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Abstract
We consider an N -player hierarchical game in which the i th player’s objective
comprises of an expectation-valued term, parametrized by rival decisions, and a hier-
archical term. Such a framework allows for capturing a broad range of stochastic
hierarchical optimization problems, Stackelberg equilibrium problems, and leader-
follower games.We develop an iteratively regularized and smoothed variance-reduced
modified extragradient framework for iteratively approaching hierarchical equilibria
in a stochastic setting. We equip our analysis with rate statements, complexity guaran-
tees, and almost-sure convergence results. We then extend these statements to settings
where the lower-level problem is solved inexactly and provide the corresponding rate
and complexity statements. Our model framework encompasses many game theoretic
equilibrium problems studied in the context of power markets. We present a realistic
application to the study of virtual power plants, emphasizing the role of hierarchi-
cal decision making and regularization. Preliminary numerics suggest that empirical
behavior compares well with theoretical guarantees.
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1 Introduction

In this paper we consider a class of stochastic hierarchical optimization problems
and games, generalizing many learning problems involving sequential optimization.
Consider a collection of N -agents, where the i th agent solves the optimization problem
parametrized by rival decisions x−i :

min
xi ,yi

{�i (xi , x−i , yi ) � fi (xi , x−i )+ gi (xi , yi )}, s.t. xi ∈ Xi , yi ∈ SOL(φi (xi , ·),Yi ).

(P)

We let i ∈ I � {1, . . . , N } represent a set of leaders, characterized by two
loss functions: (i) fi (x) � Eξ [Fi (x, ξ)], depending on the entire action profile
x � (xi , x−i ) = (x1, . . . , xN ) ∈ X �

∏
i∈I Xi ; (ii) gi (xi , yi ) is a deterministic

function, jointly controlled by leader i’s decision variable xi ∈ Xi and a follower’s
decision variable yi ∈ Yi . Each leader’s optimization problem exhibits two sets of
private constraints, the first given by xi ∈ Xi ⊆ Rni , while the second are equilibrium
constraints represented by the solution set of a parameterized variational inequality
VI(φi (xi , ·),Yi ), which reads as

Find yi (xi ) ∈ Yi satisfying 〈φi (xi , yi (xi )), yi − yi (xi )〉 ≥ 0 ∀yi ∈ Yi . (1)

We denote the set of points yi satisfying this condition by SOL(φi (xi , ·),Yi ). This
VI is defined in terms of a closed convex set Yi ⊆ Rmi and an expectation-valued
mapping φi (x, yi ) � Eξ [Φi (x, yi , ξ)]. All the problem data are affected by random
noise represented by a random variable ξ : Ω → Ξ , defined on a probability space
(Ω,F,P) and taking values in a measurable space Ξ . Such hierarchical optimization
problems traditionally play a key role in operations research and engineering, where
they are deeply connected to bilevel programming [19] and mathematical programs
under equilibrium constraints (MPEC) [51]. In fact, the canonical MPEC formulation
is obtained from (P) when N = 1. The multi-agent formulation (P) also relates to
leader-follower and Stackelberg games (cf. [3, 17, 45, 59, 64]) which are a traditional
model in economics, and also have received increased attention in machine learning
recently [5, 9, 25, 50]. Economic equilibria in power markets have been extensively
studied using a complementarity framework (cf. [27, 32–34]). More recently, stochas-
tic generalizations have been examined where uncertainty in price and cost functions
have been addressed [42, 63]. A recent survey on this topic is [7]. As an immediate
application of our algorithmic framework, we present in Sect. 5 a model inspired by
Hobbs and Pang [34], but suitably modified to account for uncertainty in prices and
costs, multi-period settings with ramping constraints, and the incorporation of virtual
power plants (VPPs) (see [22, 53] for a review of VPPs and power markets).
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1.1 Our Contributions and RelatedWork

1.1.1 Hierarchical Optimization, Games and Uncertain Generalizations

To date, hierarchical optimization has been studied under the umbrella of bilevel
programming [19, 20] and mathematical programs with equilibrium constraints
(MPECs) [51, 57]. Algorithmic schemes for resolving MPECs where the lower-
level problem is an optimization problem, or a variational inequality, have largely
emphasized either implicit approaches [57] or regularization/penalization-based tech-
niques [36, 49, 51]. Yet, there appears to have been a glaring lacuna in non-asymptotic
rate and complexity guarantees for resolving hierarchical optimization and their
stochastic and game-theoretic variants. This gap has been partially addressed in the
recent papers [15, 16].Both papers present variance-reduced solution strategies for var-
ious versions of hierarchical optimization problems andgames, respectively, relying on
variance reduction via a sequence of increasing mini-batches. Finite-time and almost
sure convergence to solutions is proved under convexity/monotonicity assumptions on
the problem data. However, the framework for monotone games in [15] requires exact
solutions of lower-level problems, significantly impacting its efficient implementation
in large-scale settings. We complement this literature by developing a novel regular-
ized smoothed variance reduction method for the family of hierarchical games (P),
building on a disciplined operator splitting approach. Notably, we provide an inexact
generalization allowing for random error-afflicted lower-level solutions, addressing
a significant shortcoming in [15]. Specifically, in this paper we improve [15] along
two important dimensions: (i) First, we allow for inexact resolution of lower-level
problems to accommodate large-scale stochastic follower problems; (ii) Second, we
provide a novel variance-reduction framework for addressing this problem. Despite
the need for inexactness, our statements match the state-of-the-art both in terms of rate
and oracle complexity. Algorithmically, these advancements are achieved via a novel
stochastic operator splitting approach that combines ideas from iterative smoothing
and regularization [72], with modern variance reduction approaches originating in
machine learning [31].

1.1.2 Zeroth-Order Optimization, Smoothing, and Regularization

Zeroth-order (gradient-free) optimization is being increasingly embraced for solving
machine learning problems where explicit expressions of the gradients are difficult or
infeasible to obtain. In hierarchical optimization problems, this is particularly relevant
when solutions of the lower level problem are injected into the leader’s upper-level
problem. In machine learning, this problem is known as approximating the hypergra-
dient. Various techniques for estimating this object have been studied recently, ranging
from truncated von Neuman series [29] and fully first-order methods [46]. Instead of
computationally expensive first-order (or higher) information about the problem data,
we develop an online stochastic approximation approach based solely on function
evaluations in order to approximate the directional derivative of the coupling function
between the upper and the lower level. Approximating the directional derivative of
the thus obtained implicit function has a long history [65] and has been employed for
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resolving stochastic optimization [47, 69, 70] and variational inequality problems [71,
72].

1.1.3 Variance Reduction

Variance reduction is a commonly employed method exploiting the finite-sum struc-
ture of variational problems arising inmachine learning and engineering. The classical
stochastic variance reduced gradient (SVRG) [39] is embedded within a double loop
structure and tailored to the prototypical finite-sum structure in empirical risk min-
imization. Indeed, in the classical SVRG formulation full gradients are computed
“from time-to-time” in the outer loop while cheap variance reduced gradients are used
in the frequently activated inner loop subroutine. This construction has been extended
to saddle-point problems and stochastic monotone inclusions in [58]. Extensions to
monotone mixed-variational inequality problems were recently provided in [1, 2, 12].
In contrast, we consider stochastic hierarchical games over general sample spaces,
complicated by the presence of nested optimization problems embodied by the inter-
action between leaders and followers. While the assumptions we make in this work
allow us to recast the problem as a mixed variational inequality, several challenges
persist. First, subgradients of gi (·, yi (·)) are unavailable; Second, enlisting smoothing
approaches requires yi (xi ), unavailable in closed form; Third, we are not restricted
to finite-sum regimes and allow for general sample spaces by employing increasingly
large batch-sizes to approximate the gradient in the outer loop.

2 Preliminaries

In this section, we articulate the standing assumptions employed in this paper and
introduce our notation. The decision set of leader i is a subset Xi in Rni . We let
X �

∏
i∈I Xi represent the set of strategy profiles of the leaders and identify it with

a subset of Rn , where n �
∑

i∈I ni . For any d ≥ 1, we let Bd � {x ∈ Rd | ‖x‖ ≤ 1}
denote the unit ball inRd . We start by introducing a basic assumption on the follower’s
problem. It bears reminding that the VI representation of the follower problem allows
for capturing a range of problems, ranging from smooth convex optimization problems
to more intricate smooth convex games and equilibrium problems; see [24].1

Assumption 1 For i ∈ I, Yi ⊆ Rmi is closed and convex set, and for all xi ∈ Xi , the
mapping φi (xi , ·) : Yi → Rmi is strongly monotone and Lipschitz continuous.

By Assumption 1, for any i ∈ I, the set of solutions to VI(φi (xi , ·),Yi ),
denoted by SOL(φi (xi , ·),Yi ), is single-valued with unique element yi (xi ). More-
over, φi (xi , yi ) = Eξ

[
Φi (xi , yi , ξ)

]
for any (xi , yi ) ∈ Xi × Yi .

Assumption 2 The following assumptions hold for each leader i ∈ I:

(i) The set Xi ⊂ Rni is nonempty, compact, and convex. In particular, there exists
Ci > 0 such that supxi ,x′i∈Xi

∥
∥xi − x′i

∥
∥ ≤ Ci for all i ∈ I.

1 Appendix A.2 explains the terminology related to VIs.
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(ii) For some δ0 > 0, the mapping xi → gi (xi , yi (xi )) is L1,i -Lipschitz on Xi,δ0 �
Xi + δ0Bni .

(iii) xi → Fi ((xi , x−i ), ξ) is convex and continuously differentiable over an open
set containing Xi , uniformly for all x−i ∈ X−i and almost every ξ ∈ Ξ .

(iv) The mapping yi → gi (xi , yi ) is L2,i -Lipschitz continuous for all xi ∈ Xi,δ0 .
(v) The operator V : Rn → Rn, defined by V (x) = (Vi (x))i∈I and Vi (x) �

∇xi fi (x), is L f -Lipschitz continuous and monotone on Xδ0 =
∏

i∈I Xi,δ0 .

Assumption 1 is commonly employed in hierarchical optimization problems. Indeed,
in the special case where the VI captures the optimality conditions of a parametrized
convex optimization problem solved by the follower, then strong monotonicity of
φi (xi , ·), is equivalent to strong convexity of the follower’s cost function, an assump-
tion that is known in bilevel optimization literature as the lower level uniqueness
property [50].

Given Assumption 1 we define the implicit loss function Li : X→ R ∪ {∞} by

Li (xi , x−i ) � �i (xi , x−i , yi (xi )) = Eξ [Fi ((xi , x−i ), ξ)] + hi (xi ), (2)

where hi (xi ) � gi (xi , yi (xi )). In terms of the implicit loss function (2), we convert
the hierarchical game (P) into a stochastic Nash equilibrium problem in which each
player solves the loss minimization problem

(∀i ∈ I) : min
xi∈Xi

Li (xi , x−i ). (3)

We refer to (3) as the upper-level problem, and summarize it as the tuple Gupper �
{Li ,Xi }i∈I. Let NE(Gupper) denote the set of Nash equilibria of the game Gupper and
Y =∏i∈I Yi .

Definition 2.1 A2N -tuple (x∗, y∗) ∈ X×Y is called a hierarchical equilibrium if x∗ ∈
NE(Gupper) and, for all i ∈ I, y∗i = yi (x∗i ) the unique solution of VI(φi (x∗i , ·),Yi ).

Typical online learning approaches in game theory employ stochastic approxima-
tion (SA) for iteratively approaching a Nash equilibrium of the game Gupper. These
iterative methods rely on the availability of a stochastic oracle revealing (noisy) first-
order information about the operators involved (i.e. samples of pseudo-gradients of
the objective for each individual player). Such direct methods are complicated in
hierarchical optimization since the required subgradient is an element of the subd-
ifferential of the sum of two Lipschitz continuous functions. In the current setting,
this task is even more complicated since the upper level objective is defined by a
function which is available only in an implicit form, as it depends on the solution of
the lower level problem yi (xi ), and another function given in terms of an expected
value. Thus, even if a sum-rule for a subdifferential applies [13], it would read as
∂xi L(xi , x−i ) = ∂xi fi (x)+ ∂xi (gi ◦ (Id, yi (·)))(xi ). Hence we would need to invoke a
non-smooth chain rule for our chosen version of a subdifferential, in order to evaluate
∂xi (gi ◦ (Id, yi (·)))(xi ). In addition, we would require access to the subdifferential
of yi (•) at xi . We circumvent this computationally challenging step by developing a

123



   11 Page 6 of 53 Journal of Optimization Theory and Applications           (2025) 206:11 

random search procedure based on a finite difference approximation. To develop such
scheme, recall that we defined hi (xi ) � gi (xi , yi (xi )) as the loss function coupling
the leader and the follower. The following fact can be found in Proposition 1 in [16].

Lemma 2.1 Let Assumptions 1–2 hold. Then hi (xi ) = gi (xi , yi (xi )) is Lhi -Lipschitz
continuous on Xi and directionally differentiable.

To proceed, we impose a convexity requirement on hi (·, yi (·)).
Assumption 3 The implicitly defined function xi → hi (xi ) � gi (xi , yi (xi )) is convex
on Xi .

Remark 2.1 Several papers in the literature provided conditions under which the
implicit function hi is indeed convex in hierarchical settings. A structuralmodel frame-
work where convexity provably holds is described in [17, 35].

Remark 2.2 Under Assumptions 2 and 3, an equilibrium exists using classical results.
Indeed, since the lower level problem is assumed to have a unique solution yi (xi ) and
Lemma 2.1 guarantees that the noncooperative game Gupper satisfies conditions of [52,
Th. I.4.1], so that NE(Gupper) �= ∅.

Assumptions 2(v), 3 and Lemma 2.1, yield a variational characterization of elements
of NE(Gupper) in terms of an expectation-valued mixed-variational inequality (cf.
Appendix A.2).

Lemma 2.2 Let h : X→ R be defined by h(x) �
∑

i∈I hi (xi ). Then, x∗ ∈ NE(Gupper)

if and only if x∗ solves the mixed variational inequality MVI(V , h):

〈V (x∗), x − x∗〉 + h(x)− h(x∗) ≥ 0 ∀x ∈ X. (4)

Solutionmethods tomixedVIswith expectation-valued operators have been developed
recently in cases where the random variable takes values in a finite set, and/or when
the VI is derived from a zero-sum game displaying a finite-sum structure [1, 2]. The
standard algorithmic approach to iteratively approximate a solution to such structured
VIs are extragradient type of methods. A direct application of these methods to the
mixed VI (4) is complicated because of the following facts:

(i) L-smoothness of hi . The assumptions made thus far do not guarantee the differen-
tiability of hi with a Lipschitz continuous gradient. Hence, a direct application of
gradient, or extragradient methods, is a difficult task in our setting. To cope with
this technical difficulty, we develop a smoothing approach, yielding a family of
approximating models enjoying the typical Lipschitz smoothness requirements.

(ii) Randomness in the operator V : Since the operator V is only available in terms of
an expected value, in general, we cannot tractably evaluate it.

Insteadwehave to use simulation-basedmethods to obtain randomestimators of this
mathematical expectation. To keep this simulation taskwithin a feasible computational
budget, variance reduction methods are used in iterative methods for generating the
input data. However, standard variance reduction techniques rely on smoothness of the
data. In our case, non-smoothness is present in terms of the implicit function hi (·). In
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principle, one could apply splitting techniques to deal with the non-smooth function
via a proximal smoothing. However, this approach requires hi (·) to be prox-friendly
for which we have no a-priori guarantee since it is the value function of the leader,
derived from the solution of the follower. With these preparatory remarks in mind, we
now explain the design of our algorithmic solution strategy for the hierarchical game
problems (P).

3 A Variance Reduced Forward–Backward–Forward Algorithm for
Hierarchical Games

In this section, we present our algorithm for computing an equilibrium of the hierar-
chical game (P). As in the seminal SVRG formulation, our method runs in two loops.
Each loop requires as inputs data that are computed in the outer loop. The inputs of the
inner and outer loops are constructed as follows. For η > 0, we define the (Tikhonov)
regularized vector field V η : X→ Rn by

V η(x) = (V η
i (x))i∈I, where V η

i (x) � Vi (x)+ ηxi ∀i ∈ I. (5)

Tikhonov regularization is a classical tool to obtain stronger convergence results in
numerical schemes. It has been examined for deterministic [40] and stochastic equi-
librium problems [43, 72].

Our next assumption is concerned with the nature of the stochastic oracle which
generated random estimators on the expectation-valued operator V when queried at a
given point x.

Assumption 4 The operator V has a stochastic oracle V̂ (·, ξ) that is

1. unbiased: V (x) = Eξ [V̂ (x, ξ)] for all x ∈ X;

2. L f (ξ)-Lipschitz for almost every ξ ∈ Ξ :
∥
∥
∥V̂ (x′, ξ)− V̂ (x, ξ)

∥
∥
∥ ≤ L f (ξ)

∥
∥x′ − x

∥
∥

for all x, x′ ∈ X. The random variable L f (ξ) is positive and integrable with
Eξ [L(ξ)] = L f .

To retrieve in-play information about the value of the implicit loss function hi (·), we
employ a smoothing-based approach, which necessitates defining another sampling
mechanism. We follow the gradient sampling strategy of [26], though alternative ran-
dom estimation strategies are certainly possible (see, e.g. [8, 23, 44]). Specifically,
given δ > 0, we denote the finite difference approximation of the directional deriva-
tive of hi in direction wi ∈ Rni as

∇(wi ,δ)hi (xi ) � hi (xi + δwi )− hi (x)
δ

.

