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Preface

This dissertation, titled “Essays in Financial Markets and Market Design,” con-

sists of three self-contained chapters. It contributes to our understanding of how

informational and behavioral frictions shape financial market outcomes and how in-

formation can be used to improve market performance. In brief, the first chapter

studies risk subscription practices and market design in the reinsurance industry.

The second chapter addresses equilibrium existence in quote-driven mechanisms in

securities markets, with connections to screening models in insurance markets. The

third chapter explores how the endogenous allocation of limited investor attention

affects market characteristics in order-driven mechanisms.

Figure 1: Overview of the Dissertation Structure

Chapter 1 is titled “To Follow the Lead or Retrocede to Followers? An Auction

Model of the Reinsurance Market.” This chapter models competing reinsurance syn-

dicates vying for underwriting risk in a common-value setting. In the market-wide

vii



follow-the-lead practice, the lead reinsurer makes an offer directly to clients based on

their risk assessment, while followers, who typically provide capital and capacity, are

locked into a single unit price determined at the tender stage. Whether this premium

alignment feature benefits the client remains underexplored. Inspired by the design

of spectrum auctions, we restructure the allocation process into multiple stages, with

information revelation occurring between these stages, referred to as the retroces-

sion case. In this scenario, the lead reinsurer makes an offer for the entire business

and cedes partial risk to the followers. Similar risk allocation and capital-saving

outcomes are achieved. We compare this situation with the follow-the-lead practice

and find that, under the follow-the-lead scenario, lead reinsurers shade their offers

to avoid the winner’s curse, allowing followers to benefit. Conversely, in the case

of retrocession, lead reinsurers make more aggressive offers to signal information.

This design benefits the initial client insurer through an information transmission

channel.

Chapter 2 is a joint work with Ernst-Ludwig von Thadden. This chapter,

titled “Revisiting Equilibrium in Quote-Driven Markets,” examines the equilibrium

problem in modeling quote-driven mechanisms in securities markets. The interaction

between market makers and investors is formulated as a two-dimensional screening

game in which competitive market makers offer price schedules to investors with

informational and liquidity motives. The classic finding states that a separating

equilibrium exists when informational asymmetry is not too severe, that is, when

the liquidity motive dominates the informational motive. In contrast, we show that a

separating outcome does not exist, even when the informational motive is arbitrarily

small. The root cause lies in a cross-subsidization deviation: a market maker can

profitably offer a partial-pooling price schedule that attracts a subset of investors to

pool while leaving others separated. By strategically cross-subsidizing between sub-

pools, in which the gains from a continuum of lower-cost types outweigh the losses

from a continuum of higher-cost types, the deviating market maker secures strictly

positive profits, thereby undermining equilibrium existence. We discuss potential

remedies, including modifications to the game that help restore a full information

transmission outcome.
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Chapter 3 is titled “Limited Attention, Information Choice, and Market Mi-

crostructure.” This chapter examines how investors’ endogenous information choices

affect trading behavior and market outcomes, such as liquidity and volatility, in se-

curities markets. We introduce attention allocation into an order-driven market

using an entropy-based approach. A limited-attention investor allocates attention

across macro-level and firm-specific news, subject to an information flow constraint.

She then submits a market order alongside random orders from liquidity traders

to market makers, who quote a price to clear the market. Our model (i) captures

the comovement between investor attention and asset price volatility; (ii) provides a

microfoundation for the crowding-out effect between macro-level and firm-level news

in attention allocation; and (iii) explains the attenuation of price responsiveness to

firm earnings news during periods of heightened aggregate uncertainty.
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Chapter 1

To Follow the Lead or Retrocede to
Followers? An Auction Model of the
Reinsurance Market

1.1 Introduction

Rising threats, such as catastrophic climate change, and pandemics fuel a surge in

demand for reinsurance.1 In response, reinsurers often form syndicates to diversify

risks.2 A syndicate has a lead reinsurer and followers. The role of the lead is to

determine the terms and conditions based on expertise and experience. The role of

followers is to provide capital and the capacity to hold risk. Terms and conditions

are typically uniform for all reinsurers.3 This is referred to as the follow-the-lead

practice, or premiums alignment. Does this practice truly benefit clients, who are

insurers in this market? Are there other ways to organize the market to generate

better terms for client insurers?

To address these questions, this study develops a theoretical model to analyze

the follow-the-lead practice and propose a new design, hereafter referred to as the

1Deloitte reports that for US non-life insurance in 2022, it was the eighth consecutive year
featuring at least 10 US catastrophes, causing over US$1 billion in losses. Property-catastrophe
reinsurance costs for primary non-life carriers were driven up by 30.1% in 2023, which was double
the prior year’s hike of 14.8%. The US demand for catastrophe reinsurance alone is expected to
grow as much as 15% by 2024, putting further pressure on prices.

2As of 31 December 2022, there were 77 syndicates, 8 special purpose arrangements, and 7 syn-
dicates in a box (SIAB) at Lloyd’s, a leading insurance and reinsurance marketplace located in Lon-
don, United Kingdom. Source: https://www.lloyds.com/about-lloyds/our-market/lloyds-market

3See https://www.investopedia.com/terms/l/lead-reinsurer.asp. See also https://www.
investopedia.com/terms/c/coreinsurance.asp

1
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retrocession case.4 We show that if the allocation process is restructured into multi-

stages, in which the lead reinsurer makes an offer for the business first and cedes

risks to followers, with information disclosed in between, this may not only favor

the lead reinsurer but, more importantly, benefit the initial client insurer.

Our contributions to the literature are as follows. First, our modeling framework

is novel in reinsurance economics. We introduce asymmetric information between

reinsurers and model their competition as a first-price common-value auction, which

is a natural choice given their information structure. This contrasts with existing

studies that model price formation through Cournot-type interactions (e.g., Pow-

ers (2001); Boulatov and Dieckmann (2013)), Stackelberg-type interactions (e.g.,

Bäuerle and Glauner (2018); Chen et al. (2020)), or within a general equilibrium

framework (e.g., Borch (1992); Bernis (2002); Chi and Tan (2013); Boonen et al.

(2021)). Second, to the best of our knowledge, this is the first study to analyze this

market practice and design a reinsurance market. Third, our model is based on auc-

tions with resale, where the object being sold is divisible in our setting. Our results

may also be applicable to other markets with divisible goods like energy markets

(Anatolitis et al., 2022). Fourth, in addition to other financial markets featuring

common values, such as IPO auctions where investors have to estimate the future

cash flows of firms (Sherman, 2005), or securities markets (Yuan, 2022), we empha-

size the common value feature in the insurance and reinsurance market, given that

the risk can be estimated ex-ante and realized and fixed ex-post.

Below, we briefly outline the model, key results, and underlying intuitions. The

model is depicted in Figure 1.1. The lead reinsurer makes an offer on behalf of the

syndicate to the client. Other syndicates also make offers, and the client selects

the most favorable one to underwrite the risk. Followers then subscribe to the pre-

contractual shares at the same price as their lead reinsurer. In the follow-the-lead

case, lead reinsurers shade their offers in the tender stage to protect themselves

against the winner’s curse,5 earning a positive surplus. Since followers subscribe to

4Retrocession is a transaction in which a reinsurer transfers risks it has already insured to other
reinsurers. After signing a treaty with the client insurer, the retrocedent (the original reinsurer)
cedes part of the risks it has assumed to retrocessionaires. Source: https://blog.ccr-re.com/en/
what-is-retrocession

5The “winner’s curse" is a phenomenon often observed in auctions and competitive bidding

2
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a portion of the business at the same unit price as the lead, they benefit from the

leader’s expertise in pricing and also earn positive payoffs in equilibrium.

Figure 1.1: An illustration of the model

In contrast, in the retrocession design, the allocation process is divided into

multiple stages, with offers disclosure occurring in between. The lead reinsurer

makes an offer for the entire business and then sells part of the risk to followers to

save capital. The client insurer, as the initial auctioneer, collects offers and reveals

them to the follow market to promote transparency, allowing followers to have some

information for evaluating the risk. In the follow market, followers with unit demand

purchase the remaining risk in a first-price auction. Ultimately, the lead reinsurer

retains a share while the followers hold the remaining risk. This approach achieves

similar objectives in terms of risk allocation and capital savings as the follow-the-lead

case.

The main result is that clients benefit more from the retrocession case than from

the follow-the-lead case. In the retrocession case, a lead reinsurer balances the po-

tential to exploit private information by retaining more shares and increasing capital

savings by retaining less. Given the informational linkage across two stages, a lead

reinsurer makes a more aggressive offer. The additional signaling component arises

from the disclosure of bids, reducing uncertainty and limiting reinsurers’ ability to

leverage private information for profit. In the second stage, with offers from the

first stage made public, followers’ payoffs are reduced and drop to zero as there is

situations. It occurs when the winning bidder ends up overpaying for an asset due to overly
optimistic estimates. This behavior is considered irrational in auctions. One behavioral concept
to model this behavior is the “cursed equilibrium", proposed by Eyster and Rabin (2005).

3



no private information to exploit. Their surplus is extracted and transferred to the

client through the lead reinsurer’s aggressive bidding in the first stage.

Related Literature. Our study relates to the literature on economics of rein-

surance. The pioneering work by Borch (1992) studies optimal risk-sharing among

reinsurers to rationalize the syndication structure in the general equilibrium frame-

work. Plantin (2006) provides a rationale for reinsurers arising endogenously from

risk managers by focusing on their ability to mitigate the moral hazard problem faced

by the cedant. Studies on the strategic interaction between insurers and reinsurers,

typically in actuarial pricing. Zhu et al. (2023) study how competing reinsurers

strategically set prices using the Stackelberg model. However, little attention has

been given to follow-the-lead practices from an economic perspective. This study is

the first to explore market-wide practices and design this market.

We are related to the literature on common-value auctions with a resale market.

Bukhchandani and Huang (1989) model speculators bidding to resell investors to

study the debatable question of which payment rule, uniform pricing or discrimina-

tion, is advantageous in treasury bill auctions. Haile (2003) studies the first-stage

winner reselling a single-unit good to first-stage losers instead of a third party in

our setting. In our model, the object is divisible and we allow the bidder to resell

arbitrary shares. This is relevant not only to the insurance market, where risks

are inherently divisible, but also to other markets, such as the energy market (e.g.,

Anatolitis et al. (2022)). In the auctions with resale literature, there are different

motives for resale, such as cooperation on collusion through resale (Garratt et al.,

2009), misperception of the resale market (Georganas, 2011), asymmetry leading to

inefficiency (Hafalir and Krishna, 2008), and delaying the resale to achieve an ex-

pected gain (Khurana, 2024). In our model, the resale motive is the lead reinsurer’s

need to save capital. We endogenize the retention ratio by introducing capital con-

straints. The lead reinsurer balances ceding more to conserve capital with ceding

less to retain greater uncertainty, which preserves the potential to exploit private

information.

Our paper relates to auctions with signaling concerns. Perry et al. (2000) pro-

pose a two-round selling procedure in which only the two highest buyers are allowed

4



to participate in the second round and bid above their first-round bid. This is

equivalent to an English auction in an interdependent value setting. The revenue

comparison between our model and an English auction was ambiguous. In indepen-

dent private value settings, several studies have examine how different post-auction

competitions, such as Cournot or Bertrand competition or disclosure policies, shape

first-stage bidding behavior (e.g., Jehiel and Moldovanu (2000); Rhodes-Kropf and

Katzman (2001); Varma (2003); Goeree (2003)). Calzolari and Pavan (2006) study

optimal mechanisms under resale to third parties and inter-bidder resale. Dworczak

(2020) characterizes the optimal mechanism with an aftermarket in a private value

setting within the set of cutoff mechanisms. Bos and Pollrich (2022) analyze the

optimal disclosure policy when bidders have concave or convex signaling concerns.

Plan for the Paper. The rest of the paper is organized as follows: Section 1.2 out-

lines the model and justifies the key assumptions in the follow-the-lead and retroces-

sion cases. Section 1.3 analyzes the equilibrium strategies and compares the payoffs

of the client insurer and reinsurers in the two settings. Section 1.4 is an extension

section, which shows that the main results are robust against the disclosure of pri-

vate information by the client insurer and the reserve price. Section 1.5 discusses

the design. Section 1.6 concludes the paper. Proof and background information are

provided in the appendices.

1.2 Model

Competing Syndicates. Consider a setting where n ≥ 2 reinsurance syndicates

compete to underwrite reinsurance risks denoted by a random variable V for a client

insurer in a first-price auction. Each lead reinsurer i has a private signal Xi, where

i = 1, 2, ..., n. A signal can be understood as their assessment of risk. V and all

signals X1, X2, . . . , Xn are assumed to be affiliated, as defined in Definition 1.1.

Definition 1.1. (Affiliation Condition) For all x1,x2 ∈ [x, x̄]n, and v1, v2 ∈ [v, v̄]n,

the random variables X1, X2, . . . , Xn and V are said to be strictly affiliated if the

5



following condition holds:

f ((v1,x1) ∨ (v2,x2)) · f ((v1,x1) ∧ (v2,x2)) > f (v1,x1) · f (v2,x2) ,

where “ ∨" denotes component-wise maximum and “ ∧" denotes component-wise

minimum.

Let f(v, x) denote the joint density function of V and the vector of signals X =

(X1, X2, ..., Xn). It is assumed that f , strictly positive, with full support and twice

continuously differentiable on [v, v] × [x, x]n, is symmetric in the last n arguments.

A bidding strategy is a measurable function denoted as b(Xi) : [x, x] → R, for

i = 1, 2, ..., n.

Small followers are assumed to be uninformed.6 The role of followers is to provide

capital and capacity to hold the risks. They do not approach clients directly to

compete with the lead because they are either less experienced or are smaller firms

that cannot take on a large share of the risks.7 Their roles can vary depending on

the types of associated risk; here, we focus on one specific business. All reinsurers

are assumed to be risk-neutral.8 Each syndicate, consisting of a lead reinsurer and

multiple followers, is assumed to be able to provide full coverage for the client insurer.

Affiliation is a strong form of positive correlation. Intuitively, it means if a subset

of X ′
is are all large, then this implies an increased likelihood that the remaining X ′

js

are also large. Suppose the insurance companies Amlin, Beazley and Catlin believe

that a flood is more likely to occur in southern Germany, then it is likely that their

competitor, Hiscox, would also tend to hold a similar belief. The lemmas implied

bylied the affiliation condition used in the analysis of equilibrium are presented

below.

Lemma 1.1 (Milgrom and Weber, 1982, Theorem 3). If random variables Z1, . . . , Zk

6The assumption of an exogenous information structure will be discussed later in the discussion
section. We maintain a minimal assumption in this section. In the extension section, we allow
followers to have information, provided certain technical conditions hold. The main results remain
qualitatively unaffected.

7Source: https://blog.ccr-re.com/en/what-is-a-follower
8This assumption makes the analysis tractable. Introducing risk aversion or non-linearity of

utility in monetary transfer would render the differential equation in the leader’s decision problem
non-linear and hard to solve analytically.

6
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are affiliated, and g1, . . . , gk are all increasing functions, then g1 (Z1) , . . . , gk (Zk) are

also affiliated.

Lemma 1.2 (Milgrom and Weber, 1982, Theorem 4). If random variables Z1, . . . , Zk

are affiliated, and g1, . . . , gk are all increasing functions, then g1 (Z1) , . . . , gk (Zk) are

also affiliated.

Lemma 1.3 (Milgrom and Weber, 1982, Theorem 5). Let Z1, . . . , Zk be affiliated,

and let H be any increasing function. Then the function h defined by

h (a1, b1; . . . ; ak, bk) = E [H (Z1, . . . , Zk) | a1 ≤ Z1 ≤ b1, . . . , ak ≤ Zk ≤ bk]

is increasing in all of its arguments. In particular, for l = 1, . . . , k, the functions

hl (z1, . . . , zl) = E [H (Z1, . . . , Zk) | z1, . . . , zl] are all increasing.

Throughout the analysis, we keep the following technical assumption.

Assumption 1.1. E [V |X1, . . . , Xn] := g (x1, . . . , xn) is supermodular in signals;

i.e., ∂2g
∂xi∂xj

≥ 0.

The assumption roughly means signals are information complements to value.

This is standard in common value models with resale and ensures the monotonic-

ity of bidding strategies. This assumption does not contradict strict affiliation; to

illustrate, we construct a numerical example based on the normal distribution.

A Numerical Example. Let V , X1, and X2 be jointly normally distributed ran-

dom variables with means µV , µX1 , and µX2 and a covariance matrix

Σ =


σ2
V σV X1 σV X2

σV X1 σ2
X1

σX1X2

σV X2 σX1X2 σ2
X2

 .

By the projection theorem,9 the conditional expectation E[V |X1, X2] is a linear

function of X1 and X2: E[V |X1, X2] = β1X1 + β2X2. The vector β = (β1, β2)
T is

given by β = ΣV XΣ
−1
XX , where ΣV X = (σV X1 , σV X2)

T and ΣXX is the covariance ma-

trix ofX1 andX2. The joint density function is f(v, x1, x2) = 1
(2π)3/2|Σ|1/2 exp

(
−1

2
ZTΣ−1Z

)
,

9See, e.g., DeGroot (2005)
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where Z = (v, x1, x2)
T . Taking the natural logarithm of f , we obtain ln f(v, x1, x2) =

−3
2
log(2π)− 1

2
log |Σ|− 1

2
ZTΣ−1Z. Expanding the last term gives ZTΣ−1Z = a11v

2+

a22x
2
1+a33x

2
2+2a12vx1+2a13vx2+2a23x1x2, where aij are elements of Σ−1, the inverse

of the covariance matrix. Hence, the cross-partial derivative is ∂2

∂x1∂x2
(ln f) = −a23,

as the first two terms in ln f are constant.

We assume each variable has zero mean (i.e., µV = µX1 = µX2 = 0) and specific

values for the covariance matrix:

Σ =


1 0.8 0.6

0.8 1 0.5

0.6 0.5 1

 .

The conditional expectation is E[V |X1, X2] =
2
3
X1 +

1
3
X2, so the cross-partial

derivative is zero and Assumption 1 is satisfied. The inverse of Σ can be computed

as

Σ−1 =


2.439 −1.707 −0.805

−1.707 2.927 −0.878

−0.805 −0.878 1.707

 ,

where the off-diagonal elements are negative. The cross-partial derivative is ∂2 ln f
∂x1∂x2

=

−(−0.878) = 0.878, which shows that strict affiliation holds. Hence, the constructed

example satisfies both assumptions.

Capital-constrained Reinsurers. Reinsurers are capital-constrained. The

amount of capital needed to underwrite the entire risk is denoted by I.10 The leader

i’s retention ratio is denoted by αi. We assume that the lead reinsurer i has an initial

net capital K < I for all i. We consider a symmetric case for simplicity. If this

assumption is violated, one reinsurer would suffice to provide the coverage, which

is rare in the reinsurance market. Lead reinsurers can tap followers who jointly

have sufficient financial capacity to provide coverage. Such logic resembles that in

syndicated loans.11

10For current capital requirements in the insurance industry in Europe, see Solvency II: https:
//www.eiopa.europa.eu/browse/regulation-and-policy/solvency-ii_en

11The details of loan syndication are provided in Appendices.
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Structure of the Game in the Follow-the-Lead Case. The sequence of

moves under the follow-the-lead practice is as follows.

(1) Pre-contractual Stage. The lead reinsurer i decides on the retention ratio α∗
i .

(2) Tender Stage. The lead reinsurer i makes an offer b(Xi) to compete for under-

writing the risk in a first-price auction. The winner is the one with the best

offer, and the payment is the winner’s offer.12

(3) Subscription Stage. Suppose syndicate i wins. Then, the leader i subscribes

to an αi share of the risk, and its followers jointly subscribe to the remaining

share, 1− αi, at the same unit price determined during the tender stage.

(4) All payoffs are realized.

Payoffs in the Follow-the-lead Case. In the first-price auction, the price

p̃ is the winner’s offer: p̃ = b(Xi).13 Assuming that the winning offer is made

by i = 1. Given the price p̃ and retained share α1, the wining lead reinsurer 1’s

payoff is π̃L = α1(V − p̃). Since the unit price of risk is mandated uniformly, the

followers’ payoff is π̃F = (1 − α1) (V − p̃). The reinsurance syndicate 1’s payoff

is π̃1 = V − p̃. The expected payoff of lead reinsurer 1, conditional on winning,

is Eπ̃L = α1E[V − b(X1)|X1 = x, Y1 < x], where Y1 is highest order statistics of

(X2, . . . , Xn), i.e., the highest competing signal.14 The client insurer, as the initial

auctioneer, with payoff π̃C = p̃ is better off with a higher p̃.

Structure of the Game in the Retrocession Case. In the retrocession case,

the follow market is no longer locked into the same unit price as determined in the
12Ties (if any) are assumed to be broken at random.
13One can consider a negative p̃ to mean the premium cost paid by the client insurer to get

coverage from reinsurers, so a higher negative p̃ means a lower premium cost in absolute value
to get full coverage. We use a standard forward auction here to simplify comparison with the
literature; the results do not change qualitatively in a reverse auction, but the analysis introduces
additional complexity.

