
Closing the Loop between User Stories and GUI Prototypes: An
LLM-Based Assistant for Cross-Functional Integration in Software

Development
Felix Kretzer∗

Karlsruhe Institute of Technology
(KIT)

Karlsruhe, Germany
felix.kretzer@kit.edu

Kristian Kolthoff∗

Institute for Software and Systems
Engineering

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

kristian.kolthoff@tu-clausthal.de

Christian Bartelt
Institute for Software and Systems

Engineering
Clausthal University of Technology

Clausthal-Zellerfeld, Germany
christian.bartelt@tu-clausthal.de

Simone Paolo Ponzetto
Data and Web Science Group
University of Mannheim
Mannheim, Germany

ponzetto@uni-mannheim.de

Alexander Maedche
human-centered systems lab (h-lab)
Karlsruhe Institute of Technology

(KIT)
Karlsruhe, Germany

alexander.maedche@kit.edu

Figure 1: GUI prototype (1) and three views (2-4) of our assistant for GUI prototype designers integrated as a plug-in into a
prototyping tool. Our assistant displays user stories (2) imported from collaboration tools (e.g., JIRA) for prototype designers to
reference while working. It detects whether a user story is implemented (3, 4), identifies relevant GUI components (3), and
generates GUI components for user stories (4). Figure uses Google Material 3 Design Kit [24] components under CC BY 4.0.

Abstract
Graphical user interfaces (GUIs) are at the heart of almost every
software we encounter. GUIs are often created through a collabora-
tive effort involving UX designers, product owners, and software
developers, constantly facing changing requirements. Historically,
problems in GUI development include a fragmented, poorly inte-
grated tool landscape and high synchronization efforts between

∗Both authors contributed equally to the paper.

This work is licensed under a Creative Commons Attribution 4.0 International License
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713932

.

stakeholders. Recent approaches suggest using large language mod-
els (LLMs) to recognize requirements fulfillment in GUIs and auto-
matically propose new GUI components. Based on ten interviews
with practitioners, this paper proposes an LLM-based assistant
as a Figma plug-in that bridges the gap between user stories and
GUI prototyping. We evaluated the prototype with 40 users and
40 crowd-workers, showing that the effectiveness of GUI creation
is improved by using LLMs to detect requirements’ completion
and generate new GUI components. We derive design rationales
to support cross-functional integration in software development,
ensuring that our plug-in integrates well into established processes.

CCS Concepts
• Software and its engineering → Software usability; Require-
ments analysis; Consistency; • Human-centered computing →
User interface toolkits; Laboratory experiments.

https://orcid.org/0000-0001-8115-7592
https://orcid.org/0000-0003-4982-488X
https://orcid.org/0000-0003-0426-6714
https://orcid.org/0000-0001-7484-2049
https://orcid.org/0000-0001-6546-4816
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3713932
mailto:alexander.maedche@kit.edu
https://ponzetto@uni-mannheim.de
https://christian.bartelt@tu-clausthal.de
https://kristian.kolthoff@tu-clausthal.de
mailto:felix.kretzer@kit.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706598.3713932&domain=pdf&date_stamp=2025-04-25

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Kretzer, F.; Kolthoff, K.; Bartelt, C.; Ponzetto, S. P.; Maedche, A.

Keywords
GUI Prototypes; User Stories; Requirements; Assistance

ACM Reference Format:
Felix Kretzer, Kristian Kolthoff, Christian Bartelt, Simone Paolo Ponzetto,
and Alexander Maedche. 2025. Closing the Loop between User Stories and
GUI Prototypes: An LLM-Based Assistant for Cross-Functional Integration
in Software Development. In CHI Conference on Human Factors in Computing
Systems (CHI ’25), April 26–May 01, 2025, Yokohama, Japan. ACM, New York,
NY, USA, 19 pages. https://doi.org/10.1145/3706598.3713932

1 Introduction
Graphical user interfaces (GUIs) are ubiquitous and are at the heart
of today’s software. At their best, they allow us to interact effec-
tively with the multitude of software applications. Both in practice
and in research, there has been an extensive exploration of meth-
ods and approaches that facilitate creating better software with
even more effective GUIs. An important technique is the creation
of GUI prototypes, which are subsequently employed as a point
of reflection, for example, during the elicitation and refinement of
requirements with stakeholders [3, 40, 46]. Many aspects of pro-
totyping have been investigated, including low- to high-fidelity
prototypes [53, 57], throw-away or evolutionary prototypes [3], or
agile vs. more traditional methods [7, 36]. While the rapid creation
of GUI prototypes for communicating requirements provides many
benefits, it simultaneously carries challenges. Typically, the creation
of GUI prototypes necessitates the collaboration of UX designers,
requirements analysts (e.g., product owners), and software devel-
opers. In practice, software development teams often encounter
different tools that are only partially integrated [47]. Although ef-
forts are being made to integrate workflows (e.g., Figma’s developer
mode [21]), core processes are still entirely separate. Furthermore,
the requirements are subject to continuous adaption and extension
during the development [15]. Changing requirements leading to ex-
tensive communication effort has been described in literature, and
was one of the most frequently mentioned topics during interviews
conducted as part of this study. Due to the sustained modification
of requirements, not only synchronization efforts between the roles
in the development teams are additionally increased, but also the
effort to continuously update the respective GUI prototypes.

In practice, UX designers create prototypes based on require-
ments provided in various forms. For example, requirements are
sometimes only verbally discussed and quickly turned into pa-
per prototypes. However, a prominent approach is to explicitly
articulate requirements, e.g., as user stories [14]. Requirements are
sometimes formalized after building initial GUI prototypes, causing
ambiguity in early prototyping. Software developers typically work
with GUI prototypes and formalized requirements, where changes
during the technical implementation can create a synchronization
effort for both the formalized requirements and GUI prototypes. We
found that updating requirements in prototypes can be overlooked,
making the implemented version the de facto latest version.

Prior research proposed several approaches to adapt or improve
the GUI prototyping process. For instance, GUI prototyping assis-
tants such as GUIComp [37] retrieve similar GUI screens to stimulate
design inspirations and provide complexity metrics to enhance pro-
totypes. Moreover, a plethora of approaches for GUI retrieval has

been proposed before, utilizing various input formats such as nat-
ural language [5, 33, 34], sketches [27], or screenshots [38]. More
recently, research proposed GUI generation approaches, for exam-
ple, based on training or fine-tuning an LLM [8, 20]. However, these
approaches lack the capability of integrating user requirements and
the respective GUI prototype and cannot directly generate GUI com-
ponent implementations based on user stories for fine-grained GUI
prototyping support. Meanwhile, UX professionals have shown to
be open for AI-based support systems and see merit in their poten-
tial for addressing practical challenges [30]. Yet, relying solely on
chat-based LLMs to create GUI prototypes from user stories raises
several issues, such as how to provide the current prototype state
to the LLM, and limitations of static prompt-response interactions -
most notably - integrating recommendations into prototyping tools.
Additionally, current GUI prototyping often requires designers to
repeatedly customize the same GUI components, adding signifi-
cant effort to the prototyping process. New requirements further
demand manual adaptations to align with evolving user stories,
adding to the workload. Meanwhile, untrained designers struggle
to start from scratch and create effective prototypes [37].

While a first approach proposed the utilization of LLMs for inte-
grating requirements and GUI prototypes via detection of user story
implementation, matching of GUI components and generating GUI
components from user stories [35], these approaches have not yet
been implemented in a system, nor systematically evaluated with
actual users. To address this research gap, we follow the research
question of how to design an assistant to increase the effectiveness of
GUI prototyping under consideration of cross-functional integration
in software development? Our overall contribution is twofold, (i)
supporting UX designers during their GUI prototyping efforts, and,
(ii) enhancing cross-functional integration in software development
teams, focusing on the roles of UX designers, product owners, and
software developers. In detail we contribute by:

• Providing insights into GUI prototyping challenges from prac-
tice and providing design rationales for an effective LLM-based
assistant tailored at UX designers working within software de-
velopment teams.

• Presenting a novel plug-in for Figma with role-specific function-
alities. The interface for UX designers integrates an approach
within a prototyping environment (e.g., Figma) that utilizes a
state-of-the-art LLM to (i) assess whether a requirement is com-
pleted, (ii) identifies GUI components completing the require-
ment, and (iii) generates recommendations for UI components,
fulfilling a given requirement.

• An empirical evaluation of the functionalities of our proposed
GUI prototyping assistant for UX designers and the resulting
prototype quality and user story completion.

• A novel approach and technical evaluation to derive additional
requirements from GUI design prototypes tailored at product
owners working in software development teams.

Our findings demonstrate that GUI prototypes created with our
LLM-based approach achieve higher quality, particularly in select-
ing appropriate components, using correct labels and completing
given requirements in contrast to manually created GUI prototypes.
Additionally, user stories automatically derived from existing GUIs
with our approach were rated high for accuracy and specificity.

https://doi.org/10.1145/3706598.3713932

An LLM-Based Assistant for Cross-Functional Integration in Software Development CHI ’25, April 26–May 01, 2025, Yokohama, Japan

2 Related Work
In the following we present insights into relevant prior research in
the fields of (automated) analysis assistants for GUI prototyping,
automated GUI generation, and GUI retrieval approaches (e.g., to
efficiently draw design inspirations).

2.1 GUI Prototyping Assistants
To support the GUI prototyping process, different approaches have
been proposed in research. For example, DesignScope [42, 45] facili-
tates the design process by actively recommending layout refine-
ments and design suggestions. Moreover, SketchPlorer [54] repre-
sents a sketching approach that integrates an ad-hoc layout opti-
mizer to rapidly provide layout improvement suggestions to users.
In addition, GUIComp [37] provides assistance for novices during
GUI prototyping through a multi-faceted support system including
the retrieval of similar GUIs from the Rico dataset [17]. GUIComp
offers a visualization of several GUI complexity metrics such as
GUI component alignment, balance and density, and an attention
map for the created GUI prototype. In contrast, our approach tar-
gets rapid generation of GUI prototypes (components) based on
fine-grained user stories that can instantly be integrated into the
current working GUI prototype. We close this loop and provide a
tight integration of user requirements (in the form of user stories)
and resulting GUI prototypes. To ensure consistency between user
requirements and GUI prototypes, an ontology-based approach was
proposed before [51]. However, this approach necessitates the avail-
ability of a respective ontology for the domain and enables mere
validation of the requirements, thus, cannot actively support during
the creation of the GUI prototype. More recently, an approach for
interlinking user stories and GUI prototyping has been proposed
[35] introducing the LLM-based detection of user stories in GUI
prototypes and the matching to the corresponding GUI components
within the prototype. With our research, we extend and build on
this work by proposing an LLM-based approach for rapidly gener-
ating the implementations for user stories in an editable form as
well as an integration of the LLM-based assistant in the form of a
fully-fledged plug-in in Figma.

