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1   |  INTRODUCTION

Researchers investigating thought processes and cognitive abilities often use item response theory (IRT) 
models to measure multiple unobserved (or latent) variables like personality traits or proficiencies. One 
of the most widely applied IRT frameworks for observed variables with a small amount of ordered re-
sponse categories is the graded response model (GRM; Samejima, 1969).

However, unidimensional IRT models, that is, models with only one latent variable, are 
often not able to model the full complexity of conceptually broad personality traits or abilities. 
Multidimensional item response theory (MIRT) models make it possible to analyse psychological 
assessment data such that underlying multidimensionality is captured (Reckase, 1997). The potential 
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of such models for large-scale test and questionnaire evaluation and development has been empha-
sized numerous times (Bean & Bowen, 2021; Immekus et al., 2019; ten Holt et al., 2010). A major 
advantage of MIRT models is their f lexibility, because latent covariance structures, hierarchical 
latent variable structures or within-item multidimensionality can be included in the model (Hartig 
& Höhler, 2009). In this paper, we develop an approach to compute model scores for a special kind 
of (multidimensional) IRT model, namely the ordinal factor model. This opens up novel avenues in 
latent variable modelling.

A popular estimation method in IRT is marginal maximum likelihood (MML) estimation via the expec-
tation maximization (EM) algorithm (Bock & Aitkin, 1981; Jöreskog & Moustaki, 2006). This approach 
is commonly considered a full information (FI) estimation method because all distinct values on the 
observed variables are used (Bolt,  2005). However, parameter estimation for MIRT models via this 
FI method is computationally demanding, especially if there is more than one dimension (i.e. latent 
variable) (Forero & Maydeu-Olivares,  2009; Muraki & Carlson,  1995) as the complexity of the EM 
algorithm increases exponentially with the number of latent variables. In contrast, the complexity of 
the Metropolis-Hastings Robbins-Monro (MH-RM) increases linearly with the number of latent variables. 
It has proven to be accurate and relatively efficient for MIRT model estimation (Cai, 2010; Yavuz & 
Hambleton, 2017). However, compared to alternative approaches, model estimation with the MH-RM 
algorithm is still computationally demanding if more than one latent variable is specified in the model.

According to Liu et al. (2018), contemporary MIRT is a convergence of developments from test the-
ory and confirmatory factor analysis (CFA). This means that certain types of CFA models and IRT mod-
els are equivalent (Takane & De Leeuw, 1987). Building on this assumption, Muthén (1984) proposed 
a limited information(LI) approach in which the polychoric correlation matrix of the response variables is 
used for parameter estimation. LI methods are usually computationally more efficient than FI methods 
and commonly used in practice. Pairwise maximum likelihood (PML) is a specific type of LI method which 
(like MML) uses a likelihood function for parameter estimation and maximizes the log-likelihoods 
associated with all item pairs (Katsikatsou et al., 2012). In this article, however, we focus on the most 
widely used LI estimate, which goes back to Muthén (1984). In the following, we therefore use ordinal 
factor analysis as a broad term for (multidimensional) IRT models estimated via polychorics (Maydeu-
Olivares et al., 2011; Shi et al., 2020).

In IRT, it is generally assumed that the item parameters are independent of any covariates of the 
observed variables in the population of test takers. Such covariates may be demographic characteristics 
such as age, gender or education level. Violations of this assumption are interpreted as differential item 
functioning (DIF; Millsap,  2012; Osterlind & Everson,  2009). In practice, DIF may be detected by 
pre-specifying subgroups for which measurement invariance is not assumed. Alternatively, one can use 
the score-based test for parameter instability (Zeileis & Hornik, 2007) to detect DIF. This test focuses 
on identifying parameter instability through an analysis of the relation between model parameters and 
person covariates. It tests the null hypothesis that model parameters remain invariant across all values 
of person covariates. The score-based test is computed using the model scores, that is, the partial de-
rivative of the casewise contributions to the objective function with respect to the model parameters 
(Merkle & Zeileis, 2013). It has been applied to a variety of different psychometric models, including 
factor analysis (Merkle et al., 2014), Bradley–Terry models (Strobl et al., 2011), binary and polytomous 
Rasch models (Komboz et al., 2018; Strobl et al., 2015), logistic IRT models (Debelak & Strobl, 2019a), 
mixed models (Fokkema et al., 2018), as well as the two-parameter normal ogive model via the PML 
estimation method (Wang, Strobl, et al., 2018). It is, however, currently not applicable to the GRM via 
ordinal factor analysis (i.e. LI estimation via polychorics).

We propose a method to efficiently approximate individual model scores, that is, the partial de-
rivative of the casewise contributions to the objective function, for ordinal factor models. With this 
method, it is possible to apply score-based tests to such models. The score-based test for parameter 
instability can therefore be applied to MIRT models, specifically multidimensional GRMs, with reason-
able computational effort.
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       |  3SCORE-BASED TESTS FOR ORDINAL FACTOR MODELS

We simulate data based on two (uni- and multidimensional) GRMs and systematically investigate 
the performance of the proposed score-based test. We compare our approach to tests based on models 
fitted with FI estimation under various conditions. Furthermore, we investigate the distribution of the 
scores estimated with the proposed method by comparing the correlations of model score contributions 
from different fitting approaches.

In the following, we describe the methodological background of this paper and how score-based 
tests for parameter instability can be used to detect DIF. We further introduce ordinal factor analysis 
and subsequently present our approach to compute individual model scores for ordinal factor models. 
Next, we present simulations with different scenarios to test the performance of score-based tests based 
on models fitted with both LI and FI estimation. Following this, we apply models fitted via different 
estimation methods to real data and compare the computation times and the results of the score-based 
tests for parameter instability. In the last section, the results are discussed.

2  |  METHODOLOGICA L BACKGROUND

2.1  |  Model definition

In IRT models, the latent variable, denoted as �, typically represents the respondent's ability that 
is assumed to underlie their response patterns. Let the graded responses be represented by the ob-
served variable Y

j
, for a given item j . Usually, IRT models are estimated based on ordered observed 

variables, wherein i = 1,…, n, respondents choose from a range of ordered response categories 
k
j
= 1,…, l

j
, for items j = 1,…, p. For simplicity, we assume that all items have the same number of 

categories, such that k
j
= k∀ j = 1,…, p. In a multidimensional GRM, � is a m × 1 vector containing 

all latent variables �
q
∀q = 1,…,m. An observed variable Y

j
 may be associated with multiple latent 

variables.
In the GRM, the probability of answering in a category smaller or equal to a certain ordered cate-

gory k depends on the (multidimensional) distribution of the latent variables as well as on the model's  
parameters. The threshold parameters �

jk
 represent the boundaries between the categories. The thresh-

old locations determine the difficulties of the item categories. The discrimination parameters �
j
 denote 

the loadings of the items on the latent variables. The relationship between the latent variable and the 
response variables is defined by the cumulative category response function, that is 

where Φ is the distribution function of the standard normal distribution. It is used as a link func-
tion to convert a linear function into a probability function. The link function is also known as 
probit function or normal ogive function. Alternatively, a logit function can be used for the GRM 
(Samejima, 1997).

The model parameter vector � contains all freely estimated threshold parameters �
jk

, all freely es-
timated discrimination parameters �

qj
 that make up the m × 1 vector �

j
, as well as all freely estimated 

latent variable variances and covariances, such that 

Note that Var(�
q
) is fixed to 1 if �

q1
 is freely estimated (and vice versa).