14The implicit assumption is that bids are monotonic in signals, which can be verified after
explicitly deriving it. This is the logic in Milgrom and Weber (1982) and applies similarly in our
retrocession game. Moreover, they establish the existence of equilibrium by explicitly identifying
a candidate using the first-order differential equation derived from the incentive compatibility
condition, and showing that the equilibrium payoff is positive so that individual rationality holds.
We follow the same approach.
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tender stage. Suppose there are mi followers in the winning syndicate i. As in

the follow-the-lead case, the leader i determines the retention ratio αi prior to the

contract. The remaining share is split into k < mi units and sold to followers in a

first-price auction, with each follower assumed to have unit demand for simplicity.15

The retrocession price for the shares ceded to its followers is denoted by pre. Between

the two stages, it is assumed that all bids in the tender stage are revealed publicly.16

The sequence of moves is as follows. The difference is that the lead reinsurer secures

the entire business and then cedes portions to the followers, with bidding information

disclosed between the stages.

(1) Pre-contractual Stage. The lead reinsurer i decides the retention ratio α∗
i .

(2) Tender Stage. The lead reinsurer i makes an offer b(Xi) to compete for under-

writing the risk in a first-price auction. The winner is the one with the best

offer, and the payment is the winner’s offer.

(3) All offers are disclosed after the tender stage.

(4) Subscription Stage. The winning leader i sells the remaining k units of risk to

mi followers in a first-price auction.

(5) All payoffs are realized.

Payoffs in the Retrocession Case. In the retrocession case, followers hold

1−αi share of risk, their ex-post payoff is π̂F = (1−αi)V −pre. The lead reinsurer i

keeps αi share of the business, receives pre for reselling 1− αi share of the business,

and pays p̂ for the entire business initially, so the lead reinsurer’s payoff is π̂L =

αiV + pre − p̂. Assume that the winning bid is made by i = 1. Since the price
15Suppose two or more units are sold to two followers. In this case, both followers bidding zero

is an equilibrium point, as they would still acquire the share at the lowest cost. However, if only
one unit is sold to two followers, bidding zero is no longer an equilibrium since one would have
an incentive to deviate. Thus, we require the number of bidders to exceed the number of units to
prevent this situation.

16In government auctions, it is mandated that all bids are revealed afterward. Relaxing this as-
sumption would significantly complicate the derivation of continuation payoffs. We do not address
the optimal disclosure policy of bids in this paper. In the independent value setting within a class
of cutoff mechanisms, Dworczak (2020) characterizes the optimal disclosure policy to the aftermar-
ket. Full disclosure of bids is also an assumption made in the literature, such as Bukhchandani
and Huang (1989) and Haile (2003).
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p̂ is the winner’s offer b(X1), the leader’s interim payoff conditional on winning is

Eπ̂L = E[α1V + pre− b(X1)|X1 = x, Y1 < x]. The followers’ joint expected payoff is

given by Eπ̂F = E[(1− α1)V − pre|X1, . . . , Xn]. Similar to the follow-the-lead case,

the client insurer, as the initial auctioneer, benefits from a high price and his payoff

is π̂C = p̂.

Solution Concept. We focus on separating equilibrium, in which bidders of

different types submit distinct bids, and followers’ beliefs are Bayesian updated

wherever possible.

1.3 Equilibrium Analysis

In this section, we analyze the equilibria in the follow-the-lead and retrocession case.

We then compare the price for the client insurer and the payoffs of reinsurers in the

two cases.

1.3.1 Equilibrium Price in the Follow-the-lead Case

Tender Stage. The lead reinsurer 1 chooses b(X1) to maximize his expected payoff

conditional on winning, Eπ̃L = α1E[V −b(X1)|X1 = x, Y1 < x]. This is the standard

first-price common value auction with affiliated signals (see, e.g., Krishna (2009)).

Pre-contractual Stage. The expected joint equilibrium payoff of reinsurers

in the winning is nonnegative, otherwise bidding zero would be preferable. For the

lead reinsurer, retaining more shares leads to a weakly higher payoff, so the leader 1

chooses to pool his capital to retain a share α∗
1 = K/I < 1. The equilibrium result

is summarized in the following proposition.

Proposition 1.1. In the follow-the-lead case, the equilibrium price p̃ is equal to b̃(x).

The winning lead retains α∗ = K/I share of business, and b̃(x) is the symmetric

equilibrium bidding strategy of the lead with signal x, defined as:

b̃(x) = q(x, x)−
∫ x

x

L(s | x)dq(s, s),
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with
q(x, y) = E[V |X1 = x, Y1 = y];

L(s | x) = exp

{
−
∫ x

s

fY1(t | t)
FY1(t | t)

dt

}
.

Proof. See Krishna (2009).

The second term,
∫ x
x
L(s | x)dq(s, s), represents bid shading. Due to this term,

the equilibrium bid is less than the expected value conditional on winning, expressed

as b̃(X1) < E [V | X1 = x, Y1 < x] .17 A rational lead reinsurer shade his offer to

protect himself from the winner’s curse. In the follow-the-lead case, followers benefit

from the lead reinsurer’s expertise and also gain positive payoffs in equilibrium. In

the next section, we study the retrocession case.

1.3.2 Equilibrium Price in the Retrocession Case

We analyze the game using backward induction. We first analyze the retrocession

price in the subscription stage, then derive the equilibrium bidding strategy of the

lead reinsurers in the tender stage. Finally, we determine the pre-contractual reten-

tion ratio.

Retrocession Price in the Subscription Stage. In the subscription stage,

followers can learn information from bid revelation if the bidding strategy is sepa-

rating. Given their information, the retrocession price of the risk in the secondary

market is the 1− α share of the expected value V , conditional on all publicly avail-

able information from the first-round bids, i.e., pre = (1−α)E [V | X1, Y1, . . . , Yn−1],

where Y1, . . . , Yn−1 are the order statistics from the highest to the lowest of signals

(X2, . . . , Xn).

Bidding Strategy in the Tender Stage. Suppose that lead reinsurers i =

2, . . . , n adopt strategy b̂ and lead reinsurer 1 receives information X1 = x and sub-

mits a bid equal to b. Then if the lead reinsurer 1 wins and followers believe that he is

following b̂, the retrocession price will be (1− α)E
[
V | X1 = b̂−1(b), Y1, . . . , Yn−1

]
:=

(1−α)q
(
b̂−1(b), Y1, . . . , Yn−1

)
, where b̂−1 denotes the inverse of b̂. Define p (x′, x, y) =

E
[
q
(
b̂−1(b), Y1, . . . , Yn−1

)
| X1 = x, Yn−1 = y

]
, which is the expected retrocession

17See p.100 in Krishna (2009) for details.

12



price conditional on lead 1’s true signal x, highest competing signal y, and the fol-

lowers’ perception of lead 1’s signal x′ when the lead 1 wins. By the assumption of

strict affiliation, both p and q are increasing in each of their arguments. The payoff

of lead reinsurer 1, denoted as π(b|x), is the resale price of the 1−α share, plus the

retained value of the α share, minus the initial price paid, which can be written in

the integral form:

π(b | x) ≡ E
[(

(1− α)q
(
b̂−1(b), Y1, . . . , Yn−1

)
+ αV − b

)
· 1
(
b ≥ b̂ (Y1)

)
| X1 = x

]
= E

[
E
[(

(1− α)q
(
b̂−1(b), Y1, . . . , Yn−1

)
+ αV − b

)
· 1
(
b ≥ b̂ (Y1)

)
| X1, Y1

]
| X1 = x

]
= E

[(
(1− α)p

(
b̂−1(b), X1, Y1

)
+ αq(x, y)− b

)
· 1
(
b ≥ b̂ (Y1)

)
| X1 = x

]
=

∫ b̂−1(b)

x

[
(1− α)p

(
b̂−1(b), x, y

)
+ αq(x, y)− b

]
· fY1(y | x)dy.

The second equality applies the law of iterated expectation. The third follows from

the definition of q(x, y), and the last equation is in integral form, where fY1(y | x) is

the conditional density of the order statistic Y1. The equilibrium bidding strategy

b̂(x) for solving the optimization problem is presented below, where β = 1−α is the

retrocession share to followers.

b̂(x) = (1− α)p(x, x, x) + αq(x, x)−
∫ x

x

L(s | x)dp(s, s, s) + (1− α)

∫ x

x

J(s)

fY1(s | s)
dL(s, x)

= p(x, x, x)−
∫ x

x

L(s | x)dp(s, s, s) + β

∫ x

x

J(s)

fY1(s | s)
dL(s, x),

where

L(s | x) = exp

{
−
∫ x

s

fY1(t | t)
FY1(t | t)

dt

}
,

J(s) =

∫ s

x

p1(s, s, y) · fY1(y | s)dy.

Retention Ratio in the Pre-contractual stage. The optimal retention ratio

is α∗ = K/I. This follows from the observation that the signaling component in

p̂ = b̂(x) price increases proportionally with the shares β ceded to the followers,

or equivalently, decreases with the retention ratio α. The payoffs for the client
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insurer and reinsurers are p̂ and V − p̂, respectively. Since the followers’ payoffs

are zero, the lead reinsurer’s payoff is V − p̂, which decreases as the ceding share β

increases. On the one hand, ceding more leads to more aggressive bidding, reduces

the potential to leverage private information for profit, and results in lower profits.

On the other hand, ceding more shares results in capital savings. Hence, given the

capital constraint, the lead reinsurer at most retains a share α∗ = K/I, i.e., they

pool their capital into the business.

Proposition 1.2. In the retrocession case, the price of the entire risk, p̂ is equal to

b̂(x), where b̂(x) is the symmetric equilibrium bidding strategy of lead reinsurer with

signal x, defined as:

b̂(x) = (1− α∗)p(x, x, x) + α∗q(x, x)−
∫ x

x

L(s | x)dp(s, s, s) + (1− α∗)

∫ x

x

J(s)

fY1(s | s)
dL(s | x)

= p(x, x, x)−
∫ x

x

L(s | x)dp(s, s, s) + β∗
∫ x

x

J(s)

fY1(s | s)
dL(s | x),

where

α∗ = K/I,

L(s | x) = exp

{
−
∫ x

s

fY1(t | t)
FY1(t | t)

dt

}
,

J(s) =

∫ s

x

p1(s, s, y) · fY1(y | s)dy.

Proof. See the Appendices.

In this equilibrium, J(s) measures the average of the responsiveness of the retro-

cession price to the perceived signal. The third term S(β∗, x) := β∗ ∫ x
x

J(s)
fY1 (s|s)

dL(s |

x) captures the informational linkage between the primary and secondary markets,

where β∗ is the retrocesion shares to followers. The retrocession price factors into

the lead reinsurer’s decision problem initially and causes them to bid more aggres-

sively. It is the disclosure of bids across markets that gives the lead reinsurer an

incentive to signal.

Technically, his result can be viewed as a weighted average of two extreme set-

tings. In the no-resale setting (α = 1 or β = 0), the bidding strategy in Proposition
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1.2 corresponds to b̃(x) = q(x, x)−
∫ x
x
L(s | x) dq(s, s), as in the follow-the-lead case.

In this setting, since the followers’ payoff is zero, the lead reinsurer’s payoff is the

syndicate’s payoff Eπ̃1 without resale.

In the full resale setting (α = 0 or β = 1), the strategy in Proposition 1.2 becomes

b̂Full(x) = p(x, x, x)−
∫ x
x
L(s | x) dp(s, s, s) +

∫ x
x

J(s)
fY1 (s|s)

dL(s|x). In this setting, the

lead reinsurer’s payoff is the syndicates’s payoff Eπ̂Full1 since the followers’s payoff

is zero. Taken together, when partial risk α is held by lead reinsurer and the rest

β is ceded, the equilibrium bidding strategy b̂(x) is a weighted average of the two

settings, i.e., b̂(x) = αb̃(x) + βb̂Full(x) as reflected in Proposition 1.2. Also, the

payoff of the lead reinsurer is a weighted average of their payoffs in the two settings,

i.e., π̂L = απ̃1 + βπ̂Full1 , where α + β = 1.

Corollary 1.1. Under Assumption 1.1, the equilibrium bidding function b̂(x) is

monotone increasing in signal x.

Proof. See the Appendices.

The separating bidding strategy is monotonic, enabling reinsurers in the follow

market to invert lead reinsurers’ bids from the tender stage to glean information.

1.3.3 Comparison of Payoffs in the Follow-the-lead Case and

Retrocession Case

Given the equilibrium results in the follow-the-lead case (Proposition 1.1) and retro-

cession case (Proposition 1.2), we can compare the payoffs of client and reinsurers

in the two cases.

Proposition 1.3. The client insurer is better off in the retrocession case than in the

follow-the-lead case, i.e., π̃C > π̂C. Reinsurers are better off in the follow-the-lead

case, i.e., π̂1 > π̃1. Specifically, the lead reinsurer is better off in the retrocession

case, i.e., π̃L > π̂L, while the followers are better off in the follow-the-lead case, i.e.,

π̂F > π̃F .

Proof. See the Appendices.
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Figure 1.2: Payoffs Comparison in the Two Organizational Structures

The main results of the paper can be summarized in Figure 1.2. α∗ is the equi-

librium retention ratio. The left panel show the follow-the-lead case. The upper

rectangle represents the client’s payoff varying with α, the middle triangle corre-

sponds to the followers’ payoff, and the lower triangle denotes the lead reinsurer’s

payoff.

The right panel shows the retrocession case. The purple dotted line corresponds

to the price function p̂ derived in Proposition 1.2, which decreases with the pre-

contractual retention ratio α. At the right boundary (α = 1), the price converges

to p̃, as in the follow-the-lead case. At the left boundary (α = 0), it is full resale.

The followers’ payoffs are divided by this pricing function into two small triangles,

which are then allocated to the client and the lead reinsurer, respectively. The upper

trapezoid above p̂ represents the client’s payoff, while the lower trapezoid below p̂

corresponds to the lead reinsurer’s payoff. In the retrocession case, the followers’

payoffs are zero.

Intuitively, for followers, their rent is zero in the retrocession case, whereas in the

follow-the-lead case, they benefit from the lead reinsurer’s expertise, shielding them-

selves from the winner’s curse. Their rent comes from sharing the lead reinsurer’s

private knowledge of the risk. For the lead reinsurer, although they bid aggressively,

this is only for the portion ceded to the followers, while their retention share remains

unaffected. The partial surplus transferred from the followers compensates for their

aggressive bidding on the ceded share, leaving them better off. For the client insurer,

the additional signaling component in the first-stage offers improves their position.

The extra surplus for the client insurer is extracted from the reinsurance syndicates,
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achieved through reselling risk and signaling to the follower market.

1.4 Several Extensions

This section provides a robustness check when some assumptions of the model are

altered.

1.4.1 Announcement of Client Insurer’s Information

In the main section, we assume that the client insurer does not have information

because it is the reinsurers who assess, understand, and price the risk. We then re-

lax this assumption and introduce a disclosure stage at the beginning of the games,

allowing for pre-trading communication between the client insurer and reinsurers.

We assume that the client has private information X0 that satisfies the affiliation

condition defined in Definition 1.1 and supermodularity condition defined in As-

sumption 1.1, i,e., E [V |X1, . . . , Xn] := g (x1, . . . , xn;x0) is supermodular in signals;

i.e., ∂2g
∂xi∂xj

≥ 0. We show that the disclosure of the client insurer’s private informa-

tion does not qualitatively change the main results from the previous section.

Equilibrium Price in the Follow-the-Lead Case

To study the client insurer’s disclosure policy, we first derive the equilibrium price

when X0 is revealed. Assume w.l.o.g. that syndicate 1 wins the business. In

a similar way, the joint interim expected payoff conditional on winning, is given

by E [V − b(X1) | X1 = x, Y1 < X1;X0] , where Y1 is the highest signal among the

competitors, i.e., Y1 = max(X2, . . . , Xn). When the client insurer reveals publicly

X0, the equilibrium price of the reinsurance contract is summarized in the following

proposition.

Proposition 1.4. Under the follow-the-lead case, when X0 is revealed, the equilib-

rium price of the entire contract p̃ is equal to b̃I(X1;X0). α∗ = K/I, and b̃I(X1;X0)
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is the symmetric equilibrium bidding strategy of leader 1 with signal x, defined as:

b̃I(X1;X0) = q(x, x;x0)−
∫ x

x

L(s | x;x0)dq(s, s;x0),

with
q(x, y;x0) = E[V |X1 = x, Y1 = y;X0 = x0];

L(s | x;x0) = exp

{
−
∫ x

s

fY1(t | t;x0)
FY1(t | t;x0)

dt

}
.

Proof. See the Appendices.

To show that publicly revealing X0 before trading benefits the client, we need the

revenue ranking result or the linkage principle as shown in lemma 1.4. Let W (z, x)

be the expected price paid by bidder 1 if he is the winning bidder when he receives

a signal x but bids as if his signal were z, i.e., W (z, x) = b(z). Let W2(z, x) denote

the partial derivative of the function W (z, x) with respect to the second argument.

Then the following result holds.

Lemma 1.4. Let A and B be two auctions in which the highest bidder wins. Suppose

that each auction has a symmetric and increasing equilibrium such that (1) for all

x, WA
2 (x, x) ≥ WB

2 (x, x); (2) WA(x, x) = E [V | X1 = x, Y1 = x] = WB(x, x). Then

the expected revenue in A is at least as large as that in B.

Proof. See Proposition 7.1 in Krishna (2009).

In our setting, auctions A and B correspond to the scenarios with and without

revealing X0, respectively. Based on lemma 1.4, we obtain the following result.

Proposition 1.5. Under the follow-the-lead case, publicly revealing X0 benefits the

client.

Proof. See the Appendices.

Based on the above results, we know that the client insurer would disclose X0 to

reinsurers in the disclosure stage. One might wonder would the client insurer censor

information, say, she discloses information if it is above some threshold and withhold
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it otherwise. A simple unraveling argument under passive beliefs of reinsurers rules

out such a possibility.18

Equilibrium Price in the Retrocession Case

Given that the client insurer has private information X0, we consider the im-

pact of revealing X0 on the equilibrium price of the reinsurance business. Let

b̂(x;x0) be the symmetric bidding strategy in the tender stage conditional on X0 =

x0. Then if the lead reinsurer 1 wins and followers believe that he is following

b̂(X1;X0), the retrocession price will be (1− α)q
(
b̂−1(b;x0), Y1, . . . , Yn−1;X0

)
=

E
[
(1− α)V | X1 = b̂−1(b), Y1, . . . , Yn−1;X0

]
, where b̂−1(·;x0) denotes the inverse of

b̂(·;x0).

Define p (x′, x, y;x0) = E [q (x′, Y1, . . . , Yn−1;X0) | X1 = x, Y1 = y] , which is the

expected retrocession price conditional on X1 and Y1 when the lead 1 wins and

followers believe that bidder 1’s private signal is equal to x′. The payoff of lead

reinsurer 1, denoted as π(b | x;x0), by a similar way, can be written in the following

integral form:

π(b | x;x0) ≡ E
[(

(1− α)q
(
b̂−1(b), Y1;X0

)
+ αV − b

)
· 1
(
b ≥ b̂ (Y1)

)
| X1 = x;X0 = x0

]
=

∫ b̂−1(b)

x

[
(1− α)p

(
b̂−1(b), x, y;x0

)
+ αq(x, y;x0)− b

]
· fY1(y | x;x0)dy.

In the Appendices, we derive the first-order condition using the Leibniz inte-

gral rule, solve the differential equation, and demonstrate that the bidding strategy

leads to a maximum payoff, not a minimum. From this, we obtain the following

equilibrium result.

Proposition 1.6. In the retrocession case, when X0 is revealed, the winning leader

keeps a share α∗ = K/I of risks and cedes the rest β∗ = 1 − α∗ to followers. The

price of the entire business p̂ is equal to b̂(x1;x0), where b̂(x;x0) is the symmetric

18Suppose X0 is uniformly distributed on [0, 1] and such a cutoff x∗ ∈ [0, 1] exists. Upon not
receiving information, reinsurers believe that x is uniformly in [0, x∗] with an average x∗/2. Thus,
a client insurer with value x ∈ (x∗/2, 1] would disclose to avoid being perceived as a low type.
After n rounds of reasoning, a client insurer with value x ∈ (x∗/2n, 1] would disclose. Hence,
full disclosure is optimal when there are no other frictions, such as disclosure costs (Dye (1985)),
uncertainty of information endowment(Wagenhofer (1990)), etc.
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equilibrium bidding strategy of lead reinsurer with signal x, defined as:

b̂(x;x0) = (1− α∗)p(x, x, x;x0) + α∗q(x, x;x0)−
∫ x

x

L(s | x;x0) dp(s, s, s;x0)

+ β∗
∫ x

x

J(s;x0)

fY1(s | s;x0)
dL(s, x;x0)

= p(x, x, x;x0)−
∫ x

x

L(s | x;x0) dp(s, s, s;x0) + β∗
∫ x

x

J(s;x0)

fY1(s | s;x0)
dL(s, x;x0)

where

L(s | x;x0) = exp

{
−
∫ x

s

fY1(t | t;x0)
FY1(t | t;x0)

dt

}
,

J(s;x0) =

∫ s

x

p1(s, s, y;x0) · fY1(y | s;x0)dy.

Proof. See the Appendices.

Based on the linkage principle, we have the following revenue ranking result.

Proposition 1.7. In the retrocession case, publicly revealing X0 benefits the clients.

Proof. See the Appendices.

Based on the above result, we know that under the retrocession case, the client

insurer reveals X0 publicly to reinsurers, and the price of the reinsurance business is

p̂ as defined in Proposition 1.6. The clients are better off since the equilibrium price

in Proposition 1.6 is higher than p̃ in Proposition 1.4 by the signaling component.

