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Abstract

In this thesis we use and develop the mathematical framework of rough and

stochastic analysis to deal with various aspects of approximation and stability

that are particularly relevant for and motivated by applications in mathematical

finance, machine learning, and numerical analysis.

We begin with addressing the widespread use of stochastic differential equations

in which the drift and diffusion function are represented by neural networks,

and provide a rigorous verification of their universal approximation property.

The theory of rough paths is known to provide a fully pathwise and robust solu-

tion theory to stochastic differential equations, which we exploit and contribute

to as follows:

We study the well-posedness of rough differential equations with path-dependent

coefficients and driven by càdlàg rough paths providing a unifying theory for the

pathwise analysis of stochastic functional differential equations.

Subsequently, we assume a path property which implies a suitable canonical

rough path lift such that the rough integral exists as a limit of left-point Riemann

sums. We examine this further and present a transparent pathwise convergence

analysis for the first order Euler scheme of stochastic differential equations that

has been inexplicable from the rough path perspective so far.

This line of research is continued in the context of mathematical finance under

model uncertainty when we investigate the pathwise stability and approxima-

tion properties of optimal portfolios.

To gain a deeper understanding, we explain and generalize the aforementioned

path property, and prove that the rough integral exists under this assumption

as a limit of general Riemann sums.

Based on this approach, we lastly bridge the gap between Itô integration and

universal approximation with signatures.





Zusammenfassung

Diese Dissertation befasst sich mit Aspekten der Approximation und Stabilität

in der stochastischen und der rauen Analysis, die insbesondere in der Finanz-

mathematik, im maschinellen Lernen und in der numerischen Analysis thema-

tisiert werden.

Zunächst betrachten wir stochastische Differentialgleichungen, bei denen der

Drift- und der Diffusionskoeffizient durch neuronale Netze gegeben sind, und

zeigen deren theoretische universelle Approximationseigenschaft.

Die Theorie der rauen Pfade liefert eine vollständig pfadweise und robuste

Lösungstheorie für stochastische Differentialgleichungen, der wir uns wie folgt

annehmen:

Wir untersuchen die Wohlgestelltheit rauer Differentialgleichungen mit pfad-

abhängigen Koeffizienten und getrieben von càdlàg rauen Pfaden und formulie-

ren somit einen vereinheitlichenden Ansatz für die pfadweise Analyse stochasti-

scher verzögerter Differentialgleichungen.

Im Folgenden wird eine Pfadeigenschaft angenommen, sodass das raue Integral

als Grenzwert linksseitiger Riemannsummen gegeben ist.

Darauf basierend präsentieren wir eine transparente pfadweise Konvergenzana-

lyse für das Euler-Verfahren erster Ordnung für stochastische Differentialglei-

chungen, welche die Theorie der rauen Pfade bisher nicht bieten konnte.

Darüber hinaus wenden wir uns dem finanzmathematischen Problem der Mo-

dellunsicherheit zu und untersuchen pfadweise Stabilität und Approximations-

eigenschaften optimaler Portfolios.

Zudem beleuchten und verallgemeinern wir die oben genannte Pfadeigenschaft

und zeigen, dass das raue Integral folglich als Grenzwert genereller Riemannsum-

men existiert.

Schließlich wird dieser Integralbegriff verwendet, um ein Verständnis für den

Zusammenhang von Itô-Integration und der universellen Approximation mit

Signaturen zu erlangen.
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Introduction

Lying at the intersection of probability theory and analysis, the purpose of stochastic anal-

ysis is to provide a rigorous mathematical framework for describing and understanding

random evolution in continuous time, for example appearing in real-world phenomena. It

has become indispensable in numerous other areas of science, ranging from finance to physics

or biology and data science.

In this context, aspects of approximation and stability become of interest. Inevitably,

given classical models do not provide an adequate description but only an approximation of

reality. One therefore tries to understand how robust they are with respect to changing the

underlying model assumptions that we are usually uncertain about; this is what we refer to

as stability.

As one would further expect, good models should be practically convenient to handle.

It is thus often unavoidable to consider an approximation by simpler ones that are (more)

tractable and analytically and/or numerically solvable, especially if a model is defined im-

plicitly rather than explicitly.

The mathematical foundation on which we want to explore these concepts in this thesis

are rough and stochastic integrals and differential equations, as they have been established

as the fundamental tools for modeling dynamics that evolve randomly in time:

We can think of the time-ordered flow of information of a system, often available in the

form of data, e.g. a financial time series, as a path Y : [0, T ] → Rk, i.e., a mapping from

some time interval [0, T ] to Rk. The behavior of Y then is assumed to be affected by an

input signal given by X: [0, T ] → Rd. Formally, it is assumed to solve a differential equation

of the form

dYt = f(Yt) dXt, t ∈ [0, T ], (1)

for some suitable (non-linear) function f .

When studying a system that exhibits randomness, i.e., when X is assumed to be a

stochastic process, prototypically a Brownian motion, which corresponds to white noise,

one needs to be careful about how to define the differential dXt. The classical approach of

considering the derivative does not work in the usual way as it would in the case of smooth

(deterministic) paths because the behavior of X is too irregular in some sense.
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To get around this, the differential equation (1) is rewritten into an integral equation of

the form

Yt = y +

∫ t

0
f(Ys) dXs, t ∈ [0, T ]. (2)

This is when the notion of stochastic integration, which has been initiated by Itô [93] and

has become a fundamental pillar in stochastic analysis, comes into play. For our purposes,

very briefly, let X be a Brownian motion that is defined on a suitable probability space

and Y a left-continuous adapted process thereon. The Itô integral is then well-defined and

admits an intuitive Riemann sum-type approximation:∫ T

0
Ys dXs = lim

n→∞

Nn−1∑
k=0

Ytnk (Xtnk+1
−Xtnk

),

where the limit is, importantly, a limit in probability taken over a sequence of partitions

Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, of [0, T ] with vanishing mesh size.

Taking not the left-point but the mid-point of each partition interval in the summation

corresponds to the Stratonovich integral [66, 153]. While the Stratonovich integral comes

more natural as it satisfies classical “first order calculus”, the Itô integral is preferred from

a modeling perspective because it preserves the martingale property amongst other reasons.

Depending on the application one has in mind, these notions of stochastic integration are

typically being employed to define stochastic differential equations as in (2), see e.g. [94].

Very significant theoretical advancements are due to [115, 59, 134], and we refer to [97] for

an overview of the early historical developments in stochastic integration and mathematical

finance.

We point out that in order to define the stochastic integral, one has to postulate a

probability space a priori. In modeling terms, this is somehow a leap of faith since the

inherent probabilistic structure of the underlying process is not known. The fact that the

stochastic integral is not well-posed given only one sample path of the driving signal turns

out to be another pitfall from the modeling perspective, since there is usually only one time

series of data available describing a particular state of the world.

This has been especially critized in financial modeling, the issues being referred to as

model risk and model uncertainty, see [111]. To overcome these limitations of probabilistic

modeling, many approaches in mathematical finance have been developed that (partially)

discard the probabilistic structure, starting off with, e.g., [128, 13, 89].

Addressing the pathwise, i.e., “state by state”, notion of stochastic integration, Föllmer

introduced in his seminal paper [67] a first deterministic analog to stochastic Itô integration

able to handle sample paths of, e.g., Brownian motion.
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Suppose that we have a one-dimensional continuous path X, and X has quadratic

variation in some sense along a sequence of partitions of (Pn)n∈N of [0, T ] with vanishing

mesh size. Then for a twice continuously differentiable function f , the limit of left-point

Riemann sums ∫ T

0
Df(Xs) dXs := lim

n→∞

Nn−1∑
k=0

Df(Xtnk
)(Xtnk+1

−Xtnk
) (3)

exists, where Df denotes the gradient of f , and the integral satisfies a “pathwise Itô for-

mula”. The Föllmer integral has found many applications and extensions in the pathwise

approach to stochastic analysis, see e.g. [39, 9, 40, 34]. Due to the fact that it is ap-

proximated by left-point Riemann sums, the Föllmer integral can be interpreted as the

capital gains process which is generated by continuous-time trading. This has been vital

for its success in the context of model-free approaches to mathematical finance. We refer

to [68, 52, 152, 48].

Rough path theory is a popular analytical theory that provides the arguably most general

pathwise notion of integration. It was initiated by Terry Lyons [129] with the purpose

of rigorously understanding nonlinear systems that are described by (1) and driven by

highly oscillatory signals. Since then, it has become an increasingly popular and widely

applicable field of research of modern stochastic analysis, reaching into the fields of statistics,

mathematical finance and data science.

At the heart of rough path theory is Lyons’ significant contribution of having identified

the informational structure of a path that is required to define an integral
∫
f(X) dX against

the path, it being of finite p-variation for any p ≥ 1. As such it extends and generalizes the

notions of Riemann–Stieltjes integration (p = 1), Young integration (p ∈ (1, 2)) [161], and

Föllmer integration.

Essentially, the idea is to “enhance” the path by a suitable higher order process that

postulates the value of the higher order iterated integrals of the path, thus capturing the

exact information that is missing, respective to the regularity of the path.

In this thesis, we will focus primarily on the study of rough paths as a framework for the

pathwise analysis of stochastic differential equations in the semimartingale setting, which

corresponds to paths of finite p-variation for p ∈ (2, 3). We, therefore, consider a p-rough

path X = (X,X) to be a pair of a path X: [0, T ] → Rd and its “lift” X: [0, T ]2 → Rd×d

satisfying the following analytical and algebraic conditions: X is of finite p-variation, X is

of finite p
2 -variation, and Chen’s relation holds, i.e.,

Xs,t = Xs,u + Xu,t +Xs,u ⊗Xu,t, for 0 ≤ s ≤ u ≤ t ≤ T,
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which mimics exactly the behavior of the iterated integral of X against itself.

Due to Gubinelli [82], the assumption on the integrands can be refined: the rough

integral can be defined not only for integrands of the form f(X), where f is suitably nice,

but for so-called controlled paths (Y, Y ′): heuristically speaking, such a Y locally looks like

X. More precisely, a controlled path (Y, Y ′) is defined as a pair of a path Y : [0, T ] → Rk and

its derivative Y ′: [0, T ] → Rk×d, where Y is of finite p-variation, Y ′ is of finite q-variation

and RY : [0, T ]2 → Rk, which is implicitly defined by

Yt − Ys = Y ′
s (Xt −Xs) +RYs,t, (s, t) ∈ [0, T ]2,

is of finite r-variation, for q ≥ p and r ∈ [p2 , 2) such that 1
p + 1

r > 1, and 1
r = 1

p + 1
q .

Then, the rough integral of (Y, Y ′) against X is defined by∫ T

0
Ys dXs = lim

|P|→0

∑
[u,v]∈P

(Yu(Xv −Xu) + Y ′
uXu,v), (4)

where the limit is taken over any sequence of partitions P of [0, T ] with mesh size |P| tending

to 0.

Considering the integral in (2) to be a rough integral, the rough differential equation of

the form

Yt = y +

∫ t

0
f(Ys) dXs, t ∈ [0, T ],

is well-posed. The resulting solution map, the Itô–Lyons map

X 7→ Y, (5)

turns out to be, very remarkably, continuous with respect to the driving rough path, and

comes with powerful stability estimates. Therefore, rough path theory provides a robust

solution theory for the pathwise study of stochastic differential equations.

In this thesis, we shall delve into various aspects of approximation and stability rele-

vant to the dominant modeling paradigms in rough and stochastic analysis as well as in

mathematical finance. Roughly speaking, Chapter 2 and 4 tend to stability, while Chap-

ter 1, 3, 4, 5, and 6 tend to approximation.

Every chapter is relatively self-contained and may be read independently. In the fol-

lowing we give an outline of this thesis by summarizing the main contributions of each

chapter.
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Chapter 1: Universal approximation property of neural stochastic differential
equations

Chapter 1 is based on joint work with David J. Prömel and Josef Teichmann, see [117].

Financial modeling in continuous time typically begins with a stochastic differential

equation (SDE) of the form

Yt = y +

∫ t

0
b(s, Ys) ds+

∫ t

0
σ(s, Ys) dXs, t ∈ [0, T ], (6)

where the model parameters b and σ are calibrated to market data. In this context, neural

networks have recently been successfully used to approximate, or learn, said model param-

eters, which extends the idea of neural ordinary differential equations, see e.g. [46, 78, 36].

These so-called neural stochastic differential equations turn out to be very capable, also as

continuous-time generative models in machine learning, see e.g. [125, 123, 106].

This idea is also built on the theoretical property of neural networks to approximate any

continuous function arbitrarily well on compact subsets of Rd and in an Lp-sense. However,

these classical universal approximation theorems, stated e.g. in [50, 90], do not admit a

uniform control of the global growth of the respective neural networks, which therefore

poses a question about the theoretical universal approximation property of neural stochastic

differential equations. We aim to address this and prove that a number of classes of neural

networks are indeed capable of approximating continuous functions locally uniformly subject

to a given global linear growth constraint, adapting already proven universal approximation

theorems in the literature. Consequently, given that there exists a unique solution to a

stochastic differential equation, it can be approximated arbitrarily well by solutions of neural

stochastic differential equations in which the neural networks have the above mentioned

“universal approximation property under a linear growth constraint”.

Chapter 2: Functional differential equations driven by càdlàg rough paths

This chapter is based on joint work with Andreas Neuenkirch and David J. Prömel, see [116].

To model dynamics that evolve not only randomly but also depending on their past

values, so-called stochastic functional differential equations, or stochastic delay differential

equations, are being considered in the context of stochastic analysis, see e.g. [137, 138].

This motivates the study of the well-posedness of rough differential equations with path-

dependent coefficients and driven by càdlàg rough paths that are of the form

Yt = y0 +

∫ t

0
Fs(Y ) dXs, t ∈ [0, T ],
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where X is a càdlàg p-rough path for p ∈ (2, 3), the initial condition (y, y′) is a controlled

path (with respect to X), and F is a non-anticipative functional mapping controlled paths

to controlled paths.

In particular, we show the existence of unique solutions to such rough functional differ-

ential equations, and establish that the corresponding Itô–Lyons map

((y, y′), F,X) 7→ (Y, Y ′)

is locally Lipschitz continuous, thus touching on the aspect of stability. Both of these results

rely on a Lipschitz-type condition and a quadratic growth condition on the path-dependent

coefficient (F, F ′).

This covers typical examples of rough differential equations driven by càdlàg rough paths

such as classical state dependent RDEs, see e.g. [73, 75], and controlled RDEs, see e.g. [3],

and further extends to discrete time dependent RDEs and delayed RDEs, see e.g. [8, 140].

It may therefore be of use for related path-dependent problems, e.g., in control theory,

non-linear filtering, and stochastic functional analysis.

To that end, the deterministic theory is then applied to stochastic differential equations

with delay. Thus, the continuity of the Itô–Lyons map yields pathwise stability results for

these stochastic differential equations. In particular, this allows to resolve an old observation

pointed out in [136] about the non-continuity of the flow of stochastic differential equations

with delay.

Chapter 3: Pathwise convergence of the Euler scheme for rough and stochastic
differential equations

This chapter is based on joint work with Andrew L. Allan, Chong Liu, and David J. Prömel,

see [6].

While it is well-known that the stochastic differential equation (6) driven by a semi-

martingale X admits a unique solution assuming that the coefficients b and σ are suitably

regular, it can rarely be solved explicitly. Therefore, numerical methods are being applied to

approximate the solution, see e.g. [109]; the most common being the Euler scheme, possibly

of higher order. The first order Euler scheme, the so-called Euler–Maruyama scheme, for

the SDE (6) is given by

Y n
t = y0 +

∑
k : tnk+1≤t

b(tnk , Y
n
tnk

)(tnk+1 − tnk) +
∑

k : tnk+1≤t
σ(tnk , Ytnk )(Xtnk+1

−Xtnk
), t ∈ [0, T ],

along a sequence of partitions Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, of [0, T ],

which is essentially a time-discretized modification of the equation. Higher order Euler

schemes, adding higher order terms to the above approximation, converge faster but involve
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simulating iterated integrals of the driving signal X, which might become a numerically

non-trivial task.

Since numerical calibration is carried out path by path, we tend to rough path the-

ory, which provides a fully pathwise solution theory for SDEs. While it has provided a

transparent convergence analysis of higher order Euler approximations, see e.g. [70, 75],

the pathwise convergence of the first order Euler approximation of stochastic differential

equations is inexplicable from the rough path perspective so far. One issue, for example, is

that the rough path lift is not unique so that there possibly exist multiple solutions to the

corresponding rough differential equation, but the Euler scheme, which does not depend on

the rough path lift, can only converge to at most one such solution.

We clarify this gap and investigate rough differential equations that are driven by càdlàg

paths satisfying the so-called Property (RIE) along suitable sequences of partitions with

vanishing mesh size. Property (RIE) has been introduced in [143] and [7] for applications

in mathematical finance considering model uncertainty and notably recovers the rough

integral as limit of left-point Riemann sums, cf. (4).

We use this to establish a novel result on the convergence of the Euler scheme (and an

approximative variant thereof) of rough differential equations.

It turns out that Property (RIE) is satified by almost all sample paths of Brownian

motion, Itô processes, Lévy processes and general càdlàg semimartingales, as well as the

driving signals of both so-called mixed and rough stochastic differential equations, relative

to different time discretizations. It further ensures the existence of a canonical Itô-type

rough path lift, which allows us to treat the SDE (6) as an RDE.

We therefore obtain a rigorous pathwise convergence analysis of the first order Euler

approximation of stochastic differential equations driven by various types of stochastic noise,

even outside the classical semimartingale setting.

Chapter 4: Pathwise analysis of log-optimal portfolios

This chapter is based on joint work with Andrew L. Allan, Chong Liu and David Prömel.

Classical approaches to optimal portfolio selection problems are based on probabilistic

models for asset returns or prices. However, it is now widely recognized that the performance

of optimal portfolios is highly sensitive to model misspecifications. To account for various

types of model risk, robust and model-free approaches have gained increasing importance

in portfolio theory.

In this chapter, we develop a pathwise approach to analyze stability and approximation

properties of portfolios for individual price trajectories that are generated by standard

models for financial markets.
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For this purpose, we rely again on the theory of càdlàg rough paths, as it is a pathwise

(stochastic) integration theory which offers powerful stability estimates. To demonstrate

that this is an ideal tool, we study, as a prototypical example from portfolio theory, the

log-optimal portfolio of a classical investment-consumption optimization problem in a fric-

tionless financial market, modeled by an Itô diffusion process.

However, since the rough integral is defined as a limit of compensated Riemann sums,

see (4), we miss the natural financial interpretation of the integral as the capital gains

process which is generated by continuous-time trading. We even need to be careful when

choosing the rough path lift because the wrong choice might lead to an anticipating integral,

that corresponds, e.g., to Stratonovich integration, and thus introduce arbitrage.

To overcome this, when defining an integral, we again assume Property (RIE) to hold

for the integrator, which, importantly, recovers the rough integral as limit of left-point, i.e.,

non-anticipative, Riemann sums. Moreover, in a probabilistic framework, then the rough

and the stochastic Itô integral coincide almost surely when both are defined.

This allows us to identify an entirely deterministic framework for constructing the log-

optimal portfolio in a pathwise manner, for local volatility models as (6) and Black–Scholes

type models (see [24]). In this framework, we derive pathwise stability estimates for the

log-optimal portfolio and its associated capital process with respect to the underlying model

parameters, i.e., drift and volatility, accounting for model uncertainty.

Furthermore, since trading in reality is not done in continuous time but in (high-

frequent) discrete time, we derive pathwise error estimates that result from the time-

discretization of the log-optimal portfolio and its associated capital process.

Here we use some of the results obtained in Chapter 2 and Chapter 3.

Chapter 5: Existence of general pathwise stochastic integration

This chapter will be part of a larger joint work with Purba Das and David Prömel.

In the previous two chapters, we have considered the rough path framework assuming

Property (RIE) for defining a rough integral and/or a rough differential equation. This

has been proven to be a sufficient condition on the integrator for the rough integral to be

approximated by left-point Riemann sums, see [143]. We now generalize this to the so-called

Property γ-(RIE), for γ ∈ [0, 1], relative to a sequence of partitions, which implies that the

rough integral is given as limit of general Riemann sums. More precisely, the rough integral

is then given by∫ t

0
Ys dXγ

s = lim
n→∞

Nn−1∑
k=0

(Ytnk + γ(Ytnk+1
− Ytnk ))(Xtnk+1∧t −Xtnk∧t), t ∈ [0, T ],
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where Xγ = (X,Xγ) denotes the canonical rough path lift for a continuous path X satisfying

Property γ-(RIE). We note that for γ = 0 this corresponds to (forward) Itô-type integration,

for γ = 1
2 to Stratonovich-type integration, and for γ = 1 to backward Itô-type integration,

these being the most popular choices in applications.

Since Property γ-(RIE) for γ = 0 is exact Property (RIE), we relate these to one another,

depending on the parameter γ which determines the type of Riemann sum approximation.

It turns out that for any γ, if a path X satisfies Property (RIE), it also satisfies Property

γ-(RIE), and for γ ̸= 1
2 , the reverse of the implication holds.

We shed more light on these path properties when establishing that Property γ-(RIE)

is actually equivalent to imposing a certain regularity condition of the path and along the

sequence of partitions, and assuming the existence of the Lévy area of the path, i.e., that

lim
n→∞

Nn−1∑
k=0

(Xi
tnk

(Xj
tnk+1∧t

−Xj
tnk∧t

) −Xj
tnk

(Xi
tnk+1∧t

−Xi
tnk∧t

)), i, j = 1, . . . , d,

exists, and for γ ̸= 1
2 , to additionally assuming the existence of the quadratic variation of

the path, i.e., that

lim
n→∞

Nn−1∑
k=0

(Xi
tnk+1∧t

−Xi
tnk∧t

)(Xj
tnk+1∧t

−Xj
tnk∧t

), i, j = 1, . . . , d,

exists. The former seems fitting in the regime of rough path theory, the latter formally

establishes the link to the Föllmer integral (3). Also from a practical perspective, this

seems rather natural considering that, e.g., almost all sample paths of Brownian motion

satisfy these assumptions relative to sequences of partitions fulfilling mild conditions on the

mesh size.

We recall that Property (RIE) is satisfied by almost all sample paths of further (continu-

ous) stochastic processes, see in Chapter 3, which makes this notion of pathwise integration

applicable to the stochastic setting, especially since the rough and stochastic Stratonovich

integral coincide almost surely under Property γ-(RIE) for γ = 1
2 .

Another example of a stochastic process that does not fit into the Itô-type but notably

into the Stratonovich-type setting is the fractional Brownian motion for Hurst parameter

H ∈ (13 ,
1
2) as almost all sample paths do not possess quadratic variation but Lévy area,

e.g., relative to the sequence of dyadic partitions.

Chapter 6: Universal approximation with Itô-type signatures

This chapter is joint work with Mihriban Ceylan and David J. Prömel.

So far we have focused on the study of rough analysis in the narrower sense of rough path

theory, namely enhancing a path with a suitable “second order” process. The signature
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of a path refers to a particular characteristic of a path that is formally defined as the

enhancement of a path by not only the second order but all iterated integrals of the path

against itself: ∫
0<t1<...<tn<T

dXi1
t1
· · · dXin

tn ,

for i1, . . . , in ∈ {1, . . . , d}, n ∈ N, see the early works of Chen [28, 29].

In his seminal work [129], Lyons identified this collection of integrals to be, appropriately

truncated, the precise information of a path that is required to guarantee continuity of the

integral map and the solution map (5) for a nonlinear differential equation driven by a path

of very low regularity, i.e., also for paths of finite p-variation for p ≥ 3.

Furthermore, due to its many rich properties the signature of a path offers a way to faith-

fully and tractably represent the key features from highly oscillatory data. Thus recently,

a plethora of data-driven methods based on the signature of a path is being developed for

applications to mathematical finance, see e.g. [127, 11, 19, 100, 12, 45, 44]. These methods

are fundamentally based on universal approximation theorems, which state that continuous

functionals on the path space can be approximated arbitrarily well by linear functionals on

the signature. For financial applications, this requires computing the signature by adopting

Stratonovich integration. However, from a modeling perspective, Itô integration is typically

the preferred choice of stochastic integration.

In this chapter, we introduce a notion of the signature of the path assuming Property

γ-(RIE) that has been introduced in Chapter 5 and yields a unifying framework for path-

wise Stratonovich-type and Itô-type integration. Extending the path by suitable quadratic

variation terms, we are able to deduce a pathwise universal approximation theorem for lin-

ear functionals on the signature. This can be translated into the probabilistic setting for

the Itô-signature of continuous semimartingales, making it particularly suitable for financial

modeling.
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Chapter 1

Universal approximation property of neural stochastic
differential equations

Modeling approaches that hybridize the notion of differential equations with neural networks

have recently become increasingly of interest, see [63, 30]. In particular, neural stochastic

differential equations (neural SDEs) have emerged as a powerful mathematical tool for cap-

turing complex dynamical systems that exhibit randomness, see [157, 99, 106]. Specifically,

these are stochastic differential equations in which neural networks are used to parametrize

the drift and diffusion coefficient, thus extending the notion of neural ordinary differential

equations. Neural SDEs have been successfully applied to develop data-driven methods for

modeling, learning, and generating random dynamics due to powerful training technolo-

gies. For instance, they serve as continuous-time generative models for irregular time series,

see [125, 123, 106, 92], and, notably, as very tractable and universal models for financial

markets, thus being of particular interest for financial engineering, see [46, 78, 36, 37, 35, 64].

In other words: neural stochastic differential equations constitute a continuous time coun-

terpart of recurrent neural networks.

What motivates many of these applications is the key insight that neural stochastic

differential equations are, at least, expected to approximate general SDEs arbitrarily well,

thus providing fairly general and flexible models for stochastic processes and time series,

such as recurrent neural networks approximate generic discrete dynamics. In fact, classical

universal approximation theorems for neural networks, as proven, e.g., in [50, 90], state that

neural networks approximate any continuous function arbitrarily well uniformly on compact

subsets of Rd or in an Lp-sense globally on Rd. Hence, it seems intuitively reasonable that

neural SDEs would inherit the universality of neural networks, allowing them to approximate

generic SDEs (under mild regularity conditions). However, classical universal approximation

theorems do not guarantee any uniform control of the global growth of the involved neural

networks and, therefore, do not rigorously imply a universal approximation property for the

associated neural SDEs.
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In this chapter, we provide a theoretical justification for the universality of neural SDEs:

in Section 1.1 we identify various classes of neural networks that have the so-called “univer-

sal approximation property under a linear growth constraint”, that is, are able to approx-

imate continuous functions locally uniformly subject to a given global linear growth con-

straint. Exemplary classes of neural networks with this universal approximation property

include single hidden layer feed-forward neural networks with linearly activating activation

functions, such as logistic sigmoid and hyperbolic tangent, and deep feed-forward neural

networks combining rather general activation functions with rectified linear unit (ReLU)

activation functions. For the proof of these universal approximation theorems with global

constraints, we rely on universal approximation theorems on weight spaces, as proven in [49],

as well as on Lp-spaces, as proven in [107], and extend some of the methods of both works.

In Section 1.2 we demonstrate that the “universal approximation property under a linear

growth constraint” of neural networks guarantees the universality of the associated neural

SDEs. Indeed, assuming that an SDE possesses a unique solution, this solution can be ap-

proximated arbitrarily well by solutions of neural SDEs in a standard L2-norm for stochastic

processes if the involved neural networks do satisfy the “universal approximation property

under a linear growth constraint”. Moreover, we derive quantitative error estimates for

the approximation of stochastic differential equations with coefficients that fulfill standard

conditions such as Lipschitz and Hölder continuity.

This chapter is structured as follows. In Section 1.1 we derive the “universal approxi-

mation property under a linear growth constraint” for various classes of neural networks.

For these, we prove in Section 1.2 that the associated neural SDEs can approximate general

SDEs.

1.1 Universal approximation property under a linear growth constraint

In this section, we identify various classes of neural networks allowing for the approximation

of continuous functions locally uniformly subject to a given linear growth constraint.

We start by precisely formulating the aforementioned approximation property.

The spaces Rk and Rn1×n2 are equipped with the Euclidean norm |·|. Let C([0, T ] ×
Rk;Rn1×n2) be the set of continuous functions f : [0, T ] × Rk → Rn1×n2 . Given a set K ⊂
[0, T ] × Rk and f ∈ C([0, T ] × Rk;Rn1×n2), we define

∥f∥∞,K := sup
x∈K

|f(x)|.

Moreover, we write C(Rd;Re) for the space of continuous maps f :Rd → Re, C0
b (Rd;Re) for

the space of bounded and continuous functions f :Rd → Re, and C∞(Rd;Re) for the space
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of smooth functions f :Rd → Re, i.e. functions with all its derivatives up to arbitrary order

being continuous.

Definition 1.1.1. A set NN ⊂ C([0, T ] × Rk;Rn1×n2) is said to have the universal ap-

proximation property under a linear growth constraint if the following property holds:

For every function f ∈ C([0, T ] × Rk;Rn1×n2) with at most linear growth, i.e., there

exists a constant Cf > 0 such that

|f(t, x)|≤ Cf (1 + |x|), t ∈ [0, T ], x ∈ Rk,

for every ε ∈ (0, 1) and every compact set K ⊂ Rk, there exists a function φ ∈ NN such

that

∥φ− f∥∞,[0,T ]×K≤ ε,

and there exists a constant C̃f > 0, not depending on ε and K, such that

|φ(t, x)|≤ C̃f (1 + |x|), t ∈ [0, T ], x ∈ Rk.

In the following four subsections we provide various classes of neural networks satisfying

the universal approximation property under a linear growth constraint.

1.1.1 Linearly activating activation functions

To introduce the first class of neural networks that have the universal approximation prop-

erty under a linear growth constraint, we rely on the notion of weighted spaces as introduced

in [49] in the context of neural networks. To that end, we fix the weight function

ψ:Rk+1 → (0,∞), ψ(x) := 1 + |x|, x ∈ Rk+1.

The pre-image ψ−1((0, r]) is compact in Rk+1, for any r > 0, and hence, ψ is an admissible

weight function and (Rk+1, ψ) is a weighted space in the sense of [49, Section 2.1]. We

further introduce the weighted norm ∥·∥Bψ(Rk+1;Rn1×n2 ) as

∥f∥Bψ(Rk+1;Rn1×n2 ):= sup
x∈Rk+1

|f(x)|
ψ(x)

,

for f :Rk+1 → Rn1×n2 such that supx∈Rk+1
|f(x)|
ψ(x) < ∞. The space Bψ(Rk+1;Rn1×n2) is

the weighted function space defined as the ∥·∥Bψ(Rk+1;Rn1×n2 )-closure of C0
b (Rk+1;Rn1×n2).

Note that Bψ(Rk+1;Rn1×n2) is a separable Banach space when equipped with the norm

∥·∥Bψ(Rk+1;Rn1×n2 ), which contains C0
b (Rk+1;Rn1×n2), whereas C0

b (Rk+1;Rn1×n2) is of course

not separable with respect to the uniform norm.
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Given an activation function ρ ∈ C(R;R), a single hidden layer (feed-forward) neural

network φ:Rn0 → Rn1×n2 is defined by

φ(x) =
N∑
n=1

wnρ(a⊤n x+ bn), (1.1)

for x ∈ Rn0 , where N ∈ N denotes the number of neurons, where w1, . . . , wN ∈ Rn1×n2 ,

a1, . . . , aN ∈ Rn0 and b1, . . . , bN ∈ R denote the linear readouts, weight vectors and biases,

respectively. For ρ ∈ C(R;R), we denote by NN ρ
n0;n1×n2

the set of neural networks of the

form (1.1) with activation function ρ.

Following [49, Definition 4.3], an activation function ρ ∈ C(R;R) is called linearly acti-

vating if NN ρ
1;1×1 ⊆ Bψ(R;R) and NN ρ

1;1×1 is dense in Bψ(R;R).

Remark 1.1.2. An activation function ρ ∈ C(R;R) is linearly activating if it holds that

limx→±∞
|ρ(ax+b)|
ψ(x) = 0 for any a ∈ N0, b ∈ R, and ρ is sigmoidal, i.e., limx→−∞ ρ(x) = 0

and limx→∞ ρ(x) = 1, see [49, Proposition 4.4]. Examples include the logistic sigmoid

ρ(x) = 1
1+exp(−x) and ρ(x) = tanh(x). Other conditions for activation functions to be

linearly activating are the discriminatory property or conditions on its Fourier transform,

which can be found in [49, Proposition 4.4].

For the single hidden layer neural networks NN ρ
k+1;n1×n2

with linearly activating ac-

tivation function ρ, we obtain the following universal approximation theorem allowing for

given a linear growth constraint.

Theorem 1.1.3. If the activation function ρ ∈ C(R;R) is linearly activating, then

NN ρ
k+1;n1×n2

has the universal approximation property under a linear growth constraint

in the sense of Definition 1.1.1. Moreover, the constant C̃f in Definition 1.1.1 can be

chosen to be C̃f = (1 + T )(1 + Cf ).

Proof. Let f ∈ C([0, T ]×Rk;Rn1×n2) be such that there exists a constant Cf > 0 satisfying

|f(t, x)|≤ Cf (1 + |x|), t ∈ [0, T ], x ∈ Rk. (1.2)

Step 1. We extend f to Rk+1 by setting f(t, x) := f(0, x), t ≤ 0, and f(t, x) := f(T, x),

t ≥ T . Given some function g ∈ C∞(R;R) with compact support, g:R → [0, 1], g(t) = 1 for

t ∈ [0, T ], we now consider f̃(t, x) := f(t, x)g(t). Note that (1.2) holds for f̃ , which implies

that ∥f̃∥Bψ(Rk+1;Rn1×n2 )≤ Cf .

Step 2. Suppose that ε ∈ (0, 1) and K ⊂ Rk is a compact set. Now there exists

f̃ε,K ∈ Bψ(Rk+1;Rn1×n2) satisfying (1.2),

f(t, x) = f̃ε,K(t, x), t ∈ [0, T ], x ∈ K,
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and

∥f̃ε,K∥Bψ(Rk+1;Rn1×n2 )≤ ∥f̃∥Bψ(Rk+1;Rn1×n2 )≤ Cf .

More precisely, take g̃ ∈ C∞(Rk+1;R) with compact support, g̃:Rk+1 → [0, 1], g̃(t, x) = 1

for t ∈ [0, T ], x ∈ K, and set f̃ε,K := f̃ g̃. Then f̃ε,K ∈ Bψ(Rk+1;Rn1×n2).

Step 3. Let H ⊆ Bψ(Rk+1;R) be the additive family given by

H = {x 7→ a⊤x+ b : a ∈ Rk+1, b ∈ R},

see [49, Definition 4.1, Example 4.2]. We note that any φ ∈ NN ρ
k+1;n1×n2

is of the form

φ(x) =
N∑
n=1

wnρ(hn(x)),

where h1, . . . , hN ∈ H, and supx∈Rk+1
ψ(h(x))
ψ(x) <∞, for all h ∈ H. Then, [49, Theorem 4.13]

gives that NN ρ
k+1;n1×n2

is dense in Bψ(Rk+1;Rn1×n2), i.e., there exists φ ∈ NN ρ
k+1;n1×n2

with

∥φ− f̃ε,K∥Bψ(Rk+1;Rn1×n2 )≤ ε

(
sup

(t,x)∈[0,T ]×K
ψ((t, x))

)−1

.

This implies that

∥φ− f∥∞,[0,T ]×K= ∥φ− f̃ε,K∥∞,[0,T ]×K≤ ε

2
,

and

|φ(t, x)| ≤ (∥φ− f̃ε,K∥Bψ(Rk+1;Rn1×n2 )+∥f̃ε,K∥Bψ(Rk+1;Rn1×n2 ))ψ((t, x))

≤ (1 + Cf )(1 + T )(1 + |x|),

for t ∈ [0, T ], x ∈ Rk.
Therefore the universal approximation result on Bψ(Rk+1;Rn1×n2) implies the universal

approximation property under a linear growth constraint in the sense of Definition 1.1.1.

1.1.2 Combining the ReLU activation function and a general activation func-
tion

To allow for an activation function that is not linearly activating, such as the widely used

rectified linear unit (ReLU) activation function ρ(x) := max(x, 0), we consider a different

neural network architecture.

Let L,N0, . . . , NL ∈ N, and for any l ∈ {1, . . . , L}, let wl:RNl−1 → RNl , x 7→ Alx + bl,

be an affine function with Al ∈ RNl×Nl−1 and bl ∈ RNl . Given an activation function

ρ ∈ C(R;R), a deep (feed-forward) neural network φ:RN0 → RNL is defined by

φ = wL ◦ ρ ◦ wL−1 ◦ . . . ◦ ρ ◦ w1,
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where ◦ denotes the usual composition of functions. Here, ρ is applied componentwise, L−1

denotes the number of hidden layers (L is the depth of φ), and N1, . . . , NL−1 denote the

dimensions (widths) of the hidden layers and N0 and NL the dimension of the input and

the output layer, respectively.

We write NN ρ
N0;NL

for the set of deep feed-forward neural networks φ:R → R with

activation function ρ, input dimension N0 and output dimension NL and an arbitrary

number of hidden layers L, see e.g. [46, Appendix B.1]. We then write NN ρ
n0;n1,n2

for the

set of functions φ:Rn0 → Rn1×n2 of the form φ = (φij)i=1,...,n1, j=1,...,n2 , where φij ∈ NN ρ
n0;1

.

When allowing for two activation functions ρ1, ρ2 ∈ C(R;R), we write NN ρ1,ρ2
N0;NL

and

NN ρ1,ρ2
n0;n1,n2

, respectively.

Proposition 1.1.4. If ρ1:R → R is non-affine continuous and continuously differentiable

at at least one point, with non-zero derivative at that point, and ρ2 is the ReLU acti-

vation function, then NN ρ1,ρ2
k+1;n1,n2

has the universal approximation property under a lin-

ear growth constraint. Moreover, the constant C̃f in Definition 1.1.1 can be chosen to be

C̃f =
√
n1n2(1 + T )(1 + Cf ).

Remark 1.1.5. The condition on ρ1 in Proposition 1.1.4 is rather mild. For instance, it

is satisfied by the frequently used activation functions, and it even includes polynomials.

Furthermore, one may also consider both ρ1 and ρ2 to be the ReLU activation function.

Proof of Proposition 1.1.4. We first shall prove that NN ρ1,ρ2
n0;1

is dense in Bψ(Rn0 ;R), n0 ∈ N,

i.e., for every f ∈ Bψ(Rn0 ;R) and ε > 0 there exists some φ ∈ NN ρ1,ρ2
n0;1

such that

∥φ− f∥Bψ(Rn0 ;R)= sup
x∈Rn0

|f(x) − φ(x)|
ψ(x)

< ε. (1.3)

In this proof, we adapt the methods of [49].

Step 1. A vector space A of maps a:Rn0 → R is called a subalgebra if A is closed under

multiplication, i.e., for every a1, a2 ∈ A, it holds that a1 ·a2 ∈ A. Moreover, A is called point

separating if for every distinct x1, x2 ∈ Rn0 , there exists some a ∈ A with a(x1) ̸= a(x2). A
vanishes nowhere if for every x ∈ Rn0 , there exists some a ∈ A with a(x) ̸= 0.

For a given subalgebra A ⊆ C(Rn0 ;R), a vector subspace W ⊆ C(Rn0 ;R) is called an

A-submodule if a · w ∈ W, for all a ∈ A and w ∈ W, where x 7→ (a · w)(x) := a(x)w(x).

We consider the additive family H ⊆ Bψ(Rn0 ;R) given by

H = {x 7→ a⊤x+ b : a ∈ Rn0 , b ∈ R},

see [49, Definition 4.1, Example 4.2], and define A := span({cos ◦h : h ∈ H}∪ {sin ◦h : h ∈
H}). It follows from [49, part (ii) of Lemma 2.7] that A ⊆ Bψ(Rn0 ;R) since (cos ◦h)|K ,
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(sin ◦h)|K∈ C(K;R), for all h ∈ H and compact subsets K ⊂ R, and cos ◦h, sin ◦h ∈
C0
b (Rn0 ;R). Moreover, we note that A is a subalgebra of Bψ(Rn0 ;R). Further, we define

the subset W := {Rn0 ∋ x 7→ a(x)y ∈ R : a ∈ A, y ∈ R} ⊆ Bψ(Rn0 ;R), which is a vector

subspace (as A ⊆ Bψ(Rn0 ;R) and R are both vector (sub)spaces) and an A-submodule by

definition.

Step 2. We observe that A ⊆ Bψ(Rn0 ;R) vanishes nowhere as (x 7→ a(x) := cos(0) =

1) ∈ A. Moreover, A ⊆ Bψ(Rn0 ;R) is point separating and consists only of bounded maps.

Hence, W is dense in Bψ(Rn0 ;R) by the weighted vector valued Stone–Weierstrass the-

orem [49, Theorem 3.8].

Step 3. In this step we show that for every f ∈ C0
b (R;R) and ε > 0, there exists

φ ∈ NN ρ1,ρ2
1;1 such that

sup
z∈R

|φ(z) − f(z)|
ψ(z)

< ε.

We use this result in Step 4 to show that W is contained in the ∥·∥Bψ(Rn0 ;R)-closure of

NN ρ1,ρ2
n0;1

, which then gives (1.3).

Suppose that f ∈ C0
b (R;R) and ε > 0, and define the constant C := ε

3 + supz∈R|f(z)|.
Choose r > 0 large enough such that r ≥ 3Cε−1, and set Kr := ψ−1((0, r]), which is a

compact subset in R. Since NN ρ1
1;1 is dense in C(R;R) with respect to the locally uniform

norm, see [107, Proposition 3.12], there exists some φ ∈ NN ρ1
1;1 such that

sup
z∈Kr

|φ1(z) − f(z)|< ε

3
,

which implies that |φ1(z)|≤ C for all z ∈ Kr.

Let g ∈ C0
b (R;R) be the function defined by g(z) = min(max(z,−C), C), for z ∈ R.

Thus g(φ1(z)) = φ1(z), for all z ∈ Kr. Then we get that

sup
z∈R

|g(φ1(z)) − f(z)|
ψ(z)

≤ sup
z∈Kr

|φ1(z)−f(z)|+ sup
z∈R\Kr

|g(φ1(z))|
ψ(z)

+ sup
z∈R\Kr

|f(z)|
ψ(z)

<
ε

3
+

2C

R
≤ ε.

We now note that R2 ∋ (x, y) 7→ max(x, y) = ρ2(x− y) + y and R2 ∋ (x, y) 7→ min(x, y) =

x− ρ2(x− y). This gives that there exists φ ∈ NN ρ1,ρ2
1;1 , by adding two more hidden layers,

calculating

φ(z) := −ρ2(−ρ2(φ1(z) + C) + 2C) + C = min(max(φ1(z),−C), C) = g(φ1(z)).

Step 4. In this step we verify that W is contained in the ∥·∥Bψ(Rn0 ;R)-closure of NN ρ1,ρ2
n0;1

.

Suppose that ε > 0, h ∈ H, and y ∈ R. We can assume without loss of generality that

y ̸= 0. Moreover, we consider the finite constant Ch := supx∈Rn0
ψ(h(x))
ψ(x) + 1 > 0. By Step 3,

there exists some φ ∈ NN ρ1,ρ2
n0;1

such that

sup
z∈R

|φ(z) − cos(z)|
ψ(z)

<
ε

Ch|y|
.
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Now, for the function (x 7→ w(x) := cos(h(x))y) ∈ W, we define (x 7→ φ(x) := yφ(h(x))),

which is an element of NN ρ1,ρ2
n0;1

.

Then we have that

∥φ− w∥Bψ(Rn0 ;R)= sup
x∈RN0

|yφ(h(x)) − y cos(h(x))|
ψ(x)

≤ |y| sup
x∈Rn0

|φ(h(x)) − cos(h(x))|
ψ(x)

≤ |y| sup
x∈Rn0

ψ(h(x))

ψ(x)
sup
x∈Rn0

|φ(h(x)) − cos(h(x))|
ψ(h(x))

≤ Ch|y| sup
z∈R

|φ(z) − cos(z)|
ψ(z)

< ε.

Since ε was chosen arbitrarily, the map (x 7→ w(x) = cos(h(x))y) ∈ W belongs to the

∥·∥Bψ(Rn0 ;R)-closure of NN ρ1,ρ2
n0;1

, which holds analogously true for (x 7→ sin(h(x))y) ∈ W.

Hence, due to the trigonometric identities for the product of cosine and sine, the entire

A-submodule W is contained in the ∥·∥Bψ(Rn0 ;R)-closure of NN ρ1,ρ2
n0;1

.

Since W is dense in Bψ(Rn0 ;R) by Step 2, we obtain that NN ρ1,ρ2
n0;1

is dense in Bψ(Rn0 ;R),

that is, (1.3) does hold.

Step 5. It remains to show that (1.3) implies the universal approximation property

under a linear growth constraint in the sense of Definition 1.1.1.

Let f ∈ C([0, T ] × Rk;Rn1×n2) be such that there exists a constant Cf > 0 satisfying

|f(t, x)|≤ Cf (1 + |x|), t ∈ [0, T ], x ∈ Rk. (1.4)

We extend f to Rk+1 by setting f(t, x) := f(0, x), t ≤ 0, and f(t, x) := f(T, x), t ≥ T .

Given some function g ∈ C∞(R;R) with compact support, g:R → [0, 1], g(t) = 1 for

t ∈ [0, T ], we now consider f̃(t, x) := f(t, x)g(t). Note that (1.4) holds for f̃ , which implies

that ∥f̃∥Bψ(Rk+1;Rn1×n2 )≤ Cf .

Step 6. Suppose that ε ∈ (0, 1) and K ⊂ Rk is a compact set. Now there exists

f̃ε,K ∈ Bψ(Rk+1;Rn1×n2) satisfying (1.4),

f(t, x) = f̃ε,K(t, x), t ∈ [0, T ], x ∈ K,

and

∥f̃ε,K∥Bψ(Rk+1;Rn1×n2 )≤ ∥f̃∥Bψ(Rk+1;Rn1×n2 )≤ Cf .

More precisely, take g̃ ∈ C∞(Rk+1;R) with compact support, g̃:Rk+1 → [0, 1], g̃(t, x) = 1

for t ∈ [0, T ], x ∈ K, and set f̃ε,K := f̃ g̃. Then f̃ε,K ∈ Bψ(Rk+1;Rn1×n2).

18



Step 7. We write f = (f ij)i=1,...,n1, j=1,...,n2 , similarly for f̃ε,K , and let δ = ε√
n1n2

. Then

we infer from (1.3) that there exist φij ∈ NN ρ1,ρ2
k+1;1, i = 1, . . . , n1, j = 1, . . . , n2, such that

∥φij − f̃ ijε,K∥Bψ(Rk+1;R)≤ δ

(
sup

(t,x)∈[0,T ]×K
ψ((t, x))

)−1

.

This implies that

∥φij − f ij∥∞,[0,T ]×K= ∥φij − f̃ ijε,K∥∞,[0,T ]×K≤ δ,

and

|φij(t, x)| ≤ (∥φij − f̃ ijε,K∥Bψ(Rk+1;R)+∥f̃ ijε,K∥Bψ(Rk+1;R))ψ((t, x))

≤ (1 + Cf )(1 + T )(1 + |x|),

for t ∈ [0, T ], x ∈ Rk. Therefore there exists φ = (φij)i=1,...,n1, j=1,...,n2 ∈ NN ρ1,ρ2
k+1;n1,n2

satisfying

∥φ− f∥∞,[0,T ]×K≤ ε, |φ(t, x)|≤
√
n1n2(1 + Cf )(1 + T )(1 + |x|), t ∈ [0, T ], x ∈ Rk,

which concludes the proof.

In the course of the proof of Proposition 1.1.4, we have shown a universal approximation

property on the weighted space Bψ(Rn0 ;R).

Corollary 1.1.6. If ρ1:R → R be non-affine continuous and continuously differentiable at

at least one point, with non-zero derivative at that point, and ρ2 be the ReLU activation

function, then NN ρ1,ρ2
n0;1

is dense in Bψ(Rn0 ;R), i.e., for every f ∈ Bψ(Rn0 ;R) and ε > 0

there exists some φ ∈ NN ρ1,ρ2
n0;1

such that

∥f − φ∥Bψ(Rn0 ;R)= sup
x∈Rn0

|f(x) − φ(x)|
ψ(x)

< ε.

Remark 1.1.7. A universal approximation property on general weighted spaces has been

proven in [49, Theorem 4.13], by lifting a universal approximation property of one-dimen-

sional neural networks to an infinite dimensional setting. In our setting, we notice that it

suffices to have an approximation property on C0
b (R;R) with respect to the weighted norm,

and it is a sufficient but not necessary condition that the one-dimensional neural networks

be a subset of and dense in Bψ(R;R). This allows us to handle activation functions that

are not linearly activating, but requires considering deep neural networks and the ReLU

activation function instead of single hidden layer neural networks.
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Remark 1.1.8. In Proposition 1.1.4 and Corollary 1.1.6, we consider NN ρ1,ρ2
n0;1

to be the

generally defined class of neural networks. We note however that the functions that do

appear here are more precisely linear combinations of neural networks of the form

Rn0 ∋ x 7→ −ρ2(−ρ2(φ1(h(x)) + C) + 2C) + C,

where C > 0, h ∈ H = {Rn0 ∋ x 7→ a⊤x + b : a ∈ Rn0 , b ∈ R}, and φ1 ∈ NN ρ1
1;1 is a deep

feed-forward neural network with activation function ρ1 and fixed width.

The assumption on ρ1 ensures that NN ρ1
1;1 is dense in C(R;R) with respect to the locally

uniform norm. One may therefore relax this assumption and consider ρ1 to be of the form

ρ(x) = sin(x) + v(x) exp(−x), for some v:R → R that is bounded, continuous and nowhere

differentiable, so ρ1 is also nowhere differentiable, see [107, Proposition 4.15].

It is also possible to assume ρ1:R → R to be continuous and non-polynomial, and to con-

sider φ1:R → R to be a deep neural network, where each hidden layer has two neurons with

the identity activation function and one neuron with activation function ρ1. These, again,

are dense in C(R,R) with respect to the locally uniform norm, see [107, Proposition 4.2].

1.1.3 The ReLU activation function

We want to further examine the universal approximation property under a linear growth

constraint for deep neural networks with the ReLU activation function. We present a

constructive proof leading to a slightly stronger result compared to Corollary 1.1.10 in

the sense that it shows that the constant C̃f does not depend on T , and thus allows for

approximation results uniformly in time.

Proposition 1.1.9. If ρ be the ReLU activation function, then NN ρ
k+1;n1,n2

has the uni-

versal approximation property under a linear growth constraint. Moreover, the constant C̃f

in Definition 1.1.1 can be chosen to be C̃f =
√
n1n2(1 + Cf ).

Proof. We shall prove that for any f ∈ C(Rn0 ;R), n0 ∈ N, for any δ ∈ (0, 1) and K ⊂ Rn0

compact, there exists a neural network φ ∈ NN ρ
n0;1

such that

∥φ− f∥∞,K≤ δ and |φ(x)|≤ |f(x)|+δ, x ∈ Rn0 . (1.5)

Suppose K ⊂ Rn0 is a compact set and δ ∈ (0, 1). Without loss of generality, we assume

that K =
∏n0
i=1[ai, bi], for some ai, bi ∈ R, i = 1, . . . , n0. Set c > 0 and consider J =∏N0

i=1[ai − c, bi + c].

The proof is similar in spirit to the proof of [107, Theorem 4.16]. Since NN ρ
n0;1

is dense

in C(Rn0 ;R) with respect to the locally uniform norm, see [107, Proposition 4.9], there

exists φ1 ∈ NN ρ
n0;1

with fixed width n0 + 2 such that

∥φ1 − f∥∞,J≤ δ. (1.6)
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We begin by extending the definition of a neuron, for sake of notation: an enhanced

neuron means the composition of an affine map with the activation function ρ with another

affine map, and we allow for affine combinations of enhanced neurons. In the proof of [107,

Proposition 4.9] and in the following, one may use that x 7→ ρ(x + N) − N equals the

identity function for N suitably large, that is, one enhanced neuron may exactly represent

the identity function. This allows us, first, to record the inputs in every hidden layer (called

in-register neurons) and, second, to preserve the values of the corresponding neurons in the

preceding layer.

In each layer of φ1, the first n0 neurons are the in-register neurons, then we have the

neuron which bases its computations on the in-register neurons applying ρ, and finally, the

out-register neuron, which we associate the output with.

We now modify φ1 and construct φ ∈ NN ρ
n0;1

, by removing the output layer and adding

some more hidden layers (3n0 + 1 to be precise) such that φ equals φ1 on K and vanishes

on Rn0 \ J , thus (1.5) holds.

To that end, we use that two layers of two enhanced neurons each may represent the

continuous piecewise affine function Ui:R → R, where Ui(x) = 1, x ∈ [ai, bi], and Ui(x) = 0,

x ∈ (−∞, ai − c] ∪ [bi + c,∞), i = 1, . . . , n0, see [107, Lemma B.1].

Similarly, one layer of two enhanced neurons may represent [0,∞)2 ∋ (x, y) 7→ min(x, y),

see [107, Lemma B.2].

By adding 2n0 hidden layers, we are therefore able to store the values of Ui(xi), i =

1, . . . , n0, in the in-register neurons. By adding n0−1 hidden layers, we are able to compute

and store the value of U in one of the in-register neurons, where

U(x) := min
i=1,...,n0

Ui(xi),

which approximates the indicator function 1K , mapping into [0, 1], with support in J , taking

value 1 on K, and value 0 on Rn0 \ J .

It further holds that R2 ∋ (x, y) 7→ max(x, y) = ρ(x − y) + y and R2 ∋ (x, y) 7→
min(x, y) = x − ρ(x − y). Therefore there exists φ ∈ NN ρ

n0;1
, by adding two more hidden

layers and the output layer, calculating

φ := −ρ(−ρ(φ1 + CU) + 2CU) + CU = min(max(φ1,−CU), CU),

for some suitable constant C > 0 depending only on f and J such that |φ1(x)|≤ C for any

x ∈ J , see (1.6).

By definition, it holds that U(x) = 1, x ∈ K, and U(x) = 0, x ∈ Rn0 \J , thus we deduce

that

φ(x) = φ1(x), x ∈ K, and φ(x) = 0, x ∈ Rn0 \ J. (1.7)
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It then immediately follows from (1.6) that

∥φ− f∥∞,K≤ δ.

One can further verify that |φ(x)|≤ |φ1(x)|, x ∈ J . Combining (1.6) and (1.7), we obtain

that

|φ(x)|≤ |f(x)|+δ, x ∈ Rn0 .

This proves (1.5).

We now show that this implies the universal approximation property with given linear

growth constraint.

Let f ∈ C([0, T ] × Rk;Rn1×n2) be such that there exists a constant Cf > 0 satisfying

|f(t, x)|≤ Cf (1 + |x|), t ∈ [0, T ], x ∈ Rk.

We extend f to Rk+1 by setting f(t, x) := f(0, x), t ≤ 0, and f(t, x) := f(T, x), t ≥ T ,

and write f = (f ij)i=1,...,n1, j=1,...,n2 . Suppose that K ⊂ Rk is a compact set and ε ∈ (0, 1),

and let δ = ε√
n1n2

. Then we have shown that there exist φij ∈ NN ρ
k+1;1, i = 1, . . . , n1,

j = 1, . . . , n2, such that

∥φij − f ij∥∞,[0,T ]×K≤ δ and |φij(t, x)|≤ (1 + Cf )(1 + |x|), t ∈ [0, T ], x ∈ Rk.

This implies that there exists φ = (φij)i=1,...,n1, j=1,...,n2 ∈ NN ρ
k+1;n1,n2

satisfying

∥φ− f∥∞,[0,T ]×K≤ ε, |φ(t, x)|≤
√
n1n2(1 + Cf )(1 + |x|), t ∈ [0, T ], x ∈ Rk,

which concludes the proof.

In the course of the proof, we have shown the following corollary, which implies the

universal approximation property under a linear growth constraint.

Corollary 1.1.10. If ρ be the ReLU activation function, then for any f ∈ C(Rn0 ;R), for

any ε ∈ (0, 1) and K ⊂ Rn0 compact, there exists a neural network φ ∈ NN ρ
n0;1

such that

∥φ− f∥∞,K≤ ε and |φ(x)|≤ |f(x)|+ε, x ∈ Rn0 .

1.1.4 Two activation functions: the ReLU activation function and a squashing
activation function

When assuming two activation functions in the neural network architecture, a result anal-

ogous to Proposition 1.1.9 and Corollary 1.1.10 can be achieved. For this purpose, we

introduce the notion of squashing activation functions, i.e., monotone and sigmoidal func-

tions, see [90]. More precisely, ρ ∈ C(R;R) is squashing, if ρ is monotone, ρ:R → [a, b],

for some a, b ∈ R, and limx→−∞ ρ(x) = a, limx→∞ ρ(x) = b. We assume without loss of

generality that a = 0, b = 1.
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Proposition 1.1.11. If ρ1 ∈ C(R;R) be squashing and continuous non-polynomial and

continuously differentiable at at least one point, with non-zero derivative at that point, and

ρ2 be the ReLU activation function, then NN ρ1,ρ2
k+1;n1,n2

has the universal approximation

property under a linear growth constraint. Moreover, the constant C̃f in Definition 1.1.1

can be chosen to be C̃f =
√
n1n2(1 + Cf ).