2.2 Automated GUI Generation
Prior research on automatically generating GUI prototypes fol-
lowed different approaches. For example, GUIGAN [59] generates
new GUI images based on combining existing GUI screenshot ex-
cerpts automatically extracted from the Rico dataset [17] by em-
ploying a generative adversial network [22]. Moreover, the two
similar approaches LayoutTransformer [25] and Variational Trans-
former Networks [1] mainly generate low-fidelity GUI layouts from
much simpler compositional elementary graphical units such as
differently sized rectangles by employing a self-attention approach.
Another similar approach regarding the generated low-fidelity GUI
layout artifacts utilizing a transformer encode-decoder model was
proposed before [28]. More recently, research focused on generating
low-fidelity GUI prototypes from natural language requirements
with LLMs. For example, MAxPrototyper [58] requires a predefined
layout and a short textual description of the GUI in order to generate
a low-fidelity GUI prototype in the form of a novel domain-specific
language (DSL) utilizing a combination of retrieved GUIs from Rico

and a zero-shot prompting approach for the LLM. However, their
approach is mostly focused on creating content (i.e., images and
text) fitting the short text description. Furthermore, the Instigator
approach [8] enables the creation of low-fidelity GUI prototypes
from brief text descriptions by training a minGPT [29] model via uti-
lizing a large-scale dataset of web sites (transformed to low-fidelity
variants) automatically scraped from the web. Another related ap-
proach instead focuses on fine-tuning a pre-trained LLM using the
large-scale Rico GUI dataset [17] based on a custom DSL for the gen-
eration of low-fidelity GUI prototypes and propose post-processing
of the generated artifacts to improve their quality [20]. Moreover,
instead of creating GUI prototypes in the form of a custom DSL,
the UIDiffuser approach [55] directly generates GUI images utiliz-
ing stable diffusion [52]. While the resulting GUI images might be
useful to rapidly obtain initial and coarse design inspirations, they
lack clarity and usually functioning GUI components cannot be
identified, only coarse layouts. Therefore, existing work focuses
mainly on generating low-fidelity GUI prototypes, neglecting the
more complex structure and characteristics of high-fidelity GUI
prototypes and components included in our work. Additionally,
related work usually produces proprietary output formats that re-
quire training or fine-tuning of the LLM and that are hard to reuse
or integrate into traditional workflows (e.g., such as in Figma). In
contrast, our approach generates a highly detailed Material Design
specification that enables the instantiation of directly editable com-
ponents within the visual Figma editor. This specification extends
beyond selecting individual components (e.g., buttons, check-boxes)
to include detailed parameters such as size, positioning, margins,
elevation levels (e.g., flat, or raised), states (e.g., hover or pressed),
labels, icons, or shapes, while we adhered to design system stan-
dards for typography, as well as primary and secondary colors. In
addition, our proposed approach also is novel in terms of the spe-
cific technique used to generate the components. In particular, we
employ a zero-shot LLM which requires no training or fine-tuning
and simultaneously reduce the required amount of context tokens
drastically through a RAG-based two-stage generation approach.

2.3 GUI Retrieval
Many approaches have been proposed for NL-based GUI retrieval.
For example, Guigle [5] proposed the first GUI search approach
based on extracted screenshots from automatically collected An-
droid apps. Their approach facilitates the rapid retrieval of GUI
screenshots from brief text descriptions, utilizing multiple fractions
from the GUI hierarchy within Lucene [6], which employs clas-
sic TF-IDF and BM25 [50] retrieval. Another approach proposed
employing pooled BERT embeddings for text-only retrieval and
additionally introduced a multi-model embedding space for text-
based GUI retrieval [28]. More recently, GUI2WiRe [32, 33] and
RaWi [34] introduced novel BERT-based Learning-to-Rank (LTR)
models for enhancing NL-based GUI retrieval. While these retrieval
approaches facilitate rapidly obtaining relevant GUI prototypes
based on textual requirements, retrieval systems inherently are
not able to create individualized GUI prototypes or components.
Most often, these retrieval approaches additionally merely produce
GUI prototype artifacts in non-editable formats such as images,
impairing their reusability in the GUI prototyping process. Besides

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Kretzer, F.; Kolthoff, K.; Bartelt, C.; Ponzetto, S. P.; Maedche, A.

NL-based GUI retrieval methods, research proposed several GUI
retrieval approaches utilizing other input formats such as hand-
drawn sketches [27, 41], wireframes [11], GUI screenshots [38], or
entire apps [4]. In comparison to our approach, these methods lack
the ability to create fine-grained implementations for user stories
and retrieve GUIs solely from a fixed repository and additionally
the retrieved GUI artifacts are non-editable, reducing the usability
within the prototyping process. Gallery DC [13] harnesses a large-
scale GUI design repository crawled from real-world applications
and extracts GUI components in order to provide multi-faceted
GUI component search capabilities. While this approach similarly
supports to rapidly obtain relevant GUI components by inputting
text, our LLM-based method enables the processing of entire user
stories to generate relevant and editable GUI components.

3 System Design
To solve challenges from practice through an effective support
system tailored at UX designers working within software devel-
opment teams, we conducted formative interviews for which we
interviewed ten professionals. Five participants (two female, three
male, with an average age of 30.00 years, 𝜎 = 2.74) were professional
UX designers, constantly utilizing dedicated prototyping tools (such
as Figma). The UX designer group had an average experience in
creating GUI prototypes of 5.70 years (𝜎 = 1.64), 4.50 years (𝜎 = 2.12)
of evaluation of GUI prototypes, and high (four interviewees) to
very high (one interviewee) self-reported knowledge in GUI proto-
typing. Three of our participants were professional product owners,
two of whom were female and one male, with an average age of
31.33 years (𝜎 = 2.89). They had 3.50 (𝜎 = 1.73) years of experience
in creating and 2.50 years (𝜎 = 1.73) of experience evaluating GUI
prototypes, showcasing their expertise in this area. Additionally,
we interviewed two professional software developers (one female
and one male, with an average age of 35 years, 𝜎 = 10.61). Both,
on average, had 12 years (𝜎 = 10.61) of experience in software and
10.50 years (𝜎 = 8.49) working with GUI prototypes. We did not
ask participants about their prior experience with LLMs or Genera-
tive AI beforehand, to avoid biasing their responses (ensuring they
approached the problem space in the first half of the interviews
without already thinking about AI). However, during later stages of
the interviews most participants expressed experience with tools
like ChatGPT, and a few had tried image generators. We chose pro-
fessional UX designers, product owners, and software developers
as our interviewees since these three roles usually collaborate ex-
tensively using GUI prototypes. Our objective was to ensure that a
solution tailored to UX designers would not create challenges in
collaboration with other roles and ideally offer advantages for all
roles involved.

We conducted semi-structured individual interviews. After agree-
ing to participate in the study and stating demographic data, the
participants were asked to describe their experience with GUI pro-
totyping. The participants were asked multiple questions to explore
the problem and solution space. For the second half of the inter-
views, UX designers and product owners were shown our initial
system design as described in section 3.2. The participants first
explored and described the initial design independently before re-
ceiving an introduction to the various functions. The interviewees

then reflected on the functions, visualizations, information archi-
tecture, and general usability. Interviews with UX designers and
product owners lasted 45 minutes on average. Interviews with
software developers lasted 30 minutes and did not include a demon-
stration of the initial system design. Interviews with UX designers
and product owners were transcribed and coded independently by
a research assistant and a paper author. After coding, ambiguities
were discussed, and disagreements were resolved.

3.1 Design Rationales
Subsequently, we present the fundamental design rationales derived
from the interviews that motivated the design of our assistant. For
each design rationale, the roles of interviewees mentioning these
rationales are stated.
(1) Integration of user stories into GUI prototyping tools from practice,

such as Figma [21] (UX, PO, SD). The assistant should be able to
integrate new and changed user stories into GUI prototyping
tools from practice (e.g., from JIRA [2]) and thereby minimize
tool switches in work processes.

(2) The user should retain control over the decisions of the assistant
(UX, PO). As long as the LLM-supported assistant can produce
imperfect solutions, users should decide which suggestions to
implement.

(3) The user should be able to gain some understanding into the LLM-
based 1 decisions (UX, PO). Users must be able to understand
decisions made by the LLM-based assistant, especially when
imperfect solutions are created.

(4) (Automated) mapping of user stories to components of GUIs (UX,
PO, SD). The assistant should facilitate linking user stories and
GUI components to enhance transparency while implementing
GUI prototypes in software code, and evaluate which compo-
nents correspond to specific requirements.

(5) (Automated) recommendation of GUI components (UX, PO). The
assistant should automatically suggest GUI components and
draw them directly in the prototyping tool at correct positions.

(6) (Automated) user story generation from GUI prototypes (PO). In
our interviews, product owners expressed the wish for auto-
mated generation of user stories from GUI prototypes for cases
where less documentation was available.
The design rationales were derived from a qualitative analysis

of the interview data. During the coding process, themes were
identified based on recurring statements, such as participants high-
lighting challenges with existing tools or expressing a desire for
specific functionalities. For example, the rationale of integrating
user stories into prototyping tools was derived from interviewees
describing missing connections between Figma and requirements
management tools, e.g., "I think it ultimately comes down to this: in
the end, there are different tools that you use, and the more strongly
they are interconnected, the better. I think Figma is great, but if Figma
had a strong integration with JIRA, that would be even better [...] and
these [requirements] should then ideally be linked to the corresponding
prototyping pages, sections, or areas [..]."
1During the first half of the sessions, some participants discussed “understanding the
AI’s decision” in general terms rather than understanding LLM-based decisions. After
we explained our initial design and introduced the possibility of an LLM serving as
the underlying technology at the end of the second half, they expressed a need to
understand the LLM’s decision, though AI was often used interchangeably.

An LLM-Based Assistant for Cross-Functional Integration in Software Development CHI ’25, April 26–May 01, 2025, Yokohama, Japan

3.2 Initial System Design
At the beginning of the interviews with UX designers and product
owners, we explored the problem space in general, followed by an
exploration of an existing prototype intended to motivate reflec-
tions on the features. The initial features and design were motivated
by prior research and built upon Kolthoff et al. [35]. Figure 2 shows
a schematic screen that we used for reflection with the participants.
We adapted the LLM-based approach of Kolthoff et al. [35] for de-
tecting and matching user stories in GUI prototypes to specifically
support Figma GUI prototypes. Furthermore, we extend their work
by a GUI component generation approach to rapidly create editable
GUI designs. Additionally, we evaluated the extended approach and
thereby provide an evaluation for the approach of Kolthoff et al. as
well, since they only evaluate it using a technical train-test split.

Figure 2: First schematic of prototype used in interviews as
point of reflection.

3.3 Refined System Design
We developed two variants of our GUI prototyping assistant to
evaluate its effectiveness in our lab study: a control and a treatment
configuration. The treatment configuration builds on the baseline
functionality of the control version by introducing advanced fea-
tures enabling LLM-based automation. In the following, we describe
the shared functionality of the control configuration, followed by
the unique capabilities of the treatment configuration. Table 1 pro-
vides a comparative overview of these differences.

3.3.1 Control Configuration. This section outlines the baseline
functionality of the GUI prototyping assistant, as implemented in
the control configuration. These core features are also present in
the treatment configuration.

Tool Integration. Our assistant directly integrates into the popular
prototyping tool Figma. We based the size of the plug-in on popular
plug-ins for Figma and integrated a minimization function (C6 and

Table 1: Comparison of assistant’s features in control and
treatment configuration.

Feature Control Treatment

Tool
Integration

Plug-in integrated
in Figma

Plug-in integrated
in Figma

User Story
Listing

Lists all user
stories

Lists all user
stories

Change
Intervention

Synchronizes user
story updates

Synchronizes user
story updates

User Story
State Mang.
& Detection

Manual Manual and
LLM-based

User Story
Matching Not available

LLM-based matching of
GUI comp. to user stories

GUI Comp.
Generation Manual

LLM-based GUI component
generation allowing user
control over suggestions

T6 in figure 3), allowing the plug-in to shrink and display only
numerical values for open, ongoing, and completed user stories to
optimize screen space. This feature is particularly useful during
tasks such as graphical fine-tuning of design components, where
workspace is a priority. With the assistants integration as a plug-in,
we aim at supporting UX designers, product owners and software
developers within tools of practice. By facilitating tasks in tools
like Figma such as synthesizing textual descriptions into GUI com-
ponents, and picking and contextualizing fitting GUI components,
we aim at allowing UX designers to focus more on the creative and
conceptual aspects of their work, such as sketching rough designs
and crafting the overall user experience.

Listing User Stories in Figma. The assistant lists user stories directly
in the plug-in, with their status visually highlighted as completed
(green), ongoing (blue), or still a to-do (red). By default, all user
stories for all app screens currently opened in Figma are displayed.
If a single frame (i.e., the screen of an app) is selected (selection
indicator: C1 and T1 in figure 3), only the user stories associated with
that frame are shown in the plug-in. Additional information, such
as the age and identifier of user stories, is displayed alongside status
indicators. Users can update the status of a user story (completed,
ongoing, or to-do) directly in the plug-in (C3, and T13 in figure 3).
Based on the interviews, we implemented filtering (based on state,
and AI Detected in the treatment configuration) and sorting (based
on age and state of the user story).