1.4.2 Followers’ Information

We relax the assumption that followers are uninformed. Our main results remain

unaffected if the followers have some information, provided that their information

is garbled by that of the lead, as defined in Definition 1.2.

Definition 1.2. (Garbling Condition) A random variable Zn+k is a garbling of

(Z1, Z2, . . . , Zn) if the joint density of V, Z1, Z2, . . . , Zn, Zn+k can be written as

g (V, Z1, . . . , Zn) · h (Zn+k | Z1, . . . , Zn), where g and h are joint density and condi-

tional density of respective variables.
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It is a strong sufficient statistic condition.19 Should a following reinsurer denoted

as n+ k ground her estimate Zn+k on the information accessible to lead reinsurers,

the garbling condition is satisfied. In an extreme case where followers are uninformed

and leaders are informed, this condition holds as well, because empty information

sets are subsets of any non-empty set. One implication from the garbling condition

is lemma 1.5.

Lemma 1.5. If a random variable Zn+k is a garbling of random variables Z1, Z2, . . . ,

Zn, then for k = 1, 2, . . . ,m, it holds that

E [V | Z1, Z2, . . . , Zn, Zn+k] = E [V | Z1, Z2, . . . , Zn] .

Proof. See the Appendices.

lemma 1.5 says that the evaluation of reinsurance risk V at a more precise infor-

mation set (Z1, Z2, . . . , Zn) remains unchanged when an additional piece of coarse

information Zn+k is introduced. To see that the retrocession price is not affected,

note that the signals of followers are garbled by those of lead reinsurers. For an indi-

vidual follower, her evaluation of the risk conditional on her private signal Xn+k and

the lead reinsurers’ signals, is equivalent to evaluating it based on the lead reinsurers’

signals by lemma 1.5, i.e., E [V | X1, Y1, . . . , Yn−1, Xn+k] = E [V | X1, Y1, . . . , Yn−1] ,

where k = 1, 2, . . . ,m. Given that their value remains unaffected, the analysis in

the main section remains unchanged.

1.4.3 Reserve Price

This section discusses the introduction of a reserve price or participation fee. These

two are equivalent to excluding some bidders with lower values from participation.

We exclude this in the main section for two reasons. First, from a technical per-

spective, it could lead to the nonexistence of monotone equilibria when signals are

affiliated (See Landsberger (2007) for counterexamples). Second, in cases where

19Milgrom and Weber (1982) use this to show that when a less-informed bidder competes with
better-informed bidders in a common value auction, she receives zero payoffs in an equilibrium.
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equilibrium exists with a reserve price r ∈ [v, v̄], the main result remains quali-

tatively unaffected. In the follow-the-lead case, given a reserve price r, any lead

reinsurer with a signal x below r would not participate, as their payoff would be

negative if they win. For lead reinsurers participating in the business, the boundary

condition for the lowest type changes to b̂(r) = q(r, r). The rest of the derivation

remains unchanged. Hence, the symmetric equilibrium bidding strategy for the lead

reinsurer with signal x is given by:

b̃(r, x) = q(x, x)−
∫ x

r

L(s | x)dq(s, s).

In the retrocession case, the same set of lead reinsurers with value X < r are

excluded. The boundary changes to b̂(r) = p(r, r, r), and the symmetric bidding

strategy is given by:

b̂(r, x) = p(x, x, x)−
∫ x

r

L(s | x)dp(s, s, s) + β∗
∫ x

r

J(s)

fY1(s | s)
dL(s | x),

and the comparison of prices remains unaffected.

1.5 Discussion of the Model

Below, we discuss several assumptions of the model and the motivation of the design.

Collusive Bidders. Our model assumes no collusive behavior in either scenario,

as reinsurers typically interact across various business lines and prioritize long-term

reputations, discouraging deceptive or illegal actions. We acknowledge that prevent-

ing bidder collusion is a key aspect of auction design. In the retrocession scenario,

the lead reinsurer profits more than in the follow-the-lead case. This increased profit

incentive encourages the lead reinsurer’s participation but may also heighten collu-

sion risks, such as forming tacit alliances to demand higher premiums and share

surplus after winning. Exploring a collusion-proof design is an intriguing avenue for

future research.

Exogenous Information Structure. The information structure in our model

is exogenously given. We assume that the leader has information while followers
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are uninformed, modeling followers’ reliance on the leader’s expertise to price risk.

The leader’s role often depends on specialized expertise; for example, Tokio Marine

excels in assessing earthquake risks, while Taiping Re specializes in typhoons. Their

roles as leaders and followers may interchange depending on the business context.

Our model focuses on one specific business line, and the information assumption is

a simplification of reality. A potential direction for future research could be to allow

reinsurers to acquire information and study their information acquisition behavior

under various organizational structures.

Motivation of the Design. The optimal selling mechanism for an object when

bidders’ values are correlated is well-established in theory. Crémer and McLean

(1985) (hereafter CM) show that when bidders’ values are slightly correlated, the

entire rent can be extracted. McAfee et al. (1989) extends this result to cases

where agents’ types are continuously distributed. The details of this mechanism are

provided in the Appendices.

Though the full surplus extraction result is insightful, it has been criticized as

unrealistic and has not been observed in practice. Several theoretical explanations

include bidders’ risk aversion and limited liability (See Robert (1991)), information

acquisition about competitors’ types (See Bikhchandani (2010)), and non-robustness

to bidders’ beliefs (See Pham and Yamashita (2024)). Börgers (2015) argues that

“one should view the Cremer-McLean result as a paradox rather than guidance for

constructing practical mechanisms."

Our design is motivated by Milgrom’s spectrum auction design for the Federal

Communications Commission, specifically the Simultaneous Multi-Round Auction

(SMRA) (Milgrom, 2000). In SMRA, the original single-round bidding process is

restructured into multiple rounds, with some bidding information revealed between

stages to encourage more aggressive bidding in subsequent rounds. Although our

model is not as sophisticated as the SMRA, which involves repeated bidding and

multiunit allocation, it borrows some of its key features. For example, we restruc-

ture the allocation process from static, one-time allocation to a two-round dynamic

allocation, accounting for the information disparity between lead reinsurers and fol-

lowers. Additionally, bidding information from the first round is disclosed before
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the opening of the second round, establishing informational linkages across markets

to promote aggressive bidding. Moreover, this phased disclosure enhances trans-

parency by allowing followers to better understand the risk environment, leading to

more informed decision-making and improved price discovery.

Another merit of the retrocession design is that the lead reinsurer in the syndi-

cate is more willing to participate, as their equilibrium payoffs are higher under this

structure. Although the lead reinsurer bids more aggressively, the signaling compo-

nent pertains only to the cession shares allocated to followers, which is compensated

by followers in secondary markets. Our design may shed light on the organization

of this market and other markets with common-value features for policymakers.

1.6 Concluding Remarks

This paper presents a model for studying the organization of the reinsurance mar-

ket by comparing the current follow-the-lead practice with a proposed retrocession

design that offers greater benefits to clients. In follow-the-lead practice, a capital-

constrained lead reinsurer sets the terms of the offer, and followers subscribe to the

remaining shares at a uniform price. The lead reinsurer benefits from private infor-

mation about the underlying risk, while the followers earn rent by leveraging the

lead’s expertise in risk assessment.

In the proposed retrocession design, the allocation process is divided into two

stages with information revelations occurring between them. In the first stage, the

lead reinsurer balances leveraging their potential to exploit private information by

retaining more shares and increasing capital savings by retaining fewer shares. In

the second stage, with all information public, followers’ payoffs drop to zero as there

is no private information to exploit. Their surplus is extracted and transferred to

the client through aggressive bidding by the lead reinsurer.

This retrocession design is not widely observed in practice, possibly for reasons

similar to the initial introduction of the SMRA in spectrum auctions. There may be

a lack of understanding regarding its mechanism, as restructuring a simple allocation

process into a dynamic one introduces additional complexity and requires more effort

to organize the subsequent interactions.
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1.7 Appendices to Chapter 1

1.7.1 Proof of Proposition 1.2

Proof. Given the lead reinsurer’s payoff, the first-order condition, derived using the

Leibniz rule, is expressed as follows:

b̂′(x) =
[
(1− α)p(x, x, x) + αq(x, x)− b̂(x)

]
· fY1(x | x)
FY1(x | x)

+ (1− α)

∫ x

x

p1(x, x, y) ·
fY1(y | x)
FY1(x | x)

dy

= [p(x, x, x)− b̂(x)] · fY1(x | x)
FY1(x | x)

+ (1− α)

∫ x

x

p1(x, x, y) ·
fY1(y | x)
FY1(x | x)

dy

With the boundary condition of the lowest type b̂(x) = p(x, x, x), the solution

to the above differential equation is

b̂(x) = (1− α)p(x, x, x) + αq(x, x)−
∫ x

x

L(s | x)dp(s, s, s) + (1− α)

∫ x

x

J(s)

fY1(s | s)
dL(s, x)

= p(x, x, x)−
∫ x

x

L(s | x)dp(s, s, s) + (1− α)

∫ x

x

J(s)

fY1(s | s)
dL(s, x),

where
L(s | x) = exp

{
−
∫ x

s

fY1(t | t)
FY1(t | t)

dt

}
,

J(s) =

∫ s

x

p1(s, s, y) · fY1(y | s)dy.

To demonstrate that the lead reinsurer indeed achieves the maximum profit,

not the minimum, consider that if x′ < x, her payoff when bidding b̂ (x′) is then

π
(
b̂ (x′) | x

)
. Note that

∂π(b̂(x′)|x′)
∂b̂

= 0, and the following inequality holds.
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∂π
(
b̂ (x′) | x′

)
∂b

=

[
p (x′, x′, x′)− b̂(x)

]
· fY1 (x′ | x′) +

∫ x′
x
(1− α)p1 (x

′, x′, y) · fY1 (y | x′) dy

b̂′ (x′)

− FY1 (x
′ | x′)

=
[
b̂′ (x′)

]−1

FY1 (x
′ | x′)


(
p (x′, x′, x′)− b̂ (x′)

)
fY1 (x

′|x′)
FY1

(x′|x′)

+
∫ x
x
(1− α)p1 (x

′, x′, y) · fY1 (y|x
′)

FY1
(x′|x′)dy − b̂′ (x′)


≤
[
b̂′ (x′)

]−1

FY1 (x
′ | x′)


(
p (x′, x, x′)− b̂ (x′)

)
fY1 (x

′|x)
FY1

(x′|x)

+
∫ x
x
(1− α)p1 (x

′, x, y) · fY1 (y|x)
FY1

(x′|x)dy − b̂′ (x′)


=

[
FY1 (x

′ | x′)
FY1 (x

′ | x)

] [
∂π (b (x′) | x)

∂b̂

]
.

The above inequality holds because FY1(· | x) dominates FY1(· | x′) in terms of reverse

hazard rate for all x′ < x (see p. 287 in the Appendices of Krishna, 2009). Moreover,

p and its derivative p1 are nondecreasing in their arguments due to affiliation and

Assumption 1, and FY1
(·|x′)

FY1
(x′|x′) first-order dominates FY1

(·|x)
FY1

(x′|x) , also by affiliation. Note

that ∂π(b̂(x′))

∂b̂
≥ 0 implies that when the true signal of a lead reinsurer is x and he bids

b(x′) where x′ ≤ x, he would increase the bid to maximize his payoff. Symmetrically,

it holds that ∂π(b̂(x′))

∂b̂
≤ 0 if x′ ≥ x. The lead would lower his bid b̂(x′) to increase his

payoff if x′ ≤ x. We must also have that for all x, αp(x, x, x)+(1− α)q(x, x)−b̂(x) =

p(x, x, x)− b̂(x) > 0 holds for all x in [x, x̄], otherwise a bid of zero would be better.

Note the following results hold.

p(x, x, x)− b̂(x) =

∫ x

x

L(s | x) dp(s, s, s)− (1− α)

∫ x

x

J(s)

fY1(s | s)
dL(s, x)

=

∫ x

x

L(s | x) [p1(s, s, s) + p2(s, s, s) + p3(s, s, s)] ds

− (1− α)

∫ x

x

L(s, x)
J(s)

FY1(s | s)
ds

=

∫ x

x

L(s | x)
[
p1(s, s, s) + p2(s, s, s) + p3(s, s, s)− (1− α)

J(s)

FY1(s | s)

]
ds

≥
∫ x

x

L(s | x) [p2(s, s, s) + p3(s, s, s)] ds > 0.

The first equality uses total differentiation of dp and the fact that dL(s,x)
L(s,x)

=
fY1 (s|s)
FY1

(s|s)ds.
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The inequality uses (1−α) J(s)
FY1

(s|s) := β J(s)
FY1

(s|s) = β
∫ s
x
p1(s, s, y)·

fY1 (y|s)
FY1

(s|s)dy ≤ p1(s, s, s)

for y ≤ s and 0 ≤ β ≤ 1. The last inequality holds since p2 > 0 and p3 > 0 by

affiliation. Hence, bidding b(x) is indeed an equilibrium when the lead’s signal is x.

This completes the proof.

1.7.2 Proof of Corollary 1.1

Proof. In the proof of Proposition 1.2, we establish that p(x, x, x)− b(x) > 0. Sub-

stituting this result into the expression for b̂′(x) and noting that p1(x, x, y) ≥ 0 by

Assumption 1.1, we conclude that the derivative b̂′(x) is positive. This completes

the proof.

1.7.3 Proof of Propostion 1.3

Proof. First, for the client, in the follow-the-lead case, the client’s payoff is π̂C = p̂,

while in the retrocession case, the client’s payoff is π̃C = p̃. Since p̃− p̂ = S(β∗, x) >

0, the client is better off in the retrocession case. This is illustrated in Figure 1.2,

where the distance between the purple dotted line and the upper bound of the box

is greater than that between the orange dotted line and the upper bound of the box.

Second, for the followers, in the follow-the-lead case, the followers’ payoff is

π̃F = (1 − α∗)(V − p̃) > 0, whereas in the retrocession case, their payoff is zero,

i.e., π̂F = 0. Therefore, followers are better off in the follow-the-lead case. This is

illustrated in Figure 1.2, where the middle triangle is divided by the purple line into

two parts in the right-hand panel, which are transferred to the client and the lead

reinsurers.

Third, for the lead reinsurer, in the follow-the-lead case, the leader’s payoff is

π̃L = α∗π̃1 > 0. In the retrocession case, the lead’s payoff is π̂L = α∗π̃1+β
∗π̂Full

1 > π̃L,

where α∗+β∗ = 1. The fact that π̂Full
1 > 0 can be seen in the proof of Proposition 2

that the equilibrium payoff is positive if α = 0 or β = 1. This is illustrated in Figure

1.2, where the lower trapezoid in the right-hand panel covers the lower triangle in

the left-hand panel.
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Fourth, for the reinsurers, in the common-value setting, their joint payoff, V −

p, and the client’s payoff, p, sum to a constant V in both cases. If the client is

better off in the retrocession case than in the follow-the-lead case, the reinsurers are

correspondingly better off in the follow-the-lead case. This can be seen in Figure

1.2, where the lower rectangle in the left panel covers the trapezoid below the purple

dotted line in the right panel.

1.7.4 Proof of Proposition 1.4

Proof. Taking the FOC of equilibrium payoff to get the equilibrium bidding strategy

candidate

b̃(x) = q(x, x;x0)−
∫ x

x

L(s | x;x0) dq(s, s;x0).

We need to show that the bidding strategy candidate b̃(x;x0) leads to a maximum

in payoff. If the leader bids b̃(x′;x0) instead when his signal is x, the payoff is

π(b̃(x′;x0) | x). Taking the derivative:

∂π(b̃(x′;x0) | x)
∂x′

= (q(x, x′;x0)− b̃(x′;x0))fY1(x
′ | x;x0)− b̃′(x;x0)FY1(x

′ | x;x0)

= FY1(x
′ | x;x0)

[
(q(x, x′;x0)− b̃(x′;x0))

fY1(x
′ | x;x0)

FY1(x
′ | x;x0)

− b̃′(x;x0)

]
.

If x′ < x, then since q(x, x′;x0) > q(x′, x′;x0) and fY1 (x
′|x;x0)

FY1
(x′|x;x0) >

fY1 (x
′|x′;x0)

FY1
(x′|x′;x0) , it holds

that

∂π(b̃(x′;x0) | x)
∂x′

> FY1(x
′ | x;x0)

[
(q(x′, x′;x0)− b̃(x′;x0))

fY1(x
′ | x′;x0)

FY1(x
′ | x′;x0)

− b̃′(x;x0)

]
=
∂π(b̃(x′;x0) | x′)

∂x′
= 0.

In words, the payoff increases with a higher bid when x′ < x. Similarly, we have that
∂π(b̃(x′;x0)|x)

∂x′
< 0 when x′ > x. The payoff increases with a lower bid when x′ < x.

Hence, choosing b̃(x;x0) when the signal is x indeed leads to a maximum payoff.
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This completes the proof.

1.7.5 Proof of Proposition 1.5

Proof. When X0 is revealed, the expected payment of a winning leader when he

receives a signal x but bids as if his signal were z (i.e., for all X0 = x0, he bids

b̃(z;x0)) is

WA(z, x) = E
[
b̃I(z;x0) | X1 = x

]
,

so WA
2 (z, x) ≥ 0, because X0 and X1 are affiliated.

When X0 is not revealed, similarly we have that

WB(z, x) = b̃(z),

so WB
2 (z, x) = 0.

Hence, WA
2 (z, x) ≥ WB

2 (z, x). Publicly revealing X0 raises p̃.

1.7.6 Proof of Proposition 1.6

Proof. The proof is similar to that in Proposition 1.2. The FOC is derived using

the Lebnitz’s integral rule, and b̂(x;x0) satisfies a first-order differential equation:

b̂′(x) =
[
(1− α)p(x, x, x;x0) + αq(x, x;x0)− b̂(x;x0)

]
· fY1(x | x;x0)
FY1(x | x;x0)

+ (1− α)

∫ x

x

p1(x, x, y;x0) ·
fY1(y | x;x0)
FY1(x | x;x0)

dy

= [p(x, x, x;x0)− b̂(x;x0)] ·
fY1(x | x;x0)
FY1(x | x;x0)

+ (1− α)

∫ x

x

p1(x, x, y;x0) ·
fY1(y | x;x0)
FY1(x | x;x0)

dy.
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With the boundary condition of the lowest type b̂(x;x0) = p(x, x, x;x0), the solution

to the above differential equation is

b̂(x;x0) = (1− α)p(x, x, x;x0) + αq(x, x;x0)−
∫ x

x

L(s | x;x0)dp(s, s, s;x0)

+ (1− α)

∫ x

x

J(s;x0)

fY1(s | s;x0)
dL(s, x;x0)

= p(x, x, x;x0)−
∫ x

x

L(s | x;x0)dp(s, s, s;x0) + (1− α)

∫ x

x

J(s;x0)

fY1(s | s;x0)
dL(s, x;x0),

where
L(s | x;x0) = exp

{
−
∫ x

s

fY1(t | t;x0)
FY1(t | t;x0)

dt

}
,

J(s;x0) =

∫ s

x

p1(s, s, y;x0) · fY1(y | s;x0)dy.

Given the equilibrium bidding strategy candidate, to show that the lead reinsurer

indeed achieves the maximum profit, not the minimum, consider that if x′ < x, their

payoff when bidding b̂ (x′;x0) is then π
(
b̂ (x′;x0) | x

)
. Note that

∂π(b̂(x′;x0)|x′)
∂b̂

= 0,

and the following inequality holds.

∂π
(
b̂ (x′;x0) | x′

)
∂b̂

=

[
p (x′, x′, x′;x0)− b̂(x)

]
· fY1 (x′ | x′;x0) +

∫ x′
x
(1− α)p1 (x

′, x′, y;x0) · fY1 (y | x′;x0) dy

b̂′ (x′;x0)

− FY1 (x
′ | x′;x0)

=
[
b̂′ (x′;x0)

]−1

FY1 (x
′ | x′;x0)


(
p (x′, x′, x′;x0)− b̂ (x′;x0)

)
fY1 (x

′|x′;x0)
FY1

(x′|x′;x0)

+
∫ x
x
(1− α)p1 (x

′, x′, y;x0) ·
fY1 (y|x

′;x0)

FY1
(x′|x′;x0)dy − b̂′ (x′;x0)


≤
[
b̂′ (x′;x0)

]−1

FY1 (x
′ | x′;x0)


(
p (x′, x, x′;x0)− b̂ (x′;x0)

)
fY1 (x

′|x;x0)
FY1

(x′|x;x0)

+
∫ x
x
(1− α)p1 (x

′, x, y;x0) ·
fY1 (y|x;x0)
FY1

(x′|x;x0)dy − b̂′ (x′;x0)


=

[
FY1 (x

′ | x′;x0)
FY1 (x

′ | x;x0)

]∂π
(
b̂ (x′;x0) | x

)
∂b̂

 .
The above inequality holds because FY1(· | x;x0) dominates FY1(· | x′;x0) in terms

of reverse hazard rate for all x′ < x (see p.287 in the Appendices of Krishna, 2009).
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Moreover, p and its derivative p1 are nondecreasing in their arguments due to affil-

iation and Assumption 1.1, and FY1
(·|x′;x0)

FY1
(x′|x′;x0) first-order dominates FY1

(·|x;x0)
FY1

(x′|x;x0) , also by

affiliation. Note that ∂π(b̂(x′))

∂b̂
≥ 0 implies that when the true signal of a lead rein-

surer is x and he bids b̂(x′;x0) where x′ ≤ x, he would increase the bid to maximize

his payoff. Symmetrically, it holds that ∂π(b̂(x′;x0))

∂b̂
≤ 0 if x′ ≥ x. The lead would

lower his bid b̂(x′) to increase his payoff if x′ ≤ x. We must also have that for all x,

αp(x, x, x;x0) + (1− α)q(x, x;x0)− b̂(x;x0) = p(x, x, x;x0)− b̂(x;x0) > 0 holds for

all x in [x, x̄], otherwise a bid of zero would be better.

p(x, x, x;x0)− b̂(x;x0) =

∫ x

x

L(s | x;x0) dp(s, s, s;x0)− (1− α)

∫ x

x

J(s;x0)

fY1(s | s;x0)
dL(s, x;x0)

=

∫ x

x

L(s | x;x0) [p1(s, s, s;x0) + p2(s, s, s;x0) + p3(s, s, s;x0)] ds

− (1− α)

∫ x

x

L(s, x;x0)
J(s;x0)

FY1(s | s;x0)
ds

=

∫ x

x

L(s | x;x0)
[
p1(s, s, s;x0) + p2(s, s, s;x0) + p3(s, s, s;x0)− (1− α)

J(s;x0)

FY1(s | s;x0)

]
ds

≥
∫ x

x

L(s | x;x0) [p2(s, s, s;x0) + p3(s, s, s;x0)] ds ≥ 0.

