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Figure 1: GUI prototype (1) and three views (2-4) of our assistant for GUI prototype designers integrated as a plug-in into a 
prototyping tool. Our assistant displays user stories (2) imported from collaboration tools (e.g., JIRA) for prototype designers to 
reference while working. It detects whether a user story is implemented (3, 4), identifies relevant GUI components (3), and 
generates GUI components for user stories (4). Figure uses Google Material 3 Design Kit [24] components under CC BY 4.0. 

Abstract 
Graphical user interfaces (GUIs) are at the heart of almost every 
software we encounter. GUIs are often created through a collabora-
tive effort involving UX designers, product owners, and software 
developers, constantly facing changing requirements. Historically, 
problems in GUI development include a fragmented, poorly inte-
grated tool landscape and high synchronization efforts between 
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stakeholders. Recent approaches suggest using large language mod-
els (LLMs) to recognize requirements fulfillment in GUIs and auto-
matically propose new GUI components. Based on ten interviews 
with practitioners, this paper proposes an LLM-based assistant 
as a Figma plug-in that bridges the gap between user stories and 
GUI prototyping. We evaluated the prototype with 40 users and 
40 crowd-workers, showing that the effectiveness of GUI creation 
is improved by using LLMs to detect requirements’ completion 
and generate new GUI components. We derive design rationales 
to support cross-functional integration in software development, 
ensuring that our plug-in integrates well into established processes. 

CCS Concepts 
• Software and its engineering → Software usability; Require-
ments analysis; Consistency; • Human-centered computing → 
User interface toolkits; Laboratory experiments. 
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1 Introduction 
Graphical user interfaces (GUIs) are ubiquitous and are at the heart 
of today’s software. At their best, they allow us to interact effec-
tively with the multitude of software applications. Both in practice 
and in research, there has been an extensive exploration of meth-
ods and approaches that facilitate creating better software with 
even more effective GUIs. An important technique is the creation 
of GUI prototypes, which are subsequently employed as a point 
of reflection, for example, during the elicitation and refinement of 
requirements with stakeholders [3, 40, 46]. Many aspects of pro-
totyping have been investigated, including low- to high-fidelity 
prototypes [53, 57], throw-away or evolutionary prototypes [3], or 
agile vs. more traditional methods [7, 36]. While the rapid creation 
of GUI prototypes for communicating requirements provides many 
benefits, it simultaneously carries challenges. Typically, the creation 
of GUI prototypes necessitates the collaboration of UX designers, 
requirements analysts (e.g., product owners), and software devel-
opers. In practice, software development teams often encounter 
different tools that are only partially integrated [47]. Although ef-
forts are being made to integrate workflows (e.g., Figma’s developer 
mode [21]), core processes are still entirely separate. Furthermore, 
the requirements are subject to continuous adaption and extension 
during the development [15]. Changing requirements leading to ex-
tensive communication effort has been described in literature, and 
was one of the most frequently mentioned topics during interviews 
conducted as part of this study. Due to the sustained modification 
of requirements, not only synchronization efforts between the roles 
in the development teams are additionally increased, but also the 
effort to continuously update the respective GUI prototypes. 

In practice, UX designers create prototypes based on require-
ments provided in various forms. For example, requirements are 
sometimes only verbally discussed and quickly turned into pa-
per prototypes. However, a prominent approach is to explicitly 
articulate requirements, e.g., as user stories [14]. Requirements are 
sometimes formalized after building initial GUI prototypes, causing 
ambiguity in early prototyping. Software developers typically work 
with GUI prototypes and formalized requirements, where changes 
during the technical implementation can create a synchronization 
effort for both the formalized requirements and GUI prototypes. We 
found that updating requirements in prototypes can be overlooked, 
making the implemented version the de facto latest version. 

Prior research proposed several approaches to adapt or improve 
the GUI prototyping process. For instance, GUI prototyping assis-
tants such as GUIComp [37] retrieve similar GUI screens to stimulate 
design inspirations and provide complexity metrics to enhance pro-
totypes. Moreover, a plethora of approaches for GUI retrieval has 

been proposed before, utilizing various input formats such as nat-
ural language [5, 33, 34], sketches [27], or screenshots [38]. More 
recently, research proposed GUI generation approaches, for exam-
ple, based on training or fine-tuning an LLM [8, 20]. However, these 
approaches lack the capability of integrating user requirements and 
the respective GUI prototype and cannot directly generate GUI com-
ponent implementations based on user stories for fine-grained GUI 
prototyping support. Meanwhile, UX professionals have shown to 
be open for AI-based support systems and see merit in their poten-
tial for addressing practical challenges [30]. Yet, relying solely on 
chat-based LLMs to create GUI prototypes from user stories raises 
several issues, such as how to provide the current prototype state 
to the LLM, and limitations of static prompt-response interactions -
most notably - integrating recommendations into prototyping tools. 
Additionally, current GUI prototyping often requires designers to 
repeatedly customize the same GUI components, adding signifi-
cant effort to the prototyping process. New requirements further 
demand manual adaptations to align with evolving user stories, 
adding to the workload. Meanwhile, untrained designers struggle 
to start from scratch and create effective prototypes [37]. 

While a first approach proposed the utilization of LLMs for inte-
grating requirements and GUI prototypes via detection of user story 
implementation, matching of GUI components and generating GUI 
components from user stories [35], these approaches have not yet 
been implemented in a system, nor systematically evaluated with 
actual users. To address this research gap, we follow the research 
question of how to design an assistant to increase the effectiveness of 
GUI prototyping under consideration of cross-functional integration 
in software development? Our overall contribution is twofold, (i) 
supporting UX designers during their GUI prototyping efforts, and, 
(ii) enhancing cross-functional integration in software development 
teams, focusing on the roles of UX designers, product owners, and 
software developers. In detail we contribute by: 

• Providing insights into GUI prototyping challenges from prac-
tice and providing design rationales for an effective LLM-based 
assistant tailored at UX designers working within software de-
velopment teams. 

• Presenting a novel plug-in for Figma with role-specific function-
alities. The interface for UX designers integrates an approach 
within a prototyping environment (e.g., Figma) that utilizes a 
state-of-the-art LLM to (i) assess whether a requirement is com-
pleted, (ii) identifies GUI components completing the require-
ment, and (iii) generates recommendations for UI components, 
fulfilling a given requirement. 

• An empirical evaluation of the functionalities of our proposed 
GUI prototyping assistant for UX designers and the resulting 
prototype quality and user story completion. 

• A novel approach and technical evaluation to derive additional 
requirements from GUI design prototypes tailored at product 
owners working in software development teams. 

Our findings demonstrate that GUI prototypes created with our 
LLM-based approach achieve higher quality, particularly in select-
ing appropriate components, using correct labels and completing 
given requirements in contrast to manually created GUI prototypes. 
Additionally, user stories automatically derived from existing GUIs 
with our approach were rated high for accuracy and specificity. 

https://doi.org/10.1145/3706598.3713932
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2 Related Work 
In the following we present insights into relevant prior research in 
the fields of (automated) analysis assistants for GUI prototyping, 
automated GUI generation, and GUI retrieval approaches (e.g., to 
efficiently draw design inspirations). 

2.1 GUI Prototyping Assistants 
To support the GUI prototyping process, different approaches have 
been proposed in research. For example, DesignScope [42, 45] facili-
tates the design process by actively recommending layout refine-
ments and design suggestions. Moreover, SketchPlorer [54] repre-
sents a sketching approach that integrates an ad-hoc layout opti-
mizer to rapidly provide layout improvement suggestions to users. 
In addition, GUIComp [37] provides assistance for novices during 
GUI prototyping through a multi-faceted support system including 
the retrieval of similar GUIs from the Rico dataset [17]. GUIComp 
offers a visualization of several GUI complexity metrics such as 
GUI component alignment, balance and density, and an attention 
map for the created GUI prototype. In contrast, our approach tar-
gets rapid generation of GUI prototypes (components) based on 
fine-grained user stories that can instantly be integrated into the 
current working GUI prototype. We close this loop and provide a 
tight integration of user requirements (in the form of user stories) 
and resulting GUI prototypes. To ensure consistency between user 
requirements and GUI prototypes, an ontology-based approach was 
proposed before [51]. However, this approach necessitates the avail-
ability of a respective ontology for the domain and enables mere 
validation of the requirements, thus, cannot actively support during 
the creation of the GUI prototype. More recently, an approach for 
interlinking user stories and GUI prototyping has been proposed 
[35] introducing the LLM-based detection of user stories in GUI 
prototypes and the matching to the corresponding GUI components 
within the prototype. With our research, we extend and build on 
this work by proposing an LLM-based approach for rapidly gener-
ating the implementations for user stories in an editable form as 
well as an integration of the LLM-based assistant in the form of a 
fully-fledged plug-in in Figma. 