Change Intervention. One identified design rationale guiding our
implementation is the assistant’s ability to deal with new and con-
stantly changing requirements. To fulfill this rationale, we devel-
oped a feature synchronizing user stories (e.g., with an external
database). For the evaluation conducted in this paper, we developed
an intervention, as shown in figure 4. As part of this intervention,
users were notified of updates after a specified interval, when the
“Sync User Stories” button became active, simulating a synchroniza-
tion with user story databases (such as JIRA). Clicking the button
led to the new or updated user stories being displayed in the plug-in
and highlighted with dots.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Kretzer, F.; Kolthoff, K.; Bartelt, C.; Ponzetto, S. P.; Maedche, A.

Figure 3: Assistant for GUI prototype designers in the control (left side) configuration and treatment (right side) configuration.
In both configurations, the assistant shows user stories based on a selected frame in the prototyping tool (C1/T1), allows to
filter and sort user stories (C2/T2), can synchronize the user stories with a database (C5/T5), and be minimized (C6/T6). User
stories can be marked completed, ongoing or as a to-do (C3 and T13). In the treatment configuration, the assistant can identify
components completing a user story (T7), manually added (T8) or identified using an LLM (T9). Additionally, an LLM can detect
the completion status of a user story (T13), can recommend GUI components completing a user story (T10 and T11) and draw
them into the GUI prototype (T12). Figure contains Material 3 Design Kit [24] components from Google, used under CC BY 4.0.

3.3.2 Treatment Configuration. The treatment configuration ex-
tends the baseline features of the control configuration by integrat-
ing advanced functionalities guided by specific design rationales.
This section outlines the unique features exclusive to the treatment
configuration, as shown on the right side of figure 3.

User Story Detection. The assistant can automatically detect whether
a user story has already been implemented in a GUI prototype.
Leveraging our LLM-based detection approach, the method auto-
matically analyzes the implementation status of the user story in
a selected prototype. Users can apply this feature at two levels:
individually for specific user stories (T13 in figure 3) or collectively
for all stories in a frame (T4 in figure 3). Detected implementation
states are visually indicated by color changes. After clicking “Scan
Story Status” (T4 in figure 3), discrepancies between user-assigned
and AI-detected states are flagged for review in a dialog box, where
users confirm or override AI suggestions. To ensure transparency,
each user story in the list displays a label indicating whether the
completion state was assigned by the user or detected by the AI
(e.g., “AI Detected: True/False,” as shown in T3 in figure 3). By au-
tomating detection, this feature aims at minimizing manual effort
and ensuring a reliable overview of the implementation progress.

User Story Matching. For our assistant, we also implemented the
function to automatically recognize which components of a GUI
prototype in Figma fulfill a user story. This feature is shown in the
third screen in figure 3. Matched components are displayed in a
dedicated field (T7 in figure 3), showing their names as assigned in

Figma alongside an isolated image of each component. Users can
manage these associations by adding components manually (“Add
New Component,” T8), using the AI to detect components (“AI De-
tection,” T9), or removing incorrectly associated components. The
objective of this feature is to provide users a better understanding
of the components influencing the decision of the LLM for automat-
ically assessing the user story implementation status and to enable
the direct interlinking between user stories and their counterparts
in GUI prototypes. Thereby providing transparency regarding the
features that still necessitate attention and enabling the verification
of whether the appropriate GUI components have been utilized.

GUI (Component) Generation. Our assistant also allows users to
generate components based on user stories. This feature is shown
in figure 3 in the treatment screens (fourth screen from the left). To
ensure that users retain control over the decisions of the assistant
and decide for themselves whether LLM-based component propos-
als are to be incorporated, recommendations are first previewed in
the assistant (T10 in figure 3). Users can then decide whether they
want to use the button "Generate Another Recommendation" (T11
in figure 3) to generate another recommendation or use the button
"Draw Suggestion" (T12 in figure 3) to insert these components as al-
ready correctly placed GUI component in Figma. In this case, either
correctly contextualized and parameterized material design assets,
material icons, labels, or rectangles are drawn into the existing GUI
prototype. Our assistant utilizes the existing design as a context for
correct dimensioning and positioning.

An LLM-Based Assistant for Cross-Functional Integration in Software Development CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 4: New and changed user stories intervention shown
to participants after 30 minutes in both the treatment and
control configuration in lab experiments (here: treatment
config.). Intervention shown as pop-up message, and red dots
next to updated user stories, mimicking requirement updates
and synchronization with collaboration tools, such as JIRA.

3.4 LLM-Based Approaches
Our underlying LLM framework is composed of several compo-
nents. An overview of the approach is illustrated in figure 5. In
alignment with the figure, we describe the steps of the approach
sequentially in a top-down manner. First, (A) we propose a com-
ponent transforming the GUI prototype represented by Material
Design components in Figma to an abstract and compressed string
representation as the input to the LLM. Second, (B) the user story
detection component consisting of a zero-shot prompted LLM for
deciding whether a provided user story is implemented in the GUI
prototype. Third, (C) the user story matching component enabling
the coupling of GUI components corresponding to a given user
story. In addition, (D) the user story generation component for au-
tomatically creating user stories for the GUI prototype. Fifth, (E) the
two-stage GUI component generation approach enabling the rapid
creation of implementations for a provided user story. Finally, (F)
the component transforming the generated intermediate prototype
representation back to a rendered GUI component and appropriate
placement in the GUI prototype. All detailed prompts can be found
in our supplementary materials. Subsequently, we present each of
the introduced components of our LLM framework for supporting
the GUI prototyping process in detail.

3.4.1 GUI Prototype Representation (A). Our approach focuses on
GUI prototypes created within the popular prototyping tool Figma
and supports prototypes implemented with the Material Design
component library. This extensive component library encompasses
over 85 distinct GUI components including elementary individual
components such as Checkbox, Slider, and Button, to more intricate
GUI elements assembled from multiple individual GUI components

such as Dialogues, List-Item, Search-Bar, and Card. Each library GUI
component possesses numerous configuration options including,
for example, Icon and Main-Text, whereas the assembled compo-
nents encompass several sub-components in a multi-level fashion.
To further enhance the versatility of supported GUI components,
we incorporated additional more generic component types (e.g.,
Label, Image-Placeholder, Rectangle and, Icon). To enable the previ-
ously discussed LLM-based assistance, the prototype requires to
be transformed to an abstract and minified string representation
to provide an efficient and effective input to the LLM. An inter-
mediate JSON representation of the prototype is reduced to the
abstract variant ensuring not only substantial increases in token
efficiency, but also removal of details unnecessary for the proposed
tasks to potentially increase effectiveness. The abstract string repre-
sentation is constructed as a multi-level bullet point list, each GUI
component being represented as an individual item using an ab-
stract pattern2 , providing basic information of the component such
as the group, type, position, and size as well as a list of component-
specific attributes. Multiple levels are introduced in the bullet point
list when assembled elements contain sub-components and form
nested structures to ensure and retain the appropriate grouping of
the components.

3.4.2 Implementation Detection (B). To address the challenge of
automatically detecting whether a given user story is already imple-
mented in the GUI prototype, we exploit the text understanding and
reasoning capabilities of recent LLMs [10, 18, 49, 56] and employ
an LLM-based method with Zero-Shot (ZS) prompting [31, 39] to
formulate the problem as a binary classification task. ZS prompting
enables instructing an LLM with a novel task without requiring
resource-intensive training or fine-tuning and the creation of high-
quality examples for Few-Shot (FS) prompting [10]. Our approach
builds upon the ZS method proposed by Kolthoff et al. [35] showing
the highest effectiveness with ZS prompting and we provide an
adaption for the editable Material Design GUI prototypes in Figma.
In particular, we create a ZS prompt template with (i) providing
clear instructions on the provided information and the detection
task, (ii) including the previously created abstract GUI prototype,
and (iii) the user story to classify. The LLM is instructed to output a
single token (either 0 or 1) as its classification response and provide
an additional short reasoning description.

3.4.3 GUI Component Matching (C). Similarly to the previously dis-
cussed implementation detection, we employ a ZS prompt adapted
from Kolthoff et al. [35] to match a given user story to its corre-
sponding GUI components within the GUI prototype. We follow
the same ZS prompt template structure as described previously,
but extend each GUI component in the abstract GUI representa-
tion with an identifier, enabling the LLM to reference the relevant
GUI components. Therefore, we instruct the LLM to extract a list
of identifiers of the GUI components relevant for implementing
the user story, which enables the marking of the respective GUI
components in the GUI prototype.

2 component-group (component-type) (position) (size) |attribute name:"attribute
value"| (id), for example, Button (SimpleButton) (x:25|y:790) (width:359|height:54)
|Icon:"add"|Label Text:"Search"|Style:"Filled"|State:"Enabled"|Show Icon:"True" (id=27)

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Kretzer, F.; Kolthoff, K.; Bartelt, C.; Ponzetto, S. P.; Maedche, A.

E. Two-Stage GUI Component Generation

F. LLM Representation to Figma GUI Design Prototype

A. Figma GUI Design Prototype to LLM Representation

1. Figma
GUI

Design
Prototype

2. Intermediate JSON
Prototype

Representation

3. Abstract Minified and
Stringified GUI

Prototype

1. Intermediate JSON GUI
Component Representation

3.
Automatic
Integration
into Figma

GUI
Prototype

Stage 1
ZS Prompt Template

- AppBar (Top)

…

- SegButtonBlock|Text:”Flights”|…

…

…
GUI

Abstraction

…
GUI

Abstraction

…
GUI

Abstraction

User
Story

User
Story

User
Stories

User
Story

GUI
Desc.

GUI
Desc.

MD GUI Component
Library

Minified MD GUI
Component Library

Selected GUI
Components

2. GUI Components
Rendering

…

US imp USmiss
✓

Icon Library

General Attributes

…

…

…

posX posY width

height fontSize opacity
…

Button Simple|

Lists List0|

Button ExtFAB|

| : ListItem

Dialog Basic| | : Button

Chips Filter| Chips Input|

LLM

1. Instruction
2. GUI Desc.

3. GUI Abstr.

4. User Story

5. Min-MD Lib.

Stage 2
ZS Prompt Template

LLM

1. Instruction
2. GUI Desc.

3. GUI Abstr.

4. User Story
5. Sel. Comps.
6. Icon Lib.
7. Gen. Attr.

…
GUI

Abstraction

…
GUI

Abstraction

User
Story

B. US Detection

ZS Prompt Template

LLM

1. Instruction

2. GUI Abstr.

3. User Story

C. Component
Matching

ZS Prompt Template

LLM

1. Instruction

2. GUI Abstr.

3. User Story

D. US Generation

ZS Prompt Template

LLM

1. Instruction

2. GUI Abstr.

- SegButtonBlock|Text:”Buses”|…

(x:10|y:70) …

- TextFields (TextFields) (x:10| …

|Text:”Origin”|Icon:”location_on” …

Figure 5: LLM framework for automatic detecting user story implementation, matching GUI components for user story,
generating user story for GUI prototypes and two-stage GUI component generation for user story including the transformation
of GUI prototypes in Figma to a compressed representation for inputting into the LLM and vice-versa rendering of generated
GUI components within the prototype. Fig. contains Material 3 Design Kit [24] components from Google, used under CC BY 4.0.

3.4.4 User Story Generation (D). To enable the creation of user
stories from a fraction or entire GUI prototype which currently
is not covered by any user story within the collection, we also
employ ZS prompting with an LLM. In this prompt template, we (i)
clearly instructed the model to extract all present user stories with
their respective GUI components and (ii) provided the abstract GUI
representation with GUI component identifiers. In particular, the
LLM is tasked with creating a JSON providing objects with the user
story text and a list of corresponding GUI components.