The first equality uses total differentiation of dp and the fact that dL(s,x;x0)
L(s,x;x0)

=
fY1 (s|s;x0)
FY1

(s|s;x0)ds. The inequality uses J(s;x0)
FY1

(s|s;x0) =
∫ s
x
p1(s, s, y;x0)·

fY1 (y|s;x0)
FY1

(s|s;x0)dy ≤ p1(s, s, s;x0)

for y ≤ s. The last inequality holds since p2 ≥ 0 and p3 ≥ 0 by affiliation. Hence,

bidding b̂(x;x0) is indeed an equilibrium when the lead’s signal is x. This completes

the proof.

1.7.7 Proof of Corollary 1.2

Proof. The proof of corollary 1.2 is similar to that in the proof of corollary 1.1. In the

proof of proposition 6, we establish that p(x, x, x;x0)−b̂(x;x0) > 0. Substituting this

result into the derivative of b̃(x) and noting that p1(x, x, y;x0) ≥ 0 by Assumption

1.1, we then conclude the derivative b̂′(x;x0) is positive. This completes the proof.
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1.7.8 Proof of Proposition 1.7

Proof. When X0 is revealed, the expected payment of a winning leader when he

receives a signal x but bids as if his signal were z (i.e., for all X0 = x0, he bids

b̂(z;x0)) is

WA(z, x) = E
[
b̂(z;x0) | X1 = x

]
,

so WA
2 (z, x) ≥ 0, because X0 and X1 are affiliated.

When X0 is not revealed, similarly we have that

WB(z, x) = b̂(z),

so WB
2 (z, x) = 0. Hence, WA

2 (z, x) ≥ WB
2 (z, x).

Thus, publicly revealing X0 raises p̂ by lemma 1.4.

1.7.9 Proof of Lemma 1.5

Proof.

E [V | Z1, Z2, . . . , Zn, Zn+k] =

∫
R
v · fV |Z1,Z2,...,Zn,Zn+k

(v | z1, z2, . . . , zn, zn+k) dv

=

∫
R
v ·

fV,Z1,z2,...,Zn,Zn+k
(v, z1, z2, . . . , zn, zn+k)

fZ1,Z2,...,Zn,Zn+k
(z1, z2, . . . , zn, zn+k)

dv

=

∫
R
v ·

fV,Z1,Z2,...,Zn (v, z1, z2, . . . , zn) · fZn+k|Z1,Z2...,Zn (zn+k | z1, z2, . . . , zn)
fZ1,Z2...,Zn,Zn+k

(z1, z2, . . . , zn, zn+k)
dv

=

∫
R
v ·

fV,Z1,Z2,...,Zn (v, z1, z2, . . . , zn) ·
fZ1,Z2,...,Zn,Zn+k

(z1,z2,...,zn,zn+k)

fZ1,Z2,...,Zn (z1,z2,...,zn)

fZ1,Z2,...,Zn,Zn+k
(z1, z2, . . . , zn, zn+k)

dv

=

∫
R
v · fV,Z1,Z2,...,Zn (v, z1, z2, . . . , zn)

fZ1,Z2,...,Zn (z1, z2, . . . , zn)
dv

= E [V | Z1, Z2, . . . , Zn] .

The first and last equalities correspond to the definitions of conditional expectation.

The second equality uses

fV |Z1,Z2,...,Zn,Zn+k
(v | z1, z2, . . . , zn, zn+k) =

fV,Z1,Z2,...,Zn,Zn+k
(v, z1, z2, . . . , zn, zn+k)

fZ1,Z2,...,Zn,Zn+k
(z1, z2, . . . , zn, zn+k)

.
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The numerator in the third equality follows the definition of the garbling condition.

The fourth equality uses

fZn+k|Z1,Z2,...,Zn (zn+k | z1, z2, . . . , zn) =
fZ1,Z2,...,Zn,Zn+k

(z1, z2, . . . , zn, zn+k)

fZ1,Z2,...,Zn (z1, z2, . . . , zn)
.

This completes the proof.
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1.7.10 Comparison of Syndicated Loan and Reinsurance Syn-

dicate

This section contrasts syndicated loans with reinsurance syndicates, as these two

are similar in organization, and the former is extensively studied in banking.

Below we briefly describe the basic background of syndicated loans and rein-

surance syndicates. A syndicated loan is provided by a group of lenders to a single

borrower, often for large-scale loans exceeding a single lender’s capacity. It is formed

by banks or financial institutions, with a lead bank arranging and managing the loan.

The loan amount is divided among participants, limiting each lender’s risk to their

portion.

In a co-reinsurance syndicate, multiple reinsurers pool resources to underwrite

large or complex risks. A lead reinsurer is responsible for determining the terms

and conditions, which are binding for the follow market. Reinsurers each assume

a portion of the risk according to their participation percentages. Large risks are

spread to reduce the financial impact on any single insurer.

Both organizations share similarities, requiring multiple banks or reinsurers to

jointly raise capital and share risks. They adopt a leader-follower structure to re-

duce transaction costs in business. Though the organizational structures have some

commonalities between a syndicated loan and a co-insurance syndicate, there are

crucial differences.

Firstly, the industry applications are different. Syndicated loans are used in

banking and finance, while reinsurance syndicates serve the broader insurance and

reinsurance industry.

Secondly, the underlying risk types involved in these two structures differ. A

syndicated loan is subject to the credit risk of the borrower, while the default risk has

been historically rare in insurance; one example we know is American International

Group (AIG)’s near-failure in 2008 due to its exposure to credit default swaps (CDS)

and the housing market collapse.20 In contrast, the main risk related to pricing in

20AIG, a global company with about 1 trillion US Dollars in assets before the crisis, lost 99.2
billion in 2008. On September 16 of that year, the Federal Reserve Bank of New York stepped in
with an 85 billion loan to keep the failing company from going under. See https://insight.kellogg.
northwestern.edu/article/what-went-wrong-at-aig
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reinsurance is the underwriting risk covered by the contracts, such as potential

damages caused by a hurricane in Florida or an earthquake in Japan.

Thirdly, the pricing practices induced by covering different risks in these two

industries differ. The pricing in syndicated loans is typically standardized, often

based on benchmark interest rates such as London Inter-bank Offered Rate (LI-

BOR) or Secured Overnight Financing Rate (SOFR), plus an applicable margin.21

Conversely, there is no such benchmark in reinsurance treaties. The price of a

reinsurance policy varies case by case, depending on the specific business and the

individual underwriter’s assessment of the underwriting risk.

Lastly, the regulatory focuses differ between the insurance and banking sectors.

In insurance, regulations aim to prevent unfair pricing and exclusionary practices,

driven by the sector’s reliance on competitive risk assessment and pricing. In con-

trast, banking regulations prioritize financial stability, risk management, and the

prevention of systemic failures, viewing syndicated loans as a means to spread risk

and increase lending capacity for large projects. While competition concerns are

monitored, the overarching goal in banking is to ensure that collaborative lending

practices do not compromise the resilience of the financial system.

21Source: https://www.srsacquiom.com/our-insights/syndicated-loan-market/
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1.7.11 Reinsurance Business and Follow-the-lead Practice

This section offers background information on the reinsurance business and the

follow-the-lead practice.

Reinsurance Business and Syndicates. Reinsurance can be classified into ex-

ternal reinsurance and internal reinsurance. The follow-the-lead practice discussed

in this paper is used in external reinsurance, wherein cedants rely on professional

reinsurers for risk cession. Internal reinsurance, or captive reinsurance, is when a

parent company forms its own reinsurance entity to manage risks from its insurance

operations internally, acting as a form of self-insurance instead of outsourcing to

external reinsurance firms. External reinsurance typically constitutes the primary

business line. As Hsiao and Shiu (2019) shows, in the UK life insurance industry,

80.24% of the insurers used at least one type of reinsurance. The participation

rate for external reinsurance usage is 76.33%. This means non-affiliated professional

external reinsurers play an important role in diversifying the risks.

In addition to reinsurance, there are various Alternative Risk Transfer (ART)

mechanisms like Insurance-Linked Securities (ILS), which offer additional options

for managing risk. These financial instruments allow insurers to transfer risk to

investors in the financial markets, similar to how banks distribute loan risks through

securitization. For example, by issuing $1 million in catastrophe bonds, an insurer

can raise the same amount from investors. If a catastrophe occurs, the principal is

used to cover losses, and investors receive only coupon payments. Otherwise, the

insurer repays the principal plus coupons. Despite their presence in diversifying

risks, these instruments fall outside the scope of this paper.

Client insurers depend on professional reinsurers for both risk management and

pricing, as reinsurers typically have a deeper understanding of underlying risks than

their clients, drawing on historical data, experience, and new technology. For in-

stance, newly emerging risks such as cybercrime require specialized knowledge and

tools. Lloyd’s syndicates use the Axio360 platform to develop solutions for cyber-

physical damage coverage, leveraging it as a decision-making engine for compre-

hensive cyber risk management. This includes cybersecurity assessments, cyber
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risk quantification (CRQ), risk transfer, and cyber insurance analysis.22 Individual

clients may lack access to such advanced technology when evaluating the potential

risks.

In external reinsurance, reinsurers often collaborate to spread risk more effec-

tively. Notable examples include insurance and reinsurance syndicates like Hiscox

ESG 3033, which, brokered by Aon, provided coverage for a new wind farm in Spain

and a solar farm risk in the USA in 2023.23 Furthermore, Beazley launched Syndi-

cate 4321 in 2022, offering exclusive capacity for clients with high ESG ratings.24

Follow-the-lead Practice. Follow-the-lead practice locks the aftermarket on a

single set of terms and conditions determined in the tender phase. Regarding the

details, the Commission outlines some market elements contained in the subscription

procedure:

(a) Alignment on the contractual terms offered by the lead (re)insurer.

(b) Revealing the price offered by the lead (re)insurer to the follow market.

(c) Potentially, guaranteeing to the lead that the price and conditions, and the

share of the risk, that were agreed with it at the end of the first round, will

not be changed to its detriment if participants in the follow market were to

offer a lower price;

(d) Alignment on the premium.

Up to today, follow-the-lead remains a prevalent market practice, as evidenced by

recent articles. One notes, “Follower reinsurers accept to participate in a reinsurance

treaty in which the final terms and conditions have already been agreed, but they

don’t necessarily influence the terms and conditions involved."25 Another states,

“Despite not being in the lead, they (followers) enjoy the same level of compensation

as the lead reinsurer."26

22See https://www.reinsurancene.ws/lloyds-of-london-investment-in-axio-to-support-company-growth-and-benefit-the-market/
23See https://www.hiscoxgroup.com/news/press-releases/2023/02-08-23
24See https://www.beazley.com/en-us/news-and-events/esg-syndicate-4321/
25See an article written by CCR Re in 2021 https://blog.ccr-re.com/en/what-is-a-follower
26See an article by insurance professionals in 2022: https://www.investopedia.com/terms/l/

lead-reinsurer.asp

37

https://www.reinsurancene.ws/lloyds-of-london-investment-in-axio-to-support-company-growth-and-benefit-the-market/
https://www.hiscoxgroup.com/news/press-releases/2023/02-08-23
https://www.beazley.com/en-us/news-and-events/esg-syndicate-4321/
https://blog.ccr-re.com/en/what-is-a-follower
https://www.investopedia.com/terms/l/lead-reinsurer.asp
https://www.investopedia.com/terms/l/lead-reinsurer.asp


1.7.12 Optimal Selling Mechanism

Below, we discuss the implementation of the optimal selling mechanism, sufficient

conditions for full surplus extraction, and its distinction from a second-price auction,

based on McAfee et al. (1989).

Implementation

1. The insurer (seller) randomly selects two syndicates labeled i and j among n

competing syndicates.

2. The insurer then asks leader j to report his signal, the realization is denoted

as xj, but offers the business to syndicate i at a price z(xj), where z(·) is a

price function that depends only on j’s report.

Incentive Compatibility and Participation Constraint

The first observation is that the mechanism above is weakly incentive-compatible

(IC). This is because a reinsurer’s payoff does not depend on its own actions: syn-

dicate i’s payoff depends on syndicate j’s report, while the payoffs for all other

participants are zero.

Second, we need to show the existence of a price function z(·) such that the

participation constraints are satisfied, i.e., the buyer i’s expected payoff is nonneg-

ative. Specifically, if his payoff is zero, the mechanism is optimal from the seller’s

perspective.

Denote the conditional distribution of each lead reinsurer i’s signal xi as F (xi|v),

with density f(xi|v) continuous and strictly positive on [0, 1] × [0, 1].27 Let the

distribution of v be G(v). The payoff of leader i is given by:

πi =

∫ 1

0

[
v −

∫ 1

0

z(x)f(x | v)dx
]

f (xi | v)∫ 1

0
f (xi | u) dG(u)

dG(v).

Thus, characterizing the optimal mechanism reduces to finding z(·) such that πi = 0.

Surplus Extraction as a Minimum Norm Problem The full surplus extraction

problem can be transformed into a minimum norm problem. Consider a Hilbert
27We consider [0, 1] w.l.o.g. since it is isomorphic to interval [v, v].
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space of square-integrable functions L2([0, 1], G) and define the norm as ∥x∥ =

(x, x)
1
2 , where (x, y) =

∫ 1

0
x(v)y(v)dG(v). Define a set Y as:

Y =

{
y ∈ L2([0, 1], G) | ∃z ∈ L2([0, 1], G), y(v) =

∫ 1

0

z(x)f(x | v)dx
}
.

Then we have the following results.

Lemma 1.6 (McAfee et al., 1989, Lemma). ∃z(·) ∈ L2([0, 1], G) satisfying πi = 0

if and only if miny∈Y ∥y − v∥ has a solution.

Theorem 1.1 (McAfee et al., 1989, Main Theorem). ∀ε > 0,∃z ∈ L2([0, 1], G) s. t. πi ∈

[0, ε].

The intuition behind leaving small rents ε is that the mechanism is only weakly

IC, meaning the buyer is not worse off if they lie. To ensure strict incentives, a cost

shall be imposed on the seller to leave strict rents for the buyer to report truthfully.

Sufficient Conditions for Full Surplus Extraction

Balakrishnan (2012) states that every closed convex set in a Hilbert space has a

unique element of minimum norm. Two examples provided by McAfee et al. (1989)

satisfy the condition that the set Y defined above is closed.

1. The conditional density satisfies a separability condition, i.e., f(s | v) =∑n
i=1 ai(s)bi(v).

2. The value v has a finite support, i.e., G = {v1, v2, . . . , vm}.

Distinction from Second-Price Auction

The mechanism discussed here resembles but is essentially different from a second-

price auction (SPA) in key aspects:

1. A SPA is not optimal as it is dominated by a English auction in a common

value setting.
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2. In this mechanism, the two buyers are selected arbitrarily. In contrast, in a

SPA, the highest and second-highest bidders are chosen by the buyers them-

selves based on their signals or bids. The buyers’ knowledge of this prevents

full surplus extraction.
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Chapter 2

Revisiting Equilibrium in
Quote-driven Markets

Joint with Elu von Thadden

2.1 Introduction

The quote-driven system is a basic trading system in securities and other financial

markets.1 Examples include the Stock Exchange Automated Quotation (SEAQ)

system on the London Stock Exchange, the eSpeed government bond trading sys-

tem, and the foreign exchange market. In these markets, market makers (dealers)

post prices before order submission. The seminal modeling approach for quote-

driven markets includes Glosten (1989), who studies traders with both informational

and liquidity motives. Madhavan (1992) extends this to a multi-period setting and

compares the quote-driven mechanism with the order-driven model in Kyle (1989),

focusing on price efficiency and the cost of information.

Our paper challenges the conventional wisdom on equilibrium existence in quote-

driven markets. We find that even when the sufficient conditions for a separating

equilibrium—such as those in Glosten (1989) and Madhavan (1992)—are satisfied, a

separating equilibrium still fail to exist in a two-dimensional competitive screening

1Another basic trading system is the order-driven market, where investors submit buy and sell
orders before observing the price. Orders are either executed immediately (continuous auction) or
accumulated for a period and executed simultaneously (periodic or call auction). An example of an
order-driven system is the Stock Exchange Electronic Trading Service (SETS), which operates via
a limit order book on the London Stock Exchange. The New York Stock Exchange and NASDAQ
are considered hybrids of the two systems.
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framework. This failure arises from a profitable partial-pooling cross-subsidization

deviation, whereby a deviating market maker offers a price-quantity schedule that

attracts a subset of investors. He cream-skims a continuum of low-cost investor types

to subsidize a continuum of high-cost types, resulting in strictly positive expected

profits.

In the model, a risk-averse informed trader has two motives for trading: an infor-

mational motive to exploit private information, and a liquidity motive to rebalance

her position. The trader’s type is modeled as a convex combination of these two

motives. Competitive market makers move first by quoting a price schedule and

are assumed to break even in expectation. After observing the quoted prices, the

investor announces the quantity she wishes to buy or sell. The classic result states

that the market shuts down when information asymmetry is too severe—specifically,

when the informational motive dominates the liquidity motive. Conversely, when

liquidity motives dominate, the market opens and a separating equilibrium exists.

Our argument draws a parallel with the equilibrium existence problem in Roth-

schild and Stiglitz (1978), where insurers offer contracts to high- and low-risk in-

dividuals. In a separating equilibrium, high-risk agents receive full insurance while

low-risk agents receive partial insurance. Supporting this equilibrium requires a

sufficiently large share of high-risk individuals to deter pooling and prevent cross-

subsidization deviations.

The difficulty in establishing our equilibrium nonexistence result lies in con-

structing a partial-pooling, cross-subsidization deviation in a setting with continu-

ously distributed and unbounded types. Unlike the binary types in the insurance

literature, the investor’s type is defined as a convex combination of trading motives,

leading to an unbounded type space. We overcome this challenge by leveraging

statistical properties of truncated Gaussian distributions, as most models in mar-

ket microstructure—including the market-making model considered here—are based

on a linear-Gaussian framework. Based on this, we derive sufficient conditions for

the existence of a cross-subsidization deviation and provide a numerical example

confirming that these conditions are nonempty. Furthermore, we show that such a

deviation exists even when the informational motive is arbitrarily small compared

42



to the liquidity motive.

Moreover, we discuss a signaling variant of the market-making model, in which

the informed investor submits an order before observing the price quotation. In that

setting, we prove the existence and uniqueness of a separating equilibrium under full

information transmission.

Related Literature This paper relates to the market-making models in the market

microstructure literature. Glosten (1989) is among the first to model convoluted

trading motives. He contrasts a competitive screening setting with a monopolistic

market maker framework and shows that monopoly power can mitigate the trading

costs caused by adverse selection, thereby rationalizing the role of the specialist

system on the NYSE. Madhavan (1992) extends Glosten’s model to a multi-period

setting and compares the quote-driven market with the order-driven market in Kyle

(1989). He finds that the quote-driven system offers greater price efficiency than the

continuous auction. Moreover, with free entry into market making, equilibria in the

two mechanisms tend to converge.

The insight that markets may shut down when the informational motive domi-

nates the liquidity motive also appears in other studies. Keim and Madhavan (1996)

model block trading in the upstairs market and show that equilibrium exists only

if the information motive is not too large. Naik et al. (1999) examine whether full

disclosure in dealership markets improves the welfare of risk-averse investors, and

find that greater transparency may actually worsen risk-sharing outcomes. Their

equilibrium existence condition similarly requires that information asymmetry not

be too severe.

More recent studies have focused on automated market-making in the context

of digital platforms and decentralized finance. Lehar and Parlour (2025) compare

AMMs with traditional market-making and show that while AMMs offer continuous

liquidity without inventory risk and operate without requiring trust, they may lead

to less efficient price discovery. Aoyagi and Ito (2024) analyze the coexistence of

limit order books and automated market makers, showing how traders self-select

across platforms and how this affects market outcomes.

Another strand of related literature is the equilibrium problem in insurance mar-
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kets with adverse selection. Riley (2001) reviews the evolution of screening models

beyond the RS framework, noting persistent challenges in equilibrium existence when

multiple types or contract externalities are involved. Fixing the Nash equilibrium

concept, Farinha Luz (2017) characterizes a unique mixed-strategy equilibrium in

the Rothschild-Stiglitz setting with two types of insurees. He notes that for more

than two types, the existence and characterization of equilibrium remains open.