2.2 Automated GUI Generation 
Prior research on automatically generating GUI prototypes fol-
lowed different approaches. For example, GUIGAN [59] generates 
new GUI images based on combining existing GUI screenshot ex-
cerpts automatically extracted from the Rico dataset [17] by em-
ploying a generative adversial network [22]. Moreover, the two 
similar approaches LayoutTransformer [25] and Variational Trans-
former Networks [1] mainly generate low-fidelity GUI layouts from 
much simpler compositional elementary graphical units such as 
differently sized rectangles by employing a self-attention approach. 
Another similar approach regarding the generated low-fidelity GUI 
layout artifacts utilizing a transformer encode-decoder model was 
proposed before [28]. More recently, research focused on generating 
low-fidelity GUI prototypes from natural language requirements 
with LLMs. For example, MAxPrototyper [58] requires a predefined 
layout and a short textual description of the GUI in order to generate 
a low-fidelity GUI prototype in the form of a novel domain-specific 
language (DSL) utilizing a combination of retrieved GUIs from Rico 

and a zero-shot prompting approach for the LLM. However, their 
approach is mostly focused on creating content (i.e., images and 
text) fitting the short text description. Furthermore, the Instigator 
approach [8] enables the creation of low-fidelity GUI prototypes 
from brief text descriptions by training a minGPT [29] model via uti-
lizing a large-scale dataset of web sites (transformed to low-fidelity 
variants) automatically scraped from the web. Another related ap-
proach instead focuses on fine-tuning a pre-trained LLM using the 
large-scale Rico GUI dataset [17] based on a custom DSL for the gen-
eration of low-fidelity GUI prototypes and propose post-processing 
of the generated artifacts to improve their quality [20]. Moreover, 
instead of creating GUI prototypes in the form of a custom DSL, 
the UIDiffuser approach [55] directly generates GUI images utiliz-
ing stable diffusion [52]. While the resulting GUI images might be 
useful to rapidly obtain initial and coarse design inspirations, they 
lack clarity and usually functioning GUI components cannot be 
identified, only coarse layouts. Therefore, existing work focuses 
mainly on generating low-fidelity GUI prototypes, neglecting the 
more complex structure and characteristics of high-fidelity GUI 
prototypes and components included in our work. Additionally, 
related work usually produces proprietary output formats that re-
quire training or fine-tuning of the LLM and that are hard to reuse 
or integrate into traditional workflows (e.g., such as in Figma). In 
contrast, our approach generates a highly detailed Material Design 
specification that enables the instantiation of directly editable com-
ponents within the visual Figma editor. This specification extends 
beyond selecting individual components (e.g., buttons, check-boxes) 
to include detailed parameters such as size, positioning, margins, 
elevation levels (e.g., flat, or raised), states (e.g., hover or pressed), 
labels, icons, or shapes, while we adhered to design system stan-
dards for typography, as well as primary and secondary colors. In 
addition, our proposed approach also is novel in terms of the spe-
cific technique used to generate the components. In particular, we 
employ a zero-shot LLM which requires no training or fine-tuning 
and simultaneously reduce the required amount of context tokens 
drastically through a RAG-based two-stage generation approach. 

2.3 GUI Retrieval 
Many approaches have been proposed for NL-based GUI retrieval. 
For example, Guigle [5] proposed the first GUI search approach 
based on extracted screenshots from automatically collected An-
droid apps. Their approach facilitates the rapid retrieval of GUI 
screenshots from brief text descriptions, utilizing multiple fractions 
from the GUI hierarchy within Lucene [6], which employs clas-
sic TF-IDF and BM25 [50] retrieval. Another approach proposed 
employing pooled BERT embeddings for text-only retrieval and 
additionally introduced a multi-model embedding space for text-
based GUI retrieval [28]. More recently, GUI2WiRe [32, 33] and 
RaWi [34] introduced novel BERT-based Learning-to-Rank (LTR) 
models for enhancing NL-based GUI retrieval. While these retrieval 
approaches facilitate rapidly obtaining relevant GUI prototypes 
based on textual requirements, retrieval systems inherently are 
not able to create individualized GUI prototypes or components. 
Most often, these retrieval approaches additionally merely produce 
GUI prototype artifacts in non-editable formats such as images, 
impairing their reusability in the GUI prototyping process. Besides 
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NL-based GUI retrieval methods, research proposed several GUI 
retrieval approaches utilizing other input formats such as hand-
drawn sketches [27, 41], wireframes [11], GUI screenshots [38], or 
entire apps [4]. In comparison to our approach, these methods lack 
the ability to create fine-grained implementations for user stories 
and retrieve GUIs solely from a fixed repository and additionally 
the retrieved GUI artifacts are non-editable, reducing the usability 
within the prototyping process. Gallery DC [13] harnesses a large-
scale GUI design repository crawled from real-world applications 
and extracts GUI components in order to provide multi-faceted 
GUI component search capabilities. While this approach similarly 
supports to rapidly obtain relevant GUI components by inputting 
text, our LLM-based method enables the processing of entire user 
stories to generate relevant and editable GUI components. 

3 System Design 
To solve challenges from practice through an effective support 
system tailored at UX designers working within software devel-
opment teams, we conducted formative interviews for which we 
interviewed ten professionals. Five participants (two female, three 
male, with an average age of 30.00 years, 𝜎 = 2.74) were professional 
UX designers, constantly utilizing dedicated prototyping tools (such 
as Figma). The UX designer group had an average experience in 
creating GUI prototypes of 5.70 years (𝜎 = 1.64), 4.50 years (𝜎 = 2.12) 
of evaluation of GUI prototypes, and high (four interviewees) to 
very high (one interviewee) self-reported knowledge in GUI proto-
typing. Three of our participants were professional product owners, 
two of whom were female and one male, with an average age of 
31.33 years (𝜎 = 2.89). They had 3.50 (𝜎 = 1.73) years of experience 
in creating and 2.50 years (𝜎 = 1.73) of experience evaluating GUI 
prototypes, showcasing their expertise in this area. Additionally, 
we interviewed two professional software developers (one female 
and one male, with an average age of 35 years, 𝜎 = 10.61). Both, 
on average, had 12 years (𝜎 = 10.61) of experience in software and 
10.50 years (𝜎 = 8.49) working with GUI prototypes. We did not 
ask participants about their prior experience with LLMs or Genera-
tive AI beforehand, to avoid biasing their responses (ensuring they 
approached the problem space in the first half of the interviews 
without already thinking about AI). However, during later stages of 
the interviews most participants expressed experience with tools 
like ChatGPT, and a few had tried image generators. We chose pro-
fessional UX designers, product owners, and software developers 
as our interviewees since these three roles usually collaborate ex-
tensively using GUI prototypes. Our objective was to ensure that a 
solution tailored to UX designers would not create challenges in 
collaboration with other roles and ideally offer advantages for all 
roles involved. 

We conducted semi-structured individual interviews. After agree-
ing to participate in the study and stating demographic data, the 
participants were asked to describe their experience with GUI pro-
totyping. The participants were asked multiple questions to explore 
the problem and solution space. For the second half of the inter-
views, UX designers and product owners were shown our initial 
system design as described in section 3.2. The participants first 
explored and described the initial design independently before re-
ceiving an introduction to the various functions. The interviewees 

then reflected on the functions, visualizations, information archi-
tecture, and general usability. Interviews with UX designers and 
product owners lasted 45 minutes on average. Interviews with 
software developers lasted 30 minutes and did not include a demon-
stration of the initial system design. Interviews with UX designers 
and product owners were transcribed and coded independently by 
a research assistant and a paper author. After coding, ambiguities 
were discussed, and disagreements were resolved. 

3.1 Design Rationales 
Subsequently, we present the fundamental design rationales derived 
from the interviews that motivated the design of our assistant. For 
each design rationale, the roles of interviewees mentioning these 
rationales are stated. 
(1) Integration of user stories into GUI prototyping tools from practice, 

such as Figma [21] (UX, PO, SD). The assistant should be able to 
integrate new and changed user stories into GUI prototyping 
tools from practice (e.g., from JIRA [2]) and thereby minimize 
tool switches in work processes. 

(2) The user should retain control over the decisions of the assistant 
(UX, PO). As long as the LLM-supported assistant can produce 
imperfect solutions, users should decide which suggestions to 
implement. 

(3) The user should be able to gain some understanding into the LLM-
based 1 decisions (UX, PO). Users must be able to understand 
decisions made by the LLM-based assistant, especially when 
imperfect solutions are created. 

(4) (Automated) mapping of user stories to components of GUIs (UX, 
PO, SD). The assistant should facilitate linking user stories and 
GUI components to enhance transparency while implementing 
GUI prototypes in software code, and evaluate which compo-
nents correspond to specific requirements. 

(5) (Automated) recommendation of GUI components (UX, PO). The 
assistant should automatically suggest GUI components and 
draw them directly in the prototyping tool at correct positions. 

(6) (Automated) user story generation from GUI prototypes (PO). In 
our interviews, product owners expressed the wish for auto-
mated generation of user stories from GUI prototypes for cases 
where less documentation was available. 
The design rationales were derived from a qualitative analysis 

of the interview data. During the coding process, themes were 
identified based on recurring statements, such as participants high-
lighting challenges with existing tools or expressing a desire for 
specific functionalities. For example, the rationale of integrating 
user stories into prototyping tools was derived from interviewees 
describing missing connections between Figma and requirements 
management tools, e.g., "I think it ultimately comes down to this: in 
the end, there are different tools that you use, and the more strongly 
they are interconnected, the better. I think Figma is great, but if Figma 
had a strong integration with JIRA, that would be even better [...] and 
these [requirements] should then ideally be linked to the corresponding 
prototyping pages, sections, or areas [..]." 
1During the first half of the sessions, some participants discussed “understanding the 
AI’s decision” in general terms rather than understanding LLM-based decisions. After 
we explained our initial design and introduced the possibility of an LLM serving as 
the underlying technology at the end of the second half, they expressed a need to 
understand the LLM’s decision, though AI was often used interchangeably. 
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3.2 Initial System Design 
At the beginning of the interviews with UX designers and product 
owners, we explored the problem space in general, followed by an 
exploration of an existing prototype intended to motivate reflec-
tions on the features. The initial features and design were motivated 
by prior research and built upon Kolthoff et al. [35]. Figure 2 shows 
a schematic screen that we used for reflection with the participants. 
We adapted the LLM-based approach of Kolthoff et al. [35] for de-
tecting and matching user stories in GUI prototypes to specifically 
support Figma GUI prototypes. Furthermore, we extend their work 
by a GUI component generation approach to rapidly create editable 
GUI designs. Additionally, we evaluated the extended approach and 
thereby provide an evaluation for the approach of Kolthoff et al. as 
well, since they only evaluate it using a technical train-test split. 

