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Abstract 
In light of inherent trade-offs regarding fairness, privacy, inter-
pretability and performance, as well as normative questions, the 
machine learning (ML) pipeline needs to be made accessible for 
public input, critical reflection and engagement of diverse stake-
holders. 

In this work, we introduce a participatory approach to gather 
input from the general public on the design of an ML pipeline. We 
show how people’s input can be used to navigate and constrain 
the multiverse of decisions during both model development and 
evaluation. We highlight that central design decisions should be 
democratized rather than “optimized” to acknowledge their criti-
cal impact on the system’s output downstream. We describe the 
iterative development of our approach and its exemplary implemen-
tation on a citizen science platform. Our results demonstrate how 
public participation can inform critical design decisions along the 
model-building pipeline and combat widespread lazy data practices. 

CCS Concepts 
• Computing methodologies → Machine learning; • Human-
centered computing → Collaborative and social computing; 
Human computer interaction (HCI); • Social and professional 
topics → User characteristics. 
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1 Introduction 
Algorithmic decision-making (ADM) fueled by machine learning 
(ML) algorithms is becoming ubiquitous in many domains, affecting 
the lives of millions of individuals. Examples include jobseekers 
that are classified into different risk groups by profiling models 
[74], refugees that are re-allocated within their host country based 
on matching algorithms [7] and the denial or approval of health 
care coverage for patients [6, 89, 126]. While such systems are intro-
duced with the aim of improving the effectiveness and efficiency of 
decision-making, there are also serious concerns that algorithmic 
decisions can treat the affected individuals unfairly [88, 89, 93]. 
Fairness implications of ADM ultimately depend on how the under-
lying models interact with biases and deficits in training data, and 
thus the design, implementation and evaluation of the ML system 
is of central concern [17, 117]. Addressing fairness and adverse im-
pacts, therefore, does not only include technical measures but rather 
needs a broader public discourse where developers, stakeholders 
and affected individuals meet on an equal footing to design and 
evaluate algorithmic systems within their respective deployment 
context. 

Despite increasing efforts to open up the ML pipeline and involve 
stakeholders in participatory designs, current research is lacking 
tools that enable public input where it matters most: the design of 
the ML model itself. 

The ML pipeline includes a multitude of critical decision points 
– from data selection and curation to pre-processing, modeling and 
evaluation decisions. As each decision point allows for multiple 
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alternative choices, design decisions in ML resemble a garden of 
forking paths [50] where each fork corresponds to a decision which 
in turn leads to a set of further scenarios downstream. The full 
grid of decision combinations can also be understood as introduc-
ing a multiverse of (potential) ML models, in which each model is 
defined by a unique path through the set of design decisions up-
stream [117, 123]. Even with a handful of decisions, a multiverse can 
quickly grow extremely vast: For the example application we use 
in this paper, four design decisions lead to a multiverse with 16,352 
endpoints (i.e., unique ML models) as illustrated in Figure 1, which 
grows to 784,896 combinations when four evaluation decisions are 
included — a detailed description of the use case is presented in 
Section 3.1. 

In ADM contexts, the decision points in the ML multiverse often 
involve normative considerations and inherent trade-offs: should 
the model use sensitive attributes such as race and gender as fea-
tures? Should a more complex or a more interpretable model be 
used for the task at hand? Which evaluation criterion (error metric) 
is most important when choosing the final model? Often, such deci-
sions cannot (and should not) be “optimized” based on training data 
alone. A central result of the fair ML literature, for example, has 
shown that key fairness notions are incompatible with each other, 
and thus, it is essential to reason on substantive grounds which 
type of model error is viewed as most critical in a given applica-
tion context [27]. Even for “technical” decisions, e.g., in the data 
pre-processing context, recent research has shown considerable 
design effects on model fairness downstream [24, 117]. At the same 
time, questionable design decisions can commonly be observed in 
data practice: In a review of 280 experiments in the field of fair 
ML, Simson et al. [116] identify harmful shortcuts such as filtering 
out members of ethnic minorities in data processing, which are 
commonly taken even by practitioners in fairness research. They 
group these shortcuts under the term lazy data practices. These 
observations jointly call for a democratization of the design process 
not only to provide critical public feedback but to engage diverse 
stakeholders and affected individuals (as domain experts) along 
the ML pipeline. As central decisions concerning data processing, 
evaluation and metrics need to be considered within the given appli-
cation context. Active public engagement is critical to evaluate and 
tailor technical decisions according to the needs and perspectives 
of the communities in which a system is sought to be placed. 

In this paper, we introduce a participatory approach to prune 
the garden of forking paths and help navigate the multiverse of 
design decisions in ML. While current work in participatory artifi-
cial intelligence (AI) rarely focuses on the collaborative shaping of 
the system’s design, including technical decisions such as the type 
of model and features used [37], these decisions critically affect 
the eventual functioning of the system, its predictions and fair-
ness properties. In light of inherent trade-offs (including fairness, 
privacy, interpretability versus performance considerations) and 
normative questions (e.g., which error notion – for which group – 
to prioritize), the ML pipeline needs to be made accessible for public 
input to foster inclusion and participation of diverse populations. 

Using a case study of predicting public health care coverage, we 
demonstrate how participatory input can be implemented to pro-
duce meaningful data. Our results show how participants’ choices 
can be better than common practices employed by practitioners 

and how this can be used to address harmful and lazy data practices 
in the field. We further demonstrate how results can be used to 
navigate the machine learning multiverse more efficiently, pruning 
pathways which are not deemed acceptable by a wide majority of 
participants. 

Our contributions include a reusable workflow for preparing the 
ML pipeline for participatory input and a case study where this 
workflow is implemented. We further collect participatory input 
using a citizen science setup, successfully gathering a diverse sam-
ple of participants from across the world. We provide an empirical 
evaluation of this participatory data and put the results into context 
by simulating models in the machine learning multiverse. 

2 Related Work 
This paper links multiverses of decision points in ML engineering 
with participatory ML. Accordingly, this section introduces the 
multiverse concept, including application scenarios, its relation to 
fairness, and multiverse analyses, and it provides an overview of 
participatory methods in ML and related fields. 

2.1 Multiverse Analysis 
2.1.1 The Garden of Forking Paths. Whenever one conducts data 
analysis, there are many different decisions one has to make along 
the way [113], both explicit and implicit [117]. This has often been 
likened to a garden of forking paths [50], where each decision 
creates a fork in the path, creating a multiverse of pathways and 
destinations. Many-analyst studies, where multiple individuals or 
teams conduct an analysis using the same dataset and research 
question, show that such decisions can have large effects on the 
findings [21]. While awareness around this problem has mainly 
focused on statistical analyses, in particular on null hypothesis 
significance testing (NHST), it also applies within the context of 
machine learning and artificial intelligence [64, 90]. In many cases, 
practitioners may not even be aware of making decisions as they 
traverse the ML pipeline, although new solutions are being explored 
to bring potentially problematic decisions to light via notifications 
during development [60]. 

2.1.2 Hyperparameter Optimization. The classic scenario where a 
garden of forking paths is navigated within ML and AI is during hy-
perparameter optimization (HPO) [14, 47]. Here, a grid of different 
parameter configurations is created and traversed using either an 
efficient search algorithm (e.g., Bayesian Optimization [120]) or a 
full scan of parameter combinations. Research in this field tends to 
focus on efficiency and finding better search algorithms. However, 
it has also led to the development of new methods to better under-
stand variance in the space, which can be adapted to the garden of 
forking paths or multiverse, such as efficient implementations of 
the functional analysis of variance [65, 68]. As the name suggests, 
the HPO literature focuses heavily on hyperparameters. However, 
it usually ignores other critical decision points in the ML pipeline, 
such as data selection, preprocessing or evaluation decisions. These 
decisions govern how the model interacts with (biases in) data and 
have been shown to affect fairness outcomes [24, 117]. 

2.1.3 Fairness & Multiplicity. Research on algorithmic fairness 
aims to address and reduce disparities in algorithmic systems. This 
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Figure 1: The full multiverse of different decisions is incredibly vast. Illustration of the multiverse of different ML models 
(A) and evaluation strategies (B). Due to practical limitations, only a small fraction of the multiverse of ML models is shown 
here, with 506 additional branches hidden, as illustrated by the reduced transparency and only 320 out of 16,352 endpoints 
visible (<1%). As the two multiverses are not mutually exclusive, their combined total are 784,896 combinations of model and 
evaluation. 

includes formalizing fairness notions in a way that they can be 
applied to the predictions or scores of an ML system. Group fair-
ness metrics typically compare (different types of) prediction error 
between groups defined by protected attributes [8, 93]. The selec-
tion of protected attributes may be based on anti-discrimination 
law, with race and gender [116] being common examples. Many 
specific fairness metrics, workflows, auditing and bias mitigation 
strategies exist, and the choice between them is neither trivial nor 
independent of context [8, 85, 109]. 

A consequence of the machine learning multiverse is that there 
are often different ML models with equal or comparable perfor-
mance (examples in [25, 34, 107, 131]). This is termed the Rashomon 
Effect [20] and the set of comparable (best) models is commonly 
referred to as the Rashomon set [110, 131]. One benefit of the 
Rashomon Effect (among others [108]) is that it allows optimiz-
ing for secondary objectives such as fairness, e.g., by selecting the 
model with the optimal fairness metric from the Rashomon set 

[17, 69]. It has been argued that there may even be a legal duty to 
search through the Rashomon set for fairer alternative models [16]. 

A potentially more troubling result of the Rashomon Effect is 
that models in the Rashomon set can give very different predictions 
for a given individual [17, 29]. This phenomenon is commonly 
referred to as individual arbitrariness or predictive multiplicity [17, 
82], although other names exist [54]. When the choice between 
different models and, thereby, individual predictions is arbitrary, 
multiplicity can lead to issues in the justifiability of predictions and 
decisions [17, 29]. 

The sources of multiplicity can be diverse, and multiplicity has 
been demonstrated across different dimensions, such as random 
seeds [29], target variables [128], different sparse decision trees 
[131] and the dataset generation process [91] as well as model 
design decisions [117]. Multiple measures have been proposed to 
quantify these effects [29, 41, 66]. Related work has examined the 
influence of different forms of imputation for missing data [24] and 
hyperparameter selection [42] on algorithmic fairness, albeit not 
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through the lens of multiplicity. A similar concept has also been 
demonstrated in the context of explainable ML through fairwash-
ing, where equivalent models can be generated that show little 
dependence on sensitive features [2]. Thus, from a fairness angle, 
decisions along the model-building pipeline are critical: They can 
introduce individual arbitrariness, exacerbate or hide data deficits, 
and can result in a variety of models downstream, which differ 
strongly in their fairness properties. 