3.4.5 GUI Component Generation (E). In addition to the detection,
matching, and US generation methods, we propose to facilitate the
prototyping process by enabling the contextualized GUI compo-
nent generation for a given user story based on the current GUI
prototype. To tackle the challenge of generating GUI component
recommendations for a given user story, we employed another ZS
prompting approach utilizing an LLM. While the LLM is pretrained
on large amounts of text corpora from the web and potentially

includes various information about Material Design (MD) utilized
in our approach, the LLM lacks the specific Material Design compo-
nent library and configuration options employed in our approach.
Therefore, we manually constructed the comprehensive component
library as input to the model. However, to increase token efficiency
for the LLM, we propose a two-stage GUI component generation
method. As depicted in Figure 5E, we first derive a minified MD
component library containing only the information about available
component types and sub-component references. Afterwards, we
construct our first stage ZS prompt template by instructing the
LLM to select all required components from the minified library
and encompass (i) the user story to generate the implementation
for, (ii) the abstract GUI representation, (iii) a brief textual descrip-
tion of the main functionality of the GUI, and (iv) the minified MD
component library. Afterwards, we construct the second stage ZS
prompt template instructing the LLM to generate the intermediate
GUI component representation by utilizing the same information
as before, but instead of the minified MD library, we additionally

An LLM-Based Assistant for Cross-Functional Integration in Software Development CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 6: Overview of experiment procedures for evaluating the recommendation generation (𝑅𝑄1), the assistant (𝑅𝑄2 and
𝑅𝑄3), and the user story generation (𝑅𝑄4). For 𝑅𝑄1, GUI components were generated with our approach from user stories and
evaluated by crowd-workers on Prolific. For 𝑅𝑄2 and 𝑅𝑄3, participants were recruited from a student panel, randomly assigned
to either the control or treatment group to create GUI prototypes. GUI prototypes were then evaluated by a second set of
participants sourced through Prolific. For 𝑅𝑄4, user stories were generated with our approach from Rico GUIs and evaluated by
crowd-workers on Prolific.

provide (i) the full specifications from the MD GUI component
library for the selected components, (ii) an icon library, and (iii)
specifications for general attributes that are shared among all GUI
components.

By conducting this two-stage procedure, we avoid inputting the
entire large MD component library for each generation and instead
reduce it to a minimal representation. To ensure correctness of the
generated component specifications of the first and second stage,
we set the temperate of the LLM to zero for a more probable and
deterministic output. Moreover, we implemented an automatic veri-
fication of the generated specification by matching them against the
MD specifications. The component position and size is generated
by the LLM via the general attributes and influenced by the com-
ponents and their positions in the current prototype. Finally, the
intermediate representation is rendered within our Figma plugin
and the generated GUI component can directly be integrated into
the existing GUI prototype design, including the automatic posi-
tioning of the component within the GUI prototype. Although the
focus of our approach lies on generating functional GUI prototypes,
the LLM is able to generate also different component styles (e.g.,
different buttons such as IconButton or FloatingActionButton), since
different styles are represented as different components in the MD
specification. In the future, we plan to integrate more fine-grained
styling options (e.g., background color, font color, font style) by ex-
tending the general attributes. With this functionality, custom CI
such as a color palette or special fonts could be incorporated into
the generation process by enabling users to provide textual style
requirements additionally to the textual functional requirements.

3.4.6 LLM Configuration. As the LLM in our approach, we uti-
lize the most recent GPT-4o model [44] with 128k tokens context
length (accessed in August, 2024), which extends the preceding
GPT-4 model [43] with multi-modal functionalities. We decided for
GPT-4o since it provides state-of-the-art performance in many text
evaluation tasks [44].

4 Evaluation Studies
In this chapter, we present the underlying methodology of our
evaluation studies. In particular, we first focused on measuring the
ability of our approach to create relevant GUI components match-
ing the context. Subsequently, we focused on the question if our
LLM-based assistant improves the effectiveness of GUI prototyp-
ing. In addition to the resulting quality of the GUI prototypes, we
were also interested in the subjective satisfaction of the participants
and the use of the assistant. Finally, we focused on the question of
how effective our approach is in generating user stories from com-
ponents of GUI prototypes. Overall, we articulated the following
research questions for our evaluation:
RQ1 How effective are LLM-based approaches for generating GUI

prototype components completing a user story?
RQ2 How does our LLM-based assistant influences GUI prototype

quality and user story completion?
RQ3 How does our LLM-based assistant influences perceived user

experience?
RQ4 How effective are LLM-based approaches for generating user

stories from components of GUI prototypes?
In the following we will describe the underlying methods, proce-

dures and evaluation datasets employed to provide answers to the
research questions articulated above by a series of evaluation stud-
ies. With figure 6, we present an overview of our three evaluations,
investigating RQ1, RQ2 together with RQ3 and lastly RQ4.

4.1 Recommendation Generation (RQ1)
First, we present our evaluation study, which examines the extent to
which the recommendations generated by our LLM-based approach
are suitable for fulfilling the respective user stories.

4.1.1 Procedure. In order to measure the extent to which the rec-
ommendations created match the respective user stories, we em-
ployed the publicly available user story dataset from Kolthoff et

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Kretzer, F.; Kolthoff, K.; Bartelt, C.; Ponzetto, S. P.; Maedche, A.

al. [35] at random. Recommendations were then generated using
our approach with the assistant in the prototyping tool, rendered
as images, and presented to crowd-workers on Prolific [19, 48] for
evaluation. As there was no existing Figma context in this setup
(no previous GUI prototype for which more recommendations are
generated), a short, high-level text description as context created
by students was utilized in addition to the user stories (e.g., “a
screen from a travel app showing flight search results”). Created GUI
components were presented to the crowd-workers as they were
created by the LLM-based assistant, i.e., without post-editing.

4.1.2 Participants. We invited eight crowd-worker from Prolific
who self-reported UI or UX experience, had more than 30 previous
submissions and an high approval rate (>99%). No crowd-worker
participated in any of our other studies. We had to exclude two
participants based on failing our attention checks. The remaining
participants (4 male, 2 female with an average age of 35.7 years) had,
on average, 6.7 years (𝜎 = 5.59) of experience in creating and 3.7 (𝜎
= 3.40) years of experience in evaluating visual design (GUI proto-
typing). We did not collect information about participants’ LLM or
GenAI experience, as such expertise was not required for evaluating
the GUI components and revealing that the GUI components were
LLM-generated could have introduced bias.

4.1.3 Data Collection. The crowd-workers were shown the GUI
components in a survey as pictures and the respective user stories.
The crowd-workers were then asked whether the GUI components
fully meet the functional requirements described in the user story,
the GUI excerpt contains all the necessary components (e.g., buttons,
input fields) to fulfill the user story, and whether textual descrip-
tions within the GUI excerpt (e.g., labels, instructions, messages)
are clear and appropriate for fulfilling the user story.

4.2 Assistant Evaluation (RQ2, RQ3)
To evaluate our assistant, we conducted a lab experiment in which
participants were asked to create GUI prototypes based on prede-
fined user stories in a controlled environment. Subsequently, we
evaluated the resulting GUI prototypes with crowd-workers. We ex-
plicitly decided against a remote structure, e.g., with crowd-workers,
to control boundary conditions (such as context and environment
as well as processing time for the GUI prototyping tasks).

4.2.1 Procedure. We created two versions of the assistant and
evaluated both in a between-subject design experiment. For this
purpose, GUI prototypes were created by participants in a lab-based
study for predefined user stories. User stories were derived from
the publicly available user story dataset of Kolthoff et al. [35] to
employ high-quality user stories that have already been evaluated in
previous studies. While the user stories are focused on single GUIs
and do not span across multiple GUIs of an app, the dataset contains
multiple coherent user stories describing different functionalities
of a GUI screen. The participants in the lab had help from one
or the other version of the assistant (control or treatment). The
GUI prototypes created were then evaluated by crowd-workers
with UX experience sourced on Prolific [19, 48]. In the following,
we present insights into the lab experiment and crowd-working
related procedures.

Lab Experiment. In the 75-minute laboratory study, after agreeing
to the data collection, participants read a briefing on the study task
(5 min), watched a video explaining the GUI prototyping tool used
(10 min), and a video demonstrating the assistant implemented as
a plug-in for the GUI prototyping tool (5 min). Since our assistant
in the treatment configuration generated Material Design compo-
nents, we therefore decided to give both groups an introduction
to Figma including the use of Material Design components. Then,
participants started the GUI prototyping task (45 min) and finished
the experiment with a post-hoc questionnaire (10 min). Participants
worked with mobile screen templates and had pre-loaded icons
and Material Design assets available. For the GUI prototyping task,
the laboratory study participants were tasked with creating up to
three GUI prototypes based on user stories. For each GUI prototype,
there were eight user stories to complete. After 30 minutes, there
were updates for two existing user stories, and two new user stories
were added to the assistant. The update was intended to simulate
changed requirements, as is usual in practice. Participants were
instructed to start with the first GUI prototype and the first eight
user stories for this GUI prototype and continue with the second
and third GUI prototypes only when the previous prototype was
completed. For our control group, which used the assistant without
generative component creation, producing three prototypes as part
of the study task is clearly extensive. We deliberately opted for
an extensive task so that no participant would finish early, even
in the treatment with generative component creation, and would
continue to prototype in the 45-minute GUI prototyping phase.
We measured the load in pretests to find the right amount of GUI
prototyping tasks. The study included attention and comprehen-
sion checks. The study design was carefully evaluated with the
university’s Institutional Review Board (IRB).
Evaluation of GUI prototypes. We conducted an evaluation study on
Prolific with crowd-workers to evaluate the generated GUI proto-
types. We chose Prolific since comparative studies indicated that
crowd-workers on Prolific produce higher data quality compared
to other crowd-working platforms [19]. Participants from Prolific
received a questionnaire to evaluate the GUI prototypes created in
the lab sessions. After consenting to data processing, participants
received a study description and evaluated 20 GUI prototypes each,
randomly drawn. On average, each participant received 13 GUI
prototypes for the first GUI prototyping task (five for the second
and two for the last GUI prototyping task) created with the assistant
in the control or treatment configuration, respectively. The study
lasted 65 minutes on average and included six attention checks.
Furthermore, the study design was carefully evaluated with the
university’s IRB.

4.2.2 Participants. Following, we describe the participants of the
lab study and the evaluation of the GUI prototypes.
Lab Experiment. We recruited 46 participants from a university
panel for the lab study randomly assigned to the control group (23
participants) or treatment group (23 participants). In both groups,
three participants had to be eliminated (one technical problem,
three times failure to complete attention checks, two failures to
meet the 45-minute GUI prototyping task time) ex-post. Eventually,
20 participants were admitted to the study in both groups. The par-
ticipants in the control group (14 male, 6 female) were, on average,

An LLM-Based Assistant for Cross-Functional Integration in Software Development CHI ’25, April 26–May 01, 2025, Yokohama, Japan

25.40 years (𝜎 = 4.65) old. The participants in the treatment group
(12 male, 8 female) were, on average, 23.85 years (𝜎 = 2.67) old. Par-
ticipants in both groups studied, on average, little over four years
and had the same average experience with creating and evaluating
visual design (such as GUI prototypes).

Evaluation of GUI prototypes. On Prolific, we originally invited 36
participants who self-reported UI or UX experience, had more than
30 previous submissions on Prolific and an high approval rate (>99%).
Submission from eight participants were excluded for failing one
or multiple attention checks. Only data from the remaining 28 (22
male, 6 female) participants were considered. Prolific participants
were 28.25 years old (𝜎 = 6.78) and had 4.25 years (𝜎 = 5.87) of ex-
perience creating visual design and 3.86 (𝜎 = 4.04) years experience
evaluating visual design on average. We did not collect informa-
tion about participants’ LLM experience, as such expertise was not
required for evaluating the GUI prototypes and revealing that the
GUI prototypes creation was partially assisted by our LLM-based
assistant could have introduced bias.

4.2.3 Data Collection. We collected a range of data, both in the
lab setting and on Prolific.

Lab Experiment. During the lab experiment, we logged the usage
data of the assistant (navigation in the assistant, clicks, and web-
calls in the treatment group) and the GUI prototypes generated
during the sessions. In addition, the participants filled out a post-hoc
questionnaire in which Task Load (NASA TLX Raw [26]), System
Usability (SUS [9]), and Creativity Support (CSI [12]) were recorded.
In addition, we asked for further Likert items (e.g., ease of use and
effectiveness of the assistant). We also surveyed subjective use of
the features (detection of user story completion, recognition of the
GUI components of a fulfilled user story, and recommendation of
GUI components) in the treatment, and in both groups positive and
negative aspects of the assistant via open text fields.

Evaluation of resulting GUI prototypes. For each GUI and user story
shown, the crowd-workers assessed the extent to which the GUI
fully meets the functional requirements described in the user story,
whether the GUI contains all the necessary components (e.g., but-
tons, input fields) to fulfill the user story and whether text within
the GUI (e.g., labels, instructions, messages) is clear and appropriate
for fulfilling the user story. Additionally, they rated each GUI for
overall consistency with user stories, visually appealing design,
clear information organization, intuitive interaction, whether the
GUI looks like an app page, minimal prototype errors, and satisfac-
tion with GUI prototype.