Figure 2: First schematic of prototype used in interviews as 
point of reflection. 

3.3 Refined System Design 
We developed two variants of our GUI prototyping assistant to 
evaluate its effectiveness in our lab study: a control and a treatment 
configuration. The treatment configuration builds on the baseline 
functionality of the control version by introducing advanced fea-
tures enabling LLM-based automation. In the following, we describe 
the shared functionality of the control configuration, followed by 
the unique capabilities of the treatment configuration. Table 1 pro-
vides a comparative overview of these differences. 

3.3.1 Control Configuration. This section outlines the baseline 
functionality of the GUI prototyping assistant, as implemented in 
the control configuration. These core features are also present in 
the treatment configuration. 

Tool Integration. Our assistant directly integrates into the popular 
prototyping tool Figma. We based the size of the plug-in on popular 
plug-ins for Figma and integrated a minimization function (C6 and 

Table 1: Comparison of assistant’s features in control and 
treatment configuration. 

Feature Control Treatment 

Tool 
Integration 

Plug-in integrated 
in Figma 

Plug-in integrated 
in Figma 

User Story 
Listing 

Lists all user 
stories 

Lists all user 
stories 

Change 
Intervention 

Synchronizes user 
story updates 

Synchronizes user 
story updates 

User Story 
State Mang. 
& Detection 

Manual Manual and 
LLM-based 

User Story 
Matching Not available 

LLM-based matching of 
GUI comp. to user stories 

GUI Comp. 
Generation Manual 

LLM-based GUI component 
generation allowing user 
control over suggestions 

T6 in figure 3), allowing the plug-in to shrink and display only 
numerical values for open, ongoing, and completed user stories to 
optimize screen space. This feature is particularly useful during 
tasks such as graphical fine-tuning of design components, where 
workspace is a priority. With the assistants integration as a plug-in, 
we aim at supporting UX designers, product owners and software 
developers within tools of practice. By facilitating tasks in tools 
like Figma such as synthesizing textual descriptions into GUI com-
ponents, and picking and contextualizing fitting GUI components, 
we aim at allowing UX designers to focus more on the creative and 
conceptual aspects of their work, such as sketching rough designs 
and crafting the overall user experience. 

Listing User Stories in Figma. The assistant lists user stories directly 
in the plug-in, with their status visually highlighted as completed 
(green), ongoing (blue), or still a to-do (red). By default, all user 
stories for all app screens currently opened in Figma are displayed. 
If a single frame (i.e., the screen of an app) is selected (selection 
indicator: C1 and T1 in figure 3), only the user stories associated with 
that frame are shown in the plug-in. Additional information, such 
as the age and identifier of user stories, is displayed alongside status 
indicators. Users can update the status of a user story (completed, 
ongoing, or to-do) directly in the plug-in (C3, and T13 in figure 3). 
Based on the interviews, we implemented filtering (based on state, 
and AI Detected in the treatment configuration) and sorting (based 
on age and state of the user story). 

Change Intervention. One identified design rationale guiding our 
implementation is the assistant’s ability to deal with new and con-
stantly changing requirements. To fulfill this rationale, we devel-
oped a feature synchronizing user stories (e.g., with an external 
database). For the evaluation conducted in this paper, we developed 
an intervention, as shown in figure 4. As part of this intervention, 
users were notified of updates after a specified interval, when the 
“Sync User Stories” button became active, simulating a synchroniza-
tion with user story databases (such as JIRA). Clicking the button 
led to the new or updated user stories being displayed in the plug-in 
and highlighted with dots. 
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Figure 3: Assistant for GUI prototype designers in the control (left side) configuration and treatment (right side) configuration. 
In both configurations, the assistant shows user stories based on a selected frame in the prototyping tool (C1/T1), allows to 
filter and sort user stories (C2/T2), can synchronize the user stories with a database (C5/T5), and be minimized (C6/T6). User 
stories can be marked completed, ongoing or as a to-do (C3 and T13). In the treatment configuration, the assistant can identify 
components completing a user story (T7), manually added (T8) or identified using an LLM (T9). Additionally, an LLM can detect 
the completion status of a user story (T13), can recommend GUI components completing a user story (T10 and T11) and draw 
them into the GUI prototype (T12). Figure contains Material 3 Design Kit [24] components from Google, used under CC BY 4.0. 

3.3.2 Treatment Configuration. The treatment configuration ex-
tends the baseline features of the control configuration by integrat-
ing advanced functionalities guided by specific design rationales. 
This section outlines the unique features exclusive to the treatment 
configuration, as shown on the right side of figure 3. 

User Story Detection. The assistant can automatically detect whether 
a user story has already been implemented in a GUI prototype. 
Leveraging our LLM-based detection approach, the method auto-
matically analyzes the implementation status of the user story in 
a selected prototype. Users can apply this feature at two levels: 
individually for specific user stories (T13 in figure 3) or collectively 
for all stories in a frame (T4 in figure 3). Detected implementation 
states are visually indicated by color changes. After clicking “Scan 
Story Status” (T4 in figure 3), discrepancies between user-assigned 
and AI-detected states are flagged for review in a dialog box, where 
users confirm or override AI suggestions. To ensure transparency, 
each user story in the list displays a label indicating whether the 
completion state was assigned by the user or detected by the AI 
(e.g., “AI Detected: True/False,” as shown in T3 in figure 3). By au-
tomating detection, this feature aims at minimizing manual effort 
and ensuring a reliable overview of the implementation progress. 

User Story Matching. For our assistant, we also implemented the 
function to automatically recognize which components of a GUI 
prototype in Figma fulfill a user story. This feature is shown in the 
third screen in figure 3. Matched components are displayed in a 
dedicated field (T7 in figure 3), showing their names as assigned in 

Figma alongside an isolated image of each component. Users can 
manage these associations by adding components manually (“Add 
New Component,” T8), using the AI to detect components (“AI De-
tection,” T9), or removing incorrectly associated components. The 
objective of this feature is to provide users a better understanding 
of the components influencing the decision of the LLM for automat-
ically assessing the user story implementation status and to enable 
the direct interlinking between user stories and their counterparts 
in GUI prototypes. Thereby providing transparency regarding the 
features that still necessitate attention and enabling the verification 
of whether the appropriate GUI components have been utilized. 

GUI (Component) Generation. Our assistant also allows users to 
generate components based on user stories. This feature is shown 
in figure 3 in the treatment screens (fourth screen from the left). To 
ensure that users retain control over the decisions of the assistant 
and decide for themselves whether LLM-based component propos-
als are to be incorporated, recommendations are first previewed in 
the assistant (T10 in figure 3). Users can then decide whether they 
want to use the button "Generate Another Recommendation" (T11 
in figure 3) to generate another recommendation or use the button 
"Draw Suggestion" (T12 in figure 3) to insert these components as al-
ready correctly placed GUI component in Figma. In this case, either 
correctly contextualized and parameterized material design assets, 
material icons, labels, or rectangles are drawn into the existing GUI 
prototype. Our assistant utilizes the existing design as a context for 
correct dimensioning and positioning. 
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Figure 4: New and changed user stories intervention shown 
to participants after 30 minutes in both the treatment and 
control configuration in lab experiments (here: treatment 
config.). Intervention shown as pop-up message, and red dots 
next to updated user stories, mimicking requirement updates 
and synchronization with collaboration tools, such as JIRA. 

3.4 LLM-Based Approaches 
Our underlying LLM framework is composed of several compo-
nents. An overview of the approach is illustrated in figure 5. In 
alignment with the figure, we describe the steps of the approach 
sequentially in a top-down manner. First, (A) we propose a com-
ponent transforming the GUI prototype represented by Material 
Design components in Figma to an abstract and compressed string 
representation as the input to the LLM. Second, (B) the user story 
detection component consisting of a zero-shot prompted LLM for 
deciding whether a provided user story is implemented in the GUI 
prototype. Third, (C) the user story matching component enabling 
the coupling of GUI components corresponding to a given user 
story. In addition, (D) the user story generation component for au-
tomatically creating user stories for the GUI prototype. Fifth, (E) the 
two-stage GUI component generation approach enabling the rapid 
creation of implementations for a provided user story. Finally, (F) 
the component transforming the generated intermediate prototype 
representation back to a rendered GUI component and appropriate 
placement in the GUI prototype. All detailed prompts can be found 
in our supplementary materials. Subsequently, we present each of 
the introduced components of our LLM framework for supporting 
the GUI prototyping process in detail. 

3.4.1 GUI Prototype Representation (A). Our approach focuses on 
GUI prototypes created within the popular prototyping tool Figma 
and supports prototypes implemented with the Material Design 
component library. This extensive component library encompasses 
over 85 distinct GUI components including elementary individual 
components such as Checkbox, Slider, and Button, to more intricate 
GUI elements assembled from multiple individual GUI components 

such as Dialogues, List-Item, Search-Bar, and Card. Each library GUI 
component possesses numerous configuration options including, 
for example, Icon and Main-Text, whereas the assembled compo-
nents encompass several sub-components in a multi-level fashion. 
To further enhance the versatility of supported GUI components, 
we incorporated additional more generic component types (e.g., 
Label, Image-Placeholder, Rectangle and, Icon). To enable the previ-
ously discussed LLM-based assistance, the prototype requires to 
be transformed to an abstract and minified string representation 
to provide an efficient and effective input to the LLM. An inter-
mediate JSON representation of the prototype is reduced to the 
abstract variant ensuring not only substantial increases in token 
efficiency, but also removal of details unnecessary for the proposed 
tasks to potentially increase effectiveness. The abstract string repre-
sentation is constructed as a multi-level bullet point list, each GUI 
component being represented as an individual item using an ab-
stract pattern2 , providing basic information of the component such 
as the group, type, position, and size as well as a list of component-
specific attributes. Multiple levels are introduced in the bullet point 
list when assembled elements contain sub-components and form 
nested structures to ensure and retain the appropriate grouping of 
the components. 