Besides searching for mixed-strategy equilibrium, early contributions attempt to

address nonexistence by modifying the equilibrium concept. Wilson (1977) proposes

the anticipatory equilibrium (E2 equilibrium) and shows that when the Rothschild-

Stiglitz (RS) equilibrium fails to exist, the E2 equilibrium yields a pooling outcome.

This framework is extended by Miyazaki (1977) and Spence (1978), who introduce

menus of contracts. The resulting Miyazaki-Wilson-Spence (MWS) equilibrium pre-

dicts a separating allocation with cross-subsidization and contracts that are jointly

zero-profit and second-best efficient. Riley (1979) introduces the reactive equilib-

rium, which takes into account that each firm anticipates competitors’ responses

before offering a new contract.

A more recent study by Azevedo and Gottlieb (2019) shows that Riley equilib-

rium may fail to exist when insurees possess multi-dimensional private information.

Azevedo and Gottlieb (2017) define their equilibrium concept as a refinement of the

weak equilibrium and show that, in insurance markets with adverse selection, such an

equilibrium always exists. Attar et al. (2014) study nonexclusive competition, in con-

trast to the exclusive contracting assumption in Rothschild and Stiglitz (1978), and

demonstrate that the ability of agents to contract with multiple firms undermines

standard screening mechanisms, potentially leading to equilibrium nonexistence or

inefficiency. Attar et al. (2022) analyze a setting in which privately informed con-

sumers may hold multiple contracts across insurers. They find that effective public

intervention should target firms’ pricing behavior rather than restricting consumer

choice. The proposed regulatory framework achieves efficiency by penalizing cross-

subsidization between contracts.

Mimra and Wambach (2014) reviews recent developments in addressing equilib-

rium issues in RS, including those that reconsider the microstructure of the insur-
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ance market, and notes that most contributions still focus on the case with only two

types. While conceptually similar to the competitive screening model in insurance

markets, we argue that the technical challenges in the quote-driven markets in this

paper are more severe. First, the investor’s action space—allowing both long and

short positions—is unbounded in R, whereas the insuree’s choice of coverage typi-

cally lies in a bounded interval, such as [0, 1]. Second, types are modeled as convex

combinations of interacting trading motives, yielding an unbounded type space with

infinitely many distinct types. It remains to be explored whether the remedies de-

veloped in the insurance literature can be extended to address the existence problem

identified in the market-making model.

Plan for the Paper. Section 2.2 presents the model and derives a separating equi-

librium if it exists. Section 2.3 analyses how cross-subsidization deviations destroy

equilibrium existence. Section 2.4 discusses equilibrium existence in the signaling

version of market making. Section 2.5 concludes.

2.2 Model and Equilibrium Analysis

2.2.1 Players and Information

Consider a single asset with value S. Each risk-averse investor privately observes a

noisy signal s = S+ ϵ before trading, where ϵ is the noise term. An investor holds a

risk-free asset, cash, denoted as C, and a position W in a risky asset. The investor

has two trading motives: to exploit her private signal s and to adjust her position

W . Risk-neutral market makers quote price schedules to investors. The unit trading

price of the asset quoted by market makers is denoted as p. The state of nature,

represented by ω = (W, s), is known only to the investor. Both the position W and

the asset value S may take positive or negative values, allowing for short-selling. The

quantity of the asset that the investor wishes to trade is represented by x, where

x > 0 indicates that the investor purchases the asset from market makers, and x < 0

indicates that selling the asset to market makers. After a trade, the transfer t from

the investor to the market maker is t = −px.
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The investor’s final wealth is C + (W + x)S + t after a trade takes place, so her

expected utility is given by

uA(x, t, ω) = ES[U(C + (W + x)S + t)|ω]. (2.1)

Additionally, the investor is risk-averse and her utility function is specified as the

Constant Absolute Risk Aversion (CARA) form, i.e.,

U(c) = − exp(−ac), a > 0.

Market makers are assumed to be risk-neutral, and aim to maximize their ex-

pected profits. The payoff for a market maker, conditioned on the signal s, is

described by the function:

uP (x, t, ω) = ES[−t− xS|ω]. (2.2)

For tractability, it is assumed that ε, W , and S are normally and independently

distributed, i.e.,

ε ∼ N (0, σ2
ε), W ∼ N (0, σ2

W ), S ∼ N (mS, σ
2
S).

2.2.2 Structure of the Game and Solution Concept

The strategic interaction between market makers and investors is modeled as a

competitive screening game. The timing of the game is as follows:

0. Nature draws the investor’s type ω = (s,W ).

1. Market makers offer price schedules p(x) in a competitive market.

2. Each investor submits a quantity x that she wishes to trade.

3. All values are realized and a transfer t is made from the investor to market

makers.
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The natural solution concept in this setting is perfect Bayesian equilibrium,

where players’ beliefs are updated according to Bayes’ rule wherever possible, and

strategies are optimal given those beliefs. We focus on the full information transmis-

sion case, characterized by a separating equilibrium. We first analyze the investor’s

decision problem, then that of the market makers, and finally determine the equi-

librium price–quantity schedule.

2.2.3 Equilibrium Analysis

Since the investor observes a noisy signal s about the true asset value S, she needs

to evaluate S before making a trading decision. The following lemma describes the

updating rule for Gaussian variables. It states that the conditional expectation is

a convex combination of the unconditional expectation and the observation. The

observation only affects the expectation, not the variance.

Lemma 2.1. If X ∼ N (µX , σ
2
X), Y ∼ N (0, σ2

Y ) are jointly normal and independent,

Z = X + Y , and z is an observation of Z, then

X|z ∼ N
(
σ2
Y µX + σ2

Xµz
σ2
Y + σ2

X

,
σ2
Y σ

2
X

σ2
X + σ2

Y

)
.

Using the above updating rule, the investor’s estimate of asset value is normally

distributed as S|s ∼ N(m,σ2) with

m =
σ2
ϵmS + σ2

Ss

σ2
ϵ + σ2

S

, σ2 =
σ2
ϵσ

2
S

σ2
ϵ + σ2

S

.

Therefore, the investor’s expected utility can be rewritten as uA(x, t, ω) =

= − 1√
2πσ2

∫ +∞

−∞
exp (−a [C − px+ (W + x)ξ]) exp

(
−(ξ −m)2

2σ2

)
dξ

= − 1√
2πσ2

exp (−a[C − px])

∫ +∞

−∞
exp

(
−a(W + x)ξ +

(ξ −m)2

2σ2

)
dξ

= −exp
(
−a
(
C − px+m(W + x)− 1

2
a(W + x)2σ2

))
= −exp

(
−a
(
C − 1

2
aσ2W 2 +Wm

))
exp

(
−a(m− p− aσ2W )x− 1

2
σ2x2

)
.
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The first term is a known constant to the investor. Hence, her utility is ordinally

equivalent to

vA(x, p, θ) = (θ − p)x− 1

2
aσ2x2. (2.3)

where θ is given by

θ = m− aσ2W (2.4)

=
1

σ2
ϵ + σ2

S

(
σ2
ϵmS + σ2

Ss− aσ2x2
)
.

The two-dimensional uncertainty of the positionW and signal s can be condensed

into a single variable denoted as θ. This implies that the two trading motives, the

informational motive to take advantage of signal s and the liquidity motive to adjust

her position W , are interrelated. The more exposure W the agent already has to

the asset, the less inclined she is to employ her private information in trading.

The investor considers both trading motives not independently, but rather their

projection onto one space, θ. Hence, if information is transmitted in trading, it will

be a statistic of θ.

The market maker maximizes his expected profits vP (x, p, θ) = E[(p − S)x|θ]

and needs to evaluate E[S|θ]. By the law of iterated expectations,

E[S|θ] = E[E[S|s]|θ]

= E[m|θ].

By lemma 2.1, m|θ is normally distributed with mean

E[m |θ] = (1− β)E[m] + βθ

= (1− β)mS + βθ,
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where

β =
var(m)

var(m) + a2σ4σ2
W

=
σ2
S + σ2

ε

σ2
S + σ2

ε + a2σ2
Wσ

4
ε

.

Hence, the expected payoff for the market maker is

vP (x, p, θ) = E [(p− S)x|θ]

= E [(p−m)x|θ]

= (p− βθ − (1− β)mS)x.

Note that βθ + (1− β)mS represents the expected cost passed from the investor to

the market maker, where β is the weight placed on private information and (1− β)

is the weight on the prior mean of the asset value.

2.2.4 Separating Equilibrium Candidate

We focus on full information transmission, where the investor’s action is uniquely

determined by her type in a one-to-one manner. In a separating equilibrium, the

investor’s decision perfectly reveals her type. Competition among market makers

implies zero expected profits, resulting in p(θ) = βθ + (1− β)mS for all θ ∈ R.

An investor of type θ chooses θ̂ to maximize her payoff given by:

V (θ, θ̂, x) =
(
θ − βθ̂ − (1− β)mS

)
X(θ̂)− 1

2
dX(θ̂)2, (2.5)

where d = aσ2. In the absence of asymmetric information, the first-best allocation

serves as a benchmark and is given by

XFB(θ) =
1− β

d
(θ −mS). (2.6)

When the agent’s private information can be represented by a continuous real-

valued random variable, the incentive-compatible separating strategy is typically
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characterized by some differential equation, if the strategy is known to be differen-

tiable. However, since the equilibrium is unknown, differentiability can not be taken

for granted. In this regard, the price schedule derived in Glosten (1989) necessitates

that each trading schedule be differentiable, which was missing in the original paper,

but can be resolved by using the theorems presented in Mailath and Von Thadden

(2013).

Note that type θ = mS must get her first-best quantity x = 0 in any incentive-

compatibility separating price schedule.2 If an investor’s convoluted trading motive

perfectly matches the prior mean asset price, she will lack any incentive to trade.

Separation implies no other type gets x = 0. Hence, ∂θ̂V (θ, θ,X(θ)) = −βX(θ) ̸= 0

for all x ̸= ms. Since ∂2
θθ̂
V ≡ 0, Theorem 4.3 in Mailath and Von Thadden (2013)

therefore implies that any incentive-compatible schedule X must be differentiable on

the open sets (mS,∞) and (−∞,mS). By Theorem 5 in Mailath and Von Thadden

(2013), the schedule X is continuous at θ = mS. Calculating the derivatives of X on

(mS,∞) and θ ̸= mS from (DE) in Mailath and Von Thadden (2013) showing that

the left-hand and right-hand derivatives exist and identical. Hence, X is differen-

tiable everywhere in R. One therefore can take the first-order condition of Equation

(2.5): (
θ − βθ̂ − (1− β)mS

)
X ′(θ̂)− βX(θ̂)− dX ′(θ̂)X(θ̂) = 0.

Rearranging terms gives

(1− β)(θ −mS)X
′(θ)− βX(θ)− dX ′(θ)X(θ) = 0.

To get an explicit solution, multiplying with “integrating factor” − |X(θ)|−1/β:

[
d |X|(β−1)/β − sign(X)(1− β)(θ −mS) |X|−1/β

]
X ′ + β |X|(β−1)/β = 0.

Note that left-hand side has the form

d

dθ
Φ(θ,X(θ)) = Φθ + ΦxX

′,

2Since V (ms,ms, X(ms)) ≥ 0 (type θ = ms has the option of choosing x = 0), and
V (ms,ms, x) = −dx2

2 , which is strictly negative if x ̸= ms, we have X(ms) = 0.

50



for some Φ : R2 → R. Integrating Φθ and Φx (for β ̸= 1/2):

Φ(θ, x) = β |x|(β−1)/β θ + h(x),

Φ(θ, x) = β |x|(β−1)/β θ + dsign(x)
β

2β − 1
|x|(2β−1)/β

−βmS |x|(β−1)/β + f(θ)

with h and f arbitrary. Comparing the above two equations yields

f(θ) = 0,

h(x) = dsign(x)
β

2β − 1
|x|(2β−1)/β − βmS |x|(β−1)/β .

Hence,

Φ(θ, x) = β |x|(β−1)/β (θ −mS) + dsign(x)
β

2β − 1
|x|(2β−1)/β .

The general solution of ODE (for β ̸= 1/2) is given by

dX(θ)− (1− 2β)(θ −mS) = c |X(θ)|(1−β)/β (2.7)

with c ∈ R constant. Since X(·) satisfying Equation (2.6) is strictly monotone on

all of R only if c = 0, it holds that:

X(θ) =
1− 2β

d
(θ −mS). (2.8)

If β ≥ 1
2
, Equation (2.8) is not a solution, because the investor’s problem has a

minimum at θ̂ = θ. If β < 1
2
, the investor problem has a maximum at θ̂ = θ. The

above results are summarized in the following proposition.

Proposition 2.1. The competitive screening game has no equilibrium with max-

imum information transmission (fully separating with respect to θ) if β ≥ 1
2
, i.e.

if

σ2
S + σ2

ε ≥ a2σ2
Wσ

4
ε . (2.9)
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If an equilibrium with maximum information transmission exists, it is given by

X(θ) =
1− 2β

d
(θ −mS), (2.10)

P (θ) = βθ + (1− β)mS. (2.11)

Compared with the first-bestXFB in Equation (2.6), the equilibrium in Equation

(2.11) involves too little trade due to private information. The bid-ask spread is also

micro-founded in this model. To see this, combining Equations (2.11) and (2.10)

and eliminating θ yields the following price-quantity schedule

P (x) = mS + d
β

1− 2β
x.

The bid price is B(x) = P (x) − mS = d β
1−2β

x for x > 0, and the ask price is

A(|x|) = mS − P (x) = d β
1−2β

|x| for x < 0. Hence, the bid-ask spread is given by

D(x) = 1
2
(B(x)− A(x)) = d β

1−2β
x, which centers around mid-price mS.

This model provides an information-based explanation for trading distortion,

where unfavorable information structures can prevent trade. Specifically, when the

noise about asset value is too large (large σ2
S), or the private information about the

position is too precise (small σ2
W ), no trade occurs. In the former case, excessive

uncertainty about the asset value deters the trader from engaging in trading. In

the latter case, if the trader knows her position too precisely and is still willing to

trade, it is more likely that she possesses favorable information rather than merely

seeking to adjust her position. Anticipating this, market makers become less willing

to trade.

Note that Glosten formulates the results in a different way. In Proposition 1 of

Glosten (1989), it is stated that “if α > 0.5 (which is equivalent to β < 0.5), then

there is a unique equilibrium pricing schedule." In the next section, we show that

even if the claimed sufficient condition for equilibrium existence in Glosten (1989)

holds, a separating equilibrium may still fail to exist due to cross-subsidization

between contracts offered by a deviating market maker.
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2.3 Non-Existence of Equilibrium

In this section, we first show that the claimed sufficient condition for equilibrium

existence is necessary to rule out pooling deviation. We then demonstrate that

even if this condition holds, a deviating market maker can offer a price schedule

that involves cross-subsidization across different types of investors. Moreover, we

show that such a deviation exists regardless of how small the information weight is.

This profitable cross-subsidization deviation causes the separating market outcome

derived in the last section to unravel. Numerical examples are provided to illustrate

our findings.

2.3.1 Necessary of β < 1
2 to Rule Out Pooling Deviation

The condition β < 1
2

is crucial to exclude fully pooling deviation. The quadratic

payoff for agents in the separating outcome is given by VA = 1−2β
d

(θ −ms)
2, which

results from substituting the equilibrium results (2.10) and (2.11) into the investor’s

payoff function (2.3). The quadratic payoff is depicted in the following Figure 2.1

for β < 1
2
.

Figure 2.1: Equilibrium and Deviating Payoffs of Investors When β < 1
2

Pooling deviation means that investors who wish to purchase the assets (θ > ms)

or those who wish to sell the assets (θ < ms) pooling at the same contract (p∗, x∗).
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The payoff for investors opting for contract (p∗, x∗) is expressed as

V ∗
A(x

∗, p∗, θ) = (θ − p∗) x∗ − 1

2
d(x∗)2 (2.12)

The payoff function is linear in θ. However, the linear deviating payoff line

cannot consistently remain above the parabola for all θ, as depicted in Figure 2.1. An

exception arises when β > 1
2
, resulting in negative payoffs for agents (See Figure 2.2).

In this case, the separating outcome is dominated by a simple pooling deviation,

where agents choose not to trade, guaranteeing a payoff of zero. Although the

claimed sufficient condition β < 1
2

effectively rules out pooling, it does not exclude

partial-pooling deviations involving cross-subsidies between contracts, as will be

further illustrated in the subsequent section.

Figure 2.2: Equilibrium and Deviating Payoff of Investors when β > 1
2

2.3.2 Construction of Partial-pooling Cross-subsidization De-

viation

The idea of constructing a partial-pooling deviation is depicted in Figure 2.3. Sup-

pose a type θ̃ is attracted by some contract (p∗, x∗), her payoff must be strictly

higher than the separating outcome. The payoff of investors accepting the deviating

contract is linear in type θ according to Equation (2.12). Given the convex nature

of the original equilibrium payoff curve (represented by the blue hyperbola) and the

linearity of the deviating payoff line (illustrated by the orange line), it is evident that

types falling within the interval (θ, θ) achieve a higher payoff in the new contract
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compared to the original separating outcome. The slope of the straight deviating

payoff line corresponds to the quantity x∗, while the price p∗ is associated with

the intercept of the line. Given the payoff function, one can express the deviating

contract (p∗, x∗) in terms of θ and θ.

Figure 2.3: Illustration of partial-pooling deviating price schedule

Lemma 2.2. Suppose a deviating market maker offers the following partial pooling

price quantity schedule (p∗, x∗) :

p∗ =
θθ −m2

s

(θ −ms) + (θ −ms)
− 1− 2β

4
[(θ −ms) + (θ −ms)]

x∗ =
1− 2β

2d
(θ + θ − 2ms),

then investors within (θ, θ) pool at the above contract, and those outside the interval

stay at the original outcome.

Proof. See the Appendices.

The price schedule in Lemma 2.2 exhibits partial-pooling of investors within the

interval (θ, θ) (which is a strict subset of R), it remains to show that such type of

deviation can generate strictly positive profits for the deviating market maker, i.e.,

∫ θ

θ

(p∗ − (βθ + (1− β)ms))x
∗f(θ)dθ > 0. (2.13)
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This profitability condition is equivalent to

∫ θ

θ

(p∗ − (1− β)ms)x
∗f(θ)dθ > βx∗

∫ θ

θ

θf(θ)dθ.

Since investors within (θ, θ) purchase x∗ > 0 units of assets at p∗, the above condition

reads

(p∗ − (1− β)ms)

∫ θ

θ

f(θ)dθ > β

∫ θ

θ

θf(θ)dθ.

Summarizing the terms involving θ on the right-hand side gives

p∗ − (1− β)ms >
β
∫ θ
θ
θf(θ)dθ∫ θ

θ
f(θ)dθ

.

By the definition of the conditional expectation, we have that

E[θ|θ ≤ θ ≤ θ] =

∫ θ
θ
θf(θ)dθ∫ θ

θ
f(θ)dθ

.

Therefore, the profitability condition (2.13) can be transformed to

p∗ > (1− β)ms + βE[θ|θ ≤ θ ≤ θ]︸ ︷︷ ︸
average cost of investors

. (2.14)

Equation (2.13) is interpreted as follows: in order for the deviating market maker

to generate strictly positive profits from traders willing to accept the contract, the

uniform price p∗ charged must exceed the average cost passed on to him.

Before analyzing the above condition, we first illustrate how the partial-pooling

price schedule presented in Lemma 2.2 can yield positive profits. Under such a

price schedule, the deviating market maker cannot earn profits from all contract-

accepting types (θ, θ). Instead, achieving overall positive profit requires the strategic

use of cross-subsidization across contracts. This insight is formalized in the following

lemma.

Lemma 2.3. Cross-subsidies among contracts. For the deviating price schedule to

56



be profitable, there must exist a well-defined cutoff type θcutoff ∈ (θ, θ) such that the

deviating market maker exactly breaks even, i.e., p∗ = βθcutoff + (1− β)ms.

Proof. See the Appendices.

Lemma 2.3 indicates that the deviating market maker reaps benefits from in-

vestors with comparatively lower costs (θ, θcutoff), while incurring losses from those

with relatively higher costs (θcutoff, θ). If the accrued gains surpass the incurred

losses, the deviating market maker can achieve a net positive profit.

To handle the profitability condition, we apply Lemma 2.4 to simplify the last

term on the right-hand side of Equation (2.14). This approach enables a tractable

analysis of the profitability condition, allowing us to leverage statistical results of the

truncated normal distribution to establish a non-existence result later. Otherwise,

numerical simulations of Equation (2.13) might be necessary, posing challenges due

to the presence of unknown variables in the upper and lower limits of the integral.

Lemma 2.4. Doubly Truncated Normal. Suppose that X follows a standard normal

distribution. Let Y = µ + σX. Then, conditional on Y ∈ A = [a1, a2], where

−∞ ≤ a1 ≤ a2 ≤ ∞, the expected value of the doubly truncated normal distribution

can be expressed as

E[Y |A] = µ− σ
ϕ(α2)− ϕ(α1)

Φ(α2)− Φ(α1)
,

where αk = ak−µ
σ

for k = 1, 2.

Proof. See the Appendices.

