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Abstract
To evaluate model fit in structural equation modeling, researchers commonly compare fit indices against fixed cutoff values 
(e.g., CFI ≥ .950). However, methodologists have cautioned against overgeneralizing cutoffs, highlighting that cutoffs permit 
valid judgments of model fit only in empirical settings similar to the simulation scenarios from which these cutoffs originate. 
This is because fit indices are not only sensitive to misspecification but are also susceptible to various model, estimation, 
and data characteristics. As a solution, methodologists have proposed four principal approaches to obtain so-called tailored 
cutoffs, which are generated specifically for a given setting. Here, we review these approaches. We find that none of these 
approaches provides guidelines on which fit index (out of all fit indices of interest) is best suited for evaluating whether the 
model fits the data in the setting of interest. Therefore, we propose a novel approach combining a Monte Carlo simulation 
with receiver operating characteristic (ROC) analysis. This so-called simulation-cum-ROC approach generates tailored 
cutoffs and additionally identifies the most reliable fit indices in the setting of interest. We provide R code and a Shiny app 
for an easy implementation of the approach. No prior knowledge of Monte Carlo simulations or ROC analysis is needed to 
generate tailored cutoffs with the simulation-cum-ROC approach.

Keywords Fit indices · Cutoff · Confirmatory factor analysis · Structural equation modeling · ROC

Introduction

To test the goodness of confirmatory factor analysis (CFA) 
models—and structural equation models more generally—
researchers routinely rely on model fit indices (Jackson 
et al., 2009; Kline, 2016). Next to the chi-square test of 
exact model fit ( �2 ; e.g., Bollen, 1989)1, some of the most 
commonly used global fit indices are the comparative fit 
index (CFI; Bentler, 1990), the root mean square error of 

approximation (RMSEA; Steiger, 1990), and the standard-
ized root mean residual (SRMR; Bentler, 1995). Those fit 
indices quantify model–data (mis-)fit in a continuous way. 
However, because fit indices are hard to interpret in isola-
tion, researchers usually rely on cutoffs (or “thresholds”) for 
fit indices that enable them to make binary decisions about 
whether a model fits the data or not.

Methodologists commonly derive such cutoffs for fit 
indices from Monte Carlo simulation studies (for an over-
view and detailed description, see Boomsma, 2013). Such 
simulation studies examine how fit indices behave across 
controlled scenarios. Methodologists specify true data-gen-
erating (or population) models and determine  misspecifica-
tion of various forms (e.g., in loadings or number of factors) 
in the analysis model, the model to be tested. By repeatedly 
generating (i.e., simulating) random data from each popula-
tion model and fitting the analysis model to each data, they 
obtain fit index distributions. A cutoff should then represent 
the fit index value that only rejects the analysis model if it 
is misspecified.

On the basis of such a simulation study, Hu and Bentler 
(1999) derived a set of cutoffs that have since become the de 
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facto standard in the field. Their simulation study covered a 
limited set of scenarios assumed to represent typical empiri-
cal settings. More specifically, the scenarios always encom-
passed three-factor models with 15 items. Hu and Bentler 
specified those models to have varying item and factor dis-
tributions, drew samples of various sizes, and misspecified 
either loadings or factor covariances. Based on their investi-
gation of those scenarios, Hu and Bentler proposed that CFI 
should be above or close to .950, RMSEA should be below 
or close to .060, and SRMR should be below or close to .080 
to indicate good model fit.

In empirical applications, researchers compare their 
obtained fit index values against these cutoffs to evaluate 
whether their model fits the data (i.e., is assumed to be cor-
rectly specified) or not (i.e., is assumed to be misspecified). 
This simple binary (yes/no) decision-making on model 
fit using the same, fixed cutoffs across diverse empirical 
settings (oftentimes different from the initial simulation 
scenarios) has been common practice in research involv-
ing latent-variable models for decades (e.g., Jackson et al., 
2009).

However, such fixed cutoffs for fit indices are more prob-
lematic than many researchers may realize. This is because 
fit indices are not only sensitive to misspecification, as 
intended, but undesirably susceptible to a range of model, 
estimation, and data characteristics. These characteristics 
include, for example, the loading magnitudes, the type of 
estimator, the sample size, and interactions thereof, espe-
cially when the model is misspecified (e.g., Groskurth et al., 
2024; Heene et al., 2011; Moshagen & Auerswald, 2018; Shi 
et al., 2019; Xia & Yang, 2018, 2019; for an overview, see 
Niemand & Mai, 2018). Likewise, the (non-)normality of 
the multivariate response distribution influences fit indices, 
regardless of whether the model is correctly specified or 
misspecified (e.g., Fouladi, 2000; Yuan & Bentler, 1999, 
2000b; Yuan et al., 2004). Further complicating matters, dif-
ferent fit indices react differently to model misspecifications, 
extraneous characteristics, and the interaction between them 
(Groskurth et al., 2024; Lai & Green, 2016; Moshagen & 
Auerswald, 2018).

The susceptibility of fit indices to such characteristics 
other than model misspecification leads to two key chal-
lenges in model evaluation. First, the performance ability 
of fit indices to detect model misspecification can vary 
greatly across empirical settings. Some fit indices react 
more strongly to misspecification than others in certain 
settings (and vice versa, e.g., Moshagen & Auerswald, 
2018). This differential performance threatens the abil-
ity of fit indices to discriminate between correctly speci-
fied and misspecified models (e.g., Reußner, 2019). No fit 
index universally outperforms others (for an overview, see 
Groskurth et al., 2024; Niemand & Mai, 2018). Second, 
cutoffs for fit indices pertain only to specific scenarios 

(i.e., combinations of model, estimation, and data char-
acteristics). Simulation studies can only cover a limited 
number of combinations of such characteristics. In empiri-
cal settings that diverge markedly from the simulation sce-
narios generating the cutoffs, these cutoffs may no longer 
allow for valid judgments of model fit (e.g., Hu & Bentler, 
1999; McNeish & Wolf, 2023a).

It is impossible to arrive at general rules on the perfor-
mance of specific fit indices, let alone fixed cutoffs that are 
universally applicable across settings. It is likewise impos-
sible to devise a simulation study that includes all possible 
scenarios. Although Hu and Bentler (1999) already warned 
against overgeneralizing their cutoffs, their cautionary note 
seems to have been largely unheeded in applied research 
(e.g., Jackson et al., 2009; McNeish & Wolf, 2023a). In prac-
tice, researchers apply cutoffs for fit indices rather uncriti-
cally. Treating the once-proposed cutoffs and sets of fit indi-
ces as “golden rules” can result in erroneous conclusions 
regarding model fit (Marsh et al., 2004; for examples, see 
McNeish & Wolf, 2023a). Such erroneous results threaten 
the integrity of scientific findings.

A solution that has long been proposed is to use tai-
lored cutoffs for fit indices customized to a specific setting 
of interest (Millsap, 2013; see also Kim & Millsap, 2014, 
based on Bollen & Stine, 1992). Tailored cutoffs are not 
yet widely used despite recently regaining traction (e.g., 
McNeish & Wolf, 2023a, b). Toward the ultimate aim of 
helping researchers transition to more valid model evalua-
tion practices via tailored cutoffs, the first goal of this article 
was to review and summarize existing approaches to gener-
ating tailored cutoffs. Such a systematic overview is missing 
from the current literature. As this review will reveal, exist-
ing approaches to generating tailored cutoffs have unique 
strengths and, while generally superior to fixed cutoffs, share 
some limitations. Chief among these limitations is that none 
of the existing approaches allows an evaluation of the differ-
ential performance of fit indices. They provide no guidelines 
on which fit index (out of all fit indices of interest) reacts 
most strongly to misspecification and, thus, best discrimi-
nates between correctly specified and misspecified models 
in a given setting.

Therefore, the second goal of our article was to intro-
duce a novel approach that builds on—and extends—prior 
approaches (e.g., McNeish & Wolf, 2023a, b; Millsap, 2013; 
Pornprasertmanit, 2014). It combines a Monte Carlo simu-
lation, an often-used procedure in psychometrics, with a 
receiver operating characteristic (ROC) analysis. Our so-
called simulation-cum-ROC approach answers two ques-
tions: (1) Which fit indices, if any, perform well (or even 
best) in a setting of interest? (2) Which cutoffs best discrimi-
nate between correctly specified and misspecified models 
in that setting? In this regard, our approach generates tai-
lored cutoffs for well-performing fit indices, whereas the 
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best-performing fit index is considered the most decisive for 
model evaluation. We illustrate this approach with empirical 
examples and provide complete R code as well as a Shiny 
app that facilitates its application.

The logic behind generating cutoffs for fit indices

In recent years, methodologists have advocated mov-
ing away from using fixed cutoffs and proposed several 
approaches to generate cutoffs tailored to the empirical 
setting of interest (e.g., McNeish & Wolf, 2023a; Millsap, 
2013; Pornprasertmanit, 2014). Before introducing any of 
these approaches to tailored cutoffs, we must highlight two 
important distinctions foundational to generating cutoffs 
for fit indices, whether fixed or tailored. The first distinc-
tion is between the analysis model (i.e., the latent-variable 
model one seeks to test) and the population model (i.e., the 
true model that generated the data). The second distinction 
is between empirical settings and hypothetical scenarios. 
In an empirical setting (i.e., fitting the analysis model to 
empirical data to test its fit), one never knows whether 
the analysis model is correctly specified or misspecified 
because the true data-generating mechanism (i.e., the 
population model) is always unknown. By contrast, in a 
hypothetical scenario (which can be used for simulating 
data), one knows whether the analysis model is correctly 
specified or misspecified because one can define both the 
analysis model and the population model that generates 
the data. These distinctions between analysis and popula-
tion models, as well as between empirical settings and 
hypothetical scenarios, are crucial for all approaches gen-
erating cutoffs for fit indices.

It is also pertinent to all approaches to define different 
hypotheses about how the empirical data might have been 
generated. Researchers usually follow the Neyman–Pearson 
approach to hypothesis testing (Neyman & Pearson, 1928, 
1933; see Biau et al., 2010; Moshagen & Erdfelder, 2016; 
Perezgonzalez, 2015). The Neyman–Pearson approach 
requires specifying a null hypothesis (H0) and an alternative 
hypothesis (H1). H0 states that a population model identical 
(or nearly identical) to the analysis model has generated the 
data; the analysis model captures all relevant features of the 
population model. It is correctly specified. H1 states that 
an alternative population model different from the analysis 
model has generated the data; the analysis model is under-
specified (i.e., misspecified) compared to the population 
model to an intolerable degree and fails to capture its rel-
evant features. It is misspecified.

Cutoffs for fit indices, in essence, are needed to discrim-
inate between H0 and H1 in empirical settings where the 
population model is unknown. However, one cannot generate 
cutoffs in an empirical setting where the population model 

is unknown; one needs to generate cutoffs in a hypothetical 
scenario where the population model is known.

The general procedure to derive either fixed or tailored 
cutoffs is as follows: Fit index distributions for correctly 
specified (H0) and misspecified (H1) analysis models are 
derived. The goal is to choose a cutoff (e.g., correspond-
ing to a certain percentile from the fit index distributions) 
that accurately classifies correctly specified models as cor-
rectly specified and misspecified models as misspecified. 
The chosen cutoff should minimize the misclassification of 
correctly specified models as misspecified (type I error rate) 
and of misspecified models as correctly specified (type II 
error rate).