Remark 1.1.12. Examples for activation functions satisfying the assumptions of Proposi-

tion 1.1.11 are ρ1(x) = 1
1+exp(−x) , ρ1(x) = tanh(x), and ρ1(x) = x

1+|x| .

Remark 1.1.13. One may relax the assumption that ρ1 is squashing and assume that

ρ1 ∈ C(R;R) be monotone and have one limit, either left or right. Then there exists

ρ̃1 ∈ C(R;R) that is squashing, given as a composition of an affine map with ρ1 with

another affine map and ρ1. This would allow to consider, e.g., ρ1(x) = ln(1 + exp(x)).

Proof. We shall prove that for any f ∈ C(Rn0 ;R), n0 ∈ N, for any δ ∈ (0, 1) and K ⊂ Rn0

compact, there exists a neural network φ ∈ NN ρ1,ρ2
n0;1

such that

∥φ− f∥∞,K≤ δ and |φ(x)|≤ |f(x)|+δ, x ∈ Rn0 . (1.8)

Suppose K ⊂ Rn0 is a compact set and δ ∈ (0, 1). Without loss of generality, we assume

that K =
∏n0
i=1[ai, bi], for some ai, bi ∈ R, i = 1, . . . , n0. Set c > 0 and consider J =∏N0

i=1[ai − c, bi + c].

We follow the constructive proof of Proposition 1.1.9. Since ρ1 is assumed to be con-

tinuous non-polynomial and continuously differentiable at at least one point, with non-zero

derivative at that point, NN ρ1
n0;1

is dense in C(Rn0 ;R) with respect to the locally uniform

norm, see [107, Proposition 4.9]. That is, there exists φ1 ∈ NN ρ1
n0;1

(allowing the identity

function in the output layer) with fixed width n0 + 2 such that

∥φ1 − f∥∞,J≤ δ. (1.9)

(We note that ρ1 may be replaced with ρ2.) We begin by extending the definition of

a neuron, for sake of notation: an enhanced neuron means the composition of an affine

map with the activation function (here, ρ2) with another affine map, and we allow for

affine combinations of enhanced neurons. In the proof of [107, Proposition 4.9] and in the

following, one uses that x 7→ ρ2(x + N) − N equals the identity function for N suitably

large, that is, one enhanced neuron may exactly represent the identity function. This allows

us , first, to record the inputs in every hidden layer (called in-register neurons) and, second,

to preserve the values of the corresponding neurons in the preceding layer.
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In each layer of φ, the first n0 neurons are the in-register neurons, then we have the

neuron which bases its computations on the in-register neurons applying the activation

function, and finally, we have the out-register neuron, which we associate the output with.

We now modify φ1 and construct φ ∈ NN ρ1,ρ2
n0;1

, by removing the output layer and adding

some more hidden layers such that φ equals φ1 on K and vanishes on Rn0 \ J , thus (1.8)

holds.

We consider ζ > 0 and set η = 1−ζ
2(n0−1)+3 . Then there exists some threshold Cη > 0 such

that

ρ1(x) ∈ [0, η), x ≤ −Cη, and ρ1(x) ∈ (1 − η, 1], x ≥ Cη.

We aim to find a neural representation of φ0:R → [0, 1] which takes values

φ0(x) ∈ (1 − η, 1], x ∈ K, and φ0(x) ∈ [0, η), x ∈ Rn0 \ J, (1.10)

using activation function ρ1, and store the value of φ1(x) in one of the in-register neurons.

Then we use that two layers of two enhanced neurons each, now using activation function

ReLU, ρ2, may represent the continuous piecewise affine function U :R → R, where

U(x) = 1, x ∈ [1 − η, 1], and U(x) = 0, x ∈ (−∞, η] ∪ [2(1 − η),∞),

see [107, Lemma B.1], noting that η < 1 − η < 1 < 2(1 − η).

We are therefore able to compute and store the value of U1(x) in one of the in-register

neurons, where

U1(x) := 1, x ∈ K, and U1(x) := 0, x ∈ Rn0 \ J,

which approximates the indicator function 1K .

We proceed as in the proof of Proposition 1.1.9: we add two more hidden layers and the

output layer, with ρ2, calculating

φ(x) = min(max(φ1,−CU1), CU1),

for some suitable constant C > 0 depending only on f and J such that |φ1(x)|≤ C for any

x ∈ J , see (1.9). It then follows that there exists φ ∈ NN ρ1,ρ2
n0;1

which satisfies (1.8) for δ
2 .

The rest can be proven following the last paragraph in the proof of Proposition 1.1.9

verbatim.

It remains to show (1.10). We make use of the squashing property of ρ1 and get that

one layer of two enhanced neurons may represent the function hi:R → [−1, 1] that satisfies

hi(x) ∈ (1 − 2η, 1], x ∈ [ai, bi], and h(x) ∈ (−η, η), x ∈ (−∞, ai − c] ∪ [bi + c,∞),
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namely

hi(x) = ρ1(c1(2x+ c− 2ai)) − ρ1(c1(2x− c− 2bi)),

where c1 =
Cη
c .

We modify hi by h̃i:R → [2η − 2, 2η], x 7→ hi(x) − (1 − 2η), and it holds that

h̃i(x) ∈ (0, 2η], x ∈ [ai, bi], h̃i(x) ∈ (−(1−η),−(1−3η)), x ∈ (−∞, ai−c]∪[bi+c,∞).

This implies that

n0∑
i=1

h̃i(xi) ∈ (0,∞), x ∈ K, and

n0∑
i=1

h̃i(xi) ∈ (−∞,−ζ), x ∈ Rn0 \ J,

because if x ∈ Rn0 \ J , there exists i such that xi ∈ (−∞, ai − c) ∪ (bi + c,∞), that is,∑n0
i=1 h̃i(xi) ≤ 2η(n0 − 1) − (1 − 3η) = −ζ. Lastly, since

ρ1(c2(2x+ ζ)) ∈ [0, η), x ≤ −ζ, and ρ1(c2(2x+ ζ)) ∈ (1 − η, 1], x ≥ 0,

for c2 =
Cη
ζ , we consider

φ0(x) = ρ1

(
c2

(
2

n0∑
i=1

h̃i(xi) + ζ
))
,

which gives (1.10).

1.2 Universal approximation property of neural SDEs

In this section, we derive a universal approximation property of neural stochastic differential

equations (neural SDEs) assuming that the involved neural networks satisfy the universal

approximation property under a linear growth constraint in the sense of Definition 1.1.1.

We start by introducing the probabilistic framework.

Let T > 0 be a fixed finite time horizon and let W be a d-dimensional Brownian motion,

defined on a probability space (Ω,F ,P) with a filtration (Ft)t∈[0,T ] satisfying the usual

conditions, i.e., completeness and right-continuity. Throughout this section, we consider

the stochastic differential equation

Xt = x0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs, t ∈ [0, T ], (1.11)

where x0 ∈ Rk, b: [0, T ] × Rk → Rk, σ: [0, T ] × Rk → Rk×d are continuous functions, and∫ t
0 σ(s,Xs) dWs is defined as an Itô integral. For a comprehensive introduction to stochastic

Itô integration and stochastic differential equations we refer, e.g., to the textbook [104].

Moreover, we make the following assumption.

25



Assumption 1.2.1. Let b: [0, T ] × Rk → Rk and σ: [0, T ] × Rk → Rk×d be continuous

functions such that

|b(t, x)|+|σ(t, x)|≤ Cb,σ(1 + |x|), t ∈ [0, T ], x ∈ Rk,

for some constant Cb,σ > 0.

In order to approximate the general SDE (1.11), we consider sets NN 1 ⊂ C([0, T ] ×
Rk;Rk) and NN 2 ⊂ C([0, T ]×Rk;Rk×d) having the universal approximation property under

a linear growth constraint. For bε ∈ NN 1 and σε ∈ NN 2, the associated neural SDE is

defined as

Xε
t = x0 +

∫ t

0
bε(s,X

ε
s ) ds+

∫ t

0
σε(s,X

ε
s ) dWs, t ∈ [0, T ]. (1.12)

To ensure the existence of a unique solution Xε to the neural SDE (1.12), it is sufficient that

bε and σε are Lipschitz continuous with at most linear growth. Let Lip([0, T ]×Rk;Rn1×n2)

be the set of Lipschitz continuous functions f : [0, T ] × Rk → Rn1×n2 .

Remark 1.2.2. The Lipschitz assumption on the neural networks is immediately satisfied

if the underlying activation functions are Lipschitz continuous. Many frequently used ac-

tivation functions are, indeed, Lipschitz continuous functions, including ReLU, hyperbolic

tangent, softsign, softplus and sigmoidal activation functions.

Combining the universal approximation property under a linear growth constraint and

[101, Theorem A], we obtain the following universal approximation property of neural SDEs.

Lemma 1.2.3. Suppose Assumption 1.2.1 and that pathwise uniqueness holds for the

SDE (1.11). Moreover, suppose that NN 1 ⊂ Lip([0, T ] × Rk;Rk) and NN 2 ⊂ Lip([0, T ] ×
Rd;Rk×d) have the universal approximation property under a linear growth constraint in the

sense of Definition 1.1.1. Let K ⊂ Rk be a compact set. Then for every ε > 0, there exist

bε ∈ NN 1 and σε ∈ NN 2 such that

sup
x0∈K

E
[

sup
t∈[0,T ]

|Xε,x0
t −Xx0

t |2
]
≤ ε,

where Xx0 and Xε,x0 are the solutions to the SDE (1.11) and the neural SDE (1.12), with

initial value x0, respectively.

Remark 1.2.4. The uniform linear growth condition, as required in the definition of the

universal approximation property under a linear growth constraint (Definition 1.1.1), is a

necessary condition for most approximation and stability results for stochastic differential

equations, cf. [154, 74, 131]. For instance, assuming that the involved neural networks

are real analytic, the flow of the associated neural stochastic differential equations is real

analytic as well and can be used to approximate the flow of fairly general SDEs, see [91, 74].
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Even though we do not apply the full strength of approximation in weighted spaces in

this section, we still want to point out that, in contrast to Lemma 1.2.3, we can actually

obtain a global approximation result of quantitative nature for the solutions of differential

equations and their flows using weighted norms for the involved coefficients. We do only

show it in the case of ordinary differential equations here and leave further investigations

on weighted spaces and stochastic differential equations to future research.

Lemma 1.2.5. Let Vi:Rk → Rk, i = 1, 2, be two L-Lipschitz continuous vector fields of at

most linear growth, i.e., there exists a constant L > 0 such that

|Vi(x) − Vi(y)|≤ L|x− y| and |Vi(x)|≤ L(1 + |x|),

for x, y ∈ Rk. Let ε > 0 and suppose that ∥V1 − V2∥Bψ(Rk;Rk)≤ ε with ψ(x) := 1 + |x|.
Denote by Xi(x) the solution of

Xi
t(x) = x+

∫ t

0
Vi(X

i
s(x)) ds, t ∈ [0, T ],

with Xi
0(x) = x for i = 1, 2 and x ∈ Rk. Then, for every T > 0 there is a constant C > 0

such that

sup
t∈[0,T ]

|X1
t (x) −X2

t (x)|≤ 2εmax(1, LT ) exp(2LT )Tψ(x)

for all x ∈ Rk.

Proof. We can write

X1
t (x) −X2

t (x) =

∫ t

0
V1(X

1
s (x)) ds−

∫ t

0
V2(X

2
s (x)) ds

=

∫ t

0
(V1(X

1
s (x)) − V1(X

2
s (x))) ds+

∫ t

0
(V1(X

2
s (x)) − V2(X

2
s (x))) ds

=

∫ t

0

∫ 1

0
∇V1(X1

s (x) + θ(X1
s (x) −X2

s (x))) dθ · (X1
s (x) −X2

s (x)) ds

+

∫ t

0

V1(X
2
s (x)) − V2(X

2
s (x))

ψ(X2
s (x))

ψ(X2
s (x)) ds

for all x ∈ Rk and t ∈ [0, T ]. Recall that, since X2 is the solution of an ordinary differ-

ential equation with coefficient of at most linear growth, a straightforward application of

Gronwall’s inequality yields

|X2
t (x)|≤ max(1, Lt)(1 + |x|) exp(Lt), t ∈ [0, T ], x ∈ Rk.

Hence, we obtain

|X1
t (x) −X2

t (x)|≤ L

∫ t

0
|X1

s (x) −X2
s (x)|ds+ ε2 max(1, Lt) exp(Lt)

∫ t

0
ψ(x) ds

for all x ∈ Rk and t ∈ [0, T ], which allows to conclude the claimed lemma by Gronwall’s

inequality.
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The universal approximation property provided in Lemma 1.2.3 ensures that general

SDEs can be approximated arbitrary well by neural SDEs, assuming the corresponding

neural networks satisfy the universal approximation property under a linear growth con-

straint. In the following subsection we deduce quantitative versions of these approximation

results.

1.2.1 Quantitative approximation results for SDEs with Lipschitz continuous
coefficients

For SDEs with Lipschitz continuous coefficients, we obtain the following quantitative ap-

proximation property of neural SDEs.

Proposition 1.2.6. Let p ≥ 2, suppose that Assumption 1.2.1 holds and that the coefficients

b, σ of the SDE (1.11) satisfy

|b(t, x) − b(t, y)|+|σ(t, x) − σ(t, y)|≤ Lb,σ|x− y|, t ∈ [0, T ], x, y ∈ Rk,

for some constant Lb,σ > 0. Moreover, assume that NN 1 ⊂ Lip([0, T ] × Rk;Rk) and

NN 2 ⊂ Lip([0, T ] × Rk;Rk×d) have the universal approximation property under a linear

growth constraint in the sense of Definition 1.1.1. Then for every ε > 0, there exist bε ∈
NN 1 and σε ∈ NN 2 satisfying

∥bε − b∥∞,[0,T ]×K+∥σε − σ∥∞,[0,T ]×K≤ δ,

where

δp :=
ε

2C
exp(−CL2

b,σ) with C := 22(p−1)T
p
2

(
T
p
2 +

( p3

2(p− 1)

) p
2
)
,

and

K := {x ∈ Rk : |x|p≤ r} with r :=
22p

ε
(1 + 32p−1|x0|2p)(exp(ã) + exp(a)),

where

ã := 62p−1C̃2p
b,σT

p
(
T p +

(2p)3p

2p(2p− 1)p

)
and a := 62p−1C2p

b,σT
p
(
T p +

(2p)3p

2p(2p− 1)p

)
,

where C̃b,σ = max(C̃b, C̃σ), and C̃b and C̃σ are given in Definition 1.1.1, such that

E
[

sup
t∈[0,T ]

|Xε
t −Xt|p

]
≤ ε,

where X and Xε are the solutions to the SDE (1.11) and the neural SDE (1.12), respectively.
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Proof. First note that for any stochastic process (Zt)t∈[0,T ] and any stopping time τ ≤ T ,

we have that

E
[

sup
t∈[0,T ]

|Zt|p
]
≤
(
E
[(

sup
t∈[0,T ]

|Zt|p
)2]

P(τ < T )

) 1
2

+ E
[

sup
t∈[0,T ]

|Zt∧τ |p
]
.

Fixing ε > 0, and setting Z := Xε − X, we aim to bound each of the summands on the

right-hand side by ε
2 .

By the estimate given in [131, Chapter II, Theorem 4.4], we can bound

E
[(

sup
t∈[0,T ]

|Xε
t −Xt|p

)2]
≤ 22p−1

(
E
[

sup
t∈[0,T ]

|Xε
t |2p

]
+ E

[
sup
t∈[0,T ]

|Xt|2p
])

≤ ε

2
r.

Markov’s inequality then implies that

P(τ < T ) ≤ ε

2
r−1,

for the stopping time τ := inf{t ≥ 0 : Xε
t /∈ K} ∧ T .

Moreover, by Jensen’s inequality and [131, Chapter I, Theorem 7.2], we obtain that

E[ sup
t∈[0,u]

|Xε
t∧τ −Xt∧τ |p]

≤ 2p−1E
[( ∫ u∧τ

0
|bε(s,Xε

s ) − b(s,Xs)| ds
)p]

+ 2p−1E
[(

sup
t∈[0,u]

∣∣∣ ∫ u∧τ

0
(σε(s,X

ε
s ) − σ(s,Xs)) dWs

∣∣∣)p]
≤ (2T )p−1E

[ ∫ u∧τ

0
|bε(s,Xε

s ) − b(s,Xs)|p ds
]

+ 2p−1T
p−2
2

( p3

2(p− 1)

) p
2E
[ ∫ u∧τ

0
|σε(s,Xε

s ) − σ(s,Xs)|p ds
]

≤ 22(p−1)T p−1

(
E
[ ∫ u∧τ

0
|bε(s,Xε

s ) − b(s,Xε
s )|p ds

]
+ E

[ ∫ r∧τ

0
|b(s,Xε

s ) − b(s,Xs)|p ds
])

+ 22(p−1)T
p−2
2

( p3

2(p− 1)

) p
2
(
E
[ ∫ u∧τ

0
|σε(s,Xε

s ) − σ(s,Xε
s )|p ds

]
+ E

[ ∫ u∧τ

0
|σ(s,Xε

s ) − σ(s,Xs)|p ds
])

≤ δp22(p−1)T
p
2

(
T
p
2 +

( p3

2(p− 1)

) p
2
)

+ 22(p−1)T
p−2
2

(
T
p
2 +

( p3

2(p− 1)

) p
2
)
Lpb,σ

∫ u

0
E[ sup
v∈[0,s]

|Xε
v −Xv|p] ds,

for any u ∈ [0, T ]. By Grönwall’s inequality, it then holds that

E
[

sup
t∈[0,T ]

|Xε
t∧τ −Xt∧τ |p

]
≤ ε

2

since we have chosen δ accordingly. Combining the estimates thus concludes the proof.
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1.2.2 Quantitative approximation results for SDEs with Hölder continuous
diffusion coefficient

In the one-dimensional case, the Lipschitz assumption on the diffusion coefficient σ in

the SDE (1.11) can be relaxed to Hölder continuity, leading to the following quantitative

approximation property of neural SDEs.

Proposition 1.2.7. Let k = d = 1, suppose that Assumption 1.2.1 holds and that the

coefficients b, σ of the SDE (1.11) satisfy

|b(t, x) − b(t, y)|≤ Lb,σ|x− y| and |σ(t, x) − σ(t, y)|≤ Lb,σ|x− y|γ ,

for all x, y ∈ Rk, t ∈ [0, T ] and for some constant Lb,σ > 0 with γ ∈ [12 , 1]. Moreover,

assume that NN ⊂ Lip([0, T ] × R;R) has the universal approximation property under a

linear growth constraint in the sense of Definition 1.1.1. Then for every ε > 0, there exist

bε, σε ∈ NN satisfying

∥bε − b∥∞,[0,T ]×K+∥σε − σ∥∞,[0,T ]×K≤ δ,

where α > 1, β > 0 and δ ∈ (0, 1) with(
β + δT +

2α

β log(α)
δ2T +

2α

log(α)
β2γ−1L2

b,σT

)
exp(Lb,σT ) ≤ ε

2
,

and

K := [−r, r] with r :=
4

ε
(1 + 3|x0|2)(exp((24T + 6T 2)C̃2

b,σ) + exp((24T + 6T 2)C2
b,σ)),

where C̃b,σ is given in Definition 1.1.1, such that

sup
t∈[0,T ]

E[|Xε
t −Xt|] ≤ ε,

where X and Xε are the solutions to the SDE (1.11) and the neural SDE (1.12), respectively.

Proof. First note that for any stochastic process (Zt)t∈[0,T ] and any stopping time τ ≤ T ,

we have that

E[|Zt|] ≤ (E[|Zt|2]P(τ < T ))
1
2 + E[|Zt∧τ |].

Fixing ε > 0, t ∈ [0, T ], and setting Z = Xε −X, we aim to bound each of the summands

on the right-hand side by ε
2 .

By the estimate given in [131, Chapter II, Theorem 4.4], we can bound

E[|Xε
t −Xt|2] ≤ 2

(
E
[

sup
t∈[0,T ]

|Xε
t |2
]

+ E
[

sup
t∈[0,T ]

|Xt|2
])

≤ ε

2
r,
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Markov’s inequality then implies that

P(τ < T ) ≤ ε

2
r−1,

for the stopping time τ := inf{t ≥ 0 : Xε
t /∈ K} ∧ T .

We apply the idea of [160] to approximate x 7→ |x|, see also [85]. There exists h ∈ C2(R)

such that |x|≤ β + h(x), |h′(x)|≤ 1, and h′′(x) ≤ 2
|x|log(α)1[ β

α
,β]

(x). By Itô’s formula, we

then obtain that

|Xε
t∧τ −Xt∧τ | ≤ β +

∫ t∧τ

0
h′(Xε

s −Xs)(b
ε(s,Xε

s ) − b(s,Xs)) ds

+
1

2

∫ t∧τ

0
h′′(Xε

s −Xs)(σ
ε(s,Xε

s ) − σs(s,Xs))
2 ds

+

∫ t∧τ

0
h′(Xε

s −Xs)(σ
ε(s,Xε

s ) − σ(s,Xs)) dWs

≤ β + δT + Lb,σ

∫ t∧τ

0
|Xε

s −Xs|ds

+
2α

β log(α)
δ2T +

2α

β log(α)
β2γ−1L2

b,σT

+

∫ t

0
h′(Xε

s −Xs)(σ
ε(s,Xε

s ) − σ(s,Xs)) dWs,

for any t ∈ [0, T ]. Let Mt :=
∫ t∧τ
0 h′(Xε

s −Xs)(σ
ε(s,Xε

s ) − σ(s,Xs)) dWs, t ∈ [0, T ]. Since

σ and σε are of linear growth and there exists some constant C0 > 0 depending only on Cσ,

C̃σ, x0 and T such that

E[|Xt|2] + E[|Xε
t |2] ≤ C2

0 , t ∈ [0, T ],

see e.g. [131, Chapter II, Corollary 4.6], it holds that E[[M ]t] <∞ for any t ∈ [0, T ], where

[M ] denotes the quadratic variation of M . Hence, by [147, Chapter II.6, Corollary 3], M is

a martingale. It follows that

E[|Xε
t∧τ −Xt∧τ |]

≤ β + δT +
2α

β log(α)
δ2T +

2α

log(α)
β2γ−1L2

b,σT + Lb,σ

∫ t∧τ

0
|Xε

s −Xs| ds,

and thus Grönwall’s inequality yields that

E[|Xε
t∧τ −Xt∧τ |] ≤

(
β + δT +

2α

β log(α)
δ2T +

2α

log(α)
β2γ−1L2

b,σT

)
exp(Lb,σT ).

Choosing α, β and δ such that(
β + δT +

2α

β log(α)
δ2T +

2α

log(α)
β2γ−1L2

b,σT

)
exp(Lb,σT ) ≤ ε

2
,

and combining the above estimates we conclude the proof.

31



32



Chapter 2

Functional differential equations driven by càdlàg rough
paths

Stochastic functional differential equations, also known as stochastic delay differential equa-

tions, are a natural generalization of stochastic ordinary differential equations, allowing for

path-dependent coefficients which may depend on past values of the generated random dy-

namics. Since numerous real-world phenomena show evidence of a dependence on the past

as well as a stochastic behaviour, stochastic functional differential equations serve as math-

ematical models in many areas ranging from biology to finance. For classical introductions

to stochastic functional differential equations we refer, e.g., to [137, 138].

A deterministic approach to stochastic differential equations is provided by rough path

theory, initiated by Lyons [129]. Originally designed to treat stochastic ordinary differential

equations, it has been extended in various directions, for instance, allowing to deal with

stochastic Volterra equations [56], reflected stochastic differential equations [1], stochastic

inclusion equations [15], and different classes of stochastic partial differential equations [86,

27]. These rough path approaches contributed many novel insights to the study of the

aforementioned equations, such as, but not limited to, new well-posedness and stability

results. Comprehensive introductions to rough path theory can be found, e.g., in [130, 71].

In this chapter, we study rough functional differential equations (RFDEs)

Yt = yt +

∫ t

0
bs(Y ) ds+

∫ t

0
σs(Y ) dXs, t ∈ [0, T ], (2.1)

where the driving signal X is a càdlàg p-rough path for p ∈ (2, 3), the initial condition y is

a given controlled path, and the coefficients b, σ are non-anticipative functionals, mapping

a controlled path to a controlled path. Assuming a quadratic growth and a Lipschitz-type

condition on the path-dependent coefficients b, σ, which both are formulated on the space

of controlled paths, we establish the existence of a unique solution to the RFDE (2.3).

To that end, we rely on the theory of càdlàg rough paths, as introduced by Friz, Shekhar

and Zhang [73, 75], as well as Banach’s fixed point theorem. Moreover, we show that

the solution map, also known as Itô–Lyons map, mapping the input (initial condition,
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coefficients, driving signal) of an RFDE to its solution, is locally Lipschitz continuous with

respect to suitable distances on the associated spaces of coefficients, controlled paths and

rough paths. Let us remark that the continuity of the Itô–Lyons map is one of the most

fundamental insights of rough path theory, with many applications to stochastic differential

equations, cf. e.g. [71].

The presented results on rough functional differential equations provide a unifying the-

ory, recovering and extending various previous results on different classes of rough differen-

tial equations with path-dependent coefficients. Indeed, we deduce the existence of unique

solutions as well as the local Lipschitz continuity of the Itô–Lyons map for classical rough

differential equations (RDEs), controlled RDEs, RDEs with discrete time dependence and

RDEs with constant/variable delay, that are all driven by càdlàg p-rough paths for p ∈ (2, 3).

In the existing literature, there are several different approaches to deal with rough

functional differential equations driven by continuous rough paths. Since the theory of

(continuous) rough paths works nicely for infinite dimensional Banach spaces, RDEs with

path-dependent coefficients can be treated as Banach space-valued RDEs, see e.g. [14], which

requires the coefficients to be Fréchet differentiable and, thus, excludes some interesting ex-

amples. Existence, uniqueness and stability results are established by Neuenkirch, Nourdin

and Tindel [140] for RDEs with constant delay. The existence of a solution is proven by

Ananova [8] for RDEs with path-dependent coefficients, which are assumed to be Dupire

differentiable [62], and by Aida [2] for RDEs with coefficients containing path-dependent

bounded variation terms. The latter two approaches rely on Schauder’s fixed point theorem.

Another exemplary class of RFDEs are reflected rough differential equations, see e.g. [1, 55],

which, in general, do not possess a unique solution, see [77].

Most applications of rough path theory to stochastic differential equations (SDEs) cru-

cially rely on the construction of suitable (random) rough paths. To apply the developed

theory on RFDEs to Itô SDEs with constant delay, we show that a càdlàg martingale

together with its delayed version can be lifted to a random rough path in the spirit of

stochastic Itô integration. The key challenge to obtain the “delayed” rough path is that

a martingale together with its delayed version is, in general, not a martingale itself, thus

preventing the direct use of stochastic Itô integration. For related constructions of random

rough paths above fractional Brownian motions we refer to [140, 156, 21, 32]. Consequently,

one can apply the continuity of the Itô–Lyons map to derive pathwise stability results for

stochastic differential equations with constant delay, which plays an important role in many

applications, see e.g. [16]. In particular, the map y 7→ Y , mapping the initial condition y

to the associated solution Y of an SDE with constant delay, is continuous on the space of

controlled paths. This resolves an old observation, pointed out by Mohammed [136], about
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the non-continuity of the flow of stochastic differential equations with delay, for which the

initial condition is in fact an initial path.

This chapter is structured as follows. In Section 2.1 we provide existence, uniqueness

and continuity results for rough functional differential equations. In Section 2.2 we prove

that various classes of rough differential equations are covered by the presented results on

rough functional differential equations. In Section 2.3 we establish the existence of the

Itô rough path lift of delayed martingales and discuss applications to stochastic differential

equations with delay. Appendix A.1 contains some auxiliary estimates for rough integrals.

2.1 Existence, uniqueness and continuity

Before treating rough functional differential equations (RFDEs), we recall the necessary

definitions and some essentials from the theory of càdlàg rough paths, as introduced by Friz

and Shekhar [73] and Friz and Zhang [75]. The theory of càdlàg rough paths extends the

classical rough path theory, allowing to deal with many stochastic processes with jumps

[31], and has numerous applications, e.g., in probability theory [76], numerical analysis [75]

and mathematical finance [7].

2.1.1 Essentials on rough path theory

Throughout, let T > 0 be a fixed finite time horizon. Let ∆T := {(s, t) ∈ [0, T ]2 : s ≤ t}
be the standard 2-simplex. A function w: ∆T → [0,∞) is called a control function if it is

superadditive, in the sense that w(s, u) + w(u, t) ≤ w(s, t) for all 0 ≤ s ≤ u ≤ t ≤ T . We

write w(s, t−) := limu↑tw(s, u) if s < t, and w(s, t−) := 0 if s = t.

Whenever (B, ∥·∥) is a normed space and f, g:B → R are two functions on B, we shall

write f ≲ g or f ≤ Cg to mean that there exists a constant C > 0 such that f(x) ≤ Cg(x)

for all x ∈ B. The constant C may depend on the normed space, e.g. through its dimension

or regularity parameters, and, if we want to emphasize the dependence of the constant C

on some particular variables, say α1, . . . , αn, then we will write ≲α1,...,αn or C = Cα1,...,αn .

Unless otherwise stated, the dependence of the implicit constants on the variables is locally

bounded; that is, if α1 ∈ A1, . . . , αn ∈ An, where A1, . . . , An are compact subsets of the

range of α1, . . . , αn respectively, then we have that supα1∈A1,...,αn∈An Cα1,...,αn <∞.

For two vector spaces, the space of linear maps from E1 → E2 is denoted by L(E1;E2);

and we write C lb = C lb(Rm;L(Rd;Rk)) for the space of l-times differentiable (in the Fréchet

sense) functions f :Rm → L(Rd;Rk) such that f and all its derivatives up to order l are

continuous and bounded. We equip this space with the norm

∥f∥Clb := ∥f∥∞+∥Df∥∞+ · · · + ∥Dlf∥∞,
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where Dnf denotes the n-th order derivative of f , and ∥·∥∞ denotes the supremum norm

on the corresponding spaces of operators.

For a normed space (E, |·|), let D([0, T ];E) be the set of càdlàg (right-continuous with

left-limits) paths from [0, T ] to E. For p ≥ 1, the p-variation of a path X ∈ D([0, T ];E) is

given by

∥X∥p:= ∥X∥p,[0,T ] with ∥X∥p,[s,t]:=
(

sup
P⊂[s,t]

∑
[u,v]∈P

|Xv −Xu|p
) 1
p

, (s, t) ∈ ∆T ,

where the supremum is taken over all possible partitions P of the interval [s, t]. We recall

that, given a path X, we have that ∥X∥p<∞ if and only if there exists a control function

w such that1

sup
(u,v)∈∆T

|Xv −Xu|p

w(u, v)
<∞.

We writeDp = Dp([0, T ];E) for the space of pathsX ∈ D([0, T ];E) which satisfy ∥X∥p<∞.

Moreover, for a path X ∈ D([0, T ];Rd), we will often use the shorthand notation:

Xs,t := Xt −Xs and Xt− := lim
u↑t

Xu, for (s, t) ∈ ∆T .

For p > 2 and a two-parameter function X: ∆T → E, we similarly define

∥X∥ p
2
:= ∥X∥ p

2
,[0,T ] with ∥X∥ p

2
,[s,t]:=

(
sup

P⊂[s,t]

∑
[u,v]∈P

|Xu,v|
p
2

) 2
p

, (s, t) ∈ ∆T .

We write D
p
2
2 = D

p
2
2 (∆T ;E) for the space of all functions X: ∆T → E which satisfy ∥X∥ p

2
<

∞, and are such that the maps s 7→ Xs,t for fixed t, and t 7→ Xs,t for fixed s, are both

càdlàg.

For p ∈ (2, 3), a pair X = (X,X) is called a càdlàg p-rough path over Rd if

(i) X ∈ Dp([0, T ];Rd) and X ∈ D
p
2
2 (∆T ;Rd×d), and

(ii) Chen’s relation: Xs,t = Xs,u + Xu,t +Xs,u ⊗Xu,t holds for all 0 ≤ s ≤ u ≤ t ≤ T ,

where ⊗ denotes the usual tensor product. In component form then, condition (ii) states

that Xijs,t = Xijs,u + Xiju,t + Xi
s,uX

j
u,t for every i and j. We will denote the space of càdlàg

p-rough paths by Dp = Dp([0, T ];Rd). On the space Dp([0, T ];Rd), we use the natural

seminorm

∥X∥p:= ∥X∥p,[0,T ] with ∥X∥p,[s,t]:= ∥X∥p,[s,t]+∥X∥ p
2
,[s,t]

1Here and throughout, we adopt the convention that 0
0
:= 0.
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for (s, t) ∈ ∆T , and the induced distance

∥X; X̃∥p:= ∥X; X̃∥p,[0,T ] with ∥X; X̃∥p,[s,t]:= ∥X − X̃∥p,[s,t]+∥X− X̃∥ p
2
,[s,t],

for (s, t) ∈ ∆T .

Let p ∈ (2, 3), and X ∈ Dp([0, T ];Rd). We say that a pair (Y, Y ′) is a controlled path

(with respect to X), if

Y ∈ Dp([0, T ];E), Y ′ ∈ Dp([0, T ];L(Rd;E)), and RY ∈ D
p
2
2 (∆T ;E),

where RY is defined by

Ys,t = Y ′
sXs,t +RYs,t for all (s, t) ∈ ∆T .

We write VpX = VpX([0, T ];E) for the space of E-valued controlled paths, which becomes a

Banach space when equipped with the norm (Y, Y ) 7→ |Y0|+∥Y, Y ′∥X,p, where

∥Y, Y ′∥X,p:= ∥Y, Y ′∥X,p,[0,T ] with ∥Y, Y ′∥X,p,[s,t]:= |Y ′
s |+∥Y ′∥p,[s,t]+∥RY ∥ p

2
,[s,t]

for (s, t) ∈ ∆T . We point out that, by definition, for (s, t) ∈ ∆T ,

|Ys,t|≤ |Y ′
s ||Xs,t|+|RYs,t| and |Y ′

t |≤ |Y ′
0 |+|Y ′

0,t|,

which implies that

∥Y ∥p≤ Cp(∥Y ′∥∞∥X∥p+∥RY ∥ p
2
) and ∥Y ′∥∞≤ |Y ′

0 |+∥Y ′∥p,

where ∥Y ′∥∞:= supt∈[0,T ]|Y ′
t | denotes the supremum seminorm of the path Y ′. Given

X, X̃ ∈ Dp, we further introduce the standard “distance”

∥Y, Y ′; Ỹ , Ỹ ′∥
X,X̃,p

:= ∥Y, Y ′; Ỹ , Ỹ ′∥
X,X̃,p,[0,T ]

with

∥Y, Y ′; Ỹ , Ỹ ′∥
X,X̃,p,[s,t]

:= |Y ′
s − Ỹ ′

s |+∥Y ′ − Ỹ ′∥p,[s,t]+∥RY −RỸ ∥ p
2
,[s,t]

for (s, t) ∈ ∆T , whenever (Y, Y ′) ∈ VpX , (Ỹ , Ỹ ′) ∈ Vp
X̃

. Note that VpX and Vp
X̃

are, in general,

different Banach spaces; if X = X̃, we write ∥· ; ·∥X,p,[s,t].

Given p ∈ (2, 3), X = (X,X) ∈ Dp([0, T ];Rd) and (Y, Y ′) ∈ VpX([0, T ];L(Rd;Rk)), the

(forward) rough integral∫ t

s
Yr dXr := lim

|P|→0

∑
[u,v]∈P

(YuXu,v + Y ′
uXu,v), (s, t) ∈ ∆T , (2.2)
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exists (in the classical mesh Riemann–Stieltjes sense), where the limit is taken along any

sequence of partitions (Pn)n∈N of the interval [s, t] such that |Pn|→ 0 as n → ∞. More

precisely, in writing the product YuXu,v, we apply the operator Yu ∈ L(Rd;Rk) onto Xu,v ∈
Rd; and in writing the product Y ′

uXu,v, we use the natural identification of L(Rd;L(Rd;Rk))
with L(Rd ⊗ Rd;Rk). The rough integral comes with the estimate∣∣∣∣ ∫ t

s
Yr dXr − YsXs,t − Y ′

sXs,t
∣∣∣∣ ≤ C

(
∥RY ∥ p

2
,[s,t)∥X∥p,[s,t]+∥Y ′∥p,[s,t)∥X∥ p

2
,[s,t]

)
for some constant C depending only on p; see [75, Proposition 2.6], where

∥Y ′∥p,[s,t):= sup
u<t

∥Y ′∥p,[s,u] and ∥RY ∥ p
2
,[s,t):= sup

u<t
∥RY ∥ p

2
,[s,u].

The estimate implies that (
∫ ·
0 Yr dXr, Y ) ∈ VpX([0, T ];Rk) is a controlled path with respect

to X, see also [75, Remark 2.8].

For details on the construction of the rough integral with respect to càdlàg p-rough

paths and its properties, we refer to [73, 75], and we provide some auxiliary estimates for

the rough integral in Appendix A.1.

Let us now consider the rough functional differential equation (RFDE)

Yt = yt +

∫ t

0
Fs(Y ) dXs, t ∈ [0, T ], (2.3)

where X ∈ Dp([0, T ];Rd) is a càdlàg p-rough path for p ∈ (2, 3), (y, y′) ∈ VpX([0, T ];Rk)
is a given controlled path with respect to X and further, where (F, F ′):VpX([0, T ];Rk) →
VpX([0, T ];L(Rd;Rk)) is a non-anticipative functional, i.e.

(i) (F·(Y ), F ′
· (Y, Y

′)) ∈ VpX([0, T ];L(Rd;Rk)),

(ii) (Ft(Y ), F ′
t(Y, Y

′)) = (Ft(Y·∧t), F
′
t(Y·∧t, Y

′
·∧t)) for all t ∈ [0, T ],

for every (Y, Y ′) ∈ VpX([0, T ];Rk). The integral in (2.3) is defined as a (forward) rough

integral, see (2.2) for its definition. Note that the RFDE (2.1) can be re-written in the form

of (2.3), using a standard time-extension of the driving rough path.

2.1.2 Existence and uniqueness

To prove the existence of a unique solution to the rough functional differential equation (2.3),

we postulate a quadratic growth and a Lipschitz-type condition on the path-dependent co-

efficient (F, F ′), formulated on the associated path spaces. While a Lipschitz-type condition

is expected, the quadratic growth condition appears to be natural in the presented context

of (second order) controlled paths, which corresponds to a Taylor expansion with quadratic

remainder term.
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Assumption 2.1.1. Let X ∈ Dp([0, T ];Rd) be given. For every K > 0, there exist con-

stants CF > 0, which depends on p and the functional F , and CF,K,X > 0, which additionally

depends on K and X, such that the map

(F, F ′):VpX([0, T ];Rk) → VpX([0, T ];L(Rd;Rk))

satisfy, for all (Y, Y ′), (Ỹ , Ỹ ′) ∈ VpX , and every 0 ≤ s < t ≤ T ,

(i) the growth conditions:

|Ft(Y )|≤ CF ,

|Ft−,t(Y )|≤ CF (1 + ∥Y ∥p,[s,t)+|Yt−,t|),

∥F (Y )∥p,[s,t]≤ CF (1 + (|Y ′
s |+∥Y ′∥p,[s,t])∥X∥p,[s,t]+∥RY ∥ p

2
,[s,t]), and

∥F (Y ), F ′(Y, Y ′)∥X,p,[s,t]≤ CF (1 + ∥Y, Y ′∥X,p,[s,t])2(1 + ∥X∥p,[s,t])2;

(ii) the Lipschitz conditions:

∥F (Y ) − F (Ỹ )∥p,[s,t]≤ CF,K,X(|Ys − Ỹs|+∥Y − Ỹ ∥p,[s,t]), and

∥F (Y ), F ′(Y, Y ′);F (Ỹ ), F ′(Ỹ , Ỹ ′)∥X,p,[s,t]

≤ CF,K,X(|Ys − Ỹs|+∥Y, Y ′; Ỹ , Ỹ ′∥X,p,[s,t]),

if ∥Y, Y ′∥X,p,[s,t], ∥Ỹ , Ỹ ′∥X,p,[s,t]≤ K.

Remark 2.1.2. The growth and Lipschitz conditions in Assumption 2.1.1 are formulated in

terms of both the p-variation of Y and the controlled path norm (Y, Y ′) 7→ |Y0|+∥Y, Y ′∥X,p
on the space VpX of controlled paths (Y, Y

′
). To deduce the existence of a unique solution

to the RFDE (2.3) under a growth and Lipschitz conditions formulated only in terms of

the controlled path norm seems to be far from being obvious. Moreover, notice that the

common examples of RDEs with path-dependent coefficients do satisfy Assumption 2.1.1, see

Section 2.2 below, demonstrating that Assumption 2.1.1 is, indeed, a natural generalization

of the conditions on the coefficients postulated in the existing literature.

Based on Assumption 2.1.1, we obtain the following global existence and uniqueness

result for rough functional differential equations.

Theorem 2.1.3. Let X ∈ Dp([0, T ];Rd) be a càdlàg p-rough path for p ∈ (2, 3), and

(y, y′) ∈ VpX([0, T ];Rk) be a given controlled path with respect to X. Suppose that the

non-anticipative functional (F, F ′):VpX([0, T ];Rk) → VpX([0, T ];L(Rd;Rk)) satisfies Assump-

tion 2.1.1 given X. Then, there exists a unique solution to the rough functional differen-

tial equation (2.3), i.e. there exists a unique controlled path (Y, Y ′) ∈ VpX([0, T ];Rk), with
Y ′ = y′ + F (Y ), such that

Yt = yt +

∫ t

0
Fs(Y ) dXs, t ∈ [0, T ].
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Moreover, there exists a componentwise non-decreasing function Kp: [0,∞)3 → [0,∞) such

that

∥Y, Y ′∥X,p≤ Kp(∥y, y′∥X,p, CF , ∥X∥p).

The proof relies on a fixed point approach using Banach’s fixed point theorem.

Proof. Step 1: Local solution. We may assume that

∥X∥p≤ 1 and ∥y′∥p+∥Ry∥ p
2
≤ 1.

For t ∈ (0, T ], we define the map Mt:VpX([0, t];Rk) → VpX([0, t];Rk) by

(Y, Y ′) 7→ (Z,Z ′) := Mt(Y, Y
′) :=

(
y· +

∫ ·

0
Fs(Y ) dXs, y

′
· + F·(Y )

)
,

noting that Mt(Y, Y
′) is a controlled path with respect to X as VpX is a Banach space, and

introduce the subset of controlled paths

Bt :=

{
(Y, Y ′) ∈ VpX([0, t];Rk) :

(Y0, Y
′
0) = (y0, y

′
0 + F0(y)),

∥(Y − y)′∥p,[0,t]≤ 4CF , ∥RY −Ry∥ p
2
,[0,t]≤ 1

}
,

which is a complete set as a closed subset of VpX([0, t];Rk), see [75, Section 3.2].

Invariance. For any (Y, Y ′) ∈ Bt, we have that

∥(Z − y)′∥p,[0,t]= ∥F (Y )∥p,[0,t]

≤ CF (1 + (|Y ′
0 |+∥Y ′∥p,[0,t])∥X∥p,[0,t]+∥RY ∥ p

2
,[0,t])

≤ CF + CF (|Y ′
0 |+∥Y ′∥p,[0,t])∥X∥p,[0,t]+CF ∥RY−y∥ p

2
,[0,t]+CF ∥Ry∥ p

2
,[0,t]

≤ CF (1 + |Y ′
0 |+∥Y ′∥p,[0,t])∥X∥p,[0,t]+3CF ,

since (F, F ′) satisfies Assumption 2.1.1 (i), and by the local estimate for rough integration,

see Lemma A.1.1,

∥RZ −Ry∥ p
2
,[0,t]= ∥R

∫ ·
0 F (Y )dX∥ p

2
,[0,t]

≲ CF (1 + ∥Y, Y ′∥X,p,[0,t])2(1 + ∥X∥p,[0,t])2∥X∥p,[0,t],

where the implicit multiplicative constant depends only on p. Hence, for t = t1 sufficiently

small we obtain that Bt1 is invariant under Mt1 . Note that t1 depends on p, |y′0|, CF and

∥X∥p.
Contraction. Let (Y, Y ′), (Ỹ , Ỹ ′) ∈ Bt for some t ∈ (0, t1], that is, setting K := 5(1 +

∥y, y′∥X,p+CF ), it holds that ∥Y, Y ′∥X,p,[0,t], ∥Ỹ , Ỹ ′∥X,p,[0,t]≤ K. We have that

∥Z ′ − Z̃ ′∥p,[0,t]= ∥F (Y ) − F (Ỹ )∥p,[0,t]

≤ CF,K,X∥Y − Ỹ ∥p,[0,t]

≲p CF,K,X(∥Y ′ − Ỹ ′∥p,[0,t]∥X∥p,[0,t]+∥RY −RỸ ∥ p
2
,[0,t]).
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Further, due to Assumption 2.1.1 (ii) and Lemma A.1.2, it holds that

∥RZ −RZ̃∥ p
2
,[0,t]= ∥R

∫ ·
0 F (Y )dX−

∫ ·
0 F (Ỹ )dX∥ p

2
,[0,t]

≲ CF,K,X∥Y, Y ′; Ỹ , Ỹ ′∥X,p,[0,t]∥X∥p,[0,t],

where the implicit multiplicative constant depends on p and ∥X∥p. Defining an equivalent

norm on VpX by

∥Y, Y ′∥(δ)X,p,[0,t]:= |Y ′
0 |+∥Y ′∥p,[0,t]+δ∥RY ∥ p

2
,[0,t], for δ ≥ 1,

we then deduce that

∥Z − Z̃, Z ′ − Z̃ ′∥(δ)X,p,[0,t]
≲ CF,K,X(∥Y ′ − Ỹ ′∥p,[0,t]∥X∥p,[0,t]+∥RY −RỸ ∥ p

2
,[0,t])

+ δCF,K,X(∥Y ′ − Ỹ ′∥p,[0,t]+∥RY −RỸ ∥ p
2
,[0,t])∥X∥p,[0,t]

≲ CF,K,X(1 + δ)∥X∥p,[0,t]∥Y ′ − Ỹ ′∥p,[0,t]+CF,K,X(1 + δ∥X∥p,[0,t])∥RY −RỸ ∥ p
2
,[0,t]

≲ CF,K,X

(
(1 + δ)∥X∥p,[0,t]∨

1 + δ∥X∥p,[0,t]
δ

)
∥Y − Ỹ , Y ′ − Ỹ ′∥(δ)X,p,[0,t],

where the implicit multiplicative constant depends on p and ∥X∥p. Hence, we can choose δ

sufficiently large and t = t2 ≤ t1 sufficiently small such that

CF,K,X

(
(1 + δ)∥X∥p,[0,t2]∨

1 + δ∥X∥p,[0,t2]
δ

)
≤ 1,

where the left-hand side is up to a multiplicative constant which depends on p and ∥X∥p. It

follows that Mt2 is a contraction on the subset of controlled paths (Bt2 , ∥·∥
(δ)
X,p,[0,t2]

). Hence,

by Banach’s fixed point theorem, there exists a unique fixed point of the map Mt2 , which

is the unique solution of the RFDE (2.3) over the time interval [0, t2].

Step 2: Global solution. Let w: ∆T → [0,∞) be the right-continuous control function

given by

w(s, t) := ∥X∥pp,[s,t]+∥X∥
p
2
p
2
,[s,t]

, (s, t) ∈ ∆T .

We infer from Step 1 that there exists a constant γ > 0, which depends on p, ∥y, y′∥X,p,
CF , CF,K,X and ∥X∥p, such that the local solution (Y, Y ′) established above exists on any

interval [s, t] such that w(s, t) ≤ γ, given any initial condition ξ ∈ VpX with |ξ′s|≤ ∥y, y′∥X,p.
By [75, Lemma 1.5], there exists a partition P = {0 = τ0 < τ1 < · · · < τN = T} of [0, T ],

such that w(τi, τi+1−) < γ for every i = 0, 1, . . . , N − 1. We can then define the solution

(Y, Y ′) on each of the half-intervals [τi, τi+1). Given the solutions on [τi, τi+1), the values

Yτi+1 at the right end-point of the interval are uniquely determined by the jumps of X at

time τi+1. More precisely, let y0;· = y·, and define yi, i = 1, . . . , N − 1, by

yi;t = yt + Yτi− − yτi− + Fτi−(Y )Xτi−,τi + F ′
τi−(Y, Y ′)Xτi−,τi , t ∈ [τi, τi+1).
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We note that |y′i,τi |= |y′i|≤ ∥y, y′∥X,p. Given the initial condition (yi, y
′
i) ∈ VpX , we obtain

the solution (Y, Y ′) on [τi, τi+1), i = 0, 1, . . . , N − 1. By pasting the solutions on each of

these subintervals together, with YT = yN ;T , we obtain a unique global solution (Y, Y ′) of

the RFDE (2.3) on the interval [0, T ].

Step 3: A priori estimate. It remains to show the existence of a componentwise non-

decreasing function Kp: [0,∞)3 → [0,∞) such that

∥Y, Y ′∥X,p≤ Kp(∥y, y′∥X,p, CF , ∥X∥p).

Analogously to Step 2, we can obtain a partition P = {0 = τ0 < τ1 < · · · < τN = T} and,

recalling the definition of Bt, define the solution (Y, Y ′) on each of the half-intervals [ti, ti+1)

such that

∥Y ′∥p,[ti,ti+1)≤ 4CF + ∥y′∥p,[ti,ti+1) (2.4)

as well as

∥RY ∥ p
2
,[τi,τi+1)≤ 1 + ∥Ry∥ p

2
,[τi,τi+1) (2.5)

for all i = 0, . . . , N − 1. Here, N depends on p, ∥y, y′∥X,p, CF , CF,K,X , ∥X∥p and is, for p

fixed, non-decreasing in the other variables. Observe that

Yt−,t = yt−,t +

(∫ ·

0
Fs(Y ) dXs

)
t−,t

= yt−,t + Ft−(Y )Xt−,t + F ′
t−(Y, Y ′)Xt−,t,

for any t ∈ (0, T ], so we have

RYt−,t = Ryt−,t + F ′
t−(Y, Y ′)Xt−,t.

This yields

|RYτi+1−,τi+1
|≤ ∥Ry∥p,[τi,τi+1]+(|F ′

τi(Y, Y
′)|+∥F ′(Y, Y ′)∥p,[τi,τi+1))|Xτi+1−,τi+1 |.

Now, we use Assumption 2.1.1 (i), i.e.

|F ′
τi(Y, Y

′)|+∥F ′(Y, Y ′)∥p,[τi,τi+1)≤ CF (1 + ∥Y, Y ′∥X,p,[τi,τi+1))
2(1 + ∥X∥p,[τi,τi+1))

2.

Since

∥Y, Y ′∥X,p,[τi,τi+1)≤ |y′τi |+|Fτi(Y )|+∥Y ′∥p,[τi,τi+1)+∥RY ∥ p
2
,[τi,τi+1),

It follows from Assumption 2.1.1 (i), (2.4) and (2.5) that

∥Y, Y ′∥X,p,[τi,τi+1)≤ |y′τi |+5(1 + CF ) + ∥y′∥p,[τi,τi+1)+∥Ry∥ p
2
,[τi,τi+1).

Consequently, there exists a componentwise non-decreasing polynomial Q
(R)
p : [0,∞)3 →

[0,∞) such that

|RYτi+1−,τi+1
|≤ Q(R)

p (∥y, y′∥X,p,[τi,τi+1], CF , ∥X∥p,[τi,τi+1])
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as well as

∥RY ∥ p
2
,[τi,τi+1]≤ 1 + ∥Ry∥ p

2
,[τi,τi+1]+Q

(R)
p (∥y, y′∥X,p,[τi,τi+1], CF , ∥X∥p,[τi,τi+1])

for all i = 0, . . . , N − 1. Moreover, since

Y ′
t−,t = y′t−,t + Ft−,t(Y ),

for any t ∈ (0, T ], we have

|Y ′
τi+1−,τi+1

|≤ ∥y′∥p,[τi,τi+1]+|Fτi+1−,τi+1(Y )|.

By Assumption 2.1.1 (i), it holds that

|Fτi+1−,τi+1(Y )|≤ CF (1 + ∥Y ∥p,[τi,τi+1)+|Yτi+1−,τi+1 |),

thus, we need to control the jump of Y at τi+1. For this, note that

|Yτi+1−,τi+1 |

≤ |yτi+1−,τi+1 |+|Fτi+1−(Y )||Xτi+1−,τi+1 |+|F ′
τi+1−(Y )||Xτi+1−,τi+1 |

≤ |yτi+1−,τi+1 |+(|Fτi(Y )|+∥F (Y )∥p,[τi,τi+1))|Xτi+1−,τi+1 |

+ (|F ′
τi(Y, Y

′)|+∥F ′(Y, Y ′)∥p,[τi,τi+1))|Xτi+1−,τi+1 |

≤ ∥y, y′∥p,[τi,τi+1]+(CF + CF (1 + (|Y ′
τi |+∥Y ′∥ p

2
,[τi,τi+1))∥X∥p,[τi,τi+1]

+ ∥RY ∥ p
2
,[τi,τi+1))∥X∥p,[τi,τi+1]

+ CF (1 + ∥Y, Y ′∥p,[τi,τi+1))
2(1 + ∥X∥p,[τi,τi+1])

2∥X∥ p
2
,[τi,τi+1].

Using (2.4) and (2.5), we can now conclude that there exist componentwise non-decreasing

polynomials Q
(Y,J)
p , Q

(Y ′)
p : [0,∞)3 → [0,∞) such that

|Fτi+1−,τi+1(Y )|≤ Q(Y,J)
p (∥y, y′∥X,p,[τi,τi+1], CF , ∥X∥p,[τi,τi+1])

as well as

∥Y ′∥p,[τi,τi+1]≤ Q(Y ′)
p (∥y, y′∥X,p,[τi,τi+1], CF , ∥X∥p,[τi,τi+1]).

Combining these estimates, we obtain that

|Y ′
0 |+∥Y ′∥p+∥RY ∥ p

2
≤ Kp(∥y, y′∥X,p, CF , ∥X∥p),

which is the assertion.

43



2.1.3 Continuity of the Itô–Lyons map

A fundamental contribution of the theory of rough paths is the insight that the solution

map, mapping the input (initial condition, coefficients, driving rough path, . . . ) of a rough

differential equation to its solution, is continuous with respect to suitable distances on

the spaces of controlled paths as well as of rough paths, see e.g. [71]. In the context of

rough differential equations, this solution map is also known as Itô–Lyons map. In the next

theorem we present the local Lipschitz continuity of the Itô–Lyons map for rough functional

differential equations, based on the following assumption.

Assumption 2.1.4. Let X, X̃ ∈ Dp([0, T ];Rd) be given. For (G,G′) ∈ {(F, F ′), (F̃ , F̃ ′)}
and Z ∈ {X, X̃} we have: For every K > 0, there exist constants CG > 0, which depends

on p and the functional G, and C
G,K,X,X̃

> 0, which additionally depends on K, X, X̃ such

that the maps

(G,G′):VpZ([0, T ];Rk) → VpZ([0, T ];L(Rd;Rk))

satisfy, for all (Y, Y ′) ∈ VpX , (Ỹ , Ỹ ′) ∈ Vp
X̃
, and every 0 ≤ s < t ≤ T ,

(i) the growth conditions:

|Gt(Y )|≤ CG,

|Gt−,t(Y )|≤ CG(1 + ∥Y ∥p,[s,t)+|Yt−,t|),

∥G(Y )∥p,[s,t]≤ CG(1 + (|Y ′
s |+∥Y ′∥p,[s,t])∥Z∥p,[s,t]+∥RY ∥ p

2
,[s,t]), and

∥G(Y ), G′(Y, Y ′)∥Z,p,[s,t]≤ CG(1 + ∥Y, Y ′∥Z,p,[s,t])2(1 + ∥Z∥p,[s,t])2;

(ii) the Lipschitz conditions:

∥G(Y ) −G(Ỹ )∥p,[s,t]≤ C
F,K,X,X̃

(|Ys − Ỹs|+∥Y − Ỹ ∥p,[s,t]), and

∥G(Y ), G′(Y, Y ′);G(Ỹ ), G′(Ỹ , Ỹ ′)∥
X,X̃,p,[s,t]

≤ C
G,K,X,X̃

(|Ys − Ỹs|+∥Y, Y ′; Ỹ , Ỹ ′∥
X,X̃,p,[s,t]

+∥X − X̃∥p,[s,t]),

if ∥Y, Y ′∥X,p,[s,t], ∥Ỹ , Ỹ ′∥
X̃,p,[s,t]

≤ K.

