

and (M root
1 )l

2/2−2 = −M1. Lemma 5.6 shows

GM
Z,1 = G

(0)
Z,1 = G

(1)
Z,1 = GZ,1 = {±(M root

1 )m |m ∈ Z}.

(b) Recall

S(P2) S(A3)

S−1St

10 −15 6
6 −8 3
3 −3 1

  0 0 1
−1 0 1
0 −1 1


pch,M Φ3

1 Φ4Φ1

S(Â2) S(−l, 2,−l) with l ≥ 3 odd

S−1St

−2 −1 2
−2 0 1
−1 −1 1

 l2 − 3 −l3 + 3l l2 − 2
l −l2 + 1 l
2 −l 1


pch,M Φ2

2Φ1 Φ2
2Φ1

The case S(−l, 2,−l) with l ≥ 3 odd will be treated separately
below. Theorem 3.26 (c) applies in the case S(P2) with k = 1 and in

the case S(Â2) with k = 0. It shows in these cases (M root)3 = εM .
By Theorem 3.26 (c) the matrices M root,mat are as claimed in the cases

S(P2) and S(Â2). In the case A3 by definition M root =M .

In all three cases S(P2), S(A3) and S(Â2)M
root is cyclic with cyclic

generator e1. In the cases S(P2) and S(A3) pch,Mroot = pch,M . In the

case S(Â2) pch,Mroot = ϕ2
1ϕ2 and pch,M = ϕ2

2ϕ1. Lemma 5.2 (a) shows in
all three cases

GM
Z = {p(M root) | p(t) =

2∑
i=0

pit
i ∈ Z[t],

p(κ) ∈ (Z[κ])∗ for each eigenvalue κ of M root}.

(i) S(P2): M root − id is nilpotent with (M root − id)2 ̸= 0, (M root −
id)3 = 0. An element of Z[M root] can be written in the form

q0 id+q1(M
root − id) + q2(M

root − id)2 with q0, q1, q2 ∈ Z.
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It is in Aut(HZ) if and only if q0 ∈ {±1}. Then it can be written as

q0(M
root)q0q1(id+q̃2(M

root − id)2) for some q̃2 ∈ Z.

Therefore GM
Z is as claimed.

Because (M root − id)3 = 0, (M root − id)2(HZ) ⊂ ker(M root − id) =
Rad I(1). Therefore id+q̃2(M

root − id)2 and thus any element of GM
Z

respects I(1), so GM
Z = G

(1)
Z .

On the other hand, one easily checks that id+q̃2(M
root − id)2 re-

spects I(0) only if q̃2 = 0. Therefore

GZ = G
(0)
Z = {±(M root)m |m ∈ Z} ⫋ G

(1)
Z = GM

Z .

(ii) S(A3): For p(t) =
∑2

i=0 pit
i ∈ Z[t] write µj := p(λj) for j ∈

{1, 2, 3} for the eigenvalues of the element p(M) ∈ Z[M ] = End(HZ,M)
where λ1 = i, λ2 = −i, λ3 = 1 are the eigenvalues of M . Because
of (Z[i])∗ = {±1,±i}, one can multiply a given element of GM

Z with
a suitable power of M and obtain an element with µ1 = µ2 = 1.
Therefore

GM
Z = {Mm1(id+m2Φ4(M)) | m1 ∈ {0, 1, 2, 3},m2 ∈ Z,

1 +m2Φ4(1) ∈ {±1}}.

This forcesm2 ∈ {0,−1}. The casem2 = −1 gives id+(−1)(M2+id) =
−M2. Therefore

{±Mm |m ∈ {0, 1, 2, 3}} = {±Mm |m ∈ Z} = GM
Z = G

(0)
Z = G

(1)
Z = GZ.

(iii) S(Â2): Write f = (f1, f2) := e

1 2
1 1
1 0

. Then

M rootf = f

(
1 1
0 1

)
,

HZ,1 = kerΦ2
2(M) = kerΦ2

1(M
root) = Zf1 ⊕ Zf2.

Lemma 5.6 implies

{g|HZ,1 | g ∈ GM
Z } = {±(M root|HZ,1)

m |m ∈ Z},
GM

Z = {±(M root)m |m ∈ Z} × {g ∈ GM
Z | g|HZ,1 = id}.

But p(t) = 1 + qΦ2
1(t) with q ∈ Z satisfies p(−1) = 1 + q · 22 ∈ {±1}

only if q = 0. Therefore

{±(M root)m |m ∈ Z} = GM
Z = G

(0)
Z = G

(1)
Z = GZ.
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(iv) S(−l, 2,−l) with l ≥ 3 odd: Recall f3 and define (f1, f̃2) and
d = (d1, d2, d3) with

(f1, f̃2, f3) = e

 1 l2 − 2 l
0 l 2
−1 0 l

 , d = e

 l2−l−2
2

l2−1
2

l2−l
2

l−1
2

l+1
2

l−1
2

0 l−1
2
−1

 .

The matrix which expresses (f1, f̃2, f3) with e has determinant 4, the
matrix which expresses d with e has determinant 1. Therefore Zf1 ⊕
Zf̃2 ⊕ Zf3 is a sublattice of index 4 in HZ, and d is a Z-basis of HZ.
One calculates

M(f1, f̃2, f3) = (f1, f̃2, f3)

−1 −l2 + 4 0
0 −1 0
0 0 1

 .

Especially

Zf1 ⊕ Zf̃2 = ker(M2 + id)2 ⊃ Zf1 = ker(M + id) = Rad I(0).

Observe

δ3σ
−1
1 σ−1

2 σ1 ∈ (Br3 ⋉ {±1}3)S. (5.13)

Define

M̃ := Z(δ3σ
−1
1 σ−1

2 σ1) ∈ GZ. (5.14)

Then M root = (−M) ◦ M̃ (5−l2)/2 ∈ GZ. One calculates

M̃e = e+ f1(−1, l,−1), (5.15)

M̃(f1, f̃2, f3) = (f1, f̃2, f3)

1 2 0
0 1 0
0 0 1

 , (5.16)

M root(f1, f̃2, f3) = (f1, f̃2, f3)

1 1 0
0 1 0
0 0 −1

 ,

(M root)l
2−4 = −M,

(M root)2 = M̃.

Finally, one calculates

M rootd = d

0 0 −1
1 0 1
0 1 1

 .
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Therefore M root is cyclic with cyclic generator d1 and regular. Lemma
5.2 (a) shows

GM
Z = {p(M root) | p(t) =

2∑
i=0

pit
i ∈ Z[t], p(1), p(−1) ∈ {±1}}.

As in the case S(Â2) one finds with Lemma 5.6

{g|HZ,1 | g ∈ GM
Z } = {±(M root|HZ,1)

m |m ∈ Z},
GM

Z = {±(M root)m |m ∈ Z} × {g ∈ GM
Z | g|HZ,1 = id}.

But p(t) = 1 + qΦ2
1(t) with q ∈ Z satisfies p(−1) = 1 + q · 22 ∈ {±1}

only if q = 0. Therefore

{±(M root)m |m ∈ Z} = GM
Z = G

(0)
Z = G

(1)
Z = GZ.

(c) Of course Z(δ1δ2δ3) = − id. In the cases in part (b) GZ =
{±(M root)m |m ∈ Z}. The definitions (5.9)–(5.12) show that Z is
surjective.

The case H1,2: GZ ∼= SL2(Z) × {±1}. The group GZ is generated
by − id, h1 and h2 with

h1 := (f̃ 7→ f̃

1 −1 0
0 1 0
0 0 1

) = (e 7→ e

2 −1 0
1 0 0
0 0 1

) = Z(δ2σ1),

h2 := (f̃ 7→ f̃

1 0 0
1 1 0
0 0 1

) = (e 7→ e

1 0 0
0 2 −1
0 1 0

) = Z(δ3σ2).

The cases S(−l, 2,−l) with l ≥ 4 even: (5.13)–(5.16) hold also for

even l. With respect to the Z-basis f̃ = (f1, f2, f3) = (f1,
1
2
f̃2, f3) of

HZ

M̃f̃ = f̃

1 1 0
0 1 0
0 0 1

 .

One sees

GZ = ⟨− id, M̃ , Q⟩
with

Q = (f̃ 7→ f̃

−1 0 0
0 −1 0
0 0 1

) =M ◦ M̃2−l2/2

= Z(σmon) ◦ Z(δ3σ−1
1 σ−1

2 σ1)
2−l2/2. □
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□

5.6. Special rank 3 cases with eigenvalues not all in S1

This section starts with a general lemma for all rank 3 cases with
eigenvalues not all in S1. It gives coarse information on the four

groups GM
Z , G

(0)
Z , G

(1)
Z and GZ. Afterwards Theorem 5.16 determines

these groups precisely for three series of cases and one exceptional case.
Theorem 5.18 in section 5.7 will treat the other irreducible cases with
eigenvalues not all in S1.

Lemma 5.15. Fix x ∈ Z3 with r(x) < 0 or r(x) > 4. Then

GM
Z

(2:1) or (1:1)
⊃ GZ = G

(0)
Z = G

(1)
Z

(finite:1)
⊃ {±M l | l ∈ Z}.

Proof: For p(t) =
∑2

i=0 pit
i ∈ Q[t] write µj := p(λj) for j ∈

{1, 2, 3}. Then µ1, µ2 and µ3 are the eigenvalues of p(M) ∈ End(HQ).
The monodromy is because of r(x) ∈ Z−{0, 1, 2, 3, 4} and Lemma 5.7
semisimple and regular. Lemma 5.1 (c) (i) and (ii) applies and gives

GM
Z = {p(M) | p(t) =

2∑
i=0

pit
i ∈ Q[t], (5.17)

p(M) ∈ End(HZ), µ1µ2 ∈ {±1}, µ3 ∈ {±1}}
⊃ GZ = G

(0)
Z = G

(1)
Z = {p(M) ∈ GM

Z |µ1µ2 = 1} (5.18)

Especially h ∈ GM
Z ⇒ h2 ∈ GZ. Also, End(HQ,M) = Q[M ], and the

map

End(HQ,M) = Q[M ]→ Q[λ1]×Q, p(M) 7→ (µ1, µ3)

is an isomorphism of Q-algebras. This is a special case of the chinese
remainder theorem. Q is mapped to (−1, 1).

Observe (− id) ∈ GZ ⊂ GM
Z . Therefore the subgroup {h ∈ GZ |µ3 =

1} has index 2 in GZ, and the subgroup {h ∈ GM
Z |µ3 = 1} has index 2

in GM
Z . The map

{h ∈ GM
Z |µ3 = 1} → O∗

Q[λ1]
, h 7→ µ1, (5.19)

is injective. The element −1 ∈ O∗
Q[λ1]

is in the image of the map in

(5.19) if and only if Q ∈ GM
Z , and then it is the image of Q. By

Dirichlet’s unit theorem [BSh73, Ch. 2 4.3 Theorem 5] the group
O∗

Q[λ1]
is isomorphic to the group {±1}×Z. Therefore {h ∈ GM

Z |µ3 =

1} is isomorphic to {±1} × Z if Q ∈ GM
Z and to Z if Q /∈ GM

Z . If
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Q ∈ GM
Z then because of Q ∈ Aut(HQ, L) also Q ∈ GZ. This and the

implication h ∈ GM
Z ⇒ h2 ∈ GZ show

[GM
Z : GZ] = [{h ∈ GM

Z |µ3 = 1} : {h ∈ GZ |µ3 = 1}] ∈ {1, 2}.
The group {±M l | l ∈ Z} ⊂ GZ ⊂ GM

Z is isomorphic to {±1} × Z,
so it has a free part of rank 1, just as GZ and GM

Z . Therefore [GZ :
{±M l | l ∈ Z}] <∞. □

Later we will see precisely how much bigger GM
Z and GZ are than

{±M l | l ∈ Z}. In the majority of the cases they are not bigger, but
GM

Z = GZ = {±M l | l ∈ Z}.
The following theorem determines the groups GZ and GM

Z ⊃ GZ for
three series of triples and the exceptional case (3, 3, 4). In Theorem 5.18
in section 5.7 we will see that the Br3⋉{±1}3 orbits of these three series
and of the triple (3, 3, 4) are the only triples x with r(x) ∈ Z<0 ∪ Z>4,
(HZ, L, e) irreducible and not GM

Z = GZ = {±M l | l ∈ Z}.

Theorem 5.16. For each x ∈ Z3 below fix also the associated triple
(HZ, L, e).

(a) Consider x = (x, x, x) with x ∈ Z − {−1, 0, 1, 2, 3} and S =
S(x). Then δ3σ2σ1 ∈ (Br3 ⋉ {±1}3)S and by Theorem 3.26 (c) (with
k = 0)

M root,3 := Z(δ3σ2σ1) ∈ GZ with (M root,3)3 = −M.

M root,3 is cyclic with M root,3(f3) = −f3. In the case x = 4 define also

M root,6 := −(M root,3)2 − 2M root,3.

Then

GZ = GM
Z = {±(M root,3)l | l ∈ Z} if x /∈ {4, 5},

GZ = GM
Z = {id, Q} × {±(M root,3)l | l ∈ Z} if x = 5,

GZ = G
(0)
Z = G

(1)
Z = {id, Q} × {±(M root,3)l | l ∈ Z}

1:2
⊂ GM

Z = {id, Q} × {±(M root,6)l | l ∈ Z} if x = 4.

If x = 4 then (M root,6)2 = −M root,3.
(b) Consider x = (2y, 2y, 2y2) with y ∈ Z≥2 and S = S(x). Then

σ2σ
2
1 ∈ (Br3 ⋉ {±1}3)S. By Lemma 3.25 (b)

M root,2 := Z(σ2σ
2
1) ∈ GZ.

It satisfies (M root,2)2 = M and M root,2(f3) = −f3. In the case y = 2
define also

M root,4 := −1

4
M − 2M root,2 − 3

4
id .
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Then

GZ = GM
Z = {±(M root,2)l | l ∈ Z} if y ≥ 3,

GZ = G
(0)
Z = G

(1)
Z = {id, Q} × {±(M root,2)l | l ∈ Z}

1:2
⊂ GM

Z = {id, Q} × {±(M root,4)l | l ∈ Z} if y = 2.

If y = 2 then (M root,4)2 = −M root,2.
(c) Consider x = (x, x, 0) with x ∈ Z≥2 and S = S(x). In the case

x = 2 define also

M root,2 :=
1

2
M +

1

2
id .

Then

GZ = GM
Z = {id, Q} × {±M l | l ∈ Z} if x ≥ 3,

GZ = G
(0)
Z = G

(1)
Z = {id, Q} × {±M l | l ∈ Z}

1:2
⊂ GM

Z = {id, Q} × {±(M root,2)l | l ∈ Z} if x = 2.

If x = 2 then (M root,2)2 =M .
(d) Consider x = (3, 3, 4). Then

GZ = GM
Z = {id, Q} × {±M l | l ∈ Z}.

(e) In all cases in (a)–(d) except for the four cases

x ∈ {(4, 4, 4), (5, 5, 5), (4, 4, 8), (3, 3, 4)}
the map Z : (Br3 ⋉ {±1}3)S → GZ is surjective so GZ = GB

Z. In the
four exceptional cases Q ∈ GZ −GB

Z.

Proof: In all cases in this theorem r(x) < 0 or r(x) > 4, so Lemma

5.15 applies, so GZ = G
(0)
Z = G

(1)
Z .

(a) S is as in Theorem 3.26 (c) with k = 0. Therefore δ3σ2σ1 is
in the stabilizer of S and M root,3 is in GZ, it is cyclic, and it satisfies
(M root,3)3 = −M . Explicitly (by Theorem 3.26 (a))

M root,3(e) = e ·

−x −x −11 0 0
0 1 0

 .

One seesM root,3(f3) = −f3 where f3 = −e1+e2−e3, so its third eigen-
value is κ3 = −1. The other two eigenvalues κ1 and κ2 are determined
by the trace −x = κ1 + κ2 − 1 and the determinant −1 = κ1κ2(−1) of
M root,3. The eigenvalues are

κ1/2 =
1− x
2
± 1

2

√
x2 − 2x− 3, κ3 = −1.

107



Because M and M root,3 are regular, Lemma 5.1 applies. It gives an
isomorphism of Q-algebras

End(HQ,M) = End(HQ,M
root,3)

= {p(M root,3) | p(t) =
2∑

i=0

pit
i ∈ Q[t]} → Q[κ1]×Q

p(M root,3) 7→ (p(κ1), p(−1)).

The image of − id is (−1,−1), the image of Q is (−1, 1), the image
of M root,3 is (κ1,−1). The image of GM

Z is a priori a subgroup of
O∗

Q[κ1]
× {±1}. We have to find out which one. By Theorem 5.11

Q ∈ GM
Z (and then also Q ∈ GZ) only for x ∈ {4, 5}.

Lemma 5.2 applies because M root,3 is cyclic. It shows

GM
Z = {p(M root,3) | p(t) = p2t

2 + p1t+ p0 ∈ Z[t] with
(p(κ1), p(−1)) ∈ Z[κ1]∗ × {±1}},

GZ = {p(M root,3) | p(t) = p2t
2 + p1t+ p0 ∈ Z[t] with

(p(κ1), p(−1)) ∈ Z[κ1]∗ × {±1} and p(κ1)p(κ2) = 1}.

Now Lemma B.1 (a) is useful. It says

Z[κ1]∗ =

 {±κ
l
1 | l ∈ Z} for x /∈ {4,−2},

{±(κ1 − 1)l | l ∈ Z} for x = −2,
{±(κ1 + 1)l | l ∈ Z} for x = 4.

with

(κ1 − 1)(κ2 − 1) = −1 and (κ1 − 1)2 = κ1 for x = −2,
(κ1 + 1)(κ2 + 1) = −1 and (κ1 + 1)2 = −κ1 for x = 4.

For x /∈ {4, 5,−2} the facts − id,M root,3 ∈ GZ and Q /∈ GZ show
that the image of GZ and GM

Z in Z[κ1]∗×{±1} = {±κl1 | l ∈ Z}×{±1}
has index 2. Therefore then GZ = GM

Z is as claimed.
For x = 5 the facts − id,M root,3, Q ∈ GZ show that the image of

GZ and GM
Z is Z[κ1]∗ × {±1} = {±κl1 | l ∈ Z} × {±1}. Therefore then

GZ = GM
Z is as claimed.

Consider the case x = −2. If an automorphism p(M root,3) is in GM
Z

which corresponds to a pair (κ1 − 1,±1), then p(κ1) = κ1 − 1 means
p(t) = t − 1 + l2(t

2 − 3t + 1) for some l2 ∈ Z. But then p(−1) =
−2 + l2 · 5 /∈ {±1}. So GM

Z does not contain such an automorphism.
GM

Z and GZ are as claimed, because Q /∈ GM
Z .

Consider the case x = 4. The polynomial p(t) = −t2 − 2t satisfies
p(−1) = 1, p(κ1) = −κ21−2κ1 = −(−3κ1−1)−2κ1 = κ1+1. Therefore
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M root,6 = p(M root,3) ∈ GM
Z . Because κ1+1 has norm −1, M root,6 is not

in GZ. The groups GM
Z and GZ are as claimed.

(b) Compare the sections 4.1 and 3.2 for the actions of Br3⋉{±1}3
on Z3 and on Bdist.

σ2σ
2
1(2y, 2y, 2y

2)

= σ2σ1(−2y, 2y2 − 2y · 2y, 2y) = σ2σ1(−2y,−2y2, 2y)
= σ2(2y, 2y − (−2y)(−2y2),−2y2) = σ2(2y, 2y − 4y3,−2y2)
= ((2y − 4y3)− 2y · (−2y2), 2y, 2y2) = (2y, 2y, 2y2),

so σ2σ
2
1 is in the stabilizer of (2y, 2y, 2y2), so M root,2 := Z(σ2σ

2
1) ∈ GZ.

M root,2(e) = σ2σ
2
1(e)

= σ2σ1(s
(0)
e1
(e2), e1, e3)

= σ2σ1(e2 − 2ye1, e1, e3)

= σ2(s
(0)
e2−2ye1

(e1), e2 − 2ye1, e3)

= σ2(e1 + 2y(e2 − 2ye1), e2 − 2ye1, e3)

= ((1− 4y2)e1 + 2ye2, s
(0)
e2−2ye1

(e3), e2 − 2ye1)

= ((1− 4y2)e1 + 2ye2, e3 + 2y2(e2 − 2ye1), e2 − 2ye1)

= e ·

1− 4y2 −4y3 −2y
2y 2y2 1
0 1 0

 =: e ·M root,2,mat.

The map Z : (Br3 ⋉ {±1}3)S → GZ in Lemma 3.25 is a group antiho-
momorphism. By Theorem 3.26 Z(σmon) =M . Therefore

(M root,2)2 = Z(σ2σ
2
1)Z(σ2σ

2
1) = Z(σ2σ1(σ1σ2σ1)σ1)

= Z(σ2σ1(σ2σ1σ2)σ1) = Z((σ2σ1)
3) = Z(σmon) =M.

One sees M root,2(f3) = −f3, where f3 = −ye1 + e2 − e3, so its third
eigenvalue is κ3 = −1. The other two eigenvalues κ1 and κ2 are deter-
mined by the trace 1 − 2y2 = κ1 + κ2 − 1 and the product κ1κ2 = 1,
which holds because of M root,2 ∈ GZ (or because detM root,2 = −1).
The eigenvalues are

κ1,2 = (1− y2)± y
√
y2 − 2, κ3 = −1.
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Because M and M root,2 are regular, Lemma 5.1 applies. It gives an
isomorphism of Q-algebras

End(HQ,M) = End(HQ,M
root,2)

= {p(M root,2) | p(t) =
2∑

i=0

pit
i ∈ Q[t]} → Q[κ1]×Q

p(M root,2) 7→ (p(κ1), p(−1)).
The image of − id is (−1,−1), the image of Q is (−1, 1), the image
of M root,2 is (κ1,−1). The image of GM

Z is a priori a subgroup of
O∗

Q[κ1]
× {±1}. We have to find out which one. By Theorem 5.11

Q ∈ GM
Z (and then also Q ∈ GZ) only for y = 2.

Consider the decomposition HQ = HQ,1 ⊕HQ,2 as in Definition 5.9
and the primitive sublattices HZ,1 = HQ,1∩HZ and HZ,2 = HQ,2∩HZ =
Zf3 in HZ. The sublattice HZ,1 is the right L-orthogonal subspace
(Zf3)⊥ ⊂ HZ of Zf3, see (5.8):

HZ,1 = {e · zt | z ∈ Z3, 0 = (−y, 1− 2y2,−1)

z1z2
z3

}
= ⟨f1, f2⟩Z with f1 = e1 − ye3, f2 = e2 + (1− 2y2)e3.

Write f = (f1, f2, f3) = e ·M(e, f),

M root,2(e) = e ·M root,2,mat, M root,2(f) = fM root,2,mat,f .

Then

M(e, f) =

 1 0 −y
0 1 1
−y 1− 2y2 −1

 ,

M(e, f)−1 =
1

y2 − 2

2y2 − 2 2y3 − y y
−y −y2 − 1 −1
y 2y2 − 1 1

 ,

M root,2,mat,f =M(e, f)−1M root,2,matM(e, f) =

−2y2 + 1 −2y 0
y 1 0
0 0 −1

 .

Any element h = p(M) ∈ GM
Z with p(t) ∈ Q[t] restricts to an auto-

morphism of HZ,1 which commutes with M root,2|HZ,1 , so its restriction
to HZ,1 has the shape h|HZ,1 = a id+bM root,2|HZ,1 with a, b ∈ Q with

a

(
1 0
0 1

)
+ b

(
−2y2 + 1 −2y

y 1

)
∈ GL2(Z).
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This implies by ∈ Z and a+ b ∈ Z. The eigenvalue p(κ1) is

a+ bκ1 = a+ b(1− y2 + y
√
y2 − 2)

= (a+ b) + by(−y +
√
y2 − 2) ∈ Z[

√
y2 − 2]∗.

Now Lemma B.1 (b) is useful. It says

Z[
√
y2 − 2]∗ =

{
{±κl1 | l ∈ Z} if y ≥ 3,

{±(1 +
√
2)l | l ∈ Z} if y = 2.

Furthermore κ1 has norm 1, 1+
√
2 has norm −1, and (1+

√
2)2 = −κ2

if y = 2.
Consider the cases y ≥ 3. The map

GM
Z → O∗

Q[κ1]
× {±1}, p(M root,2) 7→ (p(κ1), p(−1)),

has because of Q /∈ GM
Z as image the index 2 subgroup of {±κl1 | l ∈

Z} × {±1} which is generated by (κ1,−1) and (−1,−1), because Q /∈
GM

Z . Therefore then GM
Z = GZ = {±(M root,2)l | l ∈ Z}.

Consider the case y = 2. Then Q ∈ GZ ⊂ GM
Z . Therefore then

GZ = {id, Q} × {±(M root,2)l | l ∈ Z}. The question remains whether
1 +
√
2 arises as eigenvalue p(κ1) for an element p(M root,2) ∈ GM

Z . It
does. M root,4 has the first eigenvalue

−1

4
(−3 + 2

√
2)2 − 2(−3 + 2

√
2)− 3

4
= 1−

√
2

with (1−
√
2)2 = 3−2

√
2 = −κ1 and the third eigenvalue −1

4
−2(−1)−

3
4
= 1. Therefore (M root,4)2 = −M root,2. M root,4 is in GM

Z because

M root,4(e) = e

−1

4

 97 220 28
−28 −63 −8
4 8 1

− 2

−15 −32 −44 8 1
0 1 0

− 3

4
E3


= e

 5 9 1
−1 −1 0
−1 −4 −1

 .

Therefore then GM
Z = {id, Q} × {±(M root,4)l | l ∈ Z}.

(c) Observe r = 2x2. M has the eigenvalues λ1, λ2, λ3 with

λ1/2 = (1− x2)± x
√
x2 − 2, λ3 = 1.

Because M is regular, Lemma 5.1 applies. It gives an isomorphism of
Q-algebras

End(HQ,M)

= {p(M) | p(t) = p2t
2 + p1t+ p0 ∈ Q[t]} → Q[λ1]×Q

p(M) 7→ (p(λ1), p(1)).
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The image of − id is (−1,−1), the image of Q is (−1, 1), the image of
M is (λ1, 1). The image of GM

Z is a priori a subgroup of O∗
Q[λ1]
×{±1}.

We have to find out which one. By Theorem 5.11 Q ∈ GZ ⊂ GM
Z .

Consider the decomposition HQ = HQ,1 ⊕HQ,2 as in Definition 5.9
and the primitive sublattices HZ,1 = HQ,1∩HZ and HZ,2 = HQ,2∩HZ =
Zf3 in HZ. The sublattice HZ,1 is the right L-orthogonal subspace
(Zf3)⊥ ⊂ HZ of Zf3, see (5.8):

HZ,1 = {e · zt | z ∈ Z3, 0 = (0, 1,−1)

z1z2
z3

}
= ⟨f1, f2⟩Z with f1 = e1, f2 = e2 + e3.

Write f = (f1, f2, f3) = e ·M(e, f),

M(e) = e ·Mmat, M(f) = fMmat,f .

Then

M(e, f) =

1 0 0
0 1 1
0 1 −1

 , M(e, f)−1 =
1

2

2 0 0
0 1 1
0 1 −1

 ,

Mmat =

1− 2x2 −x −x
x 1 0
x 0 1

 ,

Mmat,f = M(e, f)−1MmatM(e, f) =

1− 2x2 −2x 0
x 1 0
0 0 1

 .

The upper left 2× 2-matrix in Mmat,f coincides after identification
of x and y with the upper left 2× 2-matrix in M root,2,mat,f in the proof
of part (b). Therefore we can argue exactly as in the proof of part (b).
Lemma B.1 (b) applies in the same way.

We obtain for x ≥ 3 GM
Z = GZ = {id, Q} × {±M l | l ∈ Z} and for

x = 2 GZ = {id, Q} × {±M l | l ∈ Z}.
Consider the case x = 2. Then M root,2 has the first eigenvalue

1

2
λ1 +

1

2
= −1 +

√
2

with (−1+
√
2)2 = 3− 2

√
2 = −λ1 and the third eigenvalue 1

2
+ 1

2
= 1.

Therefore (M root,2)2 = QM . M root,2 is in GM
Z because

M root,2(e) = e

1

2

−7 −2 −22 1 0
2 0 1

+
1

2
E3

 = e

−3 −1 −11 1 0
1 0 1

 .
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Therefore GM
Z = {id, Q} × {±(M root,2)l | l ∈ Z} for x = 2.

(d) Here r = −2. M has the eigenvalues λ1, λ2, λ3 with

λ1/2 = 2±
√
3, λ3 = 1.

It is well known and can be seen easily either elementarily or with
Theorem B.6 that

O∗
Q[λ1]

= {±λl1 | l ∈ Z}.
Q ∈ GZ ⊂ GM

Z by Theorem 5.11. Recall the proof of Lemma 5.15. The
restriction of the map in (5.19) to the map

{id, Q} × {M l | l ∈ Z} → O∗
Q[λ1]

is an isomorphism. Therefore the map in (5.19) is an isomorphism and

GM
Z = GZ = {id, Q} × {±M l | l ∈ Z}.

(e) Observe in part (c)

Z(σ2)(e) = σ2(e) = (e1, e3, e2),

so Z(σ2)(f1, f2, f3) = (f1, f2,−f3),
so Z(σ2) = −Q.

Now in all cases

− id = Z(δ1δ2δ3), M = Z(σmon)

and

in part (a):

{
M root,3 = Z(δ3σ2σ1),
GZ = {±(M root,3)l | l ∈ Z} for x /∈ {4, 5},

in part (b):

{
M root,2 = Z(σ2σ

2
1),

GZ = {±(M root,2)l | l ∈ Z} for y ̸= 2,

in part (c):

{
Q = Z(δ1δ2δ3σ2),
GZ = {id, Q} × {±M l | l ∈ Z}.

This shows GZ = GB
Z in all but the four cases x ∈

{(4, 4, 4), (5, 5, 5), (4, 4, 8), (3, 3, 4)}. In these four cases Q ∈ GZ. It
remains to see Q /∈ GB

Z. We offer two proofs.
First proof: It uses that in these four cases the stabilizer of e in

Br3 ⋉ {±1}3 is {id}, which will be proved as part of Theorem 7.11. It
also follows from Γ(1) = Gfree,3 in Theorem 6.18 (g) or Γ(0) = GfCox,3 in
Theorem 6.11 (g) and from Example 3.4 (respectively Theorem 3.2 (a)
or (b)). This implies that here Z : (Br3 ⋉ {±1}3)S → GZ is injective.
Observe furthermore Q2 = id. If Q = Z(β) for some braid β, then
β2 = id as Z is a group antihomomorphism. But there is no braid of
order two.
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Second proof: By formula (5.5) in Theorem 5.11 in the four cases

Q(e) = −e+ 2f3(1, 3, 1) in the case x = (4, 4, 4),

Q(e) = −e+ f3(1, 4, 1) in the case x = (5, 5, 5),

Q(e) = −e+ f3(2, 7, 1) in the case x = (4, 4, 8),

Q(e) = −e+ f3(4, 9, 3) in the case x = (3, 3, 4).

By Theorem 6.21 (g) the restriction to ∆(1) of the projection prH,(1) :

HZ → HZ
(1)

is injective. Therefore in all four cases Q(ei) /∈ ∆(1) for
i ∈ {1, 2, 3}. But any automorphism in GB

Z maps each ei to an odd
vanishing cycle. Thus Q /∈ GB

Z. □

5.7. General rank 3 cases with eigenvalues not all in S1

Theorem 5.18 below will show GZ = GM
Z = {±M l | l ∈ Z} in all

irreducible rank 3 with eigenvalues not all in S1 which have not been
treated in Theorem 5.16. This result is simple to write down, but the
proof is long. It is a case discussion with many subcases. It builds
on part (b) of the technical Lemma 5.17 which gives necessary and
sufficient conditions when an endomorphism in End(HQ) of a certain
shape is in End(HZ).

Any element of {h ∈ GM
Z |µ3 = 1} can be written as h = q(M) with

q(t) = 1+ q0(t− 1) + q1(t− 1)2 with unique coefficients q0, q1 ∈ Q, but
not all values q0, q1 ∈ Q give such an element. Part (b) of the following
lemma says which integrality conditions on q0 and q1 are necessary for
q(M) ∈ End(HZ). Part (a) is good to know in this context.

Lemma 5.17. Fix x ∈ Z3 − {(0, 0, 0)} and the associated triple
(HZ, L, e). Recall g = gcd(x1, x2, x3) and x̃i = g−1xi. Define

g1 := gcd(2x1 − x2x3, 2x2 − x1x3, 2x3 − x1x2) ∈ N ∪ {0},

g2 :=
g1
g

= gcd(2x̃1 − gx̃2x̃3, 2x̃2 − gx̃1x̃3, 2x̃3 − gx̃1x̃2) ∈ N ∪ {0}.

(5.20)

(a) We separate three cases.
(i) Case (three or two of x1, x2, x3 are odd): Then g and g2 are odd and

gcd(g2, x̃i) = gcd(g2, g) = 1, g22 | (r − 4).

(ii) Case (exactly one of x1, x2, x3 is odd): Then g is odd, g2 ≡ 2(4)
and

gcd(
g2
2
, x̃i) = gcd(

g2
2
, g) = 1, (

g2
2
)2 | (r − 4).
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(iii) Case (none of x1, x2, x3 is odd): Then g and g2 are even. More
precisely, g2 ≡ 0(4) only if g

2
and x̃1, x̃2, x̃3 are odd. Else g2 ≡ 2(4).

Always

gcd(
g2
2
, x̃i) = gcd(

g2
2
,
g

2
) = 1, g22 | (r − 4).

(b) Consider q0, q1 ∈ Q, q(t) := 1+ q0(t− 1)+ q1(t− 1)2 ∈ Q[t] and
h = q(M) ∈ Q[M ]. Define q2 := q0 − 2q1 ∈ Q.

Then h ∈ End(HZ,M) if and only if the following integrality con-
ditions (5.21)–(5.24) are satisfied.

q2 · g2 ∈ Z, (5.21)

q1 · gg1 ∈ Z, (5.22)

q0xi − q1xjxk ∈ Z for {i, j, k} = {1, 2, 3}, (5.23)

q1(x
2
i − x2j) ∈ Z for {i, j, k} = {1, 2, 3}. (5.24)

If these conditions hold, then also the following holds,

q0 · g1 ∈ Z. (5.25)

(c) In part (b) the eigenvalue of q(M) on HC,λ1 is

µ1 := q(λ1) = (1− rq1) + (q0 − rq1)(λ1 − 1)

= (1− q0) + (q0 − rq1)λ1.

Proof: (a) g is odd in the cases (i) and (ii) and even in case (iii).
Therefore g2 is odd in case (i) and even in the cases (ii) and (iii), and
furthermore g2

2
is odd in case (ii). Also g2

2
odd in case (iii) almost

always, namely except when g
2
and x̃1, x̃2, x̃3 are odd, as can be seen

from the definition (5.20) of g2. Here observe that at least one of
x̃1, x̃2, x̃3 is odd because gcd(x̃1, x̃2, x̃3) = 1.

Now we consider first case (iii). A common divisor of g2
2

and x̃1
would be odd. Because of the second term 2x̃2 − gx̃1x̃3 and the third
term 2x̃3 − gx̃1x̃2 in (5.20) it would also divide x̃2 and x̃3. This is
impossible because of gcd(x̃1, x̃2, x̃3) = 1. Therefore gcd(g2

2
, x̃1) = 1.

Analogously for x̃2 and x̃3.
A common divisor of g2

2
and g

2
would be odd. Because of all three

terms in (5.20) it would divide x̃1, x̃2, x̃3. Therefore gcd(g2
2
, g
2
) = 1.

For i, j, k with {i, j, k} = {1, 2, 3} observe
2(2x̃i − gx̃jx̃k) + gx̃k(2x̃j − gx̃ix̃k) = x̃i(4− x2k), (5.26)

4(r − 4) = g2(2x̃i − gx̃jx̃k)2 − (4− x2j)(4− x2k). (5.27)

(5.26) and gcd(g2
2
, x̃i) = 1 imply in case (iii) that g2

2
divides 4−1(4−x2k).

This and (5.27) imply that (g2
2
)2 divides r−4

4
, so g22 divides r − 4.

The claims for the cases (i) and (ii) follow similarly.
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(b) Recall the shape of Mmat ∈ M3×3(Z) with Me = eMmat from
the beginning of Section 5.3. It gives

Mmat − E3 =

−x21 − x22 + x1x2x3 −x1 − x2x3 + x1x
2
3 x1x3 − x2

x1 − x2x3 −x23 −x3
x2 x3 0

 ,

1 x1 x2
0 1 x3
0 0 1

 (Mmat − E3) =

 0 −x1 −x2
x1 0 −x3
x2 x3 0

 ,

(Mmat − E3)

 1 0 0
0 1 0
−x2 −x3 1

 =

−x21 −x1 x1x3 − x2
x1 0 −x3
x2 x3 0

 .

Now

q(M) ∈ End(HZ) ⇐⇒ q(Mmat)− E3 ∈M3×3(Z),
and this is equivalent to the following matrix being in M3×3(Z),1 x1 x2

0 1 x3
0 0 1

 (q(Mmat)− E3)

 1 0 0
0 1 0
−x2 −x3 1


=

 0 −x1 −x2
x1 0 −x3
x2 x3 0


·

q0
 1 0 0

0 1 0
−x2 −x3 1

+ q1

−x21 −x1 x1x3 − x2
x1 0 −x3
x2 x3 0


= q0

 x22 −x1 + x2x3 −x2
x1 + x2x3 x23 −x3

x2 x3 0


+ q1

 −x21 − x22 −x2x3 x1x3
−x31 − x2x3 −x21 − x23 x21x3 − x1x2
−x21x2 + x1x3 −x1x2 x1x2x3 − x22 − x23

 .

This gives nine scalar conditions, which we denote by their place [a, b]
with a, b ∈ {1, 2, 3} in the matrix, so for example [2, 1] is the condition
q0(x1+x2x3)+q1(−x31−x2x3) ∈ Z. These nine conditions are sufficient
and necessary for q(M) ∈ End(HZ).

The following trick allows an easy derivation of implied conditions.
Recall the cyclic action γ : Z3 → Z3, x 7→ (x3, x1, x2). It lifts to an ac-
tion of Br3 ⋉ {±1}3 on triangular bases of (HZ, L). Therefore together

with Mmat = S(x)−1S(x)t also the matrix M̃mat := S(γ(x))−1S(γ(x))t
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is a monodromy matrix. Integrality of q(Mmat) is equivalent to in-

tegrality of q(M̃mat). Therefore if the nine conditions hold, also the
conditions hold which are obtained from the nine conditions by replac-
ing (x1, x2, x3) by (x3, x1, x2) or by (x2, x3, x1). In the following [a, b]
denotes all three so obtained conditions, so for example [2, 1] denotes
the conditions

q0(xi + xjxk) + q1(−x3i − xjxk) ∈ Z
for (i, j, k) ∈ {(1, 2, 3), (3, 1, 2), (2, 3, 1)}.

We have to show the following equivalence:

the conditions [a, b] for a, b ∈ {1, 2, 3} ⇐⇒ the conditions (5.21)− (5.24).

=⇒: [1, 3] and [3, 2] are equivalent to one another and to (5.23).
[3, 3] says q1(x

2
i − r) ∈ Z. One derives q1(x

2
i − x2j) ∈ Z, which is

(5.24).
[1, 1] and (5.24) give q2x

2
i ∈ Z, so q2 gcd(x

2
1, x

2
2, x

2
3) = q2g

2 ∈ Z
which is (5.21).

The derivation of q1gg1 ∈ Z is laborious and goes as follows:
[3, 1]&[1, 3] imply q1xi(2xk − xixj) ∈ Z.
[3, 2]&[2, 3] imply q1xi(2xj − xixk) ∈ Z.
[3, 3]&(5.24) imply q1xi(2xi − xjxk) ∈ Z.
One sees q1xig1 ∈ Z and then q1gg1 ∈ Z.
⇐=: (5.23) gives [1, 3] and [3, 2].
(5.21) and (5.24) give [1, 1] and [2, 2].
(5.23) reduces [1, 2], [2, 1], [2, 3] and [3, 1] to q2xjxk, q0xjxk − q1x3i ,

q1xi(xixk − 2xj) and q1xi(−xixj + 2xk). The first follows from (5.21),
the third and fourth follow from (5.22). The second reduces with (5.24)
to xj(q0xk − q1xixj), which follows from (5.23).

[3, 3] reduces with (5.24) to q1xj(xixk − 2xj) which follows from
(5.22).

The equivalence of the conditions [a, b] with the conditions (5.21)–
(5.24) is shown.

It remains to show how (5.21)-(5.24) imply (5.25). One combines
two times (5.23), 2q0xi − 2q1xjxk ∈ Z, with (5.21), (q0 − 2q1)xjxk ∈ Z,
and obtains q0(2xi − xjxk) ∈ Z.

(c) Recall

(t− λ1)(t− λ2) = t2 − (2− r)t+ 1,

so λ1 + λ2 = 2− r, λ1λ2 = 1,

λ21 = (2− r)λ1 − 1, (λ1 − 1)2 = (−r)λ1,
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so

µ1 = 1 + q0(λ1 − 1) + q1(λ1 − 1)2

= (1− rq1) + (q0 − rq1)(λ1 − 1). □

Theorem 5.18. Consider a triple x ∈ Z3 with r(x) ∈ Z<0 ∪ Z>4

which is neither reducible nor in the Br3 ⋉ {±1}3 orbit of a triple in
Theorem 5.16. More explicitly, the triple x is any triple in Z3 which is
not in the Br3 ⋉ {±1}3 orbits of the triples in the following set,

{(x, 0, 0) |x ∈ Z} ∪ {(x, x, x) |x ∈ Z} ∪ {(2y, 2y, 2y2 | y ∈ Z≥2}
∪{(x, x, 0) |x ∈ Z} ∪ {(−l, 2,−l) | l ∈ Z≥3} ∪ {(3, 3, 4)}.

Consider the associated triple (HZ, L, e) with L(e
t, e)t = S(x). Then

GZ = GM
Z = {±M l | l ∈ Z}.

The map Z : (Br3 ⋉ {±1}3)S → GZ is surjective, so GZ = GB
Z.

Proof: The surjectivity of Z follows from GZ = {±M l | l ∈ Z},
− id = Z(δ1δ2δ3) and M = Z(σmon). The main point is to prove
GM

Z = {±M l | l ∈ Z}.
Theorem 5.11 says for which x the automorphism Q of HQ in Def-

inition 5.9 is in GM
Z . They are all excluded here. So here Q /∈ GM

Z .
We use the notation g = g(x) in Lemma 5.10 and the notations

from the beginning of section 5.3. Especially r := r(x) ∈ Z<0 ∪ Z>4,

and λ3 = 1 and λ1/2 = 2−r
2
±
√
r(r − 4) are the eigenvalues of the

monodromy.
The proof of Lemma 5.15 gives a certain control on GM

Z and GZ.

Recall the notations there. For p(t) =
∑2

i=0 pit
i ∈ Q[t] write µj :=

p(λj) for the eigenvalues of p(M) ∈ End(HQ). Recall (5.17), (5.18),
the isomorphism of Q-algebras

End(HQ,M) = {p(M) | p(t) =
2∑

i=0

pit
i ∈ Q[t]} → Q[λ1]×Q,

p(M) 7→ (p(λ1), p(1)),

and its restriction in (5.19), the injective group homomorphism

{h ∈ GM
Z |µ3 = 1} → O∗

Q[λ1]
, h = p(M) 7→ µ1 = p(λ1). (5.28)

The image of Q ∈ End(HQ,M) in Q[λ1] × Q is (−1, 1). Because Q /∈
GM

Z , the image in (5.28) does not contain −1, so it is a cyclic group.
It contains λ1 which is the image of M . Therefore the group {h ∈
GM

Z |µ3 = 1} is cyclic. It has two generators which are inverse to one
another. We denote by hgen the generator such that a positive power
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of it is M , namely (hgen)
lgen = M for a unique number lgen ∈ N. We

have to prove lgen = 1.
We will argue indirectly. We will assume the existence of a root

h = p(M) ∈ GM
Z with hl = M for some l ≥ 2, first eigenvalue µ1 =

p(λ1) and third eigenvalue µ3 = p(1) = 1. Then µl
1 = λ1 and µ1 =

(1 − q0) + (q0 − rq1)λ1 for certain q0, q1 ∈ Q which must satisfy the
properties in (5.21)–(5.24). We will come to a contradiction.

We can restrict to x in the following set, as the Br3 ⋉ {±1}3 orbits
of the elements in this set are all x which we consider in this theorem:

Consider the two sets YI and YII ⊂ Z3,

YI := {x ∈ Z3
≤0 |x1 ≤ x2 ≤ x3}

−
[
{(x, 0, 0) |x ∈ Z<0} ∪ {(x, x, x) |x ∈ Z≤0}
∪ {(x, x, 0) |x ∈ Z<0}

]
,

YII := {x ∈ Z3
≥3 |x1 ≤ x2 ≤ x3, 2x3 ≤ x1x2}

−
[
{(x, x, x) |x ∈ Z≥3}
∪ {(2y, 2y, 2y2) | y ∈ Z≥2} ∪ {(3, 3, 4)}

]
.

All triples x in this theorem are in the Br3⋉{±1}3 orbits of the triples
in YI∪YII∪{x | (x2, x1, x3) ∈ YI∪YII}. We will restrict to x ∈ YI∪YII .
For x with (x2, x1, x3) ∈ YI ∪YII , one can copy the following proof and
exchange x1 and x2.

Because the triples (x, x, x) are excluded, x1 < x3 and x̃1 < x̃3.
We will assume the existence of a unit µ1 ∈ O∗

Q[λ1]
with µl

1 = λ1 for

some l ≥ 2 and some norm N (µ1) ∈ {±1}. The integrality conditions
in Lemma 5.17 (b) for q0, q1, q2 ∈ Q with µ1 = (1 − q0) + (q0 − rq1)λ1
and q2 = q0 − 2q1 will lead to a contradiction. The proof is a case
discussion. The cases split as follows.

Case I: x ∈ YI .
Subcase I.1: l ≥ 3 odd.
Subcase I.2: l = 2.

Case II: x ∈ YII .
Subcase II.1: l ≥ 3 odd.
Subcase II.2: l = 2.

Subcase II.2.1: N (µ1) = 1:
Subcase II.2.1.1: µ1 = κa for some a ∈ Z≥3.
Subcase II.2.1.2: µ1 = −κa for some a ∈ Z≥3.

Subcase II.2.2: N (µ1) = −1.
The treatment of the cases I, II.1 and II.2.2 will be fairly short.

The treatment of the cases II.2.1 will be laborious.

119



Lemma C.2 prepares all cases with N (µ1) = 1. Consider such a
case. Suppose µ1 = κa for some a ∈ Z≤−3∪Z≥3. Compare Lemma C.2
(c) and Lemma 5.17 (c):

q0 = q0,l(a), q1 = q1,l(a), q2 = q2,l(a), r = rl(a).

The integrality condition (5.21) q2g
2 ∈ Z together with (C.6) and (C.5)

tells that r/(2− a) = rl(a)/(2− a) divides g2.
For l ≥ 3 odd r/(2 − a) is itself a square by (C.4), and g can be

written as g = γ1γ3 with γ1, γ3 ∈ N and γ21 = r/(2 − a). For l = 2
r/(2−a) = a+2, and g can be written as g = γ1γ2γ3 with γ1, γ2, γ3 ∈ N,
γ2 squarefree, and a+ 2 = γ21γ2, so g

2 = (a+ 2)γ2γ
2
3 .

On the other hand g2 divides r = rl(a) by Lemma 1.3. (5.1) takes
the shape

x̃21 + x̃22 + x̃23 − gx̃1x̃2x̃3 =
r

g2
=

{
2−a
γ2
3

if l ≥ 3 is odd,
2−a
γ2γ2

3
if l = 2.

(5.29)

This equation will be the key to contradictions in the cases discussed
below. The absolute value of the left hand side will be large, the
absolute value of the right hand side will be small. Now we start the
case discussion.