Fixed cutoffs are generated to broadly cover a generic set 
of hypothetical scenarios that are assumed to occur regularly 
in empirical settings (e.g., three-factor models with 15 items 
in the case of Hu and Bentler, 1999). Once created, research-
ers use this single set of cutoffs across diverse empirical set-
tings. In contrast, tailored cutoff approaches define the hypo-
thetical scenario closely to the empirical setting of interest, 
such as using the same sample size of the empirical data and 
the same analysis model of interest. Each time researchers 
consider a new empirical setting, they must derive a new set 
of tailored cutoffs.

Once (either fixed or tailored) cutoffs are derived from 
hypothetical scenarios with known population models, one 
then uses these cutoffs to test which hypothesis—H0 or 
H1—is more plausible for their analysis model fit to empiri-
cal data generated from an unknown population model. If 
empirical fit index values pass their cutoffs, one accepts the 
analysis model. Accepting the analysis model means that 
H0 seems more plausible than H1, given the empirical data. 
If empirical fit index values fail their cutoffs, one rejects 
the analysis model. Rejecting the analysis model means that 
H1 seems more plausible than H0, given the empirical data. 
Whether H0 or H1 is indeed true will be left unanswered as 
the population model generating the empirical data always 
remains unknown (Neyman & Pearson, 1928).2

2 Another way to test whether empirical evidence favors H0 is to 
look at confidence intervals for fit indices. If those confidence inter-
vals include (or are very close to) 0 indicating perfect fit (for RMSEA 
and SRMR, alternatively 1 for CFI), empirical evidence favors 
H0 (e.g., Schermelleh-Engel et  al., 2003; or at least one is not able 
to find evidence against it, Yuan et  al., 2016). Confidence intervals 
have been suggested for several widely used fit indices such as CFI 
(Cheng & Wu, 2017; Lai, 2019; Yuan et  al., 2016; Zhang & Sava-
lei, 2016), RMSEA (Brosseau-Liard et al., 2012; Browne & Cudeck, 
1992; Cheng & Wu, 2017; MacCallum et al., 1996; Zhang & Sava-
lei, 2016), and SRMR (Cheng & Wu, 2017; Maydeu-Olivares, 2017; 
Maydeu-Olivares et al., 2018).
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A review of existing approaches to generating 
tailored cutoffs

Whereas fixed cutoffs are usually derived once in a single 
simulation study, covering a range of scenarios, various 
approaches have been specified to derive cutoffs tailored 
to the specific empirical setting at hand. Currently, there 
are four principal approaches to generating tailored cut-
offs (Table 1)3 that fall on a continuum from parametric to 
non-parametric:

(1) The �2 distribution-based approach generates cutoffs 
by relying on statistical assumptions of the �2 distribu-
tion without and with misspecification (Moshagen & 
Erdfelder, 2016).

(2) The regression-based approach generates cutoffs 
based on meta-regression results from a prior simu-
lation study (Nye & Drasgow, 2011; Groskurth et al., 
2024). The regressions predict cutoffs from various 
model, estimation, and data characteristics, allowing 
the researcher to account for characteristics that influ-
ence fit indices.

(3) The dynamic simulation approach generates cutoffs 
based on fit index distributions from an analysis model 
fit to multiple samples from known population models 
(McNeish & Wolf, 2023a, b; Millsap, 2007, 2013; Mai 
et al., 2021; Niemand & Mai, 2018; Pornprasertmanit, 
2014).

(4) The bootstrap approach generates cutoffs based on 
fit index distributions by fitting the analysis model to 
resampled empirical data transformed as if the analysis 
model does (or does not) fit it (Bollen & Stine, 1992; 
Kim & Millsap, 2014).

�
2 distribution‑based approach

One option to generate tailored cutoffs is via the parametric 
�
2 distribution-based approach as outlined by Moshagen and 

Erdfelder (2016, which seems to be partly based on Mac-
Callum et al., 1996; see also Jak et al., 2021; Jobst et al., 
2023). The core idea of the �2 distribution-based approach 
to tailored cutoffs is to infer the distributions of correctly 
specified and misspecified models from the known central 

and non-central �2 distributions. The central and non-central 
�
2 distributions can then be used to determine cutoffs. This 

works both for the �2 test statistic itself and for fit indices 
that incorporate it (such as RMSEA).

The approach rests on the assumption that the �2 test statistic 
follows a central �2 distribution if the analysis model is cor-
rectly specified—but a non-central �2 distribution if the analy-
sis model is misspecified. A non-centrality parameter deter-
mines how much the non-central �2 distribution deviates from 
the central �2 distribution. Crucially, this non-centrality param-
eter depends on the misspecification of the analysis model and 
the sample size (for a detailed description, see Bollen, 1989; 
Chun & Shapiro, 2009; Moshagen & Erdfelder, 2016).

To derive tailored cutoffs, users define an effect size dif-
ference (i.e., some degree of intolerable misspecification 
based on the non-centrality parameter) between the central 
and non-central �2 distribution. The expected value of the 
central �2 distribution equals the degrees of freedom of the 
analysis model of interest. It is the distribution for the �2 test 
statistic given that the analysis model is correctly specified. 
The expected value of the non-central �2 distribution equals 
the degrees of freedom of the analysis model of interest plus 
the effect size (i.e., the intolerable degree of misspecification 
defined by the non-centrality parameter). It is the distribu-
tion for the �2 test statistic given that the analysis model is 
misspecified. Those two distributions allow users to derive 
a cutoff for the �2 test statistic at a specific ratio of type I 
and type II error rates. Typically, the type I and type II error 
rates are balanced (i.e., equally small).

The �2 distribution-based approach has the advantage of 
computational speed. Statistical tools such as R rapidly solve 
the equations needed to generate cutoffs. However, a disad-
vantage of this procedure is the limited extent of tailoring. 
The approach can only generate cutoffs for fit indices that 
are transformations of the �2 test statistic (e.g., RMSEA). 
It is not applicable to fit indices that are based, for example, 
on standardized residuals (e.g., SRMR) and, thus, do not 
follow a known distribution. Moreover, users can only calcu-
late tailored cutoffs from Moshagen and Erdfelder’s (2016) 
�
2 distribution-based approach under the assumption that 

items follow a multivariate normal distribution, in which 
case the �2 distribution is known. Non-normal multivari-
ate distributions of the items (e.g., Fouladi, 2000; Yuan & 
Bentler, 1999, 2000b; Yuan et al., 2004) or large models 
with many items (Moshagen, 2012) violate the distributional 
assumptions of the �2 test statistic. Different test statistics 
(e.g., Yuan & Bentler, 2007) are necessary to generate valid 
cutoffs that are not always straightforward to handle. In sum, 
the �2 distribution-based approach limits the extent to which 
users can tailor cutoffs to their specific setting of interest 
and the range of fit indices for which users can generate the 
cutoffs (see Table 1).

3 One could also add the table-based approach for generating tailored 
cutoffs to this list (e.g., Groskurth et al., 2024). Reminiscent of look-
ing up critical values for z-scores, users read out scenario-specific 
cutoffs from large tables originating from a prior  simulation study. 
However, as this approach is still very inflexible (as it only allows to 
read out cutoffs for those scenarios covered in the initial simulation 
study), we dismissed the approach in our review.
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Regression‑based approach

Another option to generate tailored cutoffs is via the par-
ametric regression-based approach. The basic idea is to 
predict tailored cutoffs for a given empirical setting using 
a regression formula (e.g., Groskurth et al., 2024; Nye & 
Drasgow, 2011). This enables users to account for at least 
some of the characteristics of their empirical setting when 
choosing appropriate cutoffs.

The regression-based approach underlies a single, 
although typically very extensive, simulation study in the 
background. This simulation ideally covers many different 
model, estimation, and data characteristics (e.g., one- versus 
two-factor models, different numbers of items, and different 
distributions of the items). Cutoffs at certain type I or type 
II error rates are derived for each of the different scenarios. 
Cutoffs are considered dependent variables and regressed on 
the model, estimation, and data characteristics considered 
in the simulation. The regression formula thus comprises 
predictors with associated regression weights that contain 
information about how the various model, estimation, and 
data characteristics covered in the simulation (e.g., number 
of items, type of estimator, and distribution of responses) 
influence cutoffs at certain type I or type II error rates. To 
derive tailored cutoffs, users simply plug their model, esti-
mation, and data characteristics of their setting of interest 
into the formula.

Hence, users predict tailored cutoffs by using a regres-
sion formula from a large, ideally extensive simulation study. 
Although the simulation study underlying the regression 
formula should be extensive, it does not necessarily cover 
a scenario similar to the empirical setting of interest. How-
ever, the formula allows for extrapolation; thus, it allows 
for the prediction of cutoffs for settings not covered in the 
initial simulation scenarios. Although extrapolation is only 
advisable for empirical settings that do not diverge strongly 
from the scenarios in the initial simulation, it helps to tailor 
cutoffs to a wider variety of settings than initially covered 
by the simulation scenarios.

Nye and Drasgow (2011) and Groskurth et al. (2024) 
followed the regression-based approach. Nye and Dras-
gow (2011) provided regression formulae for RMSEA and 
SRMR. Besides the cutoffs, they considered the response 
distribution, the sample size, and the type I error rate in 
the formulae. Their models had two factors, 15 items, and 
they estimated them with diagonally weighted least squares. 
Groskurth et al. (2024) considered more fit indices and a 
much wider range of characteristics: They provided regres-
sion formulae for �2 , �2/degrees of freedom, CFI, RMSEA, 
and SRMR. Estimators, number of items, response distribu-
tions, response options, loading magnitudes, sample size, 
and number of factors served as predictors in the formulae.

Similar to the �2 distribution-based approach, the regres-
sion-based approach has the advantage of speed. Users 
merely have to plug the characteristics of their empirical 
setting into the formula, commonly solved by a statistical 
tool such as R. However, the regression formula is only 
as inclusive as the simulation study from which it was 
derived—although extrapolation is possible for settings dif-
ferent from the initial simulation scenarios. Further, users 
can only obtain cutoffs for those fit indices that are consid-
ered in the simulation study from which the regression for-
mula hails. Akin to the �2 distribution-based approach, the 
regression-based approach limits the extent to which users 
can tailor cutoffs to their specific empirical setting and the 
range of fit indices (see Table 1).

Dynamic simulation approach

A third approach that allows for a much greater extent of 
tailoring cutoffs is what we call the “dynamic” simulation 
approach (following McNeish & Wolf, 2023a). Like the 
fixed cutoff approach (but also like the regression-based 
approach for tailored cutoffs), the dynamic approach uses 
Monte Carlo simulations to generate cutoffs. Crucially, how-
ever, the simulations are performed for the specific empirical 
setting at hand on a case-by-case basis—instead of rely-
ing on generic simulation results (McNeish & Wolf, 2023a, 
b; Millsap, 2007, 2013; Mai et al., 2021; Niemand & Mai, 
2018; Pornprasertmanit, 2014; for nested models, see Porn-
prasertmanit et al., 2013).

Simulation scenarios are well known (dating back to the 
initial Hu & Bentler, 1999, article); we describe them in 
detail here to enable users to apply the dynamic simulation 
approach: Users need to define a population model, simu-
late data (i.e., draw multiple samples) from that population 
model, and fit an analysis model to the simulated data. The 
analysis model is identical (or nearly identical) to the popu-
lation model; it captures all relevant features of the popula-
tion model and is, thus, correctly specified. After fitting the 
analysis model to the data, users record the fit index values 
of each analysis model. A cutoff can then be set based on a 
specific percentile, commonly the 95th or 90th, of the result-
ing fit index distribution (equivalently, on the 5th or 10th for 
fit indices where higher values indicate better fit). At this per-
centile, the cutoff categorizes 95% or 90% of correctly speci-
fied models as correctly specified and 5% or 10% of correctly 
specified models as misspecified (i.e., the type I error rate).