4.3 User Stories Generation (RQ4)
In addition, we evaluated the extent to which our approach can
create user stories from existing GUI prototypes.

4.3.1 Procedure. To evaluate the ability to create suitable user sto-
ries, research assistants recreated Rico GUIs [16] for the prototyping
tool. 23 GUIs were randomly chosen based on the GUIs employed
in the user story dataset of Kolthoff et al. [35]. We then utilized
these GUI prototypes to create LLM-based user stories for the GUI
components using our proposed assistant. Created user stories were
presented to the crowd-workers as they were created, i.e., without

editing. These were then evaluated by crowd-workers with UI or
UX experience. Each crowd-worker rated ten GUI prototypes and
its related user stories. On average, 9.2 user stories were created by
the LLM for each GUI.

4.3.2 Participants. We recruited six crowd-workers through Pro-
lific [19, 48], applying the same selection criteria as in the lab study.
None of the crowd-workers had participated in any of our previous
studies. No participant failed any of our attention checks. The final
sample (6 male, average age of 33.83 years) had an average of 6.00
(𝜎 = 4.12) years of experience in creating and 4.33 (𝜎 = 2.98) years
of experience in evaluating visual design (GUI prototyping). Once
more, we did not inquire about participants’ LLM experience, since
such was not required for assessing the user stories.

4.3.3 Data Collection. The user stories created and GUI prototypes
were presented to crowd-workers for comparison. Subsequently,
they assessed the user stories in combination with the GUI pro-
totype for the following four items: (i) "The user story accurately
describes functionality found in the presented GUI.", (ii) "The user
story is written with sufficient clarity and precision.", (iii) "The user
story is specific enough to describe a particular feature of the presented
GUI.", (iv) "The level of detail in this user story meets the standards in
a professional project."

5 Results
In this section, we provide the results on our LLM-based approach’s
capability to create GUI components based on user stories through
measuring how well the generated components fulfill the user sto-
ries (RQ1). Afterwards, we present the results of the lab experiment
using the assistant, including the evaluation of the lab results on
Prolific (RQ2, RQ3). In addition, we provide the results of the evalu-
ation for automatically creating user stories (RQ4).

5.1 Recommendation Generation (RQ1)
To maximize requirement diversity, we took 102 user stories from
27 GUIs in the publicly available dataset by Kolthoff et al. [35]
and generated components for each user story using our LLM-
based approach. These were presented individually (i.e., as single
components with the user stories) to crowd-workers on a basic
schematic mobile app outline. We collected 40 pairs of user story
component ratings from each of the six crowd-workers, resulting
in an average of 2.35 ratings per user story and GUI component.

Crowd-workers rated user stories and derived GUI components
assessing whether the components (1) allow the user to perform
the task in the user story, (2) all necessary components for ful-
filling the user story are presented, (3) appropriate components
were chosen and (4) text of components were clear and appro-
priate. All ratings were obtained on nine-point Likert scales (1:
Strongly Disagree, 3: Disagree, 5: Neutral, 7: Agree, 9: Strongly Agree).
Figure 7 shows violin plots for each of the four assessed aspects.
All four aspects were rated high, with mean (median) values of
7.5 (8) for functional requirement fulfillment, 7.51 (8) for user
story fulfillment, 7.04 (8) for component correctness and 6.86 (7)
for textual clarity. In addition, to evaluate the efficiency benefits,
we compared the proposed two-stage GUI component generation
approach against a similar one-stage GUI component generation

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Kretzer, F.; Kolthoff, K.; Bartelt, C.; Ponzetto, S. P.; Maedche, A.

Figure 7: Violin plots of crowd-worker ratings (y-axis: 9-point
Likert scale) for components generated by our LLM-based ap-
proach in the prototyping tool based on over 100 user stories.
Crowd-workers rated functional requirements fulfillment,
user story fulfillment, component correctness and text clar-
ity for user stories and derived GUI components. Triangles
represent means, black lines medians.

ZS prompt, which always incorporates the full MD component
library. On the 102 user stories dataset, the two-stage GUI genera-
tion approach accomplished a considerable 64.35% reduction of the
consumed input tokens (Mean #One-Stage-Tokens=8559.49|Mean
#Two-Stage-Tokens=3050.78) and a significant 60.82% reduction
of the total consumed or generated tokens (Mean #One-Stage-
Tokens=9359.44|Mean #Two-Stage-Tokens=3666.54) highlighting
the efficiency improvements3 .

5.2 Assistant Evaluation (RQ2, RQ3)
Our analysis of the data collected in the lab experiment is twofold.
Firstly, we examine the completion of user stories and the qual-
ity of the GUI prototypes created by study participants, as as-
sessed by crowd-workers on Prolific. Afterwards, we report the
self-assessments of the lab participants, including both qualitative
and quantitative aspects. In addition, we evaluated the assistant’s
usage, highlighting which features and functions were used by the
participants. Figure 8 shows three GUI prototypes created by the
control and treatment groups for the first, second and third tasks.

5.2.1 User Story Completion and Prototype Quality. Our results
for user story completion and overall GUI prototype quality are
based on data from crowd-workers on Prolific. The results for eval-
uating the completion of the user stories are shown in figure 9.
The participants in the lab study were tasked with creating three
app prototypes based on ten user stories each. Participants were
instructed to start with the first app and move on to the next one
once the user stories had been completed. As a result, a different
number of GUI prototypes were created for each of the apps in the
control group and the treatment group. In the control group, all 20
participants created a first app, five a second, and two a third. In the
treatment group, 19 participants created the first app, 11 the second
one, and five participants the third app. On average, 1.35 apps were
created in the control group and 1.75 apps in the treatment group.

3At the time of writing, this reduction in input and output tokens leads to a reduction
in cost from $0.052 to $0.024 per generated GUI component using the GPT-4o [44]
flagship model from OpenAI.

Figure 8: Examples of GUI prototypes created in the lab ses-
sions with the control (orange, top, C1 - C3) and treatment
(blue, bottom, T1 - T3) configuration of the assistant for all
three tasks ((1) travel booking app, (2) recipe app and (3)
translation app). Figure contains Material 3 Design Kit [24]
components from Google, used under CC BY 4.0.

To analyze the degree of fulfillment of the user stories, we solely
investigated apps that participants had worked on. Apps that were
not started were excluded from the evaluation in Prolific (i.e., we did
not count user stories for apps that were not started as unfulfilled).
An app was classified as started when changes were made to the
schematic app background in Figma and GUI components added
(simply moving an schematic app background in Figma would not
count as starting the app).

For the first app, for six (three significant)4 user stories, the
treatment group produced GUI prototypes with a higher rating
for user story completion in contrast to four (two significant) user
stories in the control configuration that led to higher user story
completion. For the second app, seven (three significant) user stories
using the treatment, and three (one significant) user stories with the
control configuration were measured higher. For the third app, all

4Participants in the treatment group started with just the schematic app background
without any components, but could quickly use the recommendation feature to gen-
erate components. To give participants in the control group an idea of how to pick
and adjust Material Design components, the introduction video demoed the use of an
app bar demonstrating the creation of the first user story. This component was also
already drawn to the schematic app background in Figma when participants started.
Since this component completes the first user story, technically participants in the
control group did not complete the first user story by themselves.

An LLM-Based Assistant for Cross-Functional Integration in Software Development CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 9: Boxplots showing user story completion as rated by crowd-workers for the three apps (top: first app, middle: second
app, bottom: third app) to be created by participants in the lab experiment using the control (orange) or treatment configuration
(blue). For each app ten users stories were to be created (US 1 to US 10). Dotted (new user story) and dashed (extended user
story) bars represent user stories with an update intervention after 30 minutes. Triangles represent means. One, two and three
stars represent significant results (<0.05, <0.01, <0.001) for two-sided Wilcoxon rank-sum tests.

Table 2: Means of crowd-workers’ ratings (Likert scale 1-9) of GUI prototypes for control and treatment configuration, and
results of Mann-Whitney-U-Tests. Crowd-workers were asked if the GUI design is consistent with the overall user stories,
whether the visual GUI design is appealing, organization of information is clear, the GUI allows for intuitive interaction, the
GUI prototype looks like a screen from a complete app, the GUI prototype only has minimal errors, and whether crowd-workers
were satisfied with the GUI.

Consistent
Design

Appealing
Design

Information
Organization

Intuitive
Interaction

Screen from
Complete App

Minimal
Errors

Overall
Satisfied

Control 4.583 4.454 4.820 4.528 3.465 4.190 3.819
Treatment 5.046 4.586 5.025 4.761 3.614 4.225 4.254

p-value 0.0151* 0.5105 0.2600 0.1849 0.5540 0.7485 0.0423*

ten (seven significant) user stories with the treatment configuration
were rated as more complete in contrast to the control group.

For both other aspects that were evaluated by crowd-workers
for each user story, the following picture emerged: For the selection
of the right components to fulfill the respective user story, the
control group was rated higher on average for nine user stories,
and the GUIs created with the treatment for 21 cases. Regarding
the selection of correct descriptions (e.g., texts), the results of the
control group were rated higher for 8 user stories, and the results
of the treatment group for 22 user stories.

Not all user stories were available to participants from the start.
In our intervention, the user stories were updated after 30 minutes
of processing. Two user stories were made available for the first
time as new user stories (dotted boxplots in figure 9). For two user
stories, an update of the previous user stories was displayed that

expanded the scope of the previous user story (dashed in figure 9).
In figure 9, stories 4/5 and stories 7/8 represent pairs in the first
app, in which the second user story represents the update. For app
two (app three), these are 5/6 (1/2) and 7/8 (6/7). As expected, the
updated user stories were, on average, rated as less completed in
contrast to their initial versions, since the update of user stories
merely extended the first version of the user story. In our discussion
in section 6.2, we provide insight into examples and discuss cases
where the control results were assessed as more completed.

In addition to completing the user stories, crowd-workers also
independently evaluated whether (1) the GUI design is consistent
with all user stories for this GUI prototype, (2) whether the visual GUI
design is appealing, (3) organization of information is clear, (4) the
GUI prototype allows for intuitive interaction, (5) the GUI prototype
looks like a screen from a complete app, (6) the GUI prototype has only

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Kretzer, F.; Kolthoff, K.; Bartelt, C.; Ponzetto, S. P.; Maedche, A.

Figure 10: Results of NASA TLX (raw [26]) for participants in control (orange) and treatment group (blue). Own Performance
significant at 5% level. Triangles represent means.

Table 3: Rating means and p-values (Mann-Whitney-U-Tests, one-sided) for seven questions from lab study participants using
Likert-scales for: satisfaction with final designs, ease of use and navigation of plug-in, confidence in creating professional GUI
designs, efficiency in design process, future use consideration, impact on design quality, and difficulty in creating GUI prototypes.

Satisfaction
Designs

Ease
of Use

Confidence Creating
Professional GUIs

Efficiency in
Design Proc. Future Use

Impact Design
Quality

Difficulty Creating
GUI Prototypes

Likert Scale Strongly Disagree (1) - Strongly Agree (9) Def. Not (1)
Def Yes (5)

Not at All (1)
Extremely (5)

Very Easy (1)
Very Difficult (5)

Control 3.00 6.20 4.35 5.35 3.25 2.90 3.75
Treatment 3.75 6.30 5.65 6.85 3.80 3.50 3.45

p-values 0.2543 0.4400 0.0277* 0.0573 0.0392* 0.0462* 0.8408

minimal errors, and (7) whether crowd-workers were satisfied with
the GUI prototype for each of the created GUIs. Results are shown
in table 2. For each aspect, means in the treatment configuration
were considerably higher, but only consistent GUI design and overall
satisfaction are statistically significant.

5.2.2 Participants Perceptions. We asked our participants quali-
tatively and quantitatively how they rated using the plug-in in
the control and treatment groups. Table 3 shows the results for
seven Likert scale items. The control group achieved a lower mean
value for each aspect, except for difficulty creating GUI prototypes,
where a higher value is associated with greater perceived difficulties.
Particularly noteworthy are the significantly better results of the
treatment group for the questions: confidence creating professional
GUI prototypes, consideration for future use, and the impact on design
quality.