The first and second moments of the truncated normal distribution can be found

on page 156 of Samuel (1994). The proof of Lemma 2.4 is provided in the Appendix

for the sake of completeness. Relying on Lemma 2.4, and considering the fact that

θ is a sum of normally distributed variables, making it also normal (See the details

in the proof of Lemma 2.3), we can transform the profitability condition (2.13) into

a simpler form, as demonstrated in the following proposition.
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Proposition 2.2. Existence of profitable deviating price schedule. The partial-

pooling deviating price schedule (p∗, x∗) defined in Lemma 2.2 is profitable if the

following condition holds:

X̄+X
2

− ϕ(X)−ϕ(X̄)

Φ(X̄)−Φ(X)

X̄+X
2

− 2
1
X̄
+ 1

X

>
1

2β
, (2.15)

where

X̄ =
θ −ms

σθ
,

X =
θ −ms

σθ
,

ϕ(ξ) =
1√
2π
exp

(
−ξ

2

2

)
,

Φ(ξ) =

∫ ξ

−∞

1√
2π

exp

(
−ξ

2

2

)
dξ.

Proof. See the Appendices.

Note that X and X̄ in condition (2.14) represent the normalized lower bound

and upper bound, respectively, of the interval (θ̄, θ) attracted by the deviating con-

tract. Here, ϕ and Φ denote the density and distribution functions of the standard

normal, respectively. The condition involves two variables X and X̄ (or equivalently

θ and θ) due to the deviating contract consisting of two elements: the price p∗ and

the quantity x∗. Recall that the quantity x∗ corresponds to the slope of the line

connecting θ and θ in Figure 2.2, while the price p∗ is related to the intercept.

A pertinent question is whether the set of contracts satisfying condition (2.15) is

empty. We provide the following example to show that it is not, even when β < 1
2
.

In other words, despite the claimed sufficient condition for equilibrium existence, it

is still feasible to construct a profitable partial-pooling cross-subsidization deviation.

Example. Suppose β = 1
3
< 1

2
, then a fully separating equilibrium should exist

by the main proposition in Glosten (1989). Let X = 2 and X̄ = 3. Consider a

deviating market maker offering the price schedule
(
p∗ = ms+

47
60
σθ, x

∗ = 5
6d
σθ

)
. By
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construction, only the investors within the interval (ms + 2σθ,ms + 3σθ) purchase

x∗ units of assets from the deviating market maker at the price p∗. The deviating

market marker earns strictly positive profits because

2+3
2

− ϕ(2)−ϕ(3)
Φ(3)−Φ(2)

2+3
2

− 2

( 1
2
+ 1

3)

>
1

2 · 1
3

holds as ϕ(2) = 0.053991, ϕ(3) = 0.004432, and Φ(3)−Φ(2) = 0.021400, so LHS =

1.842 > 1.5 = RHS.

An intuitive illustration of the non-emptiness of the profitability condition (2.15)

and the motivation of Proposition 2.3 can be observed through the accompanying

Figure 2.4, which illustrates the graph of the bi-variate function

f(X,X) =

X̄+X
2

− ϕ(X)−ϕ(X̄)

Φ(X̄)−Φ(X)

X̄+X
2

− 2
1
X̄
+ 1

X

(i.e., the LHS of condition 2.15). Let us define the critical value β∗ = 1
2f

. As

the functional value f takes on values of 5, 10, 15, ..., the proposed price schedule

remains profitable for values of β greater than β∗ = 1
10

, 1
20

, 1
30

,.... (the critical value

β∗ seems to gradually approach zero.) A close examination of Figure 2.4 seems to

suggest that f increases as X approaches X, and both values augment concurrently.

Putting it differently, the partial-pooling deviating price schedule (p∗, x∗) defined

in Lemma 2.2 remains consistently profitable, regardless of how small the value of

β may be. We apply a Taylor series expansion to prove this observation and to

establish the subsequent result in Proposition 2.3.

Proposition 2.3. There is no fully separating outcome in this game irrespective of

β.

Proof. See the Appendices.

The result is established by showing the consistent profitability of the cross-

subsidization deviating price schedule (p∗, x∗) from Lemma 2.2 for arbitrarily small

values of β. The non-existence result in Proposition 2.3 arises from the deviating
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Figure 2.4: 3D plot of f(x, x)

market maker’s ability to offer a partial-pooling contract within the linear-quadratic

setting, enabling them to attract a strict subset of investors and generate strictly

positive profits through cross-subsidization across contracts. More precisely, the

deviating market maker earns profits from investors with relatively low trading costs

while incurring losses from those with relatively high costs. The profits from the

former exceed the losses from the latter, resulting in a strictly positive net gain.

2.3.3 Equilibrium Nonexistence Issue in Madhavan (1992)

Another classical paper Madhavan (1992) has the same equilibrium nonexistence

problem described in the last section. Madhavan (1992) contrasts the quote-driven

mechanism in Glosten (1989) with the order-driven mechanism in Kyle (1989) in a

multi-period setting. The multi-period quote-driven mechanism is a repetition of

the single-period model in Glosten (1989), with the difference that market makers

can adjust their price schedule over time. In Proposition 1 of his paper, it is claimed

that if γ < ρ2

ψ
, an equilibrium exists. The parameter γ measures the initial degree

of information asymmetry, which, in the notation of our paper, corresponds to:

γ =

(
1
σ2
ϵ
+ 1

σ2
S

)
1
σ2
ϵ

1
σ2
S

,
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where σϵ is the standard deviation of the noise in the signal, and σS is the standard

deviation of the true asset value. The parameter ρ corresponds to a, the risk-aversion

coefficient in the CARA utility function. The parameter ψ is the precision of the

initial position, i.e., 1
σ2
W

. Given these definitions, the sufficient condition can be

rearranged as:

σ2
S + σ2

ϵ < a2σ2
Wσ

4
ϵ .

This is equivalent to β < 1
2

when compared with Equation (2.9) in our notation.

Since his N -period game is solved using backward induction, in the last trading

period, the cross-subsidization deviation problem arises for the same reason.

2.4 Signaling Variant of the Market-Making Model

This section shows that a separating equilibrium exists and is unique in the signaling

version of the market-making model described above.

Suppose the sequence of moves is altered as follows:

1. The informed investor submits a market order of size x.

2. Market makers observe the order size x and then post a price p(x).

We focus on settings with full information transmission and adopt separating

equilibrium as the solution concept. Note that cross-subsidization deviations by

market makers do not arise in this setting, since market makers move after the

investor in the signaling game.

Claim: The price-quantity schedule described in Proposition 2.1 constitutes the

unique separating equilibrium when the liquidity motive dominates the informational

motive (i.e., β < 1
2
).

The argument proceeds as follows. Separation, combined with incentive compat-

ibility, implies differentiability (see Section 6.2 of Mailath and Von Thadden (2013)).

Therefore, any separating equilibrium must satisfy the first-order necessary condi-

tion. As shown in the previous section, the resulting first-order ODE has a unique

solution given an initial boundary condition, and this solution serves as a candidate
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separating equilibrium. Moreover, the second-order sufficient condition holds if and

only if β < 1
2
, ensuring that the candidate is indeed a separating equilibrium.

Modeling the interaction between traders and market makers as a signaling game

has two merits. First, it preserves the insight that equilibrium with full information

transmission fails to exist when the informational motive dominates the liquidity

motive. Second, it guarantees the existence of a separating equilibrium when infor-

mation asymmetry is not severe—that is, when there are sufficient non-informational

motives to trade. The existence of such a separating equilibrium enables the model

to generate testable predictions and opens the door to empirical investigation.

A variant of this signaling game is presented in the theoretical section of Keim

and Madhavan (1996), where an initiator (investor) moves first to submit an order,

followed by block traders (upstairs market makers), who facilitate the trade by

locating potential counterparties to take the opposite side of the block transaction.

Their sufficient condition A < 1
2

(see Equation A.10 on page 35) corresponds to β <
1
2

in Glosten (1989). In the empirical section, the authors test the predicted positive

correlation between pre-trade price movements and trade size in block trading based

on data on block transactions in the upstairs market. This pattern is interpreted as

evidence of information leakage.

2.5 Concluding Remarks

This paper investigates the problem of equilibrium existence in quote-driven mar-

kets. The strategic interaction between market makers and risk-averse investors is

modeled as a two-dimensional competitive screening game, in which market makers

offer price schedules to investors with both liquidity and informational motives. Our

main finding is that even when information asymmetry is not too severe (i.e., when

liquidity motives dominate informational ones), a separating equilibrium still fails

to exist. This market breakdown is driven by a profitable cross-subsidization devi-

ation that involves partial pooling of investor types. The deviating market maker

cream-skims a continuum of low-cost investors to subsidize a continuum of high-cost

investors, resulting in strictly positive net gains.
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This finding draws a parallel with the insurance literature and challenges the

conventional wisdom that, under mild informational asymmetries, markets naturally

open and separating equilibria are sustainable in quote-driven mechanisms. Notably,

the mechanism persists even when the informational motive is arbitrarily small. In

the signaling version of the market-making model, a separating equilibrium exists

and is unique. Exploring alternative modeling structures or equilibrium notions to

address the nonexistence result remains a promising avenue for future research.
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2.6 Appendices to Chapter 2

2.6.1 Proof of Lemma 2.2

Proof. Given the equilibrium payoff equation V A = 1−2β
2d

(θ −mS)
2 and two points(

θ, 1−2β
2d

(θ −mS)
2
)

and
(
θ, 1−2β

2d

(
θ −mS

)2) on the parabola, the slope of the devi-

ating payoff line connecting these two points is

slope =

1−2β
2d

[(
θ −ms

)2 − (θ −ms)
2
]

θ − θ

=
1− 2β

2d

(θ −ms − θ +ms)(θ −ms + θ −ms)

θ − θ

=
1− 2β

2d

(
θ + θ − 2ms

)
:= x∗.

Substituting the coordinate
(
θ, 1−2β

2d
(θ −mS)

2
)

into the deviating payoff line V (x∗, p∗, θ) =

(θ − p∗)x∗ − 1
2
d(x∗)2 gives

(θ − p∗)x∗ − 1

2
d(x∗)2 =

1− 2β

2d
(θ −ms)

2 .

So, the price is

p∗ = θ − 1

2
dx∗ − 1− 2β

2d

(θ −ms)
2

x∗

= θ − d

2

1− 2β

2d

(
θ + θ − 2ms

)
− 1− 2β

2d

(θ −ms)
2

1−2β
2d

(
θ + θ − 2ms

)
= θ − 1− 2β

4

(
θ + θ − 2ms

)
− (θ −ms)

2

θ + θ − 2ms

=
θθ + θ2 − 2θms − θ2 −m2

s + 2θms

θ + θ − 2ms

− 1− 2β

4

(
θ + θ − 2ms

)
=

θθ −m2
s

(θ −ms) + (θ −ms)
− 1− 2β

4
[(θ −ms) + (θ −ms)].

Therefore, from Figure 2.2, we conclude that θ ∈ (θ, θ) pool at x∗ = 1−2β
2d

(
θ + θ − 2ms

)
with price p∗ = θθ−m2

s

(θ−ms)+(θ−ms)
− 1−2β

4
[(θ −ms) + (θ −ms)]. The other types would

stay at the original separating outcome.
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2.6.2 Proof of Lemma 2.3

Proof. When the deviating market maker offers the price schedule (p∗, x∗), investors

within the interval (θ, θ) are attracted to the new contract by Lemma 2.2.

Our first claim is that for such a price schedule to be profitable, the deviating

market maker must earn strictly positive profits from the type θ with the lowest

cost. In other words, the price p∗ he charges must be greater than βθ + (1− β)ms.

Otherwise, if

p∗ < βθ + (1− β)ms,

it also holds that

p∗ < βθ + (1− β)ms

for all θ ∈ (θ, θ) since the cost function of investors f(θ) := βθ + (1 − β)ms is

increasing in θ. This implies the market maker would incur losses from all types

within (θ, θ).

Our second claim is that the deviating market maker cannot make positive profits

from all types within (θ, θ) that are attracted to the new contract. In other words,

the price p∗ the deviating market maker charges must be less than the highest cost

of those who purchase the assets, so

p∗ < βθ + (1− β)ms

holds for θ > θ > ms. To demonstrate this, we start by substituting the expression

of p∗ from Lemma 2.2 into the equation above, which yields the following equivalent

form:

θθ −m2
s

(θ −ms) + (θ −ms)
− 1− 2β

4

(
(θ −ms)− (θ −ms)

)
< βθ̄ + (1− β)ms
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⇔ (θ −ms)(θ −ms)

(θ −ms) + (θ −ms)
<

1 + 2β

4
(θ̄ −ms) +

1− 2β

4
(θ −ms)

⇔ (θ −ms)(θ −ms) <
1 + 2β

4
(θ̄ −ms)

2 +
1− 2β

4
(θ −ms)

2 +
1

2
(θ −ms)(θ −ms)

⇔ 1

2
(θ −ms)(θ −ms) <

1 + 2β

4
(θ̄ −ms)

2 +
1− 2β

4

(
θ −ms

)2
⇔ 1

2
(θθ − θms − θms +m2

s) <
1 + 2β

4

(
θ
2
+m2

s − 2θ̄ms

)
+

1− 2β

4

(
θ2 +m2

s − 2θms

)
⇔ 0 <

1

4

(
θ
2
+ θ2 − 2θθ

)
+
β

2

(
θ
2 − θ2

)
+ βms

(
θ − θ

)
.

Note that the above inequality holds because:

RHS =
1

4

(
θ − θ

)2
+
β

2

(
θ − θ

)(
θ + θ

)
+ βms

(
θ − θ

)
=

1

4

(
θ − θ

)2
+ β(θ − θ)

(
θ + θ

2
−ms

)
,

since θ > θ > ms, it follows that RHS > 0.

Combining the above two claims, for the deviating market maker to make strictly

positive profits, it must hold that:

βθ + (1− β)ms︸ ︷︷ ︸
cost of the lowest type

< p∗ < βθ + (1− β)ms︸ ︷︷ ︸
cost of the highest type

.

Given that the cost of investors f(θ) := βθ + (1 − β)ms is continuous and

increasing in θ, the intermediate value theorem guarantees the existence of a well-

defined cutoff θcutoff ∈ (θ, θ) such that the deviating market maker exactly breaks

even at θcutoff, i.e., p∗ = βθcutoff + (1− β)ms.

2.6.3 Proof of Lemma 2.4

Proof. Since X is standard normally distributed, its density is given by

ϕ(x) =
1√
2π
e

−1
2
x2 , −∞ < x <∞.
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The associated distribution function is

Pr[X ≤ x] =

∫ x

−∞
ϕ(t)dt

= Φ(x).

Since Y = µX + σ, the distribution of Y is

Pr[Y ≤ y] = Pr[µ+ σX ≤ y]

= Pr[X ≤ y − µ

σ
]

=

∫ y−µ
σ

−∞
ϕ(t)dt

= Φ(
y − µ

σ
).

Applying Leibnitz’s rule to the second to the integral above, the density of Y is

f(y) =
1

σ
ϕ(
y − µ

σ
)

=
1

σ
√
2π
e

−µ
2 (

y−µ
σ )

2

, −∞ < y <∞.

The probability that Y falls within the interval A = [a1, a2] is given by Φ
(
a2−µ
σ

)
−

Φ
(
a1−µ
σ

)
. Therefore, the conditional density of Y is expressed as:

f(y|A) =
1
σ
ϕ(y−µ

σ
)

Φ(a2−µ
σ

)− Φ(a1−µ
σ

)
, a1 ≤ y ≤ a2.

To derive the mean of the doubly truncated normal distribution, consider the

moment-generating function (MGF):

M(t) = E[etY |Y ∈ A]

=

∫ a2
a1
etyf(y)dy

Φ(a2−µ
σ

)− Φ(a1−µ
σ

)

= eµt+σ
2t2/2Φ(

a2−µ
σ

− σt)− Φ(a1−µ
σ

− σt)

Φ(a2−µ
σ

)− Φ(a1−µ
σ

)
.
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The last equality holds because

1

σ
√
2π

∫ a2

a1

etye
−1
2 (

y−µ
σ )

2

dy =
1

σ
√
2π

∫ a2

a1

e
−1

2σ2 {|y−(σ2t+µ)|2−(σ2t+µ)2+µ2}dy

= e
−1

2σ2 |µ2−(σ2t+µ)2| 1

σ
√
2π

∫ a2

a1

e
−1
2
( y−µ′

σ
)2dy

= eµt+σ
2t2/2

∫ a2

a1

1

σ
ϕ(
y − µ′

σ
)dy

= eµt+σ
2t2/2

[
Φ(
a2 − µ′

σ
)− Φ(

a1 − µ′

σ
)

]
,

where µ′ = σ2t+ µ.

Note that by differentiating the moment generating function (MGF) i times with

respect to t and setting t = 0, one can obtain the ith central moment. Therefore,

the expectation of doubly truncated normal is

E[Y |Y ∈ A] =M ′(t)|t=0

= µ− σ
ϕ(α2)− ϕ(α1)

Φ(α2)− Φ(α1)
.

2.6.4 Proof of Proposition 2.2

Proof. The starting point is the profitability condition (2.13), or its equivalent form,

equation (2.14). Substituting the expression for p∗ as given in Lemma 2.2 into

equation (2.14) gives

θθ −m2
s

(θ −ms) + (θ −ms)
− 1− 2β

4

(
(θ−ms)−(θ−ms)

)
> (1−β)ms+βE

[
θ|θ ≤ θ ≤ θ

]
,

which is equivalent to

β

(
θ + θ

2
− E

[
θ|θ ≤ θ ≤ θ

])
>
θ + θ

4
+
ms

2
− θθ −m2

s(
θ −ms

)
+
(
θ −ms

) .
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Note that

RHS =
θ −ms + θ −ms

4
+ms −

θθ −m2
s(

θ −ms

)
+ (θ −ms)

=
θ −ms + θ −ms

4
− (θ −ms)(θ −ms)

(θ −ms) + (θ −ms)

=
1

2

(
θ −ms + θ −ms

2
− 2

1
θ−ms

+ 1
θ−ms

)
.

Hence, the profitability condition is transformed to

β

(
θ + θ

2
− E[θ|θ ≤ θ ≤ θ]

)
>

1

2

(
θ −ms + θ −ms

2
− 2

1
θ−ms

+ 1
θ−ms

)
, (2.16)

where θ > θ > ms. Recall that θ is defined as the sum of some normally distributed

variables, i.e.,

θ = m− aσ2W =
1

σ2
ε + σ2

s

(σ2
εms + σ2

ss− aσ2
sσ

2
εW ).

Therefore, θ must also follow a normal distribution with mean ms and variance σ2
θ

defined as

σ2
θ =

(
σ2
s

σ2
ε + σ2

s

)2

(σ2
ε + σ2

s + a2σ4
εσ

4
W ).

Applying Lemma 2.4 yields

E
[
θ|θ ≤ θ ≤ θ

]
= ms − σθ

ϕ
(
θ−ms

σθ

)
− ϕ

(
θ−ms

σθ

)
Φ
(
θ−ms

σθ

)
− Φ

(
θ−ms

σθ

) .
The profitability condition can be further expressed as:

θ̄+θ
2

−ms + σθ
ϕ
(

θ̄−ms
σθ

)
−ϕ

(
θ−ms
σθ

)
Φ
(

θ̄−ms
σθ

)
−Φ

(
θ−ms
σθ

)
θ̄−ms+θ−ms

2
− 2

1
θ̄−ms

+ 1
θ−ms

>
1

2β
.
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Multiplying the numerator and denominator of LHS simultaneously by 1
σθ

gives

LHS =

θ̄−ms

2σθ
+ θ−ms

2σθ
+

ϕ
(

θ̄−ms
σθ

)
−ϕ

(
θ−ms
σθ

)
Φ
(

θ̄−ms
σθ

)
−Φ

(
θ−ms
σθ

)
θ̄−ms

2σθ
+

θ−ms

2σθ
− 2

σθ
θ̄−ms

+
σθ

θ−ms

.

We define X̄ = θ−ms

2σθ
and X = θ−ms

σθ
for notation ease. Then, the inequality can

be rewritten as:
X̄
2
+ X

2
+ ϕ(X̄)−ϕ(X)

Φ(X̄)−Φ(X)

X̄
2
+ X

2
− 2

1
X̄
+ 1

X

>
1

2β
.

Note ϕ(X̄) < ϕ(X) for X̄ > X > 0, the above inequality can be rearranged to

ensure the positivity of each term:

X̄+X
2

− ϕ(X)−ϕ(X̄)

Φ(X̄)−Φ(X)

X̄+X
2

− 2
1
X̄
+ 1

X

>
1

2β
.

2.6.5 Proof of Proposition 2.3

Proof. Below, we demonstrate that the partial-pooling price schedule remains prof-

itable regardless of the smallness of β. In other words, it’s possible to identify

suitable values for X and X̄ that satisfy the profitability condition even for very

small β.

Recall the profitability condition is

X̄+X
2

− ϕ(X)−ϕ(X̄)

Φ(X̄)−Φ(X)

X̄+X
2

− 2
1
X̄
+ 1

X

>
1

2β
. (2.17)

Remark that the denominator of the left-hand side in the above inequality ap-

proaches zero as X approaches X̄, a result evident through the AM-GM-HM in-

equality. Additionally, the numerator converges to zero through the application of

l’Hospital’s rule. However, these two distinct functions cannot approach zero at the

same rate. We employ Taylor’s theorem to explore the rate of convergence.
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Let X = x and X = x+ε. Applying Taylor’s series expansion to the denominator

yields:

x+
1

2
ε− 2(x+ ε)x

2x+ ϵ
= x+

1

2
ε− x+ ε

1 + ε
2x

= x+
1

2
ε− (x+ ε)

(
1− ε

2x
+

ε2

4x2
+ o(ε2)

)
= x+

1

2
ε−

(
x+ ε− ε

2
− ε2

2x
+
ε2

4x
+ o(ε2)

)
=
ε2

2x
− ε2

4x
+ o(ε2)

=
ε2

4x
+ o(ε2).

