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1 Introduction 

Knowledge graphs are becoming increasingly recognized as a valuable tool in 
data-driven domains like healthcare [1], finance [2], and manufacturing [3], where 
they have gained considerable popularity in recent research. They are commonly 
employed to represent and integrate both structured and unstructured data, providing 
a standardized approach to encode domain knowledge [4]. Built on ontologies 
that conceptualize domain classes, relations, and logical inference rules, KGs 
represent specific instantiations of ontological models and their inherent semantic 
characteristics. Typically, KGs are divided into two modules: a terminological 
TBox containing concepts (such as the class of a manufacturing process) and an 
assertive ABox containing real-world instances (such as unique executions of a 
manufacturing process). 
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We adopt the notion of a (standard) KG .G = (V ,E) as described in [5], which 
is represented by a set of nodes V (also referred to as vertices) and a set of triples 
.E ⊆ V × R × V consisting of directed and labeled edges. Here, R denotes the set 
of valid relation types defined in the underlying ontology. Thus, an edge in the form 
of a triple .(s, p, o) ∈ E implies an outgoing relation from the subject .s ∈ V to the 
object .o ∈ V via the predicate .p ∈ R. Given such a KG, embedding techniques aim 
to exploit the topology of the graph to generate latent feature representations 

.γ : V → 𝚪 (1) 

of its nodes V in a latent representation space . 𝚪, e.g., .𝚪 = R
d with .d ∈ N, 

thereby enabling their utilization in downstream applications, e.g., graph-based 
machine learning (ML). However, the findings of this work can be applied almost 
analogously to the most well-known KG extensions, such as labeled property graphs 
like Neo4j [6]. 

In addition to the improved applicability of graph-based data in tasks like 
recommendation systems [7] or question answering [8], embedding formalisms 
have also proven to be valuable as intrinsic complements to graph-structured 
data. This is due to their ability to provide an empirical approach for enhancing 
the expressivity of graph topologies by means of downstream tasks like entity 
linking [9] and link prediction [10]. Consequently, related areas such as relational 
ML are receiving significant attention in both literature and applications [11]. 

In this chapter, we first provide a brief overview of representation learning as 
the enabler of KG embeddings, addressing state-of-the-art embedding formalisms 
for generating lean feature representations and describing their functionalities. 
An analysis of the advantages and drawbacks of employing KG embeddings is 
provided, along with a discussion of associated open research questions. We focus 
specifically on potential challenges and risks that may hinder the usage of KG 
embeddings in the highly dynamic manufacturing domain. Accordingly, we present 
the methodologies developed within the Teaming. AI project to address those 
problems. In this context, we describe the applicability and potential benefits of 
KG embeddings in the human–AI-based manufacturing use cases of the project. 
Furthermore, we showcase the Navi approach as an enabler of dynamic KG 
embeddings that allows for real-time and structure-preserving computations of new 
or updated node representations. 

2 Knowledge Graph Embeddings 

The generation of KG embeddings as per Eq. (1) denotes a subdiscipline of 
representation learning. In the context of KGs, representation learning is applied 
to determine lean feature representations that are able to capture inherent semantic



Leveraging Semantic Representations via Knowledge Graph Embeddings 73

relationships between KG elements. Thus, we first provide a general overview of 
representation learning to subsequently describe its application in KG embeddings. 

3 Representation Learning 

Representation learning comprises techniques for the automatic detection of appro-
priate feature representations that can be employed by downstream models or tasks, 
such as machine learning models [12]. Thus, the main objective of representation 
learning is to eliminate the need for preprocessing raw input data. Given a set 
of observable variables V with semantic representations .π : V → Π within 
an inherent representation space . Π (which is not necessarily compatible with the 
downstream model), these techniques aim to generate an alternative feature mapping 
.γ : V → 𝚪 into a representation space . 𝚪 that satisfies the requirements of the 
desired task. 