Case I.1, x ∈ YI , l ≥ 3 odd: N (µ1)
l = N (λ1) = 1 and l odd imply

N (µ1) = 1. Here λ1 ∈ (−1, 0), so µ1 ∈ (−1, 0), so µ1 = κa for some
a ∈ Z≤−3. By the discussion above g = γ1γ3, γ1 = |b(l+1)/2 + b(l−1)/2|,
and (5.29) holds.

Case I.1.1, all xi < 0: We excluded the triples (x, x, x). Therefore
x̃1 ≤ −2. For l ≥ 3 γ1 = |b(l+1)/2 + b(l−1)/2| ≥ |b2 + b1| = |a| − 1 by
Lemma C.2 (b). Now by (5.29)

|a|+ 2 ≥ 2− a
γ23
≥ 2g + 4 + 1 + 1 = 2γ1γ3 + 6 ≥ 2(|a| − 1) + 6,

a contradiction.
Case I.1.2, x3 = 0: The integrality conditions (5.23) and (5.24)

say here

q0x1, q0x2, q1x1x2 ∈ Z, q1x
2
1, q1x

2
2 ∈ Z, so q1g

2 ∈ Z

(which is a bit stronger than (5.22)). q1g
2 ∈ Z means

(bl(a)− bl−1(a)− 1)g2

rbl(a)
=
bl(a)− bl−1(a)− 1

bl(a)(2− a)/γ23
∈ Z.

But bl(a)−bl−1(a)−1

bl(a)
∈ (1, 2) because of Lemma C.2 (b), and 2−a

γ2
3
∈ N, a

contradiction.
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Case I.2, x ∈ YI , l = 2: Here λ1 < 0. Therefore µ2
1 = λ1 is

impossible.
Case II.1, x ∈ YII , l ≥ 3 odd: N (µ1)

l = N (λ1) = 1 and l odd
imply N (µ1) = 1. Here λ1 > 1, so µ1 > 1, so µ1 = κa for some a ∈ Z≥3.
By the discussion above g = γ1γ3, γ1 = b(l+1)/2 + b(l−1)/2, and (5.29)
holds. The proof of Lemma 5.10 (b) gives the first inequality below,

a− 2

γ23
=
|r|
g2
≥ gx̃1x̃

2
2 − x̃21 − 2x̃22 ≥ x̃22(gx̃1 − 3),

so a− 2 ≥ γ23 x̃
2
2(γ1γ3x̃1 − 3),

so (γ23 x̃
2
2 − 1)3 ≥ (γ23 x̃

2
2 − 1)γ1γ3x̃1 + γ1γ3x̃1 − (a+ 1). (5.30)

Observe with Lemma C.2 (b)

γ1 = b(l+1)/2 + b(l−1)/2 ≥ b2 + b1 = a+ 1 ≥ 4.

Therefore the inequality (5.30) can only hold if γ3 = x̃2 = x̃1 = 1 and
γ1 = a+ 1, so l = 3. Then also g = γ1γ3 = a+ 1.

a− 2 =
a− 2

γ23
=
|r|
g2

= gx̃3 − x̃23 − 1− 1 = (a+ 1− x̃3)x̃3 − 2,

0 = (x̃3 − 1)(x̃3 − a).
We excluded the triples (x, x, x), so x̃3 > 1. But also x̃3 ≤ g

2
x̃1x̃2 =

a+1
2
< a. A contradiction.
Case II.2, x ∈ YII , l = 2: Then N (µ1) = ε1 for some ε1 ∈ {±1}.

Also λ1 > 1 and ε2µ1 > 1 for some ε2 ∈ {±1}. Then µ1 is a zero of a
polynomial t2 − ε2at+ ε1, namely

µ1 = ε2(
a

2
+

1

2

√
a2 − 4ε1) with

{
a ∈ Z≥3 if ε1 = 1,
a ∈ N if ε1 = −1,

µ1 + µconj
1 = ε2a, µ1µ

conj
1 = ε1, µ2

1 = ε2aµ1 − ε1.
Comparison with

λ1 =
2− r
2

+
1

2

√
r(r − 4)

= µ2
1 =

a2 − 2ε1
2

+
a

2

√
a2 − 4ε1

= ε2aµ1 − ε1
shows

r = −a2 + 2(ε1 + 1),

µ1 =
ε1ε2
a

+
ε2
a
λ1

= (1− q0) + (q0 − rq1)λ1,
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with

q0 =
a− ε1ε2

a
,

q1 =
ε2(ε1 + 1)− a

a(a2 − 2(ε1 + 1))
.

Case II.2.1, N (µ1) = 1: Then ε1 = 1 and

r = −a2 + 4 = (2− a)(2 + a),

q0 =
a− ε2
a

,

q1 =
2ε2 − a
a(a2 − 4)

=
−1

a(a+ 2ε2)
,

q2 = q0 − 2q1 =
a+ ε2
a+ 2ε2

.

Write a+2ε2 = γ21γ2 with γ1, γ2 ∈ N and γ2 squarefree. The integrality
condition (5.21) q2g

2 ∈ Z tells

g = γ1γ2γ3 with a+ 2ε2 = γ21γ2, g2 = (a+ 2ε2)γ2γ
2
3 , (5.31)

for some γ3 ∈ N. The conditions r < 0 and g2|r tell

a− 2ε2
γ2γ23

=
−r
g2

= gx̃1x̃2x̃3 − x̃21 − x̃22 − x̃23 ∈ N. (5.32)

γ2 divides a + 2ε2 and a − 2ε2, so it divides 4. As it is squarefree,
γ2 ∈ {1, 2}. Also gcd(g, a) = gcd(γ1γ2γ3, a) ∈ {1, 2} as a + 2ε2 = γ21γ2
and γ2γ

3
3 divides a− 2ε2.

The integrality conditions (5.23), q0xi − q1xjxk ∈ Z tell

a− ε2
a

xi +
1

a(a+ 2ε2)
xjxk = xi +

1

a
(−gε2x̃i + γ2γ

2
3 x̃jx̃k) ∈ Z,

so after multiplying with γ1
γ3
a
(−(a+ 2ε2)ε2x̃i + gx̃jx̃k) ∈ Z,

so
γ3
a
(−2x̃i + gx̃jx̃k) ∈ Z,

so
γ3
a
g2 ∈ Z.

This is a bit stronger than the integrality condition (5.22) q1g
2g2 ∈ Z

which says
γ2γ2

3

a
g2 ∈ Z. We can improve it even more, to

g2
a
∈ Z,

1

a
(−2x̃i + gx̃jx̃k) ∈ Z, (5.33)

by the following case discussion: If a ≡ 1(2), then γ3 ≡ 1(2), so
gcd(a, γ3) = 1, so (5.33) holds. It a ≡ 0(4), then a − 2ε2 ≡ 2(4),
so γ3 ≡ 1(2), so gcd(a, γ3) = 1, so (5.33) holds. If a ≡ 2(4), then a
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priori 2
a
g2 ∈ Z. But then a

2
≡ 1(2) and g ≡ 0(2), so g2 ≡ 0(2), so (5.33)

holds.
Finally, the integrality conditions (5.24) q1(x

2
i − x2j) say

γ2γ
2
3

a
(x̃2i − x̃2j) ∈ Z. (5.34)

The following estimate which arises from (5.2) will also be useful:

x̃21 ≤
(2 + (4− r)1/3)2

g2
=

(2 + a2/3)2

g2
=

4 + 4a2/3 + a4/3

g2

≤ 4 + 2a1/3 + 2a+ a4/3

g2
=

(a+ 2)(2 + a1/3)

(a+ 2ε2)γ2γ23
. (5.35)

Case II.2.1.1, ε2 = 1, µ1 = κa for some a ∈ Z≥3: The estimate
(5.35) says

x̃21 ≤ ⌊
2 + a1/3

γ2γ23
⌋ ≤ ⌊2 + a1/3⌋ ≤ a (recall a ∈ Z≥3). (5.36)

Recall that x is a local minimum, so 2x̃3 ≤ gx̃1x̃2 and that x̃1 ≤ x̃2 ≤ x̃3
and 1 ≤ x̃1 < x̃3 (as (x, x, x) is excluded).

Case II.2.1.1.1, 2x̃3 < gx̃1x̃2: Then (5.33) gives the existence of
α ∈ N with gx̃1x̃2 = αa+ 2x̃3. With this we go into (5.32),

a− 2

γ2γ23
= αax̃3 − x̃21 + (x̃23 − x̃22)

(5.36)

≥ αax̃3 − a+ 0
x̃3≥2

≥ a,

a contradiction.
Case II.2.1.1.2, 2x̃3 = gx̃1x̃2, x̃1 ≥ 2: (5.32) takes the shape

a− 2

γ2γ23
= x̃23 − x̃21 − x̃22 = g2(

x̃1
2
)2x̃22 − x̃21 − x̃22

≥ (g2 − 2)x̃22 ≥ ((a+ 2)− 2)x̃22 = ax̃22 ≥ a,

a contradiction.
Case II.2.1.1.3, 2x̃3 = gx̃1x̃2, x̃1 = 1: Write γ4 := γ2γ

2
3 . Then

(5.32) takes the shape

a− 2

γ4
= x̃23 − 1− x̃22 = (

1

4
(a+ 2)γ4 − 1)x̃22 − 1,

x̃2≥1

≥ 1

4
(a+ 2)γ4 − 2,

(γ24 − 4)a ≤ −2(γ24 − 4) + 8(γ4 − 2).
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If γ4 > 2 then a ≤ −2 + 8
γ4+2

≤ −2 + 8
5
, a contradiction. Therefore

γ4 ∈ {1, 2}. If γ4 = 1 then (5.32) becomes

a− 2 =
a− 2

4
x̃22 − 1, so 4 = (a− 2)(x̃22 − 4),

which has no solution (a, x̃2) ∈ Z≥3 × N, so a contradiction.
If γ4 = 2 then (5.32) is solved with x̃2 = 1 and a ∈ Z≥3 arbitrary.

Then x̃1 = 1, γ2 = 2, γ3 = 1, g = 2γ1, x̃3 =
g
2
= γ1, x = (2γ1, 2γ1, 2γ

2
1).

These cases are excluded.
Case II.2.1.2, ε2 = −1, µ1 = −κa for some a ∈ Z≥3: The estimates

(5.35) say here

x̃21 ≤ ⌊ (2 + a2/3)2

(a− 2)γ2γ23
⌋ ≤ ⌊(a+ 2)(2 + a1/3)

(a− 2)γ2γ23
⌋. (5.37)

This implies

x̃21 < a if a ≥ 8. (5.38)

We treat small a first. Recall γ2 ∈ {1, 2} and a = γ21γ2 + 2. So if
a ≤ 9 then a ∈ {3, 4, 6}. The following table lists constraints for
a ∈ {3, 4, 6}. For x̃1 (5.37) gives an upper bound and 3

g
≤ x1

g
= x̃1

gives a lower bound. Recall the conditions a− 2 = γ21γ2 and
a+2
γ2γ2

3
∈ N .

a 3 4 6
(γ1, γ2, γ3) (1, 1, 1) (1, 2, 1) (2, 1, 1) or (2, 1, 2)
γ2γ

2
3 1 2 1 or 4

g 1 2 2 or 4
3
g

3 3
2

3
2
or 3

4
(2+a2/3)2

a−2
16, 64.. 10, 21.. 7, 03..

x̃1 3 or 4 2 2 or 1

This gives five cases (a, x̃1) ∈ {(3, 3), (3, 4), (4, 2), (6, 2), (6, 1)} with
a ≤ 9. We treat these cases first and then all cases with a ≥ 10.
Because of (5.33) a number α ∈ Z≥0 with gx̃1x̃2 = αa + 2x̃3 exists.
Then (5.32) becomes

a+ 2

γ2γ23
= αax̃3 − x̃21 + (x̃23 − x̃22). (5.39)

Also recall (5.34)
γ2γ2

3

a
(x̃2i − x̃2j) ∈ Z.

Case II.2.1.2.1, (a, γ1, γ2, γ3, g, x̃1) = (3, 1, 1, 1, 1, 3): (5.39) says

5 = 3αx̃3 − 9 + (x̃23 − x̃22).

(5.34) says that 3 divides x̃23 − x̃22. A contradiction.
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Case II.2.1.2.2, (a, γ1, γ2, γ3, g, x̃1) = (3, 1, 1, 1, 1, 4): (5.39) says

5 = 3αx̃3 − 16 + (x̃23 − x̃22).

gx̃1x̃2 = 4x̃2 = αa + 2x̃3 implies that α is even. This and x̃3 > x̃1 = 4
and (5.39) show α = 0, so 2x̃2 = x̃3, so 5 = 0−16+3x̃22, a contradiction.

Case II.2.1.2.3, (a, γ1, γ2, γ3, g, x̃1) = (4, 1, 2, 1, 2, 2): (5.39) says

3 = 4αx̃3 − 4 + (x̃23 − x̃22).

(5.34) says that 2 divides x̃23 − x̃22. A contradiction.
Case II.2.1.2.4, (a, γ1, γ2, γ3, g, x̃1) = (6, 2, 1, 1, 2, 2): (5.39) says

8 = 6αx̃3 − 4 + (x̃23 − x̃22).
x̃3 > x̃1 = 2 and (5.39) imply α = 0, so 12 = x̃23− x̃22. Only x̃2 = 2 and
x̃3 = 4 satisfy this. But then gcd(x̃1, x̃2, x̃3) = 2 ̸= 1, a contradiction.

Case II.2.1.2.5, (a, γ1, γ2, γ3, g, x̃1) = (6, 2, 1, 2, 4, 1): (5.39) says

2 = 6αx̃3 − 1 + (x̃23 − x̃22).
It implies α = 0 and x̃2 = 1, x̃3 = 2, so x = (4, 4, 8). This case was
excluded in Theorem 5.18.

Case II.2.1.2.6, a ≥ 10:
Case II.2.1.2.6.1, α > 0: (5.38) gives x̃21 < a. This and (5.39)

and x̃3 > x̃1 ≥ 1 show α = 1, x̃3 = 2, x̃1 = 1, γ2 = γ3 = 1, so
a+ 2 = 2a− 1 + (4− x̃22). A contradiction to a ≥ 10.

Case II.2.1.2.6.2, α = 0, x̃1 ≥ 2: (5.39) says

a+ 2

γ2γ23
= x̃23 − x̃21 − x̃22 = ((a− 2)γ2γ

2
3

1

4
x̃21 − 1)x̃22 − x̃21,

so a+ 2 ≥ ((a− 2)− 1)x̃22 − x̃21 ≥ ((a− 2)− 2)4,

so 3a ≤ 18, a ≤ 6,

a contradiction.
Case II.2.1.2.6.3, α = 0, x̃1 = 1: Write γ4 := γ2γ

2
3 . Then (5.39)

says

a+ 2

γ4
= x̃23 − 1− x̃22 = ((a− 2)γ4

1

4
− 1)x̃22 − 1,

so x̃22 =
4

γ24
· a+ 2 + γ4
a− 2− 4

γ4

. (5.40)

The right hand side must be ≥ 1. This means

γ24(a− 2− 4

γ4
) ≤ 4(a+ 2 + γ4),

(γ24 − 4)a ≤ 2(γ24 − 4) + 8(γ4 + 2).
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If γ4 > 2 then a ≤ 2 + 8
γ4−2

, which is in contradiction to a ≥ 10, as

γ4 = 3 would mean γ2 = 3, which is impossible. Therefore γ4 ∈ {1, 2}.
If γ4 = 1 then (5.40) says x̃22 = 4a+3

a−6
= 4+ 36

a−6
. But the right hand

side is not a square for any a ≥ 10, a contradiction.
If γ4 = 2 then (5.40) says x̃22 = a+4

a−4
, which is also not a square for

any a ≥ 10, a contradiction.
Case II.2.2, N (µ1) = ε1 = −1: Recall the formulas for r, q0 and

q1 at the beginning of case II.2. Now

r = −a2,

q0 =
a+ ε2
a

,

q1 =
−1
a2
,

q2 =
a2 + ε2a+ 2

a2
.

The integrality condition (5.21) q2g
2 ∈ Z says a

2
| g if a ≡ 2(4) and a | g

if a ≡ 1(2) or a ≡ 0(4). Also g2 | r = −a2. Therefore g = a or g = a
2
,

and g = a
2
only if a ≡ 2(4). The case g = a means r

g2
= −1 which

implies by Lemma 5.11 Q ∈ GZ. But all such cases are excluded in
Theorem 5.18.

Therefore g = a
2
and a ≡ 2(4). The integrality condition (5.22)

q1g
2g2 ∈ Z says g2

4
∈ Z. But g2 ≡ 0(4) and g ≡ 1(2) are together im-

possible in view of the definition g2 = gcd(2x̃1−gx̃2x̃3, 2x̃2−gx̃1x̃3, 2x̃3−
gx̃1x̃2) and gcd(x̃1, x̃2, x̃3) = 1. A contradiction.

Therefore in all cases the assumption that a nontrivial root µ1 of
λ1 exists which satisfies the integrality conditions (5.21)–(5.24) leads
to a contradiction. Theorem 5.18 is proved □

Remark 5.19. The results in this chapter give complete results on
GZ and GM

Z ⊃ GZ for all unimodular bilinear lattices of rank 3.
The reducible cases: Lemma 5.4, Theorem 5.13.
The irreducible cases with r ∈ {0, 1, 2, 4}: Theorem 5.14
The irreducible cases with r ∈ Z<0∪Z>4 and G

M
Z ⫌ {±M l | l ∈ Z}:

Theorem 5.16.
The irreducible cases with r ∈ Z<0∪Z>4 and G

M
Z = {±M l | l ∈ Z}:

Theorem 5.18.
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CHAPTER 6

Monodromy groups and vanishing cycles

This chapter studies the monodromy groups Γ(0) and Γ(1) of the
unimodular bilinear lattices (HZ, L, e) with triangular basis e which
have rank 2 or 3. In rank 3 the even as well as the odd cases split into
many different case studies. They make the chapter long.

Section 6.1 considers for k ∈ {0; 1} the quotient lattice HZ
(1)

:=

HZ/Rad I
(k) and the induced bilinear form I

(k)
on it. Because Γ(k)

acts trivially on Rad I(k), it acts on this quotient lattice and respects

I
(k)
. The homomorphism Γ(k) → Aut(HZ

(1)
, I

(k)
) has an image Γ

(k)
s ,

the simple part of Γ(k) and a kernel Γ
(k)
u , the unipotent part of Γ(k).

There is the exact sequence

{id} → Γ(k)
u → Γ(k) → Γ(k)

s → {id}.

We will study Γ(k) together with Γ
(k)
s and Γ

(k)
u . Also the natural homo-

morphism j(k) : HZ → H♯
Z := HomZ(HZ,Z) and in the even case the

spinor norm will be relevant. Section 6.1 fixes more or less well known
general facts.

Section 6.2 treats the rank 2 cases. The even cases A2
1 and A2 are

classical and easy. In the other even cases Γ(0) ∼= GfCox,2. There we
can characterize ∆(0) arithmetically and geometrically. In the odd case
A2 Γ(1) ∼= SL2(Z). In the other irreducible odd cases Γ(1) ∼= Gfree,2.
The matrix group Γ(1),mat ⊂ SL2(Z) is a Fuchsian group of the second
kind, but has infinite index in SL2(Z) in most cases. We do not have
a characterization of ∆(1) which is as nice as in the even cases.

The long Theorem 6.11 in section 6.3 states our results on the even
monodromy group Γ(0) in the rank 3 cases. The results are detailed
except for the local minima x ∈ Z3

≥3 with r(x) ≤ 0 where we only

state Γ(0) ∼= Γ
(0)
s
∼= GfCox,3 and Γ

(0)
u = {id}. It is followed by Theorem

6.14 which gives the set ∆(0) of even vanishing cycles in many, but not
all cases. Especially in the cases of the local minima x ∈ Z3

≥3 with

r(x) ≤ 0 we know little and only state ∆(0) = R(0) in the case (3, 3, 3),
but ∆(0) ⫋ R(0) in the four cases (3, 3, 4), (4, 4, 4), (5, 5, 5) and (4, 4, 8).
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The result ∆(0) = R(0) in the case (3, 3, 3) seems to be new . Its proof
is rather laborious.

Section 6.4 treats the odd monodromy group Γ(1) and the set of odd
vanishing cycles ∆(1) in the rank 3 cases. The long Theorem 6.18 fixes
the results on Γ(1). The even longer Theorem 6.21 fixes the results on
∆(1). Also their proofs are long. They are preceded by two technical

lemmas, the second one helps to control Γ
(1)
u . Similar to the even

rank 3 cases, in the case of a local minimum x ∈ Z3
≥3 with r(x) ≤ 0

Γ(1) ∼= Γ
(1)
s
∼= Gfree,3 and Γ

(1)
u = {id}. In the same case, interestingly,

the map ∆(1) → HZ
(1)

is injective. This leads in this case to the problem

how to recover an odd vanishing cycle from its image in HZ
(1)
. One

solution is offered in the most important case x = (3, 3, 3) in Lemma
6.26. One general application of the Theorems 6.18 and 6.21 is given
in Corollary 6.23. It allows to separate many of the orbits of the bigger

group (Gphi ⋉ G̃sign) ⋊ ⟨γ⟩ which acts on T uni
3 (Z) and Z3 in Lemma

4.18.

6.1. Basic observations

Let (HZ, L, e) be a unimodular bilinear lattice of rank n ∈ N with
a triangular basis e. Definition 2.8 gave two monodromy groups Γ(0)

and Γ(1) and two sets ∆(0) and ∆(1) of vanishing cycles. Later in this
chapter they shall be studied rather systematically in essentially all
cases with n = 2 or n = 3. For that we need some notations and
basic facts, which are collected here. Everything in this section is well
known. Most of it is stated in the even case in [Eb84] and in the odd
case in [Ja83].

Definition 6.1. Let (HZ, L) be a unimodular bilinear lattice of
rank n ∈ N. In the following k ∈ {0; 1}. Denote

O(k) := Aut(HZ, I
(k)) the group of automorphisms of HZ

which respect I(k).

H♯
Z := Hom(HZ,Z) the dual lattice.

j(k) : HZ → H♯
Z, a 7→ (b 7→ I(k)(a, b)).

t(k) : O(k) → Aut(H♯
Z), g 7→ (l 7→ l ◦ g−1).
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HZ
(k)

:= HZ/Rad I
(k), HR

(k)
:= HR/RadR I

(k).

prH,(k) = (.)
(k)

: HZ → HZ
(k)
, a 7→ a(k), the projection.

I
(k)

: HZ
(k) ×HZ

(k) → Z the bilinear form on HZ
(k)

which is induced by I(k),

HZ
(k),♯

:= Hom(HZ
(k)
,Z) the dual lattice.

O(k),Rad := {g ∈ O(k) | g|Rad I(k) = id}.

prA,(k) = (.) : O(k),Rad → Aut(HZ
(k)
, I

(k)
), g 7→ g,

the natural map to the set of induced automorphisms.

For any subgroup G(k) ⊂ O(k),Rad define

G(k)
s := prA,(k)(G(k)) ⊂ Aut(HZ

(k)
, I

(k)
),

G(k)
u := ker(prA,(k) : G(k) → Aut(HZ

(k)
, I

(k)
)).

G
(k)
s is called the simple part of G(k), and G

(k)
u is called the unipotent

part of G(k).

Lemma 6.2. Let (HZ, L, e) be a unimodular bilinear lattice of rank
n ∈ N with a triangular basis e.

(a) The map t(k) : O(k) → Aut(H♯
Z) is a group homomorphism.

For g ∈ O(k), t(k)(g) maps j(k)(HZ) ⊂ H♯
Z to itself, so it induces an

automorphism τ (k)(g) ∈ Aut(H♯
Z/j

(k)(HZ)). The map

τ (k) : O(k) → Aut(H♯
Z/j

(k)(HZ))

is a group homomorphism.
(b) For a ∈ R(0) if k = 0 and for a ∈ HZ if k = 1 the reflection or

transvection s
(k)
a ∈ O(k) is in ker τ (k). Therefore Γ(k) ⊂ ker τ (k).

(c) ker τ (k) ⊂ O(k),Rad.
(d) The horizontal lines of the following diagram are exact se-

quences.

{id} → Γ
(k)
u → Γ(k) → Γ

(k)
s → {id}

∥ ∩ ∩ ∩ ∥
{id} → (ker τ (k))u → ker τ (k) → (ker τ (k))s → {id}
∥ ∩ ∩ ∩ ∥
{id} → O

(k),Rad
u → O(k),Rad → O

(k),Rad
s → {id}

The second and third exact sequence split non-canonically.

O(k),Rad
s = Aut(HZ

(k)
, I

(k)
).

129



(e) The map

T : HZ
(k),♯ ⊗ Rad I(k) → O(k),Rad

u ,∑
i∈I

li ⊗ ri 7→
(
a 7→ a+

∑
i∈I

li(a
(k))ri

)
,

shorter: h 7→
(
a 7→ a+ h(a(k))

)
,

is an isomorphism between abelian groups with

T (h1 + h2) = T (h1) ◦ T (h2), T (h)−1 = T (−h).

It restricts to an isomorphism

T : j
(k)
(HZ

(k)
)⊗ Rad I(k) → (ker τ (k))u,

where j
(k)

: HZ
(k) → HZ

(k),♯
is the map

a 7→
(
b 7→ I

(k)
(a, b)

)
for an arbitrary b ∈ HZ

(k)
.

(f) For g ∈ O(k),Rad, a ∈ HZ
(k)
, r ∈ Rad I(k)

g ◦ T (j(k)(a)⊗ r) ◦ g−1 = T (j
(k)
(g(a))⊗ r).

(g) Analogously to t(k) and τ (k) there are the group homomorphisms

t
(k)

: O(k),Rad
s = Aut(HZ

(k)
, I

(k)
) → Aut(HZ

(k),♯
), g 7→ (l 7→ l ◦ g−1),

and τ (k) : O(k),Rad
s → Aut(HZ

(k),♯
/j

(k)
(HZ

(k)
).

τ (k) and τ (k) satisfy

(ker τ (k))s = ker τ (k).

Proof: (a) The map t(k) is a group homomorphism because

t(k)(g1g2)(l) = l ◦ (g1g2)−1 = l ◦ g−1
2 ◦ g−1

1 = t(k)(g1)t
(k)(g2)(l).

t(k)(g) maps j(k)(HZ) to itself because

t(k)(g)(j(k)(a)) = j(k)(a) ◦ g−1 = I(k)(a, g−1(.))

= I(k)(g(a), (.)) = j(k)(g(a)).

τ (k) is a group homomorphism because t(k) is one.

130



(b) Choose l ∈ H♯
Z and b ∈ HZ. Then

(t(k)(s(k)a )(l)− l)(b) = l ◦ (s(k)a )−1(b)− l(b)
= l(b− (−1)kI(k)(a, b)a)− l(b)
= (−1)k+1I(k)(a, b)l(a)

= j(k)((−1)k+1l(a)a)(b),

so t(k)(s(k)a )(l)− l = j(k)((−1)k+1l(a)a) ∈ j(k)(HZ),

so τ (k)(s(k)a ) = id,

so s
(k)
a ∈ ker τ (k).
(c) Let g ∈ ker τ (k) and let r ∈ Rad I(k). Also g−1 ∈ ker τ (k). Choose

l ∈ H♯
Z. Now τ (k)(g−1) = id implies

t(k)(g−1)(l)− l = j(k)(a) for some a ∈ HZ,

0 = I(k)(a, r) = j(k)(a)(r) =
(
t(k)(g−1)(l)− l)(r) = l((g − id)(r)).

Because l is arbitrary, (g − id)(r) = 0, so g(r) = r, so g ∈ O(k),Rad.
(d) The exact sequences are obvious. Choose an arbitrary splitting

of HZ as Z-module into Rad I(k) and a suitably chosen Z-module H̃Z
(k)
,

HZ = Rad I(k) ⊕ H̃Z
(k)
.

The projection prH,(k) : HZ → HZ
(k)

restricts to an isomorphism

prH,(k) : (H̃Z
(k)
, I(k)|

H̃Z
(k))→ (HZ

(k)
, I

(k)
).

Via this isomorphism, any element of Aut(HZ
(k)
, I

(k)
) lifts to an element

of O(k),Rad. This shows O
(k),Rad
s = Aut(HZ

(k)
, I

(k)
), and it gives a non-

canonical splitting of the third exact sequence. The end of the proof
of part (g) will show that this splitting restricts to a non-canonical
splitting of the second exact sequence.

(e) The fact r(k) = 0 for r ∈ Rad I(k) easily implies that T is a
group homomorphism with T (h1 + h2) = T (h1)T (h2) and with image

in O
(k),Rad
u .
Consider g ∈ O(k),Rad

u . Then g|Rad I(k) = id and (g−id)(a) ∈ Rad I(k)

for any a ∈ HZ. If b ∈ a + Rad I(k) then (g − id)(a − b) = 0, so

(g− id)(b) = (g− id)(a). Thus there is an element h ∈ HZ
(k),♯⊗Rad I(k)

with h(a(k)) = (g − id)(a) for any a ∈ HZ, so T (h)(a) = a + h(a(k)) =
g(a), so T (h) = g.

Choose a Z-basis r1, ..., rm of Rad I(k) and linear forms l1, ..., lm ∈
H♯

Z with li(rj) = δij. Then any r ∈ Rad I(k) satisfies r =
∑m

i=1 li(r)ri.
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Consider h ∈ HZ
(k),♯ ⊗ Rad I(k) with T (h) ∈ (ker τ (k))u. Then

t(k)(T (h))(li)− li = j(k)(ai) for some ai ∈ HZ, and also

t(k)(T (h))(li)− li = li ◦ T (h)−1 − li = li ◦ T (−h)− li
= li ◦ (id−h((.)

(k)
))− li = −li(h((.)

(k)
)).

For b ∈ HZ h(b
(k)
) ∈ Rad I(k), so

h(b
(k)
) =

m∑
i=1

li(h(b
(k)
))ri = −

m∑
i=1

j(k)(ai)(b)ri,

so h ∈ j
(k)
(HZ

(k)
)⊗ Rad I(k).

Going backwards through these arguments, one sees that any h ∈
j
(k)
(HZ

(k)
)⊗ Rad I(k) satisfies T (h) ∈ (ker τ (k))u.

(f) For b ∈ HZ

(g ◦ T (j(k)(a)⊗ r) ◦ g−1)(b) = g(g−1(b) + I
(k)
(a, g−1(b)

(k)
)r)

= b+ I
(k)
(g(a), b

(k)
)r

= T (j
(k)
(g(a))⊗ r)(b).

(g) The projection prH,(k) = ()
(k)

: HZ → HZ
(k)

induces the embed-
ding

i(k) : HZ
(k),♯

↪→ H♯
Z, l 7→ l ◦ prH,(k),

with Im(i(k)) = {l ∈ H♯
Z | l|Rad I(k) = 0}

and j(k)(HZ) = i(k)(j
(k)
(HZ

(k)
)) ⊂ Im(i(k)).

The three lattices

H♯
Z ⊃ Im(i(k)) ⊃ j(k)(HZ)

have ranks n, n−rkRad I(k), n−rkRad I(k) and are for each g ∈ O(k),Rad

invariant under the map t(k)(g) = (l 7→ l ◦ g−1).

This map acts trivially on the quotient H♯
Z/ Im(i(k)). It acts triv-

ially on the quotient Im(i(k))/j(k)(HZ) if and only if g(k) ∈ ker τ (k). It

acts trivially on the quotient H♯
Z/j

(k)(HZ) if and only if g ∈ ker τ (k).
Therefore (ker τ (k))s ⊂ τ (k). It remains to find for each g̃ ∈ ker τ (k) an
element g ∈ ker τ (k) with g(k) = g̃.

Choose a Z-basis r1, ..., rn of HZ such that r1, ..., rm (with m =

rkRad I(k)) is a Z-basis of Rad I(k). Then HZ = Rad I(k) ⊕ H̃Z
(k)

with

H̃Z
(k)

=
⊕n

j=m+1 Z · rj is a splitting of HZ with H̃Z
(k) ∼= HZ

(k)
.
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Consider the dual Z-basis l1, ..., ln of H♯
Z with li(rj) = δij. Then

Im(i(k)) =
⊕n

j=m+1 Z · lj ⊃ j(k)(HZ).

An element g̃ ∈ O(k),Rad
s has a unique lift to an element g ∈ O(k),Rad

with g(H̃Z
(k)
) = H̃Z

(k)
. This splitting of the third exact sequence in

part (d) was used already in the proof of part (d). We claim that
g ∈ ker τ (k) if g̃ ∈ ker τ (k). We have

lj − lj ◦ g−1 ∈ j(k)(HZ) for j ∈ {m+ 1, ..., n}
because of g̃ ∈ ker τ (k),

li − li ◦ g−1 = 0 for i ∈ {1, ...,m}.

This shows the claim. Therefore (ker τ (k))s = ker τ (k). The claim also
shows that the non-canonical splitting of the third exact sequence in
part (d) restricts to a non-canonical splitting of the second exact se-
quence in part (d). □

Remarks 6.3. (i) The exact sequence {id} → Γ
(k)
u → Γ(k) →

Γ
(k)
s → {id} splits sometimes, sometimes not. When it splits and when

Γ
(k)
u , Γ

(k)
s and the splitting are known, then also Γ(k) is known.

(ii) Suppose that one has a presentation of Γ
(k)
s , namely an isomor-

phism

Γ(k)
s

∼=−→ ⟨g1, ..., gn |w1(g1, ..., gm), ..., wm(g1, ..., gn)⟩,

s
(k)
ei 7→ gi,

where w1(g1...., gn), ..., wm(g1, ..., gn) are certain words in g±1
1 , ..., g±1

n .

Then the group Γ
(k)
u is the normal subgroup of Γ(k) generated by the

elements w1(s
(k)
e1 , ..., s

(k)
en ),..., wm(s

(k)
e1 , ..., s

(k)
en ). In many of the cases with

n = 2 or n = 3 we have such a presentation.

(iii) The symmetric bilinear form I
(0)

on HZ
(0)

is nondegenerate.

It is well known that for any g ∈ Aut(HR
(0)
, I

(0)
) some m ∈ N and

elements a1, ..., am ∈ HR
(0)

with I
(0)
(ai, ai) ∈ R∗ and g = s(0)a1

...s(0)am

exist and that the sign

σ(g) :=
m∏
i=1

sign(I
(0)
(ai, ai)) ∈ {±1}

is independent of m and a1, ..., am. This sign σ(g) ∈ {±1} is the spinor
norm of g. The map σ : Aut(HR

(0)
, I

(0)
)→ {±1} is obviously a group

homomorphism.
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Definition 6.4. Keep the situation of Definition 6.1. Define the
spinor norm homomorphism

σ : O(0),Rad → {±1}, σ(g) := σ(g).

Define the subgroup O(k),∗ of O(k),Rad

O(k),∗ :=

{
ker τ (1) if k = 1,
ker τ (0) ∩ kerσ if k = 0.

Remarks 6.5. (i) For a ∈ R(0) of course σ(s
(0)
a ) = 1. Therefore

Γ(0) ⊂ kerσ. Thus

Γ(k) ⊂ O(k),∗ for k ∈ {0; 1}.

(ii) For g ∈ (ker τ (0))u σ(g) = 1 because g = id. Therefore

O(k),∗
u = (ker τ (k))u for k ∈ {0; 1}.

Remarks 6.6. Finally we make some comments on the sets of van-
ishing cycles in a unimodular bilinear lattice (HZ, L, e) with a triangular
basis.

(i) Let Hprim
Z denote the set of primitive vectors in HZ, i.e. vectors

a ∈ HZ − {0} with Za = Qa ∩HZ, and analogously HZ
(k),prim

. Then

∆(0) ⊂ R(0) ⊂ Hprim
Z , ∆(1) ⊂ Hprim

Z ,

∆
(0) ⊂ R

(0) ⊂ HZ
(0),prim

, where ∆
(k)

:= prH,(k)(∆(k)).

Here R(0) ⊂ Hprim
Z and R

(0) ⊂ HZ
(0),prim

because of 2 = I(0)(a, a) =

I
(0)
(a(0), a(0)) for a ∈ R(0). Furthermore

ei
(1) ∈ HZ

(1),prim ⇐⇒ Γ(1)
s {ei(1)} ⊂ HZ

(1),prim
.

Whether or not ei
(1) ∈ HZ

(1),prim
, that depends on the situation. ∆

(1) ⊂
HZ

(1),prim
may hold or not.

(ii) In general, an element a ∈ HZ satisfies

a(k) ∈ HZ
(k),prim ⇐⇒ a+Rad I(k) ⊂ Hprim

Z .

(iii) The set ∆
(k) ⊂ HZ

(k)
is often simpler to describe than the set

∆(k). The control of ∆
(k)

is a step towards the control of ∆(k).
(iv) Given a ∈ ∆(k), it is interesting to understand the three sets

(a+Rad I(k)) ∩∆(k)
(1)
⊃ (a+Rad I(k)) ∩ Γ(k){a}

(2)
⊃ Γ(k)

u {a}.

The next lemma makes comments on the inclusions
(1)
⊃ and

(2)
⊃.
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Lemma 6.7. Keep the situation in Remark 6.6 (iv).

(a) In
(1)
⊃ equality holds if and only if the image in HZ

(k)
of any Γ(k)

orbit different from Γ(k){a} is different from Γ
(k)
s {a(k)}.

(b) The following is an inclusion of groups,

StabΓ(k)(a(k))
(3)
⊃ Γ(k)

u · StabΓ(k)(a).

In
(2)
⊃ equality holds if and only if in

(3)
⊃ equality holds.

Proof: Trivial. □

6.2. The rank 2 cases

For x ∈ Z−{0} consider the matrix S = S(x) =

(
1 x
0 1

)
∈ T uni

2 (Z),

and consider a unimodular bilinear lattice (HZ, L) with a triangular
basis e = (e1, e2) with L(et, e)t = S. Recall the formulas and the
results in section 5.2, especially M root : HZ → HZ and its eigenvalues
κ1/2 =

−x
2
± 1

2

√
x2 − 4.

We can restrict to x < 0 because of L((e1,−e2)t, (e1,−e2))t =(
1 −x
0 1

)
. So suppose x < 0.

First we consider the even cases. Then Γ(0) is a Coxeter group, and
Γ(0) and ∆(0) are well known. Still we want to document and derive
the facts in our way.

Theorem 6.8. (a) We have

s(0)ei
e = e · s(0),mat

ei
with

s(0),mat
e1

=

(
−1 −x
0 1

)
, s(0),mat

e2
=

(
1 0
−x −1

)
,

Γ(0) ∼= Γ(0),mat := ⟨s(0),mat
e1

, s(0),mat
e2

⟩ ⊂ GL2(Z),
R(0) = {y1e1 + y2e2 ∈ HZ | 1 = y21 + xy1y2 + y22}.

(b) The case x = −1: (HZ, I
(0)) is the A2 root lattice. Γ(0) ∼= D6

is a dihedral group with six elements, the identity, three reflections and
two rotations,

Γ(0) = ⟨id, s(0)e1
, s(0)e2

, s(0)e1
s(0)e2

s(0)e1
, s(0)e1

s(0)e2
, s(0)e2

s(0)e1
⟩ ∼= Γ(0),mat

= ⟨E2,

(
−1 1
0 1

)
,

(
1 0
1 −1

)
,

(
0 −1
−1 0

)
,

(
0 −1
1 −1

)
,

(
−1 1
−1 0

)
⟩.
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The set ∆(0) of vanishing cycles coincides with the set R(0) of roots
and is

∆(0) = R(0) = {±e1,±e2,±(e1 + e2)}.
The following picture shows the action of Γ(0) on ∆(0). One sees the
action of D6 on the vertices of a regular 6-gon.

Figure 6.1. A regular 6-gon, actions of D6 and D12

One sees also the action of D12 on the regular 6-gon. This fits to
the following.

D6
∼= Γ(0) = ker τ (0) = O(0),∗ 1:2

⊂ O(0) ∼= D12.

(c) The case x = −2: Γ(0) ∼= GfCox,2 is a free Coxeter group with

the two generators s
(0)
e1 and s

(0)
e2 . Here

Rad I(0) = Zf1 with f1 = e1 + e2.

The set ∆(0) of vanishing cycles coincides with the set R(0) of roots and
is

∆(0) = R(0) = {y1e1 + y2e2 ∈ HZ | 1 = (y1 − y2)2}
= (e1 + Zf1) ∪̇ (e2 + Zf1).
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It splits into the two disjoint orbits

Γ(0){e1} = Γ(0){−e1} = (e1 + Z2f1) ∪̇ (−e1 + Z2f1),
Γ(0){e2} = Γ(0){−e2} = (e2 + Z2f1) ∪̇ (−e2 + Z2f1).

s
(0)
e1 acts on ∆(0) by permuting vanishing cycles horizontally, so by

adding ±2e1. s
(0)
e2 acts on ∆(0) by permuting vanishing cycles verti-

cally, so by adding ±2e2, see the following formulas and Figure 6.2.
For ε ∈ {±1} and m ∈ Z

s(0)e1
(εe1 +mf1) = −εe1 +mf1, s(0)e1

(εe2 +mf1) = −εe2 + (m+ 2ε)f1,

s(0)e2
(εe1 +mf1) = −εe1 + (m+ 2ε)f1, s(0)e2

(εe2 +mf1) = −εe2 +mf1.

Figure 6.2. Even vanishing cycles in the case S =

(
1 −2
0 1

)

The matrix group Γ(0),mat is given by the following formulas for m ∈ Z,

(s(0)e1
s(0)e2

)m(e) = e

(
2m+ 1 −2m
2m −2m+ 1

)
,

(s(0)e1
s(0)e2

)ms(0)e1
(e) = e

(
−2m− 1 2m+ 2
−2m 2m+ 1

)
.

(d) The cases x ≤ −3: Γ(0) ∼= GfCox,2 is a free Coxeter group

with the two generators s
(0)
e1 and s

(0)
e2 . The set ∆(0) of vanishing cycles

coincides with the set R(0) of roots. More information on ∆(0):
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(i) Recall Lemma B.1 (a). The map

u : ∆(0) → {units in Z[κ1] with norm 1} = {±κl1 | l ∈ Z}
y1e1 + y2e2 7→ y1 − κ1y2,

is well defined and a bijection with

s(0)e1
(u−1(εκl1)) = u−1(−εκ−l

1 ), s(0)e2
(u−1(εκl1)) = u−1(−εκ2−l

1 ),

for ε ∈ {±1}, l ∈ Z. Especially, ∆(0) splits into the two disjoint orbits
Γ(0){e1} and Γ(0){e2}.

(ii) The matrix group Γ(0),mat is given by the following formulas for
m ∈ Z,

(s(0)e1
s(0)e2

)m(e) = e

(
y1 −y2
y2 y1 + xy2

)
= (u−1(κ−2m

1 ), u−1(−κ−2m+1
1 )),

where u−1(κ−2m
1 ) = y1 − κ1y2,

(s(0)e1
s(0)e2

)ms(0)e1
(e) = e

(
y1 xy1 + y2
y2 −y1

)
= (u−1(−κ−2m

1 ), u−1(κ−2m−1
1 ))

where u−1(−κ−2m
1 ) = y1 − κ1y2.

(iii) ∆(0) ⊂ HR ∼= R2 is part of the hyperbola {y1e1 + y2e2 ∈
HR | (y1 − κ1y2)(y1 − κ2y2) = 1} with asymptotic lines y2 = κ2y1 and
y2 = κ1y1. Both branches of this hyperbola are strictly monotonously
increasing. The lower right branch is concave and contains the points
u−1(κl1) for l ∈ Z, the upper left branch is convex and contains the
points u−1(−κl) for l ∈ Z. The horizontal respectively vertical line
through a vanishing cycle a ∈ ∆(0) intersects the other branch of the

hyperbola in s
(0)
e1 (a) respectively s

(0)
e2 (a). See Figure 6.3.

(iv) Denote by s̃
(0)
ei , Γ̃(0) and ∆̃(0) the objects for x = −2 and as

usual by s
(0)
ei , Γ

(0) and ∆(0) the objects for an x ≤ −3.
The map s̃

(0)
ei 7→ s

(0)
ei extends to a group isomorphism Γ̃(0) → Γ(0).

The map

∆̃(0) → ∆(0),

e

(
1− l
−l

)
7→ u−1(κl1), e

(
l − 1
l

)
7→ u−1(−κl1) for l ∈ Z,

is a bijection. The bijections Γ̃(0) → Γ(0) and ∆̃(0) → ∆(0) are compat-

ible with the action of Γ̃(0) on ∆̃(0) and of Γ(0) on ∆(0).
(e) More on the cases x ≤ −2: The automorphism g1,2 : HZ → HZ

with g1,2 : e1 ↔ e2 is in O(0). The set {± id,±g1,2} is a subgroup of
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Figure 6.3. Even vanishing cycles in the case S =

(
1 −3
0 1

)

O(0) with

Γ(0) = ker τ (0) = O(0),∗ 1:4
⊂ O(0) = Γ(0) ⋊ {± id,±g1,2}.

Proof: (a) Everything except possibly the shape of R(0) is obvious.

R(0) = {y1e1 + y2e2 ∈ HZ | 2 = I(0)(y1e1 + y2e2, y1e1 + y2e2)}

= {y1e1 + y2e2 ∈ HZ | 2 =
(
y1 y2

)(2 x
x 2

)(
y1
y2

)
}

= {y1e1 + y2e2 ∈ HZ | 1 = y21 + xy1y2 + y22}.

(b) This is classical and elementary. R(0) = {±e1,±e2,±(e1 + e2)}.
The actions of s

(0)
e1 and s

(0)
e2 on this set extend to the action of the

dihedral group D6 on the vertices of a regular 6-gon. Therefore ∆(0) =
R(0) and Γ(0) ∼= D6.

O(0) ∼= D12 is obvious as the vanishing cycles form the vertices of
a regular 6-gon in (HZ, I

(0)). It remains to show for some element
g ∈ O(0) − Γ(0) g /∈ ker τ (0).
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Consider the reflection g ∈ O(0) with g(e) = (e1,−e1 − e2) and the
linear form l : HZ → Z with l(e) = (1, 0). Then

t(0)(g)(l) = l ◦ g−1, (l ◦ g−1)(e) = (l(e1), l(−e1 − e2)) = (1,−1),
(l − l ◦ g−1)(e) = (0, 1),

l − l ◦ g−1 /∈ j(0)(HZ) = ⟨(e 7→ (2,−1)), (e 7→ (−1, 2))⟩,

so g /∈ ker τ (0).
(c) and (d) The group Γ(0) for x ≤ −2: Recall the Remarks and

Notations A.1. The matrices s
(0),mat
e1 =

(
−1 −x
0 1

)
and s

(0),mat
e2 =(

1 0
−x −1

)
have the eigenvectors

(
1
0

)
respectively

(
0
1

)
with eigen-

value −1 and the eigenvectors

(
−x/2
1

)
respectively

(
−2/x
1

)
with

eigenvalue 1

Therefore µ(s
(0),mat
e1 ) and µ(s

(0),mat
e2 ) ∈ Isom(H) are reflections along

the hyperbolic line A(∞,−x
2
) respectively A(0,− 2

x
). As x ≤ −2, we

have − 2
x
≤ −x

2
, so A(0,− 2

x
)∩A(−x

2
,∞) = ∅, see the pictures in Figure

6.4.

Figure 6.4. Fundamental domain in H of Γ(0),mat for
x = −2 and x ≤ −3

Theorem A.2 (a) applies and shows that ⟨µ(s(0),mat
e1 ), µ(s

(0),mat
e2 )⟩ ⊂

Isom(H) is a free Coxeter group with the two given generators. There-

fore also Γ(0) is a free Coxeter group with the two generators s
(0)
e1 and

s
(0)
e2 .

(c) The set ∆(0) for x = −2:

R(0) = {y1e1 + y2e2 ∈ HZ | 1 = (y1 − y2)2}
= (e1 + Zf1) ∪̇ (e2 + Zf1).
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For m ∈ Z, ε ∈ {±1},

s(0)e1
(εe1 +mf1) = −εe1 +mf1,

s(0)e2
(εe2 +mf1) = −εe2 +mf1,

s(0)e1
s(0)e2

(e1 +mf1, e2 +mf1) = (e1 + (m+ 2)f1, e2 + (m− 2)f1).