(1)P(Y
j
≤ k|�, �) = Φ(�

jk
− ��

j
�),

(2)

� ={�
11
,…, �

pl
, �
11
,…, �

mp
,

Var(�
1
),…, Var(�

m
),

Cov(�
1
, �
2
),…, Cov(�

m − 1, �m )}.
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4  |      CLASSE et al.

2.2  |  Differential item functioning

In the context of IRT models, differential item functioning (DIF) arises when an item's characteristics 
are related to person covariates. For instance, covariates such as ethnicity, education or gender may have 
an impact on, for example, the difficulty of an item. This means that one or more items of a test have 
different difficulties for subgroups with different ethnicity, education or gender. Let Z be a covariate 
that induces such a DIF effect. In this case, the item parameters in � deviate across the distribution of 
Z. If Z is independent of the latent variable, DIF occurs when the probability of responding to an item 
in a particular category differs between two individuals with the same ability (i.e. the same values on 
� ) solely due to their different values on Z. Practically, undetected DIF may lead to a misinterpretation 
of group differences concerning latent variables (Wang, Strobl, et al., 2018). Thus, DIF analyses are 
important in the practice of test validation (Walker, 2011). Note, however, that DIF is fundamentally 
different to impact, which means that the distribution of the latent variable depends on Z. For example, 
two subgroups with different ethnicity, education and gender may differ with respect to the values on 
the latent variable, but the difficulties of the test items may be equal across these groups. If impact of 
the latent variable is expected, testing for DIF requires a model in which the item parameters can dif-
fer between groups while controlling for group differences in the latent variable distribution (Belzak & 
Bauer, 2020; Sterner et al., 2024).

As mentioned above, DIF is closely related to the concept of measurement invariance, which is 
a concept primarily used in factor analysis. Measurement invariance in a model is established by the 
conditional independence of all observed variables and all potentially confounding covariates (Sterner 
et al., 2024). For a model with p observed response variables, this rule can be expressed as 

where Y
i
 is the observed response variable for item i, Z is the vector of all potentially confounding covariates 

and �
i
 is the vector of latent variables pertaining to item i. For an MIRT model, it follows from Equation (3) 

that the �
i
-conditional probability of answering to item i is independent from Z, which means that there is 

no DIF. For simplicity, we refer to DIF as measurement non-invariance in IRT models.
Traditional approaches of empirical testing for DIF require the prespecification of subgroups for 

which DIF is assumed. For a focal subgroup and a reference subgroup, differences in item parameters 
can be tested for. This can be done for single items. This way, one can detect items with DIF so that 
this item can, for instance, be removed from the scale. For example, the subgroups tested for DIF are 
divided at the median of the metric covariate Z. In this case, two distinct subgroups are defined and the 
likelihood ratio (LR) test can be applied. With the LR test, an augmented model, permitting variation in 
all item parameters across the two groups, is tested against a baseline model where all item parameters 
are constrained to be equal between the reference and focal groups (Bulut & Suh, 2017). If the likeli-
hood ratio of these two models is significantly different from one, researchers must assume the presence 
of DIF between these two groups. In practice, prior specification of subgroups potentially subjected to 
DIF can be difficult, especially in situations where there are a multitude of potential splitting points on 
Z. As researchers might not have strong assumptions which groups might be affected by DIF, certain 
subgroups exhibiting DIF might remain undiscovered.

2.3  |  Score-based test for parameter instability

A solution to this problem was proposed by Zeileis and Hornik (2007) who presented a family of generalized 
M-fluctuation tests for testing parameter instability with respect to observed metric, ordinal and categorical 
variables. In the following, we refer to these tests as score-based tests. They are applicable to a wide range of 
IRT models to detect DIF (Debelak & Strobl, 2019a; Schneider et al., 2022). The score-based test is a global 
test for parameter instability. Usually, all freely estimated model parameters are tested for instability when 

(3)Y
i
⫫ Z|�

i
, ∀ i = 1,…, p,
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       |  5SCORE-BASED TESTS FOR ORDINAL FACTOR MODELS

the score-based test is applied to a fitted model. The application of the score-based test to MIRT models for 
DIF detection presupposes that no impact of the latent variable is assumed. If differences in the latent vari-
able are assumed across prespecified groups, one can apply the score-based test to a multiple-group MIRT 
model, in which the means and variances of the latent variable can differ for predefined subgroups (Bock 
& Zimowski, 1997; Debelak et al., 2022; Debelak & Strobl, 2019a). Note that such multiple-group models 
require one or more anchor items to make sure that the latent variable is measured on the same scale across 
groups. In single-group MIRT models, such group differences in the latent variable distributions are mis-
taken for DIF if the score-based test is used for DIF detection. In this paper, we only consider single-group 
MIRT models without differences in the latent variable between subgroups.

Another prerequisite for the score-based test is that an M-estimator is used to fit the model. If this 
is the case, parameter instability of the fitted model with respect to a covariate can be investigated. 
Following Stefanski and Boos (2002), an M-estimator �̂ is defined as the solution to the equation 

where � is a 1× ‖�‖ matrix. Note that ‖ ⋅ ‖ denotes vector length.
The function � is the first derivative of the objective function that is minimized to estimate the model 

parameters. In the context of marginal maximum likelihood (MML) estimation, which is a common full 
information estimation approach for IRT models, the objective function is the negative log-likelihood func-
tion. Following Baker and Kim (2004, pp. 160–164), the marginal likelihood L of the observed data is 

where y
i
= {y

i1
,…, y

im
} is the response pattern of respondent i. The probability of the individual response 

pattern of respondent i is 

where �
i
 are the values of respondent i on the latent variables (in IRT these are also referred to as person 

parameters). These values are drawn from the specific multivariate distribution g (�
i
). Under the usual con-

ditional independence assumption of the GRM, P(y
i
|�
i
, �) follows from Equation (1). The derivative of the 

log likelihood with respect to some parameter x is 

where �P(yi )
�x

 differs for each parameter x in �.1 The individual contributions to the first derivative of the log 

likelihood with respect to the M-estimator �̂ are also referred to as the score contributions of the fitted model. 

This is why the generalized M-fluctuation test is called score-based test.
The null hypothesis of the score-based test, which states that model parameters are invariant, is re-

jected if the empirical fluctuation during parameter estimation with respect to Z is improbably large. To 
estimate the empirical fluctuation, the individual model scores � (y

i
, �̂) are computed for all individuals 

(4)
n∑
i =1

� (y
i
, �̂) = 0,

(5)L(Y, �) =

n∏
i =1

P(y
i
),

(6)P(y
i
) = ∫ P(y

i
|�
i
, �)g (�

i
)d�

i

(7)
� logL(Y, x )

�x
=

n∑
i =1

1

P(y
i
)

�

�x
P(y

i
) =

n∑
i =1

� (y
i
, x ) = 0,

 1In Debelak and Strobl (2019b), other examples of � can be found.
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6  |      CLASSE et al.

i in the sample. If the model parameters deviate across the distribution of a metric covariate Z, then a 
transition from positive to negative scores for lower values on Z to higher values on Z (or vice versa) is 
expected (see left hand side of Figure A3). The scores are then cumulated according to the order of the 
covariate of interest Z to compute the cumulative score process 

where (h|Z) denotes the h-th ordered observation with respect to the covariate Z. The transition from 
positive to negative scores is captured as a clearly noticeable peak in the cumulative sum process (see right 
hand side of Figure A3). The sum process is scaled by an estimate B̂ for the covariance matrix cov(� (Y, �̂)) 
to decorrelate the scores so that the score processes for all parameter estimates in �̂ are independent from 
each other. By analysing the CSP, a possible systematic change from positive to negative scores across the 
covariate can be detected.