3.4.2 Implementation Detection (B). To address the challenge of 
automatically detecting whether a given user story is already imple-
mented in the GUI prototype, we exploit the text understanding and 
reasoning capabilities of recent LLMs [10, 18, 49, 56] and employ 
an LLM-based method with Zero-Shot (ZS) prompting [31, 39] to 
formulate the problem as a binary classification task. ZS prompting 
enables instructing an LLM with a novel task without requiring 
resource-intensive training or fine-tuning and the creation of high-
quality examples for Few-Shot (FS) prompting [10]. Our approach 
builds upon the ZS method proposed by Kolthoff et al. [35] showing 
the highest effectiveness with ZS prompting and we provide an 
adaption for the editable Material Design GUI prototypes in Figma. 
In particular, we create a ZS prompt template with (i) providing 
clear instructions on the provided information and the detection 
task, (ii) including the previously created abstract GUI prototype, 
and (iii) the user story to classify. The LLM is instructed to output a 
single token (either 0 or 1) as its classification response and provide 
an additional short reasoning description. 

3.4.3 GUI Component Matching (C). Similarly to the previously dis-
cussed implementation detection, we employ a ZS prompt adapted 
from Kolthoff et al. [35] to match a given user story to its corre-
sponding GUI components within the GUI prototype. We follow 
the same ZS prompt template structure as described previously, 
but extend each GUI component in the abstract GUI representa-
tion with an identifier, enabling the LLM to reference the relevant 
GUI components. Therefore, we instruct the LLM to extract a list 
of identifiers of the GUI components relevant for implementing 
the user story, which enables the marking of the respective GUI 
components in the GUI prototype. 

2 component-group (component-type) (position) (size) |attribute name:"attribute 
value"| (id), for example, Button (SimpleButton) (x:25|y:790) (width:359|height:54) 
|Icon:"add"|Label Text:"Search"|Style:"Filled"|State:"Enabled"|Show Icon:"True" (id=27) 
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Figure 5: LLM framework for automatic detecting user story implementation, matching GUI components for user story, 
generating user story for GUI prototypes and two-stage GUI component generation for user story including the transformation 
of GUI prototypes in Figma to a compressed representation for inputting into the LLM and vice-versa rendering of generated 
GUI components within the prototype. Fig. contains Material 3 Design Kit [24] components from Google, used under CC BY 4.0. 

3.4.4 User Story Generation (D). To enable the creation of user 
stories from a fraction or entire GUI prototype which currently 
is not covered by any user story within the collection, we also 
employ ZS prompting with an LLM. In this prompt template, we (i) 
clearly instructed the model to extract all present user stories with 
their respective GUI components and (ii) provided the abstract GUI 
representation with GUI component identifiers. In particular, the 
LLM is tasked with creating a JSON providing objects with the user 
story text and a list of corresponding GUI components. 

3.4.5 GUI Component Generation (E). In addition to the detection, 
matching, and US generation methods, we propose to facilitate the 
prototyping process by enabling the contextualized GUI compo-
nent generation for a given user story based on the current GUI 
prototype. To tackle the challenge of generating GUI component 
recommendations for a given user story, we employed another ZS 
prompting approach utilizing an LLM. While the LLM is pretrained 
on large amounts of text corpora from the web and potentially 

includes various information about Material Design (MD) utilized 
in our approach, the LLM lacks the specific Material Design compo-
nent library and configuration options employed in our approach. 
Therefore, we manually constructed the comprehensive component 
library as input to the model. However, to increase token efficiency 
for the LLM, we propose a two-stage GUI component generation 
method. As depicted in Figure 5E, we first derive a minified MD 
component library containing only the information about available 
component types and sub-component references. Afterwards, we 
construct our first stage ZS prompt template by instructing the 
LLM to select all required components from the minified library 
and encompass (i) the user story to generate the implementation 
for, (ii) the abstract GUI representation, (iii) a brief textual descrip-
tion of the main functionality of the GUI, and (iv) the minified MD 
component library. Afterwards, we construct the second stage ZS 
prompt template instructing the LLM to generate the intermediate 
GUI component representation by utilizing the same information 
as before, but instead of the minified MD library, we additionally 
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Figure 6: Overview of experiment procedures for evaluating the recommendation generation (𝑅𝑄1), the assistant (𝑅𝑄2 and 
𝑅𝑄3), and the user story generation (𝑅𝑄4). For 𝑅𝑄1, GUI components were generated with our approach from user stories and 
evaluated by crowd-workers on Prolific. For 𝑅𝑄2 and 𝑅𝑄3, participants were recruited from a student panel, randomly assigned 
to either the control or treatment group to create GUI prototypes. GUI prototypes were then evaluated by a second set of 
participants sourced through Prolific. For 𝑅𝑄4, user stories were generated with our approach from Rico GUIs and evaluated by 
crowd-workers on Prolific. 

provide (i) the full specifications from the MD GUI component 
library for the selected components, (ii) an icon library, and (iii) 
specifications for general attributes that are shared among all GUI 
components. 

By conducting this two-stage procedure, we avoid inputting the 
entire large MD component library for each generation and instead 
reduce it to a minimal representation. To ensure correctness of the 
generated component specifications of the first and second stage, 
we set the temperate of the LLM to zero for a more probable and 
deterministic output. Moreover, we implemented an automatic veri-
fication of the generated specification by matching them against the 
MD specifications. The component position and size is generated 
by the LLM via the general attributes and influenced by the com-
ponents and their positions in the current prototype. Finally, the 
intermediate representation is rendered within our Figma plugin 
and the generated GUI component can directly be integrated into 
the existing GUI prototype design, including the automatic posi-
tioning of the component within the GUI prototype. Although the 
focus of our approach lies on generating functional GUI prototypes, 
the LLM is able to generate also different component styles (e.g., 
different buttons such as IconButton or FloatingActionButton), since 
different styles are represented as different components in the MD 
specification. In the future, we plan to integrate more fine-grained 
styling options (e.g., background color, font color, font style) by ex-
tending the general attributes. With this functionality, custom CI 
such as a color palette or special fonts could be incorporated into 
the generation process by enabling users to provide textual style 
requirements additionally to the textual functional requirements. 

3.4.6 LLM Configuration. As the LLM in our approach, we uti-
lize the most recent GPT-4o model [44] with 128k tokens context 
length (accessed in August, 2024), which extends the preceding 
GPT-4 model [43] with multi-modal functionalities. We decided for 
GPT-4o since it provides state-of-the-art performance in many text 
evaluation tasks [44]. 

4 Evaluation Studies 
In this chapter, we present the underlying methodology of our 
evaluation studies. In particular, we first focused on measuring the 
ability of our approach to create relevant GUI components match-
ing the context. Subsequently, we focused on the question if our 
LLM-based assistant improves the effectiveness of GUI prototyp-
ing. In addition to the resulting quality of the GUI prototypes, we 
were also interested in the subjective satisfaction of the participants 
and the use of the assistant. Finally, we focused on the question of 
how effective our approach is in generating user stories from com-
ponents of GUI prototypes. Overall, we articulated the following 
research questions for our evaluation: 
RQ1 How effective are LLM-based approaches for generating GUI 

prototype components completing a user story? 
RQ2 How does our LLM-based assistant influences GUI prototype 

quality and user story completion? 
RQ3 How does our LLM-based assistant influences perceived user 

experience? 
RQ4 How effective are LLM-based approaches for generating user 

stories from components of GUI prototypes? 
In the following we will describe the underlying methods, proce-

dures and evaluation datasets employed to provide answers to the 
research questions articulated above by a series of evaluation stud-
ies. With figure 6, we present an overview of our three evaluations, 
investigating RQ1, RQ2 together with RQ3 and lastly RQ4. 

4.1 Recommendation Generation (RQ1) 
First, we present our evaluation study, which examines the extent to 
which the recommendations generated by our LLM-based approach 
are suitable for fulfilling the respective user stories. 

4.1.1 Procedure. In order to measure the extent to which the rec-
ommendations created match the respective user stories, we em-
ployed the publicly available user story dataset from Kolthoff et 
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al. [35] at random. Recommendations were then generated using 
our approach with the assistant in the prototyping tool, rendered 
as images, and presented to crowd-workers on Prolific [19, 48] for 
evaluation. As there was no existing Figma context in this setup 
(no previous GUI prototype for which more recommendations are 
generated), a short, high-level text description as context created 
by students was utilized in addition to the user stories (e.g., “a 
screen from a travel app showing flight search results” ). Created GUI 
components were presented to the crowd-workers as they were 
created by the LLM-based assistant, i.e., without post-editing. 

4.1.2 Participants. We invited eight crowd-worker from Prolific 
who self-reported UI or UX experience, had more than 30 previous 
submissions and an high approval rate (>99%). No crowd-worker 
participated in any of our other studies. We had to exclude two 
participants based on failing our attention checks. The remaining 
participants (4 male, 2 female with an average age of 35.7 years) had, 
on average, 6.7 years (𝜎 = 5.59) of experience in creating and 3.7 (𝜎 
= 3.40) years of experience in evaluating visual design (GUI proto-
typing). We did not collect information about participants’ LLM or 
GenAI experience, as such expertise was not required for evaluating 
the GUI components and revealing that the GUI components were 
LLM-generated could have introduced bias. 