2.1.4 Multiverse Analysis & Fairness Hacking. While the influence 
of a variety of decisions on algorithmic fairness has been well-
documented in the field, it is usually only examined along a single 
dimension. As different decisions often interact [117], however, 
they should also be analyzed together. This can be done through a 
multiverse analysis, where all possible decision combinations – the 
forking paths – are evaluated. 

Multiverse analyses [123] first emerged in response to the repro-
ducibility crisis [28], where large amounts of research failed to be 
reproduced. A similar type of analysis, specification curve analyses 
[114], emerged around the same time. Specification curve analyses 
are characterized by their use of a particular type of visualization 
to show results from a multiverse analysis. The idea of multiverse 
analyses is also closely related to that of a sensitivity analysis [78], 
although multiverse analyses are typically bigger in scope, trying 
to include more decisions and especially more interactions between 
decisions. 

Multiverse analyses have been successfully used in machine 
learning to study performance [10] and fairness [117] of models. 
Their most useful application in ML may be, however, as a potential 
solution for issues of fairness hacking [117]. Fairness hacking de-
scribes practices of presenting unfair models as fair [87]. This can 
be achieved by iterating over different definitions and metrics of 
algorithmic fairness [87] or evaluation strategies [117] and select-
ing the most favorable one while keeping the actual model fixed. A 
similar concept has been described under the name d-hacking [15]. 

In the ML context, a multiverse analysis allows us to explicate 
and structure important data processing, modeling and evaluation 
decisions and makes them visible and accessible. However, the 
decision points themselves often involve difficult trade-offs and 
choosing an option based on metrics alone is commonly not an 
option for ethical reasons. Even if a decision does not touch upon 
ethical issues, multiverse analyses can become unfeasible due to 
computational limitations, especially when costly and complex 
models are being fit. Participatory input has great potential in these 
cases to make more informed decisions and constrict the number 
of pathways in the multiverse. 

2.2 Participatory Machine Learning 
Participatory machine learning (and often used interchangeably, 
participatory AI) emerged as a response to power imbalances be-
tween system engineers and those affected by or those using a 
system [76], which can result in biases such as a disproportional 
impact on marginalized groups [72]. The core idea in participatory 
ML is to involve stakeholders in the design, development, and de-
ployment of ML models or AI systems [13]. Thus, the aim is to 
empower stakeholders and to increase fairness, transparency, and 

accountability [37, 46]. In the context of this work, we specifically 
address participatory ML for fairness. 

Application domains of participatory ML range from estimated 
content quality of Wikipedia edits [57] to various healthcare ap-
plications [38]. Contributors shape ML systems as participants in 
goal-setting or algorithm design workshops [22], model builders 
or adapters [57], evaluators in result assessments [79], etc. Past 
work has suggested a variety of tools that support participation: To 
name just a few examples, model cards help identify and discuss 
trade-offs in ML model design [112], visualizations and compar-
isons of model predictions for different inputs encourage reflection 
[26] and re-designed visualizations of prediction accuracy targeted 
specifically at non-experts enable them to better assess ML model 
performance [111]. 

In contrast to defining the goals of an ML project or eliciting user 
preferences, participatory approaches for decisions concerning the 
design and evaluation of ML models are relatively rare. Notably, in 
a review of 80 participatory AI projects, only 10% included stake-
holders in design or specification tasks such as choosing models or 
features [37]. A related review reports that only a small share of par-
ticipatory AI projects involved stakeholders beyond a “consultation” 
stage [31]. 

However, participatory model and evaluation design can be ben-
eficial for multiple reasons. First, they increase the diversity of per-
spectives to take into account to avoid pitfalls that professionally 
blinkered ML engineers may run into. For example, past work high-
lights that developers often make implicit model-building and eval-
uation decisions that may impact model fairness [60, 117]. However, 
adjusting attribute weights in an ML model based on non-experts’ 
fairness perception can actually make a system fairer – although 
some individual input may also worsen fairness ratings [94]. Sec-
ond, many problems are only discovered when stakeholders are 
involved in the discussion [134], as highlighted in Criado-Perez’s 
[33] book Invisible Women: Exposing Data Bias in a World Designed 
for Men. She argues that people must be asked to identify their 
needs and requirements, e.g., for reliably recognizing heart attack 
symptoms in women. Therefore, in our work, we look at the re-
lationship between being a member of a minority group and the 
decisions that participants make. 

Participatory ML also entails certain caveats. Notably, balancing 
power between participants and those asking for their participation 
is crucial to avoid exploitative practices [30, 31, 118]. There is a 
danger of co-optation, i.e., superficially acknowledging input and 
involvement, while the actual influence remains minimal [13]. It 
is also important to address aspects that non-experts may not be 
aware of. For example, when non-experts build ML models, they 
often optimize toward percentage accuracy and may overlook issues 
such as overfitting [132]. 

In this paper, we investigate the possibility of using participa-
tory input for actual model decisions (design and evaluation) with 
a focus on fairness. Thus, we focus on specific steps of a full partic-
ipatory ML pipeline for which participatory methods are currently 
underexplored. We rely on iteratively refined descriptions of deci-
sion choices to make them accessible for non-expert participants. 
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3 Methods 
For our participatory approach, we chose an exemplary ML use case 
situated in the ADM context. We derive a set of relevant decisions on 
model design and model evaluation and set up an online experiment 
on a citizen science platform. 

3.1 Decisions 
We use a case study of predicting whether an individual is covered 
by public health care in the U.S. based on socio-demographic in-
formation with data from the American Community Survey Public 
Use Microdata Sample (ACS PUMS) [23]. In particular, we use the 
ACSPublicCoverage problem, one of a set of problems commonly 
referred to as “folktables” [40]. We opted for this problem, as it 
is prototypical for ADM scenarios, due to being a binary classi-
fication task which can be framed as a risk prediction problem 
with race defined as the protected attribute.1 We also chose this 
particular problem due to its practical relevance, as healthcare is a 
highly important domain, with commonly reported fairness issues 
[6, 89, 96, 126]. In an ADM setting where decisions would be made 
based on the model’s predictions, incorrect predictions of individ-
ual health care coverage could lead to communities falling under 
the radar of preventative measures or information campaigns that 
are allocated based on the predicted risk of non-coverage. This is 
particularly concerning for minority groups with historically low 
coverage rates. Specifically, incorrectly predicting that an individual 
is covered (i.e., a false positive) might exclude them from preventa-
tive measures or targeted campaigns, while incorrectly predicting 
non-coverage (i.e., a false negative) could lead to a misallocation of 
such measures. While these implications likely unfold differently 
if individuals are covered by private insurance plans instead, the 
ACSPublicCoverage task focuses on individuals with an income of 
less than 30,000 U.S. Dollar per year who may depend more strongly 
on public offers. 

When determining the list of decisions to include in the study, 
we focused in particular on decisions which may be made “ad-
hoc” (sometimes even without the awareness of making a decision), 
but which eventually introduce trade-offs and involve normative 
considerations. We selected, adapted and extended upon a list of 
decisions identified in prior work [117]. Implicit decision-making 
is particularly common for decisions regarding the evaluation of 
an ML system. Therefore, we ultimately decided to include four 
design decisions affecting the model itself and four affecting only 
its evaluation. 

For each decision, we crafted a brief introductory text describing 
the trade-offs inherent to the decision, taking care not to present 
any one option as more favorable than others. We refined this in-
troductory text as well as the descriptions of each option in the 
decision across multiple iterations to make them understandable 
without prior knowledge of machine learning or artificial intelli-
gence concepts. 

A brief explanation of each decision and its options can be found 
below. The actual wording of each decision, its introductory text 
and options can be found in Appendix B.3. An overview of all 

1At the same time, datasets that feature other (more prominent) examples from the 
fairness literature (recidivism prediction, credit scoring) have been shown to suffer 
from considerable quality issues [43]. 

decisions and options can be found in Table 2, and the resulting 
multiverse is illustrated in Figure 1. 

3.1.1 Model Design Decisions. We included four decisions on model 
design, covering preprocessing, data and model selection. Each de-
cision includes between two and nine distinct options. However, 
as the decision Exclude Subgroups makes use of the combination 
of its nine options, it allows for a total of 511 unique combinations 
of these options. Together, the four model design decisions cre-
ate a multiverse of 16,352 potential ML models. A subset of this 
multiverse is illustrated in Figure 1A. 

Exclude Subgroups. Related work shows that the exclusion of 
certain subgroups before model training is common. For example, 
a recent review focusing on the popular COMPAS [5] dataset found 
that 38 out of 59 studies excluded data from subgroups of the pro-
tected attribute [116]. While certainly problematic, as it can lead to 
representation bias [88, 125], this does not have to be out of mali-
cious intent: One may want to exclude data from certain subgroups 
to protect their privacy or to make analyses less complicated. In-
deed, many commonly used fairness metrics are first and foremost 
designed with the assumption of only two protected groups, requir-
ing adaptations to work with more nuanced protected attributes. 
However, we also want to clearly note that this is a problematic 
trend, and our inclusion of the decision in this study stems from 
the intent to highlight this issue rather than normalize the prac-
tice. We advise for careful deliberation and against the exclusion 
of subgroups in most real-world scenarios. In our experiment, we 
present all nine racial and ethnic groups available in the data of 
our modeling task to participants, using the order suggested by 
the ACS PUMS [23]. Participants have the option of combining the 
groups as they see fit to construct the list of included subgroups. 

Participants were randomly assigned to one of two conditions for 
this decision: Either they were shown the percentages illustrating 
the relative size of each group next to the group name or not. We 
added this differentiation because overestimation of minority group 
sizes is common [3]. 

Exclude Features. It is common in fairness-related contexts to 
not include potentially sensitive attributes as predictive features in 
models due to privacy reasons or with the intent to produce less 
biased models [55, 77]. This practice does not necessarily produce 
fairer models, as fairness through unawareness has been shown not 
to work [8]. Nonetheless, we included this decision to represent the 
popular practice. We include four different options for this decision: 
(1) To exclude the protected attribute race as a feature for the model, 
(2) to exclude the potentially sensitive attribute sex as a feature 
for the model, (3) to exclude both race and sex as features or (4) to 
exclude neither of the two and use both as features for the model. 

Preprocess Income. We included the preprocessing of the variable 
income as an example of a feature that is often binned into differ-
ent categories. Income data is highly relevant to the outcome we 
are trying to predict, and the correct processing of income data is 
usually an arbitrary choice without a clear consensus. Preprocess-
ing of income data was also shown to be an influential decision 
among several comparable preprocessing decisions in its effect on 
algorithmic fairness [117]. Indeed, the arbitrariness of thresholding 
income data (as a target) has been criticized [40] as one of the issues 
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in Adult [9], a popular dataset based on U.S. Census data with an 
associated machine learning task of predicting whether an individ-
ual’s income is above $50,000. We included four different options 
for processing income data: (1) Keeping it as is, (2) binning it into 
bins of $10,000 and binning it into (3) three or (4) four equally sized 
groups. 