This shows all claims on ∆(0) in part (c).
(d) (i) Recall κ1+κ2 = −x, κ1κ2 = 1, 0 = κ2i +xκi+1, κ2 = κ−1

1 =
−κ1 − x, κ1 = −κ2 − x.

Because of R(0) = {y1e1 + y2e2 ∈ HZ | 1 = y21 + xy1y2 + y22} the map

u : R(0) → {the units with norm 1 in Z[κ1]}
y1e1 + y2e2 7→ y1 − κ1y2

is well defined and a bijection. Because of Lemma B.1 (a)

{the units with norm 1 in Z[κ1]} = {±κl1 | l ∈ Z}.

Now

s(0)e1
(u−1(εκl1)) = u−1(−εκ−l

1 ) and s(0)e2
(u−1(εκl1)) = u−1(−εκ2−l

1 )

follow from

s(0)e1
e

(
y1
y2

)
= e

(
−1 −x
0 1

)(
y1
y2

)
= e

(
−y1 − xy2

y2

)
,

(−y1 − xy2)− κ1y2 = −(y1 − κ2y2) = −(y1 − κ1y2)−1,

s(0)e2
e

(
y1
y2

)
= e

(
1 0
−x −1

)(
y1
y2

)
= e

(
y1

−xy1 − y2

)
,

y1 − κ1(−xy1 − y2) = κ1((κ2 + x)y1 + y2) = κ1(−κ1y1 + y2)

= −κ21(y1 − κ2y2) = −κ21(y1 − κ1y2)−1.

This shows ∆(0) = R(0) and that ∆(0) splits into the two disjoint orbits
Γ(0){e1} and Γ(0){e2}.

(ii) The formulas in part (i) show immediately

(s
(0)
e1 s

(0)
e2 )

m(u−1(εκl1)) = u−1(εκl−2m
1 ) for l,m ∈ Z, ε ∈ {±1}. To-

gether with u(e1) = 1 and u(e2) = −κ1 this implies the formulas in
part (ii).

(iv) This follows from the formulas for the action of s̃
(0)
ei on R̃(0) and

of s
(0)
ei on R(0).
(iii) First we consider the lower right branch of the hyperbola.

There y1 − κ1y2 > 0 and y1 − κ2y2 > 0. We consider y2 as an im-
plicit function in y1. The equation

1 = y21 + xy1y2 + y22 = (y1 − κ1y2)(y1 − κ2y2)
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implies

0 = (y1 − κ1y2)(1− κ2y′2) + (y1 − κ2y2)(1− κ1y′2)
= [(y1 − κ1y2) + (y1 − κ2y2)]− [(y1 − κ1y2)κ2 + (y1 − κ2y2)κ1]y′2,

so y′2 > 0 and (1− κ1y′2)(1− κ2y′2) < 0,

0 = (y1 − κ1y2)(−κ2y′′2) + 2(1− κ1y′2)(1− κ2y′2)
+(y1 − κ2y2)(−κ1y′′2)

= −[(y1 − κ1y2)κ2 + (y1 − κ2y2)κ1]y′′2 + 2(1− κ1y′2)(1− κ2y′2),
so y′′2 < 0.

Therefore the lower right branch of the hyperbola is strictly
monotonously increasing and concave. The upper left branch is
obtained from the lower right branch by the reflection HR →
HR, (y1, y2) 7→ (y2, y1), along the diagonal. Therefore it is strictly
monotonously increasing and convex.

By definition s
(0)
e1 maps each horizontal line in HR to itself, and s

(0)
e2

maps each vertical line in HR to itself. As they map ∆(0) = R(0) to
itself, this shows all statements in (iii).

(e) Obviously g1,2 ∈ O(0) and {± id,±g1,2} is a subgroup of O(0).
Recall

H♯
Z ⊃ j(0)(HZ) = ⟨j(0)(e1), j(0)(e2)⟩

with j(0)(e1)(e) = (2, x), j(0)(e2)(e) = (x, 2).

Define l ∈ H♯
Z with l(e) = (1, 0). Then

(l − l ◦ (− id)−1)(e) = 2l(e) = (2, 0),

so l − l ◦ (− id)−1 /∈ j(0)(HZ), so − id /∈ ker τ (0).

(l − l ◦ g−1
1,2)(e) = (1,−1),

so l − l ◦ g−1
1,2 /∈ j(0)(HZ), so g1,2 /∈ ker τ (0).

Denote for a moment by Õ(0) the subgroup of O(0) which is generated
by {± id,±g1,2} and Γ(0). We just saw

(ker τ (0)) ∩ Õ(0) = Γ(0),

so Õ(0) = Γ(0) ⋊ {± id,±g1,2}.
It remains to show that this subgroup is O(0).

By the parts (c) and (d) (iii) the set ∆(0) = R(0) splits into two Γ(0)

orbits, Γ(0){e1} and Γ(0){e2}. The element g1,2 interchanges them, so

∆(0) = R(0) is a single Õ(0) orbit.
Therefore each element of O(0) can be written as a product of an

element in Õ(0) and an element g ∈ O(0) with g(e1) = e1. It is sufficient
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to show g ∈ Õ(0). Observe that the set {v ∈ HZ | I(0)(v, v) > 0} consists
of two components, with e1 in one component and e2 in the other
component. Because of g(e1) = e1, g(e2) is in the same component

as e2. Now HZ = Ze1 + Zg(e2) shows g(e2) ∈ {e2, s(0)e1 (−e2)} and

g ∈ {id,−s(0)e1 }. Therefore Õ(0) = O(0). □

Remarks 6.9. (i) By part (iv) of Theorem 6.8 (d) the pairs
(Γ(0),∆(0)) with the action of Γ(0) on ∆(0) are isomorphic for all x ≤ −2.
This is interesting as in the case x = −2 the set ∆(0) and this action
could be written down in a very simple way.

The parts (i) and (iii) of Theorem 6.8 (d) offered two ways to control
the set ∆(0) and this action also for x ≤ −3, a number theoretic way
and a geometric way. But both ways are less simple than ∆(0) in the
case x = −2.

(ii) In the odd cases the situation will be partly similar, partly
different. The pairs (Γ(1),∆(1)) with the action of Γ(1) on ∆(1) are
isomorphic for all x ≤ −2. In the case x = −2 the set ∆(1) and this
action can be written down in a fairly simple way. But we lack analoga
of the parts (i) and (iii) in Theorem 6.8 (d). We do not have a good
control on the sets ∆(1) for x ≤ −3.

(iii) For each x ≤ −2 and i ∈ {1, 2} StabΓ(0)(ei) = {id}, so the
map Γ(0) → Γ(0){ei}, γ 7→ γ(ei), is a bijection. The action of Γ(0) on
Γ(0){ei} shows again immediately that Γ(0) is a free Coxeter group with

generators s
(0)
e1 and s

(0)
e2 .

Now we come to the odd cases. As before we restrict to x ∈ Z<0.

Theorem 6.10. (a) We have

O(1) ∼= SL2(Z),
ker τ (1) ∼= Γ(x) := {A ∈ SL2(Z) |A ≡ E2modx},

s(1)ei
e = e · s(1),mat

ei
with

s(1),mat
e1

=

(
1 −x
0 1

)
, s(1),mat

e2
=

(
1 0
x 1

)
,

Γ(1) ∼= Γ(1),mat := ⟨s(1),mat
e1

, s(1),mat
e2

⟩ ⊂ SL2(Z),
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The map from ∆(1) to its image in R̂ = R∪{∞} under the composition

C : ∆(1) → R̂ of maps

∆(1) → (R∗∆(1))/R∗ = {lines through vanishing cycles}

↪→ (HR − {0})/R∗ = {lines in HR}
∼=−→ R̂,

R∗e

(
y1
1

)
7→ y1, R∗e1 7→ ∞,

is two-to-one.
(b) The case x = −1: Γ(1),mat = SL2(Z).

∆(1) = Γ(1){e1} = {y1e1 + y2e2 ∈ HZ | gcd(y1, y2) = 1} = Hprim
Z ,

where Hprim
Z denotes the set of primitive vectors in HZ. The image

C(∆(1)) ⊂ R̂ is Q̂ = Q ∪ {∞}.
(c) The case x = −2: Γ(1) ∼= Gfree,2 is a free group with the two

generators s
(1)
e1 and s

(1)
e2 . The (isomorphic) matrix group Γ(1),mat is

Γ(1),mat = {
(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1(4), b ≡ c ≡ 0(2)}.

It is a subgroup of index 2 in the principal congruence subgroup

Γ(2) = {
(
a b
c d

)
| a ≡ d ≡ 1(2), b ≡ c ≡ 0(2)}

of SL2(Z). The set ∆(1) = Γ(1){±e1,±e2} is

∆(1) = {y1e1 + y2e2 ∈ Hprim
Z | y1 + y2 ≡ 1(2)}.

It splits into the four disjoint orbits

Γ(1){e1} = {y1e1 + y2e2 ∈ Hprim
Z | y1 ≡ 1(4), y2 ≡ 0(2)}

Γ(1){−e1} = {y1e1 + y2e2 ∈ Hprim
Z | y1 ≡ 3(4), y2 ≡ 0(2)}

Γ(1){e2} = {y1e1 + y2e2 ∈ Hprim
Z | y1 ≡ 0(2), y2 ≡ 1(4)}

Γ(1){−e2} = {y1e1 + y2e2 ∈ Hprim
Z | y1 ≡ 0(2), y2 ≡ 3(4)}.

The set Hprim
Z of primitive vectors is the disjoint union of ∆(1) and the

set

{y1e1 + y2e2 ∈ Hprim
Z | y1 ≡ y2 ≡ 1(2)}.

The image C(∆(1)) ⊂ R̂ is

{∞} ∪ {a
b
| a ∈ Z, b ∈ N, gcd(a, b) = 1, a ≡ 0(2) or b ≡ 0(2)} ⊂ Q̂,

and is dense in R̂.
(d) The cases x ≤ −3.
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(i) Γ(1) ∼= Gfree,2 is a free group with the two generators s
(1)
e1 and

s
(1)
e2 .

(ii) The matrix group Γ(1),mat is a Fuchsian group of the second
kind. It has infinite index in the group

{
(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1(x2), b ≡ c ≡ 0(x)},

which has finite index in SL2(Z).
(iii) The image C(∆(1)) ⊂ R̂ is a subset of Q̂ which is nowhere

dense in R̂.
(iv) Denote by s̃

(1)
ei , Γ̃(1) and ∆̃(1) the objects for x = −2 and as

before by s
(1)
ei , Γ

(1) and ∆(1) the objects for an x ≤ −3.
The map s̃

(1)
ei 7→ s

(1)
ei extends to a group isomorphism Γ̃(1) → Γ(1),

which maps the stabilizer ⟨s̃(1)ei ⟩ of ei in Γ̃(1) to the stabilizer ⟨s(1)ei ⟩ of ei
in Γ(1). The induced map

∆̃(1) → ∆(1), γ̃(εei) 7→ γ(εei) for ε ∈ {±1}, γ̃ 7→ γ,

is a bijection. The bijections Γ̃(1) → Γ(1) and ∆̃(1) → ∆(1) are com-

patible with the actions of Γ̃(1) on ∆̃(1) and of Γ(1) on ∆(1). Especially,
∆(1) splits into the four disjoint orbits Γ(1){e1}, Γ(1){−e1}, Γ(1){e2},
Γ(1){−e2}.

(e) In the case A2
1 ∆(0) = ∆(1) = {±e1,±e2}. In all other rank 2

cases ∆(0) ⫋ ∆(1).

Proof: (a) Because of I(1)(et, e) =

(
0 x
−x 0

)
we have O(1) ∼=

SL2(Z). In order to see ker τ (1) ∼= Γ(x), consider the generators

l1, l2 ∈ H♯
Z of H♯

Z with l1(e) = (1, 0) and l2(e) = (0, 1). Observe first

j(1)(e1)(e) = (0, x), j(1)(e2)(e) = (−x, 0), so j(1)(HZ) = xH♯
Z,

and second that g ∈ O(1) with g−1(e) = e ·
(
a b
c d

)
satisfies

(l1 − l1 ◦ g−1)(e) = (1− a, b),
(l2 − l2 ◦ g−1)(e) = (−c, 1− d),

so g ∈ ker τ (1) if and only if

(
a b
c e

)
≡ E2modx.

It remains to prove that the line R · δ ⊂ HR through a vanishing
cycle δ ∈ ∆(1) intersects ∆(1) only in ±δ. To prove this we can restrict
to δ = ei. There it follows from the fact that any matrix A ∈ SL2(Z)
with a zero in an entry Aij has entries Ai,j+1(2), Ai+1(2),j ∈ {±1}.
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(b) Γ(1),mat = SL2(Z) is well known. The standard arguments for
this are as follows. The group µ(Γ(1),mat) ⊂ Isom(H) is generated by

µ(s(1),mat
e1

) = µ(

(
1 1
0 1

)
) = (z 7→ z + 1),

µ(s(1),mat
e1

s(1),mat
e2

s(1),mat
e1

) = µ(

(
0 1
−1 0

)
) = (z 7→ −z−1).

One sees almost immediately that it acts transitively on Q̂ and that the

stabilizer ⟨µ(s(1),mat
e1 )⟩ of ∞ in µ(Γ(1),mat) coincides with the stabilizer

of ∞ in µ(SL2(Z)). Therefore µ(Γ(1),mat) = µ(SL2(Z)). But −E2 ∈

Γ(1),mat because of

(
0 1
−1 0

)2

= −E2. Therefore Γ(1),mat = SL2(Z).

The fact that µ(SL2(Z)) acts transitively on Q̂ shows C(∆(1)) = Q̂.
Together with −E2 ∈ SL2(Z) this shows

∆(1) = Γ(1){e1} = Hprim
Z .

(c) and (d) The group Γ(1) for x ≤ −2: Recall the Remarks and
Notations A.1. The elements

µ(s(1),mat
e1

) = µ(

(
1 −x
0 1

)
) = (z 7→ z − x) and

µ(s(1),mat
e2

) = µ(

(
1 0
x 1

)
) = (z 7→ z

xz + 1
)

of Isom(H) are parabolic with fixed points ∞ respectively 0 on R̂.
Observe

µ(s(1),mat
e1

)−1(1) = 1 + x, µ(s(1),mat
e2

)(1) = (1 + x)−1,

(1 + x)−1 ≥ 1 + x for x ≤ −2.

Therefore µ(s
(1),mat
e1 )−1(A(∞, 1)) = A(∞, 1 + x) and

µ(s
(1),mat
e2 )(A(0, 1)) = A(0, (1 + x)−1) do not intersect. See Fig-

ure 6.5
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Figure 6.5. Fundamental domain in H of Γ(1),mat for
x = −2 and x ≤ −3

Theorem A.2 (c) applies and shows that µ(Γ(1),mat) is a free group

with the two generators µ(s
(1),mat
e1 ) and µ(s

(1),mat
e2 ). Therefore also Γ(1)

is a free group with the two generators s
(1)
e1 and s

(1)
e2 . As therefore

the map Γ(1),mat → µ(Γ(1),mat) is an isomorphism, −E2 /∈ Γ(1),mat and
− id /∈ Γ(1).

Theorem A.2 (c) says also that the contractible open set F whose
hyperbolic boundary consists of the four hyperbolic lines which were
used above, A(1 + x,∞), A(∞, 1), A(1, 0), A(0, (1 + x)−1), is a funda-
mental domain for µ(Γ(1),mat). If x = −2 then its euclidean boundary

in Ĉ consists of these four hyperbolic lines and the four points ∞, 1,
0, −1 = 1 + x = (1 + x)−1. If x ≤ −3 then its euclidean boundary
consists of these four hyperbolic lines, the three points ∞, 1, 0, and
the interval [1 + x, (1 + x)−1].

(c) Γ(1),mat and ∆(1) for x = −2: The following facts together imply
µ(Γ(1),mat) = µ(Γ(2)):

Γ(1),mat ⊂ Γ(2), [SL2(Z) : Γ(2)] = 6, −E2 ∈ Γ(2),

(hyperbolic area of the fundamental domain F of µ(Γ(1),mat)) = 2π,

(hyperbolic area of a fundamental domain of µ(SL2(Z))) =
π

3
.

Therefore either Γ(1),mat = Γ(2) or Γ(1),mat is a subgroup of index 2 in
Γ(2). But Γ(1),mat is certainly a subgroup of the subgroup(

a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1(4), b ≡ c ≡ 0(2)}

of Γ(2) and does not contain −E2. Therefore Γ(1),mat coincides with
this subgroup of Γ(2) and has index 2 in Γ(2).
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Therefore the orbits Γ(1){e1}, Γ(1){−e1}, Γ(1){e2}, Γ(1){−e2} are
contained in the right hand sides of the equations in part (c) which
describe them and are disjoint. It remains to show equality.

We restrict to Γ(1){e1}. The argument for Γ(1){e2} is analogous,
and the equations for Γ(1){−e1} and Γ(1){−e2} follow immediately.

Suppose y1, y3 ∈ Z with y1 ≡ 1(4), y3 ≡ 0(2), gcd(y1, y3) = 1. We

have to show e

(
y1
y3

)
∈ Γ(1){e1}. For that we have to find y2, y4 ∈ Z

with

(
y1 y2
y3 y4

)
∈ Γ(1), so with 1 = y1y4 − y2y3, y4 ≡ 1(4), y2 ≡ 0(2).

The condition gcd(y1, y3) implies existence of ỹ2, ỹ4 ∈ Z with 1 =
y1ỹ4 − ỹ2y3.

1st case, ỹ2 ≡ 0(2): Then 1 = y1ỹ4 − ỹ2y3 shows ỹ4 ≡ 1(4), and
(y2, y4) = (ỹ2, ỹ4) works.

2nd case, ỹ2 ≡ 1(2): Then (y2, y4) = (ỹ2 + y1, ỹ4 + y3) satisfies
1 = y1y4 − y2y3 and y2 ≡ 0(2), so we are in the 1st case, so (y2, y4)
works.

Therefore the orbit Γ(1){e1} is as claimed the set {y1e1 + y2e2 ∈
Hprim

Z | y1 ≡ 1(4), y2 ≡ 0(2)}.
The statements on Hprim

Z and C(∆(1)) are clear now, too.
(d) Γ(1),mat and ∆(1) for x ≤ −3: Part (i) was shown above.
(ii) The euclidean boundary of the fundamental domain F above

of µ(Γ(1),mat) contains the real interval [(1 + x)−1, 1 + x]. Therefore its
hyperbolic area is ∞, Γ(1),mat is a Fuchsian group of the second kind,
and the index of Γ(1),mat in SL2(Z) is ∞ (see e.g. [Fo51, 34.] [Be83,
§5.3, §8.1]).

(iii) The set C(∆(1)) ⊂ R̂ is the union of the µ(Γ(1),mat) orbits of∞
and 0 in R̂. Because Γ(1),mat is a Fuchsian group of the second kind,

these two orbits are nowhere dense in R̂ (see e.g. [Fo51] [Be83]). For
example, they contain no point of the open interval ((1+x)−1, (1+x))
and of its µ(Γ(1),mat) orbit.

(iv) The groups Γ̃(1) and Γ(1) are free groups with generators s̃
(1)
e1 ,

s̃
(1)
e2 and s

(1)
e1 , s

(1)
e2 . Therefore there is a unique isomorphism Γ̃(1) → Γ(1)

with s̃
(1)
ei 7→ s

(1)
ei . The other statements follow immediately.

(e) The case x = 0, so A2
1:

∆(0) = ∆(1) = {±e1,±e2}.

The case x = −1, so A2:

∆(0) = {±e1,±e2,±(e1 + e2)} ⫋ Hprim
Z = ∆(1).

148



The case x = −2, so P1A1:

∆(0) = (e1 + Zf1) ∪̇ (e2 + Zf1)
⫋ {y1e1 + y2e2 ∈ Hprim

Z | y1 + y2 ≡ 1(2)} = ∆(1).

The cases x ≤ −3: Recall s(0)e1 s
(0)
e2 = −M = −s(1)e1 s

(1)
e2 . Therefore for

m ∈ Z, ε ∈ {±1}

(s(0)e1
s(0)e2

)m(e) = (−s(1)e1
s(1)e2

)m(e) ∈ (∆(1))2,

(s(0)e1
s(0)e2

)ms(0)e1
(e1) = −(−s(1)e1

s(1)e2
)m(e1) ∈ ∆(1),

(s(0)e1
s(0)e2

)ms(0)e1
(e2) = (s(0)e1

s(0)e2
)m+1s(0)e2

(e2) ∈ ∆(1),

= −(−s(1)e1
s(1)e2

)m+1(e2) ∈ ∆(1).

This shows ∆(0) ⊂ ∆(1). For example (s
(1)
e1 )

−1(e2) = xe1 + e2 satisfies

L(xe1 + e2, xe1 + e2) =
(
x 1

)(1 0
x 1

)(
x
1

)
= 2x2 + 1 ̸= 1,

so ∆(0) ⫋ ∆(1). □

6.3. The even rank 3 cases

For x = (x1, x2, x3) ∈ Z3 consider the matrix S = S(x) =1 x1 x2
0 1 x3
0 0 1

 ∈ T uni
3 (Z), and consider a unimodular bilinear lattice

(HZ, L) with a triangular basis e = (e1, e2, e3) with L(et, e)t = S.
In this section we will determine in all cases the even monodromy

group Γ(0) = ⟨s(0)e1 , s
(0)
e2 , s

(0)
e3 ⟩ and in many, but not all, cases the set

∆(0) = Γ(0){±e1,±e2,±e3} of even vanishing cycles. The cases where
we control ∆(0) well contain all cases with r(x) ∈ {0, 1, 2, 4} (3 does
not turn up).

The group Br3 ⋉ {±1}3 acts on the set Btri of triangular bases of
(HZ, L), but this action does not change Γ(0) and ∆(0). Therefore the
analysis of the action of Br3⋉{±1}3 on T uni

3 (Z) in Theorem 4.6 allows
to restrict to the matrices S(x) with x in the following list:

S(x) with x ∈ Z3
≤0 and r(x) > 4,

S(A3
1), S(P2), S(A2A1), S(A3), S(P1A1), S(Â2), S(H1,2),

S(−l, 2,−l) for l ≥ 3,{
S(x) with x ∈ Z3

≥3 and r(x) < 0 and
xi ≤ 1

2
xjxk for {i, j, k} = {1, 2, 3}.
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The following of these matrices satisfy x ∈ Z3
≤0:

S(x) with x ∈ Z3
≤0 and r(x) > 4,

S(A3
1), S(A2A1), S(A3), S(P1A1), S(Â2).

These are all Coxeter matrices. Their even monodromy groups Γ(0)

are Coxeter groups and are well known. The cases with x ∈ {0, 1, 2}3
are classical, the extension to all x ∈ Z3

≤0 has been done by Vinberg
[Vi71, Prop. 6, Thm. 1, Thm. 2, Prop. 17]. If we write (x1, x2, x3) =
(S12, S13, S23) then the following holds [Hu90, 5.3+5.4] [Vi71] [BB05,

4.1+4.2]: All relations in Γ(0) = ⟨s(0)e1 , s
(0)
e2 , s

(0)
e3 ⟩ are generated by the

relations

(s(0)ei
)2 = id for i ∈ {1, 2, 3}, (6.1)

(s(0)ei
s(0)ej

)2 = id for {i, j, k} = {1, 2, 3} with sij = 0 (6.2)

[equivalent: s(0)ei
and s(0)ej

commute],

(s(0)ei
s(0)ej

)3 = id for {i, j, k} = {1, 2, 3} with sij = −1, (6.3)

no relation for {i, j, k} = {1, 2, 3} with sij ≤ −2. (6.4)

Especially, Γ(0) ∼= GfCox,3 is a free Coxeter group with three generators
if x ∈ Z3

≤−2.
In Theorem 6.11 we recover this result, we say more

about the Coxeter groups with r ∈ {0, 1, 2, 4}, so the cases

S(A3
1), S(A2A1), S(A3), S(P1A1), S(Â2), and we treat also the other

cases where Γ(0) is not a Coxeter group.
The only cases where Rad I(0) ⫌ {0} are the cases with r(x) = 4,

so the cases S(P1A1), S(Â2), S(H1,2) and S(−l, 2,−l) with l ≥ 3. In
these cases, we have the exact sequence

{1} → Γ(0)
u → Γ(0) → Γ(0)

s → {1} (6.5)

in Lemma 6.2 (d).
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Theorem 6.11. (a) We have

s(0)ei
e = e · s(0),mat

ei
with s(0),mat

e1
=

−1 −x1 −x20 1 0
0 0 1

 ,

s(0),mat
e2

=

 1 0 0
−x1 −1 −x3
0 0 1

 , s(0),mat
e3

=

 1 0 0
0 1 0
−x2 −x3 −1

 ,

Γ(0) ∼= Γ(0),mat := ⟨s(0),mat
e1

, s(0),mat
e2

, s(0),mat
e3

⟩ ⊂ GL3(Z),
R(0) = {y1e1 + y2e2 + y3e3 ∈ HZ |

1 = y21 + y22 + y23 + x1y1y2 + x2y1y3 + x3y2y3}.
(b) In the cases S(x) with x ∈ Z3

≤0 and r(x) > 4 and in the reducible

cases S(A3
1), S(A2A1), S(P1A1), all relations in Γ(0) are generated by the

relations in (6.1)–(6.4). Especially

Γ(0)(A3
1)
∼= Γ(0)(A1)× Γ(0)(A1)× Γ(0)(A1) ∼= (GfCox,1)3 ∼= {±1}3,

Γ(0)(A2A1) ∼= Γ(0)(A2)× Γ(0)(A1) ∼= D6 × {±1} ∼= S3 × {±1},
Γ(0)(P1A1) ∼= Γ(0)(P1)× Γ(0)(A1) ∼= GfCox,2 × {±1}.

(c) In the case S(A3) the group Γ(0) is the Weyl group of the root
system A3, so Γ(0) = ker τ (0) = O(0),∗ ∼= S4.

(d) In the case S(Â2) the group Γ(0) is the Weyl group of the affine

root system Â2. More concretely, the following holds.

Rad I(0) = Zf1 with f1 = e1 + e2 + e3,

HZ
(0)

= Ze1(0) ⊕ Ze2(0),

Γ(0)
u =

(
ker τ (0)

)
u
= T (j

(0)
(HZ

(0)
)⊗ Zf1)

= ⟨T (j(0)(e1(0))⊗ f1), T (j
(0)
(e2

(0))⊗ f1)⟩ ∼= Z2 with

T (j
(0)
(e1

(0))⊗ f1)(e) = e+ f1(2,−1,−1),

T (j
(0)
(e2

(0))⊗ f1)(e) = e+ f1(−1, 2,−1),

Γ(0)
u =

(
ker τ (0)

)
u

1:3
⊂ O(0),Rad

u = T (HZ
(0),♯ ⊗ Zf1),

Γ(0)
s = (ker τ (0))s ∼= Γ(0)(A2) ∼= D6

∼= S3,

Γ(0)
s

1:2
⊂ O(0),Rad

s = Aut(HZ
(0)
, I

(0)
) ∼= D12,

Γ(0) = ker τ (0) = O(0),∗ 1:6
⊂ O(0),Rad.

The exact sequence (6.5) splits non-canonically with Γ
(0)
s
∼= ⟨s(0)e1 , s

(0)
e2 ⟩ ⊂

Γ(0) (for example).
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(e) The case S(H1,2): The following holds.

HZ = Zf3 ⊕ Rad I(0) with f3 = e1 + e2 + e3,

HZ
(0)

= Zf3
(0)
,

Rad I(0) = Zf1 ⊕ Zf2 with f1 = e1 + e2, f2 = e2 + e3,

Γ(0)
u = (ker τ (0))u = T (j

(0)
(HZ

(0)
)⊗ Rad I(0))

= ⟨T (j(0)(f3
(0)
)⊗ f1), T (j

(0)
(f3

(0)
)⊗ f2)⟩ ∼= Z2 with

T (j
(0)
(f3

(0)
)⊗ f1)(f1, f2, f3) = (f1, f2, f3 + 2f1),

T (j
(0)
(f3

(0)
)⊗ f2)(f1, f2, f3) = (f1, f2, f3 + 2f2),

Γ(0)
u

1:4
⊂ O(0),Rad

u = T (HZ
(0),♯ ⊗ Rad I(0)),

Γ(0)
s = (ker τ (0))s = O(0),Rad

s
∼= Γ(0)(A1) ∼= {±1},

Γ(0) = ker τ (0) = O(0),∗ 1:4
⊂ O(0),Rad.

The exact sequence (6.5) splits non-canonically with Γ
(0)
s
∼= ⟨−M⟩ ⊂

Γ(0) and −M(f1, f2, f3) = (f1, f2,−f3). Therefore

Γ(0) = {(f1, f2, f3) 7→ (f1, f2, εf3 + 2β1f1 + 2β2f2) | ε ∈ {±1}, β1, β2 ∈ Z}.

(f) The cases S(−l, 2,−l) with l ≥ 3: The following holds.

Rad I(0) = Zf1 with f1 = e1 − e3,
HZ

(0)
= Ze1(0) ⊕ Ze2(0),

I
(0)
((e1

(0), e2
(0))t, (e1

(0), e2
(0))) =

(
2 −l
−l 2

)
,

Γ(0)
u = ⟨T (j(0)(e1(0))⊗ f1), T (j

(0)
(le2

(0))⊗ f1)⟩ ∼= Z2 with

T (j
(0)
(e1

(0))⊗ f1)(e) = e+ f1(2,−l, 2),

T (j
(0)
(le2

(0))⊗ f1)(e) = e+ f1(−l2, 2l,−l2),

Γ(0)
u

1:l
⊂ (ker τ (0))u

1:(l2−4)
⊂ O(0),Rad

u
∼= Z2,

Γ(0)
s
∼= Γ(0)(S(−l)) ∼= GfCox,2,

Γ(0)
s = (ker τ (0))s ∩ kerσ

1:4
⊂ O(0),Rad

s ,

Γ(0) 1:l
⊂ O(0),∗ 1:4(l2−4)

⊂ O(0),Rad.

The exact sequence (6.5) splits non-canonically with Γ
(0)
s
∼= ⟨s(0)e1 , s

(0)
e2 ⟩ ⊂

Γ(0) (for example).
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(g) The case S(P2) and the cases S(x) with x ∈ Z3
≥3, r(x) < 0 and

xi ≤ 1
2
xjxk for {i, j, k} = {1, 2, 3}: Γ(0) ∼= GfCox,3 is a free Coxeter

group with the three generators s
(0)
e1 , s

(0)
e2 , s

(0)
e3 .

Proof: (a) This follows from the definitions in Lemma 2.6 (a) and
in Definition 2.8. Especially

R(0) = {e

y1y2
y3

 ∈ HZ | 2 = I(0)((e

y1y2
y3

)t, e

y1y2
y3

)

= {e

y1y2
y3

 ∈ HZ | 2 = (y1 y2 y3)

 2 x1 x2
x1 2 x3
x2 x3 2

y1y2
y3

}.
(b) First we consider the cases S(x) with x ∈ Z3

≤0 and r(x) > 4.

By Lemma 5.7 (b) sign I(0) = (+ + −). We will apply Theorem A.4
with I [0] := −I(0), which has signature sign I [0] = (+−−).

The vectors e1, e2, e3 are negative with respect to I [0]. By Theorem

A.4 (c) (vi) the reflection s
(0)
ei acts on the model K/R∗ of the hyperbolic

plane as reflection along the hyperbolic line ((Rei)⊥ ∩K)/R∗ ⊂ K/R∗.
The corresponding three planes (Re1)⊥, (Re2)⊥ and (Re3)⊥ in HR in-
tersect pairwise in the following three lines

(Re1)⊥ ∩ (Re2)⊥ = Ry[1], y[1] = (−2x2 + x1x3,−2x3 + x1x2, 4− x21),
(Re1)⊥ ∩ (Re3)⊥ = Ry[2], y[2] = (−2x1 + x2x3, 4− x22,−2x3 + x1x2),

(Re2)⊥ ∩ (Re3)⊥ = Ry[3], y[3] = (4− x23,−2x1 + x2x3,−2x2 + x1x3).

x ∈ Z3
≤0 and y[1] = 0 would imply x2 = x3 = 0, x1 = −2, r(x) = 4.

But r(x) > 4 by assumption. Therefore y[1] ̸= 0. Analogously y[2] ̸= 0
and y[3] ̸= 0.

One calculates

I [0](y[i], y[i]) = 2(4− x2i )(r(x)− 4) for i ∈ {1, 2, 3}{
≤ 0 for xi ≤ −2,
> 0 for xi ∈ {0,−1}.

Therefore two of the three hyperbolic lines ((Rej)⊥ ∩ K)/R∗ (j ∈
{1, 2, 3}) intersect in K/R∗ if and only if the corresponding xi is 0
or −1.

Claim: If xi ∈ {0,−1} then the angle between the two hyperbolic
lines at the intersection point R∗y[i] ∈ K/R∗ is π

2
if xi = 0 and π

3
if

xi = −1.
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We prove the claim in an indirect way. Observe in general

x1 = 0⇒
(
s(0),mat
e1

s(0),mat
e2

)2
= (

−1 0 −x2
0 1 0
0 0 1

1 0 0
0 −1 −x3
0 0 1

)2

=

−1 0 −x2
0 −1 −x3
0 0 1

2

= E3, (6.6)

x1 = −1⇒
(
s(0),mat
e1

s(0),mat
e2

)3
= (

−1 1 −x2
0 1 0
0 0 1

1 0 0
0 −1 −x3
0 0 1

)3

=

−1 −1 −x2 − x30 −1 −x3
0 0 1

3

= E3, (6.7)

and analogously for x2 and x3. Therefore the angle between the hyper-
bolic lines must be π

2
if xi = 0 and π

3
or 2π

3
if xi = −1. But in the case

x1 = x2 = x3 = −1 the three intersection points are the vertices of a
hyperbolic triangle, so then the angles are all π

3
. Deforming x2 and x3

does not change the angle at R∗y[1], so it is π
3
if x1 = −1. This proves

the Claim. (□)

Now Theorem A.2 (a) shows that in the group of automorphisms
of K/R∗ which is induced by Γ(0) all relations are generated by the
relations in (6.1)–(6.4). Therefore this holds also for Γ(0) itself.

Now we consider the three reducible cases S(A3
1), S(A2A1) and

S(P1A1). Lemma 2.11 gives the first isomorphisms in part (b) for
Γ(0)(A3

1), Γ
(0)(A2A1) and Γ(0)(P1A1). Lemma 2.12 (for A1) and The-

orem 6.8 (b) and (c) give the second isomorphisms in part (b). The
isomorphisms show in these three cases that all relations in Γ(0) are
generated by the relations in (6.1)–(6.4).

(c) It is classical that in the case of the A3 root lattice the mon-
odromy group Γ(0) is the Weyl group and is ker τ (0) ∼= S4.

(d) The proof of Theorem 5.14 (b) (iii) shows

Rad I(0) = kerΦ2(M) = kerΦ1(M
root) = Zf1,

HZ
(0)

= Ze1(0) ⊕ Ze2(0),

I
(0)
((e1

(0), e2
(0))t, (e1

(0), e2
(0))) =

(
2 −1
−1 2

)
,
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so (HZ
(0)
, I

(0)
) is an A2 root lattice. This was treated in Theorem 6.8

(b). We have

O(0),Rad
s = Aut(HZ

(0)
, I

(0)
) ∼= D12,

e3
(0) = −e1(0) − e2(0),

R(0)(HZ
(0)
, I

(0)
) = {±e1(0),±e2(0),±e3(0)},

Γ(0) = Γ(0)
s = ⟨s(0)e1 , s

(0)
e2 ⟩ ∼= Γ(0)(A2) ∼= D6

∼= S3,

Γ(0)
s = (ker τ (0))s

1:2
⊂ O(0),Rad

s .

Observe also

s(0)e2
s(0)e1

s(0)e2
s(0)e3

(e)

= e

1 0 0
1 −1 1
0 0 1

−1 1 1
0 1 0
0 0 1

1 0 0
1 −1 1
0 0 1

1 0 0
0 1 0
1 1 −1


= e+ f1(1, 1,−2) = T (j

(0)
(−e3(0))⊗ f1)(e),

so T (j(0)(−e3(0)) ⊗ f1) ∈ Γ
(0)
u . Compare Lemma 6.2 (f) and re-

call that Γ
(0)
s acts transitively on {±e1(0),±e2(0),±e3(0)}. Therefore

T (j
(0)
(ej

(0))⊗ f1) ∈ Γ
(0)
u for j ∈ {1, 2, 3} with

T (j
(0)
(e1

(0))⊗ f1)(e) = e+ f1(2,−1,−1),

T (j
(0)
(e2

(0))⊗ f1)(e) = e+ f1(−1, 2,−1),

so

Γ(0)
u = T (j

(0)
(HZ

(0)
)⊗ f1) = (ker τ (0))u

⊂ T (HZ
(0),♯ ⊗ f1) = O(0),Rad

u
∼= Z2.

T (HZ
(0),♯ ⊗ f1) is generated by

(e 7→ e+ f1(1,−1, 0)) and (e 7→ e+ f1(0, 1,−1)).

Therefore Γ
(0)
u

1:3
⊂ O

(0),Rad
u .

Together Γ
(0)
s = (ker τ (0))s

1:2
⊂ O(0),Rad

s and Γ
(0)
u = (ker τ (0))u

1:3
⊂

O(0),Rad
u show

Γ(0) = ker τ (0)
1:6
⊂ O(0),Rad

(6.7) and x1 = −1 show ⟨s(0)e1 , s
(0)
e2 ⟩ ∼= D6, so Γ

(0)
s
∼= ⟨s(0)e1 , s

(0)
e2 ⟩ ⊂ Γ(0), so

the exact sequence (6.5) splits non-canonically.
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(e) Recall from the proof of Theorem 5.14 (a) (i) that

f = (f1, f2, f3) := e

1 0 1
1 1 1
0 1 1


is a Z-basis of HZ and

Rad I(0) = Zf1 ⊕ Zf2,
HZ = Zf3 ⊕ Rad I(0),

HZ
(0)

= Zf3
(0)
.

Also observe

s(0)ej
|Rad I(0) = id for i ∈ {1, 2, 3},

s(0)e1
(f3) = −f3 + 2f2,

s(0)e2
(f3) = −f3 + 2f1 + 2f2,

s(0)e3
(f3) = −f3 + 2f1,

Γ(0) = Γ(0)
s = {± id} = (ker τ (0))s = O(0),Rad

s
∼= Γ(0)(A1) ∼= {±1}.

Therefore

Γ(0)
u ∋ s(0)e1

s(0)e2
= (f 7→ f + 2f1(0, 0, 1)) = T (j

(0)
(f3

(0)
)⊗ f1),

Γ(0)
u ∋ s(0)e3

s(0)e2
= (f 7→ f + 2f2(0, 0, 1)) = T (j

(0)
(f3

(0)
)⊗ f2),

so

Γ(0)
u = (ker τ (0))u = T (j

(0)
(HZ

(0)
)⊗ Rad I(0))

1:4
⊂ O(0),Rad = T (HZ

(0),♯ ⊗ Rad I(0))

= ⟨(f 7→ f + f1(0, 0, 1)), (f 7→ f + f2(0, 0, 1))⟩ ∼= Z2.

Together the statements on Γ
(0)
s and Γ

(0)
u imply

Γ(0) = ker τ (0)
1:4
⊂ O(0),Rad.

The exact sequence (6.5) splits non-canonically with Γ
(0)
s = {±id} ∼=

⟨−M⟩ ⊂ Γ(0) (for example).
(f) Recall from the proof of Theorem 5.14 (a) (ii) and (b) (iv)

Rad I(0) = Zf1 with f1 = e1 − e3, so

HZ
(0)

= Ze1(0) ⊕ Ze2(0),

I
(0)
((e1

(0), e2
(0))t, (e1

(0), e2
(0))) =

(
2 −l
−l 2

)
.
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Observe

s(0),mat
e1

=

−1 l −2
0 1 0
0 0 1

 , s(0),mat
e2

=

1 0 0
l −1 l
0 0 1

 ,

s(0),mat
e3

=

 1 0 0
0 1 0
−2 l −1

 ,

s
(0)
e1 (e1

(0), e2
(0)) = s

(0)
e3 (e1

(0), e2
(0)) = (e1

(0), e2
(0))

(
−1 l
0 1

)
,

s
(0)
e2 (e1

(0), e2
(0)) =

(
1 0
l −1

)
.

Theorem 6.8 (d) shows

Γ(0) = Γ(0)
s
∼= Γ(0)(S(−l)) ∼= GfCox,2.

Therefore with respect to the generators s
(0)
e1 , s

(0)
e2 and s

(0)
e3 , all relations

in Γ
(0)
s are generated by the relations

(s
(0)
e1 )

2 = (s
(0)
e2 )

2 = s
(0)
e1 s

(0)
e3 = id .

Therefore Γ
(0)
u is generated by the set {gs(0)e1 s

(0)
e3 g

−1 | g ∈ Γ(0)} of conju-
gates of s

(0)
e1 s

(0)
e3 . Observe

s(0)e1
s(0)e3

(e) = e

−1 l −2
0 1 0
0 0 1

 1 0 0
0 1 0
−2 l −1


= e

 3 −l 2
0 1 0
−2 l −1

 = e+ f1(2,−l, 2),

so s(0)e1
s(0)e3

= T (j
(0)
(e1

(0))⊗ f1),

and recall Lemma 6.2 (f). The Z-lattice generated by the Γ(0) orbit of
e1 is Ze1 ⊕ Zle2 ⊕ Z gcd(2, l)e3. Therefore

Γ(0)
u = ⟨T (j(0)(e1(0))⊗ f1), T (j

(0)
(le2

(0))⊗ f1)⟩ ∼= Z2 with

T (j
(0)
(le2

(0)))⊗ f1)(e) = e+ f1(−l2, 2l,−l2).
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Compare

(ker τ (0))u = T (j
(0)
(HZ

(0)
)⊗ f1)

= ⟨T (j(0)(e1(0))⊗ f1), T (j
(0)
(e2

(0))⊗ f1)⟩,

O(0),Rad = T (HZ
(0),♯ ⊗ f1)

= ⟨(e 7→ e+ f1(1, 0, 1)), (e 7→ e+ f1(0, 1, 0))⟩.

Therefore

Γ(0)
u

1:l
⊂ (ker τ (0))u

1:(l2−4)
⊂ O(0),Rad

u
∼= Z2.

Theorem 6.8 (e) shows also

Γ(0)
s = (ker τ (0))s ∩ kerσ

1:4
⊂ O(0),Rad

s .

Therefore

Γ(0) 1:l
⊂ O(0),∗ 1:4(l2−4)

⊂ O(0),Rad.

(g) By Lemma 5.7 (b) sign I(0) = (+−−). We will apply Theorem
A.4 with I [0] = I(0) and Theorem A.2 (b). The vectors e1, e2 and e3
are positive. By Theorem A.4 (c) (vii) the reflection s

(0)
ei acts on the

model K/R∗ of the hyperbolic plane as an elliptic element of order 2
with fixed point R∗ei ∈ K/R∗.

Consider the three vectors v1, v2, v3 ∈ HZ ⊂ HR

v1 := −x3e1 + x2e2 + x1e3,

v2 := x3e1 − x2e2 + x1e3,

v3 := x3e1 + x2e2 − x1e3,

and observe

v1 + v2 = 2x1e3, v1 + v3 = 2x2e2, v2 + v3 = 2x3e1,

I(0)(vi, vi) = r(x) ≤ 0.

The three planes Rv1 ⊕ Rv2, Rv1 ⊕ Rv3 and Rv2 ⊕ Rv3 contain the
lines Re3, Re2 respectively Re1. Two of the three planes intersect
in one of the lines Rv1, Rv2 and Rv3, and these three lines do not
meet K. Therefore the three hyperbolic lines ((Rv1 ⊕ Rv2) ∩ K)/R∗,
((Rv1 ⊕Rv3) ∩ K)/R∗ and ((Rv2 ⊕Rv3) ∩ K)/R∗ in K/R∗ contain the
points R∗e3, R∗e2 respectively R∗e1 and do not meet.

Now Theorem A.2 (b) shows that the group of automorphisms of
K/R∗ which is induced by Γ(0) is isomorphic to GfCox,3. Therefore also
Γ(0) itself is isomorphic to GfCox,3. □
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Remarks 6.12. (i) In part (g) of Theorem 6.12 we have less infor-
mations than in the other cases. We do not even know in which cases
in part (g) Γ(0) = O(0),∗ respectively Γ(0) ⫋ O(0),∗ holds.

(ii) In the case of S(P2), the proof of Theorem 6.11 (g) gave three
hyperbolic lines in the model K/R∗ which form a degenerate hyperbolic
triangle, so with vertices on the euclidean boundary of the hyperbolic
plane. These vertices are the lines R∗v1, R∗v2, R∗v3, which are isotropic
in the case of S(P2) because there I(0)(vi, vi) = r(x) = 0. The reflec-

tions s
(0)
e1 , s

(0)
e2 , s

(0)
e3 act as elliptic elements of order 2 with fixed points

on these hyperbolic lines. Therefore the degenerate hyperbolic triangle
is a fundamental domain of this action of Γ(0).

(iii) Milanov [Mi19, 4.1] had a different point of view on Γ(0) in the
case of S(P2). He gave an isomorphism Γ(0) ∼= U to a certain subgroup
U of index 3 in PSL2(Z). First we describe U in (iv), then we present
our way to see this isomorphism in (v).

(iv) The class in PSL2(Z) of a matrix A ∈ SL2(Z) is denoted by
[A]. It is well known that there is an isomorphism of the free product
of Z/2Z and Z/3Z with PSL2(Z),

⟨α |α2 = e⟩ ∗ ⟨β | β3 = e⟩ → PSL2(Z),

α 7→ [

(
0 −1
1 0

)
], β 7→ [

(
−1 −1
1 0

)
].

Consider the character

χ : ⟨α |α2 = e⟩ ∗ ⟨β | β3 = e⟩ → {1, e2πi/3, e2πi2/3}, α 7→ 1, β 7→ e2πi/3,

and the corresponding character χ̃ on PSL2(Z). Then

U = ker χ̃
1:3
⊂ PSL2(Z),

kerχ = ⟨α, βαβ2, β2αβ⟩
with α ≃ [F1], βαβ

2 ≃ [F2], β
2αβ ≃ [F3] and

F1 =

(
0 −1
1 0

)
, F2 =

(
−1 −2
1 1

)
, F3 =

(
−1 −1
2 1

)
.

It is easy to see kerχ ∼= GfCox,3, with the three generators α, βαβ2,
β2αβ. It is well known and easy to see that

⟨F1, F2, F3⟩ = {
(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 0mod 3 or b ≡ cmod 3}.

The Möbius transformations µ(F1), µ(F2), µ(F3) are elliptic of order
2 with fixed points z1 = i, z2 = −1 + i, z3 = −1

2
+ 1

2
i.
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The hyperbolic lines l̃1 := A(∞, 0) l̃2 := A(−1,∞), l̃3 := A(0,−1)
(notations from the Remarks and Notations A.1 (iii)) form a degenerate

hyperbolic triangle, and l̃i contains zi.
(v) Consider the matrices

B :=

 z1z1 −z2z2 2z3z3
Re(z1) −Re(z2) 2Re(z3)

1 −1 2

 =

1 −2 1
0 1 −1
1 −1 2

 and

B−1 =
1

2

 1 3 1
−1 1 1
−1 −1 1

 .

One checks

Bt

0 0 1
0 −2 0
1 0 0

B =

 2 −3 3
−3 2 −3
3 −3 2

 = S(P2) + S(P2)t,

B−1Θ(Fi)B = −s(0),mat
ei

for i ∈ {1, 2, 3}

(see Theorem A.4 (i) for Θ). The Z-basis e of HZ and the R-basis f in
Theorem A.4 of HR are related by e = f · B. The tuple (v1, v2, v3) in
the proof of Theorem 6.11 (g) is

(v1, v2, v3) = e

 3 −3 −3
3 −3 3
−3 −3 3


= f ·B ·

 3 −3 −3
3 −3 3
−3 −3 3

 = f · (−6)

 1 0 1
−1 0 0
1 1 0

 .