LetWi be a random vector uniformly distributed on the unit sphere Si � {xi ∈ Rni :
‖xi‖ = 1}.2 We then define the random vector H δ

i,xi
(Wi ) as a randomized and suitably

2 See Appendix A.5 for the explicit construction of such an oracle.
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rescaled version of the finite difference approximator reading as

H δ
i,xi

(Wi ) � niWi∇(Wi ,δ)hi (xi ) ∈ Rni . (6)

From Eq. (40) in Appendix A.4, we know that H δi
i,xi

(·) is an unbiased estimator of the
gradient of the smoothed function

hδ
i (xi ) � 1

Voln(δBni )

∫

δBni

hi (xi + u)du,

where Bd � {x ∈ Rd : ‖x‖ ≤ 1} for any dimension d ≥ 1. Furthermore, we discuss
in Appendix A.4 that the function hδ

i is continuously differentiable with gradient

∇hδ
i (xi ) = ni

δ
EWi∼U(Sni )

[Wi (hi (xi + δWi )− hi (xi ))] = EWi∼U(Sni )
[H δ

i,xi
(Wi )],

and

∥
∥∇hδ

i (xi )−∇hδ
i (yi )

∥
∥ ≤ Lhi ni

δ
‖xi − yi‖ , ∀xi , yi ∈ Rni , δ > 0,

whereWi ∼ U(Sni ) indicates thatWi is uniformly distributed on the surface of a unit
sphere Sni .

3.1 Iterative RegularizationMethods

Lemma 2.2 shows that the equilibria of our hierarchical game are entirely captured by
the solution set of problemMVI(V , h). This is a rich class of variational problems for
which the number of contributions is so numerous that we just point the reader to [24].
Deducing convergence results on the last iterate for standard algorithmic schemes is
an important requirement for game-theoretic learning algorithms, but typically is a
rare commodity: Despite some special classes of games [4, 30], first-order methods
give only guarantees on a suitably constructed ergodic average. To obtain last iterate
convergence results, we develop an iterative Tikhonov regularization approach. This
leads us to consider the regularized problem MVI(V η, h), which requires to find
s(η) ∈ X satisfying

〈V η(s(η)), x − s(η)〉 + h(x)− h(s(η)) ≥ 0 ∀x ∈ X. (7)

Naturally, we would like to understand the nature of the accumulation points of the
sequence {st }t∈N, where st ≡ s(ηt ) and ηt ↓ 0. This sequence can be studied in quite
some detail, and we summarize some well-known facts in Proposition 3.1 below. As
those results are rather scattered in the literature, we provide a self-contained proof in
Appendix A.3.

Proposition 3.1 Let Assumptions 1–3 hold true. Consider the problem MVI(V , h)

with nonempty solution set SOL(V , h). Then the following apply:
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(a) For all η > 0, the set SOL(V η, h) is a singleton with unique element denoted by
s(η);

(b) (∀η > 0) : ‖s(η)‖ ≤ inf{‖x‖ : x ∈ SOL(V , h)};
(c) Let {ηt }t∈N be a positive sequence with ηt ↓ 0. Then, the sequence {s(ηt )}t∈N

converges to the least norm solution argmin{‖x‖ : x ∈ SOL(V , h)};
(d) For any positive sequence {ηt }t∈N satisfying ηt ↓ 0, we have

(
ηt − ηt−1

ηt

)

min
x∈SOL(V ,h)

‖x‖ ≥ ‖s(ηt )− s(ηt−1)‖ . (8)

3.2 The Algorithm

Our algorithm for the hierarchical game setting consists of a double-loop structure:
The outer loop allows the N players to make multiple independent queries of the
stochastic oracle V̂1(·, ξ), . . . , V̂N (·, ξ), and drawmultiple independent samples from
the surface of a unit sphere, allowing for the simulation of the random estimator (6).
However, since the multiple calls are a negative entry on the oracle complexity of the
method, we impose some control on the number of mini-batches to be constructed by
the agents. Within the inner-loop subroutine, the agents only receive single samples
from their stochastic oracles, and employ this new information in an extragradient-type
algorithm. We give a precise construction in the following paragraphs.

3.2.1 The Outer Loop

Let t = 0, . . . , T − 1 be the iteration counter for the outer loop. We denote by bt ∈ N

the pre-defined sample rate defining the number of random variables each player
is allowed to generate in round t . Specifically, each player generates an iid sample
ξ
1:bt
i,t � {ξ (s)

i,t ; 1 ≤ s ≤ bt } and constructs the mini-batch estimator

V̄ t
i � 1

bt

bt∑

s=1
V̂i (xt , ξ

(s)
i,t ), (9)

Let V̄ t = (V̄ t
1 , . . . , V̄ t

N ). A similar assumption is made to obtain point-estimators of

the gradient of the implicit function hi (·). Hence,W1:bt
i,t � {W(s)

i,t ; 1 ≤ s ≤ bt } denotes
an i.i.d. sample of bt random vectors drawn uniformly at random from Si and define
the mini-batch estimator H δt ,bt

i,xi
as

H δt ,bt
i,xi

� 1

bt

bt∑

s=1
H δt

i,xi
(W(s)

i,t ), H δt ,bt
xt �

(
H δt ,bt
1,xt

1
, . . . , H δt ,bt

N ,xt
N

)
, (10)

where δt denotes a positive smoothing parameter. Equipped with these estimators,
each player enters the procedure SFBF(xt , V̄ t , H δt ,bt

xt , γt , ηt , δt , K ), that relies on
steplengthγt and regularization parameterηt ,whose role is explained in the description
of the inner loop.
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3.2.2 The Inner Loop

Given the inputs (xt , V̄ t , H δt ,bt
xt , γt , ηt ) prepared in the outer loop, the inner loop of our

method is based on a stochastic version of Tseng’smodified extragradientmethod [66],
using one-shot estimators of the relevant data. To be precise, given the current iterate
xt , each player i produces a trajectory {z(t)

i,k}k∈{0,1/2,1,...,K }. These interim strategy

profiles are updated recursively by the procedure SFBF(xt , V̄ t , H δt ,bt
xt , γt , ηt , δt , K )

described in Algorithm 1. Starting with the strategy profile xt , we choose the initial
conditions z(t)

i,0 = xt
i for all i ∈ I. Then, for each k ∈ {0, 1, . . . , K − 1} each player

queries the stochastic oracle to obtain the feedback signal

V̂ ηt
i,t,k+1/2(z

(t)
k+1/2) � V̂i (z

(t)
k+1/2, ξi,t,k+1/2)+ ηtz

(t)
i,k+1/2. (11)

Similarly, each player obtains the random information H δt

z(t)i,k+1/2
(Wi,t,k+1/2) and

H δt
xt

i
(Wi,t,k+1/2), as defined in (6). These random variables are used to generate the

parallel updates

z(t)
i,k+1/2 = ΠXi [z(t)

i,k − γt (V̄ t
i + ηtxt

i + H δt ,bt
xt

i
)], and

z(t)
i,k+1 = z(t)

i,k+1/2 − γt

(
V̂ ηt

i,t,k+1/2(z
(t)
k+1/2)

+H δt

z(t)i,k+1/2
(Wi,t,k+1/2)− V̂ ηt

i,t,k+1/2(x
t )− H δt

xt
i
(Wi,t,k+1/2)

)

for all i ∈ I. These iterations correspond to a stochastic approximation variant of
Tseng’s forward-backward-forward method [10] for solving the time-varying stochas-
tic variational inequality

0 ∈ V (x̄)+ ∇hδt (x̄)+ ηt x̄ + NCX(x̄),

with

NCX(x) =
{

∅ if x /∈ X,

{p| supz∈X 〈p, z− x〉 ≤ 0} if x ∈ X,

the normal cone of X at x.
Discussion The key innovation of the scheme VRHGS lies in the combination of
smoothing (to allow for hierarchy), regularization (to contend with ill-posedness), and
variance-reduction (to mitigate bias) within a stochastic forward-backward-forward
framework. Our double-loop solution strategy mimics the computational architecture
of SVRG, which takes a full gradient sample of the finite sum problem “once in a
while", while performing frequent single-sample updates in between. Our method,
adapted to general probability spaces, proceeds similarly: The “shadow sequence"
z(t)

i,k+1/2 uses costly mini-batch estimators computed in the outer loop; these are main-
tained in memory while executing the inner loop (i.e. only “once in a while" updated).
The additional forward steps to obtain the iterates z(t)

i,k+1 make use of fresh one-shot
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Algorithm 1: SFBF(x̄, v̄, H̄ , γ, η, δ, K )

Result: Iterate zK
Set z0 = x̄;
for k = 0, 1, . . . , K − 1 do

Update zk+1/2 = ΠX[zk − γ (v̄ + ηx̄ + H̄)] with ΠX the orthogonal projector onto X (cf.
Appendix A.1);

Obtain V̂ η
k+1/2(zk+1/2) and V̂ η

k+1/2(x̄) as defined in eq. (11);
Draw iid direction vectorsWk+1/2 = {Wi,k+1/2}i∈I, with eachWi,k+1/2 ∼ U(Si ). ;

Obtain Hδ
zk+1/2 (Wk+1/2) and Hδ

x̄ (Wk+1/2);
Update

zk+1 = zk+1/2 − γ
(

V̂ η
k+1/2(zk+1/2)+ Hδ

zk+1/2 (Wk+1/2)− V̂ η
k+1/2(x̄)− Hδ

x̄ (Wk+1/2)
)

.

end

Algorithm 2: Variance Reduced Hierarchical Game Solver (VRHGS)

Data: x, T , {γt }Tt=0, {bt }Tt=0, {ηt }Tt=0, {δt }Tt=0, K

Set x0 = x.
for t = 0, 1, . . . , T − 1 do

For each i ∈ I receive the oracle feedback V̄ t defined by V̄ t
i � 1

bt

∑bt
s=1 V̂i (xt , ξ

(s)
i,t ). ;

For each i ∈ I construct the estimator Hδt ,bt
xt defined by Hδt ,bt

i,xi
� 1

bt

∑bt
s=1 Hδt

i,xi
(W(s)

i,t ). ;

Update xt+1 = SFBF(xt , V̄ t , Hδt ,bt
xt , γt , ηt , δt , K ).

end

estimators of the payoff gradient and the finite difference estimator. All steps are
overlaid by a Tikhonov regularization, while smoothing facilitates accommodation
with hierarchical objectives. From a computational perspective, our scheme performs
a single projection onto the leaders’ feasible set Xi . This can save considerably on
computational time in cases where the projection operator is costly to evaluate, and
constitutes a major difference compared to viable alternative algorithmic schemes like
the extragradient or optimistic mirror descent. Hence, our method reduces the sample-
complexity of recent mini-batch variance reduction techniques for stochastic VIs [10],
while concomitantly reducing the computational bottlenecks of double-call algorithms
[37, 41] by lifting one projection step. Finally, similar rate and complexity statements
emerge when allowing for inexact generalizations that allow for ε-approximate solu-
tions of lower-level problem.

4 Main Results

In this section we state the main results on the asymptotic convergence of scheme
VRHGS. All technical and lengthy proofs are collected in Sect. 7.

In the inner and outer loops of VRHGS, we have two sources of randomness at each
iteration: (i) the sequence of mini-batches ξ

1:bt
t � {ξ1:bt

i,t }i∈I andW1:bt
t � {W1:bt

i,t }i∈I,
which are used to perform the opening forward-backward step in Algorithm 1;
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(ii) the sequences ξt,k+1/2 = {ξi,t,k+1/2}i∈I and Wt,k+1/2 = {Wi,t,k+1/2}i∈I for

k ∈ {0, 1, . . . , K − 1}, which are employed in constructing the iterate z(t)
k+1 in

Algorithm 1 during the outer epoch t . To keep track of the information struc-
ture of the outer and inner loops, we introduce the filtrations Ft � σ(x0, . . . , xt )

for 0 ≤ t ≤ T , and At,0 � σ(xt , ξ
1:bt
t ,W1:bt

t ) as well as At,k � σ(At,0 ∪
σ(ξt,1/2,Wt,1/2, . . . , ξt,k−1/2,Wt,k−1/2)) for k ∈ {1, 2, . . . , K − 1}. By construc-

tion, the iterates z(t)
k and z(t)

k+1/2 are both At,k-measurable.

4.1 Error Structure of the Estimators

We impose a uniform variance bound on the random vector field V̂ over the set X.
Compactness of X implies that such an assumption comes without loss of generality,
and the proof of the variance bound in Lemma 4.1 is simple to obtain and thus omitted;
See [10].

Lemma 4.1 There exists MV > 0 such that Eξ [
∥
∥
∥V̂ (x, ξ)− V (x)

∥
∥
∥
2] ≤ M2

V for all

x ∈ X. Additionally, let bt ≥ 1 and ξ
1:bt
t = {{ξ (1)

i,t }i∈I, . . . , {ξ (bt )
i,t }i∈I} denote an i.i.d

sample of the random variable ξ . Then, for εV (ξ
1:bt
t ) � 1

bt

∑bt
s=1 V̂ (x, ξ (s)

t )− V (x),

we have

√

E

[∥
∥
∥εV (ξ

1:bt
t )

∥
∥
∥
2
]

≤ MV√
bt

.

Concerning the estimator of the gradient of the smoothed lower level function hδ(·),
we can report the following bounds, which are derived in Appendix A.5 and proved
in Lemma A.2.

Lemma 4.2 Let Assumptions 1 and 2 hold. Define exi (W
1:b
i ) � H δ,b

i,xi
− ∇hδ

i (xi ),

where {W(s)
i }bt

s=1 is an i.i.d sample drawn uniformly from the unit sphere Si , i.e.
W1:b

i ∼ U(Si )
⊗b. Then for all i ∈ I,

(a) EW1:b
i ∼U(Si )

⊗b [exi (W
1:b
i )] = 0;

(b)
∥
∥
∥H δ

i,xi
(wi )

∥
∥
∥
2 ≤ L2

hi
n2

i for all wi ∈ Si ;

(c) EW1:b
i ∼U(Si )

⊗b [
∥
∥exi (W

1:b
i )
∥
∥2] ≤ n2i L2

hi
bi

.

4.2 Almost Sure Convergence of the Last Iterate

Our analysis of VRHGS relies on the following energy inequality, proved in Sect. 7.1.1.

Lemma 4.3 Let Assumptions 1–4 hold true. Let {xt }T−1t=0 be generated by VRHGS and

denote by {z(t)
k }k∈{0,1/2,...,K } the sequence obtained by executing SFBF(xt , V̄ t , H δt ,bt

xt ,

γt , ηt , δt , K ). Set Lh �
∑

i∈I Lhi . Then for all x ∈ X and k ∈ {0, 1, . . . , K − 1}, we
have
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∥
∥
∥z(t)

k+1 − x
∥
∥
∥
2 ≤ (1− γtηt )

∥
∥
∥z(t)

k − x
∥
∥
∥
2 − (1− 2γtηt )

∥
∥
∥z(t)

k+1/2 − z(t)
k

∥
∥
∥
2

+ 8γ 2
t

∑

i∈I
L2

hi
n2

i + 4γ 2
t (L f (ξt,k+1/2)2 + η20)

∥
∥
∥z(t)

k+1/2 − xt
∥
∥
∥
2

− 2γt 〈V̂t,k+1/2(z(t)
k+1/2)+ H δt

z(t)k+1/2
(Wt,k+1/2)

− V (z(t)
k+1/2)−∇hδt (z(t)

k+1/2), z
(t)
k+1/2 − x〉

− 2γt 〈
(
V (xt )+∇hδt (xt )

)

−
(

V̂t,k+1/2(xt )+ H δt
xt (Wt,k+1/2)

)
, z(t)

k+1/2 − x〉
− 2γt 〈εt

V (ξ
1:bt
t )+ εt

h(W1:bt
t ), z(t)

k+1/2 − x〉
− 2γt

(
〈V ηt (x), z(t)

k+1/2 − x〉 + h(z(t)
k+1/2)− h(x)

)
+ 2γtδt Lh .

We next prove a.s. convergence of {xt }Tt=0 to the least-norm solution of MVI(V , h)

as T → ∞. The proof rests on a fine comparison between the algorithmic sequence
{xt } and the sequence of solutions of the regularized problems MVI(V ηt , h), denoted
as {st }Tt=0.

Theorem 4.1 Let Assumptions 1–4 hold. Suppose we are given sequences {γt }t∈N,

{δt }t∈N and {ηt }t∈N, satisfying the following conditions:

(a) limt→∞ γt
ηt
= limt→∞ δt

ηt
= 0, and

∑∞
t=0 γ 2

t < ∞,
∑∞

t=0 γtηt = ∞;
(b) γtηt ∈ (0, 1/2) and limt→∞ ηt = 0;

(c)
∑∞

t=0
(

ηt−ηt−1
ηt

)2
(1+ 1

γt ηt
) < ∞ and limt→∞

(
ηt−ηt−1

ηt

)2
(

1+ 1
γt ηt

γt ηt

)

= 0.

Then P(limt→∞
∥
∥xt − x∗

∥
∥ = 0) = 1, where x∗ denotes the unique least norm solu-

tion of MVI(V , h); i.e. {(xt , y(xt ))}t∈N converges almost surely to a hierarchical
equilibrium of the game (P).

The proof of this Theorem can be found in Sect. 7.1.2.