Representation learning can be performed in a supervised, unsupervised, or 
self-supervised manner. One example of a supervised approach for learning latent 
feature representations is the training of deep neural networks on labeled input data. 
Namely, given an input feature .π(v) for some .v ∈ V , the hidden layer outputs 
(and also the output layer) obtained from the forward pass of the network can be 
considered as alternative representations .γ (v), as illustrated in Fig. 1. 

Contrarily, unsupervised representation learning techniques can be utilized 
for unlabeled representations .π(v). Methods like principal component analysis 
or auto-encoders intend to reduce the dimensionality of high-dimensional input 
features. Accordingly, the goal of these algorithms is to determine alternative, low-
dimensional representations without the consideration of any target feature except 
the input feature .π(v) itself. For example, auto-encoders feed a representation 
.π(v) ∈ R

d '
into a deep neural network and attempt to reconstruct it, i.e., . π(v)

also serves as the output feature. However, the hidden layers are assumed to be low-
dimensional to serve as alternative representations .γ (v) ∈ R

d of .v ∈ V with . d ⪡ d '
as depicted in Fig. 2. 

Fig. 1 Deep neural networks as supervised representation learning formalisms
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Fig. 2 Auto-encoders as unsupervised representation learning formalisms 

Fig. 3 Extract from the abstract in [15]. The semantics of the word products is encoded within the 
sentences that contain it 

Finally, self-supervised representation learning aims to leverage the underlying 
structure .SV of unlabeled data that contains the variables .v ∈ V and which 
allows for deriving meaningful initial representations .π(v). For example, a word 
.v ∈ V may appear in a set of sentences .π(v) within a shared text corpus . SV , as  
exemplified in Fig. 3. While state-of-the-art NLP models like BERT [13] usually 
split words into frequently occurring subword tokens via subword segmentation 
algorithms such asWordpiece [14], the inherent methods can be applied analogously 
to sets of complete words. In the course of training such NLP models, numerical 
embeddings .γ (v) ∈ R

d are assigned to the domain variables .v ∈ V with respect to 
their original representations .π(v). These alternative representations are optimized 
by backpropagating the output of the LLM for at least one element of its initial 
representation .π(v). 

Analogously, most NLP techniques can be applied to KG structures . G = (V ,E)

by characterizing directed graph walks .(v1, p1, v2, p2, v3, . . . , vl−1, pl−1, vl) of 
depth .l − 1 ∈ N as sentences that are composed of edges .(vi, pi, vi+1) ∈ E. For  
instance, the sample manufacturing KG depicted in Fig. 4 contains the 4-hop walk 

(John, executes, Task 1, output, Product 1, input, Task 2, output, Product 2). 

One of these transfer approaches is RDF2Vec [16], which utilizes random graph 
walks to generate input data for the NLP-based Word2Vec algorithm [17]. By doing 
so, a mapping .γ : V ∪ R → R

d is trained and thus, alternative representations 
of the graph nodes in V , but also for the relation types in R as well. Therefore,
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Fig. 4 Sample KG containing process flows within a production process 

node embeddings can be derived via .γ (v) := γ (v). Besides transfer approaches 
like RDF2Vec, various embedding algorithms exist, which are specifically tailored 
toward KG structures. These are further discussed in the following. 

3.1 Representation Learning for Knowledge Graphs 

KG embedding techniques denote a subdiscipline of representation learning, taking 
into account KG structures as initial input data. Given a KG .G = (V ,E), these 
approaches intend to provide numerical representations .γ : V → 𝚪 as per Eq. (1). 
However, as exemplified by RDF2Vec, KG embeddings may contain alternative 
representations of graph elements .y /∈ V as well, such as embeddings of relations, 
but also edges or subgraphs. Thus, in general, a KG embedding is a mapping 
.γ : Ω → 𝚪, where . Ω represents a collection of KG elements pertaining to . G. 
The node embedding of some .v ∈ V is accordingly obtained by restricting . γ to V , 
i.e., .γ (v) = γ (v). 