In the same way, the numerator can also be transformed to

x+
1

2
ε+

ϕ′ + 1
2
ϕ′′ε+ 1

6
ϕ(3)ε2 + o(ε2)

ϕ+ 1
2
ϕ′ε+ 1

6
ϕ′′ε2 + o(ε2)

= x+
1

2
ε+

1

ϕ

[
ϕ′ +

1

2
ϕ′′ε+

1

6
ϕ(3)ε2 + o(ε2)

][
1−

(
1

2

ϕ′

ϕ
ε+

1

6

ϕ′′

ϕ
ε2
)
+

(
1

2

ϕ′

ϕ
ε+

1

6

ϕ′′

ϕ
ε2
)2

+ o(ε2)

]

= x+
1

2
ε+

1

ϕ

[
ϕ′ +

1

2
ϕ′′ε+

1

6
ϕ(3)ε2 + o(ε2)

][
1−

(
1

2

ϕ′

ϕ
ε+

1

6

ϕ′′

ϕ
ε2
)
+

1

4

(
ϕ′

ϕ

)2

ε2 + o(ε2)

]

= x+
1

2
ε+

1

ϕ

[
ϕ′ +

1

2
ϕ′′ε+

1

6
ϕ(3)ε2 − 1

2

ϕ′

ϕ
ε− 1

4

ϕ′′ϕ′

ϕ
ε2 − 1

6

ϕ′′ϕ′

ϕ
ε2 +

1

4

(
ϕ′

ϕ

)2

ϕ′ε2 + o
(
ε2
)]
.

It can be verified that the density of the standard Normal distribution exhibits

the following properties:

ϕ′(x) = ϕ(x)(−x)

ϕ′′(x) = ϕ(x)(x2 − 1)

ϕ(3)(x) = ϕ(x)(−x3 + 3x).

Combining the equations above, the numerator can be further simplified to:

x+
1

2
ε− x+

1

2
(x2 − 1)ε+

1

6
(−x3 + 3x)ε2 − 1

2
x2ε− 5

12
(x2 − 1)(−x)ε2 + 1

4
(−x)3ε2 + o(ε2)

=
1

12
xε2 + o(ε2).
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Therefore, the profitability condition simplifies to:

f(x, ε) =
1
12
xε2 + o(ε2)
ε2

4x
+ o(ε2)

=
1
12
x+ o(ε2)

ε2

1
4x

+ o(ε2)
ε2

.

As x becomes large and ε approaches 0, the function f(x, ε) diverge. This implies

that for any arbitrarily small value of β, it is always possible to identify suitable X

and X, or the corresponding deviating price schedule as a function of θ and θ as

defined in Lemma 2.2, to satisfy the profitability condition (2.15).
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Chapter 3

Limited Attention, Information
Choice, and Market Microstructure

3.1 Introduction

Classical market microstructure theory typically assumes that investors incorporate

all available information into their trading decisions. However, in practice, investors

face limited cognitive resources and must exert effort to process information (e.g.,

Van Nieuwerburgh and Veldkamp (2010); Kacperczyk et al. (2016)). Certain mar-

ket characteristics, such as price volatility, are empirically associated with investor

attention, as shown in Figure 3.1.1 Additionally, Liu et al. (2023) documents that

macro news crowds out retail investors’ attention to firm earnings news by as much

as 49%. During periods of greater aggregate uncertainty, macro news reduces price

responsiveness to firm earnings news. These empirical patterns are difficult to rec-

oncile with traditional models that assume unlimited investor attention. This moti-

vates the need for a framework that explicitly incorporates attention allocation and

generates predictions consistent with the observed facts.

This paper addresses the following research question: How does endogenous

investor attention allocation influence trading behavior, asset price and market out-

comes? We introduce limited attention and information choice using an entropy

approach into Kyle (1985). We choose Kyle’s continuous auction setting because it

1The figure was made by the author. We downloaded the data for VIX from https:
//www.cboe.com/tradable_products/vix/vix_historical_data/, and the data for Google search
trends from https://trends.google.com/trends/explore?date=today%205-y&geo=US&q=S%26P%
20500&hl=zh-CN.
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generates market characteristics in a tractable way and allows us to explore how in-

vestors’ information choices affect market characteristics. We relax the assumption

that an investor has perfect information about asset value and add an additional

stage for information choice before trading under asymmetric information. Our

model captures the comovement between investor attention and asset price volatil-

ity, provides a microfoundation for the crowding-out effects between macroeconomic

news and firm earnings news, and explains varied price volatility responsiveness to

different information sources.

Figure 3.1: The volatility of the U.S. stock market comoves with the investors’ attention.
The red line shows the CBOE Volatility Index (VIX), which measures the variance of the
S&P 500, while the blue line represents normalized Google Search Trends for “S&P 500,”
a proxy for investor attention (e.g., Da et al. (2011)). Their co-movement suggests that
market volatility positively correlates with investor attention.

In our setting, an informed investor allocates her limited attention between

macro-level news (e.g., central bank policy, green energy tax changes) and firm-

specific news (e.g., earnings announcements, board composition changes). Different

information sources exhibit varying degrees of uncertainty. For instance, macro-

level uncertainty tends to dominate during recessions, while firm-level information

becomes more volatile during earnings seasons (e.g., Kacperczyk et al. (2016); Liu

et al. (2023)). Devoting more attention to one source improves its signal precision

but leaves less capacity for the other. After selecting her information portfolio, the

investor processes signals and submits a market order that reflects her private infor-

mation. Market makers observe the total order flow, which consists of the informed
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trades and random orders from liquidity traders. The market makers Bayesian up-

dates beliefs about the asset’s value and sets a price to clear the market orders.

To our knowledge, the first model incorporating investor attention into a Kyle-

type trading framework is Ruan and Zhang (2016). They assume that an investor

observes a noisy signal, s, which is a weighted average of the true asset value v

and a noise term ϵ, i.e., s = ρv +
√

1− ρ2ϵ, where ρ is exogenously given and

interpreted as the correlation between the asset value and the signal. This spec-

ification is the static version of time-varying attention in a diffusion process, i.e.,

dst = ΦtdZ
f
t +
√

1− Φ2
tdZ

s
t in Andrei and Hasler (2015), who study a consumption-

portfolio decision problem with incomplete information.

In contrast, our model adopts an entropy-based approach in which a representa-

tive investor with limited capacity κ endogenously chooses how to allocate attention

across two information sources. This framework allows us to explore how attention

decisions shape market outcomes. Our model not only matches stylized empirical

facts, such as the co-movement of volatility and attention, but also captures novel

features, including crowding-out effects between information sources and asymmet-

ric impacts of different news types on volatility, bid-ask spread, and market depth.

These features are not present in previous models.

Related Literature. Our paper contributes to the literature on limited attention

and its implications for various markets. Several studies incorporate endogenous

attention allocation into classical frameworks. For example, Peng and Xiong (2006)

explores how category-based attention affects asset prices. Van Nieuwerburgh and

Veldkamp (2010) allow investors to learn about asset values before constructing port-

folios and show that bounded attention can lead to anomalous investment choices.

Kacperczyk et al. (2016) model mutual fund managers choosing which signals to

acquire before allocating capital. In a macro-labor context, Gondhi (2023) show

that attention misallocation during uncertain times can lead to inefficient resource

allocation. Ye (2024) analyze firms competing for investor attention and feedback

effects through prices. Our model investigates the trading behavior of rationally

inattentive investors in securities markets, analyzing how attention allocation de-

cisions propagate through order-driven mechanisms and ultimately shape market
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outcomes.

We are also related to a broad literature based on Kyle’s trading model, which is

widely used in economics and finance due to its tractability. Fishman and Hagerty

(1989) add a disclosure stage before the single-period Kyle model and find that

managers over-disclose compared to the socially efficient level to compete for investor

attention. Edmans et al. (2015) extend the one-round trading model by introducing

a post-trading investment stage, where managers observe the price generated during

trading and choose an investment level that affects the firm’s fundamental value to

analyze the feedback effects. A recent work by Cetemen et al. (2022) studies wolf-

pack activism, where a leader activist strategically trades to induce a follower trader

with correlated information before they jointly exert costly effort to determine the

firm’s value. Each period’s trading is based on the single-period Kyle model. Our

extension investigates how the limited-attention investor’s endogenous information

choice affects their trading behavior and shapes market outcomes based on the one-

round trading framework in Kyle.

Organization of the Paper. The remainder of the paper is organized as follows.

Section 3.2 introduces the model and explains the entropy-based learning technology.

Section 3.3 analyzes the game and derives the equilibrium results, with a particular

focus on the linear trading equilibrium. We conduct comparative statics to analyze

how limited attention allocation affects market outcomes. Section 3.4 concludes and

outlines directions for future research.

3.2 Model

In this section, we introduce the information structure and the timing of the game,

explain the entropy-learning approach, and define the equilibrium.

3.2.1 Players and Information Structure

Suppose that there is a single risky asset, such as a stock with value v, which is

normally distributed with mean µv and variance σ2
v , i.e., v ∼ N(µv, σ

2
v). The asset
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value v is assumed to be composed of two parts, driven by the macro-level factor and

the firm-level factor: v = vm + vf . There are two types of traders: a representative

informed trader with limited attention and uninformed liquidity traders (also known

as noise traders), along with market makers.

Informed Trader. The limited-attention investor first allocates her attention

between macro-level news sm and firm-level news sf , subject to an information flow

constraint (3.3), which is explained in detail in the next section. After that, she

observes a vector of two noisy signals: s = (sm, sf ). Signals are assumed to be

linear in values: sm = vm + ϵm, with vm ∼ N(µm, σ
2
m), and sf = vf + ϵf , with

vf ∼ N(µf , σ
2
f ). All noise terms are independently and normally distributed, i.e.,

ϵm ∼ N(0, σ2
ϵm) and ϵf ∼ N(0, σ2

ϵf
). This specification follows Peng and Xiong

(2006) and Gondhi (2023).2

Liquidity Trader. Liquidity traders, who have no information, submit random

market orders. The total demand of liquidity traders is represented by an exogenous

random order size u ∼ N(0, σ2
u). A liquidity trader trades to balance his portfolio

or adjust her position, rather than to take advantage of information. The role of

liquidity traders is to provide camouflage for the informed trader to earn information

rents at their expense.

Market Maker. Market makers observe the total order flow Q, which consists

of both informed trading q and noise trading u, i.e., Q = q+u. However, they cannot

determine the source of the orders. Market makers infer the asset value v from the

aggregate order flow Q and intermediate trades by quoting a price P (Q), which is

assumed to equal to their best estimate E [v|Q]. The pricing rule can be understood

as a Bertrand competition among two or more market makers, where they undercut

each other until profits are driven down to zero in a competitive setting.

2Peng and Xiong (2006) study investor attention allocation and overconfidence problems in
a consumption-based equilibrium model. They assume that the dividend di,j,t is decomposed
into an independent market factor ht, a sector factor fi,t, and a firm-specific factor gi,j,t, i.e.,
di,j,t = ht+fi,t+gi,j,t. In Gondhi (2023), an inattentive manager is assumed to receive information
about firm-specific shocks zi and economy-wide shocks a. The log output is linear in these factors:
yi = a + zi + αni, where ni is the labor employed by the firm in a standard RBC model. The
linear function form is made for traceability, not as the driving force of results. What matters is
the substitutability of information flow in the constraint (3.3).
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3.2.2 Explanation on Entropy-Learning Technology

This section provides a brief introduction to the entropy approach used in this paper.

Readers familiar with this topic may skip ahead to the information flow constraint

at the end of the section.

Entropy is a measure of the uncertainty associated with a random variable. The

entropy of a random variable x with density p(x) is formally defined as

H(x) = −E[ln(p(x))].

For example, a constant has entropy 0, a binomial random variable has entropy

ln(2), and a uniform random variable on [0, a] has entropy ln(a).

Information processing is regarded as a reduction in uncertainty. Given two

random variables x and y, the reduction in the entropy of y due to knowledge of x

is defined as the mutual information between x and y:

I(x; y) = H(x)−H(x|y),

where the second term is the conditional entropy of x on y.

One approach to modeling limited attention is to impose a constraint on the

mutual information between x and y:

H(x)−H(x|y) ≤ κ (3.1)

where κ represents information processing capacity. The economic interpretation of

κ is the number of binary signals required to partition the states of the world.3

In our linear-Gaussian setting, for a n-dimensional normal vector x ∼ N(µ,Σ),

its entropy is given by H(x) = 1
2
ln [(2πe)n|Σ|], where |Σ| denotes the determi-

nant of the covariance matrix Σ. The conditional entropy has a similar form:

H(x|y) = 1
2
ln
[
(2πe)n|Σ̂|

]
, where Σ̂ represents the posterior variance-covariance

3See Cover and Thomas (1991) for proof that the entropy of a random variable is the approxi-
mation of the number of binary signals needed to convey the same information.
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matrix. Substituting this expression into (3.1) yields

|Σ| ≤ exp(2κ)|Σ̂|. (3.2)

With independent signals, the entropy constraint binds the product of the preci-

sion of the signals’ precision. In our case, where n = 2, the prior variance-covariance

matrix Σ is given by

Σ =

σ2
m 0

0 σ2
f

 ,

and the posterior variance-covariance matrix Σ̂ is

Σ̂ =


(

1
σ2
m
+ 1

σ2
ϵm

)−1

0

0

(
1
σ2
f
+ 1

σ2
ϵf

)−1

 .

The determinant of the prior variance-covariance matrix is given by |Σ| = σ2
m ·σ2

f ,

and the determinant of the posterior variance-covariance matrix is |Σ̂| =
(

1
σ2
m
+ 1

σ2
ϵm

)−1

·(
1
σ2
f
+ 1

σ2
ϵf

)−1

. Thus, the information flow constraint (3.2) can be written as

|Σ|
|Σ̂|

=

(
1 +

σ2
m

σ2
ϵm

)(
1 +

σ2
f

σ2
ϵf

)
≤ exp(2κ). (3.3)

This is also equivalent to its logarithm form:

1

2
ln

(
1 +

σ2
m

σ2
ϵm

)
+

1

2
ln

(
1 +

σ2
f

σ2
ϵf

)
≤ κ.

A similar specification is used in Gondhi (2023) to study labor misallocation in

macroeconomics.

Below we explain some properties of the information flow constraint. The pre-

cision of signals is defined as τm = 1
σ2
ϵm

and τf = 1
σ2
ϵf

. If an investor does not waste

her cognitive resource, the binding constraint is given by

(
1 +

σ2
m

τm

)
·
(
1 +

σ2
f

τf

)
= exp(2κ),
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so that the precision of one signal can be expressed in terms of the other as

τm =

exp(2κ)

1 +
σ2
f

τf

− 1

 · 1

σ2
m

.

The information flow constraint has two properties. First, ∂τm
∂τf

< 0, meaning that

increasing the precision of one signal comes at the expense of the other. Second, ∂τm
∂κ

decreases with τf . This implies that the marginal return from exploring one signal,

say, sm, diminishes as the precision of the other signal, sf , increases. Since more

cognitive resources are already allocated to reducing uncertainty in signal sf , fewer

resources remain available for signal sm. Hence, it is as if investors still face higher

uncertainty in sm when allocating one extra resource unit, keeping the marginal

return of exploring sm lower.

3.2.3 Structure of the Game and Equilibrium Concept

The game is modeled as an information choice stage by the limited-attention in-

formed trader, followed by a single-round trading as in Kyle. In the trading stage,

informed and noise traders act first by submitting market orders to market makers,

who then quote a price at which the orders are executed. The sequence of moves

unfolds as follows.

1. Information Choice Stage. The limited-attention informed trader chooses

variance of macro-level news σ2
ϵm and firm-level news σ2

ϵf
, and then observes a

signal vector s = (sm, sf ).

2. Trading Stage. The informed trader submits a market order q(s). Liquidity

traders submit random market orders with a total size u. Market makers

observe the net total flow Q = q + u and announce a price P (Q) to clear the

market.

3. All values and payoffs are realized.

Definition of Equilibrium. The equilibrium consists of the information choices

(σ2
ϵm and σ2

ϵf
), the trading strategy q(s) of the limited-attention trader, and the
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pricing rule P (Q) set by market makers. The beliefs of market makers and investors

are Bayesian updated and consistent with their strategies.

• In trading, the informed trader chooses a market order q(s) to maximize her

expected payoff, i.e.,

q(s) ∈ argmaxE [π|s] := E [(v − P (Q))q(s)|s] .

• When acquiring information, the informed investor chooses the shape of signal

distribution to maximize her ex-ante profits, subject to the information flow

constraint, i.e.,

max
σ2
ϵm ,σ

2
ϵf

Π = Es [E [π|s]]

s.t. (
1 +

σ2
m

σ2
ϵm

)
·

(
1 +

σ2
f

σ2
ϵf

)
≤ exp(2κ).

• Market makers quote a price P (Q), which is their best estimate of the asset’s

value given the total order flow Q, i.e.,

P (Q) = E[v|Q].

3.3 Equilibrium Analysis

We analyze the game using backward induction, beginning with the trading stage,

followed by the information choice stage. We then summarize the main results and

conduct a comparative statics analysis.

3.3.1 Trading Stage

Upon observing her signal vector s = (sm, sf ), the informed investor needs to esti-

mate the asset value v based on these signals. Following Maćkowiak and Wiederholt

(2009), we assume that the investor processes different pieces of information sepa-

rately, and then combines them to learn the asset value. The result is summarized
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in the following lemma, which is proven using the projection theorem.

Lemma 3.1. Upon observing a signal vector s = (sm, sf ), the informed trader’s best

estimate of the asset value v and the variance are given by

E[v|s] = µv +
σ2
m

σ2
m + σ2

ϵm

(sm − µm) +
σ2
f

σ2
f + σ2

ϵf

(sf − µf )

V ar[v|s] = σ2
m ·

σ2
ϵm

σ2
m + σ2

ϵm

+ σ2
f ·

σ2
ϵf

σ2
f + σ2

ϵf

.

Proof. See the Appendices.

Following Kyle (1985), we focus on linear equilibrium. We conjecture that the

informed investor’s order size is linear in signals:

q(s) = βm(sm − µm) + βf (sf − µf ), (3.4)

where βm and βf are undetermined coefficients which measure the investor’s trading

aggression on macro-level news and firm-level news, respectively. The intercept of

q(s) is 0, because if the signals sm and sf exactly match the respective prior mean

values µm and µf , there is no informational motive to trade, and thus the order size

is zero. Market makers are also assumed to use a linear strategy, meaning that the

pricing rule is linear in the total order flow they observe:

P = µv + λQ, (3.5)

where λ is a coefficient determined endogenously in equilibrium. The constant is

the prior mean µv. This is because if an order size Q is 0, it carries no information

about the asset value, and thus the price should match the prior mean value µv.

First, market makers need to estimate the asset value v conditional on the order

flow Q. By the projection theorem, we have that

E[v|Q] = E[v] +
Cov(v,Q)

V ar(Q)
(Q− E[Q]).
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Given the variance and covariance terms:

V ar(Q) = V ar(q(s) + u) = β2
mV ar(sm) + β2

fV ar(sf ) + σ2
u

= β2
m(σ

2
m + σ2

ϵm) + β2
f (σ

2
f + σ2

ϵf
) + σ2

u,

Cov(v,Q) = Cov(v, q(s) + u) = (βm + βf )σ
2
v ,

the pricing rule is simplified to

P = E[v|Q] = µv +
(βm + βf )σ

2
v

β2
m(σ

2
m + σ2

ϵm) + β2
f (σ

2
f + σ2

ϵf
) + σ2

u

·Q. (3.6)

Comparing the coefficients in the above price schedule (3.6) and the conjectured

price schedule (3.5) pins down λ:

λ =
(βm + βf )σ

2
v

β2
m(σ

2
m + σ2

ϵm) + β2
f (σ

2
f + σ2

ϵf
) + σ2

u

, (3.7)

where σ2
ϵm and σ2

ϵf
will later be determined in the information choice stage, and βm

and βi will be determined in the investor’s payoff maximization problem as follows.

Next, we analyze the informed investor’s optimal trading strategy. Since P =

µv+λQ = µv+λ(q+u), and E[u] = 0, the investor’s expected payoff if she submits

a market order q(s) after observing her signal s is given by

E[π|s] = (E[v|s]− µv − λq(s)) · q(s). (3.8)

Taking the derivative with respect to q(s) leads to the first-order condition (FOC):

q(s) =
E[v|s]− µv

2λ
.

The second-order condition requires that λ > 0.

The investor faces a trade-off between aggressively exploiting private information

to increase trade volume and reducing trade size to secure a better price, as a larger

order entails a higher per-unit trading cost under the pricing rule set by market

makers. Substituting the estimated asset value from Lemma 3.1 into the investor’s
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FOC gives

q(s) =

σ2
m

σ2
m+σ2

ϵm
(sm − µm) +

σ2
f

σ2
f+σ

2
ϵf

(sf − µf )

2λ
. (3.9)

Comparing (3.9) with the conjectured trading strategy (3.4) pins down trading ag-

gression in terms of λ:

βm =
1

2λ
· σ2

m

σ2
m + σ2

ϵm

, βf =
1

2λ
·

σ2
f

σ2
f + σ2

ϵf

. (3.10)

Substituting them back into (3.7) yields an equation in terms of λ:

λ =

1
2λ

· σ2
m

σ2
m+σ2

ϵm
+ 1

2λ
· σ2

f

σ2
f+σ

2
ϵf

1
4λ2

· σ4
m

σ2
m+σ2

ϵm
+ 1

4λ2
· σ4

f

σ2
f+σ

2
ϵf

+ σ2
u

.