Remark 4.1 The following sequences satisfy the conditions of Theorem 4.1: Let A ∈
(0, 1/2) and p, q ∈ (0, 1) so that p < q, 0 < p + q < 1 and q > 1/2. Let
γt = A

(t+1)q = δt and ηt = 1
(t+1)p . With this choice, it is clear that γt

ηt
= δt

ηt
=

A(t + 1)p−q → 0 as t →∞, and
∑

t γ 2
t < ∞. Additionally, γtηt = A(t + 1)−(p+q)

is not summable as p + q < 1. Finally, define the continuous paths η : R≥0 → R≥0
and γ : R≥0 → R≥0 by

η(t) := 1

(t + 1)p
, and γ (t) := A

(t + 1)q
,

so that η(�t�) = η�t� and γ (�t�) = γ�t�. Using these continuous paths, we see that for
t sufficiently large
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(
ηt − ηt−1

ηt

)2

(1+ 1

γtηt
) ≈

(
η′(t)
η(t)

)2

(1+ 1

γtηt
) = p2

(t + 1)2
(1+ A(t + 1)p+q)

Hence, also this term is summable, as p+q < 1. The last requirement can be verified
in the same way.

4.3 Finite-Time Complexity

The convergence measure usually employed for MVI(V , h) is the gap function

Γ (x) � sup
z∈X

(〈V (z), x − z〉 + h(x)− h(z)) , (12)

Since we work in probabilistic setting, naturally our convergence measure will be
based on E[Γ (x)]. Our main finite-time iteration complexity result in terms of this
performance measure is the next Theorem, whose proof is detailed in Sect. 7.1.3.

Theorem 4.2 Let Assumptions 1–4 hold and fix T ∈ N. Consider Algorithm VRHGS
with the inputs γt = ηt = δt = 1/T , as well as K = T and batch size bt ≥ T 2.

Then, E[Γ (z̄T )] = O
(Cσ

T

)
, where σ �

√
2M2

V + 2
∑

i∈I L2
hi

n2
i , C = maxi∈I Ci (cf.

Assumption (2.i)), and z̄T �
∑T−1

t=0 γt z̄t

∑T−1
t=0 γt

for z̄t � 1
K

∑K−1
k=0 z(t)

k+1/2.

Wenext evaluate theoracle complexity ofVRHGS. Tobeprecise, letOC(T , K , {bt }T−1t=0 )

the number of random variables method VRHGS generates in the inner and outer loop
until we achieve a solution that pushes the expected gap below a target value ε.

Remark 4.2 We point out that this measure of oracle complexity ignores the computa-
tional effort arising from solving the lower level problem attached with player i ∈ I.
This is consistent as we assume that the solution map is provided to us in terms of
an oracle. A full-fledged complexity analysis can be done, and will appear in a future
publication.

Proposition 4.1 Let ε > 0 be given, and set T = �1/ε�. If we choose the same
sequences as in Theorem 4.2, we have OC(T , K , {bt }T−1t=0 ) = O(2N/ε3).

Proof The number of random variables generated in each inner loop iteration is 2K ×
N . In each round of the outer loop we sample 2bt × N random variables. Hence,
the total oracle complexity is OC(T , K , {bt }Tt=0) = 2K T N + 2N

∑T−1
t=0 bt . For the

specific values of T , K , γt , δt , ηt defined in Theorem 4.2 and bt = T 2, it clearly
follows OC(T , K , {bt }T−1t=0 ) = O(2N/ε3). � 

4.4 Inexact Generalization

A key shortcoming in the implementation of VRHGS is the need for exact solutions
of the lower-level problem. Naturally, when the solution map yi (·) corresponds to
the solution of a large-scale stochastic optimization/VI problem, this claim is hard to
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justify. In this section, we allow for an inexact solution yε
i (x) associated with an error

level ε, defined as

E[∥∥yε(x)− y(x)
∥
∥ |x] ≤ ε a.s. (13)

Under the inexact lower level solution yε
i , we let hε

i (xi ) � gi (xi , yε
i (xi )).

Remark 4.3 We can obtain the inexact solution yε
i (xi ) with rather efficient numerical

methods. First, we can parallelize the computation since the problemsVI(φi (xi , ·),Yi )

are uncoupled. Second, the mapping φi (xi , ·) is assumed to be strongly monotone.
Hence, we can solve the VI to ε-accuracy with exponential rate using for instance the
method in [14].

As in the exact regime, we assume that player i has access to an oracle with which
she can construct a spherical approximation of the gradient of the implicit function
hε

i . Hence, for given δ > 0, we let hε,δ
i (xi ) �

∫
Bni

hε
i (xi + δw) dw

Voln(Bni )
. We denote

the resulting estimators by H δ,ε
i,xi

(Wi ) = niWi∇(Wi ,δ)h
ε
i (i, xi ), and the mini-batch

versions H δ,ε,b
i,xi

� 1
b

∑b
s=1 H δ,ε

i,xi
(W(s)

i ). With these concepts in hand, we can adapt
VRHGS to run exactly the same way as described in Algorithms 1 and 2, replacing the
appearance of quantities involving hi with its inexact version hε

i ; see Sect. 7.2 for a
precise formulation of the method.

Theorem 4.3 Let Assumptions 2 hold and fix T ∈ N. Consider Algorithm I-VRHGS,
defined in Sect.7.2, with the sequence γt = ηt = δt = 1/T , as well as K = T , the
batch size bt ≥ T 2 and inexactness regime εt = 1/T 2. Then E[Γ (z̄T )] = O

(Cσ
T

)
,

where σ �
√
2M2

V + 2
∑

i∈I L2
hi

n2
i , C = maxi∈I Ci (cf. Assumption (2.i)).

Notably, tractable resolution of the proposed stochastic hierarchical game is pos-
sible in inexact regimes and such practically motivated schemes are not adversely
affected in terms of either the rate or complexity guarantees.

5 Hierarchical Games in Power Markets

In this section we present a model inspired by Hobbs and Pang [34], but suitably
modified to account for uncertainty in prices and costs, multi-period settings with
ramping constraints, and the incorporation of virtual power plants (VPPs) (see [22,
53] for a review of VPPs and power markets). The model we present below is at this
stage an academic example that demonstrates the modelling power of our hierarchical
games approach. In future studieswe aim for numerical implementations of thismodel.

Consider a set of nodesN of a network and a set of time periodsT � { 1, 2, . . . , T }.
A generation firm is indexed by f , where f belongs to the finite set F and each firm is
assumed to have an associated VPP. At a node i in the network, a firm f may gener-
ate g f ,i,t units via conventional generation in period t and sell s f ,i,t units during the

same period. In addition, at time period t , firm f may generate Ppv,S
f ,t + Ppv,L

f ,t units

of power via PV capacity, of which Ppv,S
f ,t is sold and Ppv,L

f ,t is employed for meet-
ing load. The total amount of power sold at node i during period t by all generating
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firms is represented by Si,t , i.e. Si,t =∑ f ∈Fs f ,i,t . If the nodal power price at the i th
node during period t is a random function given by pi,t (•, ξ), where pi,t (•, ξ) is a
decreasing function of aggregate nodal sales Si,t for any ξ ∈ Ξ . It follows that firm
f ’s revenue from non-PV power sales at node i during period t under realization ξ is
pi,t (Si,t , ξ)s f ,i . Sales of PV output by firm f at time t is priced using a function pRf ,t ,

earning a revenue given by pRf ,t

(
Ppv,S

f ,t + Ppv,S,V
f ,t

)
Ppv,S, where Ppv,S,V

f ,t denotes the

sales of firm f ’s associated VPP (whose problem is described later in this section).
We observe that renewable power is priced using this price function, distinct from
conventional sources, and is designed to provide incentives for renewable expansion
[62]. The costs incurred by firm f at node i during period t are given by the sum of
the cost of generating g f ,i,t and the cost of transmitting the excess (s f ,i,t − g f ,i,t ).
Let the random cost function of generation associated with firm f at node i be given
by c f i (•, ζ ) while the cost of transmitting power from an arbitrary node (referred
to as the hub) to node i is given by wi . The constraint set incorporates a balance
between aggregate sales, aggregate generation, and power injection into the VPP at
all nodes for every time period t . In addition, we impose nonnegativity bound on sales
and generation at any time period t , enforce a capacity limit on generation levels,
and introduce ramping constraints on the change in generation levels. The resulting
problem faced by generating firm f , denoted by (Firm f ), requires minimizing gen-
eration cost less revenue from conventional and PV sales by optimizing sales s f ,i,t

and generation g f ,i,t at every node i and every time period t as well as load-directed

PV output Ppv,L
f ,t and PV sales Ppv,S

f ,t at time t . If Ppv,S,V,ε

f ,t (·) denotes a component
of the single-valued solution map of the ε-regularized problem of the VPP associated
with firm f , denoted by (VPP f (Ppv,S

f )), then firm f ’s problem is defined as follows,

where T̂ = {1, . . . , T − 1}.

maximize
s f ,i,t , g f ,i,t , Ppv,S

f ,t Ppv,L
f ,t

E

[
T∑

t=1

∑

i∈N

(
pi,t (Si,t , ξ)s f ,i,t − c f i (g f i,t , ζ )− (s f i,t − g f i,t )wi,t

)
]

+
∑

t∈T

(
pRf ,t

(
Ppv,S

f ,t + Ppv,S,V,ε

f ,t (Ppv,S
f ,t )

)
Ppv,S

)

subject to

{
0 ≤ g f ,i,t ≤ cap f i

0 ≤ s f ,i,t

}

∀ t ∈ T, ∀i ∈ N

−RRdown
f ,i ≤ g f ,i,t − g f ,i,t−1 ≤ RRup

f i ∀ t ∈ T̂,∀i ∈ N

Ppv,L
f ,t + Ppv,S

f ,t ≤ cappvf ,t ∀t ∈ T

0 ≤ Ppv,L
f ,t , Ppv,S

f ,t ∀t ∈ T

and
∑

i∈N
( s f ,i,t − g f ,i,t )− Ppv,L

f ,t = 0 ∀t ∈ T.

(Firm f (s− f , g− f )

It bears reminding that the last set of constraints specified in
(
Firm f (s− f , g− f )

)

are parametrized by rival decisions and can be relaxed with Lagrange multiplier
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λ f ,t , leading to the following relaxed problem
(
Firmrel

f (s− f , g− f )
)
, defined as fol-

lows.

maximize
s f ,i,t , g f ,i,t , Ppv,S

f ,t Ppv,L
f ,t

E

[
T∑

t=1

∑

i∈N

(
pi,t (Si,t , ξ)s f ,i,t − c f ,i (g f ,i,t , ζ )− (s f ,i,t − g f ,i,t )wi,t

)
]

+
∑

t∈T

(
pRf ,t

(
Ppv,S

f ,t + Ppv,S,V
f ,t

)
Ppv,S

f ,t

)
−

T∑

t=1

λ!f ,t

(
∑

i∈N

(
( s f ,i,t − g f ,i,t )− Ppv,L

f ,t

)
)

subject to

{
0 ≤ g f i,t ≤ cap f i

0 ≤ s f i,t

}

∀ t ∈ T, ∀i ∈ N

−RRdown
f ,i ≤ g f ,i,t − g f ,i,t−1 ≤ RRup

f ,i ∀ t ∈ T̂, ∀i ∈ N

Ppv,L
f ,t + Ppv,S

f ,t ≤ cappvf ,t ∀t ∈ T

0 ≤ Ppv,L
f ,t , Ppv,S

f ,t ∀t ∈ T.

(Firm f (s− f , g− f ))

In addition, we introduce a pricing player
(
Price

(
s f , g f , Ppv,L

f ,t

))
corresponding to

the determination of λ f ,t for f ∈ F and t ∈ T, defined as follows.

minimize
λ

∑

f ∈F

∑

t∈T
λ!f ,t

(
∑

i∈N
( s f ,i,t − g f ,i,t )− Ppv,L

f ,t

)

. (Price
(
s, g, Ppv,L

)
)

Note that, the generating firm sees the transmission fee wi,t and the rival firms’ sales
s− f i,t ≡ {shi,t : h �= f } as exogenous parameters to its optimization problem even
though they are endogenous to the overall equilibrium model as we will see shortly.
The ISO sees the transmission fees w = (wi,t )i∈N,t∈T as exogenous and prescribes
flows y = (yi,t )i∈N,t∈T as per a solution of the following linear program

maximize
y

∑

i∈N

∑

t∈T
yi,twi,t

subject to
∑

i∈N
PDFi j yi,t ≤ T̂ j ∀ j ∈ K, ∀ t ∈ T,

(ISO(w))

where K is the set of all arcs or links in the network with node set N, T̂ j denotes the
transmission capacity of link j , yi,t represents the transfer of power (in MW) by the
system operator from a hub node to node node i and PDFi j denotes the power transfer
distribution factor, which specifies the MW flow through link j as a consequence of
unit MW injection at an arbitrary hub node and a unit withdrawal at node i . Finally,
to clear the market, the transmission flows yi must balance the net sales at each node,
as specified next.

yi,t =
∑

f ∈F

(
s f ,i,t − g f ,i,t

) ∀ i ∈ N, ∀ t ∈ T. (14)
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In fact, this constraint can be recast as a collection of pricing players, denoted by
(Flowprice(g, s, y)).

minimize
β

∑

t∈T

∑

i∈N
βi,t

⎛

⎝ yi,t −
∑

f ∈F

(
s f ,i,t − g f ,i,t

)
⎞

⎠ . (Flowprice(g, s, y))

We now extend the scope of the framework of power markets by incorporating virtual
power plants. A virtual power plant (VPP) represents a collection of distributed energy
resources (DERs) (e.g., batteries, smart thermostats, controllable water heaters, and
rooftop solar) that can be coordinated to enhance the reliability and sustainability of
the electric grid. To satisfy the short-term goals for clean energy technology (CET)
deployment, it has been estimated that U.S. VPP capacity must triple by 2030, leading
to potential savings of $10 billion in annual grid costs [22]. Without loss of generality,
we assume that any firm f ∈ F has a collection of components, which collectively
provide “virtual power” in addition to conventional generation. Before proceeding,
we model three components in such a VPP, akin to approaches employed in [11, 28,
38].
(a) Battery storage Suppose the storage unit associated with firm f has an associated
state of charge (SOC) level at time t by SOC f ,t .

SOC f ,t+1 = SOC f ,t + η
b,ch
f Δt

Qb
f

Pb,ch
f ,t − Δt

η
b,ds
f Qb

f

Pb,ds
f ,t ∀ t ∈ T, (15)

where Pb,ch
f ,t and Pb,ds

f ,t represent charging and discharging power-levels at time t ,

η
b,ch
f and η

b,ds
f represent charging and discharging efficiencies at time t , while Qb

f
andΔt denote the battery capacity and time interval, respectively. In addition, SOC f ,t

is bounded between a minimum value SOCmin
f and maximum value SOCmax

f while

at any time t , charging and discharging rates cannot exceed Pb,ch,mx
f and Pb,ds,mx

f ,
respectively, as captured by the following bounds.

SOCmin
f ≤ SOC f ,t ≤ SOCmax

f ∀t ∈ T (16)

0 ≤ Pb,ch
f ,t

Pb,ch,mx
f

≤ 1 ∀t ∈ T (17)

0 ≤ Pb,ch
f ,t

Pb,ds,mx
f

≤ 1 ∀t ∈ T. (18)

(b) Intermittent resources We now model intermittency by considering a photovoltaic
(PV) array associated with firm f , where at time t , Ppv,L,V

f ,t and Ppv,S,V
f ,t denote the

PV output employed for meeting load and for deriving sales revenue, respectively.
Further, Ppv,max

f represents maximum PV power at time t . Consequently, PV output
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is modeled as

Ppv,L,V
f ,t + Ppv,S,V

f ,t = (1−U pv
f )Ppv,max

f ,t E f ,t ∀t ∈ T (19)

0 ≤ U pv
f ,t ≤ 1 ∀t ∈ T (20)

0 ≤ Ppv,L,V
f ,t , Ppv,S,V

f ,t ∀t ∈ T, (21)

where U pv
f ,t denotes the PV curtailment employed by firm f at time t while Ppv,max

f ,t
scales with the solar irradiance at time t as seen by firm f , denoted by E f ,t . We

observe that Ppv,S,V
f ,t , Ppv,L,V

f ,t ≥ 0 for any f ∈ F and any t ∈ T.

(c) Thermal onsite generation Often VPPs may incorporate onsite thermal generation
that can be employed. For any f ∈ F, suppose the generation capacity is denoted
by Caponsitef while the upward and downward ramping rates are given by RRup

f and

RRdown
f , respectively. Consequently, if the generation output at time t is denoted by

Ponsite
f ,t , then for any t ∈ T, we have

0 ≤ Ponsite
f ,t ≤ Caponsitef . ∀ t ∈ T (22)

Furthermore, changes in generation level are bounded by ramping rates, as captured
by the following set of two-sided constraints.

−RRdown
f ≤ Ponsite

f ,t+1 − Ponsite
f ,t+1 ≤ RRup

f . ∀ t ∈ T (23)

VPPs are characterized by an idiosyncratic load profile that cannot be controlled;
specifically, PL,V

f ,t denotes the load associated with VPP f at time t . In more compre-
hensive models, we may incorporate HVAC and water heater components that allow
formore fine-grained control of such loads but for purposes of simplicity, we omit such
a discussion here. In the current setting, the effective load emerging frommanaging the
VPP associated with firm f and time t is given by the sum of the uncontrollable load
and the battery load (charging less discharging level) less the sum of onsite generation
and load-directed PV output is required to be nonpositive, as specified next.

PL,V
f ,t +

(
Pb,ch

f ,t − Pb,ds
f ,t

)
− Ponsite

f ,t − Ppv,L,V
f ,t ≤ 0. ∀ t ∈ T (24)

Note that the satisfaction of this constraint relies on appropriate sizing of the battery
capacity Qb

f and the onsite generation capacity Cap
onsite
f . Suppose the decision vector

of firm f ’s VPP is denoted by yvppf , defined as

yvppf =
(
SOC f ; Pb,ch

f ; Pb,ds
f ; Ppv,L,V

f ; Ppv,S,V
f ;U pv

f ; Ponsite
f

)
.