Different kinds of test statistics can be derived from the CSP to capture the fluctuation across all pa-
rameter estimates in �̂. For metric covariates, the maximum Lagrange multiplier (maxLM ), the double 
maximum (DM ) and the Cramér-von-Mises (CvM ) test statistics are available. The unordered LM test 
statistic (LMuo), which is based on the sum of the values in each category, is used to assess instability 
in relation to categorical covariates where it is not possible to order the values (Merkle & Zeileis, 2013). 
For ordered covariates, the ordered maximum LM (maxLMo) and the “weighted” double maximum 
(WDMo) statistic can be used (Merkle et al., 2014). Critical values associated with these test statistics can 
either be obtained through closed-form solutions of certain functions (DM, WDMo, LMuo), through 
tables of critical values obtained from simulation (maxLM, CvM ) or through repeated simulation of 
Brownian Bridges (maxLMo). All these test statistics are implemented in the strucchange package 
in R (Zeileis et al., 2015).

As mentioned before, the score-based test for parameter instability is applicable for many different 
kinds of IRT models. However, MIRT models are commonly fitted via FI estimation, namely with the 
MML estimator (Schneider et  al.,  2022), such that individual score contributions can be computed as 
terms of the derivative of the marginal log-likelihood (Baker & Kim, 2004; Debelak & Strobl, 2019a). 
For simple IRT models, such as the Rasch model (Rasch, 1960) or the 2PL model by Birnbaum (1968), FI 
estimation is very efficient and repeated model fittings in a recursive partitioning algorithm are compu-
tationally feasible (see Komboz et al., 2018; Strobl et al., 2015). However, this is not the case for complex 
MIRT models. For these models, LI estimation, as common in ordinal factor analysis, is much quicker 
(Forero & Maydeu-Olivares, 2009). Therefore, a method for estimating individual score contributions 
for ordinal factor models is an important prerequisite for the efficient application of the score-based test.

2.4  |  Full information estimation

The marginal maximum likelihood (MML) estimation approach via the expectation maximization 
(EM) algorithm (Bock & Aitkin, 1981; Jöreskog & Moustaki, 2006) iteratively estimates the true prob-
abilities of each observed response pattern. In the first step of the algorithm, the latent variable is 
estimated (E-step), and in the second step, the model parameters are optimized (M-step). However, for 
this full information (FI) estimation method, multidimensional integrals are evaluated in the estima-
tion process. Intensive computations are required, especially if latent variables in the MIRT model are 
correlated (Forero & Maydeu-Olivares,  2009). Efforts to reduce computation time have been made 
by Meng and Schilling  (1996) via the Monte Carlo EM algorithm and later via the Markov Chain 
Monte Carlo (MCMC) algorithm (Bolt & Lall,  2003; Kim & Bolt,  2007). The Metropolis-Hastings 
Robbins-Monro (MH-RM) algorithm is building on these advances (Cai,  2010). The algorithm has 
initially been proposed for exploratory factor analysis. It synthesizes a type of MCMC algorithm, the 
Metropolis–Hastings algorithm (Hastings,  1970; Metropolis et  al.,  1953), with the Robbins–Monro 

(8)CSP(H ) = B̂
− 1∕2 1√

n

H�
h=1

� (y
(h�Z), �̂),
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       |  7SCORE-BASED TESTS FOR ORDINAL FACTOR MODELS

method (Robbins & Monro, 1951) for stochastic approximation. Its complexity increases linearly with 
the number of latent variables. In the following, we will compare the performance of the MML estima-
tion approach via the MH-RM algorithm with the performance of the limited information estimation 
approach used for ordinal factor analysis. We will focus on computation time and score-based param-
eter instability test results.

2.5  |  Ordinal factor analysis

Using the classic maximum likelihood approach for CFA (see Jöreskog, 1969) to fit (multidimensional) 
IRT models introduces model misspecification because the common CFA assumes linear relationships 
between continuous and normally distributed observed variables and continuous factors (Maydeu-
Olivares et al., 2011). Thus, in order to include ordered observed variables in CFA models, continuous 
latent response variables Y∗ are assumed to underlie the observed ordered variables Y (Takane & De 
Leeuw, 1987), that is 

The mean vector of Y∗ is E(Y∗) = ��, where � is the mean vector of �. The (co-)variances matrix of 
the Y∗ is Var(Y∗

) = ���� +�, where � is the covariance matrix of � and � is the covariance matrix of 
�. The scale of the latent response variables is a priori indeterminate. Thus, in multi-group models, the 
latent response variables are usually standardized for at least one group (Muthén, 1984).

The latent response variable of item j  is related to the observed ordered variable of item j  via a 
threshold relation, that is 

where �
j0
= −∞ and �

jl
=∞. Thus, for every item j, there is one threshold parameter �

jk
 less than the total 

number of ordered categories l  within item j. Note that the probability of Y
j
 being greater than k may be 

derived from the threshold parameters, that is, 

Building on this assumption, Muthén (1984) proposed a method in which parameters of CFA models 
including ordered observed variables are estimated by minimizing the discrepancy between the poly-
choric correlation matrix of the observed variables and the model-implied covariance matrix. Parameter 
estimation via polychorics is also referred to as a form of limited information (LI) estimation, as it only 
uses information from bivariate relations of the observed variables. The estimation of the thresholds, 
as defined in Equation (10), is performed as a first step in the model fitting process. Furthermore, in 
this phase, bivariate polychoric correlations �

js
 are computed for all j , s = 1,…, p when j ≠ s, following 

the approach established by Olsson (1979). These polychoric correlations quantify the degree of linear 
dependence between the variables Y ∗

j
 and Y ∗

s
 for j ≠ s.

After the estimation of thresholds and polychoric correlations, the model parameters in � are esti-
mated through minimization of the objective function 

where ̂� and �(�) are the vectors of the sample and model implied polychoric correlation matrices. Different 
choices for the positive-definite weight matrix W lead to different estimators (Shi et al., 2020). In Weighted 
Least Squares (WLS; Muthén, 1984) estimation, W is the asymptotic covariance matrix of �̂. The WLS 
estimator may produce unstable results for small sample sizes and large models (Flora & Curran, 2004; 

(9)Y
∗ = ��� + �.

(10)Y
j
= kif𝜏

j (k− 1) < y
∗
j
≤ 𝜏

jk
,

(11)P(Y
j
> k) = P(Y ∗

j
> 𝜏

jk
) = Φ( − 𝜏

jk
).

(12)F
OFA

(�) = [�̂−�(�)]�W− 1
[�̂−�(�)],
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8  |      CLASSE et al.

Garnier-Villarreal et al., 2021; Wang, Su, et al., 2018). However, it usually performs equally well or better 
than FI estimation for large sample sizes (Forero & Maydeu-Olivares, 2009). In this paper, we therefore 
focus on the WLS estimator for ordinal factor analysis.