4.1.3 Data Collection. The crowd-workers were shown the GUI 
components in a survey as pictures and the respective user stories. 
The crowd-workers were then asked whether the GUI components 
fully meet the functional requirements described in the user story, 
the GUI excerpt contains all the necessary components (e.g., buttons, 
input fields) to fulfill the user story, and whether textual descrip-
tions within the GUI excerpt (e.g., labels, instructions, messages) 
are clear and appropriate for fulfilling the user story. 

4.2 Assistant Evaluation (RQ2, RQ3) 
To evaluate our assistant, we conducted a lab experiment in which 
participants were asked to create GUI prototypes based on prede-
fined user stories in a controlled environment. Subsequently, we 
evaluated the resulting GUI prototypes with crowd-workers. We ex-
plicitly decided against a remote structure, e.g., with crowd-workers, 
to control boundary conditions (such as context and environment 
as well as processing time for the GUI prototyping tasks). 

4.2.1 Procedure. We created two versions of the assistant and 
evaluated both in a between-subject design experiment. For this 
purpose, GUI prototypes were created by participants in a lab-based 
study for predefined user stories. User stories were derived from 
the publicly available user story dataset of Kolthoff et al. [35] to 
employ high-quality user stories that have already been evaluated in 
previous studies. While the user stories are focused on single GUIs 
and do not span across multiple GUIs of an app, the dataset contains 
multiple coherent user stories describing different functionalities 
of a GUI screen. The participants in the lab had help from one 
or the other version of the assistant (control or treatment). The 
GUI prototypes created were then evaluated by crowd-workers 
with UX experience sourced on Prolific [19, 48]. In the following, 
we present insights into the lab experiment and crowd-working 
related procedures. 

Lab Experiment. In the 75-minute laboratory study, after agreeing 
to the data collection, participants read a briefing on the study task 
(5 min), watched a video explaining the GUI prototyping tool used 
(10 min), and a video demonstrating the assistant implemented as 
a plug-in for the GUI prototyping tool (5 min). Since our assistant 
in the treatment configuration generated Material Design compo-
nents, we therefore decided to give both groups an introduction 
to Figma including the use of Material Design components. Then, 
participants started the GUI prototyping task (45 min) and finished 
the experiment with a post-hoc questionnaire (10 min). Participants 
worked with mobile screen templates and had pre-loaded icons 
and Material Design assets available. For the GUI prototyping task, 
the laboratory study participants were tasked with creating up to 
three GUI prototypes based on user stories. For each GUI prototype, 
there were eight user stories to complete. After 30 minutes, there 
were updates for two existing user stories, and two new user stories 
were added to the assistant. The update was intended to simulate 
changed requirements, as is usual in practice. Participants were 
instructed to start with the first GUI prototype and the first eight 
user stories for this GUI prototype and continue with the second 
and third GUI prototypes only when the previous prototype was 
completed. For our control group, which used the assistant without 
generative component creation, producing three prototypes as part 
of the study task is clearly extensive. We deliberately opted for 
an extensive task so that no participant would finish early, even 
in the treatment with generative component creation, and would 
continue to prototype in the 45-minute GUI prototyping phase. 
We measured the load in pretests to find the right amount of GUI 
prototyping tasks. The study included attention and comprehen-
sion checks. The study design was carefully evaluated with the 
university’s Institutional Review Board (IRB). 
Evaluation of GUI prototypes. We conducted an evaluation study on 
Prolific with crowd-workers to evaluate the generated GUI proto-
types. We chose Prolific since comparative studies indicated that 
crowd-workers on Prolific produce higher data quality compared 
to other crowd-working platforms [19]. Participants from Prolific 
received a questionnaire to evaluate the GUI prototypes created in 
the lab sessions. After consenting to data processing, participants 
received a study description and evaluated 20 GUI prototypes each, 
randomly drawn. On average, each participant received 13 GUI 
prototypes for the first GUI prototyping task (five for the second 
and two for the last GUI prototyping task) created with the assistant 
in the control or treatment configuration, respectively. The study 
lasted 65 minutes on average and included six attention checks. 
Furthermore, the study design was carefully evaluated with the 
university’s IRB. 

4.2.2 Participants. Following, we describe the participants of the 
lab study and the evaluation of the GUI prototypes. 
Lab Experiment. We recruited 46 participants from a university 
panel for the lab study randomly assigned to the control group (23 
participants) or treatment group (23 participants). In both groups, 
three participants had to be eliminated (one technical problem, 
three times failure to complete attention checks, two failures to 
meet the 45-minute GUI prototyping task time) ex-post. Eventually, 
20 participants were admitted to the study in both groups. The par-
ticipants in the control group (14 male, 6 female) were, on average, 
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25.40 years (𝜎 = 4.65) old. The participants in the treatment group 
(12 male, 8 female) were, on average, 23.85 years (𝜎 = 2.67) old. Par-
ticipants in both groups studied, on average, little over four years 
and had the same average experience with creating and evaluating 
visual design (such as GUI prototypes). 

Evaluation of GUI prototypes. On Prolific, we originally invited 36 
participants who self-reported UI or UX experience, had more than 
30 previous submissions on Prolific and an high approval rate (>99%). 
Submission from eight participants were excluded for failing one 
or multiple attention checks. Only data from the remaining 28 (22 
male, 6 female) participants were considered. Prolific participants 
were 28.25 years old (𝜎 = 6.78) and had 4.25 years (𝜎 = 5.87) of ex-
perience creating visual design and 3.86 (𝜎 = 4.04) years experience 
evaluating visual design on average. We did not collect informa-
tion about participants’ LLM experience, as such expertise was not 
required for evaluating the GUI prototypes and revealing that the 
GUI prototypes creation was partially assisted by our LLM-based 
assistant could have introduced bias. 

4.2.3 Data Collection. We collected a range of data, both in the 
lab setting and on Prolific. 

Lab Experiment. During the lab experiment, we logged the usage 
data of the assistant (navigation in the assistant, clicks, and web-
calls in the treatment group) and the GUI prototypes generated 
during the sessions. In addition, the participants filled out a post-hoc 
questionnaire in which Task Load (NASA TLX Raw [26]), System 
Usability (SUS [9]), and Creativity Support (CSI [12]) were recorded. 
In addition, we asked for further Likert items (e.g., ease of use and 
effectiveness of the assistant). We also surveyed subjective use of 
the features (detection of user story completion, recognition of the 
GUI components of a fulfilled user story, and recommendation of 
GUI components) in the treatment, and in both groups positive and 
negative aspects of the assistant via open text fields. 

Evaluation of resulting GUI prototypes. For each GUI and user story 
shown, the crowd-workers assessed the extent to which the GUI 
fully meets the functional requirements described in the user story, 
whether the GUI contains all the necessary components (e.g., but-
tons, input fields) to fulfill the user story and whether text within 
the GUI (e.g., labels, instructions, messages) is clear and appropriate 
for fulfilling the user story. Additionally, they rated each GUI for 
overall consistency with user stories, visually appealing design, 
clear information organization, intuitive interaction, whether the 
GUI looks like an app page, minimal prototype errors, and satisfac-
tion with GUI prototype. 

4.3 User Stories Generation (RQ4) 
In addition, we evaluated the extent to which our approach can 
create user stories from existing GUI prototypes. 

4.3.1 Procedure. To evaluate the ability to create suitable user sto-
ries, research assistants recreated Rico GUIs [16] for the prototyping 
tool. 23 GUIs were randomly chosen based on the GUIs employed 
in the user story dataset of Kolthoff et al. [35]. We then utilized 
these GUI prototypes to create LLM-based user stories for the GUI 
components using our proposed assistant. Created user stories were 
presented to the crowd-workers as they were created, i.e., without 

editing. These were then evaluated by crowd-workers with UI or 
UX experience. Each crowd-worker rated ten GUI prototypes and 
its related user stories. On average, 9.2 user stories were created by 
the LLM for each GUI. 

4.3.2 Participants. We recruited six crowd-workers through Pro-
lific [19, 48], applying the same selection criteria as in the lab study. 
None of the crowd-workers had participated in any of our previous 
studies. No participant failed any of our attention checks. The final 
sample (6 male, average age of 33.83 years) had an average of 6.00 
(𝜎 = 4.12) years of experience in creating and 4.33 (𝜎 = 2.98) years 
of experience in evaluating visual design (GUI prototyping). Once 
more, we did not inquire about participants’ LLM experience, since 
such was not required for assessing the user stories. 

4.3.3 Data Collection. The user stories created and GUI prototypes 
were presented to crowd-workers for comparison. Subsequently, 
they assessed the user stories in combination with the GUI pro-
totype for the following four items: (i) "The user story accurately 
describes functionality found in the presented GUI.", (ii) "The user 
story is written with sufficient clarity and precision.", (iii) "The user 
story is specific enough to describe a particular feature of the presented 
GUI.", (iv) "The level of detail in this user story meets the standards in 
a professional project." 

5 Results 
In this section, we provide the results on our LLM-based approach’s 
capability to create GUI components based on user stories through 
measuring how well the generated components fulfill the user sto-
ries (RQ1). Afterwards, we present the results of the lab experiment 
using the assistant, including the evaluation of the lab results on 
Prolific (RQ2, RQ3). In addition, we provide the results of the evalu-
ation for automatically creating user stories (RQ4). 

5.1 Recommendation Generation (RQ1) 
To maximize requirement diversity, we took 102 user stories from 
27 GUIs in the publicly available dataset by Kolthoff et al. [35] 
and generated components for each user story using our LLM-
based approach. These were presented individually (i.e., as single 
components with the user stories) to crowd-workers on a basic 
schematic mobile app outline. We collected 40 pairs of user story 
component ratings from each of the six crowd-workers, resulting 
in an average of 2.35 ratings per user story and GUI component. 