Finally observe that ϑ : H → K/R∗ in Theorem A.4 extends to the
euclidean boundary with

(ϑ(−1), ϑ(0), ϑ(∞)) = R∗ · f ·

 1 0 1
−1 0 0
1 1 0

 .

So the points −1, 0,∞ are mapped to the points R∗v1, R∗v2, R∗v3. The

groups Γ(0),mat = ⟨s(0),mat
ei | i ∈ {1, 2, 3}⟩ and ⟨−s(0),mat

ei | i ∈ {1, 2, 3}⟩
are isomorphic because Γ(0),mat does not contain −E3 because else it
would not be a free Coxeter group with three generators.

Therefore the group U = ⟨[F1], [F2], [F3]⟩ ⊂ PSL2(Z) is isomorphic

to the group ⟨B−1Θ(Fi)B | i ∈ {1, 2, 3}⟩ = ⟨−s(0),mat
ei | i ∈ {1, 2, 3}⟩ and

to the groups Γ(0),mat and Γ(0).
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Now we turn to the study of the set R(0) of roots and the subset
∆(0) ⊂ R(0) of vanishing cycles. For the set R(0) Theorem 6.11 (a) gave
the general formula R(0) = {y1e1+y2e2+y3e3 ∈ HZ | 1 = Q3(y1, y2, y3)}
with the quadratic form

Q3 : Z3 → Z, (y1, y2, y3) 7→ y21 + y22 + y23 + x1y1y2 + x2y1y3 + x3y2y3.

It gave also a good control on Γ(0) for all cases S(x) with x ∈ Z3.
With respect to ∆(0) and R(0) we know less. We have a good control

on them for the cases with r(x) ∈ {0, 1, 2, 4} and the reducible cases,
but not for all other cases. Theorem 6.14 treats all cases except those
in the Remarks 6.13 (ii).

Remarks 6.13. (i) The cases S(H1,2), S(−l, 2,−l) for l ≥ 3 and
the four cases S(3, 3, 4), S(4, 4, 4), S(5, 5, 5), S(4, 4, 8) (more precisely
their Br3 ⋉ {±1}3 orbits) are the only cases in rank 3 where we know
∆(0) ⫋ R(0).

(ii) We do not know whether ∆(0) = R(0) or ∆(0) ⫋ R(0) in the
following cases:

(a) All cases S(x) with r(x) < 0 except the four cases S(3, 3, 4),
S(4, 4, 4), S(5, 5, 5), S(4, 4, 8). With the action of Br3⋉{±1}3
and Theorem 4.6 (c) they can be reduced to the cases S(x)
with x ∈ Z3

≥3, r(x) < 0, xi ≤ 1
2
xjxk for {i, j, k} = {1, 2, 3}.

(b) The irreducible cases S(x) with x ∈ Z3
≤0, r(x) > 4 and

x /∈ {0,−1,−2}3.

Theorem 6.14. (a) Consider the reducible cases (these include
S(A3

1), S(A2A1), S(P1A1)). More precisely, suppose that x =
(x1, 0, 0). Then the tuple (HZ, L, e) splits into the two tuples (Ze1 ⊕
Ze2, L|Ze1⊕Ze2 , (e1, e2)) and (Ze3, L|Ze3 , e3) with sets ∆

(0)
1 = R

(0)
1 ⊂

Ze1 ⊕ Ze2 and ∆
(0)
2 = R

(0)
2 = {±e3} ⊂ Ze3 of vanishing cycles and

roots, and

∆(0) = ∆
(0)
1 ∪̇ ∆

(0)
2 = R(0) = R

(0)
1 ∪̇ R

(0)
2 .

∆
(0)
1 = R

(0)
1 is given in Theorem 6.8.

(b) Consider S(x) with x ∈ {0,−1,−2}3 and r(x) > 4. Then
∆(0) = R(0).

(c) The case S(A3) is classical. There

∆(0) = R(0) = {±e1,±e2,±e3,±(e1 + e2),±(e2 + e3),±(e1 + e2 + e3)}.
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(d) The case S(Â2): Recall Rad I(0) = Zf1 with f1 = e1 + e2 + e3.
There

∆(0) = R(0) = Γ(0){e1}
= (±e1 + Zf1) ∪̇ (±e2 + Zf1) ∪̇ (±e3 + Zf1).

(e) The case S(H1,2): Recall (f1, f2, f3) = e

1 0 1
1 1 1
0 1 1

 and

Rad I(0) = Zf1 ⊕ Zf2. The set of roots is

R(0) = ±e1 +Rad I(0) = (e1 +Rad I(0)) ∪̇ (−e1 +Rad I(0)),

with

e1 +Rad I(0) = −e2 +Rad I(0) = e3 +Rad I(0) = f3 +Rad I(0).

It splits into the four Γ(0) orbits

Γ(0){e1} = ±e1 + 2Rad I(0), Γ(0){e2} = ±e2 + 2Rad I(0),

Γ(0){e3} = ±e3 + 2Rad I(0), Γ(0){f3} = ±f3 + 2Rad I(0).

The set ∆(0) of vanishing cycles consists of the first three of these sets,

∆(0) = Γ(0){e1} ∪̇ Γ(0){e2} ∪̇ Γ(0){e3},
so ∆(0) ⫋ R(0).

(f) The cases S(−l, 2,−l) with l ≥ 3: Recall Rad I(0) = Zf1 with

f1 = e1− e3. As the tuple (HZ
(0)
, I

(0)
, (e1

(0), e2
(0))) is isomorphic to the

corresponding tuple from the 2×2 matrix S(−l) =
(
1 −l
0 1

)
, its sets of

roots and its set of even vanishing cycles coincide because of Theorem
6.8. These sets are called R(0)(S(−l)). Then

R(0) = {ỹ1e1 + ỹ2e2 ∈ H(0)
Z | ỹ1e1

(0) + ỹ2e2
(0) ∈ R(0)(S(−l))}+Rad I(0).

The cases with l even: R(0) splits into the following l + 2 Γ(0) orbits,

Γ(0){e1}, Γ(0){e3}, Γ(0){e2 +mf1} for m ∈ {0, 1, ..., l − 1}.
The set ∆(0) of vanishing cycles consists of the first three Γ(0) orbits,

∆(0) = Γ(0){e1} ∪̇ Γ(0){e3} ∪̇ Γ(0){e2}.
The cases with l odd: R(0) splits into the following l + 1 Γ(0) orbits,

Γ(0){e1} = Γ(0){e3}, Γ(0){e2 +mf1} for m ∈ {0, 1, ..., l − 1}.
The set ∆(0) of vanishing cycles consists of the first two Γ(0) orbits,

∆(0) = Γ(0){e1} ∪̇ Γ(0){e2}.
In both cases ∆(0) ⫋ R(0).
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(g) The case S(P2). Then ∆(0) = R(0), and R(0) splits into three
Γ(0) orbits,

R(0) = Γ(0){e1} ∪̇ Γ(0){e2} ∪̇ Γ(0){e3} with

Γ(0){ei} ⊂ ±ei + 3HZ for i ∈ {1, 2, 3}

(but we would like to have a better control on R(0)).
(h) The cases S(3, 3, 4), S(4, 4, 4), S(5, 5, 5) and S(4, 4, 8). Then

∆(0) ⫋ R(0).

Proof: (a) The splittings ∆(0) = ∆
(0)
1 ∪̇ ∆

(0)
2 and R(0) = R

(0)
1 ∪̇ R

(0)
2

are part of Lemma 2.11. Lemma 2.12 gives for A1 ∆
(0)
2 = R

(0)
2 = {±e3}.

Theorem 6.8 gives for any rank 2 case ∆
(0)
1 = R

(0)
1 .

(b) The cases where (HZ, L, e) is reducible are covered by part (a).
In any irreducible case, the bilinear lattice (HZ, L, e) with triangular
basis is hyperbolic in the sense of the definition before Theorem 3.12 in

[HK16], because I(0) is indefinite, but the submatrices (2),

(
2 x1
x1 2

)
,(

2 x2
x2 2

)
,

(
2 x3
x3 2

)
of the matrix I(0)(et, e) are positive definite or

positive semidefinite. Theorem 3.12 in [HK16] applies and gives ∆(0) =
R(0).

(c) This is classical. It follows also with

Q3(y1, y2, y3) = 2(y21 + y22 + y23 − y1y2 − y2y3)
= y21 + (y1 − y2)2 + (y2 − y3)2 + y23

and the transitivity of the action of Γ(0) on R(0).

(d) The quotient lattice (HZ
(0)
, I

(0)
) is an A2 lattice with set of roots

{±e1(0),±e2(0),±e3(0)}. Therefore

R(0) = (±e1 + Zf1) ∪̇ (±e2 + Zf1) ∪̇ (±e3 + Zf1).

(One can prove this also using 2Q3 = (y1−y2)2+(y1−y3)2+(y2−y3)2.)
Γ
(0)
s
∼= D6 acts transitively on the set {±e1(0),±e2(0),±e3(0)}. The

group Γ
(0)
u
∼= Z2 contains the elements

(e 7→ e+ f1(2,−1,−1)) and (e 7→ e+ f1(−1, 2,−1)).

Therefore it acts transitively on each of the six sets εei + Zf1 with
ε ∈ {±1}, i ∈ {1, 2, 3}. Thus Γ(0) acts transitively on R(0), so ∆(0) =
R(0) = Γ(0){e1}.
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(e) The quotient lattice (HZ
(0)
, I

(0)
) is an A1 lattice with set of roots

{±e1(0)}. Therefore
R(0) = ±e1 +Rad I(0) = (e1 +Rad I(0)) ∪̇ (−e1 +Rad I(0)).

(One can prove this also using Q3 = (y1 − y2 + y3)
2.) s

(0)
ei exchanges ei

and −ei, and s(0)e1 maps f3 to −f3 + 2f2. Γ
(0)
u
∼= Z2 is generated by the

elements

((f1, f2, f3) 7→ (f1, f2, f3 + 2f1)) = (e 7→ e+ f1(2,−2, 2)),
((f1, f2, f3) 7→ (f1, f2, f3 + 2f2)) = (e 7→ e+ f2(2,−2, 2)).

Therefore R(0) splits into the four Γ(0) orbits

Γ(0){e1} = ±e1 + 2Rad I(0), Γ(0){e2} = ±e2 + 2Rad I(0),

Γ(0){e3} = ±e3 + 2Rad I(0), Γ(0){f3} = ±f3 + 2Rad I(0).

∆(0) consists of the first three of them.
(f) The set of roots of the quotient lattice (HZ

(0)
, I

(0)
) is called

R(0)(S(−l)). Theorem 6.8 describes it. Therefore

R(0) = {ỹ1e1 + ỹ2e2 ∈ HZ | ỹ1e1(0) + ỹ2e2
(0) ∈ R(0)(S(−l))}+Rad I(0).

By Theorem 6.8 (d) (iv) and (c), R(0)(S(−l)) splits into the two Γ
(0)
s

orbits Γ
(0)
s {e1(0)} and Γ

(0)
s {e2(0)}, and the action of Γ

(0)
s on each of these

two orbits is simply transitive. Γ
(0)
u
∼= Z2 is generated by the elements

(e 7→ e+ f1(2,−l, 2)) and (e 7→ e+ f1(−l2, 2l,−l2)).
Therefore for m ∈ {0, 1, ..., l − 1}

Γ(0){e2 +mf1} ∩ (e2 + Zf1) = e2 +mf1 + Zlf1.
If l is odd then 1 = gcd(2, l2) and

Γ(0){e1} ⊃ e1 + Zf1 ∋ e3 = e1 − f1, so Γ(0){e1} = Γ(0){e3}.
If l is even then 2 = gcd(2, l2) and

Γ(0){e1} ∩ (e1 + 2Zf1) = e1 + Z2f1 ̸∋ e3, so Γ(0){e1} ∩ Γ(0){e3} = ∅.
This shows all claims.

(g) The matrices s
(0),mat
ei ∈M3×3(Z) with s(0)ei (e) = e · s(0),mat

ei are

s(0),mat
e1

=

−1 3 −3
0 1 0
0 0 1

 ,

s(0),mat
e2

=

1 0 0
3 −1 3
0 0 1

 , s(0),mat
e3

=

 1 0 0
0 1 0
−3 3 −1

 .
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One sees Γ(0){ei} ⊂ ±ei + 3HZ for i ∈ {1, 2, 3}. Therefore ∆(0) splits
into three Γ(0) orbits,

∆(0) = Γ(0){e1} ∪̇ Γ(0){e2} ∪̇ Γ(0){e3}.

It remains to show ∆(0) = R(0). Write ẽ = (e1,−e2, e3), so that

L(ẽt, ẽ)t = S̃ =

1 3 3
0 1 3
0 0 1

 and I(0)(ẽt, ẽ)t = S̃ + S̃t =

2 3 3
3 2 3
3 3 2

 .

The quadratic form Q̃3 : Z3 → Z with

Q̃3(y) =
1

2
I(0)((ẽ

y1y2
y3

)t, ẽ

y1y2
y3

) =
1

2
(y1 y2 y3)

2 3 3
3 2 3
3 3 2

y1y2
y3


= y21 + y22 + y23 + 3(y1y2 + y1y3 + y2y3)

can also be written in the following two ways which will be useful below,

Q̃3(y) = (y1 + y2)(y1 + y3) + (y1 + y2)(y2 + y3) + (y1 + y3)(y2 + y3),(6.8)

Q̃3(y) =
3

2
(y1 + y2 + y3)

2 − 1

2
(y21 + y22 + y23). (6.9)

We have R(0) = {y1ẽ1 + y2ẽ2 + y3ẽ3 ∈ HZ | Q̃3(y) = 1}. Define

∥a∥ :=
√
y21 + y22 + y23 for a =

3∑
i=1

yiei ∈ HZ.

Claim: For any a ∈ R(0) − {±e1,±e2,±e3} an index i ∈ {1, 2, 3}
with

∥s(0)ei
(a)∥ < ∥a∥

exists.

The Claim implies ∆(0) = R(0) because it says that any a ∈ R(0)

can be mapped by a suitable sequence of reflections in {s(0)e1 , s
(0)
e2 , s

(0)
e3 }

to e1 or e2 or e3. It remains to prove the Claim.
Proof of the Claim: Suppose a ∈ R(0)−{±e1,±e2,±e3} satisfies

∥s(0)ei (a)∥ ≥ a for any i ∈ {1, 2, 3}. Write a = y1ẽ1 + y2ẽ2 + y3ẽ3. For j
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and k with {i, j, k} = {1, 2, 3}

∥s(0)ei
(a)∥ ≥ ∥a∥ ⇐⇒ ∥s(0)ei

(a)∥2 ≥ ∥a∥2

⇐⇒ (−yi − 3yj − 3yk)
2 + y2j + y2k ≥ y2i + y2j + y2k

⇐⇒ 6yi(yj + yk) + 9(yj + yk)
2 ≥ 0

⇐⇒

 3(yj + yk) ≥ −2yi if yj + yk > 0,
3(yj + yk) ≤ −2yi if yj + yk < 0,
no condition if yj + yk = 0.

yj + yk = 0 is impossible because else by formula (6.8)

1 = Q̃3(y) = (yi + yj)(yi + yk) = (yi + yj)(yi − yj) = y2i − y2j ,
so yi = ±1, yj = yk = 0,

which is excluded by a ∈ R(0) − {±e1,±e2,±e3}. Also (y1 + y2 >
0, y1 + y3 > 0, y2 + y3 > 0) and (y1 + y2 < 0, y1 + y3 < 0, y2 + y3 < 0)

are impossible because of 1 = Q̃3(y) and (6.8).
We can suppose

y1 + y2 > 0, y1 + y3 > 0, y2 + y3 < 0, y1 ≥ y2 ≥ y3.

Then

y1 > 0, y3 ∈ Z ∩ [−y1 + 1,−1], y2 ∈ [−y3 − 1, y3],

3(y1 + y2) ≥ −2y3 because of y1 + y2 > 0,

3(y2 + y3) ≤ −2y1 because of y2 + y3 < 0,

so

y1 ≥ 3(y1 + y2 + y3) ≥ y3 ≥ −y1 + 1 > −y1,
|y1| ≥ 3|y1 + y2 + y3|,
y21 ≥ 9(y1 + y2 + y3)

2,

Q̃3(y)
(6.9)
=

3

2
(y1 + y2 + y3)

2 − 1

2
(y21 + y22 + y23)

≤ 1

6
y21 −

1

2
(y21 + y22 + y23) ≤ 0,

a contradiction. Therefore an a ∈ R(0) − {±e1,±e2,±e3} with

∥s(0)ei (a)∥ ≥ ∥a∥ for each i ∈ {1, 2, 3} does not exist. The Claim is
proved.

(h) By Theorem 6.11 (g) Γ(0) is a free Coxeter group with generators

s
(0)
e1 , s

(0)
e2 and s

(0)
e3 . By Example 3.23 (iv) equality holds in (3.3), so

Bdist = {v ∈ (∆(0))3 | s(0)v1
s(0)v2

s(0)v3
= −M}
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(see also Theorem 7.2 (a)). By Theorem 5.16 (a)+(b)+(d)+(e) Q ∈
GZ −GB

Z. Lemma 3.22 (a) and QMQ−1 =M give

s
(0)
Q(e1)

s
(0)
Q(e2)

s
(0)
Q(e3)

= Qs(0)e1
s(0)e2

s(0)e3
Q−1 = Q(−M)Q−1 = −M.

If Q(e1), Q(e2), Q(e3) were all in ∆(0) then equality in (3.3) would im-
ply (Q(e1), Q(e2), Q(e3)) ∈ Bdist and Q ∈ GB

Z, a contradiction. So
Q(e1), Q(e2), Q(e3) are not all in ∆(0). But of course they are in R(0).
□

Remarks 6.15. (i) In view of Remark 6.13 (ii) it would be desirable
to extend the proof of ∆(0) = R(0) in part (g) of Theorem 6.11 to other
cases. The useful formulas (6.8) and (6.9) generalize as follows:

(x1 + x2 + x3)Q3(y) = (x1 + x2 + x3)(y
2
1 + y22 + y23)

−x1x2y21 − x1x3y22 − x2x3y23 + (x1y2 + x2y3)(x1y1 + x3y3)

+(x1y2 + x2y3)(x2y1 + x3y2) + (x1y1 + x3y3)(x2y1 + x3y2).

If x ∈ (Z− {0})3 then

2Q3(y) = x1x2x3(
y1
x3

+
y2
x2

+
y3
x1

)2 − (x1x2x3 − 2x23)
(y1
x3

)2
− (x1x2x3 − 2x22)

(y2
x2

)2
− (x1x2x3 − 2x21)

(y3
x1

)2
.

Also the rephrasing in the proof of part (g) of the inequality ∥s(0)ei (a)∥ ≥
∥a∥ generalizes naturally. But the further arguments do not seem to
generalize easily.

(ii) In view of Theorem 6.14, we know the following for n = 3:

∆(0) = R(0) in the cases S(x) with x ∈ {0,−1,−2}3 with r(x) > 4,

in all reducible cases

and in the cases A3, Â2,P2.

∆(0) ⫋ R(0) in the cases H1,2, S(−l, 2,−l) with l ≥ 3,

S(3, 3, 3), S(4, 4, 4), S(5, 5, 5) and S(4, 4, 8).

In the following cases with n = 3 we do not know whether ∆(0) = R(0)

or ∆(0) ⫋ R(0) holds: All cases x ∈ Z3 with r(x) < 0 except four cases
and many cases x ∈ Z3 with r(x) > 4.
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6.4. The odd rank 3 cases

For x ∈ Z3 consider the matrix S = S(x) =

1 x1 x2
0 1 x3
0 0 1

 ∈
T uni
3 (Z), and consider a unimodular bilinear lattice (HZ, L) with a tri-

angular basis e = (e1, e2, e3) with L(e
t, e)t = S.

In this section we will determine in all cases the odd monodromy

group Γ(1) = ⟨s(1)e1 , s
(1)
e2 , s

(1)
e3 ⟩ ⊂ O(1) and in many, but not all cases the

set ∆(1) = Γ(1){±e1,±e2,±e3} of odd vanishing cycles.
Recall Remark 4.17. The group Γ(1) and the set ∆(1) are determined

by the triple (HZ, I
(1), e), and here I(1) is needed only up to the sign.

By Remark 4.17 and Lemma 4.18 we can restrict to x in the union of
the following three families. It will be useful to split each of the first
two families into the three subfamilies on the right hand side.

(x1, x2, 0) with x1 ≥ x2 ≥ 0,


(x1, 0, 0) : reducible cases,

(1, 1, 0) : A3 and Â2,
(x1, x2, 0) with 2 ≤ x1 ≥ x2 > 0,

(−l, 2,−l) with l ≥ 2,

 (−l, 2,−l) with l ≡ 0(4),
(−l, 2,−l) with l ≡ 2(4) (this includes H1,2),
(−l, 2,−l) with l ≡ 1(2),

(x1, x2, x3) ∈ Z3
≥3 with 2xi ≤ xjxk for {i, j, k} = {1, 2, 3}

(this includes P2).

Recall

x̃ = (x̃1, x̃2, x̃3) := gcd(x1, x2, x3)
−1(x1, x2, x3) for x ̸= (0, 0, 0).

Recall from section 5.3 the definition

f3 := −x̃3e1 + x̃2e2 − x̃1e3 ∈ Hprim
Z for x ̸= (0, 0, 0)

and the fact

Rad I(1) =

{
Zf3 if x ̸= (0, 0, 0),
HZ if x = (0, 0, 0).

Therefore in all cases except x = (0, 0, 0) the exact sequence

{1} → Γ(1)
u → Γ(1) → Γ(1)

s → {1} (6.10)

in Lemma 6.2 (d) is interesting.

Lemma 6.16. Suppose x1 ̸= 0 (this holds in the three families above
except for the case x = (0, 0, 0)).

(a) The sublattice Ze1(1) + Ze2(1) ⊂ HZ
(1)

has index x̃1 in HZ
(1)
.
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(b) I
(1)

is nondegenerate. For each Z-basis b = (b1, b2) of HZ
(1)

I
(1)
(bt, b) = ε gcd(x1, x2, x3)

(
0 −1
1 0

)
for some ε ∈ {±1}. Also O(1),Rad

s
∼= SL2(Z).

(c)

e1
(1) ∈ gcd(x̃1, x̃2)HZ

(1),prim
, e2

(1) ∈ gcd(x̃1, x̃3)HZ
(1),prim

,

e3
(1) ∈ gcd(x̃2, x̃3)HZ

(1),prim
if (x̃2, x̃3) ̸= (0, 0), else e3

(1) = 0.

Proof: (a)

HZ
(1)

= Ze1(1) + Ze2(1) + Ze3(1)

= Ze1(1) + Ze2(1) + Z
1

x̃1
(−x̃3e1(1) + x̃2e2

(1))

= Ze1(1) + Ze2(1) + Z
ξ

x̃1
h2 with

ξ := gcd(x̃2, x̃3), h2 := −
x̃3
ξ
e1

(1) +
x̃2
ξ
e2

(1).

The element h2 is in (Ze1(1) + Ze2(1))prim. One can choose a second
element h1 ∈ Ze1(1) + Ze2(1) with Ze1(1) ⊕ Ze2(1) = Zh1 ⊕ Zh2. Then

Zh2 + Z
ξ

x̃1
h2 = Z

1

x̃1
h2

because gcd(x̃1, ξ) = 1. Therefore

HZ
(1)

= (Zh1 + Zh2) + Z
ξ

x̃1
h2 = Zh1 ⊕ Z

1

x̃1
h2

x̃1:1⊃ Zh1 ⊕ Zh2.

(b) I
(1)
(e1

(1), e2
(1)) = x1 ̸= 0. With part (a) one sees

I(1)(b1, b2) = ±
x1
x̃1

= ± gcd(x1, x2, x3).

A rank two lattice with a nondegenerate skew-symmetric bilinear form
has an automorphism group isomorphic to SL2(Z).

(c) The proof of part (a) and 1 = gcd(x̃3, gcd(x̃1, x̃2)) show

Qe1(1) ∩HZ
(1)

= Ze1(1) + Z
−x̃3

gcd(x̃1, x̃2)
e1

(1) = Z
1

gcd(x̃1, x̃2)
e1

(1).

This shows e1
(1) ∈ gcd(x̃1, x̃2)HZ

(1),prim
. Analogously e2

(1) ∈
gcd(x̃1, x̃3)HZ

(1),prim
.

If (x̃2, x̃3) = (0, 0) then −x̃1e3(1) = f3
(1)

= 0, so e3
(1) = 0. If

x̃2 ̸= 0 or x̃3 ̸= 0, formulas as in the proof of part (a) hold also for
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Ze1(1) + Ze3(1) respectively Ze2(1) + Ze3(1). In both cases one shows

e3
(1) ∈ gcd(x̃2, x̃3)HZ

(1),prim
as above. □

In Theorem 6.18 we will consider in many cases the three groups

Γ
(1)
u ⊂ (ker τ (1))u ⊂ O

(1),Rad
u . Their descriptions in Lemma 6.2 (e)

simplify because now Rad I(1) = Zf3 if x ̸= (0, 0, 0). In the cases
x = (−l, 2,−l) with l ≡ 2(4) also the larger group

O
(1),Rad
± := {g ∈ O(1),Rad | g = ± id}

2:1
⊃ O(1),Rad

u

will be considered. The following Lemma fixes notations and gives a

description of O
(1),Rad
± similar to the one for O

(1),Rad
u in Lemma 6.2 (e).

It makes also O
(1),Rad
u and (ker τ (1))u more explicit, and, under some

condition, Γ
(1)
u and Γ(1) ∩O(1),Rad

± .

Lemma 6.17. Suppose x1 ̸= 0. Denote

Hom0(HZ,Z) := {λ : HZ → Z |λ is Z-linear, λ(f3) = 0},
Hom2(HZ,Z) := {λ : HZ → Z |λ is Z-linear, λ(f3) = 2},
t+λ : HZ → HZ with t+λ (a) = a+ λ(a)f3 for λ ∈ Hom0(HZ,Z),
t−λ : HZ → HZ with t−λ (a) = −a+ λ(a)f3 for λ ∈ Hom2(HZ,Z).

(a) Then t+λ ∈ O
(1),Rad
u for λ ∈ Hom0(HZ,Z), t−λ ∈ O

(1),Rad
± −O(1),Rad

u

for λ ∈ Hom2(HZ,Z). The maps

Hom0(HZ,Z) → O(1),Rad
u , λ 7→ t+λ ,

Hom2(HZ,Z) → O
(1),Rad
± −O(1),Rad

u , λ 7→ t−λ ,

are bijections, and the first one is a group isomorphism. For λ1, λ2 ∈
Hom0(HZ,Z) and λ3, λ4 ∈ Hom2(HZ,Z)

t+λ2
◦ t+λ1

= t+λ2+λ1
, t−λ3

◦ t+λ1
= t−λ3+λ1

,

t+λ1
◦ t−λ3

= t−−λ1+λ3
, t−λ4

◦ t−λ3
= t+−λ4+λ3

,

and especially (t−λ3
)2 = id .

(b)

(ker τ (1))u = {t+λ |λ(e) ∈ ⟨(0, x1, x2), (−x1, 0, x3), (x2, x3, 0)⟩Z}.

(c) If Γ
(1)
u is the normal subgroup generated by t+λ1

for some λ1 ∈
Hom0(HZ,Z), then Γ

(1)
u = {t+λ |λ(e) ∈ L} where L ⊂ Z3 is the smallest

sublattice with λ1(e) ∈ L and L · (s(1),mat
ei )±1 ⊂ L for i ∈ {1, 2, 3}.
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(d) If Γ(1) ∩ O(1),Rad
± is the normal subgroup generated by t−λ1

for
some λ1 ∈ Hom2(HZ,Z), then

Γ(1)
u = {t+λ |λ(e) ∈ L} and

Γ(1) ∩O(1),Rad
± − Γ(1)

u = {t−λ |λ(e) ∈ λ1(e) + L}

where L ⊂ Z3 is the smallest sublattice with λ1(e)−λ1(e) ·(s(1),mat
ei )±1 ∈

L and L · (s(1),mat
ei )±1 ⊂ L for i ∈ {1, 2, 3}.

Proof: (a) By definition t+λ = T (λ⊗ f3) where λ ∈ HZ
(1),♯

denotes

the element which is induced by λ. The map Hom0(HZ,Z)→ O
(1),Rad
u is

an isomorphism by Lemma 6.2 (e). The proofs of the other statements
are similar or easy.

(b) The row vectors (0, x1, x2), (−x1, 0, x3), (−x2,−x3, 0) are the
rows of the matrix I(1)(et, e). Because of this and Lemma 6.2 (e)
(ker τ (1))u is as claimed.

(c) This follows from

Γ(1)
u = ⟨g−1 ◦ t+λ1

◦ g | g ∈ Γ(1)⟩,
g−1 ◦ t+λ ◦ g = t+λ◦g,

and λ ◦ (s(1)ei
)±1(e) = λ(e) · (s(1),mat

ei
)±1,

for λ ∈ Hom0(HZ,Z).
(d) Similar to the proof of part (c). □

The following theorem gives Γ(1) for x in one of the three families
above and thus via Remark 4.17 and Lemma 4.18 in principle for all
x ∈ Z3. Though recall that it is nontrivial to find for a given x ∈ Z3

an element in one of the three families above which is in the (Gphi ⋉
G̃sign)⋊ ⟨γ⟩ orbit of x.

Theorem 6.18. (a) We have

s(1)ei
e = e · s(1),mat

ei
with s(1),mat

e1
=

1 −x1 −x2
0 1 0
0 0 1

 ,

s(1),mat
e2

=

 1 0 0
x1 1 −x3
0 0 1

 , s(1),mat
e3

=

 1 0 0
0 1 0
x2 x3 1

 ,

Γ(1) ∼= Γ(1),mat = ⟨s(1),mat
e1

, s(1),mat
e2

, s(1),mat
e3

⟩ ⊂ SL3(Z).
(b) In each reducible case x = (x1, 0, 0)

Γ(1) ∼= Γ(1)(S(−x1))× Γ(1)(A1) ∼= Γ(1)(S(−x1))× {1},
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and Γ(1)(S(−x1)) is given in Theorem 6.10, with

Γ(1)(S(0)) ∼= Γ(1)(A2
1)
∼= {1},

Γ(1)(S(−1)) ∼= Γ(1)(A2) ∼= SL2(Z),
Γ(1)(S(−x1)) ∼= Gfree,2 for x1 ≥ 2.

Also Γ(1) ∼= Γ
(1)
s and Γ

(1)
u = {id}.

(c) The case x = (1, 1, 0): (This is the case of A3 and Â2.)

Rad I(1) = Zf3 with f3 = e2 − e3,
HZ

(1)
= Ze1(1) ⊕ Ze2(1),

Γ(1)
u = (ker τ (1))u = O(1),Rad

u = {t+λ |λ ∈ ⟨λ1, λ2⟩Z} ∼= Z2,

with λ1(e) = (1, 0, 0), λ2(e) = (0, 1, 1),

Γ(1)
s = (ker τ (1))s = O(1),Rad

s
∼= SL2(Z),

Γ(1) = ker τ (1) = O(1),Rad.

The exact sequence (6.10) splits non-canonically with Γ
(1)
s

∼=
⟨s(1)e1 , s

(1)
e2 ⟩ ⊂ Γ(1) (for example).

(d) The cases x = (x1, x2, 0) with 2 ≤ x1 ≥ x2 > 0: Write

x12 := gcd(x1, x2) =
x1
x̃1

=
x2
x̃2
.

Then

Rad I(1) = Zf3 with f3 = x̃2e2 − x̃1e3,

HZ
(1)

= Ze1(1) ⊕ Zg2 with g2 :=
1

x̃1
e2

(1) =
1

x̃2
e3

(1) ∈ HZ
(1)
,

Γ(1)
u = {t+λ |λ ∈ ⟨λ1, λ2⟩Z} ∼= Z2 with

λ1(e) = x12x̃1x̃2(1, 0, 0), λ2(e) = x1x2(0, x̃1, x̃2),

(ker τ (1))u = {t+λ |λ(e) ∈ ⟨x12(1, 0, 0), (0, x1, x2)⟩Z},
O(1),Rad

u = {t+λ |λ(e) ∈ ⟨(1, 0, 0), (0, x̃1, x̃2)⟩Z},

Γ(1)
s
∼= Γ(1)(S(−x12)) ∼= ⟨

(
1 −x12
0 1

)
,

(
1 0
x12 1

)
⟩

∼=
{
Gfree,2 if x12 > 1
SL2(Z) if x12 = 1.

This matrix group has finite index in SL2(Z) if and only if x12 ∈ {1, 2}.
The exact sequence (6.10) splits non-canonically.

(e) The cases x = (−l, 2,−l) with l ≥ 2 even:
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(This includes the case x = (−2, 2,−2) which is the case of H1,2.)

Rad I(1) = Zf3 with f3 =
l

2
(e1 + e3) + e2,

HZ
(1)

= Ze1(1) ⊕ Ze3(1), e2
(1) = − l

2
(e1

(1) + e3
(1)),

⟨s(1)e1
, s(1)e3
⟩ ∼= ⟨s(1)e1 , s

(1)
e3 ⟩ ∼= ⟨

(
1 −2
0 1

)
,

(
1 0
2 1

)
⟩

1:2
⊂ Γ(2),

⟨s(1)e1
, s(1)e3
⟩ ∼= Gfree,2,

(ker τ (1))u = {t+λ |λ(e) ∈ ⟨(−2, 0, 2), (−2, l, 0)⟩Z},

O(1),Rad
u = {t+λ |λ(e) ∈ ⟨(−1, 0, 1), (−1,

l

2
, 0)⟩Z}.

(i) The cases with l ≡ 0(4): Γ
(1)
s
∼= ⟨s(1)e1 , s

(1)
e3 ⟩ ∼= Gfree,2. The

isomorphism Γ
(1)
s
∼= ⟨s(1)e1 , s

(1)
e3 ⟩ ⊂ Γ(1) gives a splitting of the exact

sequence (6.10). Here − id /∈ Γ
(1)
s .

Γ(1)
u = {t+λ |λ ∈ ⟨λ1, λ2⟩Z} ∼= Z2 with

λ1(e) = (−l, 0, l), λ2(e) = (2l,−l2, 0).

(ii) The cases with l ≡ 2(4): Here − id ∈ Γ
(1)
s .

Γ(1)
s
∼= ⟨s(1)e1 , s

(1)
e3 ,− id⟩ ∼= ⟨

(
1 −2
0 1

)
,

(
1 0
2 1

)
,

(
−1 0
0 −1

)
⟩ = Γ(2)

∼= Gfree,2 × {±1}.

The isomorphism Γ
(1)
s /{± id} ∼= ⟨s(1)e1 , s

(1)
e2 ⟩ ⊂ Γ(1) gives a splitting of

the exact sequence

{1} → Γ(1) ∩O(1),Rad
± → Γ(1) → Γ(1)

s /{± id} → {1}.

Γ(1)
u = {t+λ |λ ∈ ⟨2λ1, λ2⟩Z} ∼= Z2 with

λ1(e) = (−l, 0, l), λ2(e) = (2l,−l2, 0),
Γ(1) ∩O(1),Rad

± − Γ(1)
u = {t−λ |λ ∈ λ3 + ⟨2λ1, λ2⟩Z} with

λ3(e) = (−l, 2, l), λ3(f3) = 2.

(f) The cases x = (−l, 2,−l) with l ≥ 3 odd:

Rad I(1) = Zf3 with f3 = l(e1 + e3) + 2e2,

HZ
(1)

= Ze1(1) ⊕ Zg2(1) with g2 :=
1

2
(e1 + e3)−

l

2
f3 ∈ HZ,

ẽ := (e1, g2, f3) is a Z-basis of HZ.
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Consider

s4 :=
(
s(1)e3

s(1)e1
)
l2−1

4 s(1)e2
∈ Γ(1).

Then

Γ(1)
s
∼= ⟨s(1)e1 , s4⟩ ∼= ⟨s(1)e1

, s4⟩ ∼= SL2(Z),

and the isomorphism Γ
(1)
s
∼= ⟨s(1)e1 , s4⟩ ⊂ Γ(1) gives a splitting of the

exact sequence (6.10).

Γ(1)
u = {t+λ |λ ∈ ⟨λ1, λ2⟩Z} ∼= Z2 with

λ1(e) = (−l, 0, l), λ2(e) = (2l,−l2, 0),
(ker τ (1))u = O(1),Rad

u = {t+λ |λ(e) ∈ ⟨(−1, 0, 1), (2,−l, 0)⟩Z}.
(g) The cases x ∈ Z3

≥3 with 2xi ≤ xjxk for {i, j, k} = {1, 2, 3}:
(This includes the case x = (3, 3, 3) which is the case of P2.)

Rad I(1) = Zf3 with f3 = −x̃3e1 + x̃2e2 − x̃1e3,
Γ(1)
u = {id} ⫋ (ker τ (1))u ∼= Z2,

Γ(1) ∼= Γ(1)
s
∼= Gfree,3,

Γ(1) and Γ
(1)
s are free groups with the three generators s

(1)
e1 , s

(1)
e2 , s

(1)
e3

respectively s
(1)
e1 , s

(1)
e2 , s

(1)
e3 .

Proof: (a) This follows from the definitions in Lemma 2.6 (a) and
in Definition 2.8.

(b) This follows from Lemma 2.11 and Lemma 2.12.

(c)–(f) In (c)–(f) (ker τ (1))u and O
(1),Rad
u are calculated with Lemma

6.17 (a) and (b).

(c) The first statements Rad I(1) = Zf3 and HZ
(1)

= Ze1(1)⊕Ze2(1)
are known respectively obvious.

Also (e1, e2, f3) is a Z-basis of HZ. With respect to this basis

s(1)e1
(e1, e2, f3) = (e1, e2, f3)

1 −1 0
0 1 0
0 0 1

 ,

s(1)e2
(e1, e2, f3) = (e1, e2, f3)

1 0 0
1 1 0
0 0 1

 .

This shows ⟨s(1)e1 , s
(1)
e2 ⟩ ∼= ⟨s

(1)
e1 , s

(1)
e2 ⟩ ∼= SL2(Z). Together with Lemma

6.16 (b) and Lemma 6.2 (d) we obtain

Γ(1)
s = ⟨s(1)e1 , s

(1)
e2 ⟩ = (ker τ (1))s = O(1),Rad

s
∼= SL2(Z),
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and that the exact sequence (6.10) splits non-canonically with Γ
(1)
s
∼=

⟨s(1)e1 , s
(1)
e2 ⟩ ⊂ Γ(1).

From the actions of s
(1)
e1 and s

(1)
e2 on (e1, e2, f3) and from

s(1)e3
((e1, e2, f3)) = (e1, e2, f3)

 1 0 0
1 1 0
−1 0 1

 ,

one sees that the map(
(e1, e2, f3) 7→ (e1, e2, f3)

 1 0 0
0 1 0
−1 0 1

) = t+−λ1

is in Γ
(1)
u and that

Γ(1) = ⟨s(1)e1
, s(1)e2

, t+λ1
⟩.

Also

(s(1)e1
)−1 ◦ t+λ1

◦ s(1)e1
= t+

λ1◦s(1)e1

, with t+
λ1◦s(1)e1

(e) = (1,−1,−1),

and therefore t+λ2
= t+λ1

− t+
λ1◦s(1)e1

∈ Γ
(1)
u . But O

(1),Rad
u = ⟨t+λ1

, t+λ2
⟩Z, so

Γ(1)
u = (ker τ (1))u = O(1),Rad

u = ⟨t+λ1
, t+λ2
⟩Z

In the diagram of exact sequences in Lemma 6.2 (d) the inclusions in
the second and fourth columns are bijections, so also the inclusions in
the middle column,

Γ(1) = ker τ (1) = O(1),Rad.

(d) f3 = x̃2e2− x̃1e3 implies x̃2e2
(1) = x̃1e3

(1). Lemma 6.16 (c) gives

e2
(1) ∈ x̃1HZ

(1),prim
, so g2 :=

1
x̃1
e2

(1) = 1
x̃2
e3

(1) is in HZ
(1),prim

. Thus

HZ
(1)

= Ze1(1) + Ze2(1) + Ze3(1) = Ze1(1) ⊕ Zg2.

First we consider Γ
(1)
s . Define g := (e1

(1), g2). One sees

s
(1)
e1 g = g

(
1 −x12
0 1

)
, s

(1)
e2 g = g

(
1 0

x1x̃1 1

)
, s

(1)
e3 g = g

(
1 0

x2x̃2 1

)
.

Choose y1, y2 ∈ Z with 1 = y1x̃
2
1 + y2x̃

2
2 and define

s4 := (s(1)e2
)y1(s(1)e3

)y2 ∈ Γ(1).

Then

s4 g = g

(
1 0
x12 1

)
, s4 e = e · smat

4 with smat
4 =

 1 0 0
y1x1 1 0
y2x2 0 1

 .
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s
(1)
e3 and s

(1)
e2 are powers of s4, so Γ

(1)
s = ⟨s(1)e1 , s4⟩, so

Γ(1)
s
∼= ⟨
(
1 −x12
0 1

)
,

(
1 0
x12 1

)
⟩ = Γ(1),mat(S(−x12)) ⊂ SL2(Z).

The matrix group Γ(1),mat(S(−x12)) was treated in Theorem 6.10 (b)–
(d):

Γ(1),mat(S(−x12)) ∼= ⟨
(
1 −x12
0 1

)
,

(
1 0
x12 1

)
⟩
{ ∼= Gfree,2 if x12 > 1,

= SL2(Z) if x12 = 1.

The case x12 > 1: Then Γ
(1)
s = ⟨s(1)e1 , s4⟩ and ⟨s

(1)
e1 , s4⟩ ⊂ Γ(1) are

free groups with the two given generators. Then ⟨s(1)e1 , s4⟩ ⊂ Γ(1) gives
a splitting of the exact sequence (6.10). The generating relations in

Γ
(1)
s with respect to the four elements s

(1)
e1 , s

(1)
e2 , s

(1)
e3 and s4 are

s
(1)
e2 = (s4)

x̃2
1 , s

(1)
e3 = (s4)

x̃2
2 . (6.11)

Therefore Γ
(1)
u is the normal subgroup of Γ(1) generated by the elements

s
x̃2
1

4 (s
(1)
e2 )

−1 and s
x̃2
2

4 (s
(1)
e3 )

−1.

The case x12 = 1: Then Γ
(1)
s = ⟨s(1)e1 , s4⟩ ∼= SL2(Z)

Claim: Also ⟨s(1)e1 , s4⟩ ∼= SL2(Z).

Proof of the Claim: The generating relations in SL2(Z) with respect

to the generators s
(1)
e1

mat

=

(
1 −1
0 1

)
and s4

mat =

(
1 0
1 1

)
are

s
(1)
e1

mat

s4
mats

(1)
e1

mat

= s4
mats

(1)
e1

mat

s4
mat and E2 =

(
s
(1)
e1

mat

s4
mat
)6
.

One checks with calculations that they lift to Γ(1),mat,

s(1),mat
e1

smat
4 s(1),mat

e1
= smat

4 s(1),mat
e1

smat
4 and E3 =

(
s(1),mat
e1

smat
4

)6
. (□)

Because of the Claim, ⟨s(1)e1 , s4⟩ ⊂ Γ(1) gives a splitting of the exact

sequence (6.10). The generating relations in Γ
(1)
s with respect to the

four elements s
(1)
e1 , s

(1)
e2 , s

(1)
e3 and s4 are the relations between s

(1)
e1 and s4

in the proof of the Claim and the relations in (6.11). The relations in

the proof of the Claim lift to Γ(1). Therefore again Γ
(1)
u is the normal

subgroup of Γ(1) generated by the elements s
x̃2
1

4 (s
(1)
e2 )

−1 and s
x̃2
2

4 (s
(1)
e3 )

−1.
Back to both cases x12 ≥ 1 together: We have to determine

these two elements of Γ
(1)
u . The first one is given by the following
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calculation,

s
x̃2
1

4 (s(1)e2
)−1(e)

= e

 1 0 0
y1x1x̃

2
1 1 0

y2x2x̃
2
1 0 1

 1 0 0
−x1 1 0
0 0 1

 = e

 1 0 0
−x1 + y1x1x̃

2
1 1 0

y2x2x̃
2
1 0 1


= e

 1 0 0
−y2x1x̃22 1 0
y2x2x̃

2
1 0 1

 = e+ f3(−y2x12x̃1x̃2, 0, 0),

so s
x̃2
1

4 (s(1)e2
)−1(e) = t+−y2λ1

.

A similar calculation gives

s
x̃2
2

4 (s(1)e3
)−1 = t+y1λ1

.

Observe gcd(y1, y2) = 1. Therefore Γ
(1)
u is the normal subgroup of Γ(1)

generated by t+λ1
. Lemma 6.17 (c) and the calculations

λ1 ◦ s(1)e1
(e) = x12x̃1x̃2(1,−x1,−x2),

so ⟨λ1, λ1 ◦ s(1)e1
⟩Z = ⟨λ1, λ2⟩Z,

λ1 ◦ (s(1)ei
)±1, λ2 ◦ (s(1)ei

)±1 ∈ ⟨λ1, λ2⟩Z,

give

Γ(1)
u = {t+λ |λ ∈ ⟨λ1, λ2⟩Z}.

(e) The first statements Rad I(1) = Zf3, f3 = l
2
(e1 + e3) + e2 and

HZ
(1)

= Ze1(1) ⊕ Ze3(1) are obvious, also

s
(1)
ei (e1

(1), e3
(1)) = (e1

(1), e3
(1))s

(1)
ei

mat

with s
(1)
e1

mat

=

(
1 −2
0 1

)
,

s
(1)
e2

mat

=

(
1 + l2

2
− l2

2
l2

2
1− l2

2

)
, s

(1)
e3

mat

=

(
1 0
2 1

)
.

By Theorem 6.10 (c) ⟨s(1)e1

mat

, s
(1)
e3

mat

⟩ ∼= Gfree,2 and therefore

⟨s(1)e1
, s(1)e3
⟩ ∼= Gfree,2.

We have

s
(1)
e2

mat

≡
(
1 0
0 1

)
mod 4 if l ≡ 0(4),

s
(1)
e2

mat

≡
(
3 2
2 3

)
mod 4 if l ≡ 2(4).
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If l ≡ 0(4) then by Theorem 6.10 (c) s
(1)
e2

mat

∈ ⟨s(1)e1

mat

, s
(1)
e3

mat

⟩, so then

Γ
(1)
s = ⟨s(1)e1 , s

(1)
e3 ⟩, and the isomorphism Γ

(1)
s
∼= ⟨s(1)e1 , s

(1)
e3 ⟩ ⊂ Γ(1) gives a

splitting of the exact sequence (6.10).

If l ≡ 2(4) then by Theorem 6.10 (c) s
(1)
e2

mat

/∈ ⟨s(1)e1

mat

, s
(1)
e3

mat

⟩, so
then ⟨s(1)ei

mat

| i ∈ {1, 2, 3}⟩ = Γ(2) ∼= Gfree,2 × {±1}, − id ∈ Γ
(1)
s , and

the isomorphism Γ
(1)
s /{± id} ∼= ⟨s(1)e1 , s

(1)
e3 ⟩ ⊂ Γ(1) gives a splitting of the

exact sequence in part (ii).

Claim: Γ
(1)
u if l ≡ 0(4) and Γ(1) ∩O(1),Rad

± if l ≡ 2(4) is the normal

subgroup generated by s4 :=
(
s
(1)
e3 s

(1)
e1

)l2/4
s
(1)
e2 .