Users may repeat the procedure with the same analysis 
model but a population model with more parameters than the 
analysis model. As such, one fixes non-zero parameters in 
the population model to zero in the analysis model (e.g., Hu 
& Bentler, 1998). The analysis model is, thus, underspeci-
fied (i.e., misspecified) relative to the population model; it 
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fails to capture relevant features of the population model. 
Including a misspecified scenario allows for evaluating how 
many misspecified models a cutoff categorizes as correctly 
specified (i.e., the type II error rate).

Crucially, to arrive at cutoffs tailored to the setting of inter-
est, the analysis and population models are not just any mod-
els but are chosen to match the given empirical setting. Each 
time users assess a new empirical setting (i.e., different model, 
estimation, and data characteristics), they must derive a new 
set of cutoffs via Monte Carlo simulations. This makes the 
approach dynamic and distinguishes it from approaches that 
rely on generic simulation studies (i.e., most prominently, the 
fixed cutoff approach). Thus, the dynamic simulation approach 
eliminates the problem that empirical settings may deviate 
from scenarios underlying the cutoffs by specifying the simu-
lation scenario just like the empirical setting of interest.

The dynamic simulation approach is computationally 
intensive, more intensive than the χ2 distribution-based and 
regression-based approaches, because a simulation study has 
to be run anew for every setting of interest. For the same 
reason, it has the advantage of being very flexible. It gener-
ates tailored cutoffs for all fit indices available in a given sta-
tistical program to the specific model, estimation, and data 
characteristics of the analysis setting at hand (see Table 1). 
Combined with computers’ continuously increasing statisti-
cal power, this is one of the reasons why this approach has 
recently gained traction (McNeish & Wolf, 2023a, b).

Bootstrap approach

Cutoffs tailored to the given analysis setting at hand can not 
only be generated via (dynamic) Monte Carlo simulations, 
which are essentially parametric bootstrap approaches (sim-
ulating, i.e., resampling, data based on model parameters), 
but also via non-parametric bootstrap approaches (i.e., resa-
mpling observed data). A fourth approach uses such non-
parametric bootstrapping to generate tailored cutoffs from 
empirical data transformed as if the analysis model does (or 
does not) fit it (Bollen & Stine, 1992; Kim & Millsap, 2014; 
Yuan & Hayashi, 2003; Yuan et al., 2004, 2007).

In the following, we illustrate Bollen and Stine’s (1992) 
and Kim and Millsap’s (2014) bootstrap approach in more 
detail. The bootstrap approach transforms each observa-
tion in the empirical data using the data-based and model-
implied covariance and mean structure (see also Yung & 
Bentler, 1996). After the transformation, users obtain data 
that behaves as if the analysis model had generated it. The 
algorithm resamples the transformed data (with replace-
ment), fits the analysis model to each resampled data, and 
records the values of fit indices for each. The bootstrap 
approach outlined above allows evaluating type I error rates 
(i.e., incorrectly rejecting a correctly specified model) for 

cutoffs that correspond to a certain percentile of the resulting 
fit index distributions. Yuan and Hayashi (2003), as well as 
Yuan et al. (2004, 2007), developed an extended bootstrap 
approach that also allows investigating power (i.e., correctly 
rejecting a misspecified model—the complement of the type 
II error rate).

The bootstrap approach is very flexible, similar to the 
dynamic simulation approach (see Table  1). Through 
repeated resampling, users can generate cutoffs for all avail-
able fit indices tailored to all choice characteristics. This 
comes at the expense of greater computational intensity than 
the �2 distribution-based and regression-based approaches.

Limitations of the existing approaches

All four approaches of generating tailored cutoffs have their 
merits and constitute a clear advancement over fixed cutoffs, 
allowing for more valid cutoffs that control type I and/or 
type II errors. Some approaches have an advantage in terms 
of computational speed in arriving at tailored cutoffs (i.e., 
the �2 distribution-based and regression-based approaches, 
both parametric). Others stand out as they are very general 
and generate cutoffs for a wide range of fit indices across a 
wide range of characteristics (i.e., the parametric dynamic 
simulation approach and the non-parametric bootstrap 
approach).

However, these approaches also have specific limita-
tions (see Table 1). One limitation they share is that they 
do not assess which fit index (among several fit indices a 
researcher may consider) reacts most strongly to misspecifi-
cation. Knowing which fit index is, thus, best able to discern 
correctly specified from misspecified models in the setting 
of interest would guide researchers on which fit indices they 
should rely on for judging model fit. Such guidance on how 
much weight to assign to each fit index is especially needed 
when fit index decisions on model fit disagree, which often 
occurs in practice (e.g., Lai & Green, 2016; Moshagen & 
Auerswald, 2018).

We, therefore, introduce an approach that builds on 
previous approaches and extends them by (1) identifying 
well-performing (and best-performing) fit indices in a spe-
cific setting of interest while (2) generating tailored cutoffs 
that balance both type I and type II error rates. This new 
approach is both general and adaptable enough to support 
valid judgments of model fit across various settings that 
researchers may encounter.

A novel approach to tailored cutoffs: The 
simulation‑cum‑ROC approach

Our so-called simulation-cum-ROC approach augments 
the dynamic simulation approach (e.g., McNeish & Wolf, 
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2023a; Millsap, 2013; Pornprasertmanit, 2014) that is cur-
rently gaining traction among applied researchers and builds 
on a long tradition of generating cutoffs through Monte Carlo 
simulations (dating back to the initial Hu & Bentler, 1999, 
article). The unique contribution of our approach is combin-
ing the dynamic simulation approach with receiver operating 
characteristic (ROC) analysis. The ROC analysis enables us 
to (1) rank the performance of any fit index in the setting 
of interest, including—but not limited to—the canonical 
fit indices on which we focus in this article (i.e., �2 , CFI, 
RMSEA, SRMR). Further, the dynamic simulation approach, 
in combination with ROC analysis, enables us to (2) generate 
tailored cutoffs at balanced type I and type II error rates for 
well-performing fit indices. Our approach thus allows for a 
more informative and rigorous evaluation of model fit.

In a nutshell, the simulation-cum-ROC approach works as 
follows. First, we use a Monte Carlo simulation to generate 
data from two population models, each representing differ-
ent assumptions about the true data-generating mechanism. 
One population model is structurally identical to the analysis 
model one seeks to test, such that the analysis model is cor-
rectly specified relative to the population model (H0). The 
other population model diverges from that analysis model, 
such that the analysis model is misspecified relative to the 
population model (H1). We fit the analysis model to data 
simulated from the two population models and record the 
fit index values. Those simulations are conducted for the 
empirical setting of interest and, thus, resemble what is done 
in other dynamic simulation approaches (e.g., McNeish & 
Wolf, 2023a; Millsap, 2013; Pornprasertmanit, 2014). Sec-
ond, as a new feature, we analyze the fit index distributions 
with ROC analysis in addition to what is done in dynamic 
simulation approaches. ROC analysis equips researchers 
with a tool to rank fit indices in terms of their ability to 

discriminate between correctly specified and misspecified 
models. Third, we generate cutoffs not for all fit indices of 
interest but only for those that appear well-performing in 
the given scenario—these cutoffs balance type I and type II 
error rates. We visualized the three steps to generate tailored 
cutoffs for well-performing fit indices in Fig. 1.

Fundamentals of ROC analysis

Before outlining the details of our simulation-cum-ROC 
approach, we briefly introduce ROC analysis. We base the 
introduction of ROC analysis on Flach (2016) and Padg-
ett and Morgan (2021). Flach (2016) provided a general 
description of ROC analysis, and Padgett and Morgan (2021) 
connected ROC analysis to model fit evaluation.

ROC analysis originated within the context of signal detec-
tion theory in communication technology (for a detailed over-
view of the history of ROC analysis and signal detection the-
ory, see Wixted, 2020). It provides a tool to evaluate the ability 
of a binary classifier to make correct diagnostic decisions in 
diverse scenarios, such as hypothesis testing. ROC analysis 
finds the optimal value for a classifier in making a diagnostic 
decision, such as classifying an analysis model as correctly 
specified or misspecified. It has supported decision-making in 
medicine for many decades and gained popularity in machine 
learning (for an overview, see Majnik & Bosnić, 2013).

Fit indices are essentially continuous classifiers that typi-
cally indicate better fit for correctly specified models and 
poorer fit for misspecified models. The cutoffs for these fit 
indices serve as decision thresholds. These cutoffs should 
be selected to maximize the share of analysis models that 
are classified as either correctly specified or misspecified.

Cutoffs for fit indices have a high sensitivity (i.e., true-
positive rate) if they classify a high share of misspecified 

Fig. 1  The simulation-cum-ROC approach
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models as misspecified (i.e., true positive) and only a small 
share of misspecified models as correctly specified (i.e., false-
negative, type II error). In turn, cutoffs for fit indices have a 
high specificity (i.e., true-negative rate) if they classify a high 

share of correctly specified models as correctly specified (i.e., 
true negative) and only a small share of correctly specified 
models as misspecified (i.e., false positive, type I error). The 
formulae to calculate sensitivity and specificity read as

(1)Sensitivity (or true − positive rate) =
Number of True Positives

Number of True Positives + Number of False Negatives

(2)Specificity (or true − negative rate) =
Number of True Negatives

Number of True Negatives + Number of False Positives

The goal is to find a cutoff for each fit index that pro-
vides an optimal balance between sensitivity and speci-
ficity (i.e., which maximizes the sum of sensitivity and 
specificity – 1, i.e., the Youden index). Such an optimal 

cutoff has a high accuracy, which means that the share of 
true positives and true negatives is large among all clas-
sified cases (i.e., the total number of converged models in 
simulation runs):

(3)
Accuracy =

Number of True Positives + Number of True Negatives

Number of True Positives + Number of True Negatives + Number of False Positives + Number of False Negatives

An ROC curve visualizes the sensitivity and specific-
ity at different cutoffs. These cutoffs may be generated 
arbitrarily (within the range of fit index values, e.g., Flach, 
2016), or the actual fit index values are taken as cutoffs 
(as done here, following Thiele & Hirschfeld, 2021). 

The graph visualizing the ROC curve has sensitivity (or 
true-positive rate) on its Y-axis and 1 − specificity (or 
false-positive rate) on its X-axis. The area under the curve 
(AUC) quantifies the information of the ROC curve. We 
visualized the relationship between the distributions of 

Fig. 2  Relation of fit index distributions, cutoffs, and the ROC curve 
for different AUCs. Note. The figure shows fit index distributions and 
a sample of their fit index values. It further includes true- and false-
positive rates of cutoffs estimated from the sample of fit index values. 

The ROC curve visualizes the true- and false-positive rates of cutoffs. 
The interplay of fit index distributions, true- and false-positive rates, 
and the ROC curve differ across AUCs. tpr = true-positive rate; fpr = 
false-positive rate
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a fit index, true- and false-positive rates of cutoffs, ROC 
curve, and AUC values in Fig. 2.

The AUC ranges between 0 and 1. It indicates the discrimi-
nation ability of a fit index at different cutoffs. An AUC of 1 is 
most favorable; it implies that all cutoffs have a true-positive 
rate of 1 or a false-positive rate of 0. Thus, 100% of the time, 
the fit index will correctly discriminate between correctly 
specified and misspecified models (e.g., D’Agostino et al., 
2013). The optimal cutoff, with the optimal balance between 
sensitivity and specificity, has a true-positive rate of 1 and a 
false-positive rate of 0—the ROC curve peaks in the upper left 
of the graph. Fit index distributions from correctly specified 
and misspecified models do not overlap (see Fig. 2).