2.6  |  Approximated scores for ordinal factor analysis

As we assume a specific model structure for a multidimensional GRM, we may denote the assumed 
model (see Equation 1) as the structured model, or H

0
. It may be tested against the unstructured or saturated 

model (H
1
) that does not impose any restrictions on the thresholds or the covariance matrix. The vector 

� contains the saturated model parameters (�,�∗)�, where � is the vector of threshold parameters, and 
�∗ = vech[Cov(Y∗

)] contains the vectorized non-redundant elements of the model implied covariance 
matrix. The size of � is [p(l − 1) + p(p− 1)∕2]× 1 which we refer to as p∗ × 1 in the following.

The first derivative of � with respect to � is 

We apply the chain rule to get the first derivative of the objective function with respect to �, that is 
the 1× ‖�‖ matrix 

Note that Equation (14) is not an individual function, meaning that it does not refer to a single ob-
servation i and cannot be used for the score-based parameter instability test. To our knowledge, it is not 
possible, with reasonable effort, to formulate the gradient of Equation (12) as an individual function.

Therefore, to compute scores that can then be used for the score-based parameter instability test, we 
focus on an alternative approach to MML estimation. Muthén (1997) and Reboussin and Liang (1998) 
proposed a generalized estimating equations (GEE) approach for the estimation of parameters in (multidi-
mensional) latent variable models with ordered response variables. In Appendix S1, we describe how 
the GEE estimation method is applied to MIRT models based on non-binary response variables. This 
approach minimizes a set of estimating equations, that is 

where e
i
 is the vector of empirical deviations of the first- and second-order empirical moments in the data 

from the true first- and second-order moments (see Equations 10–14 in Appendix S1). The first-order em-
pirical moments in the data are the indicator variables, that is, 

for all individuals i = 1,…, n, all items j = 1,…, p, and all categories minus one k = 1,…, (l − 1). The 
weight matrix used in GEE estimation, that is, W

GEE
, is defined as the working covariance matrix of 

first- and second-order empirical moments of individual i (see Equations 16–18 in Appendix S1). The Δ
-matrix is the derivative of the saturated model with respect to the model parameters � (see Equation 19 in 
Appendix S1).

(13)Δ =
��(�)

��
=

⎛⎜⎜⎜⎝

��(�)

��
��∗(�)

��

⎞⎟⎟⎟⎠
.

(14)
�F
OFA

(�)

��
=

�F
OFA

(�)

��

��(�)

��
= − 2[�̂−�(�)]�W− 1Δ.

(15)
n∑
i =1

Δ�
W

− 1
GEE

e
i
= 0,

(16)1
y
i
>k =

{
1, if y

i
>k

0, otherwise,
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       |  9SCORE-BASED TESTS FOR ORDINAL FACTOR MODELS

In contrast to Equation (14), the estimating equations in Equation (15) are individual functions that 
each refer to a single observation i and add up to zero. They are the individual contributions to the 
derivative of the objective function of the GEE approach. The model parameters in � are estimated by 
iteratively updating the estimator, that is, solving the set of quadratic estimating equations for �. The 
solution to the set of quadratic estimating equations are the model scores obtained through GEE esti-
mation. Using the GEE estimation approach leads to slightly different parameter estimates than ordinal 
factor analysis (i.e. WLS). Our goal is to approximate the GEE scores that would have resulted if the 
parameters estimated using the GEE approach were exactly the same as those estimated using ordinal 
factor analysis. We claim that these approximated scores can be used for the score-based parameter 
instability test.

We learn from GEE estimation (e.g. equation 28 in Muthén, 1997) that an empirical deviation vector 
e
i
, defined on the individual level, can be used for the individual estimating function (Equation 15). Let 

an alternative set of individual estimating equations be 

where y∗
i
 contains the values of individual i on the latent response variables for all items j = 1,…, p. The 

vector s∗
i
 can be referred to as the vector of the true second-order moments. Note that both y∗

i
 and s∗

i
 

cannot be observed. However, for a direct translation of the GEE estimation method to ordinal factor 
analysis, it would be necessary to observe y∗

i
 and s∗

i
. Also, for such a translation, the p∗ × p∗ matrix W in 

Equation (17) would be an estimator of the working covariance matrix of the vectors (y∗
i
, s

∗
i
)
� across all 

individuals i = 1,…, n. In the following, we will show how to approximate the GEE scores without having 
to observe y∗

i
 and s∗

i
.

Let us assume that the latent response variables in the model be normally distributed and that the 
model's residuals �

j
= Y ∗

j
− ��

j
� (see Equation 9) are independent and identically distributed. If this is 

the case, then �̂ = �(�), that is, the assumed model fits the data perfectly and the empirical deviation 

vector in Equation (17) is equal to 

(
y
∗
i
− y∗

s
∗
i
− s∗

)
, where ⋅ represents the arithmetic mean.

To compute individual score contributions based on Equation (12), we apply the logic of Equation (17) 
to the non-binary case. The aim is to mimic the scores produced by the estimation function in 
Equation  (17). However, the individual values of the latent response variable distribution y∗ are not 
identifiable. Thus, the true second-order moments s∗ are not identifiable either. We therefore replace the 

empirical deviation vector with 

(
vec(1

y
i

)− vec(1
Y
)

s
i
− s

)
. The vector vec(1

y
i

) contains the indicator vari-

ables for all items j = 1,…, p, and all categories minus one k = 1,…, (l − 1) (see Equation  10 in 
Appendix S1). The vector vec(1

Y
) of size p(l − 1) contains the arithmetic means of the indicator vari-

ables across all individuals. Furthermore, we replace the weight matrix of Equation (17) with the weight 
matrix of Equation (12). This way, we account for the multivariate non-normality within the observed 
variable distribution. Thus, we claim that the individual score contributions of an ordinal factor model 
fitted using WLS can be estimated as follows 

(17)

s
∗
i
=

⎛⎜⎜⎜⎜⎜⎝

(y
∗
i1
− �

1
)(y

∗
i2
− �

2
)

(y
∗
i1
− �

1
)(y

∗
i3
− �

3
)

⋮

(y
∗
ip− 1

− �
p− 1)(y

∗
ip
− �

p
)

⎞⎟⎟⎟⎟⎟⎠

,

n�
i=1

Δ�
W

− 1

�
y
∗
i
− �

s
∗
i
−�∗

�
=0,
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10  |      CLASSE et al.

We refer to Equation (18) as the approximated score function of the WLS estimation method that can be 
used for the score-based parameter instability test.

2.7  |  Computational details

The R implementation of the proposed method, replication materials for all simulations, all simulation 
results as well as Appendix S1 are provided in the following OSF repository: https://​osf.​io/​hmwpc/​
?​view{_​}only=​69ed2​919e7​a64db​2b035​4f992​43c307c. All simulations and real data applications were 
executed on a 20 core, 170 GB RAM server. The proposed method to compute individual model scores 
for ordinal factor models is implemented in the functions lavScores() and estfun.lavaan() 
in the latest version (since version 0.6-18) of lavaan (Rosseel, 2012).

3  |  SIMUL ATION

We simulated data to fit two different IRT models: a unidimensional model with five observed variables 
Y
j
 (Figure A1) and a multidimensional model with nine observed variables Y

j
 (Figure A2). To simulate 

model-compliant data, first, true latent variable scores were simulated for all latent variables in the 
model. Then, values of the conditional probabilities P(Y

j
= k|�, �) were computed for all categories of 

all items. On the basis of these conditional probabilities, values for five ordinal response variables with 
k categories each were sampled.