Proof of the Claim: Consider the Z-basis ẽ := (e1, e1+ e3, f3) of HZ.

s(1)e1
ẽ = ẽ

1 −2 0
0 1 0
0 0 1

 , s(1)e2
ẽ = ẽ

 1 0 0
l2

2
1 0

−l 0 1

 , s(1)e3
ẽ = ẽ

−1 −2 0
2 3 0
0 0 1

 ,

s4 ẽ = ẽ

−1 0 0
2 −1 0
0 0 1

l2/4 1 0 0
l2

2
1 0

−l 0 1


= ẽ

−1 0 0
0 −1 0
0 0 1

l/2 1 0 0

− l2

2
1 0

0 0 1

 1 0 0
l2

2
1 0

−l 0 1


= ẽ

−1 0 0
0 −1 0
0 0 1

l/2 1 0 0
0 1 0
−l 0 1

 = ẽ

(−1)l/2 0 0
0 (−1)l/2 0
−l 0 1

 ,

s4 e = (−1)l/2e+ f3(−l, 1− (−1)l/2, l),

s4 =

{
t+λ1
∈ Γ

(1)
u if l ≡ 0(4),

t−λ3
∈ Γ(1) ∩O(1),Rad

± if l ≡ 2(4).
(6.12)

The splittings above of the exact sequences give semidirect products

Γ(1) =

{
Γ
(1)
u ⋊ ⟨s(1)e1 , s

(1)
e3 ⟩ if l ≡ 0(4),

Γ(1) ∩O(1),Rad
± ⋊ ⟨s(1)e1 , s

(1)
e3 ⟩ if l ≡ 2(4).

s
(1)
e2 turns up linearly in s4. Therefore Γ(1) = ⟨s(1)e1 , s

(1)
e3 , s4⟩. Together

these facts show that Γ
(1)
u respectively Γ(1) ∩ O(1),Rad

± is the normal
subgroup generated by s4. This finishes the proof of the Claim. (□)
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Now we can apply Lemma 6.17 (c) if l ≡ 0(4) and Lemma 6.17 (d)

if l ≡ 2(4). The following calculations show the claims on Γ
(1)
u and (in

the case l ≡ 2(4)) Γ(1) ∩O(1),Rad
± .

The case l ≡ 0(4):

λ1 ◦ s(1)e1
(e) = (−l,−l2, 3l),

so λ1 ◦ s(1)e1
= 3λ1 + λ2,

λ1 ◦ (s(1)ei
)±1, λ2 ◦ (s(1)ei

)±1 ∈ ⟨λ1, λ2⟩Z.

The case l ≡ 2(4):

λ3 ◦ s(1)e1
(e) = (−l, 2− l2, 3l),

so λ3 ◦ s(1)e1
= λ3 + 2λ1 + λ2,

λ3 ◦ (s(1)e2
)−1(e) = (l, 2,−l),

so λ3 ◦ (s(1)e2
)−1 = λ3 − 2λ1,

λ3 ◦ (s(1)ei
)±1 ∈ λ3 + ⟨2λ1, λ2⟩Z,

2λ1 ◦ (s(1)ei
)±1, λ2 ◦ (s(1)ei

)±1 ∈ ⟨2λ1, λ2⟩Z.

(f) Rad I(1) = Zf3 is known. e2 = − l
2
(e1 + e3) +

1
2
f3 shows HZ

(1)
=

Ze1(1) ⊕ Z(1
2
(e1

(1) + e3
(1))). We have

ẽ = e

1 1−l2

2
l

0 −l 2

0 1−l2

2
l

 , e = ẽ

1 0 −1
0 −l 2

0 1−l2

2
l

 ,

so ẽ is a Z-basis of HZ.

First we calculate s4 with respect to the Q-basis f̃ := (e1,
1
2
(e1 +

e3), f3) of HQ,

s4(f̃) = f̃
(−1 −1 0

4 3 0
0 0 1

1 −1 0
0 1 0
0 0 1

) l2−1
4

 1 0 0
l2 1 0
− l

2
0 1



= f̃

−1 0 0
4 −1 0
0 0 1

 l2−1
4
 1 0 0
l2 1 0
− l

2
0 1


= f̃

 1 0 0
1− l2 1 0
0 0 1

 1 0 0
l2 1 0
− l

2
0 1

 = f̃

 1 0 0
1 1 0
− l

2
0 1

 .
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Therefore

s4(ẽ) = ẽ

1 0 0
1 1 0
0 0 1

 , s(1)e1
(ẽ) = ẽ

1 −1 0
0 1 0
0 0 1

 . (6.13)

Thus

Γ(1)
s = ⟨s(1)e1 , s4⟩ ∼= ⟨s(1)e1

, s4⟩ ⊂ Γ(1),

and this isomorphism gives a splitting of the exact sequence (6.10).

(6.13) shows that the group ⟨s(1)e1 , s4⟩ contains an element s5 with

s5(ẽ) = ẽ

 3 1 0
−4 −1 0
0 0 1

 ,

thus

s5s
(1)
e3
(ẽ) = ẽ

 3 1 0
−4 −1 0
0 0 1

−1 −1 0
4 3 0
2l l 1

 = ẽ

 1 0 0
0 1 0
2l l 1

 ,

s5s
(1)
e3
(e) = e+ f3(2l,−l2, 0),

s5s
(1)
e3

= t+λ2
with λ2(e) = (2l,−l2, 0).

Also

Γ(1) = ⟨s(1)e1
, s(1)e2

, s(1)e3
⟩ = ⟨s4, s(1)e1

, s(1)e3
⟩ = ⟨s4, s(1)e1

, t+λ2
⟩,

so Γ
(1)
u is the normal subgroup generated by t+λ2

.
Now we can apply Lemma 6.17 (c). The following formulas show

Γ
(1)
u = {t+λ |λ ∈ ⟨λ1, λ2⟩Z}.

(2l,−l2, 0)s(1),mat
e1

= (2l, l2,−4l) = (2l,−l2, 0) + (0, 2l2,−4l),
2(2l,−l2, 0) + (0, 2l2,−4l) = (4l, 0,−4l),

(2l,−l2, 0)s(1),mat
e2

= (2l,−l2, 0) + (l3, 0,−l3),
gcd(4l, l3) = l, so λ1 ∈ Γ(1)

u ,

λ1 ◦ (s(1)ei
)±1, λ2 ◦ (s(1)ei

)±1 ∈ ⟨λ1, λ2⟩Z.

(g) Because of the cyclic action of γ ∈ (Gphi ⋉ G̃sign) ⋊ ⟨γ⟩ on Z3,
we can suppose x1 = max(x1, x2, x3). With respect to the Q-basis

(e1
(1), e2

(1)) of HQ
(1)
, s

(1)
e1 , s

(1)
e2 and s

(1)
e3 take the shape s

(1)
ei (e1

(1), e2
(1)) =

(e1
(1), e2

(1))Bi with

B1 =

(
1 −x1
0 1

)
, B2 =

(
1 0
x1 1

)
, B3 =

(
1− x3x2

x1
−x2

3

x1
x2
2

x1
1 + x3x2

x1

)
.
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We will show that the group ⟨µ1, µ2, µ3⟩ of Möbius transformations
µi := µ(Bi) is a free group with the three generators µ1, µ2, µ3. This

implies first Γ
(1)
s
∼= Gfree,3 and then Γ(1) ∼= Γ

(1)
s
∼= Gfree,3 and Γ

(1)
u =

{id}.
We will apply Theorem A.2 (c). µ1, µ2 and µ3 are parabolic,

µ1 =
(
z 7→ z − x1

)
with fixed point ∞,

µ2 =
(
z 7→ z

x1z + 1

)
with fixed point 0,

µ3 =
(
z 7→

(1− x3x2

x1
)z − x2

3

x1

x2
2

x1
z + (1 + x3x2

x1
)
=

(x1 − x2x3)z − x23
x22z + (x1 + x2x3)

)
with fixed point − x3

x2
.

Consider

r1 := µ1(1) = 1− x1, r2 := µ−1
2 (1) =

1

1− x1
,

r3 := µ3(r1) =
(x1 − x2x3)(1− x1)− x23
x22(1− x1) + (x1 + x2x3)

.

It is sufficient to show the inequalities

−∞ < r1 < −
x3
x2

< r3 ≤ r2 < 0 < 1 <∞. (6.14)

Figure 6.6. Gfree,3 generated by three parabolic
Möbius transformations, an application of Theorem A.2
(c)

Then Theorem A.2 (c) applies. Compare Figure 6.6.
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We treat the case x = (3, 3, 3) separately and first. Then

(r1,−
x3
x2
, r3, r2) = (−2,−1,−1

2
,−1

2
),

so then (6.14) holds.
From now on we suppose x1 ≥ 4. The inequality r2 < 0 is trivial.

Consider the number

r4 := −
x1 + x2x3

x22
= −x1

x22
− x3
x2

< −x3
x2
, with µ3(r4) =∞.

We will show in this order the following claims:

(i) r1 < r4, which implies r1 < −x3

x2
.

(ii) r3 ∈ (−x3

x2
,∞).

(iii) The numerator (x2x3 − x1)(x1 − 1)− x23 of r3 is positive.
(iv) The denominator x22(1− x1) + (x1 + x2x3) of r3 is negative.
(v) r3 ≤ r2.

Together (i)–(v) and r2 < 0 show (6.14).
Two of the three inequalities 2xi ≤ xjxk for {i, j, k} = {1, 2, 3} in

the assumption on x can be improved,

x1x2 ≥ 3x1 ≥ 3x3, x1x3 ≥ 3x1 ≥ 3x2, we keep x2x3 ≥ 2x1.

(i) holds because

r1 < r4 ⇐⇒ 1 < x1 −
x1
x22
− x3
x2

and

x1 −
x1
x22
− x3
x2
≥ x1 −

x1
9
− x1

3
=

5x1
9
≥ 20

9
.

(ii) r1 < r4 and µ3(r4) =∞ imply r3 = µ3(r1) ∈ (−x3

x2
,∞).

(iii) holds because

(x2x3 − x1)(x1 − 1)− x23 > 0 ⇐⇒ x1 − 1 >
x23

x2x3 − x1
=
x3
x2

1

1− x1

x2x3

and
x3
x2

1

1− x1

x2x3

≤ x1
3

1

1− 1
2

=
2x1
3
, x1 − 1 >

2x1
3
⇐ x1 ≥ 4.

(iv) holds because

x22(x1 − 1)− (x1 + x2x3) > 0 ⇐⇒ x1 − 1 >
x1 + x2x3

x22
=
x3
x2

(1 +
x1
x2x3

)

and
x3
x2

(1 +
x1
x2x3

) ≤ x1
3
(1 +

1

2
) =

x1
2
, x1 − 1 >

x1
2
⇐ x1 ≥ 4.
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(ii)–(iv) show r3 ∈ (−x3

x2
, 0). Now

r3 ≤ r2 ⇐⇒
[
(x2x3 − x1)(x1 − 1)− x23

]
(x1 − 1)

−
[
x22(x1 − 1)− (x1 + x2x3)

]
≥ 0.

The right hand side is

g(x1, x2, x3) := (x2x3 − x1)(x1 − 1)2 − (x22 + x23)(x1 − 1) + (x1 + x2x3).

This is symmetric and homogeneous of degree 2 in x2 and x3.

∂g

∂x2
(x) = (x1 − 1)2x3 − 2(x1 − 1)x2 + x3,

so for fixed x1 and x3 g(x) takes its maximum in

x02 =
(x1 − 1)2x3 + x3

2(x1 − 1)
=
x3(x1 − 1)

2
+

x3
2(x1 − 1)

>
3(x1 − 1)

2
> x1,

and is monotonously increasing left of x02.
Because of the symmetry we can restrict to the cases x1 ≥ x2 ≥ x3.

Then g(x) takes for fixed x1 and x3 its minimum in x2 = x3.

g̃(x1, x3) := g(x1, x3, x3) = x23(x1 − 2)2 − (x1 − 1)2x1 + x1.

g̃ takes for fixed x1 its minimum at the minimal possible x3, which is
x03 := max(3,

√
2x1) because of 2x1 ≤ x2x3 = x23.

g̃(x1, x
0
3) =

 g̃(4, 3) = 4 > 0 if x1 = 4,
g̃(x1,

√
2x1) = x31 − 6x21 + 8x1

= x1(x1 − 2)(x1 − 4) > 0 if x1 ≥ 5.

Therefore r3 < r2 and (6.14) is proved. □

Remarks 6.19. (i) In the proof of part (g) of Theorem 6.18 the
hyperbolic polygon P whose relative boundary is the union of the six
arcs

A(∞, r1), A(r1,−
x3
x2

), A(−x3
x2
, r3), A(r2, 0), A(0, 1), A(1,∞),

is a fundamental domain for the action of the group ⟨µ1, µ2, µ3⟩ on the
upper half plane H.

(ii) In part (g) of Theorem 6.18 the case x = (3, 3, 3) is especially
interesting. It is the only case within part (g) where r3 = r2, so the only
case in part (g) where the hyperbolic polygon P has finite hyperbolic
area. In this case

⟨B1, B2, B3⟩ = ⟨
(
1 −3
0 1

)
,

(
1 0
3 1

)
,

(
−2 −3
3 4

)
⟩ = Γ(3).
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Now we turn to the study of the set ∆(1) of odd vanishing cycles.
The shape of ∆(1) and our knowledge on it are very different for different
x ∈ Z3.

Remarks 6.20. (i) In the cases in the parts (c)–(f) of Theorem

6.21 we will give ∆(1) rather explicitly. There ∆(1) is known, and we

can give a subset of ∆(1) explicitly which maps bijectively to ∆(1).

Furthermore Γ
(1)
u
∼= Z2, and for ε ∈ {±1} and i ∈ {1, 2, 3} there is

a subset Fε,i ⊂ Zf3 with

∆(1) ∩ (εei + Zf3) = εei + Fε,i and

∆(1) ∩ (a+ Zf3) = a+ Fε,i for any a ∈ Γ(1){εei}.
In many, but not all cases Fε,i ⊂ Zf3 is a sublattice.

(ii) On the contrary, in the cases in part (g) of Theorem 6.21 we

know rather little. There Γ
(1)
u = {id}, and remarkably the projection

∆(1) → ∆(1) ⊂ HZ
(1)

is a bijection. In the case x = (3, 3, 3) we know

∆(1). But the lift a ∈ ∆(1) of an element a(1) ∈ ∆(1) is difficult to
determine. See Lemma 6.26.

Theorem 6.21. (a) (Empty: (b)–(g) shall correspond to (b)–(g) in
Theorem 6.18.)

(b) In each reducible case x = (x1, 0, 0)

∆(1) = ∆(1) ∩ (Ze1 ⊕ Ze2) ∪̇ {±e3}
with ∆(1) ∩ (Ze1 ⊕ Ze2) ∼= ∆(1)(S(−x1)),

and ∆(1)(S(−x1)) is given in Theorem 6.10.
(c) The case x = (1, 1, 0):

∆(1) = HZ
(1),prim

,

∆(1) = (prH,(1))−1(∆(1)) = (Ze1 ⊕ Ze2)prim + Zf3 ⊂ Hprim
Z ,

∆(1) = Γ(1){e1}.

∆(1) and ∆(1) consist each of one orbit.
(d) The cases x = (x1, x2, 0) with 2 ≤ x1 ≥ x2 > 0: Recall x12 :=

gcd(x1, x2).
(i) The cases with x12 = 1 and x2 > 1: Then x1 = x̃1, x2 = x̃2 and

x1 > x2 > 1. Choose y1, y2 ∈ Z with 1 = y1x
2
1 + y2x

2
2. ∆(1) consists of

the three orbits

Γ(1)
s {e1(1)} = HZ

(1),prim
,

Γ(1)
s {e2(1)} = x1HZ

(1),prim
,

Γ(1)
s {e3(1)} = x2HZ

(1),prim
.

184



∆(1) consists of five orbits:

Γ(1){e1} = Γ(1){±e1}, Γ(1){εe2}, Γ(1){εe3} with ε ∈ {±1}.
Here

∆(1) ∩ (e1 + Zf3) = Γ(1){e1} ∩ (e1 + Zf3)
= Γ(1)

u {e1} = e1 + Zx1x2f3,
∆(1) ∩ (εe2 + Zf3)

=
(
Γ(1){εe2} ∩ (εe2 + Zf3)

)
∪̇
(
Γ(1){−εe2} ∩ (εe2 + Zf3)

)
=
(
εe2 + Zx21x2f3

)
∪̇
(
εe2 − ε2y2x2f3 + Zx21x2f3

)
,

∆(1) ∩ (εe3 + Zf3)

=
(
Γ(1){εe3} ∩ (εe3 + Zf3)

)
∪̇
(
Γ(1){−εe3} ∩ (εe3 + Zf3

)
=
(
εe3 + Zx1x22f3)

)
∪̇
(
εe3 + ε2y1x1f3 + Zx1x22f3

)
.

(ii) The cases with x2 = 1: Then x1 = x̃1 > x2 = x̃2 = x12 = 1.

∆(1) consists of the two orbits

Γ(1)
s {e1(1)} = Γ(1)

s {±e1(1),±e3(1)} = HZ
(1),prim

,

Γ(1)
s {e2(1)} = Γ(1)

s {±e2(1)} = x1HZ
(1),prim

.

∆(1) consists of three orbits,

Γ(1){e1} = Γ(1){±e1,±e3}, Γ(1){εe2}, with ε ∈ {±1}.
Here

∆(1) ∩ (e1 + Zf3) = Γ(1){e1} ∩ (e1 + Zf3) = Γ(1)
u {e1} = e1 + Zx1f3,

∆(1) ∩ (εe2 + Zf3)

=
(
Γ(1){εe2} ∩ (εe2 + Zf3)

)
∪̇
(
Γ(1){−εe2} ∩ (εe2 + Zf3)

)
=
(
εe2 + Zx21f3

)
∪̇
(
εe2 − ε2f3 + Zx21f3

)
.

(iii) The cases with x12 > 1 and x1 > x2 > 1: Then x̃1 > x̃2 ≥ 1.

Recall from Theorem 6.18 (s) g2 = 1
x̃1
e2

(1) = 1
x̃2
e3

(1) ∈ HZ
(1)
. Here

∆(1) ⊂ HZ
(1)

consists of the six orbits (with ε ∈ {±1})

Γ(1)
s {εe1(1)} ⊂ HZ

(1),prim
,

Γ(1)
s {εe2(1)} = x̃1Γ

(1)
s {εg2} ⊂ x̃1HZ

(1),prim
,

Γ(1)
s {εe3(1)} = x̃2Γ

(1)
s {εg2} ⊂ x̃2HZ

(1),prim
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Theorem 6.10 (c) and (d) describe the orbits Γ
(1)
s {e1(1)} and Γ

(1)
s {g2}.

Also ∆(1) consists of six orbits.

∆(1) ∩ (εe1 + Zf3) = εe1 + Zx12x̃1x̃2f3,
∆(1) ∩ (εe2 + Zf3) = εe2 + Zx1x2x̃1f3,
∆(1) ∩ (εe3 + Zf3) = εe3 + Zx1x2x̃2f3.

(iv) The cases with x1 = x2 ≥ 2: Then x12 = x1 = x2, x̃1 = x̃2 = 1,

e2
(1) = e3

(1) = g2. Then ∆(1) ⊂ HZ
(1)

consists of the four orbits (with
ε ∈ {±1})

Γ(1)
s {εe1(1)} ⊂ HZ

(1),prim
,

Γ(1)
s {εe2(1)} = Γ(1)

s {εg2} ⊂ HZ
(1),prim

.

Theorem 6.10 (c) and (d) describe these orbits. ∆(1) consists of six
orbits.

∆(1) ∩ (εe1 + Zf3) = Γ(1){εe1} ∩ (εe1 + Zf3) = Γ(1)
u {εe1}

= εe1 + Zx1f3,
∆(1) ∩ (εe2 + Zf3) = ∆(1) ∩ (εe3 + Zf3)

=
(
Γ(1){εe2} ∩ (εe2 + Zf3)

)
∪̇
(
Γ(1){εe3} ∩ (εe2 + Zf3)

)
=
(
εe2 + Zx21f3

)
∪̇
(
εe2 − εf3 + Zx21f3

)
.

(e) The cases x = (−l, 2,−l) with l ≥ 2 even: Consider ε ∈ {±1}.
(i) The cases with l ≡ 0(4): ∆(1) consists of six orbits,

Γ(1){εe1} = {y1e1 + y2e3 ∈ Hprim
Z | y1 ≡ ε(4), y2 ≡ 0(2)}+ Zlf3,

Γ(1){εe3} = {y1e1 + y2e3 ∈ Hprim
Z | y1 ≡ 0(2), y2 ≡ ε(4)}+ Zlf3,

Γ(1){εe2} =
l

2
{y1e1 + y2e3 ∈ Hprim

Z | y1 ≡ 1(2), y2 ≡ 1(2)}

+εf3 + Zl2f3.

∆(1) consists of five orbits, Γ
(1)
s {e2(1)} = Γ

(1)
s {−e2(1)}.
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(ii) The cases with l ≡ 2(4): ∆(1) consists of six orbits,

Γ(1){εe1} =
(
{y1e1 + y2e3 ∈ Hprim

Z | y1 ≡ ε(4), y2 ≡ 0(2)}+ Z2lf3
)

∪̇
(
{y1e1 + y2e3 ∈ Hprim

Z | y1 ≡ −ε(4), y2 ≡ 0(2)}+ lf3 + Z2lf3
)
,

Γ(1){εe3} =
(
{y1e1 + y2e3 ∈ Hprim

Z | y1 ≡ 0(2), y2 ≡ ε(4)}+ Z2lf3
)

∪̇
(
{y1e1 + y2e3 ∈ Hprim

Z | y1 ≡ 0(2), y2 ≡ −ε(4)}+ lf3 + Z2lf3
)
,

Γ(1){εe2} =
l

2
{y1e1 + y2e3 ∈ Hprim

Z | y1 ≡ 1(2), y2 ≡ 1(2)}

+εf3 + Zl2f3.
Especially

∆(1) ∩ (εe1 + Zf3) = εe1 + Zlf3
⫌ Γ(1){εe1} ∩ (εe1 + Zf3) = εe1 + Z2lf3,

and similarly for εe3. ∆(1) consists of three orbits, Γ
(1)
s {ei(1)} =

Γ
(1)
s {−ei(1)} for i ∈ {1, 2, 3}.
(f) The cases x = (−l, 2,−l) with l ≥ 3 odd: ∆(1) consists of three

orbits (with ε ∈ {±1})
Γ(1){e1} = Γ(1){±e1,±e3} = (Ze1 ⊕ Zg2)prim + Zlf3,

Γ(1){εe2} = l(Ze1 ⊕ Zg2)prim + ε
1− l2

2
f3 + Zl2f3.

∆(1) consists of two orbits, Γ
(1)
s {e2(1)} = Γ

(1)
s {−e2(1)}.

(g) The cases x ∈ Z3
≥3 with 2xi ≤ xjxk for {i, j, k} = {1, 2, 3}: ∆(1)

and ∆(1) consist each of six orbits,

Γ(1){εei} respectively Γ(1)
s {εei(1)} for (ε, i) ∈ {±1} × {1, 2, 3}.

The projection ∆(1) → ∆(1) is a bijection.
(h) The case x = (3, 3, 3): In this subcase of (g) the statements in

(g) hold, and

Γ(1){εei} ⊂ εei + 3HZ, Γ(1)
s {εei(1)} = (εei

(1) + 3HZ
(1)
)prim

for ε ∈ {±1}, i ∈ {1, 2, 3}.

Proof: (b) The splitting of ∆(1) follows with Lemma 2.11. The
first and second subset are treated by Theorem 6.10 and Lemma 2.12.

(c) ∆(1) = HZ
prim

follows with Γ
(1)
s
∼= SL2(Z) and Theorem 6.10 (b).

∆(1) is the full preimage in HZ, because Γ
(1)
u = O

(1),Rad
u = {t+λ |λ(e) ∈

⟨(1, 0, 0), (0, 1, 1)⟩Z}.
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(d) (i) All statements on ∆(1) follow from Γ
(1)
s
∼= SL2(Z) and e2(1) =

x1g2, e3
(1) = x2g2.

Recall the definition and the properties of s4 ∈ Γ(1) in the proof of
Theorem 6.18.

For ∆(1) we have to use Lemma 6.7.

Claim 1: For a ∈ {±e1,±e2,±e3} equality in
(3)
⊃ in Lemma 6.7

holds.

Proof of Claim 1: Suppose h ∈ StabΓ(1)(a(1)). Then

h ∈ Stab
Γ
(1)
s
(a(1)) =

{
⟨s(1)e1 ⟩ if a ∈ {±e1},
⟨s4⟩ if a ∈ {±e2,±e3},

so for a suitable l ∈ Z

h(s
(1)
e1 )

l = id and h(s(1)e1
)l ∈ Γ(1)

u for a ∈ {±e1},
h(s4)

l = id and h(s4)
l ∈ Γ(1)

u for a ∈ {±e2,±e3}.

As s
(1)
e1 ∈ StabΓ(1)(εe1) and s4 ∈ StabΓ(1)(εe2) = StabΓ(1)(εe3)

h ∈ Γ(1)
u StabΓ(1)(a).

(□)

By Lemma 6.7 (b)

Γ(1){εei} ∩ (εei + Zf3) = Γ(1)
u {εei}. (6.15)

Claim 2:
(
s
(1)
e1 s4s

(1)
e1 )

2 = t−λ3
with λ3 ∈ Hom2(HZ,Z), λ3(e) =

(0, 2y2x2,−2y1x1).

Proof of Claim 2: This is a straightforward calculation with s
(1),mat
e1

and smat
4 . (□)

Therefore

Γ(1){e1} = Γ(1){−e1},
∆(1) ∩ (e1 + Zf3) = Γ(1){e1} ∩ (e1 + Zf3) = Γ(1)

u {e1}
= e1 + Zx1x2f3.

Also

Γ(1){e2} ∋ −e2 + 2y2x2f3, Γ(1){e3} ∋ −e3 − 2y1x1f3.

This together with (6.15) and the shape of Γ
(1)
u shows the statements

on ∆(1) ∩ (εe2 + Zf3) and ∆(1) ∩ (εe3 + Zf3).
(ii) All statements on ∆(1) follow from Γ

(1)
s
∼= SL2(Z) and e2

(1) =
x1g2 and e3

(1) = g2.
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For ∆(1) we have to use Lemma 6.7. Claim 1 in the proof of part
(i), its proof and the implication (6.15) still hold. Now we can choose

(y1, y2) = (0, 1), so s4 = s
(1)
e3 . One calculates

s(1)e1
s(1)e3

s(1)e1
e = e

0 −x1 −1
0 1 0
1 −x1 0

 .

Therefore Γ(1){e1} = Γ(1){±e1,±e3}.
Claim 2 in the proof of part (i) still holds. It gives (s

(1)
e1 s

(1)
e3 s

(1)
e1 )

2 =
t−λ3

with λ3 ∈ Hom2(HZ,Z), λ3(e) = (0, 2, 0). Especially t−λ3
(−e2) =

e2 − 2f3.

This fact, (6.15) and the shape of Γ
(1)
u imply the statements on

∆(1) ∩ (e1 + Zf3) and ∆(1) ∩ (εe2 + Zf3).
(iii) and (iv) By Theorem 6.18 (d) Γ

(1)
s
∼= Γ(1)(S(−x12)). By The-

orem 6.10 (c) and (d) Γ
(1)
s {±e1(1),±g2} consists of the four orbits

Γ
(1)
s {εe1(1)} and Γ

(1)
s {εg2} with ε ∈ {±1}. Therefore if x1 > x2 then

∆(1) consists of the six orbits in (iii), and if x1 = x2 then ∆(1) consists of

the four orbits Γ
(1)
s {εe1(1)} and Γ

(1)
s {εe2(1)} = Γ

(1)
s {εe3(1)} = Γ

(1)
s {εg2}.

For ∆(1) we have to use Lemma 6.7. Claim 1 in the proof of part
(i), its proof and the implication (6.15) still hold.

In the case x1 > x2, ∆(1) consists of six orbits. Part (a) of Lemma

6.7, (6.15) and the shape of Γ
(1)
u imply the statements on ∆(1) ∩ (εei +

Zf3) in part (iii).

In the case x1 = x2, ∆(1) consists of four orbits. Then e3 = e2− f3,
(6.15) and the shape of Γ

(1)
u imply the statements on ∆(1) ∩ (εei +Zf3)

in part (iv).
(e) Theorem 6.10 (c) and

s(1)e1
(e1, e3) = (e1, e3)

(
1 −2
0 1

)
, s(1)e3

(e1, e3) = (e1, e3)

(
1 0
2 1

)
,

imply

⟨s(1)e1
, s(1)e3
⟩{εe1} = {y1e1 + y2e3 ∈ Hprim

Z | y1 ≡ ε(4), y2 ≡ 0(2)},
⟨s(1)e1

, s(1)e3
⟩{εe3} = {y1e1 + y2e3 ∈ Hprim

Z | y1 ≡ 0(2)), y2 ≡ ε(4)}.

In the case (i), the semidirect product Γ(1) = Γ
(1)
u ⋊ ⟨s(1)e1 , s

(1)
e3 ⟩ and

the shape of Γ
(1)
u show that Γ(1){εe1} and Γ(1){εe3} are as claimed.

In the case (ii), the semidirect product Γ(1) = Γ(1) ∩ O(1),Rad
± ⋊

⟨s(1)e1 , s
(1)
e3 ⟩ and the shape of Γ(1) ∩ O(1),Rad

± show that Γ(1){εe1} and
Γ(1){εe3} are as claimed.
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The following fact was not mentioned in Theorem 6.10 (c):

{y1e1 + y2e3 ∈ Hprim
Z | y1 ≡ y2 ≡ 1(2)} = ⟨s(1)e1

, s(1)e3
⟩{e1 + e3},

so this set is a single ⟨s(1)e1 , s
(1)
e3 ⟩ orbit. We skip its proof (it contains the

observation s
(1)
e3 s

(1)
e1 (e1 + e3) = −e1 − e3).

This fact, the semidirect products above of Γ(1), the shape of Γ
(1)
u

in case (i) and of Γ(1) ∩O(1),Rad
± in case (ii), and e2 = − l

2
(e1 + e3) + f3

show in case (i) and case (ii) that Γ(1){εe2} is as claimed.
(f) Theorem 6.10 (b), ẽ = (e1, g2, f3),

s(1)e1
(ẽ) = ẽ

1 −1 0
0 1 0
0 0 1

 , s4(ẽ) = ẽ

1 0 0
1 1 0
0 0 1

 ,

e3 = −e1 + 2g2 + lf3 and e2 = −lg2 +
1− l2

2
f3

imply

⟨s(1)e1
, s4⟩(e1) = (Ze1 ⊕ Zg2)prim,

⟨s(1)e1
, s4⟩(e3) = (Ze1 ⊕ Zg2)prim + lf3,

⟨s(1)e1
, s4⟩(e2) = l(Ze1 ⊕ Zg2)prim +

1− l2

2
f3.

The semidirect product Γ(1) = Γ
(1)
u ⋊ ⟨s(1)e1 , s4⟩ and the shape of Γ

(1)
u

show (with ε ∈ {±1})

Γ(1){e1} = Γ(1){±e1,±e3} = (Ze1 ⊕ Zg2)prim + Zlf3,

Γ(1){εe2} = l(Ze1 ⊕ Zg2)prim + ε
1− l2

2
f3 + Zl2f3.

(g) In the proof of part (g) of Theorem 6.18 the hyperbolic polygon
P with the six arcs in Remark 6.19 was used. It is a fundamental
polygon of the action of the group ⟨µ1, µ2, µ3⟩ on H. Here µ1, µ2, µ3

are parabolic Möbius transformations with fixed points ∞, 0 and −x3

x2
.

These fixed points are cusps of P . This geometry implies

Stab⟨µ1,µ2,µ3⟩(∞) = ⟨µ1⟩,
Stab⟨µ1,µ2,µ3⟩(0) = ⟨µ2⟩,

Stab⟨µ1,µ2,µ3⟩(−
x3
x2

) = ⟨µ3⟩.

As ⟨µ1, µ2, µ3⟩ ∼= Γ
(1)
s

(∼= Gfree,3
)
with µi ∼ s

(1)
ei , this implies

Stab
Γ
(1)
s
({±ei(1)}) = ⟨s(1)ei ⟩ = Stab

Γ
(1)
s
(ei

(1)) for i ∈ {1, 2, 3}.
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Especially −ei(1) /∈ Γ
(1)
s (ei

(1)), so the orbits Γ
(1)
s {ei(1)} and Γ

(1)
s {−ei(1)}

are disjoint.
The cusps ∞, 0 and −x3

x2
of the fundamental domain P of the

group ⟨µ1, µ2, µ3⟩ are in disjoint orbits of ⟨µ1, µ2, µ3⟩. Therefore the

sets Γ
(1)
s {±e1(1)}, Γ(1)

s {±e2(1)} and Γ
(1)
s {±e3(1)} are disjoint. Therefore

∆(1) consists of the six disjoint orbits Γ
(1)
s {εei(1)} with (ε, i) ∈ {±1} ×

{1, 2, 3}. Therefore also ∆(1) consists of the six orbits Γ(1){εei} with
(ε, i) ∈ {±1} × {1, 2, 3}.

Claim: For a ∈ {±e1,±e2,±e3} equality in
(1)
⊃ and

(2)
⊃ before

Lemma 6.7 holds.

Proof of the Claim: Equality in
(1)
⊃ holds because of Lemma 6.7

(a) and because ∆(1) and ∆(1) each consist of six orbits.

Equality in
(2)
⊃ is by Lemma 6.7 (b) equivalent to equality in

(3)
⊃.

Here Γ(1) ∼= Γ
(1)
s (∼= Gfree,3), Γ

(1)
u = {id}, the lift s

(1)
ei ∈ Γ(1) of

s
(1)
ei ∈ Γ

(1)
s is in StabΓ(1)(εei), and therefore

StabΓ(1)(εei
(1)) = ⟨s(1)ei

⟩ = StabΓ(1)(εei) = Γ(1)
u · StabΓ(1)(εei),

so equality in
(3)
⊃ holds. The Claim is proved. (□)

The Claim and Γ
(1)
u = {id} show

(εei + Zf3) ∩∆(1) = εei.

Therefore the projection ∆(1) → ∆(1) is a bijection.
(h) In the case x = (3, 3, 3)

x̃ = (1, 1, 1), f3 = −e1 + e2 − e3, e3(1) = −e1(1) + e2
(1),

HZ
(1)

= Ze1(1) ⊕ Ze2(1).

Recall that the matrices B1, B2, B3 in the proof of Theorem 6.18 (g)

with s
(1)
ei (e1

(1), e2
(1)) = (e1

(1), e2
(1))Bi are here

B1 =

(
1 −3
0 1

)
, B1 =

(
1 0
3 1

)
, B3 =

(
−2 −3
3 4

)
,

and generate Γ(3). Because s
(1),mat
ei ≡ E3mod 3 and Bi ≡ E2mod 3,

Γ(1){εei} ⊂ εei + 3HZ and Γ(1)
s {εei(1)} ⊂ εei

(1) + 3HZ
(1)
.

It remains to show Γ
(1)
s {ei(1)} = (ei

(1) + 3HZ
(1)
)prim. This is equiv-

alent to the following three statements:
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(i) For (a1, a3) ∈ Z2 with (a1, a3) ≡ (1, 0)mod 3 and gcd(a1, a3) =

1 a pair (a2, a4) ∈ Z2 with

(
a1 a2
a3 a4

)
∈ Γ(3) exists.

(ii) For (a2, a4) ∈ Z2 with (a2, a4) ≡ (0, 1)mod 3 and gcd(a2, a4) =

1 a pair (a1, a3) ∈ Z2 with

(
a1 a2
a3 a4

)
∈ Γ(3) exists.

(iii) For (b1, b2) ∈ Z2 with (b1, b2) ≡ (−1, 1)mod 3 and gcd(b1, b2) =

1 a matrix

(
a1 a2
a3 a4

)
∈ Γ(3) with

(
−a1 + a2
−a3 + a4

)
=

(
b1
b2

)
exists.

(i) is proved as follows. There exist (ã2, ã4) ∈ Z2 with 1 = a1ã4− a3ã2.
Thus ã4 ≡ 1(3). Let ã2 ≡ r(3) with r ∈ {0, 1, 2}. Choose (a2, a4) :=
(ã2 − ra1, ã4 − ra3). The proofs of (ii) and (iii) are similar.

The proof of Theorem 6.21 (h) is finished. □

In quite some cases ∆(0) ⊂ ∆(1), but nevertheless in general ∆(0) ̸⊂
∆(1). Corollary 6.22 gives some details.

Corollary 6.22. (a) ∆(0) = ∆(1) holds only in the cases An
1 , so

the cases with S = En for some n ∈ N. In all other cases ∆(1) ̸⊂ R(0).
(b) ∆(0) ⫋ ∆(1) in the cases n = 2 except A2

1, in the reducible cases
with n = 3 except A3

1 and in the case A3.

(c) ∆(0) ̸⊂ ∆(1) holds in the following cases with n = 3: Â2, H1,2,
S(−l, 2,−l) with l ≥ 3 and P2.

Proof: (a) In the cases An
1 ∆(0) = ∆(1) = {±e1, ...,±en} by Lemma

2.12. In a case with S ∈ T uni
n (Z) − {En} there is an entry Sij ̸= 0 for

some i < j, so L(ej, ei) ̸= 0. We can restrict to the rank 2 unimod-
ular bilinear lattice (Zei + Zej, L|Zei+Zej , (ei, ej)) with triangular basis
(ei, ej). Part (e) of Theorem 6.10 shows that it has odd vanishing cycles
which are not roots. They are also odd vanishing cycles of (HZ, L, e),
so then ∆(1) ̸⊂ R(0) ⊃ ∆(0).

(b) For the cases n = 2 see Theorem 6.10 (e). The reducible cases
with n = 3 follow from the case A1 and the cases with n = 2. In the
case A3 the twelve elements of ∆(0) are given in Theorem 6.14 (c). The
set ∆(1) is by Theorem 6.21 (c)

(prH,(1))−1(HZ
(1),prim

) + Zf3.

which contains ∆(0) as a strict subset.
(c) The case Â2: With x = (−1,−1,−1) we have f1 = e1 + e2 + e3

and f3 = e1 − e2 + e3. By Theorem 6.14 (d)

∆(0) = (±e1 + Zf1) ∪̇ (±e2 + Zf1) ∪̇ (±e3 + Zf1).
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By Theorem 6.21 (c)

∆(1) = (prH,(1))−1(HZ
(1),prim

) + Zf3.

Here for example for m ∈ Z− {0,−1}

∆(0) ∋ e2 +mf1 = (2m+ 1)e2 +mf3 /∈ ∆(1).

The case H1,2: With x = (−2, 2,−2) we have Rad I(0) = Z(e1 +
e2)⊕ Z(e2 + e3) and f3 = e1 + e2 + e3. By Theorem 6.14 (e)

∆(0) = (±e1 + 2Rad I(0)) ∪̇ (±e2 + 2Rad I(0)) ∪̇ (±e3 + 2Rad I(0)).

By Theorem 6.21 (e) (ii)

∆(1) ⊂ (Ze1 + Ze3)prim + Zf3.

Here for example

∆(0) ∋ e1 + 6(e1 + e2) + 4(e2 + e3)

= (−3)e1 + (−6)e3 + 10f3 /∈ (Ze1 + Ze3)prim + Zf3.

This element is not contained in ∆(1) because by Theorem 6.21 (e)

∆(1) ⊂
(
(Ze1 + Ze3)prim + Zf3

)
∪̇
( l
2
(Ze1 + Ze3)prim + Zf3

)
.

The cases S(−l, 2,−l): Recall Rad I(0) = Zf1, f1 = e1 − e3,

f3 =
1

2
(le1 + 2e2 + le3) if l ≥ 3 is even,

f3 = le1 + 2e2 + le3
g2 =

1
2
(e1 + e3)− l

2
e2

}
if l ≥ 3 is odd.

Consider the element

h1(e1)− la1f1 = h1(e1 − la1f1) ∈ HZ with

h1 := (s(0)e1
s(0)e2

)3 ∈ Γ(0),

a1 :=
1

2
(l5 − 4l3 + 3l) ∈ Z

By Theorem 6.11 (f) T (j
(0)
(e1

(0)) ⊗ f1) and T (j
(0)
(le2

(0)) ⊗ f1) ∈ Γ
(0)
u

with

T (j
(0)
(e1

(0))⊗ f1)(e1) = e1 + 2f1,

T (j
(0)
(le2

(0))⊗ f1)(e1) = e1 − l2f1,
so

∆(0) ⊃
{
e1 + 2Zf1 if l is even,
e1 + Zf1 if is odd.
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Therefore h1(e1)− la1f1 = h1(e1 − la1f1) ∈ ∆(0). One calculates

h1(e1)− la1f1 = (s(0)e1
s(0)e2

)3(e1)− la1f1

= e(

−1 l 2
0 1 0
0 0 1

1 0 0
l −1 l
0 0 1

)2

1
0
0

− la1f1
= e

l2 − 1 −l l2 − 2
l −1 l
0 0 1

31
0
0

− la1f1
= e

l6 − 5l4 + 6l2 − 1
l5 − 4l3 + 3l

0

− la1f1
= (−l4 + 3l2 − 1)e1 +

{
2a1f3 if l is even,
a1f3 if l is odd.

This element is not contained in ∆(1) because (−l4 + 3l2 − 1) /∈
{±1,± l

2
,±l} and because by Theorem 6.21 (e) and (f)

∆(1) ⊂
(
(Ze1 + Ze3)prim + Zf3

)
∪̇
( l
2
(Ze1 + Ze3)prim + Zf3

)
if l is even,

∆(1) ⊂
(
(Ze1 + Zg2)prim + Zf3

)
∪̇
(
l(Ze1 + Zg2)prim + Zf3

)
if l is odd.

The case P2: With x = (−3, 3,−3) we have f3 = e1 + e2 + e3.

∆(1) ∋ s(1)e3
(s(1)e2

)−2(e1)

= e

1 0 0
0 1 0
3 −3 1

1 0 0
3 1 −3
0 0 1

1 0 0
3 1 −3
0 0 1

1
0
0

 = e

 1
6
−15

 .

By Theorem 6.21 (g) the projection ∆(1) → ∆(1) is a bijection. There-
fore

∆(1) ̸∋ (e1 + 6e2 − 15e3) + 9f3 = 10e1 + 15e2 − 6e3.

On the other hand

L(10e1 + 15e2 − 6e3, 10e1 + 15e2 − 6e3)

=
(
10 15 −6

) 1 0 0
−3 1 0
3 −3 1

10
15
−6

 = 1,

so 10e1 + 15e2 − 6e3 ∈ R(0) = ∆(0). □
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Consider a triple x ∈ Z3 and a corresponding unimodular bilin-
ear lattice (HZ, L, e) with a triangular basis e with L(et, e)t = S(x).
The Remarks 4.17 explained that the tuple (HZ,±I(1),Γ(1),∆(1)) de-

pends only on the (Gphi ⋉ G̃sign) ⋊ ⟨γ⟩ orbit of x ∈ Z3. Lemma 4.18
gave at least one element of each orbit of this group in Z3. Theo-
rem 6.18 and Theorem 6.21 gave detailed information on the tuple
(HZ,±I(1),Γ(1),∆(1)) for the elements in Lemma 4.18 (b)+(c) and
rather coarse information for the elements in Lemma 4.18 (a).

The next corollary uses this information to conclude that the (Gphi⋉
G̃sign)⋊ ⟨γ⟩ orbits of the elements in Lemma 4.18 (b)+(c) are pairwise
different and also different from the orbits of the elements in Lemma
4.18 (a), because the corresponding tuples (HZ,±I(1),Γ(1),∆(1)) are
not isomorphic. As Theorem 6.18 and Theorem 6.21 give only coarse
information on the cases in Lemma 4.18 (a), also Corollary 6.23 is vague
about them.

The set of local minima in Lemma 4.18 (b)+(c) and (3, 3, 3) is called
Λ1, the set of local minima in Lemma 4.18 (a) without (3, 3, 3) is called
Λ2,

Λ1 := {(3, 3, 3)} ∪ {(−l, 2,−l) | l ≥ 2}
∪{(x1, x2, 0) |x1, x2 ∈ Z≥0, x1 ≥ x2},

Λ2 := {x ∈ Z3
≥3 | 2xi ≤ xjxk for {i, j, k} = {1, 2, 3}} − {(3, 3, 3)}.

Corollary 6.23. Consider x and x̃ ∈ Λ1 or x ∈ Λ1 and x̃ ∈ Λ2.
Suppose x ̸= x̃. Then the tuples (HZ,±I(1),Γ(1),∆(1)) of x and x̃ are

not isomorphic. Consequently, the (Gphi ⋉ G̃sign)⋊ ⟨γ⟩ orbits of x and
x̃ are disjoint.

Proof: In the following, (b), (c), (d), (d)(i), (d)(ii), (d)(iii), (d)(iv),
(e), (e)(i), (e)(ii), (f), (g), (h)(⊂ (g)) mean the corresponding families
of cases in Theorem 6.21. Of course, (c) and (h) are single cases.
We will first discuss how to separate the families by properties of the
isomorphism classes of the tuples (HZ,±I(1),Γ(1),∆(1)), and then how
to separate the cases within one family.

The pair (Γ
(1)
u ,Γ

(1)
s ) gives the following incomplete separation of

families,

Γ
(1)
u
∼= ? Γ

(1)
s
∼= ? families

{id} Gfree,3 (g)
{id} ̸∼= Gfree,3 (b)
Z2 SL2(Z) (c), (d)(i) + (ii), (f)
Z2 SL2(Z)× {±1} (e)(ii)
Z2 Gfree,2 (d)(iii) + (iv), (e)(i)
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The fundamental polygon P in Remark 6.19 (ii) has finite area in the
case (h) (i.e. x = (3, 3, 3)) and infinite area in the other cases in (g).
So it separates the case (h) from the other cases in (g).

The number of Br3 ⋉ {±1}3 orbits in ∆(1) separates the families
(c),(d),(e)(i),(f) almost completely:

|{orbits in ∆(1)}| 1 2 3 4 5 6
families (c) (d)(ii), (f) (d)(i) (d)(iv) (e)(i) (d)(iii)

The separation of the family (d)(ii) from the family (f) is more
difficult and can be done as follows. In both families of cases ∆(1)

consists of three orbits, and ∆(1) consists of two orbits. The two orbits

Γ(1){e2} and Γ(1){−e2} unite to a single orbit Γ(1)
s {e2(1)} = Γ

(1)
s {−e2(1)}.

The set

{n ∈ N | there exists a1 ∈ Γ(1){e2} and ε ∈ {±1}
with a1 + εnf3 ∈ Γ(1){−e2}}

is well defined. Its minimum is 2 in each case in (d)(ii) because there
x1 > x2 = 1 and

Γ(1){e2} ∩ (e2 + Zf3) = e2 + Zx21f3,
Γ(1){−e2} ∩ (e2 + Zf3) = e2 − 2f3 + Zx21f3.

Its minimum is 1 in each case in (f) because there

Γ(1){e2} ∩ (le1 + Zf3) = le1 +
1 + l2

2
f3 + Zl2f3,

Γ(1){−e2} ∩ (le1 + Zf3) = le1 +
−1 + l2

2
+ Zl2f3.

It remains to separate within each family (b), (d), (e) and (f) the

cases ((c) and (h) are single cases). The pair (HZ
(1)
,±I(1)) and Lemma

6.16 (b) allow to recover gcd(x1, x2, x3) which is as follows in these
families,

family of cases (b) (d) (e) (f)
gcd(x1, x2, x3) x1 x12 2 1

Within the family (b) this separates the cases. For the family (d)
we need additionally the pair (x̃1, x̃2) because (x1, x2) = (x12x̃1, x12x̃2).

The pair (x̃1, x̃2) can be read off from ∆
(1) ⊂ HZ

(1)
, more precisely, from

the relation of the Γ
(1)
s orbits in ∆(1) to the set HZ

(1),prim ⊂ HZ
(1)
. In

the family (e) one can read off l
2
, and in the family (f) one can read off l

from the relation of the Γ
(1)
s orbits in ∆

(1)
to the set HZ

(1),prim ⊂ HZ
(1)
.

□
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Remarks 6.24. Let (HZ, L) be a unimodular bilinear lattice of
rank n ≥ 2, and let e be a triangular basis with matrix S = L(et, e)t ∈
T uni
n (Z). Recall Theorem 3.7 (a). If Sij ≤ 0 for i < j then

(Γ(0), {s(0)e1 , ..., s
(0)
en }) is a Coxeter system, and the presentation in Def-

inition 3.15 of the Coxeter group Γ(0) is determined by S. Especially
Γ(0) ∼= GfCox,n if Sij ≤ −2 for i < j.