Since λ > 0, the above equation has a unique solution given by

λ =

√
σ4
m

σ2
m+σ2

ϵm
+

σ4
f

σ2
f+σ

2
ϵf

2σu
. (3.11)

Given the trading intensity βm and βf in (3.10), as well as the price sensitivity to

order size λ in (3.11), the conjectured trading strategy (3.4) and the pricing rule (3.5)

are determined. The unknowns are the variances (σ2
ϵm and σ2

ϵf
), or equivalently, the

inverse precision of the signals, which will be determined in the information choice

stage.

3.3.2 Information Choice Stage

Since the informed investor allocates her attention before observing the signals,

we need to express her ex-ante (unconditional) payoff in terms of signal uncertainty.

Substituting her trading quantity q(s) in (3.9) back into the investor’s interim payoff
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(3.8), we obtain

E[π|s] = 1

4λ
·

(
σ2
m

σ2
m + σ2

ϵm

(sm − µm) +
σ2
f

σ2
f + σ2

ϵf

(sf − µf )

)2

=
1

4λ
· (E[v|s]− µv)

2.

Hence, her unconditional payoff is given by

Π = Es [E [π|s]] = Es

[
1

4λ
· (E[v|s]− µv)

2

]
.

The unconditional payoff can be further simplified, and one observation is that it is

monotone in signal uncertainty. This is summarized in the following lemma.

Lemma 3.2. The limited-attention investor’s unconditional payoff is given by

Π =
1

4λ
· (V ar[v]− V ar[v|s])

=
σu
2

√
σ4
m

σ2
m + σ2

ϵm

+
σ4
f

σ2
f + σ2

ϵf

,

which is decreasing in uncertainty in both macro-level and firm-level signals, i.e.,
∂Π
∂σ2

ϵm
< 0 and ∂Π

∂σ2
ϵf

< 0, or equivalently increasing in the precision of signals, i.e.,
∂Π
∂p1

> 0 and ∂Π
∂p2

> 0, where p1 = 1
σ2
ϵm

and p2 = 1
σ2
ϵf

.

Proof. See the Appendices.

Minimizing uncertainty in signals (i.e., σ2
ϵm and σ2

ϵf
) has two opposing effects on

the informed investor’s payoff. On the one hand, it enables the investor to obtain

more precise information about the asset’s value, enhancing their informational ad-

vantage over noise traders. This effect is reflected in the second term of Π, which

represents the difference between the uninformed trader’s uncertainty and the in-

formed trader’s uncertainty regarding the asset value, i.e., V ar[v] − V ar[v|s]. On

the other hand, anticipating an increase in the informed investor’s trading inten-

sity prompts market makers to adjust the pricing rule adversely. The latter effect

is second-order, whereas the former is first-order. The magnitude of the latter ef-
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fect satisfies 1
λ
∝ 1√

σ4
m

σ2
m+σ2

ϵm
+

σ4
f

σ2
f
+σ2

ϵf

, indicating that it is inversely proportional to

the square root of the first effect. Hence, the first effect dominates. Overall, the

investor’s ex-ante payoff is monotonically decreasing in uncertainty, or equivalently,

increasing in the precision of the signals.

In the information choice stage, the investor chooses the precision of signals

to maximize her ex-ante payoff, subject to the information flow constraint. The

optimization problem is given by

max
σ2
ϵm
,σ2

ϵf

Π =
σu
2

·

√
σ4
m

σ2
m + σ2

ϵm

+
σ4
f

σ2
f + σ2

ϵf

subject to (
1 +

σ2
m

σ2
ϵm

)
·

(
1 +

σ2
f

σ2
ϵf

)
≤ exp(2κ).

The solution to this attention allocation problem is summarized in the following

lemma.

Lemma 3.3. Assume w.l.o.g. that σf > σm. The optimal allocation of attention is

discussed in the following two cases:

Case 1: κ > ln
(
σf
σm

)
. The interior solution is given by

σ2
ϵm =

σ2
m

exp(κ)·σm
σf

, σ2
ϵf

=
σ2
f

exp(κ)·σf
σm

− 1
.

Case 2: κ ≤ ln
(
σf
σm

)
. The corner solution is given by

σ2
ϵm = ∞, σ2

ϵf
=

σ2
f

exp(2κ)− 1
.

Proof. See the Appendices.

3.3.3 Equilibrium Results

In this section, we first state the equilibrium attention allocation, trading strategy,

and pricing rule. Based on these, we derive the market characteristics such as price
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volatility, market depth, and bid-ask spread, and analyse how investor’s limited

attention and information choice affect these market outcomes.

Proposition 3.1. Assume w.l.o.g. that σf > σm. The equilibrium is discussed in

two cases.

Case 1. κ > ln
(
σf
σm

)
. The equilibrium asset price is given by P (Q) = µv +

λ · Q, where λ =

√
σ2
m+σ2

f−
2σmσf
exp(κ)

2·σu . The attention allocation results are given by

σ2
ϵm = σ2

m
exp(κ)·σm

σf
−1
, σ2

ϵf
=

σ2
f

exp(κ)·σf
σm

−1
. The linear trading strategy is given by q(s) =

βm (sm − µm)+ βf (sf − µf ), where βm = σu√
σ2
m+σ2

f−
2σmσf
exp(κ)

·
(
1− σf

exp(κ)σm

)
, and βf =

σu√
σ2
m+σ2

f−
2σmσf
exp(κ)

·
(
1− σm

exp(κ)σf

)
.

Case 2. κ < ln
(
σf
σm

)
. The equilibrium asset price is given by P (Q) = µv + λ ·Q

where λ =
σf
2·σu

√
exp(2κ)−1
exp(2κ)

. The attention allocation results are σ2
ϵm = ∞ and σ2

ϵf
=

σ2
f

exp(2κ)−1
. The linear trading strategy is given by q(s) = βm (sm − µm)+ βf (sf − µf ),

where βm = 1
2λ

· σ2
m

σ2
m+σ2

ϵm
= 0 and βf = 1

2λ
· σ2

f

σ2
f+σ

2
ϵf

= σu
σf

·
√

exp(2κ)−1
exp(2κ)

.

Proof. Combining the trading strategy and the pricing rule derived in the trading

stage with the attention allocation result (See Lemma 3.3) in the information choice

stage yields the above proposition.

This result is symmetric: if σm > σf , the subscripts f and m should be swapped.

The above proposition tells us that when firm-level news is more volatile than macro-

level news, a limited-attention investor allocates more attention to firm-level news.

In the extreme case of severely limited attention, the investor entirely ignores macro-

level news, focusing solely on firm-level news. Conversely, during periods such as

recessions, when macro-level news becomes more volatile than firm-specific news

(i.e., σm > σf ), the model predicts a shift in investor attention toward the more

volatile macro-level news. These findings align with empirical observations and

provide a micro-foundation for the crowding-out effect of investor attention between

macro- and firm-level information, as noted in Liu et al. (2023).

87



The key intuition is that the lower an investor’s attention level, the more likely

she is to experience information overload. As a result, the investor focuses on ex-

tracting information from the more valuable signal to save attention. In the case of

two signals and scarce attention, the investor concentrates all attention on the one

with higher prior uncertainty, ignoring the less important signal.

We first check the limit case in which the investor has unrestricted attention

capacity.

Corollary 3.1. As κ→ ∞, we have that

σ2
ϵm =

σ2
m

exp(κ) ·
(
σm
σf

)
− 1

→ 0, σ2
ϵf

=
σ2
f

exp(κ) ·
(
σf
σm

)
− 1

→ 0,

βm =
1

2λ
· σ2

m

σ2
m + σ2

ϵm

→ 1

2λ
, βf =

1

2λ
·

σ2
f

σ2
f + σ2

ϵf

→ 1

2λ
,

λ =

√
σ2
m + σ2

f −
2σmσf
exp(κ)

2 · σu
→ σv

2σu
,

and

Π =
σu
2

·

√
σ4
m

σ2
m + σ2

ϵm

+
σ4
f

σ2
f + σ2

ϵf

→ σu · σv
2

.

This result says that our model incorporates Kyle’s model as a limiting case.

As the investor’s attention becomes sufficiently large (κ → ∞), they can fully pro-

cess both macro-level and firm-level news, eliminating signal uncertainty (σ2
ϵm → 0,

σ2
ϵf

→ 0). Consequently, trading aggression (βm and βf ), market depth ( 1
λ
), and the

investor’s ex-ante profits (Π) converge to those in the Kyle model.

We then analyze the effect of limited attention and attention allocation on key

market characteristics such as price volatility, market depth, and the bid-ask spread.

We assume that σf > σm in the following analysis.

Price Volatility. Price volatility, defined as the variance of price, is related to
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attention allocation. Asset price volatility is given by

V ar(P ) =


1
2

(
σ2
m + σ2

f −
2σmσf
exp(κ)

)
, if κ > ln

(
σf
σm

)
,

1
2
σ2
f

(
1− 1

exp(2κ)

)
, if κ < ln

(
σf
σm

)
.

It holds that
∂V ar(P )

∂κ
> 0,

∂V ar(P )

∂σf
>
∂V ar(P )

∂σm
.

This result shows that price volatility comoves with investor attention level, con-

sistent with the findings in Aouadi et al. (2013) and Andrei and Hasler (2015). More-

over, during earnings announcements period when firm-level news is more volatile

(i.e., σf > σm), price volatility responds more strongly to firm-level news. Dur-

ing periods when macro-level uncertainty is higher than firm-level uncertainty (i.e.,

σm > σf ), price fluctuations respond more to the macro news, i.e., ∂Var(P )
∂σm

> ∂Var(P )
∂σf

.

This is consistent with the empirical findings in Liu et al. (2023).

Market Depth. The sensitivity of the price P to the order size Q is represented

by λ, and its inverse, 1
λ
, is called market depth which measures market liquidity. It

is given by

1

λ
=


2σu√

σ2
m+σ2

f−
2σmσf
exp(κ)

, if κ > ln
(
σf
σm

)
,

2·σu
σf

√
exp(2κ)

exp(2κ)−1
, if κ < ln

(
σf
σm

)
.

It holds that
∂(1/λ)

∂κ
< 0,

∂(1/λ)

∂σf
>
∂(1/λ)

∂σm
.

Market depth represents the order flow required to move the price by one unit,

as 1
λ
= ∂Q

∂P
. The above result first predicts that market depth decreases with the

informed trader’s increasing attention. A higher level of attention (κ) gives the

informed trader a greater informational advantage over liquidity traders. As a result,

informed trading constitutes a larger share of total trading volume. Anticipating

this, market makers adopt a pricing rule that is more sensitive to trading volume

in order to offset the increased adverse selection cost. Consequently, a smaller

quantity of trade causes a one-unit change in price, implying a reduction in market
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depth. A second intuitive prediction is that when firm-level news exhibits greater

volatility than macro-level news, market depth responds more strongly to firm-level

information, and vice versa.

Bid-Ask Spread. The bid price is given by B(Q) = P (Q)− µv = λ ·Q for Q > 0,

and the ask price is given by A(Q) = µv − P (Q) = λ · |Q| for Q < 0. The bid-ask

spread S(Q) is thus given by

S(Q) =
1

2
(B(Q)− A(Q)) = λ ·Q =


√
σ2
m+σ2

f−
2σmσf
exp(κ)

2σu
·Q, if κ > ln

(
σf
σm

)
,

σf
2·σu

√
exp(2κ)−1
exp(2κ)

·Q, if κ < ln
(
σf
σm

)
.

It holds that
∂S(Q)

∂κ
> 0,

∂S(Q)

∂σf
>
∂S(Q)

∂σm
.

The above result implies that the bid-ask spread comoves with the informed

trader’s level of attention. A higher attention capacity leads to a larger share of

informed trading, holding the total order flow Q constant. As a result, market

makers charge a higher price to those willing to buy, or a lower price to those willing

to sell, in order to recoup expected losses from trading against better-informed

investors. This leads to a wider spread. Moreover, the spread responds more strongly

to news with higher volatility.

3.4 Concluding Remarks

We study the impact of investors’ endogenous attention allocation on their trading

behavior and market characteristics. Our model shows that investor attention does

influence trading and market characteristics. Furthermore, during the earnings an-

nouncement period, when firm-level news is more volatile, investors allocate more

attention to it, while less volatile macro news may be ignored due to limited atten-

tion. Conversely, when aggregate uncertainty is higher than that of firm-level news,

attention shifts accordingly from firm-level news to macro-level news. These shifts

cause price fluctuations, market depth, and the bid-ask spread to be more respon-
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sive to information sources with higher prior uncertainty. Several model predictions

align with recent empirical findings, and our framework offers a microfoundation to

interpret such patterns. In addition, some predictions lend themselves to empirical

verification using microstructure data.

One interesting extension is the characterization of equilibrium in a multi-period

trading model. In the standard N -period model without limited attention, the as-

set’s value is fixed and known to the informed investor across all trading periods.

The linear recursive equilibrium features a trading strategy in each period that de-

pends on the history of pricing rules. However, in our setting with limited attention,

the informed investor receives private signals prior to each round of trading. As a

result, her trading strategy may depend not only on the price history but also on

anticipated future signals. This dynamic information structure poses challenges for

equilibrium characterization and is left for future research.
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3.5 Appendices to Chapter 3

3.5.1 Proof of Lemma 3.1
Proof. By the projection theorem, the conditional value on the macro-level signal

takes the form

E[vm|sm] = E[vm] + ρvm,sm
σm
σsm

(sm − E[sm]),

where ρvm,sm is the correlation between vm and sm, and the conditional variance is

given by

V ar[vm|sm] = (1− ρ2vm,sm) · V ar[vm].

Given V ar[sm] = σ2
m + σ2

ϵm and ρvm,sm = Cov(vm,sm)√
V ar(vm)V ar(sm)

= σ2
m

σm(σ2
m+σ2

ϵm
)
, the

conditional value is reduced to

E[vm|sm] = µm +
σ2
m

σ2
m + σ2

ϵm

(sm − µm),

and the conditional variance is reduced to

V ar[vm|sm] = σ2
m ·

σ2
ϵm

σ2
m + σ2

ϵm

.

Similarly, the conditional value on firm-specific news is given by

E[vf |sf ] = µf +
σ2
f

σ2
f + σ2

ϵf

(sf − µf ),

and the conditional variance is

V ar[vf |sf ] = σ2
f ·

σ2
ϵf

σ2
f + σ2

ϵf

.

Thus, the corresponding conditional asset value on s is given by

E[v|s] = E[vm|sm] + E[vf |sf ]

= µm +
σ2
m

σ2
m + σ2

ϵm

(sm − µm) + µf +
σ2
f

σ2
f + σ2

ϵf

(sf − µf )

= µv +
σ2
m

σ2
m + σ2

ϵm

(sm − µm) +
σ2
f

σ2
f + σ2

ϵf

(sf − µf ).
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The first equality holds due to the independence assumption, and the last equality

holds as µv = µm + µf holds by definition.

The conditional variance of the asset value given the signals is given by

V ar[v|s] = V ar[vm|sm] + V ar[vf |sf ]

= σ2
m ·

σ2
ϵm

σ2
m + σ2

ϵm

+ σ2
f ·

σ2
ϵf

σ2
f + σ2

ϵf

.

The first equality holds due to the independence of the signals. This completes the

proof.

3.5.2 Proof of Lemma 3.2

Proof. The ex-ante payoff of the informed investor is given by

Π = Es

[
1

4λ
· (E[v|s]− µv)

2

]
,

where the coefficient is

λ =

√
σ4
m

σ2
m+σ2

ϵm
+

σ4
f

σ2
f+σ

2
ϵf

2σu
.

For notational ease, we denote the normalized de-meaned value as v̄ = v − µv. The

unconditional payoff reads

Es

[
1

4λ
· (E[v|s]− µv)

2

]
= Es

 σu

2

√
σ4
m

σ2
m+σ2

ϵm
+

σ4
f

σ2
f+σ

2
ϵf

· (E[v̄|s])2


=

σu

2

√
σ4
m

σ2
m+σ2

ϵm
+

σ4
f

σ2
f+σ

2
ϵf

Es
[
(E[v̄|s])2

]
.

Note that
Es
[
(E[v̄|s])2

]
= Es

[
E[v̄2|s]− V ar[v̄|s]

]
= V ar[v̄]− V ar[v̄|s]

= V ar[v]− V ar[v|s].
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The first equality follows from the law of total variance. The second holds because

the conditional variance V ar[v̄|s] (or V ar[v|s]) is a constant and irrelevant for ob-

servation s (See Lemma 3.1). The third equality holds because the prior mean µv

is a constant. Hence, the unconditional payoff is reduced to

Π =
1

4λ
· (V ar[v]− V ar[v|s]).

Substituting V ar[v] = σ2
m+σ

2
f , the conditional variance V ar[v|s] = σ2

m ·
σ2
ϵm

σ2
m+σ2

ϵm
+

σ2
f ·

σ2
ϵf

σ2
f+σ

2
ϵf

from Lemma 3.1, and the expression (2.12) for λ into the above expression

for Π and simplifying terms gives

Π =
σu
2

√
σ4
m

σ2
m + σ2

ϵm

+
σ4
f

σ2
f + σ2

ϵf

,

which is clearly decreasing in σ2
ϵm and σ2

ϵf
. This completes the proof.

3.5.3 Proof of Lemma 3.3

Proof. Since the objective payoff function is monotone decreasing in σ2
ϵm and σ2

ϵf
,

the information flow constraint must be binding. Otherwise, one could reduce σ2
ϵm or

σ2
ϵf

by a small amount to improve the payoff while keeping the constraint satisfied.

The binding constraint reads

(
1 +

σ2
m

σ2
ϵm

)
·

(
1 +

σ2
f

σ2
ϵf

)
= exp(2κ).

To simplify notation, denote M = 1 + σ2
m

σ2
ϵm

≥ 1 and I = 1 +
σ2
f

σ2
ϵf

≥ 1. Then, the

information flow constraint reads M · I = exp(2κ) and the objective reads

σu
2

√
σ4
m

σ2
m + σ2

ϵm

+
σ4
f

σ2
f + σ2

ϵf

=
σu
2

√
M − 1

M
σ2
m +

I − 1

I
σ2
f

=
σu
2

(
σ2
m + σ2

f −
1

M
σ2
m − 1

I
σ2
f

)
.
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Therefore, the optimization problem transforms to choosingM and I to minimize
1
M
σ2
m+ 1

I
σ2
f subject to M · I = exp(2κ), M ≥ 1 and I ≥ 1. We substitute I = exp(2κ)

M

into the objective 1
M
σ2
m + M

exp(2κ)
σ2
f to reduce dimensionality, which yields

1

M
σ2
m +

M

exp(2K)
σ2
f := g(M).

Note that g(M) is a convex function (with a U shape) for M > 0 and it is minimized

at Mcutoff = exp(κ) · σm
σf

. Since σf > σm and κ > 0, Mcutoff can be greater than or

less than 1. We need to discuss two cases.

Case 1: If κ > ln
(
σf
σm

)
, the solution is interior:

M∗ = exp(κ) · σm
σf
, I∗ = exp(κ) · σf

σm
,

or equivalently,

σ2
ϵm = σ2

m

(
exp(κ) · σm

σf
− 1

)
, σ2

ϵf
= σ2

f

(
exp(κ) · σf

σm
− 1

)
.

Case 2: If κ ≤ ln
(
σf
σm

)
, the solution is at the corner:

M∗ = 1, I∗ = exp(2κ),

or equivalently,

σ2
ϵm = ∞, σ2

ϵf
=

σ2
f

exp(2κ)− 1
.

This completes the proof.
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3.5.4 Derivation of Price Volatility

Proof. We first examine the case where κ > ln
(
σf
σm

)
. The price volatility is given

by

Var(P ) = λ2Var(Q)

= λ2
(
Var(qs) + σ2

u

)
= λ2

(
β2
mVar(sm) + β2

fVar(sf ) + σ2
u

)
= λ2

(
β2
m(σ

2
m + σ2

ϵm) + β2
f (σ

2
f + σ2

ϵf
) + σ2

u

)
.

To analyze the monotonicity of Var(P ), we substitute the expressions for λ, βm, βf ,

σϵm , and σϵf into Var(P ) and simplify terms to get

Var(P ) =
1

2

(
σ2
m + σ2

f −
2σmσf
exp(κ)

)
.

The derivative with respect to κ is given by

∂Var(P )
∂κ

=
σmσf
exp(κ)

> 0,

and the sensitivity of price volatility to firm-level and macro-level news is given by

∂Var(P )
∂σf

= σf −
σm

exp(κ)
,

∂Var(P )
∂σm

= σm − σf
exp(κ)

.

To show that
∂Var(P )
∂σf

>
∂Var(P )
∂σm

,

note that this is equivalent to

σf −
σm

exp(κ)
> σm − σf

exp(κ)
.

This inequality holds under the assumption that σf > σm. For the case where
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κ < ln
(
σf
σm

)
, the derivative with respect to κ is

∂Var(P )
∂κ

=
σ2
f

exp(2κ)
> 0.

This completes the proof.
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