From these conditional probability functions, DIF effect sizes can be calculated. Following 
Chalmers (2023), the scoring function that is 

is used to compute the DIF effect size of an item j. The Noncompensoratory DIF (NCDIF) value quantifies 
the average deviation of the response function of an item j between a focal group (F) and a reference group 
(R). It is defined as 

Using the true values for �
i
, �
F
 and �

R
 from the simulation, we are able to compute the true NCDIF 

values of the items in the simulated data sets. To illustrate how parameter fluctuation affects parameter 
estimation, we report a DIF effect size, that is, the NCDIF value, for one specific item (Item 2) in 24 
different simulation scenarios: two different models, that is, the unidimensional model (Figure A1) and 
the multidimensional model (Figure A2), four different numbers of threshold parameters k ∈ {1, 2, 4, 6} 
and three different scenarios for parameter fluctuation in the data (see below). For each scenario, we 

(18)

s
i

=

⎛⎜⎜⎜⎜⎜⎝

(y
i1
− y

1
)(y
i2
− y

2
)

(y
i1
− y

1
)(y
i3
− y

3
)

⋮

(y
ip− 1 − yp− 1)(yip − yp)

⎞⎟⎟⎟⎟⎟⎠

,

n�
i=1

�̃ (y
i
, �)=

n�
i=1

Δ�
W

− 1

�
vec(1

y
i

)− vec(1
Y
)

s
i
− s

�
=0.

(19)S(�, �) =

l∑
k=1

(k− 1) ⋅ P(Y
j
= k|�, �),

(20)NCDIF =

∑n
F

i=1
[S(�

i
, �
F
)− S(�

i
, �
R
)]
2

n
F

.
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       |  11SCORE-BASED TESTS FOR ORDINAL FACTOR MODELS

simulate 1000 simulation samples of n = 1000 in which there is a focal group and a reference group. 
For each group, the parameters of the (multidimensional) GRM are randomly drawn. For each sample, 
the NCDIF values are computed. The average NCDIF values (i.e. the arithmetric means) are shown in 
Table A3.

To test the performance of the score-based test, we created 36 different simulation scenarios for each 
model: four different numbers of threshold parameters k ∈ {1, 2, 4, 6}, which means that the simulated 
ordinal observed variables Y

j
 have two, three, five or seven categories, three different sample sizes 

n ∈ {500, 1000, 2000}, and three different scenarios for parameter fluctuation in the data. For each of 
the simulated samples, we created one numerical covariate (Z

num
) ranging from 1 to 200, one ordinal 

(Z
ord

) and one categorical (Z
cat

) covariate with scores on a five-point response scale. Each simulation 
sample consists of a focal and a reference group of size n∕2 that both fit the corresponding model but 
have different parameter values.

The three simulated scenarios for parameter fluctuation are: All parameter values differ between the 
focal and the reference group, only the threshold parameters of the first item �

1k
 (for the unidimensional 

model) or the threshold parameters of the first and the second item (for the multidimensional model) 
differ between the focal and the reference groups, or only the discrimination parameters �

j
 (of all items) 

differ between the two subsets. Thus, each simulation sample for each model for each simulation sce-
nario is of size n and exhibits DIF with respect to the covariates Z

num
, Z
ord

 and Z
cat

. This means that 
all score-based tests for parameter instability which are applied to the covariates in all data sets should 
result in significant p-values. For each simulation scenario and model, 1000 simulation samples (i.e. 
repetitions) were generated. We denote the percentage of simulated samples for which the p-value of the 
score-based test is smaller than .05 as the power of the score-based test.

For each of the simulated samples, ordinal factor models are fitted with the WLS estimator using the 
lavaan package (Rosseel, 2012) and (multidimensional) GRMs are fitted via FI estimation, namely 
the MML estimator, using the mirt package (Chalmers, 2012). With FI estimation, the unidimen-
sional model is fitted via the EM algorithm and the multidimensional model is fitted via the MH-RM 
algorithm. Each of the fitted models is tested for parameter instability using the maxLM, DM and CvM 
test statistics on Z

num
, the WDMo and maxLMotest statistics on Z

ord
 and the LMuo test statistic on Z

cat
.

We further conduct additional simulations with data that do not exhibit DIF, that is, the values of 
the covariates were simulated randomly. This means that all score-based tests for parameter instability 
which are applied to the covariates in all data sets should not result in significant p-values. We denote 
the percentage of simulated samples for which the p-value of the score-based test is smaller than .05 as 
the Type I error rate of the score-based test.

To see how the approximated scores of the ordinal factor model are distributed, we additionally 
simulate two data sets to fit the unidimensional model (Figure A1). One data set has binary response 
variables and the other data set has response variables with four ordered response categories. We sim-
ulate two other data sets to fit the multidimensional model (Figure A2). We then use three different 
approaches to fit the models to the data: ordinal factor analysis (LI estimation), FI estimation and GEE 
estimation (see Appendix S1). Subsequently, the models scores are estimated for each model for each 
data set. The correlations of the model score contributions of each parameter in the respective model are 
shown in Table A1 (for the unidimensional model) and A2 (for the multidimensional model).

3.1  |  Results

The means of the NCDIF values in Table A3 show that DIF effect sizes on one item are considerably 
lower if only the discrimination parameters differ between the focal and the reference group. This is 
reflected in the power results of the simulation for both the unidimensional and the multidimensional 
model. However, if only the thresholds of an item differ between focal and reference group, the DIF 
effect size of that item is similar to the case in which all parameters differ. From this result, we deduce 
that the power of the score-based test in the first simulation scenario (all parameters differ) most likely 
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12  |      CLASSE et al.

does not differ significantly from a scenario in which only the threshold values of all items differ. The 
second simulated scenario for parameter fluctuation thus consists of only the threshold parameters of 
one item (i.e. 20% DIF in the unidimensional model), respectively, of two items (i.e. 22% DIF in the 
multidimensional model) differing between the focus and reference groups.

The results of the simulations with data based on the unidimensional model (see Figure A1) show 
that power generally increases with sample sizes and the number of response categories. For the pro-
posed score-based tests for ordinal factor models as well as for tests based on GRMs fitted via FI esti-
mation, power lies between 98% and 100% when there is parameter fluctuation with respect to all model 
parameters. Figure A4shows that given fluctuation with respect to the threshold parameters of the first 
item �

1k
 only, sample sizes of at least n = 2000 are needed for k = 4 thresholds and sample sizes of at 

least n = 1000 are needed for k = 6 thresholds to achieve power of over 90% for all test statistics. For the 
simulated data sets with parameter fluctuation with respect to the discrimination parameters �

j
, power 

results for both ordinal factor models and for GRMs fitted via FI estimation are shown in Figure A5. 
For k = 1, sample sizes of n = 2000 are needed to achieve power of over 90% for all tests statistics. In 
general, with respect to power, the score-based test does not perform better for models fitted via FI 
estimation as compared to ordinal factor models.

Type I error results for the unidimensional model are generally within the expected range of 3% and 
6% for all test statistics for ordinal factor models and for GRMs fitted via FI estimation for all sample 
sizes and numbers of thresholds. This indicates that the score-based test for ordinal factor analysis 
performs equally well as for the GRMs fitted via FI estimation when estimating unidimensional IRT 
models. The computation times for fitting the unidimensional GRM via FI estimation (using the EM 
algorithm) and the ordinal factor models are very similar (see Table A4).