Based on the research conducted in [10], KG embedding methods can be cate-
gorized into three model families, namely tensor decomposition models, geometric 
models, and deep learning models. We adopt this subdivision in the following. 

3.1.1 Tensor Decomposition Models 

Tensor decomposition models for KG embeddings are based on the concept of 
tensor decompositions within the area of multilinear algebra [18]. These attempt
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Fig. 5 Sample KG with .n = 4 nodes and .k = 2 relations . r1 (blue) and . r2 (red), including their 
respective adjacency matrices . A1 and . A2

to characterize tensors via sequences of simplified tensor operations. For a KG . G, 
this approach is applied to its unique adjacency tensor .A ∈ {0, 1}k×n×n, defined as 

. Ah,i,j = 1 ⇐⇒ (
vi, rh, vj

) ∈ E.

Here, .k ∈ N denotes the cardinality of the underlying relation set R and .n ∈ N is 
the number of nodes in V . Accordingly, without loss of generality, we may assume 
labeled sets .R = {r1, . . . , rk} and .V = {v1, . . . , vn}, as exemplified in Fig. 5. 

Accordingly, tensor decomposition-based KG embedding methods intend to 
approximate . A by a sequence of lower dimensional tensor operations. Among these 
methods, RESCAL [19] is considered to be the first work to apply this methodology 
for determining KG embeddings. Regarding . A, it proposes a rank-d factorization 

. Ah ≈ X · Rh · XT

of its h-th slice .Ah ∈ {0, 1}n×n by means of matrices .X ∈ R
n×d and . Rh ∈ R

d×d

with .d ⪡ n. Therefore, the i-th row of the matrix . X contains an alternative 
representation .γ (vi) := (

Xi,1, . . . ,Xi,d

) ∈ R
d of .vi ∈ V . The optimization of 

the matrices . X and .(Rh)1≤h≤k is accordingly achieved by solving the minimization 
problems 

. minX,Rh
f (X,Rh) for f (X,Rh) = 1

2

(∑k

h=1
‖Ah − X · Rh · XT ‖2F

)
,

with the Frobenius norm .‖ · ‖F and the corresponding element-wise operations 

. f (h, i, j) = 1

2

(
Ah,i,j − γ (vi)

T · Rh · γ (vj )

)2

.

To reduce the complexity of these optimizations, DistMult proposes to use diagonal 
matrices .(Rh)1≤h≤k [20]. However, by doing so, DistMult is limited to symmet-
ric relations. ComplEx solves this problem by employing .C-valued embedding 
spaces [21]. In addition to the mentioned models, numerous other tensor decompo-
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sition models for KG embeddings exist, including ANALOGY [22], SimplE [23], 
and HolE [24]. 

3.1.2 Geometric Models 

Geometric KG embedding models represent semantic relations as geometric trans-
formations within a corresponding embedding space. In contrast to tensor decompo-
sition models, embeddings are not determined based on characteristics of the unique 
adjacency tensor . A, but with respect to individual facts .(s, p, o) ∈ E. 

As outlined in [10], transformations .τp(s) := τ (γ (s), γ (p)) ∈ 𝚪 are applied for 
subject nodes .s ∈ V regarding predicates .p ∈ R. Accordingly, based on a distance 
measure .δ : 𝚪 × 𝚪 → R≥0, KG embeddings are computed via score functions 

. f (s, p, o) := δ
(
τp(s), γ (o)

)
.