We also measured the task load via the NASA TLX (raw) ques-
tionnaire. Figure 10 shows the values for the task load. On average,
the treatment configuration was rated lower for Mental Demand,
Physical Demand, Temporal Demand, Necessary Effort, and Frus-
tration Level. The value for Own Performance proved to be signifi-
cantly higher for the treatment configuration. The measured System
Usability Scale (SUS) [9] and Creativity Support Index (CSI) [12]
showed no significant difference, however, for both scales the treat-
ment configuration rated higher than the control configuration. For
SUS means were 52.13 for the control and 55.50 for the treatment
configuration, reflecting a steep learning curve of participants using
Figma and GUI component libraries in Figma. For CSI, means were
47.63 and 56.13, respectively.

5.3 User Stories Generation (RQ4)
To investigate the effectiveness of our LLM-based approach to cre-
ate user stories from GUIs, we created 212 user stories from 23 Rico
[16] GUI prototypes directly in Figma with our assistant (an aver-
age of 9.22 per GUI prototype). Both were rated by our experts on
Likert scales (1: Strongly Disagree, 3: Disagree, 5: Neutral, 7: Agree,
9: Strongly Agree). Participants rated the user story while being
shown the GUI prototype for (1) the user story being found in the
GUI prototype, as well as (2) clarity and precision, (3) specificity,
and (4) professionalism. Figure 11 shows violin plots for each as-
sessed aspect for all user stories. Means (medians) for each the four
questions were 6.70 (7), 6.63 (7), 6.53 (7), and 6.02 (6). However,
while the total average and median values were high (medians of
"Agree" for the first three questions in the Likert scales), there was
considerable variance of the ratings for the user stories derived
from individual GUIs, we therefore included user story ratings for
four particularly selected GUIs in figure 11.

6 Discussion
Using our prototyping assistant in the treatment configuration, par-
ticipants created GUI components rated by crowd-workers as, on
average, completing the user stories to a higher degree. Neverthe-
less, some user stories were rated as better completed in the control
configuration. Subsequently, we discuss some of the results and
put them into context. In addition, we discuss selected recommen-
dations for the design of automated LLM-based support systems
for GUI prototyping and how future researchers and practitioners
might leverage the results and findings from this work.

An LLM-Based Assistant for Cross-Functional Integration in Software Development CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 11: Top: Crowd-worker ratings of generated user sto-
ries from GUI prototypes accurately describing functions
of the GUI, user stories being precise, for a identifiable fea-
tures, and formulated as in projects from practice. Y-Axis
presents Likert scale items (1-9). Triangles represent means,
lines medians. Bottom: Crowd-worker ratings of generated
user stories from GUI prototypes for the fourth question, for
four chosen GUI prototypes (A-D) and user story parings.

6.1 Effectiveness of Generating GUI Prototype
Components (𝑅𝑄1)

In our first study, we evaluated the ability of our LLM-based ap-
proach to generate GUI prototype components, which received high
ratings from crowd-workers on functional requirements fulfillment,
user story fulfillment, and component correctness (three times me-
dian of eight, one median of seven on a nine-point Likert scale).
These results indicate that our approach successfully produced com-
ponents that effectively fulfill functional requirements and align
with user stories. This supports the thesis that LLM-based methods
can assist early-stage prototyping by generating functional and
relevant elements with minimal manual intervention. However,
slightly lower ratings for textual clarity suggest room for improve-
ment in how text is generated for GUI components. We propose
two potential avenues for refinement: (i) technical improvements,
such as domain-specific few-shot prompting or fine-tuning, and
(ii) procedural improvements, such as integrating human feedback
loops into the creation process. The presented efficiency gains from
the two-stage approach hint at feasibility in large-scale design
workflows where cost and computation are bottlenecks.

6.2 Impact of the LLM-Based Assistant on Proto-
type Quality and User Experience (𝑅𝑄2, 𝑅𝑄3)

Our investigation into how our LLM-based assistant affects the
quality of GUI prototypes, user story completion, and perceived
user experience showed that experts rated GUI prototypes created
with the LLM-based assistant as having a higher quality, especially
in selecting the right components and utilizing correct descriptions.
User stories were also rated as completed to a higher degree for

prototypes created with the LLM-based assistant (23 cases for the
treatment versus seven cases for the control group). These results
suggest that the assistant effectively supports task completion and
improves the overall GUI prototype quality. As expected, partici-
pants who used the LLM-based assistant started or completed more
app screens as part of the study tasks. The automatic generation of
GUI components likely contributed to this efficiency benefit and
enabled faster task progression. Participants also reported a higher
perceived user experience when using the LLM-based assistant,
such as significantly higher ratings for future use, perceived impact
on design quality, and confidence in creating professional GUIs.
While NASA TLX scores for mental and temporal demands, effort,
and frustration were lower for the treatment group, these differ-
ences were not significant. However, both groups experienced high
mental and temporal demands potentially due to the extent of the
tasks (e.g., creating three GUIs, each with ten user stories). This
intentional aspect of the study design was fine-tuned in pre-tests
to ensure that the treatment group supported by LLM-based GUI
component generation would not run out of tasks.

When analyzing the cases in which crowd-workers rated GUI
prototypes created in the control group as completing the user
story to a higher degree in comparison to the treatment group,
the presence of a text label often played a crucial role. Figure 12
illustrates such an example where a button with a text label ("save for
later") was created for the user story by a participant in the control
group (left). At the same time, an icon button with a bookmark icon
was used in the treatment group (right). Almost all GUI prototypes
in the treatment group featured a bookmark icon for this user story,
and our tests have shown that our LLM-based approach generates
bookmark icon buttons almost consistently for this user story.

This motivates two discussion points. Firstly, to what extent
were crowd-workers influenced by explicit textual mentions in the
components, especially when comparing them with aesthetically
styled components such as the illustrated icon button? Secondly,
how the temperature setting in our LLM-based approach led to the
generation of similar recommendations when the solution space
was somewhat limited, particularly when participants clicked "Gen-
erate Another Recommendation". We recommend balancing the gen-
eration of more diverse additional recommendations for further
studies. Potential solutions include: evaluating adjusting the tem-
perature setting in iterative component generation, enabling the
approach to generate multiple implementations of the same user
story while instructing it to produce distinct variants, or allowing
participants to provide further LLM instructions in addition to the
user story. Future users could, for example, restrict the next ver-
sion of the same component generation by specifying instructions
such as "include a label in the next generation". While participants
expressed great appreciation for the automated component genera-
tion, e.g., P12: "Straightforward to use and it gave good advice most
of the time, excellent starting point for most stories", P19: "Really good
recommendations.", P10: "So much work was reduced", there were
improvements mentioned in regard to the discussed variations of
recommendations. Participants, such as P7: "[I] would have liked
to have had an option to adjust the task that is sent to the AI", fre-
quently requested more variation in the recommendations. In fact,
this suggestions was among the most mentioned improvements by
participants - second only to reducing component generation time.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Kretzer, F.; Kolthoff, K.; Bartelt, C.; Ponzetto, S. P.; Maedche, A.

Figure 12: Example of an instance where a user story (second
app, the third user story) was rated more complete in the
control group. The control group tended to use buttons with
a clear call to action (e.g. “save for later”), whereas in the
treatment group our approach mostly created bookmark icon
buttons representing a concise but more implicit implemen-
tation of the user story. Figure contains Material 3 Design Kit
[24] components from Google, used under CC BY 4.0.

6.3 Effectiveness of Generating User Stories
from GUI Components (𝑅𝑄4)

In the third study, we investigated the effectiveness of our approach
for automatically deriving user stories from GUI prototypes. Crowd-
workers rated the user stories created by the approach high on rele-
vance, clarity, precision, and specificity (all with a median of seven
on a nine-point Likert scale), indicating that the generated stories
align well with the functionality and purpose of the GUIs. However,
ratings for professionalism (six-point median) were slightly lower,
raising questions about, e.g., the tone and depth of the generated
user stories. While overall median ratings across user stories and
GUIs were high, it is worth looking at the ratings of user stories
derived from individual GUIs. In the results in figure 11, we have
intentionally shown ratings of user stories that emerged from four
individual GUI prototypes. Here, the presented GUIs resulted in
variations in the ratings, showing that the quality of the user stories
created varies depending on the underlying GUI. This variability
may stem from differences in GUI complexity, ambiguity, or the
LLMs’ ability to generate user stories for specific tasks, which were
more likely to be included in its training data. Despite these limita-
tions, the findings underscore the potential of LLM-based tools to
support early-stage documentation and design workflows. Integrat-
ing such tools into iterative design processes could reduce manual
effort, enabling teams to focus on higher-level design challenges.

6.4 Generating GUI Prototypes from User
Stories or Vice-Versa?

Our results show that our LLM-based approach enables the effec-
tive creation of GUI prototypes (components), mainly desired by
UX designers and partly by product owners, and effectively derives
user stories from GUI prototypes, which product owners mainly
desired in our interviews. Readers may wonder that it is certainly
not possible to do both simultaneously and might sense a certain
chicken-and-egg problem. Based on our interviews, we identified
two options for integrating both features. We see our assistant (in
the treatment configuration) as a mediator for both roles through
the two described features. While product owners define user sto-
ries, the GUI prototyping assistant could generate GUI components
in parallel. Vice versa, the UX designer could create design drafts
from which the assistant derives user stories for the product man-
ager. In addition, GUI prototypes are often created in an iterative
process, so it is conceivable that product owners formulate an ini-
tial user story, and the assistant creates a design proposal, which
UX designers subsequently refine. The created refinement is then
used to generate more precise user stories. Therefore, we regard
the features of automatic GUI (component) creation and user story
creation as one of the leading collaboration features.

6.5 LLM-Based GUI Prototyping for Future
Research and Practice

Our study provides insights that can inform both researchers and
practitioners. Next, we discuss three aspects in which our findings
can contribute to future research and design practices.

First, our qualitative interviews revealed important design ra-
tionales for AI-based GUI prototyping. While prior research has
explored AI integration in UX workflows [30], our findings high-
light additional requirements emerging from cross-functional col-
laboration between UX designers, product owners, and software
developers. Notably, we did not expect the sixth design rationale —
the need for product owners to automatically derive user stories
from GUIs. This underscores the necessity for AI-based prototyping
tools to accommodate diverse stakeholder needs when multiple
roles interact in the prototyping process (see section 6.4).

Second, our study provides insights into the use of AI-based
prototyping tools under controlled laboratory conditions. Findings
indicate that participants effectively understood the iterative ap-
proach of generating individual GUI components from granular
user stories (in contrast to, e.g., creating a full GUI from a single text
description). This structured method allowed them to incrementally
build more coherent and higher-quality GUI prototypes compared
to a group without AI-based prototyping support. Additionally,
our study revealed unexpected requirements, such as the need for
future generative prototyping tools to offer greater variation in
generated GUI components (see section 6.1).

Lastly, a recurring challenge across disciplines is to structure
abstract problems as textual representations that enable LLMs to
process them effectively. In our case, this involved deriving user
stories for GUIs in prototyping tools like Figma at the component
level or, conversely, recognizing fulfilled user stories and gener-
ating corresponding components. Our work contributes to future

An LLM-Based Assistant for Cross-Functional Integration in Software Development CHI ’25, April 26–May 01, 2025, Yokohama, Japan

research by providing a structured approach to bridging user sto-
ries and GUI prototyping through LLMs. We demonstrate textual
representations to support requirement recognition and component
generation, addressing gaps in the fragmented tool landscape of
GUI development. Our findings enabling further exploration of how
LLM-based GUI prototyping support can be integrated into soft-
ware development workflows. Our work not only provides insights
into structuring textual representations based on the example of Ma-
terial Design (see figure 5), but also offers insights into optimizing
these representations to reduce token usage.

7 Threats to Validity
In the following, we provide a collection of threats to internal
validity, such as selection biases, and external validity, such as
threats to generalizability. Furthermore, we briefly explain how
they may influence the results of our paper.