Computation times for fitting the multidimensional model (see Figure A2) are much higher for FI 
estimation (using the MH-RM algorithm) compared to ordinal factor analysis with LI estimation (see 
Table A5), highlighting the benefits of ordinal factor analysis in this setting. The results also show that 
high power (100%) is achieved for both ordinal factor models and for GRMs fitted via FI estimation 
when there is parameter fluctuation with respect to all model parameters. Power results for the data sets 
with parameter fluctuation with respect to only the threshold parameters of item 1 and 2 are shown in 
Figure A6. Interestingly, the multidimensional model outperforms the unidimensional model in this 
simulation scenario. Here, sample sizes of n = 1000 suffice for models with two response categories 
to achieve power of over 90% for all test statistics. The power results of the score-based test when the 
discrimination parameters �

j
 of all items differ between the focal and the reference group are shown in 

Figure A7. When only the discrimination parameters differ in data sets of n = 500 and k = 1, power lies 
between 29. 2% and 52. 8%. For data sets with k = 2, power is at least 72. 5%. Power results are generally 
very similar between ordinal factor models and for GRMs fitted via FI estimation. However, there are 
considerable differences between these two types of models regarding the Type I error (see Figure A8). 
Type I error rate is higher for the score-based tests applied to GRMs fitted via FI estimation. This is 
particularly the case for the CvM, maxLM, maxLMo and WDMo test statistics.

The correlations of the model scores for the unidimensional model in Table A1 show that the score 
contributions of the model fitted with the GEE approach correlate negatively with the scores of the 
models fitted with the LI (i.e. ordinal factor analysis) or the FI approach. This is because of the defi-
nition of the Δ-matrix for GEE estimation, where �vec(�)(�)

��
 contains negative values (see Equation 19 

in Appendix S1). The approximated model score contributions of the ordinal factor model correlate 
strongly with the score contributions of the model fitted with the GEE approach. The parameter es-
timates are expected to differ between the two approaches; therefore, perfect correlations of the score 
contributions are not expected. Interestingly, the correlations of the model score contributions from the 
GEE approach with the score contributions from the FI approach are lower for discrimination param-
eters and higher for threshold parameters. The correlations of the model score contributions from the 
LI approach with those from the FI approach are generally a bit lower than those from the LI approach 
with those from the GEE approach. The correlations of the model scores for the multidimensional 
model (Table A2) show a very similar pattern.
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       |  13SCORE-BASED TESTS FOR ORDINAL FACTOR MODELS

4  |  R EA L DATA A PPLICATION

We demonstrate the application of score-based tests with (multidimensional) GRMs using data obtained 
from the LISS (Longitudinal Internet studies for the Social Sciences) panel administered by Centerdata 
(Tilburg University, the Netherlands). LISS is a longitudinal survey conducted annually, covering top-
ics such as employment, education, income, housing and personality traits (Scherpenzeel & Das, 2010). 
We analyse the data from four survey waves that were conducted in 2008, 2009, 2011 and 2013. In the 
survey waves of 2010 and 2012, certain application-relevant items were not included. A total of 2893 
individuals participated across all four waves of the survey. Our analysis focuses on five items from the 
Satisfaction with Life (SL) scale (Diener et al., 1985), which assesses life satisfaction. We excluded any 
cases that did not provide responses to all five items, resulting in a final sample size of 2888 individuals. 
The items were rated on a seven-point response scale. The specific wording of these items is displayed 
in Table A6.

We apply three different models of different sizes to the data. Model 1 has the same unidimensional 
GRM model structure used in the simulation (see Figure A1). The five items Y

j
 represent the SL scale 

in the first survey wave. Model 2 has a multidimensional GRM model structure with correlated latent 
variables and is shown in Figure A9. The items Y

tj
 represent the SL scale in survey waves one (t = 1) and 

two (t = 2). Model 3 is a probit multistate IRT model with latent item effect variables for graded responses (PIEG) 
in which one reference latent state variable �

t
 is assumed for every time point of measurement and one 

latent item effect variable �
i
 is defined for every item but the reference item (here: j = 1). In this model, 

the variances and covariances of the latent state variables, as well as the latent item effect variables and 
the covariances between them, are estimated. The discrimination parameters in the model are all fixed 
at 1 (Classe & Steyer, 2023). The model is shown in Figure A10.

We fit each model using three different estimation methods: ordinal factor analysis (using the WLS 
estimator), FI estimation (Model 1 via the EM algorithm, and Model 2 and Model 3 via the MH-RM 
algorithm) and common factor analysis. For common factor analysis, we use the robust maximum like-
lihood (MLR) estimator, since here the model fit statistics are corrected for the non-normality of the 
response variables (Li, 2016).

For every fitted model, we apply the score-based test with respect to three different background vari-
ables representing general characteristics of households and household members that participate in the 
LISS panel: Gender (categorical: “Female”, “Male” and “Other”), urban character of place of residence 
(ordinal: five categories from “extremely urban” to “not urban”) and individual age (metric). We do not 
assume an impact of any of the covariates on satisfaction with life. This is mainly due to methodological 
considerations. We do not want to specify an anchor item as we assume that the item characteristics of 
all five items may differ across the subgroups defined by the covariates. For the categorical covariate, 
we use the LMuo; for the ordinal covariate, we use the WDMo; and for the metric covariate, we use the 
DM test statistic. All three test statistics can be used with large models as they obtain their critical values 
through closed-form solutions of certain functions instead of default tables.

We analyse the fitted models with respect to the degree of model fit and the computation time of 
the model fitting process and apply the score-based test using the outlined covariates. Furthermore, for 
each model, we analyse the time needed to compute the empirical fluctuation process, which includes 
the computation of the model scores.

4.1  |  Results

The results of the real data application displayed in Table A7 show that computation time increases 
when fitting larger ordinal factor models compared to smaller ones. However, compared to the 
considerable increase in computation time for fitting the GRMs via FI estimation, the increase 
in computation time for larger ordinal factor models is marginal. This agrees with the simulation 
results shown in Tables A4 and A5 and shows that FI estimation is not computationally efficient 
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14  |      CLASSE et al.

for models with two or more non-orthogonal latent variables. Compared to FI estimation, ordinal 
factor analysis is computationally efficient, even for large models. When it comes to the results of 
the score-based tests, models fitted via FI estimation are very similar to ordinal factor models, at 
least for model 1 and model 2. For model 3, all p-values for the score-based test are smaller than 
2.20E-16. Also, computing the empirical f luctuation process is particularly expensive for model 3 
when fitted via FI estimation.

Comparing the results of the common factor models with the ordinal factor models shows that com-
mon factor analysis is computationally faster than ordinal factor analysis, especially for large models. 
These results are also shown in Table A7. Also, the model fit estimation results of common factor analy-
sis (using the MLR estimator) are similar to those of ordinal factor analysis. However, there are consid-
erable discrepancies with respect to the results of the score-based tests, particularity for the categorical 
and metric covariates for all model sizes. Note that in using common factor models for categorical data, 
model misspecification is introduced as, for instance, no threshold parameters are estimated.

5  |  DISCUSSION

The results of our simulations show that score-based tests for parameter instability perform equally well 
for unidimensional GRMs fitted via FI estimation and for ordinal factor models. As there are no consid-
erable differences regarding computation time, we conclude that fitting univariate IRT models and test-
ing them for parameter instability is equally convenient using FI estimation or ordinal factor analysis.