The profit function associated with firm f ’s VPP is the revenue obtained by sales
revenue derived from PV sales less the VPP’s operational cost (given by the sum of
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the costs of onsite generation and the (converted) cost of PV curtailment), defined as

rvppf (yvppf ; Ppv,S
f )

�
∑

t∈T

⎛

⎜
⎝ pRf ,t

(
Ppv,S,V

f ,t + Ppv,S
f ,t

)
Ppv,S,V

f ,t
︸ ︷︷ ︸

VPP revenue from PV sales

− consitef (Ponsite
f ,t )

︸ ︷︷ ︸
Cost of onsite gen.

− βU pv
f ,t Pmax

f ,t
︸ ︷︷ ︸

Env. cost of PV curtailment

⎞

⎟
⎠ ,

where pRf ,t (·)denotes the price function of renewables seen at firm f at time t ,while the

revenue obtained is given by pRf ,t

(
Ppv,S,V

f ,t + Ppv,S
f ,t

)
Ppv,S,V

f ,t . We may then formally

define the optimization problem faced by the VPP associated with firm f , where the

polyhedral constraints are captured by
{

yvppf | A f yvppf ≤ d f

}
where A f ∈ Rm×n

and d f ∈ Rm .

maximize
yvppf

rvppf (yvppf ; Ppv,S
f )

subject to (15)− (24) ≡
{

yvppf | A f yvppf ≤ d f

}
.

(VPP f (Ppv,S
f ))

We now observe that the resulting equilibrium problem comprises of a collection of
firms, each of which has a single follower as captured by a VPP, in addition to the
ISO and a set of players that determine prices. To facilitate analysis of the neces-
sary and sufficient equilibrium conditions of this hierarchical game, we approximate(
VPP f (Ppv,S

f )
)
by employing a smooth (exact) penalized approximation; this lat-

ter formulation is of particular relevance in deriving the concavity of the function

pRf ,t

(
Ppv,S

f ,t + Ppv,S,V,ε

f ,t (Ppv,S
f ,t )

)
Ppv,S

f ,t in Ppv,S
f ,t , where Ppv,S,V,ε

f ,t (Ppv,S
f ,t ) is a compo-

nent of the single-valued solution map yvpp,εf (Ppv,S
f ,t ), a solution of the ε-regularized

and the ε-smoothed (exact) penalized approximation of
(
VPP f (Ppv,S

f )
)
. To this end,

we define the exact penalty function ϕ and its smoothed counterpart ϕε as

ϕ(A f yvppf − d f ) �
m∑

i=1
max{a!f i yvppf − d f i , 0}, ϕε(A f yvppf − d f )

�
m∑

i=1
ψε(a

!
f i yvppf − d f i ) (25)

and ψε(t) �

⎧
⎪⎨

⎪⎩

0 if t ≤ 0
μt2

2ε if 0 ≤ t ≤ ε

μ(t − ε
2 ) if t ≥ ε.

(26)
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This penalty function and its smoothed counterpart are employed in formally defining
the exact penalty reformulation of (VPP f ) and its smoothed counterpart.

⎧
⎪⎨

⎪⎩

max
yvppf

rvpp(y
vpp
f , P

pv,S
f )

subject to Ay
vpp
f ≤ d f

⎫
⎪⎬

⎪⎭
≡
{
max
yvppf

(
rvpp(y

vpp
f , P

pv,S
f )+ μϕ(Ay

vpp
f − d f )

) }

(VPPε
f (Ppv,S

f ))

≈
{
max
yvppf

(
rvpp(y

vpp
f , P

pv,S
f )+ μϕε(Ay

vpp
f − d f )+ ε

2‖y
vpp
f ‖2

) }

.

We observe that the resulting game can be viewed as a noncooperative hier-
archical game, defined by upper-level player problems given by firm players(
Firmrel

f (s− f , g− f , λ f )
)

f ∈F
, pricing players

(
Price

(
s, g, Ppv,firm−load)), the ISO

as denoted by (ISO), and the transmission pricing player (Flowprice(g, s, y)). In addi-

tion, the set of regularized lower-level VPP problems is given by
(
VPPε

f (Ppv,S
f )

)

f ∈F.
We succinctly represent this noncooperative game as an N + 2 player game, in which
the first N players correspond to firm f ’s problem for f ∈ F while the last two
correspond to pricing players.

{

min
z1∈Z1

(
h1(z1, z−1)+ g1(z1,u1(z1))

)}

· · ·
{

min
zN∈ZN

(
hN (zN , z−N )+ gN (zN ,uN (zN ))

)}

,

(Hier-gamevpp)
{

min
zN+1∈ZN+1

(
hN+1(zN+1, z−(N+1))

)} {

min
zN+2∈ZN+2

(
hN+2(zN+2, z−(N+2))

)}

.

Note that the first N players’ objectives are characterized by hierarchical terms; specif-
ically, the hierarchical terms g j (z j ,u j (z j )) for any j ∈ {1, . . . , N } correspond to the
hierarchical terms infirm f ’s problemgivenby

∑
t∈T
(

pRf ,t

(
Ppv,S

f ,t + Ppv,S,V
f ,t

)
Ppv,S

f ,t

)

for any f ∈ F.
While convexity of player problems follows in a straightforward fashion from the

definition of firm problems and suitable convexity requirements on the cost functions
as well as affineness requirements on the price functions. Single-valuedness of the
solution map u j (•) follows from the observation that the regularized VPP profit func-
tion is strongly concave. Additionally, convexity of g j (•,u j (•)) is a consequence
of analogous analysis for Stackelberg leadership (cf. [17, 67]). Finally, monotonic-
ity of F can be derived in a fashion similar to that considered in [32]. Existence of
an equilibrium can then be derived in a fashion similar to that employed in [17]. A
comprehensive analysis of this model is left to future work.
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6 Preliminary Numerics

In this section, we examine the performance of the proposed schemes via an instance
of a two-stage hierarchical game. To this end, consider an N -player hierarchical game
where each player has a single follower and the follower problem is parametrized
by uncertainty. This represents a two-stage variant of the class of hierarchical games
presented in this paper. In particular, theω-specific lower-level problem corresponding
to the follower i , parametrized by leader decision xi , is

max
yi ≥ 0

p(yi + xi , ω)yi − ci (yi ). (Followeri (xi , ω))

Suppose the inverse demand function p(·, ω) is defined as

R×Ω " (u, ω) → p(u, ω) = a(ω)− b(ω)u.

Under this condition, the follower’s objective can be shown to be strictly concave in
y j . Consequently, the necessary and sufficient conditions of optimality are given by
the following complementarity problem.

0 ≤ yi ⊥ c′i (yi )− p(xi + yi , ω)− p′(xi + yi , ω)yi ≥ 0. (Optfoll(x
i , ω))

We observe that the optimality conditions of (Optfoll(x
i , ω)) correspond to a strongly

monotone variational inequality problem for xi ≥ 0 and for every ω ∈ Ω . Conse-
quently, yi : R+×Ω → R+ is a single-valued map and is convex in its first argument
for every ω if ci is quadratic and convex for j = 1, . . . , N (see [18, Prop. 4.2]). In
fact, it can be claimed that yi (·, ω) is a piecewise C2 and non-increasing function with
∂xi y

i (xi , ω) ⊂ (−1, 0] for xi ≥ 0. Consider the i th leader’s problem, defined as

max
xi≥0

[
E
[

p(xi + X−i + yi (xi , ω), ω)xi
]
− Ci (xi )

]
, (Leaderi (x−i ))

where X �
N∑

i=1
xi and X−i �

∑

j �=i

x j .Therefore, under suitable convexity and smooth-

ness assumptions on Ci , we have that

R+ " xi ⊥ E
[
−p(xi + X−i + yi (xi , ω), ω)+ (1+ ∂xi yi (xi , ω))b(ω)xi

]
+ C ′

i (xi ) ∈ R+,

where ∂xi yi (xi , ω) is analyzed in [18, Elec.Comp.]. By concatenating the problems
for players 1, . . . , N , we obtain the following complementarity problem.
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Fig. 1 Comparison of (VRHGS) and (VR-SPP) (left: N = 13, middle: N = 23, right: N = 33)

RN+ " x ⊥
N∏

i=1

{
E
[
−p(X + yi (xi , ω), ω)

]}
+ (C ′

i (xi )
)N

i=1

+
N∏

i=1
{E[(1+ ∂xi yi (xi , ω))b(ω)xi ]} ∈ RN+ .

I. Problem parameters and Algorithm specifications. We consider a setting with
N leaders and let Ci be a quadratic function, where Ci (xi ) � C̃i · (xi )

2. Further,
C̃i is generated from the distribution U(0, 100) for i = 1, . . . , N , where U(l, u)

denotes the uniform distribution on the interval [l, u]. In addition, ci = 50, for i =
1, . . . , N , b = 7, and a(ω) ∼ U(33, 37). Next, we define the parameters employed
in our implementation of (VRHGS) and a variance-reduced inexact proximal-point
framework (VR-SPP), defined in [15, Section 3.2.3]. Note that the solution quality
is compared by estimating the expectation of the gap function evaluated at z̄T , i.e. as
given by E

[
G(z̄T )

]
.

(i) (VRHGS). At iteration t , we run T = 1000 steps and use bt = T 2 samples for
t > 0. In addition, we assume step-length γt = 1

T , regularization parameter ηt = 1
T ,

and smoothing parameter δt = 0.1
T for t = 0, 1, . . . , T − 1.

(ii) (VR-SPP). In our implementation of (VR-SPP), we employ Nk = �1.1k+1�,
a proximal parameter λ = 0.1, and a diminishing step-length α0

k with α0 = 0.1 to
approximate the resolvent via the (SA) scheme. (also presented in [15, Section 3.2.3]).

II. Comparison between (VRHGS) and (VR-SPP).We compare the performance of
(VRHGS) with (VR-SPP) on problems with increasing number of players N . Several
aspects are apparent based on these trajectories. First, these preliminary tests suggest
the empirical superiority of (VRHGS) with respect to (VR-SPP) in terms of the
residual. Second, the trajectories also appear to align with the O(1/T ) rate guarantees
in terms of the expectation of the gap function (Fig. 1).

III. Inexact generalization of (VRHGS). We notice that (VR-SPP) requires exact
lower-level follower solutions, such information may often be unavailable. How-
ever, an inexact counterpart of (VRHGS), referred to as (I-VRHGS), is suitable for
such problems and its performance is now tested. We choose the same parameters as
employed in (VRHGS) and further assume that the inexactness level εt = 0.001 In
Fig. 2, we compare the plots for (I-VRHGS) across different regularization sequences.
While all of the trajectories suggest that the schemes behave well for different choices
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Fig. 2 Trajectories for
(I-VRHGS) with different
regularization parameters

Table 1 Errors and time of
(I-VRHGS) with various N and
K

N K = 500 K = 1000 K = 2000
res(xk ) Time res(xk ) Time res(xk ) Time

13 1.5e−3 81 1.1e−3 33 2.3e−3 39

23 1.2e−3 175 9.2e−4 74 2.2e−3 112

33 1.0e−3 342 8.4e−4 119 1.8e−3 161

The errors and time represent the average over 20 runs

of η, we do observe that the trajectories display better empirical performance when
η = 0.1

T . In addition, we examine the sensitivity of the schemes to various parameters
such as N and K in Table 1. First, we note that as N increases, we do not see a pro-
found deterioration in the empirical behavior (in terms of the residual) in terms of N .
Second, recall that K denotes the number of inner steps in the inner loop. It is seen
that when K = 1000, the scheme produce better results while maintaining the same
run-time with the same number of samples.

7 Proof of theMain Theorem

7.1 Analysis of the Exact Scheme

The proof on the finite time-complexity estimate starts by a technical derivation of
an energy-type inequality that gives us an upper bound on the change of the energy

function 1
2

∥
∥
∥z(t)

k+1 − x
∥
∥
∥
2
, computedwithin an arbitrary inner loop evaluation, and for an

arbitrary anchor point x ∈ X. Via a sequence of tedious, but otherwise straightforward,
manipulations we arrive out our first main result, Lemma 4.3. From there, we proceed
as in the standard analysis of stochastic approximation schemes [54], and derive an
upper bound on the gap function of the mixed variational inequality.

7.1.1 Proof of Lemma 4.3

To simplify notation we omit the dependence on the outer iteration loop t , and thus
simply write zk for z

(t)
k . The same notational simplification will be used in all variables
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that are computed within the inner loop executed in the t-round of the outer loop
procedure.With the hope that the reader agrees that this reduces notational complexity
a bit, we proceed to derive the the postulated energy inequality. To start, we observe
that for each x ∈ X we have

‖zk+1 − x‖2 = ∥∥zk+1 − zk+1/2 + zk+1/2 − zk + zk − x
∥
∥2

= ∥∥zk+1 − zk+1/2
∥
∥2 − ∥∥zk+1/2 − zk

∥
∥2 + ‖zk − x‖2

+ 2〈zk+1 − zk+1/2, zk+1/2 − x〉
+ 2〈zk+1/2 − zk , zk+1/2 − x〉

= ‖zk − x‖2 − ∥∥zk+1/2 − zk
∥
∥2

+
∥
∥
∥γt

(
V̂ ηt

k+1/2(zk+1/2)− V̂ ηt
k+1/2(x

t )+ H δt
zk+1/2 (Wk+1/2)− H δt

xt (Wk+1/2)
)∥
∥
∥
2

− 2γt 〈V̂ ηt
k+1/2(zk+1/2)− V̂ ηt

k+1/2(x
t )+ H δt

zk+1/2 (Wk+1/2)

− H δt
xt (Wk+1/2), zk+1/2 − x〉

+ 2〈zk+1/2 −
(
zk − γt (V̄ t + H δt ,bt

xt + ηtxt )
)

, zk+1/2 − x〉
− 2γt 〈V̄ t + H δt ,bt

xt + ηtxt , zk+1/2 − x〉.

Lemma A.1(i) gives 2〈zk+1/2 −
(
zk − γt (V̄ t + H δt ,bt

xt + ηtxt
)

, zk+1/2 − x〉 ≤ 0.

Additionally, Assumption 4 and Lemma A.2(b) gives

∥
∥
∥γt

(
V̂ ηt

k+1/2(zk+1/2)− V̂ ηt
k+1/2(x

t )+ H δt
zk+1/2 (Wk+1/2)− H δt

xt (Wk+1/2)
)∥
∥
∥
2

≤ 2γ 2
t

∥
∥
∥V̂ ηt

k+1/2(zk+1/2)− V̂ ηt
k+1/2(x

t )
∥
∥
∥
2 + 2γ 2

t

∥
∥
∥H δt

zk+1/2 (Wk+1/2)− H δt
xt (Wk+1/2)

∥
∥
∥
2

≤ 4γ 2
t

∥
∥
∥V̂k+1/2(zk+1/2)− V̂k+1/2(xt )

∥
∥
∥
2 + 4η2t γ 2

t
∥
∥zk+1/2 − xt∥∥2

+ 4γ 2
t

(∥
∥
∥H δt

zk+1/2 (Wk+1/2)
∥
∥
∥
2 +

∥
∥
∥H δt

xt (Wk+1/2)
∥
∥
∥
2
)

≤ 4γ 2
t

(
L f (ξk+1/2)2 + η2t

) ∥
∥zk+1/2 − xt∥∥2 + 8γ 2

t

∑

i∈I
L2

hi
n2i .

It follows

‖zk+1 − x‖2 ≤ ‖zk − x‖2 − ∥∥zk+1/2 − zk
∥
∥2 + 8γ 2

t

∑

i∈I
L2

hi
n2

i

+ 4γ 2
t (L f (ξk+1/2)2 + η20)

∥
∥zk+1/2 − xt

∥
∥2

− 2γt 〈V̂ ηt
k+1/2(zk+1/2)+ H δt

zk+1/2(Wk+1/2)− V̂ ηt
k+1/2(x

t )

− H δt
xt (Wk+1/2), zk+1/2 − x〉

− 2γt 〈V̄ t + ηtxt + H δt ,bt
xt , zk+1/2 − x

= ‖zk − x‖2 − ∥∥zk+1/2 − zk
∥
∥2
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+ 8γ 2
t

∑

i∈I
L2

hi
n2

i + 4γ 2
t (L f (ξk+1/2)2 + η20)

∥
∥zk+1/2 − xt

∥
∥2

− 2γt 〈V̂k+1/2(zk+1/2)+ H δt
zk+1/2(Wk+1/2)− V (zk+1/2)

− ∇hδt (zk+1/2), zk+1/2 − x〉
+ 2γt 〈V̂k+1/2(xt )+ H δt

xt (Wk+1/2)− V̄ t − H δt ,bt
xt , zk+1/2 − x〉

− 2γt 〈V (zk+1/2)+ ∇hδt (zk+1/2)+ ηtzk+1/2, zk+1/2 − x〉
= ‖zk − x‖2 − ∥∥zk+1/2 − zk

∥
∥2 + 8γ 2

t

∑

i∈I
L2

hi
n2

i

+ 4γ 2
t (L f (ξk+1/2)2 + η20)

∥
∥zk+1/2 − xt

∥
∥2

− 2γt 〈V̂k+1/2(zk+1/2)+ H δt
zk+1/2(Wk+1/2)− V (zk+1/2)

− ∇hδt (zk+1/2), zk+1/2 − x〉
+ 2γt 〈V̂k+1/2(xt )+ H δt

xt (Wk+1/2)− V̄ t − H δt ,bt
xt , zk+1/2 − x〉

− 2γt 〈V ηt (zk+1/2)+∇hδt (zk+1/2)− V ηt (x)− ∇hδt (x), zk+1/2 − x〉
− 2γt 〈V ηt (x)+ ∇hδt (x), zk+1/2 − x〉.