Moreover, there exists a constant C
F−F̃ > 0, which depends on p and the functionals

F − F̃ , such that

|(F − F̃ )t(Y )|≤ C
F−F̃ ,

|(F − F̃ )t−,t(Y )|≤ C
F−F̃ (1 + ∥Y ∥p,[s,t)+|Yt−,t|),

∥(F − F̃ )(Y )∥p,[s,t]≤ C
F−F̃ (1 + (|Y ′

s |+∥Y ′∥p,[s,t])∥X∥p,[s,t]+∥RY ∥ p
2
,[s,t]), and

∥(F − F̃ )(Y ), (F ′ − F̃ ′)(Y, Y ′)∥X,p,[s,t]≤ C
F−F̃ (1 + ∥Y, Y ′∥X,p,[s,t])2(1 + ∥X∥p,[s,t])2.
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Theorem 2.1.5. Let X, X̃ ∈ Dp([0, T ];Rd) be càdlàg p-rough paths for p ∈ (2, 3), (y, y′) ∈
VpX([0, T ];Rk), (ỹ, ỹ′) ∈ Vp

X̃
([0, T ];Rk) be given controlled paths with respect to X and X̃,

respectively. Suppose that the non-anticipative functionals (F, F ′), (F̃ , F̃ ′) satisfy Assump-

tion 2.1.4 given X, X̃.

Let (Y, Y ) ∈ VpX([0, T ];Rk) be the solution given by Theorem 2.1.3 to the rough func-

tional differential equation (2.3), and (Ỹ , Ỹ ′) ∈ Vp
X̃

([0, T ];Rk) be the solution to the rough

functional differential equation (2.3) driven by X̃ with initial condition (ỹ, ỹ′) and functional

(F̃ , F̃ ′), and suppose that ∥Y, Y ′∥X,p, ∥Ỹ , Ỹ ′∥
X̃,p

≤ K, for some K > 0. Then, we have the

estimate

|Y0 − Ỹ0|+∥Y, Y ′; Ỹ , Ỹ ′∥
X,X̃,p

≲ |y0 − ỹ0|+|F0(y) − F̃0(ỹ)|+∥y, y′; ỹ, ỹ′∥
X,X̃,p

+C
F−F̃ + ∥X; X̃∥p,

where the implicit multiplicative constant depends on p, CF ∨C
F̃
, C

F,K,X,X̃
∨C

F̃ ,K,X,X̃
, K,

∥X∥p and ∥X̃∥p.

Proof. Step 1: Local estimate. Let (Y, Y ′) ∈ VpX([0, T ];Rk), (Ỹ , Ỹ ′) ∈ Vp
X̃

([0, T ];Rk) be

the global solutions to the RFDE (2.3), with data ((y, y′), (F, F ′),X), ((ỹ, ỹ′), (F̃ , F̃ ′), X̃),

respectively, see Theorem 2.1.3. Let t ∈ (0, T ]. Without loss of generality assume that

C
F̃
≤ CF , C

F̃ ,K,X,X̃
≤ C

F,K,X,X̃
. As

∥Y − Ỹ ∥p,[0,t]≤ (|Y ′
0 − Ỹ ′

0 |+∥Y ′ − Ỹ ′∥p,[0,t])∥X∥p,[0,t]+(|Ỹ ′
0 |+∥Ỹ ′∥p,[0,t])∥X − X̃∥p,[0,t],

Assumption 2.1.4 gives that

∥F (Y ) − F̃ (Ỹ )∥p,[0,t]

≤ ∥F (Y ) − F (Ỹ )∥p,[0,t]+∥(F − F̃ )(Ỹ )∥p,[0,t]

≤ C
F,K,X,X̃

(|Y0 − Ỹ0|+∥Y − Ỹ ∥p,[0,t])

+ C
F−F̃ (1 + (|Ỹ ′

0 |+∥Ỹ ′∥p,[0,t])∥X∥p,[0,t]+∥RỸ ∥ p
2
,[0,t])

≲p CF,K,X,X̃(|Y0 − Ỹ0|+(|Y ′
0 − Ỹ ′

0 |+∥Y ′ − Ỹ ′∥p,[0,t])(∥X∥p,[0,t]∨∥X̃∥p,[0,t]))

+ C
F,K,X,X̃

∥Ry −Rỹ∥ p
2
,[0,t]+CF,K,X,X̃∥R

∫ ·
0 F (Y )dX−

∫ ·
0 F̃ (Ỹ )dX̃∥ p

2
,[0,t]

+ C
F,K,X,X̃

∥X − X̃∥p,[0,t]+CF−F̃ (1 +K)(1 + ∥X∥p,[0,t]∨∥X̃∥p,[0,t]).

Further, by Lemma A.1.1 and Lemma A.1.2 we have that

∥R
∫ ·
0 F (Y )dX−

∫ ·
0 F̃ (Ỹ )dX̃∥ p

2
,[0,t]

≤ ∥R
∫ ·
0 F (Y )dX−

∫ ·
0 F (Ỹ )dX̃∥ p

2
,[0,t]+∥R

∫ ·
0(F−F̃ )(Ỹ )dX̃∥ p

2
,[0,t]

≲ C
F,K,X,X̃

(|Y0 − Ỹ0|+∥Y, Y ′; Ỹ , Ỹ ′∥
X,X̃,p,[0,t]

+∥X − X̃∥p,[0,t])(∥X∥p,[0,t]∨∥X̃∥p,[0,t])

+ CF (1 +K)2(1 + ∥X∥p,[0,t]∨∥X̃∥p,[0,t])2∥X; X̃∥p,[0,t]

+ C
F−F̃ (1 +K)2(1 + ∥X∥p,[0,t]∨∥X̃∥p,[0,t])2(∥X∥p,[0,t]∨∥X̃∥p,[0,t]),
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where the implicit multiplicative constant depends on p, ∥X∥p and ∥X̃∥p. Combining the

results, we get that

∥Y ′ − Ỹ ′∥p,[0,t]+∥RY −RỸ ∥ p
2
,[0,t]

≤ ∥y′ − ỹ′∥p,[0,t]+∥F (Y ) − F̃ (Ỹ )∥p,[0,t]

+ ∥Ry −Rỹ∥ p
2
,[0,t]+∥R

∫ ·
0 F (Y )dX−

∫ ·
0 F̃ (Ỹ )dX̃∥ p

2
,[0,t]

≤ C1(∥X∥p,[0,t]∨∥X̃∥p,[0,t])(∥Y ′ − Ỹ ′∥p,[0,t]+∥RY −RỸ ∥ p
2
,[0,t])

+ C2(|Y0 − Ỹ0|+|F0(Y ) − F̃0(Ỹ )|+∥y, y′; ỹ, ỹ′∥
X,X̃,p,[0,t]

+C
F−F̃ + ∥X; X̃∥p,[0,t])

for some constants C1 > 0, which depends on p, C
F,K,X,X̃

, ∥X∥p and ∥X̃∥p, and C2 > 1,

which depends additionally on CF and K. Hence, we can choose t sufficiently small such

that C1(∥X∥p,[0,t]∨∥X̃∥p,[0,t]) ≤ 1
2 , which implies that

∥Y ′ − Ỹ ′∥p,[0,t]+∥RY −RỸ ∥ p
2
,[0,t]

≲ |Y0 − Ỹ0|+|F0(Y ) − F̃0(Ỹ )|+∥y, y′; ỹ, ỹ′∥
X,X̃,p,[0,t]

+C
F−F̃ + ∥X; X̃∥p,[0,t].

(2.6)

Step 2: Global estimate. Recall the right-continuous control function w: ∆T → [0,∞) given

by

w(s, t) := ∥X∥pp,[s,t]+∥X∥
p
2
p
2
,[s,t]

, (s, t) ∈ ∆T ,

as introduced in the proof of Theorem 2.1.3, and let w̃(s, t) := ∥X̃∥pp,[s,t]+∥X̃∥
p
2
p
2
,[s,t]

, (s, t) ∈
∆T . We infer from Step 1 that there exists a constant γ > 0, which depends on p, C

F,K,X,X̃
,

∥X∥p and ∥X̃∥p, such that on any interval [s, t] with w(s, t)∨ w̃(s, t) ≤ γ the local solutions

satisfy an estimate of the form (2.6).

Let c(s, t) := w(s, t) + w̃(s, t), (s, t) ∈ ∆T . Since c is right-continuous, there exists a

partition P = {0 = t0 < · · · < tN = T} of [0, T ], such that

c(ti, ti+1−) = γ, or c(ti, ti+1−) < γ and c(ti, ti+1−) + c(ti+1−, ti+1) ≥ γ,

for every i = 0, 1, . . . , N − 1. Since w and w̃ and, thus, c is superadditive, we have that

Nγ ≤
N−1∑
i=0

c(ti, ti+1−) + c(ti+1−, ti+1) ≤ c(0, T ).

Therefore, the number of partition points N may be bounded by a constant depending only

on γ, w(0, T ) and w̃(0, T ). Thus, in this step, we may combine the local estimates on each

of the subintervals [ti, ti+1), together with simple estimates on the jumps at the end-points

of these subintervals, which we aim to derive, to obtain the global estimate. More precisely,
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by Step 1, we have the local estimate

∥Y ′ − Ỹ ′∥p,[ti,ti+1)+∥RY −RỸ ∥ p
2
,[ti,ti+1)

≲ |Yti − Ỹti |+|Fti(Y ) − F̃ti(Ỹ )|+|y′ti − ỹ′ti |

+ ∥y′ − ỹ′∥p,[ti,ti+1)+∥Ry −Rỹ∥ p
2
,[ti,ti+1)+CF−F̃ + ∥X; X̃∥p,[ti,ti+1),

(2.7)

for i = 0, . . . , N − 1, where the implicit multiplicative constant depends on p and C
F,K,X,X̃

,

CF , K, ∥X∥p, ∥X̃∥p, but not on the index i. So, it remains to bound

|Y ′
ti+1−,ti+1

− Ỹ ′
ti+1−,ti+1

|+|RYti+1−,ti+1
−RỸti+1−,ti+1

|

to extend the previous estimate to [ti, ti+1].

We note that (
∫ ·
0 Fs(Y ) dXs)t−,t = Ft−(Y )Xt−,t + F ′

t−(Y, Y ′)Xt−,t, that is, with Yt−,t =

yt−,t + (
∫ ·
0 Fs(Y ) dXs)t−,t, it follows that Y ′

t−,t = y′t−,t + Ft−,t(Y ) and RYt−,t = Ryt−,t +

F ′
t−(Y, Y ′)Xt−,t, for t ∈ (0, T ]. Given the assumptions, we then have

∥Y ′ − Ỹ ′∥p,[ti,ti+1]+∥RY −RỸ ∥ p
2
,[ti,ti+1]

≤ ∥Y ′ − Ỹ ′∥p,[ti,ti+1)+∥RY −RỸ ∥ p
2
,[ti,ti+1)

+ |Y ′
ti+1−,ti+1

− Ỹ ′
ti+1−,ti+1

|+|RYti+1−,ti+1
−RỸti+1−,ti+1

|

≲ |Yti − Ỹti |+|Fti(Y ) − F̃ti(Ỹ )|+∥y, y′; ỹ, ỹ′∥
X,X̃,p,[ti,ti+1]

+C
F−F̃ + ∥X; X̃∥p,[ti,ti+1],

(2.8)

where the implicit multiplicative constant depends on p, CF , C
F,K,X,X̃

, K, ∥X∥p and ∥X̃∥p,
and not on the index i. Here, we used Assumption 2.1.4 and the estimate (2.7) to derive

that

|(RYti+1−,ti+1
−RỸti+1−,ti+1

) − (Ryti+1−,ti+1
−Rỹti+1−,ti+1

)|

≤ |F ′
ti+1−(Y, Y ′)Xti+1−,ti+1 − F̃ ′

ti+1−(Ỹ , Ỹ ′)X̃ti+1−,ti+1 |

≤ |F ′
ti+1−(Y, Y ′) − F̃ ′

ti+1−(Ỹ , Ỹ ′)||Xti+1−,ti+1 |+|F̃ ′
ti+1−(Ỹ , Ỹ ′)||Xti+1−,ti+1 − X̃ti+1−,ti+1 |

≤ (|F ′
ti(Y, Y

′) − F̃ ′
ti(Ỹ , Ỹ )|+∥F ′(Y, Y ′) − F̃ ′(Ỹ , Ỹ ′)∥p,[ti,ti+1))∥X∥ p2 ,[ti,ti+1]

+ (|F̃ ′
ti(Ỹ , Ỹ

′)|+∥F̃ ′(Ỹ , Ỹ ′)∥p,[ti,ti+1))∥X− X̃∥ p
2
,[ti,ti+1]

≲ |Yti − Ỹti |+|Fti(Y ) − F̃ti(Ỹ )|+∥y, y′; ỹ, ỹ′∥X,p,[ti,ti+1)+CF−F̃ + ∥X; X̃∥p,[ti,ti+1],
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and

|(Y ′
ti+1−,ti+1

− Ỹ ′
ti+1−,ti+1

) − (y′ti+1−,ti+1
− ỹ′ti+1−,ti+1

)|

= |Fti+1−,ti+1(Y ) − F̃ti+1−,ti+1(Ỹ )|

≤ |(F − F̃ )ti+1−,ti+1(Y )|+|F̃ti+1−,ti+1(Y ) − F̃ti+1−,ti+1(Ỹ )|

≤ C
F−F̃ (1 + (|Y ′

ti |+∥Y ′∥p,[ti,ti+1])∥X∥p,[ti,ti+1]+∥RY ∥ p
2
,[ti,ti+1])

+ C
F,K,X,X̃

(|Yti − Ỹti |+∥Y − Ỹ ∥p,[ti,ti+1)+|Yti+1−,ti+1 − Ỹti+1−,ti+1 |)

≲ |Yti − Ỹti |+|Fti(Y ) − F̃ti(Ỹ )|+∥y, y′; ỹ, ỹ′∥X,p,[ti,ti+1)+CF−F̃ + ∥X; X̃∥p,[ti,ti+1],

where the implicit multiplicative constant depends on p, CF , C
F,K,X,X̃

, K and ∥X∥p∨∥X̃∥p,
and not on the index i.

Now, we need to control the term |Yti − Ỹti |+|Fti(Y ) − F̃ti(Ỹ )|+|y′ti − ỹ′ti |. For this, we

note that

|Yti − Ỹti |+|Fti(Y ) − F̃ti(Ỹ )|+|y′ti − ỹ′ti |

≤ |Yti−1 − Ỹti−1 |+|Fti−1(Y ) − F̃ti−1(Ỹ )|+|y′ti−1
− ỹ′ti−1

|

+ ∥Y − Ỹ ∥p,[ti−1,ti]+∥F (Y ) − F̃ (Ỹ )∥p,[ti−1,ti]+∥y′ − ỹ′∥p,[ti−1,ti]

≲ |Yti−1 − Ỹti−1 |+|Fti−1(Y ) − F̃ti−1(Ỹ )|+∥y, y′; ỹ, ỹ′∥
X,X̃,p,[ti−1,ti]

+ C
F−F̃ + ∥X; X̃∥p,[ti−1,ti]

+ ∥Y ′ − Ỹ ′∥p,[ti−1,ti]+∥RY −RỸ ∥ p
2
,[ti−1,ti],

where the implicit multiplicative constant depends on p, CF , C
F,K,X,X̃

, K, ∥X∥p and ∥X̃∥p,
and not on the index i; thus applying the estimate (2.8) for i− 1 gives that

|Yti − Ỹti |+|Fti(Y ) − F̃ti(Ỹ )|+|y′ti − ỹ′ti |

≲ |Yti−1 − Ỹti−1 |+|Fti−1(Y ) − F̃ti−1(Ỹ )|+∥y, y′; ỹ, ỹ′∥
X,X̃,p,[ti−1,ti]

+ C
F−F̃ + ∥X; X̃∥p,[ti−1,ti].

Iteratively, we obtain for any i = 1, . . . , N that

|Yti − Ỹti |+|Fti(Y ) − F̃ti(Ỹ )|+|y′ti − ỹ′ti |

≲ |y0 − ỹ0|+|F0(y) − F̃0(ỹ)|+|y′0 − ỹ′0|

+
i−1∑
j=0

(
∥y′ − ỹ′∥p,[tj ,tj+1]+∥Ry −Rỹ∥ p

2
,[tj ,tj+1]+CF−F̃ + ∥X; X̃∥p,[tj ,tj+1]

)
,
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that is,

(|Yti − Ỹti |+|Fti(Y ) − F̃ti(Ỹ )|+|y′ti − ỹ′ti |)
p

≲ (|y0 − ỹ0|+|F0(y) − F̃0(ỹ)|+|y′0 − ỹ′0|+NCF−F̃ )p

+

i−1∑
j=0

(
∥y′ − ỹ′∥pp,[tj ,tj+1]

+∥Ry −Rỹ∥pp
2
,[tj ,tj+1]

+∥X; X̃∥pp,[tj ,tj+1]

)
.

This implies that

|Yti − Ỹti |+|Fti(Y ) − F̃ti(Ỹ )|+|y′ti − ỹ′ti |

≲ |y0 − ỹ0|+|F0(y) − F̃0(ỹ)|+∥y, y′; ỹ, ỹ′∥
X,X̃,p

+C
F−F̃ + ∥X; X̃∥p,

which is the desired control.

If we plug this into (2.8), it follows that

∥Y ′ − Ỹ ′∥p,[ti,ti+1]+∥RY −RỸ ∥ p
2
,[ti,ti+1]

≲ |y0 − ỹ0|+|F0(y) − F̃0(ỹ)|+∥y, y′; ỹ, ỹ′∥
X,X̃,p

+C
F−F̃ + ∥X; X̃∥p.

Since ∥·∥p,[0,T ]≤ N
∑N−1

i=0 ∥·∥p,[ti,ti+1] for any p ≥ 1, see e.g. [3, Lemma A.1], the estimate

finally follows.

2.2 Examples of RFDEs

The general framework of rough functional differential equations, presented in Section 2.1,

allows to treat various classes of rough differential equations. In this section, some ex-

emplary rough functional differential equations are discussed, aiming to develop the main

conceptional ideas and demonstrating the scope of RFDEs rather than pushing for the most

general results.

2.2.1 Classical RDEs

Let us start with the classical rough differential equation (RDE)

Yt = y0 +

∫ t

0
f(Ys) dXs, t ∈ [0, T ], (2.9)

where y0 ∈ Rk, f ∈ C3
b (Rk;L(Rd;Rk)) and X ∈ Dp([0, T ];Rd) for p ∈ (2, 3). While the

existence and uniqueness of solutions to the RDE (2.9) driven by a continuous rough path

and the continuity of the solution map were first proven by Lyons [129], the analogous

results for RDEs driven by càdlàg rough paths were more recently obtained by Friz and

Zhang [75]. As an application of Theorem 2.1.3 and Theorem 2.1.5, one can recover these

results, demonstrating that Assumption 2.1.1 and Assumption 2.1.4 are, indeed, natural
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generalizations of the classical assumptions of the coefficients of a rough differential equa-

tion. Furthermore, note that Corollary 2.2.1 presents the continuity of the solution map

with respect to the controlled path norm, which slightly generalizes [75, Theorem 3.8].

Corollary 2.2.1.

(i) If f ∈ C3
b (Rk;L(Rd;Rk)), there exists a unique solution to the RDE (2.9). Moreover,

there exists a non-decreasing function Kp: [0,∞)2 → [0,∞) such that

∥Y, Y ′∥X,p≤ Kp(∥f∥C2
b
, ∥X∥p).

(ii) Let (Y, Y ′) ∈ VpX([0, T ];Rk) be the unique solution to the RDE (2.9). Moreover,

let ỹ0 ∈ Rk, f̃ ∈ C3
b (Rk;L(Rd;Rk)), X̃ ∈ Dp([0, T ];Rd) with corresponding solu-

tion (Ỹ , Ỹ ′) ∈ Vp
X̃

([0, T ];Rd), and suppose that ∥Y, Y ′∥X,p, ∥Ỹ , Ỹ ′∥
X̃,p

≤ K, for some

K > 0. Then, we have the estimate

|Y0 − Ỹ0|+∥Y, Y ′; Ỹ , Ỹ ′∥
X,X̃,p

≲ |y0 − ỹ0|+∥f − f̃∥C2
b
+∥X; X̃∥p,

where the implicit multiplicative constant depends on p, ∥f∥C3
b
∨∥f̃∥C3

b
, K, ∥X∥p and

∥X̃∥p.

In order to apply the existence and uniqueness result presented in Theorem 2.1.3, and

also the continuity result presented in Theorem 2.1.5, we need to check that the vector field

f in the RDE (2.9) satisfies Assumption 2.1.1 and Assumption 2.1.4. This is the content of

the next lemma, which we formulate slightly more general, with regard to the dimensions

of the underlying spaces, for later use.

Lemma 2.2.2. Let f ∈ C3
b (Rm;L(Rd;Rk)) and X, X̃ ∈ Dp([0, T ];Rd). The non-

anticipative functional

(F, F ′):VpX([0, T ];Rm) → VpX([0, T ];L(Rd;Rk)), (F (Y ), F ′(Y, Y ′)) := (f(Y ),Df(Y )Y ′),

satisfies Assumption 2.1.4 (i) and (ii), and, in particular, Assumption 2.1.1, given X, X̃.

Proof. Since the proof is fairly standard, we provide only a sketch of a proof, following, e.g.,

the proofs of [75, Lemma 3.5, Lemma 3.6, Lemma 3.7].

Fix (s, t) ∈ ∆T and let (Y, Y ′) ∈ VpX , (Ỹ , Ỹ ′) ∈ Vp
X̃

.

Growth conditions. It is clear that |Ft(Y )|≤ ∥f∥C2
b
, and it follows from the Lipschitz

continuity of f that

|Ft−,t(Y )|≤ ∥F (Y )∥p,[s,t]≤ ∥f∥C2
b
∥Y ∥p,[s,t].
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We now note that ∥Y ∥p,[s,t]≤ ∥Y ∥p,[s,t)+|Yt−,t| as well as ∥Y ∥p,[s,t]≤ Cp(1+(|Y ′
s |+∥Y ′∥p,[s,t])·

∥X∥p,[s,t]+∥RY ∥ p
2
,[s,t]). Further, it holds that

|F ′
s(Y, Y

′)|+∥F ′(Y, Y ′)∥p,[s,t]= |Df(Ys)Y
′
s |+∥Df(Y )Y ′∥p,[s,t]

≤ ∥f∥C2
b
(|Y ′

s |+∥Y ′∥p,[s,t])(1 + ∥Y ∥p,[s,t])

≲p ∥f∥C2
b
(|Y ′

s |+∥Y ′∥p,[s,t])(1 + (|Y ′
s |+∥Y ′∥p,[s,t])∥X∥p,[s,t]+∥RY ∥ p

2
,[s,t])

≲p ∥f∥C2
b
(1 + ∥Y, Y ′∥X,p,[s,t])(1 + ∥X∥p,[s,t])

and by Taylor’s expansion,

R
F (Y )
s,t = R

f(Y )
s,t = f(Yt) − f(Ys) − Df(Ys)Ys,t + Df(Ys)R

Y
s,t

=
1

2
D2f(Ys + λYs,t)Y

2
s,t + Df(Ys)R

Y
s,t,

with λ ∈ [0, 1], which implies that

∥RF (Y )∥ p
2
,[s,t]= ∥Rf(Y )∥ p

2
,[s,t]≤ ∥f∥C2

b
(∥Y ∥2p,[s,t]+∥RY ∥ p

2
,[s,t])

≲p ∥f∥C2
b
(((|Y ′

s |+∥Y ′∥p,[s,t])∥X∥p,[s,t]+∥RY ∥ p
2
,[s,t])

2 + ∥RY ∥ p
2
,[s,t])

≲p ∥f∥C2
b
(1 + ∥Y, Y ′∥X,p,[s,t])2(1 + ∥X∥p,[s,t])2.

Assumption 2.1.4 (i) therefore holds with some constant CF = ∥f∥C2
b

up to a multiplicative

constant which depends on p.

Lipschitz conditions. Fix K > 0 and assume that ∥Y, Y ′∥X,p,[s,t], ∥Ỹ , Ỹ ′∥
X̃,p,[s,t]

≤ K.

The proofs work verbatim as the proofs of [75, Lemma 3.1 and Lemma 3.7]. The constant

C
F,K,X,X̃

depends on p and ∥f∥C3
b
, K, ∥X∥p and ∥X̃∥p.

Proof of Corollary 2.2.1. (i) The existence and uniqueness of the solution follows immedi-

ately from Lemma 2.2.2 and Theorem 2.1.3. For the a priori estimate, note that ∥y, y′∥X,p=
0 and CF ≲p ∥f∥C2

b
.

(ii) To apply the continuity result presented in Theorem 2.1.5, we need to ensure

that the functionals satisfy the required assumptions. For (F, F ′), (F̃ , F̃ ′), this is given

in Lemma 2.2.2, and further,

(F − F̃ , (F − F̃ )′):VpX([0, T ];Rk) → VpX([0, T ];L(Rd;Rk)),

((F − F̃ )(Y ), (F − F̃ )′(Y, Y ′)) := (f(Y ) − f̃(Y ),Df(Y )Y ′ − Df̃(Y )Y ′),

satisfies the corresponding estimates in Assumption 2.1.4, since C3
b is a vector space. Thus

we have, C
F−F̃ ≲p ∥f − f̃∥C2

b
.
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2.2.2 Controlled RDEs

Motivated by pathwise stochastic control, see e.g. [57, 4], and robust stochastic filtering, see

e.g. [3], as well as analogously to controlled stochastic differential equations, see e.g. [144],

we consider the controlled rough differential equation

Yt = yt +

∫ t

0
f(αs, Ys) dXs, t ∈ [0, T ], (2.10)

where X ∈ Dp([0, T ];Rd) for p ∈ (2, 3), (y, y′) ∈ VpX([0, T ];Rk), f ∈ C3
b (Rk+e;L(Rd;Rk)),

and (α, α′) ∈ VpX([0, T ];Re) is a fixed controlled path, with e ∈ N. In case of continuous

rough paths and controls α of finite p
2 -variation, controlled RDEs were treated in [3, The-

orem 2.3]. The following corollary provides an existence, uniqueness and continuity result

for controlled RDEs driven by càdlàg p-rough paths and with controls α, which are only

required to be controlled paths.

Corollary 2.2.3.

(i) If f ∈ C3
b (Rk+e;L(Rd;Rk)) and (α, α′) ∈ VpX([0, T ];Re), then there exists a unique

solution to the controlled rough differential equation (2.10). Moreover, there exists a

componentwise non-decreasing function Kp: [0,∞)5 → [0,∞) such that

∥Y, Y ′∥X,p≤ Kp(∥f∥C2
b
, ∥y, y′∥X,p, ∥α∥p, ∥α, α′∥X,p, ∥X∥p).

(ii) Let (Y, Y ′) ∈ VpX([0, T ];Rk) be the unique solution to the controlled rough differen-

tial equation (2.10). Moreover, let (ỹ, ỹ′) ∈ VpX([0, T ];Rk), (α̃, α̃′) ∈ VpX([0, T ];Re),
f̃ ∈ C3

b (Rk+e;L(Rd;Rk)), with corresponding solution (Ỹ , Ỹ ′) ∈ VpX([0, T ];Rk), and

suppose that ∥Y, Y ′∥X,p, ∥Ỹ , Ỹ ′∥X,p≤ K, for some K > 0. Then, we have the estimate

|Y0 − Ỹ0|+∥Y, Y ′; Ỹ , Ỹ ′∥X,p

≲ |y0 − ỹ0|+∥y, y′; ỹ, ỹ′∥X,p+∥f − f̃∥C2
b
+|α0 − α̃0|+∥α, α′; α̃, α̃∥X,p,

where the implicit multiplicative constant depends on p, ∥f∥C3
b
∨∥f̃∥C3

b
, ∥α, α′∥X,p,

∥α̃, α̃′∥X,p, K, and ∥X∥p.

In order to apply the existence and uniqueness result presented in Theorem 2.1.3, and

also the continuity result in Theorem 2.1.5, we need to check that the vector field in the

RDE (2.10) satisfies Assumption 2.1.4. This is the content of the next lemma. Note that

it will be sufficient to check Assumption 2.1.4 (ii) for X = X̃, since we do not establish

stability results with respect to the driving rough path in this subsection. (This also applies

to the following subsections.)
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Lemma 2.2.4. Let f ∈ C3
b (Rk+e;L(Rd;Rk)) and X ∈ Dp([0, T ];Rd) for p ∈ (2, 3). Further,

let (α, α′) ∈ VpX([0, T ];Re). The non-anticipative functional

(F, F ′):VpX([0, T ];Rk) → VpX([0, T ];L(Rd;Rk)),

(F (Y ), F ′(Y, Y ′)) := (f((α, Y )),Df((α, Y ))(α′, Y ′)),

satisfies Assumption 2.1.4 given X = X̃.

Proof. Fix (s, t) ∈ ∆T and let (Y, Y ′) ∈ VpX . It is clear that |Ft(Y )|≤ ∥f∥C2
b
, and we note

that

|Ft−,t(Y )|≤ ∥F (Y )∥p,[s,t]= ∥f((α, Y ))∥p,[s,t]

≤ ∥f∥C2
b
∥(α, Y )∥p,[s,t]

≤ ∥f∥C2
b
(1 + ∥α∥p,[s,t])(1 + ∥Y ∥|p,[s,t]),

and it holds that ∥Y ∥p,[s,t]≤ ∥Y ∥p,[s,t)+|Yt−,t| as well as ∥Y ∥p,[s,t]≤ Cp(1+(|Y ′
s |+∥Y ′∥p,[s,t]) ·

∥X∥p,[s,t]+∥RY ∥ p
2
,[s,t]).

Applying Lemma 2.2.2 to the enlarged controlled path ((α, Y ), (α′, Y ′)), it follows that

∥F (Y ), F ′(Y, Y ′)∥X,p,[s,t]

≲ ∥f∥C2
b
(1 + |(α′

s, Y
′
s )|+∥(α′, Y ′)∥p,[s,t]+∥R(α,Y )∥ p

2
,[s,t])

2(1 + ∥X∥p,[s,t])2

≲ ∥f∥C2
b
(1 + ∥α, α′∥X,p)2(1 + ∥Y, Y ′∥X,p,[s,t])2(1 + ∥X∥p,[s,t])2.

The growth conditions thus hold with constant CF = ∥f∥C2
b

up to a multiplicative constant,

which depends on p, ∥α∥p and ∥α, α′∥X,p.
Proceeding as in the proof of Lemma 2.2.2, we can show the Lipschitz conditions, ob-

serving that

|(α, Y )s − (α, Ỹ )s|+∥(α, Y ) − (α, Ỹ )∥p,[s,t]= |Ys − Ỹs|+∥Y − Ỹ ∥p,[s,t]

and

∥(α, Y ), (α′, Y ′); (α, Ỹ ), (α′, Ỹ ′)∥X,p= ∥Y, Y ′; Ỹ , Ỹ ′∥X,p,

and similarly for each summand of the norm, so the Lipschitz conditions hold with constant

CF,K,X,X , which depends on p, ∥f∥C3
b
, K, for K > 0, ∥α, α′∥X,p, and ∥X∥p.

Proof of Corollary 2.2.3. (i) The existence and uniqueness of the solution follows immedi-

ately from Lemma 2.2.4 and Theorem 2.1.3. For the a priori estimate, note that CF ≲p

∥f∥C2
b
(1 + ∥α∥p+∥α, α′∥X,p)2.
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(ii) To apply the continuity result presented in Theorem 2.1.5, we need to ensure

that the functionals satisfy the required assumptions. For (F, F ′), (F̃ , F̃ ′), this is given

in Lemma 2.2.4. Analogously, since f − f̃ ∈ C3
b , we note that for

(Y, Y ′) 7→ ((f − f̃)((α, Y )),D(f − f̃)((α, Y ))(α′, Y ′))

the growth conditions hold with constant equal to ∥f − f̃∥C2
b

up to a multiplicative con-

stant which depends on p, ∥α∥p and ∥α, α′∥X,p. Further, it follows from the proofs of [75,

Lemma 3.1 and Lemma 3.5] that the growth conditions hold for

(Y, Y ′) 7→ (f((α, Y )) − f((α̃, Y )),Df((α, Y ))(α′, Y ′) − Df((α̃, Y ))(α̃′, Y ′))

with constant equal to |α0− α̃0|+∥α− α̃∥p+∥α, α′; α̃, α̃′∥X,p up to a multiplicative constant

which depends on p, ∥f∥C3
b
, ∥α∥p, ∥α̃∥p, ∥α, α′∥X,p, ∥α̃, α̃′∥X,p.

This implies that

(F − F̃ , F ′ − F̃ ′):VpX([0, T ];Rk) → VpX([0, T ];L(Rd;Rk)),

((F − F̃ )(Y ), (F − F̃ )′(Y, Y ′))

:= (f((α, Y )) − f̃((α̃, Y )),Df((α, Y ))(α′, Y ′) − Df̃((α̃, Y ))(α̃′, Y ′)),

satisfies the corresponding estimates in Assumption 2.1.4 with

C
F−F̃ = ∥f − f̃∥C2

b
+|α0 − α̃0|+∥α− α̃∥p+∥α, α′; α̃, α̃′∥X,p

up to a multiplicative constant, which depends on p, ∥f∥C3
b
∨∥f̃∥C3

b
, ∥α∥p, ∥α̃∥p, ∥α, α′∥X,p,

∥α̃, α̃′∥X,p.

2.2.3 RDEs with discrete time dependence

Let us consider the rough differential equation with discrete time dependence

Yt = yt +

∫ t

0
f(Ys, Ys∧r1 , . . . Ys∧rℓ) dXs, t ∈ [0, T ], (2.11)

where X ∈ Dp([0, T ];Rd) for p ∈ (2, 3), (y, y′) ∈ VpX([0, T ];Rk), f ∈ C3
b (Rk(ℓ+1);L(Rd;Rk)),

and r1 < · · · < rℓ be given time points in [0, T ], with ℓ ∈ N. For continuous rough paths

as driving signals, the existence (without uniqueness) of a solution to the RDE (2.11) was

proven in [8, Example 4.2 and Theorem 4.4]. The next proposition provides an existence,

uniqueness and continuity result for RDEs with discrete time dependence driven by càdlàg

p-rough paths.

Proposition 2.2.5.
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(i) In the above setting, there exists a unique solution to the RDE with discrete time

dependence (2.11). Moreover, there exists a componentwise non-decreasing function

Kp:N× [0,∞)3 → [0,∞) such that

∥Y, Y ′∥X,p≤ Kp(ℓ, ∥f∥C2
b
, ∥y, y′∥X,p, ∥X∥p).

(ii) Let (Y, Y ′) ∈ VpX([0, T ];Rk) be the unique solution to the RDE with time discrete

dependence (2.11). Moreover, let (ỹ, ỹ′) ∈ VpX([0, T ];Rk) with corresponding solu-

tion (Ỹ , Ỹ ′) ∈ VpX([0, T ];Rk), and suppose that ∥Y, Y ′∥X,p, ∥Ỹ , Ỹ ′∥X,p≤ K, for some

K > 0. Then, we have the estimate

|Y0 − Ỹ0|+∥Y, Y ′; Ỹ , Ỹ ′∥X,p≲ |y0 − ỹ0|+∥y, y′; ỹ, ỹ′∥X,p,

where the implicit multiplicative constant depends on p, ℓ, ∥f∥C3
b
, K, and ∥X∥p.

Proof. (i) On the interval [0, r1], we extend the vector field f to map into the space of

controlled paths by setting

(F, F ′):VpX([0, r1];Rk) → VpX([0, r1];L(Rd;Rk)), (F (Y ), F ′(Y, Y ′)) := (f(Ȳ ),Df(Ȳ )Ȳ ′),

with (Ȳ , Ȳ ′) = ((Y, Y, . . . , Y ), (Y ′, Y ′, . . . , Y ′)) ∈ VpX([0, T ];Rk(ℓ+1)). It follows analogously

to Lemma 2.2.2 that the functional satisfies Assumption 2.1.4 (i) and (ii) with constants

depending additionally on ℓ, that is, CF = ∥f∥C2
b

up to a multiplicative constant, which

depends on p and ℓ, and CF,K,X,X depends on p, ℓ, ∥f∥C3
b
, K, for K > 0, and ∥X∥p.

Note that it is sufficient to check Assumption 2.1.4 (ii) for X = X̃. We can thus apply

Theorem 2.1.3 to show that there exists a unique solution to the RDE (2.11) on the interval

[0, r1). We now aim to solve the RDE (2.11) iteratively on the subintervals [ri, ri+1), i =

1, . . . , ℓ, with rℓ+1 = T . Given the solution on [ri−1, ri), with r0 = 0, the value Yri is

determined by the jump of X at time ri. We therefore consider (yi, y
′
i) ∈ VpX([ri, ri+1];Rk),

where

yi;t = yt + Yri− − yri− + Fri−(Y )Xri−,ri + F ′
ri−(Y, Y ′)Xri−,ri , t ∈ [ri, ri+1],

for every i = 1, . . . , ℓ, and (αi, α
′
i) ∈ VpX([ri, ri+1];Rik) be a fixed controlled path, with

αi,t = (Yr1 , . . . , Yri), t ∈ [ri, ri+1). We set

(F, F ′):VpX([ri, ri+1];Rk) → VpX([ri, ri+1];L(Rd;Rk)),

(F (Y ), F ′(Y, Y ′)) = (f((Y, αi, Y, . . . , Y )),Df((Y, αi, Y, . . . , Y ))(Y ′, α′
i, Y

′, . . . , Y ′))

for i = 1, . . . , ℓ− 1, and

(F (Y ), F ′(Y, Y ′)) = (f((Y, αℓ)),Df((Y, αℓ))(Y
′, α′

ℓ)),
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for i = ℓ. Analogously to Lemma 2.2.4, we can show that the functional satisfies Assump-

tion 2.1.4 (i) and (ii) with constants depending additionally on ℓ, that is CF = ∥f∥C2
b

up

to a multiplicative constant, which depends on p and ℓ, see the definition of (αi, α
′
i) ∈

VpX([ri, ri+1]), and CF,K,X,X depends on p, ℓ, ∥f∥C3
b
, K, for K > 0, and ∥X∥p. Note that

it is again sufficient to check Assumption 2.1.4 (ii) for X = X̃. We can thus again apply

Theorem 2.1.3 to show that there exists a unique solution to the RDE (2.11) on the interval

[ri, ri+1), that is

Yt = yi;t +

∫ t

ri

Fs(Y ) dXs, t ∈ [ri, ri+1),

for every i = 1, . . . , ℓ. Then, by pasting the solutions on each of these subintervals together,

we obtain a unique global solution Y , which holds over the entire interval [0, T ].

The a priori estimate follows by iteratively combining the a priori estimate of Corol-

lary 2.2.3, noting that αi,t = (Yr1 , . . . , Yri), t ∈ [ri, ri+1), for i = 1, . . . , ℓ.

(ii) Local estimate on [0, r1]. To apply the continuity result presented in Theorem 2.1.5

on the subinterval [0, r1], we need to ensure that the functionals satisfy the required as-

sumptions.

For (F, F ′), this is shown in the proof of (i), and as we aim to obtain continuity of the

solution map as a function of the initial condition (y, y′), not the vector field f , on the

interval [0, r1] we may consider (F, F ′) = (F̃ , F̃ ′), so, (F − F̃ , F ′ − F̃ ′) = 0. Theorem 2.1.5

now gives that

∥Y ′ − Ỹ ′∥p,[0,r1]+∥RY −RỸ ∥p,[0,r1]≲ |y0 − ỹ0|+∥y, y′; ỹ, ỹ′∥X,p,[0,r1],

where the implicit multiplicative constant depends on p, ℓ, ∥f∥C3
b
, K, and ∥X∥p.

Local estimate on [ri, ri+1], i = 1, . . . , ℓ. To apply the continuity result presented in

Theorem 2.1.5, we need to ensure that the functionals satisfy the required assumptions.

For (F, F ′), (F̃ , F̃ ′), this is shown in the proof of (i), and for (F − F̃ , F ′ − F̃ ′), in the

proof of part (ii) of Corollary 2.2.3, where the constant C
F−F̃ depends additionally on ℓ.

Theorem 2.1.5 then implies that

∥Y ′ − Ỹ ′∥p,[ri,ri+1]+∥RY −RỸ ∥p,[ri,ri+1]≲ |Yri − Ỹri |+∥y, y′; ỹ, ỹ′∥X,p,[ri,ri+1],

where the implicit multiplicative depends on p, ∥f∥C3
b
, K and ∥X∥p, see the definition of

(αi, α
′
i), (α̃i, α̃

′
i) ∈ VpX([ri, ri+1];Rik), (yi, y

′
i), (ỹi, ỹ

′
i) ∈ VpX([ri, ri+1];Rk).

Global estimate. Using the methods of the proof of Theorem 2.1.5, and applying the

local estimates on the subintervals [ri, ri+1], i = 0, 1, . . . , ℓ, one can then derive that

∥Y ′ − Ỹ ′∥p+∥RY −RỸ ∥ p
2
≲ |y0 − ỹ0|+∥y, y′; ỹ, ỹ′∥X,p,

which implies the estimate.
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2.2.4 RDEs with constant delay

Maybe the most prominent example of rough functional differential equations are RDEs

with constant delay, cf. e.g. [65, 140, 21, 32, 20]. In the present subsection we consider the

delayed rough differential equation

Yt = yt +

∫ t

0
f(Ys, Ys−r1 , . . . , Ys−rℓ) dXs, t ∈ [0, T ], (2.12)

where X ∈ Dp([0, T ];Rd) for p ∈ (2, 3), (y, y′) ∈ VpX([0, T ];Rk), f ∈ C3
b (Rk(ℓ+1);L(Rd;Rk)),

and constant delays 0 < r1 < · · · < rℓ with ℓ ∈ N. To give a rigorous mathematical meaning

to the RDE (2.12), we follow the approach of Neuenkirch, Nourdin and Tindel [140]: we

assume that the driving rough path X is of the form

Xt = (Zt, Zt−r1 , . . . , Zt−rℓ), t ∈ [0, T ],

for a path Z ∈ Dp([−rℓ, T ];Re) with d = e(ℓ+ 1). We extend the vector field f to map into

the space of controlled paths by setting

(F (Y ), F ′(Y, Y ′)) := (f((Y, α)),Df((Y, α))(Y ′, α′)),

for (α, α′) ∈ VpX([0, T ];Rkℓ), where

α = (α1, . . . , αℓ) with αj,t :=

{
Yt−rj , t ∈ [rj , T ]

Yj;t, t ∈ [0, rj)
, (2.13)

for fixed controlled paths (Yj , Y
′
j ) ∈ VpZ·−rj

([0, T ];Rk) and every j = 1, . . . , ℓ. This includes

the natural case Yj = ξ·−rj for an initial path ξ ∈ VpZ([−rℓ, T ];Rk).
Note that the postulated form of the rough path X is essential to ensure the well-

posedness of the rough integral appearing in (2.12) and the extension of the solution Y to the

interval [−rℓ, 0] is a standard and necessary way to give a meaning to f(Ys, Ys−r1 , . . . , Ys−rℓ)

on the entire interval [0, T ].

For delayed RDEs of the form (2.12) driven by α-Hölder continuous rough paths, ex-

istence, uniqueness and continuity of the Itô–Lyons map were first proven in [140] for

α ∈ (13 ,
1
2). These results were extended in [156] to α-Hölder continuous rough paths

for α ∈ (14 ,
1
3). A paracontrolled distribution approach to RDEs with constant delay can

be found in [146]. Based on the general results of Section 2.1, we can derive the follow

proposition.

Proposition 2.2.6.
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(i) In the above setting, there exists a unique solution to the delayed RDE (2.12). More-

over, there exists a componentwise non-decreasing function Kp:N× [0,∞)4 → [0,∞)

such that

∥Y, Y ′∥X,p≤ Kp

(
ℓ, ∥f∥C2

b
, ∥y, y′∥X,p,

ℓ∑
j=1

∥Yj , Y ′
j ∥Z·−rj ,p

, ∥X∥p
)
.

(ii) Let (Y, Y ′) ∈ VpX([0, T ];Rk) be the unique solution to the rough differential equation

with constant delay (2.12). Moreover, consider (ỹ, ỹ′) ∈ VpX([0, T ];Rk), and fixed

controlled paths (Ỹj , Ỹ
′
j ) ∈ VpZ·−rj

([0, T ];Rk), j = 1, . . . , ℓ, with corresponding solution

(Ỹ , Ỹ ′) ∈ VpX([0, T ];Rk).

Suppose that ∥Y, Y ′∥X,p, ∥Ỹ , Ỹ ′∥X,p≤ K, for some K > 0, and that ∥Yj∥p, ∥Ỹj∥p,
∥Yj , Yj∥X,p, ∥Ỹj , Ỹ ′

j ∥X,p≤ L, for some L > 0, j = 1, . . . , ℓ. Then, we have the estimate

|Y0 − Ỹ0|+∥Y, Y ′; Ỹ , Ỹ ′∥X,p

≲ |y0 − ỹ0|+∥y, y′; ỹ, ỹ′∥X,p+
ℓ∑

j=1

|Yj;0 − Ỹj;0|+
ℓ∑

j=1

∥Yj , Y ′
j ; Ỹj , Ỹ

′
j ∥Z·−rj ,p

,

where the implicit multiplicative constant depends on p, ℓ, r1, T , ∥f∥C3
b
, K, L, and

∥X∥p.

Proof. (i) The existence and uniqueness of the solution follows by iteratively applying

part (i) of Corollary 2.2.3 to intervals of the length r1.

More precisely, we consider the functional (F, F ′):VpX([0, r1];Rk) → VpX([0, r1];L(Rd;Rk)),
for (α, α′) ∈ VpX([0, r1];Rkℓ) given by (2.13), and apply part (i) of Corollary 2.2.3 to show

that there exists a unique solution to the RDE (2.12) on the interval [0, r1).

We now aim to solve the RDE (2.12) iteratively on the subintervals [ir1, (i + 1)r1],

i = 1, . . . , N − 1, assuming that T = Nr1 for some N ∈ N. Given the solution on [(i −
1)r1, ir1), the value Yir1 is determined by the jump of X on ir1. We therefore consider

(yi, y
′
i) ∈ VpX([ir1, (i+ 1)r1];Rk), where

yi;t = yt + Yir1− − yir1− + Fir1−(Y )Xir1−,ir1 + F ′
ir1−(Y, Y ′)Xir1−,ir1 , t ∈ [ir1, (i+ 1)r1],

for every i = 1, . . . , N − 1, and

(F, F ′):VpX([ir1, (i+ 1)r1];Rk) → VpX([ir1, (i+ 1)r1];L(Rd;Rk)),

for (α, α′) ∈ VpX([ir1, (i + 1)r1];Rkℓ) given by (2.13). We again apply part (i) of Corol-

lary 2.2.3 to show that there exists a unique solution to the RDE (2.12) on the interval

[ir1, (i+ 1)r1), that is

Yt = yi;t +

∫ t

ir1

Fs(Y ) dXs, t ∈ [ir1, (i+ 1)r1)
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for every i = 1, . . . , N−1. Then, by pasting solutions on each of these subintervals together,

we obtain a unique global solution Y to the RDE (2.12), which holds over the interval [0, T ].

The a priori estimate follows by iteratively combining the a priori estimate of Corol-

lary 2.2.3, and by the definition of α in (2.13).

(ii) Local estimate on [ir1, (i+1)r1], i = 0, . . . , N−1. To apply the continuity result pre-

sented in Theorem 2.1.5 on the subintervals [ir1, (i+ 1)r1], we need to ensure that the func-

tionals satisfy the required assumptions. This is given for (F, F ′), (F̃ , F̃ ′) in Lemma 2.2.4,

and for (F − F̃ , F ′ − F̃ ′) we refer to the proof of part (ii) of Corollary 2.2.3, and write

C
F−F̃ ,i for the corresponding constant. By Theorem 2.1.5, it then holds the estimate

∥Y ′ − Ỹ ′∥p,[ir1,(i+1)r1]+∥RY −RỸ ∥ p
2
,[ir1,(i+1)r1]

≲ |Yir1 − Ỹir1 |+|Fir1(Y ) − F̃ir1(Ỹ )|+∥y, y′; ỹ, ỹ′∥p,[ir1,(i+1)r1]+CF−F̃ ,i

≲ |y0 − ỹ0|+∥y, y′; ỹ, ỹ′∥X,p+
ℓ∑

j=1

|Yj;0 − Ỹj;0|+∥Yj , Y ′
j ; Ỹj , Ỹ

′
j ∥Z·−rj ,p

+ ∥Y ′ − Ỹ ′∥p,[0,ir1]+∥RY −RỸ ∥ p
2
,[0,ir1],

where the implicit multiplicative constant depends on p, ℓ, ∥f∥C2
b
, K, L, and ∥X∥p, see the

definition of (α, α′), (α̃, α̃′) ∈ VpX([0, T ];Rkℓ).
Global estimate. Iteratively applying the local estimates and, as before, using that

∥·∥p≤ N
∑N−1

i=0 ∥·∥p,[ir1,(i+1)r1], one can then derive the estimate.

2.2.5 RDEs with variable delay

Rough differential equations with variable delay represent a slight generalization of RDEs

with constant delay. More precisely, let us consider the rough differential equation with

variable delay

Yt = yt +

∫ t

0
f(Ys, Ys−η(s)) dXs, t ∈ [0, T ], (2.14)

where X ∈ Dp([0, T ];Rd) for p ∈ (2, 3), (y, y′) ∈ VpX([0, T ];Rk), f ∈ C3
b (R2k;L(Rd;Rk)),

and η(·) be a bounded continuous function with η(t) ≥ ε, t ∈ [0, T ], for some ε > 0, and

η̄ = sup{η(t) − t : t ∈ [0, T ]}. We assume that the driving rough path X is of the form

Xt = (Zt, Zt−η(t)), t ∈ [0, T ],

for a path Z ∈ Dp([−η̄, T ];Re) with d = 2e. We extend the vector field f into the space of

controlled paths by setting

(F, F ′):VpX([0, T ];Rk) → VpX([0, T ];L(Rd;Rk)),

(F (Y ), F ′(Y, Y ′)) = (f((Y, α)),Df((Y, α))(Y ′, α′)),
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for (α, α′) ∈ VpX([0, T ];Rk), where

αt :=

{
Yt−η(t), t ≥ η(t)

Yη;t, t < η(t)
,

for some fixed controlled path (Yη, Y
′
η) ∈ VpZ·−η(·)

([0, T ];Rk).

Corollary 2.2.7.

(i) In the above setting, there exists a unique solution to the delayed RDE (2.14). More-

over, there exists a componentwise non-decreasing function Kp: (0,∞) × [0,∞)4 →
[0,∞) such that

∥Y, Y ′∥X,p≤ Kp(ε
−1, ∥f∥C2

b
, ∥y, y′∥X,p, ∥Yη, Y ′

η∥X,p, ∥X∥p).

(ii) Let (Y, Y ′) ∈ VpX([0, T ];Rk) be the unique solution to the RDE with variable de-

lay (2.14). Moreover, consider (ỹ, ỹ′) ∈ VpX([0, T ];Rk), and a fixed controlled path

(Ỹη, Ỹ
′
η) ∈ VpZ·−η(·)

([0, T ];Rk) with corresponding solution (Ỹ , Ỹ ′) ∈ VpX([0, T ];Rk).

Suppose that ∥Y, Y ′∥X,p, ∥Ỹ , Ỹ ′∥X,p≤ K, for some K > 0, and ∥Yη, Yη∥X,p, ∥Ỹη, Ỹ ′
η∥X,p

≤ L, for some L > 0. Then, we have the estimate

|Y0 − Ỹ0|+∥Y, Y ′; Ỹ , Ỹ ′∥X,p

≲ |y0 − ỹ0|+∥y, y′; ỹ, ỹ′∥X,p+|Yη;0 − Ỹη;0|+∥Yη, Y ′
η ; Ỹη, Ỹ

′
η∥Z·−η(·),p,

where the implicit multiplicative constant depends on p, ε, T , η, ∥f∥C3
b
, K, L, and

∥X∥p.

Proof. (i) The existence and uniqueness of the solution follows by iteratively applying

part (i) of Corollary 2.2.3 to intervals of the length ε, see the proof of part (i) of Proposi-

tion 2.2.6 The a priori estimate follows analogously.

(ii) The continuity of the solution map follows analogously to Proposition 2.2.6 (ii).

2.3 Application to stochastic differential equations with delay

One main application of rough path theory is a pathwise and robust approach to stochastic

differential equations, see e.g. [71]. In this section we show how a càdlàg martingale and

its delayed version can be lifted to a joint random rough path in the spirit of stochastic Itô

integration. Consequently, this allows to apply the results on rough functional differential

equations, provided in Section 2.1, to Itô stochastic differential equations (SDEs) with

constant delay.
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Throughout the entire section, let us consider constant delays 0 < r1 < · · · < rℓ with ℓ ∈
N, and let (Ω,F ,P) be a probability space with a complete and right-continuous filtration

(Ft)t∈[−rℓ,T ]. Let Z = (Zt)t∈[−rℓ,T ] be an e-dimensional square-integrable càdlàg martingale

that is defined on (Ω,F ,P), with Zt = 0 for t < 0. The space of all square-integrable

random variables on (Ω,F ,P) is denoted by L2 and equipped with the standard L2-norm.

2.3.1 Delayed martingales as rough paths

The aim of this subsection is to construct a random rough path above the stochastic process

X = (Xt)t∈[0,T ], defined as

Xt := (Zt, Zt−r1 , . . . , Zt−rℓ), t ∈ [0, T ],

in the spirit of stochastic Itô integration. Recall, for a martingale (St)t∈[0,T ], stochastic Itô

integration allows to define the integral
∫ t
0 φs dSs if (φt)t∈[0,T ] is a stochastic process with

left-continuous sample paths with right-limits which is adapted to the augmented filtration

generated by (St)t∈[0,T ]. For a comprehensive introduction to stochastic integration see, e.g.,

[147]. In the following, when writing a stochastic integral, like
∫ t
0 φs dSs, we will always

implicitly refer to the augmented filtration generated by (St)t∈[0,T ] if not explicitly stated

otherwise.

To construct a random rough path above the stochastic process X = (Xt)t∈[0,T ], the

main challenge is to establish the existence of the random integral
∫ t
0 Zt−rj1 dZt−rj2 for

j1 < j2 since (Zt−rj1 )t∈[0,T ] is, in general, not adapted to the augmented filtration generated

by (Zt−rj2 )t∈[0,T ].

As a first step to construct a random rough path above the stochastic process X, in

the next lemma, we derive the existence of an auxiliary process, inspired by the quadratic

co-variation of martingales.

Lemma 2.3.1. Let Z = (Zt)t∈[−rℓ,T ] be an e-dimensional square-integrable càdlàg mar-

tingale that is defined on (Ω,F ,P), with Zt = 0 for t < 0. Then, for i1, i2 = 1, . . . , e,

j1, j2 = 0, . . . , ℓ, j1 ̸= j2, we have

E
[

sup
t∈[0,T ]

∣∣∣Nn−1∑
k=0

Zi1tnk∧t−rj1 ,t
n
k+1∧t−rj1

Zi2tnk∧t−rj2 ,t
n
k+1∧t−rj2

−
∑
s≤t

∆sZ
i1
·−rj1

∆sZ
i2
·−rj2

∣∣∣2] −→ 0

along any sequence of partitions Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, of the interval
[0, T ] with vanishing mesh size, so that |Pn|→ 0 as n → ∞. Here, we write ∆tH = Ht−,t,

with Ht− = lims↑tHs, for the jump of a stochastic process H at time t.

We define the stochastic process

[Zi1·−rj1
, Zi2·−rj2

]t :=
∑
s≤t

∆sZ
i1
·−rj1

∆sZ
i2
·−rj2

, t ∈ [0, T ].
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This process is càdlàg and has P-almost surely finite p
2 -variation, that is, [Zi1·−rj1

, Zi2·−rj2
] ∈

D
p
2 ([0, T ];R) P-almost surely.

Proof. We assume w.l.o.g. that j1 = 0, and write r = rj2 , and M = Zi1 , M̃ = Zi2 . For

n ∈ N, we define

Hn
t :=

Nn−1∑
k=0

M̃tnk−r,t
n
k+1−r1(tnk ,t

n
k+1]

(t), t ∈ [0, T ],

and note that for |Pn|< r, Hn is indeed a simple predictable process, see [147, Chapter II].

The Itô integral is then given by∫ t

0
Hn
s dMs =

Nn−1∑
k=0

M̃tnk∧t−r,t
n
k+1∧t−rMtnk∧t,t

n
k+1∧t.

We now aim to show that

E
[ ∫ T

0
(Hn

s −Hs)
2 d[M ]s

]
→ 0, as n→ ∞, (2.15)

where H := ∆·M̃·−r, and [·] denotes the quadratic variation. Using the localizing sequence

τm = T ∧ inf{t : |M̃t|≥ m}, m ∈ N, and replacing Hn by Hn
·∧τm and H by H·∧τm , we

may assume that the integrand is uniformly bounded, so that we can apply the dominated

convergence theorem. Since Hn → H converges pointwise as n→ ∞, this shows (2.15).