Among the family of geometric KG embedding methods, TransE [25] constitutes 
the most famous approach. As a translational model, it approximates object 
representations .γ (o) via .γ (o) ≈ τp(s) = γ (s) + γ (p). Various geometric KG 
embedding models build upon the idea of TransE, improving the representation of 
nodes and relations by introducing additional components or transformations, such 
as 

• Relationship-specific hyperplanes to capture complex interactions between 
nodes and relationships more effectively (TransH) [26] 

• Relationship-specific node projection matrices to handle entities and relation-
ships with different characteristics more flexibly (TransR) [27] 

• Adaptive projection matrices regarding differing node-relation-pairs (TransD) 
[28] 

• Relationship clustering to group similar relations (TransG) [29] 

For a comprehensive overview of these methods, we refer to [10]. This work also 
introduces negative sampling as a common obstacle of KG embedding formalisms. 
Due to the open-world assumption of KGs, .(s, p, o) /∈ E does not necessarily imply 
that the fact is false. Rather, it means that the KG does not contain information 
about its validity. Thus, negative sampling is applied to create a set of false facts 
.Eneg ⊆ V ×R ×V with .E ∩Eneg = ∅ to train the embeddings in a supervised way. 

3.1.3 Deep Learning Models 

Graph-based deep learning (DL) approaches, also referred to as Graph Neural 
Networks (GNNs), exist for some time already, especially in the context of complex 
network systems and their underlying undirected graph structures [30]. However, 
the application of such algorithms on directed and labeled KGs may lead to a 
loss of relevant information. To address this issue, Graph Convolutional Networks
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(GCNs) were first introduced to account for directed edges [31]. Furthermore, to 
accommodate different relation types, Relational Graph Convolutional Networks 
(RGCNs) were elaborated as extensions of GCNs [32], which were subsequently 
extended by means of attention mechanisms [33] in Relational Graph Attention 
Networks (RGATs) [34]. 

In contrast to geometric KG embedding models that apply score functions 
to individual triples and tensor decomposition models that intend to reduce the 
dimensionality of the adjacency tensor . A, DL-based models perform predictions 
for labeled nodes .v ∈ V , taking into account itself and its outgoing neighbors 

. N(v) := {y ∈ V | ∃(s, p, o) ∈ E : (s = y ∧ o = v) ∨ (s = v ∧ o = y)} .

These labels can be derived from the KG itself via node assertions or link 
assignments, or they can be external, such as numerical or nominal node attributes. 
Adjacent node representations are meant to be aggregated to receive a composite 
node representation of v. By backpropagating a suitable loss, initial embeddings of 
v and its neighbors are optimized. This process is repeated for each labeled training 
node to generate latent feature representations for all .v ∈ V ∪ {N(v) : v ∈ V }. The  
formalism proposed in [32] subdivides .N(v) into relation-specific neighborhoods 

. Nr(v) := {y ∈ V | ∃(s, p, o) ∈ E : (s = y ∧ o = v) ∨ (s = v ∧ o = y) ∧ p = r} ,

regarding relation types .r ∈ R. Thus, given a matrix of (initial) feature representa-
tions .X ∈ R

n×d (i.e., the i-th row of . X is an embedding of .vi ∈ V ), embeddings of 
outgoing neighbors can be incorporated in the forward pass of a GNN via 

. Ah · X ∈ R
n×d ,

where . Ah denotes the h-th slice of  . A. For instance, in the context of the KG from 
Fig. 5, the composite representation of . v1 regarding the relation . r1 equals the sum 
of the initial embeddings of . v2 and . v3. To account for differing impacts of incoming 
and outgoing edges, R is typically extended via inverse relations . r ' for each .r ∈ R. 
Some works also consider a self-relation . r0. Accordingly, by taking into account the 
adjacency matrices .A0 = Id and .A2h = AT

h for .1 ≤ h ≤ k, we extend the set R 
via 

. ̂R := R ∪ {
r ' | r ∈ R

} ∪ {r0} with r '
h = r2h.

By doing so, GNN models capture the semantics of directed and labeled graphs 
by summing up weighted composite representations to receive a convoluted matrix 

.