Model. Choosing the model type is a critical and consequential 
decision point in the ML pipeline. We thus wanted to include at 
least one decision on the type of ML model that is used. However, 
during the development of the decision and option descriptions, 
we quickly realized that explaining the nuances of different ML 
models is beyond the scope of a single study and may be chal-
lenging to understand for non-experts. We therefore opted to only 
present participants with the choice between (1) a simple and (2) 
a more complex model, highlighting the classic trade-off between 
performance and interpretability with increased complexity [51]. 
We decided to use a logistic regression [32] for the simple and a 
random forest [63] for the more complex model. Models were fit 
using default hyperparameters. 

3.1.2 Evaluation Decisions. We included four distinct decisions on 
model evaluation, each with two to six options. Together, these 
decisions allow for 48 different strategies of how one might choose 
to evaluate a (fixed) ML model (Figure 1B). As they can be applied 
to each of the models created in the previous step, they increase 
the size of the multiverse from 16,352 unique models to 784,896 
different evaluations. 

Eval Fairness Definition. Deciding on a particular metric in fair 
ML is one of the most critical decisions, with multiple valid and 
conflicting options. While one may be able to narrow down the list 
of metrics using, for example, fairness-specific metric decision trees 
[85, 109], alternative choices and, thereby, metrics are usually also 
plausible. As it has been shown that one cannot optimize for all 
possible notions of fairness at the same time, this means that one 
will eventually have to prioritize some metrics over others [8]. One 
complicating factor with this is that a malicious actor can abuse 
this ambiguity to pick a definition that produces more favorable 
scores post-hoc, a practice termed fairness hacking [87] (cf. Section 
2.1.4). 

The full list of potential fairness metrics is large, with the nu-
ances and trade-offs between different definitions often quite subtle 
and hard to judge, even for experienced practitioners. We, therefore, 
chose to focus on the important trade-offs between competing con-
cepts of fairness in ML, which can be traced back to different ways 
of conceptualizing errors (and, conversely, prediction performance). 
The two options we included for this decision are (1) a focus on sen-
sitivity, corresponding to the fairness concept separation and (2) a 
focus on precision, corresponding to the fairness concept sufficiency 
[85]. 

Eval Fairness Grouping. When identities from subgroups are not 
excluded in analyses, they are often aggregated away instead. The 
most common form of aggregation is to aggregate multiple different 
groups (e.g., several racial subgroups) into a majority (the biggest 
subgroup) and minority group (all other subgroups). This is often 
done when there are substantial imbalances in group size or for 
convenience reasons such as enabling simpler analyses. 

The same study mentioned earlier [116] found that of the 21 stud-
ies (using COMPAS) that did not exclude data from subgroups, all 
but one aggregated data from different groups together. Across ag-
gregation and exclusion, 53 out of 59 studies reduced the protected 
attribute to just two groups. 

While we believe that the normalization of such practices is 
harmful, we still want to represent them in this study, with the 
hope that participatory input may help us to better understand 
public opinion of such practices. We, therefore, include two options 
for this decision: (1) To aggregate the protected attributes into two 
groups (majority, minority) when calculating fairness metrics or (2) 
to calculate fairness metrics as the maximum difference between 
all different combinations of subgroups of the protected attribute2 . 

Eval On Subset. Machine learning systems are often evaluated 
using data that may not represent the eventual target population. 
This can be due to practical constraints such as limited resources 
or because only a certain smaller subset of the target population is 
reachable. A system may have also been developed with a certain 
target population in mind, but then the scope widened during or 
after development. 

While one would generally want to evaluate a system using a 
sample that resembles the population eventually affected by the 
tool, we included this decision to also represent these more practical 
trade-offs between the cost of data collection and representation 
in the data. We included the following options for this decision: 
(1) Using data from the most populous area, (2) using data from 
the area where the most people have public health insurance, (3) 
using data from the closest major city, (4) using data from as many 
people as possible, but excluding military veterans, (5) using data 
of only U.S. citizens and (6) using data from the overall population 
in the United States. Note that in our case study, data from the 
overall population is available, but we create subsets for the decision 
options to represent and model different data collection practices. 

Eval Exclude Subgroups. When data from a subgroup is excluded, 
it is typically excluded during both training and evaluation of a 
system. This is problematic, as it will hide any resulting issues 
affecting the excluded groups during evaluation, whether they be 
related to fairness or the quality of predictions. We decided to in-
clude this decision not due to inherent trade-offs but to see whether 
participants would pick up on this potential issue and whether their 
input could help address it. 

There were two options available for this decision: (1) To ex-
clude the same subgroups as in the training data or (2) to include 
all subgroups for evaluation. This decision was only shown to par-
ticipants if it made logical sense based on their response to the 
decision Exclude Subgroups. When participants chose to exclude 
certain subgroups from the training data earlier, they were there-
fore shown this decision later on, asking whether they also wished 
to exclude data from groups when evaluating the system. 

3.2 Procedure 
The study was created using jsPsych version 7.3.1 [36], with data 
collected in World-Wide-Lab version 0.4.1 [130]. Our goal with the 

2This corresponds to the default behavior in the commonly used Python library 
fairlearn [12] 
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Figure 2: Diagram illustrating the different sections of the study and how they followed each other. The right-hand side of the 
graphic illustrates the different decisions which were presented in their respective sections. Decisions connected by a thicker 
line are considered to be within the same logical block during model design, and their order was randomized. 

study was to recruit a diverse sample, as different peoples’ identities 
and lived experiences can lend them unique forms of expertise [39] 
and shape their views on AI ethics [71, 72, 102, 122]. Since gamified 
citizen science studies have shown promise in recruiting diverse 
populations [62, 81], we opted for a similar approach in this study. 
We added a short game as an incentive and embedded the study 
on a citizen science website. We chose this particular website for 
its popularity and since its theme was unlikely to strongly bias 
recruitment in relation to the case study. As this website happened 
to be music-themed, the gamified section was about identifying 
whether or not a piece of music was generated by AI. To at least 
partially address the global north bias present in many fields of 
research (including AI ethics [106]), we chose to also make the study 
available for non-U.S. participants. Given the diversity of healthcare 
systems across the world, we believe that non-U.S. participants 
might indeed have valuable insights from living with different 
healthcare systems. Due to different notions of race across regions 
[70] we chose to slightly adapt demographics for U.S. versus non-
U.S. participants (see below) and examine the data for differences 
in this regard later on. 

Participants were first presented with a screen where the study 
was briefly explained, and they could then provide informed con-
sent to participate. This was followed by a list of demographic items, 
in particular age, country of residence, primary and secondary lan-
guage, race (U.S. only) and self-assessed membership of a minority 
(non-U.S. only). Afterwards, participants completed the ATTARI-12 
[124], a 12-item questionnaire assessing their attitudes towards AI. 
Then, participants completed the recruitment game of the study, 
listening to a random collection of 6 AI-generated and 4 human-
made 12-second music samples. After each song, participants were 
asked to guess whether a song was AI-generated, and they received 
feedback immediately afterwards. Next, participants were shown 

an introductory text illustrating the case study and why their input 
would be valuable. After the introduction, participants were shown 
the individual decisions, with decisions presented in the order they 
would be encountered during the design of an ML system. If there 
was no clear order between decisions, their order was randomized3 . 
A second block of decisions related to the evaluation of an ML sys-
tem was preceded by another brief introduction explaining basic 
concepts of fairness in ML. Each decision was presented with a 
brief introductory text explaining the decision, followed by a list 
of options. If there was no inherent order to options, their order 
was randomized. In addition to the actual decision options, each 
decision always presented the options of “I don’t understand the 
description”, “I prefer not to answer” and to “Suggest an alternative 
option”. The evaluation decisions were followed by a short 16-item 
questionnaire assessing AI literacy [103]. For consistency, both at-
titudes towards AI [124] and AI literacy [103] were collected using 
7-point response scales, labeled strongly disagree and strongly agree 
at their ends. Respondents were not required to select any option 
for the decision trials or AI attitudes / literacy response scales. At 
the end of the study, participants were shown a debrief with basic 
information about the study, their final score in the gamified section 
and a detailed list of the songs they listened to. Before the final 
screen, participants had the option to provide general feedback 
about the study and its design. 

A high-level overview of the study procedure can be seen in 
Figure 2. The complete list of decisions and options presented to 
participants can be found in Appendix B. The study and its analyses 
were preregistered before any data were collected. The preregistra-
tion can be found at https://aspredicted.org/dgyp-bs3b.pdf. 

3Due to an error in an earlier version of the experiment code, 10.67% of participants 
saw decisions in a fixed order. 

https://aspredicted.org/dgyp-bs3b.pdf
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Figure 3: Participants were recruited from across the world with an over-representation of Western countries, especially the 
United States. Choropleth map of the world, shaded based on self-reported country of residence. A detailed breakdown of 
sample size per country can be found in Table 1. 

3.3 Participants 
Participants were mainly recruited through organic internet traffic 
to the music-focused citizen science website https://themusiclab.org. 
The study was also shared on a mailing list for auditory experiments 
and posted on social media platforms (Bluesky, Reddit). After a brief 
pilot, data for the study itself was collected over 20 days. 

A total of 1403 sessions were recorded in the study, with 375 
sessions completing the whole study4 . As a new session is recorded 
every time someone navigates to the study or refreshes the webpage, 
this rate of completion (26.73%) is well within the expected range 
and slightly higher than the overall completion rate of other studies 
on the website during this time (22.10%). 

We restricted the sample to sessions with data available for at 
least one of the decision trials. This left us with a final sample size 
of N = 534 individual sessions by n = 517 participants. As only 17 
participants had multiple sessions with decision data, we decided 
to retain their data. Unless stated otherwise, the following analyses 
will use all the available data and will include every session with 
data available for a particular decision. 

While there is a strong over-representation of both Western and 
especially English-speaking Western countries, there is also a sig-
nificant number of non-Western countries present in the data. A 
graphical overview of participation rates by country can be seen in 
Figure 3, with detailed counts available in Table 1. Further infor-
mation on the sample composition is available in Section A of the 
appendix. 

The distribution of AI attitudes [124] (𝑀 = 3.18, 𝑆𝐷 = 1.13) and 
AI literacy [103] (𝑀 = 3.20, 𝑆𝐷 = 1.22) among participants dis-
played a high degree of variation, with the sample slightly leaning 
towards more positive AI attitudes and higher AI literacy (Fig-
ure 13). 