By [96, Chapter I.4], it follows that

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0
Hn
s dMs −

∫ t

0
Hs dMs

∣∣∣2]→ 0

as n→ ∞, thus uniformly in L2, and as∫ t

0
Hs dMs =

∑
s≤t

∆sM̃·−r∆sM,

this implies the convergence result. Further,

4[M,M̃·−r] =
∑
s≤·

(∆sM + ∆sM̃·−r)
2 −

∑
s≤·

(∆sM − ∆sM̃·−r)
2

has càdlàg sample paths of finite 1-variation, as both terms on the right hand side are mono-

tonically increasing, which implies that [M,M̃·−r] has P-almost surely finite p
2 -variation, and

concludes the proof.

Proposition 2.3.2. Let p ∈ (2, 3), and let Z = (Zt)t∈[−r,T ] be an e-dimensional square-

integrable càdlàg martingale that is defined on (Ω,F ,P), with Zt = 0 for t < 0. We set
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X = (Z,Z·−r1 , . . . , Z·−rℓ). Then, X can be lifted to a random rough path, by defining

X = (X,X) ∈ Dp([0, T ];Rd), P-almost surely, with d = e(ℓ+ 1), where

Xijs,t :=

∫ t

s
Xi
u− dXj

u −Xi
sX

j
s,t :=

∫ t

0
Xi
u− dXj

u −
∫ s

0
Xi
u− dXj

u −Xi
sX

j
s,t,

for i, j = 1, . . . , d with i = j and i > j such that Xi = Zi1·−rj1
, Xj = Zi2·−rj2

with i1, i2 =

0, . . . , e, j1, j2 = 0, . . . , ℓ, j1 > j2, and else

Xjis,t = −Xijs,t +Xi
s,tX

j
s,t − [Xi, Xj ]s,t

for any (s, t) ∈ ∆T , and where the integration is defined as a stochastic Itô integral, and

[Xi, Xj ] is defined in Lemma 2.3.1.

Remark 2.3.3. The stochastic integral
∫ t
0 Z

i1
u−rj1−

dZi2u−rj2
can be defined using classical

stochastic Itô integration if j1 > j2. Indeed, the stochastic process (Zi2t−rj2
)t∈[0,T ] is a mar-

tingale and the stochastic process (Zi1t−rj1
)t∈[0,T ] is predictable, both with respect to the fil-

tration (Ft−rj2 )t∈[0,T ] with Ft := {Ω, ∅} for t < 0.

Further, for i ≥ j, we have that Xijs,t :=
∫ t
0 X

i
u− dXj

u−
∫ s
0 X

i
u− dXj

u−Xi
sX

j
s,t =

∫ t
s X

i
s,u− dXj

u

=
∫ t
s

∫ u−
s dXi

r dXj
u, that is, Xijs,t coincides with the 2-fold iterated integral, for (s, t) ∈ ∆T .

Proof of Proposition 2.3.2. First, by definition Chen’s relation does hold: Let 0 ≤ s ≤ v ≤
t ≤ T . Then, we have that

Xiis,v + Xiiv,t +Xi
s,vX

i
v,t

=

∫ t

s
Xi
u− dXi

u −Xi
sX

i
s,v −Xi

vX
i
v,t +Xi

s,vX
i
v,t

=

∫ t

s
Xi
u− dXi

u −Xi
sX

i
s,t

= Xiis,t,

similarly for Xij , and

Xjis,v + Xjiv,t +Xj
s,vX

i
v,t

= −Xijs,v +Xi
s,vX

j
s,v − [Xi, Xj ]s,v − Xijv,t +Xi

v,tX
j
v,t − [Xi, Xj ]v,t +Xj

s,vX
i
v,t

= −Xijs,t +Xi
s,vX

j
v,t +Xi

s,vX
j
s,v +Xi

v,tX
j
v,t +Xi

v,tX
j
s,v − [Xi, Xj ]s,t

= −Xijs,t +Xi
s,tX

j
s,t − [Xi, Xj ]s,t

= Xjis,t.

Further, Z has P-almost surely finite p-variation, see e.g. [120], therefore X ∈ Dp([0, T ];Rd)
P-almost surely. Since the maps s 7→ Xs,t for fixed t, and t 7→ Xs,t for fixed s are both

càdlàg, it thus remains to show that ∥X∥ p
2
<∞ P-almost surely.
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We define the dyadic stopping times (τnk )n,k∈N by

tn0 := 0, τnk+1 := inf{t ≥ τnk : |Xt −Xτnk
|≥ 2−n} ∧ T.

For t ∈ [0, T ] and n ∈ N we introduce the dyadic approximation

Xn
t :=

∞∑
k=0

Xτnk
1(τnk ,τ

n
k+1]

(t) and

∫ t

0
Xi,n
r dXj

r :=
∞∑
k=0

Xi
τnk
Xj
τnk ∧t,τ

n
k+1∧t

,

for i = j or i ̸= j such that Xi = Zi1·−rj1
, Xj = Zi2·−rj2

for i1, i2 = 1, . . . , e, j1, j2 = 0, . . . , ℓ,

j1 > j2.

We now show that for almost every ω ∈ Ω, for every t ∈ [0, T ] and for every ε ∈ (0, 1),

there exists a constant C = C(ω, ε) such that for all n ∈ N, we have∣∣∣∣( ∫ t

0
Xi,n
u dXj

u −
∫ t

0
Xi
u dXj

u

)
(ω)

∣∣∣∣ ≤ C2−n(1−ε). (2.16)

Applying the Burkholder–Davis–Gundy inequality, we have that

E
[(

sup
t∈[0,T ]

∫ t

0
(Xi,n

u −Xi
u) dXj

u

)2]
≲ E

[ ∫ T

0
(Xi,n

u −Xi
u)2 d[Xj ]u

]
≲ 2−2n, n ∈ N,

where the implicit multiplicative constant depends on the quadratic variation [Xj ] of Xj .

Combining this with Chebyshev’s inequality, we obtain for any ε ∈ (0, 1) that

P
(∣∣∣∣ ∫ t

0
(Xi,n

u −Xi
u) dXj

u

∣∣∣∣ ≥ 2−n(1−ε)
)

≲ 22n(1−ε)2−2n = 2−nε.

So by the Borel–Cantelli lemma, we have that

sup
t∈[0,T ]

(∫ t

0
Xi,n
u dXj

u −
∫ t

0
Xi
u dXj

u

)
≲ 2−n(1−ε),

where the implicit multiplicative constant is a random variable which does not depend on

n, which shows (2.16). Proceeding as in the proof of [124, Theorem 3.1], we can show that

∥Xij∥ p
2
< ∞ P-almost surely. Further, let i ̸= j as above, then we have for any (s, t) ∈ ∆T

that

|Xjis,t|
p
2≲ ∥Xij∥

p
2
p
2
,[s,t]

+∥X∥pp,[s,t]+∥[Xi, Xj ]∥
p
2
p
2
,[s,t]

.

Lemma 2.3.1 then ensures that ∥Xji∥ p
2
<∞ P-almost surely.

Remark 2.3.4. For a fractional Brownian motion with Hurst index H and its delayed ver-

sion a joint rough path was constructed in [140] based on the Russo–Vallois integral [151],

assuming that H > 1
3 . This construction was generalized in [156] allowing for H > 1

4 .

A related construction of a delayed rough path above a fractional Brownian motion can
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be found in [21]. For a standard Brownian motion a delayed rough path was also de-

fined in [32] based on stochastic Itô integration. While the delayed rough path provided in

Proposition 2.3.2 corresponds to stochastic Itô integration, see Proposition 2.3.5 below, the

aforementioned constructions of delayed rough paths above (fractional) Brownian motion

correspond to Stratonovich integration.

2.3.2 SDEs with delay as random RDEs

Let us consider the SDE with constant delay

Yt = y0 +

∫ t

0
f(Ys−, Ys−r1−, . . . , Ys−rℓ−) dZs, t ∈ [0, T ],

Yt = yt, t ∈ [−rℓ, 0),

(2.17)

where y ∈ D
p
2 ([−rℓ, T ];Rk), f ∈ C3

b (Rk(ℓ+1);L(Rd;Rk)) and the integral is defined as a

stochastic Itô integral. For a comprehensive introduction to stochastic Itô integration and

SDEs we refer, e.g., to the textbook [147]. It is known that the SDE (2.17) possesses a unique

(strong) solution, see e.g. [147, Chapter V, Theorem 7]. It turns out that the solutions to

the SDE (2.17) and to the RDE (2.12) driven by the random rough path X = (X,X), with

X as defined in Proposition 2.3.2, coincide P-almost surely.

Proposition 2.3.5. Let p ∈ (2, 3), and let Z = (Zt)t∈[−r,T ] be an e-dimensional square-

integrable càdlàg martingale, that is defined on (Ω,F ,P), with Zt = 0 for t < 0. We set

X := (Z,Z·−r1 , . . . , Z·−rℓ), and let X = (X,X) be the random rough path, with X defined as

in Proposition 2.3.2.

(i) Let (V, V ′) be an adapted stochastic process such that (V (ω), V ′(ω)) ∈ VpX(ω) for almost

every ω ∈ Ω. Then, the rough integral exists and coincides P-almost surely with the

stochastic Itô integral, that is∫ T

0
Vu dXu =

∫ T

0
Vu− dXu, P-almost surely.

(ii) The solution of the SDE (2.17) driven by X, and the solution of the RDE (2.12)

driven by X, coincide P-almost surely.

Proof. (i) Step 1. [73, Theorem 31] gives that∫ T

0
Vu dXu = lim

|P|→0

∑
(s,t)∈P

(VsXs,t + V ′
sXs,t),

where the limit is taken over any sequence of partitions P of the interval [0, T ] with mesh

size |P|→ 0, and it is known that∑
(s,t)∈P

VsXs,t →
∫ T

0
Vu− dXu,
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in probability as |P|→ 0, see e.g. [147, Chapter II, Theorem 21], therefore the convergence

holds P-almost surely, possibly along some subsequence.

Step 2. We are left to show that

lim
|P|→0

∑
(s,t)∈P

V ′
sXs,t = 0, (2.18)

P-almost surely, along some subsequence. It suffices to show that for i, j = 1, . . . , d,

sup
τ∈[0,T ]

∣∣∣ ∑
(s,t)∈P∩[0,τ ]

Xijs,t
∣∣∣→ 0, as |P|→ 0, (2.19)

in probability, which then implies P-almost sure convergence, along some subsequence: if V ′

is P-almost surely piecewise constant, then (2.19) implies (2.18). Otherwise, for any ε > 0,

there exists a suitable piecewise constant approximation V ′,ε of V ′ such that

∥V ′ − V ′,ε∥∞≤ ε,

P-almost surely, see [6, Proposition B.1]. By a standard interpolation argument (e.g. [74,

Proposition 5.5]), it follows, for any q > p, that

∥V ′ − V ′,ε∥q≤ ∥V ′ − V ′,ε∥
p
q
p ∥V ′ − V ′,ε∥

1− p
q

∞ ≤ Cε
1− p

q ,

P-almost surely, where the implicit multiplicative constant C is a random variable which

does depend only on p, q and ∥V ′∥p. Using [161, (5.1)], we obtain that∣∣∣ ∑
(s,t)∈P

V ′
sXs,t −

∑
(s,t)∈P

V ′,ε
s Xs,t

∣∣∣ ≤ (1 + ζ
(1

q
+

2

p

))
∥V ′ − V ′,ε∥q∥X∥ p

2
≤ Cε

1− p
q ,

P-almost surely for any partition P, where the implicit multiplicative constant C is a random

variable which does depend only on p, q, ∥V ′∥p and ∥X∥ p
2
. Consequently, if

lim
|P|→0

∑
(s,t)∈P

V ′,ε
s Xs,t = 0,

holds P-almost surely, then so does (2.18), and it suffices to show (2.19).

Step 3. From here on, for the proof of (2.19), we consider the sequence of partitions

Pn = {0 = tn0 < tn1 < . . . < tnNn = T}, n ∈ N, of the interval [0, T ] with vanishing mesh size,

so that |Pn|→ 0 as n→ ∞. Moreover, let i ≥ j.

Recall that

Xijtnk ,tnk+1
=

∫ tnk+1

tnk

Xi
tnk ,u−

dXj
u, k = 0, . . . , Nn − 1.

Thus, the Burkholder–Davis–Gundy inequality gives that

E
[

sup
τ∈[0,T ]

∣∣∣ ∑
(s,t)∈Pn∩[0,τ ]

Xijs,t
∣∣∣2] ≲ E

[ ∫ T

0
|Xi

u|Pn ,u−|
2 d[Xj ]u

]
,
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where we write t|Pn := max{tnk ∈ Pn : tnk ≤ t}, t ∈ [0, T ]. Proceeding as in the proof of [76,

Lemma 6.1], one can then show that

E
[ ∫ T

0
|Xi

u|Pn ,u−|
2 d[Xj ]u

]
→ 0, as n→ ∞,

which gives (2.19).

Therefore, by definition and Lemma 2.3.1 it holds that

Nn−1∑
k=0

Xjitnk ,tnk+1
= −

Nn−1∑
k=0

Xijtnk ,tnk+1
+Xi

tnk ,t
n
k+1

Xj
tnk ,t

n
k+1

− [Xi, Xj ]tnk ,t
n
k+1

= −
Nn−1∑
k=0

Xijtnk ,tnk+1
+

Nn−1∑
k=0

Xi
tnk ,t

n
k+1

Xj
tnk ,t

n
k+1

−
∑
s≤T

∆sX
i∆sX

j

→ 0,

as n→ ∞, where the convergence holds uniformly in probability, which then concludes the

proof.

(ii) Let Y be the solution of the rough differential equation (2.12) driven by the random

rough path X = (X,X), see part (i) of Proposition 2.2.6. We note that the assumption on

(V, V ′) in (i) does fit into this setting, where (V (ω), V ′(ω)) = (F (Y (ω)), F ′(Y (ω), Y ′(ω))

for some functional F , see Section 2.2.4. As the rough and Itô integral do coincide P-almost

surely by (i), we infer that Y is also a solution of the SDE (2.17), which has a unique

solution (by e.g. [147, Chapter V, Theorem 7]).

Remark 2.3.6. As a consequence of Proposition 2.2.6 and part (ii) of Proposition 2.3.5,

one can apply the continuity of the Itô–Lyons map (Theorem 2.1.5) to derive pathwise

stability results for stochastic differential equations with delay like (2.17). In particular, the

map y 7→ Y , mapping the initial path y to the associated solution Y of the SDE (2.17), is

continuous on the space of controlled paths, which resolves an old observation, pointed out

by Mohammed [136], about the non-continuity of the flow of stochastic differential equations

with delay. The latter is a consequence of the discontinuity of stochastic integration when

using an unsuitable topology for the integrands.

Remark 2.3.7. While we considered square-integrable martingales and the associated sto-

chastic differential equations with constant delay in this section, the presented results can

be generalized in a fairly straightforward manner to:

(i) càdlàg local martingales using standard localization arguments;

(ii) càdlàg semimartingales using the classical estimates for Young integrals, see e.g. [75,

Proposition 2.4] and [124, Theorem 3.1], to show that one can suitably lift X to a

random rough path with additional Young integrals;
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(iii) Young semimartingales (also known as semimartingales in the sense of Norvaǐsa

[142]), i.e. Z = M + φ, for some martingale M and some càdlàg adapted process

φ with φ(ω) ∈ Dq([0, T ];Re) for almost every ω ∈ Ω, for some q ∈ [1, 2);

(iv) SDEs/RDEs with variable delay of the form (2.14), as long as η is assumed to be

bounded with η(t) ≥ ε, t ∈ [0, T ], for some ε > 0.
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Chapter 3

Pathwise convergence of the Euler scheme for rough and
stochastic differential equations

Stochastic differential equations serve as models for dynamical systems which evolve ran-

domly in time, and are fundamental mathematical objects, essential to numerous applica-

tions in finance, engineering, biology and beyond. In a fairly general form, a stochastic

differential equation (SDE) is given by

Yt = y0 +

∫ t

0
b(s, Ys) ds+

∫ t

0
σ(s, Ys) dXs, t ∈ [0, T ], (3.1)

where y0 ∈ Rk is the initial condition, b: [0, T ] × Rk → Rk and σ: [0, T ] × Rk → Rk×d are

coefficients, and the driving signal X = (Xt)t∈[0,T ] is a d-dimensional stochastic process

which models the random noise affecting the system.

Assuming that X is a càdlàg semimartingale, such as a Brownian motion or a Lévy

process, and the coefficients b, σ are suitably regular, it is well-known that (3.1) is well-posed

as an Itô SDE. That is,
∫ t
0 σ(s, Ys) dXs can be defined as a stochastic Itô integral, and the

equation admits a unique adapted solution Y = (Yt)t∈[0,T ]; see e.g. [147]. Unfortunately,

such SDEs, including many of those which appear in practical applications, can rarely be

solved explicitly, which has led to a vast literature on various numerical approximations of

the solutions to SDEs; see e.g. [110].

One of the most common approaches to numerically approximate the solution of a

stochastic differential equation is to rely on a time-discretized modification of the equation.

This type of discretization is implemented in particular by the Euler scheme (also called

the Euler–Maruyama scheme) and its higher order variants. For the SDE (3.1), the (first

order) Euler approximation is defined by

Y n
t = y0 +

∑
i : tni+1≤t

b(tni , Y
n
tni

)(tni+1 − tni ) +
∑

i : tni+1≤t
σ(tni , Y

n
tni

)(Xtni+1
−Xtni

), (3.2)

for t ∈ [0, T ], along a sequence of partitions Pn = {0 = tn0 < tn1 < · · · < tnNn = T}. Higher

order Euler approximations, such as the Milstein scheme, introduce additional higher order
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correction terms in the approximation (3.2), which often involve iterated integrals of the

driving signal X. In general, the numerical calculation of the approximation Y n is carried

out path by path, motivating a pathwise convergence analysis of the Euler scheme and its

higher order variants. Indeed, it is well-known that, for SDEs driven by Brownian motion,

the (higher-order) Euler approximations converge pathwise; see e.g. [23, 102, 84, 109].

A fully pathwise solution theory for SDEs like (3.1) is provided by the theory of rough

paths; see e.g. [71, 74]. Loosely speaking, in our context, a rough path is a pair X = (X,X),

consisting of a deterministic càdlàg Rd-valued path X, and a two-parameter càdlàg Rd×d-
valued function X, which satisfy certain analytic and algebraic conditions. We will work

with càdlàg rough paths with finite p-variation, in the regime with p ∈ (2, 3), which includes

in particular almost any sample path of a general semimartingale X, in which case the

corresponding rough path X = (X,X), is given by Xs,t =
∫ t
s (Xr−−Xs)⊗dXr via stochastic

integration.

Replacing the stochastic driving signal X in (3.1) by a (deterministic) rough path

X = (X,X), we obtain a so-called rough differential equation (RDE). Assuming suffi-

cient regularity of the coefficients b, σ, the RDE (3.1) driven by a given càdlàg rough path

X = (X,X) is well-posed, in the sense that
∫ t
0 σ(s, Ys) dXs is defined as a rough integral, and

the equation admits a unique solution Y = (Yt)t∈[0,T ]; see [75]. Moreover, if the rough path

is the, say, Itô lift of a semimartingale X, then the solution of the resulting random RDE

is consistent with the solution of the corresponding SDE driven by X. Both interpretations

of the equation are thus essentially equivalent. Furthermore, in contrast to classical SDE

theory, rough path theory is not limited to the semimartingale setting, and it comes with

powerful pathwise stability estimates.

Rough path theory is intrinsically linked to the numerical approximation of stochastic

differential equations, and provides a transparent explanation for the pathwise convergence

of higher order Euler approximations and their modifications; see e.g. [70, 74, 54, 75, 126].

More precisely, the existence of a rough path lift of the driving signal is a sufficient condition

for the pathwise convergence of higher order Euler schemes for RDEs, thus implying path-

wise convergence for the corresponding SDEs driven by, e.g., semimartingales. However,

the pathwise convergence of the first order Euler scheme—the most prominent numerical

scheme for differential equations—cannot be explained by the rough path lift of the driving

signal. Moreover, in general, an Euler approximation cannot converge to the solution of an

RDE driven by an arbitrary rough path, for at least two reasons: First, the Euler approx-

imation for an SDE driven by a fractional Brownian motion with Hurst index H < 1
2 fails

to converge (see e.g. [54]), and second, while the rough path lift X = (X,X) of a path X is

not unique, leading to potentially multiple solutions of the RDE, the Euler approximation
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Y n defined in (3.2) is independent of the choice of rough path, and can thus only converge

to at most one such solution.

In the present chapter we clarify the gap between rough and stochastic differential equa-

tions from the perspective of numerical approximation, by establishing the convergence of

the first order Euler scheme for RDEs driven by Itô-type rough path lifts. More precisely,

in Theorem 3.1.2 we obtain convergence in p-variation of the Euler scheme for rough differ-

ential equations driven by càdlàg paths satisfying a suitable criterion—namely the so-called

Property (RIE)—relative to a sequence of partitions with vanishing mesh size.

Property (RIE) was first introduced in [143] and [7], motivated by applications in math-

ematical finance under model uncertainty. While, strictly speaking, it is a condition on a

càdlàg path X: [0, T ] → Rd, it always ensures the existence of an Itô-type rough path lift

X = (X,X), allowing one to treat (3.1) as an RDE. Using this fact, we will show that

Property (RIE) is a sufficient condition on the sample paths of a stochastic driving signal

to guarantee the convergence of the first order Euler scheme for the corresponding SDE.

We note in particular that the Euler scheme converges surely on the set where the stochas-

tic driving signal satisfies Property (RIE), which is a stronger statement compared to the

earlier results in [23, 102, 84, 109], in which the set on which the Euler scheme converges

can depend on the coefficients b, σ. A criterion for Hölder continuous rough paths, related

to Property (RIE), was previously introduced by Davie [51], which also allows one to ob-

tain convergence of the Euler scheme for RDEs, and will be discussed in more detail in

Remark 3.1.3.

Exploiting the continuity results of rough path theory, in Theorem 3.1.2 we derive a

precise error estimate in p-variation for the Euler approximation of RDEs with respect to

the discretization error of the driving signal. The convergence rate is expressed transpar-

ently, in terms of the mesh size of the approximating partition, and the approximation error

of the discretized signal and of its rough path lift. We also obtain an error estimate for

the Euler approximation with respect to pathwise perturbations of the driving signal; see

Proposition 3.1.11. This latter perturbation is motivated by so-called approximate Euler

schemes for SDEs driven by jump processes, see e.g. [95, 150, 53]. For instance, approxi-

mate Euler schemes are used for Lévy-driven SDEs, since the increments of Lévy processes

cannot always be simulated, and thus the increments of the driving Lévy process need to

be approximated by random variables with known distributions.

To obtain pathwise convergence of the Euler scheme in p-variation for a stochastic

differential equation, it is then sufficient to verify that the associated stochastic driving

signal of the equation satisfies Property (RIE), almost surely, relative to a sequence of

partitions; see Sections 3.2 and 3.3. Unsurprisingly, we find that the more regular the
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driving signal is, the more general the sequence of partitions may be chosen. Indeed, while

the sample paths of a Brownian motion satisfy Property (RIE), almost surely, relative to

sequences of partitions whose mesh size can converge to zero very slowly, the sample paths

of more general Itô processes satisfy Property (RIE), almost surely, relative to sequences

of partitions whose mesh size is of order 2−n. For stochastic processes with jumps, such as

Lévy processes or general càdlàg semimartingales, one needs to ensure that the jump times

are exhausted by the sequence of partitions, which is a necessary condition, for both the

Euler scheme to converge pathwise, and for Property (RIE) to be satisfied by the driving

signal.

The presented pathwise analysis of the first order Euler approximation is not limited

to stochastic differential equations in a semimartingale setting. As examples, we consider

mixed SDEs driven by both Brownian motion and fractional Brownian motion with Hurst

index H > 1
2 , as in e.g. [162, 135], as well as rough stochastic differential equations, which

are differential equations driven by both a rough path and a Brownian motion; see [72].

The latter equations are of interest, e.g., in the context of robust stochastic filtering; see

[43, 58].

This chapter is structured as follows. In Section 3.1 we prove the convergence of the Eu-

ler scheme for rough differential equations assuming that the driving paths satisfy Property

(RIE). In Sections 3.2 and 3.3 we provide various examples of stochastic processes which

satisfy Property (RIE) along suitable sequences of partitions, making the established con-

vergence analysis applicable to the corresponding SDEs, and derive associated convergence

rates.

3.1 The Euler scheme for rough differential equations

In this section we study convergence of the (first order) Euler scheme for rough differential

equations, which does not rely on the Lévy area of the path, and is known to converge path-

wise for certain classes of stochastic differential equations. Before treating the Euler scheme,

we will first recall some essentials from the theory of càdlàg rough paths, as introduced in

[73, 75].

3.1.1 Essentials on rough path theory

A partition P of an interval [s, t] is a finite set of points between and including the points s

and t, i.e., P = {s = u0 < u1 < · · · < uN = t} for some N ∈ N, and its mesh size is denoted

by |P|:= max{|ui+1 − ui| : i = 0, . . . , N − 1}. A sequence (Pn)n∈N of partitions is said to

be nested, if Pn ⊂ Pn+1 for all n ∈ N.
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Throughout, we let T > 0 be a fixed finite time horizon. We let ∆T := {(s, t) ∈ [0, T ]2 :

s ≤ t} denote the standard 2-simplex. A function w: ∆T → [0,∞) is called a control function

if it is superadditive, in the sense that w(s, u) +w(u, t) ≤ w(s, t) for all 0 ≤ s ≤ u ≤ t ≤ T .

For two vectors x = (x1, . . . , xd)⊤, y = (y1, . . . , yd)⊤ ∈ Rd we use the usual tensor product

x⊗ y := (xiyj)i,j=1,...,d ∈ Rd×d.

Whenever (B, ∥·∥) is a normed space and f, g:B → R are two functions on B, we shall write

f ≲ g or f ≤ Cg to mean that there exists a constant C > 0 such that f(x) ≤ Cg(x) for

all x ∈ B. The constant C may depend on the normed space, e.g. through its dimension or

regularity parameters, and, if we want to emphasize the dependence of the constant C on

some particular variables, α1, . . . , αn say, then we will write C = Cα1,...,αn .

For two vector spaces, the space of linear maps from E1 → E2 is denoted by L(E1, E2);

and we write C lb = C lb(Rm;L(Rd;Rk)) for the space of l-times differentiable (in the Fréchet

sense) functions f :Rm → L(Rd;Rk) such that f and all its derivatives up to order l are

continuous and bounded. We equip this space with the norm

∥f∥Cl := ∥f∥∞+∥Df∥∞+ · · · + ∥Dlf∥∞,

where Dnf denotes the n-th order derivative of f , and ∥·∥∞ denotes the supremum norm

on the corresponding spaces of operators.

For a normed space (E, |·|), we let D([0, T ];E) denote the set of càdlàg (right-continuous

with left-limits) paths from [0, T ] to E. For X ∈ D([0, T ];E), the supremum seminorm of

the path X is given by

∥X∥∞:= sup
t∈[0,T ]

|Xt|,

and for p ≥ 1, the p-variation of the path X is given by

∥X∥p:= ∥X∥p,[0,T ] with ∥X∥p,[s,t]:=
(

sup
P⊂[s,t]

∑
[u,v]∈P

|Xv −Xu|p
) 1
p

, (s, t) ∈ ∆T ,

where the supremum is taken over all possible partitions P of the interval [s, t]. We recall

that, given a path X, we have that ∥X∥p<∞ if and only if there exists a control function

w such that1

sup
(u,v)∈∆T

|Xv −Xu|p

w(u, v)
<∞.

We writeDp = Dp([0, T ];E) for the space of pathsX ∈ D([0, T ];E) which satisfy ∥X∥p<∞.

Moreover, for a path X ∈ D([0, T ];Rd), we will often use the shorthand notation:

Xs,t := Xt −Xs and Xt− := lim
u↑t

Xu, for (s, t) ∈ ∆T .

1Here and throughout, we adopt the convention that 0
0
:= 0.
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For r ≥ 1 and a two-parameter function X: ∆T → E, we similarly define

∥X∥r:= ∥X∥r,[0,T ] with ∥X∥r,[s,t]:=
(

sup
P⊂[s,t]

∑
[u,v]∈P

|Xu,v|r
) 1
r

, (s, t) ∈ ∆T .

We write Dr
2 = Dr

2(∆T ;E) for the space of all functions X: ∆T → E which satisfy ∥X∥r<∞,

and are such that the maps s 7→ Xs,t for fixed t, and t 7→ Xs,t for fixed s, are both càdlàg.

For p ∈ [2, 3), a pair X = (X,X) is called a càdlàg p-rough path over Rd if

(i) X ∈ Dp([0, T ];Rd) and X ∈ D
p
2
2 (∆T ;Rd×d), and

(ii) Chen’s relation: Xs,t = Xs,u + Xu,t +Xs,u ⊗Xu,t holds for all 0 ≤ s ≤ u ≤ t ≤ T .

In component form, condition (ii) states that Xijs,t = Xijs,u + Xiju,t +Xi
s,uX

j
u,t for every i and

j. We will denote the space of càdlàg p-rough paths by Dp = Dp([0, T ];Rd). On the space

Dp([0, T ];Rd), we use the natural seminorm

∥X∥p:= ∥X∥p,[0,T ] with ∥X∥p,[s,t]:= ∥X∥p,[s,t]+∥X∥ p
2
,[s,t]

for (s, t) ∈ ∆T , and the induced distance

∥X; X̃∥p:= ∥X; X̃∥p,[0,T ] with ∥X; X̃∥p,[s,t]:= ∥X − X̃∥p,[s,t]+∥X− X̃∥ p
2
,[s,t], (3.3)

whenever X = (X,X), X̃ = (X̃, X̃) ∈ Dp([0, T ];Rd).

Let p ∈ [2, 3), q ∈ [p,∞) and r ∈ [p2 , 2) such that 1
p + 1

r > 1 and 1
p + 1

q = 1
r . Let

X ∈ Dp([0, T ];Rd). We say that a pair (Y, Y ′) is a controlled path (with respect to X), if

Y ∈ Dp([0, T ];E), Y ′ ∈ Dq([0, T ];L(Rd;E)), and RY ∈ Dr
2(∆T ;E),

where RY is defined by

Ys,t = Y ′
sXs,t +RYs,t for all (s, t) ∈ ∆T .

We write Vq,rX = Vq,rX ([0, T ];E) for the space of E-valued controlled paths, which becomes a

Banach space when equipped with the norm

(Y, Y ′) 7→ |Y0|+|Y ′
0 |+∥Y ′∥q,[0,T ]+∥RY ∥r,[0,T ].

For paths A ∈ Dq1 , H ∈ Dq2 for q1, q2 ∈ [1, 2), and a rough path X ∈ Dp for p ∈ [2, 3),

we consider the rough differential equation (RDE):

Yt = y0 +

∫ t

0
b(Hs, Ys) dAs +

∫ t

0
σ(Hs, Ys) dXs, t ∈ [0, T ]. (3.4)

Provided that 1
p + 1

q1
> 1 and 1

p + 1
q2
> 1, the first integral in this equation can be defined

as a Young integral, whilst the second integral is defined as a rough integral. For precise

definitions, constructions and properties of these integrals, we refer to the comprehensive

exposition in [75].
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Theorem 3.1.1. Let p ∈ [2, 3) and q1, q2 ∈ [1, 2) such that 1
p + 1

q1
> 1 and 1

p + 1
q2
> 1. Let

b ∈ C2
b , σ ∈ C3

b , y0 ∈ Rk, A ∈ Dq1, H ∈ Dq2 and X = (X,X) ∈ Dp. Let r ∈ [p2 ∨ q1 ∨ q2, 2)

such that 1
p + 1

r > 1, and let q ∈ [p,∞) such that 1
p + 1

q = 1
r . Then there exists a unique

path Y ∈ Dp such that the controlled path (Y, σ(H,Y )) ∈ Vq,rX satisfies the RDE (3.4).

Moreover, if ỹ0 ∈ Rk, Ã ∈ Dq1, H̃ ∈ Dq2 and X̃ = (X̃, X̃) ∈ Dp with corresponding

solution Ỹ , and if ∥A∥r, ∥Ã∥r, ∥H∥r, ∥H̃∥r, ∥X∥p, ∥X̃∥p≤ L for some L > 0, then

∥Y − Ỹ ∥p+∥Y ′ − Ỹ ′∥q+∥RY −RỸ ∥r

≲ |y0 − ỹ0|+|H0 − H̃0|+∥H − H̃∥r+∥A− Ã∥r+∥X; X̃∥p,
(3.5)

where the implicit multiplicative constant depends only on p, q, r, ∥b∥C2
b
, ∥σ∥C3

b
and L.

The result of Theorem 3.1.1 may be considered classical, and will be unsurprising to

readers familiar with RDEs. However, to the best of our knowledge, a proof of the precise

statement of the theorem does not appear in the existing literature. A sketch of the proof,

based on the proof of [3, Theorem 2.3], is therefore given in Appendix A.2.

3.1.2 Convergence of the Euler scheme

Let us consider the rough differential equation

Yt = y0 +

∫ t

0
b(s, Ys) ds+

∫ t

0
σ(s, Ys) dXs, t ∈ [0, T ], (3.6)

where y0 ∈ Rk, b ∈ C2
b (Rk+1;L(R;Rk)), σ ∈ C3

b (Rk+1;L(Rd;Rk)) and X = (X,X) ∈
Dp([0, T ];Rd) is the driving càdlàg p-rough path for p ∈ [2, 3). Given a sequence of partitions

Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, the Euler approximation Y n corresponding to

the RDE (3.6) along the partition Pn is given by

Y n
t = y0 +

∑
i : tni+1≤t

b(tni , Y
n
tni

)(tni+1 − tni ) +
∑

i : tni+1≤t
σ(tni , Y

n
tni

)(Xtni+1
−Xtni

), (3.7)

for t ∈ [0, T ].

It is a classical result in the numerical analysis of stochastic differential equations that,

if the driving signal is, e.g., a Brownian motion, then the Euler scheme (often also called the

Euler–Maruyama scheme) converges pathwise; see e.g. [109]. On the other hand, it is known

that in general the Euler scheme cannot converge if the driving signal is an arbitrary rough

path, since the corresponding Euler scheme for stochastic differential equations driven by

fractional Brownian motion fails to converge; see [54] for a more detailed discussion on this

observation.

Moreover, since the extension of a path X to a rough path X = (X,X) is not unique,

and the Euler approximation Y n defined in (3.7) is independent of X, the sequence (Y n)n∈N
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cannot converge to the solution of a general rough differential equation. Thus, in order to

ensure the convergence of the Euler scheme, it is necessary to identify the “correct” rough

path lift X as the driving signal for the RDE (3.6). A suitable resolution to this is provided

by the so-called Property (RIE), as introduced in [143] and [7].

Property (RIE). Let p ∈ (2, 3) and let Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N,
be a sequence of partitions of the interval [0, T ] such that |Pn|→ 0 as n → ∞. For X ∈
D([0, T ];Rd), and each n ∈ N, we define Xn: [0, T ] → Rd by

Xn
t = XT1{T}(t) +

Nn−1∑
k=0

Xtnk
1[tnk ,t

n
k+1)

(t), t ∈ [0, T ].

We assume that:

(i) the sequence of paths (Xn)n∈N converges uniformly to X as n→ ∞,

(ii) the Riemann sums
∫ t
0 X

n
u ⊗ dXu :=

∑Nn−1
k=0 Xtnk

⊗Xtnk∧t,t
n
k+1∧t converge uniformly as

n→ ∞ to a limit, which we denote by
∫ t
0 Xu ⊗ dXu, t ∈ [0, T ],

(iii) and there exists a control function w such that

sup
(s,t)∈∆T

|Xs,t|p

w(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤Nn

|
∫ tnℓ
tnk
Xn
u ⊗ dXu −Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

w(tnk , t
n
ℓ )

≤ 1. (3.8)

We say that a path X ∈ D([0, T ];Rd) satisfies Property (RIE) relative to p and (Pn)n∈N,

if p, (Pn)n∈N and X together satisfy Property (RIE).

It is known that, if a path X ∈ D([0, T ];Rd) satisfies Property (RIE), then X extends

canonically to a rough path X = (X,X) ∈ Dp([0, T ];Rd), where the lift X is defined by

Xs,t :=

∫ t

s
Xu ⊗ dXu −Xs ⊗ (Xt −Xs), (s, t) ∈ ∆T , (3.9)

with
∫ t
s Xu⊗dXu :=

∫ t
0 Xu⊗dXu−

∫ s
0 Xu⊗dXu, and the existence of the integral

∫ t
0 Xu⊗

dXu is ensured by condition (ii) of Property (RIE); see [7, Lemma 2.13]. When assuming

Property (RIE) for a path X, we will always work with the rough path X = (X,X) defined

via (3.9), and note that X = (X,X) corresponds to the Itô rough path lift of a stochastic

process, since the “iterated integral” X is given as a limit of left-point Riemann sums,

analogously to the stochastic Itô integral.

Postulating Property (RIE) for the driving signal of a rough differential equation ensures

that the (first order) Euler approximation converges to the solution of the equation, as stated

precisely in the next theorem.
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Theorem 3.1.2. Suppose that X: [0, T ] → Rd satisfies Property (RIE) relative to some

p ∈ (2, 3) and a sequence of partitions (Pn)n∈N, and let X be the canonical rough path lift

of X, as defined in (3.9). Let Y be the solution of the RDE (3.6) driven by X, and let Y n

be the Euler approximation defined in (3.7). Then,

∥Y n − Y ∥p′ −→ 0 as n −→ ∞,

for any p′ ∈ (p, 3), and the rate of convergence is determined by the estimate

∥Y n − Y ∥p′≲ |Pn|1−
1
q+∥Xn −X∥

1− p
p′

∞ +

∥∥∥∥∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥1− p
p′

∞
, (3.10)

which holds for any q ∈ (1, 2) such that 1
p′ + 1

q > 1, where the implicit multiplicative constant

depends only on p, p′, q, ∥b∥C2
b
, ∥σ∥C3

b
, T, |X0| and w(0, T ), where w is the control function

for which (3.8) holds.

Note that Property (RIE) implies that each of the terms on the right-hand side of (3.10)

tends to zero as n→ ∞.

Remark 3.1.3. In [51], A. M. Davie observed that, under suitable conditions, the first

order Euler scheme along equidistant partitions converges to the solution of a given rough

differential equation. More precisely, for p ∈ (2, 3) and α := 1
p , let X = (X,X) be an α-

Hölder continuous rough path, so that |Xs,t|≲ |t− s|α and |Xs,t|≲ |t− s|2α for (s, t) ∈ ∆T ,

such that, for some β ∈ (1 − α, 2α), there exists a constant C > 0 such that∣∣∣∣ ℓ−1∑
j=k

Xjh,(j+1)h

∣∣∣∣ ≤ C(ℓ− k)βh2α

whenever h > 0 and 0 ≤ k < ℓ are integers such that ℓh ≤ T . Under this condition

on the driving signal X, [51, Theorem 7.1] states that the Euler approximations Y n, as

defined in (3.7), converge uniformly to the solution Y of the RDE (3.6) along the equidistant

partitions (Pn
U)n∈N, where Pn

U = { iTn : i = 0, 1, . . . , n}. Note that Davie’s condition implies

Property (RIE)—see [143, Appendix B]—and is thus less general, even in the case of Hölder

continuous rough paths.

The rest of this subsection is devoted to the proof of Theorem 3.1.2, which first requires

us to establish some auxiliary results.

In the following, we will always assume that X: [0, T ] → Rd satisfies Property (RIE)

relative to some p ∈ (2, 3) and a sequence of partitions (Pn)n∈N. As the piecewise constant

approximation Xn (as defined in Property (RIE)) has finite 1-variation, it possesses a

canonical rough path lift Xn = (Xn,Xn) ∈ Dp([0, T ];Rd), with Xn given by

Xns,t :=

∫ t

s
Xn
s,u ⊗ dXn

u , (s, t) ∈ ∆T , (3.11)
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where the integral is defined as a classical limit of left-point Riemann sums. Note that, while

[75, Section 5.3] discretizes the rough path X = (X,X) in a piecewise constant manner, here

we instead discretize the path X and then extend it to a rough path Xn = (Xn,Xn) via

(3.11).

As a first step towards the proof of Theorem 3.1.2, we establish the convergence of the

rough paths (Xn)n∈N to the rough path X in a suitable rough path distance. For this

purpose, we need two auxiliary lemmas.

Lemma 3.1.4. Suppose that X: [0, T ] → Rd satisfies Property (RIE) relative to some p ∈
(2, 3) and a sequence of partitions (Pn)n∈N. Then, we have the estimate

sup
(s,t)∈∆T

|Xns,t − Xs,t|≤ 2∥X∥∞∥Xn −X∥∞+ sup
(s,t)∈∆T

∣∣∣∣ ∫ t

s
Xn
s,u ⊗ dXu − Xs,t

∣∣∣∣,
where Xn and X were defined in (3.11) and (3.9), respectively. In particular, we have that

Xn −→ X uniformly as n −→ ∞.

Proof. Since

|Xns,t − Xs,t|≤
∣∣∣∣Xns,t − ∫ t

s
Xn
s,u ⊗ dXu

∣∣∣∣+

∣∣∣∣ ∫ t

s
Xn
s,u ⊗ dXu − Xs,t

∣∣∣∣,
and the limit in condition (ii) of Property (RIE) holds uniformly, it is enough to prove that

the function given by

Λns,t := Xns,t −
∫ t

s
Xn
s,u ⊗ dXu =

∫ t

s
Xn
s,u ⊗ d(Xn −X)u

satisfies

sup
(s,t)∈∆T

|Λns,t|≤ 2∥X∥∞∥Xn −X∥∞. (3.12)

If tnk ≤ s < t ≤ tnk+1 for some k, then Xn
s,u = Xtnk ,t

n
k

= 0 for every u ∈ [s, t), so that

Λns,t = 0. Otherwise, let k0 be the smallest k such that tnk ∈ (s, t), and let k1 be the

largest such k. It is straightforward to see that the triplet (Xn−X,Xn,Λn) satisfies Chen’s

relation:

Λns,t = Λns,u + Λnu,t +Xn
s,u ⊗ (Xn −X)u,t

for all s ≤ u ≤ t, from which it follows that

Λns,t = Λns,tnk0
+ Λntnk0 ,t

n
k1

+ Λntnk1 ,t
+Xn

s,tnk0
⊗ (Xn −X)tnk0 ,t

n
k1

+Xn
s,tnk1

⊗ (Xn −X)tnk1 ,t
.
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As we already observed, we have that Λns,tnk0
= Λntnk1 ,t

= 0. In fact, we also have that

Λntnk0 ,t
n
k1

=

∫ tnk1

tnk0

Xn
tnk0

,u ⊗ d(Xn −X)u =

k1−1∑
i=k0

∫ tni+1

tni

Xn
tnk0

,u ⊗ d(Xn −X)u

=

k1−1∑
i=k0

∫ tni+1

tni

Xtnk0
,tni

⊗ d(Xn −X)u =

k1−1∑
i=k0

Xtnk0
,tni

⊗ (Xn −X)tni ,tni+1
= 0.

(3.13)

Since (Xn −X)tnk0
= (Xn −X)tnk1

= 0, we simply obtain Λns,t = Xn
s,tnk1

⊗ (Xn
t −Xt), from

which (3.12) follows.

Lemma 3.1.5. Suppose that X: [0, T ] → Rd satisfies Property (RIE) relative to some p ∈
(2, 3) and a sequence of partitions (Pn)n∈N. Let w be the control function with respect to

which X satisfies the inequality (3.8). Then, there exists a constant C, which depends only

on p, such that

∥Xn∥ p
2
≤ Cw(0, T )

2
p (3.14)

for every n ∈ N, where Xn was defined in (3.11).

Proof. Let n ∈ N, and let (s, t) ∈ ∆T . If tnk ≤ s < t ≤ tnk+1 for some k, then Xn
s,u =

Xtnk ,t
n
k

= 0 for every u ∈ [s, t), so that Xns,t = 0. Otherwise, let k0 be the smallest k such

that tnk ∈ (s, t), and let k1 be the largest such k. It is straightforward to see that (Xn,Xn)

satisfies Chen’s relation:

Xns,t = Xns,u + Xnu,t +Xn
s,u ⊗Xn

u,t

for all s ≤ u ≤ t, from which it follows that

Xns,t = Xns,tnk0
+ Xntnk0 ,t

n
k1

+ Xntnk1 ,t
+Xn

s,tnk0
⊗Xn

tnk0
,tnk1

+Xn
s,tnk1

⊗Xn
tnk1

,t.

As we have already seen, we have that Xns,tnk0
= Xntnk1 ,t

= 0. Recalling the calculation in

(3.13), we note that

Xntnk0 ,t
n
k1

=

∫ tnk1

tnk0

Xn
tnk0

,u ⊗ dXn
u =

∫ tnk1

tnk0

Xn
tnk0

,u ⊗ dXu,

and hence, by the inequality in (3.8), that

|Xntnk0 ,tnk1 |
p
2 =

∣∣∣∣ ∫ tnk1

tnk0

Xn
tnk0

,u ⊗ dXu

∣∣∣∣ p2 ≤ w(tnk0 , t
n
k1) ≤ w(tnk0−1, t

n
k1+1).

We estimate the remaining terms as

|Xn
s,tnk0

⊗Xn
tnk0

,tnk1
|
p
2 +|Xn

s,tnk1
⊗Xn

tnk1
,t|

p
2≲ |Xn

s,tnk0
|p+|Xn

tnk0
,tnk1

|p+|Xn
s,tnk1

|p+|Xn
tnk1

,t|p

≤ |Xtnk0−1,t
n
k0
|p+|Xtnk0

,tnk1
|p+|Xtnk0−1,t

n
k1
|p+|Xtnk1

,tnk1+1
|p

≤ w(tnk0−1, t
n
k0) + w(tnk0 , t

n
k1) + w(tnk0−1, t

n
k1) + w(tnk1 , t

n
k1+1)

≤ 2w(tnk0−1, t
n
k1+1).
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Putting this together, we have that

|Xns,t|
p
2≤ C̃w(tnk0−1, t

n
k1+1)

for some constant C̃. It follows that, for an arbitrary partition P of the interval [0, T ], we

have the bound ∑
[s,t]∈P

|Xns,t|
p
2≤ 3C̃w(0, T ),

and hence that (3.14) holds with C = (3C̃)
2
p .

Using the previous two lemmas, we can now infer the convergence of the rough paths

(Xn)n∈N to the rough path X.

Lemma 3.1.6. Suppose that X: [0, T ] → Rd satisfies Property (RIE) relative to some p ∈
(2, 3) and a sequence of partitions (Pn)n∈N. Let X = (X,X) and Xn = (Xn,Xn) be the

càdlàg rough paths defined via (3.9) and (3.11), respectively. Then, for any p′ > p, we have

that

∥Xn;X∥p′ −→ 0 as n −→ ∞, (3.15)

with a rate of convergence given by

∥Xn;X∥p′≲ ∥Xn −X∥
1− p

p′
∞ + sup

(s,t)∈∆T

∣∣∣∣ ∫ t

s
Xn
s,u ⊗ dXu − Xs,t

∣∣∣∣1− p
p′

, (3.16)

where the implicit multiplicative constant depends only on p, p′, |X0| and w(0, T ), where w

is the control function for which (3.8) holds.

Proof. By a standard interpolation estimate (e.g. [74, Proposition 5.5]), it follows, for any

p′ > p, that

∥Xn −X∥p′≤ ∥Xn −X∥
p
p′
p ∥Xn −X∥

1− p
p′

∞ .

We similarly have that

∥Xn − X∥ p′
2

≤ ∥Xn − X∥
p
p′
p
2

sup
(s,t)∈∆T

|Xns,t − Xs,t|
1− p

p′ .

We recall from Lemma 3.1.4 that

sup
(s,t)∈∆T

|Xns,t − Xs,t|≤ 2∥X∥∞∥Xn −X∥∞+ sup
(s,t)∈∆T

∣∣∣∣ ∫ t

s
Xn
s,u ⊗ dXu − Xs,t

∣∣∣∣.
We have that supn∈N∥Xn∥p≤ ∥X∥p and ∥X∥∞≤ |X0|+∥X∥p≤ |X0|+w(0, T )

1
p , and, by the

lower semi-continuity of the p
2 -variation norm and Lemma 3.1.5, ∥X∥ p

2
≤ lim infn→∞∥Xn∥ p

2
≤

supn∈N∥Xn∥ p
2
≤ Cw(0, T )

2
p . Putting this together, we conclude that (3.16) holds. By con-

ditions (i) and (ii) in Property (RIE), the convergence in (3.15) then also follows.
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As a next step towards the proof of Theorem 3.1.2, we introduce a discretized version

of the RDE (3.6). For this purpose, we define a time discretization path along Pn by

γnt := T1{T}(t) +

Nn−1∑
k=0

tnk1[tnk ,t
n
k+1)

(t), t ∈ [0, T ], (3.17)

and consider the rough differential equation

Ỹ n
t = y0 +

∫ t

0
b(γns , Ỹ

n
s ) dγns +

∫ t

0
σ(γns , Ỹ

n
s ) dXn

s , t ∈ [0, T ]. (3.18)

Thanks to Lemma 3.1.6 and the local Lipschitz continuity of the Itô–Lyons map, we

obtain the following proposition.

Proposition 3.1.7. Suppose that X: [0, T ] → Rd satisfies Property (RIE) relative to some

p ∈ (2, 3) and a sequence of partitions (Pn)n∈N. Let Y be the solution of the RDE (3.6),

and let Ỹ n be the solution of the RDE (3.18). Then,

∥Ỹ n − Y ∥p′ −→ 0 as n −→ ∞, (3.19)

for any p′ ∈ (p, 3), with a rate of convergence given by

∥Ỹ n − Y ∥p′≲ |Pn|1−
1
q+∥Xn −X∥

1− p
p′

∞ +

∥∥∥∥∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥1− p
p′

∞
,

for any q ∈ (1, 2) such that 1
p′ + 1

q > 1, where the implicit multiplicative constant depends

only on p, p′, q, ∥b∥C2
b
, ∥σ∥C3

b
, T, |X0| and w(0, T ), where w is the control function for which

(3.8) holds.

Proof. Setting γt := t for t ∈ [0, T ], the RDE (3.6) may be rewritten as

Yt = y0 +

∫ t

0
b(γs, Ys) dγs +

∫ t

0
σ(γs, Ys) dXs, t ∈ [0, T ].

Hence, by Theorem 3.1.1, we know that

∥Ỹ n − Y ∥p′≲ ∥γn − γ∥q+∥Xn;X∥p′ (3.20)

for any p′ ∈ (p, 3) and any q ∈ [1, 2) such that 1
p′ + 1

q > 1.

Note that γn and γ have finite 1-variation, with ∥γn∥1= ∥γ∥1= T , and ∥γn − γ∥1=
2T . Although γn does not converge to γ in 1-variation, it is straightforward to see by

interpolation that

∥γn − γ∥q≤ ∥γn − γ∥
1
q

1 ∥γ
n − γ∥

1− 1
q

∞ = (2T )
1
q |Pn|1−

1
q
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for any q > 1. Combining this with the estimate in (3.20) and the result of Lemma 3.1.6,

we infer the convergence in (3.19), and the estimate

∥Ỹ n − Y ∥p′ ≲ ∥γn − γ∥q+∥Xn −X∥
1− p

p′
∞ + sup

(s,t)∈∆T

∣∣∣∣ ∫ t

s
Xn
s,u ⊗ dXu − Xs,t

∣∣∣∣1− p
p′

≲ |Pn|1−
1
q+∥Xn −X∥

1− p
p′

∞ +

∥∥∥∥∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥1− p
p′

∞
.

Remark 3.1.8. For a path A ∈ D1([0, T ];Rd) of finite 1-variation, let us consider the

controlled ordinary differential equation (ODE)

Zt = z0 +

∫ t

0
σ(Zs) dAs, t ∈ [0, T ], (3.21)

where the integral is interpreted in the Riemann–Stieltjes sense. It is a classical result that,

provided σ is sufficiently regular, the ODE in (3.21) is well-posed, and that the solution map

Φ:A 7→ Z is continuous with respect to the 1-variation norm ∥·∥1. A major insight of the

theory of rough paths is that the solution map Φ can be extended from the space of smooth

paths to the space C 0,p-var([0, T ];Rd) of continuous geometric rough paths for p ∈ (2, 3); see

e.g. [74]. Of course, the closure of a set containing only continuous paths with respect to

p-variation norms will again only contain continuous paths.

In the current framework of càdlàg rough paths, Lemma 3.1.6 and Proposition 3.1.7

motivate us to consider instead the closure of càdlàg paths of finite 1-variation. For p ∈
(2, 3), let D0,p([0, T ];Rd) denote the closure of the set{

A = (A,A) : A ∈ D1([0, T ];Rd) and As,t :=

∫ t

s
As,u ⊗ dAu for all (s, t) ∈ ∆T

}
with respect to the rough path distance ∥ · ; · ∥p (as defined in (3.3)), where

∫ t
s As,u ⊗ dAu

is defined as a left-point Riemann–Stieltjes integral. Then, the solution map Φ:A 7→ Z

extends continuously to the space D0,p([0, T ];Rd) by Theorem 3.1.1, and every path satisfying

Property (RIE) is in D0,p′([0, T ];Rd) for p′ ∈ (p, 3) by Lemma 3.1.6.

Next, we shall verify that the piecewise constant approximation Xn of X, as defined

in Property (RIE), itself satisfies Property (RIE) relative to any sequence of partitions

(P̃m)m∈N which are coarser than Pn and have vanishing mesh size.

Lemma 3.1.9. Suppose that a path X satisfies Property (RIE) relative to p ∈ (2, 3) and a

sequence of partitions (Pn)n∈N, and let Xn be the usual piecewise constant approximation

of X along Pn. Then the path Xn satisfies Property (RIE) relative to p and any sequence

of partitions (P̃m)m∈N such that Pn ⊆ P̃m for every m ∈ N, and |P̃m|→ 0 as m→ ∞.
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Proof. We need to verify each of the conditions (i)–(iii) of Property (RIE) along the se-

quence of partitions (P̃m)m∈N. Since Pn ⊆ P̃m for every m ∈ N, the piecewise constant

approximation of Xn along the partition P̃m is simply the path Xn itself. Conditions (i)

and (ii) thus hold trivially.

Let w1,n be the control function given by w1,n(s, t) := ∥Xn∥pp,[s,t], so that |Xn
s,t|p≤

w1,n(s, t) for all (s, t) ∈ ∆T , and similarly let w2,n be the control function given by

w2,n(s, t) := ∥Xn∥
p
2
p
2
,[s,t]

. Let us also write P̃m = {0 = rm0 < rm1 < · · · < rm
Ñm

= T}

for each m ∈ N. Then, for any m ∈ N and any 0 ≤ k < ℓ ≤ Ñm, using the standard

estimate for Young integration (see e.g. [75, Proposition 2.4]) we have that∣∣∣∣ ∫ rmℓ

rmk

Xn
u ⊗ dXn

u −Xn
rmk

⊗Xn
rmk ,r

m
ℓ

∣∣∣∣ p2 ≲ ∥Xn∥
p
2

p,[rmk ,r
m
ℓ ]∥X

n∥
p
2
p
2
,[rmk ,r

m
ℓ ]

≤ ∥Xn∥
p
2
p ∥Xn∥

p
2
p
2
,[rmk ,r

m
ℓ ]
≤ ∥X∥

p
2
p w2,n(rmk , r

m
ℓ ).

Thus condition (iii) holds for Xn with the control function w3,n, given by

w3,n(s, t) := w1,n(s, t) + ∥X∥
p
2
p w2,n(s, t), (s, t) ∈ ∆T .

We are now in a position to complete the proof of Theorem 3.1.2. For this, we will

apply in particular the result of Theorem A.3.2, which states that, under Property (RIE),

the rough integral can be obtained as a limit of classical left-point Riemann sums.

Proof of Theorem 3.1.2. Note that the Euler scheme in (3.7) may be expressed as the so-

lution of the controlled ODE

Y n
t = y0 +

∫ t

0
b(γns , Y

n
s ) dγns +

∫ t

0
σ(γns , Y

n
s ) dXn

s , t ∈ [0, T ], (3.22)

where γn denotes the time discretization path along Pn defined in (3.17), and the integrals

are defined as limits of left-point Riemann sums. Recall that Ỹ n denotes the solution of the

RDE in (3.18), that is

Ỹ n
t = y0 +

∫ t

0
b(γns , Ỹ

n
s ) dγns +

∫ t

0
σ(γns , Ỹ

n
s ) dXn

s , t ∈ [0, T ], (3.23)

where Xn is the canonical rough path lift of Xn, as constructed in (3.11).

Since Xn is piecewise constant, it is clear from the definition of Xn that Xns,t = 0 for

any times s ≤ t which lie in the same subinterval [tnk , t
n
k+1) of the partition Pn. Since γn is

also constant on each such subinterval, it follows from the definitions of Young and rough

integrals that the solution Ỹ n of (3.23) is itself also piecewise constant along the partition

Pn.
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Let P̃m = {0 = rm0 < rm1 < · · · < rm
Ñm

= T}, m ∈ N, be any sequence of partitions with

mesh size converging to 0, such that Pn ⊆ P̃m for every m ∈ N. By Lemma 3.1.9, we have

that the path Xn satisfies Property (RIE) relative to p and the sequence (P̃m)m∈N. Since γn

and Ỹ n are piecewise constant along the partition Pn, it is clear that the jump times of the

integrand s 7→ σ(γns , Ỹ
n
s ) all belong to Pn, and thus also belong to the set lim infm→∞ P̃m.