An AUC of 0.5 can imply different things, but most 
importantly, it can imply that all cutoffs have equal true- 
and false-positive rates. The discrimination ability of the 
fit index at different cutoffs is no better than a guess (e.g., 
D’Agostino et al., 2013). No optimal cutoff can be identi-
fied—the ROC curve is an ascending diagonal. Fit index dis-
tributions from correctly specified and misspecified models 
completely overlap; no distinction is possible (see Fig. 2).

An AUC of 0 implies that all cutoffs have a true-positive rate 
of 0 or a false-positive rate of 1. The fit index has no discrimina-
tion ability at all at different cutoffs. An optimal cutoff cannot be 
identified—the ROC curve peaks in the lower right of the graph. 
Fit index distributions do not overlap; however, fit index values 
from correctly specified models behave unexpectedly and indi-
cate worse fit than those from misspecified models (see Fig. 2).

Overall, the outlined relations indicate that the AUC 
quantifies what the ROC curve visualizes, namely, the per-
formance of fit indices in terms of true- and false-positive 
rates at different cutoffs. The optimal cutoff is the one that 
has the highest sum of sensitivity (i.e., true-positive rate) and 
specificity (i.e., 1 – false-positive rate) across all evaluated 
cutoffs. Thus, the optimal cutoff shows up as a peak in the 
upper left of the graph (i.e., highest true-positive rate and 
lowest false-positive rate).

Combining Monte Carlo simulation with ROC 
analysis to generate tailored cutoffs for fit indices

Having reviewed the basics of ROC analysis, we now detail 
our simulation-cum-ROC approach to (1) evaluate the per-
formance of fit indices and (2) generate tailored cutoffs. We 
walk the reader through each step of the procedure shown 
in Fig. 1.

Input: Fit analysis model to empirical data

Suppose we want to test whether a six-item scale measures a 
single underlying factor as its theory proposes. Survey data, 
including 500 participants’ responses to the six items of the 
scale, forms the basis of our empirical setting. We fit our 

analysis model—a one-factor CFA model—to the empirical 
data using robust maximum likelihood (MLR)4 estimation.

We aim to test two hypotheses. H0 states that a popu-
lation model identical (or nearly identical) to the analysis 
model (i.e., a one-factor model) has generated the empirical 
data; the analysis model captures all relevant features of the 
population model. If empirical evidence favors H0, we want 
to accept this analysis model. H1 states that an alternative 
population model different from the analysis model has gen-
erated the empirical data; the analysis model is misspecified 
compared to the population model to an intolerable degree 
and fails to capture its relevant features. If empirical evidence 
favors H1, we want to reject the analysis model. Thus, we 
define two diverging states of the world that describe how the 
empirical data may have been generated (i.e., H0 and H1), and 
we can find evidence in favor of one or the other.

To test the two hypotheses, we obtain empirical fit index 
values fitting the analysis model to empirical data and com-
pare those against cutoffs tailored to the specific charac-
teristics of our empirical setting. We generate these cutoffs 
through the following three steps.

Step 1: Simulate data and fit analysis model 
to simulated data

In the first step, we conduct a Monte Carlo simulation 
closely designed to mimic the real empirical setting in 
terms of the model of interest (e.g., number of items, load-
ing magnitudes), the analytical strategy (e.g., MLR estima-
tor), and the data characteristics (e.g., N = 500, multivariate 
distribution). The simulation-cum-ROC approach shares this 
basic idea with other dynamic simulation approaches (e.g., 
McNeish & Wolf, 2023a, b).

More specifically, following the Neyman–Pearson 
approach, we operationalize the two competing hypotheses, 
H0 versus H1, about the population model that may have gen-
erated the empirical data in the setting of interest through a 
Monte Carlo simulation scenario. Thereby, researchers need 
to define the H0 and H1 population models (e.g., Millsap, 
2007, 2013; cf. McNeish & Wolf, 2023a, b). Whereas the 
H0 population model oftentimes simply equals the analy-
sis model, the H1 population model is harder to define; 
researchers need to specify a certain degree of intolerable 

4 MLR (Muthén & Muthén, 1998-2017; Yuan & Bentler, 2000a) is 
a variant of the most commonly used ML estimator (Bollen, 1989; 
Jackson et al., 2009). MLR assumes continuous data but corrects the 
�
2 test statistic and standard errors of ML-estimated parameters for 

non-normality with the help of scaling factors. It yields relatively 
unbiased model parameters for ordered categorical data with a suf-
ficient number of response options (i.e., five or more; Beauducel & 
Herzberg, 2006; Rhemtulla et  al., 2012). Thus, MLR is very well-
known and appropriate in a wide variety of empirical settings, which 
is why we chose it throughout this article.
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misspecification of the analysis model compared to the H1 
population model.

As H1 population models are hard to define, they are 
usually predefined in dynamic simulation approaches 
(e.g., McNeish & Wolf, 2023a, b) and, thus, hidden from 
the researcher. For example, McNeish and Wolf (2023a, b) 
always use the same H1 population model in terms of model 
structure and additional parameters for all analysis models 
of the same type (e.g., one-factor CFA models).

We decided not to predefine the H1 population model 
but leave the definition of the H1 population model to the 
researcher (e.g., Millsap, 2007, 2013). To aid researchers 
in defining H1 population models, we provide guidance on 
defining the form and quantifying the degree of misspecifi-
cation in the Discussion section. This guidance should make 
the definition of H1 population models more comparable 
and, thus, objective.

In our view, having the researcher explicitly specify the 
H1 population model is favorable to relying on implicit 
ones. It makes assumptions about the H1 population model 
transparent; researchers need to think about and justify their 
definition of intolerable misspecification. It is very impor-
tant that researchers transparently outline their choices and 
provide a strong rationale for their hypotheses and models. 
Providing a strong rationale aligns with recent calls for more 
rigorous theory testing in psychology, formalized theories, 
and preregistration (e.g., Borsboom et al., 2021; Fried, 2020; 
Guest & Martin, 2021).

After defining the population models, we simulate data 
from the H0 population model structurally identical to the 
analysis model of interest (i.e., a one-factor CFA model). 
We also simulate data from the H1 population model that 
diverges substantially from the analysis model. For example, 
an H1 population model could have two factors, whereas the 
analysis model of interest has one factor. Notably, model are 
usually nested but they do not necessarly need to be nested 
(i.e., analysis and population models alike do not need 
to represent a subspace of each other), meaning that our 
approach is flexible regarding model definition.5,6

After repeatedly simulating data from the H0 and H1 pop-
ulation models (e.g., 500 times each), we fit the one-factor 
analysis model to all simulated data and record the values 
of the fit indices. We obtain distributions of fit index values 
for correctly specified models (under H0) and misspecified 
models (under H1).

Step 2: Evaluate the performance of fit indices

After simulating data and obtaining fit index distributions, 
we evaluate and rank the performance of fit indices on the 
simulated data via the ROC curve and the AUC in particu-
lar, which is a unique feature of the simulation-cum-ROC 
approach. Both the ROC curve and the AUC reflect the bal-
ance of a fit index between the true-positive rate, or sensitiv-
ity, and the false positive rate, or 1 – specificity, at different 
potential cutoffs. The closer the fit index’s AUC is to 1, the 
higher its sensitivity and specificity across different poten-
tial cutoffs. Thus, the AUC quantifies how well a fit index 
discriminates between correctly specified and misspecified 
models—as such, we can rank fit indices according to their 
ability to detect misspecification in the specific scenario. 
Hence, the AUC provides guidance regarding which fit index 
(or indices) is best to judge the model’s fit. The idea of the 
simulation-cum-ROC approach is to consider only well-
performing fit indices in the evaluation of model fit, with 
the best-performing fit index being the most decisive one.

In the following, we define those fit indices as well-per-
forming that reach an AUC of at least .80 or higher, which 
aligns with earlier work (Padgett & Morgan, 2021). An AUC 
of .80 implies that 80% of the time, the fit index will cor-
rectly discriminate between correctly specified and misspec-
ified models at different potential cutoffs (e.g., D’Agostino 
et al., 2013). Notably, the AUC threshold of .80 is not a 
universally valid one. We use it for illustrative purposes 
here. Depending on the specific application, a researcher 
may choose higher (stricter) or lower (more lenient) AUC 
thresholds—especially as type I and type II error rates of the 
corresponding cutoffs can exceed conventional levels of 5% 
or 10% at such an AUC threshold.7

5 Readers should not confuse H1 population models, to which we 
refer here, with saturated H1 models (e.g., Savalei & Rosseel, 2022). 
Whereas a saturated model perfectly reproduces the structure of the 
empirical data, the H1 population model used in the simulation-cum-
ROC approach is just any reasonable population model compared to 
which the analysis model of interest is considered misspecified.
6 The simulation-cum-ROC requires two different population mod-
els representing hypothetical scenarios on how the data might have 
come about, encoded in H0 and H1 (following the Neyman–Pearson 
approach). But these population models are not being compared in 
the same way that researchers would compare competing analysis 
models in their empirical data; instead, these populations models 
are just a “crutch” needed for generating cutoffs. These cutoffs are, 
in turn, used to make a decision between H0 and H1 for the analysis 
model tested with empirical data.

7 The AUC might be unexpectedly low even if the models under H0 
and H1 actually differ substantially. This can be the case if the empiri-
cal, and accordingly the simulated data which is orientated upon the 
empirical one, has heavy tails. If models are fit to data with heavy 
tails, parameter estimates can be inefficient, which might lead to a 
bad discrimination ability of fit indices between the analysis model 
under H0 and H1. Robust methods that downweigh cases in the tail 
area, applied to the empirical and simulated data, lead to more effi-
cient parameter estimates. Thus, those methods can help to improve 
the separation of fit index values under H0 and H1 (see Yuan et  al., 
2004, on identifying the optimal robust procedure for the data of 
interest).
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Although we focus on well-performing fit indices with 
an AUC above a certain threshold (e.g., .80) to evaluate a 
model’s fit, inspecting the distributions of low-performing 
fit indices can also be informative. Strongly overlapping 
fit index distributions (i.e., AUC around .50) imply that a 
fit index cannot discern correctly specified from misspeci-
fied models. If few fit indices have strongly overlapping 
distributions, those particular fit indices might not be able 
to detect misfit in the scenario of interest. However, if 
several fit indices have strongly overlapping distributions, 
the misspecification of the analysis model relative to the 
H1 population model might not be strong enough to be 
detected in the scenario of interest. Similarly, the analy-
sis model might be flexible enough to account for data 
from both H0 and H1 population models. Flexible (i.e., 
more complex) models are weaker than inflexible (i.e., 
less complex) ones, as flexible models fit a wide range of 
data (e.g., MacCallum, 2003). Thus, even strongly over-
lapping distributions (i.e., AUC around .50) may provide 
important insights.

Generally, it is important to bear in mind that different 
fit indices quantify different model, estimation, and data 
aspects (for an overview, see Schermelleh-Engel et al., 
2003). For example, the �2 test statistic (e.g., Bollen, 1989) 
quantifies the discrepancy between model-implied and 
sample-based variance-covariance matrix (with RMSEA 
being a transformation of it; Steiger, 1990). CFI indicates 
how well the model reproduces the sample-based variance-
covariance matrix compared to a model where all items are 
uncorrelated (Bentler, 1990). SRMR quantifies the aver-
age residuals between model-implied and sample-based 
covariance matrices (Bentler, 1995). This is why fit indices 
perform differently well in different scenarios. Thus, the 
shape and overlap of distributions for each fit index help 
understand models (and accordingly misfit) further—as fit 
indices characterize models differently (see Browne et al., 
2002; Lai & Green, 2016; Moshagen & Auerswald, 2018).