One might hope for a similar easy control of Γ(1) if Sij ≤ 0 for i < j.
In the cases with n = 2 this works by Lemma 2.12 and Theorem 6.10:

Γ(1) ∼=

 {id} if x = 0,
SL2(Z) if x = −1,
Gfree,2 if x ≤ −2.

But in the cases with n = 3 this fails. The Remarks 4.17 show
Γ(1)(S(x)) ∼= Γ(1)(S(−x)) for any x ∈ Z3. The cases S(x̃) with x̃ ∈ Z3

≥0

lead by the action of (Gphi ⋉ G̃sign)⋊ ⟨γ⟩ to all cases in Theorem 6.18.
Especially, the cases S(x̃) with x̃ ∈ Z3

≥2 contain the nice cases

in Theorem 6.18 (g) with Γ(1) ∼= Gfree,3, but also many other cases.
Compare the family {(3, 3, l) | l ≥ 2} in the Examples 4.20 (iv) or the
case S = S(2, 2, 2) ∼ S(−2,−2,−2) ∼ S(H1,2) with Γ(1) far from
Gfree,3.

Remarks 6.25. In the cases x ∈ Z3 in Lemma 4.18 (a), so x ∈ Z3
≥2

with 2xi ≤ xjxk for {i, j, k} = {1, 2, 3}, Theorem 6.18 and Theorem
6.21 give rather coarse information,

Γ(1)
u = {id} and Γ(1) ∼= Γ(1)

s
∼= Gfree,3 by Theorem 6.18,

∆(1) → ∆(1) is a bijection by Theorem 6.21.

But it is nontrivial to determine the unique preimage in Γ(1),mat of an

element of Γ
(1)
s and the unique preimage in ∆(1) of an element of ∆(1).

This holds especially for the case x = (3, 3, 3) where Γ
(1)
s
∼= Γ(3) and

∆(1) are known. Part (c) of the following lemma gives for x = (3, 3, 3)
at least an inductive way to determine the preimage in Γ(1),mat of a

matrix in Γ(3) ∼= Γ
(1)
s .

Lemma 6.26. Consider the case x = (3, 3, 3). Denote by LP2 :
Γ(3)→ Γ(1),mat the inverse of the natural group isomorphism

Γ(1),mat −−−→ Γ(1) −−−→ Γ
(1)
s −−−→ Γ(3),

s
(1),mat
ei −−−→ s

(1)
ei −−−→ s

(1)
ei −−−→ Bi

gmat ←−−− g −−−→ g −−−→ gmat
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with

g(e) = e · gmat and

g(e1
(1), e2

(1)) = (e1
(1), e2

(1)) · gmat

for g ∈ Γ(1). Define the subgroup of SL3(Z)

G(3,3,3) := {F ∈ SL3(Z) |F ≡ E3mod 3, F

−11
−1

 =

−11
−1

}.
Define the map (st for standard)

Lst : Γ(3) → M3×3(Z),
(
a b
c d

)
7→

a b 1− a+ b
c d −1− c+ d
0 0 1

 ,

and the three matrices

K1 :=

 3 0 −3
−3 0 3
3 0 −3

 , K2 :=

0 3 3
0 −3 −3
0 3 3

 ,

K3 := K1 +K2 =

 3 3 0
−3 −3 0
3 3 0

 .

(a) Lst is an injective group homomorphism Lst : Γ(3)→ G(3,3,3),

KiKj = 0 for i, j ∈ {1, 2, 3},
Lst(C)Ki = Ki for C ∈ Γ(3), i ∈ {1, 2, 3},

G(3,3,3) = {Lst(C) + αK1 + βK2 |C ∈ Γ(3), α, β ∈ Z}.

The following sequence is an exact sequence of group homomorphisms,

{1} −−−→ Z2 −−−→ G(3,3,3) −−−→ Γ(3) −−−→ {1}

(α, β) −−−→ E3 + αK1 + βK2

Lst(C) + αK1 + βK2 −−−→ C

Lst is a splitting of this exact sequence.
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(b) Γ(1),mat ⊂ G(3,3,3), and LP2 : Γ(3)→ Γ(1),mat is another splitting
of the exact sequence in part (b). It satisfies

LP2(B1) = Lst(B1) = s(1),mat
e1

=

1 −3 −3
0 1 0
0 0 1

 for B1 =

(
1 −3
0 1

)
,

LP2(B2) = Lst(B2) = s(1),mat
e2

=

1 0 0
3 1 −3
0 0 1

 for B2 =

(
1 0
3 1

)
,

LP2(B3) = Lst(B3) +K3 = s(1),mat
e3

=

1 0 0
0 1 0
3 3 1

 for B3 =

(
−2 −3
3 4

)
,

LP2(B−1
3 ) = Lst(B

−1
3 )−K3.

(c) An arbitrary element C ∈ Γ(3) can be written in a unique way
as a product

C = C1B
ε1
3 C2B

ε2
3 C3...CmB

εm
3 Cm+1

with m ∈ Z≥0, C1, ..., Cm+1 ∈ ⟨B±1
1 , B±1

2 ⟩, ε1, ..., εm ∈ {±1}.
Then

LP2(C) = Lst(C) +K3

(
ε1Lst(C2B

ε2
3 C3...CmB

εm
3 Cm+1)

+ε2Lst(C3B
ε3
3 C4...CmB

εm
3 Cm+1)

+...+ εmLst(Cm+1)
)
.

Proof: The parts (a) and (b) are easy.
(c) By part (b) LP2(Cj) = Lst(Cj) and LP2(B

εj
3 ) = Lst(B

εj
3 )+ εjK3,

so

LP2(C) = LP2(C1)LP2(Bε1
3 )LP2(C2)...LP2(Cm)LP2(Bεm

3 )LP2(Cm+1)

= Lst(C1)(Lst(B
ε1
3 ) + ε1K3)Lst(C2)...

Lst(Cm)(Lst(B
εm
3 ) + εmK3)Lst(Cm+1).

Observe K3Lst(C̃)K3 = K3K3 = 0 for C̃ ∈ Γ(3). Therefore if one
writes the product above as a sum of 2m terms, only the 1 +m terms
do not vanish in which K3 turns up at most once. This leads to the
claimed formula for LP2(C). □

199





CHAPTER 7

Distinguished bases in the rank 2 and rank 3 cases

In section 3.3 we introduced the set of distinguished bases of a
unimodular bilinear lattice (HZ, L, e) with a triangular basis. It is the
orbit Bdist = Brn ⋉ {±1}n(e) of e under the group Brn ⋉ {±1}n. We
also posed the question when this set can be characterized in an easy
way, more precisely, when the inclusions in (3.3) or (3.4) are equalities,

Bdist ⊂ {v ∈ (∆(0))n | s(0)v1
...s(0)vn = −M}, (3.3)

Bdist ⊂ {v ∈ (∆(1))n | s(1)v1
...s(1)vn =M}. (3.4)

Theorem 3.2 (a) and (b) imply that (3.4) is an equality if Γ(1) is a free

group with generators s
(1)
e1 , ..., s

(1)
en and that (3.3) is an equality if Γ(0)

is a free Coxeter group with generators s
(0)
e1 , ..., s

(0)
en , see the Examples

(3.23) (iv). More generally, if (Γ(0), s
(0)
e1 , ..., s

(0)
en ) is a Coxeter system

(Definition 3.5) then by Theorem 3.6 (3.3) is an equality, see the Ex-
amples 3.23 (v). It is remarkable that the property

∑n
i=1 Zvi = HZ,

which each distinguished basis v ∈ Bdist satisfies is not needed in the
characterization in these cases.

These are positive results. In the sections 3.1–3.3 we study system-
atically all cases of rank 2 and 3 and find also negative results.

In rank 2 in section 6.2 (3.3) is always an equality, and (3.4) is an
equality in all cases except the case A2

1.
In the even rank 3 cases in section 7.2 (3.3) is in all cases except

the case H1,2 an equality. In the case H1,2 the set on the right hand
side contains Br3 ⋉ {±1}3 orbits of tuples v with arbitrary large finite
index [HZ :

∑3
i=1 Zvi] and two orbits with index 1, Bdist and one other

orbit.
In the odd rank 3 cases in section 7.3 we understand the set B1∪B2

of triples x ∈ Z3 such that (3.4) is an equality, and we also know a set
B3 ∪ B4 of triples x ∈ Z3 such that (3.4) becomes an equality if one
adds the condition HZ =

∑3
i=1 Zvi. But for x ∈ Z3−∪4

j=1Bj, we know
little.

Section 7.4 builds on section 4.4 where for a unimodular bilinear
lattice (HZ, L, e) the stabilizer (Br3)x/{±1}3 had been determined. It
determines the stabilizer (Br3)e/{±1}3 . It uses the systematic results in
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chapter 5 on the group GZ and on the map Z : (Brn ⋉ {±1}n)S → GZ
in the rank 3 cases.

In the sections 4.3 and 4.4 the pseudo-graph G(x) with vertex set an
orbit Br3(x/{±1}) and edge set from generators of the group Gphi⋊⟨γ⟩
had been crucial. In section 7.4 we introduce a variant with the same
vertex set, but different edge set, namely (now) oriented edges coming
from the elementary braids σ±1

i . We also define the much larger σ-
pseudo-graph with vertex set a set Bdist/{±1}3 of distinguished bases
up to signs and oriented edges coming from the elementary braids σ±1

i .
We consider especially the examples where the set Br3(x/{±1}3) is
finite.

7.1. Distinguished bases in the rank 2 cases

In the rank 2 cases the inclusion (3.3) is always an equality, and the
inclusion (3.4) is almost always an equality, namely in all cases except
the case A2

1.

Theorem 7.1. Let (HZ, L, e) be a unimodular bilinear lattice of
rank 2 with a triangular basis e = (e1, e2) with matrix S = S(x) =(
1 x
0 1

)
= L(et, e)t with x ∈ Z. Fix k ∈ {0, 1}.

(a) The inclusion (3.3) respectively (3.4) in Remark 3.19 is an
equality in all cases except the odd case A2

1, so the case (k, x) = (1, 0).
In that case the right hand side in (3.4) splits into the orbits of the
three pairs (e1, e1), (e1, e2), (e2, e2).

(b) The stabilizers in Br2 of S/{±1}2 and of e/{±1}2 are

(Br2)S/{±1}2 = Br2 and

(Br2)e/{±1}2 =

 ⟨σ
2
1⟩ if x = 0,
⟨σ3

1⟩ if x ∈ {±1},
{id} if |x| ≥ 2.

Proof: (a) The even and odd cases A2
1: See the Examples 3.23 (iii).

The cases with |x| ≥ 2: Theorem 6.8 (c)+(d) and Theorem 6.10
(c)+(d) show

Γ(k) ∼=

{
GfCox,2 with generators s

(0)
e1 , s

(0)
e2 if k = 0,

Gfree,2 with generators s
(1)
e1 , s

(1)
e2 if k = 1.

The Examples 3.23 (iv) apply and give equality in (3.3) and (3.4).
The cases with x = ±1: We can restrict to the case x = −1. The

even case is a simple case of Example 3.23 (v) (in the Remarks 7.2 we
will offer an elementary proof for the even case).
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It remains to show equality in (3.4) in the odd case (k, x) = (1,−1).
Consider v ∈ (∆(1))2 with s

(1)
v1 s

(1)
v2 = M . Let b := I(1)(v1, v2) ∈ Z. If

b = 0 then v2 = ±v1 and M = (s
(1)
v1 )

2 would have an eigenvalue 1, a
contradiction. Therefore b ̸= 0 and Zv1 + Zv2 has rank 2. Then

M(v) = s(1)v1
s(1)v2

(v) = s(1)v1
(v1 + bv2, v2)

= (v1 + bv2 − b2v1, v2 − bv1) = v

(
1− b2 −b
b 1

)
,

1 = trM = (1 − b2) + 1, so b = ±1. By possibly changing the sign of
v2, we can suppose b = −1 = x. Then

I(1)(vt, v) =

(
0 −1
1 0

)
.

Therefore v is a Z-basis of HZ, and the automorphism g ∈ Aut(HZ)
with (g(e1), g(e2)) = (v1, v2) is in O

(1). By Lemma 3.22 (a)

gMg−1 = g ◦ ((π2 ◦ π(1)
2 )(e)) ◦ g−1 = (π2 ◦ π(1)

2 )(v) = s(1)v1
s(1)v2

=M,

so gMg−1 =M , so g ∈ G(1)
Z = GM

Z ∩O(1). Theorem 5.5 can be applied

and gives
(∗)
=,

G
(1)
Z

(∗)
= GZ

(∗)
= {±(M root)l | l ∈ Z} (∗)

= Z(Br2 ⋉ {±1}2).

Therefore v ∈ Bdist. This shows equality in (3.4).

(b) Because of σ1

(
1 x
0 1

)
=

(
1 −x
0 1

)
, the stabilizer (Br2)S/{±1}2

is the whole group Br2 = ⟨σ1⟩. If x = 0,

(e1, e2)
σ17→ (e2, e1)

σ17→ (e1, e2), so (Br2)e/{±1}2 = ⟨σ2
1⟩.

If x = −1,

(e1, e2)
σ17→ (e1 + e2, e1)

σ17→ (−e2, e1 + e2)
σ17→ (e1,−e2),

so (Br2)e/{±1}2 = ⟨σ3
1⟩.

If |x| ≥ 2 Theorem 3.2 (a) or (b) and Γ(1) ∼= Gfree,2 or Γ(0) ∼= GfCox,2

show (Br2)e/{±1}2 = {id}. □

Remarks 7.2. (i) A direct elementary proof of equality in (3.3)
for the even case A2, so (k, x) = (0,−1), is instructive. Recall from

Theorem 6.8 (b) that ∆(0) = {±e1,±e2,±(e1+e2)}. The map π2◦π(0)
2 :
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(∆(0))2 → Γ(0) has the three values −M ,M2 and id and the three fibers

(π2 ◦ π(0)
2 )−1(−M) = {(±e1,±e2), (±(e1 + e2),±e1), (±e2,±(e1 + e2)}

= Bdist,

(π2 ◦ π(0)
2 )−1(M2) = {(±e2,±e1), (±(e1 + e2),±e2), (±e1,±(e1 + e2)}

= Br2 ⋉ {±1}2(e2, e1),
(π2 ◦ π(0)

2 )−1(id) = {(±e1,±e1), (±e2,±e2), (±(e1 + e2),±(e1 + e2)}.
This gives equality in (3.3) in the case (k, x) = (0,−1).

(ii) Also in the cases (k = 0, x ≤ −2) a direct elementary proof of
equality in (3.3) is instructive. Equality in (3.3) for (k, x) = (0,−2)
and Theorem 6.8 (d) (iv) imply equality in (3.3) for (k = 0, x ≤ −3).
Therefore we restrict to the case (k, x) = (0,−2). Recall

Rad I(0) = Zf1 with f1 = e1 + e2.

By Theorem 6.8 (c)

∆(0) = (e1 + Zf1) ∪̇ (−e1 + Zf1) = (e1 + Zf1) ∪̇ (e2 + Zf1).
One easily sees for b1, b2 ∈ Z

s
(0)
e1+b1f1

s
(0)
e2+b2f1

= −M ⇐⇒ b1 + b2 = 0,

thus

{v ∈ (∆(0))2 | s(0)v1
s(0)v2

= −M} = {±(e1 + bf1),±(e2 − bf1) | b ∈ Z}.
This set is a single Br2 ⋉ {±1}2 orbit because of

δ2σ1(e1 + bf1, e2 − bf1) = (e1 + (b+ 1)f1, e2 − (b+ 1)f1). □

7.2. Distinguished bases in the even rank 3 cases

In the even cases with n = 3 we have complete results on the
question when the inclusion in (3.3) is an equality. It is one in all cases
except the case H1,2.

Theorem 7.3. Let (HZ, L, e) be a unimodular bilinear lattice of
rank 3 with a triangular basis e with matrix S = S(x) = L(et, e)t ∈
T uni
3 (Z).
(a) Suppose S /∈ (Br3 ⋉ {±1}3)(S(H1,2)). Then the inclusion in

(3.3) is an equality.
(b) Suppose S = S(H1,2) = S(−2, 2,−2). Recall the basis

(f1, f2, f3) = e

1 0 1
1 1 1
0 1 1

 of HZ with Rad I(1) = Zf1 ⊕ Zf2 and

Rad I(0) = Zf3. The set {v ∈ (∆(0))3 | (π3 ◦ π(0)
3 )(v) = −M} splits
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into countably many orbits. The following list gives one representative
for each orbit,

(f3 − g1,−f3 + g1 + g2, f3 − g2) with

(
g1
g2

)
=

(
0 c2
c1 c3

)(
f1
f2

)
,

c1 ∈ N odd, c2 ∈ Z odd, c3 ∈ {0, 1, ..., |c2| − 1}.
The sublattice ⟨f3 − g1,−f3 + g1 + g2, f3 − g2⟩ = ⟨f3, g1, g2⟩ ⊂ HZ has
finite index c1 · |c2| in HZ. It is HZ in the following two cases:

e = (f3 − f2,−f3 + f1 + f2, f3 − f1),
so (g1, g2, c1, c2, c3) = (f2, f1, 1, 1, 0),

(f3 + f2,−f3 + f1 − f2, f3 − f1),
so (g1, g2, c1, c2, c3) = (−f2, f1, 1,−1, 0)

(see also Example 3.23 (ii)) for the second case).

Proof: (a) We can replace e by an arbitrary element ẽ ∈ Bdist. By
Theorem 4.6 the following cases exhaust all Br3 ⋉ {±1}3 orbits except
that of H1,2:

(A) (HZ, L, e) is irreducible with x ∈ Z3
≤0.

(B) r(x) ≤ 0 and x ̸= (0, 0, 0).
(C) x = (x1, 0, 0) with x1 ∈ Z≤0, so (HZ, L, e) is reducible (this

includes the case A3
1).

(D) x = (−l, 2,−l) with l ≥ 3.

The cases (A): Γ(0) is a Coxeter group by Theorem 3.7 (a). Theorem
3.7 (b) applies.

The cases (B): By Theorem 6.11 (g) Γ(0) is a free Coxeter group

with generators s
(0)
e1 , s

(0)
e2 , s

(0)
e3 . Theorem 3.7 (b) or Example 3.23 (iv)

can be used.
The cases (C): Consider a triple v ∈ (∆(0))3 with s

(0)
v1 s

(0)
v2 s

(0)
v3 = −M .

The set ∆(0) splits into the subsets ∆(0)∩(Ze1+Ze2) and {±e3}. Com-

pare −M |Ze3 = − id |Ze3 with s
(0)
e3 |Ze3 = − id |Ze3 and s

(0)
a |Ze3 = id |Ze3

for a ∈ ∆(0) ∩ (Ze1 + Ze2). All three vi ∈ {±e3} is impossible because

(s
(0)
e3 )

3 ̸= −M . Therefore there are i, j, k with {i, j, k} = {1, 2, 3},
i < j, vi, vj ∈ ∆(0) ∩ (Ze1 + Ze2) and vk ∈ {±e3}. The reflection s

(0)
vk

acts trivially on Ze1 +Ze2 and commutes with s
(0)
vi and s

(0)
vj . Therefore

s(0)vi
s(0)vj

s(0)vk
= s(0)v1

s(0)v2
s(0)v3

= (π3 ◦ π(0
3 )(v) = −M = s(0)e1

s(0)e2
s(0)e3

,

so s(0)vi
s(0)vj

= s(0)e1
s(0)e2

.

The reflections s
(0)
vi , s

(0)
vj , s

(0)
e1 and s

(0)
e2 act trivially on Ze3. The inclusion

in (3.3) is an equality because of Theorem 7.1 (a) for the rank 2 cases.

205



The cases (D): The proof of these cases is prepared by Lemma 7.4
and Lemma 7.5. The proof comes after the proof of Lemma 7.5.

(b) The proof of part (b) is prepared by Lemma 7.6 and comes after
the proof of Lemma 7.6. (□)

The following lemma is related to t+λ in Lemma 6.17. Recall also

j(k) : HZ → H♯
Z, a 7→ I(k)(a, .), in Definition 6.1.

Lemma 7.4. Let (HZ, L) be a unimodular bilinear lattice of rank
n ∈ N. Fix k ∈ {0, 1}. Suppose Rad I(k) ̸= {0} and choose an element
f ∈ Rad I(k) − {0}. Denote

Hom0,f (HZ,Z) := {λ : HZ → Z |λ is Z-linear, λ(f) = 0},
tλ : HZ → HZ with tλ(a) = a+ λ(a)f for λ ∈ Hom0,f (HZ,Z).

Then tλ ∈ O(k),Rad
u . The map

Hom0,f (HZ,Z)→ O(k),Rad
u , λ 7→ tλ,

is an injective group homomorphism. For b ∈ R(k) (with R(1) = HZ,
see 3.9 (i)) and a ∈ Z

s
(k)
b+af = s

(k)
b ◦ t−aj(k)(b) = t(−1)kaj(k)(b) ◦ s

(k)
b ,

s
(k)
b ◦ tλ = tλ−(−1)kλ(b)j(k)(b) ◦ s

(k)
b .

Proof: The proof is straightforward. We skip the details. □

The following lemma studies the Hurwitz action of Br3 on triples
of reflections in GfCox,2. It is related to Theorem 3.2 (b).

Lemma 7.5. As in Definition 3.1, GfCox,2 denotes the free Coxeter
group with two generators z1 and z2, so generating relations are z21 =
z22 = 1.

(a) Its set of reflections is

∆(GfCox,2) =
2⋃

i=1

{wziw−1 |w ∈ GfCox,2} = {(z1z2)mz1 |m ∈ Z}.

The complement of this set is

GfCox,2 −∆(GfCox,2) = {(z1z2)m |m ∈ Z}.
∆(GfCox,2) respectively its complement consists of the elements which
can be written as words of odd respectively even length in z1 and z2.

(b) The set

{(w1, w2, w3) ∈ (∆(GfCox,2)3 |w1w2w3 = z1z2z1}
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is the disjoint union of the following Br3 orbits:⋃̇
m∈Z≥0

Br3
(
(z1z2z1, (z1z2)

1−mz1, (z1z2)
1−mz1)

)
.

Proof: (a) Clear.
(b) The map

{(w1, w2, w3) ∈ (∆(GfCox,2))3 |w1w2w3 = z1z2z1} → M2×1(Z),
(w1, w2, w3) 7→ (m1,m2)

t

with w1w2 = (z1z2)
m1 , w2w3 = (z1z2)

m2 ,

is a bijection because

z1z2z1 = (w1w2)w2(w2w3), so

w2 = (w1w2)
−1z1z2z1(w2w3)

−1,

w1 = (w1w2)w2,

w3 = w2(w2w3),

so a given column vector (m1,m2)
t has a unique preimage.

The Hurwitz action of Br3 on the set on the left hand side of the
bijection above translates as follows to an action on M2×1(Z).

σ1(w1, w2, w3) = (w1w2w1, w1, w3),

w1w2w1 · w1 = w1w2 = (z1z2)
m1 ,

w1w3 = (w1w2)(w2w3) = (z1z2)
m1+m2 ,

σ1

(
m1

m2

)
=

(
m1

m1 +m2

)
=

(
1 0
1 1

)(
m1

m2

)
,

σ2(w1, w2, w3) = (w1, w2w3w2, w2),

w1 · w2w3w2 = (w1w2)(w2w3)
−1 = (z1z2)

m1−m2 ,

w2w3w2 · w2 = w2w3 = (z1z2)
m2 ,

σ2

(
m1

m2

)
=

(
m1 −m2

m2

)
=

(
1 −1
0 1

)(
m1

m2

)
.

So Br3 acts as multiplication with matrices in SL2(Z) from the left on

M2×1(Z). Each orbit has a unique element of the shape

(
m
0

)
with

m ∈ Z≥0. This element corresponds to

(z1z2z1, (z1z2)
1−mz1, (z1z2)

1−mz1). □
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Proof of Theorem 7.3 (a) in the cases (D), x = (−l, 2,−l) with
l ≥ 3: Recall from Theorem 6.11 (f)

Rad I(0) = Zf1 with f1 = e1 − e3,

Γ(0)
s
∼= GfCox,2 with generators z1 = s

(0)
e1 = s

(0)
e3 , z2 = s

(0)
e2 .

Suppose v ∈ (∆(0))3 with s
(0)
v1 s

(0)
v2 s

(0)
v3 = −M . We want to show v ∈ Bdist

or equivalently (s
(0)
v1 , s

(0)
v2 , s

(0)
v3 ) ∈ R(0),dist.

First we look at the images in Γ
(0)
s : s

(0)
v1 s

(0)
v2 s

(0)
v3 = z1z2z1. Because

of Lemma 7.5 (b), we can make a suitable braid group action and then
suppose

(s
(0)
v1 , s

(0)
v2 , s

(0)
v3 ) = (z1z2z1, r, r) with r = (z1z2)

1−mz1 for some m ∈ Z≥0.

Write ẽ2 := s
(0)
e1 (e2) = e2 + le1 and observe

z1z2z1 = s
(0)
e1 s

(0)
e2 s

(0)
e3 = s

(0)
ẽ2
.

After possibly changing the signs of v1 and v3, s
(0)
v1 = s

(0)
ẽ2

and s
(0)
v2 =

r = s
(0)
v3 imply

v1 = ẽ2 + a1f1 and v3 = v2 + a2f1 for some a1, a2 ∈ Z.

With Lemma 7.4 and f1 = (f in Lemma 7.4) we calculate

−M = s(0)e1
s(0)e2

s(0)e3
= s(0)e1

s(0)e2
s
(0)
e1−f1

= s(0)e1
s(0)e2

s(0)e1
tj(0)(e1) = s

(0)
ẽ2
tj(0)(e1),

−M = s(0)v1
s(0)v2

s(0)v3
= s

(0)
ẽ2+a1f1

s(0)v2
s
(0)
v2+a2f1

= s
(0)
ẽ2
t−a1j(0)(ẽ2)s

(0)
v2
s(0)v2

t−a2j(0)(v2)

= s
(0)
ẽ2
t−a1j(0)(ẽ2)−a2j(0)(v2),

so

j(0)(e1) = −a1j(0)(ẽ2)− a2j(0)(v2).

Write

v2
(0) = b1e1

(0) + b2e2
(0) with b1, b2 ∈ Z.

By Theorem 6.14 (f) the tuple (HZ
(0)
, I

(0)
, (e1

(0), e2
(0))) is isomorphic

to the corresponding tuple from the 2 × 2 matrix S(−l) =
(
1 −l
0 1

)
.
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The set of roots of this tuple is called R(0)(S(−l)). It contains v2
(0),

e1
(0), e1

(0). By Theorem 6.8 (d)(i) the map

R(0)(S(−l)) → {units in Z[κ1] with norm 1} = {±κm1 |m ∈ Z}
y1e1

(0) + y2e2
(0) 7→ y1 − κ1y2,

is a bijection, where κ1 =
l
2
+ 1

2

√
l2 − 4. The norm of b1 − b2κ1 is

1 = b21 − lb1b2 + b22.

Now

(2,−l) = j(0)(e1)(e1, e2) = (−a1j(0)(ẽ2)− a2j(0)(v2))(e1, e2)
= −a1((−l, 2) + l(2,−l))− a2(b1(2,−l) + b2(−l, 2))
= (−a1l − a2b1)(2,−l) + (−a1 − a2b2)(−l, 2).

so

a1 = −a2b2, 1 = −a1l − a2b1 = a2(b2l − b1),
a2 = ±1 and b1 = −a2 + b2l.

Calculate

0 = −1 + b21 − lb1b2 + b22 = −1 + (−a2 + b2l)(−a2) + b22
= b2(b2 − a2l).

We obtain the four solutions

(a1, a2, b1, b2) ∈ {(0, 1,−1, 0), (0,−1, 1, 0),
(−l, 1, l2 − 1, l), (−l,−1, 1− l2,−l)}.

In the case of the third solution

v2
(0) = (l2 − 1)e1

(0) + le2
(0) = s

(0)
e1 s

(0)
e2 (e1),

r = s
(0)
v2 = s

(0)

s
(0)
e1

s
(0)
e2

(e1)
= s

(0)
e1 s

(0)
e2 s

(0)
e1 s

(0)
e2 s

(0)
e1

= (z1z2)
2z1 = (z1z2)

1−mz1 with m = −1.
As m = −1 is not in the set Z≥0, we can discard the third solution.
In fact, (z1z2z1, (z1z2)

2z1, (z1z2)
2z1) is in the Br3 orbit of (z1z2z1, z1, z1)

because

(
−1
0

)
is in the SL2(Z) orbit of

(
1
0

)
. We can discard also the

fourth solution because its vector v2
(0) differs from the vector v2

(0) in
the third solution only by the sign.

Also the vector v2
(0) in the first solution differs from the vector v2

(0)

in the second solution only by the sign.
The second solution gives v2

(0) = e1
(0) and thus for some b3 ∈ Z

v = (ẽ2, e1 + b3f1, e1 + b3f1 − f1) = (ẽ2, e1 + b3f1, e3 + b3f1).
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The observation

δ2σ2(v) = δ2(ẽ2, e3 + b3f1 − 2(e1 + b3f1), e1 + b3f1)

= (ẽ2, e1 + (b3 + 1)f1, e3 + (b3 + 1)f1)

shows v ∈ Br3 ⋉ {±1}3(ẽ2, e1, e3). This orbit is Bdist because
(ẽ2, e1, e3) = σ1(e). □

Lemma 7.6 states some facts which arise in the proof of part (b) of
Theorem 7.3 and which are worth to be formulated explicitly.

Lemma 7.6. Let (HZ, L, e) be the unimodular bilinear lattice of rank
3 with triangular basis e with matrix S = S(H1,2) = S(−2, 2,−2) =
L(et, e)t. Recall Rad I(0) = Zf1 +Zf2 and R(0) = ±f3 +Rad I(0) (The-
orem 6.14 (f)).

(a) For g1, g2, g3 ∈ Rad I(0)

s
(0)
f3−g1

s
(0)
f3−g2

s
(0)
f3−g3

= −M ⇐⇒ g2 = g1 + g3.

(b) The map

Φ :M2×2(Z) → {v ∈ (R(0))3 | (π3 ◦ π(0)
3 )(v) = −M}/{±1}3,

A 7→ (f3 − g1, f3 − g1 − g3, f3 − g3)/{±1}3

with

(
g1
g3

)
= A

(
f1
f2

)
,

is a bijection. The action of Br3 on the right hand side translates to
the following action on the left hand side,

σ1(A) =

(
1 −1
0 1

)
A, σ2(A) =

(
1 0
1 1

)
A.

(c) v ∈ (R(0))3 with (π3 ◦ π(0)
3 )(v) = −M satisfies either (i) or (ii):

(i) There exists a permutation σ ∈ S3 with vi ∈ Γ(0){eσ(i)} for
i ∈ {1, 2, 3}.
(ii) Either v1, v2, v3 ∈ Γ(0){f3} or there exists a permutation
σ ∈ S3 and an l ∈ {1, 2, 3} with vσ(1) ∈ Γ(0){f3} and

vσ(2), vσ(3) ∈ Γ(0){el}.
(i) holds if and only if Φ−1(v/{±1}3) has an odd determinant.

(d) Let SL2(Z) act by multiplication from the left on {A ∈
M2×2(Z) | detA is odd}. Each orbit has a unique representative of the
shape(

0 c2
c1 c3

)
with c1 ∈ N odd, c2 ∈ Z odd, c3 ∈ {0, 1, ..., |c2| − 1}.
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Proof: (a) For g1, g2, g3 ∈ Rad I(0)

s
(0)
f3−g1
|Rad I(0) = id, s

(0)
f3−g1

(f3 + g2) = −(f3 − g2 − 2g1),

s
(0)
f3−g1

s
(0)
f3−g2

s
(0)
f3−g3

(f3) = −f3 + 2(g1 − g2 + g3).

Compare −M |Rad I(0) = id, −M(f3) = −f3.
(b) Φ is a bijection because of R(0) = ±f3 + Rad I(0) and part (a).

The action of Br3 on the right hand side translates to the claimed
action on the left hand side because of the following,

δ1σ1(f3 − g1, f3 − g1 − g3, f3 − g3) = (f3 − g1 + g3, f3 − g1, f3 − g3),(
g1 − g3
g3

)
=

(
1 −1
0 1

)(
g1
g3

)
,

δ2σ2(f3 − g1, f3 − g1 − g3, f3 − g3) = (f3 − g1, f3 − 2g1 − g3, f3 − g1 − g3),(
g1

g1 + g3

)
=

(
1 0
1 1

)(
g1
g3

)
.

(c) Recall that by Theorem 6.14 (e)

Γ(0){ei} = ±ei + 2Rad I(0), Γ(0){f3} = ±f3 + 2Rad I(0),

(e1, e2, e3) = (f3 − f2,−f3 + f1 + f2, f3 − f1),
∆(0) = Γ(0){e1} ∪̇ Γ(0){e2} ∪̇ Γ(0){e3}, R(0) = ∆(0) ∪̇ Γ(0){f3}.

Observe that g1, g2, g3 ∈ Rad I(0) with g2 = g1 + g3 satisfy either (i)’ or
(ii)’,

(i)’ g1, g2, g3 /∈ 2Rad I(0),
(ii)’ There exists a permutation σ ∈ S3 with gσ(1) ∈ 2Rad I(0) and

gσ(2) − gσ(3) ∈ 2Rad I(0).

v = (f3 − g1, f3 − g2, f3 − g3) satisfies (i) if (i)’ holds, and it satisfies

(ii) if (ii)’ holds. If

(
g1
g2

)
= A

(
f1
f2

)
then (i)’ holds if and only if detA

is odd.
(d) This is elementary. We skip the details. □

Proof of Theorem 7.3 (b): v ∈ (∆(0))3 with (π3 ◦ π(0)
3 )(v) =

−M satisfies property (i) in Lemma 7.6 (c) because it does not satisfy
property (ii) in Lemma 7.6 (c). The parts (b) and (d) of Lemma 7.6

show that the set (∆(0))3 ∩ (π3 ◦ π(0)
3 )−1(−M) consists of countably

many orbits. The parts (b) and (d) of Lemma 7.6 also give the claimed
representative in each orbit. The rest is obvious. □
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7.3. Distinguished bases in the odd rank 3 cases

Also in the odd cases with n = 3 we have complete results on the
question when the inclusion (3.4) is an equality. It is one if and only if
x ∈ B1 ∪B2 where

B1 = {x ∈ Z3 − {(0, 0, 0)} |
((Gphi ⋉ G̃sign)⋊ ⟨γ⟩)(x) ∩ r−1(Z≤0) ̸= ∅},

B2 = {x ∈ Z3 − {(0, 0, 0)} |S(x) is reducible, i.e. there are i, j, k

with {i, j, k} = {1, 2, 3} and xi ̸= 0 = xj = xk},
B3 := {(0, 0, 0)},

B4 := {x ∈ Z3 |S(x) ∈ (Br3 ⋉ {±1}3)
(
{S(A3), S(Â2), S(H1,2)}

∪{S(−l, 2,−l) | l ≥ 3}
)
},

B5 := Z3 − (B1 ∪B2 ∪B3 ∪B4).

B2 is the set of x ̸= (0, 0, 0) which give reducible cases. B1 contains
r−1(Z≤0)− {(0, 0, 0)}, but is bigger. x ∈ B1 if and only if the (Gphi ⋉
G̃sign) ⋊ ⟨γ⟩ orbit of x contains a triple x̃ ∈ Z3 as in Lemma 4.18 (a),
so with x̃ ∈ Z3

≥3 and 2x̃i ≤ x̃jx̃k for {i, j, k} = {1, 2, 3}. The Examples
4.20 show that it is not so easy to describe B1 more explicitly.

In Theorem 7.7 we show B4 ⊂ Z3− (B1∪B2∪B3). For x ∈ B3∪B4

the inclusion in (3.4) is not an equality, but we can add the constraint∑3
i=1 Zvi = HZ to (3.4) and obtain an equality. For x ∈ B5 we do

not know whether (3.4) with the additional constraint
∑3

i=1 Zvi = HZ
becomes an equality.

Theorem 7.7. Let (HZ, L, e) be a unimodular bilinear lattice of
rank 3 with a triangular basis e with matrix L(et, e)t = S(x) ∈ T uni

3 (Z)
for some x ∈ Z3.

(a) (HZ, L, e) is reducible if and only if x ∈ B2 ∪ B3. Then Γ
(1)
u =

{id}.
(b) The following conditions are equivalent:

(i) x ∈ B1.
(ii) Γ(1) ∼= Gfree,3.

(iii) (HZ, L, e) is irreducible and Γ
(1)
u = {id}.

(c) Z3 =
⋃̇

i∈{1,2,3,4,5}Bi.

(d) The inclusion in (3.4) is an equality ⇐⇒ x ∈ B1 ∪B2.

(e) Consider x = (0, 0, 0). The set {v ∈ (∆(1))3 | (π3◦π(1)
3 )(v) =M}

is (∆(1))3. It consists of ten Br3 ⋉ {±1}3 orbits, the orbit Bdist of

212



e = (e1, e2, e3) and the orbits of the nine triples

(e1, e1, e1), (e1, e1, e2), (e1, e2, e2), (e2, e2, e2),

(e1, e1, e3), (e1, e3, e3), (e3, e3, e3), (e2, e2, e3), (e2, e3, e3).

(f) Consider x ∈ B4 ∪B5. Then Γ
(1)
u
∼= Z2. The map

Ψ : {v ∈ (∆(1))3 | (π3 ◦ π(1)
3 )(v) =M} → N ∪ {∞},

v 7→
(
index of

3∑
i=1

Zvi in HZ

)
,

has infinitely many values. The set {v ∈ (∆(1))3 | (π3 ◦ π(1)
3 )(v) = M}

contains besides Bdist infinitely many Br3 ⋉ {±1}3 orbits.
(g) For x ∈ B3 ∪B4

Bdist = {v ∈ (∆(1))3 | (π3 ◦ π(1)
3 )(v) =M,

3∑
i=1

Zvi = HZ}.

Proof: (a) Compare Definition 2.10 in the case n = 3. For Γ
(1)
u =

{id} see Theorem 6.18 (b).
(b) By the Remarks 4.17 the tuple (HZ,±I(1),Γ(1),∆(1)) depends

up to isomorphism only on the (Gphi ⋉ G̃sign)⋊ ⟨γ⟩ orbit of x. Lemma
4.18 gives representatives of each such orbit. Theorem 6.18 studies
their groups Γ(1). Theorem 6.18 (b) treats x ∈ B2 ∪B3. Theorem 6.18
(g) treats x ∈ B1. Theorem 6.18 (c)–(f) treats x ∈ Z3− (B1∪B2∪B3).

One sees

Γ(1) ∼= Gfree,3 ⇐⇒ x ∈ B1,

Γ(1)
u = {id} ⇐⇒ x ∈ B1 ∪B2 ∪B3,

Γ(1)
u
∼= Z2 ⇐⇒ x ∈ Z3 − (B1 ∪B2 ∪B3).

(c) B1 ∩B2 = ∅, B2 ∩B4 = ∅ and (0, 0, 0) /∈ B1 ∪B2 ∪B4 are clear.
B1 ∩B4 = ∅ follows from Γ(1)(x) ̸∼= Gfree,3 for x ∈ B4.

(d) The parts (e) and (f) will give =⇒. Here we show ⇐=, first for
x ∈ B1, then for x ∈ B2.

Let x ∈ B1. Then by the Remarks 4.17 and Theorem 6.18 (g) Γ(1)

is a free group with generators s
(1)
e1 , s

(1)
e2 and s

(1)
e3 . Example 3.23 (iv)

applies.

Let x ∈ B2. Because of the actions of γ and G̃sign (here Gsign is
sufficient) on B2 we can suppose x = (x1, 0, 0) with x1 ∈ Z<0. Then

e3 ∈ Rad I(1), s
(1)
e3 = id, Γ(1) = ⟨s(1)e1 , s

(1)
e2 ⟩ and by Theorem 6.21 (b)

∆(1) = ∆(1) ∩ (Ze1 + Ze2) ∪ {±e3}. The monodromy M has the
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characteristic polynomial (t − 1)(t2 − (2 − r(x))t + 1) = (t − 1)(t2 −
(2− x21)t+ 1), so three different eigenvalues.

Consider v ∈ (∆(1))3 with s
(1)
v1 ◦ s

(1)
v2 ◦ s

(1)
v3 = M . Now v1, v2, v3 ∈

{±e3} is impossible because M ̸= id. Two of v1, v2, v3 in {±e3} cannot
be because then M would have the eigenvalue 1 with multiplicity 3.

Claim: All three v1, v2, v3 ∈ ∆(1) ∩ (Ze1 + Ze2) is impossible.

Proof of the Claim: Suppose v1, v2, v3 ∈ ∆(1)∩ (Ze1+Ze2). First
we consider a case with x1 ≤ −2. By Theorem 6.18 (b) and Theorem

6.10 (c)+(d) Γ(1) ∼= Gfree,2 with generators s
(1)
e1 and s

(1)
e2 . There is a

unique group homomorphism

Γ(1) → {±1} with s(1)e1
7→ −1, s(1)e2

7→ −1.

Each s
(1)
vi is conjugate to s

(1)
e1 or s

(1)
e2 and thus has image −1. Also their

product s
(1)
v1 ◦ s

(1)
v2 ◦ s

(1)
v3 has image −1. But M = s

(1)
e1 ◦ s

(1)
e2 has image 1,

a contradiction.
Now consider the case x1 = −1. By Theorem 6.18 (b) and Theorem

6.10 (a)+(b) Γ(1) ∼= SL2(Z) with s(1)e1 ∼
(
1 1
0 1

)
and s

(1)
e2 ∼

(
1 0
−1 1

)
.

It is well known that the group SL2(Z) is isomorphic to the group with
the presentation

⟨x1, x2 |x1x2x1 = x2x1x2, 1 = (x1x2)
6⟩

where x1 7→
(
1 1
0 1

)
and x2 7→

(
1 0
−1 1

)
. The differences of the lengths

of the words in x±1
1 and x±1

2 which are connected by these relations are
3 − 3 and 12 − 0, so even. Therefore also in this situation there is a
unique group homomorphism

Γ(1) → {±1} with s(1)e1
→ −1, s(1)e2

→ −1.

The argument in the case Γ(1) ∼= Gfree,2 goes here through, too. The
Claim is proved. (□)

Therefore a permutation σ ∈ S3 with vσ(1), vσ(2) ∈ ∆(1)∩(Ze1+Ze2),
σ(1) < σ(2) and vσ(3) ∈ {±e3} exists. Then s(1)vσ(3) = id and

s(1)e1
s(1)e2

=M = s(1)v1
s(1)v2

s(1)v3
= s(1)vσ(1)

s(1)vσ(2)
.

Because of Theorem 7.1 (vσ(1), vσ(2)) is in the Br2 ⋉ {±1}2 orbit of
(e1, e2). Therefore v is in (Br3 ⋉ {±1}3)(e) = Bdist.

(e) See the Examples 3.23 (iii).

(f) Γ
(1)
u
∼= Z2 for x ∈ B4 ∪ B5 follows from Theorem 6.21 (c)–(f),

the Remarks 4.17, Lemma 4.18 and the definition of B4 and B5. The
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last statement in (f) follows from the middle statement because the
sublattice

∑3
i=1 Zvi ⊂ HZ and its index in HZ are invariants of the

Br3 ⋉ {±1}3 orbit of v.
For the middle statement we consider

v = (e1 + a(−x̃3)f3, e2 + a(x̃2 − x̃1x3)f3, e3 + a(−x̃1)f3) with a ∈ Z.

The next Lemma 7.8 implies

(π3 ◦ π(1)
3 )(v) = M,(

index of
3∑

i=1

Zvi in HZ

)
=

∣∣∣∣1 + a
r(x)

gcd(x1, x2, x3)2

∣∣∣∣
and that for a suitable a0 ∈ N and any a ∈ Za0 v ∈ (∆(1))3. As
r(x) ̸= 0 for x ∈ B4 ∪ B5, this shows that the map Ψ has countably
many values.

(g) Part (g) will be prepared by Lemma 7.10 and will be proved
after the proof of Lemma 7.10. □

Lemma 7.8. Let (HZ, L, e) be a unimodular bilinear lattice of rank
3 with a triangular basis e with matrix L(et, e)t = S(x) for some x ∈
Z3 − {(0, 0, 0)}. Recall Rad I(1) = Zf3 with f3 = −x̃3e1 + x̃2e2 − x̃1e3
and (x̃1, x̃2, x̃3) = gcd(x1, x2, x3)

−1(x1, x2, x3).
(a) For a = (a1, a2, a3) ∈ Z3

s
(1)
e1+a1f3

◦ s(1)e2+a2f3
◦ s(1)e3+a3f3

=M

⇐⇒ (a1, a2, a3) ∈ Z(−x̃3, x̃2 − x̃1x3,−x̃1).

(b) For a = (a1, a2, a3) = a(−x̃3, x̃2 − x̃1x3,−x̃1) with a ∈ Z, the
index of

∑3
i=1 Z(ei + aif3) in HZ is |1 + a r(x)

gcd(x1,x2,x3)2
|.

(c) If Γ
(1)
u
∼= Z2 then there is a number a0 ∈ N with

(e1 + a(−x̃3)f3, e2 + a(x̃2 − x̃1x3)f3, e3 + a(−x̃1)f3) ∈ (∆(1))3 for a ∈ Za0.

Proof: (a) With Lemma 7.4 and f3 = (f in Lemma 7.4) one cal-
culates

s
(1)
e1+a1f3

◦ s(1)e2+a2f3
◦ s(1)e3+a3f3

◦M−1

= t−a1j(1)(e1) ◦ s
(1)
e1
◦ t−a2j(1)(e2) ◦ s

(1)
e2
◦ t−a3j(1)(e3) ◦ s

(1)
e3
◦M−1

= t−a1j(1)(e1) ◦ t−a2j(1)(e2)−a2j(1)(e2)(e1)j(1)(e1) ◦ s
(1)
e1

◦ t−a3j(1)(e3)−a3j(1)(e3)(e2)j(1)(e2) ◦ s
(1)
e2
◦ s(1)e3

◦M−1

= t−A
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with

A = a1j
(1)(e1) + a2j

(1)(e2) + a2I
(1)(e2, e1)j

(1)(e1)

+a3j
(1)(e3) + a3I

(1)(e3, e2)j
(1)(e2) + a3I

(1)(e3, e1)j
(1)(e1)

+a3I
(1)(e3, e2)I

(1)(e2, e1)j
(1)(e1)

= j(1)
(
(a1 − a2x1 − a3x2 + a3x1x3)e1 + (a2 − a3x3)e2 + a3e3

)
.

t−A = id holds if and only if A = 0, so if and only if

(a1 − a2x1 − a3x2 + a3x1x3)e1 + (a2 − a3x3)e2 + a3e3 ∈ Rad I(1) = Zf3.

The ansatz that it is af3 = a(−x̃3e1 + x̃2e2 − x̃1e3) with a ∈ Z gives

−ax̃1 = a3, ax̃2 = a2 − a3x3, −ax̃3 = a1 − a2x1 − a3x2 + a3x1x3,

so (a1, a2, a3) = a(−x̃3, x̃2 − x̃1x3,−x̃1).
(b) Write a = ã gcd(x1, x2, x3)(−x3, x2 − x1x3,−x1) with ã =

gcd(x1, x2, x3)
−2a ∈ gcd(x1, x2, x3)

−2Z. Then

(e1 + a1f3, e2 + a2f3, e3 + a3f3)

= e

1 + ã(−x3)(−x3) ã(x2 − x1x3)(−x3) ã(−x1)(−x3)
ã(−x3)x2 1 + ã(x2 − x1x3)x2 ã(−x1)x2

ã(−x3)(−x1) ã(x2 − x1x3)(−x1) 1 + ã(−x1)(−x1)

 .

The determinant of this matrix is 1 + ãr(x). The index of the lattice∑3
i=1 Z(ei + aif3) in HZ is the absolute value of this determinant.

(c) Suppose Γ
(1)
u
∼= Z2. Compare Lemma 6.17. The set

Λ := {λ ∈ Hom0(HZ,Z) | t+λ ∈ Γ(1)
u }

is a sublattice of rank 2 in the lattice Hom0(HZ,Z) of rank 2. For
i ∈ {1, 2, 3}

Γ(1)
u {ei} = {ei + λ(ei)f3 |λ ∈ Λ} ⊂ (ei + Zf3) ∩∆(1).