4A total of 𝑛 = 2 sessions were excluded from analyses due to corruption in their 
data: In one case, this seems to have happened due to a particularly unreliable internet 

4 Results 
Detailed information on the software used for analyses is avail-
able in Section C. Code for the multiverse analysis simulation was 
adapted and extended from prior work [117] and implemented 
using an early version of the package multiversum [115]. The 
source code of simulations conducted in this study is available 
at https://github.com/reliable-ai/participatory-multiverse. 

Below, we first address the validity of the survey and responses. 
Then we proceed to the core parts of the analysis: (1) The decision 
distributions including relevant differences between groups and (2) 
the resulting multiverse. 

4.1 Quality of Decisions 
Decisions were generally perceived as clear, with < 10% of partici-
pants checking that they did not understand a description across 
any decision (Figure 4). A sizable fraction of participants either did 
not check any answer option at all or indicated that they prefered 
not to answer a decision, an option we purposefully allowed them 
to do. This is not surprising, given that there were no monetary 
incentives and that the study was presented as a secondary objec-
tive to the gamified section to participants. While only a very small 
fraction of participants suggested alternative options during the 
piloting of the study, this number increased during data collection 
for the main study. In practice, the option to suggest an alterna-
tive was also used as a general feedback outlet by participants. 
In a small number of instances, participants also used this field 
to provide detailed and nuanced suggestions. Only 𝑛 = 83 out of 
𝑁 = 3, 315 responses were excluded for being unreasonably fast, at 
under two seconds, as the majority of people who did not bother 
to read descriptions would just not respond at all. 

connection and in the other due to use of a non-standard in-browser translation feature 
which interfered with data collection. 

https://themusiclab.org
https://github.com/reliable-ai/participatory-multiverse
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Figure 4: Decisions were generally well understood, and only a few additional options were suggested, but a large fraction of 
participants clicked through decisions without ticking any option or indicated that they prefer not to answer. Prevalence of 
different non-option answering trends across decisions in the study. 

4.2 Distribution of Ratings 
An overview of the overall distribution of ratings in the partici-
patory multiverse can be seen in Figure 5. The figure shows an 
illustration of the different paths that participants took through 
the multiverse, weighted by how many participants chose a par-
ticular path and split into the multiverse of models (Figure 5A) 
and evaluations (Figure 5B). It becomes immediately visible that 
there are a few popular pathways and that if a participant does not 
respond to a decision or indicates that they prefer not to answer, 
they tend to do this for all decisions (red path “empty response”). 
The individual distributions of ratings for all countries with suffi-
cient data are available as an interactive analysis at https://reliable-
ai.github.io/participatory-multiverse/. 

The degree of agreement between participants is generally high 
but varies by decision. Figure 6 illustrates this by showing the 
cumulative prevalence of different combinations of options. Natu-
rally, decisions with a high number of different options generally 
have a lower prevalence per combination. Still, about half of all 
participants chose the same combination of options out of 511 the-
oretically possible combinations for Exclude Subgroups, indicating 
strong agreement across participants. The opposite is the case for 
the choice of Eval Fairness Definition: Here, participants had to 

chose one of two possible metrics (a combination was not possible), 
and choices are almost exactly equally distributed. 

Figure 7 illustrates the different combinations of options ob-
served in the data for the decisions Exclude Subgroups and Eval 
On Subset. It has to be noted here that for the decision Exclude 
Subgroups, the combination of choices is indeed what is used in 
the end, whereas for the decision Eval On Subset, each selected 
option is a separate valid strategy to be explored. Interestingly, 
there is sometimes little overlap between combinations of options 
that are of similar popularity. The results here also indicate that 
participatory results need to be taken with caution, as the second 
most popular option for the decision Exclude Subgroups was to use 
only data from people who identify as White. 

4.2.1 Differences between Groups. We investigated whether partic-
ipants’ answers differed based on different characteristics and con-
ditions. Due to the large number of possible combinations between 
participant characteristics and decisions, we chose to examine only 
a small subset of possible decisions of particular interest. We evalu-
ated group differences based on individual votes, including partial 
data, but excluding responses where the respective grouping infor-
mation was missing. We calculated comparisons for each option 
using Bonferroni correction to correct for multiple testing within 

https://reliable-ai.github.io/participatory-multiverse/
https://reliable-ai.github.io/participatory-multiverse/
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Figure 5: Specific paths in the participatory multiverse are significantly more popular than others, and if participants decide not 
to respond, they do this consistently. Weighted illustration of the multiverse of model design (A) and evaluation (B) decisions 
based on participants’ votes. Each split corresponds to a decision taken by participants. Only data from participants with data 
available for all four decisions represented in each diagram were included. 
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Figure 6: Agreement differs greatly across different decisions. 
Cumulative frequency of the three most common combi-
nations of options across decisions. The minimum rate of 
agreement for each decision is highlighted with a star. The 
decision Eval Fairness Definition did not allow the selection 
of a combination of options. 

each decision. For each comparison, frequencies of votes were com-
pared using Fisher’s exact frequency test [49] with a significance 
level 𝛼 < 0.05. 

We examined three different comparisons for the decision Ex-
clude Subgroups: First, whether participants were more likely to in-
clude a subgroup if they were also a member of it, second, whether 
responses differed based on the country of residency, and third, 
whether displaying percentages next to the different groups would 
have an effect on choices. Participants were indeed more likely to in-
clude subgroups if they were members of them, although the effect 
was small, especially in comparison to the overall tendency of par-
ticipants to include many different subgroups (𝑝 = 0.02, 𝑂𝑅 = 2.43; 
Figure 8A). Responses also differed between data from the U.S. and 
other countries, with higher rates of inclusion in data from the 
United States (Figure 8B, Table 3). While the effect was only sig-
nificant for the group “White”, this could be due to an interaction 
of it being the biggest group and the previously described effect 
of higher rates of including one’s own race. Whether or not per-
centages were shown next to the different groups had a negligible 
effect on participants’ choices, as can be seen in Figure 15 (Table 4). 

We examined whether participants who identify with a cer-
tain gender (Figure 16A, Table 5) or as being part of a minority 
(Figure 16B, Table 6) were more or less likely to exclude certain 
(corresponding) features from the model (Exclude Features). While 
we do see differences between the different groups here, results are 
hard to interpret due to significant imbalances between group sizes, 
and differences were not statistically significant. 

In order to enable group comparisons between different levels of 
AI literacy and AI attitudes, we created three equally sized groups 
on each scale. The distribution of the three groups on either scale 
can be seen in Figure 14 and compared to the overall distributions 
in Figure 13. 

The decision of which metric to prioritize (Eval Fairness Metric) 
is one of the most technical decisions encountered within the study. 
We therefore examined whether responses to it would be different 
based on self-reported AI literacy. Interestingly, we did not observe 

any significant differences on the regular response options. How-
ever, there were significant differences in the number of suggested 
alternatives and empty responses (Figure 9, Table 7). 

We further examined whether there are differences in both ex-
plicit non-responses (checking “I prefer not to answer”) or empty 
responses (checking none of the options) based on participants’ 
self-reported AI attitudes. While most of these comparisons did 
not show significant differences, the observed frequencies show an 
interesting counter-play with both positive and negative AI atti-
tudes generally showing a higher tendency to explicitly check “I 
prefer not to answer” (Figure 17, Table 8), whereas the middle group 
tends to not respond at all more often (Figure 10, Table 9). This is 
most likely related to overall response tendencies, with participants 
who are less engaged in the study opting for satisficing response 
strategies [75], such as responding closer towards the center of a 
scale and opting not to respond in the later sections of the study. A 
statistically significant difference in non-response between groups 
was found for the decisions Exclude Features and Model (Table 9). 

4.3 Multiverse 
Besides examining participants’ ratings directly, we also conducted 
a multiverse analysis by traversing the complete multiverse of mod-
els, building and evaluating each of the models. In this section, we 
first present data from the complete multiverse of models before 
integrating it with participatory input and examining the intersec-
tion. 

4.3.1 The Full Multiverse. We fit all 16,352 ML models in the multi-
verse and evaluated each using the 48 different evaluation strategies. 
This resulted in a total number of 𝑁 = 784, 896 different scores. 

As our primary metrics of algorithmic fairness, we calculate the 
difference of either sensitivity (Eq. 1) or precision (Eq. 2) across 
groups of the protected attribute race. Across all combinations 
of any two racial groups (𝑖, 𝑗 ), the maximum of the differences is 
recorded as the fairness score5 . If there are only two groups due to 
aggregation (via Eval Fairness Grouping) or exclusion (via Exclude 
Subgroups and Eval Exclude Subgroups), only the difference between 
those two groups is used. Whether to use sensitivity or precision 
here corresponds to one of the decisions in the multiverse (Eval 
Fairness Metric). As a reference to these two metrics, we also use 
Equalized Odds Difference [1, 58], a commonly used fairness metric. 

Sensitivity = Recall = 
True Positives (TP) 

True Positives (TP) + False Negatives (FN) 

ΔSensitivitymax = max 
𝑖, 𝑗 

  Sensitivity𝑖 − Sensitivity𝑗 
   (1) 

Precision = Positive Predictive Value = 

True Positives (TP) 
True Positives (TP) + False Positives (FP) 

ΔPrecisionmax = max 
𝑖, 𝑗 

 Precision𝑖 − Precision𝑗 
  (2) 

5We note that this form of aggregation, which is commonly used in practice [12] and 
used here for descriptive purposes, can lead to an overestimation of performance 
differences between groups when the number of groups compared is large [83]. 
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Figure 7: While participants often agree on a single combination of options, the degree of their agreement differs between 
decisions. The ten most common combinations of chosen options for the decisions Exclude Subgroups (A) and Evaluate on 
Subset (B), alongside their respective prevalence. 

An overview of the complete multiverse of fairness scores for 
both metrics (ΔSensitivitymax and ΔPrecisionmax) can be seen in 
Figure 11. Variation within the multiverse is high, with values of 
both fairness metrics spanning their full possible range from 0 to 
1, with a standard deviation of 𝑆𝐷 = 0.347 for ΔSensitivitymax and 
𝑆𝐷 = 0.353 for ΔPrecisionmax. When examining the figure, the 
large spread of scores and a clustering towards the two ends of 
the scale become evident. A large degree of this extreme varia-
tion, however, can be attributed to different evaluation strategies.6 

Using a fixed evaluation strategy (see below), a more condensed 
distribution emerges (Figure 11, in red). 