7.1 Internal Validity
Measuring Treatment Completeness. We evaluated several aspects
such as the detection, matching, and component generation mech-
anisms as well as the overall design of the proposed plug-in within
an user study. Therefore, the contribution of each of these aspects
for the quality of the created GUI prototypes is not entirely clear.
To address this issue, we initially conducted the evaluation of LLM-
based generation of GUI components based on user stories ex ante
and showed its effectiveness, indicating that a large contribution for
the improvement of the quality of the GUI prototypes and the im-
provements in terms of efficiency are mainly due to the automatic
GUI component generation.

7.2 External Validity
Artificial Lab Setting. The user study was conducted in an artificial
lab setting including a less representative population of participants
as a proxy for UX designers regarding the group (i.e. undergradu-
ate and graduate students) as well as the young age distribution
(25.4 years on average). However, we primarily utilized this con-
ducted user study to evaluate various usability aspects associated
with the proposed approach. To address the cross-functional nature
of GUI prototyping, we conducted interviews with stakeholders
from different roles (UX, PD, SD) to ensure that the assistant’s
design rationals reflect the perspectives of diverse stakeholders.
To strengthen the evaluation of the quality of generated user sto-
ries and generated GUI components, we conducted an additional
annotation of the generated artifacts with self-reported UI/UX pro-
fessionals on Prolific [48]. The obtained results show the generation
effectiveness. Nonetheless, we did not the evaluate the assistant in
a co-design situation involving multiple stakeholders at the same
time, which represents an important direction for future work to
explore its potential in collaborative prototyping contexts.
Artificial Functional User Stories. To evaluate our proposed approach,
we heavily relied on the publicly available user story dataset from
Kolthoff et al. [35], which is the only dataset available combining
user stories with GUI prototypes. These user stories solely focus
on functional aspects of a single GUI prototype. In more natural
settings, user stories often span across several GUI prototypes as
well as encompass non-functional aspects. However, in our work

we decided to initially focus on functional user stories for reducing
complexity, yet still provide valuable support and facilitate the
creation of GUI prototypes. In addition, the employed US dataset is
validated and filtered for quality [35].
High-Level GUI Descriptions for Component Generation. To provide
additional context for the generation of GUI components as part of
its evaluation, we employed additional high-level GUI descriptions
as an input to the ZS prompt for the LLM. Moreover, in the user
study, the context of the current GUI prototype status could mean-
ingfully be utilized by the LLM, for example, to adapt the generated
GUI components to the GUI prototype and to predict accurate posi-
tioning of the GUI components. While these brief GUI descriptions
can easily be obtained in practical GUI prototyping settings, in the
conducted evaluation they were created by a research assistant and
evaluated for accuracy by the paper authors.
Participants Interview. There is a potential sample bias in recruit-
ing UX professionals, product owners and software developers for
the initial interviews which possess limited diversity in terms of
company size, geographic location and experience. However, we
included multiple distinct participants for each of the roles.

8 Limitations And Future Work
Mobile GUIs and Limited Component Library. Since our approaches
focuses solely on mobile GUIs, other GUI types with varying charac-
teristics (e.g., screen size, domains etc.) are disregarded. In addition,
we heavily relied on mobile GUIs taken from the Rico dataset [17],
which has a restricted scope and usefulness. However, the Rico
dataset is the largest publicly available GUI dataset and encom-
passes GUIs from over 27 different domains. In the future, we plan
to extend our approach to more diverse GUI types. In addition,
the considered GUI component library is restricted in size and
configuration complexity. To enable a meaningful support, we al-
ready included over 89 different MD GUI components and 100 icons,
however, we plan to further expand both libraries to additionally
enhance the support capabilities.
Static GUI Prototypes. In this work, we proposed a support approach
for creating single static GUI prototypes and the resulting format
does not allow for interaction. Usually, the interactions considered
in practice span over multiple GUIs and maintaining consistency
across screens within an application is of high importance. In order
to improve the usefulness and application scenarios of the proposed
approach, we plan to further extend our LLM-based approaches and
plug-in to additionally enable the support of user stories spanning
across several GUI prototype screens.
Functional User Stories. Since the current approach solely provides
support for functional user stories, the application scenarios are
limited. However, particularly for creating initial GUI prototypes
for rapidly obtaining customer feedback regarding the functional-
ity, our approach can be applied. In such an initial requirements
elicitation scenario where the GUI prototypes act as a functional
requirements communication artifact, the detailed design aspects
are of less significant role. For future work, we plan to extend the
support to also non-functional user stories, for example, includ-
ing styling aspects such as coloring and corporate design, among
others. However, styling aspects of GUI components could also be
integrated by replacing the component library within our approach.

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Kretzer, F.; Kolthoff, K.; Bartelt, C.; Ponzetto, S. P.; Maedche, A.

Therefore, the assistant could be extended to enable providing
textual prompts for stylistic or design requirements. To increase
flexibility, another extension could be that the assistant provides
multiple variants of the generated component.
Handover, Versioning and Commenting. One additional limitation is
that we could only thoroughly implement selected collaboration
requirements for the version of the assistant in this paper. In the
interviews, both UX designers and product owners described the
versioning of user stories, commenting on user stories combined
with their components in the GUI prototype, and an improved
handover (e.g., of parameters to software developers) compared
to the existing functionalities in Figma as further requirements.
Versioning was addressed in our intervention, but the implemen-
tation of our approach in its current form is limited to creating
new components and cannot adapt existing components. We plan
to address this in the future. Commenting functionality was not
implemented, but as Figma already supports commenting compo-
nents, it is feasible to link user stories to components and leverage
Figma’s commenting feature. Finally, the extraction and handover
of data to developers were not included, but tools like Figma and
Relay [23] already provide solutions for this.

9 Conclusion
In this paper, we provide insights into challenges from practice and
provide design rationales for an effective LLM-based GUI prototyp-
ing assistant tailored for UX designers working within software
development teams. We extend and further evaluate the LLM-based
approach of Kolthoff et al. [35], enabling user story detection, user
story matching, and GUI (component) generation for GUI prototyp-
ing. Building on this work, we show that the LLM-based approach
can successfully generate GUI component recommendations from
user stories. Furthermore, we evaluate and optimize the textual
representation of the GUI prototypes from Figma and component
library for the LLM, reducing the necessary amount of tokens and
making our enhanced approach feasible for contexts with limited
available resources. We present a novel LLM-based assistant as a
plug-in for Figma with role-specific functionalities. Particularly, we
found that participants using our assistant completed the given user
stories to a higher degree. Using the treatment, our assistant also
led to significantly higher satisfaction of experts with the created
GUI prototype designs. Furthermore, using the user story detec-
tion, matching, and automated GUI (component) generation, our
participants reported lower task load values, significantly higher
confidence in creating professionally appearing GUI prototypes,
high interest in future use of the assistant, and a higher impact on
design quality. Inspired by real-world requirements from product
owners collected in our interviews, we successfully expanded the
approach to derive user stories directly from GUI prototypes that
can then be directly refined by product owners. In our evaluation,
large parts of the user stories were rated as specific, explicit, and
derived from identifiable GUI components.

Our results show that LLM-based user story detection, matching,
and the automated GUI (component) generation can be integrated
directly into Figma providing a resource-efficiently prototyping
assistant to increase user story completion and facilitating the
integration of user stories and GUI prototypes.

References
[1] Diego Martin Arroyo, Janis Postels, and Federico Tombari. 2021. Variational

Transformer Networks for Layout Generation . In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los
Alamitos, CA, USA, 13642–13652. doi:10.1109/CVPR46437.2021.01343

[2] Atlassian Corporation. 2024. JIRA. www.atlassian.com/software/jira Accessed:
2024-09-11.

[3] Dirk Baumer, W Bischofberger, Horst Lichter, and Heinz Zullighoven. 1996. User
interface prototyping-concepts, tools, and experience. In Proceedings of IEEE 18th
International Conference on Software Engineering. IEEE, IEEE Computer Society,
Los Alamitos, CA, USA, 532–541. doi:10.1109/ICSE.1996.493447

[4] Farnaz Behrang, Steven P Reiss, and Alessandro Orso. 2018. GUIfetch: supporting
app design and development through GUI search. In Proceedings of the 5th Inter-
national Conference on Mobile Software Engineering and Systems (Gothenburg,
Sweden) (MOBILESoft ’18). Association for Computing Machinery, New York,
NY, USA, 236–246. doi:10.1145/3197231.3197244

[5] Carlos Bernal-Cárdenas, Kevin Moran, Michele Tufano, Zichang Liu, Linyong
Nan, Zhehan Shi, and Denys Poshyvanyk. 2019. Guigle: a GUI search engine for
Android apps. In Proceedings of the 41st International Conference on Software En-
gineering: Companion Proceedings (ICSE ’19). IEEE, IEEE Press, Montreal, Quebec,
Canada, 71–74. doi:10.1109/ICSE-Companion.2019.00041

[6] Andrzej Białecki, Robert Muir, Grant Ingersoll, and Lucid Imagination. 2012.
Apache lucene 4. In SIGIR 2012 workshop on open source information retrieval
(Portland, Oregon) (Proceedings of the SIGIR 2012 Workshop on Open Source In-
formation Retrieval). Department of Computer Science, University of Otago,
Dunedin, New Zealand, 17.

[7] Elizabeth Bjarnason, Krzysztof Wnuk, and Björn Regnell. 2011. A case study on
benefits and side-effects of agile practices in large-scale requirements engineering.
In Proceedings of the 1st Workshop on Agile Requirements Engineering (Lancaster,
United Kingdom) (AREW ’11). Association for Computing Machinery, New York,
NY, USA, Article 3, 5 pages. doi:10.1145/2068783.2068786

[8] Paul Brie, Nicolas Burny, Arthur Sluÿters, and Jean Vanderdonckt. 2023. Evaluat-
ing a large language model on searching for gui layouts. Proceedings of the ACM
on Human-Computer Interaction 7, EICS (2023), 1–37.

[9] John Brooke. 1996. SUS: A ’Quick and Dirty’ Usability Scale. In Usability
Evaluation In Industry (0 ed.), Patrick W. Jordan, B. Thomas, Ian Lyall McClelland,
and Bernard Weerdmeester (Eds.). CRC Press, London, England, 207–212. doi:10.
1201/9781498710411-35

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[11] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif
Seif El-Nasr. 2021. VINS: Visual Search for Mobile User Interface Design. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 423, 14 pages. doi:10.1145/3411764.3445762

[12] Erin A. Carroll, Celine Latulipe, Richard Fung, and Michael Terry. 2009. Creativity
factor evaluation: towards a standardized survey metric for creativity support.
In Proceedings of the seventh ACM conference on Creativity and cognition. ACM,
Berkeley California USA, 127–136. doi:10.1145/1640233.1640255

[13] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao,
and Jinshui Wang. 2019. Gallery DC: Design Search and Knowledge Discovery
through Auto-created GUI Component Gallery. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1–22.

[14] Mike Cohn. 2004. User Stories Applied: For Agile Software Development. Addison
Wesley Longman Publishing Co., Inc., USA.

[15] Sourav Debnath, Paola Spoletini, and Alessio Ferrari. 2021. From Ideas to
Expressed Needs: an Empirical Study on the Evolution of Requirements during
Elicitation . In 2021 IEEE 29th International Requirements Engineering Conference
(RE). IEEE Computer Society, Los Alamitos, CA, USA, 233–244. doi:10.1109/
RE51729.2021.00028

[16] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology (Québec City, QC,
Canada) (UIST ’17). Association for Computing Machinery, New York, NY, USA,
845–854. doi:10.1145/3126594.3126651

[17] Biplab Deka, Zifeng Huang, Chad Franzen, Jeffrey Nichols, Yang Li, and Ranjitha
Kumar. 2017. ZIPT: Zero-Integration Performance Testing of Mobile App Designs.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology (UIST ’17). Association for Computing Machinery, New York, NY,
USA, 727–736. doi:10.1145/3126594.3126647

[18] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming
Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and
Zhifang Sui. 2022. A Survey on In-context Learning. arXiv:2301.00234 [cs.CL]
https://arxiv.org/abs/2301.00234

https://doi.org/10.1109/CVPR46437.2021.01343
www.atlassian.com/software/jira
https://doi.org/10.1109/ICSE.1996.493447
https://doi.org/10.1145/3197231.3197244
https://doi.org/10.1109/ICSE-Companion.2019.00041
https://doi.org/10.1145/2068783.2068786
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1145/3411764.3445762
https://doi.org/10.1145/1640233.1640255
https://doi.org/10.1109/RE51729.2021.00028
https://doi.org/10.1109/RE51729.2021.00028
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126647
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234

An LLM-Based Assistant for Cross-Functional Integration in Software Development CHI ’25, April 26–May 01, 2025, Yokohama, Japan

[19] Benjamin D Douglas, Patrick J Ewell, and Markus Brauer. 2023. Data qual-
ity in online human-subjects research: Comparisons between MTurk, Prolific,
CloudResearch, Qualtrics, and SONA. Plos one 18, 3 (2023), e0279720.