It thus follows from Theorem A.3.2 that the rough integral
∫ t
0 σ(γns , Ỹ

n
s ) dXn

s is equal to a

limit of left-point Riemann sums along the sequence (P̃m)m∈N. That is, for any t ∈ [0, T ],

we have that∫ t

0
σ(γns , Ỹ

n
s ) dXn

s = lim
m→∞

Ñm−1∑
k=0

σ(γnrmk
, Ỹ n

rmk
)Xn

rmk ∧t,rmk+1∧t

=

Nn−1∑
k=0

σ(γntnk
, Ỹ n

tnk
)Xn

tnk∧t,t
n
k+1∧t

=

∫ t

0
σ(γns , Ỹ

n
s ) dXn

s .

Since these integrals are equal, it follows that the ODE in (3.22) and the RDE in (3.23) are

consistent, so that Y n = Ỹ n. The result then follows from Proposition 3.1.7.

3.1.3 Error bound for an approximate Euler scheme

In general, the Euler scheme (3.7) is not applicable to numerically approximate the so-

lution of a stochastic differential equation driven by an arbitrary Lévy process, since the

increments of Lévy processes cannot always be simulated. Therefore, to obtain a numerical

approximation of the solution of such a Lévy-driven SDE, one needs to consider approximate

Euler schemes—see e.g. [95, 150, 53]—where the increments of the driving Lévy process are

approximated by random variables with known distributions.

As a pathwise counterpart, we introduce the approximate Euler scheme Ŷ n of the rough

differential equation (3.6) along the partition Pn, given by

Ŷ n
t = y0 +

∑
i : tni+1≤t

b(tni , Ŷ
n
tni

)(tni+1 − tni ) +
∑

i : tni+1≤t
σ(tni , Ŷ

n
tni

)(X̂tni+1
− X̂tni

), (3.24)

for t ∈ [0, T ], with the modified driving signal

X̂ := X + φ,

where φ ∈ Dq([0, T ];Rd), for some q ∈ [1, 2) such that 1
p + 1

q > 1, and, as usual, we write

Pn = {0 = tn0 < tn1 < · · · < tnNn = T}.

While the approximation error of the Euler scheme (3.7) was only caused by discretiz-

ing the time interval [0, T ], the approximate Euler scheme (3.24) produces an additional
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approximation error due to taking the modified driving signal X̂ as an input, instead of the

actual driving signal X of the RDE (3.6).

To ensure the convergence of the approximate Euler scheme, we first need to verify that,

if the actual driving signal satisfies Property (RIE), then the same is true of the modified

driving signal.

Proposition 3.1.10. Suppose that X ∈ D([0, T ];Rd) satisfies Property (RIE) relative to

some p ∈ (2, 3) and a sequence of partitions Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N.
Let φ ∈ Dq([0, T ];Rd) for some q ∈ [1, 2) such that 1

p + 1
q > 1. For each n ∈ N, we define

φn: [0, T ] → Rd by

φnt = φT1{T}(t) +

Nn−1∑
k=0

φtnk1[tnk ,t
n
k+1)

(t), t ∈ [0, T ], (3.25)

as the discretization of φ along Pn. Suppose that ∥φn − φ∥q→ 0 as n→ ∞. Then the path

X̂ = X + φ satisfies Property (RIE) relative to p and (Pn)n∈N.

Proof. We need to verify the conditions (i)–(iii) of Property (RIE).

(i): Letting X̂n denote the piecewise constant approximation of X̂ along the partition

Pn, it is clear that X̂n = Xn + φn for each n ∈ N. Since Xn converges uniformly to X by

Property (RIE), and ∥φn−φ∥q→ 0 by assumption, it is clear that X̂n converges uniformly

to X̂ as n→ ∞.

(ii): We need to verify that the integral∫ t

0
X̂n
u ⊗ dX̂u =

∫ t

0
Xn
u ⊗ dXu +

∫ t

0
Xn
u ⊗ dφu +

∫ t

0
φnu ⊗ dXu +

∫ t

0
φnu ⊗ dφu,

converges as n→ ∞ to the limit∫ t

0
X̂u ⊗ dX̂u :=

∫ t

0
Xu ⊗ dXu +

∫ t

0
Xu ⊗ dφu +

∫ t

0
φu ⊗ dXu +

∫ t

0
φu ⊗ dφu,

uniformly in t ∈ [0, T ], where the latter three integrals are defined as Young integrals.

Since X satisfies Property (RIE), we have that∥∥∥∥∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥
∞

−→ 0 as n −→ ∞.

Let p′ > p such that 1
p′ + 1

q > 1. By the standard estimate for Young integrals—see e.g. [75,

Proposition 2.4]—we have, for all t ∈ [0, T ], that∣∣∣∣ ∫ t

0
Xn
u ⊗ dφu −

∫ t

0
Xu ⊗ dφu

∣∣∣∣ ≲ ∥Xn −X∥p′∥φ∥q.

It follows by interpolation (see e.g. [74, Proposition 5.5]) that

∥Xn −X∥p′≤ ∥Xn −X∥
1− p

p′
∞ ∥Xn −X∥

p
p′
p .
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Since Xn converges uniformly to X as n → ∞, and supn∈N∥Xn∥p≤ ∥X∥p< ∞, we deduce

that ∥∥∥∥∫ ·

0
Xn
u ⊗ dφu −

∫ ·

0
Xu ⊗ dφu

∥∥∥∥
∞

−→ 0 as n −→ ∞.

Similarly, for each t ∈ [0, T ], it holds that∣∣∣∣ ∫ t

0
φnu ⊗ dXu −

∫ t

0
φu ⊗ dXu

∣∣∣∣ ≲ ∥φn − φ∥q∥X∥p,

and ∣∣∣∣ ∫ t

0
φnu ⊗ dφu −

∫ t

0
φu ⊗ dφu

∣∣∣∣ ≲ ∥φn − φ∥q∥φ∥q,

and, since ∥φn − φ∥q→ 0 as n→ ∞, we infer the required convergence.

(iii): We aim to find a control function w such that

sup
(s,t)∈∆T

|X̂s,t|p

w(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤Nn

|
∫ tnℓ
tnk
X̂n
tnk ,u

⊗ dX̂u|
p
2

w(tnk , t
n
ℓ )

≤ 1, (3.26)

where∫ tnℓ

tnk

X̂n
tnk ,u

⊗dX̂u =

∫ tnℓ

tnk

Xn
tnk ,u

⊗dXu+

∫ tnℓ

tnk

Xn
tnk ,u

⊗dφu+

∫ tnℓ

tnk

φntnk ,u
⊗dXu+

∫ tnℓ

tnk

φntnk ,u
⊗dφu.

Let wX be the control function with respect to which X satisfies Property (RIE), and define

moreover the control function wφ, given by wφ(s, t) = ∥φ∥qq,[s,t] for (s, t) ∈ ∆T .

We have from Property (RIE) that

sup
(s,t)∈∆T

|X̂s,t|p

wX(s, t) + wφ(s, t)
≲ sup

(s,t)∈∆T

|Xs,t|p

wX(s, t)
+ sup

(s,t)∈∆T

|φs,t|p

wφ(s, t)
≤ 2,

and that

sup
n∈N

sup
0≤k<ℓ≤Nn

|
∫ tnℓ
tnk
Xn
tnk ,u

⊗ dXu|
p
2

wX(tnk , t
n
ℓ )

≤ 1.

By the standard estimate for Young integrals (see e.g. [75, Proposition 2.4]), for every n ∈ N
and 0 ≤ k < ℓ ≤ Nn, we have∣∣∣∣ ∫ tnℓ

tnk

Xn
tnk ,u

⊗ dφu

∣∣∣∣ p2 ≲ ∥Xn∥
p
2

p,[tnk ,t
n
ℓ ]
∥φ∥

p
2

q,[tnk ,t
n
ℓ ]

≤ ∥X∥
p
2

p,[tnk ,t
n
ℓ ]
∥φ∥

p
2

q,[tnk ,t
n
ℓ ]
≤ wX(tnk , t

n
ℓ )

1
2wφ(tnk , t

n
ℓ )

p
2q ,

and we can similarly obtain∣∣∣∣ ∫ tnℓ

tnk

φntnk ,u
⊗ dXu

∣∣∣∣ p2 ≲ wX(tnk , t
n
ℓ )

1
2wφ(tnk , t

n
ℓ )

p
2q
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and ∣∣∣∣ ∫ tnℓ

tnk

φntnk ,u
⊗ dφu

∣∣∣∣ p2 ≲ wφ(tnk , t
n
ℓ )

p
q .

Since p ∈ (2, 3) and q ∈ [1, 2), we have that 1
2 + p

2q > 1 and p
q > 1, and it follows that the

maps (s, t) 7→ wX(s, t)
1
2wφ(s, t)

p
2q and (s, t) 7→ wφ(s, t)

p
q are superadditive and thus control

functions. We deduce that (3.26) holds with a control function w of the form

w(s, t) = C
(
wX(s, t) + wφ(s, t) + wX(s, t)

1
2wφ(s, t)

p
2q + wφ(s, t)

p
q

)
, (s, t) ∈ ∆T ,

where C > 0 is a suitable constant which depends only on p and q.

By Proposition 3.1.10, the modified driving signal X̂ satisfies Property (RIE), and can

thus be canonically lifted to a rough path X̂ = (X̂, X̂) ∈ Dp([0, T ];Rd) via (3.9). By

Theorem 3.1.1, the rough differential equation (3.6) driven by X̂ has a unique solution Ŷ ,

and the approximate Euler scheme Ŷ n in (3.24) converges to Ŷ by Theorem 3.1.2.

The next proposition provides an error and convergence analysis for the approximate

Euler scheme (3.24) with respect to the solution Y of the RDE (3.6) driven by the rough

path X = (X,X) under Property (RIE).

Proposition 3.1.11. Suppose that X ∈ D([0, T ];Rd) satisfies Property (RIE) relative to

p ∈ (2, 3) and a sequence of partitions (Pn)n∈N, and let X be its canonical rough path lift. Let

φ ∈ Dq([0, T ];Rd) for some q ∈ (1, 2) such that 1
p + 1

q > 1, let φn be the piecewise constant

approximation of φ, as defined in (3.25), and assume that ∥φn−φ∥q→ 0 as n→ ∞. Let Y

be the solution of the RDE (3.6) driven by X, and let Ŷ n be the approximate Euler scheme

defined in (3.24). We have the error estimate

∥Ŷ n − Y ∥p′ ≲ (1 + ∥X∥p+∥φ∥q)∥φ∥q+|Pn|1−
1
q+(∥Xn −X∥∞+∥φn − φ∥∞)

1− p
p′

+

(∥∥∥∥∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥
∞

+ ∥Xn −X∥p′+∥φn − φ∥q
)1− p

p′

for any p′ ∈ (p, 3) such that 1
p′ + 1

q > 1, where the implicit multiplicative constant depends on

p, p′, q, ∥b∥C2
b
, ∥σ∥C3

b
, T, ∥X∥∞, ∥X∥p, ∥φ∥∞, ∥φ∥q and w(0, T ), where w is the control func-

tion for which (3.8) holds. In particular, we have that

lim sup
n→∞

∥Ŷ n − Y ∥p′≲ (1 + ∥X∥p+∥φ∥q)∥φ∥q. (3.27)

Proof. By Proposition 3.1.10, we know that the path X̂ = X + φ satisfies Property (RIE)

relative to p and (Pn)n∈N. Let X̂ be the canonical rough path lift of X̂, and let Y and Ŷ

be the solutions of the RDE (3.6) driven by X and X̂ respectively. It is clear that

∥Ŷ n − Y ∥p′≤ ∥Ŷ n − Ŷ ∥p′+∥Ŷ − Y ∥p′ .

87



By Theorem 3.1.1, we have the estimate

∥Ŷ − Y ∥p′≲ ∥X̂;X∥p′ ,

and, by Theorem 3.1.2, we have that

∥Ŷ n − Ŷ ∥p′≲ |Pn|1−
1
q+∥X̂n − X̂∥

1− p
p′

∞ +

∥∥∥∥∫ ·

0
X̂n
u ⊗ dX̂u −

∫ ·

0
X̂u ⊗ dX̂u

∥∥∥∥1− p
p′

∞
,

where X̂n is the piecewise constant approximation of X̂ along Pn. Since X̂n = Xn + φn,

we can bound

∥X̂n − X̂∥∞≤ ∥Xn −X∥∞+∥φn − φ∥∞.

As shown in the proof of Proposition 3.1.10,∥∥∥∥∫ ·

0
X̂n
u ⊗ dX̂u −

∫ ·

0
X̂u ⊗ dX̂u

∥∥∥∥
∞

≲

∥∥∥∥∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥
∞

+ ∥Xn −X∥p′∥φ∥q+∥φn − φ∥q(∥X∥p+∥φ∥q).

We also note that

X̂s,t − Xs,t =

∫ t

s
Xs,u ⊗ dφu +

∫ t

s
φs,u ⊗ dXu +

∫ t

s
φs,u ⊗ dφu

for (s, t) ∈ ∆T , so that, by the standard estimate for Young integrals (see e.g. [75, Propo-

sition 2.4]), we obtain

|X̂s,t − Xs,t|≲ ∥X∥p,[s,t]∥φ∥q,[s,t]+∥φ∥2q,[s,t].

This implies that, for any partition P of the interval [0, T ],∑
[s,t]∈P

|X̂s,t − Xs,t|
p
2≲

∑
[s,t]∈P

(∥X∥
p
2

p,[s,t]∥φ∥
p
2

q,[s,t]+∥φ∥pq,[s,t])

≤
( ∑

[s,t]∈P

∥X∥pp,[s,t]

)1
2
( ∑

[s,t]∈P

∥φ∥pq,[s,t]

)1
2

+
∑

[s,t]∈P

∥φ∥pq,[s,t]

≤
( ∑

[s,t]∈P

∥X∥pp,[s,t]

)1
2
( ∑

[s,t]∈P

∥φ∥qq,[s,t]

)p
2q

+

( ∑
[s,t]∈P

∥φ∥qq,[s,t]

)p
q

≤ ∥X∥
p
2
p ∥φ∥

p
2
q +∥φ∥pq ,

so that ∥X̂− X∥ p
2
≲ ∥X∥p∥φ∥q+∥φ∥2q . We thus deduce that

∥X̂;X∥p′≤ ∥X̂ −X∥p+∥X̂− X∥ p
2
≲ (1 + ∥X∥p+∥φ∥q)∥φ∥q,

and combining the estimates above, we obtain the desired error estimate.
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Remark 3.1.12. As an immediate consequence of Proposition 3.1.11, if the modified driving

signal X̂ converges to the driving signal X, then the approximate Euler scheme converges

to the solution Y of the RDE (3.6). More precisely, let us consider the approximate Euler

scheme Y̌ n of the RDE (3.6) along the partition Pn, given by

Y̌ n
t = y0 +

∑
i : tni+1≤t

b(tni , Y̌
n
tni

)(tni+1 − tni ) +
∑

i : tni+1≤t
σ(tni , Y̌

n
tni

)(X̌n
tni+1

− X̌n
tni

),

for t ∈ [0, T ], with the modified driving signal

X̌n := X + ψn,

where ψn ∈ Dq([0, T ];Rd) for some q ∈ (1, 2) such that 1
p + 1

q > 1. In the setting of

Proposition 3.1.11 with φ = ψn, if ∥ψn∥q→ 0 as n→ ∞, then

∥Y̌ n − Y ∥p′ −→ 0 as n −→ ∞,

for any p′ ∈ (p, 3) such that 1
p′ + 1

q > 1, which follows from (3.27).

Remark 3.1.13. In this section we handled the modified driving signal X+φ by considering

the rough path lift X̂ of X̂ = X+φ, and considering the solution Ŷ of the RDE (3.6) driven

by X̂. An alternative, equally valid approach would be to instead absorb φ into the drift of

the RDE. The resulting equation would not strictly speaking be of the form in (3.6), but it

would still fall into the regime of the more general RDE in (3.4), and an error estimate

could be obtained using the stability estimate in Theorem 3.1.1.

3.2 Application to stochastic differential equations

In this section we apply the deterministic theory developed in Section 3.1, regarding the

Euler scheme for RDEs, to stochastic differential equations (SDEs). For this purpose,

we now let X be a d-dimensional càdlàg semimartingale, defined on a probability space

(Ω,F ,P) with a filtration (Ft)t∈[0,T ] satisfying the usual conditions, i.e., completeness and

right-continuity. We consider the stochastic differential equation

Yt = y0 +

∫ t

0
b(s, Ys−) ds+

∫ t

0
σ(s, Ys−) dXs, t ∈ [0, T ], (3.28)

where y0 ∈ Rk, b ∈ C2
b (Rk+1;L(R;Rk)) and σ ∈ C3

b (Rk+1;L(Rd;Rk)), and
∫ t
0 σ(s, Ys−) dXs

is defined as an Itô integral. For a comprehensive introduction to stochastic Itô integration

and SDEs we refer, e.g., to the textbook [147]. It is well-known that the SDE (3.28)

possesses a unique (strong) solution (see e.g. [147, Chapter V, Theorem 6]), and that the
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semimartingale X can be lifted to a random rough path via Itô integration, by defining

X = (X,X) ∈ Dp([0, T ];Rd), P-a.s., for any p ∈ (2, 3), where

Xs,t :=

∫ t

s
(Xr− −Xs) ⊗ dXr =

∫ t

s
Xr− ⊗ dXr −Xs ⊗Xs,t, (s, t) ∈ ∆T ; (3.29)

see [124, Proposition 3.4] or [75, Theorem 6.5]. It turns out that, if the semimartingale X

satisfies Property (RIE) relative to p ∈ (2, 3) and a suitable sequence of partitions (Pn)n∈N,

then the solutions to the SDE (3.28) and to the RDE (3.6) driven by the random rough

path X = (X,X) coincide P-almost surely.

Lemma 3.2.1. Let p ∈ (2, 3) and let Pn = {τnk }, n ∈ N, be a sequence of adapted partitions

(so that each τnk is a stopping time), such that, for almost every ω ∈ Ω, (Pn(ω))n∈N is

a sequence of (finite) partitions of [0, T ] with vanishing mesh size. Let X be a càdlàg

semimartingale, and suppose that, for almost every ω ∈ Ω, the sample path X(ω) satisfies

Property (RIE) relative to p and (Pn(ω))n∈N.

(i) The random rough paths X = (X,X), with X defined pathwise via (3.9), and with X
defined by stochastic integration as in (3.29), coincide P-almost surely.

(ii) The solution of the SDE (3.28) driven by X, and the solution of the RDE (3.6) driven

by the random rough path X = (X,X), coincide P-almost surely.

Proof. (i): By construction, the pathwise rough integral
∫ t
0 Xu(ω) ⊗ dXu(ω) constructed

via Property (RIE) is given by the limit as n→ ∞ of left-point Riemann sums:

Nn−1∑
k=0

Xτnk (ω)
(ω) ⊗Xτnk (ω)∧t,τ

n
k+1(ω)∧t(ω). (3.30)

It is known that these Riemann sums also converge uniformly in probability to the Itô

integral
∫ t
0 Xu− ⊗ dXu (see e.g. [147, Chapter II, Theorem 21]), and the result thus follows

from the (almost sure) uniqueness of limits.

(ii): In the following, we adopt the notation JF for the set of jump times of a path F ,

and we write lim infn→∞ Pn :=
⋃
m∈N

⋂
n≥m Pn.

Let Y be the solution of the RDE (3.6) driven by the random rough path X = (X,X).

By the definition of X in terms of a limit of the Riemann sums in (3.30), it is straightforward

to see that Xt−,t = 0 unless X has a jump at time t. It follows from the definition of rough

integration that the integral t 7→
∫ t
0 σ(s, Ys) dXs can only have a jump at the jump times of

X, and it follows that the same is true of the solution Y of the RDE (3.6), i.e., JY ⊆ JX .

Since the piecewise constant approximation Xn of X along Pn converges uniformly

to X (by condition (i) of Property (RIE)), we have from Proposition A.3.1 that JX ⊆
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lim infn→∞ Pn. Since JY ⊆ JX , we have that JY ⊆ lim infn→∞ Pn. It then follows from

Theorem A.3.2 that∫ t

0
σ(s, Ys) dXs = lim

n→∞

Nn−1∑
k=0

σ(τnk , Yτnk )Xτnk ∧t,τ
n
k+1∧t.

Since these Riemann sums also converge in probability to the Itô integral
∫ t
0 σ(s, Ys−) dXs

(see e.g. [147, Chapter II, Theorem 21]), these integrals coincide almost surely. We infer

that Y is also a solution of the SDE (3.28), which has a unique solution (by e.g. [147,

Chapter V, Theorem 6]).

As a consequence of Theorem 3.1.2 and Lemma 3.2.1, for semimartingales which satisfy

Property (RIE) relative to a sequence of adapted partitions, the Euler scheme (3.7) con-

verges pathwise to the solution of the SDE (3.28). In the following subsections we verify

Property (RIE) for various semimartingales relative to suitable sequences of partitions, and

derive the pathwise convergence rate of the associated Euler scheme with respect to the

p-variation norm.

3.2.1 Brownian motion

We start with the most prominent example of a semimartingale, by taking X = W to be

a d-dimensional Brownian motion W = (Wt)t∈[0,T ] with respect to the underlying filtration

(Ft)t∈[0,T ].

Proposition 3.2.2. Let p ∈ (2, 3) and let Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N,
be a sequence of equidistant partitions of the interval [0, T ], so that, for each n ∈ N, there
exists some πn > 0 such that tni+1 − tni = πn for each 0 ≤ i < Nn. If π

2− 4
p

n log(n) → 0

as n → ∞, then, for almost every ω ∈ Ω, the sample path W (ω) satisfies Property (RIE)

relative to p and (Pn)n∈N.

Proof. As stated in Remark 3.1.3, Davie’s condition implies Property (RIE). While [143,

Appendix B] show this for the sequence of partitions (Pn
U )n∈N, where Pn

U = { iTn : i =

0, 1, . . . , n}, i.e. πn = T
n , their proof actually holds for any sequence of equidistant partitions

of the interval [0, T ]. We therefore show the necessary condition proposed in [51], under the

assumption that π
2− 4

p
n log(n) → 0 as n→ ∞.

More precisely, let W = (W,W) be the Itô Brownian rough path lift of W . Write α := 1
p

and let β ∈ (1 − α, 2α). We show that, almost surely, there exists a constant C > 0 such

that ∣∣∣ ℓ−1∑
m=k

Wij
tnm,t

n
m+1

∣∣∣ ≤ C(ℓ− k)βπ2αn ,
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for every i, j = 1, . . . , d and n ∈ N, whenever 0 < k < ℓ are integers such that ℓπn ≤ T .

Step 1. We recall that a (zero mean) random variable Z is said to be sub-Gaussian if its

sub-Gaussian norm ∥Z∥ψ2 := inf{z > 0 : E[exp(Z2/z2)] ≤ 2} is finite. It is well-known that

the sub-Gaussian property admits an equivalent formulation; namely, Z is sub-Gaussian if

and only if E[exp(λ2Z2)] ≤ exp(λ2K2) holds for all λ such that |λ|≤ 1
K , for some K > 0.

In this case we have ∥Z∥ψ2= K up to a multiplicative constant.

We will prove that Wij
tnm,t

n
m+1

, m = k, . . . , ℓ − 1, are independent sub-Gaussian random

variables with sub-Gaussian norm ∥Wij
tnm,t

n
m+1

∥ψ2= Cπn for some C > 0.

First, we note that, by [74, Proposition 13.4], for all m ∈ N, the random variables
Wij
tnm,t

n
m+1

tnm+1−tnm
are independent and identically distributed, with the same distribution as Wij

0,1,

and that the latter satisfies E[exp(ηWij
0,1)] < ∞ for some sufficiently small η > 0, which is

equivalent to the Gaussian tail property, i.e., that ∥Wij
0,1∥Lq≤ c

√
q for all q ≥ 1, where the

constant c is independent of q; see [74, Lemma A.17]. As a consequence, using the fact that

tnm+1 − tnm = πn for all m, and setting q = 2ν, we deduce that

E[|Wij
tnm,t

n
m+1

|2ν ] ≤ cνννπ2νn , ν ∈ N, (3.31)

for a new constant c > 0 which does not depend on ν.

We now aim to show that there exists a constant C > 0 such that

E[exp(λ2(Wij
tnm,t

n
m+1

)2)] ≤ exp(C2π2nλ
2), (3.32)

for all λ such that |λ|≤ 1
Cπn

, which then implies that Wij
tnm,t

n
m+1

is sub-Gaussian with norm

∥Wij
tnm,t

n
m+1

∥ψ2= Cπn, up to a multiplicative constant which we may then absorb into C.

Using the Taylor expansion for the exponential function, we get, for λ ∈ R, that

E[exp(λ2(Wij
tnm,t

n
m+1

)2)] = E
[
1 +

∞∑
ν=1

λ2ν(Wij
tnm,t

n
m+1

)2ν

ν!

]
= 1 +

∞∑
ν=1

λ2νE[(Wij
tnm,t

n
m+1

)2ν ]

ν!
.

By the bound in (3.31) and Stirling’s approximation (which implies in particular that ν!≥
(νe )ν for all ν ≥ 1), we obtain

E[exp(λ2(Wij
tnm,t

n
m+1

)2)] ≤ 1 +

∞∑
ν=1

(ecλ2π2n)ν =
1

1 − ecλ2π2n
≤ exp(2ecλ2π2n),

which is valid provided that

ecλ2π2n ≤ 1

2
, (3.33)

since 1
1−x ≤ exp(2x) for x ∈ [0, 12 ]. We then obtain (3.32) by choosing C =

√
2ec, and note

that then (3.33) does indeed hold when |λ|≤ 1
Cπn

.
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Step 2. Let C > 0 be the constant found above, so that ∥Wij
tnm,t

n
m+1

∥ψ2= Cπn. Then

Hoeffding’s inequality (see e.g. [158, Theorem 2.6.2]) gives

P
(∣∣∣∣ ℓ−1∑

m=k

Wij
tnm,t

n
m+1

∣∣∣∣ ≥ C(ℓ− k)βπ2αn

)
≤ 2 exp

(
− C2(ℓ− k)2βπ4αn∑ℓ−1

m=k∥W
ij
tnm,t

n
m+1

∥2ψ2

)

= 2 exp

(
− (ℓ− k)2β−1

πn2−4α

)
.

Since β > 1 − α > 1
2 , we can bound this further by

P
(∣∣∣∣ ℓ−1∑

m=k

Wij
tnm,t

n
m+1

∣∣∣∣ ≥ C(ℓ− k)βπ2αn

)
≤ 2 exp

(
− 1

πn2−4α

)
= 2n

− 1
γn ,

where we denote γn = πn
2−4α log(n). Since, by assumption, γn → 0 as n→ ∞, we have that

1
γn

> 1 for all sufficiently large n ∈ N, and hence that the series
∑

n∈N n
− 1
γn is absolutely

convergent. The desired statement then follows from the Borel–Cantelli lemma.

Remark 3.2.3. Proposition 3.2.2 can be generalized to any sequence of partitions (Pn)n∈N,

which possibly consists of non-equidistant partitions, such that |Pn|2−
4
p log(n) → 0 as n →

∞, provided that there exists a positive number η > 0 such that

|Pn|
min0≤k<Nn |tnk+1 − tnk |

≤ η

for every n ∈ N. This additional condition requires that the sequence (Pn)n∈N be a “balanced

partition sequence” in the sense of [38].

Remark 3.2.4. Combining Proposition 3.2.2 with Lemma 3.1.6, we infer that the piecewise

constant approximations of a Brownian motion along equidistant partitions converge to its

Itô rough path lift, which, as far as we are aware, is a novel construction of this lift. Existing

approximations of Brownian rough path are all continuous approximations, such as piecewise

linear or mollifier approximations—cf. [74]—which play a crucial role, e.g., in the rough

path based proofs of Wong–Zakai results, support theorems and large deviation principles.

Corollary 3.2.5. Let p ∈ (2, 3) and let Pn
U = {0 = tn0 < tn1 < · · · < tnn = T}, n ∈ N,

with tni = iT
n , be the sequence of equidistant partitions with width T

n of the interval [0, T ].

Let Y be the solution of the SDE (3.28) driven by a Brownian motion W , and let Y n be

the corresponding Euler approximation along Pn
U , as defined in (3.7). For any p′ ∈ (p, 3),

q ∈ (1, 2) and β ∈ (1 − 1
p ,

2
p) such that 1

p′ + 1
q > 1, there exists a random variable C, which

does not depend on n, such that

∥Y n − Y ∥p′≤ C(n
−(1− 1

q
)

+ n
−( 2

p
−β)(1− p

p′ )), n ∈ N. (3.34)
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Proof. Since |Pn
U |=

T
n , we have that |Pn

U |
2− 4

p log(n) → 0 as n → ∞. Thus, by Proposi-

tion 3.2.2, for almost every ω ∈ Ω, the sample path W (ω) satisfies Property (RIE) relative

to p and (Pn
U )n∈N, which allows us to apply the result of Theorem 3.1.2.

Since the sample paths of W are almost surely 1
p -Hölder continuous, it is easy to see

that

∥Wn −W∥∞≲ n
− 1
p , n ∈ N,

where the implicit multiplicative constant is a random variable which does not depend on

n. Moreover, by [143, Appendix B], the left-point Riemann sums along (Pn
U )n∈N converge

uniformly as n→ ∞, with rate n
−( 2

p
−β)

for β ∈ (1 − 1
p ,

2
p), i.e.,∥∥∥∥∫ ·

0
Wn
u ⊗ dWu −

∫ ·

0
Wu ⊗ dWu

∥∥∥∥
∞

≲ n
−( 2

p
−β)

, n ∈ N.

Hence, by Theorem 3.1.2, we get that

∥Y n − Y ∥p′≲ n
−(1− 1

q
)

+ n
− 1
p
(1− p

p′ ) + n
−( 2

p
−β)(1− p

p′ ).

Since 1
p < 1 − 1

p < β for p ∈ (2, 3), this gives the rate of convergence in (3.34).

3.2.2 Itô processes

In this subsection we let X be an Itô process. More precisely, we suppose that

Xt = x0 +

∫ t

0
br dr +

∫ t

0
Hr dWr, t ∈ [0, T ], (3.35)

for some x0 ∈ Rd, and some locally bounded predictable integrands b: Ω × [0, T ] → Rd and

H: Ω × [0, T ] → L(Rm;Rd), where W is an Rm-valued Brownian motion. We consider the

sequence of dyadic partitions (Pn
D)n∈N of [0, T ], given by

Pn
D := {0 = tn0 < tn1 < · · · < tn2n = T} with tnk := k2−nT for k = 0, 1, . . . , 2n.

(3.36)

In the next proposition we will show that X satisfies Property (RIE) along the sequence

of partitions (Pn
D)n∈N, and establish the rate of convergence of the associated Euler scheme.

Note that, in contrast to the proof of Proposition 3.2.2, for general Itô processes we cannot

rely on the concentration of measure inequality for sub-Gaussian distributions.

Proposition 3.2.6. Let p ∈ (2, 3) and let X be an Itô process of the form in (3.35). Let

Y be the solution of the SDE (3.28) driven by X, and let Y n denote the corresponding

Euler approximation, as defined in (3.7), based on X and the sequence of dyadic partitions

(Pn
D)n∈N.
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(i) For almost every ω ∈ Ω, the sample path X(ω) satisfies Property (RIE) relative to p

and (Pn
D)n∈N.

(ii) For any p′ ∈ (p, 3) and q ∈ (1, 2) such that 1
p′ + 1

q > 1, and any ε ∈ (0, 1), there exists

a random variable C, which does not depend on n, such that

∥Y n − Y ∥p′≤ C(2
−n(1− 1

q
)

+ 2
−n( 1

p
− 1
p′ ) + 2

−n
2
(1−ε)(1− p

p′ )), n ∈ N, (3.37)

and

∥Y n − Y ∥3≤ C2−n(
1
6
−ε), n ∈ N. (3.38)

Proof. (i): By a localization argument, we may assume that b and H are globally bounded.

Let

At :=

∫ t

0
br dr and Mt :=

∫ t

0
Hr dWr

for t ∈ [0, T ], so that X = x0 + A + M , and recall that we denote the piecewise constant

approximation of X along Pn
D by

Xn
t = XT1T (t) +

2n−1∑
k=0

Xtnk
1[tnk ,t

n
k+1)

(t), t ∈ [0, T ],

with tnk = k2−nT for each k = 0, 1, . . . , 2n and n ∈ N. Note that, by the uniform continuity

of the sample paths of X, it is clear that Xn converges uniformly to X almost surely as

n→ ∞.

Step 1. In this step we verify that the sample paths of X are almost surely 1
p -Hölder

continuous. This is a standard application of the Burkholder–Davis–Gundy inequality.

Indeed, for any q ≥ 1, using the boundedness of H, and writing [·] for quadratic variation,

we have that

E[|Mt −Ms|q] = E
[∣∣∣∣ ∫ t

s
Hu dWu

∣∣∣∣q] ≲ E
[[ ∫ ·

0
H dW

] q
2

s,t

]
≲ |t− s|

q
2 ,

so that ∥Mt − Ms∥Lq≲ |t − s|
1
2 . By the Kolmogorov continuity theorem (see e.g. [74,

Theorem A.10]), it follows that E[∥M∥γ-Höl] < ∞, where ∥·∥γ-Höl denotes the γ-Hölder

norm, for any γ ∈ [0, 12−
1
q ), which, taking q sufficiently large, implies that the sample paths

of M are almost surely 1
p -Hölder continuous. Since A =

∫ ·
0 br dr with the bounded integrand

b, the sample paths of A are Lipschitz continuous, and thus also 1
p -Hölder continuous.

Step 2. In this step we show that, almost surely,
∫ ·
0X

n
u ⊗ dXu converges uniformly to

the Itô integral
∫ ·
0Xu ⊗ dXu as n → ∞. For this purpose, we write Xn = x0 + An + Mn,

where

Ant := AT1{T}(t) +
2n−1∑
k=0

Atnk1[tnk ,t
n
k+1)

(t) and Mn
t := MT1{T}(t) +

2n−1∑
k=0

Mtnk
1[tnk ,t

n
k+1)

(t),
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for t ∈ [0, T ]. Since X = x0 +A+M , we obtain

E
[∥∥∥∥ ∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥2
∞

]
≲ E

[∥∥∥∥ ∫ ·

0
(Anu −Au) ⊗ dAu

∥∥∥∥2
∞

]
+ E

[∥∥∥∥ ∫ ·

0
(Mn

u −Mu) ⊗ dAu

∥∥∥∥2
∞

]
+ E

[∥∥∥∥ ∫ ·

0
(Anu −Au) ⊗ dMu

∥∥∥∥2
∞

]
+ E

[∥∥∥∥ ∫ ·

0
(Mn

u −Mu) ⊗ dMu

∥∥∥∥2
∞

]
.

(3.39)

Applying the Burkholder–Davis–Gundy inequality, the fact that [M ] = [
∫ ·
0Ht dWt] =∫ ·

0|Ht|2 dt, and the boundedness of H, we can bound

E
[∥∥∥∥ ∫ ·

0
(Mn

u −Mu) ⊗ dMu

∥∥∥∥2
∞

]
≲ E

[ ∫ T

0
|Mn

t −Mt|2 d[M ]t

]
≲
∫ T

0
E[|Mn

t −Mt|2] dt =

2n−1∑
k=0

∫ tnk+1

tnk

E[|Mtnk
−Mt|2] dt ≲

2n−1∑
k=0

∫ tnk+1

tnk

E[|[M ]tnk ,t|] dt

=
2n−1∑
k=0

∫ tnk+1

tnk

E
[ ∫ t

tnk

|Hr|2 dr

]
dt ≲

2n−1∑
k=0

∫ tnk+1

tnk

(t− tnk) dt ≤
2n−1∑
k=0

(tnk+1 − tnk)2 = 2−n.

The other terms on the right-hand side of (3.39) can be bounded similarly by 2−n, up to a

constant which does not depend on n, and we thus have that

E
[∥∥∥∥ ∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥2
∞

]
≲ 2−n,

for every n ∈ N. By Markov’s inequality, for any ε ∈ (0, 1), we then have that

P
(∥∥∥∥∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥
∞

≥ 2−
n
2
(1−ε)

)
≤ 2n(1−ε)E

[∥∥∥∥ ∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥2
∞

]
≲ 2n(1−ε)2−n = 2−nε.

It then follows from the Borel–Cantelli lemma that, almost surely,∥∥∥∥∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥
∞
< 2−

n
2
(1−ε) (3.40)

for all sufficiently large n, which implies the desired convergence.

Step 3. Let ε ∈ (0, 1) and ρ = 2 + (1−ε)(p−2)
4 ∈ (2, 3). We infer from Step 1 above that

the sample paths of X are almost surely 1
ρ -Hölder continuous, from which it follows that

|Xs,t|≲ |t− s|
1
ρ ,

where the implicit multiplicative constant is a random variable which does not depend on s

or t. Proceeding as in the proof of [124, Lemma 3.2], we can show, for any 0 ≤ k < ℓ ≤ 2n,

and writing N = ℓ− k = 2n|tnℓ − tnk |T−1, that∣∣∣∣ ∫ tnℓ

tnk

Xn
u ⊗ dXu −Xtnk

⊗Xtnk ,t
n
ℓ

∣∣∣∣ ≲ N
1− 2

ρ |tnℓ − tnk |
2
ρ≲ 2

n(1− 2
ρ
)|tnℓ − tnk |≤ 2n(ρ−2)|tnℓ − tnk |.
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If 2−n ≥ |tnℓ − tnk |
4

p(1−ε) , then it follows that∣∣∣∣ ∫ tnℓ

tnk

Xn
u ⊗ dXu −Xtnk

⊗Xtnk ,t
n
ℓ

∣∣∣∣ ≲ |tnℓ − tnk |
1− 4

p(1−ε) (ρ−2)
= |tnℓ − tnk |

2
p .

We will now aim to obtain the same estimate in the case that 2−n < |tnℓ − tnk |
4

p(1−ε) . To this

end, let X denote the second level component of the Itô rough path lift of X, as defined

in (3.29). It follows from the Kolmogorov criterion for rough paths (see [71, Theorem 3.1])

that

|Xs,t|≲ |t− s|
2
p , (3.41)

where the implicit multiplicative constant is a random variable which does not depend on

s or t. Using the bounds in (3.40) and (3.41), we then have, for all sufficiently large n, that∣∣∣∣ ∫ tnℓ

tnk

Xn
u ⊗ dXu −Xtnk

⊗Xtnk ,t
n
ℓ

∣∣∣∣
=

∣∣∣∣ ∫ tnℓ

tnk

Xn
u ⊗ dXu −

∫ tnℓ

tnk

Xu ⊗ dXu +

∫ tnℓ

tnk

Xu ⊗ dXu −Xtnk
⊗Xtnk ,t

n
ℓ

∣∣∣∣
≤ 2

∥∥∥∥∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥
∞

+ |Xtnk ,tnℓ |

≲ 2−
n
2
(1−ε) + |tnℓ − tnk |

2
p

≲ |tnℓ − tnk |
2
p .

We have thus established that∣∣∣∣ ∫ tnℓ

tnk

Xn
u ⊗ dXu −Xtnk

⊗Xtnk ,t
n
ℓ

∣∣∣∣ p2 ≲ |tnℓ − tnk |

holds for all 0 ≤ k < ℓ ≤ 2n and all sufficiently large n. It follows that there exists a random

control function w(s, t) := c|t− s|, for some random variable c, such that

sup
(s,t)∈∆T

|Xs,t|p

w(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤2n

|
∫ tnℓ
tnk
Xn
u ⊗ dXu −Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

w(tnk , t
n
ℓ )

≤ 1

holds almost surely. This means that, for almost every ω ∈ Ω, the sample path X(ω)

satisfies Property (RIE) relative to any p ∈ (2, 3) and the sequence of dyadic partitions

(Pn
D)n∈N.

(ii): Since the sample paths of X are almost surely 1
p -Hölder continuous (by Step 1

above), it is straightforward to see that

∥Xn −X∥∞≲ 2
−n
p , n ∈ N,
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and, recalling (3.40), we have that∥∥∥∥∫ ·

0
Xn
u ⊗ dXu −

∫ ·

0
Xu ⊗ dXu

∥∥∥∥
∞

≲ 2−
n
2
(1−ε), n ∈ N.

Hence, by Theorem 3.1.2, we deduce that

∥Y n − Y ∥3≤ ∥Y n − Y ∥p′≲ 2
−n(1− 1

q
)

+ 2
−n
p
(1− p

p′ ) + 2
−n

2
(1−ε)(1− p

p′ ),

for any p′ ∈ (p, 3) and q ∈ (1, 2) such that 1
p′ + 1

q > 1, which leads to (3.37). Choosing p

sufficiently close to 2, p′ to 3, and q to 3
2 , and replacing ε by 6ε, then reveals (3.38).

3.2.3 Lévy processes

Let L = (Lt)t∈[0,T ] be a d-dimensional Lévy process with characteristics (λ,Σ, ν). In this

section, we shall work under the assumption that
∫
|x|<1|x|

qν(dx) <∞ for some q ∈ [1, 2).

By the Lévy–Itô decomposition (see e.g. [10, Theorem 2.4.16]), there exists a Brownian

motion W with covariance matrix Σ, and an independent Poisson random measure µ on

[0, T ] × (Rd \ {0}) with compensator ν, such that L = W + φ, where

φt = λt+

∫
|x|≥1

xµ(t,dx) +

∫
|x|<1

x(µ(t,dx) − tν(dx)), t ∈ [0, T ]. (3.42)

Since
∫
|x|<1|x|

qν(dx) < ∞, we have that φ(ω) ∈ Dq([0, T ];Rd) for almost every ω ∈ Ω; see

[10, Theorem 2.4.25] and [26, Théorème IIIb].

Let (Pn
D)n∈N be the dyadic partitions of [0, T ], as defined in (3.36). For each n ∈ N, we

also let Jn = {t ∈ (0, T ] : |∆φt|≥ 2−n}, where ∆φt = φt − φt− denotes the jump of φ at

time t, and we let

Pn
L = Pn

D ∪ Jn. (3.43)

We will consider (Pn
L)n∈N as our sequence of adapted partitions, noting in particular that,

for almost every ω ∈ Ω, (Pn
L(ω))n∈N is a nested sequence of (finite) partitions with vanishing

mesh size, and that {t ∈ (0, T ] : Lt−(ω) ̸= Lt(ω)} ⊆ ∪n∈NPn
L(ω).

Remark 3.2.7. In order to obtain pointwise convergence of an Euler scheme, it is necessary

that the jump times of the driving signal belong to the partitions used to construct the

discretization, a fact which follows immediately from Proposition A.3.1, necessitating the

inclusion of the jump times (Jn)n∈N above.

Proposition 3.2.8. Let L be a d-dimensional Lévy process with characteristics (λ,Σ, ν),

and assume that
∫
|x|<1|x|

qν(dx) <∞ for some q ∈ [1, 2). Let p ∈ (2, 3) such that 1
p + 1

q > 1.

Let Y be the solution of the SDE (3.28) driven by L, and let Y n be the corresponding Euler

approximation along Pn
L, as defined in (3.7).
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(i) For almost every ω ∈ Ω, the sample path L(ω) satisfies Property (RIE) relative to p

and (Pn
L(ω))n∈N.

(ii) For any p′ ∈ (p, 3) and q′ ∈ (q, 2) such that 1
p′ + 1

q′ > 1, any γ ∈ (0, 1p), and any

δ ∈ (0, 1 − q
2), there exists a random variable C, which does not depend on n, such

that

∥Y n − Y ∥p′≤ C
(

2
−n(1− 1

q′ ) + (2
−n( 1

p
−γ)

+ 2
−n( 1

p
− 1
p′ ) + 2

−nδ(1− q
q′ ))

1− p
p′
)
, n ∈ N.

To prove this statement, we need the following lemma.

Lemma 3.2.9. Let p ∈ (2, 3), let W be a d-dimensional Brownian motion with covariance

matrix Σ, and let (Pn
L)n∈N be the sequence of adapted partitions defined in (3.43). For almost

every ω ∈ Ω, the sample path W (ω) satisfies Property (RIE) relative to p and (Pn
L(ω))n∈N.

Proof. We need to verify each of the conditions (i)–(iii) in Property (RIE).

(i): Since the sample paths of W are uniformly continuous on the compact interval

[0, T ], it is straightforward to see that Wn(ω) → W (ω) uniformly as n → ∞ for almost

every ω ∈ Ω, where Wn denotes the piecewise constant approximation of W along Pn
L.

(ii): It follows from the Kolmogorov continuity criterion that the sample paths of Brow-

nian motion are almost surely 1
p -Hölder continuous, and that the Hölder constant ∥W∥ 1

p
-Höl

has finite moments of all orders (see e.g. [18, Theorem A.1]). Applying the Burkholder–

Davis–Gundy inequality, we then have that

E
[∥∥∥∥ ∫ ·

0
Wn
u ⊗ dWu −

∫ ·

0
Wu ⊗ dWu

∥∥∥∥2
∞

]
≲ E

[ ∫ T

0
|Wn

t −Wt|2 dt

]
≤ E

[
∥W∥21

p
-Höl

∫ T

0
|Pn
L|

2
p dt

]
≲ E[∥W∥21

p
-Höl

]2
− 2n

p .

Let γ ∈ (0, 1p) and ε = 1 − 2
p + 2γ ∈ (1 − 2

p , 1). By Markov’s inequality, we infer that

P
(∥∥∥∥∫ ·

0
Wn
u ⊗ dWu −

∫ ·

0
Wu ⊗ dWu

∥∥∥∥
∞

≥ 2−
n
2
(1−ε)

)
≲ 2

− 2n
p
+n(1−ε)

= 2−2nγ .

By the Borel–Cantelli lemma, we then have that, almost surely,∥∥∥∥∫ ·

0
Wn
u ⊗ dWu −

∫ ·

0
Wu ⊗ dWu

∥∥∥∥
∞
< 2−

n
2
(1−ε) (3.44)

for all sufficiently large n. It follows that (
∫ ·
0W

n
u ⊗dWu)(ω) converges uniformly to (

∫ ·
0Wu⊗

dWu)(ω) as n→ ∞ for almost every ω ∈ Ω.

(iii): Let ρ = 2 + (1−ε)(p−2)
4 ∈ (2, 3). Since the sample paths of W are almost surely

1
ρ -Hölder continuous, it follows that

|Ws,t|ρ≲ |t− s|,
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where the implicit multiplicative constant is a random variable which does not depend on

s or t. Proceeding as in the proof of [124, Lemma 3.2], we can show, for any 0 ≤ k < ℓ, and

writing N = ℓ− k, we can show that∣∣∣∣ ∫ tnℓ

tnk

Wn
u ⊗ dWu −Wtnk

⊗Wtnk ,t
n
ℓ

∣∣∣∣ ≲ N
1− 2

ρ |tnℓ − tnk |
2
ρ ,

where {0 = tn0 < tn1 < · · ·} are the partition points of Pn
L(ω) for some (here fixed) ω ∈ Ω.

Using |·| here to denote the cardinality of a set, we note that the number N can be bounded

by

N ≤ |Pn
D(ω) ∩ (tnk , t

n
ℓ ]|+|Jn(ω) ∩ (tnk , t

n
ℓ ]|≤ 2nT−1|tnℓ − tnk |+2nq

∑
t∈Jn(ω)∩(tnk ,t

n
ℓ ]

|∆φt(ω)|q

≲ 2n|tnℓ − tnk |+2nq∥φ(ω)∥qq,[tnk ,tnℓ ]≤ 2nρc(tnk , t
n
ℓ ),

where c is the control function defined by c(s, t) := |t − s|+∥φ(ω)∥qq,[s,t] for (s, t) ∈ ∆T . If

2−n ≥ c(tnk , t
n
ℓ )

4
p(1−ε) , this implies that∣∣∣∣ ∫ tnℓ

tnk

Wn
u ⊗ dWu −Wtnk

⊗Wtnk ,t
n
ℓ

∣∣∣∣ ≲ 2n(ρ−2)c(tnk , t
n
ℓ ) ≤ c(tnk , t

n
ℓ )

1− 4
p(1−ε) (ρ−2)

= c(tnk , t
n
ℓ )

2
p .

In the case that 2−n < c(tnk , t
n
ℓ )

4
p(1−ε) , we can follow the same argument as in Step 3 of the

proof of part (i) of Proposition 3.2.6 (using in particular the bound in (3.44)) to obtain

again that ∣∣∣∣ ∫ tnℓ

tnk

Wn
u ⊗ dWu −Wtnk

⊗Wtnk ,t
n
ℓ

∣∣∣∣ ≲ c(tnk , t
n
ℓ )

2
p ,

where, as usual, the implicit multiplicative constant depends on ω, but not on n.

It follows that there exists a random control function w such that

sup
(s,t)∈∆T

|Ws,t|p

w(s, t)
+ sup
n∈N

sup
0≤k<ℓ

|
∫ tnℓ
tnk
Wn
u ⊗ dWu −Wtnk

⊗Wtnk ,t
n
ℓ
|
p
2

w(s, t)
≤ 1

holds almost surely.

Proof of Proposition 3.2.8. Let W be a Brownian motion with covariance matrix Σ, and

let φ be the process defined in (3.42), so that L = W + φ. As usual, we let Ln, Wn and

φn denote the piecewise constant approximations of L, W and φ respectively, along the

adapted partition Pn
L.

Recalling (3.42), we see that we can write φ = η + ξ, where

ηt := λt+

∫
|x|≥2−n

xµ(t,dx) − t

∫
2−n≤|x|<1

xν(dx) (3.45)
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and

ξt :=

∫
|x|<2−n

x(µ(t,dx) − tν(dx)).

Let ηn and ξn denote the piecewise constant approximations of η and ξ along Pn
L. Recalling

how the adapted partition Pn
L was defined in (3.43), we note that, when estimating the

difference ηn − η, we may ignore all jumps of size greater than 2−n, and may thus ignore

the first integral on the right-hand side of (3.45). We then have that

∥ηn − η∥∞ ≤ 2−nT |λ|+2−nT

∫
2−n≤|x|<1

|x|ν(dx)

≤ 2−nT |λ|+2−n(2−q)T

∫
2−n≤|x|<1

|x|qν(dx) ≲ 2−n(2−q).

(3.46)

Writing ⟨·⟩ for the predictable quadratic variation, we have (see e.g. [96, Chapter 2, Theo-

rem 1.33]) that

E[⟨ξ⟩T ] ≤ T

∫
|x|<2−n

|x|2ν(dx) ≤ 2−n(2−q)T

∫
|x|<2−n

|x|qν(dx).

Since this quantity is finite, the process ξ is a square integrable martingale, and in particular

E[[ξ]T ] = E[⟨ξ⟩T ], where [·] denotes the usual quadratic variation. By the Burkholder–Davis–

Gundy inequality, we then have that

E[∥ξ∥2∞] ≲ E[[ξ]T ] = E[⟨ξ⟩T ] ≲ 2−n(2−q). (3.47)

Note that, for any a > 0, if ∥ξ∥∞< a
2 , then ∥ξn − ξ∥∞< a. It follows that, for any

δ ∈ (0, 1 − q
2),

P(∥ξn − ξ∥∞≥ 2−nδ) ≤ P(∥ξ∥∞≥ 2−1−nδ).

By Markov’s inequality and the bound in (3.47), we see that

P(∥ξn − ξ∥∞≥ 2−nδ) ≲ 22−n(2−q−2δ),

and the Borel–Cantelli lemma then implies that, almost surely,

∥ξn − ξ∥∞≲ 2−nδ, (3.48)

where the implicit multiplicative constant is a random variable which does not depend on

n. It follows from (3.46) and (3.48) that

∥φn − φ∥∞≲ 2−nδ. (3.49)

Let p′ ∈ (p, 3) and q′ ∈ (q, 2) such that 1
p′ + 1

q′ > 1. Using interpolation, the fact that

supn∈N∥φn∥q≤ ∥φ∥q, and the bound in (3.49), we have that, almost surely,

∥φn − φ∥q′≤ ∥φn − φ∥
1− q

q′
∞ ∥φn − φ∥

q
q′
q ≲ ∥φn − φ∥

1− q
q′

∞ ≲ 2
−nδ(1− q

q′ ). (3.50)
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We also have from Lemma 3.2.9 that, for almost every ω ∈ Ω, the sample path W (ω) satisfies

Property (RIE) relative to p and (Pn
L(ω))n∈N. Thus, by Proposition 3.1.10, for almost every

ω ∈ Ω, the sample path L(ω) satisfies Property (RIE) relative to p and (Pn(ω))n∈N, which

establishes part (i).

Since the sample paths of W are almost surely 1
p -Hölder continuous, it is straightforward

to see that

∥Wn −W∥∞≲ 2
−n
p ,

where the implicit multiplicative constant depends on the (random) Hölder constant of the

path. Since L = W + φ, we have that

∥Ln − L∥∞≤ ∥Wn −W∥∞+∥φn − φ∥∞≲ 2
−n
p + 2−nδ.

We recall from (3.44) that∥∥∥∥∫ ·

0
Wn
u ⊗ dWu −

∫ ·

0
Wu ⊗ dWu

∥∥∥∥
∞

≲ 2−
n
2
(1−ε) = 2

−n( 1
p
−γ)

for any γ ∈ (0, 1p). We obtained a bound for ∥φn−φ∥q′ in (3.50), and an analogous argument

also shows that

∥Wn −W∥p′≤ ∥Wn −W∥
1− p

p′
∞ ∥Wn −W∥

p
p′
p ≲ ∥Wn −W∥

1− p
p′

∞ ≲ 2
−n( 1

p
− 1
p′ ).

Using the standard estimate for Young integrals (see e.g. [75, Proposition 2.4]), similarly to

the proof of Proposition 3.1.10, we then obtain∥∥∥∥∫ ·

0
Lnu ⊗ dLu −

∫ ·

0
Lu ⊗ dLu

∥∥∥∥
∞

≲

∥∥∥∥∫ ·

0
Wn
u ⊗ dWu −

∫ ·

0
Wu ⊗ dWu

∥∥∥∥
∞

+ ∥Wn −W∥p′∥φ∥q+∥φn − φ∥q′(∥W∥p+∥φ∥q)

≲ 2
−n( 1

p
−γ)

+ 2
−n( 1

p
− 1
p′ ) + 2

−nδ(1− q
q′ ).

Hence, by Theorem 3.1.2, we establish the estimate in part (ii).

3.2.4 Càdlàg semimartingales

In this section, we consider the case when X is a general càdlàg semimartingale. As noted

in Remark 3.2.7, to hope for pointwise convergence of the Euler scheme, we need to ensure

that the sequence of partitions exhausts all the jump times of X. With this in mind, for

each n ∈ N, we introduce the stopping times (τnk )k∈N∪{0}, such that τn0 = 0, and

τnk = inf{t > τnk−1 : |t− τnk−1|+|Xt −Xτnk−1
|≥ 2−n} ∧ T, k ∈ N. (3.51)
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We then define a sequence of adapted partitions (Pn
X)n∈N by

Pn
X = {τnk : k ∈ N ∪ {0}}.

Note that, for almost every ω ∈ Ω, (Pn
X(ω))n∈N is a sequence of (finite) partitions with

vanishing mesh size. The next result verifies that X satisfies Property (RIE) relative to

any p ∈ (2, 3) and (Pn
X)n∈N, and establishes the rate of convergence of the associated Euler

scheme.

Proposition 3.2.10. Let p ∈ (2, 3), and let X be a d-dimensional càdlàg semimartingale.

Let Y be the solution of the SDE (3.28) driven by X, and let Y n be the corresponding Euler

approximation along Pn
X , as defined in (3.7).

(i) For almost every ω ∈ Ω, the sample path X(ω) satisfies Property (RIE) relative to p

and (Pn
X(ω))n∈N.

(ii) For any p′ ∈ (p, 3) and q ∈ (1, 2) such that 1
p′ + 1

q > 1, and any ε ∈ (0, 1), there exists

a random variable C, which does not depend on n, such that

∥Y n − Y ∥p′≤ C(2
−n(1− 1

q
)

+ 2
−n(1−ε)(1− p

p′ )), n ∈ N, (3.52)

and

∥Y n − Y ∥3≤ C2−n(
1
3
−ε), n ∈ N. (3.53)

Proof. (i): The proof is just a slight modification of the proof of [7, Proposition 4.1], and

is therefore omitted here for brevity. It is actually slightly easier, as here we do not require

the sequence of partitions to be nested, and the sequence of stopping times in (3.51) is

constructed to ensure that the mesh size vanishes, even if X exhibits intervals of constancy.

(ii): By the definition of the partition Pn
X , it is clear that

∥Xn −X∥∞≤ 2−n.

By an application of the Burkholder–Davis–Gundy inequality and the Borel–Cantelli lemma,

as in the proof of [124, Proposition 3.4], one can show that∥∥∥∥∫ ·

0
Xn
u− ⊗ dXu −

∫ ·

0
Xu− ⊗ dXu

∥∥∥∥
∞

≲ 2−n(1−ε), n ∈ N,

where the implicit multiplicative constant is a random variable which does not depend on

n.