Crowd-workers rated user stories and derived GUI components 
assessing whether the components (1) allow the user to perform 
the task in the user story, (2) all necessary components for ful-
filling the user story are presented, (3) appropriate components 
were chosen and (4) text of components were clear and appro-
priate. All ratings were obtained on nine-point Likert scales (1: 
Strongly Disagree, 3: Disagree, 5: Neutral, 7: Agree, 9: Strongly Agree). 
Figure 7 shows violin plots for each of the four assessed aspects. 
All four aspects were rated high, with mean (median) values of 
7.5 (8) for functional requirement fulfillment, 7.51 (8) for user 
story fulfillment, 7.04 (8) for component correctness and 6.86 (7) 
for textual clarity. In addition, to evaluate the efficiency benefits, 
we compared the proposed two-stage GUI component generation 
approach against a similar one-stage GUI component generation 
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Figure 7: Violin plots of crowd-worker ratings (y-axis: 9-point 
Likert scale) for components generated by our LLM-based ap-
proach in the prototyping tool based on over 100 user stories. 
Crowd-workers rated functional requirements fulfillment, 
user story fulfillment, component correctness and text clar-
ity for user stories and derived GUI components. Triangles 
represent means, black lines medians. 

ZS prompt, which always incorporates the full MD component 
library. On the 102 user stories dataset, the two-stage GUI genera-
tion approach accomplished a considerable 64.35% reduction of the 
consumed input tokens (Mean #One-Stage-Tokens=8559.49|Mean 
#Two-Stage-Tokens=3050.78) and a significant 60.82% reduction 
of the total consumed or generated tokens (Mean #One-Stage-
Tokens=9359.44|Mean #Two-Stage-Tokens=3666.54) highlighting 
the efficiency improvements3 . 

5.2 Assistant Evaluation (RQ2, RQ3) 
Our analysis of the data collected in the lab experiment is twofold. 
Firstly, we examine the completion of user stories and the qual-
ity of the GUI prototypes created by study participants, as as-
sessed by crowd-workers on Prolific. Afterwards, we report the 
self-assessments of the lab participants, including both qualitative 
and quantitative aspects. In addition, we evaluated the assistant’s 
usage, highlighting which features and functions were used by the 
participants. Figure 8 shows three GUI prototypes created by the 
control and treatment groups for the first, second and third tasks. 

5.2.1 User Story Completion and Prototype Quality. Our results 
for user story completion and overall GUI prototype quality are 
based on data from crowd-workers on Prolific. The results for eval-
uating the completion of the user stories are shown in figure 9. 
The participants in the lab study were tasked with creating three 
app prototypes based on ten user stories each. Participants were 
instructed to start with the first app and move on to the next one 
once the user stories had been completed. As a result, a different 
number of GUI prototypes were created for each of the apps in the 
control group and the treatment group. In the control group, all 20 
participants created a first app, five a second, and two a third. In the 
treatment group, 19 participants created the first app, 11 the second 
one, and five participants the third app. On average, 1.35 apps were 
created in the control group and 1.75 apps in the treatment group. 

3At the time of writing, this reduction in input and output tokens leads to a reduction 
in cost from $0.052 to $0.024 per generated GUI component using the GPT-4o [44] 
flagship model from OpenAI. 

Figure 8: Examples of GUI prototypes created in the lab ses-
sions with the control (orange, top, C1 - C3) and treatment 
(blue, bottom, T1 - T3) configuration of the assistant for all 
three tasks ((1) travel booking app, (2) recipe app and (3) 
translation app). Figure contains Material 3 Design Kit [24] 
components from Google, used under CC BY 4.0. 

To analyze the degree of fulfillment of the user stories, we solely 
investigated apps that participants had worked on. Apps that were 
not started were excluded from the evaluation in Prolific (i.e., we did 
not count user stories for apps that were not started as unfulfilled). 
An app was classified as started when changes were made to the 
schematic app background in Figma and GUI components added 
(simply moving an schematic app background in Figma would not 
count as starting the app). 

For the first app, for six (three significant)4 user stories, the 
treatment group produced GUI prototypes with a higher rating 
for user story completion in contrast to four (two significant) user 
stories in the control configuration that led to higher user story 
completion. For the second app, seven (three significant) user stories 
using the treatment, and three (one significant) user stories with the 
control configuration were measured higher. For the third app, all 

4Participants in the treatment group started with just the schematic app background 
without any components, but could quickly use the recommendation feature to gen-
erate components. To give participants in the control group an idea of how to pick 
and adjust Material Design components, the introduction video demoed the use of an 
app bar demonstrating the creation of the first user story. This component was also 
already drawn to the schematic app background in Figma when participants started. 
Since this component completes the first user story, technically participants in the 
control group did not complete the first user story by themselves. 
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Figure 9: Boxplots showing user story completion as rated by crowd-workers for the three apps (top: first app, middle: second 
app, bottom: third app) to be created by participants in the lab experiment using the control (orange) or treatment configuration 
(blue). For each app ten users stories were to be created (US 1 to US 10). Dotted (new user story) and dashed (extended user 
story) bars represent user stories with an update intervention after 30 minutes. Triangles represent means. One, two and three 
stars represent significant results (<0.05, <0.01, <0.001) for two-sided Wilcoxon rank-sum tests. 

Table 2: Means of crowd-workers’ ratings (Likert scale 1-9) of GUI prototypes for control and treatment configuration, and 
results of Mann-Whitney-U-Tests. Crowd-workers were asked if the GUI design is consistent with the overall user stories, 
whether the visual GUI design is appealing, organization of information is clear, the GUI allows for intuitive interaction, the 
GUI prototype looks like a screen from a complete app, the GUI prototype only has minimal errors, and whether crowd-workers 
were satisfied with the GUI. 

Consistent 
Design 

Appealing 
Design 

Information 
Organization 

Intuitive 
Interaction 

Screen from 
Complete App 

Minimal 
Errors 

Overall 
Satisfied 

Control 4.583 4.454 4.820 4.528 3.465 4.190 3.819 
Treatment 5.046 4.586 5.025 4.761 3.614 4.225 4.254 

p-value 0.0151* 0.5105 0.2600 0.1849 0.5540 0.7485 0.0423* 

ten (seven significant) user stories with the treatment configuration 
were rated as more complete in contrast to the control group. 

For both other aspects that were evaluated by crowd-workers 
for each user story, the following picture emerged: For the selection 
of the right components to fulfill the respective user story, the 
control group was rated higher on average for nine user stories, 
and the GUIs created with the treatment for 21 cases. Regarding 
the selection of correct descriptions (e.g., texts), the results of the 
control group were rated higher for 8 user stories, and the results 
of the treatment group for 22 user stories. 

Not all user stories were available to participants from the start. 
In our intervention, the user stories were updated after 30 minutes 
of processing. Two user stories were made available for the first 
time as new user stories (dotted boxplots in figure 9). For two user 
stories, an update of the previous user stories was displayed that 

expanded the scope of the previous user story (dashed in figure 9). 
In figure 9, stories 4/5 and stories 7/8 represent pairs in the first 
app, in which the second user story represents the update. For app 
two (app three), these are 5/6 (1/2) and 7/8 (6/7). As expected, the 
updated user stories were, on average, rated as less completed in 
contrast to their initial versions, since the update of user stories 
merely extended the first version of the user story. In our discussion 
in section 6.2, we provide insight into examples and discuss cases 
where the control results were assessed as more completed. 

In addition to completing the user stories, crowd-workers also 
independently evaluated whether (1) the GUI design is consistent 
with all user stories for this GUI prototype, (2) whether the visual GUI 
design is appealing, (3) organization of information is clear, (4) the 
GUI prototype allows for intuitive interaction, (5) the GUI prototype 
looks like a screen from a complete app, (6) the GUI prototype has only 
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Figure 10: Results of NASA TLX (raw [26]) for participants in control (orange) and treatment group (blue). Own Performance 
significant at 5% level. Triangles represent means. 

Table 3: Rating means and p-values (Mann-Whitney-U-Tests, one-sided) for seven questions from lab study participants using 
Likert-scales for: satisfaction with final designs, ease of use and navigation of plug-in, confidence in creating professional GUI 
designs, efficiency in design process, future use consideration, impact on design quality, and difficulty in creating GUI prototypes. 

Satisfaction 
Designs 

Ease 
of Use 

Confidence Creating 
Professional GUIs 

Efficiency in 
Design Proc. Future Use 

Impact Design 
Quality 

Difficulty Creating 
GUI Prototypes 

Likert Scale Strongly Disagree (1) - Strongly Agree (9) Def. Not (1) 
Def Yes (5) 

Not at All (1) 
Extremely (5) 

Very Easy (1) 
Very Difficult (5) 

Control 3.00 6.20 4.35 5.35 3.25 2.90 3.75 
Treatment 3.75 6.30 5.65 6.85 3.80 3.50 3.45 

p-values 0.2543 0.4400 0.0277* 0.0573 0.0392* 0.0462* 0.8408 

minimal errors, and (7) whether crowd-workers were satisfied with 
the GUI prototype for each of the created GUIs. Results are shown 
in table 2. For each aspect, means in the treatment configuration 
were considerably higher, but only consistent GUI design and overall 
satisfaction are statistically significant. 

5.2.2 Participants Perceptions. We asked our participants quali-
tatively and quantitatively how they rated using the plug-in in 
the control and treatment groups. Table 3 shows the results for 
seven Likert scale items. The control group achieved a lower mean 
value for each aspect, except for difficulty creating GUI prototypes, 
where a higher value is associated with greater perceived difficulties. 
Particularly noteworthy are the significantly better results of the 
treatment group for the questions: confidence creating professional 
GUI prototypes, consideration for future use, and the impact on design 
quality. 