[20] Sidong Feng, Mingyue Yuan, Jieshan Chen, Zhenchang Xing, and Chunyang
Chen. 2023. Designing with Language: Wireframing UI Design Intent with
Generative Large Language Models. arXiv:2312.07755 [cs.HC] https://arxiv.org/
abs/2312.07755

[21] Figma, Inc.. 2024. Figma. www.figma.com Accessed: 2024-09-11.
[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (2020), 139–144.

[23] Google LLC. 2024. Relay. www.relay.material.io Accessed: 2024-09-11.
[24] Google LLC. 2025. Material 3 Design Kit. https://m3.material.io/blog/material-

3-figma-design-kit Accessed: 2025-01-20.
[25] Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S Davis, Vijay Mahade-

van, and Abhinav Shrivastava. 2021. Layouttransformer: Layout generation
and completion with self-attention. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. IEEE Computer Society, Los Alamitos, CA, USA,
1004–1014. doi:10.1109/ICCV48922.2021.00104

[26] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (Oct.
2006), 904–908. doi:10.1177/154193120605000909

[27] Forrest Huang, John F Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based user
interface retrieval. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–10. doi:10.1145/3290605.3300334

[28] Forrest Huang, Gang Li, Xin Zhou, John F. Canny, and Yang Li. 2021. Creating
User Interface Mock-ups from High-Level Text Descriptions with Deep-Learning
Models. arXiv:2110.07775 [cs.HC] https://arxiv.org/abs/2110.07775

[29] Andrej Karpathy. 2022. minGPT - GitHub Repository. https://github.com/
karpathy/minGPT. Accessed: 2024-07-20.

[30] Tiffany Knearem, Mohammed Khwaja, Yuling Gao, Frank Bentley, and Clara E
Kliman-Silver. 2023. Exploring the future of design tooling: The role of artificial
intelligence in tools for user experience professionals. In Extended Abstracts of
the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI EA ’23). Association for Computing Machinery, New York, NY,
USA, Article 384, 6 pages. doi:10.1145/3544549.3573874

[31] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[32] Kristian Kolthoff, Christian Bartelt, and Simone Paolo Ponzetto. 2021. Auto-
mated Retrieval of Graphical User Interface Prototypes from Natural Language
Requirements. In International Conference on Applications of Natural Language to
Information Systems. Springer, Springer International Publishing, Cham, 376–384.

[33] Kristian Kolthoff, Christian Bartelt, and Simone Paolo Ponzetto. 2021. GUI2WiRe:
rapid wireframing with a mined and large-scale GUI repository using natu-
ral language requirements. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering (Virtual Event, Australia) (ASE
’20). Association for Computing Machinery, New York, NY, USA, 1297–1301.
doi:10.1145/3324884.3415289

[34] Kristian Kolthoff, Christian Bartelt, and Simone Paolo Ponzetto. 2023. Data-
driven prototyping via natural-language-based GUI retrieval. Automated Software
Engineering 30, 1 (2023), 13.

[35] Kristian Kolthoff, Felix Kretzer, Christian Bartelt, Alexander Maedche, and
Simone Paolo Ponzetto. 2024. Interlinking User Stories and GUI Prototyp-
ing: A Semi-Automatic LLM-Based Approach. In 2024 IEEE 32nd International
Requirements Engineering Conference (RE). IEEE, Reykjavik, Iceland, 380–388.
doi:10.1109/RE59067.2024.00045

[36] Marja Käpyaho and Marjo Kauppinen. 2015. Agile requirements engineering
with prototyping: A case study . In 2015 IEEE 23rd International Requirements
Engineering Conference (RE). IEEE Computer Society, Los Alamitos, CA, USA,
334–343. doi:10.1109/RE.2015.7320450

[37] Chunggi Lee, Sanghoon Kim, Dongyun Han, Hongjun Yang, Young-Woo Park,
Bum Chul Kwon, and Sungahn Ko. 2020. GUIComp: A GUI Design Assistant with
Real-Time, Multi-Faceted Feedback. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Associa-
tion for Computing Machinery, New York, NY, USA, 1–13. doi:10.1145/3313831.
3376327

[38] Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. 2021.
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 578, 15 pages. doi:10.1145/3411764.3445049

[39] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),

1–35.
[40] Markus Mannio and Uolevi Nikula. 2001. Requirements Elicitation Using a Com-

bination of Prototypes and Scenarios. In Workshop em Engenharia de Requisitos.
Workshop on Requirements Engineering 2001, Buenos Aires, Argentina, 283–296.
https://api.semanticscholar.org/CorpusID:15021206

[41] Soumik Mohian and Christoph Csallner. 2022. PSDoodle: Searching for App
Screens via Interactive Sketching . In 2022 IEEE/ACM 9th International Conference
on Mobile Software Engineering and Systems (MobileSoft). IEEE Computer Society,
Los Alamitos, CA, USA, 84–88. doi:10.1145/3524613.3527807

[42] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2015. DesignScape:
Design with Interactive Layout Suggestions. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (Seoul, Republic of
Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA,
1221–1224. doi:10.1145/2702123.2702149

[43] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https://arxiv.
org/abs/2303.08774

[44] OpenAI. 2024. GPT-4o. https://openai.com/index/hello-gpt-4o/. Accessed:
2024-09-11.

[45] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2014. Learning
layouts for single-pagegraphic designs. IEEE transactions on visualization and
computer graphics 20, 8 (2014), 1200–1213.

[46] Carla Pacheco, Ivan García, and Miryam Reyes. 2018. Requirements elicitation
techniques: a systematic literature review based on the maturity of the techniques.
IET Software 12, 4 (2018), 365–378. doi:10.1049/iet-sen.2017.0144

[47] Srishti Palani, David Ledo, George Fitzmaurice, and Fraser Anderson. 2022. ”I
don’t want to feel like I’m working in a 1960s factory”: The Practitioner Per-
spective on Creativity Support Tool Adoption. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
379, 18 pages. doi:10.1145/3491102.3501933

[48] Prolific Academic Ltd. 2024. Prolific. www.prolific.co Accessed: 2024-09-11.
[49] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[50] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,
Mike Gatford, et al. 1995. Okapi at TREC-3. Nist Special Publication Sp 109 (1995),
109.

[51] Thiago Rocha Silva, Marco Winckler, and Hallvard Trætteberg. 2019. Ensuring
the Consistency Between User Requirements and Graphical User Interfaces: A
Behavior-Based Automated Approach. In Computational Science and Its Applica-
tions – ICCSA 2019, Sanjay Misra, Osvaldo Gervasi, Beniamino Murgante, Elena
Stankova, Vladimir Korkhov, Carmelo Torre, Ana Maria A.C. Rocha, David Taniar,
Bernady O. Apduhan, and Eufemia Tarantino (Eds.). Springer International Pub-
lishing, Cham, 616–632.

[52] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models . In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
IEEE Computer Society, Los Alamitos, CA, USA, 10684–10695. doi:10.1109/
CVPR52688.2022.01042

[53] Jim Rudd, Ken Stern, and Scott Isensee. 1996. Low vs. high-fidelity prototyping
debate. interactions 3, 1 (1996), 76–85.

[54] Kashyap Todi, Daryl Weir, and Antti Oulasvirta. 2016. Sketchplore: Sketch and
Explore with a Layout Optimiser. In Proceedings of the 2016 ACM Conference on
Designing Interactive Systems (Brisbane, QLD, Australia) (DIS ’16). Association
for Computing Machinery, New York, NY, USA, 543–555. doi:10.1145/2901790.
2901817

[55] Jialiang Wei, Anne-Lise Courbis, Thomas Lambolais, Binbin Xu, Pierre Louis
Bernard, and Gerard Dray. 2023. Boosting GUI Prototyping with Diffusion
Models . In 2023 IEEE 31st International Requirements Engineering Conference (RE).
IEEE Computer Society, Los Alamitos, CA, USA, 275–280. doi:10.1109/RE57278.
2023.00035

[56] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fe-
dus. 2022. Emergent Abilities of Large Language Models. arXiv:2206.07682 [cs.CL]
https://arxiv.org/abs/2206.07682

[57] Peter Windsor and Graham Storrs. 1992. Prototyping user interfaces. In IEE Col-
loquium on Software Prototyping and Evolutionary Development. IET, Institution
of Electrical Engineers, Savoy Place, London WC2R OBL, 4/1–414.

[58] Mingyue Yuan, Jieshan Chen, and Aaron Quigley. 2024. MAxPrototyper: A
Multi-Agent Generation System for Interactive User Interface Prototyping.
arXiv:2405.07131 [cs.HC] https://arxiv.org/abs/2405.07131

[59] Tianming Zhao, Chunyang Chen, Yuanning Liu, and Xiaodong Zhu. 2021. Guigan:
Learning to Generate GUI Designs Using Generative Adversarial Networks. In
Proceedings of the 43rd International Conference on Software Engineering (ICSE
’21). IEEE Press, Madrid, Spain, 748–760. doi:10.1109/ICSE43902.2021.00074

https://arxiv.org/abs/2312.07755
https://arxiv.org/abs/2312.07755
https://arxiv.org/abs/2312.07755
www.figma.com
www.relay.material.io
https://m3.material.io/blog/material-3-figma-design-kit
https://m3.material.io/blog/material-3-figma-design-kit
https://doi.org/10.1109/ICCV48922.2021.00104
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1145/3290605.3300334
https://arxiv.org/abs/2110.07775
https://arxiv.org/abs/2110.07775
https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT
https://doi.org/10.1145/3544549.3573874
https://doi.org/10.1145/3324884.3415289
https://doi.org/10.1109/RE59067.2024.00045
https://doi.org/10.1109/RE.2015.7320450
https://doi.org/10.1145/3313831.3376327
https://doi.org/10.1145/3313831.3376327
https://doi.org/10.1145/3411764.3445049
https://api.semanticscholar.org/CorpusID:15021206
https://doi.org/10.1145/3524613.3527807
https://doi.org/10.1145/2702123.2702149
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.1049/iet-sen.2017.0144
https://doi.org/10.1145/3491102.3501933
www.prolific.co
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1145/2901790.2901817
https://doi.org/10.1145/2901790.2901817
https://doi.org/10.1109/RE57278.2023.00035
https://doi.org/10.1109/RE57278.2023.00035
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2405.07131
https://arxiv.org/abs/2405.07131
https://doi.org/10.1109/ICSE43902.2021.00074

	Abstract
	1 Introduction
	2 Related Work
	2.1 GUI Prototyping Assistants
	2.2 Automated GUI Generation
	2.3 GUI Retrieval

	3 System Design
	3.1 Design Rationales
	3.2 Initial System Design
	3.3 Refined System Design
	3.4 LLM-Based Approaches

	4 Evaluation Studies
	4.1 Recommendation Generation (RQ1))
	4.2 Assistant Evaluation (RQ2, RQ3)
	4.3 User Stories Generation (RQ4)

	5 Results
	5.1 Recommendation Generation (RQ1)
	5.2 Assistant Evaluation (RQ2, RQ3)
	5.3 User Stories Generation (RQ4)

	6 Discussion
	6.1 Effectiveness of Generating GUI Prototype Components (RQ1)
	6.2 Impact of the LLM-Based Assistant on Prototype Quality and User Experience (RQ2, RQ3)
	6.3 Effectiveness of Generating User Stories from GUI Components (RQ4)
	6.4 Generating GUI Prototypes from User Stories or Vice-Versa?
	6.5 LLM-Based GUI Prototyping for Future Research and Practice

	7 Threats to Validity
	7.1 Internal Validity
	7.2 External Validity

	8 Limitations And Future Work
	9 Conclusion
	References