This brings up the question of which evaluation strategy one 
should use to evaluate the multiverse of models. In the present ex-
ample, we suggest a strategy of more conservative choices, opting 

6While some differences in fairness scores across, e.g., different data subsets may be 
expected, note that the comparisons made by the metrics (performance difference be-
tween racial groups) remain the same. The large spread of scores visible here highlights 
the susceptibility of fairness results of models trained for the same task to changes in 
the evaluation protocol, opening up opportunities for fairness hacking [15, 87] when 
evaluation strategies remain unchecked. 

to not group the protected attribute, to use data from all subgroups 
during evaluation and to evaluate on the full subset of data. While 
we believe this to be a reasonable choice, it is by no means com-
monly used in the literature (as discussed in earlier sections, see 
also Simson et al. [116]). Luckily, this issue can be addressed well 
using the participatory data: Exactly this combination of evaluation 
choices is also the most popular in the present data. Therefore, we 
use this evaluation strategy to fix evaluations for the following 
analyses. 

As there is no clear reason to favor one of the two definitions of 
fairness metrics over the other and since the decision did not impact 
scores in a very strong matter, we chose to not fix this decision, but 
rather continue to examine the two separately going forward. 

4.3.2 The Participatory Multiverse. Participants’ votes can be com-
bined with data from the multiverse to create a participatory multi-
verse7 . Participatory data can be combined with the theoretical full 
7As participatory data can contain missing data or non-responses, the combination 
is actually not a straightforward join. Rather, we assigned equal weights to all par-
ticipants and spread these weights across all endpoints in the multiverse that match 
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Figure 8: Participants were more likely to include a group that they are a member of (A) and more likely to include subgroups 
when from the United States (B). Inclusion of subgroups split by membership of participant (A) and country of residence (B) for 
the decision Exclude Subgroups. Bars below plots indicate the raw group distribution and number of votes. 
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Figure 9: Participants with higher AI literacy opted to suggest 
alternatives for the fairness metric more often. Response to 
the decision Eval Fairness Metric split by self-reported AI 
literacy. Bar below plot indicates the raw group distribution 
and number of votes. 

multiverse (Figure 1) to put variation in the participatory data into 
context. The resulting data can also be used to prune the full multi-
verse before its computation. This makes it possible to only examine 
and compute the most popular branches in the multiverse, greatly 
reducing computational costs. We discuss several approaches for 
this in Section 5.2. 

Participatory data can also be combined with results from a 
multiverse analysis. This makes it possible to put the participatory 

their decisions. A very precise combination of responses will, therefore, assign more 
weight to its resulting endpoints than a very broad one. Multiple other algorithms for 
combination are conceivable. 
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Figure 10: Participants with neutral AI attitudes showed a 
higher rate of non-response. Fraction of participants choos-
ing not to check any option across decisions split by self-
reported AI attitudes. Bars below plot indicate the raw group 
distribution and number of votes. 

multiverse of models and scores into context using actual metrics. 
This is exactly what we did here: We combined participants’ votes 
with data from the multiverse analysis to investigate how a more 
narrow multiverse, weighted by participants’ choices, compares to 
the one created by the complete multiverse analysis. 

As can be seen in Figure 12, there are a significant number of mod-
els with equal or near-equal performance but significant variation 
in their fairness scores, illustrating the Rashomon Effect. However, 
besides areas of equal performance with “free” fairness gains, there 
also exists a Pareto front of models where any increase in either 
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Figure 11: Examining the complete multiverse is unrealistic; rather one will want to use a fixed evaluation strategy to meaning-
fully compare different models. Histogram of evaluation scores across the complete multiverse (left axis) and with a fixed 
evaluation strategy (right axis). The multiverse with a fixed evaluation is scaled by a factor of four to be well visible. Fairness 
metric corresponds to ΔSensitivitymax (A) and ΔPrecisionmax (B), both ranging from 0 to 1 with lower scores being preferable. 

performance or fairness would come at a cost to the other. Interest-
ingly, the distribution of models chosen by participants is clustered 
closer to these Pareto fronts. In particular, the most popular model 
is situated very closely to the technically “optimal” combination, 
indicating a competitive model. Repeating the analysis using Equal-
ized Odds Difference yields similar results (Figure 18). Still, given 
the various trade-offs and nuanced implications of the different de-
cision points, the “performance” of the most popular models cannot 
be fully reflected by the present metrics. Participants’ preferences 
introduce a new dimension in its own right. 

5 Discussion 
In this work, we explore a novel workflow that uses participatory 
input to restrict the decision space during the design of an ML 
system. Using a case study of predicting public health care coverage 
on U.S. data, we illustrate this workflow, prototype a selection of 
decisions, collect citizen science data on which options people deem 
appropriate and evaluate data in the light of the resulting machine 
learning multiverse. 

5.1 Summary of Findings 
Our results indicate that the participatory multiverse approach 
shows great promise to be applicable in real-world scenarios, al-
though care needs to be taken during design and evaluation. We 
were able to successfully collect diverse input from across the world, 
indicating a high willingness of participants to engage with the 
topic. We collected meaningful input on (complex) modeling and 
evaluation decisions, exhibiting differing levels of agreement across 
decisions. It should also be noted that while a large fraction of par-
ticipants opted not to respond to the decisions, this behavior was 
to be expected as we solicited input for a hypothetical ML task on 
a citizen science platform rather than engaging affected individuals 
of an actual ADM system. 

The most popular combinations of people’s choices were very 
reasonable options across the different decisions. Especially in the 
context of evaluation strategies, the most popular evaluation strat-
egy excluded “lazy” practices, such as evaluating fairness using a 
simplified setup of majority and minority data. This is a positive 
result, as these practices commonly occur in the literature, and it 
illustrates the opportunity for participatory input to combat them. 

There were a few significant differences in participants’ responses 
based on their membership to certain groups. However, many more 
comparisons could be made than the ones we presented here. We 
therefore argue for the importance of collecting data from a wide 
and diverse sample of people to represent all identities which will 
be impacted by a potential system, as anticipating the degree of 
diversity in views ahead of time will be difficult. 

When comparing the complete multiverse of plausible ML mod-
els with one weighted by participatory input, we see that the par-
ticipatory multiverse leans towards favorable models in both per-
formance and fairness. Especially the most popular model, which 
would follow from a democratic vote, was situated closely to the 
Pareto front across different definitions of algorithmic fairness. 
This also aligns with findings from a study of participatory feature 
weighting, where participants’ decisions tended to improve fairness 
evaluation [94]. 

As participatory input is a democratic process, one also has to 
anticipate and embrace disagreement. In the present data, we saw 
both high agreement and disagreement for different decisions. This 
should inform how different decisions are handled. For example, 
since agreement on the definition of a particular fairness metric 
was quite low, we chose to explore both options of the decision 
in more detail than other decisions which displayed significantly 
higher rates of agreement. 

5.2 The Participatory Multiverse Workflow 
We present the following steps as an outline for our workflow 
of collecting participatory input when designing an ML system. 
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Figure 12: Models from the multiverse weighted by participants’ votes are close to the Pareto front. Comparison between a 
complete multiverse of models (A, C) and one based on participants’ votes (B, D) on performance (F1 Score, higher is better) and 
fairness metric (lower is better). Both multiverses are evaluated using a fixed strategy, split by definition of fairness metric 
(ΔSensitivitymax: A, B; ΔPrecisionmax: C, D). Darker areas correspond to a higher clustering of models. Crosses indicate the 
most popular models among participants. 

We also add recommendations for implementing the workflow in 
practice. 

(1) Decide on your target population and platform. It is 
important to be clear on who the target population of both, 
the participatory input, but also the ML / ADM system is. 
While this would ideally be the same population in both 
cases, it may not always be feasible in real-world scenarios. 
Great care also needs to be taken in the actual sourcing 
of a chosen target sample. As demonstrated in this work, 
participants’ characteristics may influence their responses 
to decisions, and it is therefore vital to include all relevant 
groups in the discussion. For both aspects, measurement 

and representation, participatory approaches can draw on 
the rich insights of survey science [11, 56]. Moreover, the 
platform in which participatory input is collected should fit 
and inform the intended scope and may range from a large-
scale online platform to a town hall for in-depth discourse 
with stakeholders. 

(2) Source a list of decisions that affect your ML pipeline. 
We recommend focusing on the complete pipeline here, 
including often-neglected steps such as the sourcing and 
(pre-)processing of data. It can be helpful to involve multi-
ple people into this process to spot potentially overlooked 
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decision points. Co-designed fairness checklists [84] and doc-
umentation aids like model cards [92] can also be a starting 
point for identifying decisions. 

(3) Identify the different options for each decision. One 
should keep an open mind when collecting the list of options, 
but also only include actually feasible options in each case. 

(4) Prepare the final list of decisions that you will gather 
participatory input on. Depending on the application sce-
nario, there may be practical limitations on which kinds of 
decisions you can present to participants and how many. In 
this case, it may be useful to prioritize value-related deci-
sions, where stakeholders’ attitudes are more likely to differ 
from those of ML engineers [71, 72, 134]. However, to the 
extent possible, we advocate for the inclusion of decisions 
that may seem to have an obvious correct choice and deci-
sions that may be challenging for non-experts (cf. Section 
3.1.1), as these may unearth implicit biases. In turn, this may 
foster reflection and counteract lazy practices. 

(5) Develop the actual wording for each decision and its 
options. This should include introductory statements for 
each decision, outlining the trade-offs between different op-
tions. Care should be taken not to bias future participants 
towards any particular option in a decision [18]. We further 
recommend allowing participants to help highlight potential 
issues in the text surrounding a decision, e.g., by includ-
ing other decision options as presented in this study (e.g., 
I don’t understand the description; I prefer not to answer; 
suggest an alternative option [80]). The decision-design step 
should consist of multiple iterations where feedback is gath-
ered from stakeholders in between each iteration, potentially 
including empirical data from a multiverse analysis. We rec-
ommend including additional, information-only sections to 
explain the context in which the system is used as well as 
more complicated foundations which may be required for 
certain decisions. We also recommend being as explicit and 
practical as possible when explaining decisions and options, 
opting for applied examples within the context of the ML 
system over more general statements. 

(6) Launch an initial small-scale pilot to verify that partici-
pants understand the decisions and verify data is collected 
as expected. Participants should have an option here to pro-
vide suggestions for each decision as well as overall study 
feedback. 

(7) Gather participatory input. Participants should be encour-
aged to freely choose which decisions to provide input on 
and which not. In online settings, we recommend only light 
input validation to allow participants who are not interested 
to skip parts of the study. The best course of action will de-
pend on the particular context of participation (see Section 
5.3). 