It thus follows from Theorem 3.1.2 that

∥Y n − Y ∥3≤ ∥Y n − Y ∥p′≲ 2
−n(1− 1

q
)

+ 2
−n(1− p

p′ ) + 2
−n(1−ε)(1− p

p′ ),

which leads to (3.52). Choosing p sufficiently close to 2, p′ to 3, and q to 3
2 , and replacing

ε by 3ε, then reveals (3.53).
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3.3 Application to differential equations driven by non-semimartingales

While in the previous section we considered stochastic differential equations driven by var-

ious classes of semimartingales, like the general theory of rough paths, the deterministic

theory developed in Section 3.1 is not limited to the semimartingale framework. In this

section we investigate Property (RIE) in the context of “mixed” and “rough” stochastic

differential equations. The main insight is again that the random driving signals of these

equations do, indeed, satisfy Property (RIE) and, thus the pathwise convergence results

regarding the Euler scheme, as presented in Theorem 3.1.2 and Proposition 3.1.11, are

applicable.

Remark 3.3.1. Further examples of stochastic processes which fulfill Property (RIE) almost

surely include p-semimartingales (also known as Young semimartingales) in the sense of

Norvaǐsa [142], as well as typical price paths in the sense of Vovk, relative to suitable

sequences of adapted partitions. The pathwise convergence of the Euler scheme is thus

immediately applicable to differential equations driven by such p-semimartingales [114] and

typical price paths [17].

3.3.1 Mixed stochastic differential equations

Differential equations driven by both a Brownian motion as well as a fractional Brownian

motion with Hurst parameter H > 1
2 are classical objects in stochastic analysis; see e.g. [162,

135]. More precisely, a “mixed” stochastic differential equation (mixed SDE) is given by

Yt = y0 +

∫ t

0
b(s, Ys) ds+

∫ t

0
σ1(s, Ys) dWs +

∫ t

0
σ2(s, Ys) dWH

s , t ∈ [0, T ], (3.54)

where b ∈ C2
b (Rk+1;L(R;Rk)), σ1 ∈ C3

b (Rk+1;L(Rd1 ;Rk)), σ2 ∈ C3
b (Rk+1;L(Rd2 ;Rk))

and y0 ∈ Rk. Here, W is a d1-dimensional standard Brownian motion, and WH is a

d2-dimensional fractional Brownian motion with Hurst parameter H > 1
2 , which are inde-

pendent and both defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the

usual conditions.

The mixed SDE (3.54) lies outside the semimartingale framework, but there are various

ways to provide a rigorous meaning to its solution. Here we consider the mixed SDE (3.54)

as a random rough differential equation, driven by the Itô rough path lift of (W,WH), the

existence of which follows from Lemma 3.3.2 below. In particular, it then follows from

Theorem 3.1.1 that there exists a unique solution Y to (3.54).

Lemma 3.3.2. LetW be a standard Brownian motion, and letWH be a fractional Brownian

motion with Hurst parameter H ∈ (12 , 1). Let p ∈ (2, 3) such that 1
p + H > 1, and let
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Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a sequence of equidistant partitions of the

interval [0, T ], so that, for each n ∈ N, there exists some πn > 0 such that tni+1 − tni = πn

for each 0 ≤ i < Nn. If π
2− 4

p
n log(n) → 0 as n → ∞, then, for almost every ω ∈ Ω, the

sample path (W (ω),WH(ω)) satisfies Property (RIE) relative to p and (Pn)n∈N.

Proof. We first note that the process (W, 0) satisfies the hypotheses of Theorem 3.2.2, and

thus that almost all of its sample paths satisfy Property (RIE) relative to p and (Pn)n∈N. Let

1
H < q < q′ < 2 such that 1

p + 1
q′ > 1. Since 1

q < H, it is well-known that the sample paths of

(0,WH) are almost surely 1
q -Hölder continuous, and hence that ∥WH∥q<∞. Writing WH,n

for the usual piecewise constant approximation of WH along Pn, we have by interpolation

that

∥WH,n −WH∥q′≤ ∥WH,n −WH∥
1− q

q′
∞ ∥WH,n −WH∥

q
q′
q ≲ ∥WH,n −WH∥

1− q
q′

∞ −→ 0

as n→ ∞. The result then follows by applying Proposition 3.1.10 to (W, 0) + (0,WH).

3.3.2 Rough stochastic differential equations

Rough stochastic differential equations (rough SDEs) are differential equations driven by

both a rough path and a semimartingale. These equations first appeared in the context of

robust stochastic filtering—see [43, 58]—and were recently studied in a general form in [72].

In this section we will adapt the setting of [58], which allows to treat Hölder continuous

rough paths and Brownian motion as driving signals.

We let η: [0, T ] → Rd be a deterministic path which is 1
p -Hölder continuous for some p ∈

(2, 3), and which satisfies Property (RIE) relative to p and the dyadic partitions (Pn
D)n∈N,

as defined in (3.36). We write η = (η1,η2) for the canonical rough path lift of η, with η2

defined as in (3.9), so that η2
s,t =

∫ t
s ηs,u ⊗ dηu for each (s, t) ∈ ∆T . We also let W be an

Re-valued Brownian motion. For vector fields a ∈ C2
b and b, c ∈ C3

b , and an initial value

y0 ∈ Rk, we then consider the rough SDE

Yt = y0 +

∫ t

0
a(Ys) ds+

∫ t

0
b(Ys) dηs +

∫ t

0
c(Ys) dWs, t ∈ [0, T ]. (3.55)

To give a rigorous meaning to the rough SDE (3.55), following the method introduced in

[58], we need to construct a suitable joint rough path lift Λ(ω) above the Rd+e-valued path

(η,W (ω)) for almost every ω ∈ Ω. Indeed, the (pathwise) unique solution to the random

RDE

Yt = y0 +

∫ t

0
a(Ys) ds+

∫ t

0
(b, c)(Ys) dΛs, t ∈ [0, T ],

is then defined to be the solution to the rough SDE (3.55).
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To construct the Itô rough path lift of (η,W ), we need the existence of the quadratic

covariation of η and W along the dyadic partitions. More precisely, writing Pn
D = {0 =

tn0 < tn1 < · · · < tn2n = T} with tnk = k2−nT , we need to establish that, for almost every

ω ∈ Ω, the limit

⟨η,W (ω)⟩t := lim
n→∞

2n−1∑
k=0

ηtnk∧t,t
n
k+1∧t ⊗Wtnk∧t,t

n
k+1∧t(ω) (3.56)

exists and holds uniformly for t ∈ [0, T ].

Lemma 3.3.3. Let α ∈ (0, 1], let η: [0, T ] → R be an α-Hölder continuous deterministic

path, and let W be a one-dimensional Brownian motion. Then, for almost every ω ∈ Ω,

the quadratic covariation of η and W (ω) along the dyadic partitions, in the sense of (3.56),

exists, and satisfies ⟨η,W (ω)⟩t = 0 for all t ∈ [0, T ].

Proof. We consider the discrete-time martingale given by t 7→
∑

k : tnk+1≤t
ηtnk ,t

n
k+1

Wtnk ,t
n
k+1

for

t ∈ Pn
D, for some fixed n ∈ N. By the Burkholder–Davis–Gundy inequality, we have that

E
[∥∥∥∥ ∑

k : tnk+1≤·
ηtnk ,t

n
k+1

Wtnk ,t
n
k+1

∥∥∥∥2
∞

]
≲ E

[ 2n−1∑
k=0

(ηtnk ,t
n
k+1

Wtnk ,t
n
k+1

)2
]

=
2n−1∑
k=0

(ηtnk ,t
n
k+1

)2(tnk+1 − tnk)

≲
2n−1∑
k=0

(tnk+1 − tnk)1+2α ≲ (2−nT )2α
2n−1∑
k=0

(tnk+1 − tnk)

≲ 2−2nα.

For any ε ∈ (0, 1), we then have, by Markov’s inequality, that

P
(∥∥∥∥ ∑

k : tnk+1≤·
ηtnk ,t

n
k+1

Wtnk ,t
n
k+1

∥∥∥∥
∞

≥ 2−nα(1−ε)
)

≲ 2−2nαε,

and the Borel–Cantelli lemma then implies that∥∥∥∥ ∑
k : tnk+1≤·

ηtnk ,t
n
k+1

Wtnk ,t
n
k+1

∥∥∥∥
∞

≲ 2−nα(1−ε),

where the implicit multiplicative constant is a random variable which does not depend on

n.

For a given t ∈ [0, T ] and n ∈ N, let k0 be such that t ∈ [tnk0 , t
n
k0+1]. Since η is α-

Hölder continuous, and the sample paths of W are almost surely β-Hölder continuous for

any β ∈ (0, 12), we have that

|ηtnk0 ,tWtnk0
,t|≲ (t− tnk0)α+β ≲ 2−n(α+β).
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We thus have the bound∣∣∣∣ 2n−1∑
k=0

ηtnk∧t,t
n
k+1∧tWtnk∧t,t

n
k+1∧t

∣∣∣∣ ≤ ∣∣∣∣ ∑
k : tnk+1≤t

ηtnk ,t
n
k+1

Wtnk ,t
n
k+1

∣∣∣∣+ |ηtnk0 ,tWtnk0
,t|

≲ 2−nα(1−ε) + 2−n(α+β),

where the implicit multiplicative constant is a random variable which does not depend on

t or n. It follows that, almost surely,

2n−1∑
k=0

ηtnk∧t,t
n
k+1∧tWtnk∧t,t

n
k+1∧t −→ 0 as n −→ ∞,

uniformly for t ∈ [0, T ].

It is shown in [58, Theorem 1], with integrals defined in the Stratonovich sense, that

an analogous object to the process Λ described in (3.57) below provides a geometric rough

path lift of (η,W ). In the next theorem we establish that Λ is the Itô rough path lift of

(η,W ), and moreover that it may be obtained as the canonical lift via Property (RIE), thus

making our convergence analysis of the Euler scheme applicable to the rough SDE (3.55).

Theorem 3.3.4. Let p ∈ (2, 3). Let η be a 1
p -Hölder continuous Rd-valued path which

satisfies Property (RIE) relative to p and the sequence of dyadic partitions (Pn
D)n∈N, and

write η = (η1,η2) for the canonical rough path lift of η, so that η1 = η, and η2
s,t =

∫ t
s ηs,u⊗

dηu, defined as in (3.9), for every (s, t) ∈ ∆T . Let W be an Re-valued Brownian motion,

and write W = (W,W) for the Itô rough path lift of W , so that Ws,t =
∫ t
s Ws,u ⊗ dWu,

defined as an Itô integral, for every (s, t) ∈ ∆T .

For any p′ ∈ (p, 3) and almost every ω ∈ Ω, the Rd+e-valued path (η,W (ω)) satisfies

Property (RIE) relative to p′ and (Pn
D)n∈N.

Moreover, for almost every ω ∈ Ω, the canonical rough path lift Λ(ω) = (Λ1(ω),Λ2(ω)) ∈
Rd+e ⊕ R(d+e)×(d+e) of (η,W (ω)) (constructed via Property (RIE) as in (3.9)) is given by

Λ1(ω) = (η,W (ω)), and

Λ2
s,t =

(
η2
s,t

∫ t
s ηs,u ⊗ dWu

Ws,t ⊗ ηs,t − (
∫ t
s ηs,u ⊗ dWu)⊤ Ws,t

)
(3.57)

for every (s, t) ∈ ∆T , where
∫ t
s ηs,u ⊗ dWu is defined as an Itô integral, and (·)⊤ denotes

matrix transposition.

Proof. Let p′ ∈ (p, 3). It follows from the Kolmogorov criterion for rough paths (see [71,

Theorem 3.1]) that, for almost every ω ∈ Ω,∣∣∣∣( ∫ t

s
ηs,u ⊗ dWu

)
(ω)

∣∣∣∣ ≲ |t− s|
2
p′ for all (s, t) ∈ ∆T , (3.58)
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and moreover that Λ(ω) = (Λ1(ω),Λ2(ω)) is a 1
p′ -Hölder continuous rough path. We will

show that (η,W (ω)) satisfies Property (RIE), and that the associated canonical rough path

is indeed given by Λ(ω).

Step 1. As usual, we let ηn and Wn denote the piecewise constant approximations of η

and W respectively, along Pn
D. By assumption, η satisfies Property (RIE) relative to p and

(Pn
D)n∈N. By Proposition 3.2.2 (or Proposition 3.2.6), for almost every ω ∈ Ω, the sample

path W (ω) also satisfies Property (RIE) relative to p and (Pn
D)n∈N.

It follows from the first condition in Property (RIE) for η and W (ω) that, for almost

every ω ∈ Ω,

(ηn,Wn(ω)) −→ (η,W (ω)) uniformly as n −→ ∞,

so that this condition also holds for the pair (η,W (ω)). Moreover, it follows from the second

condition in Property (RIE) that
∫ ·
0 η

n
u ⊗ dηu converges uniformly to

∫ ·
0 ηu ⊗ dηu, and, for

almost every ω ∈ Ω, that (
∫ ·
0W

n
u ⊗ dWu)(ω) converges uniformly to (

∫ ·
0Wu ⊗ dWu)(ω).

By the Burkholder–Davis–Gundy inequality, and the observation that ∥ηn−η∥∞≲ 2
−n
p ,

we have that

E
[∥∥∥∥ ∫ ·

0
ηnu ⊗ dWu −

∫ ·

0
ηu ⊗ dWu

∥∥∥∥2
∞

]
≲ E

[ ∫ T

0
|ηnu − ηu|2 du

]
≲ 2

− 2n
p .

For any ε ∈ (1 − 2
p , 1), it then follows from Markov’s inequality that

P
(∥∥∥∥∫ ·

0
ηnu ⊗ dWu −

∫ ·

0
ηu ⊗ dWu

∥∥∥∥
∞

≥ 2−
n
2
(1−ε)

)
≲ 2

n(1− 2
p
−ε)

.

The Borel–Cantelli lemma then implies that, for almost every ω ∈ Ω,∥∥∥∥(∫ ·

0
ηnu ⊗ dWu −

∫ ·

0
ηu ⊗ dWu

)
(ω)

∥∥∥∥
∞

≲ 2−
n
2
(1−ε) (3.59)

for all n ∈ N, and in particular that (
∫ ·
0 η

n
u⊗dWu)(ω) converges uniformly to (

∫ ·
0 ηu⊗dWu)(ω)

as n→ ∞.

Let us write Pn
D = {0 = tn0 < tn1 < · · · < tn2n = T} for n ∈ N, where tnk = k2−nT . It is

straightforward to verify that, for any t ∈ [0, T ],

Wt ⊗ ηt =

∫ t

0
Wn
u ⊗ dηu +

(∫ t

0
ηnu ⊗ dWu

)⊤
+ ⟨W, η⟩nt ,

where, by Lemma 3.3.3, the discrete quadratic variation ⟨W, η⟩nt :=
∑2n−1

k=0 Wtnk∧t,t
n
k+1∧t ⊗

ηtnk∧t,t
n
k+1∧t almost surely converges uniformly to ⟨W, η⟩t = 0 as n → ∞. We then see that,

for almost every ω ∈ Ω,∫ t

0
Wn
u (ω) ⊗ dηu −→ Wt(ω) ⊗ ηt −

(∫ t

0
ηu ⊗ dWu

)⊤
(ω)
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as n → ∞, uniformly in t ∈ [0, T ]. We have thus established that, for almost every ω ∈ Ω,

the path (η,W (ω)) also satisfies the second condition of Property (RIE), and moreover that

the resulting canonical rough path is indeed given by (3.57).

Step 2. It remains to show that (η,W (ω)) satisfies the third condition of Property (RIE)

relative to p′ and (Pn
D)n∈N.

Since η satisfies Property (RIE) relative to p and (Pn
D)n∈N, there exists a control function

wη such that

sup
(s,t)∈∆T

|ηs,t|p

wη(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤2n

|
∫ tnℓ
tnk
ηnu ⊗ dηu − ηtnk ⊗ ηtnk ,t

n
ℓ
|
p
2

wη(tnk , t
n
ℓ )

≤ 1, (3.60)

which implies that the same inequality also holds with p replaced by p′ (possibly with a

different control function, but without loss of generality we may assume that wη remains

valid for p′). Similarly, since for almost every ω ∈ Ω the sample path W (ω) satisfies Property

(RIE) relative to p (and therefore also to p′) and (Pn
D)n∈N, there exists a control function c

such that

sup
(s,t)∈∆T

|Ws,t(ω)|p′

c(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤2n

|(
∫ tnℓ
tnk
Wn
u ⊗ dWu −Wtnk

⊗Wtnk ,t
n
ℓ
)(ω)|

p′
2

c(tnk , t
n
ℓ )

≤ 1. (3.61)

Step 3. Let β ∈ (0, 12). Since η is 1
p -Hölder continuous, and the sample paths of W are

almost surely β-Hölder continuous, we have that

|ηtni−1
⊗Wtni−1,t

n
i

+ ηtni ⊗Wtni ,t
n
i+1

− ηtni−1
⊗Wtni−1,t

n
i+1

|= |ηtni−1,t
n
i
⊗Wtni ,t

n
i+1

|≲ |tni+1 − tni−1|
1
p
+β

for any i = 1, . . . , Nn − 1, where the implicit multiplicative constant is a random variable,

and we can follow the proof of [124, Lemma 3.2] to deduce that, for almost any fixed ω ∈ Ω,

for any k < ℓ, and writing N = ℓ− k = 2n|tnℓ − tnk |T−1,∣∣∣∣( ∫ tnℓ

tnk

ηnu ⊗ dWu

)
(ω) − ηtnk ⊗Wtnk ,t

n
ℓ
(ω)

∣∣∣∣ ≲ N
1− 2

ρ |tnℓ − tnk |
2
ρ≲ 2

n(1− 2
ρ
)|tnℓ − tnk |,

where 2
ρ = 1

p + β.

Let ε ∈ (1 − 2
p , 1). If 2−n ≥ |tnℓ − tnk |

4
p(1−ε) , then∣∣∣∣( ∫ tnℓ

tnk

ηnu ⊗ dWu

)
(ω) − ηtnk ⊗Wtnk ,t

n
ℓ
(ω)

∣∣∣∣ ≲ |tnℓ − tnk |
1− 4

p(1−ε) (1−
2
ρ
)
.

By choosing ε close to 1− 2
p , we can make the above exponent 1− 4

p(1−ε)(1−
2
ρ) arbitrarily

close to 4
ρ−1 = 2

p +2β−1. By then choosing β close to 1
2 , we can make this value arbitrarily
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close to 2
p from below. In particular, by making suitable choices of ε and β, we can ensure

that 1 − 4
p(1−ε)(1 − 2

ρ) = 2
p′ , and we obtain∣∣∣∣( ∫ tnℓ

tnk

ηnu ⊗ dWu

)
(ω) − ηtnk ⊗Wtnk ,t

n
ℓ
(ω)

∣∣∣∣ ≲ |tnℓ − tnk |
2
p′ . (3.62)

We will now aim to obtain the same estimate in the case that 2−n < |tnℓ − tnk |
4

p(1−ε) , with

ε chosen as above. Recalling (3.58) and (3.59), we have that∣∣∣∣( ∫ tnℓ

tnk

ηnu ⊗ dWu

)
(ω) − ηtnk ⊗Wtnk ,t

n
ℓ
(ω)

∣∣∣∣
=

∣∣∣∣( ∫ tnℓ

tnk

ηnu ⊗ dWu

)
(ω) −

(∫ tnℓ

tnk

ηu ⊗ dWu

)
(ω)

+

(∫ tnℓ

tnk

ηu ⊗ dWu

)
(ω) − ηtnk ⊗Wtnk ,t

n
ℓ
(ω)

∣∣∣∣
≤ 2

∥∥∥∥(∫ ·

0
ηnu ⊗ dW −

∫ ·

0
ηu ⊗ dW

)
(ω)

∥∥∥∥
∞

+

∣∣∣∣( ∫ tnℓ

tnk

ηtnk ,u ⊗ dWu

)
(ω)

∣∣∣∣
≲ 2−

n
2
(1−ε) + |tnℓ − tnk |

2
p′

≲ |tnℓ − tnk |
2
p′ .

Combining this with (3.62), we conclude that

sup
n∈N

sup
0≤k<ℓ≤2n

|(
∫ tnℓ
tnk
ηnu ⊗ dWu)(ω) − ηtnk ⊗Wtnk ,t

n
ℓ
(ω)|

p′
2

C(ω)|tnℓ − tnk |
≤ 1, (3.63)

for a suitable random variable C.

Step 4. For any n ∈ N and 0 ≤ k < ℓ ≤ 2n, it is straightforward to verify that

|ηtnk ,tnℓ |
2= 2

∫ tnℓ

tnk

ηntnk ,u
· dηu +

ℓ−1∑
i=k

|ηtni ,tni+1
|2,

where · denotes the Euclidean inner product. It follows from (3.60) that |ηtnk ,tnℓ |
2≲

wη(t
n
k , t

n
ℓ )

2
p′ , and that

sup
n∈N

sup
0≤k<ℓ≤2n

|
∫ tnℓ
tnk
ηntnk ,u

· dηu|
p′
2

wη(tnk , t
n
ℓ )

≲ 1,

from which we then have that

sup
n∈N

sup
0≤k<ℓ≤2n

|
∑ℓ−1

i=k|ηtni ,tni+1
|2|

p′
2

wη(tnk , t
n
ℓ )

≲ 1.

The same argument holds for the sample paths of W , and since∣∣∣∣ ℓ−1∑
i=k

Wtni ,t
n
i+1

⊗ ηtni ,tni+1

∣∣∣∣ ≲ ℓ−1∑
i=k

|Wtni ,t
n
i+1

|2+
ℓ−1∑
i=k

|ηtni ,tni+1
|2,

110



we deduce that

sup
n∈N

sup
0≤k<ℓ≤2n

|
∑ℓ−1

i=kWtni ,t
n
i+1

⊗ ηtni ,tni+1
|
p′
2

wη(tnk , t
n
ℓ ) + c(tnk , t

n
ℓ )

≲ 1. (3.64)

By the Hölder continuity of η and W , it is clear that |Wtnk ,t
n
ℓ
⊗ ηtnk ,t

n
ℓ
|≲ |tnℓ − tnk |

2
p′ , so that

sup
n∈N

sup
0≤k<ℓ≤2n

|Wtnk ,t
n
ℓ
⊗ ηtnk ,t

n
ℓ
|
p′
2

|tnℓ − tnk |
≲ 1. (3.65)

For any n ∈ N and 0 ≤ k < ℓ ≤ 2n, it is straightforward to verify that

Wtnk ,t
n
ℓ
⊗ ηtnk ,t

n
ℓ

=

∫ tnℓ

tnk

Wn
tnk ,u

⊗ dηu +

(∫ tnℓ

tnk

ηntnk ,u
⊗ dWu

)⊤
+

ℓ−1∑
i=k

Wtni ,t
n
i+1

⊗ ηtni ,tni+1
.

Recalling (3.63), (3.64) and (3.65), we thus have that

sup
n∈N

sup
0≤k<ℓ≤2n

|
∫ tnℓ
tnk
Wn
tnk ,u

⊗ dηu|
p′
2

ŵ(tnk , t
n
ℓ )

≤ 1

for a suitable random control function ŵ. Combining this with (3.60), (3.61) and (3.63),

we conclude that, for almost every ω ∈ Ω, the path (η,W (ω)) indeed satisfies the third

condition of Property (RIE).

Remark 3.3.5. A joint rough path lift of (η,W ) is constructed in [58, Section 2] which

allows (3.55) to be treated as a rough Stratonovich SDE. Since the construction of the joint

lift Λ above is based on a piecewise constant approximation, as in Property (RIE), rather

than on linear interpolations as considered in [58], Theorem 3.3.4 provides a joint Itô-type

rough path lift of (η,W ) and, thus, an Itô interpretation of the rough SDE (3.55), consistent

with that in [72].
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Chapter 4

Pathwise analysis of log-optimal portfolios

A central challenge in mathematical finance, financial economics, and related fields is to

understand the decision making of rational agents facing financial markets with their random

evolution of asset prices. A major approach to this challenge, initiated by Merton [132], is

the study of utility maximization problems in continuous-time financial markets. By now,

a vast number of researchers contributed to this approach and investigated various facets

of utility maximization problems; see, e.g., [98] and the references therein. For instance, a

large body of work is devoted to constructing closed-form solutions, which are of particular

interest from a practitioner’s perspective; see, e.g., [133, 108, 163, 113, 81].

In classical portfolio theory, the utility maximization problems are considered and solved

with the implicit assumption that the underlying model for the asset prices is perfectly spec-

ified, that is, the model parameters (trend and volatility) are fully known. Consequently,

essentially all “optimal” portfolios in the literature depend on the underlying model param-

eters. However, in reality, due to the necessity to use statistical estimation to determine

the underlying models, there is always a natural uncertainty about the model parameters

and, even worse, about the underlying model itself. Especially, estimating the trend of the

time-evolution of an asset price on a financial market is known to be a notoriously difficult

problem, cf. [149]. Hence, to deal with model uncertainty and to understand its implications

is of utmost importance in portfolio theory.

Various approaches have been developed in mathematical finance to treat model un-

certainty in the context of portfolio optimization. Let us briefly mention in the following

three major research areas which are most related to this chapter. The sensitivity analysis

of utility maximization problems is based on classical probabilistic modeling and studies

the impact of model perturbations to decision making; see, e.g., [105, 118, 159, 139]. Ro-

bust portfolio theory does not fix a fully specified underlying model, instead, it introduces a

“worst-case” approach, also called Knightian approach, aiming to solve utility maximization

problems simultaneously for a family of models; see, e.g., [155, 22, 141, 145]. In model-free
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portfolio theory, portfolios are constructed without any underlying probabilistic framework

and their performance is analyzed in an entirely pathwise manner; see, e.g., [152, 48, 103, 5].

In this chapter, we develop a methodology that allows for a pathwise analysis of port-

folios for individual price trajectories generated by standard models for financial markets.

In doing so, we take a model-free perspective on portfolio theory to conduct a sensitivity

analysis in the classical sense. As such, it presents a novel approach to addressing the afore-

mentioned issue of model uncertainty in the context of portfolio optimization. Notably, this

one framework additionally allows us to analyze the time discretization error of portfolios

explained below.

As a prototypical example of an “optimal” portfolio, we investigate the log-optimal port-

folio of a classical investment-consumption optimization problem in a frictionless financial

market, modeled by an Itô diffusion process, see [132, 133]. Let us quickly recall this clas-

sical utility maximization problem. We assume that the discounted price process (S̄t)t∈[0,T ]

is given by

S̄t = s0 +

∫ t

0
b̄s ds+

∫ t

0
σ̄s dW̄s, t ∈ [0, T ],

where s0 is a constant, b̄, σ̄ are suitable, predictable process, and W̄ is a Brownian motion.

It is well-known that there exists a log-optimal portfolio (φ̄, κ̄) given a consumption clock K,

that is,

E
[ ∫ T

0
log(κ̄t) dKt

]
= sup

(ϕ̄,χ̄)

E
[ ∫ T

0
log(χ̄t) dKt

]
,

where the supremum is taken over all admissible portfolios (ϕ̄, χ̄); see, e.g., [79, 80]. Before

presenting our pathwise analysis of the log-optimal portfolio, we would like to emphasize

that, based on the developed methodology, an analogous pathwise analysis can be carried

out for numerous portfolios which are known to be “optimal” from classical portfolio theory.

As a foundation, we set up a suitable pathwise Itô-type integration, relying on the theory

of càdlàg rough paths, see [73, 75], and, more specifically, the so-called Property (RIE) as

introduced in [143, 7]. While rough path theory, of course, provides a comprehensive theory

of rough integration as well, some fundamental results essential in the specific context of

mathematical finance still need to be proven, and some care is required to obtain the natural

economic interpretation of all involved integrals and related objects. In particular, assuming

that a “noise” path W satisfies Property (RIE), the discounted price path (St)t∈[0,T ] can be

modeled by the (rough) differential equation

St = s0 +

∫ t

0
b̂s ds+

∫ t

0
σ̂s dWs, t ∈ [0, T ], (4.1)

where s0 is a constant and b̂, σ̂ are suitable paths. The rationale behind the deterministic

price dynamics (4.1) is that W corresponds to a fixed realization of the noise, modeling
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the randomness of price processes, and b̂, σ̂ are the model parameters specifying the model

actually used for the asset prices. Hence, (4.1) provides a transparent distinction of model

uncertainty and randomness. In this chapter, we work in one of the following settings

for (4.1):

• local volatility models: b̂s = b(s, Ss) and σ̂s = σ(s, Ss) with b ∈ C3
b (Rk+1;L(R;Rk))

and σ ∈ C3
b (Rk+1;L(Rd;Rk)),

• Black–Scholes-type models: b̂s = bsSs and σ̂s = σsSs, where b and σ are controlled

paths with respect to W .

Note that it is necessary to differentiate between these two settings since rough differential

equations, like (4.1), with unbounded coefficients are a delicate challenge in rough path

theory and can only be treated in specific situations; see, e.g., [119].

Based on the developed pathwise Itô-type integration, we can construct the log-optimal

portfolio of Merton’s investment-consumption problem entirely pathwise, given the model

parameters b, σ and a fixed “noise” path W . Moreover, assuming that the “noise” paths W

are realizations of a Brownian motion W̄ , the pathwise construction of the log-optimal

portfolio is, indeed, a solution to Merton’s classical investment-consumption problem in a

frictionless financial market, modeled by an Itô diffusion process. For that reason, we shall

call this pathwise constructed portfolio the pathwise log-optimal portfolio (φ, κ). However,

let us remark that for the construction of the pathwise log-optimal portfolio (φ, κ) as well

as its pathwise analysis, the “noise” path W can be a rather general deterministic path and

does not need to be a sample path of a Brownian motion.

The present pathwise framework and the pathwise construction of the log-optimal port-

folio allow us to analyze the dependency of the pathwise log-optimal portfolio on the model

parameters for a fixed “noise” path. Relying on continuity estimates for rough integra-

tion and rough differential equations, we prove that the pathwise log-optimal portfolio and

its associated capital process depend in a locally Lipschitz continuous way on the model

parameters b, σ. For instance, in the case of local volatility models, the stability of the

pathwise log-optimal portfolio and its associated capital process reads as follows

∥(φ(b,σ), κ(b,σ)) − (φ(b̃,σ̃), κ(b̃,σ̃))∥∞≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b

and

∥V (b,σ) − V (b̃,σ̃)∥∞≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
,
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where (φ(b,σ), κ(b,σ)), (φ(b̃,σ̃), κ(b̃,σ̃)) denote the pathwise log-optimal portfolios and V (b,σ),

V (b̃,σ̃) the associated capital processes, given the model parameters b, σ and b̃, σ̃, respec-

tively. The precise statements of the pathwise stability estimates with respect to model

parameters can be found in Sections 4.3.2 and 4.4.2.

Model uncertainty is, of course, not the only source of trouble when aiming to implement

a theoretically optimal portfolio on a real financial market. An other major challenge is the

necessary time-discretization of portfolios and trading strategies in general. Indeed, while

trading can be done at very high frequency, there is still some gap between high-frequency

trading and continuous-time trading, and there is often a desire for various reasons to

rebalance a portfolio with a lower frequency. With this in mind, we derive the convergence

of the time-discretized versions of the pathwise log-optimal portfolio to its continuous-time

version as well as the convergence of the associated capital processes. Moreover, we obtain

quantitative bounds for the discretization error for the pathwise log-optimal portfolio as

well as for the associated capital processes. The precise estimates for the discretization

errors can be found in Sections 4.3.3 and 4.4.3.

This chapter is structured as follows. Section 4.1 presents the classical investment-

consumption optimization problem in a probabilistic setting. In Section 4.2, we recall some

essential background from rough path theory and set up the pathwise approach to stochastic

Itô integration. In the case of price trajectories generated by local volatility models, the

pathwise analysis of the log-optimal portfolio is developed in Section 4.3, and, in the case

of price trajectories generated by Black–Scholes-type models, in Section 4.4. Appendix A.4

establishes several elementary results in the theory of càdlàg rough paths.

4.1 Portfolio optimization in a probabilistic setting

Before setting up a pathwise stability analysis of optimal portfolios, let us recall the clas-

sical formulation of (and the well-known solution to) an optimal investment-consumption

problem in a probabilistic setting à la Merton [133]. For this purpose, we fix an underlying

probability space (Ω,F ,P) with a filtration (Ft)t∈[0,T ] satisfying the usual conditions, i.e.,

completeness and right-continuity.

Following [79, 80], we consider an optimal investment-consumption problem, where “op-

timal” refers to the maximization of the expected log-utility from the investor’s consumption

over a finite time horizon T > 0. In the next subsection, we give a precise formulation of

the investment-consumption problem.
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4.1.1 A classical investment-consumption optimization problem

The underlying frictionless financial market consists of k + 1 assets, where the discounted

price process S̄ = (S̄0, S̄1, . . . , S̄k) = (S̄t)t∈[0,T ] is an Rk+1-valued Ft-adapted semimartin-

gale on (Ω,F ,P), with S̄0 ≡ 1.

Following [79], we adopt the following standard setup:

• A self-financing trading strategy φ̄ ∈ L(S̄), where L(S̄) denotes the space of all S̄-

integrable predictable processes in the spirit of stochastic Itô integration, is called

admissible, and denoted by φ̄ ∈ S, if
∫ t
0 φ̄

⊤
s dS̄s ≥ −1 for all t ∈ [0, T ], P-almost

surely, where (·)⊤ denotes matrix transposition.

• The consumption clock K: [0, T ] → R is an increasing deterministic càdlàg function,

and K denotes the set of all non-negative optional processes κ̄, called the consumption

rate, such that
∫ t
0 κ̄s dKs < ∞ for all t ∈ [0, T ], P-almost surely. For κ̄ ∈ K, the

consumption process is given by
∫ ·
0 κ̄s dKs.

• A pair (φ̄, κ̄) ∈ S × K belongs to the set P of admissible portfolios if the discounted

wealth process (V̄t)t∈[0,T ], given by

V̄t(φ̄, κ̄) := 1 +

∫ t

0
φ̄⊤
s dS̄s −

∫ t

0
κ̄s dKs, t ∈ [0, T ],

is non-negative, P-almost surely.

Typical choices of the consumption clock are Kt = 1[T,∞)(t), i.e., consumption only at

time T , and Kt =
∑

s≤t 1N(s), i.e., consumption only at integer times.

Occasionally, as will become apparent, we will identify S̄ with the Rk-valued process

(S̄1, . . . , S̄k), and similarly for φ̄.

A pair (φ̄, κ̄) ∈ P is called a log-optimal portfolio if (φ̄, κ̄) maximizes the map Φlog:P →
R, given by

(ϕ̄, χ̄) 7→ E
[ ∫ T

0
log(χ̄t) dKt

]
,

over all (ϕ̄, χ̄) ∈ P.

4.1.2 The log-optimal portfolio for the investment-consumption problem

Finding log-optimal portfolios in the context of expected utility maximization is a well-

studied mathematical problem; see, e.g., [112] for a classical introduction. For example, in

a general semimartingale framework, the works of Goll and Kallsen [79, 80] provide explicit

formulae in terms of semimartingale characteristics. In the following, we recall the result

of [79] in the case that the discounted price process is modeled by an Itô process.
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Let W̄ = (W̄t)t∈[0,T ] be a d-dimensional Brownian motion defined on (Ω,F ,P) with

respect to (Ft)t∈[0,T ], and suppose that the discounted price process (S̄t)t∈[0,T ] is given by

S̄t = s0 +

∫ t

0
b̄s ds+

∫ t

0
σ̄s dW̄s, t ∈ [0, T ],

where s0 ∈ Rk, b̄ is a predictable, locally integrable Rk-valued process, and σ̄ is a predictable,

locally square integrable Rk×d-valued process such that σ̄tσ̄
⊤
t is a positive definite k × k-

matrix for every t, where each coefficient is bounded away from zero.

In the present setting, [79, Theorem 3.1], which formulates the solution to the optimal

investment-consumption problem, reads as follows.

Theorem 4.1.1. Assume that there exists an Rk-valued process H̄ ∈ L(S̄) such that

b̄t − c̄tH̄t = 0 with c̄t := σ̄tσ̄
⊤
t , t ∈ [0, T ],

holds P⊗ dt-almost everywhere, and set

κ̄t :=
1

KT
Ē
(∫ ·

0
H̄⊤
s dS̄s

)
t
, V̄t := κ̄t(KT −Kt),

φ̄it := H̄ i
t V̄t−, i = 1, . . . , k, φ̄0

t :=

∫ t

0
φ̄⊤
s dS̄s −

k∑
i=1

φ̄itS̄
i
t , t ∈ [0, T ],

where we set V̄0− := 0, and Ē denotes the stochastic exponential. Then, (φ̄, κ̄) ∈ P is a

log-optimal portfolio with discounted wealth process (V̄t)t∈[0,T ].

Remark 4.1.2. If the price process S̄ is given by a linear stochastic differential equation,

i.e., if b̄i = S̄ib̂i and σ̄i,j = S̄iσ̂ij, for some predictable b̂i, σ̂ij, i = 1, . . . , k, j = 1, . . . , d,

then the previous theorem can be rephrased as follows; see also [79, Example 4.2].

Assume that there exists a predictable, Rk-valued process h̄ such that

b̂t − ĉth̄t = 0 with ĉt = σ̂tσ̂
⊤
t , t ∈ [0, T ],

holds P⊗ dt-almost everywhere, and set

H̄ i
t :=

h̄it
S̄it
, t ∈ [0, T ], i = 1, . . . , k,

and κ̄, V̄ , φ̄i, i = 0, . . . , k, as defined in Theorem 4.1.1. Then, (φ̄, κ̄) ∈ P is a log-optimal

portfolio with discounted wealth process (V̄t)t∈[0,T ].
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4.2 Pathwise stochastic analysis

Developing a methodology that allows for a pathwise analysis of optimal portfolios requires,

unsurprisingly, an underlying pathwise framework. To that end, we rely on the theory of

rough paths—see, e.g., [71] for an introductory textbook—and, more specifically, the so-

called Property (RIE) as introduced in [143, 7], which provides a suitable foundation for

the use of rough path theory in mathematical finance. We start by recalling some essentials

from the theory of càdlàg rough paths. For a more comprehensive introduction we refer to

[73, 75].

4.2.1 Essentials of rough path theory

A partition P of an interval [s, t] is a finite set of points between and including the points s

and t, i.e., P = {s = u0 < u1 < · · · < uN = t} for some N ∈ N, and its mesh size is denoted

by |P|:= max{|ui+1 − ui| : i = 0, . . . , N − 1}.

Throughout, we let T > 0 be a fixed finite time horizon. We let ∆T := {(s, t) ∈ [0, T ]2 :

s ≤ t} denote the standard 2-simplex. A function w: ∆T → [0,∞) is called a control function

if it is superadditive, in the sense that w(s, u) +w(u, t) ≤ w(s, t) for all 0 ≤ s ≤ u ≤ t ≤ T .

For two vectors x = (x1, . . . , xd)⊤, y = (y1, . . . , yd)⊤ ∈ Rd we use the usual tensor product

x⊗ y := (xiyj)i,j=1,...,d ∈ Rd×d.

Whenever (B, ∥·∥) is a normed space and f, g:B → R are two functions on B, we shall write

f ≲ g or f ≤ Cg to mean that there exists a constant C > 0 such that f(x) ≤ Cg(x) for

all x ∈ B. The constant C may depend on the normed space, e.g., through its dimension

or regularity parameters.

For two vector spaces, the space of linear maps from E1 → E2 is denoted by L(E1;E2),

and we write, e.g., C lb = C lb(Rm;L(Rd;Rk)) for the space of l-times differentiable (in the

Fréchet sense) functions f :Rm → L(Rd;Rk) such that f and all its derivatives up to order

l are continuous and bounded. We equip this space with the norm

∥f∥Clb := ∥f∥∞+∥Df∥∞+ · · · + ∥Dlf∥∞,

where Dnf denotes the n-th order derivative of f , and ∥·∥∞ denotes the supremum norm

on the corresponding spaces of operators.

For a normed space (E, |·|), we let D([0, T ];E) denote the set of càdlàg (right-continuous

with left-limits) paths from [0, T ] → E. For X ∈ D([0, T ];E), the supremum norm of the

path X is given by

∥X∥∞:= sup
t∈[0,T ]

|Xt|,
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and for p ≥ 1, the p-variation of the path X is given by

∥X∥p:= ∥X∥p,[0,T ] with ∥X∥p,[s,t]:=
(

sup
P⊂[s,t]

∑
[u,v]∈P

|Xv −Xu|p
) 1
p

, (s, t) ∈ ∆T ,

where the supremum is taken over all possible partitions P of the interval [s, t]. We recall

that, given a path X, we have that ∥X∥p<∞ if and only if there exists a control function

w such that1

sup
(u,v)∈∆T

|Xv −Xu|p

w(u, v)
<∞.

We writeDp = Dp([0, T ];E) for the space of pathsX ∈ D([0, T ];E) which satisfy ∥X∥p<∞.

For a path X ∈ D([0, T ];E), we will use the shorthand notation:

Xs,t := Xt −Xs and Xt− := lim
u↑t

Xu, for (s, t) ∈ ∆T .

For r ≥ 1 and a two-parameter function X: ∆T → E, we similarly define

∥X∥r:= ∥X∥r,[0,T ] with ∥X∥r,[s,t]:=
(

sup
P⊂[s,t]

∑
[u,v]∈P

|Xu,v|r
) 1
r

, (s, t) ∈ ∆T .

We write Dr
2 = Dr

2(∆T ;E) for the space of all functions X: ∆T → E which satisfy ∥X∥r<∞,

and are such that the maps s 7→ Xs,t for fixed t, and t 7→ Xs,t for fixed s, are both càdlàg.

For p ∈ [2, 3), a pair X = (X,X) is called a càdlàg rough path over Rd if

(i) X ∈ Dp([0, T ];Rd) and X ∈ D
p
2
2 (∆T ;Rd×d), and

(ii) Chen’s relation: Xs,t = Xs,u + Xu,t +Xs,u ⊗Xu,t holds for all 0 ≤ s ≤ u ≤ t ≤ T .

In component form, condition (ii) states that Xijs,t = Xijs,u+Xiju,t+Xi
s,uX

j
u,t for every i and j.

We will denote the space of càdlàg rough paths by Dp = Dp([0, T ];Rd). On the space

Dp([0, T ];Rd), we use the natural seminorm

∥X∥p:= ∥X∥p,[0,T ] with ∥X∥p,[s,t]:= ∥X∥p,[s,t]+∥X∥ p
2
,[s,t]

for (s, t) ∈ ∆T , and the induced distance

∥X; X̃∥p:= ∥X; X̃∥p,[0,T ] with ∥X; X̃∥p,[s,t]:= ∥X − X̃∥p,[s,t]+∥X− X̃∥ p
2
,[s,t],

whenever X = (X,X), X̃ = (X̃, X̃) ∈ Dp([0, T ];Rd). Recall that the rough path X = (X,X)

above a path X is not unique.

1Here and throughout, we adopt the convention that 0
0
:= 0.
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Let p ∈ [2, 3), q ∈ [p,∞) and r ∈ [p2 , 2) such that 1
p + 1

r > 1 and 1
p + 1

q = 1
r . Let

X ∈ Dp([0, T ];Rd). We say that a pair (Y, Y ′) is a controlled path (with respect to X), if

Y ∈ Dp([0, T ];E), Y ′ ∈ Dq([0, T ];L(Rd;E)), and RY ∈ Dr
2(∆T ;E),

where RY is defined by

Ys,t = Y ′
sXs,t +RYs,t for all (s, t) ∈ ∆T .

We write Vq,rX = Vq,rX ([0, T ];E) for the space of E-valued controlled paths, which becomes a

Banach space when equipped with the norm (Y, Y ′) 7→ ∥Y, Y ′∥Vq,rX , where

∥Y, Y ′∥Vq,rX := ∥Y, Y ′∥Vq,rX ,[0,T ],

with

∥Y, Y ′∥Vq,rX ,[s,t]:= |Ys|+|Y ′
s |+∥Y ′∥q,[s,t]+∥RY ∥r,[s,t],

for (s, t) ∈ ∆T . It is straightforward to see that

∥Y ∥p≤ ∥Y ′∥∞∥X∥p+∥RY ∥r and ∥Y ′∥∞≤ |Y ′
0 |+∥Y ′∥q,

so that in particular

∥Y ∥∞≤ (1 + ∥X∥p)∥Y, Y ′∥Vq,rX . (4.2)

We further introduce the standard “distance”

∥Y ; Ỹ ∥Vq,rX ,Vq,r
X̃

:= ∥Y ; Ỹ ∥Vq,rX ,Vq,r
X̃
,[0,T ]

with

∥Y ; Ỹ ∥Vq,rX ,Vq,r
X̃
,[s,t]:= |Ys − Ỹs|+|Y ′

s − Ỹ ′
s |+∥Y ′ − Ỹ ′∥q,[s,t]+∥RY −RỸ ∥r,[s,t],

for (s, t) ∈ ∆T , whenever (Y, Y ′) ∈ Vq,rX , (Ỹ , Ỹ ′) ∈ Vq,r
X̃

. Note that, in general, Vq,rX and Vq,r
X̃

are different Banach spaces; if X = X̃, we write ∥Y ; Ỹ ∥Vq,rX . When q = p and r = p
2 , we

write VpX = Vp,
p
2

X .

We also note that

∥Y − Ỹ ∥p≤ C(∥Y ; Ỹ ∥Vq,rX ,Vq,r
X̃

+∥X − X̃∥p) (4.3)

for some constant C which depends only on ∥Y ∥Vq,rX , ∥Ỹ ∥Vq,r
X̃

, ∥X∥p and ∥X̃∥p.

Given p ∈ (2, 3), X = (X,X) ∈ Dp([0, T ];Rd) and (Y, Y ′) ∈ Vq,rX ([0, T ];L(Rd;Rk)), the

(forward) rough integral∫ t

s
Yu dXu := lim

|Pn|→0

∑
[u,v]∈Pn

(YuXu,v + Y ′
uXu,v), (s, t) ∈ ∆T , (4.4)
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exists (in the classical mesh Riemann–Stieltjes sense), where the limit is taken along any

sequence of partitions (Pn)n∈N of the interval [s, t] such that |Pn|→ 0 as n → ∞. To be

precise, in writing the product YuXu,v, we apply the operator Yu ∈ L(Rd;Rk) onto Xu,v ∈
Rd, and in writing the product Y ′

uXu,v, we use the natural identification of L(Rd;L(Rd;Rk))
with L(Rd ⊗ Rd;Rk). The rough integral comes with the estimate∣∣∣∣ ∫ t

s
Yu dXu − YsXs,t − Y ′

sXs,t
∣∣∣∣ ≤ C

(
∥RY ∥r,[s,t)∥X∥p,[s,t]+∥Y ′∥q,[s,t)∥X∥ p

2
,[s,t]

)
for some constant C which depends only on p, q and r (see, e.g., [7, Proposition 2.4 and

Remark 2.5]), where

∥Y ′∥q,[s,t):= sup
u<t

∥Y ′∥q,[s,u] and ∥RY ∥r,[s,t):= sup
u<t

∥RY ∥r,[s,u].

This implies that (
∫ ·
0 Yu dXu, Y ) ∈ Vq,rX is a controlled path with respect to X, and satisfies∥∥∥∥∫ ·

0
Yu dXu

∥∥∥∥
Vq,rX

≤ C, (4.5)

for some constant C depending only on p, q, r, ∥Y ∥Vq,rX and ∥X∥p.

Given a rough path X = (X,X) ∈ Dp([0, T ];Rd) with p ∈ [2, 3), there exists a unique

controlled path (Y, Y ′) ∈ VpX([0, T ];Rk) satisfying the rough differential equation (RDE)

Yt = y0 +

∫ t

0
b(s, Ys) ds+

∫ t

0
σ(s, Ys) dXs, t ∈ [0, T ],

if b ∈ C2
b (Rk+1;L(R;Rk)) and σ ∈ C3

b (Rk+1;L(Rd;Rk)); see, e.g., Theorem 3.1.1.

4.2.2 Pathwise Itô-type integration

Rough path theory provides a pathwise approach to stochastic integration and stochastic

differential equations. In particular, it allows to recover the stochastic Itô and Stratonovich

integrals by choosing the corresponding rough path lift of a semimartingale. Consequently,

from a financial modelling perspective, choosing the rough path above a given path without

care could create arbitrage. Moreover, the definition of the rough integral (4.4) lacks a

canonical interpretation in mathematical finance. To overcome these issues, we rely on the

so-called Property (RIE), as introduced in [143, 7].

Property (RIE). Let p ∈ (2, 3) and let Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N,
be a sequence of partitions of the interval [0, T ] such that |Pn|→ 0 as n → ∞. For X ∈
D([0, T ];Rd), and each n ∈ N, we define Xn: [0, T ] → Rd by

Xn
t = XT1{T}(t) +

Nn−1∑
k=0

Xtnk
1[tnk ,t

n
k+1)

(t), t ∈ [0, T ].

We assume that:
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(i) the sequence of paths (Xn)n∈N converges uniformly to X as n→ ∞,

(ii) the Riemann sums
∫ t
0 X

n
u ⊗ dXu :=

∑Nn−1
k=0 Xtnk

⊗Xtnk∧t,t
n
k+1∧t converge uniformly as

n→ ∞ to a limit, which we denote by
∫ t
0 Xu ⊗ dXu, t ∈ [0, T ],

(iii) and there exists a control function w such that

sup
(s,t)∈∆T

|Xs,t|p

w(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤Nn

|
∫ tnℓ
tnk
Xn
u ⊗ dXu −Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

w(tnk , t
n
ℓ )

≤ 1. (4.6)

We say that a path X ∈ D([0, T ];Rd) satisfies Property (RIE) relative to p and (Pn)n∈N,

if p, (Pn)n∈N and X together satisfy Property (RIE).

It is known that, if a path X ∈ D([0, T ];Rd) satisfies Property (RIE), then X extends

canonically to a rough path X = (X,X) ∈ Dp([0, T ];Rd), where the lift X is defined by

Xs,t :=

∫ t

s
Xu ⊗ dXu −Xs ⊗ (Xt −Xs), (s, t) ∈ ∆T , (4.7)

with
∫ t
s Xu⊗dXu :=

∫ t
0 Xu⊗dXu−

∫ s
0 Xu⊗dXu, and the existence of the integral

∫ t
0 Xu⊗

dXu is ensured by condition (ii) of Property (RIE); see [7, Lemma 2.13]. When assuming

Property (RIE) for a path X, we will always work with the rough path X = (X,X) defined

via (4.7), and note that X = (X,X) corresponds to the Itô rough path lift of a stochastic

process, since the “iterated integral” X is given as a limit of left-point Riemann sums,

analogously to the stochastic Itô integral.

Property (RIE) not only ensures the existence of a suitable rough path lift of a path,

but also allows the rough integral to be expressed as a classical limit of Riemann sums.

Consequently, the rough integral possesses the natural interpretation in a financial context

as the capital process of a portfolio. The next theorem is a slight generalization of [7,

Theorem 2.15].

Theorem 4.2.1. Let p ∈ (2, 3), q ∈ [p,∞) and r ∈ [p2 , 2) such that 1
p + 1

r > 1 and

1
p + 1

q = 1
r , and let Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a sequence of partitions

such that |Pn|→ 0 as n → ∞. Suppose that X ∈ D([0, T ];Rd) satisfies Property (RIE)

relative to p and (Pn)n∈N, and let X be the canonical rough path lift of X, as constructed

in (4.7). Let (F, F ′), (G,G′) ∈ Vq,rX be controlled paths with respect to X, and suppose that

JF ⊆ lim infn→∞ Pn :=
⋃
m∈N

⋂
n≥m Pn, where JF := {t ∈ (0, T ] : Ft− ̸= Ft} denotes the

set of jump times of F . Then, the limit∫ t

0
Fu dGu := lim

n→∞

Nn−1∑
k=0

Ftnk ⊗Gtnk∧t,t
n
k+1∧t,
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exists, where the convergence holds uniformly for t ∈ [0, T ], and it coincides with the rough

integral of (F, F ′) against (G,G′), as defined in (A.3).

The proof of Theorem 4.2.1 follows the proof of [7, Theorem 2.15] almost verbatim.

The only difference is that, rather than using [7, Proposition 2.14] to establish the uniform

convergence of Fn to F , we can instead use [6, Proposition B.1] (which does not require

the sequence of partitions to be nested).

A crucial observation for our pathwise analysis of log-optimal portfolios is that, if a path

X satisfies Property (RIE), then suitable controlled paths relative to X do as well. This is

made precise in Theorem 4.2.2 below. In particular, a corollary of this result is that if X

satisfies Property (RIE), and Y is the solution to an RDE driven by the canonical rough

path lift of X, then Y itself satisfies Property (RIE) with respect to the same sequence of

partitions.

Theorem 4.2.2. Suppose that X ∈ D([0, T ];Rd) satisfies Property (RIE) relative to some

p ∈ (2, 3) and a sequence of partitions Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N. Let

(Y, Y ′) ∈ VpX be a controlled path such that JY ⊆ lim infn→∞ Pn, where JY := {t ∈ (0, T ] :

Yt− ̸= Yt} denotes the set of jump times of Y . Then, Y satisfies Property (RIE) relative to

p and (Pn)n∈N.

Proof. For each n ∈ N, let

Y n
t = YT1{T}(t) +

Nn−1∑
k=0

Ytnk1[tnk ,t
n
k+1)

(t), t ∈ [0, T ],

be the piecewise constant approximation of Y along Pn. Since JY ⊆ lim infn→∞ Pn, we

have from Proposition A.3.1 that Y n → Y uniformly as n→ ∞, so that part (i) of Property

(RIE) holds.

By Lemma A.4.1, we can define the rough integral of the controlled path (Y, Y ′) against

itself as ∫ t

0
Yr dYr := lim

|P|→0

∑
[u,v]∈P

Yu ⊗ Yu,v + (Y ′
u ⊗ Y ′

u)Xu,v, t ∈ [0, T ],

relative to the rough path X = (X,X), where the limit exists along any sequence of partitions

P of the interval [0, t] with mesh size tending to zero. We have from Theorem 4.2.1 that∫ t

0
Y n
r ⊗ dYr =

Nn−1∑
k=0

Ytnk ⊗ Ytnk∧t,t
n
k+1∧t −→

∫ t

0
Yr dYr as n −→ ∞, (4.8)

where the convergence is uniform in t ∈ [0, T ], which gives part (ii) of Property (RIE).
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As the piecewise constant approximation Xn as defined in Property (RIE) has finite

1-variation, we also have that Xn = (X,Xn,Xn) is a càdlàg rough path in the sense of [7,

Definition 2.1], where

Xns,t :=

∫ t

s
Xn
u ⊗ dXu −Xn

s ⊗Xs,t, (s, t) ∈ ∆T . (4.9)

We note that (Y n, Y ′) is a controlled path with respect to Xn. We can therefore consider

the rough integral of (Y n, Y ′) against (Y, Y ′) relative to the rough path Xn in the sense of

[7, Proposition 2.4], which is given by∫ t

0
Y n
r dYr = lim

|P|→0

∑
[u,v]∈P

Y n
u ⊗ Yu,v + (Y ′

u ⊗ Y ′
u)Xnu,v.

For any refinement P̃ of the partition (Pn ∪ {t}) ∩ [0, t] and any [u, v] ∈ P̃, there exists a k

such that tnk ≤ u < v ≤ tnk+1 which, recalling (4.9), implies that Xnu,v = 0. Thus,

∫ t

0
Y n
r dYr = lim

|P̃|→0

∑
[u,v]∈P̃

Y n
u ⊗ Yu,v =

Nn−1∑
k=0

Ytnk ⊗ Ytnk∧t,t
n
k+1∧t,

so that the rough integral
∫ t
0 Y

n
r dYr coincides with the Riemann–Stieltjes integral on the

left-hand side of (4.8).

Let us fix 0 ≤ k < ℓ ≤ Nn. By the estimate in [7, Proposition 2.4], we have that∣∣∣∣ ∫ tnℓ

tnk

Y n
r dYr − Ytnk ⊗ Ytnk ,t

n
ℓ
− (Y ′

tnk
⊗ Y ′

tnk
)Xntnk ,tnℓ

∣∣∣∣
≲ ∥Y ′∥∞(∥Y ′∥pp,[tnk ,tnℓ ]+∥Xn∥pp,[tnk ,tnℓ ])

2
p ∥X∥p,[tnk ,tnℓ ]+∥Y n∥p,[tnk ,tnℓ ]∥R

Y ∥ p
2
,[tnk ,t

n
ℓ ]

+ ∥RY n∥ p
2
,[tnk ,t

n
ℓ ]
∥Y ′∥∞∥X∥p,[tnk ,tnℓ ]+∥Y ′ ⊗ Y ′∥p,[tnk ,tnℓ ]∥X

n∥ p
2
,[tnk ,t

n
ℓ ]
.

(4.10)

It is clear that the functions given by w1(s, t) := ∥Y ′∥pp,[s,t], w2(s, t) := ∥X∥pp,[s,t], and

w3(s, t) := ∥RY ∥
p
2
p
2
,[s,t]

for (s, t) ∈ ∆T are all controls. Since tnk , t
n
ℓ ∈ Pn, we have that

∥Xn∥p,[tnk ,tnℓ ] ≤ ∥X∥p,[tnk ,tnℓ ]= w2(t
n
k , t

n
ℓ )

1
p ,

and ∥Y n∥p,[tnk ,tnℓ ] ≤ ∥Y ∥p,[tnk ,tnℓ ]≤ ∥Y ∥p.