Step 3: Generate tailored cutoffs

After identifying well-performing fit indices (e.g., 
AUC ≥ .80) and screening out the others, we can identify 
optimal cutoffs. To arrive at optimal cutoffs with the simula-
tion-cum-ROC approach, we employ ROC analysis to select 
an optimal cutoff at the highest sum of sensitivity and speci-
ficity and, thus, the highest accuracy for each fit index. We 
interpret the type I error rate (i.e., 1 – specificity) and type 

II error rate (i.e., 1 – sensitivity) as equally problematic.8 At 
cutoffs with balanced type I and type II error rates, fit indi-
ces can best classify correctly specified models as correctly 
specified and misspecified models as misspecified.

We visualize the fit index distributions from correctly 
specified and misspecified models in a graph and provide 
cutoffs along with their accuracy, type I error rate, and type 
II error rate. Generally, the cutoff with the highest accu-
racy across fit indices belongs to the best-performing fit 
index (i.e., the one with the highest AUC).9 An essential 
advantage of the simulation-cum-ROC approach is that it 
returns the error rates associated with applying cutoffs. It 
draws researchers’ attention to how well cutoffs discrimi-
nate between correctly specified and misspecified models 
in the context of interest (quantified through type I and type 
II error rates).

Optimal cutoffs are not only identified in the simula-
tion-cum-ROC approach but also in dynamic simulation 
approaches, though the strategies of the two approaches are 
different. The idea of the simulation-cum-ROC approach is 
to rank the fit indices by their performance. Optimal cutoffs 
are derived for all fit indices that meet an AUC threshold 
(commonly .80) and are, thus, considered well-performing. 
Common dynamic simulation approaches do not incorporate 
the feature to rank fit indices; optimal cutoffs are provided 
for all fit indices that meet conventional requirements of type 
I or type II error rates (commonly 5%/95% or 10%/90%, e.g., 
McNeish & Wolf, 2023a, b).

Thus, optimal cutoffs obtained via the simulation-cum-
ROC approach do not need to meet certain requirements 
of type I or type II error rates and are typically derived at 
balanced error rates. However, those cutoffs might exceed 
conventional type I and type II error rates (i.e., 5%/95% and 
10%/90%). Researchers then have the freedom to decide if 
they are willing to accept those so-obtained type I and type 
II error rates—and, accordingly, they have the freedom to 
use those so-obtained cutoffs.

Suppose researchers deem the type I and type II error 
rates to be too large. In that case, they need to impose 
stronger misspecification by redefining the H1 population 
model and, thus, adjust their assumptions about the level of 
misfit they want to reject. The derivation of tailored cutoffs 
needs to be redone. The initial and revised assumptions must 
be explicitly outlined and justified.

Thus, different from previous dynamic simulation 
approaches (e.g., McNeish & Wolf, 2023a, b), the simula-
tion-cum-ROC approach allows for more researcher degrees 

8 The simulation-cum-ROC approach also allows to consider one 
error as more problematic than the other by changing the metric for 
cutpointr (Thiele & Hirschfeld, 2021) in the R code to either sens_
constrain (if the type II error is considered more problematic) or 
spec_constrain (if the type I error is considered more problematic).

9 Exceptions may occur where the fit index with the highest AUC 
does not have the cutoff with the highest accuracy. For instance, the 
fit index with the highest AUC does not need to have the cutoff with 
the highest accuracy if AUCs of different fit indices are only margin-
ally different from each other.
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of freedom but also forces the researcher to think about their 
choices regarding the hypotheses and models carefully, make 
them transparent, and provide a strong rationale for them.

Output: Evaluate the fit of the analysis model 
to empirical data with tailored cutoffs

Having generated tailored cutoffs for well-performing fit 
indices with the simulation-cum-ROC approach, we can 
evaluate how well our analysis model (i.e., the one-factor 
model in our example) fits the empirical data by comparing 
the empirical values of the fit indices against the tailored 
cutoffs. In doing so, three scenarios may occur: (a) all fit 
indices point to good model fit, (b) all fit indices point to 
bad model fit, or (c) some fit indices point to good and some 
to bad model fit.

If all empirical values of fit indices pass the proposed 
tailored cutoffs, the analysis model has a good fit. Given the 
empirical data, H0 seems more plausible than H1. We can 
accept the analysis model. If all empirical values of fit indi-
ces fail the proposed tailored cutoffs, the analysis model has 
a poor fit. Given the empirical data, H1 seems more plausible 
than H0. We need to reject the analysis model.

There could be less straightforward empirical settings 
where the fit indices disagree (i.e., some pass, but others 
fail their respective cutoffs). In such cases, we can leverage 
the information from the ROC curve about the performance 
of fit indices uniquely provided by the simulation-cum-
ROC approach. If there is a best-performing fit index and 
its empirical value suggests that the analysis model fits (i.e., 
it passes its tailored cutoff), H0 seems more plausible than 
H1. We accept the analysis model. If the best-performing 
fit index suggests that the analysis model does not fit, H1 
seems more plausible than H0. We reject the analysis model. 
Thus, in those less-straightforward settings, we prioritize the 
best-performing fit index and its corresponding cutoff for our 
decision on model fit.

Rejecting the analysis model implies that the model is 
misspecified to the extent it was misspecified compared to 
the H1 population model—or even to a larger extent. Hence, 
rejecting the analysis model informs us about the severity of 
misspecification relative to the H1 population model. It does 
not inform us about the specific alternative model that has 
generated the data—this remains unknown as in all empiri-
cal settings.

If we reject the analysis model, we might want to modify 
it to find a better-fitting alternative. Modification indices 
help identify local misfit, though theory should also guide 
model modification (Fried, 2020). If theoretical and empiri-
cal indications lead to alterations of the analysis model, we 
need to test the modified model again. We must repeat the 
above procedure (Steps 1 to 3 of the simulation-cum-ROC 
approach) once we state a new H0 and H1.

Application of the simulation‑cum‑ROC 
approach

In the following, we provide two examples that illustrate the 
simulation-cum-ROC approach. The aim of the first example 
is to illustrate the three steps to generate and apply tailored 
cutoffs. We chose a simple example without complications 
for the purpose of this illustration. All fit indices performed 
equally well in this example, which is not always guaranteed 
in real-life empirical applications.

The aim of the second example is to showcase the poten-
tial of the simulation-cum-ROC approach in ranking the 
performance of fit indices. In this example, the fit indices 
of interest differed in their performance; not all fit indices 
performed well enough to be useful for model evaluation.

We used publicly available secondary data for both exam-
ples (Nießen et al., 2018, 2020). We conducted all analyses 
with R (version 4.4.1; R Core Team, 2024). We used the R 
package lavaan to fit the models (version 0.6.19; Rosseel, 
2012), simsem to simulate the data (version 0.5.16; Porn-
prasertmanit et al., 2021), pROC to plot the ROC curves 
(version 1.18.5; Robin et al., 2011), and cutpointr to obtain 
cutoffs for fit indices (version 1.1.2; Thiele & Hirschfeld, 
2021). We documented all other packages used in the R 
code. Additional File 1 of the Supplementary Online Mate-
rial includes the computational code.

We also programmed a Shiny app available under 
https:// kg11. shiny apps. io/ tailo redcu toffs/. Specifically, 
one needs to plug in their analysis model, population 
models, marginal skewness and excess kurtosis of the 
response distribution (used to obtain multivariate non-
normal data with Vale and Maurelli’s method, 198310), 
estimator, sample size, number of simulation runs, fit 
indices one is interested in, and the AUC threshold. 
The Shiny app internally runs through Steps 1 to 3 of 
the simulation-cum ROC approach. It allows convenient 
downloading of the ROC curves from Step 2 and of the fit 
index distributions and tailored cutoffs from Step 3. Users 
need not execute any statistical program locally; the Shiny 
app does all the computational work to arrive at tailored 
cutoffs within the simulation-cum-ROC approach.

10 Olvera Astivia and Zumbo (2015) scrutinized Vale and Maurel-
li’s method and found that estimates of skewness and kurtosis were 
downward-biased, especially in small samples. We still relied on Vale 
and Maurelli’s method to obtain multivariate non-normal data as it is 
the standard method in the simsem package (Pornprasertmanit et al., 
2021) used here. However, researchers can adapt the code provided in 
this article estimating multivariate non-normal data using other func-
tions (e.g., the functions of the R package covsim, Grønneberg et al., 
2022, can be called in simsem’s function to simulate data, sim, but 
covsim’s functions require to specify a population variance-covari-
ance matrix instead of a population model).

https://kg11.shinyapps.io/tailoredcutoffs/
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Example 1: The Rosenberg Self‑Esteem Scale

We chose the Rosenberg Self-Esteem Scale as a first example 
for generating tailored cutoffs via the simulation-cum-ROC 
approach (Rosenberg, 1965). The Rosenberg Self-Esteem Scale 
measures global self-esteem with ten items (five referring to 
positive feelings and five to negative ones) rated on a four-point 
Likert scale. Initially thought to measure a single factor, later 
studies found evidence for a two-factor structure (or even more 
complex structures; see Supple et al., 2013, for an overview). In 
this example, we focused only on one of the two factors, the one 
for negative feelings, and evaluated its unidimensionality. We 
used publicly available data (N = 468; Nießen et al., 2020) that 
contains the Rosenberg Self-Esteem Scale applied to a quota 
sample of adults aged 18 to 69 from the United Kingdom.

Input: Fit analysis model to empirical data. We fit the 
one-factor model to the empirical data using MLR. Figure 3 
depicts the analysis model and the empirical fit index values. 
We evaluated whether empirical evidence favors H0 or H1 for 
the one-factor model using tailored cutoffs. We would accept the 
one-factor model if empirical evidence favored H0, stating that a 
population model identical (or nearly identical) to the one-factor 
model had generated the data; the one-factor model captured 
all relevant features of the population model. We would reject 
the one-factor model if empirical evidence favored H1, stating 
that a population model different from the one-factor model had 
generated the data; a one-factor model failed to capture relevant 
features of the population model to an intolerable degree.

Step 1: Simulate data and fit analysis model to simulated 
data After fitting the one-factor model to empirical data, 

we defined H0 and H1 for the Monte Carlo simulation. The 
one-factor model served as an analysis model in the simu-
lation. The structure and parameter estimates of the one-
factor model fit to empirical data served as the H0 popula-
tion model. Relative to the one-factor population model, the 
analysis model was correctly specified.

Next, we must define a theoretically justifiable H1 population 
model. A good candidate for an H1 population model could be 
a two-factor rather than a one-factor model, as the question of 
dimensionality is at the core of model testing (Brown, 2015). We 
set the factor correlation between two factors (which equals 1 
for the one-factor model) to .70, inducing a misspecification of 
r = .30, a correlation considered medium (Cohen, 1992). Thus, 
we chose an H1 population model identical to the H0 population 
model (and, thus, the analysis model) in the parameter estimates 
(i.e., loadings and residual variances) but split into two factors 
correlating at .70 (with one factor containing the items explic-
itly referring to feelings). Relative to the two-factor population 
model, the analysis model was underspecified (i.e., misspeci-
fied). Figure 4 shows the population and analysis models.

We simulated data from the H0 and H1 population models, 
fit the one-factor analysis model to that data, and recorded 
the fit index values. The Monte Carlo simulation closely 
resembled the empirical setting regarding the sample size 
(i.e., N = 468), the estimator of choice (i.e., MLR), and the 
multivariate response distribution. We simulated data 500 
times from each population model.