2k∑

h=0

Âh · X ·Wh ∈ R
n×d '

,
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including relation-specific weight matrices .Wh ∈ R
d×d '

. Moreover, the extended 
adjacency tensor .Â ∈ R

(2k+1)×n×n is not necessarily .{0, 1}-valued. Rather, it 
is intended to contain normalization constants or attention scores to encode the 
significance of individual nodes and relations to the forward pass of a GNN. 
However, 

. 
(
vi, rh, vj

) /∈ E ⇒ Âh,i,j = 0

still holds. If no normalization constants or attention mechanisms are to be 
implemented, this tensor can be directly derived from .A ∈ {0, 1}k×n×n by means 
of matrix transpositions and the insertion of an additional identity matrix. Finally, 
by introducing an activation function .σ : R → R such as ReLu, the generalized 
forward pass of a GNN layer (including RGCNs and RGATs) can be defined as 

.σ

(
2k∑

h=0

Âh · X ·Wh

)

=: X' ∈ R
n×d '

. (2) 

4 Industrial Applications of Knowledge Graph Embeddings 

The lack of use case scenarios poses a significant challenge to the application of 
KGs and corresponding KG embeddings in the manufacturing domain. Without 
specific applications, it becomes difficult to identify the relevant data sources, 
design appropriate KG structures, and create meaningful embeddings that capture 
the intricate relationships within manufacturing processes. Thus, the absence of 
concrete use cases hinders the exploration of the full potential of KGs and KG 
embeddings in improving efficiency, decision-making, and knowledge sharing 
within this domain. 

As a result of the research conducted within the Teaming.AI project, which 
aims to enhance flexibility in Industry 4.0, while prioritizing human involvement 
and collaboration in maintaining and advancing AI systems, we identified several 
application scenarios within the manufacturing domain that can be leveraged by 
introducing industrial KGs and KG embeddings. These are introduced in the 
following. 

Data Integration and Fusion Manufacturing involves diverse and complex data 
from various sources, such as sensors, process logs, or maintenance records. While 
KGs can integrate these heterogeneous data sources, KG embeddings map them into 
a shared representation space. By representing KG nodes and their relationships in 
this shared embedding space, it becomes easier to combine and analyze data from 
different sources, leading to enhanced data fusion capabilities.
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Semantic Similarity and Recommendation KG embeddings allow for quantify-
ing the semantic similarity between nodes. In the manufacturing domain, this can 
be useful for recommending similar products, materials, or processes based on their 
embeddings. For example, embeddings can help to identify alternative materials 
with desired properties or characteristics, thereby aiding in material selection. 

Supply Chain Management Effective supply chain management is crucial for 
manufacturing. KGs and corresponding KG embeddings can help model and 
analyze complex supply chain networks by representing suppliers, products, trans-
portation routes, and inventory levels as graph entities. By considering their 
semantic relations, embeddings can facilitate supply chain optimization, demand 
forecasting, and identifying potential risks in the supply chain. 

Decision Support Systems KG embeddings and relational ML techniques can 
serve as a foundation for developing decision support systems in manufacturing. 
By learning from empirical semantic observations, these systems can provide 
recommendations, insights, and decision-making support to operators, engineers, 
and managers. For example, based on the current state of the manufacturing 
environment, the system can suggest optimal operating conditions or maintenance 
actions. Moreover, models can be learned to recommend ML models for AI 
activities, given the current manufacturing environment. 

Fault Detection and Diagnosis KG embeddings combined with relational ML 
techniques can aid in fault detection and diagnosis in manufacturing systems. 
By analyzing historical data and capturing the relationships between machines, 
process variables, and failure events, embeddings can be used to build systems that 
identify faults or failures in advance. This facilitates proactive maintenance, reduces 
downtime, and improves overall effectiveness. 