Let w denote the control with respect to which (4.6) holds for X. Note that X also satisfies

Property (RIE) over the subinterval [tnk , t
n
ℓ ], with respect to p, the sequence of partitions

(Pm ∩ [tnk , t
n
ℓ ])m≥n, and the same control w. It then follows from [7, Lemma 2.12] that

sup
m≥n

∥Xm∥ p
2
,[tnk ,t

n
ℓ ]
≲ w(tnk , t

n
ℓ )

2
p .
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We also infer from the proof of [7, Theorem 2.15] that

sup
m≥n

∥RYm∥
p
2
p
2
,[tnk ,t

n
ℓ ]

≲ ∥Y ′∥pp,[tnk ,tnℓ ]+∥X∥pp,[tnk ,tnℓ ]+∥RY ∥
p
2
p
2
,[tnk ,t

n
ℓ ]

= w1(t
n
k , t

n
ℓ ) + w2(t

n
k , t

n
ℓ ) + w3(t

n
k , t

n
ℓ ).

The estimate in (4.10) then implies that∣∣∣∣ ∫ tnℓ

tnk

Y n
u dYu − Ytnk ⊗ Ytnk ,t

n
ℓ
− (Y ′

tnk
⊗ Y ′

tnk
)Xntnk ,tnℓ

∣∣∣∣ p2
≲ ∥Y ′∥

p
2∞(w1(t

n
k , t

n
ℓ ) + w2(t

n
k , t

n
ℓ ))∥X∥

p
2
p +∥Y ∥

p
2
p w3(t

n
k , t

n
ℓ )

+ (w1(t
n
k , t

n
ℓ ) + w2(t

n
k , t

n
ℓ ) + w3(t

n
k , t

n
ℓ ))∥Y ′∥

p
2∞∥X∥

p
2
p +∥Y ′ ⊗ Y ′∥

p
2
p w(tnk , t

n
ℓ ).

Since we can also bound

|(Y ′
tnk

⊗ Y ′
tnk

)Xntnk ,tnℓ |
p
2≤ ∥Y ′ ⊗ Y ′∥

p
2∞∥Xn∥

p
2
p
2
,[tnk ,t

n
ℓ ]
≲ ∥Y ′ ⊗ Y ′∥

p
2∞w(tnk , t

n
ℓ ),

it is then clear how to choose a control w4 such that∣∣∣∣ ∫ tnℓ

tnk

Y n
u dYu − Ytnk ⊗ Ytnk ,t

n
ℓ

∣∣∣∣ p2 ≤ w4(t
n
k , t

n
ℓ ).

Since w4 does not depend on the choices of n ∈ N or 0 ≤ k < l ≤ Nn, we have established

part (iii) of Property (RIE).

4.2.3 Consistency of rough and stochastic integration

In this subsection we briefly discuss the relation between the deterministic theory of rough

integration, as developed in Sections 4.2.1 and 4.2.2, and stochastic integration. As before,

we fix a probability space (Ω,F ,P) with a filtration (Ft)t∈[0,T ] satisfying the usual condi-

tions. As shown in Section 3.2, the sample paths of various stochastic processes, such as

Brownian motion, Itô processes and Lévy processes, almost surely satisfy Property (RIE)

relative to p ∈ (2, 3) and suitable sequences of partitions (Pn)n∈N. In the current work,

we fundamentally rely on Brownian motion, and thus recall the corresponding result in the

following remark, which combines the content of Lemma 3.2.1 and Proposition 3.2.2.

Remark 4.2.3. Let W̄ = (W̄t)t∈[0,T ] be d-dimensional Brownian motion, p ∈ (2, 3) and

Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a sequence of equidistant partitions of the

interval [0, T ], so that, for each n ∈ N, there exists some πn > 0 such that tni+1 − tni = πn

for each 0 ≤ i < Nn. If π
2− 4

p
n log(n) → 0 as n → ∞, then, for almost every ω ∈ Ω, the

sample path W (ω) satisfies Property (RIE) relative to p and (Pn)n∈N.
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Moreover, the canonical rough path W̄(ω) = (W̄ (ω), W̄(ω)) defined via Property (RIE)

corresponds almost surely to the random rough path defined via Itô integration, namely,

where

W̄s,t :=

∫ t

s
W̄s,r ⊗ dW̄r =

∫ t

s
W̄r ⊗ dW̄r − W̄s ⊗ W̄s,t, (s, t) ∈ ∆T .

Property (RIE) also ensures that a random rough integral against a semimartingale

coincides almost surely with the associated stochastic Itô integral.

Proposition 4.2.4. Let X = (Xt)t∈[0,T ] be a d-dimensional càdlàg semimartingale and let

(Y, Y ′) be a càdlàg stochastic process adapted to (Ft)t∈[0,T ]. Let p ∈ (2, 3). By part (i)

of Proposition 3.2.10, there exists an adapted sequence of partitions Pn = {τnk }, n ∈ N,
(so that each τnk ∈ Pn is a stopping time), such that, for almost every ω ∈ Ω, the path

X(ω) satisfies Property (RIE) relative to p and (Pn(ω))n∈N. Suppose that, for almost every

ω ∈ Ω, (Y (ω), Y ′(ω)) is a controlled path in Vq,rX(ω) with JY (ω) ⊆ lim infn→∞ Pn(ω), where

JY (ω) denotes the set of jump times of Y (ω). Then the rough and Itô integrals of Y against

X coincide P-almost surely, that is,∫ t

0
Ys(ω) dXs(ω) =

(∫ t

0
Ys− dXs

)
(ω) for all t ∈ [0, T ],

holds for almost every ω ∈ Ω, where X(ω) is the canonical rough path lift of X(ω) as defined

via Property (RIE).

Proof. By, e.g., [147, Chapter II, Theorem 21], we have that

Nn−1∑
k=0

YτnkXτnk ∧t,τ
n
k+1∧t −→

∫ t

0
Ys− dXs as n→ ∞,

where the convergence holds uniformly (in t ∈ [0, T ]) in probability. By taking a subsequence

if necessary, we can then assume that the (uniform) convergence holds almost surely. On

the other hand, by Theorem A.3.2, we know that, for almost every ω ∈ Ω,

Nn−1∑
k=0

Yτnk (ω)(ω)Xτnk (ω)∧t,τ
n
k+1(ω)∧t(ω) −→

∫ t

0
Ys(ω) dXs(ω) as n→ ∞

uniformly for t ∈ [0, T ]. The result thus follows by the uniqueness of limits.

4.3 Local volatility models: pathwise analysis of log-optimal portfolios

In this section we shall study log-optimal portfolios for the investment-consumption prob-

lem, acting on deterministic price paths generated by local volatility models, defined in a

pathwise manner. To this end, we make the following assumption throughout this section.
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Assumption 4.3.1. Let p ∈ (2, 3) and let Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be
a sequence of equidistant partitions of the interval [0, T ], such that,

• for each n ∈ N, there exists some πn > 0 such that tni+1−tni = πn for each 0 ≤ i < Nn,

• π
2− 4

p
n log(n) → 0 as n→ ∞,

• JK ⊆ lim infn→∞ Pn with JK := {t ∈ (0, T ] : Kt− ̸= Kt},

where the consumption clock K: [0, T ] → R is fixed as in Section 4.1.1. Moreover, the

deterministic path W : [0, T ] → Rd satisfies Property (RIE) relative to p and (Pn)n∈N.

We suppose that the discounted price path (St)t∈[0,T ] satisfies the rough differential

equation

St = s0 +

∫ t

0
b(s, Ss) ds+

∫ t

0
σ(s, Ss) dWs, t ∈ [0, T ], (4.11)

where s0 ∈ Rk, b ∈ C3
b (Rk+1;L(R;Rk)), σ ∈ C3

b (Rk+1;L(Rd;Rk)), and W = (W,W) is the

canonical rough path lift of W as defined in (4.7).

Remark 4.3.2. IfW is a realization of a Brownian motion, the dynamics of the RDE (4.11)

can be seen as a fixed realization of a local volatility model for a financial market.

Indeed, let us assume that W̄ = (W̄t)t∈[0,T ] is a d-dimensional Brownian motion on a

probability space (Ω,F ,P) with respect to an underlying filtration (Ft)t∈[0,T ]. It is well-known
that the stochastic differential equation (SDE)

S̄t = s0 +

∫ t

0
b(s, S̄s) ds+

∫ t

0
σ(s, S̄s) dW̄s, t ∈ [0, T ], (4.12)

has a unique strong solution, where
∫ t
0 σ(s, S̄s) dW̄s denotes the stochastic Itô integral; see,

e.g., [147, Chapter V, Theorem 6]. Note that the Itô diffusion (S̄t)t∈[0,T ] represents many

standard models for financial markets, including local volatility models.

Recall that for almost every ω ∈ Ω, the sample path W̄ (ω) of a Brownian motion satisfies

Property (RIE) relative to p and (Pn)n∈N; see Remark 4.2.3. Hence, for almost every ω ∈ Ω,

the solution (S̄t(ω))t∈[0,T ] of the SDE (4.12) driven by W̄ , and the solution (St)t∈[0,T ] of the

rough differential equation driven by the rough path W = (W,W) := W̄(ω) = (W̄ (ω), W̄(ω))

coincide; see Lemma 3.2.1. In other words, (St)t∈[0,T ] can be understood as a fixed realization

of the probabilistic model (S̄t)t∈[0,T ].

In the present setting, it will be convenient to equivalently reformulate the RDE (4.11)

into the RDE

St = s0 +

∫ t

0
(b, σ)(s, Ss) d(·,W)s, t ∈ [0, T ], (4.13)
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where (·,W) denotes the time-extended rough path of W, i.e., the path-level of (·,W) is

given by (t,Wt)t∈[0,T ] and the missing integrals
∫
W j dt,

∫
tdW j , j = 1, . . . , d, to define a

rough path are canonically defined as Riemann–Stieltjes integrals. By classical rough path

theory (e.g., [4, Theorem 2.5]), for any b ∈ C3
b (Rk+1;L(R;Rk)), σ ∈ C3

b (Rk+1;L(Rd;Rk)),
there exists a unique solution (S, S′) ∈ Vp(·,W ) to the RDE (4.13), where S′ = (b, σ)(·, S).

Moreover, (St)t∈[0,T ] satisfies the RDE (4.13) if and only if it satisfies the RDE (4.11). For

later reference, we also remark that (·,W ) satisfies Property (RIE) relative to p and (Pn)n∈N

by Proposition 3.1.10.

4.3.1 Pathwise construction of log-optimal portfolios

As a first step to a pathwise analysis of optimal portfolios, we prove a pathwise construction

of the log-optimal portfolio, supposing that the underlying price dynamics of the financial

market are given by a local volatility model. Recall that in the probabilistic setting the

log-optimal portfolio is well-known and was presented in Theorem 4.1.1, which is due to

[79].

Let A ⊂ C3
b ([0, T ]×Rk;L(Rd,Rk)) be the class of functions σ such that σ(t, x)σ(t, x)⊤ ∈

GL(Rk×k) for all (t, x), where each coefficient is uniformly bounded away from zero, endowed

with the ∥·∥C3
b

norm. Here, GL(Rk×k) denotes the general linear group of degree k. For

a k × k-matrix we write det(·) for its determinant, and (·)⊤ denotes matrix transposition.

Given a path W , the time-extended path is denoted by (·,W ) = (t,Wt)t∈[0,T ].

Lemma 4.3.3. For (b, σ) ∈ C3
b ([0, T ] × Rk;L(R;Rk)) ×A, let

Ht := H
(b,σ)
t := c(t, St)

−1b(t, St) with c(t, St) := c
(b,σ)
t := σ(t, St)σ(t, St)

⊤,

for t ∈ [0, T ], and set (φ, κ) := (φ(b,σ), κ(b,σ)) := (φ(b,σ),0, . . . , φ(b,σ),k, κ(b,σ)), with

κt := κ
(b,σ)
t :=

1

KT
E
( k∑
i=1

∫ ·

0
H i
s dSis

)
t
, Vt := V

(b,σ)
t := κt(KT −Kt),

φit := φ
(b,σ),i
t := H i

tVt, i = 1, . . . , k, φ0
t := φ

(b,σ),0
t :=

k∑
i=1

∫ t

0
φis dSis − φitS

i
t ,

for t ∈ [0, T ], where
∫ t
0 φ

i
s dSis is the rough integral, and E is the rough exponential as defined

in Lemma A.4.7. Then, φ, κ and V are all well-defined and are controlled paths with respect

to W and, in particular, with respect to (·,W ).

Proof. It is a well-known result in rough path theory (e.g., [75, Lemma 3.5]) that the

composition of a controlled path with a regular function remains a controlled path. More

precisely, since S ∈ VpW , we have that σ(·, S) and b(·, S) are controlled paths in VpW . We
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recall that det(σ(·, S)σ(·, S)⊤) is bounded away from zero. We then obtain (componentwise)

that H is a controlled path in VpW , since the sum and the product of two (real-valued)

controlled paths is again a controlled path by Lemma A.4.3, as well as the inverse of

a controlled path which is bounded away from zero (as a composition with the smooth

function x 7→ 1
x).

By Lemma A.4.1, since H i and Si are both controlled paths, the rough integral
∫ ·
0H

i
s dSis

is well-defined and is itself a controlled path for each i = 1, . . . , k. By Lemma A.4.6, the

path Zt :=
∑k

i=1

∫ t
0 H

i
s dSis may then considered as a rough path, and Lemma A.4.7 then

implies that the rough exponential E(Z), and hence also κ = 1
KT

E(Z), are controlled paths.

Since the consumption clock K is a càdlàg (deterministic) and increasing function (and

thus of finite 1-variation), by Lemma A.4.3, the wealth process V is a controlled path in

VpW , as the product of two controlled paths.

By similar arguments, we see that φi ∈ VpW , i = 0, 1, . . . , k, are also all controlled paths

with respect to W , and hence also with respect to (·,W ).

The portfolio constructed in Lemma 4.3.3 in a pathwise manner agrees, indeed, with the

log-optimal portfolio for the investment-consumption problem as considered in Section 4.1,

if the underlying frictionless financial market is generated by a local volatility model, such as

the stochastic differential equation (4.12). Hence, in the following we shall call the portfolio

(φ, κ) = (φ(b,σ), κ(b,σ)) from Lemma 4.3.3 a pathwise log-optimal portfolio.

Lemma 4.3.4. Suppose that the discounted price process (S̄t)t∈[0,T ] is modelled by the

SDE (4.12) driven by a Brownian motion W̄ on a probability space (Ω,F ,P) with respect

to an underlying filtration (Ft)t∈[0,T ]. Then the log-optimal portfolio (φ̄, κ̄), as provided in

Theorem 4.1.1, and the pathwise log-optimal portfolio (φ, κ), as provided in Lemma 4.3.3,

coincide P-almost surely, where (φ, κ) is constructed given the realization W := W̄(ω) of

the Itô rough path lift of the Brownian motion W̄ , for almost every ω ∈ Ω.

One may note that in Theorem 4.1.1 we had φ̄it = H̄ i
t V̄t−, but in Lemma 4.3.3 we have

φit = H i
tVt. This is only to be consistent with standard rough analysis in which controlled

paths are assumed to be càdlàg, and makes no difference to the value of the rough integral∫ t
0 φ

i
s dSis, as explained in [7, Remark 3.3].

Proof. In this proof we consider S, φ, κ, etc., as random controlled paths, in the sense that

S is a stochastic process such that S(ω) is a controlled path for almost every ω ∈ Ω. In

particular, S is defined pathwise as the solution to the RDE (4.11), and (φ, κ) is defined

pathwise via Lemma 4.3.3, given a realization of the Brownian motion W̄ ; see Remark 4.3.2.
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By the associativity property of rough integrals (see Proposition A.4.5), and the con-

sistency of rough and stochastic integrals (as established in Proposition 4.2.4), we have

that ∫ t

0
H i
s dSis =

∫ t

0
H i
sb
i(s, Ss) ds+

∫ t

0
H i
sσ
i·(s, Ss) dWs

=

∫ t

0
H̄ i
sb
i(s, S̄s) ds+

∫ t

0
H̄ i
sσ
i·(s, S̄s) dW̄s =

∫ t

0
H̄ i
s dS̄is,

almost surely for each i = 1, . . . , k, where
∫ t
0 H̄

i
s dS̄is is the stochastic Itô integral of H̄t =

c(t, S̄t)
−1b(t, S̄t) against the price process S̄ in (4.12).

Let Z :=
∑k

i=1

∫ ·
0H

i
s dSis and Z̄ =

∑k
i=1

∫ ·
0 H̄

i
s dS̄is =

∫ ·
0 H̄

⊤
s dS̄s. By Lemma A.4.6, Z

admits a canonical rough path lift Z ∈ Dp. Further, since (Z,Z ′) ∈ Vp(·,W ) and W satisfies

Property (RIE) relative to p and (Pn)n∈N, Z also satisfies Property (RIE) by Theorem 4.2.2.

By [7, Proposition 2.18], this implies that the rough path bracket [Z] coincides with the

quadratic variation [Z] of Z along (Pn)n∈N in the sense of Föllmer, that is

[Z]t = [Z]t = lim
n→∞

Nn−1∑
k=0

(Ztnk∧t,t
n
k+1∧t)

2, t ∈ [0, T ].

On the other hand, we have that

[Z̄]t = lim
n→∞

Nn−1∑
k=0

(Z̄tnk∧t,t
n
k+1∧t)

2, t ∈ [0, T ],

where the convergence holds uniformly (in t ∈ [0, T ]) in probability. By taking a subsequence

if necessary, we can then assume that the uniform convergence holds almost surely, and it

follows that [Z̄] = [Z] almost surely. In particular, by Lemma A.4.7, we have that

E(Z)t = exp
(
Zt −

1

2
[Z]t

)
= exp

(
Z̄t −

1

2
[Z̄]t

)
= Ē(Z̄)t

almost surely, where Ē(Z̄) denotes the stochastic exponential of Z̄. Moreover, it holds

that
∑k

i=1

∫ ·
0 φ

i
s dSis =

∫ ·
0 φ̄

⊤
s dS̄s almost surely. Thus, the log-optimal portfolio (φ̄, κ̄), as

provided in Theorem 4.1.1, and the pathwise log-optimal portfolio (φ, κ), as provided in

Lemma 4.3.3, coincide almost surely.

Remark 4.3.5. We take W̄ to be a Brownian motion to ensure that the pathwise log-optimal

portfolio (φ, κ), as constructed in Lemma 4.3.3, is, indeed, a log-optimal portfolio for the

investment-consumption problem in the setting of local volatility models. However, we em-

phasize that the construction of the pathwise portfolio (φ, κ) as well as its pathwise analysis

developed in Sections 4.3.2 and 4.3.3 works for any path W satisfying Assumption 4.3.1.
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4.3.2 Stability of pathwise log-optimal portfolios with respect to drift and
volatility

Having at hand a pathwise construction of log-optimal portfolios, we are in a position to

study its pathwise stability properties. In this subsection, we analyze the stability of the log-

optimal portfolio and the associated capital process with respect to the model parameters

b and σ.

In particular, the following result shows that the pathwise log-optimal portfolio (φ, κ) =

(φ(b,σ), κ(b,σ)) and its associated capital processes V = V (b,σ) are locally Lipschitz continuous

with respect to these parameters.

Theorem 4.3.6. For (b, σ), (b̃, σ̃) ∈ C3
b ([0, T ] × Rk;Rk) ×A, let (φ(b,σ), κ(b,σ)) and (φ(b̃,σ̃),

κ(b̃,σ̃)) be the corresponding pathwise log-optimal portfolios, as constructed in Lemma 4.3.3.

Let M be an upper bound for

∥b∥C3
b
, ∥b̃∥C3

b
, ∥σ∥C3

b
, ∥σ̃∥C3

b
, 1/ inf

(t,x)
|det(σ(t, x)σ(t, x)⊤)|, 1/ inf

(t,x)
|det(σ̃(t, x)σ̃(t, x)⊤)|

and ∥(·,W)∥p. We then have that

∥(φ(b,σ), κ(b,σ)); (φ(b̃,σ̃), κ(b̃,σ̃))∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b

and

∥V (b,σ);V (b̃,σ̃)∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
,

and in particular that

∥(φ(b,σ), κ(b,σ)) − (φ(b̃,σ̃), κ(b̃,σ̃))∥∞≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b

and

∥V (b,σ) − V (b̃,σ̃)∥∞≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
,

where the implicit multiplicative constants depend only on p, k, d, M , s0 and the consump-

tion clock K.

Proof. Step 1. Using the classical result from rough path theory (e.g., [4, Theorem 2.5]),

for any (b, σ) ∈ C3
b ([0, T ] × Rk;Rk) × A, we recall that there exists a unique solution

(S(b,σ), (S(b,σ))′) ∈ Vp(·,W ) to the rough differential equation

S
(b,σ)
t = s0 +

∫ t

0
(b, σ)(s, S(b,σ)

s ) d(·,W)s, t ∈ [0, T ],

where (S(b,σ))′ = (b, σ)(·, S(b,σ)).
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By part (i) of Corollary 2.2.3, we get that

∥S(b,σ)∥Vp
(·,W )

+∥S(b̃,σ̃)∥Vp
(·,W )

≤ C,

where C > 0 depends only on p, M , and s0. Furthermore, by the continuity of the solution

map with respect to the controlled path norm, for any (b, σ), (b̃, σ̃) ∈ C3
b ([0, T ]×Rk;Rk)×A,

see part (ii) of Corollary 2.2.3, it holds that

∥S(b,σ);S(b̃,σ̃)∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
, (4.14)

where the implicit multiplicative constant depends only on p, M , and s0.

Step 2. Another well-known result in rough path theory (e.g., [75, Lemma 3.5]) is that

the compositions of controlled paths with regular functions remain a controlled path and

that such a composition is locally Lipschitz continuous. More precisely, for (b, σ) and (b̃, σ̃)

in C3
b ([0, T ] × Rd;Rd) × A, we have that b(·, S(b,σ)), σ(·, S(b,σ)), b̃(·, S(b̃,σ̃)) and σ̃(·, S(b̃,σ̃))

are controlled paths in Vp(·,W ), and we obtain that

∥b(·, S(b,σ))∥Vp
(·,W )

+∥σ(·, S(b,σ))∥Vp
(·,W )

≤ C, (4.15)

where C > 0 depends only on p, M , and s0, see, e.g., [75, Lemma 3.5]; the same holds for

b̃(·, S(b̃,σ̃)) and σ̃(·, S(b̃,σ̃)). It also holds that

∥b(·, S(b,σ)); b̃(·, S(b̃,σ̃))∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥S(b,σ);S(b̃,σ̃)∥Vp

(·,W )

and

∥σ(·, S(b,σ)); σ̃(·, S(b̃,σ̃))∥Vp
(·,W )

≲ ∥σ − σ̃∥C2
b
+∥S(b,σ);S(b̃,σ̃)∥Vp

(·,W )
,

where the implicit multiplicative constant depends only on p, M , and s0. Combining the

above estimates with (4.14), we get that

∥b(·, S(b,σ)); b̃(·, S(b̃,σ̃))∥Vp
(·,W )

+∥σ(·, S(b,σ)); σ̃(·, S(b̃,σ̃))∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ− σ̃∥C2

b
, (4.16)

where the implicit multiplicative constant depends only on p, M , and s0.

Step 3. Let c(b,σ) := σ(·, S(b,σ))σ(·, S(b,σ))⊤ and c(b̃,σ̃) := σ̃(·, S(b̃,σ̃))σ̃(·, S(b̃,σ̃))⊤. We

recall that det(σ(·, S(b,σ))σ(·, S(b,σ))⊤) and det(σ̃(·, S(b̃,σ̃))σ̃(·, S(b̃,σ̃))⊤) are bounded away

from zero by assumption. We then obtain (componentwise) that (c(b,σ))−1 and (c(b̃,σ̃))−1

are controlled paths in Vp(·,W ) since the sum and the product of (real-valued) controlled

paths is again a controlled path (see Lemma A.4.3), as well as the inverse of a controlled

path that is bounded away from zero (as a composition with the regular function x 7→ 1
x).

Applying Lemma A.4.3 and the estimate (4.15), we can derive for each component that

∥((c(b,σ))−1)ij∥Vp
(·,W )

≤ C, (4.17)
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where C > 0 depends only on p, k, d, M , and s0; the same holds for ((c(b̃,σ̃))−1)ij .

By Lemma A.4.4 and since the composition of a controlled path with a regular function

is locally Lipschitz continuous, we can check with (4.15) and (4.16) that

∥((c(b,σ))−1)ij ; ((c(b̃,σ̃))−1)ij∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
, (4.18)

where the implicit multiplicative constant depends only on p, k, d, M , and s0.

Step 4. We now recall the proof of Lemma 4.3.3, particularly, that

H(b,σ) := (c(b,σ))−1b(·, S(b,σ)) and H(b̃,σ̃) := (c(b̃,σ̃))−1b̃(·, S(b̃,σ̃))

are controlled paths in Vp(·,W ). Particularly, H(b,σ),i =
∑k

j=1((c
(b,σ))−1)ijb(·, S(b,σ))j , i =

1, . . . , k. Then, Lemma A.4.3 implies that

∥H(b,σ),i∥Vp
(·,W )

≤ C, (4.19)

where C > 0 depends only on p, M , ∥((c(b,σ))−1)ij∥Vp
(·,W )

, ∥b(·, S(b,σ))j∥Vp
(·,W )

, i, j = 1, . . . , k,

that is, only on p, k, d, M , and s0, where we have applied the estimates (4.17) and (4.15);

the same holds for H(b̃,σ̃),i.

Lemma A.4.4 then gives that

∥H(b,σ),i;H(b̃,σ̃),i∥Vp
(·,W )

≲
k∑
j=1

∥((c(b,σ))−1)ij ; ((c(b̃,σ̃))−1)ij∥Vp
(·,W )

+∥b(·, S(b,σ))j ; b̃(·, S(b̃,σ̃))j∥Vp
(·,W )

,

where the implicit multiplicative constant depends only on

p,M, ∥((c(b,σ))−1)ij∥Vp
(·,W )

, ∥((c(b̃,σ̃))−1)ij∥Vp
(·,W )

, ∥b(·, S(b,σ))j∥Vp
(·,W )

and ∥b̃(·, S(b̃,σ̃))j∥Vp
(·,W )

,

for i, j = 1, . . . , k. Using the estimates (4.17) and (4.15), (4.18) and (4.16), it follows that

∥H(b,σ),i;H(b̃,σ̃),i∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
, (4.20)

where the implicit multiplicative constant depends only on p, k, d, M , and s0.

Step 5. Let ϑ(b,σ) := σ(·, S(b,σ))⊤H(b,σ), ϑ(b̃,σ̃) = σ̃(·, S(b̃,σ̃))⊤H(b̃,σ̃). Then,

θ(b,σ) := (
1

2
(ϑ(b,σ))⊤ϑ(b,σ), (ϑ(b,σ))⊤) and θ(b̃,σ̃) := (

1

2
(ϑ(b̃,σ̃))⊤ϑ(b̃,σ̃), (ϑ(b̃,σ̃))⊤)

are controlled paths in Vp(·,W ), as, again, the sum and product of controlled paths remains

a controlled path. Using the same arguments as above and combining the estimates (4.15)

and (4.19), (4.16) and (4.20), we get that

∥θ(b,σ)∥Vp
(·,W )

≤ C, (4.21)
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where C > 0 depends only on p, k, d, M , and s0; the same holds for θ(b̃,σ̃); and

∥θ(b,σ); θ(b̃,σ̃)∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
, (4.22)

where the implicit multiplicative constant depends only on p, k, d, M , and s0.

Define the rough integrals U (b,σ) :=
∫ ·
0 θ

(b,σ)
t d(·,W)t and U (b̃,σ̃) :=

∫ ·
0 θ

(b̃,σ̃)
t d(·,W)t,

which are controlled paths in Vp(·,W ). Using the estimate (4.5) for the rough integral and

the estimate (4.21), it holds that

∥U (b,σ)∥Vp
(·,W )

≤ C, (4.23)

where C > 0 depends only on p, k, d, M , and s0; the same holds for U (b̃,σ̃). Consequently,

we get

∥U (b,σ)∥∞≤ C0, (4.24)

where C0 > 0 depends only on p, k, d, M , and s0. Furthermore, using the stability of rough

integrals, e.g., [75, Lemma 3.4], and the estimate (4.22), it immediately follows that

∥U (b,σ);U (b̃,σ̃)∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
, (4.25)

where the implicit multiplicative constant depends only on p, k, d, M , and s0.

Step 6. Proceeding as in the proof of Lemma 4.3.4, it follows from Lemma A.4.7 that

for t ∈ [0, T ],

E(Z(b,σ))t = exp(Z
(b,σ)
t − 1

2
[Z(b,σ)]t)

= exp
(1

2

∫ t

0
(ϑ(b,σ)s )⊤ϑ(b,σ)s ds+

∫ t

0
(ϑ(b,σ)s )⊤ dWs

)
= exp(U

(b,σ)
t ).

By Lemma 4.3.3, we have that

κ
(b,σ)
t :=

1

KT
E(Z(b,σ))t, κ

(b̃,σ̃)
t :=

1

KT
E(Z(b̃,σ̃))t

are the pathwise defined optimal consumption rates for the log-utility on the financial

market modeled by S(b,σ) and S(b̃,σ̃), respectively, and are controlled paths in Vp(·,W ). We

therefore get with (4.23) and (4.24) that

∥κ(b,σ)∥Vp
(·,W )

≤ C, (4.26)

where C > 0 depends only on p, k, d, M , s0, ∥exp∥C2
b ({y:|y|≤C0};R), and the consumption

clock K, as it is a composition of a controlled path with a regular function; see, e.g., [75,

Lemma 3.5]. The same holds for κ(b̃,σ̃).
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Because the composition of a controlled path with a regular function is locally Lipschitz

continuous (see, e.g., [75, Lemma 3.5]), it follows with (4.25) that

∥κ(b,σ);κ(b̃,σ̃)∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
, (4.27)

where the implicit multiplicative constant depends only on p, k, d, M , s0, and K.

Step 7. Since Kt, t ∈ [0, T ], is a càdlàg (deterministic) and increasing function (so of

finite 1-variation), we recall that by Lemma A.4.3, the wealth process V
(b,σ)
t := κ

(b,σ)
t (KT −

Kt), t ∈ [0, T ], (as the product of two controlled paths) is a controlled path in Vp(·,W ). One

can deduce with (4.26) that

∥V (b,σ)∥Vp
(·,W )

≤ C, (4.28)

where C > 0 depends only on p, k, d, M , s0, and K.

By Lemma A.4.4,

∥V (b,σ);V (b̃,σ̃)∥Vp
(·,W )

≲ ∥κ(b,σ);κ(b̃,σ̃)∥Vp
(·,W )

,

where the implicit multiplicative constant depends only on p, M , K, ∥κ(b,σ)∥Vp
(·,W )

and

∥κ(b̃,σ̃)∥Vp
(·,W )

. Combining this with (4.26) and (4.27), it holds that

∥V (b,σ);V (b̃,σ̃)∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
, (4.29)

where the implicit multiplicative constant depends only on p, k, d, M , s0, and K.

Step 8. By Lemma A.4.3, φ
(b,σ),i
t := H

(b,σ),i
t V

(b,σ)
t− , φ

(b̃,σ̃),i
t := H

(b̃,σ̃),i
t V

(b̃,σ̃)
t− , i = 1, . . . , k,

are controlled paths in Vp(·,W ), and

∥φ(b,σ),i∥Vp
(·,W )

≤ C, (4.30)

where C > 0 depends only on p, M , ∥H(b,σ),i∥Vp
(·,W )

, ∥V (b,σ)∥Vp
(·,W )

, that is, only on p, k, d,

M , s0, and K, see (4.19) and (4.28); the same holds for φ(b̃,σ̃),i. By Lemma A.4.4,

∥φ(b,σ),i;φ(b̃,σ̃),i∥Vp
(·,W )

≲ ∥H(b,σ),i;H(b̃,σ̃),i∥Vp
(·,W )

+∥V (b,σ),i;V (b̃,σ̃),i∥Vp
(·,W )

,

where the implicit multiplicative constant depends only on p, M , ∥H(b,σ),i∥Vp
(·,W )

,

∥H(b̃,σ̃),i∥Vp
(·,W )

, ∥V (b,σ)∥Vp
(·,W )

, ∥V (b̃,σ̃)∥Vp
(·,W )

. This gives with (4.19) and (4.28), (4.20)

and (4.29) that

∥φ(b,σ),i;φ(b̃,σ̃),i∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
, (4.31)

where the implicit multiplicative constant depends only on p, k, d, M , s0, and K. Finally,

we consider

φ
(b,σ),0
t =

k∑
i=1

∫ t

0
φ(b,σ),i
s dS(b,σ),i

s − φ
(b,σ),i
t S

(b,σ),i
t
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and

φ
(b̃,σ̃),0
t =

k∑
i=1

∫ t

0
φ(b̃,σ̃),i
s dS(b̃,σ̃),i

s − φ
(b̃,σ̃),i
t S

(b̃,σ̃),i
t ,

for t ∈ [0, T ]. By the associativity property of rough integrals, it holds that∫ ·

0
φ
(b,σ),i
t dS

(b,σ),i
t =

∫ ·

0
(φ

(b,σ),i
t b(t, S

(b,σ)
t )i, φ

(b,σ),i
t σ(t, S

(b,σ)
t )i·) d(·,W)t

=:

∫ ·

0
ψ
(b,σ),i
t d(·,W)t,

similarly for
∫ ·
0 φ

(b̃,σ̃),i
t dS

(b̃,σ̃),i
t . Using the same arguments as above, by (4.15) and (4.30),

(4.16) and (4.31), it holds that

∥ψ(b,σ),i;ψ(b̃,σ̃),i∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
,

where the implicit multiplicative constant depends only on p, k, d, M , s0, and K. There-

fore, using the stability of rough integrals(e.g., [75, Lemma 3.4]), Lemma A.4.4, and the

estimates (4.30), (4.31) and (4.14), we can derive that

∥φ(b,σ),0;φ(b̃,σ̃),0∥Vp
(·,W )

≲ ∥b− b̃∥C2
b
+∥σ − σ̃∥C2

b
,

where the implicit multiplicative constant depends only on p, k, d, M , s0, and K.

Hence, since we can bound the supremum norm by the controlled path norm, see (4.2),

the (local) Lipschitz continuity for optimal portfolios and wealth processes follows.

4.3.3 Discretization error of pathwise log-optimal portfolios

To implement the pathwise log-optimal portfolio on a real financial market would require to

trade continuously in time. In reality, trading might be done at a very high frequency but

still on a discrete time grid and, thus, requires a discretization of any theoretically optimal

portfolio.

In this subsection, we introduce a time-discrete version of the pathwise log-optimal

portfolio, as constructed in Lemma 4.3.3, and derive quantitative, pathwise error estimates

resulting from this discretization for the portfolios as well as for their associated capital

processes.

To define the time-discrete version of the pathwise log-optimal portfolio, we start by

discretizing the underlying price paths. To that end, we recall that W and the sequence

(Pn) of partitions satisfy Assumption 4.3.1, where Pn = {0 = tn0 < tn1 < · · · < tnNn = T}.

For n ∈ N, let Wn: [0, T ] → Rd be the piecewise constant approximation of W along Pn,

that is,

Wn
t := WT1{T}(t) +

Nn−1∑
k=0

Wtnk
1[tnk ,t

n
k+1)

(t), t ∈ [0, T ],
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and, setting γt := t, we define a time discretization path along (Pn) by

γnt := T1{T}(t) +

Nn−1∑
k=0

tnk1[tnk ,t
n
k+1)

(t), t ∈ [0, T ].

To discretize the price path S, we use the classical Euler approximation Sn corresponding

to the RDE (4.13) along the partition Pn, which is given by

Snt = s0 +
∑

i:tni+1≤t
b(tni , S

n
tni

)(tni+1 − tni ) +
∑

i:tni+1≤t
σ(tni , S

n
tni

)(Wtni+1
−Wtni

), t ∈ [0, T ]. (4.32)

The time-discrete version (φn, κn) of the pathwise log-optimal portfolio is defined by

Hn
t := (σ(γnt , S

n
t )σ(γnt , S

n
t )⊤)−1b(γnt , S

n
t ), ϑnt := σ(γnt , S

n
t )⊤Hn

t ,

θnt := (
1

2
(ϑnt )⊤ϑnt , (ϑ

n
t )⊤),

κnt :=
1

KT
exp

(∫ t

0
θns d(γn,Wn)s

)
, vnt := κnt (KT −Kn

t ),

φn,it := Hn,i
t vnt , i = 1, . . . , k, φn,0t :=

k∑
i=1

∫ t

0
φn,is dSn,is − φn,it Sn,it ,

V n
t := 1 +

k∑
i=1

∫ t

0
φn,is dSn,is −

∫ t

0
κns dKs, t ∈ [0, T ],

where all above integrals are just left-point Riemann sums and Kn denotes the piecewise

constant approximation of K along Pn. For these time-discrete portfolios and their asso-

ciated capital processes, we obtain the following convergence result with quantitative error

estimates.

Theorem 4.3.7. For (b, σ) ∈ C3
b ([0, T ] × Rk;Rk) × A, let (φ(b,σ), κ(b,σ)) be the pathwise

log-optimal portfolio, as constructed in Lemma 4.3.3. Then,

∥(φn, κn) − (φ, κ)∥p′−→ 0 as n −→ ∞

and

∥V n − V ∥p′−→ 0 as n −→ ∞,

for any p′ ∈ (p, 3), with a rate of convergence given by

∥(φn, κn) − (φ, κ)∥p′ ≲ |Pn|1−
1
q+(|Pn|+∥Wn −W∥∞)

1− p
p′

+

(
|Pn|1−

1
q+

∥∥∥∥∫ ·

0
Wn
t ⊗ dWt −

∫ ·

0
Wt ⊗ dWt

∥∥∥∥
∞

)1− p
p′
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and

∥V n − V ∥p′ ≲ |Pn|1−
1
q+(|Pn|+∥Wn −W∥∞)

1− p
p′

+

(
|Pn|1−

1
q+

∥∥∥∥∫ ·

0
Wn
t ⊗ dWt −

∫ ·

0
Wt ⊗ dWt

∥∥∥∥
∞

)1− p
p′

,

for any q ∈ (1, 2) such that 1
p′ +

1
q > 1, where the implicit multiplicative constant depends only

on p, p′, q, k, d, ∥b∥C3
b
, ∥σ∥C3

b
, 1/inf(t,x)|det(σ(t, x)σ(t, x)⊤)|, T , s0, ∥W∥p and w(0, T ),

where w is the control function for which (4.6) holds for (·,W ).

Remark 4.3.8. The convergence results and quantitative estimates in Theorem 4.3.7 hold

true when replacing the p′-variation seminorm ∥·∥p′ by the supremum seminorm ∥·∥∞.

Remark 4.3.9. The rate of convergence provided in Theorem 4.3.7 does agree with the

pathwise rate of convergence of the Euler scheme for the RDE (4.13), as obtained in The-

orem 3.1.2. In other words, the rate of convergence for the pathwise log-optimal portfolio

appears to be as good as the rate of convergence of the Euler scheme (4.32).

Before we present the proof, some preliminary steps are necessary. We start by not-

ing that, as Wn has finite 1-variation, Wn possesses a canonical rough path lift Wn =

(Wn,Wn) ∈ Dp([0, T ],Rd), with Wn given by

Wn
s,t :=

∫ t

s
Wn
s,u ⊗ dWn

u , (s, t) ∈ ∆T ,

where the integral is defined as a classical limit of left-point Riemann sums. Similarly, we

can define a time-space rough path (·,W)n of (·,W )n := (γn,Wn).

Lemma 4.3.10. There exists a constant C > 0, which depends only on p, T , ∥W∥p and

w(0, T ), where w is the control function for which (4.6) holds for (·,W ), such that

∥(·,W)n∥p+∥(·,W)∥p≤ C,

for every n ∈ N. For any p′ ∈ (p, 3), we have that

∥(·,W)n; (·,W)∥p′−→ 0 as n −→ ∞,

with a rate of convergence given by

∥(·,W)n; (·,W)∥p′ ≲ (|Pn|+∥Wn −W∥∞)
1− p

p′

+

(
|Pn|1−

1
q+

∥∥∥∥∫ ·

0
Wn
t ⊗ dWt −

∫ ·

0
Wt ⊗ dWt

∥∥∥∥
∞

)1− p
p′

,

for any q ∈ (1, 2) such that 1
p′ + 1

q > 1, where the implicit multiplicative constant depends

only on p, p′, q, d, T and ∥W∥∞, ∥W∥p and w(0, T ).
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Proof. As stated in the proof of [7, Lemma 2.13],

∥(·,W)∥p≤ C,

for some C > 0 depending only on p, T , ∥W∥p and w(0, T ), where w is the control function

for which (4.6) holds for (·,W ). Applying Lemma 3.1.5, we get, for each n ∈ N, that

∥(·,W)n∥p≤ C,

for some C > 0 depending on p, T , ∥W∥p and w(0, T ), but not on n.

Further, by Lemma 3.1.6, it holds that

∥(·,W)n; (·,W)∥p′

≲ ∥(γn,Wn) − (γ,W )∥
1− p

p′
∞

+ sup
(s,t)∈∆T

∣∣∣∣ ∫ t

s
(γn,Wn)s,u ⊗ d(γ,W )u −

∫ t

s
(γ,W )s,u ⊗ d(γ,W )u

∣∣∣∣1− p
p′

≲ ∥(γn,Wn) − (γ,W )∥
1− p

p′
∞ +

∥∥∥∥∫ ·

0
(γn,Wn)t ⊗ d(γ,W )t −

∫ ·

0
(γ,W )t ⊗ d(γ,W )t

∥∥∥∥1− p
p′

∞
,

where the implicit multiplicative constant depends only on p, p′, ∥(·,W )∥∞, ∥(·,W)∥p and

w(0, T ), where w is the control function for which (4.6) holds for (·,W ). Therefore, in view

of the above bound on ∥(·,W)∥p, this constant in fact depends on p, p′, T , ∥W∥∞, ∥W∥p
and w(0, T ).

It is straightforward to see that

∥(γn,Wn) − (γ,W )∥∞≲ |Pn|+∥Wn −W∥∞, n ∈ N.

Let q ∈ (1, 2) such that 1
p′ + 1

q > 1. We note that γn and γ have finite 1-variation, with

∥γn∥1= ∥γ∥1= T . It follows by interpolation that

∥γn − γ∥q≤ (2T )
1
q |Pn|1−

1
q .

By the standard estimate for Young integrals—see, e.g., [75, Proposition 2.4]—we then

have, for all t ∈ [0, T ], that∣∣∣∣ ∫ t

0
γnu dγu −

∫ t

0
γu dγu

∣∣∣∣ ≲ ∥γn − γ∥q∥γ∥1≤ (2T )
1
q |Pn|1−

1
q T.

Similarly, for each t ∈ [0, T ], it holds that∣∣∣∣ ∫ t

0
γnu dW j

u −
∫ t

0
γu dW j

u

∣∣∣∣ ≲ ∥γn − γ∥q∥W∥p≲ (2T )
1
q |Pn|1−

1
q ∥W∥p,

and ∣∣∣∣ ∫ t

0
Wn,j
u dγu −

∫ t

0
W j
u dγu

∣∣∣∣ ≲ ∥Wn −W∥p∥γ∥1≲ T |Pn|
1
p .

Combining the estimates, we obtain the desired rate of convergence.
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It has been established in the proof of Theorem 3.1.2 that the Euler scheme (4.32) and

the RDE

S̃nt = s0+

∫ t

0
b(γns , S̃

n
s ) dγns +

∫ t

0
σ(γns , S̃

n
s ) dWn

s = s0+

∫ t

0
(b, σ)(γns , S̃

n
s ) d(·,W)ns , t ∈ [0, T ],

coincide. Furthermore, proceeding as in the proof of Lemma 4.3.3, one can show that Hn,

θn, κn, φn are controlled paths in Vp(·,W )n , and
∫ t
0 φ

n,i
s dSn,is is a rough integral defined as in

Lemma A.4.1.

Let P̃m = {0 = rm0 < rm1 < · · · < rm
Ñm

= T}, m ∈ N, be any sequence of partitions with

mesh size converging to 0, such that Pn ⊆ P̃m for every m ∈ N. In much the same way

as in the proof of Theorem 3.1.2, one can show that the rough integral
∫ t
0 θ

n
s d(·,W)ns is

equal to a limit of left-point Riemann sums along the sequence (P̃m)m∈N. That is, for any

t ∈ [0, T ], we have∫ t

0
θns d(γn,Wn)s =

Nn−1∑
k=0

θntnk
(γn,Wn)tnk∧t,t

n
k+1∧t

= lim
m→∞

Ñm−1∑
k=0

θnrmk
(γn,Wn)rmk ∧t,rmk+1∧t =

∫ t

0
θns d(·,W)ns

and, consequently, we have

κnt :=
1

KT
exp

(∫ t

0
θns d(γn,Wn)s

)
=

1

KT
exp

(∫ t

0
θns d(·,W)ns

)
.

Similarly, applying the associativity property of rough integrals and Theorem 4.2.1, for any

t ∈ [0, T ], it holds that the rough integral of the controlled path φn,i against the controlled

path Sn,i is given by left-point Riemann sums, and so is the integral of κn against K since

the paths are of finite 1-variation. Now we are finally able to prove Theorem 4.3.7.

Proof of Theorem 4.3.7. Using part (i) of Corollary 2.2.3 and the estimate in Lemma 4.3.10,

we deduce that there exists a constant L > 0 depending only on p′, T , s0, ∥b∥C2
b
, ∥σ∥C2

b
,

∥W∥p and w(0, T ) such that supn∈N∥Sn∥Vp′
(·,W )n

, ∥S∥Vp′
(·,W )

≤ L. Further, Theorem 3.1.1 gives

that

∥Sn;S∥Vp′
(·,W )n

,Vp
′

(·,W )

≲ ∥γn − γ∥q+∥(·,W)n; (·,W)∥p′≲ |Pn|1−
1
q+∥(·,W)n; (·,W)∥p′ ,

for any q ∈ (1, 2) such that 1
p′ + 1

q > 1, where the implicit multiplicative constant depends

only on p′, q, T , ∥b∥C3
b
, ∥σ∥C3

b
, ∥W∥p and w(0, T ).

We note that γn, γ are controlled paths with respect to (·,W ), with ∥γn∥Vp′
(·,W )n

=

∥γ∥Vp′
(·,W )

= 1 and ∥γn; γ∥Vp′
(·,W )n

,Vp
′

(·,W )

= 0. Since the composition of controlled paths with
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regular composition remains a controlled path and such a composition is locally Lipschitz

continuous, it therefore holds that

∥(b, σ)(γn, Sn)∥Vp′
(·,W )n

+∥(b, σ)(γ, S)∥Vp′
(·,W )

≤ C,

where C > 0 depends only on p′, T , ∥b∥C2
b
, ∥σ∥C2

b
, L and ∥W∥p, see, e.g. [75, Lemma 3.5],

and consequently

∥(b, σ)(γ, S); (b, σ)(γn, Sn)∥Vp′
(·,W )n

,Vp
′

(·,W )

≲ ∥(γn, Sn); (γ, S)∥Vp′
(·,W )n

,Vp
′

(·,W )

+∥(·,W )n − (·,W )∥p′

≲ ∥γn; γ∥Vp′
(·,W )n

,Vp
′

(·,W )

+∥Sn;S∥Vp′
(·,W )n

,Vp
′

(·,W )

+∥(·,W )n − (·,W )∥p′

≲ |Pn|1−
1
q+∥(·,W)n; (·,W)∥p′ ,

where the implicit multiplicative constant depends only on p′, q, T , ∥b∥C2
b
, ∥σ∥C2

b
, L, ∥W∥p

and w(0, T ).

Following the arguments of the proof of Theorem 4.3.6 from Step 3 on and applying the

above estimates, one can derive that

∥(φn, κn)∥Vp′
(·,W )n

+∥(φ, κ)∥Vp′
(·,W )

≤ C,

and

∥V ∥Vp′
(·,W )

≤ C,

where C > 0 depends only on p′, k, d, T , ∥b∥C2
b
, ∥σ∥C2

b
, L, ∥W∥p, w(0, T ) and the con-

sumption clock K. Using standard estimates for Young and rough integrals, see, e.g., (4.5)

and [75, Proposition 3.4], we also obtain that

∥V n∥Vp′
(·,W )n

≤ C.

Further, since κn and φn depend on (the composition of regular functions with, or prod-

ucts of) controlled paths of the form (σ(γnt , S
n
t )σ(γnt , S

n
t )⊤)−1b(γnt , S

n
t ) and σ(γnt , S

n
t ); κ

and φ depend on (the composition of regular functions with, or products of) controlled

paths of the form (σ(γt, St)σ(γt, St)
⊤)−1b(γt, St) and σ(γt, St), using the above bound on

∥(b, σ)(γ, S); (b, σ)(γn, Sn)∥Vp′
(·,W )n

,Vp
′

(·,W )

, we can obtain that

∥(φn, κn), (φ, κ)∥Vp′
(·,W )n

,Vp
′

(·,W )

≲ |Pn|1−
1
q+∥(·,W); (·,W)n∥p′ ,

where the implicit multiplicative constant depends only on p′, q, k, d, T , ∥b∥C3
b
, ∥σ∥C3

b
,

1/inf(t,x)|det(σ(t, x)σ(t, x)⊤)|, s0, ∥W∥p, w(0, T ) and the consumption clock K. Applying
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standard estimates for Young and rough integrals (e.g., [75, Proposition 2.4, Lemma 3.1

and Lemma 3.7], we can also obtain that

∥V n;V ∥Vp′
(·,W )n

,Vp
′

(·,W )

≲ |Pn|1−
1
q+∥(·,W); (·,W)n∥p′ .

Hence, since we can bound the p-norm by the controlled path norm, see (4.3), combining

this with the rate of convergence stated in Lemma 4.3.10, we infer the convergence and the

estimate.

If we assume stronger regularity properties of the “driving noise” path W and the

sequence of partitions, we can make the quantitative estimates, provided in Theorem 4.3.7,

more explicit. For instance, considering the regularity properties of Brownian sample paths,

we can derive the following two corollaries.

Corollary 4.3.11. Let p ∈ (2, 3) and (Pn
U )n∈N be the sequence of equidistant partitions

(Pn
U )n∈N of [0, T ] with width T

n . Let W be a 1
p -Hölder continuous path satisfying Assump-

tion 4.3.1 relative to p and (Pn
U )n∈N, and∥∥∥∥∫ ·

0
Wn
t ⊗ dWt −

∫ ·

0
Wt ⊗ dWt

∥∥∥∥
∞

≲ n
−( 2

p
−β)

, n ∈ N, (4.33)

for β ∈ (1 − 1
p ,

2
p). Then for any p′ ∈ (p, 3), q ∈ (1, 2) such that 1

p′ + 1
q > 1, there exists a

constant C > 0, which does not depend on n, such that

∥(φn, κn) − (φ, κ)∥p′≤ C(n
−(1− 1

q
)(1− p

p′ ) + n
−( 2

p
−β)(1− p

p′ )), n ∈ N,

and

∥V n − V ∥p′≤ C(n
−(1− 1

q
)(1− p

p′ ) + n
−( 2

p
−β)(1− p

p′ )), n ∈ N.

Proof. Since W is assumed to be 1
p -Hölder continuous, we have that

∥Wn −W∥∞≲ n
− 1
p , n ∈ N.

We may combine this with (4.33) and Theorem 4.3.7. Since 1
p < 1 − 1

p < β for p ∈ (2, 3),

this gives the claimed rate of convergence.

Remark 4.3.12. Almost all sample paths of a d-dimensional Brownian motion satisfy

Property (RIE) relative to p and (Pn
U )n∈N, as shown in Proposition 3.2.2, and, thus, As-

sumption 4.3.1 is satisfied if the sequence (Pn
U )n∈N of partitions exhausts the jumps of the

consumption clock K. Moreover, by [143, Appendix B], (4.33) holds true almost surely for

sample paths of a Brownian motion. Hence, the sample paths of a Brownian motion fulfill

the conditions of Corollary 4.3.11 almost surely.
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Corollary 4.3.13. Let p ∈ (2, 3) and (Pn
D)n∈N be the sequence of dyadic partitions of [0, T ],

given by

Pn
D := {0 = tn0 < tn1 < · · · < tn2n = T} with tnk := k2−nT for k = 0, 1, . . . , 2n.

LetW be a 1
p -Hölder continuous path satisfying Assumption 4.3.1 relative to p and (Pn

D)n∈N,

and for any ε ∈ (0, 1),∥∥∥∥∫ ·

0
Wn
t ⊗ dWt −

∫ ·

0
Wt ⊗ dWt

∥∥∥∥
∞

≲ 2−
n
2
(1−ε), n ∈ N. (4.34)

Then, for any p′ ∈ (p, 3) and q ∈ (1, 2) such that 1
p′ + 1

q > 1, and any ε ∈ (0, 1), there exists

a constant C > 0, which does not depend on n, such that

∥(φn, κn) − (φ, κ)∥p′≤ C(2
−n(1− 1

q
)(1− p

p′ ) + 2
−n( 1

p
− 1
p′ ) + 2

−n
2
(1−ε)(1− p

p′ )), n ∈ N

and

∥V n − V ∥p′≤ C(2
−n(1− 1

q
)(1− p

p′ ) + 2
−n( 1

p
− 1
p′ ) + 2

−n
2
(1−ε)(1− p

p′ )), n ∈ N.

Proof. Since W is assumed to be 1
p -Hölder continuous, we have that

∥Wn −W∥∞≲ 2
−n
p , n ∈ N.

We may combine this with (4.34) and Theorem 4.3.7, which gives the claimed rate of

convergence.

Remark 4.3.14. Almost all sample paths of a d-dimensional Brownian motion satisfy

Property (RIE) relative to p and (Pn
D)n∈N almost surely, as shown in Proposition 3.2.6, and,

thus, Assumption 4.3.1 is satisfied if the (Pn
U )n∈N exhausts the jumps of the consumption

clock K. Moreover, as shown in the proof of part (ii) of Proposition 3.2.6, for any ε ∈ (0, 1),

almost all sample paths of a Brownian motion fulfill for any ε ∈ (0, 1)∥∥∥∥∫ ·

0
Wn
t ⊗ dWt −

∫ ·

0
Wt ⊗ dWt

∥∥∥∥
∞

≲ 2−
n
2
(1−ε),

for all sufficiently large n. Hence, the sample paths of a Brownian motion fulfill the condi-

tions of Corollary 4.3.13 almost surely.

4.4 Black–Scholes-type models: pathwise analysis of log-optimal portfo-
lios

In this section, we shall study log-optimal portfolios for the investment-consumption prob-

lem, acting on deterministic price paths generated by Black–Scholes-type models, defined

in a pathwise manner.

144



This section is structured the same as Section 4.3 for readability. We point out that

similar arguments apply and the method of proof carries over but due to the unboundedness

of the coefficients, we need to treat this case separately.

To this end, we again make the standing Assumption 4.3.1, which is recalled by the

following:

Assumption. Let p ∈ (2, 3) and let Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a

sequence of equidistant partitions of the interval [0, T ], such that,

• for each n ∈ N, there exists some πn > 0 such that tni+1−tni = πn, for each 0 ≤ i < Nn,

• |Pn|2−
4
p log(n) → 0 as n→ ∞,

• JK ⊆ lim infn→∞ Pn with JK := {t ∈ (0, T ] : Kt− ̸= Kt},

where the consumption clock K: [0, T ] → R is fixed as in Section 4.1.1. Moreover, the

deterministic path W : [0, T ] → Rd satisfies Property (RIE) relative to p and (Pn)n∈N.

We suppose that the discounted price path (St)t∈[0,T ] satisfies the linear rough differential

equations

Sit = si0 +

∫ t

0
Sisb

i
s ds+

∫ t

0
Sisσ

i·
s dWs, t ∈ [0, T ], i = 1, . . . , k, (4.35)

where s0 ∈ Rk and bi, σi· are controlled paths with respect to W , more precisely, bi ∈
VpW ([0, T ];R), σi· ∈ VpW ([0, T ];L(Rd;R)), and W = (W,W) is the canonical rough path lift

of W as defined in (4.7).

By Lemma A.4.6 and Proposition A.4.5, this is equivalent to solving the linear rough

differential equations

Sit = si0 +

∫ t

0
Sis dΞi

s, t ∈ [0, T ], i = 1, . . . , k, (4.36)

where Ξi :=
∫ ·
0 b

i
t dt +

∫ ·
0 σ

i·
t dWt, which is a controlled path in VpW and thus, admits a

canonical rough path lift Ξi by Lemma A.4.6. Particularly, by Lemma A.4.7, we obtain

that the solution is given by the rough exponential Si = E(Ξi).

Remark 4.4.1. IfW is a realization of a Brownian motion, the dynamics of the RDE (4.35)

can be seen as a fixed realization of a Black–Scholes-type model for a financial market.