Step 2: Evaluate the performance of fit indices After simulat-
ing the data, we evaluated the performance of fit indices as 
quantified through the AUC. We only considered fit indices 

Fig. 3  Empirical one-factor Rosenberg Self-Esteem Scale model 
(negative feelings). Note. Unstandardized coefficients. RSES = 
Rosenberg Self-Esteem Scale. We recoded the items so that higher 

values imply higher self-esteem. We omitted the residual variances 
and the mean structure for clarity. N = 468. ** p < .01
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with an AUC of .80 or higher (Padgett & Morgan, 2021) and 
disregarded all others. Figure 5 displays the ROC curves of 
the fit indices (in different line shapes). In Fig. 5, the differ-
ent lines representing the different ROC curves completely 
overlap for all fit indices. All fit indices had an AUC equal 
to or higher than .80, namely an AUC of 1. Thus, the ROC 
curves and AUCs were the same for all fit indices, which 
implies that all fit indices discriminated equally well between 
correctly specified and misspecified models. This is certainly 
not always the case, as shown in the second example.

Step 3: Generate tailored cutoffs In Step 3, we generated 
cutoffs for well-performing fit indices. All fit indices per-
formed equally well (as quantified through the AUC). Thus, 
we generated tailored cutoffs for all fit indices. Figure 6 
depicts the fit index distributions for the simulated data. The 
distribution colored in lighter gray is the one for fit index 
values from correctly specified models. The distribution 
colored in darker gray is the one for fit index values from 
misspecified models. The vertical dash corresponds to the 

cutoff (maximizing the sum of sensitivity and specificity − 
1).11 The cutoffs were the following: �2(5) ≤ 28.03, CFI ≥ 

Fig. 4  Proposed analysis and population models of the Rosenberg 
Self-Esteem Scale (negative feelings). Note. Unstandardized coeffi-
cients. RSES = Rosenberg Self-Esteem Scale. We recoded the items 

so that higher values imply higher self-esteem. We omitted the resid-
ual variances and the mean structure for clarity

11 As evident from Fig. 6, we take the mean of the optimal cutoff and the 
next highest fit index value as a revised optimal cutoff (or the next low-
est fit index value when lower values imply worse fit, such as for CFI; 
Thiele & Hirschfeld, 2021). To find an optimal cutoff, the algorithm first 
uses each fit index value as a potential cutoff starting with those indicat-
ing good (e.g., CFI = 1.00, RMSEA = 0.00) to poor model fit (e.g., CFI 
= 0.00, RMSEA = 1.00). It evaluates sensitivity and specificity at each 
potential cutoff. Then it selects the fit index value with the highest sum of 
sensitivity and specificity as an optimal cutoff. For non-overlapping distri-
butions, both the worst fit index value from correctly specified models and 
the best fit index value from misspecified models have the highest sum of 
sensitivity and specificity. The algorithm would, thus, choose the worst fit 
index value from correctly specified models as an optimal cutoff. It is the 
first value with the highest sum of sensitivity and specificity (because the 
algorithm starts from good to poor model fit). We let the algorithm take 
the mean between the optimal cutpoint (i.e., the worst fit index value from 
correctly specified models in non-overlapping distributions) and the next 
value (i.e., the best fit index value from misspecified models in non-over-
lapping distributions) as a revised optimal cutoff to avoid bias in favor of 
correctly specified models. By this, we obtain a revised optimal cutpoint, 
which is the mean of the optimal cutpoint and the next fit index value.
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.972, RMSEA ≤ .097, SRMR ≤ .031. All cutoffs across fit 
indices had an accuracy of 1. Type I and type II error rates 
were zero for all cutoffs. Thus, all cutoffs perfectly discrimi-
nated between correctly specified and misspecified models 
in this scenario. Again, perfectly discriminating cutoffs do 
not reflect the usual case, as shown in the second example.

Output: Evaluate the fit of the analysis model to empirical 
data with tailored cutoffs Judged against the tailored cut-
offs, we accepted the one-factor model for the negative feel-
ings of the Rosenberg Self-Esteem Scale fit to empirical 
data. All of the empirical fit index values for the one-factor 
model ( �2(5) = 17.97, p < .01; CFI = .981; RMSEA = 
.074; SRMR = .021) passed the tailored cutoffs (i.e., �2(5) ≤ 
28.03; CFI ≥ .972; RMSEA ≤ .097; SRMR ≤ .031). Given 
the empirical data, H0 seemed more plausible, stating that 
the one-factor model generated the data.

Whereas according to fixed cutoffs of CFI around .950 
and SRMR around .080 (but not RMSEA around .060; Hu & 
Bentler, 1999), the one-factor would also fit and be accepted, 
we were more confident that the tailored cutoffs correctly 
classified the one-factor model as correctly specified. Those 
fixed cutoffs were generated from three-factor models with 
15 items in total (Hu & Bentler, 1999)—largely different 
from the empirical setting at hand. The tailored cutoffs 

applied here, in turn, were explicitly targeted at our one-
factor model with five items (and all the other characteristics 
of the empirical setting at hand). Additionally, we knew that 
all fit indices performed equally well and are, thus, equally 
decisive for model evaluation. This question would be left 
unanswered with fixed cutoffs for fit indices as well as other 
approaches to tailored cutoffs.

Example 2: The social desirability‑gamma 
short scale

To illustrate the potential of the simulation-cum-ROC 
approach, we took the Social Desirability-Gamma Short 
Scale (Kemper et al., 2014; Nießen et al., 2019) as a sec-
ond example. Paulhus’s (2002) theoretical model of socially 
desirable responding was the basis for this scale. Socially 
desirable responding refers to deliberate attempts to present 
oneself in a favorable light (e.g., as a nice person or good cit-
izen). The Social Desirability-Gamma Short Scale measures 
the two aspects of the Gamma factor of socially desirable 
responding: exaggerating one’s positive qualities (PQ+) and 
minimizing one’s negative qualities (NQ−) with three items 
each. Respondents rate these items on a five-point Likert 
scale. Publicly available data (N = 474; Nießen et al., 2018) 
contains the German version of the scale applied to a quota 
sample of adults aged 18 to 69 years in Germany.

Input: Fit analysis model to empirical data We fit the two-
factor model of the Social Desirability-Gamma Short Scale 
to the empirical data using MLR (following Nießen et al., 
2019). Figure 7 depicts the two-factor model and its empiri-
cal values of fit indices. We evaluated whether empirical 
evidence favors H0 or H1 for the two-factor model using 
tailored cutoffs. We would accept the two-factor model if 
empirical evidence favored H0, stating that a population 
model identical (or nearly identical) to the two-factor model 
had generated the data; the two-factor model captured all rel-
evant features of the population model. We would reject the 
two-factor model if empirical evidence favored H1, stating 
that a population model different from the two-factor model 
had generated the data; a two-factor model failed to capture 
relevant features of the population model to an intolerable 
degree.

Step 1: Simulate data and fit analysis model to simulated 
data After fitting the two-factor model to empirical data, 
we defined H0 and H1 for the Monte Carlo simulation. The 
two-factor model served as an analysis model in the simu-
lation. The structure and parameter estimates of the two-
factor model fit to empirical data served as the H0 population 
model. Relative to the H0 population model, the analysis 
model was correctly specified.

Fig. 5  ROC curves for fit indices with AUC ≥ .80 of the Rosenberg 
Self-Esteem Scale model (negative feelings). Note. Chisq.scaled is a 
�
2 test statistic asymptotically equivalent to the robust Yuan–Bentler 

test statistic (Yuan & Bentler, 2000a) to account for non-normality. 
Cfi.scaled is the CFI version and rmsea.scaled is the RMSEA version 
calculated with this test statistic
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Next, we must define a theoretically justifiable H1 popula-
tion model. A good candidate for an H1 population model 
could be a two-factor model that contains additional residual 
covariances to capture shared wording effects. The ques-
tion of whether additional residual covariances are needed 
to fully account for the covariances among items is one with 
which applied researchers frequently grapple (e.g., Bluemke 
et al., 2016; Podsakoff et al., 2003). Correlations of r = .50 
have been considered large (Cohen, 1992). Two unmodeled 
residual correlations have been considered moderate mis-
specification for six-item models (McNeish & Wolf, 2023a). 
We chose an H1 population model that was identical to the 
H0 population model (and, thus, the analysis model) in the 
latent-variable part but comprised two residual correlations 

of r = .50 each. We modeled one residual correlation 
between the first two items of the PQ+ factor (resulting in 
a residual covariance of 0.20), both asking for emotional 
control. We modeled another residual correlation between 
the first and third items of the NQ− factor (resulting in a 
residual covariance of 0.31), both referring to behavior in 
social interactions. Relative to this H1 population model, 
the analysis model was underspecified (i.e., misspecified). 
Figure 8 shows the population and analysis models for exam-
ining H0 and H1.

We simulated data from the population models, fit the 
analysis model to each simulated data, and recorded the fit 
indices. Essential features for the simulation mimicked the 
empirical setting in terms of the sample size (i.e., N = 474), 

Fig. 6  Cutoffs for fit indices with AUC ≥ .80 of the Rosenberg Self-
Esteem Scale model (negative feelings). Note. Chisq.scaled is a �2 
test statistic asymptotically equivalent to the robust Yuan–Bentler test 
statistic (Yuan & Bentler, 2000a) to account for non-normality. Cfi.
scaled is the CFI version and rmsea.scaled is the RMSEA version cal-
culated with this test statistic. The distribution colored in lighter gray 

originates from correctly specified models. The distribution colored 
in darker gray originates from misspecified models. Overlapping 
(parts of) distributions are colored in an even darker gray than the 
distribution from misspecified models. The vertical dash corresponds 
to the cutoff for each fit index (at the highest sum of sensitivity and 
specificity – 1)
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estimator (i.e., MLR), and the multivariate response distri-
bution. We simulated data 500 times from each population 
model.

Step 2: Evaluate the performance of fit indices Unlike the 
previous example, not all fit indices passed the AUC ≥ .80 
benchmark, and the AUCs were generally lower (i.e., below 
1). Figure 9 visualizes the ROC curves of three fit indices 
with an AUC of .80 or higher: �2 , RMSEA, and SRMR. 
We disregarded CFI because, with an AUC below .80, it 
did not perform adequately in this scenario. Among the 
three well-performing fit indices with AUC ≥ .80 (i.e., �2 , 
RMSEA, and SRMR but not CFI), SRMR had the highest 
AUC (= .94) and was, thus, the best-performing fit index in 
our scenario.

Step 3: Generate tailored cutoffs We generated cutoffs only 
for the three well-performing fit indices in the following. 
The cutoff for �2 was 11.68, RMSEA .031, and SRMR .025 
(Fig. 10). In line with the AUC, the cutoff for SRMR had 
the highest accuracy (= .87) as well as the lowest type I 
error rate (= 14%) and type II error rate (= 12%). It better 

Fig. 7  Empirical two-factor Social Desirability-Gamma Short Scale 
model. Note. Unstandardized coefficients. PQ+ = exaggerating posi-
tive qualities; NQ− = minimizing negative qualities. We recoded 
NQ− so that higher values imply more socially desirable responses. 
We omitted the residual variances and the mean structure for clarity. 
N = 474. *** p < .001

Fig. 8  Proposed analysis and population models of the Social Desir-
ability-Gamma Short Scale. Note. Unstandardized coefficients. PQ+ 
= exaggerating positive qualities; NQ− = minimizing negative quali-

ties. We recoded NQ− so that higher values imply more socially 
desirable responses. We omitted the residual variances and the mean 
structure for clarity
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categorized correctly specified models as correctly speci-
fied and misspecified models as misspecified than cutoffs 
for other fit indices. Thus, the SRMR, with its corresponding 
cutoff, had the best ability to demarcate between correctly 
specified and misspecified models in the scenario of inter-
est. Further, it implies that the greatest difference between 
correctly specified and misspecified models in the specific 
scenario was due to average standardized residuals.