In conclusion, KGs allow for representing manufacturing concepts and entities 
(such as processes, machines, and human workers) and their semantic relationships. 
KG embeddings, on the other hand, capture inherent semantics in lean numerical 
representations which facilitate (i) the analysis of existing manufacturing knowledge 
and (ii) the extraction of new manufacturing knowledge based on empirical 
observations. As a powerful tool for representing domain knowledge in a human-
and machine-interpretable way, KGs enable the combination of human comprehen-
sibility with the computational capabilities of machines. This synergy of human and 
machine intelligence enables effective collaboration, decision-making, and efficient 
problem solving in the manufacturing domain. Moreover, it represents a step toward 
optimized human-in-the-loop scenarios [35] and human-centric Industry 5.0 [36]. 

However, the manufacturing domain is inherently dynamic, with continuous 
changes in its processes, equipment, materials, and market demands. Therefore, it 
is crucial to incorporate these dynamics into KG embeddings, which are typically 
designed for static snapshots of a domain (cf. Sect. 3.1). In the end, KG embeddings 
should be able to capture the evolving relationships, dependencies, and contextual 
information, preferably in real time. By incorporating dynamics, the embeddings
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can adapt to changes in manufacturing operations, such as process modifications, 
equipment upgrades, or variations in product requirements. This enables the repre-
sentations to accurately reflect the current state of the manufacturing system and to 
capture the evolving aspects of runtime observations and data. 

5 The Navi Approach: Dynamic Knowledge Graph 
Embeddings via Local Embedding Reconstructions 

Most of the existing works on dynamic graph embeddings do not account for 
directed and labeled graphs. Rather, they are designed to be applicable to undirected 
and/or unlabeled graphs [37, 38], or they aim to embed temporally enhanced 
snapshots of non-dynamic graphs [39, 40]. Moreover, approaches like the one 
proposed in [41] exist that intend to perform an online training of KG embeddings 
by focusing on regions of the graph which were actually affected by KG updates. 
However, the overall embedding structure is still affected, leading to a need for 
continuous adjustments of embedding-based downstream tasks, such as graph-
based ML models. Thus, we require a dynamic KG embedding formalism that (i) 
can produce real-time embeddings for dynamic KGs and (ii) is able to preserve 
the original structure of KG embeddings to allow for consistent downstream 
applications. 

We propose to utilize the dynamic Navi approach [42], which is based on the 
core idea of GNNs as per Eq. (2). Given an initial KG .Gt0 = (Vt0 , Et0) at timestamp 
. t0, we assume an embedding .γ̃t0 : Vt0 → R

d based on some state-of-the-art 
KG embedding method from Sect. 3.1. Accordingly, a dynamic KG is defined as 
a family of stationary snapshots .(Gt )t∈T with respect to some time set . T. Given  
a future timestamp .t > t0, the Navi approach provides a consistent embedding 
.γt : Vt → R

d so that previously trained downstream models can still be employed. 
Since we leverage the idea of GNNs to reconstruct .γ̃t0(v) through local neighbor-

hoods, these reconstructions are based on the unique adjacency tensors . (A(t))t∈T
with .A(t) ∈ R

k×nt×nt . Here, .nt = ∣∣⋃
τ≤t Vτ

∣∣ denotes the number of nodes that 
were known to exist since the graph’s initialization and thus .nt ≥ nt0 holds. Thus, 
we assume an initial embedding matrix .X̃t0 ∈ R

nt0×d that contains the initial 
embeddings as per . ̃γt0 . This matrix is then reconstructed based on itself via a single-
layer GNN 

. σ

(
Â(t0)0 · Θt0 ·W0 +

∑2k

h=1
Â(t0)h · X̃t0 ·Wh

)
=: Xt0 ≈ X̃t0

by taking into account the extended adjacency tensor .Â(t0) (cf. Sect. 3.1.3). During 
the training process, a global embedding .γr0 ∈ R

d is implemented regarding the 
self-relation . r0 so that .Θt0 ∈ R

nt0×d contains . nt0 copies of . γr0 . Moreover, instead 
of zero-value dropouts, overfitting is prevented by randomly replacing node embed-
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dings with . γr0 in the input layer, simulating the semantic impact of nodes that are 
not known at time . t0. It is also used to represent self-loops, enabling reconstructions 
that are independent of the (potentially unknown) initial representations. A detailed 
overview, including training settings and benchmark evaluation results, can be found 
in [42]. The evaluation implies that, given a timestamp .t > t0, this approach allows 
for high-qualitative and consistent embeddings .γt : Vt → R