(8) Make decisions based on participatory input. Partici-
patory input will need to be turned into actual decisions to 
create the final ML model. There are many ways to achieve 
this, but committing on an approach ahead of time and ex-
plicitly communicating it to participants can serve to em-
power them. Care should be taken when choosing a strategy, 

as certain strategies, such as majority votes, risk reinforc-
ing existing power imbalances [45]. Alternative approaches 
[35, 53] explicitly harnessing disagreement and participant 
characteristics can be worth exploring as well as approaches 
to quantify consensus, using it for thresholding and map-
ping out the opinion space [67, 119]. We suggest considering 
prohibitory approaches where participatory input has the 
power to rule out certain options and developers are left 
with options to choose in a limited space that is deemed 
acceptable by the public. 

We highlight that implementing even parts of this workflow can 
be beneficial, as it allows for critical reflection of the ML pipeline 
and may be used to inform a follow-up multiverse analysis across 
decisions where participatory input may not have been feasible. Ad-
ditional benefits for developers include surfacing new options they 
were not yet aware of while potentially saving costs by reducing 
the size of the multiverse left to explore. 

5.3 Practical Implications 
In this paper, we presented an illustrative application of the work-
flow focusing on the design of a real ML model, but for a “hypo-
thetical” ADM system without real-world deployment. Below, we 
highlight key considerations for applying the workflow in ADM 
practice. 

Special care should be taken when determining the target popu-
lation for participatory input in light of the specific use case. When 
it is unclear which characteristics, expertise and lived experience 
are truly relevant, we recommend getting input from diverse sets 
of populations. Here, one should be open to recognize the differ-
ent forms of expertise [39] different communities might possess, 
which can be hard to assess from the outside. In any case, all af-
fected populations should always be considered for their input and 
thereby given a voice, especially so if they are part of marginalized 
populations, which can be more sensitive to biases [72]. 

The mode, degree and setup of participation will depend on the 
target population(s) as well as the decisions one plans to gather 
input on. While we specifically chose online citizen science to allow 
for broad participation and as a challenging form of participatory 
input to test the limits of the approach, we encourage consider-
ing the full breadth of participatory methods when applying the 
workflow in ADM practice. This also includes adequate forms of 
compensation to participants for the time and work they put into 
giving their input. This is especially important when working with 
potentially vulnerable populations. 

Last, it is important to avoid exploitative and extractive forms of 
participation such as “participation washing” and manufactured 
consent [118]. At the same time, one should be aware that partici-
patory design will not be able to solve all issues an AI system might 
face [13], including issues related to the data a system is built upon. 

5.4 The Participatory Multiverse as a 
Participatory ML Method 

With the Participatory Multiverse workflow, we contribute a novel 
method for gathering participatory input in the model design and 
evaluation steps of the ML pipeline. Thus, the workflow serves as a 
building block for a part of the pipeline that currently receives less 
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participatory input than earlier steps such as needs assessment [31]. 
It puts particular emphasis on fairness by reaching out to a wide 
audience of stakeholders and capturing their attitudes on questions 
that also address ethical and value-based decisions. Complementing 
related qualitative participatory approaches like Value-Sensitive 
Algorithm Design [134] and UI tools for fairness solicitation [26], 
we gather structured input that can inform decisions in a more 
quantitative manner. In practice, these methods can (and should) 
also be combined, e.g., identifying crucial decisions and choices with 
qualitative methods, inviting a smaller set of people but gathering in-
depth insights, before following up with a participatory multiverse 
survey. 

Mapping the Participatory Multiverse workflow to Delgado et al.’s 
[37] framework for evaluating participation, the participation goal 
of the workflow is to include participants to better align the model 
and its evaluation with stakeholders’ preferences and values. The 
scope of the participation is collaboration with participants to query 
their preferences for system design aspects such as model features 
and consultation and inclusion for stakeholders’ feedback and ex-
pertise, encouraging the suggestion of other options and providing 
space for additional comments. Finally, the form of participation, 
at the minimum, includes consultation via questionnaires, which 
makes it easy to apply the results to the multiverse analysis. In 
our case study, we ran a single iteration of the workflow, situated 
within an hypothetical ADM example. However, through repeated 
queries at different points in time, the approach could easily be 
extended to empower participants as collaborators involved in the 
ongoing decision-making processes. For example, participant in-
put on design or evaluation decisions could be collected to adapt 
decision options for a second iteration, making these suggestions 
available to a broader audience. Repeated participatory input on 
model and evaluation decisions, even after initial deployment, could 
help adjust ML models in consideration of observed outcomes and 
potential biases. The participatory multiverse could also be used 
as a starting point for collaborating with specific groups of partici-
pants, e.g. those who voiced opinions that diverge from practices 
ML engineers would typically apply. For future work, we suggest 
further expansions towards higher-level participation (collaborate 
and own) that reduce power imbalances [13]. 

5.5 Limitations 
There are several important limitations which apply to the results 
of the case study as well as the workflow itself. 

It is important to note that, while geographically diverse, the 
sample used within this study is a convenience sample recruited 
from the internet. As such, it is not an accurate representation of 
the general public, and we do not claim that reported results repre-
sent effects, attitudes or convictions of the general public. Rather, 
results should be interpreted as a case study, illustrating that this 
particular workflow can work and produced highly useful results 
in this particular context. Nonetheless, the results emphasize that 
even a small case study can already provide a benefit by revealing 
controversial decisions. 

Further, the decisions explored in this study represent a small 
subset of potential decisions encountered during the design of a 
real-world ML system. While they may serve as an inspiration for 

applications, they do not represent a holistic overview of decisions 
and are specific to this particular context. We also purposefully 
included potentially harmful decisions (related to lazy practices) 
to understand how these are addressed by participants. Any real-
world usage of this workflow should most likely not include these 
decisions. Applying the workflow will require a careful evaluation 
of which decisions may be relevant in a particular context. 

While able to provide useful information, the participatory work-
flow is by no means a replacement for expert input and one should 
not rely solely on participatory data to design an ML system. When 
implementing the workflow in practice, special care has to be taken 
when selecting which decisions to present to people, as despite 
introductory statements, certain concepts, especially in ML, may 
be too hard to convey within the context of a short survey or study. 
More elaborate settings, such as workshops with educational sec-
tions (e.g. [52]), may be used to address this limitation. 

Due to practical limitations the present case study relies on infor-
mative participation, mostly consulting and including participants, 
rather than granting ownership [37] and control [31]. While prac-
tical limitations may restrict aspects of open online participatory 
design, one can borrow ideas from Delgado et al. [37] and Corbett 
et al. [31] to improve the mode of participation, such as including 
stakeholders in the design of the participatory system itself and 
enabling them to take part in the formulation of goals. 

As monetary incentives may be unrealistic in many real-world 
scenarios of participatory input, where a system may be created by 
a government or NGO entity, this puts practical limitations on the 
scope, number and complexity of decisions one is able to implement. 
While we have demonstrated here that collection of participatory 
inputs without monetary incentives is quite feasible, it did inform 
our choice of decisions as well as their wording and framing. The 
lack of monetary incentives also meant that we were unable to in-
clude more detailed checks to confirm participants’ understanding 
of the decisions asked to them. We did allow participants to explic-
itly check that they did not understand a decision, however, and 
we observed that popular choices largely reflected good decisions. 
Future research focusing solely on this issue will be required to 
better understand the degree to which participants may or may not 
be able to answer more technical ML decisions and how best to 
describe these. 

Introductions and explanations for decisions also carry the risk 
of priming or influencing respondents to choose a particular op-
tion. While we had multiple rounds of iterative development in this 
study to minimize such influences, it is impossible to rule them out 
completely. In particular, the surprisingly high prevalence of choos-
ing only “White alone” in the decision Exclude Subgroups could be 
influenced by the introductory text to the decision. Participatory 
input from the workflow should, therefore, always be evaluated 
with an eye on the specific wording of each decision. The framing 
of the study as secondary to the gamified section could have also in-
fluenced participants’ responses. Although such an effect cannot be 
entirely ruled out, it is unlikely to have significantly impacted the 
results of this study. Participants who perceived the study as unim-
portant due to its framing had the option to refrain from responding. 
Consequently, it is possible that some of the non-responses can be 
attributed to this framing. 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Jan Simson, Fiona Draxler, Samuel Mehr, and Christoph Kern 

It is important to note that the workflow presented here repre-
sents just a small part of the bigger picture of creating and imple-
menting an ML system. While participatory input can help reduce 
problematic practices, as demonstrated, it is by no means a replace-
ment for critical reflection by the practitioners implementing the 
system. Care has to be taken to avoid a “tyranny of the majority”. 
Rather, participatory input and careful reflection should be used 
jointly, each serving to constrain the garden of forking paths. This 
is especially the case when an ML system is implemented as part 
of an ADM pipeline. 

6 Conclusion and Outlook 
This work presents the participatory multiverse as a new workflow 
of incorporating participatory input into ML design and applies the 
workflow to a case study of predicting public health care coverage 
in the United States. Results from this case study demonstrate 
how participatory input can improve and inform the design of ML 
systems in an effective manner. In particular, results highlight how 
participatory input can be used to restrict both the multiverse of 
different models as well as different evaluation strategies, combating 
widespread lazy practices and aligning nuanced decisions and trade-
offs with public preferences. 

While we successfully apply the workflow in this work, future, 
theory-driven work will be necessary to better understand the 
interaction of participants’ characteristics and their responses. The 
workflow is also currently limited in which decisions are suitable 
for participatory input by the complexity of certain concepts. Future 
work may help address this issue by focusing on particular concepts 
(e.g., metrics of algorithmic fairness) and how participatory input 
can be sourced on these. 

We hope that adopting the participatory multiverse alongside 
standard ML workflows will lead to better overall systems, espe-
cially so in ADM, and give unheard voices a chance to be heard. 
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Table 1: Distribution of participants across different countries. Due to the high number of countries, different countries with 
the same sample size are grouped into one row. Sample size and percentages apply to each individual country. 

N Percentage Countries 

199 37.27% United States 
37 6.93% United Kingdom 
31 5.81% Canada 
30 5.62% Germany 
27 5.06% Australia 
21 3.93% France 
10 1.87% Aotearoa New Zealand; Brazil 
9 1.69% Russia 
8 1.50% Denmark 
7 1.31% Austria; Poland; Turkey 
6 1.12% India; South Korea 
5 0.94% Argentina; Belgium; Italy; Norway; Saudi Arabia; Sweden 
4 0.75% Hong Kong; Romania; Spain; Switzerland 
3 0.56% China; Iran; Ireland; Japan; Portugal; Serbia; Taiwan; The Netherlands 
2 0.37% Afghanistan; Albania; Andorra; Azerbaijan; Egypt; Finland; Greece; Hungary; 

Indonesia; Mexico; Philippines; Singapore; Vietnam 
1 0.19% Algeria; Angola; Armenia; Artsakh; Barbados; Bulgaria; Chad; Chile; Dominican 

Republic; Estonia; Georgia; Israel; Kenya; Kuwait; Latvia; Lithuania; Mongolia; 
Myanmar; Slovenia; South Africa; Sri Lanka; Thailand; Ukraine 

1145/3274463 

A Participants: Sample Composition 
Participants self-reported a total of 69 different countries as their 
country of origin. The three most frequent countries are the United 
States (n = 199, 37.26%), the United Kingdom (n = 37, 6.92%) and 
Canada (n = 31, 5,80%). Participation rates by country are shown in 
Figure 3, with detailed numbers per country available in Table 1. 