We also measured the task load via the NASA TLX (raw) ques-
tionnaire. Figure 10 shows the values for the task load. On average, 
the treatment configuration was rated lower for Mental Demand, 
Physical Demand, Temporal Demand, Necessary Effort, and Frus-
tration Level. The value for Own Performance proved to be signifi-
cantly higher for the treatment configuration. The measured System 
Usability Scale (SUS) [9] and Creativity Support Index (CSI) [12] 
showed no significant difference, however, for both scales the treat-
ment configuration rated higher than the control configuration. For 
SUS means were 52.13 for the control and 55.50 for the treatment 
configuration, reflecting a steep learning curve of participants using 
Figma and GUI component libraries in Figma. For CSI, means were 
47.63 and 56.13, respectively. 

5.3 User Stories Generation (RQ4) 
To investigate the effectiveness of our LLM-based approach to cre-
ate user stories from GUIs, we created 212 user stories from 23 Rico 
[16] GUI prototypes directly in Figma with our assistant (an aver-
age of 9.22 per GUI prototype). Both were rated by our experts on 
Likert scales (1: Strongly Disagree, 3: Disagree, 5: Neutral, 7: Agree, 
9: Strongly Agree). Participants rated the user story while being 
shown the GUI prototype for (1) the user story being found in the 
GUI prototype, as well as (2) clarity and precision, (3) specificity, 
and (4) professionalism. Figure 11 shows violin plots for each as-
sessed aspect for all user stories. Means (medians) for each the four 
questions were 6.70 (7), 6.63 (7), 6.53 (7), and 6.02 (6). However, 
while the total average and median values were high (medians of 
"Agree" for the first three questions in the Likert scales), there was 
considerable variance of the ratings for the user stories derived 
from individual GUIs, we therefore included user story ratings for 
four particularly selected GUIs in figure 11. 

6 Discussion 
Using our prototyping assistant in the treatment configuration, par-
ticipants created GUI components rated by crowd-workers as, on 
average, completing the user stories to a higher degree. Neverthe-
less, some user stories were rated as better completed in the control 
configuration. Subsequently, we discuss some of the results and 
put them into context. In addition, we discuss selected recommen-
dations for the design of automated LLM-based support systems 
for GUI prototyping and how future researchers and practitioners 
might leverage the results and findings from this work. 
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Figure 11: Top: Crowd-worker ratings of generated user sto-
ries from GUI prototypes accurately describing functions 
of the GUI, user stories being precise, for a identifiable fea-
tures, and formulated as in projects from practice. Y-Axis 
presents Likert scale items (1-9). Triangles represent means, 
lines medians. Bottom: Crowd-worker ratings of generated 
user stories from GUI prototypes for the fourth question, for 
four chosen GUI prototypes (A-D) and user story parings. 

6.1 Effectiveness of Generating GUI Prototype 
Components (𝑅𝑄1) 

In our first study, we evaluated the ability of our LLM-based ap-
proach to generate GUI prototype components, which received high 
ratings from crowd-workers on functional requirements fulfillment, 
user story fulfillment, and component correctness (three times me-
dian of eight, one median of seven on a nine-point Likert scale). 
These results indicate that our approach successfully produced com-
ponents that effectively fulfill functional requirements and align 
with user stories. This supports the thesis that LLM-based methods 
can assist early-stage prototyping by generating functional and 
relevant elements with minimal manual intervention. However, 
slightly lower ratings for textual clarity suggest room for improve-
ment in how text is generated for GUI components. We propose 
two potential avenues for refinement: (i) technical improvements, 
such as domain-specific few-shot prompting or fine-tuning, and 
(ii) procedural improvements, such as integrating human feedback 
loops into the creation process. The presented efficiency gains from 
the two-stage approach hint at feasibility in large-scale design 
workflows where cost and computation are bottlenecks. 

6.2 Impact of the LLM-Based Assistant on Proto-
type Quality and User Experience (𝑅𝑄2, 𝑅𝑄3) 

Our investigation into how our LLM-based assistant affects the 
quality of GUI prototypes, user story completion, and perceived 
user experience showed that experts rated GUI prototypes created 
with the LLM-based assistant as having a higher quality, especially 
in selecting the right components and utilizing correct descriptions. 
User stories were also rated as completed to a higher degree for 

prototypes created with the LLM-based assistant (23 cases for the 
treatment versus seven cases for the control group). These results 
suggest that the assistant effectively supports task completion and 
improves the overall GUI prototype quality. As expected, partici-
pants who used the LLM-based assistant started or completed more 
app screens as part of the study tasks. The automatic generation of 
GUI components likely contributed to this efficiency benefit and 
enabled faster task progression. Participants also reported a higher 
perceived user experience when using the LLM-based assistant, 
such as significantly higher ratings for future use, perceived impact 
on design quality, and confidence in creating professional GUIs. 
While NASA TLX scores for mental and temporal demands, effort, 
and frustration were lower for the treatment group, these differ-
ences were not significant. However, both groups experienced high 
mental and temporal demands potentially due to the extent of the 
tasks (e.g., creating three GUIs, each with ten user stories). This 
intentional aspect of the study design was fine-tuned in pre-tests 
to ensure that the treatment group supported by LLM-based GUI 
component generation would not run out of tasks. 

When analyzing the cases in which crowd-workers rated GUI 
prototypes created in the control group as completing the user 
story to a higher degree in comparison to the treatment group, 
the presence of a text label often played a crucial role. Figure 12 
illustrates such an example where a button with a text label ("save for 
later") was created for the user story by a participant in the control 
group (left). At the same time, an icon button with a bookmark icon 
was used in the treatment group (right). Almost all GUI prototypes 
in the treatment group featured a bookmark icon for this user story, 
and our tests have shown that our LLM-based approach generates 
bookmark icon buttons almost consistently for this user story. 

This motivates two discussion points. Firstly, to what extent 
were crowd-workers influenced by explicit textual mentions in the 
components, especially when comparing them with aesthetically 
styled components such as the illustrated icon button? Secondly, 
how the temperature setting in our LLM-based approach led to the 
generation of similar recommendations when the solution space 
was somewhat limited, particularly when participants clicked "Gen-
erate Another Recommendation". We recommend balancing the gen-
eration of more diverse additional recommendations for further 
studies. Potential solutions include: evaluating adjusting the tem-
perature setting in iterative component generation, enabling the 
approach to generate multiple implementations of the same user 
story while instructing it to produce distinct variants, or allowing 
participants to provide further LLM instructions in addition to the 
user story. Future users could, for example, restrict the next ver-
sion of the same component generation by specifying instructions 
such as "include a label in the next generation". While participants 
expressed great appreciation for the automated component genera-
tion, e.g., P12: "Straightforward to use and it gave good advice most 
of the time, excellent starting point for most stories", P19: "Really good 
recommendations.", P10: "So much work was reduced", there were 
improvements mentioned in regard to the discussed variations of 
recommendations. Participants, such as P7: "[I] would have liked 
to have had an option to adjust the task that is sent to the AI", fre-
quently requested more variation in the recommendations. In fact, 
this suggestions was among the most mentioned improvements by 
participants - second only to reducing component generation time. 
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Figure 12: Example of an instance where a user story (second 
app, the third user story) was rated more complete in the 
control group. The control group tended to use buttons with 
a clear call to action (e.g. “save for later” ), whereas in the 
treatment group our approach mostly created bookmark icon 
buttons representing a concise but more implicit implemen-
tation of the user story. Figure contains Material 3 Design Kit 
[24] components from Google, used under CC BY 4.0. 

6.3 Effectiveness of Generating User Stories 
from GUI Components (𝑅𝑄4) 

In the third study, we investigated the effectiveness of our approach 
for automatically deriving user stories from GUI prototypes. Crowd-
workers rated the user stories created by the approach high on rele-
vance, clarity, precision, and specificity (all with a median of seven 
on a nine-point Likert scale), indicating that the generated stories 
align well with the functionality and purpose of the GUIs. However, 
ratings for professionalism (six-point median) were slightly lower, 
raising questions about, e.g., the tone and depth of the generated 
user stories. While overall median ratings across user stories and 
GUIs were high, it is worth looking at the ratings of user stories 
derived from individual GUIs. In the results in figure 11, we have 
intentionally shown ratings of user stories that emerged from four 
individual GUI prototypes. Here, the presented GUIs resulted in 
variations in the ratings, showing that the quality of the user stories 
created varies depending on the underlying GUI. This variability 
may stem from differences in GUI complexity, ambiguity, or the 
LLMs’ ability to generate user stories for specific tasks, which were 
more likely to be included in its training data. Despite these limita-
tions, the findings underscore the potential of LLM-based tools to 
support early-stage documentation and design workflows. Integrat-
ing such tools into iterative design processes could reduce manual 
effort, enabling teams to focus on higher-level design challenges. 

6.4 Generating GUI Prototypes from User 
Stories or Vice-Versa? 

Our results show that our LLM-based approach enables the effec-
tive creation of GUI prototypes (components), mainly desired by 
UX designers and partly by product owners, and effectively derives 
user stories from GUI prototypes, which product owners mainly 
desired in our interviews. Readers may wonder that it is certainly 
not possible to do both simultaneously and might sense a certain 
chicken-and-egg problem. Based on our interviews, we identified 
two options for integrating both features. We see our assistant (in 
the treatment configuration) as a mediator for both roles through 
the two described features. While product owners define user sto-
ries, the GUI prototyping assistant could generate GUI components 
in parallel. Vice versa, the UX designer could create design drafts 
from which the assistant derives user stories for the product man-
ager. In addition, GUI prototypes are often created in an iterative 
process, so it is conceivable that product owners formulate an ini-
tial user story, and the assistant creates a design proposal, which 
UX designers subsequently refine. The created refinement is then 
used to generate more precise user stories. Therefore, we regard 
the features of automatic GUI (component) creation and user story 
creation as one of the leading collaboration features. 