d that are computed via 

. σ

(
Â(t)0 · Θt ·W0 +

∑2k

h=1
Â(t)h · X̃t ·Wh

)
=: Xt ,

i.e., the i-th row of . Xt represents the embedding .γt (vi) of the node .vi ∈ Vt . In the  
case of new nodes, . ̃Xt and . Θt are the extensions of . ̃Xt0 and . Θt0 by inserting copies 
of . γr0 , respectively. Moreover, the update of the adjacency tensor can be performed 
via 

. A(t)h = I (t0, t)
T ·A(t0)h · I (t0, t) + B(t0, t)h.

First, the matrix .I (t0, t) ∈ {0, 1}nt0×nt accounts for newly inserted nodes, i.e., 

. I (t0, t)i,j = 1 ⇐⇒ i = j.

Second, the update matrices .B(t0, t)h ∈ {−1, 0, 1}nt×nt identify KG updates 

. B(t0, t)i,j ==
{
1 ⇐⇒ the edge (vi, rh, vj ) was inserted between t0 and t

−1 ⇐⇒ the edge (vi, rh, vj ) was deleted between t0 and t.

After the KG update, a synchronizing assistant is to provide (i) the number of 
nodes . nt and (ii) the update tensor .B(t0, t) ∈ {−1, 0, 1}k×nt×nt . For instance, given 
an Apache Jena Fuseki1 KG, existing logging tools like rdf-delta2 can be extended to 
use them as synchronizing assistants. Moreover, while we focus on a single update 
at time .t ∈ T, transitions between arbitrary timestamps can be handled as well, i.e., 

. A(t ')h = I (t, t ')T ·A(t)h · I (t, t ') + B(t, t ')h for t0 < t < t '.

In conclusion, the late shaping of KG embeddings via Navi reconstructions rep-
resents a promising approach for incorporating dynamic KG updates and semantic 
evolutions into KG embeddings as lean feature representations of domain concepts 
and instances. Besides the ability to allow for consistent embeddings, the results 
in [42] even showed that the reconstruction of existing embeddings often leads 
to an improved performance in downstream tasks like link predictions and entity 
classifications as key enablers of the industrial use case applications outlined in 
Sect. 4.

1 Apache Software Foundation, 2021. Apache Jena, Available at https://jena.apache.org/. 
2 https://afs.github.io/rdf-delta/. 
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6 Conclusions 

In this work, we highlighted the increasing importance of representing and exploit-
ing semantics, with a specific emphasis on the manufacturing domain. While 
industrial KGs are already employed and utilized to integrate and standardize 
domain knowledge, the generation and application of KG embeddings as lean 
feature representations of graph elements have been largely overlooked. Existing 
KGs lack either domain dynamics or contextuality, limiting the applicability of 
context-dependent embedding algorithms. Thus, we provide an overview of state-of-
the-art KG embedding techniques, including their characteristics and prerequisites. 
In this context, we emphasized the need for dynamic embedding methods and 
their implementation in concrete manufacturing scenarios, describing potential KG 
embedding applications in industrial environments, which were identified as a 
result of the Teaming.AI project. Furthermore, we introduced the concept of Navi 
reconstructions as a real-time and structure-preserving approach for generating 
dynamic KG embeddings. 

To summarize, KGs and KG embeddings offer significant advantages for the 
manufacturing domain. The structured representation of complex relationships 
in KGs enables context-awareness, dynamic analysis, and efficient information 
retrieval. Furthermore, the utilization of KG embeddings promotes process opti-
mization, leading to improved product quality, reduced errors, and an increased 
overall productivity. 
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