The reader may have noted that these cutoffs’ type I and 
type II error rates are above conventional levels of 5% or 
10%. If we deem the error rates too high, we can redefine the 
H1 population model. To redefine the H1 population model, 
we need to repeat Steps 1 through 3 of the simulation-cum-
ROC approach: In Step 1, we need to define a new H1 popu-
lation model, from which the analysis model is “further” 

away than the initial H1 population model. For instance, the 
new H1 population model contains more or higher non-zero 
parameter values than the initial H1 population model, which 
the analysis model wrongly fixes to zero.

Alternatively, we can use the cutoffs while accepting their 
given error rates. Here, we deemed the error rates acceptable 
(especially the ones of SRMR) because we explicitly wanted 
to retain the definitions of population models as outlined and 
justified in this example. Imposing stronger misspecification 
through redefining the H1 population model would lead to 
more lenient cutoffs than the current ones. This would imply 
that those cutoffs might lead to accepting an empirical model 
that contains misfit of a size that we initially deemed unaccep-
table (i.e., through the initial definition of the H1 population 
model relative to which the analysis model is misspecified).

Fig. 9  ROC curves for fit indices with AUC ≥ .80 of the Social 
Desirability-Gamma Short Scale model. Note. Chisq.scaled is a �2 
test statistic asymptotically equivalent to the robust Yuan–Bentler 

test statistic (Yuan & Bentler, 2000a) to account for non-normality. 
Rmsea.scaled is the RMSEA version calculated with this test statistic
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Output: Evaluate the fit of the model to empirical data 
with tailored cutoffs When comparing the empirical 
fit index values to the cutoffs tailored to the setting of 
interest, we rejected the two-factor model of the Social 
Desirability-Gamma Short Scale. The empirical values of 
fit indices ( �2(8) = 32.06, p < .001; CFI = .947; RMSEA 
= .080; SRMR = .048) clearly failed all tailored cutoffs 
( �2(8) ≤ 11.68; CFI = should not be considered; RMSEA 
≤ .031; SRMR ≤ .025). Thus, H1 seemed more plausible 
than H0, concluding that a model different from a two-
factor one is likely to have generated the data.

Notably, fixed cutoffs of CFI around .950 and SRMR 
around .080 (but not RMSEA around .060; Hu & Bentler, 
1999) were far off the tailored cutoffs and would wrongly 
lead to accepting the two-factor model. This underscores 

that fixed cutoffs would not have provided valid assess-
ments of model fit in settings markedly different from 
the simulation scenarios they originated from (i.e., three-
factor models with 15 items). Additionally, we knew that 
the SRMR was most decisive for decisions about model fit 
(if fit indices would disagree about model acceptance or 
rejection)—something that would remain unknown with 
fixed cutoffs for fit indices and other approaches to tailored 
cutoffs.

As we rejected the two-factor model, we must modify 
the model and test the modified model again. A modi-
fied model can be considered a new empirical setting, 
so testing that modified model requires a new set of 
tailored cutoffs. We demonstrated how to employ the 
simulation-cum-ROC approach to test a modified Social 

Fig. 10  Cutoffs for fit indices with AUC ≥ .80 of the Social Desir-
ability-Gamma Short Scale model. Note. Chisq.scaled is a �2 test 
statistic asymptotically equivalent to the robust Yuan–Bentler test sta-
tistic (Yuan & Bentler, 2000a) to account for non-normality. Rmsea.
scaled is the RMSEA version calculated with this test statistic. The 
distribution colored in lighter gray originates from correctly specified 

models. The distribution colored in darker gray originates from mis-
specified models. Overlapping (parts of) distributions are colored in 
an even darker gray than the distribution from misspecified models. 
The vertical dash corresponds to the cutoff for each fit index (at the 
highest sum of sensitivity and specificity – 1)
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Desirability-Gamma Short Scale model for interested 
readers in Additional File 2 of the Supplementary Online 
Material. We made use of the different performance of 
fit indices in that example as their decisions on model 
fit disagreed.

Discussion

Fixed cutoffs for fit indices are far more problematic than 
many researchers realize (e.g., Groskurth et al., 2024; 
Marsh et al., 2004; Lai & Green, 2016). Fixed cutoffs have 
low external validity and do not generalize well to settings 
not covered in simulation studies from which these cut-
offs originate. This is because fit indices are susceptible 
to various influences other than model misspecifications 
they should detect (for an overview, see Groskurth et al., 
2024; Niemand & Mai, 2018; McNeish & Wolf, 2023a, 
b; Pornprasertmanit, 2014). Cutoffs tailored to the set-
ting of interest are generally more appropriate than fixed 
cutoffs whenever the setting falls outside the limited range 
of simulation scenarios from which these cutoffs were 
derived (such as those by Hu and Bentler, 1999). There-
fore, methodologists are increasingly urging that fixed 
cutoffs should be abandoned and replaced by tailored (or 
“dynamic”) cutoffs (e.g., Markland, 2007; Marsh et al., 
2004; McNeish & Wolf, 2023a; Niemand & Mai, 2018; 
Nye & Drasgow, 2011).

The current article reviewed four principal approaches 
to generating tailored cutoffs. This is the first article to 
comprehensively review and synthesize the approaches to 
tailored cutoffs. While we have outlined their strengths 
and limitations on a conceptual level, future research may 
additionally want to compare their performance statisti-
cally. For example, simulation studies comparing type 
I and type II error rates of cutoffs generated from the 
various approaches in different contexts have yet to be 
conducted.

We then introduced a novel approach, the simulation-
cum-ROC approach, that augments the dynamic simulation 
approach to tailored cutoffs that has gained traction in recent 
literature (e.g., McNeish & Wolf, 2023a, b; Millsap, 2013; 
Niemand & Mai, 2018). By applying ROC analysis to dis-
tributions of fit indices from a Monte Carlo simulation, the 
simulation-cum-ROC approach provides a highly informa-
tive way to evaluate model fit. Like several other approaches 
outlined in our review, the simulation-cum-ROC approach 
generates (1) tailored cutoffs at certain type I and type II 
error rates (i.e., balanced ones for the simulation-cum-ROC 
approach) for several fit indices across different settings. 
However, it conceptually advances previous approaches by 
(2) ranking the performance of fit indices (i.e., their ability 

to discriminate between correctly specified and misspeci-
fied models) for the specific setting of interest. Thus, the 
unique strength of the simulation-cum-ROC approach is that 
it provides guidance on which fit index to rely on (or at least 
assign the greatest weight) when evaluating model fit in the 
specific setting of interest.

To illustrate how our proposed simulation-cum-ROC 
approach works, we tested models of the Rosenberg 
Self-Esteem Scale and the Social Desirability-Gamma 
Short Scale. We wish to emphasize that we intended 
these examples as proof of principle. In presenting these 
examples, we made several choices on the selection of 
fit indices, the definition of population models, and the 
relative importance of type I and type II error rates in 
generating tailored cutoffs. Researchers can modify 
most of these choices when applying the proposed simu-
lation-cum-ROC approach to other empirical problems. 
We highlight some of these choices to underscore our 
approach’s generality and identify areas in which future 
research may progress.

To begin with, researchers may consider additional vari-
ants of fit indices or different fit indices altogether. In our 
examples, we focused on the three widely used fit indi-
ces, CFI, RMSEA, and SRMR (Jackson et al., 2009), to 
keep these examples simple. Additionally, as is routine in 
applied research, we considered �2 in much the same way 
(and not as a strict formal test; see Jöreskog & Sörbom, 
1993).12 We relied on a �2 test statistic approximately 
equivalent to the Yuan–Bentler one (Yuan & Bentler, 
2000a; called chisq.scaled in lavaan, see also Savalei & 
Rosseel, 2022). Following standard practice (e.g., Muthén 
& Muthén, 1998–2017), we relied on the CFI and RMSEA 
versions calculated with this �2 test statistic (called cfi.
scaled and rmsea.scaled in lavaan). The standard formu-
lations of fit indices (and test statistics) are not without 
criticism. Several authors (Brosseau-Liard et al., 2012; 
Brosseau-Liard & Savalei, 2014; Gomer et  al., 2019; 
Yuan & Marshall, 2004; Yuan, 2005; Zhang, 2008) have 
pointed out problems and suggested improved formula-
tions. Therefore, researchers may prefer not to go with the 
conventional fit indices we used in the examples. Notably, 
the simulation-cum-ROC approach can be generalized to 
include any other fit index, including variants of the canon-
ical fit indices (e.g., Yuan, 2005) but also other, less widely 
used fit indices (e.g., McDonald’s measure of centrality, 

12 As one reviewer correctly pointed out, RMSEA is just a transfor-
mation of �2 (e.g., Moshagen & Erdfelder, 2016). RMSEA can there-
fore be considered redundant because its performance in terms of 
the AUC will be the same as that of the �2 . Nonetheless, we decided 
to generate cutoffs for both the �2 and the RMSEA in the examples 
because both are regularly used for model evaluation (Jackson et al., 
2009).
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McDonald, 1989, or the adjusted goodness of fit index, 
Jöreskog & Sörbom, 1986).

Moreover, in our examples of the simulation-cum-ROC 
approach, we chose an AUC value of .80 as a threshold. 
Researchers may choose higher AUC thresholds for lower 
type I and type II error rates. Moreover, we selected a cutoff 
as the optimal one that had the highest sum of sensitivity + 
specificity – 1 (i.e., the Youden index balancing type I and 
type II error rates). Alternatively, researchers might maxi-
mize sensitivity given a minimal specificity value to obtain 
optimal cutoffs (or vice versa).

We provided R code in Additional File 1 of the Sup-
plementary Online Material and programmed a Shiny app 
available under https:// kg11. shiny apps. io/ tailo redcu toffs/ to 
ease the application of the simulation-cum-ROC approach. 
Executing the simulation-cum-ROC approach for our exam-
ples took two to three minutes on a standard computer using 
R (single-threaded).

It is essential to realize that tailored cutoffs derived from 
the simulation-cum-ROC approach are the most accurate 
decision thresholds for the setting from which they origi-
nate. That said, one should not make the same mistake as 
with traditional cutoffs and generalize tailored cutoffs to any 
different combination of model, estimation, and data charac-
teristics. Different combinations affect the performance of 
fit indices and their cutoffs in unexpected and non-traceable 
ways (for an overview, see Niemand & Mai, 2018; Porn-
prasertmanit, 2014), and erroneous conclusions may result. 
We instead underline that no general cutoff or general state-
ment on the performance of those commonly used fit indices 
exists (see also, e.g., Marsh et al., 2004; Nye & Drasgow, 
2011; McNeish & Wolf, 2023a).