Since the operator x → V ηt (x) + ∇hδt (x) is ηt -strongly monotone, we can further
bound the expression above as

‖zk+1 − x‖2 ≤ ‖zk − x‖2 − ∥∥zk+1/2 − zk
∥
∥2

+ 8γ 2
t

∑

i∈I
L2

hi
n2

i + 4γ 2
t (L f (ξk+1/2)2 + η20)

∥
∥zk+1/2 − xt

∥
∥2

− 2γt 〈V̂k+1/2(zk+1/2)+ H δt
zk+1/2(Wk+1/2)

− V (zk+1/2)− ∇hδt (zk+1/2), zk+1/2 − x

+ 2γt 〈V̂k+1/2(xt )+ H δt
xt (Wk+1/2)− V̄ t − H δt ,bt

xt , zk+1/2 − x〉
− 2γtηt

∥
∥zk+1/2 − x

∥
∥2

− 2γt 〈V ηt (x)+∇hδt (x), zk+1/2 − x〉.

Next, we split the mini-batch estimator V̄ t into its mean component and its error
component so that

V̄ t = V (xt )+ εt
V (ξ

1:bt
t ). (27)

Similarly, we write

εt
h(W1:bt

t ) � H δt ,bt
xt −∇hδt (xt ). (28)
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Using these error terms, we may further bound the right hand side of the penultimate
display as

∥
∥zk+1 − x

∥
∥2 ≤ ‖zk − x‖2 − ∥∥zk+1/2 − zk

∥
∥2

+ 8γ 2
t

∑

i∈I
L2

hi
n2i + 4γ 2

t (L f (ξk+1/2)2 + η20)
∥
∥zk+1/2 − xt∥∥2

− 2γt 〈V̂k+1/2(zk+1/2)+ H δt
zk+1/2 (Wk+1/2)− V (zk+1/2)

− ∇hδt (zk+1/2), zk+1/2 − x〉
− 2γt 〈

(
V (xt )+∇hδt (xt )

)
−
(

V̂k+1/2(xt )+ H δt
xt (Wk+1/2)

)
, zk+1/2 − x〉

− 2γtηt
∥
∥zk+1/2 − x

∥
∥2 − 2γt 〈εt

V (ξ
1:bt
t )+ εt

h(W1:bt
t ), zk+1/2 − x〉

− 2γt 〈V ηt (x)+ ∇hδt (x), zk+1/2 − x〉.

A simple application of the triangle inequality shows

−2γtηt
∥
∥zk+1/2 − x

∥
∥2 ≤ 2γtηt

∥
∥zk+1/2 − zk

∥
∥2 − γtηt ‖zk − x‖2 .

Using this bound, we continue with the derivations above to arrive at

∥
∥zk+1 − x

∥
∥2 ≤ (1− γtηt ) ‖zk − x‖2 − (1− 2γtηt )

∥
∥zk+1/2 − zk

∥
∥2

+ 8γ 2
t

∑

i∈I
L2

hi
n2i + 4γ 2

t (L f (ξk+1/2)2 + η20)
∥
∥zk+1/2 − xt∥∥2

− 2γt 〈V̂k+1/2(zk+1/2)+ H δt
zk+1/2 (Wk+1/2)− V (zk+1/2)

−∇hδt (zk+1/2), zk+1/2 − x〉
− 2γt 〈

(
V (xt )+∇hδt (xt )

)
−
(

V̂k+1/2(xt )+ H δt
xt (Wk+1/2)

)
, zk+1/2 − x〉

− 2γt 〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), zk+1/2 − x〉

− 2γt 〈V ηt (x)+ ∇hδt (x), zk+1/2 − x〉.

By convexity of the application x → hδt (x), we have

hδt (zk+1/2) ≥ hδt (x)+ 〈∇hδt (x), zk+1/2 − x〉.

Hence, the penultimate display turns into

∥
∥zk+1 − x

∥
∥2 ≤ (1− γtηt ) ‖zk − x‖2 − (1− 2γtηt )

∥
∥zk+1/2 − zk

∥
∥2

+ 8γ 2
t

∑

i∈I
L2

hi
n2i + 4γ 2

t (L f (ξk+1/2)2 + η20)
∥
∥zk+1/2 − xt∥∥2

− 2γt 〈V̂k+1/2(zk+1/2)+ H δt
zk+1/2 (Wk+1/2)− V (zk+1/2)

− ∇hδt (zk+1/2), zk+1/2 − x〉
− 2γt 〈

(
V (xt )+∇hδt (xt )

)
−
(

V̂k+1/2(xt )+ H δt
xt (Wk+1/2)

)
, zk+1/2 − x〉
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− 2γt 〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), zk+1/2 − x〉

− 2γt

(
〈V ηt (x), zk+1/2 − x〉 + hδt (zk+1/2)− hδt (x)

)
.

From Lemma 2 in [69], we know for Lh �
∑

i∈I Lhi that

hδt (zk+1/2)− hδt (x) ≥ h(zk+1/2)− h(x)− δt Lh .

Therefore,

∥
∥zk+1 − x

∥
∥2 ≤ (1− γtηt ) ‖zk − x‖2 − (1− 2γtηt )

∥
∥zk+1/2 − zk

∥
∥2

+ 8γ 2
t

∑

i∈I
L2

hi
n2i + 4γ 2

t (L f (ξk+1/2)2 + η20)
∥
∥zk+1/2 − xt∥∥2

− 2γt 〈V̂k+1/2(zk+1/2)+ H δt
zk+1/2 (Wk+1/2)− V (zk+1/2)

− ∇hδt (zk+1/2), zk+1/2 − x〉
− 2γt 〈

(
V (xt )+∇hδt (xt )

)
−
(

V̂k+1/2(xt )+ H δt
xt (Wk+1/2)

)
, zk+1/2 − x〉

− 2γt 〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), zk+1/2 − x〉

− 2γt
(〈V ηt (x), zk+1/2 − x〉 + h(zk+1/2)− h(x)

)+ 2γt δt Lh .

which is what has been claimed.

7.1.2 Proof of Theorem 4.1

Let {ηt }t∈N be a positive sequencewithηt ↓ 0. Let st ≡ s(ηt ) denote the corresponding
sequence of solutions to MVI(V ηt , h). Set qt ≡ 1 − γtηt ∈ (0, 1/2). Then, iterating
the energy inequality established in Lemma 4.3, we have for x = st :

∥
∥
∥z(t)

K − st

∥
∥
∥
2 ≤ q K

t

∥
∥
∥z(t)

0 − st

∥
∥
∥
2

+
K−1∑

k=0

q K−k+1
t γ 2

t

(

8

(
∑

i∈I
L2

hi
n2

i

)

+ 4(L f (ξt,k+1/2)
2 + η20)

∥
∥
∥z(t)

k+1/2 − xt
∥
∥
∥
2
)

− 2γt

K−1∑

k=0

q K−k+1
t 〈V̂t,k+1/2(z

(t)
k+1/2)+ H δt

z(t)k+1/2
(Wt,k+1/2)− V (z(t)

k+1/2)

− ∇hδt (z(t)
k+1/2), z

(t)
k+1/2 − st 〉

− 2γt

K−1∑

k=0

q K−k+1
t 〈 (V (xt )+ ∇hδt (xt )

)−
(

V̂t,k+1/2(xt )+ H δt
xt (Wt,k+1/2)

)
, z(t)

k+1/2 − st 〉

− 2γt

K−1∑

k=0

q K−k+1
t 〈εt

V (ξ
1:bt
t )+ εt

h(W1:bt
t ), z(t)

k+1/2 − st 〉

− 2γt

K−1∑

k=0

q K−k+1
t

(
〈V ηt (st ), z

(t)
k+1/2 − st 〉 + h(z(t)

k+1/2)− h(st )− 2δt Lh

)
.
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By definition of the point st , we have 〈V ηt (st ), z
(t)
k+1/2 − st 〉 + h(z(t)

k+1/2)− h(st ) ≥ 0.
Furthermore, the estimators involved are unbiased, which means

E[〈V̂t,k+1/2(z(t)
k+1/2)

+ H δt

z(t)k+1/2
(Wt,k+1/2)− V (z(t)

k+1/2)−∇hδt (z(t)
k+1/2), z

(t)
k+1/2 − st 〉|Ft ] = 0,

E[(〈V (xt )+ ∇hδt (xt )
)−

(
V̂t,k+1/2(xt )+ H δt

xt (Wt,k+1/2)
)

,

z(t)
k+1/2 − st 〉|Ft ] = 0,

E[〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), z(t)

k+1/2 − st 〉|Ft ] = 0.

To wit, let us focus on the first line of the above display. Using the law of iterated
expectations, we have

E[〈V̂t,k+1/2(z(t)k+1/2)+ Hδt

z(t)k+1/2
(Wt,k+1/2)− V (z(t)k+1/2)− ∇hδt (z(t)k+1/2), z

(t)
k+1/2 − st 〉|Ft ]

= E

⎡

⎣E

⎛

⎝〈V̂t,k+1/2(z(t)k+1/2)+ Hδt

z(t)k+1/2
(Wt,k+1/2)− V (z(t)k+1/2)− ∇hδt (z(t)k+1/2), z

(t)
k+1/2 − st 〉|At,k

⎞

⎠ |Ft

⎤

⎦

= 0

This being true because zk+1/2 is At,k-measurable. The remaining two equalities can
be demonstrated in the same way. Since zK = xt+1 and z0 = xt , and using the results
above, we are left with the estimate

E[
∥
∥
∥xt+1 − st

∥
∥
∥
2 |Ft ] ≤ q K

t

∥
∥xt − st

∥
∥2 + Kγ 2

t (L2
f + η20)C

2 + 8γ 2
t

(
∑

i∈I
L2

hi
n2

i

)

+2Kγtδt Lh .

From Proposition 3.1(d), we obtain the estimate

∥
∥xt − st

∥
∥2 ≤ (1+ γtηt )

∥
∥xt − st−1

∥
∥2 + (1+ 1

γtηt
) ‖st − st−1‖2

≤ (1+ γtηt )
∥
∥xt − st−1

∥
∥2 + (1+ γtηt )

(
ηt − ηt−1

ηt

)2

A2
x ,

whereAx is a constant upper bound of infx∈SOL(V ,h) ‖x‖ (cf. Proposition A.4). More-
over,

(1+ γtηt )q
K
t = (1+ γtηt )(1− γtηt )q

K−1
t = (1− γ 2

t η2t )q
K−1
t < qt .

This allows us to conclude

E[
∥
∥
∥xt+1 − st

∥
∥
∥
2 |Ft ] ≤ qt

∥
∥xt − st−1

∥
∥2 + q K

t (1+ 1

γtηt
)A2

x

(
ηt − ηt−1

ηt

)2

123



   11 Page 30 of 53 Journal of Optimization Theory and Applications           (2025) 206:11 

+ Kγ 2
t (L2

f + η20)C
2 + 8

∑

i∈I
L2

hi
n2

i + 2K Lhγtδt .

Define

at � q K
t

(

1+ 1

γtηt

)

A2
x

(
ηt − ηt−1

ηt

)2

+Kγ 2
t (L2

f + η20)C
2 + 8γ 2

t

∑

i∈I
L2

hi
n2

i + 2K Lhγtδt ,

and ψt � E[∥∥xt − st−1
∥
∥2], so that we obtain the recursion

ψt+1 ≤ qtψt + at .

Under the assumptions stated in Theorem 4.1, we have
∑∞

t=0 γtηt = ∞ and
limt→∞ at

γt ηt
= 0. Using Lemma 3 in [60], it follows limt→∞ ψt = 0, and there-

fore limt→∞
∥
∥xt − st

∥
∥ = 0 almost surely. Now, let w � infx∈SOL(V ,h) ‖x‖. Then,

using the triangle inequality we conclude

∥
∥
∥xt+1 − w

∥
∥
∥ ≤

∥
∥
∥xt+1 − st

∥
∥
∥+ ‖st − w‖ → 0 as t →∞, a.s.

Since y(·) is Lipschitz continuous (cf. Fact A.2, Appendix A.2), the claim follows.

7.1.3 Proof of Theorem 4.2

We use the energy estimate formulated in Lemma 4.3 to deduce a bound on the gap
function (12) relative to a suitably constructed ergodic average.

Lemma 7.1 For any t ∈ {0, 1, . . . , T−1}, define z̄t � 1
K

∑K−1
k=0 z(t)

k+1/2. Let {γt }t , {ηt }t
be positive sequences satisfying 0 < γtηt < 1/2. For k ∈ {0, 1, . . . , K − 1} define

Y1
t,k � V̂t,k+1/2(z(t)

k+1/2)+ H δt

z(t)k+1/2
(Wt,k+1/2)− V (z(t)

k+1/2)− ∇hδt (z(t)
k+1/2), and

Y2
t,k � V (xt )+∇hδt (xt )− V̂t,k+1/2(xt )− H δt

xt (Wt,k+1/2).

Under the same Assumptions as in Lemma 4.3, we have for all x ∈ X:

γt
(〈V (x), z̄t − x〉 + h(z̄t )− h(x)

) ≤ 1

2K

(
∥
∥xt − x

∥
∥2 −

∥
∥
∥xt+1 − x

∥
∥
∥
2
)

+ 2
γ 2

t

K
(L f (ξt,k+1/2)2 + η20)

K−1∑

k=0

∥
∥
∥z(t)

k+1/2 − x
∥
∥
∥
2 + 4γ 2

t

∑

i∈I
L2

hi
n2

i

− γt 〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), z̄t − x〉 + γtδt Lh − γtηt 〈x, z̄t − x〉

− γt

K

K−1∑

k=0
〈Y1

t,k, z
(t)
k+1/2 − x〉 − γt

K

K−1∑

k=0
〈Y2

t,k, z
(t)
k+1/2 − x〉.

(29)
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Proof We depart from the energy bound in Lemma 4.3. Rearranging this inequality
and using γtηt ∈ (0, 1/2), it follows

2γt

(
〈V (x), z(t)k+1/2 − x〉 + h(z(t)k+1/2)− h(x)

)
≤
∥
∥
∥z(t)k − x

∥
∥
∥
2 −

∥
∥
∥z(t)k+1 − x

∥
∥
∥
2

+ 8γ 2
t

∑

i∈I
L2

hi
n2i + 4γ 2

t (L f (ξt,k+1/2)2 + η20)
∥
∥
∥z(t)k+1/2 − xt

∥
∥
∥
2

− 2γt 〈V̂t,k+1/2(z(t)k+1/2)+ H δt

z(t)k+1/2
(Wk+1/2)− V (z(t)k+1/2)−∇hδt (z(t)k+1/2), z

(t)
k+1/2 − x〉

− 2γt 〈
(

V (xt )+ ∇hδt (xt )
)
−
(

V̂t,k+1/2(xt )+ H δt
xt (Wt,k+1/2)

)
, z(t)k+1/2 − x〉

− 2γt 〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), z(t)k+1/2 − x〉 + 2γt δt Lh − 2γtηt 〈x, z(t)k+1/2 − x〉.

Summing from k = 0, . . . , K − 1 and calling z̄t � 1
K

∑K−1
k=0 z(t)

k+1/2, we get first from
Jensen’s inequality

2
γt

K

K−1∑

k=0

(
〈V (x), z(t)

k+1/2 − x〉 + h(z(t)
k+1/2)− h(x)

)

≥ 2γt
(〈V (x), z̄t − x〉 + h(z̄t )− h(x)

)
.

Second, telescoping the expression in the penultimate display and using the definitions
of the process {Yν

t,k}K−1
k=0 , we deduce the bound

γt
(〈V (x), z̄t − x〉 + h(z̄t )− h(x)

)

≤ 1

2K

(
∥
∥xt − x

∥
∥2 −

∥
∥
∥xt+1 − x

∥
∥
∥
2
)

+ 2
γ 2

t

K

K−1∑

k=0
(L f (ξt,k+1/2)2 + η20)

∥
∥zk+1/2 − x

∥
∥2 + 4γ 2

t

∑

i∈I
L2

hi
n2

i

− γt 〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), z̄t − x〉 + γtδt Lh − γtηt 〈x, z̄t − x〉

− γt

K

K−1∑

k=0
〈Y1

t,k, z
(t)
k+1/2 − x〉 − γt

K

K−1∑

k=0
〈Y2

t,k, z
(t)
k+1/2 − x〉.

� 
We can now give the proof of Theorem 4.2. Let us introduce the auxiliary processes
{uν

t,k}K−1
k=0 for ν = 1, 2 defined recursively as

uν
t,k+1 = ΠX(uν

t,k − γtYν
t,k), uν

t,0 = xt . (30)

The definition of the auxiliary sequence gives for ν = 1, 2 (see e.g. [54])

∥
∥uν

t,k+1 − x
∥
∥2 ≤ ∥∥uν

t,k − x
∥
∥2 − 2γt 〈Yν

t,k,u
ν
t,k − x〉 + γ 2

t

∥
∥Yν

t,k

∥
∥2
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= ∥∥uν
t,k − x

∥
∥2 + 2γt 〈Yν

t,k, z
(t)
k+1/2 − x〉

− 2γt 〈Yν
t,k,u

ν
t,k − z(t)

k+1/2〉 + γ 2
t

∥
∥Yν

t,k

∥
∥2 .

Rearranging and telescoping shows

−2γt

K−1∑

k=0
〈Yν

t,k, z
(t)
k+1/2 − x〉 ≤ ∥∥uν

t,0 − x
∥
∥2 − ∥∥uν

t,K − x
∥
∥2 + γ 2

t

K−1∑

k=0

∥
∥Yν

t,k

∥
∥2

− 2γt

K−1∑

k=0
〈Yν

t,k, z
(t)
k+1/2 − uν

t,k〉.