The majority of participants identified as male (n = 329, 61.61%), 
with 31.65% identifying as female (n = 169) and 6.74% identifying 
with another gender (n = 36). The average reported age is 29.11 
years (SD = 15.56). 

Participants from the United States were asked about their race 
and identified as predominantly White (n = 109, 54.77%), Asian (n = 
38, 19.1%) or with more than one race (n = 18, 9.05%). Only a small 
number of people identified with other races (Black or African 
American n = 9, 4.52%; American Indian/Alaska Native n = 4, 2.01%; 
Native Hawaiian or other Pacific Islander n = 1, 0.5%) and about 
10% of participants preferred not to answer the item (n = 20). 

As racial identities are a highly complex topic and vary greatly 
within different geographical and social contexts [70], non-U.S. 
participants were not asked about their race but rather whether 
they identify as a minority in their respective country. Wording of 
the question was adapted from the European Social Survey. The 
majority of people did not identify as members of a minority (n = 
260, 77.61%), with 14.03% of participants identifying with one (n = 
47). For analyses using minority status, we also coded U.S. racial 
data into minority membership with the biggest group (White) 
coded as majority and all other racial groups as minorities. 

B Research Materials 
B.1 Introductory Text 
In this last section, we have some questions for you about artificial 
intelligence (AI). We are building an AI system — and we need your 
help! 

Our system is going to try to predict something important in the 
USA: whether or not someone has public health insurance. 
By "public health insurance", we mean free healthcare provided by 
the government, like Medicare or Veterans Health Administration 
coverage. 

Here’s how it will work. We’ll give the AI some information (like 
a person’s age and income) and it will learn how this information 
can reliably predict — or not — whether or not someone has health 
insurance. Then we’ll see where its predictions went wrong, and 
help the AI to figure out how to make better predictions. 

This could be really useful for helping to figure out who needs 
more support in getting health insurance. It could help local gov-
ernments to look out for people in need. 

Here’s the problem: Sometimes, the people who design AI 
systems make bad decisions about how to train these models, and 
those decisions can lead to unfair, biased AI. We want to know 
which sorts of decisions you think are good and which sorts 
you think are bad in designing an AI system. 

B.2 Introductory Text (Evaluation) 
How should we evaluate whether an AI system is fair for 
different groups of people? The fairness of an AI system can 
be assessed with fairness metrics. These metrics allow quantifying 
the degree to which an AI system treats different groups of people 
equally based on sensitive characteristics like race, sex, or age. These 

https://doi.org/10.1145/3274463
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metrics evaluate how well a system’s predictions or decisions align 
across these groups to identify and reduce biases. 

We want to make our AI system as fair as we can across different 
races (i.e., the AI system’s predictions should work equally across 
different groups of the characteristic "race"). 

B.3 Decisions 
B.3.1 Exclude Subgroups. Should the AI system analyze all 
groups of people, or only some groups of people? When we 
work with data from different groups, especially when some groups 
are very small or uncommon, it can be challenging to decide how 
best to handle their data. 

Sometimes, small groups are left out to protect people’s privacy, 
because the data might not be reliable, or excluding them might 
make the data easier to analyze. But doing so means they are not 
represented in the data anymore. 

Here are a set of race and ethnicity subgroups of the US popula-
tion. Which groups do you think should be included in the 
AI system? (you can choose as many as you like) 

Answering options were not randomized for this question. Order 
and options based on the ACS PUMS [23]. 

Variant 1: No Percentages 

□ White alone: Use data from everyone identifying mainly 
as White. 

□ Black or African American alone: Use data from everyone 
identifying mainly as Black or African American. 

□ American Indian alone: Use data from everyone identify-
ing mainly as American Indian. 

□ Alaska Native alone: Use data from everyone identifying 
mainly as Alaska Native. 

□ Anyone who indicated that they are American Indian 
and/or Alaska Native and specified a tribe: Use data from 
everyone identifying as American Indian or Alaska Native 
and who specified information about their tribe. 

□ Asian alone: Use data from everyone identifying as Asian. 
□ Native Hawaiian and Other Pacific Islander alone: Use 

data from everyone identifying mainly as Native Hawaiian 
or Pacific Islander. 

□ Some Other Race alone: Use data from anyone identifying 
mainly with another race than the ones mentioned here. 

□ Two or More Races: Use data from anyone identifying with 
two or more races (biracial). 

□ I don’t understand the description 
□ I prefer not to answer 
□ Suggest an alternative option: ______ 

Variant 2: With Percentages 
The percentages correspond to the size of the race/ethnicity 

group in the dataset.8 

□ White alone (56.7%): Use data from everyone identifying 
mainly as White. 

□ Black or African American alone (5.8%): Use data from 
everyone identifying mainly as Black or African American. 

8This text was erroneously displayed with brackets for a brief part of data collection (5.4% 
of sessions), before being updated. Previous version: (the percentages correspond to the 
size of the race/ethnicity group in the dataset). 

□ American Indian alone (0.9%): Use data from everyone 
identifying mainly as American Indian. 

□ Alaska Native alone (<0.1%): Use data from everyone iden-
tifying mainly as Alaska Native. 

□ Anyone who indicated that they are American Indian 
and/or Alaska Native and specified a tribe (0.3%): Use 
data from everyone identifying as American Indian or Alaska 
Native and who specified information about their tribe. 

□ Asian alone (15.0%): Use data from everyone identifying 
as Asian. 

□ Native Hawaiian and Other Pacific Islander alone (0.4%): 
Use data from everyone identifying mainly as Native Hawai-
ian or Pacific Islander. 

□ Some Other Race alone (15.8%): Use data from anyone 
identifying mainly with another race than the ones men-
tioned here. 

□ Two or More Races (5.0%): Use data from anyone identify-
ing with two or more races (biracial). 

□ I don’t understand the description 
□ I prefer not to answer 
□ Suggest an alternative option: ______ 

B.3.2 Exclude Features. What kind of information should an 
AI system use? Sometimes AI systems take into account poten-
tially sensitive characteristics (like a person’s sex or race) and some-
times these characteristics are excluded due to legal or privacy 
reasons. But excluding this information doesn’t always make AI 
systems fairer, as these characteristics can be related to other infor-
mation. 

Which of these options do you think are acceptable? (you can 
choose more than one) 

Answering options were not randomized for this question. 

□ Do not exclude any sensitive characteristics: This means 
the AI is trained with all available information, including 
sensitive characteristics like race and sex. 

□ Exclude race from the system: This means the AI uses all 
information available but not race. 

□ Exclude sex from the system: This means the AI uses all 
information available but not sex. 

□ Exclude both race and sex from the system: This means 
the AI uses all information available but not race and sex. 

□ I don’t understand the description 
□ I prefer not to answer 
□ Suggest an alternative option: ______ 

B.3.3 Preprocess Income. How should the AI system handle 
numbers? When working with data that are numerical (like house-
hold income, or people’s ages), it is often useful to bin these num-
bers into categories. This can make the data easier to understand 
and compare, but it also means the system is using less detailed 
information. 

Which of these options do you think are acceptable for income 
data? (you can choose more than one) 
□ No binning: Keep the income data as it is. 
□ Binning into bins of size $10,000: Put each income into 

a group that covers ten thousand dollars, like $0-$9,999; 
$10,000-$19,999; and so on. 
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□ Binning into three evenly sized groups: Divide all in-
comes into three equal groups: lower income, middle income 
and higher income. 

□ Binning into four evenly sized groups: Divide all incomes 
into four equal groups: lower income, middle income, upper 
middle income and higher income. 

□ I don’t understand the description 
□ I prefer not to answer 
□ Suggest an alternative option: ______ 

B.3.4 Model. How complicated should the AI system be? One 
of the key decisions in designing an AI system is choosing the type 
of model to use. Below are some possibilities. (it’s okay if you don’t 
know how these work!) 

Which of these options do you think are acceptable? (you can 
choose more than one) 
□ Simple, more understandable model (Logistic Regres-

sion): This type of model is easier to understand and inter-
pret than many alternatives. It may not be able to learn as 
many relations as other, more powerful models. 

□ Complex, more flexible model (Random Forest): This 
type of model is able to learn intricate relations in the data, 
but is harder to interpret and understand. 

□ I don’t understand the description 
□ I prefer not to answer 
□ Suggest an alternative option: ______ 

B.3.5 Eval Fairness Definition. How should we evaluate our 
AI system? Two important metrics are available to evaluate AI 
systems. Since we can often not be perfect on both of them, we 
may have to focus on one in particular. 

For an AI system that predicts whether a person has public 
health insurance, which is most important? 

This decision allowed selecting only a single answering option. 

□ Sensitivity: It is more important that out of all people with-
out public health insurance, the AI system correctly identifies 
as many as possible. This would minimize the number of 
people who really do not have public insurance who are 
incorrectly identified as having public insurance. 

□ Precision: It is more important that out of all people where 
the AI system thinks that they do not have health insurance, 
many individuals indeed have no insurance. This would min-
imize the number of people who really have public insurance, 
but are incorrectly identified as not having public insurance. 

□ I don’t understand the description 
□ I prefer not to answer 
□ Suggest an alternative option: ______ 

B.3.6 Eval Fairness Grouping. How should our data be grouped? 
When checking whether our AI system is fair or not, we need to 
choose how to group the data. This could influence how we calculate 
whether the AI system is fair or not. 

Which of these options do you think are acceptable? (you can 
choose more than one) 
□ Two Groups: Create just two groups: the largest group 

and all other groups combined. We then check whether the 
AI system works equally well for these two groups. The 

difference between these two groups is used as the fairness 
metric. 

□ All Group Comparisons: Consider all the different groups 
separately without combining them. We then check whether 
the AI system works equally well for each possible pair of 
groups. The largest difference between any two groups is 
used as the fairness metric. 

□ I don’t understand the description 
□ I prefer not to answer 
□ Suggest an alternative option: ______ 

B.3.7 Eval on Subset. Which people should an AI system be 
tested on? It’s not practical to test out an AI system on everybody 
in a whole country, but it’s also hard to choose who it should be 
tested on. 