The triple (HZ, L, e) is irreducible because of Γ
(1)
u
∼= Z2 and Theorem

7.7 (a). Therefore it is not reducible with a summand of type A1, and
thus {e1, e2, e3}∩Rad I(1) = ∅. Because of this and because Λ has finite
index in Hom0(HZ,Z), there is a number bi ∈ N with

Zbi = {b ∈ Z | ei + bf3 ∈ Γ(1)
u {ei}}.

For each a = (a1, a2, a3) with ai ∈ Zbi ei + aif3 ∈ ∆(1). Any number
a0 ∈ N (for example the smallest one) with

a0x̃3 ∈ Zb1, a0(x̃2 − x̃1x3) ∈ Zb2, a0x̃1 ∈ Zb3
works. □
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Remarks 7.9. If x ∈ B1 ∪ B2 then the map ∆(1) → ∆(1) is a
bijection by Theorem 6.18 (b)+(g). Therefore then

v = (e1 + a(−x̃3)f3, e2 + a(x̃2 − x̃1x3)f3, e3 + a(−x̃1)f3) ∈ H3
Z

for a ∈ Z− {0} satisfies (π3 ◦ π(1)
3 )(v) = M , but v /∈ (∆(1))3. This fits

to Theorem 7.7 (d).

Lemma 7.10. The Br3 ⋉ {±1}3 orbits in r−1(4) ⊂ Z3 are clas-
sified in Theorem 4.6 (e). They are separated by the isomorphism

classes of the pairs (HZ
(1)
,M) for corresponding unimodular bilin-

ear lattices (HZ, L, e) with triangular bases e with L(et, e)t = S(x)

and r(x) = 4. More precisely, HZ
(1)

has a Z-basis (c1, c2) with

M(c1, c2) = (c1, c2)

(
−1 γ
0 −1

)
with a unique γ ∈ Z≥0, which is as

follows:

S(x) S(H1,2) S(P1A1) S(Â2) S(−l, 2,−l) S(−l, 2,−l)
with l ≡ 0(2) with l ≡ 1(2)

γ 0 2 3 l2

2
− 2 l2 − 4

The numbers γ in this table are pairwise different.

Proof: S(H1,2): See Theorem 5.14 (a) (i).

S(P1A1): By Theorem 5.13 (HZ
(1)
,M) ∼= (HZ,1,M1) which comes

from S(P1) =

(
1 −2
0 1

)
with S(P1)−1S(P1)t =

(
−3 2
−2 1

)
. This mon-

odromy matrix is conjugate to

(
−1 2
0 −1

)
with respect to GL2(Z).

S(Â2): Compare Theorem 5.14 (b) (iii) and its proof:

f3 = e1 − e2 + e3,

HZ
(1)

= Ze1(1) + Ze2(1),

Me = e

−2 −1 2
−2 0 1
−1 −1 1

 ,

M(e1
(1), e2

(1)) = (e1
(1), e2

(1))

(
−1 0
−3 −1

)
.

This monodromy matrix is conjugate to

(
−1 3
0 −1

)
with respect to

GL2(Z).
S(−l, 2,−l) with l ≥ 4, l ≡ 0(2): See Theorem 5.14 (a) (ii). Here

(HZ
(1)
,M) ∼= (HZ,1,M1).
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S(−l, 2,−l) with l ≥ 3, l ≡ 1(2): Compare Theorem 5.14 (b) (iv)
and its proof. Define elements a1, a2 ∈ HZ,

a1 :=
l + 1

2
e1 + e2 +

l + 1

2
e3 =

1

2
f1 +

1

2
f3,

a2 := −e1 =
1

2
f̃2 −

l2

4
f1 −

l

4
f3.

The triple (a1, a2, f3) is a Z-basis of HZ. The equality in the proof of
Theorem 5.14 (b) (iv),

M(f1, f̃2) = (f1, f̃2)

(
−1 l2 − 4
0 −1

)
,

implies

M(a1
(1), a2

(1)) = (a2
(1), a2

(1))

(
−1 l2 − 4
0 −1

)
. □

Proof of Theorem 7.7 (g): The case (0, 0, 0) is treated first and
separately. Compare part (e). Of the ten triples listed there, only the
triple v = (e1, e2, e3) satisfies

∑3
i=1 Zvi = HZ. This shows part (g) in

the case x = (0, 0, 0).
Now consider x ∈ B4. We can suppose

x ∈ {(−1, 0,−1), (−1,−1,−1), (−2, 2,−2)} ∪ {(−l, 2,−l) | l ≥ 3},

which are the cases S(x) ∈ {S(A3), S(Â2), S(H1,2)}∪{S(−l, 2,−l) | l ≥
3}. Consider v ∈ (∆(1))3 with (π3 ◦ π(1)

3 )(v) = M and v a Z-basis of
HZ. We want to show v ∈ Bdist. We have

I(1)(vt, v) =

 0 y1 y2
−y1 0 y3
−y2 −y3 0

 = S(y)− S(y)t for some y ∈ Z3.

Define a new Seifert form L̃ : HZ ×HZ → Z by L̃(vt, v)t = S(y) (only

at the end of the proof it will turn out that L̃ = L). Then

L̃t − L̃ = I(1) = Lt − L.
v is a triangular basis with respect to (HZ, L̃). By Theorem 2.7 for

(HZ, L̃) (alternatively, one can calculate the product of the matrices of

s
(1)
v1 , s

(1)
v2 and s

(1)
v3 with respect to v)

Mv = (π3 ◦ π(1)
3 )(v) = (s(1)v1

◦ s(1)v2
◦ s(1)v3

)(v) = vS(y)−1S(y)t.

Then

3− r(x) = tr(M) = tr(S(y)−1S(y)t) = 3− r(y),
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so r(x) = r(y). In the case of A3, r
−1(2) is a unique Br3⋉{±1}3 orbit.

In the cases of Â2, H1,2 and x ∈ {(−l, 2,−l) | l ≥ 3}, Lemma 7.10 and
Mv = vS(y)−1S(y)t show that y is in the same Br3⋉{±1}3 orbit as x.
Therefore in any case there is an element of Br3 ⋉ {±1}3 which maps
v to a Z-basis w of HZ with

L̃(wt, w)t = S(x).

Then

I(1)(wt, w) = S(x)− S(x)t = I(1)(et, e).

Define an automorphism g ∈ O(1) by g(e) = w. Because of

M = s(1)v1
s(1)v2

s(1)v2
= s(1)w1

s(1)w2
s(1)w3

= s
(1)
g(e1)

s
(1)
g(e2)

s
(1)
g(e3)

= gs(1)e1
s(1)e2

s(1)e3
g−1 = gMg−1

g is in G
(1)
Z . But for the considered cases of x

G
(1)
Z

Theorem 5.14
= GZ

Theorem 3.28
= Z(Br3 ⋉ {±1}3).

Therefore there is an element of Br3 ⋉ {±1}3 which maps e to w.
Altogether v ∈ Br3 ⋉ {±1}3(e) = Bdist. (Now also L(vt, v)t ∈ T uni

3 (Z)
and thus L = L̃ are clear.) □

7.4. The stabilizers of distinguished bases in the rank 3 cases

Let (HZ, L, e) be a unimodular bilinear lattice of rank 3 with a
triangular basis e with L(et, e)t = S(x) ∈ T uni

3 (Z) for some x ∈ Z3. We
are interested in the stabilizer (Br3)e/{±1}3 . The surjective map

Bdist = (Br3 ⋉ {±1}3)(e) → (Br3 ⋉ {±1}3)(x)
ẽ 7→ x̃ with L(ẽt, ẽ)t = S(x̃),

is Br3 ⋉ {±1}3 equivariant. By Theorem 4.13 (a)

Z3 =
⋃̇

x∈
⋃24

i=1 Ci

(Br3 ⋉ {±1}3)(x).

Therefore we can and will restrict to x ∈
⋃24

i=1Ci.
The stabilizer (Br3)e/{±1}3 is by Lemma 3.25 (e) the kernel of the

group antihomomorphism

Z : (Br3)x/{±1}3 → GB
Z/Z(({±1}3)x).

Here this simplifies to

Z : (Br3)x/{±1}3 → GZ/Z(({±1}3)x)
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because GB
Z = GZ in the reducible cases (and also in most irreducible

cases) and Z(({±1}3)x) = {± id}, which is a normal subgroup of GZ,
in the irreducible cases by Lemma 3.25 (f).

Theorem 4.16 gives the stabilizer (Br3)x/{±1}3 in all cases. The
following Theorem 7.11 gives the stabilizer (Br3)e/{±1}3 in all cases.

Theorem 7.11. Consider a local minimum x ∈ Ci ⊂ Z3 for some
i ∈ {1, ..., 24} and the pseudo-graph Gj with Gj = G(x). In the follow-
ing table, the entry in the fourth column and in the line of Ci is the
stabilizer (Br3)e/{±1}3. The first, second and third column are copied
from the table in Theorem 4.13.

sets (Br3)x/{±1}3 (Br3)e/{±1}3

G1 C1 (A3
1) Br3 Brpure3

G1 C2 (H1,2) Br3 ⟨(σmon)2⟩
G2 C3 (A2A1) ⟨σ1, σ2

2⟩ ⟨σ2
2, (σ

mon)−1σ2
1, σ

monσ1⟩
= ⟨σ2

2, σ1σ
2
2σ

−1
1 , σ3

1⟩
G2 C4 (P1A1), C5 ⟨σ1, σ2

2⟩ ⟨σ2
2, (σ

mon)−1σ2
1⟩

= ⟨σ2
2, σ1σ

2
2σ

−1
1 ⟩

G3 C6 (A3) ⟨σ1σ2, σ3
1⟩ ⟨(σ1σ2)4, σ3

1⟩
G4 C7 (Â2) ⟨σ2σ1, σ3

1⟩ ⟨σ3
1, σ

3
2, σ2σ

3
1σ

−1
2 ⟩

G5 C8, C9 ((−l, 2,−l)) ⟨σmon, σ−1
1 σ−1

2 σ1⟩ ⟨(σmon)2σ−1
1 σl2−4

2 σ1⟩
G6 C10 (P2), C11, C12 ⟨σ2σ1⟩ ⟨id⟩
G7 C13 (e.g. (4, 4, 8)) ⟨σ2σ2

1⟩ ⟨id⟩
G8 C14 (e.g. (3, 4, 6)) ⟨σmon⟩ ⟨id⟩
G9 C15, C16, C23, C24 ⟨σmon⟩ ⟨id⟩
G10 C17 (e.g. (−2,−2, 0)) ⟨σmon, σ2⟩ ⟨σ2

2⟩
G11 C18 (e.g. (−3,−2, 0)) ⟨σmon, σ2

2⟩ ⟨σ2
2⟩

G12 C19 (e.g. (−2,−1, 0)) ⟨σmon, σ2
2, σ2σ

3
1σ

−1
2 ⟩ ⟨σ2

2, σ2σ
3
1σ

−1
2 ⟩

G13 C20 (e.g. (−2,−1,−1)) ⟨σmon, σ3
2, σ2σ

3
1σ

−1
2 ⟩ ⟨σ3

2, σ2σ
3
1σ

−1
2 ⟩

G14 C21, C22 ⟨σmon, σ3
2⟩ ⟨σ3

2⟩
Proof: The reducible case G1&C1 (A

3
1): Here x = (0, 0, 0) and

(Br3)x/{±1}3 = Br3.

Bdist = {(ε1eσ(1), ε2eσ(2), ε3eσ(3)) | ε1, ε2, ε3 ∈ {±1}, σ ∈ S3},
and Br3 acts by permutation of the entries of triples on Bdist. Therefore
(Br3)e/{±1}3 is the kernel of the natural group homomorphism Br3 →
S3, so it is the subgroup Brpure3 of pure braids.

The case G1&C2 (H1,2): Here x = (2, 2, 2) ∼ (−2, 2,−2) and
(Br3)x/{±1}3 = Br3. Recall the case H1,2 in the proof of Theorem 5.14,

recall the Z-basis f̃ of HZ = HZ,1 ⊕HZ,2, and recall

GZ = {g ∈ Aut(HZ, 1) | det g = 1} × Aut(HZ,2) ∼= SL2(Z)× {±1}.
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We found in the proof of Theorem 5.14 (c)

Z(δ2σ1) = (f̃ 7→ f̃

1 −1 0
0 1 0
0 0 1

), Z(δ3σ2) = (f̃ 7→ f̃

1 0 0
1 1 0
0 0 1

).

The group antihomomorphism Z : (Br3)x/{±1}3 = Br3 → GZ/{± id} ∼=
SL2(Z) is surjective with Z(σ1) ≡ A1 and Z(σ2) ≡ A2. It almost
coincides with the group homomorphism Br3 → SL2(Z) in Remark
4.15 (i). It has the same kernel ⟨(σmon)2⟩.

The reducible cases G2&C3 (A2A1), C4 (P1A1), C5: Here x =
(x1, 0, 0) with x1 ≤ −1 and (Br3)x/{±1}3 = ⟨σ1, σ2

2⟩. The quotient
group (Br3)x/{±1}3/(Br3)e/{±1}3 is by Theorem 3.28 (c) and Lemma
3.25 (e) isomorphic to the quotient group GZ/Z(({±1}3)x). Here
Z((±1}3)x) = ⟨(−1,−1,−1), (−1,−1, 1)⟩ with

Z((−1,−1,−1)) = − id,

Z((−1,−1, 1)) = (e 7→ (−e1,−e2, e3)) = Q.

Define

M root := Z(δ2σ1) = (e 7→ e

−x1 −1 0
1 0 0
0 0 1

),

and recall from Theorem 5.13 and Theorem 5.5

GZ = {±(M root)l | l ∈ Z} × {id, Q}.

Therefore

(Br3)x/{±1}3/(Br3)e/{±1}3 ∼= GZ/Z(({±1}3)x) ∼= {(M root)l | l ∈ Z}.

In the case C3 (A2A1) x1 = −1 and M root has order three, so the
quotient group (Br3)x/{±1}3/(Br3)e/{±1}3 is cyclic of order three with
generator the class [σ1] of σ1. In the cases C4 and C5 x1 ≤ −2 and
M root has infinite order, so the quotient group (Br3)x/{±1}3/(Br3)e/{±1}3

is cyclic of infinite order with generator the class [σ1] of σ1.
The cases C4 (P1A1), C5: Theorem 7.1 (b) can be applied to the

subbasis (e2, e3) with x3 = 0. It shows σ2
2 ∈ (Br3)e/{±1}3 . Therefore

(Br3)e/{±1}3 contains the normal closure of σ2
2 in (Br3)x/{±1}3 = ⟨σ1, σ2

2⟩.
This normal subgroup is obviously

⟨σl
1σ

2
2σ

−l
1 | l ∈ Z⟩.

It can also be written with two generators, namely it is

⟨σ2
2, σ1σ

2
2σ

−1
1 ⟩ = ⟨σ2

2, (σ
mon)−1σ2

1⟩.
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The equality of left and right side follows from

σ2
2 · σ1σ2

2σ
−1
1 = σ2

2σ1σ
2
2σ1 · σ−2

1 = σmonσ−2
1 .

The equality of this group with ⟨σl
1σ

2
2σ

−l
1 | l ∈ Z⟩ follows from

the fact that σmon is in the center of Br3. The quotient group
⟨σ1, σ2

2⟩/⟨σl
1σ

2
2σ

−l
1 | l ∈ Z⟩ is cyclic of infinite order with generator the

class [σ1] of σ1. Therefore

(Br3)e/{±1}3 = ⟨σ2
2, (σ

mon)−1σ2
1⟩ = ⟨σ2

2, σ1σ
2
2σ

−1
1 ⟩

= ⟨σl
1σ

2
2σ

−l
1 | l ∈ Z⟩

= (the normal closure of σ2
2 in ⟨σ1, σ2

2⟩).

The case C3 (A2A1): Theorem 7.1 (b) can be applied to the subbasis
(e1, e2) with x1 = −1 and to the subbasis (e2, e3) with x3 = 0. It shows
σ3
1 and σ2

2 ∈ (Br3)e/{±1}3 . Therefore (Br3)e/{±1}3 contains the normal
closure of σ3

1 and σ2
2 in (Br3)x/{±1}3 = ⟨σ1, σ2

2⟩. The quotient group

⟨σ1, σ2
2⟩/(the normal closure of σ3

1 and σ2
2 in ⟨σ1, σ2

2⟩)

is cyclic of order three with generator the class [σ1] of σ1. Therefore

(Br3)e/{±1}3 = (the normal closure of σ3
1 and σ2

2 in ⟨σ1, σ2
2⟩).

It coincides with the subgroup generated by σ3
1 and by the normal

closure ⟨σ2
2, (σ

mon)−1σ2
1⟩ of σ2

2 in ⟨σ1, σ2
2⟩. Therefore

(Br3)e/{±1}3 = ⟨σ2
2, (σ

mon)−1σ2
1, σ

3
1⟩ = ⟨σ2

2, (σ
mon)−1σ2

1, σ
monσ1⟩.

The case G3&C6 (A3): Here x = (−1, 0,−1) and (Br3)x/{±1}3 =
⟨σ1σ2, σ3

1⟩. By Theorem 5.14 (b) GZ = {±M l | l ∈ {0, 1, 2, 3}}, and M
has order four. By Theorem 3.28 and Lemma 3.25 (f), the antihomo-
morphism

Z : (Br3)x/{±1}3/(Br3)e/{±1}3 → GZ/{± id}

is an antiisomorphism. Therefore the quotient group
(Br3)x/{±1}3/(Br3)e/{±1}3 is cyclic of order four.

Theorem 7.1 (b) can be applied to the subbasis (e1, e2) with x1 =
−1. It shows σ3

1 ∈ (Br3)e/{±1}3 . Observe also

δ1σ1σ2(e) = δ1σ1(e1, e3 + e2, e2) = δ1(e1 + e2 + e3, e1, e2)

= (−e1 − e2 − e3, e1, e2) = −M−1(e),

so Z(δ1σ1σ2) = −M−1.

M and −M−1 have order four. Therefore (σ1σ2)
4 ∈ (Br3)e/{±1}3 . Thus

(Br3)e/{±1}3 ⊃ ⟨(σ1σ2)4, σ3
1⟩.
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We will show first that ⟨(σ1σ2)4, σ3
1⟩ is a normal subgroup of

⟨σ1σ2, σ3
1⟩ and then that the quotient group is cyclic of order four.

This will imply (Br3)e/{±1}3 = ⟨(σ1σ2)4, σ3
1⟩.

Recall that σmon = (σ2σ1)
3 = (σ1σ2)

3 generates the center of Br3.
Therefore

(σ1σ2)
lσ3

1(σ1σ2)
−l = (σ1σ2)

4lσ3
1(σ1σ2)

−4l ∈ ⟨(σ1σ2)4, σ3
1⟩ for any l ∈ Z.

Thus ⟨(σ1σ2)4, σ3
1⟩ is a normal subgroup of ⟨σ1σ2, σ3

1⟩. This also shows
that the quotient group ⟨σ1σ1, σ3

1⟩/⟨(σ1σ2)4, σ3
1⟩ is cyclic of order four.

Therefore ⟨(σ1σ2)4, σ3
1⟩ = (Br3)e/{±1}3 .

The case G4&C7 (Â2): Here x = (−1,−1,−1) and (Br3)x/{±1}3 =
⟨σ2σ1, σ3

1⟩. By Theorem 5.14 (b) GZ = {±(M root)l | l ∈ Z}, and M root

has infinite order. By Theorem 3.28 and Lemma 3.25 (f), the antiho-
momorphism

Z : (Br3)x/{±1}3/(Br3)e/{±1}3 → GZ/{± id}
is an antiisomorphism. By Theorem 3.26 (c) and Theorem
5.14 (b) Z(δ3σ2σ1) = M root. Therefore the quotient group
(Br3)x/{±1}3/(Br3)e/{±1}3 is cyclic of infinite order with generator the
class [σ2σ1] of σ2σ1.

Theorem 7.1 (b) can be applied to the subbasis (e1, e2) with x1 =
−1. It shows σ3

1 ∈ (Br3)e/{±1}3 . Therefore (Br3)e/{±1}3 contains the
normal closure of σ3

1 in ⟨σ2σ1, σ3
1⟩. We will first determine this normal

closure and then show that it equals (Br3)e/{±1}3 .
As σmon = (σ2σ1)

3 generates the center of Br3,

(σ2σ1)
ε+3lσ3

1(σ2σ1)
−ε−3l = (σ2σ1)

εσ3
1(σ2σ1)

−ε for ε ∈ {0;±1}, l ∈ Z.
One sees

(σ2σ1)σ1(σ2σ1)
−1 = σ2σ1σ

−1
2 , so

(σ2σ1)σ
3
1(σ2σ1)

−1 = σ2σ
3
1σ

−1
2 ,

(σ2σ1)
−1σ1(σ2σ1) = σ−1

1 (σ−1
2 σ1σ2)σ1

(4.14)
= σ−1

1 (σ1σ2σ
−1
1 )σ1 = σ2, so

(σ2σ1)
−1σ3

1(σ2σ1) = σ3
2.

Therefore the normal closure of σ3
1 in ⟨σ2σ1, σ3

1⟩ is ⟨σ3
1, σ

3
2, σ2σ

3
1σ

−1
2 ⟩.

The quotient group is an infinite cyclic group with generator the class
[σ2σ1] of σ2σ1. Therefore

(Br3)e/{±1}3 = ⟨σ3
1, σ

3
2, σ2σ

3
1σ

−1
2 ⟩

= (the normal closure of σ3
1 in ⟨σ2σ1, σ3

1⟩).
The cases G5&C8: Here x = (−l, 2,−l) with l ≥ 3 odd and

(Br3)x/{±1}3 = ⟨σmon, σ−1
1 σ−1

2 σ1⟩.
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By Theorem 5.14 (b) GZ = {±(M root)l | l ∈ Z} with M root as in

Theorem 5.14 (b) with (M root)l
2−4 = −M . Because l is odd, the cyclic

group GZ/{± id} with generator [M root] can also be written as

GZ/{± id} = ⟨[M ], [(M root)2]⟩ with [M ] = [M root]l
2−4.

By Theorem 3.28 and Lemma 3.25 (f), the antihomomorphism

Z : (Br3)x/{±1}3 → GZ/{± id}

is surjective with kernel (Br3)e/{±1}3 . By the proof of Theorem 5.14

(b)(iv) [M ] = Z(σmon) and [(M root)2] = Z(σ−1
1 σ−1

2 σ1). The single rela-

tion between [M ] and [(M root)2] is [id] = [M ]2([(M root)2])4−l2 . There-
fore the kernel (Br3)e/{±1}3 of the group antihomomorphism Z above

is generated by (σmon)2(σ−1
1 σ−1

2 σ1)
4−l2 = (σmon)2σ−1

1 σl2−4
2 σ1.

The cases G6&C9: Here x = (−l, 2,−l) with l ≥ 4 even and
(Br3)x/{±1}3 = ⟨σmon, σ−1

1 σ−1
2 σ1⟩.

By Theorem 3.28 and Lemma 3.25 (f), the antihomomorphism

Z : (Br3)x/{±1}3 → GZ/{± id}

is surjective with kernel (Br3)e/{±1}3 .
By Theorem 5.14 (a) and the proof of Theorem 5.14 (c)

GZ = ⟨− id, M̃ , Q⟩
with M̃ = Z(δ3σ

−1
1 σ−1

2 σ1), Q = Z(σmon)Z(δ3σ
−1
1 σ−1

2 σ1)
2−l2/2,

M̃ and Q commute, M̃ has infinite order, Q has order two. There-
fore the kernel (Br3)e/{±1}3 of the group antihomomorphism Z above is

generated by (σmon(σ−1
1 σ−1

2 σ1)
2−l2/2)2 = (σmon)2σ−1

1 σl2−4
2 σ1.

The cases G6&C10 (P2), C11, C12: Here (Br3)x/{±1}3 = ⟨σ2σ1⟩.
Here Z(σ2σ1) = M root is a third root of the monondromy. The
monodromy M and M root have infinite order. Therefore the kernel
(Br3)e/{±1}3 of the group antihomomorphism

Z : (Br3)x/{±1}3 = ⟨σ2σ1⟩ → GZ/{± id}

is ⟨id⟩.
The cases G7&C13 (e.g. (4, 4, 8)): Here (Br3)x/{±1}3 = ⟨σ2σ2

1⟩.
Here Z(σ2σ1) = M root is a root of the monondromy. The monodromy
M and M root have infinite order. Therefore the kernel (Br3)e/{±1}3 of
the group antihomomorphism

Z : (Br3)x/{±1}3 = ⟨σ2σ2
1⟩ → GZ/{± id}

is ⟨id⟩.
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The cases G8&C14,G9&C15, C16, C23, C24: Here (Br3)x/{±1}3 =
⟨σmon⟩. The monodromy M = Z(σmon) has infinite order. Therefore
the kernel (Br3)e/{±1}3 of the group antihomomorphism

Z : (Br3)x/{±1}3 = ⟨σmon⟩ → GZ/{± id}

is ⟨id⟩.
The cases G10&C17 (e.g. (−2,−2, 0)): Here (Br3)x/{±1}3 =

⟨σmon, σ2⟩. Recall from Theorem 5.16 (c) that

GZ = {id, Q} × {±M l | l ∈ Z} = ⟨− id, Q,M⟩,

Q andM commute, Q has order two,M has infinite order, −Q = Z(σ2)
(see the proof of Theorem 5.17 (e)),M = Z(σmon). Therefore the kernel
(Br3)e/{±1}3 of the group antihomomorphism

Z : (Br3)x/{±1}3 = ⟨σmon, σ2⟩ → GZ/{± id}

is ⟨σ2
2⟩.
The cases G11&C18,G12&C19,G13&C20,G14&C21, C22: By Theo-

rem 4.16 in all cases (Br3)x/{±1}3 is generated by σmon and some other
generators. We claim that the other generators are all in (Br3)e/{±1}3 .
Application of Theorem 7.1 (b) to the subbasis (e2, e3) shows this for
the following generators:
σ2
2 in the cases G11&C18 and G12&C19 because there x3 = 0;
σ3
2 in the cases G13&C20 and G14&C21, C22 because there x3 = −1.
σ−1
2 maps e to the basis (e1, e3, s

(0)
e3 (e2)). Therefore application

of Theorem 7.1 (b) to the subbasis (e1, e3) with x2 = −1 in the
cases G12&C19 and G13&C20 shows σ2σ

3
1σ

−1
2 ∈ (Br3)e/{±1}3 . The claim

⟨other generators⟩ ⊂ (Br3)e/{±1}3 is proved.
The monodromy M = Z(σmon) has infinite order. Therefore the

kernel (Br3)e/{±1}3 of the group antihomomorphism

Z : (Br3)x/{±1}3 = ⟨σmon, other generators⟩ → GZ/{± id}

is ⟨other generators⟩. □

Remarks 7.12. (i) In the cases G6&C10, C11, C12, G7&C13,
G8&C14 and G9&C15, C16, C23, C24, the even monodromy group Γ(0)

is a free Coxeter group with three generators by Theorem 6.11 (b)
and (g). Example 3.23 (iv), which builds on Theorem 3.2, shows
(Br3)e/{±1}3 = ⟨id⟩.

Using this fact, one derives also (Br3)x/{±1}3 in the following way.
In all cases (HZ, L, e) is irreducible. The group antihomomorphism

Z : (Br3)x/{±1}3 → GZ/{± id}
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is injective because the kernel is (Br3)e/{±1}3 = ⟨id⟩. By Theorem 3.28

Z is surjective in almost all cases. The proof of Theorem 3.28 provides
in all cases preimages of generators of Im(Z) ⊂ GZ/{± id}. These
preimages generate (Br3)x/{±1}3 .

So, the arguments here on one side and the Theorems 4.13, 4.16
and 7.11 on the other side offer two independent ways to derive the
stabilizers (Br3)x/{±1}3 and (Br3)e/{±1}3 in the considered cases.

(ii) But the arguments in (i) cannot easily be adapted to the
other cases. In the cases G10&C17, G11&C18, G12&C19, G13&C20 and
G14&C21, C22, the even monodromy group Γ(0) is a non-free Coxeter
group.

Theorem 3.2 (b) generalizes in Theorem 3.7 (b) to a statement on
the size of Bdist, but not to a statement on the stabilizer (Br3)e/{±1}3 .

The cases G1, G2, G3, G4 and G5 are with the exception of the re-
ducible cases C5 and the case C10 the cases with r(x) ∈ {0, 1, 3, 4}. For
them it looks possible, but difficult, to generalize the arguments in (i).

The conceptual derivation of the stabilizer groups for all cases with
the Theorems 4.13, 4.16 and 7.11 is more elegant.

Remarks 7.13. (i) The table in Theorem 7.11 describes the stabi-
lizer (Br3)e/{±1}3 by generators, except for the case G1&C1(A

3
1) where

(Br3)e/{±1}3 = Brpure3 . In fact

Brpure3 = ⟨σ2
1, σ

2
2, σ2σ

2
1σ

−1
2 , σ−1

2 σ2
1σ2⟩

= (the normal closure of σ2
1 in Br3),

because σ2σ
2
1σ

−1
2 = σ−1

1 σ2
1σ2, σ

−1
2 σ2

1σ2 = σ1σ
2
2σ

−1
1 by (4.14).

(ii) In some cases the proof of Theorem 7.11 provides elements so
that (Br3)e/{±1}3 is the normal closure of these elements in (Br3)x/{±1}3 :

elements (Br3)x/{±1}3

G2&C3 (A2A1) σ3
1, σ

2
2 ⟨σ1, σ2

2⟩
G2&C4 (P1A1), C5 σ2

2 ⟨σ1, σ2
2⟩

G4&C7 (Â2) σ3
1 ⟨σ2σ1, σ3

1⟩

(iii) In the case G3&C6 (A3), the stabilizer (Br3)e/{±1}3 =
⟨(σ1σ2)4, σ3

1⟩ was determined already in [Yu90, Satz 7.3].

The pseudo-graph G(x) for x ∈
⋃24

i=1Ci with vertex set V =
Br3(x/{±1}3) in Definition 4.9 (f), Lemma 4.10 and the Examples
4.11 had been very useful. All except two edges came from the genera-
tors φ1, φ2, φ3 of the free Coxeter group G

phi, and two edges came from
γ(v0) and γ

−1(v0). An a priori more natural choice of edges comes from
the elementary braids σ1 and σ2. It is less useful, but also interesting.

226



Definition 7.14. Let V be a non-empty finite or countably infinite
set on which Br3 acts. The triple Gσ(V) := (V , E1, E2) with E1 :=
{(v, σ1(v)) | v ∈ V} and E2 := {(v, σ2(v)) | v ∈ V} is called σ-pseudo-
graph of V . Here E1 and E2 are two families of directed edges. A loop
in Ei is an edge (v, σi(v)) = (v, v).

Remarks 7.15. (i) In a picture of a σ-pseudo-graph, edges in E1
and in E2 are denoted as follows.

an edge in E1,

an edge in E2.
(ii) Consider a σ-pseudo-graph Gσ(V). Because σ1 : V → V and

σ2 : V → V are bijections, each vertex v ∈ V is starting point of one
edge in E1 and one edge in E2 and end point of one edge in E1 and one
edge in E2. The σ-pseudo-graph is connected if and only if V is a single
Br3 orbit.

(iii) Let (HZ, L, e) be a unimodular bilinear lattice with a triangular
basis e with L(et, e)t = S(x) for some x ∈ Z3. Two σ-pseudo-graphs are
associated to it, Gσ(Bdist/{±1}3) and Gσ(Br3(x/{±1}3)). The natural
map

Bdist/{±1}3 → Br3(x/{±1}3)
ẽ/{±1}3 7→ x̃/{±1}3 with L(ẽt, ẽ)t = S(x̃),

is Br3 equivariant and surjective. It induces a covering

Gσ(Bdist/{±1}3) → Gσ(Br3(x/{±1}3))

of σ-pseudo-graphs. This is even a normal covering with group of deck
transformations GB

Z/Z(({±1}3)x) where GB
Z = Z((Br3⋉{±1}3)x) ⊂ GZ

is as in Lemma 3.25 (e). Now we explain what this means and why it
holds.

The group GB
Z acts transitively on the fiber over x of the map

Bdist → (Br3⋉ {±1}3)(x). By Lemma 3.22 (a) the action of this group
GB

Z and the action of the group Br3⋉ {±1}3 on Bdist commute, so that
GB

Z acts transitively on each fiber of the map Bdist → (Br3⋉{±1}3)(x).
Therefore the group GB

Z/Z(({±1}3)x) acts simply transitively on each
fiber of the covering Gσ(Bdist/{±1}3) → Gσ(Br3(x/{±1}3)) and is a
group of automorphisms of the σ-pseudo-graph Gσ(Bdist/{±1}3). The
quotient by this group is the σ-pseudo-graph Gσ(Br3(x/{±1}3)). These
statements are the meaning of the normal covering Gσ(Bdist/{±1}3)→
Gσ(Br3(x/{±1}3)).

(iv) In part (iii) the σ-pseudo-graph Gσ(Bdist/{±1}3) contains no
loops, and for any v ∈ Bdist/{±1}3 σ1(v) ̸= σ2(v). The σ-pseudo-graph
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x ∈ C1 ∪ C2 = {(0, 0, 0), (2, 2, 2)}, A3
1,H1,2

Two equivalent pictures for the cases
x = (x, 0, 0) ∈ C3 ∪ C4 ∪ C5 = {(x̃, 0, 0) | x̃ < 0}
(A2A1,P1A1, other reducible cases without A3

1)

x = (−1, 0,−1) ∈ C6, A3

x = (−1,−1,−1) ∈ C7, Â2

Figure 7.1. Examples 7.16 (i): The σ-pseudo-graphs
for the finite Br3 orbits in Z3/{±1}3

Gσ(Br3(x/{±1}3)) contains loops in a few cases. It contains a vertex v
with σ1(v) = σ2(v) only in the cases x = (0, 0, 0) (A3

1) and x = (2, 2, 2)
(H1,2) where Br3(x/{±1}3) has only one vertex anyway.
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Examples 7.16. (i) By Theorem 4.13 (a) Z3/{±1}3 consists of
the Br3 orbits Br3(x/{±1}3) for x ∈

⋃24
i=1Ci. Precisely for x ∈⋃7

i=1Ci such an orbit is finite. This led to the four pseudo-graphs
G1,G2,G3,G4 in the Examples 4.11. The four corresponding σ-pseudo-
graphs Gσ(Br3(x/{±1}3)) are listed in Figure 7.1. A vertex x̃/{±1}3 ∈
Z3/{±1}3 is denoted by a representative x̃ ∈ Z3

>0 ∪ Z3
≤0. The vertices

are positioned at the same places as in the pictures in the Examples
4.11 for G1,G2,G3,G4.

(ii) The case H1,2, x = (2, 2, 2): Here Br3(x/{±1}3) = {x/{±1}3}
has only one vertex, but the group

GB
Z/Z(({±1}3)x) = GZ/{± id} ∼= SL2(Z)

is big. There is a natural bijection Bdist/{±1}3 → SL2(Z), and the
elementary braids σ1 and σ2 act by multiplication from the left with

the matrices A1 =

(
1 −1
0 1

)
and A2 =

(
1 0
1 1

)
on SL2(Z). This gives

a clear description of the σ-pseudo-graph Gσ(Bdist/{±1}3). We do not
attempt a picture.

(iii) The reducible case A3
1, x = (0, 0, 0): Also here Br3(x/{±1}3) =

{x/{±1}3} has only one vertex. The group

GB
Z/Z(({±1}3)x) = GZ/{±1}3 ∼= O3(Z)/{±1}3 ∼= S3

has six elements. Therefore Bdist/{±1}3 has six elements, and σ1 and
σ2 act as involutions. The right hand side of the first line in Figure 7.3
gives the σ-pseudo-graph Gσ(Bdist/{±1}3). Part (iv) offers a different
description which applies also to A3

1 if one sees it as A2
1A1.

(iv) The reducible cases, x ∈
⋃

i∈{3,4,5}Ci (A2A1, P1A1, other re-

ducible cases): Here (HZ, L, e) = (HZ,1, L1, (e1, e2))⊕(HZ,2, L2, e3) with
HZ,1 = Ze1 ⊕ Ze2 and HZ,2 = Ze3.

The group of deck transformations of the normal covering
Gσ(Bdist/{±1}3)→ Gσ(Br3(x/{±1}3)) is

GB
Z/Z(({±1}3)x) = GZ/{± id,±Q} ∼= {(M root)l | l ∈ Z}.

Here M root has order 3 in the case A2A1 and infinite order in the other
cases. Therefore the σ-pseudo-graph Gσ(Bdist/{±1}3) can be obtained
by a triple or infinite covering of the σ-pseudo-graph Gσ(Br3(x/{±1}3).
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Figure 7.2. In the reducible cases (without A3
1) one

sheet of the covering Gσ(Bdist/{±1}3) →
Gσ(Br3(x/{±1}3))

More concretely, the type of the covering is determined by the
Br1 orbit of distinguished bases up to signs of (HZ,1, L1, (e1, e2)). One
such distinguished basis modulo signs (ẽ1, ẽ2)/{±1}2 gives rise to one
sheet in the covering Gσ(Bdist/{±1}3) → Gσ(Br3(x/{±1}3)). Figure
7.2 shows the part of a σ-pseudo-graph which corresponds to one such
sheet.

The six pictures in Figure 7.3 show on the left hand side analo-
gous σ1-pseudo-graphs for the distinguished bases modulo signs of the
rank 2 cases A2

1, A2 and P1, and on the right hand side the σ-pseudo-
graphs Gσ(Bdist/{±1}3) for A3

1, A2A1 and P1A1 (respectively only a
part of the σ-pseudo-graph in the case of P1A1). The σ-pseudo-graph
Gσ(Bdist/{±1}3) for x = (x, 0, 0) with x < −2 looks the same as the
one for P1A1, though of course the distinguished bases are different.

(v) The case A3, x = (−1, 0,−1): The σ-pseudo-graph
Gσ(Bdist/{±1}3) was first given in [Yu90, page 40, Figur 6]. We recall
and explain it in our words. The group of deck transformations of the
normal covering Gσ(Bdist/{±1}3)→ Gσ(Br3(x/{±1}3)) is

GB
Z)/Z(({±1}3)x) = GZ/{± id} ∼= {M l | l ∈ {0, 1, 2, 3}}.

Here the monodromy M acts in the natural way,

M((ẽ1, ẽ2, ẽ3)/{±1}3) = (M(ẽ1),M(ẽ2),M(ẽ3))/{±1}3),

on Bdist/{±1}3 and has order four, M4 = id. Here M and its powers
are

M(e) = e

 0 0 1
−1 0 1
0 −1 1

 ,M2(e) = e

0 −1 1
0 −1 0
1 −1 0

 ,

M3(e) = e

1 −1 0
1 0 −1
1 0 0

 .
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A2
1 A3

1

A2 A2A1

P1, f1 = e1 + e2 P1A1

Figure 7.3. Examples 7.16 (iii): The σ-pseudo-graphs
for distinguished bases modulo signs in the reducible
cases

Because of the shape of Gσ(Br3(x/{±1}3)),

b1,0 := e/{±1}3, b2,0 := σ1b
1,0, b3,0 := σ2

1b
1,0, b4,0 := σ−1

2 b1,0
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form one sheet of the fourfold cyclic covering Gσ(Bdist/{±1}3) →
Gσ(Br3(x/{±1}3)). Define

bi,l :=M l(bi,0) for l ∈ {1, 2, 3}.

Then

Bdist/{±1}3 = {bi,l | i ∈ {1, 2, 3, 4}, l ∈ {0, 1, 2, 3}}

has sixteen elements. We claim for l ∈ {0, 1, 2, 3}

σ1b
1,l = b2,l, σ2b

1,l = b3,l+3(mod 4),
σ1b

2,l = b3,l, σ2b
2,l = b2,l+2(mod 4),

σ1b
3,l = b1,l, σ2b

3,l = b4,l+1(mod 4),
σ1b

4,l = b4,l+2(mod 4), σ2b
4,l = b1,l.

It is sufficient to prove the claim for l = 0. The equations σ1b
1,0 = b2,0,

σ1b
2,0 = b3,0, σ2b

4,0 = b1,0 follow from the definitions of b2,0, b3,0, b4,0.
The inclusion σ3

1 ∈ (Br3)e/{±1}3) gives σ1b
3,0 = b1,0. It remains to show

σ1b
4,0 = b4,2, σ2b

1,0 = b3,3, σ2b
2,0 = b2,2, σ2b

3,0 = b4,1.

One sees

i bi,0 ẽ x̃ with L(ẽt, ẽ) = S(x̃)
1 e/{±}3 e (−1, 0,−1)
2 σ1(e)/{±1}3 σ1(e) = (e1 + e2, e1, e3) (1,−1, 0)
3 σ2

1(e)/{±1}3 σ2
1(e) = (−e2, e1 + e2, e3) (−1, 1,−1)

4 σ−1
2 (e)/{±1}3 σ−1

2 (e) = (e1, e3, e2 + e3) (0,−1, 1)

σ1b
4,0 = (e3, e1, e2 + e3)/{±1}3 =M2b4,0 = b4,2,

σ2b
1,0 = (e1, e2 + e3, e2)/{±1}3 =M3b3,0 = b3,3,

σ2b
2,0 = (e1 + e2, e3, e1)/{±1}3 =M2b2,0 = b2,2.

σ2b
1,0 = b3,3, σ2b

4,0 = b1,0 and σ3
2 ∈ (Br3)e/{±1}3 show σ2b

3,3 = b4,0.
This implies σ2b

3,0 = b4,1. The claim is proved. The σ-pseudo-graph
Gσ(Bdist/{±1}3) is given in Figure 7.4.

(vi) The case Â2, x = (−1,−1,−1): The group of deck transfor-
mations of the normal covering Gσ(Bdist/{±1}3) → Gσ(Br3(x/{±1}3))
is

GB
Z/Z(({±1}3)x) = GZ/{± id} ∼= {(M root)l | l ∈ Z}.

Here M root acts in the natural way on Bdist/{±1}3. M root has infinite
order and satisfies (M root)3 = −M . Recall f1 = e1 + e2 + e3, Zf1 =
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Figure 7.4. Example 7.16 (iv): The σ-pseudo-graph
for distinguished bases modulo signs in the case A3

Rad I(0),

M root(e) = e

1 1 −1
1 0 0
0 1 0

 , M root(f1) = f1,

(M root)2(e) = e+ f1(1, 0,−1).

Because of the shape of Gσ(Br3(x/{±1}3)),

b1,0 := e/{±1}3, b2,0 := σ1b
1,0, b3,0 := σ2

1b
1,0, b4,0 := σ2b

1,0

form one sheet of the infinite cyclic covering Gσ(Bdist/{±1}3) →
Gσ(Br3(x/{±1}3)). Define

bi,l := (M root)l(bi,0) for i ∈ {1, 2, 3, 4}, l ∈ Z− {0}.

Then

Bdist/{±1}3 = {bi,l | i ∈ {1, 2, 3, 4}, l ∈ Z}}.
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We claim for l ∈ Z
σ1b

1,l = b2,l, σ2b
1,l = b4,l,

σ1b
2,l = b3,l, σ2b

2,l = b1,l+1,
σ1b

3,l = b1,l, σ2b
3,l = b3,l+2,

σ1b
4,l = b4,l+2, σ2b

4,l = b2,l−1.

It is sufficient to prove the claim for l = 0. The equations σ1b
1,0 = b2,0,

σ1b
2,0 = b3,0, σ2b

1,0 = b4,0 follow from the definitions of b2,0, b3,0, b4,0.
The inclusion σ3

1 ∈ (Br3)e/{±1}3 gives σ1b
3,0 = b1,0. It remains to show

σ1b
4,0 = b4,2, σ2b

2,0 = b1,1, σ2b
3,0 = b3,2, σ2b

4,0 = b2,−1.

One sees

i bi,0 ẽ x̃ with L(ẽt, ẽ) = S(x̃)
1 e/{±}3 e (−1,−1,−1)
2 σ1(e)/{±1}3 σ1(e) = (e1 + e2, e1, e3) (1,−2,−1)
3 σ2

1(e)/{±1}3 σ2
1(e) = (−e2, e1 + e2, e3) (−1, 1,−2)

4 σ2(e)/{±1}3 σ2(e) = (e1, e2 + e3, e2) (−2,−1, 1)

σ1b
4,0 = (2e1 + e2 + e3, e1, e2)/{±1}3

= (e1 + f1, e2 + e3 − f1, e2)/{±1}3 = (M root)2b4,0 = b4,2,

σ2b
2,0 = (e1 + e2, e1 + e3, e1)/{±1}3 =M rootb1,0 = b1,1,

σ2b
3,0 = (−e2, 2e1 + 2e2 + e3, e1 + e2)/{±1}3

= (−e2, e1 + e2 + f1,−e3 + f1)/{±1}3 =M2b3,0 = b3,2.

σ2b
2,0 = b1,1 implies σ2b

2,−1 = b1,0. This, σ2b
1,0 = b4,0 and σ3

2 ∈
(Br3)e/{±1}3 show σ2b

4,0 = b2,−1. The claim is proved. A part of the
σ-pseudo-graph Gσ(Bdist/{±1}3) is given in Figure 7.5.
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Figure 7.5. Example 7.16 (v): A part of the σ-pseudo-
graph for distinguished bases modulo signs in the case

Â2
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APPENDIX A

Tools from hyperbolic geometry

The upper half plane H = {z ∈ C | ℑ(z) > 0} together with its
natural metric (whose explicit form we will not need) is one model of the
hyperbolic plane. In the study of the monodromy groups Γ(0) and Γ(1)

for the cases with n = 2 or n = 3, we will often encounter subgroups of
Isom(H). The theorem of Poincaré-Maskit [Po82][Ma71] allows under
some conditions to show for such a group that it is discrete, to find a
fundamental domain and to find a presentation. Three special cases of
this theorem, which will be sufficient for us, are formulated in Theorem
A.2.

Before, we collect basic facts and set up some notations in the
following Remarks and Notations A.1.

Subgroups of Isom(H) arise here in two ways. Either they come
from groups of real 2×2 matrices. This is covered by the Remarks and
Notations A.1 (v). Or they come from the action of certain groups of
real 3 × 3 matrices on R3 with an indefinite metric. This will treated
in Theorem A.4.

Remarks and Notations A.1. (Some references for the following
material are [Fo51][Le66][Be83])

(i) Let n ∈ N. Recall the notions of the free group Gfree,n with
n generators and of the free Coxeter group GfCox,n with n generators
from Definition 3.1.

(ii) Ĉ := C∪{∞}, R̂ := R∪{∞}. The hyperbolic lines in H are the
parts in H of circles and euclidean lines which meet R orthogonally. For

any z1, z2 ∈ H ∪ R̂ with z1 ̸= z2, denote by A(z1, z2) the part between

z1 and z2 of the unique hyperbolic line whose closure in H∪ R̂ contains

z1 and z2. Here zi ∈ A(z1, z2) if zi ∈ H, but zi /∈ A(z1, z2) if zi ∈ R̂.
Such sets are called arcs.

(iii) We simplify the definition of a polygon in [Ma71]. A hyperbolic
polygon P is a contractible open subset P ⊂ H whose relative bound-
ary in H consists of finitely many arcs A1 = A(z1,1, z1,2), ..., Am =
A(zm,1, zm,2) (Maskit allows countably many arcs). The arcs and the
points are numbered such that one runs through them in the order
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A1, ..., Am and z1,1, z1,2, z2,1, z2,2, ..., zm,1, zm,2 if one runs mathemati-

cally positive on the euclidean boundary of P in H ∪ R̂. For Ai and
Ai+1 (with Am+1 := A1) there are three possibilities:

(a) zi,2 = zi+1,1 ∈ H; then this point is called a vertex of P ;

(b) zi,2 = zi+1,1 ∈ R̂;
(c) zi,2 ∈ R̂, zi+1,1 ∈ R̂, zi,2 ̸= zi+1,1; then the part of R̂ between
zi,2 and zi+1,1 (moving from smaller to larger values) is in the
euclidean boundary of P between Ai and Ai+1.