Plugging this into eq. (29), we get

γt
(〈V (x), z̄t − x〉 + h(z̄t )− h(x)

) ≤ 1

2K

(
∥
∥xt − x

∥
∥2 −

∥
∥
∥xt+1 − x

∥
∥
∥
2
)

+ 2
γ 2

t
K

K−1∑

k=0
(L f (ξt,k+1/2)2 + η20)

∥
∥
∥z(t)k+1/2 − x

∥
∥
∥
2 + 4γ 2

t

∑

i∈I
L2

hi
n2i

− γt 〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), z̄t − x〉 + γt δt Lh − γtηt 〈x, z̄t − x〉

+ γt

K

⎛

⎝
∥
∥
∥u1t,0 − x

∥
∥
∥
2 −

∥
∥
∥u1t,K − x

∥
∥
∥
2 + γ 2

t

K−1∑

k=0

∥
∥
∥Y1

t,k

∥
∥
∥
2 − 2γt

K−1∑

k=0
〈Y1

t,k , z(t)k+1/2 − u1t,k〉
⎞

⎠

+ γt

K

⎛

⎝
∥
∥
∥u2t,0 − x

∥
∥
∥
2 −

∥
∥
∥u2t,K − x

∥
∥
∥
2 + γ 2

t

K−1∑

k=0

∥
∥
∥Y2

t,k

∥
∥
∥
2 − 2γt

K−1∑

k=0
〈Y2

t,k , z(t)k+1/2 − u2t,k〉
⎞

⎠ .

Summing this expression over the outer-iteration loop and introduce the averaged
iterate

z̄T �
∑T−1

t=0 γt z̄t

∑T−1
t=0 γt

.

Jensen’s inequality readily implies

T−1∑

t=0

(〈V (x), z̄t − x〉 + h(z̄t )− h(x)
) ≥

(
T−1∑

t=0
γt

)
(
〈V (x), z̄T − x〉 + h(z̄T )− h(x)

)
.

Recall that C = maxi∈I Ci is the upper bound on the diameter of the set Xi (cf.
Assumption 2.(i)). This assumed compactness of the set X, we derive the a-priori
bounds

∥
∥xt − x

∥
∥ ≤ C ∀t = 0, 1, . . . , T − 1,

∥
∥
∥z(t)k+1/2 − x

∥
∥
∥ ≤ C ∀k = 0, 1, . . . , K − 1, and

∥
∥z̄t − x

∥
∥ ≤ C ∀t = 0, 1, . . . , T − 1.
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Using these bounds, we conclude

〈V (x), z̄T − x〉 + h(z̄T )− h(x)

≤ 1

2K
∑T−1

t=0 γt

(∥
∥
∥x0 − x

∥
∥
∥
2 −

∥
∥
∥xT − x

∥
∥
∥
2
)

+
2
∑T−1

t=0 γ 2
t
∑K−1

k=0 (L f (ξt,k+1/2)2 + η20)

∥
∥
∥z(t)

k+1/2 − x
∥
∥
∥
2

K
∑T−1

t=0 γt

+
∑T−1

t=0 4γ 2
t
∑

i∈I L2
hi

n2
i + Lh

∑T−1
t=0 δtγt

∑T−1
t=0 γt

+ 1

K
∑T−1

s=0 γs

T−1∑

t=0
γt

(∥
∥
∥u1t,0 − x

∥
∥
∥
2 +

∥
∥
∥u2t,0 − x

∥
∥
∥
2
)

+
∑T−1

t=0 γ 3
t

K
∑T−1

s=0 γs

K−1∑

k=0

(∥
∥
∥Y1

t,k

∥
∥
∥
2 +

∥
∥
∥Y2

t,k

∥
∥
∥
2
)

+ 2
∑T−1

t=0 γ 2
t

K
∑T−1

s=0 γs

K−1∑

k=0

(
〈Y1

t,k,u
1
t,k − z(t)

k+1/2〉

+〈Y2
t,k,u

2
t,k − z(t)

k+1/2〉
)

+
∑T−1

t=0 γt 〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), x − z̄t 〉

∑T−1
t=0 γt

+
∑T

t=0 γtηt 〈x, x − z̄t 〉
∑T−1

t=0 γt
.

We bound each of the terms above individually as follows:

1. 1
2K
∑T−1

t=0 γt

(∥
∥x0 − x

∥
∥2 − ∥∥xT − x

∥
∥2
)
≤ C2

2K
∑T−1

t=0 γt
,

2.
2
∑T−1

t=0 γ 2
t
∑K−1

k=0 (L f (ξt,k+1/2)2+η20)

∥
∥
∥z(t)k+1/2−x

∥
∥
∥
2

K
∑T−1

t=0 γt
≤ 2C2

∑T−1
t=0 γ 2

t
∑K−1

k=0 (L f (ξt,k+1/2)2+η20)

K
∑T−1

s=0 γs
,

3. 1
K

(∥
∥
∥u1t,0 − x

∥
∥
∥
2 +

∥
∥
∥u2t,0 − x

∥
∥
∥
2
)

= 2
K

∥
∥xt − x

∥
∥2 ≤ 2C2

K ,

4.
∑T

t=0 γt ηt 〈x,x−z̄t 〉
∑T−1

t=0 γt
≤ 3C2∑T−1

t=0 γt ηt

2
∑T−1

t=0 γt
,

5.
∑T−1

t=0 γt 〈εt
V (ξ

1:bt
t )+εt

h(W1:bt
t ),x−z̄t 〉

∑T−1
t=0 γt

≤
∑T−1

t=0 γt (C
∥
∥
∥εt

V (ξ
1:bt
t )

∥
∥
∥+C

∥
∥
∥εt

h(W1:bt
t )

∥
∥
∥)

∑T−1
t=0 γt

Plugging all these bounds into the penultimate display gives

〈V (x), z̄T − x〉 + h(z̄T )− h(x)

≤ C2

2K
∑T−1

t=0 γt
+ 2C2

∑T−1
t=0 γ 2

t
∑K−1

k=0 (L f (ξt,k+1/2)2 + η20)

K
∑T−1

s=0 γs
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+
∑T−1

t=0 4γ 2
t
∑

i∈I L2
hi

n2
i + Lh

∑T−1
t=0 δtγt

∑T−1
t=0 γt

+ 2C2

K
+
∑T−1

t=0 γt (C
∥
∥
∥εt

V (ξ
1:bt
t )

∥
∥
∥+ C

∥
∥
∥εt

h(W1:bt
t )

∥
∥
∥)

∑T−1
t=0 γt

+
∑T−1

t=0 γ 3
t

K
∑T−1

t=0 γt

K−1∑

k=0

(∥
∥
∥Y1

t,k

∥
∥
∥
2 +

∥
∥
∥Y2

t,k

∥
∥
∥
2
)

+ 2
∑T−1

t=0 γ 2
t

K
∑T−1

t=0 γt

K−1∑

k=0

(
〈Y1

t,k,u
1
t,k − z(t)

k+1/2〉 + 〈Y2
t,k,u

2
t,k − zk+1/2〉

)

+ 3C2∑T−1
t=0 γtηt

2
∑T−1

t=0 γt
.

Let L2
f � Eξ [L f (ξ)2], and define

DK ,T � C2

2K
∑T−1

t=0 γt
+ 2C2(L2

f + η20)

∑T−1
t=0 γ 2

t
∑T−1

t=0 γt
+ 3C2∑T−1

t=0 γtηt

2
∑T−1

t=0 γt

+
∑T−1

t=0 4γ 2
t
∑

i∈I L2
hi

n2
i + Lh

∑T−1
t=0 δtγt

∑T−1
t=0 γt

+ 2C2

K
.

(31)

Hence, using the definition of the gap function (12), we see

E[Γ (z̄T )] ≤ DK ,T + E

[ ∑T−1
t=0 γ 3

t

K
∑T−1

t=0 γt

K−1∑

k=0

(∥
∥
∥Y1

t,k

∥
∥
∥
2 +

∥
∥
∥Y2

t,k

∥
∥
∥
2
)]

+ E

[
2
∑T−1

t=0 γ 2
t

K
∑T−1

t=0 γt

K−1∑

k=0

(
〈Y1

t,k,u
1
t,k − z(t)

k+1/2〉 + 〈Y2
t,k,u

2
t,k − z(t)

k+1/2〉
)
]

+ E

⎡

⎣

∑T−1
t=0 γt (C

∥
∥
∥εt

V (ξ
1:bt
t )

∥
∥
∥+ C

∥
∥
∥εt

h(W1:bt
t )

∥
∥
∥)

∑T−1
t=0 γt

⎤

⎦ .

Next, observe that

∥
∥
∥Y1

t,k

∥
∥
∥ ≤

∥
∥
∥V̂t,k+1/2(z(t)k+1/2)− V (zk+1/2)

∥
∥
∥+

∥
∥
∥
∥
∥

H δt

z(t)k+1/2
(Wt,k+1/2)− ∇hδt (z(t)k+1/2)

∥
∥
∥
∥
∥

, and

∥
∥
∥Y2

t,k

∥
∥
∥ ≤

∥
∥
∥V̂t,k+1/2(xt )− V (xt )

∥
∥
∥+

∥
∥
∥H δt

xt (Wt,k+1/2)−∇hδt (xt )
∥
∥
∥ .

Moreover, using compactness of X,

〈Yν
t,k,u

ν
t,k − z(t)

k+1/2〉 ≤ C
∥
∥Yν

t,k

∥
∥ ∀ν = 1, 2. (32)
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Lemma A.2(c) (for b = 1) gives

EW∼U(Sn)

[∥
∥
∥H δt

xt (Wt,k+1/2)− ∇hδt (xt )

∥
∥
∥
2 |At,k

]

≤
∑

i∈I
n2

i L2
hi

.

Lemma 4.1 in turn implies

Eξ

[∥
∥
∥V̂t,k+1/2(z(t)

k+1/2)− V (z(t)
k+1/2)

∥
∥
∥
2 |At,k

]

≤ M2
V .

By Jensen’s inequality in tandem with Lemmas 4.1 and 4.2, we conclude from (27)
and (28)

E
[∥
∥
∥εt

V (ξ
1:bt
t )

∥
∥
∥ |Ft

]
≤
√

E

[∥
∥
∥εt

V (ξ
1:bt
t )

∥
∥
∥
2 |Ft

]

≤ MV√
bt

, and

E
[∥
∥
∥εt

h(W1:bt
t )

∥
∥
∥ |Ft

]
≤
√

E

[∥
∥
∥εt

h(W1:bt
t )

∥
∥
∥
2 |Ft

]

≤
(∑

i∈I L2
hi

n2
i

)1/2

√
bt

.

This implies E[
∥
∥
∥Yν

t,k

∥
∥
∥
2 |At,k] ≤ 2 M2

V + 2
∑

i∈I L2
hi

n2
i ≡ σ 2 for all ν = 1, 2, as well

as

E[∥∥Yν
t,k

∥
∥ |At,k] ≤

√

E[
∥
∥
∥Yν

t,k

∥
∥
∥
2 |At,k] ≤ σ.

We conclude, via a repeated application of the law of iterated expectations, that

E[Γ (z̄T )] ≤ DK ,T + 2σ 2∑T−1
t=0 γ 3

t
∑T−1

t=0 γt
+ 4Cσ

∑T−1
t=0 γ 2

t
∑T−1

t=0 γt

+
∑T−1

t=0
γt√
bt

(
C MV + C(

∑
i∈I L2

hi
n2

i )
1/2
)

∑T−1
t=0 γt

.

Using the specification γt = 1/T = ηt = δt , as well as K = T and bt ≥ T 2 gives

DK ,T ≤ 5C2

T
+ 2C2(L2

f + 1/T 2)

T
+ 3C2

2T
+ 4(

∑
i∈I L2

hi
n2

i )+ Lh

T
≡ cT .

and consequently,

E[Γ (z̄T )] ≤ cT + 2σ 2

T 2 + Cσ

T
+ C(MV + (

∑
i∈I L2

hi
n2

i )
1/2)

T
= O(Cσ/T )
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Algorithm 3: ISFBF(x̄, v̄, H̄ , γ, η, δ, ε, K )

Result: Iterate zK
Set z0 = x̄;
for k = 0, 1, . . . , K − 1 do

Update zk+1/2 = ΠX[zk − γ (v̄ + ηx̄ + H̄)],;
Obtain V̂ η

k+1/2(zk+1/2) and V̂ η
k+1/2(x̄) as defined in eq. (11);

Draw iid direction vectorsWk+1/2 = {Wi,k+1/2}i∈I, with eachWi,k+1/2 ∼ U(Si ). ;

Obtain Hδ,ε
zk+1/2 (Wk+1/2) and Hδ,ε

x̄ (Wk+1/2);
Update
zk+1 = zk+1/2 − γ

(
V̂ η

k+1/2(zk+1/2)+ Hδ,ε
zk+1/2 (Wk+1/2)− V̂ η

k+1/2(x̄)− Hδ,ε
x̄ (Wk+1/2)

)
.

;end

Algorithm 4: Inexact Variance Reduced Hierarchical Game Solver (I-VRHGS)

Data: x, T , {γt }Tt=0, {bt }Tt=0, {ηt }Tt=0, {εt }Tt=0, {δt }Tt=0, K

Set x0 = x.
for t = 0, 1, . . . , T − 1 do

For each i ∈ I receive the oracle feedback V̄ t defined by V̄ t
i � 1

bt

∑bt
s=1 V̂i (xt , ξ

(s)
i,t ). ;

For each i ∈ I construct the estimator Hδt ,bt
xt defined by Hδt ,εt ,bt

i,xi
� 1

bt

∑bt
s=1 Hδt ,εt

i,xi
(W(s)

i,t ). ;

Update xt+1 = ISFBF(xt , V̄ t , Hδt ,bt ,εt
xt , γt , ηt , δt , εt , bt , K )

end

7.2 Analysis of the Inexact Scheme

The inexact version of our method VRHGS is obtained by replacing the estimates for
the implicit function using the inexact solution map yε

i . The precise implementation
is summarized in Algorithms 3 and 4.

The proof of Theorem 4.3 is analogous to the one of Theorem 4.2, with the simple
modification due to inexact feedback from the follower’s problem. We state the main
changes here, leaving the straightforward derivations to the reader. We begin with
the modified energy inequality, similar to Lemma 4.3. Here, we also follow the same
notational simplification by suppressing the outer iteration counter t from the variables.

Lemma 7.2 Let Assumptions 1–4 hold true. Then, for all t ∈ {0, 1, . . . , T − 1} and
all anchor points x ∈ X, we have

∥
∥zk+1 − x

∥
∥2 ≤ (1− γtηt ) ‖zk − x‖2 − (1− 2γtηt )

∥
∥zk+1/2 − zk

∥
∥2

+ 8γ 2
t

(∥
∥
∥H δt ,εt

zk+1/2 (Wk+1/2)
∥
∥
∥
2 +

∥
∥
∥H δt ,εt

xt (Wk+1/2)
∥
∥
∥
2
)

+ 4γ 2
t (L f (ξk+1/2)2 + η20)

∥
∥zk+1/2 − xt∥∥2

− 2γt 〈V̂k+1/2(zk+1/2)+ H δt
zk+1/2 (Wk+1/2)− V (zk+1/2)

−∇hδt (zk+1/2), zk+1/2 − x〉
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− 2γt 〈
(

V (xt )+∇hδt (xt )
)
−
(

V̂k+1/2(xt )+ H δt
xt (Wk+1/2)

)
, zk+1/2 − x〉

− 2γt 〈εt
V (ξ1:bt )+ εt

h(W1:bt ), zk+1/2 − x〉
− 2γt 〈H δt ,bt

xt − H δt ,bt ,εt
xt + H δt ,εt

xt (Wk+1/2)− H δt
xt (Wk+1/2), zk+1/2 − x〉

− 2γt 〈H δt ,εt
zk+1/2 (Wk+1/2)− H δt

zk+1/2 (Wk+1/2), zk+1/2 − x〉
− 2γt

(〈V ηt (x), zk+1/2 − x〉 + h(zk+1/2)− h(x)
)+ 2γt δt Lh ,

where Lh �
∑

i∈I Lhi .

The inexact version of Lemma 7.1 reads then as follows.

Lemma 7.3 For any t ∈ {0, 1, . . . , T−1}, define z̄t � 1
K

∑K−1
k=0 z(t)

k+1/2. Let {γt }t , {ηt }t
be positive sequences satisfying 0 < γtηt < 1/2. For k ∈ {0, 1, . . . , K − 1} define
the process {Yν

t,k}K−1
k=0 , ν ∈ {1, 2} as in Lemma 7.1. Then, we have for all x ∈ X:

γt
(〈V (x), z̄t − x〉 + h(z̄t )− h(x)

) ≤ 1

2K

(
∥
∥xt − x

∥
∥2 −

∥
∥
∥xt+1 − x

∥
∥
∥
2
)

+ 2γ 2
t

K

K−1∑

k=0
(L f (ξt,k+1/2)2 + η20)

∥
∥
∥z(t)

k+1/2 − x
∥
∥
∥
2 − γtηt 〈x, z̄t − x〉

− γt 〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), z̄t − x〉 + γtδt Lh

− γt

K

K−1∑

k=0
〈Y1

t,k, z
(t)
k+1/2 − x〉 − γt

K

K−1∑

k=0
〈Y2

t,k, z
(t)
k+1/2 − x〉

+ 2γ 2
t

K

K−1∑

k=0

(∥
∥
∥
∥H δt ,εt

z(t)k+1/2
(Wt,k+1/2)

∥
∥
∥
∥

2

+
∥
∥
∥H δt ,εt

xt (Wt,k+1/2)
∥
∥
∥
2
)

− γt

K

K−1∑

k=0
〈H δt ,bt

xt − H δt ,bt ,εt
xt + H δt ,εt

xt (Wt,k+1/2)− H δt
xt (Wt,k+1/2), z(t)

k+1/2 − x〉

− γt

K

K−1∑

k=0
〈H δt ,εt

z(t)k+1/2
(Wt,k+1/2)− H δt

z(t)k+1/2
(Wt,k+1/2), z(t)

k+1/2 − x〉.