For an AI system that predicts whether a person has public 
health insurance, Which of these options do you think are 
acceptable? (you can choose more than one) 

□ Collecting data from the most populous area: This means 
testing the AI system using data from the area with the most 
people living in it, like a big city. 

□ Collecting data from the area where the most people 
have public health insurance: This means testing the AI 
system using data from an area where lots of people have 
public health insurance, but a few people don’t have public 
health insurance. 

□ Collecting data from the closest major city: This means 
evaluating the AI system using data only from a city close-by 
to the people building the AI system. 

□ Collecting data from as many people as possible, but 
excluding military veterans: Being a veteran can impact 
healthcare needs, so it might change the AI’s predictions to 
test the model on veterans. This option means testing the AI 
system only using data from non-veterans living in the area 
where the AI is being tested. 

□ Collecting data of only U.S. citizens: This means testing 
the AI system using data from U.S. citizens and not other 
people living in the area where the AI is being tested. 

□ Collecting data from the overall population: This means 
testing the AI in a similar way to how political polls are 
conducted, by studying a representative sample of people in 
the US. 

□ I don’t understand the description 
□ I prefer not to answer 
□ Suggest an alternative option: ______ 

B.3.8 Eval Exclude Subgroups. When creating an AI system, one 
might exclude certain smaller groups from the data to simplify the 
process or with the intention to protect their privacy. There already 
was an earlier question about this regarding the exclusion of data 
from certain groups when creating the AI system. 

This decision now is about including or excluding the same small 
groups when evaluating how good the AI system works. 

Which of these options do you think are acceptable? (you can 
choose more than one) 
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This decision was only displayed if (1) an answer for Exclude Sub-
groups was provided, (2) that answer was one of the valid options and 
(3) not all options of Exclude Subgroups were selected. 
□ Keep all groups for evaluation: This means evaluating 

the AI system with data from all groups, also ones that were 
excluded earlier. 

□ Exclude the same groups during evaluation: This means 
using only data from the groups that were also included 
when creating the AI, excluding data from the same groups 
that were excluded earlier. 

□ I don’t understand the description 
□ I prefer not to answer 
□ Suggest an alternative option: ______ 

C Software used in Analyses 
Analyses were conducted with R version 4.2.2 [105] using packages 
from the tidyverse [129] with support of multiple other packages 
[4, 44, 48, 61, 98, 100, 121, 133]. 

The complete multiverse of decisions was simulated and explored 
with Python version 3.8 [127], using pandas [99] for data manipu-
lation and scikit-learn [101] for modeling alongside multiple other 
packages [12, 40, 59, 73, 95, 104]. Diagrams of the multiverse were 
generated using RawGraphs [86], d3 [19] and Observable [97]. 

D Supplementary Tables and Figures 
This section contains supplementary tables, figures and information 
on statistical analyses described in the main body of this work. 

Tables with statistical details for group comparisons contain test 
details for each comparison which was calculated. Odds ratios are 
provided for comparisons between two groups. The column Sig. 
Threshold refers to Bonferroni corrected significance thresholds for 
a p-value of 𝛼 = 0.05. 

Table 2: Overview of the two decision blocks, the actual decisions examined in the case study and their respective options. For 
the decision Exclude Subgroups the combination of options was used. The decision Eval Fairness Definition allowed choosing 
only one option. For the participatory input, each decision includes three additional other options: “I don’t understand the 
description,” “I prefer not to answer” and “Suggest an alternative option”. 

Block Decision Options 
Model Design Decisions (Section 3.1.1) 
Data Selection Exclude Subgroups (1) white-alone; (2) black-or-african-american-alone; (3) american-indian-

alone; (4) alaska-native-alone; (5) american-indian-and-or-alaska-native-
and-tribe; (6) asian-alone; (7) native-hawaiian-and-other-pacific-islander-
alone; (8) some-other-race-alone; (9) two-or-more-races 

Exclude Features (1) none; (2) race; (3) sex; (4) race-sex 
Preprocessing Preprocess Income (1) none; (2) bins-10000; (3) quantiles-3; (4) quantiles-4 
Modeling Model (1) simple; (2) complex 

Evaluation Decisions (Section 3.1.2) 
Metric Eval Fairness Definition (1) sensitivity; (2) precision 
Evaluation Eval Fairness Grouping (1) majority-minority; (2) race-all 

Eval On Subset (1) locality-largest-only; (2) locality-most-privileged; (3) locality-city; 
(4) exclude-military; (5) exclude-non-citizens; (6) full 

Eval Exclude Subgroups (1) keep-in-eval; (2) exclude-in-eval 
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Table 3: Statistical details of group comparisons for the decision Exclude Subgroups, comparing different groups by Country Of 
Residence. 

Option Odds Ratio p-value Sig. Threshold 

White (56.7%) 0.55 0.0018 0.0038 
Some Other Race (15.8%) 0.64 0.0224 0.0038 
Asian (15.0%) 0.62 0.0123 0.0038 
Black/African American (5.8%) 0.61 0.0119 0.0038 
Two Or More Races (5.0%) 0.59 0.0064 0.0038 
American Indian (0.9%) 0.60 0.0104 0.0038 
Nat. Hawaiian & Pac. Islander (0.4%) 0.62 0.0143 0.0038 
Am. Indian & Alaska Native Incl. Tribe (0.3%) 0.82 0.3244 0.0038 
Alaska Native (<0.1%) 0.84 0.4247 0.0038 
Dont Understand 1.81 0.2278 0.0038 
Prefer No Answer 1.51 0.1003 0.0038 
Suggest Alternative 1.40 0.2973 0.0038 
None Checked 1.06 0.8392 0.0038 

Table 4: Statistical details of group comparisons for the decision Exclude Subgroups, based on whether percentages of the 
relative size of each subgroup were visible. 

Option Odds Ratio p-value Sig. Threshold 

White (56.7%) 1.12 0.5836 0.0038 
Some Other Race (15.8%) 1.27 0.2491 0.0038 
Asian (15.0%) 1.09 0.7100 0.0038 
Black/African American (5.8%) 1.07 0.7794 0.0038 
Two Or More Races (5.0%) 1.21 0.3468 0.0038 
American Indian (0.9%) 1.09 0.7030 0.0038 
Nat. Hawaiian & Pac. Islander (0.4%) 0.98 1.0000 0.0038 
Am. Indian & Alaska Native Incl. Tribe (0.3%) 0.95 0.8488 0.0038 
Alaska Native (<0.1%) 0.95 0.8472 0.0038 
Dont Understand 2.20 0.0786 0.0038 
Prefer No Answer 1.03 1.0000 0.0038 
Suggest Alternative 0.96 1.0000 0.0038 
None Checked 0.79 0.2803 0.0038 

Table 5: Statistical details of group comparisons for the de-
cision Exclude Features, comparing different groups of the 
attribute gender. 

Option p-value Sig. Threshold 

None 0.0112 0.0063 
Race 0.7743 0.0063 
Sex 0.2613 0.0063 
Race Sex 0.2362 0.0063 
Dont Understand 0.7586 0.0063 
Prefer No Answer 0.0685 0.0063 
Suggest Alternative 0.0152 0.0063 
None Checked 0.9346 0.0063 

Table 6: Statistical details of group comparisons for the de-
cision Exclude Features, comparing different groups of the 
attribute minority status. Minority status was self-reported 
for participants outside of the U.S. and computed based on 
majority-group membership based on self-reported race for 
U.S. participants. 

Option p-value Sig. Threshold 

None 0.0132 0.0063 
Race 0.0929 0.0063 
Sex 0.4921 0.0063 
Race Sex 0.7785 0.0063 
Dont Understand 0.4599 0.0063 
Prefer No Answer 0.0680 0.0063 
Suggest Alternative 0.7344 0.0063 
None Checked 0.6405 0.0063 
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Table 7: Statistical details of group comparisons for the deci-
sion Eval Fairness Definition, comparing three equally-sized 
groups based on self-reported AI Literacy. 

Option p-value Sig. Threshold 

Sensitivity 0.2756 0.0083 
Precision 0.4475 0.0083 
Dont Understand 0.3651 0.0083 
Prefer No Answer 0.5722 0.0083 
Suggest Alternative 0.0009 0.0083 
None Checked 0.0002 0.0083 

Table 8: Statistical details of group comparisons for the op-
tion prefer not to answer, comparing three equally-sized 
groups based on self-reported AI Attitudes. 

Decision p-value Sig. Threshold 

Exclude Subgroups 0.1427 0.0063 
Exclude Features 0.0290 0.0063 
Model 0.0065 0.0063 
Preprocess Income 0.0619 0.0063 
Eval Fairness Definition 0.5947 0.0063 
Eval Fairness Grouping 0.9266 0.0063 
Eval On Subset 0.4232 0.0063 
Eval Exclude Subgroups 0.2421 0.0063 

Table 9: Statistical details of group comparisons for the op-
tion none checked, comparing three equally-sized groups 
based on self-reported AI Attitudes. 

Decision p-value Sig. Threshold 

Exclude Subgroups 0.0128 0.0063 
Exclude Features 0.0051 0.0063 
Model 0.0053 0.0063 
Preprocess Income 0.0064 0.0063 
Eval Fairness Definition 0.0141 0.0063 
Eval Fairness Grouping 0.0514 0.0063 
Eval On Subset 0.0476 0.0063 
Eval Exclude Subgroups 0.3343 0.0063 
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Figure 13: Histograms showing the overall distribution of AI attitudes [124] (above) and AI literacy [103] (below) scores across 
participants. Both scales emit a high degree of variation in the present sample, with a slight tendency towards more positive AI 
attitudes and higher AI literacy. 
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Figure 14: Histograms showing the distribution of AI attitudes (A) and AI literacy (B) scores across the three equally sized 
groups per metric, which were used for later group comparisons. The overall distribution of both scales is shown in Figure 13. 
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Figure 15: Inclusion of subgroups split by whether or not percentages were displayed next to groups for the decision Exclude 
Subgroups. The bar below the plot indicates the raw group distribution and number of votes. 
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Figure 16: Exclusion of sensitive features split by gender (A) and minority status (B) for the decision Exclude Features. Bars 
below plot indicate the raw group distribution and number of votes. 
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Figure 17: Fraction of participants choosing "I Prefer Not To Answer" across decisions split by self-reported AI attitudes. The bar 
below the plot indicates the raw group distribution and number of votes. 
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Figure 18: Comparison between complete multiverse of models (A) and one based on participants’ votes (B), both evaluated 
using a fixed strategy with equalized odds difference as fairness metric and F1 score as performance metric. Darker areas 
correspond to a higher clustering of models. Cross indicates the most popular model among participants. 
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