In the second and third case Ai ∩Ai+1 = ∅. A polygon has no vertices
if and only if all arcs A1, ..., Am are hyperbolic lines, and if and only if

all points z1,1, ..., zm,2 ∈ R̂.
(iv) Denote

Gl
(−1)
2 (R) := {A ∈ GL2(R) | detA = −1},

Gl
(±1)
2 (R) := {A ∈ GL2(R) | detA = ±1} = SL2(R) ∪GL(−1)

2 (R),

and analogously Gl
(−1)
2 (Z), Gl(±1)

2 (Z). Recall

At

(
0 1
−1 0

)
A = detA ·

(
0 1
−1 0

)
for A ∈ Gl(±1)

2 (R).

(v) The following map µ : Gl
(±1)
2 (R) → Isom(H) is a surjective

group homomorphism with kernel kerµ = {±E2},

µ(A) =
(
z 7→ za+ b

cz + d

)
if A =

(
a b
c d

)
∈ SL2(R),

µ(A) =
(
z 7→ za+ b

cz + d

)
if A =

(
a b
c d

)
∈ GL(−1)

2 (R).

µ(A) for A ∈ SL2(R) is orientation preserving and is called a Möbius

transformation. µ(A) for A ∈ GL(−1)
2 (R) is orientation reversing.

If A ∈ SL2(R)− {±E2}, there are three possibilities:

(a) | tr(A)| < 2; then A has a fixed point in H (and the complex
conjugate number is a fixed point in −H) and is called elliptic.

(b) | tr(A)| = 2; then A has one fixed point in R̂ and is called
parabolic.

(c) | tr(A)| > 2; then A has two fixed points in R̂ and is called
hyperbolic.
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If A =

(
a b
c d

)
∈ GL(−1)

2 (R) with tr(A) = 0 then µ(A) is a reflection

along the hyperbolic line

{z ∈ H | z = µ(A)(z)} = {z ∈ H | 0 = czz − 2aRe(z)− b}(
= {z ∈ H | 0 = (z − a

c
)(z − a

c
)− 1

c2
} if c ̸= 0

)
.

The theorem of Poincaré-Maskit starts with a hyperbolic polygon P
whose relative boundary inH consists of arcs A1, ..., Am, with an involu-
tion σ ∈ Sm and with elements g1, ..., gm ∈ Isom(H) with gi(Ai) = Aσ(i)

and gσ(i) = g−1
i . Under some additional conditions, it states that the

group G := ⟨g1, ..., gm⟩ ⊂ Isom(H) is discrete, that P is a fundamental
domain (i.e. each orbit of G in H meets the relative closure of P in
H, no orbit of G in H meets P in more than one point), and it gives
a complete set of relations with respect to g1, ..., gm of G. Poincaré
[Po82] had the case when H/G is compact, Maskit [Ma71] general-
ized it greatly. In [Ma71] the relative boundary of P in H may consist
of countably many arcs. The following theorem singles out three spe-
cial cases, which are sufficient for us. Remark A.3 (ii) illustrates them
with pictures.

Theorem A.2. [Ma71] Let P ⊂ H be a hyperbolic polygon whose
relative boundary in H consists of arcs A1, ..., Am with Ai = A(zi,1zi,2)
where one runs through these arcs and these points in the order
A1, ..., Am and z1,1, z1,2, z2,1, z2,2, ..., zm,1, zm,2 if one runs mathemati-

cally positive on the euclidean boundary of P in H ∪ R̂.
(a) Let I ⊂ {1, ...,m} be the set of indices such that zi,2 is a vertex,

so zi,2 = zi+1,1 ∈ H, with Am+1 := A1 and zm+1,i := z1,i (I may be
empty). Suppose that at a vertex zi,2 the arcs Ai and Ai+1 meet at an
angle π

ni
for some number ni ∈ Z≥2. For i ∈ {1, ...,m} let gi ∈ Isom(H)

be the reflection along the hyperbolic line which contains Ai.
The group G := ⟨g1, ..., gm⟩ ⊂ Isom(H) is discrete, P is a funda-

mental domain, and the set of relations

g21 = ... = g2m = id, (gigi+1)
ni = id for i ∈ I,

form a complete set of relations. Especially, if I = ∅ then G is a free
Coxeter group with generators g1, ..., gm.

(b) Let P ⊂ H have no vertices. Choose on each hyperbolic line
Ai a point pi, and let gi be the elliptic element with fixed point pi and
rotation angle π.

The group G := ⟨g1, ..., gm⟩ ⊂ Isom(H) is discrete, P is a funda-
mental domain, and the set of relations g21 = ... = g2m = id a complete
set of relation, so G is a free Coxeter group with generators g1, ..., gm.
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(c) Let P ⊂ H have no vertices. Suppose that m is even. Suppose
z2i−1,2 = z2i,1 for i ∈ {1, 2, ..., m

2
}. Let gi for i ∈ {1, 2, ..., m

2
} be the

parabolic element with fixed point z2i−1,2 which maps A2i−1 to A2i.
The group G := ⟨g1, ..., gm⟩ ⊂ Isom(H) is discrete, P is a fundamen-

tal domain, and the group G is a free group with generators g1, ..., gm.

Remarks A.3. (i) The Cayley transformation Ĉ → Ĉ,
(
z 7→ z−i

z+i

)
maps the upper half plane H to the unit disk D = {z ∈ C | |z| < 1}. It
leads to the unit disk model of the hyperbolic plane. The hyperbolic
lines in this model are the parts in D of circles and euclidean lines
which intersect ∂D orthogonally.

(ii) The following three pictures illustrate Theorem A.2 in the unit
disk model instead of the upper half plane model.

Figure A.1. Three pictures for Theorem A.2

The surjective group homomorphism µ : Gl
(±1)
2 (R) → Isom(H) in

Remark A.1 (v) shows how to go from groups of real 2× 2 matrices to
subgroups of Isom(H). The next theorem shows how to go from groups
of certain real 3 × 3 matrices to subgroups of Isom(H). It is classical.
But as we need some details, we prefer to explain these details and not
refer to some literature.
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Theorem A.4. Let (HR, I
[0]) be a 3-dimensional real vector space

with a symmetric bilinear form I [0] with signature (+−−).
(a) (Elementary linear algebra) A vector v ∈ HR − {0} is called

positive if I [0](v, v) > 0, isotropic if I [0](v, v) = 0, negative if I [0](v, v) <
0. The positive vectors form a (double) cone K ⊂ HR, the isotropic
vectors and the vector 0 form its boundary, the negative vectors form its
complement. The orthogonal hyperplanes (R · v)⊥ satisfy the following:

(i) (R · v)⊥ ∩ K ̸= ∅ if v is negative.
(ii) (R · v)⊥ ∩ K = R · v if v is isotropic.
(iii) (R · v)⊥ ∩ K = {0} if v is positive.

K/R∗ denotes the lines in K, i.e. the 1-dimensional subspaces.
(b) (Basic properties of Aut(HR, I

[0])) Let σ : Aut(HR, I
[0])→ {±1}

be the spinor norm map (see Remark 6.3 (iii)). The group Aut(HR, I
[0])

is a real 3-dimensional Lie group with four components. The compo-
nents are the fibers of the group homomorphism

(det, σ) : Aut(HR, I
[0])→ {±1} × {±1}.

− id ∈ Aut(HR, I
[0]) has value (det, σ)(− id) = (−1, 1). If v is posi-

tive then (det, σ)(s
(0)
v ) = (−1, 1). If v is negative then (det, σ)(s

(0)
v ) =

(−1,−1). An isometry g ∈ Aut(HR, I
[0]) maps each of the two compo-

nents of the cone K to itself if and only if g is in the two components
which together form the kernel of det ·σ, so if det(g)σ(g) = 1.

(c) Choose a basis f = (f1, f2, f3) of HR with

I [0](f t, f) =

0 0 1
0 −2 0
1 0 0

 .

(i) The map

Θ : Gl
(±1)
2 (R)→ Aut(HR),

(
a b
c d

)
7→
(
f 7→ f

a2 2ab b2

ac ad+ bc bd
c2 2cd d2

),
is a group homomorphism with kernel kerΘ = {±E2} and image
ker(det ·σ : Aut(HR, I

[0])→ {±1}).
(ii) The map

ϑ : H→ (HR − {0})/R∗, z 7→ R∗(zzf1 +Re(z)f2 + f3),

is a bijection ϑ : H→ K/R∗.

(iii) For A ∈ Gl(±1)
2 (R), the automorphism ϑ◦µ(A)◦ϑ−1 : K/R∗ →

K/R∗ coincides with the action of Θ(A) on K/R∗.
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(iv) The natural maps

Aut(HR, I
[0])/{± id} ←− ker(det ·σ) −→ Isom(H)

{±B} ←− B , Θ(A) 7−→ µ(A)

are group isomorphisms.
(v) For each hyperbolic line l there is a negative vector v ∈ HR with

ϑ(l) = ((R · v)⊥ ∩ K)/R∗.
(vi) Let σl ∈ Isom(H) be the reflection along a hyperbolic line l, and

let v be as in (v). The action of s
(0)
v on K/R∗ coincides with ϑ◦σl◦ϑ−1.

(vii) Let δp ∈ Isom(H) be the elliptic element with fixed point p ∈ H
and order 2 (so rotation angle π). Let v ∈ HR be a positive vector with

R · v = ϑ(p). The action of s
(0)
v on K/R∗ coincides with ϑ ◦ δp ◦ ϑ−1.

Proof: (a) and (b) are elementary and classical, their proofs are
skipped.

(c) (i) Start with a real 2-dimensional vector space VR with basis
e = (e1, e2) and a skew-symmetric bilinear form I [1] on VR with matrix

I [1](et, e) =

(
0 1
−1 0

)
.

The tensor product VR⊗ VR comes equipped with an induced sym-

metric bilinear form Ĩ(0) via (here I and J are finite index sets and
ai, bi, cj, dj ∈ VR)

Ĩ(0)(
∑
i∈I

ai ⊗ bi,
∑
j∈J

cj ⊗ dj) =
∑
i∈I

∑
j∈J

I [1](ai, cj)I
[1](bi, dj).

An element g ∈ Aut(HR) with ge = eA and A ∈ Gl(±1)
2 (R) respects I [1]

in the following weak sense:

I [1](g(v1), g(v2)) = detA · I [1](v1, v2),

because At

(
0 1
−1 0

)
A = detA ·

(
0 1
−1 0

)
.

It induces an element Θ̃(g) ∈ Aut(VR ⊗ VR, Ĩ(0)) via

Θ̃(g)(
∑
i∈I

ai ⊗ bi) =
∑
i∈I

g(ai)⊗ g(bi).

The symmetric part H̃R ⊂ VR ⊗ VR of the tensor product has the

basis f̃ = (f̃1, f̃2, f̃3) = (e1 ⊗ e1, e1 ⊗ e2 + e2 ⊗ e1, e2 ⊗ e2). One sees

Ĩ(0)(f̃
t
, f̃) =

0 0 1
0 −2 0
1 0 0

 .

From now on we identify (H̃R, Ĩ
(0)|H̃R

, f̃) with (HR, I
[0], f).
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For an element g ∈ Aut(VR) with ge = eA with A =

(
a b
c d

)
∈

Gl
(±1)
2 (R), the automorphism Θ̃(g) on VR⊗VR restricts to an automor-

phism of the symmetric part HR with matrix

Θ̃(g)f = f

a2 2ab b2

ac ad+ bc bd
c2 2cd d2

 .

This fits to Θ. It shows especially Θ(A) ∈ Aut(HR, I
[0]).

The kernel of Θ is {±E2}. The Lie groups Gl
(±1)
2 (R) and

Aut(HR, I
[0]) are real 3-dimensional. The Lie group Gl

(±1)
2 (R)

has two components. (det, σ)(Θ(

(
1 0
0 −1

)
)) = (det, σ)(s

(0)
f2
) =

(−1,−1). Therefore the image of Θ consists of the two components
of Aut(HR, I

[0]) which together form the kernel of det ·σ. This finishes
the proof of part (i).

(ii) Define ϑ̃(z) := zzf1 + Re(z)f2 + f3. It is a positive vector
because

I [0](ϑ̃(z), ϑ̃(z)) = zz · 1− 2(Re(z))2 + 1 · zz = 2(ℑ(z))2 > 0.

It is easy to see that ϑ is a bijection from H to K/R∗.

(iii) In fact, ϑ̃(z) is the symmetric part of

(ze1 + e2)⊗ (ze1 + e2) = (e

(
z
1

)
)⊗ (e

(
z
1

)
) ∈ VC ⊗ VC.

For A =

(
a b
c d

)
∈ Gl(±1)

2 (R)

ϑ̃(µ(A)(z))

=
(
symmetric part of (e

(
µ(A)(z)

1

)
)⊗ (e

(
µ(A)(z)

1

))
= |cz + d|−2

(
symmetric part of (eA

(
z
1

)
)⊗ (eA

(
z
1

)
)
)

= |cz + d|−2f

a2 2ab b2

ac ad+ bc bd
c2 2cd d2

 zz
Re(z)
1


= |cz + d|−2Θ(A)(f)

 zz
Re(z)
1


= |cz + d|−2Θ(A)(ϑ̃(z)).
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This shows part (iii). Part (iv) follows from part (iii).
(v) A hyperbolic line l is the fixed point set of a reflection µ(A) for

a matrix A =

(
a b
c −a

)
∈ Gl(−1)

2 (R), so

l = {z ∈ H | z = µ(A)(z)} = {z ∈ H | 0 = czz − 2aRe(z)− b}.
Observe

czz − 2aRe(z)− b = I [0](f

−ba
c

 , f

 zz
Re(z)
1

).

Therefore

ϑ(l) =
(
R(−bf1 + af2 + cf3)

⊥ ∩ K
)
/R∗.

(vi) and (vii) are clear now. □

Remarks A.5. (i) In the model K/R∗ of the hyperbolic plane,
the isometries of H are transformed to linear isometries of (HR, I

[0]).
The hyperbolic lines in H are transformed to linear hyperplanes in HR
(modulo R∗) which intersect K.

(ii) If one chooses an affine hyperplane in HR which intersects one
component of K in a disk, this disk gives a new disk model of the
hyperbolic plane, which is not conformal to H and D (angles are not
preserved), but where the hyperbolic lines in H are transformed to the
segments in the new disk of euclidean lines in the affine hyperplane
which intersect the disk. The following picture sketches three hyper-
bolic lines in the unit disk D and in the new disk which is part of the
cone K.

Figure A.2. Two disk models of the hyperbolic plane
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APPENDIX B

Quadratic units via continued fractions

The purpose of this appendix is to prove Lemma B.1 with two
statements on the units in certain rings of algebraic integers. The
proof of Lemma B.1 will be given after the proof of Theorem B.6.

A convenient and very classical tool to prove this lemma is the the-
ory of continued fractions as best approximations of irrational numbers,
applied to the case of quadratic irrationals which are algebraic integers.

Theorem B.4 below cites standard results on the continued fractions
of real irrationals. It is prepared by the Definitions B.2 and B.3

Lemma B.5 provides the less well known formulas (B.2) and (B.3)
for the case of a quadratic irrational. Theorem B.6 describes the unit
group Z[α]∗ where α is a quadratic irrational and an algebraic integer,
in terms of the continued fractions of α.

Lemma B.1. (a) Let x ∈ Z≥3, and let κ1/2 :=
x
2
± 1

2

√
x2 − 4 be the

zeros of the polynomial t2−xt+1, so κ1+κ2 = x, κ1κ2 = 1, κ21 = xκ1−1.
Then

Z[κ1]∗ =
{
{±κl1 | l ∈ Z} if x ∈ Z≥4,
{±(κ1 − 1)l | l ∈ Z} if x = 3.

κ1 has norm 1. If x = 3 then (κ1− 1)2 = κ1, and κ1− 1 has norm −1.
(b) Let x ∈ Z≥2, and let λ1/2 = x2 − 1 ± x

√
x2 − 2 be the zeros of

the polynomial t2− (2x2− 2)t+1, so λ1 +λ2 = 2x2− 2, λ1λ2 = 1, λ21 =
(2x2 − 2)λ1 − 1. Then

Z[
√
x2 − 2]∗ =

{
{±λl1 | l ∈ Z} if x ≥ 3,

{±(1 +
√
2)l | l ∈ Z} if x = 2.

λ1 has norm 1. If x = 2 then (1 +
√
2)2 = λ1, and 1 +

√
2 has norm

−1.

Theorem B.4 is mainly taken from several theorems in [Ai13, 1.2
and 1.3], but with part (b) from [Ca65, I 2.]. It is preceded by two
definitions. According to [Bu00, 5.9 Lagrange’s Theorem], this part
(b) is orginally due to Lagrange 1770. In fact, we will not use this part
(b), but we find it enlightening.

245



Definition B.2. Let θ ∈ R−Q be an irrational number.
(a) Define recursively sequences (an)n≥0, (θn)n≥0,

(pn)n≥−1, (qn)n≥−1, (rn)n≥0 as follows:

θ0 := θ,

a0 := ⌊θ0⌋ ∈ Z,

θn :=
1

θn−1 − an−1

∈ R>1 −Q for n ∈ N,

an := ⌊θn⌋ ∈ N for n ∈ N,
(p−1, p0, q−1, q0) := (1, a0, 0, 1),

pn := anpn−1 + pn−2 ∈ Z for n ∈ N,
qn := anqn−1 + qn−2 ∈ N for n ∈ N,

rn :=
pn
qn
∈ Q for n ∈ Z≥0.

θn and an are defined for all n ∈ N, because each θn−1 is in R−Q, so
θn−1 − an−1 ∈ (0, 1).

(b) Following [Ca65, Notation 2.] define

∥θ∥ := min(θ − ⌊θ⌋, ⌈θ⌉ − θ) ∈ (0,
1

2
)

We are interested especially in the case when θ ∈ R − Q is a qua-
dratic irrational. We recall some notations for this case.

Definition B.3. Let θ ∈ R − Q be a quadratic irrational, i.e.
dimQ Q[θ] = 2. The other root of the minimal polynomial of θ is
called θconj, so θ + θconj =: ã0 ∈ Q and −θθconj =: d0 ∈ Q. For any
α = a + bθ ∈ Q[θ] with a, b ∈ Q write αconj := a + bθconj. It is the
algebraic conjugate of α. The algebra homomorphism

N : Q[θ]→ Q, α 7→ ααconj,

is the norm map. The number α is called reduced if α > 1 and αconj ∈
(−1, 0). Recall that α is an algebraic integer if and only if α+αconj ∈ Z
and N (α) ∈ Z and that in this case α is a unit in Z[α] if and only if
N (α) ∈ {±1}.

Theorem B.4. (Classical) In the situation of Definition B.2 the
following holds.

(a) [Ai13, 1.2] a0 ∈ Z, an ∈ N for n ∈ N. For n ∈ Z≥0 the rational
number rn is

rn = a0 +
1

a1 +
1

... 1

an−1+
1
an

=: [a0, a1, ..., an].
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It is called partial quotient or continued fraction or n-th convergent of
θ. These numbers approximate θ,

r0 < r2 < r4 < ... < θ < ... < r5 < r3 < r1,

|θ − rn| <
1

q2n
.

This allows to write θ = [a0, a1, ...] as an infinite continued fraction.
The numerator pn and the denominator qn of rn are coprime,

gcd(pn, qn) = 1, and more precisely

pnqn−1 − pn−1qn = (−1)n−1 for n ∈ Z≥0.

The denominators grow strictly from n = 1 on,

1 = q0 ≤ q1 < q2 < q3 < ....

(b) [Ca65, I 2.] The partial quotients rn are in the following precise
sense the only best approximations of θ:

|pn − qnθ| = ∥qnθ∥ for n ∈ N,
∥qn+1θ∥ < ∥qnθ∥ for n ∈ N,
∥qθ∥ ≥ ∥qnθ∥ for n ∈ Z≥0 and q ∈ N with q < qn+1,

|p0 − q0θ| = ∥q0θ∥ > ∥q1θ∥ if q1 > 1(⇐⇒ a1 > 1),

|p0 − q0θ| ∈ (
1

2
, 1) and |p0 − q0θ| > ∥q1θ∥ if q1 = 1(⇐⇒ a1 = 1).

In any case

|pn+1 − qn+1θ| < |pn − qnθ| for n ∈ Z≥0.

(c) [Ai13, Theorem 1.19] The partial quotients rn are also in the
following precise sense the only best approximations of θ: A rational
number p

q
with p ∈ Z, q ∈ N and gcd(p, q) = 1 satisfies

|θ − p

q
| < 1

2q2
=⇒ (p, q) = (pn, qn) for a suitable n ∈ Z≥0.

(d) [Ai13, Theorem 1.17 and Proposition 1.18] The continued frac-
tion is periodic, i.e. there exist k0 ∈ Z≥0 and k1 ∈ N with

an+k1 = an for n ≥ k0,

if and only if θ is a quadratic irrational, i.e. dimQ Q[θ] = 2. Then one
writes [a0a1...] = [a0a1...ak0−1ak0ak0+1...ak0+k1−1]. Furthermore, then k0
can be chosen as 0 if and only if θ is reduced. In this case the continued
fraction [a0a1...] is called purely periodic.
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Lemma B.5 fixes useful additional observations for the case of a
quadratic irrational θ. These observations are used in the proof of
Theorem B.6. It considers an algebraic integer α ∈ R − Q which is a
quadratic irrational. We are interested in the group Z[α]∗ of units in
Z[α]. Theorem B.6 shows how to see a generator of this group (and a
quarter of its elements) in the continued fractions of a certain reduced
element θ in Z[α]. Theorem B.6 is not new. For example, [Bu00,
Theorem 8.13] gives its main part. But the proof here is more elegant
than what we found in the literature.

Lemma B.5. Let θ ∈ R − Q be a quadratic irrational which is
reduced. Let [a0a1...ak−1] be its purely periodic continued fraction of
some minimal length k ∈ N. We consider the objects in Definition B.2
for this θ. Then

θn+k = θn for n ∈ Z≥0. (B.1)

θm is reduced for m ∈ {0, 1, ..., k−1}, and its purely periodic continued
fraction is [am...ak−1a0...am−1]. Write

ã0 := θ + θconj ∈ Q>0, d0 := −N (θ) = −θθconj ∈ Q>0,

β := pk−1 − qk−1θ ∈ Q[θ]−Q.

Then for n ∈ Z≥−1

pn+k − qn+kθ = β · (pn − qnθ) (B.2)

and for n ∈ Z≥0

θn =
−pn−2pn−1 + pn−2qn−1ã0 + qn−2qn−1d0 + (−1)nθ

N (pn−1 − qn−1θ)
. (B.3)

Proof: The natural generalization of the notation [a0, a1, ..., am] to
numbers a0 ∈ R, a1, ..., am ∈ R>0 gives for n ∈ Z≥0

θ = [a0, a1, ..., an−1, θn] =
θnpn−1 + pn−2

θnqn−1 + qn−2

,

see Proposition 1.9 in [Ai13]. One concludes that the continued frac-
tion of θn is purely periodic, that θn = θm if n = kl + m with
l ∈ Z≥0 and m ∈ {0, 1, ..., k − 1}, and that its continued fraction
is [am...ak−1a0...am−1]. Therefore θn is reduced. Recall pn−1qn−2 −
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pn−2qn−1 = (−1)n. Inverting the equation above gives

θn =
θqn−2 − pn−2

θ(−qn−1) + pn−1

=
(−pn−2 + qn−2θ)(pn−1 − qn−1θ

conj)

N (pn−1 − qn−1θ)

=
−pn−2pn−1 + pn−2qn−1ã0 + qn−2qn−1d0 + (−1)nθ

N (pn−1 − qn−1θ)
.

The formula θ = θk =
θqk−2−pk−2

θ(−qk−1)+pk−1
shows

(1,−θ)
(
pk−1 pk−2

qk−1 qk−2

)
= (pk−1 − qk−1θ)(1,−θ) = β(1,−θ).

The inductive definition of pn and qn shows(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
...

(
an 1
1 0

)
.

With the periodicity an + k = an we obtain

(1,−θ)
(
pn+k pn−1+k

qn+k qn−1+k

)
= (1,−θ)

(
pk−1 pk−2

qk−1 qk−2

)(
pn pn−1

qn qn−1

)
= β(1,−θ)

(
pn pn−1

qn qn−1

)
.

This gives formula (B.2). □

Theorem B.6. Let α ∈ R − Q be a quadratic irrational and an
algebraic integer.

(a) There are a unique sign εα ∈ {±1} and a unique number nα ∈ Z
such that θ := εαα+nα is reduced. Then Z[α] = Z[θ], and any reduced

element θ̃ ∈ Z[α] with Z[α] = Z[θ̃] satisfies θ̃ = θ. We consider the
objects in Definition B.2 for this θ. We define

ã0 := θ + θconj ∈ N, d0 := −N (θ) = −θθconj ∈ N,
β := pk−1 − qk−1θ ∈ Z[θ]− Z.

as in Lemma B.5. Then a0 = ã0 and d0 ∈ {1, 2, ..., a0}.
(b) Then β is a unit and generates together with −1 the unit group

Z[α]∗, the l-th power of β is βl = plk−1 − qlk−1θ for l ∈ Z≥0, and

{±βl | l ∈ Z} = Z[α]∗,
{βl | l ∈ Z≥0} = Z[α]∗ ∩ {pn−1 − qn−1θ |n ∈ Z≥0}.

The element β is uniquely characterized by the following properties:
(i) −1 and β generate the unit group Z[α]∗,
(ii) |β| < 1,
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(iii) β = p− qθ with p ∈ Z, q ∈ N (namely p = pk−1, q = qk−1).

Proof: (a) Choose εα ∈ {±1} such that εα(α − αconj) > 0. Then
choose nα ∈ Z such that εαα

conj + nα ∈ (−1, 0). Define θ := εαα+ nα.
Then θconj = εαα

conj + nα ∈ (−1, 0). Also θ > θconj and θθconj ∈
Z− {0}. This shows θ > 1, so θ is reduced. Also Z[α] = Z[θ] is clear.

Any reduced element θ̃ ∈ Z[α] with Z[α] = Z[θ] has the shape

θ̃ = ε̃αα + ñα with ε̃α ∈ {±1} and ñα ∈ Z. The sign ε̃α is because of

θ̃ > 1 > 0 > θ̃conj the unique sign with ε̃α(α − αconj) > 0, so ε̃α = εα.
Now ñα is the unique integer with εαα

conj + nα ∈ (−1, 0), so ñα = nα.

Therefore θ̃ = θ.
We have a0 = ⌊θ⌋ = θ + θconj = ã0 and d0 = −θθconj ≤ a0, both

because θconj ∈ (−1, 0).
(b) We apply Lemma B.5. It tells us which of the elements pn−qnθ

for n ∈ Z≥0 are units, in the following way.
Consider n ∈ Z≥0 and write n = lk + m with l ∈ Z≥0 and m ∈

{0, 1, ..., k − 1}. Recall that θn is reduced, that θn = θm because of
formula (B.1) and that θm = θ only for m = 0, because for m ∈
{1, ..., k− 1} the purely periodic continued fractions of θ and θm differ.
Recall also from formula (B.2) that

pn−1 − qn−1θ = βl(pm−1 − qm−1θ).

If for some n ∈ Z≥0 N (pn−1 − qn−1θ) ∈ {±1}, then by formula
(B.3) θn satisfies Z[α] = Z[θ] = Z[θn]. The uniqueness of θ in part (a)
implies that then θn = θ, so m = 0. Therefore for n ∈ Z≥0 − kZ≥0,
N (pn−1 − qn−1θ) /∈ {±1}, so then pn−1 − qn−1θ is not a unit.

On the other hand, if n = kl, so m = 0, then θn = θ, and formula
(B.3) tells N (pn−1− qn−1θ) = (−1)n, so pn−1− qn−1θ is a unit. In fact,
formula (B.2) tells pn−1 − qn−1θ = βl. We see

{pn−1 − qn−1θ |n ∈ Z≥0} ∩ Z[θ]∗ = {βl | l ∈ Z≥0}. (B.4)

It remains to see that −1 and β generate Z[θ]∗.
By Dirichlet’s unit theorem [BSh73, Ch. 2 4.3 Theorem 5], the set

Z[α]∗ is as a group isomorphic to {±1} × Z. It has two generators ±β̃
with | ± β̃| < 1. They are the unique elements in Z[α]∗ with maximal
absolute value < 1. One of them has the shape p−qθ with q ∈ N. This
is called β̃. Then also p ∈ N, because |β̃| = |p− qθ| < 1 and qθ > 1.

1st case, θ ∈ (1, 2): Then a0 = d0 = 1, and θ = 1+
√
5

2
is the golden

section with θ2 = θ + 1. This case is well known. Here the continued
fraction of θ is purely periodic with period 1 of length one, because

250



a0 = 1 and

θ1 = (θ0 − a0)−1 = θ = θ0.

Here β = 1− θ = −θ−1 = θconj. It is well known that

Z[α]∗ = Z[θ]∗ = {±θl | l ∈ Z} = {±βl | l ∈ Z}

2nd case, θ > 2: β̃ = p − qθ is a unit, so ±1 = N (p − qθ). Also

|β̃| < 1 and θ > 2 imply p ≥ 2q. Therefore

|p
q
− θ| =

1

q(p− qθconj)
=

1

q(p+ q|θconj|)

<
1

q(2q + 0)
=

1

2q2
.

By Theorem B.4 (c) n ∈ Z≥0 with (p, q) = (pn, qn) exists. By (B.4) β̃

is a power of β, so β̃ = β. □

The parts (a) and (b) in the following proof of Lemma B.1 serve
also as examples for Theorem B.6.

Proof of Lemma B.1: (a) Here

x ≥ 3⇒ 2x > 5⇒ x2 − 4 > x2 − 2x+ 1

⇒
√
x2 − 4 ∈ (x− 1, x),

⇒ θ = κ1 − 1 =
x− 2

2
+

1

2

√
x2 − 4 ∈ (x− 3

2
, x− 1)

and θconj = κ2 − 1 =
x− 2

2
− 1

2

√
x2 − 4 ∈ (−1,−1

2
).

Observe

θ + θconj = x− 2, θθconj = −x+ 2.

Therefore

θ0 = θ, a0 = ⌊θ0⌋ = x− 2,

θ1 = (θ0 − a0)−1 =
θconj − (x− 2)

(θ − (x− 2))(θconj − (x− 2))

=
−θ
−x+ 2

=
θ

x− 2
,

a1 = ⌊θ1⌋ = 1,

θ2 = (θ1 − a1)−1 =
x− 2

θ − (x− 2)
=

(x− 2)(θconj − (x− 2))

−x+ 2
= θ,

θ = [x− 2, 1].
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The continued fraction of θ is purely periodic with period x− 2, 1 of
length 2 if x ≥ 4 and purely periodic with period 1 if x = 3. The norm
of p− qθ for p, q ∈ Z is

N (p− qθ) := (p− qθ)(p− qθconj) = p2 − q(p+ q)(x− 2) ∈ Z.
It is ±1 if and only if p− qθ is a unit.

n 0 1 2 3
an x− 2 1 x− 2 1
(pn, qn) (x− 2, 1) (x− 1, 1) (x2 − 2x, x− 1) (x2 − x− 1, x)
N (pn − qnθ) −x+ 2 1 −x+ 2 1

If x = 3 then β = p0 − q0θ = 1− θ in the notation of Lemma B.5,
so Z[θ]∗ is generated by (−1) and β or −β−1 = θ = κ1 − 1, so

Z[θ]∗ = {±(1− θ)l | l ∈ Z} = {±(κ1 − 1)l | l ∈ Z}.
This is also consistent with the 1st case in the proof of part (b) of
Theorem B.6.

If x ≥ 4 then β = p1 − q1θ = x− 1− θ in the notation of Corollary
B.4, so Z[θ]∗ is generated by (−1) and β or x− 1− θconj = κ1, so

Z[θ]∗ = {±(x− 1− θ)l | l ∈ Z} = {±κl1 | l ∈ Z}.
This proves part (a) of Lemma B.1.
(b) The case x = 2 is treated separately and first. This case is well

known. Then θ = 1+
√
2 ∈ (2, 3), θconj = 1−

√
2 ∈ (−1, 0), so a0 = 2.

The continued fraction of θ is purely periodic with period 2 of length
one, because a0 = 2 and

θ1 = (θ0 − a0)−1 = (
√
2− 1)−1 = θ0.

The element
p0 − q0θ = 2− θ = 1−

√
2 = θconj

is a unit. This and Theorem B.6 (b) show

Z[α]∗ = Z[θ]∗ = {±θl | l ∈ Z} = {±(1 +
√
2)l | l ∈ Z}.

Now we treat the cases x ≥ 3. Here

x ≥ 3⇒ x2 − 2 > x2 − x+ 1

4
⇒
√
x2 − 2 > x− 1

2
,

⇒ θ = (x− 1) +
√
x2 − 2 ∈ (2x− 3

2
, 2x− 1)

and θconj = (x− 1)−
√
x2 − 2 ∈ (−1,−1

2
).

Observe

θ + θconj = 2x− 2, θθconj = −2x+ 3.
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Therefore

θ0 = θ, a0 = ⌊θ0⌋ = 2x− 2,

θ1 = (θ0 − a0)−1 = ... =
θ

2x− 3
∈ (1, 2), a1 = 1,

θ2 = (θ1 − a1)−1 = ... =
θ − 1

2
∈ (x− 2, x− 1), a2 = x− 2,

θ3 = (θ2 − a2)−1 = ... =
θ − 1

2x− 3
∈ (1, 2), a3 = 1,

θ4 = (θ3 − a3)−1 = ... = θ = θ0,

θ = [2x− 2, 1, x− 2, 1].

The continued fraction of θ is purely periodic with period
2x− 2, 1, x− 2, 1 of length four. The norm of p− qθ is

N (p− qθ) = (p− qθ)(p− qθconj) = p2 + q2 − q(p+ q)(2x− 2).

It is ±1 if and only if p− qθ is a unit.

n 0 1 2 3
an 2x− 2 1 x− 2 1
(pn, qn) (2x− 2, 1) (2x− 1, 1) (2x2 − 3x, x− 1) (2x2 − x− 1, x)
N (pn − qnθ) −2x+ 3 2 −2x+ 3 1

We conclude with Theorem B.6 (and with the notation of Lemma B.5)
that

β = p3 − q3θ = (2x2 − x− 1)− xθ = (x2 − 1)− x
√
x2 − 2 = λ2

is together with (−1) a generator of Z[
√
x2 − 2]∗ = Z[θ]∗. Therefore

also λ1 together with (−1) is a generator of Z[
√
x2 − 2]∗. This proves

part (b) of Lemma B.1. □

Remark B.7. In the situation of Theorem B.6, Satz 9.5.2 in [Ko97]
tells that the unit group Z[θ]∗ is generated by −1 and qk−2+qk−1θ. This
is consistent with Theorem B.6 because of the following. Here

θ =
θkpk−1 + pk−2

θkqk−1 + qk−2

=
θpk−1 + pk−2

θqk−1 + qk−2

,

so 0 = qk−1θ
2 − (pk−1 − qk−2)θ − pk−2,

but also 0 = θ2 − ã0θ − d0,

so a0 = ã0 =
pk−1 − qk−2

qk−1

, d0 =
pk−2

qk−1

,

pk−1 − qk−1θ
conj = pk−1 − qk−1(a0 − θ) = qk−2 + qk−1θ.
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APPENDIX C

Powers of quadratic units

The following definition and lemma treat powers of units of norm
1 in the rings of integers of quadratic number fields. Though these
powers appear explicitly only in Lemma C.2 (c). Lemma C.2 will be
used in the proof of Theorem 5.18.

Definition C.1. (a) Define the polynomials bl(a) ∈ Z[a] for l ∈
Z≥0 by the following recursion.

b0 := 0, b1 := 1, bl := abl−1 − bl−2 for l ∈ Z≥2. (C.1)

(b) Define for l ∈ Z≥0 the polynomial rl ∈ Z[a] and for l ∈ N the
rational functions q0,l, q1,l, q2,l ∈ Q(t),

r0 := 0,

rl := −abl + 2bl−1 + 2 for l ∈ N,

q0,l :=
bl − bl−1

bl
,

q1,l :=
bl − bl−1 − 1

rlbl
,

q2,l := q0,l − 2q1,l.

(c) A notation: For two polynomials f1, f2 ∈ Z[a], (f1, f2)Z[a] :=
Z[a]f1 + Z[a]f2 ⊂ Z[a] denotes the ideal generated by f1 and f2.

Remark: If (f1, f2)Z[a] = Z[a] then for any integer c ∈ Z
gcd(f1(c), f2(c)) = 1.

(d) For a ∈ Z≤−3 ∪Z≥3 define κa :=
a
2
+ 1

2

√
a2 − 4 and κconja := a

2
−

1
2

√
a2 − 4 as the zeros of the polynomial t2−at+1, so that κa+κ

conj
a = a,

κaκ
conj
a = 1, κ2a = aκa − 1. They are algebraic integers and units with

norm 1.

The following table gives the first twelve of the polynomials bl(a).
The software Maxima [Maxima22] claims that the factors in the prod-
ucts are irreducible polynomials as polynomials in Q[a]. We will not
use this claim.
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b0 = 0

b1 = 1

b2 = a

b3 = (a− 1)(a+ 1)

b4 = a(a2 − 2)

b5 = (a2 − a− 1)(a2 + a− 1)

b6 = (a− 1)a(a+ 1)(a2 − 3)

b7 = (a3 − a2 − 2a+ 1)(a3 + a2 − 2a− 1)

b8 = a(a2 − 2)(a4 − 4a2 + 2)

b9 = (a− 1)(a+ 1)(a3 − 3a− 1)(a3 − 3a+ 1)

b10 = a(a2 − a− 1)(a2 + a− 1)(a4 − 5a2 + 5)

b11 = (a5 − a4 − 4a3 + 3a2 + 3a− 1)(a5 + a4 − 4a3 − 3a2 + 3a+ 1)

Lemma C.2. (a) For any l ∈ N
1 = b2l − ablbl−1 + b2l−1 = b2l − bl+1bl−1, (C.2)

(bl−1, bl)Z[a] = (bl − bl−1, bl)Z[a] = Z[a], (C.3)

rl =


(2− a)(b(l+1)/2 + b(l−1)/2)

2 for l odd,
(2− a)(a+ 2)b2l/2 for l even,

(also l = 0)
(C.4)

(rl−1/(2− a), rl/(2− a))Z[a] = Z[a], (C.5)

and

q2,l = 1− rl−1/(2− a)
rl/(2− a)

. (C.6)

(b) For a ∈ Z≤−3

bl(a) ∈ (−1)l−1N for l ≥ 1,

b1(a) = 1, b2(a) = a, |b2(a) + b1(a)| = |a| − 1,

|bl(a)| > 2|bl−1(a)| ≥ |bl−1(a)|+ 1 for l ≥ 2,

|bl+1(a) + bl(a)| > |bl(a) + bl−1(a)| for l ≥ 1.

For a ∈ Z≥3

bl(a) > 0 for l ≥ 1,

b1(a) = 1, b2(a) = a, b2(a) + b1(a) = a+ 1,

bl(a) > 2bl−1(a) for l ≥ 1,

bl+1(a) + bl(a) > 2(bl(a) + bl−1(a)) for l ≥ 1.
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(c) Consider a ∈ Z≤−3 ∪ Z≥3 and l ∈ N. Then

κla = bl(a)κa − bl−1(a), (C.7)

κa = (1− q0,l(a)) + (q0,l(a)− rl(a)q1,l(a))κla, (C.8)

κla =
2− rl(a)

2
+

1

2

√
rl(a)(rl(a)− 4), (C.9)

so κla is a zero of the polynomial t2 − (2− rl(a))t+ 1.

Proof: (a) The recursive definition (C.1) of bl shows immediately
the equality of the middle and right term in (C.2), it shows

b2l − ablbl−1 + b2l−1 = b2l−1 − abl−1bl−2 + b2l−2,

and it shows b21 − ab1b0 + b20 = 1. This proves (C.2). It implies (C.3).
The sequence (rl)l∈N satisfies the recursion

r0 = 0, r1 = 2− a, rl = arl−1 − rl−2 + 2(2− a) for l ≥ 2.

For l = 2 one verifies this immediately. For l ≥ 3 it follows inductively
with (C.1),

rl = −a(abl−1 − bl−2) + 2(abl−2 − bl−3) + 2

= a(−abl−1 + 2bl−2 + 2)− (−abl−2 + 2bl−3 + 2) + 2(2− a)
= arl−1 − rl−2 + 2(2− a).

For l = 1 and l = 0 (C.4) is obvious. For odd l = 2k+1 ≥ 3 as well as
even l = 2k ≥ 2, one verifies (C.4) inductively with this recursion and
with (C.2), for odd l = 2k + 1 ≥ 3:

(2− a)(bk+1 + bk)
2 − ar2k + r2k−1 − 2(2− a)

= (2− a)[((abk − bk−1) + bk)
2]

−(2− a)[a(a+ 2)b2k − (bk + bk−1)
2 + 2]

= (2− a)[2b2k − 2abkbk−1 + 2b2k−1 − 2]

= 0 (with (C.2)),

for even l = 2k ≥ 2:

(2− a)(a+ 2)b2k − ar2k−1 + r2k−2 − 2(2− a)
= (2− a)[(a+ 2)b2k]

−(2− a)[a(bk + bk−1)
2 − (a+ 2)b2k−1 + 2]

= (2− a)[2b2k − 2abkbk−1 + 2b2k−1 − 2]

= 0 (with (C.2)).
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(C.5) claims for k ≥ 0

((bk+1 + bk)
2, (a+ 2)b2k)Z[a] = Z[a]

and ((a+ 2)b2k+1, (bk+1 + bk)
2)Z[a] = Z[a].

The following claim is basic: For f1, f2, f3 ∈ Z[a]
(f1, f3)Z[a] = (f2, f3)Z[a] = Z[a] ⇒ (f1f2, f3)Z[a] = Z[a].

To see this claim consider 1 = α1f1 + α2f3, 1 = β1f2 + β2f3. Then

1 = (α1f1 + α2f3)(β1f2 + β2f3)

= α1β1f1f2 + α2β2f
3
3 + α1β2f1f3 + α2β1f2f3.

The claim and (C.3) show that for (C.5) it is sufficient to prove

(a+ 2, bk+1 + bk)Z[a] = Z[a].
This follows inductively in k with

bk+1 + bk = (a+ 2)bk − (bk + bk−1) and b1 + b0 = 1.

Finally, we calculate q2,l:

q2,l = (rlbl)
−1(rl(bl − bl−1)− 2(bl − bl−1 − 1))

= 1 + (rlbl)
−1(−(−abl + 2bl−1 + 2)bl−1)− 2bl + 2bl−1 + 2)

= 1 + (rlbl)
−1(bl(abl−1 − 2)− 2(b2l−1 − 1))

=

{
1 + (rl)

−1((abl−1 − 2)− 2bl−2) (with (C.2)) for l ≥ 2,
1 for l = 1

= 1− r−1
l rl−1.

(b) All inequalities and signs follow inductively with (C.1).
(c) (C.7) is true for l = 1. It follows inductively in l with the

following calculation, which uses κ2a = aκa − 1.

κl+1
a = κa(bl(a)κa − bl−1(a))

= bl(a)(aκa − 1)− bl−1(a)κa

= (abl(a)− bl−1(a))κa − bl(a)
= bl+1(a)κa − bl(a).

The right hand side of (C.8) is

bl−1(a)

bl(a)
+

1

bl(a)
κla

which is κa by inverting (C.7). Writing κa =
a
2
+ 1

2

√
a2 − 4 gives for κla

κla =
abl(a)− 2bl−1(a)

2
+
bl(a)

2

√
a2 − 4.

One verifies that this equals the right hand side of (C.9). □
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Index

(2,∞× 3)-tree, 58
(HZ, L), 12
(Brn)e/{±1}n , (Brn)S/{±1}n , 34

A2
1, A2, A

3
1, A2A1, A3, Â2, 5

An
1 , 19, 85

B1, B2, B3, B4, B5, 212
C1, ..., C24, 68

GL
(±1)
2 (R), 238

G(3,3,3) ⊂ SL3(Z), 198
Gfree,n, GfCox,n, 22
Gphi, 49
Gsign, 48

GM
Z , G

(0)
Z , G

(1)
Z , GZ, 13

GB
Z, 40

HR, 11
HZ, 12
H♯

Z = Hom(HZ,Z), 128
I(0), I(1), 12
L: Seifert form, 12
M : monodromy, 13
M root, 43, 99
O(0), O(1), 13
Q, 92
R(0), 13
R(1), 26

T : HZ
(k),♯⊗Rad I(k) → O

(k),Rad
u ,

130
T uni
n (Z), 13
Z, 40
Bdist, 34
Btri, 13
Brn, 21
Brn ⋉ {±1}n, 27

∆(0), ∆(1), 17
G1, ...,G14, 61
Γ(0), Γ(1), 17
H1,2, 5
Hom0,f (HZ,Z), 206
Hom0 or 2(HZ,Z), 170
K ⊂ HR, 241
N = {1, 2, 3, ...}, 11
O(k),Rad, O(k),Rad

u , 128
OQ[λ], O∗

Q[λ], 82

P1, P2, 5
R(k),dist, 34
Sdist, 34

Θ : Gl
(±1)
2 (R)→ Aut(HR), 241

Z-lattice, 11
δR : R3 → R3, 77
δRj : R3 → R3, 48

γ : R3 → R3, 49
γ2 : R3 → R3, 57

µ : Gl
(±1)
2 (R)→ Isom(H), 238

HZ
(k)
, HZ

(k),♯
, 128

π
(k)
n , πn, 26
σ-pseudo-graph, 227
σroot, σmon, 22
σ1, ..., σn−1, 22
σR
j : R3 → R3, 48

τ (k), 129
φj : R3 → R3, 49
ϑ : H→ (HR − {0})/R∗, 241
x̃ = (x̃1, x̃2, x̃3) = g−1x, 92
f1, f2, f3, 100, 102
f3, 89
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g = g(x) = gcd(x1, x2, x3), 92
g1, g2, 114
q0, q1, q2, 115
q0,l, q1,l, q2,l ∈ Q(t), 255
r, rR, 53, 89

s
(0)
a , s

(1)
a , 15

tλ, 206
t+λ , t

−
λ , 170

algebraic integer, 249
arc, 237
automorphism group, 13

bilinear lattice, 12
braid automorphism, 23
braid group, 21

Cayley transformation, 240
center, 22
cone, 241
continued fraction, 247
convergent, 247
Coxeter group, 25
Coxeter system, 24
cyclic endomorphism, 83

dihedral group, 135
distinguished basis, 34
distinguished matrix, 34
distinguished tuple of

reflections, 34
dual lattice, 128

elliptic Möbius transformation,
238

even intersection form, 12
even monodromy group, 17
even vanishing cycle, 17

free Coxeter group, 22
free group, 22
Fuchsian group, 145

generalized Cartan lattice, 14
generators of SL2(Z), 71
global sign change, 77

Hurwitz action, 22
hyperbolic bilinear lattice, 163
hyperbolic line, 237
hyperbolic plane, 237
hyperbolic polygon, 237
hyperbolic transformation, 238

infinite tree, 58
irrational number, 246
irreducible triple, 18
isotropic vector, 241

local minimum, 52

Möbius transformation, 238
monodromy, 13
monodromy group, 18

negative vector, 241
nilpotent part, 11

odd intersection form, 13
odd monodromy group, 17
odd vanishing cycle, 18
orthogonal, 19

parabolic Möbius
transformation, 238

partial quotient, 247
periodic continued fraction, 247
Poincaré-Maskit theorem, 239
positive vector, 241
power of a quadratic unit, 255
pseudo-graph, 58
purely periodic continued

fraction, 247

quadratic algebraic integer, 249
quadratic irrational, 246
quadratic unit, 255
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reduced number, 246
reducible triple, 18
reflection, 12
regular endomorphism, 82
root, 13
root of the monodromy, 43

Seifert form, 12
semidirect product, 27
semisimple part, 11
simple part, 129
spinor norm, 133

stabilizer, 34

transvection, 12
triangular basis, 13

unimodular bilinear lattice, 12
unipotent part, 11, 129
upper half plane, 237
upper triangular matrix, 13

vanishing cycle, 18

Weyl group, 151
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