Using this bound, we conclude in the same way as in the analysis of the exact
scheme that

〈V (x), z̄T − x〉 + h(z̄T )− h(x) ≤ 1

2K
∑T−1

t=0 γt

∥
∥
∥x0 − x

∥
∥
∥
2

+
∑T

t=0 γtηt 〈x, x − z̄t 〉
∑T−1

t=0 γt
+ Lh

∑T−1
t=0 δtγt

∑T−1
t=0 γt

+
2
∑T−1

t=0 γ 2
t
∑K−1

k=0 (L f (ξt,k+1/2)2 + η20)

∥
∥
∥z(t)

k+1/2 − x
∥
∥
∥
2

K
∑T−1

s=0 γs
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+ 1

K
∑T−1

s=0 γs

T−1∑

t=0
γt

(∥
∥
∥u1t,0 − x

∥
∥
∥
2 +

∥
∥
∥u2t,0 − x

∥
∥
∥
2
)

+
∑T−1

t=0 γ 3
t

K
∑T−1

t=0 γt

K−1∑

k=0

(∥
∥
∥Y1

t,k

∥
∥
∥
2 +

∥
∥
∥Y2

t,k

∥
∥
∥
2
)

+ 2
∑T−1

t=0 γ 2
t

K
∑T−1

t=0 γt

K−1∑

k=0

(
〈Y1

t,k,u
1
t,k − z(t)

k+1/2〉 + 〈Y2
t,k,u

2
t,k − z(t)

k+1/2〉
)

+
∑T−1

t=0 γt 〈εt
V (ξ

1:bt
t )+ εt

h(W1:bt
t ), x − z̄t 〉

∑T−1
t=0 γt

+
T−1∑

t=0

2γ 2
t

K
∑T−1

s=0 γs

K−1∑

k=0

(∥
∥
∥
∥H δt ,εt

z(t)k+1/2
(Wt,k+1/2)

∥
∥
∥
∥

2

+
∥
∥
∥H δt ,εt

xt (Wt,k+1/2)
∥
∥
∥
2
)

−
T−1∑

t=0

γt

K
∑T−1

s=0 γs

K−1∑

k=0
〈H δt ,bt

xt − H δt ,bt ,εt
xt

+ H δt ,εt
xt (Wt,k+1/2)− H δt

xt (Wt,k+1/2), z(t)
k+1/2 − x〉

−
T−1∑

t=0

γt

K
∑T−1

s=0 γs

K−1∑

k=0
〈H δt ,εt

z(t)k+1/2
(Wt,k+1/2)− H δt

z(t)k+1/2
(Wt,k+1/2), z(t)

k+1/2 − x〉.

Performing the same bounding steps as done in the exact case, we readily arrive at
the expression

〈V (x), z̄T − x〉 + h(z̄T )− h(x) ≤ C2

2K
∑T−1

t=0 γt

+ 2C2

∑T−1
t=0 γ 2

t
∑K−1

k=0 (L f (ξt,k+1/2)2 + η20)

K
∑T−1

t=0 γt

+ 3C2∑T−1
t=0 γtηt

2
∑T−1

t=0 γt
+ 2C2

K
+ Lh

∑T−1
t=0 δtγt

∑T−1
t=0 γt

+
∑T−1

t=0 γt

(
C
∥
∥
∥εt

V (ξ
1:bt
t )

∥
∥
∥+ C

∥
∥
∥εt

h(W1:bt
t )

∥
∥
∥
)

∑T−1
t=0 γt

+
∑T−1

t=0 γ 3
t

K
∑T−1

t=0 γt

K−1∑

k=0

(∥
∥
∥Y1

t,k

∥
∥
∥
2 +

∥
∥
∥Y2

t,k

∥
∥
∥
2
)

+ 2
∑T−1

t=0 γ 2
t

K
∑T−1

t=0 γt

K−1∑

k=0

(
〈Y1

t,k,u
1
t,k − z(t)

k+1/2〉 + 〈Y2
t,k,u

2
t,k − z(t)

k+1/2〉
)

+
T−1∑

t=0

2γ 2
t

K
∑T−1

s=0 γs

K−1∑

k=0

(∥
∥
∥
∥H δt ,εt

z(t)k+1/2
(Wt,k+1/2)

∥
∥
∥
∥

2

+
∥
∥
∥H δt ,εt

xt (Wt,k+1/2)
∥
∥
∥
2
)
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+
T−1∑

t=0

Cγt

K
∑T−1

s=0 γs

K−1∑

k=0

∥
∥
∥H δt ,bt

xt − H δt ,bt ,εt
xt + H δt ,εt

xt (Wt,k+1/2)− H δt
xt (Wt,k+1/2)

∥
∥
∥

+
T−1∑

t=0

Cγt

K
∑T−1

s=0 γs

K−1∑

k=0

∥
∥
∥
∥H δt ,εt

zk+1/2(Wt,k+1/2)− H δt

z(t)k+1/2
(Wt,k+1/2)

∥
∥
∥
∥ .

We next estimate the error terms appearing because of the inexact feedback map in
the coupling function. Lemma A.3 yields

E

[∥
∥
∥H δt ,εt

zk+1/2(Wt,k+1/2)
∥
∥
∥
2 +

∥
∥
∥H δt ,εt

xt (Wt,k+1/2)
∥
∥
∥
2 |At,k

]

≤ 6
∑

i∈I

(
ni

δt

)2

(2L2
2,iε

2
t + L2

1,iδ
2
t ) ≡ α

(1)
t .

Furthermore, the triangle inequality, Jensen’s inequality, and (43) gives

E
[∥
∥
∥H δt ,bt

xt − H δt ,bt ,εt
xt + H δt ,εt

xt (Wk+1/2)− H δt
xt (Wk+1/2)

∥
∥
∥ |At,k

]

≤ E
[∥
∥
∥H δt ,bt

xt − H δt ,bt ,εt
xt

∥
∥
∥ |At,k

]

+ E
[∥
∥
∥H δt ,εt

xt (Wk+1/2)− H δt
xt (Wk+1/2)

∥
∥
∥ |At,k

]

≤
√

E

[∥
∥
∥H δt ,bt

xt − H δt ,bt ,εt
xt

∥
∥
∥
2 |At,k

]

+
√

E

[∥
∥
∥H δt ,εt

xt (Wk+1/2)− H δt
xt (Wk+1/2)

∥
∥
∥
2 |At,k

]

≤ 2εt

δt

(
1√
bt
+ 1

)√∑

i∈I
L2
2,i n2i ≡ α

(2)
t .

Lastly, we bound

E
[∥
∥
∥H δt ,εt

zk+1/2(Wk+1/2)− H δt
zk+1/2(Wk+1/2)

∥
∥
∥ |At,k

]
≤ 2εt

δt

√∑

i∈I
L2
2,i n

2
i ≡ α

(3)
t .

We now set

DK ,T � C2

2K
∑T−1

t=0 γt
+ 2C2(L2

f + η20)

∑T−1
t=0 γ 2

t
∑T−1

t=0 γt

+ 3C2∑T−1
t=0 γtηt

2
∑T−1

t=0 γt
+ 2C2

K
+ Lh

∑T−1
t=0 δtγt

∑T−1
t=0 γt

.

Using the definition of the gap function (12), we deduce

E[Γ (z̄T )] ≤ DK ,T + E

⎡

⎣

∑T−1
t=0 γ 3

t

K
∑T−1

t=0 γt

K−1∑

k=0

(∥
∥
∥Y1

t,k

∥
∥
∥
2 +

∥
∥
∥Y2

t,k

∥
∥
∥
2
)
⎤

⎦
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+ E

⎡

⎣
2
∑T−1

t=0 γ 2
t

K
∑T−1

t=0 γt

K−1∑

k=0

(
〈Y1

t,k ,u1t,k − z(t)k+1/2〉 + 〈Y2
t,k , u2t,k − z(t)k+1/2〉

)
⎤

⎦

+ E

⎡

⎣

∑T−1
t=0 γt (C

∥
∥
∥εt

V (ξ
1:bt
t )

∥
∥
∥+ C

∥
∥
∥εt

h(W1:bt
t )

∥
∥
∥)

∑T−1
t=0 γt

⎤

⎦

+ E

⎡

⎣
T−1∑

t=0

2γ 2
t

K
∑T−1

s=0 γs

K−1∑

k=0

(∥
∥
∥Hδt ,εt

zk+1/2 (Wt,k+1/2)
∥
∥
∥
2 +

∥
∥
∥Hδt ,εt

xt (Wt,k+1/2)
∥
∥
∥
2
)
⎤

⎦

+ E

⎡

⎣
T−1∑

t=0

Cγt

K
∑T−1

s=0 γs

K−1∑

k=0

∥
∥
∥Hδt ,bt

xt − Hδt ,bt ,εt
xt + Hδt ,εt

xt (Wt,k+1/2)− Hδt
xt (Wt,k+1/2)

∥
∥
∥

⎤

⎦

+ E

⎡

⎣
T−1∑

t=0

Cγt

K
∑T−1

s=0 γs

K−1∑

k=0

∥
∥
∥
∥
∥

Hδt ,εt

z(t)k+1/2
(Wt,k+1/2)− Hδt

z(t)k+1/2
(Wt,k+1/2)

∥
∥
∥
∥
∥

⎤

⎦

≤ DK ,T + 2σ 2∑T−1
t=0 γ 3

t
∑T−1

t=0 γt
+ 4Cσ

∑T−1
t=0 γ 2

t
∑T−1

t=0 γt

+
∑T−1

t=0
γt√
bt

C(MV + (
∑

i∈I L2
hi

n2i )1/2

∑T−1
t=0 γt

+
T−1∑

t=0

2γ 2
t α

(1)
t

∑T−1
s=0 γs

+
T−1∑

t=0

Cα
(2)
t γt

∑T−1
s=0 γs

+
T−1∑

t=0

Cγt α
(3)
t

∑T−1
s=0 γs

.

Making the choice γt = ηt = δt = 1/T as well as K = T , bt ≥ T 2 and εt =
1/T 2, we see that α

(1)
t = O(1/T 2), α

(2)
t = O(1/T ) and α

(3)
t = O(1/T ). It follows

E[Γ (z̄T )] = O(Cσ/T ), which completes the proof of Theorem 4.3.

8 Conclusion

In this work, we proposed a new solution approach to solve a fairly large class of
stochastic hierarchical games. Using a combination of smoothing, zeroth-order gradi-
ent approximation, and iterative regularization, we develop a novel variance reduction
method for stochastic VIs affected by general stochastic noise. We demonstrate con-
sistency of the method by proving that solution trajectory converges almost surely to
a particular equilibrium of the game and derive aO(1/T ) convergence rate in terms of
the expected gap function, using a suitably defined averaged trajectory. This rate result
is robust to inexact solutions of the lower level problem of the follower and aligns with
state-of-the-art variance reduction methods tailored to finite-sum problems. Further-
more, our approach is based on Tseng’s splitting technique, which shares the same
number of function calls as the popular extragradient method, but saves on one projec-
tion step. This implies that our scheme reduces the oracle complexity relative to vanilla
mini-batch approaches and at the same time reduces the computational bottlenecks
in every single iteration. This leaves open the door for many future investigations,
involving bias and non-convexities, that we leave for future research.
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A Auxiliary Facts

A.1 Generalities

Given a closed convex set X ⊂ Rn , we denote by ΠX : Rn → X the orthogonal
projector defined as

ΠX(w) := argmin
x∈X

1

2
‖x − w‖2 .

This is the solution map of a strongly convex optimization problem with the following
well-known properties.

Lemma A.1 Let X ⊂ Rn be a nonempty closed convex set. Then:

(i) ΠX(w) is the unique point satisfying 〈w − ΠX(w), x − ΠX(w)〉 ≤ 0 for all
x ∈ X;

(ii) For all w ∈ Rn and x ∈ X, we have ‖ΠX(w)− x‖2 + ‖ΠX(w)− w‖2 ≤
‖w − x‖2;

(iii) For all w, v ∈ Rn, ‖ΠX(w)−ΠX(v)‖2 ≤ ‖w − v‖2;

Let (Ω,F,P) be a given probability space carrying a filtration F = {Fk}k≥0. We
call the tuple (Ω,F, F,P) a discrete stochastic basis. Given a vector space K ⊆ Rn

with Borel σ -algebra B(K), a K-valued random variable is a (F,B(K))-measurable
map f : Ω → K; we write f ∈ L0(Ω,F,P;K). For every p ∈ [1,∞], define the
equivalence class of random variables f ∈ L0(Ω,F,P;K) with E[‖ f ‖p]1/p < ∞
as f ∈ L p(Ω,F,P;K). For f1, . . . , fk ∈ L p(Ω,F,P;K), we denote the sigma-
algebra generated by these random variables by σ( f1, . . . , fk). We denote by �0+(F)

the set of non-negative random variables {ξk}k≥0 such that for each k ≥ 0, we have
ξk ∈ L0(Ω,Fk,P;R+). For p ≥ 1, we set

�
p
+(F) = {{ξk}k≥0 ∈ �0+(F)|

∑

k≥0
|ξi |p < ∞ P− a.s.}.

A.2 Variational Inequalities

In this appendixwe summarize the essential parts from the theory of finite-dimensional
variational inequalities we use in the paper. A complete treatment can be found in [24].

The data of a variational inequality problem consist of mappings φ : Rn → Rn

and r : Rn → (−∞,+∞] a proper, convex and lower semi-continuous function.
Denote by dom(r) = {x ∈ Rn|r(x) < ∞}. The mixed variational inequality problems
associated with (φ, r) is

find x ∈ Rn such that 〈φ(x), y− x〉 + r(y)− r(x) ≥ 0 ∀y ∈ Rn . (MVI(φ, r))
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When r = δK for a closed convex set K ⊂ Rn , the problem MVI(φ, r) reduces to
the classical variational inequality VI(φ,K):

find x ∈ K such that 〈φ(x), y− x〉 ≥ 0 ∀y ∈ K. (VI(φ,K))

We note in passing that if r is proper, convex and lower semi-continuous, then problem
MVI(φ, r) is equivalent to the generalized equation

0 ∈ φ(x)+ ∂r(x), (33)

where ∂r(x) � {p ∈ Rn|r(x′) ≥ r(x)+ 〈p, x′ − x〉 ∀x′ ∈ Rn} is the subgradient of
r at x.

In order to measure the distance of a candidate point to the solution set we introduce
as a merit function for MVI(φ, r) the gap function

ΓK(x) � sup
z∈K

(〈φ(z), x − z〉 + r(x)− r(z)) ,

where K ⊂ Rn is a compact subset to handle the possibility of unboundedness of
dom(r). As proven in [56], this restricted version of the gap function is a valid measure
as long as K contains any solution of MVI(φ, r).

For existence and uniqueness questions of variational problems, we usually rely on
monotonicity and continuity properties of the map φ.

Definition A.1 A mapping φ : Rn → Rn is said to be μ-monotone if there exists
μ ≥ 0 such that

〈φ(x)− φ(y), x − y〉 ≥ μ ‖x − y‖2 ∀x, y ∈ Rn .

A 0-monotone mapping is called monotone.

Fact A.1 (Solution Convexity of Monotone VIs) Consider the problem VI(φ,K),
where φ : Rn → Rn is monotone on K ⊂ dom(φ), and K is a closed convex set.
Then, the solution set

S = {x ∈ K|〈φ(x), y− x〉 ≥ 0 ∀y ∈ K}

is closed and convex. If φ is μ-monotone with μ > 0 on K, then S is a singleton.

See [21, Theorem 2F.1, 2F.6] for a proof of this Fact. We now extend the scope
of variational inequalities and introduce parameters into the problem data. This is
effectively the lower level problem solved by the followers in our hierarchical game
model. Let X ⊂ Rn be a nonempty compact convex set, and Y ⊂ Rm a closed convex
set. The object of study is the parameterized generalized equation

0 ∈ φ(x, y)+ NCY(y) (34)
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for a given function φ : Rn × Rm → Rm and the normal cone

NCY(y) =
{

∅ if y /∈ Y,

{ξ ∈ Rm | supz∈Y 〈ξ, z− y〉 ≤ 0} if y ∈ Y.
(35)

Specifically, we are interested in understanding the properties of the solution mapping

S(x) � {y ∈ Rm |0 ∈ φ(x, y)+ NCY(y)}. (36)

This is a subclass of classical problems, thoroughly summarized in [21], and dating
back to the landmark paper [61]. The interested reader can find proofs of the facts
stated below, as well as much more information on this topic in these references. We
point out that many of the strong assumption made below can be relaxed, at the price
of more complicated verification steps. Our aim is to present a simple and not entirely
unrealistic set of verifiable conditions under which our model assumptions provably
hold; A more general result can be found in [68, Lemma2.2].

Fact A.2 Consider problem (34) with the following assumptions on the problem data:

– X ⊂ Rn is compact and convex,
– Y ⊂ Rm is closed convex,
– φ : Rn × Rm → Rm is strictly differentiable on K × Y, where K is an open set

containing X;
– φ(x, ·) is strongly monotone for every x ∈ X.