6.5 LLM-Based GUI Prototyping for Future 
Research and Practice 

Our study provides insights that can inform both researchers and 
practitioners. Next, we discuss three aspects in which our findings 
can contribute to future research and design practices. 

First, our qualitative interviews revealed important design ra-
tionales for AI-based GUI prototyping. While prior research has 
explored AI integration in UX workflows [30], our findings high-
light additional requirements emerging from cross-functional col-
laboration between UX designers, product owners, and software 
developers. Notably, we did not expect the sixth design rationale — 
the need for product owners to automatically derive user stories 
from GUIs. This underscores the necessity for AI-based prototyping 
tools to accommodate diverse stakeholder needs when multiple 
roles interact in the prototyping process (see section 6.4). 

Second, our study provides insights into the use of AI-based 
prototyping tools under controlled laboratory conditions. Findings 
indicate that participants effectively understood the iterative ap-
proach of generating individual GUI components from granular 
user stories (in contrast to, e.g., creating a full GUI from a single text 
description). This structured method allowed them to incrementally 
build more coherent and higher-quality GUI prototypes compared 
to a group without AI-based prototyping support. Additionally, 
our study revealed unexpected requirements, such as the need for 
future generative prototyping tools to offer greater variation in 
generated GUI components (see section 6.1). 

Lastly, a recurring challenge across disciplines is to structure 
abstract problems as textual representations that enable LLMs to 
process them effectively. In our case, this involved deriving user 
stories for GUIs in prototyping tools like Figma at the component 
level or, conversely, recognizing fulfilled user stories and gener-
ating corresponding components. Our work contributes to future 
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research by providing a structured approach to bridging user sto-
ries and GUI prototyping through LLMs. We demonstrate textual 
representations to support requirement recognition and component 
generation, addressing gaps in the fragmented tool landscape of 
GUI development. Our findings enabling further exploration of how 
LLM-based GUI prototyping support can be integrated into soft-
ware development workflows. Our work not only provides insights 
into structuring textual representations based on the example of Ma-
terial Design (see figure 5), but also offers insights into optimizing 
these representations to reduce token usage. 

7 Threats to Validity 
In the following, we provide a collection of threats to internal 
validity, such as selection biases, and external validity, such as 
threats to generalizability. Furthermore, we briefly explain how 
they may influence the results of our paper. 

7.1 Internal Validity 
Measuring Treatment Completeness. We evaluated several aspects 
such as the detection, matching, and component generation mech-
anisms as well as the overall design of the proposed plug-in within 
an user study. Therefore, the contribution of each of these aspects 
for the quality of the created GUI prototypes is not entirely clear. 
To address this issue, we initially conducted the evaluation of LLM-
based generation of GUI components based on user stories ex ante 
and showed its effectiveness, indicating that a large contribution for 
the improvement of the quality of the GUI prototypes and the im-
provements in terms of efficiency are mainly due to the automatic 
GUI component generation. 

7.2 External Validity 
Artificial Lab Setting. The user study was conducted in an artificial 
lab setting including a less representative population of participants 
as a proxy for UX designers regarding the group (i.e. undergradu-
ate and graduate students) as well as the young age distribution 
(25.4 years on average). However, we primarily utilized this con-
ducted user study to evaluate various usability aspects associated 
with the proposed approach. To address the cross-functional nature 
of GUI prototyping, we conducted interviews with stakeholders 
from different roles (UX, PD, SD) to ensure that the assistant’s 
design rationals reflect the perspectives of diverse stakeholders. 
To strengthen the evaluation of the quality of generated user sto-
ries and generated GUI components, we conducted an additional 
annotation of the generated artifacts with self-reported UI/UX pro-
fessionals on Prolific [48]. The obtained results show the generation 
effectiveness. Nonetheless, we did not the evaluate the assistant in 
a co-design situation involving multiple stakeholders at the same 
time, which represents an important direction for future work to 
explore its potential in collaborative prototyping contexts. 
Artificial Functional User Stories. To evaluate our proposed approach, 
we heavily relied on the publicly available user story dataset from 
Kolthoff et al. [35], which is the only dataset available combining 
user stories with GUI prototypes. These user stories solely focus 
on functional aspects of a single GUI prototype. In more natural 
settings, user stories often span across several GUI prototypes as 
well as encompass non-functional aspects. However, in our work 

we decided to initially focus on functional user stories for reducing 
complexity, yet still provide valuable support and facilitate the 
creation of GUI prototypes. In addition, the employed US dataset is 
validated and filtered for quality [35]. 
High-Level GUI Descriptions for Component Generation. To provide 
additional context for the generation of GUI components as part of 
its evaluation, we employed additional high-level GUI descriptions 
as an input to the ZS prompt for the LLM. Moreover, in the user 
study, the context of the current GUI prototype status could mean-
ingfully be utilized by the LLM, for example, to adapt the generated 
GUI components to the GUI prototype and to predict accurate posi-
tioning of the GUI components. While these brief GUI descriptions 
can easily be obtained in practical GUI prototyping settings, in the 
conducted evaluation they were created by a research assistant and 
evaluated for accuracy by the paper authors. 
Participants Interview. There is a potential sample bias in recruit-
ing UX professionals, product owners and software developers for 
the initial interviews which possess limited diversity in terms of 
company size, geographic location and experience. However, we 
included multiple distinct participants for each of the roles. 

8 Limitations And Future Work 
Mobile GUIs and Limited Component Library. Since our approaches 
focuses solely on mobile GUIs, other GUI types with varying charac-
teristics (e.g., screen size, domains etc.) are disregarded. In addition, 
we heavily relied on mobile GUIs taken from the Rico dataset [17], 
which has a restricted scope and usefulness. However, the Rico 
dataset is the largest publicly available GUI dataset and encom-
passes GUIs from over 27 different domains. In the future, we plan 
to extend our approach to more diverse GUI types. In addition, 
the considered GUI component library is restricted in size and 
configuration complexity. To enable a meaningful support, we al-
ready included over 89 different MD GUI components and 100 icons, 
however, we plan to further expand both libraries to additionally 
enhance the support capabilities. 
Static GUI Prototypes. In this work, we proposed a support approach 
for creating single static GUI prototypes and the resulting format 
does not allow for interaction. Usually, the interactions considered 
in practice span over multiple GUIs and maintaining consistency 
across screens within an application is of high importance. In order 
to improve the usefulness and application scenarios of the proposed 
approach, we plan to further extend our LLM-based approaches and 
plug-in to additionally enable the support of user stories spanning 
across several GUI prototype screens. 
Functional User Stories. Since the current approach solely provides 
support for functional user stories, the application scenarios are 
limited. However, particularly for creating initial GUI prototypes 
for rapidly obtaining customer feedback regarding the functional-
ity, our approach can be applied. In such an initial requirements 
elicitation scenario where the GUI prototypes act as a functional 
requirements communication artifact, the detailed design aspects 
are of less significant role. For future work, we plan to extend the 
support to also non-functional user stories, for example, includ-
ing styling aspects such as coloring and corporate design, among 
others. However, styling aspects of GUI components could also be 
integrated by replacing the component library within our approach. 
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Therefore, the assistant could be extended to enable providing 
textual prompts for stylistic or design requirements. To increase 
flexibility, another extension could be that the assistant provides 
multiple variants of the generated component. 
Handover, Versioning and Commenting. One additional limitation is 
that we could only thoroughly implement selected collaboration 
requirements for the version of the assistant in this paper. In the 
interviews, both UX designers and product owners described the 
versioning of user stories, commenting on user stories combined 
with their components in the GUI prototype, and an improved 
handover (e.g., of parameters to software developers) compared 
to the existing functionalities in Figma as further requirements. 
Versioning was addressed in our intervention, but the implemen-
tation of our approach in its current form is limited to creating 
new components and cannot adapt existing components. We plan 
to address this in the future. Commenting functionality was not 
implemented, but as Figma already supports commenting compo-
nents, it is feasible to link user stories to components and leverage 
Figma’s commenting feature. Finally, the extraction and handover 
of data to developers were not included, but tools like Figma and 
Relay [23] already provide solutions for this. 

9 Conclusion 
In this paper, we provide insights into challenges from practice and 
provide design rationales for an effective LLM-based GUI prototyp-
ing assistant tailored for UX designers working within software 
development teams. We extend and further evaluate the LLM-based 
approach of Kolthoff et al. [35], enabling user story detection, user 
story matching, and GUI (component) generation for GUI prototyp-
ing. Building on this work, we show that the LLM-based approach 
can successfully generate GUI component recommendations from 
user stories. Furthermore, we evaluate and optimize the textual 
representation of the GUI prototypes from Figma and component 
library for the LLM, reducing the necessary amount of tokens and 
making our enhanced approach feasible for contexts with limited 
available resources. We present a novel LLM-based assistant as a 
plug-in for Figma with role-specific functionalities. Particularly, we 
found that participants using our assistant completed the given user 
stories to a higher degree. Using the treatment, our assistant also 
led to significantly higher satisfaction of experts with the created 
GUI prototype designs. Furthermore, using the user story detec-
tion, matching, and automated GUI (component) generation, our 
participants reported lower task load values, significantly higher 
confidence in creating professionally appearing GUI prototypes, 
high interest in future use of the assistant, and a higher impact on 
design quality. Inspired by real-world requirements from product 
owners collected in our interviews, we successfully expanded the 
approach to derive user stories directly from GUI prototypes that 
can then be directly refined by product owners. In our evaluation, 
large parts of the user stories were rated as specific, explicit, and 
derived from identifiable GUI components. 

Our results show that LLM-based user story detection, matching, 
and the automated GUI (component) generation can be integrated 
directly into Figma providing a resource-efficiently prototyping 
assistant to increase user story completion and facilitating the 
integration of user stories and GUI prototypes. 
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