However, the results of the simulation regarding the multidimensional model show that there are 
considerable differences in computation times when fitting the model via FI estimation (using the MH-
RM algorithm) compared to ordinal factor analysis. The limited information method of ordinal factor 
analysis is 32–91 times faster than the MH-RM algorithm. The power results indicate that the proposed 
score-based test for unidimensional GRMs as well as for multidimensional GRMs implemented via or-
dinal factor models performs equally well as tests based on unidimensional GRMs fitted via FI estima-
tion. However, when it comes to multidimensional GRMs, there are considerable specificity problems 
of the score-based test when applied to models fitted via FI estimation in contrast to ordinal factor 
analysis. Debelak et al. (2024) point out that increased Type I errors of the score-based test when applied 
to models fitted via FI estimation could be due to numerical inaccuracies of the MH-RM algorithm. 
Additional fine-tuning of the implementation of the algorithm in the mirt package may help to obtain 
accurate Type I error rates.

The distribution of the approximated scores of the ordinal factor model are generally very similar 
to the scores from the GEE estimation method. Note that, unlike LI estimation, the GEE estimation 
method optimizes the model scores to estimate the model's parameters. This takes a very long time, 
especially for multidimensional non-binary models. The fact that the scores are distributed similarly to 
the model scores estimated with the method proposed in this paper indicates that our approach is, in 
fact, a valid approximation and thus a computationally efficient alternative when it comes to parameter 
instability tests.

Note that the score-based test may also be applicable for GRMs fitted via PML (which is also a LI 
method). However, in their application Wang, Strobl, et  al.  (2018) focused on unidimensional two-
parameter normal ogive models for dichotomous response variables.

The real data applications show that the results for the score-based tests are very similar for uni-
dimensional ordinal factor models and models fitted via FI estimation. This matches the results of 
the simulation. For very large models, however, the discrepancy between score-based tests applied to 
ordinal factor models and GRMs fitted via FI estimation is considerable. Additionally, it appears that 
score-based tests for parameter instability produce different results for ordinal factor analysis compared 
to common factor analysis. We therefore conclude that ordinal factor analysis should be preferred over 
common factor analysis and GRMs fitted via FI estimation when testing for parameter instability in 
multidimensional GRMs.
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Note that, within our simulated samples, the covariates Z are always independent from the latent 
variable distribution � (in both the unidimensional and the multidimensional case). This implies that 
only single-group MIRT models without differences in the latent variable between subgroups are con-
sidered. Also for the real data applications in this paper, we assume independence of the covariates from 
the latent variable distribution. Future research might investigate the performance of the score-based 
test for multiple-group ordinal factor models.

5.1  |  Model-based recursive partitioning

Methods based on the score-based test can be very helpful in scenarios where there are a multitude of 
metric, ordinal or categorical covariates potentially causing DIF. In such contexts, data-driven methods 
such as Model-Based Recursive Partitioning (MOB; Zeileis et al., 2008) prove valuable for identifying 
subgroups in which DIF is present. This algorithm repeatedly splits a sample into subgroups based on 
covariates Z

r
 in Z

1
,…,Z

R
 (referred to as partitioning variables) to form a decision tree (see Breiman 

et al., 1984). The score-based test for parameter instability can be used in such a recursive partitioning 
algorithm to account for parameter instability. When parameter instability is detected in a tree node 
during the partitioning process, that is, the score-based test for one of the partitioning variables falls 
below a predefined significance level, the partitioning variable Z

r
∗ associated with the smallest p-value 

is selected for partitioning. The unique value of a partitioning variable that maximizes the respective 
score-based test statistic can be used as a split point (see Arnold et al., 2021). The MOB algorithm con-
tinues to partition different subgroups until the stopping criteria are met. This is usually the case when 
there is no more significant instability in a node or when the subsample in a node becomes too small 
to fit the model. However, the application of MOB in conjunction with ordinal factor models is not 
yet implemented in the available R packages. The quick computation of MOB trees for MIRT models 
may, among other things, be relevant for the estimation of unbiased latent variable scores (Classe & 
Kern, 2024). Thus, future research should further investigate the application of MOB to ordinal factor 
models, building on the technique proposed in this paper.

5.2  |  Outlook

The efficient computation of individual model scores for MIRT models is not only useful for efficient 
computation of parameter instability tests. The proposed method may also be used to compute robust 
test statistics based on sandwich covariance matrices (Zeileis, 2006). Such robust corrections are already 
widely used in structural equation modelling with complete (Savalei, 2014) or incomplete (Savalei & 
Rosseel, 2022) data. Another possible area of application is model selection of non-nested models via 
Vuong tests, since the Vuong test statistics are generally calculated on the basis of the individual model 
scores (Schneider et al., 2020). With the method proposed in this paper, such advances can be extended 
to ordinal factor models.
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A PPEN DI X A

TABLES

T A B L E  A 1   Correlation of model scores for a unidimensional GRM (see Figure A1) with binary and non-binary (four 
ordered categories) response variables fitted on a simulated data set with n = 2000 respondents. The model scores of three 
different fitted models are compared: SC

OFA
 meaning the approximated scores for a ordinal factor model, SC

FI
 meaning the 

scores for a model fitted with FI estimation and SC
GEE

 meaning the scores of a model fitted with GEE (see Appendix S1).

Cor(SC
OFA

, SC
GEE

) Cor(SC
FI
, SC

GEE
) Cor(SC

OFA
, SC

FI
)

Binary Non-binary Binary Non-binary Binary Non-binary

Var(�
1
) .94 .97 .99 .95 .93 .96

�
2

.91 .94 .88 .85 .96 .94

�
3

.94 .93 .93 .80 .98 .91

�
4

.94 .90 .96 .73 .99 .87

�
5

.92 .91 .92 .68 .97 .82

�
11

−.98 −.92 −.96 −.94 .99 .76

�
12

−.95 −.97 .90

�
13

−.92 −.99 .90

�
21

−.99 −.94 −.98 −.96 1.00 .84

�
22

−.97 −.99 .95

�
23

−.93 −1.00 .91

�
31

−.99 −.93 −.99 −.96 1.00 .81

�
32

−.97 −.99 .96

�
33

−.92 −.98 .85

�
41

−.97 −.90 −.96 −.99 1.00 .84

�
42

−.97 −.98 .92

�
43

−.92 −.94 .76

�
51

−1.00 −.91 −.99 −.96 1.00 .78

�
52

−.97 −.98 .95

�
53

−.90 −.92 .69

Note: White color means perfect (positive or negative) correlation. Shades of red indicate a deviation from the perfect correlation.
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T A B L E  A 2   Correlation of model scores for a multidimensional GRM (see Figure A2) with binary and non-binary (four 
ordered categories) response variables fitted on a simulated data set with n = 2000 respondents. The model scores of three 
different fitted models are compared: SC

OFA
 meaning the approximated scores for a ordinal factor model, SC

FI
 meaning the 

scores for a model fitted with FI estimation, and SC
GEE

 meaning the scores of a model fitted with GEE (see Appendix S1).