Then S(x) = {y(x)}, and y(·) is Lipschitz continuous on X.

A.3 Tikhonov Regularization

Tikhonov regularization is a classical method in numerical analysis aiming for intro-
ducing additional stability into a computational scheme. Given problem MVI(φ, r)

and η > 0, we define the Tikhonov regularized mixed variational inequality problem
as MVI(φη, r), in which the operator is defined as φη(x) � φ(x) + ηx. It is easy to
see that if φ is 0-monotone, then φη is η-monotone (i.e. strongly monotone). Hence,
for every η > 0, problem MVI(φη, r) has a unique solution x∗(η). The first result we
are going to demonstrate is that the net {x∗(η)}η≥0 is bounded.
Proposition A.1 Consider problem MVI(φ, r) admitting a nonempty solution set
SOL(φ, r). Then, for all η > 0, we have

∥
∥x∗(η)

∥
∥ ≤ inf

x∈SOL(φ,r)
‖x‖ .

Proof Using the characterization of a pointx∗ ∈ SOL(φ, r) as a solution of amonotone
inclusion, we have

−φη(x∗(η)) ∈ ∂r(x∗(η)) and − φ(x∗) ∈ ∂r(x∗).
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Since ∂r is maximally monotone, it follows

〈φη(x∗(η))− φ(x∗), x∗ − x∗(η)〉 ≥ 0

⇔ 〈φ(x∗)− φ(x∗(η)), x∗ − x∗(η)〉 ≤ η〈x∗(η), x∗ − x∗(η)〉.

Since φ(·) is monotone, it follows 〈φ(x∗)− φ(x∗(η)), x∗ − x∗(η)〉 ≥ 0, so that

0 ≤ 〈x∗(η), x∗ − x∗(η)〉 = 〈x∗(η), x∗〉 − ∥∥x∗(η)
∥
∥2 .

The Cauchy–Schwarz inequality implies ‖x∗(η)‖ ≤ ‖x∗‖. Since x∗ has been chosen
arbitrarily, the claim follows. � 

We next study the asymptotic regime in which η → 0+. Since the net {x∗(η)}η>0 is
bounded, the Bolzano–Weierstrass theorem guarantees the existence of a converging
subsequence ηt → 0 such that x∗(t) ≡ x∗(ηt ) → x̂. Since ∂r is maximally monotone,
the set graph(∂r) is closed in the product topology [6].Hence, x̂ ∈ dom(∂r).Moreover,
for all t

(x∗(t),−φ(x∗(t))− ηtx∗(t)) ∈ graph(∂r) ∀t > 0.

Continuity and Proposition A.1, together with the just mentioned closed graph prop-
erty, yields for t →∞,

(x̂,−φ(x̂)) ∈ graph(∂r) ∀t > 0.

The next claim follows.

Proposition A.2 Every accumulation point of the Tikhonov sequence {x∗(η)}η>0
defines a solution of the problem MVI(φ, r).

We next deduce a non-asymptotic estimate of the Tikhonov sequence. Let {ηt }t∈N be
a positive sequence of regularization parameters satisfying ηt ↓ 0. Exploiting again
the variational characterization of the unique solutions x∗t ≡ x∗(ηt ), we have

−φηt−1(x∗t−1) ∈ ∂r(x∗t−1) and − φηt (x∗t ) ∈ ∂r(x∗t ).

By monotonicity of ∂r , we obtain

〈φηt−1(x∗t−1)− φηt (x∗t ), x∗t − x∗t−1〉 ≥ 0.

Hence, by monotonicity of φ, it follows

0 ≥ 〈φ(x∗t−1)− φ(x∗t ), x∗t − x∗t−1〉 ≥ 〈ηtx∗t − ηt−1x∗t−1, x∗t − x∗t−1〉
= ηt 〈x∗t − x∗t−1, x∗t − x∗t−1〉 + (ηt − ηt−1)〈x∗t−1, x∗t − x∗t−1〉.
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Whence,

ηt
∥
∥x∗t − x∗t−1

∥
∥2 ≤ (ηt − ηt−1)〈x∗t−1, x∗t−1 − x∗t 〉 ≤ (ηt − ηt−1)

∥
∥x∗t−1

∥
∥ · ∥∥x∗t − x∗t−1

∥
∥ .

The next claim follows:

Proposition A.3 For any monotonically decreasing sequence {ηt }t∈N ⊂ (0,∞) satis-
fying ηt ↓ 0 we have

(
ηt − ηt−1

ηt

)

inf
x∈SOL(φ,r)

‖x‖ ≥ ∥∥x∗(ηt )− x∗(ηt−1)
∥
∥ .

Lastly, we provide an exact localization result on the Tikhonov sequence.

Proposition A.4 Let ηt ↓ 0 and x∗t ≡ x∗(ηt ) the corresponding sequence of solutions
to the regularized problemMVI(φηt , r). Then, infx∈SOL(φ,r) ‖x‖ exists and is uniquely
attained and x∗t → argminx∈SOL(φ,r) ‖x‖.

Proof The set SOL(φ, r) agrees with the zeros of the monotone inclusion problem
(33). Since ∂r is maximally monotone, and φ is continuous and monotone, it follows
fromCorollary 24.4 in [6] that the set of zeros is closed and convex.Hence, the problem
infx∈SOL(φ,r) ‖x‖ admits a unique solution, proving the first part of the Proposition.
For the second part, let ηt ↓ 0 and x∗t ≡ x∗(ηt ) the corresponding sequence of unique
solution of MVI(φηt , r). Since {x∗t }t is bounded (Proposition A.1), we can pass to
a converging subsequence. By an abuse of notation, omitting the relabeling, let us
take the full sequence to be converging with limit point x̂. By Proposition A.2, we
know x̂ ∈ SOL(φ, r). In particular,

∥
∥x̂
∥
∥ ≥ infx∈SOL(φ,r) ‖x‖. But then, in view of

Proposition A.1, it follows
∥
∥x̂
∥
∥ = infx∈SOL(φ,r) ‖x‖. Since the accumulation point x̂

is arbitrary, the entire sequence {x∗t }t converges with limit argminx∈SOL(φ,r) ‖x‖. � 

A.4 Smoothing

We let Bn � {x ∈ Rn| ‖x‖ ≤ 1} denote the unit ball in Rn . The unit sphere is
denoted by Sn = {x ∈ Rn| ‖x‖ = 1}. The volume of the unit ball with radius δ with
respect to n-dimensional Lebesgue measure is Voln(δBn) = δn πn/2

Γ ( n
2+1) , where Γ (·)

is the Gamma function. Therefore, the measure dμn(u) � 1{u∈Bn} du
Voln(Bn)

defines a
uniform distribution on the unit ball in Rn . Recall that Voln−1(δSn) = n

δ
Voln(δBn)

for all δ > 0. Given δ > 0, and X be a closed convex set in Rn . We define the set
Xδ � X+ δBn .

Definition A.2 Let h : Rn → R be a continuous function. The spherical smoothing of
h is defined by

hδ(x) � 1

Voln(δBn)

∫

δBn

h(x + u)du =
∫

Bn

h(x + δw)
dw

Voln(Bn)
. (37)
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The following properties of the spherical smoothing can be deduced from [55, Section
9.3.2]; see also [16, Lemma 1].

Fact A.3 Let h : Rn → R be a continuous function that is Lh-Lipschitz continuous on
Xδ . Then, for all x, y ∈ X, we have

∣
∣hδ(x)− hδ(y)

∣
∣ ≤ Lh ‖x − y‖ , (38)

∣
∣hδ(x)− h(x)

∣
∣ ≤ Lhδ. (39)

Using Stoke’s Theorem, one can easily show that

∇hδ(x) = n

δ

∫

Sn

h(x + δv)v
dv

Voln−1(Sn)

= n

δ
EW∼U(Sn)[Wh(x + δW)]

= n

δ
EW∼U(Sn)[W (h(x + δW)− h(x))],

(40)

whereW ∼ U(Sn)means thatW is uniformly distributed onSn . A simple application
of Jensen’s inequality shows then that the spherical smoothing admits a Lipschitz
continuous gradient, whose modulus depends on the smoothing parameter δ.

Fact A.4 Let h : Rn → R be a continuous function that is Lh-Lipschitz continuous on
Xδ . Then, for all x, y ∈ X, we have

∥
∥∇hδ(x)−∇hδ(y)

∥
∥ ≤ Lhn

δ
‖x − y‖ . (41)

The smoothed function and its gradient is used to construct a variance reduced gradient
estimator for the implicit cost function of player i in our hierarchical game problem.

A.5 Random Sampling

In this section we explain how to construct a random oracle to sample the gradient
of the smoothed implicit function hδ

i . Let b ∈ N denote the batch size. In each round
of the algorithm, agent i enters the outer loop procedure, which asks this agent to

construct a ni × b matrix W1:b
i = [W(1)

i ; . . . ;W(b)
i ] satisfying

∥
∥
∥W(s)

i

∥
∥
∥ = 1 for all

1 ≤ s ≤ b. To construct the uniformly distributed unit vector W(s)
i , we generate ni

random numbers ws
i (k) ∼ N(0, 1), and then compute

W(s)
i = 1

√∑ni
k=1 ws

i (k)2
[w(s)

i (1); . . . ;w(s)
i (ni )]! s = 1, . . . , b.

The outcome of this procedure is a ni ×b randommatrixW1:b
i = [W(1)

i ; . . . ;W(b)
i ] ∈

Rni×b with
∥
∥
∥W(s)

i

∥
∥
∥ = 1 for all 1 ≤ s ≤ b. In fact, since the Gaussian is spherical, the
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columns of this matrix will be iid uniformly distributed on Sni . Having constructed
these random vectors, each agent constructs a gradient estimator involving the finite-
difference approximation of the directional derivative

H δ
xi

(Wi ) � niWi∇(Wi ,δ)hi (xi ), , ∇(w,δ)hi (xi ) � hi (xi + δw)− hi (xi )

δ
,

as well as its Monte–Carlo variant (with some abuse of notation)

H δ,b
xi

� 1

b

b∑

s=1
H δ
xi

(W(s)
i ).

Note that, since hi (·) is L1,i -Lipschitz and directionally differentiable on the convex
compact set X, we have

lim
δ→0+

∇(w,δ)hi (x) = h◦i (xi ,w)

as well
∣
∣h◦i (x,w)

∣
∣ ≤ L1,i for all w ∈ Sni . To understand the statistical properties of

this estimator, we need the next Lemma. To simplify the notation, we omit the index
of player i .

Lemma A.2 Suppose h is Lh-Lipschitz continuous on Xδ � X + δB. Define
ex(W1:b) � H δ,b

x − ∇hδ(x), where W(i) is an i.i.d sample drawn uniformly from
the unit sphere Sn, i.e. W1:b ∼ U(Sn)

⊗b. Then

(a) EW1:b∼U(Sn)⊗b [ex(W1:b)] = 0;

(b)
∥
∥H δ

x (w)
∥
∥2 ≤ L2

hn2 for all w ∈ Sn;

(c) EW1:b∼U(Sn)⊗b [∥∥ex(W1:b)
∥
∥2] ≤ n2L2

h
b .

Proof By linearity of the expectation operator and independence, we see

EW1:b∼U(Sn)⊗b [H δ
x (W(1), . . . ,W(b))] = 1

b

b∑

s=1
EW∼U(Sn)[H δ

x (W)] = EW∼U(Sn)[H δ
x (W)]

(40)= ∇hδ(x).

This proves part (a). Part (b) is a simple consequence of the following Lipschitz
argument:

∥
∥H δ

x (w)
∥
∥2 =

(n

δ

)2 ‖w‖2 |h(x + δw)− h(x)|2 ≤ L2
hn2,

using ‖w‖ = 1. For part (c), observe that for the random i.i.d. sample W1:b =
{W(1), . . . ,W(b)} taking values in Sn , we have

∥
∥
∥ex(W1:b)

∥
∥
∥
2 = 1

b2

∥
∥
∥
∥
∥

b∑

i=1

(n

δ
H δ
x (W(i))− ∇hδ(x)

)
∥
∥
∥
∥
∥

2

= 1

b2

∥
∥
∥
∥
∥

b∑

i=1
Xi

∥
∥
∥
∥
∥

2

,
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where Xi � n
δ

H δ
x (W(i))−∇hδ(x) are i.i.d zero-mean random variables, almost surely

bounded in squared norm. By independence, we have E[〈Xi , X j 〉] = 0 for i �= j , so
that

EW1:b∼U(Sn)⊗b

[∥
∥
∥ex(W1:b)

∥
∥
∥
2
]

= 1

b

(
EW∼U(Sn)

[∥
∥H δ

x (W)
∥
∥2
]
− ∥∥∇hδ(x)

∥
∥2
)

≤ 1

b
EW∼U(Sn)

[∥
∥H δ

x (W)
∥
∥2
]
≤ n2L2

h

b
.

� 

A.6 Inexact Implementation

In the main text we have assumed that the solution of the lower level problem is
available exactly. In practice, this is difficult to guarantee, particularly when the lower-
level problem is large and possible stochastic. Motivated by this concern, we outline
a modification of our hierarchical game solver in this section, reliant on access to an
ε-inexact solution of the lower-level problem.

Definition A.3 Let δ0 > 0 be given and set Xi,δ0 = Xi + δ0Bni for all i ∈ I. Given
ε > 0 and i ∈ I, we call yε

i : Xi,δ → Yi an ε-solution of the lower level problem
VI(φi (xi , ·),Yi ) if

E[∥∥yε
i (xi )− yi (xi )

∥
∥ |xi ] ≤ ε a.s.

We note that such a solution is immediately available by employing O(1/ε2) steps
of a single-sample stochastic approximation scheme for resolving VI(φi (xi , ·),Yi ).
Similarly, if projection onto Yi is a computationally costly operation, then a geometri-
cally increasing mini-batch scheme provides a similar oracle complexity but requires
only O(ln(1/ε2)) steps. (cf. [48]).

Under the inexact lower level solution yε
i , we let hε

i (xi ) = gi (xi , yε
i (xi )) denote

the resulting implicit function coupling leader i and the associated follower. As in
the exact regime, we assume that player i has access to an oracle with which she can
construct a spherical approximation of the gradient of the implicit function hε

i . Hence,
for given δ > 0, we let

hε,δ
i (xi ) �

∫

Bni

hε
i (xi + δw)

dw
Voln(Bni )

.

Using the notation for Sect.A.5, we denote the resulting estimators by H δ,ε
i,xi

(Wi ) �
niWi∇(Wi ,δ)h

ε
i (xi ), while the corresponding mini-batch counterpart as

H δ,ε,b
i,xi

� 1

b

b∑

s=1
H δ,ε

i,xi
(W(s)

i ),
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Next, we derive some bounds of the thus constructed estimator. To reduce notational
clutter, we omit the label of player i in the next Lemma.

Lemma A.3 Let Assumption 2 hold true. Then, for all δ, ε > 0 and x ∈ X, we have

E
[∥
∥H δ,ε

x (W)
∥
∥2
∣
∣
∣ x] ≤ 3

(n

δ

)2
(2L2

2ε
2 + L2

1δ
2) and (42)

E
[∥
∥H δ,ε

x (W)− H δ
x (W)

∥
∥2 |x

]
≤
(
2L2,hnε

δ

)2

(43)

almost surely.

Proof We have

∥
∥
∥Hδ,ε

x (W)

∥
∥
∥
2 =

( n

δ

)2 ∥
∥W

[
hε(x + δW)− h(x + δW)+ h(x + δW)+ h(x)− h(x)− hε(x)

]∥
∥2

≤ 3
(n

δ

)2 [∥
∥W(hε(x + δW)− h(x + δW)

∥
∥2 + ∥∥W(hε(x)− h(x))

∥
∥2 + ‖W(h(x + δW)− h(x))‖2

]
.

We bound each of the three terms separately. First, by Assumption 2.(iv), we note

∥
∥W(hε(x + δW)− h(x + δW)

∥
∥2 ≤ ∥∥g(x + δW, yε(x + δW))− g(x + δW, y(x + δW))

∥
∥2

≤ L2
2

∥
∥yε(x + δW)− y(x + δW)

∥
∥2 .

Consequently, using Definition A.3, we obtain

E
[∥
∥W(hε(x + δW)− h(x + δW)

∥
∥2 |x

]
≤ L2

2ε
2.

Second,

∥
∥W(hε(x)− h(x))

∥
∥2 ≤ ∥∥g(x, yε(x))− g(x, y(x)

∥
∥2 ≤ L2

2

∥
∥y(x)− yε(x)

∥
∥2 .

Invoking again Definition A.3, it follows

E
[∥
∥W(hε(x)− h(x))

∥
∥2 |x

]
≤ L2

2ε
2.

Third, by Assumption 2.(ii) and since W ∈ S, we conclude

‖W(h(x + δW)− h(x))‖2 ≤ L2
1 ‖δW‖2 = L2

1δ
2.

Summarizing all these bounds, we obtain (42). To show (43), we first note

∥
∥
∥Hδ,ε

x (W)− Hδ
x (W)

∥
∥
∥ ≤ n

∥
∥
∥
∥W

g(x + δW, yε(x + δW))− g(x + δW, y(x + δW))

δ

∥
∥
∥
∥

+ n

∥
∥
∥
∥W

g(x, yε(x))− g(x, y(x))
δ

∥
∥
∥
∥
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≤ L2,hn

δ

∥
∥yε(x + δW)− y(x + δW)

∥
∥+ nL2,h

δ

∥
∥yε(x)− y(x)

∥
∥ .

Taking expectations on both sides, it follows

E
[∥
∥H δ,ε

x (W)− H δ
x (W)

∥
∥ |x] ≤ 2L2,hnε

δ
.

� 
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