Advanced definitions of population models

A challenge in applying the simulation-cum-ROC 
approach—one that it shares with similar dynamic simula-
tion approaches (e.g., Pornprasertmanit, 2014)—concerns 
the definition of the H0 and H1 population models (cf. 
McNeish & Wolf, 2023a, b, who already predefined H0 and 
H1 population models). More advanced definitions of popu-
lation models can be easily integrated into the simulation-
cum-ROC approach. For example, one could define an H0 
population model relative to which an analysis model is 
negligibly underspecified (i.e., misspecified) to test for 
approximate fit, as suggested by Millsap (2007, 2013) and 
Pornprasertmanit (2014). We indeed believe that alterna-
tive definitions of population models can be fruitful, so we 
briefly review possible extensions of our approach (and simi-
lar approaches) that have been proposed in prior work. We 
further identify areas in which future work on generating 
tailored cutoffs could make further progress.

Approximate fit

In our examples illustrating the simulation-cum-ROC 
approach, the analysis models were always identical to the 
H0 population models. We generated cutoffs based on an 
analysis model that exactly fits the data generated by (i.e., 
simulated from) that H0 population model. Only sampling 
fluctuations influenced the resulting fit index distributions 
and, accordingly, the cutoffs (Cudeck & Henly, 1991; Mac-
Callum, 2003; MacCallum & Tucker, 1991). Testing the 
assumption of exact fit has guided model evaluation for 
years; the entire distributional assumptions of the �2 test 
statistic rely on the test of exact fit (e.g., Bollen, 1989). 
Testing exact fit is legitimate if the aim is to find a model 
that perfectly describes the specific population. This model 
should perfectly reproduce all major and minor common 
factors in the specific data.

In empirical applications, researchers commonly want to 
find models (more precisely, specific features, e.g., broad 
factors in models) that do not solely reproduce a specific 
population but are generalizable to different populations (a 
broad array of, e.g., demographic populations; Cudeck & 
Henly, 1991; Millsap, 2007; see also Wu & Browne, 2015). 
In other words, researchers do not want to find an overfitting 
model. Toward that end, it can be advantageous to consider 
not only sampling fluctuations but also model error when 
generating cutoffs (Cudeck & Henly, 1991; MacCallum, 
2003; MacCallum & Tucker, 1991). In this context, model 
error means choosing an H0 population model relative to 
which the analysis model already contains minor misspeci-
fication, such as small unmodeled residual correlations (e.g., 
Millsap, 2007, 2013). The analysis model is underspecified 
(i.e., misspecified) to a certain degree relative to the H0 
population model. Researchers still consider the analysis 
model correctly specified, barring trivial misspecification 
they deem acceptable. It is within their realistic expecta-
tions of how well a model can capture the complexities of 
a real population while still being plausible in others (for 
an overview and more in-depth discussion, see MacCallum, 
2003; see Wu & Browne, 2015, for the related concept of 
adventitious error that defines the differences between the 
sampled and theoretically hypothesized population). Includ-
ing model error (in addition to sampling fluctuations) in the 
derivation of cutoffs is known as testing approximate fit and 
has already been implemented in several approaches (e.g., 
Kim & Millsap, 2014; McNeish & Wolf, 2023a; Millsap, 
2013; Yuan & Hayashi, 2003; Yuan et al., 2004, 2007).

We opted against testing approximate fit in our two exam-
ples for didactic reasons (i.e., to keep the exposition simple). 
However, for interested readers, we included an additional 
example that illustrates how to select the H0 population 
model such that one tests approximate (instead of exact) fit 

https://kg11.shinyapps.io/tailoredcutoffs/
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in Additional File 2 of the Supplementary Online Material. 
As the example demonstrates, testing approximate fit via the 
simulation-cum-ROC approach works much the same way as 
testing exact fit and poses no additional hurdle.

Multiple population models

So far, we have always defined a single H0 / H1 population 
model to test the fit of an analysis model of interest. As 
defined by Pornprasertmanit (2014; see also Pornprasert-
manit et al., 2013), we followed the fixed method (see also 
Millsap, 2013). By following the fixed method (i.e., defining 
only a single H0 / H1 population model), we take only one 
form of misspecification (e.g., omitted residual correlation 
of r = .50) out of all possible misspecifications in the space 
of conceivable models into account.

To ensure decisions about accepting or rejecting a 
model are generalizable to other forms of misspecifica-
tion, we could, for example, repeatedly follow the fixed 
method and conduct so-called robustness checks. To con-
duct robustness checks, we define different forms of mis-
specification and derive new cutoffs for each of them. The 
degree of misspecification should roughly stay the same 
to compare the cutoffs’ robustness across different forms 
of misspecification. These robustness checks investigate 
whether we will make the same decision about accepting 
or rejecting a model with different forms of misspecifica-
tion. We included an example of a robustness check for 
the Social Desirability-Gamma Short Scale example in 
Additional File 2 of the Supplementary Online Material. 
In the Guidelines on Forms and Degrees of Misspecifica-
tion section, we provide some guidance on defining forms 
and quantifying degrees of misspecification.

Pornprasertmanit (2014) proposed new methods that 
directly take a wide variety of misspecification forms into 
account (e.g., omitted residual correlations; omitted cross-
loadings) when deriving a set of cutoffs (ideally at the same 
degree of misspecification). Like the robustness checks for 
the fixed method, the new methods apply to both H0 popu-
lation models (to test approximate fit) and H1 population 
models. Recall that the H0 population model implies trivial, 
acceptable misspecification (to test approximate fit), and 
the H1 population model implies severe, unacceptable mis-
specification of the analysis model relative to that population 
model.

In the random method, one defines several H0 / H1 popu-
lation models relative to a misspecified analysis model. The 
analysis model is trivially misspecified to H0 population 
models and severely misspecified to H1 population models. 
The algorithm randomly picks a new H0 / H1 population 
model from the several possible H0 / H1 population models 
(defined initially) each time it starts simulating data. This 
approach considers multiple H0 / H1 population models 

relative to a misspecified  analysis model. The population 
models are the same for different fit indices but differ across 
simulation runs.

In the maximal method (for defining H0 population 
models) or the minimal method (for defining H1 popu-
lation models), one again defines several H0 / H1 popu-
lation models relative to a misspecified analysis model. 
Then, one draws data from all those population models 
and fits the analysis model to the data. When selecting an 
H0 population model, one picks the population model that 
generates data with the largest trivial misfit of the analysis 
model (quantified through the fit index of interest). When 
selecting an H1 population model, one picks the popula-
tion model that generates data with the smallest severe 
misfit of the analysis model. Thus, H0 / H1 population 
models can differ for different fit indices but are the same 
across simulation runs.

Although we only applied the fixed method in our 
examples (again, to keep the exposition simple and help 
readers understand the basic principles and mechanisms 
of our simulation-cum-ROC approach), we encourage 
researchers to consider the random and maximal/minimal 
methods in future applications of the simulation-cum-
ROC approach. We plan to implement these features in 
later versions. Further, a tutorial on the simulation-cum-
ROC approach, including exemplary R code containing 
the random and maximal/minimal methods, will surely 
aid the application.

Guidelines on forms and degrees of misspecification

In the previous section, we have outlined how to incorpo-
rate several forms of misspecification (ideally at the same 
degree of misspecification) into derivations of tailored 
cutoffs. Both different forms of the same degree and 
different degrees of the same form of misspecification 
influence the fit index performance and, thus, tailored 
cutoffs, as shown by several studies (e.g., Groskurth 
et al., 2024; McNeish & Wolf, 2023a; Moshagen & Erd-
felder, 2016). Thus, the form and degree of misspecifi-
cation are both relevant for deriving tailored cutoffs, so 
we want to guide researchers in defining the form and 
quantifying the degree of misspecification.

Similar to several other authors (e.g., Curran et al., 1996; 
Hu & Benter, 1998, 1999; McNeish & Wolf, 2023a; Mill-
sap, 2013; Yuan & Bentler, 1997), the analysis models in 
our examples were (either trivially or severely) misspecified 
relative to the population models, as they either propose a 
different model structure or omit specific parameters of a 
particular size. Thereby, we have already shown different 
forms of misspecification: A single factor of an analysis 
model can be misspecified by splitting it into two factors in 
the population model (e.g., Rosenberg Self-Esteem Scale 
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example), an analysis model of at least two factors can be 
misspecified by adding cross-loadings13 to the population 
model (e.g., robustness check in Additional File 2 of the 
Supplementary Online Material), and an analysis model 
can be misspecified by adding residual covariances to the 
population model (e.g., Social Desirability-Gamma Short 
Scale example).

To make the incorporated misspecification (independent 
of its form) more comparable and thus objective across dif-
ferent scenarios, we can quantify the degree of misspecifica-
tion in an effect size logic (see also Moshagen & Auerswald, 
2018).14 For instance, we can quantify the degree of mis-
specification in terms of the non-centrality parameter (see 
Jak et al., 2021, who developed a Shiny app for this). The 
non-centrality parameter can then be transformed into a 
comparable effect size metric such as �2/df or RMSEA, 
both considered on the population level (Moshagen & Erd-
felder, 2016). This effect size helps to quantify and compare 
degrees of misspecification within or across scenarios. We 
evaluated the degrees of misspecification induced in our 
examples in Additional File 3 of the Supplementary Online 
Material.

However, what constitutes a reasonable population model 
and a trivial, medium, or severe misspecification of the 
analysis model relative to that population model depends 
on many characteristics, such as the research question, 
study design, and empirical data. Researchers need to jus-
tify their definitions of population models based on those 
characteristics. By requiring that the population models be 
made explicit, editors, reviewers, and readers of the article 
can judge the appropriateness of the assumptions about the 
population model—we believe that this transparency is a 
major advantage of our simulation-cum-ROC approach.

Checklist

Overall, the simulation-cum-ROC approach applies to a 
broad range of empirical settings in which cutoffs must be 
tailored to the needs of the setting at hand. This also comes 
with a certain level of subjectivity; the researcher needs to 
make several decisions, for instance, on the definition of H0 

and H1 population models. To guide researchers through this 
process, we have defined a checklist for evaluating an analy-
sis model with tailored cutoffs using the simulation-cum-
ROC approach. This checklist is based on the decisions and 
pathways outlined throughout this article and can be found 
in Additional File 4 of the Supplementary Online Material.

Conclusion

Tailored cutoffs are ideally suited to the empirical setting 
at hand because they account for the many model, estima-
tion, and data characteristics that can influence fit indices 
and render fixed cutoffs questionable. This article reviewed 
four principal approaches researchers can employ to gener-
ate tailored cutoffs. We then presented a novel approach, 
the simulation-cum-ROC approach, that extends previous 
tailored cutoff approaches, more specifically the dynamic 
simulation ones, by introducing ROC analysis. Introducing 
ROC analysis to model fit evaluation is a contribution that 
uniquely characterizes our approach. It allows for evaluat-
ing the performance of fit indices in a given scenario, thus 
enabling researchers to make informed choices regarding the 
fit indices on which to rely (or to which to assign the greatest 
weight). Our approach then derives the most accurate cutoffs 
for the setting of interest. To the best of our knowledge, the 
proposed procedure is the only one that allows basing cutoff 
decisions on balanced type I and type II error rates combined 
with a performance index for fit indices. The simulation-
cum-ROC approach can derive tailored cutoffs for any fit 
index that a researcher may want to use, including yet-to-
be-developed ones. Our procedure to obtain tailored cutoffs 
comprises three steps (plus fitting and testing the empiri-
cal analysis model). We provide a Shiny app and R code to 
enable researchers to easily generate tailored cutoffs for their 
empirical problems. We hope to encourage applied research-
ers to abandon the traditional fixed cutoffs in favor of tai-
lored ones. This will allow them to make valid judgments 
about model fit and ultimately increase the replicability of 
research findings. By reviewing possible extensions of our 
approach, we hope to encourage methodologists to advance 
further—and help disseminate—the current approaches to 
generating tailored cutoffs (including our simulation-cum-
ROC approach).
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