Cor(SC
OFA

, SC
GEE

) Cor(SC
FI
, SC

GEE
) Cor(SC

OFA
, SC

FI
)

Binary Non-binary Binary Non-binary Binary Non-binary
Var(�

1
) .97 .96 .92 .71 .96 .83

Var(�
2
) .91 .95 .80 .67 .83 .80

Var(�
3
) .93 .97 .80 .89 .88 .89

Cov(�
1
, �
2
) .89 .85 .91 .74 .93 .88

Cov(�
1
, �
3
) .91 .84 .90 .85 .95 .93

Cov(�
2
, �
3
) .88 .90 .85 .84 .91 .93

�
12

.93 .91 .85 .51 .87 .68

�
13

.92 .87 .89 .77 .87 .89

�
22

.85 .88 .87 .72 .93 .86

�
23

.92 .87 .65 .54 .68 .71

�
32

.93 .88 .90 .74 .93 .81

�
33

.91 .85 .76 .73 .90 .79

�
11

−.98 −.88 −.98 −.97 1.00 .79

�
12

−.92 −.98 .88

�
13

−.89 −.94 .76

�
21

−.98 −.89 −.98 −.94 1.00 .74

�
22

−.93 −.98 .90

�
23

−.90 −.91 .71

�
31

−.99 −.84 −.99 −.88 1.00 .64

�
32

−.83 −.90 .71

�
33

−.83 −.94 .82

�
41

−.95 −.88 −.94 −.94 .99 .71

�
42

−.94 −.99 .93

�
43

−.88 −.98 .80

�
51

−.88 −.88 −.88 −.98 .97 .81

�
52

−.95 −.99 .94

�
53

−.89 −.95 .74

�
61

−.97 −.87 −.97 −.94 .99 .71

�
62

−.93 −.99 .92

�
63

−.88 −.92 .65

�
71

−.81 −.94 −.91 −1.00 .84 .92

�
72

−.93 −1.00 .93

�
73

−.88 −1.00 .87

�
81

−.98 −.90 −.98 −1.00 1.00 .90

�
82

−.85 −1.00 .85

�
83

−.82 −.99 .81

�
91

−.94 −.90 −.92 −1.00 .99 .90

�
92

−.88 −.99 .88

�
93

−.79 −.99 .76

Note: White color means perfect (positive or negative) correlation. Shades of red indicate a deviation from the perfect correlation.
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T A B L E  A 3   Means of noncompensatory DIF (NCDIF) effect sizes for Item 2. Results for 1000 simulated samples with 
sample size of n = 1000. Modes: “all” for all parameters differ, “thresholds” for only thresholds differ and “betas” for only 
discrimination parameters differ between focal group and reference group.

Mode

Model

Unidimensional Multidimensional

All k = 1 .05 .14

All k = 2 .18 .48

All k = 4 .54 1.75

All k = 6 1.20 3.65

Thresholds k = 1 .04 .13

Thresholds k = 2 .15 .49

Thresholds k = 4 .47 1.65

Thresholds k = 6 1.02 3.46

Lambdas k = 1 .01 .01

Lambdas k = 2 .05 .04

Lambdas k = 4 .15 .14

Lambdas k = 6 .31 .31

T A B L E  A 4   Computation time in seconds for fitting the unidimensional GRM given no parameter fluctuation in the 
data. FI, meaning full information estimation, corresponds to model estimation with the MML estimator. LI, meaning limited 
information estimation, corresponds to ordinal factor analysis with the WLS estimator.

n = 500 n = 1000 n = 2000

FI LI FI LI FI LI

k = 1 .19 .19 .20 .21 .21 .23

k = 2 .23 .20 .25 .22 .27 .26

k = 4 .31 .25 .36 .27 .38 .31

k = 6 .41 .30 .47 .31 .51 .38

T A B L E  A 5   Computation time in seconds for fitting the multidimensional GRM given no parameter fluctuation in the 
data. FI, meaning full information estimation, corresponds to model estimation with the MML estimator. LI, meaning limited 
information estimation, corresponds to ordinal factor analysis with the WLS estimator.

n = 500 n = 1000 n = 2000

FI LI FI LI FI LI

k = 1 12.80 .39 17.42 .46 21.02 .39

k = 2 14.04 .42 19.53 .40 27.40 .42

k = 4 18.38 .52 26.65 .47 40.92 .50

k = 6 22.48 .64 50.66 .84 57.21 .63
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22  |      CLASSE et al.

T A B L E  A 7   Results of the real data application.

Model 1 
(unidim.)

Model 2 
(multidim.)

Model 3 
(PIEG)

Ordinal factor analysis Number of parameters 35 63 156

RMSEA .127 .127 .051

Score-based test p-value Categorical 1.04E-05 2.22E-04 .017

Ordinal .918 .694 .689

Metric .165 .008 .014

Computation time Model .345 .913 6.189

Scores .063 .109 .325

GRM: FI estimation Number of parameters 35 63 156

RMSEA 0 0 0

Score-based test p-value Categorical 3.92E-06 4.02E-05 0

Ordinal .181 .445 0

Metric .197 .002 0

Computation time Model .541 88.428 301.546

Scores .287 15.506 1074.466

Common factor analysis Number of parameters 10 13 56

RMSEA .099 .122 .043

Score-based test p-value Categorical .002 .266 .424

Ordinal .227 .453 .770

Metric .014 .000 .040

Computation time Model .186 .142 .514

Scores .089 .194 .247

T A B L E  A 6   Life satisfaction scale items as asked in the LISS panel.

Text: Below are five statements with which you may agree or disagree. Using the 1–7 scale below, indicate your 
agreement with each item by placing the appropriate number on the line preceding that item. Please be open 
and honest in your responding.

Item Wording

i = 1 In most ways, my life is close to my ideal

1 The conditions of my life are excellent

2 I am satisfied with my life

3 So far I have gotten the important things I want in life

4 If I could live my life over, I would change almost nothing
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       |  23SCORE-BASED TESTS FOR ORDINAL FACTOR MODELS

A PPEN DI X B

FIGURES

F I G U R E  A 1   Unidimensional graded response model (GRM) with five items.

F I G U R E  A 2   Multidimensional graded response model (GRM) with three non-orthogonal latent variables and nine 
items.

F I G U R E  A 3   Score and CSP distribution (illustration inspired by figure 2 in Strobl et al., 2015).
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24  |      CLASSE et al.

F I G U R E  A 4   Power of score-based test for the unidimensional graded response model (GRM) given fluctuation with 
respect to the threshold parameters of the first item �

1k
.
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       |  25SCORE-BASED TESTS FOR ORDINAL FACTOR MODELS

F I G U R E  A 5   Power of score-based test for the unidimensional graded response model (GRM) given fluctuation with 
respect to the discrimination parameters �

i
 .
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26  |      CLASSE et al.

F I G U R E  A 6   Power of score-based test for the multidimensional graded response model (GRM) given fluctuation with 
respect to the threshold parameters of the first two items, that is, �

1k
 and �

2k
.
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F I G U R E  A 7   Power of score-based test for the multidimensional graded response model (GRM) given fluctuation with 
respect to the discrimination parameters �

i
 .
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28  |      CLASSE et al.

F I G U R E  A 8   Type I errors of score-based test for the multidimensional graded response model (GRM). Note that for 
the CvM test statistic, there are no critical values implemented in the strucchange package for models with more than 25 
parameters. This also applies for the maxLM test statistic for models with more than 40 parameters. Therefore, models with 
more than 1 (for CvM ) and 2 (for maxLM ) threshold parameters are not shown.
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       |  29SCORE-BASED TESTS FOR ORDINAL FACTOR MODELS

F I G U R E  A 9   Real data application model 2: multidimensional graded response model (GRM) with two latent state 
variables and five items on two time points.

F I G U R E  A 1 0   Real data application model 3: probit multistate IRT model with latent item effect variables for graded 
responses (PIEG) with four latent state variables (�

t
), four latent item effect variables (�

i
) and five items on three time points.
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