Indeed, let us assume that W̄ = (W̄t)t∈[0,T ] is a d-dimensional Brownian motion on a

probability space (Ω,F ,P) with respect to an underlying filtration (Ft)t∈[0,T ]. It is well-known
that the linear stochastic differential equations

S̄it = si0 +

∫ t

0
S̄isb̄

i
s ds+

∫ t

0
S̄isσ̄

i·
s dW̄s, t ∈ [0, T ], i = 1, . . . , k, (4.37)
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have a unique strong solution, where b̄i, σ̄ij are predictable processes, σi· = (σi1, . . . , σid),

i = 1, . . . , k, j = 1, . . . , d, and b̄, σ̄ are controlled paths with respect to W̄ and σ̄σ̄⊤ ∈
GL(Rk×k), almost surely, and

∫ t
0 S̄

i
sσ̄
i·
s dW̄s denotes a stochastic Itô integral; see, e.g., [147,

Chapter V, Theorem 6]. Note that this model (S̄t)t∈[0,T ] includes the classical Black–Scholes

model, and some stochastic volatility models, where the volatility is modeled by an SDE

driven by W̄ .

The SDE (4.37) can be solved explicitly, and its solution is given by the stochastic

exponential S̄i = si0Ē(Ξ̄i), for Ξ̄i :=
∫ ·
0 b̄

i
t dt+

∫ ·
0 σ̄

i·
t dW̄t, that is,

S̄it = si0 exp(Ξ̄it −
1

2
[Ξ̄i]t), t ∈ [0, T ], i = 1, . . . , k,

where [Ξ̄i] denotes the quadratic variation; see, e.g. [147, Chapter II, Theorem 37].

Recall that for almost every ω ∈ Ω, the sample path W̄ (ω) of a Brownian motion satisfies

Property (RIE) relative to p and (Pn)n∈N; see Remark 4.2.3. Hence, for almost every ω ∈ Ω,

Ξi = Ξ̄i(ω), for Ξi defined as in (4.36) for the controlled paths b = b̄(ω), σ = σ̄(ω) and the

rough path W := W̄(ω), because the (random) rough integral and the Itô integral coincide;

see Proposition 4.2.4. For almost every ω ∈ Ω, Ξi is a controlled path in VpW and thus,

admits a canonical rough path lift Ξi.

Since for almost every ω ∈ Ω, Ξi = Ξ̄i(ω) satisfies Property (RIE) by Theorem 4.2.2,

it follows from [7, Proposition 2.18] that for almost every ω ∈ Ω, the quadratic variation

[Ξ̄i](ω) and the rough path bracket [Ξi] coincide because [Ξi] coincides with the quadratic

variation of Ξi along (Pn)n∈N in the sense of Föllmer.

Finally, by Lemma A.4.7, for almost every ω ∈ Ω, the stochastic exponential S̄i(ω) of Ξ̄i

and the rough exponential S = S̄(ω) of Ξi = Ξ̄i(ω), which solves the linear rough differential

equation (4.36), coincide. In other words, (St)t∈[0,T ] can be understood as a fixed realization

of the probabilistic model (S̄t)t∈[0,T ].

In the present setting, it will be convenient to equivalently reformulate the RDEs (4.35)

into the RDEs

Sit = si0 +

∫ t

0
(Sisb

i
s, S

i
sσ
i·
s ) d(·,W)s, t ∈ [0, T ], i = 1, . . . , k, (4.38)

where (·,W) denotes the time-extended rough path of W, i.e., the path-level of (·,W) is

given by (t,Wt)t∈[0,T ] and the missing integrals
∫
W̄ j
t (ω) dt,

∫
t dW̄ j

t (ω), j = 1, . . . , d, to de-

fine a rough path are canonically defined as Riemann–Stieltjes integrals. Using Lemma A.4.6,

Proposition A.4.5, and Lemma A.4.7, there exists a unique solution (Si, (Si)′) ∈ Vp(·,W ) to

the above RDE, where (Si)′ = (Sibi, Siσi·), i = 1, . . . , k. Thus, S, and b and σ, are con-

trolled paths with respect to (·,W ). Moreover, (St)t∈[0,T ] satisfies the RDE (4.38) if and

only if it satisfies the RDE (4.35). For later reference, we also remark (again) that (·,W )

satisfies Property (RIE) relative to p and (Pn)n∈N.
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4.4.1 Pathwise construction of log-optimal portfolios

As a first step to a pathwise analysis of optimal portfolios, we prove a pathwise construction

of the log-optimal portfolio, supposing that the underlying price dynamics of the financial

market are given by a Black–Scholes-type model. Recall that in the probabilistic setting

the log-optimal portfolio is well-known and was presented in Theorem 4.1.1, which is due

to [79].

We recall that, given a path W , the time-extended path is denoted by (·,W ) = (t,Wt)t∈[0,T ].

Lemma 4.4.2. For b ∈ VpW ([0, T ];L(R;Rk)) and σ ∈ VpW ([0, T ];L(Rd;Rk)) such that

σtσ
⊤
t ∈ GL(Rk×k) for all t, where each coefficient is uniformly bounded away from zero,

let

H i
t := H

(b,σ),i
t :=

hit
Sit

with ht := h
(b,σ)
t := (σtσ

⊤
t )−1bt,

for t ∈ [0, T ], and set (φ, κ) := (φ(b,σ), κ(b,σ)) := (φ(b,σ),0, . . . , φ(b,σ),k, κ(b,σ)), with

Zt := Z
(b,σ)
t :=

∫ t

0
h⊤s bs ds+

∫ t

0
h⊤s σs dWs,

κt := κ
(b,σ)
t :=

1

KT
E(Z)t, Vt := V

(b,σ)
t := κt(KT −Kt),

φit := φ
(b,σ),i
t := H i

tVt, i = 1, . . . , k, φ0
t := φ

(b,σ),0
t :=

d∑
i=1

∫ t

0
φis dSis −

d∑
i=1

φitS
i
t ,

for t ∈ [0, T ], where
∫ t
0 φ

i
s dSis is the rough integral, and E is the rough exponential as defined

in Lemma A.4.7. Then φ, κ and V are all well-defined and are controlled paths with respect

to W and, in particular, with respect to (·,W ).

Proof. Since b and σ are controlled paths in VpW , and det(σσ⊤) is bounded away from zero

by assumption, σσ⊤ and h are controlled paths in VpW because the sum and product of

(real-valued) controlled paths is again a controlled path (see Lemma A.4.3), as well as the

inverse of a controlled path that is bounded away from zero (as a composition with the

smooth function x 7→ 1
x), see, e.g., [75, Lemma 3.5]. The same holds true for h⊤b and h⊤σ.

Similarly, since each component of S is bounded away from zero due to its explicit

representation as a rough exponential, we obtain that H is a controlled path in VpW .

Then, Z is a controlled path in VpW . Lemma A.4.6 and Lemma A.4.7 give that the

rough exponential E(Z) is a controlled path in VpW , and so is κ. Since the consumption

clock K is a càdlàg (deterministic) and increasing function (and thus of finite 1-variation),

by Lemma A.4.3, the wealth process V is a controlled path in VpW as the product of two

controlled paths.

By similar arguments, we see that φi ∈ VpW , i = 0, 1, . . . , k, are also all controlled paths

with respect to W , and hence also with respect to (·,W ).
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The portfolio constructed in Lemma 4.4.2 in a pathwise manner agrees, indeed, with the

log-optimal portfolio for the investment-consumption problem, as considered in Section 4.1,

if the underlying frictionless financial market is generated by a Black–Scholes-type model,

such as the stochastic differential equation (4.37). Hence, in the following we shall call the

portfolio (φ, κ) = (φ(b,σ), κ(b,σ)) from Lemma 4.4.2 pathwise log-optimal portfolio.

Lemma 4.4.3. Suppose that the discounted price process (S̄t)t∈[0,T ] is modelled by the

SDE (4.37) driven by a Brownian motion W̄ on a probability space (Ω,F ,P) with respect

to an underlying filtration (Ft)t∈[0,T ]. Then the log-optimal portfolio (φ̄, κ̄), as provided in

Remark 4.1.2, and the pathwise log-optimal portfolio (φ, κ), as provided in Lemma 4.4.2,

coincide P-almost surely, where (φ, κ) is constructed given the realization W := W̄ (ω) of

the Itô rough path lift of the Brownian motion W̄ , for almost every ω ∈ Ω.

Proof. In this proof we consider S, φ, κ, etc., as random controlled paths in the sense that

S is a stochastic process such that S(ω) is a controlled path for almost every ω ∈ Ω. In

particular, S is defined pathwise as the solution to the RDE (4.11) and (φ, κ) is defined

pathwise via Lemma 4.3.3, given a realization of the Brownian motion W̄ ; more explicitly,

we have b = b̄, σ = σ̄ and S = S̄ etc., almost surely; see Remark 4.4.1.

We note that

κ̄t =
1

KT
Ē(Z̄)t, t ∈ [0, T ],

for Z̄ =
∫ ·
0 h̄

⊤
t b̄t dt+

∫ ·
0 h̄

⊤
t σ̄t dW̄t, where Ē denotes the stochastic exponential. By Proposi-

tion 4.2.4, we then have that∫ t

0
h⊤s σs dWs =

∫ t

0
h̄⊤s σ̄s dW̄s =

∫ t

0
h̄⊤s σ̄s dW̄s,

almost surely, which implies that Z = Z̄ almost surely.

Then, by Lemma A.4.6, Z admits a canonical rough path lift Z ∈ Dp, and since W

satisfies Property (RIE) relative to p and (Pn)n∈N, Z also satisfies Property (RIE) by

Theorem 4.2.2. By [7, Proposition 2.18], this implies that the rough path bracket [Z]

coincides with the quadratic variation [Z] of Z along (Pn)n∈N in the sense of Föllmer.

Proceeding as in the proof of Lemma 4.3.3, one can show that [Z] and [Z̄] coincide almost

surely.

For the rough exponential, by Lemma A.4.7, it then follows that

E(Z)t = exp(Zt −
1

2
[Z]t) = exp(Zt −

1

2
[Z]t) = exp(Z̄t −

1

2
[Z̄]t) = Ē(Z̄)t,

almost surely. Hence κ = 1
KT

E(Z) = Ē(Z̄) = κ̄ coincide almost surely, and so is Vt =

κt(KT − kt) = κ̄t(KT − kt) = V̄t almost surely. Consequently, as H i = hi

Si
coincides with
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H̄ i := h̄i

S̄i
almost surely for all i = 1, . . . , k, we also get that φit = H i

tV
i
t− = H̄ iV̄ i

t− = φ̄it

almost surely for all i = 1, . . . , k.

Finally, by the associativity property of rough integrals, see Proposition A.4.5, we have

that ∫ t

0
φis dSis

=

∫ t

0
φisS

i
sb
i
s ds+

∫ t

0
φisS

i
sσ
i·
s dWs

=

∫ t

0
φ̄isS̄

i
sb̄
i
s ds+

∫ t

0
φ̄isS̄

i
sσ̄
i·
s dW̄t,

almost surely, which implies that φ0 =
∑k

i=1

∫ ·
0 φ

i
t dSit−

∑d
i=1 φ

iSi =
∫ ·
0 φ̄

⊤
t dS̄t−

∑d
i=1 φ̄

iS̄i

= φ̄0 almost surely. Thus, the log-optimal portfolio (φ̄, κ̄), as provided in Remark 4.1.2,

and the pathwise log-optimal portfolio (φ, κ), as provided in Lemma 4.4.2, coincide almost

surely.

Remark 4.4.4. We take W̄ to be a Brownian motion to ensure that the pathwise log-optimal

portfolio (φ, κ), as constructed in Lemma 4.4.2, is, indeed, a log-optimal portfolio for the

investment-consumption problem in the setting of Black–Scholes-type models. However,

again, we emphasize that the construction of the pathwise portfolio (φ, κ) as well as its

pathwise analysis developed in Sections 4.4.2 and 4.4.3 works for any path W satisfying

Assumption 4.3.1.

4.4.2 Stability of pathwise log-optimal portfolios with respect to drift and
volatility

Having at hand a pathwise construction of log-optimal portfolios, we are in a position to

study its pathwise stability properties. In this subsection, we analyze the stability of the log-

optimal portfolio and the associated capital process with respect to the model parameters,

b and σ.

In particular, the following result shows that the pathwise log-optimal portfolios (φ, κ) =

(φ(b,σ), κ(b,σ)) and its associated capital process V = V (b,σ) are locally Lipschitz continuous

with respect to these parameters.

Theorem 4.4.5. For b, b̃ ∈ VpW ([0, T ];L(R;Rk)) and σ, σ̃ ∈ VpW ([0, T ];L(Rd;Rk)) such

that σtσ
⊤
t , σ̃tσ̃

⊤
t ∈ GL(Rk×k) for all t, where each coefficient is uniformly bounded away

from zero, let (φ(b,σ), κ(b,σ)) and (φ(b̃,σ̃), κ(b̃,σ̃)) be the corresponding pathwise log-optimal

portfolios, as constructed in Lemma 4.4.2. Let M be an upper bound for

∥b∥Vp
(·,W )

, ∥b̃∥Vp
(·,W )

, ∥σ∥Vp
(·,W )

, ∥σ̃∥Vp
(·,W )

, 1/inf
t
|det(σtσ

⊤
t )|, 1/inf

t
|det(σ̃tσ̃

⊤
t )| and ∥(·,W)∥p.
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We then have that

∥(φ(b,σ), κ(b,σ)); (φ(b̃,σ̃), κ(b̃,σ̃))∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

and

∥V (b,σ);V (b̃,σ̃)∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

,

and in particular that

∥(φ(b,σ), κ(b,σ)) − (φ(b̃,σ̃), κ(b̃,σ̃))∥∞≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

and

∥V (b,σ) − V (b̃,σ̃)∥∞≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

,

where the implicit multiplicative constants depend only on p, k, d, M , s0, 1/inft|S(b,σ),i
t |,

1/inft|S(b̃,σ̃),i
t |, i = 1, . . . , k, and the consumption clock K.

Proof. Step 1. Let c(b,σ) := σσ⊤, c(b̃,σ̃) = σ̃σ̃⊤. As shown in the proof of Lemma 4.4.2, c(b,σ)

is a controlled path in VpW , thus in Vp(·,W ). Lemma A.4.3 then yields for each component

that

∥((c(b,σ))−1)ij∥Vp
(·,W )

≤ C, (4.39)

where C > 0 depends only on p, k, d, and M ; the same holds for ((c(b̃,σ̃))−1)ij . By

Lemma A.4.4 and since the inverse of a controlled path that is bounded away from zero

(as a composition with the regular function x 7→ 1
x) is locally Lipschitz continuous, we can

check with the estimate (4.39) that

∥((c(b,σ))−1)ij ; ((c(b̃,σ̃))−1)ij∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

, (4.40)

where the implicit multiplicative constant depends only on p, k, d, and M .

Let ϑ(b,σ) := ((h(b,σ))⊤σ)⊤ = σ⊤(c(b,σ))−1b, ϑ(b̃,σ̃) := ((h(b̃,σ̃))⊤σ̃)⊤ = σ̃⊤(c(b̃,σ̃))−1b̃.

Then, θ(b,σ) = (12ϑ
(b,σ)(ϑ(b,σ))⊤, (ϑ(b,σ))⊤) are controlled paths in Vp(·,W ) as, again, the sum

and product of controlled paths remains a controlled path. Using the same arguments as

before and combining with the estimates (4.39) and (4.40), we get that

∥θ(b,σ)∥Vp
(·,W )

≤ C, (4.41)

where C > 0 depends only on p, k, d, and M ; the same holds for θ(b̃,σ̃); and

∥θ(b,σ); θ(b̃,σ̃)∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

, (4.42)

where the implicit multiplicative constant depends only on p, k, d, and M .
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Step 2. Define the rough integrals U (b,σ) :=
∫ ·
0 θ

(b,σ)
t d(·,W)t and U (b̃,σ̃) :=

∫ ·
0 θ

(b̃,σ̃)
t d(·,W)t,

which are controlled paths in Vp(·,W ). Using the estimate (4.5) for the rough integral and

the estimate (4.41), it holds that

∥U (b,σ)∥Vp
(·,W )

≤ C, (4.43)

where C > 0 depends only on p, k, d, and M ; the same holds for U (b̃,σ̃). Particularly,

∥U (b,σ)∥∞≤ C0, (4.44)

where C0 > 0 depends only on p, k, d, and M . Further, using the stability for rough

integrals, see, e.g. [75, Lemma 3.4], and the estimate (4.42), it immediately follows that

∥U (b,σ);U (b̃,σ̃)∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

, (4.45)

where the implicit multiplicative constant depends only on p, k, d, and M .

Step 3. Proceeding as in the proof of Lemma 4.3.4, it follows from Lemma A.4.7 that

E(Z(b,σ))t

= exp(Z
(b,σ)
t − 1

2
[Z(b,σ)]t)

= exp
(1

2

∫ t

0
(ϑ(b,σ)s )⊤ϑ(b,σ)s ds+

∫ t

0
(ϑ(b,σ)s )⊤ dWs

)
= exp(U

(b,σ)
t ).

By Lemma 4.4.2, we have that

κ
(b,σ)
t :=

1

KT
E(Z(b,σ))t, κ

(b̃,σ̃)
t :=

1

KT
E(Z(b̃,σ̃))t,

for t ∈ [0, T ], are the pathwise defined optimal consumption rates for the log-utility on the

financial market modeled by S(b,σ),i and S(b̃,σ̃),i, i = 1, . . . , k, respectively, and are controlled

paths in Vp(·,W ). We therefore get with (4.43) and (4.44) (see proof of Theorem 4.3.6) that

∥κ(b,σ)∥Vp
(·,W )

≤ C, (4.46)

where C > 0 depends only on p, k, d, M , ∥exp∥C2
b ({y:|y|≤C0},R), and the consumption clockK,

as it is a composition of a controlled path with a regular function; see, e.g., [75, Lemma 3.5].

The same holds for κ(b̃,σ̃).

Because the composition of a controlled path with a regular function is locally Lipschitz

continuous, see, e.g. [75, Lemma 3.5], it follows with (4.45) that

∥κ(b,σ);κ(b̃,σ̃)∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

, (4.47)
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where the implicit multiplicative constant depends only on p, k, d, M , and K.

Step 4. Since Kt, t ∈ [0, T ], is a càdlàg (deterministic) and increasing function (so of

finite 1-variation), we recall that by Lemma A.4.3, the wealth process V
(b,σ)
t := κ

(b,σ)
t (KT −

Kt), t ∈ [0, T ], (as the product of two controlled paths) is a controlled path in Vp(·,W ). One

can derive that

∥V (b,σ)∥Vp
(·,W )

≤ C, (4.48)

where C > 0 depends only on p, k, d, M , and K. Applying Lemma A.4.4 and the esti-

mate (4.48) yields that

∥V (b,σ);V (b̃,σ̃)∥Vp
(·,W )

≲ ∥κ(b,σ);κ(b̃,σ̃)∥Vp
(·,W )

,

where the implicit multiplicative constant depends only on p, M , K, ∥κ(b,σ)∥Vp
(·,W )

and

∥κ(b̃,σ̃)∥Vp
(·,W )

. Combining this with (4.46) and (4.47), it holds that

∥V (b,σ);V (b̃,σ̃)∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

, (4.49)

where the implicit multiplicative constant depends only on p, k, d, M , and K.

Step 5. Define the rough integrals A(b,σ),i :=
∫ ·
0(bit − 1

2σ
i·
t (σi·t )⊤, σi,·t ) dWt, A

(b̃,σ̃),i :=∫ ·
0(b̃it− 1

2 σ̃
i·
t (σ̃i·t )⊤, σ̃i,·t ) dWt, i = 1, . . . , k. Using the estimate (4.5) for the rough integral, it

holds that

∥A(b,σ),i∥Vp
(·,W )

≤ C, (4.50)

where C > 0 depends only on p, d, and M ; the same holds for A(b̃,σ̃),i. Particularly,

∥A(b,σ),i∥∞≤ C1, (4.51)

where C1 > 0 depends only on p, d, and M . Further, using the stability for rough integrals,

see, e.g. [75, Lemma 3.4], and Lemma A.4.4, it immediately follows that

∥A(b,σ),i;A(b̃,σ̃),i∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

, (4.52)

where the implicit multiplicative constant depends only on p, d, and M .

Step 6. Further, we recall the beginning of the section, where we derived that the solution

S = (St)t∈[0,T ] of the rough differential equation (4.35) is given as a rough exponential. More

precisely, for i = 1, . . . , k it holds that

S
(b,σ)i
t = si0 exp

(∫ t

0
(bis −

1

2
σi·s (σi·s )⊤) ds+

∫ t

0
σi·s dWs

)
= si0 exp(A

(b,σ),i
t ).

We therefore get with (4.50) that

∥S(b,σ),i∥Vp
(·,W )

≤ C, (4.53)
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where C > 0 depends only on p, d, M , s0, and ∥exp∥C2
b ({y:|y|≤C1};R), as it is a composition

of a controlled path with a regular function; see, e.g., [75, Lemma 3.5]. We note that C1

depends only on p, d, and M , see (4.51), that is, C > 0 depends only on p, d, M , and s0;

the same holds for S(b̃,σ̃),i.

Then, by the stability of regular functions of controlled paths, see, e.g., [75, Lemma 3.5],

it follows with (4.52) that

∥S(b,σ),i;S(b̃,σ̃),i∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

, (4.54)

where the implicit multiplicative constant depends only on p, d, M , and s0.

Step 7. Similar to Step 1, for h(b,σ) = (c(b,σ))−1b, h(b̃,σ̃) = (c(b̃,σ̃))−1b̃, we obtain with

Lemma A.4.3 and the estimate (4.39) that

∥h(b,σ),i∥Vp
(·,W )

≤ C, (4.55)

where C > 0 depends only on p, k, d, and M ; the same holds for h(b̃,σ̃),i; and then by (4.40)

and Lemma A.4.4 it follows that

∥h(b,σ),i;h(b̃,σ̃),i∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

, (4.56)

where the implicit multiplicative constant depends only on p, k, d, and M .

Following Lemma 4.4.2, we consider

H
(b,σ),i
t =

h
(b,σ),i
t

S
(b,σ),i
t

.

Using the same argument as in Step 1 with Lemma A.4.3, Lemma A.4.4 and the esti-

mates (4.53) and (4.55), (4.54) and (4.56) we obtain that

∥H(b,σ),i∥Vp
(·,W )

≤ C, (4.57)

where C > 0 depends only on p, k, d, M , s0, and 1/inft|S(b,σ),i
t |; the same holds for H(b̃,σ̃),i;

and

∥H(b,σ),i;H(b̃,σ̃),i∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

, (4.58)

where the implicit multiplicative constant depends only on p, k, d, M , s0, 1/inft|S(b,σ),i
t |,

and 1/inft|S(b̃,σ̃),i
t |.

Step 8. Lastly, by Lemma A.4.3, φ
(b,σ),i
t := H

(b,σ),i
t V

(b,σ)
t− , φ

(b̃,σ̃),i
t := H

(b̃,σ̃),i
t V

(b̃,σ̃)
t− ,

i = 1, . . . , k, are controlled paths in VpW , and

∥φ(b,σ),i∥Vp
(·,W )

≤ C, (4.59)
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where C > 0 depends only on p, M , ∥H(b,σ),i∥Vp
(·,W )

, ∥V (b,σ)∥Vp
(·,W )

, that is, only on p, k, d,

M , s0, 1/inft|S(b,σ),i
t |, and the consumption clock K, see (4.57) and (4.48); the same holds

for φ(b̃,σ̃),i. By Lemma A.4.4,

∥φ(b,σ),i;φ(b̃,σ̃),i∥Vp
(·,W )

≲ ∥H(b,σ),i;H(b̃,σ̃),i∥Vp
(·,W )

+∥V (b,σ);V (b̃,σ̃)∥Vp
(·,W )

,

where the implicit multiplicative constant depends only on p, M , ∥H(b,σ),i∥Vp
(·,W )

,

∥H(b̃,σ̃),i∥Vp
(·,W )

, ∥V (b,σ)∥Vp
(·,W )

, ∥V (b̃,σ̃)∥Vp
(·,W )

. This gives with (4.57) and (4.48), (4.58)

and (4.49) that

∥φ(b,σ),i;φ(b̃,σ̃),i∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

, (4.60)

where the implicit multiplicative constant depends only on p, k, d, M , s0, 1/inft|S(b,σ),i
t |,

1/inft|S(b̃,σ̃),i
t |, and K.

Finally, we consider

φ
(b,σ),0
t =

k∑
i=1

∫ t

0
φ(b,σ),i
s dS(b,σ),i

s − φ
(b,σ),i
t S

(b,σ),i
t

and

φ
(b̃,σ̃),0
t =

k∑
i=1

∫ t

0
φ(b̃,σ̃),i
s dS(b̃,σ̃),i

s − φ
(b̃,σ̃),i
t S

(b̃,σ̃),i
t ,

for t ∈ [0, T ]. By the associativity property of rough integrals, it holds that∫ ·

0
φ
(b,σ),i
t dS

(b,σ),i
t =

∫ ·

0
(φ

(b,σ),i
t Sitb

i
t, φ

(b,σ),i
t Sitσ

i·
t ) d(·,W)t

=:

∫ ·

0
ψ
(b,σ),i
t d(·,W)t,

similarly for
∫ ·
0 φ

(b̃,σ̃),i
t dS

(b̃,σ̃),i
t . Using the same arguments as above, by (4.59) and (4.53),

(4.60) and (4.54), it holds that

∥ψ(b,σ);ψ(b̃,σ̃)∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

,

where the implicit multiplicative constant depends only on p, k, d, M , ∥(·,W)∥p, s0,
1/inft|S(b,σ),i

t |, 1/inft|S(b̃,σ̃),i
t |, i = 1, . . . , k, and K.

Therefore, combining this with the estimate (4.5) for the rough integral, Lemma A.4.4,

and the estimates (4.59), (4.60) and (4.54), we can derive that

∥φ(b,σ),0;φ(b̃,σ̃),0∥Vp
(·,W )

≲ ∥b; b̃∥Vp
(·,W )

+∥σ; σ̃∥Vp
(·,W )

,

where the implicit multiplicative constant depends only on p, k, d, M , ∥(·,W)∥p, s0,
1/inft|S(b,σ),i

t |, 1/inft|S(b̃,σ̃),i
t |, i = 1, . . . , k, and K.

Hence, since we can bound the supremum norm by the controlled path norm, see (4.2),

the (local) Lipschitz continuity for optimal portfolios and wealth processes follows.
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4.4.3 Discretization error of pathwise log-optimal portfolios

In this subsection, we introduce a time-discrete version of the pathwise log-optimal portfolio,

as constructed in Lemma 4.4.2, and derive quantitative, pathwise error estimates resulting

from this discretization for the portfolios as well as for their associated capital processes.

To define the time-discrete version of the pathwise log-optimal portfolio, we start by

discretizing the underlying price paths. To that end, we recall that W and the sequence

(Pn) of partitions satisfy Assumption 4.3.1, where Pn = {0 = tn0 < tn1 < · · · < tnNn = T}.

For n ∈ N, let Wn: [0, T ] → Rd be the piecewise constant approximation of W along Pn, as

introduced in Section 4.3.3. We define bn and σn in the same way, and let γn: [0, T ] → R
be the time discretization path along Pn.

To discretize the price path S, we introduce the discretization of the rough exponential

S along Pn given by

Sn,it := si0 exp(An,it ) with An,it :=

∫ t

0
(bn,is − 1

2
σn,i·s (σn,i·s )⊤, σn,i·s ) d(γn,Wn)s,

for t ∈ [0, T ], i = 1, . . . , k. The time-discrete version (φn, κn) of the pathwise log-optimal

portfolio is defined by

Hn,i
t :=

hn,it

Sn,it
with hnt := (σnt (σnt )⊤)−1bnt ,

κnt :=
1

KT
exp

(
1

2

∫ t

0
((hns )⊤bns , (h

n
s )⊤σns ) d(γn,Wn)s

)
, vnt := κnt (KT −Kn

t ),

φn,it := Hn,i
t vnt−, i = 1, . . . , k, φn,0t :=

k∑
i=1

∫ t

0
φn,is dSn,is − φn,it Sn,it ,

V n
t := 1 +

k∑
i=1

∫ t

0
φn,is dSn,is −

∫ t

0
κns dKs, t ∈ [0, T ],

where all above integrals are just left-point Riemann sums and Kn denotes the piecewise

constant approximation of K along Pn. For these time-discrete portfolios and their asso-

ciated capital processes, we obtain the following convergence result with quantitative error

estimates.

Theorem 4.4.6. For b ∈ VpW ([0, T ];L(R;Rk)) and σ ∈ VpW ([0, T ];L(Rd;Rk)) such that

σtσ
⊤
t ∈ GL(Rk×k) for all t, where each coefficient is uniformly bounded away from zero, let

(φ(b,σ), κ(b,σ)) be the pathwise log-optimal portfolio, as constructed in Lemma 4.4.2. Then,

∥(φn, κn) − (φ, κ)∥p′−→ 0 as n −→ ∞

and

∥V n − V ∥p′−→ 0 as n −→ ∞,
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for any p′ ∈ (p, 3), with a rate of convergence given by

∥(φn, κn) − (φ, κ)∥p′

≲ ∥(bn)′ − b′∥
1− p

p′
∞ +∥Rbn −Rb∥

1− p
p′

∞ +∥(σn)′ − σ′∥
1− p

p′
∞ +∥Rσn −Rσ∥

1− p
p′

∞

+ (|Pn|+∥Wn −W∥∞)
1− p

p′ +

(
|Pn|1−

1
q+

∥∥∥∥∫ ·

0
Wn
t ⊗ dWt −

∫ ·

0
Wt ⊗ dWt

∥∥∥∥
∞

)1− p
p′

,

and

∥V n − V ∥p′

≲ ∥(bn)′ − b′∥
1− p

p′
∞ +∥Rbn −Rb∥

1− p
p′

∞ +∥(σn)′ − σ′∥
1− p

p′
∞ +∥Rσn −Rσ∥

1− p
p′

∞

+ (|Pn|+∥Wn −W∥∞)
1− p

p′ +

(
|Pn|1−

1
q+

∥∥∥∥∫ ·

0
Wn
t ⊗ dWt −

∫ ·

0
Wt ⊗ dWt

∥∥∥∥
∞

)1− p
p′

,

for any q ∈ (1, 2) such that 1
p′ + 1

q > 1, where the implicit multiplicative constant depends

only on p, p′, q, k, d, ∥b∥Vp′
(·,W )

, ∥σ∥Vp′
(·,W )

, 1/inft|det(σtσ
⊤
t )|, ∥W∥p, w(0, T ), where w is the

control function for which (4.6) holds for (·,W ), and the consumption clock K.

Remark 4.4.7. The convergence results and quantitative estimates in Theorem 4.4.6 hold

true when replacing the p′-variation seminorm ∥·∥p′ by the supremum seminorm ∥·∥∞.

Before we present the proof, some preliminary steps are necessary. We start by recall-

ing that, as Wn has finite 1-variation, Wn possesses a canonical rough path lift Wn =

(Wn,Wn) ∈ Dp([0, T ],Rd), with Wn given by

Wn
s,t :=

∫ t

s
Wn
s,u ⊗ dWn

u , (s, t) ∈ ∆T ,

where the integral is defined as a classical limit of left-point Riemann sums. Similarly, we

can define a time-space rough path (·,W)n of (·,W )n := (γn,Wn).

Since bn is the piecewise constant approximation of b along Pn, it is a controlled path

with respect to (·,W )n. If tnk ≤ s < t ≤ tnk+1 for some k, then bns,t = btnk ,t
n
k

= 0. Otherwise,

let k0 be the smallest k such that tnk ∈ (s, t) and k1 the largest such k. Then,

bns,t = btnk0 ,t
n
k1

= b′tnk0
(·,W )tnk0 ,t

n
k1

+Rbtnk0 ,t
n
k1

= (b′)ns (·,W )ns,t + (Rb)ns,t,

where (b′)n and (Rb)n be the piecewise constant approximations of b′ and Rb along Pn,

respectively. Therefore, supn∈N∥bn∥Vp
(·,W )n

≤ ∥b∥Vp
(·,W )

; analogously for σ.

Furthermore, proceeding as in the proof of Lemma 4.4.2, one can show that Hn, κn,

V n and φn are controlled paths in Vp(·,W )n , and
∫ t
0 φ

n,i
s dSn,is is a rough integral defined as

in Lemma A.4.1.
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Let P̃m = {0 = rm0 < rm1 < · · · < rm
Ñm

= T}, m ∈ N, be any sequence of partitions with

mesh size converging to 0, such that Pn ⊆ P̃m for every m ∈ N. By Lemma 3.1.9, (·,W )n

satisfies Property (RIE) relative to p and the sequence (P̃m)m∈N. In much the same way as

in the proof of Theorem 3.1.2, one can show that the rough integral with respect to (·,W)n

is equal to a limit of left-point Riemann sums along (P̃m)m∈N. That is, for any t ∈ [0, T ],

we have

An,it :=

Nn−1∑
k=0

(bn,itnk
− 1

2
σn,i·tnk

(σn,i·tnk
)⊤, σn,i·tnk

)(γn,Wn)tnk∧t,t
n
k+1∧t

=

∫ t

0
(bn,is − 1

2
σn,i·s (σn,i·s )⊤, σn,i·s ) d(·,W)ns .

We further obtain that for any t ∈ [0, T ],

κnt :=
1

KT
exp

(
1

2

∫ t

0
((hns )⊤bns , (h

n
s )⊤σns ) d(γn,Wn)s

)
=

1

KT
exp

(
1

2

∫ t

0
((hns )⊤bns , (h

n
s )⊤σns ) d(·,W)ns

)
.

Similarly, the associativity property of rough integrals and Theorem 4.2.1, for any t ∈ [0, T ],

it holds that the rough integral of the controlled path φn,i against the controlled path Sn,i

is given by left-point Riemann sums, and so is the integral of κn against K since the paths

are of finite 1-variation.

Now we are finally able to prove Theorem 4.4.6.

Proof. Let p′ ∈ (p, 3). It follows by interpolation (see, e.g., [74, Proposition 5.5]) that

∥bn; b∥Vp′
(·,W )n

,Vp
′

(·,W )

= ∥(bn)′ − b′∥p′+∥Rbn −Rb∥ p′
2

≤ ∥(bn)′ − b′∥
1− p

p′
∞ ∥(bn)′ − b′∥

p
p′
p +∥Rbn −Rb∥

1− p
p′

∞ ∥Rbn −Rb∥
p
p′
p
2

≲ ∥(bn)′ − b′∥
1− p

p′
∞ +∥Rbn −Rb∥

1− p
p′

∞ ,

where the implicit multiplicative constant depends only on p, p′, and ∥b∥Vp
(·,W )

because

supn∈N∥(bn)′∥p≤ ∥b′∥p and supn∈N∥Rb
n∥ p

2
≤ ∥Rb∥ p

2
, analogously for σ. Since bn converges

uniformly to b as n→ ∞, we deduce that

∥bn; b∥Vp′
(·,W )n

,Vp
′

(·,W )

−→ 0 as n −→ ∞;

analogously for σ.
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Following the arguments of the proof of Theorem 4.4.5 and applying the estimate in

Lemma 4.3.10, one can show that

∥κn∥Vp′
(·,W )n

+∥κ∥Vp′
(·,W )

≤ C

and

∥V ∥Vp′
(·,W )

≤ C,

where C > 0 depends only on p′, k, d, T , ∥b∥Vp
(·,W )

, ∥σ∥Vp
(·,W )

, 1/inft|det(σtσ
⊤
t )|, ∥W∥p,

w(0, T ), where w is the control function for which (4.6) holds for (·,W ), and the consumption

clock K, and

∥κn;κ∥Vp′
(·,W )n

,Vp
′

(·,W )

≲ ∥bn; b∥Vp′
(·,W )n

,Vp
′

(·,W )

+∥σn;σ∥Vp′
(·,W )n

,Vp
′

(·,W )

+∥(·,W)n; (·,W)∥p′ ,

where the implicit multiplicative constant depends only on p′, k, d, T , ∥b∥Vp
(·,W )

, ∥σ∥Vp
(·,W )

,

1/inft|det(σtσ
⊤
t )|, ∥W∥p, w(0, T ), and K. The same (stability) estimates hold for Sn,i, Si,

φn,i, φi, i = 1, . . . , k, where the respective constants also depend on s0. This allows us to

also conclude the same (stability) estimate for V n, V using standard estimates for Young

and rough integration (e.g., [75, Proposition 2.4, Lemma 3.1, Lemma 3.6 and Lemma 3.7].

We can further apply Lemma A.4.2 and Lemma A.4.4 and obtain that

∥φn,0 − φ0∥p′≲ ∥φn,i;φi∥Vp′
(·,W )n

,Vp
′

(·,W )

+∥Sn,i;Si∥Vp′
(·,W )n

,Vp
′

(·,W )

+∥(·,W)n; (·,W)∥p′ ,

where the implicit multiplicative constant depends only on p′, k, T , ∥φn,i∥Vp′
(·,W )n

, ∥φi∥Vp′
(·,W )

,

∥Sn,i∥Vp′
(·,W )n

, ∥Si∥Vp′
(·,W )

, ∥W∥p, and w(0, T ), that is,

∥φn,0 − φ0∥p′≲ ∥bn; b∥Vp′
(·,W )n

,Vp
′

(·,W )

+∥σn;σ∥Vp′
(·,W )n

,Vp
′

(·,W )

+∥(·,W)n; (·,W)∥p′ ,

where the implicit multiplicative constant depends only on p′, k, d, T , ∥b∥Vp
(·,W )

, ∥σ∥Vp
(·,W )

,

1/inft|det(σtσ
⊤
t )|, s0, ∥W∥p, w(0, T ), and K.

Combining this with the estimate derived above and the rate of convergence stated in

Lemma 4.3.10, we obtain the convergence and the estimate.

Remark 4.4.8. If we assume stronger regularity properties of the “driving noise” path W

and the sequence of partitions, we can make the quantitative estimates, provided in The-

orem 4.4.5, more explicit, for instance, considering the regularity properties of Brownian

sample paths, cf. Corollary 4.3.11 and Corollary 4.3.13 and the respective remarks for the

local volatility model.

158



Furthermore, if we assume that b, σ ∈ D
p
2 , i.e., b′, (bn)′, σ′, (σ′)n = 0 and Rb = b,

Rb
n

= bn, Rσ = σ, Rσ
n

= σn, n ∈ N, the rate of convergence in Theorem 4.4.6 becomes

more tractable, namely,

∥(φn, κn) − (φ, κ)∥p′

≲ ∥bn − b∥
1− p

p′
∞ +∥σn − σ∥

1− p
p′

∞

+ (|Pn|+∥Wn −W∥∞)
1− p

p′ +

(
|Pn|1−

1
q+

∥∥∥∥∫ ·

0
Wn
t ⊗ dWt −

∫ ·

0
Wt ⊗ dWt

∥∥∥∥
∞

)1− p
p′

,

and

∥V n − V ∥p′

≲ ∥bn − b∥
1− p

p′
∞ +∥σn − σ∥

1− p
p′

∞

+ (|Pn|+∥Wn −W∥∞)
1− p

p′ +

(
|Pn|1−

1
q+

∥∥∥∥∫ ·

0
Wn
t ⊗ dWt −

∫ ·

0
Wt ⊗ dWt

∥∥∥∥
∞

)1− p
p′

.
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Chapter 5

Existence of general pathwise stochastic integration

The theory of stochastic integration due to K. Itô has proven to be a very suitable tool

for modeling dynamical systems which evolve randomly in time. It is an elegant theory

that comes with properties desirable for various applications, and allows for dealing with

a rich class of probabilistic models whose sample path properties capture the irregularities

observed in real-world data.

However, stochastic integration is indeed stochastic and not merely analytic in the sense

that the integral is constructed as a limit of approximating Riemann sums in probability,

thus one is required to fix a probability measure a priori. Consequently, the stochastic inte-

gral is not necessarily well-posed for a given particular sample path of the driving process.

This turns out to be a pitfall from the modeling perspective since there is usually only

one time series of data available and the inherent probabilistic structure of the underlying

process is not known, leading to so-called model risk.

This motivates a “state by state” notion of integration, i.e., sample path by sample path,

that is able to handle paths of lower regularity appearing in classical, say, continuous-time

financial models such as the sample paths of Brownian motion.

In his seminal paper [67], Föllmer introduced such a pathwise integration theory as a

first deterministic analog to Itô’s stochastic integration theory, which is based on a suitable

notion of quadratic variation.

Assuming that a path X: [0, T ] → R has such finite quadratic variation along a given

sequence of partitions π = (πn)n∈N of [0, T ] with vanishing mesh size, he showed that for

any twice continuously differentiable function f the limit of left-point Riemann sums∫ t

0
∇f(Xs) dπXs := lim

n→∞

∑
[u,v]∈πn

∇f(Xu)(Xv∧t −Xu∧t), t ∈ [0, T ], (5.1)

exists, where ∇f denotes the gradient of f , and the integral satisfies a “pathwise Itô for-

mula”. The Föllmer integral has found various applications and extensions in the pathwise

approach to stochastic analysis, see [39, 9, 40, 34], to name but a few. As it is approximated
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by left-point Riemann sums, the Föllmer integral comes with a clear financial interpretation

as the capital gains process which is generated by continuous-time trading. It has therefore

been successfully applied in the context of model-free approaches to mathematical finance,

where one assumes no underlying probabilistic structure. We refer to [128, 68, 52, 152, 48].

We now aim at generalizing the notion of the Föllmer integral in the sense that for

a given γ ∈ [0, 1] and a suitable class of (non-gradient type) integrands Y , the general

pathwise integral ∫ t

0
Ys dγ,πXs := lim

n→∞

∫ t

0
Ys dγ,π

n
Xs, t ∈ [0, T ], (5.2)

exists as a uniform limit along the sequence of partitions π = (πn)n∈N, where∫ t

0
Ys dγ,π

n
Xs :=

∑
[u,v]∈πn

(Yu + γ(Yv − Yu))(Xv∧t −Xu∧t).

That is, we consider limits of approximating Riemann sums, where the integrand is given

as a convex combination γYu + (1 − γ)Yv of the values of Yu and Yv, with [u, v] being a

partition interval. We notice that γ = 0 corresponds to (forward) Itô-type integration,

γ = 1
2 to Stratonovich-type integration and γ = 1 to backward Itô-type integration, these

being the most popular choices in applications.

For this purpose, we rely on rough path theory, initiated by Lyons [129], as it offers a

general pathwise integration theory beyond the notion of Young integration able to handle

paths of lower regularity.

Rough path theory is based on the insight that, since the path is not regular enough,

one is required to “enhance” its informational structure to define an integral. The rough

integral is then defined not as the limit of classical Riemann sums but as the limit of so-

called compensated Riemann sums that involve a higher-order term mimicking the value of

the iterated integral of the path against itself (its “area”). This is precisely what is required

to guarantee continuity of the integral map, yielding strong stability estimates.

The task is therefore to identify a path property on the integrator which ensures that

the path can be enhanced canonically so that the rough integral exists as a limit of general

Riemann sums, in spirit of the Föllmer integral, see above.

It is Property (RIE), first introduced in [143] for continuous paths and extended to càdlàg

paths in [7], that recovers the rough integral as a limit of left-point, i.e., non-anticipative

Riemann sums. It has been applied to robust and model-free finance, see also [5], and has

been extensively used in Chapter 3 and Chapter 4, in the regime of càdlàg paths.

This chapter is structured as follows. In Section 5.1 we will generalize Property (RIE)

and show that it is a sufficient condition on the integrator for the rough integral to exist as

a limit of general Riemann sums; this is the so-called Property γ-(RIE).
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This path property turns out to be rather natural, see Section 5.2: for the Stratonovich-

type integration, it is equivalent to imposing the existence of its pathwise Lévy area and a

certain regularity condition of the path and along the sequence of partitions, which seems

fitting in the regime of rough path theory. And, for the more general case, Property γ-(RIE)

is equivalent to additionally imposing the existence of the pathwise quadratic variation,

which formally links it to the Föllmer integral; all of which holds true for almost all sample

paths of the Brownian motion.

Moreover, Property γ-(RIE) is satisfied by various examples of stochastic processes

along suitable sequences of partitions, making the established pathwise integration theory,

particularly the Stratonovich-type, applicable to the stochastic setting, see Section 5.3.

We want to mention at this point that the above construction of the pathwise integral

(and Property γ-(RIE), and the quadratic variation and the Lévy area) depend strongly

on the choice of the sequence of partitions. Therefore it is of interest and intended for

future work to investigate the invariance of the Lévy area with respect to the sequence of

partitions, in light of [38], where they derive a result about the invariance of the quadratic

variation with respect to the sequence of partitions, to obtain a robust formulation of the

pathwise integration constructed in this chapter.

5.1 The rough integral as a limit of general Riemann sums

Before we introduce the path properties rigorously and develop a notion of general rough

integration under Property γ-(RIE), we will first recall the essentials from the theory of

rough paths. For a more detailed exposition of rough path theory, we refer to [130, 74, 71].

5.1.1 Essentials on rough path theory

A partition P of an interval [s, t] is a finite set of points between and including the points s

and t, i.e., P = {s = u0 < u1 < · · · < uN = t} for some N ∈ N, and its mesh size is denoted

by |P|:= max{|ui+1 − ui| : i = 0, . . . , N − 1}.

Throughout, we let T > 0 be a fixed finite time horizon. We let ∆T := {(s, t) ∈ [0, T ]2 :

s ≤ t} denote the standard 2-simplex.

A function w: ∆T → [0,∞) is called a control function if it is superadditive, in the sense

that w(s, u) + w(u, t) ≤ w(s, t) for all 0 ≤ s ≤ u ≤ t ≤ T .

For two vectors x = (x1, . . . , xd)⊤, y = (y1, . . . , yd)⊤ ∈ Rd we use the usual tensor

product

x⊗ y := (xiyj)i,j=1,...,d ∈ Rd×d.
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We shall write a ≲ b to mean that there exists a constant C > 0 such that a ≤ Cb.

The constant C may depend on the normed space, e.g. through its dimension or regularity

parameters.

For two vector spaces, the space of linear maps from E1 → E2 is denoted by L(E1, E2).

For a normed space (E, |·|), we let C([0, T ];E) denote the set of continuous paths from

[0, T ] to E. For p ≥ 1, the p-variation of a path X ∈ C([0, T ];E) is given by

∥X∥p:= ∥X∥p,[0,T ] with ∥X∥p,[s,t]:=
(

sup
P⊂[s,t]

∑
[u,v]∈P

|Xv −Xu|p
) 1
p

, (s, t) ∈ ∆T ,

where the supremum is taken over all possible partitions P of the interval [s, t]. We recall

that, given a path X, we have that ∥X∥p<∞ if and only if there exists a control function

c such that1

sup
(u,v)∈∆T

|Xv −Xu|p

c(u, v)
<∞.

We write Cp-var = Cp-var([0, T ];E) for the space of paths X ∈ C([0, T ];E) which satisfy

∥X∥p<∞. Moreover, for a path X ∈ C([0, T ];Rd), we will often use the shorthand notation:

Xs,t := Xt −Xs, for (s, t) ∈ ∆T .

For r ≥ 1 and a two-parameter function X: ∆T → E, we similarly define

∥X∥r:= ∥X∥r,[0,T ] with ∥X∥r,[s,t]:=
(

sup
P⊂[s,t]

∑
[u,v]∈P

|Xu,v|r
) 1
r

, (s, t) ∈ ∆T .

We write Cr-var2 = Cr-var2 (∆T ;E) for the space of continuous functions X: ∆T → E which

satisfy ∥X∥r<∞.

For p ∈ [2, 3), a pair X = (X,X) is called a (continuous) p-rough path over Rd if

(i) X ∈ Cp-var([0, T ];Rd) and X ∈ C
p
2
-var

2 (∆T ;Rd×d), and

(ii) Chen’s relation: Xs,t = Xs,u + Xu,t +Xs,u ⊗Xu,t holds for all 0 ≤ s ≤ u ≤ t ≤ T .

In component form, condition (ii) states that Xijs,t = Xijs,u + Xiju,t + Xi
s,uX

j
u,t for every i

and j. We will denote the space of p-rough paths by Cp = Cp([0, T ];Rd). On the space

Cp([0, T ];Rd), we use the natural seminorm

∥X∥p:= ∥X∥p,[0,T ] with ∥X∥p,[s,t]:= ∥X∥p,[s,t]+∥X∥ p
2
,[s,t],

for (s, t) ∈ ∆T .

1Here and throughout, we adopt the convention that 0
0
:= 0.
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Let p ∈ (2, 3) and q > 0 such that 2
p + 1

q > 1, and X ∈ Cp-var([0, T ];Rd). We say that a

pair (Y, Y ′) is a controlled path (with respect to X), if

Y ∈ Cp-var([0, T ];E), Y ′ ∈ Cq-var([0, T ];L(Rd;E)), and RY ∈ Cr-var2 (∆T ;E),

where RY is defined by

Ys,t = Y ′
sXs,t +RYs,t for all (s, t) ∈ ∆T ,

and 1
r = 1

p + 1
q . We write C p,q

X = C p,q
X ([0, T ];E) for the space of E-valued controlled paths,

which becomes a Banach space when equipped with the norm

(Y, Y ′) 7→ |Y0|+|Y ′
0 |+∥Y ′∥q,[0,T ]+∥RY ∥r,[0,T ].

Given p ∈ (2, 3), X = (X,X) ∈ Cp([0, T ];Rd) and (Y, Y ′) ∈ C p,q
X ([0, T ];L(Rd;Rk)), the

(forward) rough integral∫ t

s
Yr dXr := lim

|P|→0

∑
[u,v]∈P

(YuXu,v + Y ′
uXu,v), (s, t) ∈ ∆T ,

exists (in the classical mesh Riemann–Stieltjes sense), where the limit is taken along any

sequence of partitions (Pn)n∈N of the interval [s, t] such that |Pn|→ 0 as n → ∞. More

precisely, in writing the product YuXu,v, we apply the operator Yu ∈ L(Rd;Rk) onto Xu,v ∈
Rd; and in writing the product Y ′

uXu,v, we use the natural identification of L(Rd;L(Rd;Rk))
with L(Rd ⊗ Rd;Rk). Moreover, the rough integral comes with the estimate∣∣∣∣ ∫ t

s
Yu dXu − YsXs,t − Y ′

sXs,t
∣∣∣∣ ≤ C

(
∥RY ∥r,[s,t]∥X∥p,[s,t]+∥Y ′∥q,[s,t]∥X∥ p

2
,[s,t]

)
for some constant C depending only on p, q and r; see e.g. [143, Theorem 4.9]. For details

on the construction of the rough integral and its properties, we refer to the [129, 82, 71].

5.1.2 Rough integration using Property γ-(RIE)

We resume with the concept of quadratic variation (for a continuous path) along a sequence

of partitions, which is associated with the Föllmer integral.

For this, let B([0, T ]) denote the Borel σ-algebra on [0, T ] and δt the Dirac measure at

t ∈ [0, T ].

Definition 5.1.1 (Quadratic variation of a path in the sense of Föllmer). Let X ∈
C([0, T ];R) and π = (πn)n∈N, with πn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be

a sequence of partitions of the interval [0, T ] such that sup{|Xtnk ,t
n
k+1

| : k = 0, . . . , Nn − 1}
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converges to 0 as n → ∞. We say that X has quadratic variation along π in the sense of

Föllmer if the sequence of measures (µn)n∈N on ([0, T ],B([0, T ])) defined by

µn :=

Nn−1∑
k=0

(Xtnk+1 −Xtnk
)2δtnk

converges weakly to a measure µ. The function [X] given by [X]t := µ([0, t]) is called the

quadratic variation of X along π. We say that a path X ∈ C([0, T ];Rd) has quadratic

variation along π in the sense of Föllmer if the above condition holds for Xi and Xi +Xj

for all i, j = 1, . . . , d. We then set

[Xi, Xj ] :=
1

2
([Xi +Xj ] − [Xi] − [Xj ]).

As shown in e.g. [33], an equivalent characterization of the quadratic variation along a

sequence of partitions in the sense of Föllmer is the following, which we will then continue

with.

Assumption 5.1.2 (Quadratic variation of a path). Let X ∈ C([0, T ];Rd) and π =

(πn)n∈N, with πn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a sequence of parti-

tions of the interval [0, T ] such that sup{|Xtnk ,t
n
k+1

| : k = 0, . . . , Nn − 1} converges to 0 as

n→ ∞. We assume that the quadratic variation

[X]πt := lim
n→∞

[X]π
n

t := lim
n→∞

Nn−1∑
k=0

Xtnk∧t,t
n
k+1∧t ⊗Xtnk∧t,t

n
k+1∧t, t ∈ [0, T ],

exists, where the convergence is uniform in t ∈ [0, T ].

We say that a path X ∈ C([0, T ];Rd) possesses quadratic variation relative to π if X

and π together satisfy Assumption 5.1.2.

Given this assumption then, the Föllmer integral (5.1) exists and satisfies a pathwise

Itô formula, see [67, Théorème]. However, the integral is well-defined only for functions of

gradient-type.

To generalize this and, moreover, to obtain a pathwise integral (5.2) as the limit of

general Riemann sums is the aim of this subsection. To this end, we now introduce an

additional path property which will allow us to extend the notion of the Föllmer integral.

More precisely, we additionally impose the existence of the so-called Lévy area of the path

and assume some regularity of the path itself and along the sequence of partitions, which

implies the existence of the correct (rough) integral.
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Assumption 5.1.3 (Lévy area of a path). Let X ∈ C([0, T ];Rd) and let π = (πn)n∈N, with

πn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a sequence of partitions of the interval [0, T ]

such that sup{|Xtnk ,t
n
k+1

| : k = 0, . . . , Nn − 1} converges to 0 as n → ∞, and let p ∈ (2, 3).

We assume that the Lévy area

L(X,π, [0, t]) := lim
n→∞

L(X,πn, [0, t]) := lim
n→∞

Nn−1∑
k=0

(Xtnk∧t +Xtnk+1∧t) ⊗Xtnk∧t,t
n
k+1∧t

exists, for t ∈ [0, T ], where the convergence is uniform in t ∈ [0, T ], and that there exists a

control function c such that

sup
(s,t)∈∆T

|Xs,t|p

c(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤Nn

|L(X,πn, [tnk , t
n
ℓ ]) − (Xtnk

+Xtnℓ
) ⊗Xtnk ,t

n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≲ 1.

We say that a path X ∈ C([0, T ];Rd) possesses Lévy area relative to p and π if p, π and

X together satisfy Assumption 5.1.3.

Remark 5.1.4. The Lévy area was first introduced, in a probabilistic set-up, as the area that

is enclosed by any trajectory of the Brownian motion (X1, X2) and its chord. It is defined

by 1
2(
∫ T
0 X1

t dX2
t −

∫ T
0 X2

t dX1
t ), which makes sense as a stochastic integral, see [122].

In our pathwise framework, assuming the respective limits exist, indeed, we obtain that

L(X,π, [0, t])ij − (Xi
tX

j
t −Xi

0X
j
0)

= lim
n→∞

Nn−1∑
k=0

(Xi
tnk∧t

+Xi
tnk+1∧t

)Xj
tnk∧t,t

n
k+1∧t

−
Nn−1∑
k=0

(Xi
tnk+1∧t

Xj
tnk+1∧t

−Xi
tnk∧t

Xj
tnk∧t

)

= lim
n→∞

Nn−1∑
k=0

(Xi
tnk

+ γXi
tnk ,t

n
k+1

)Xj
tnk∧t,t

n
k+1∧t

−
Nn−1∑
k=0

(Xj
tnk

+ γXj
tnk ,t

n
k+1

)Xi
tnk∧t,t

n
k+1∧t

=: lim
n→∞

∫ t

0
Xi
s dγ,π

n
Xj
s −

∫ t

0
Xj
s dγ,π

n
Xj
s

=:

∫ t

0
Xi
s dγ,πXj

s −
∫ t

0
Xj dγ,πXi

s,

for every i, j = 1, . . . , d, which thus corresponds to the usual notion of the Lévy area. We

further notice that∫ t

0
Xi
s dγ,π

n
Xj
s −

∫ t

0
Xj
s dγ,π

n
Xi
s =

∫ t

0
Xi
s d0,πnXj

s −
∫ t

0
Xj
s d0,πnXi

s,

that is, in terms of general Riemann sums, the pathwise Lévy area is invariant to the choice

of γ and coincides with the Itô-type one.

It turns out that an equivalent formulation of Assumption 5.1.3 together with, if γ ̸=
1
2 , Assumption 5.1.2, is the following path property. It generalizes Property (RIE), as
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introduced in [143] and [7], which recovers the rough integral as a limit of not compensated

but left-point Riemann sums, see [143, Theorem 4.19].

In Section 5.2 we will have a closer look at this and relate these assumptions to one

another.

Property γ-(RIE). Let X ∈ C([0, T ];Rd) and π = (πn)n∈N, with πn = {0 = tn0 <

tn1 < · · · < tnNn = T}, n ∈ N, be a sequence of partitions of the interval [0, T ] such that

sup{|Xtnk ,t
n
k+1

| : k = 0, . . . , Nn − 1} converges to 0 as n→ ∞, and let γ ∈ [0, 1], p ∈ (2, 3).

We assume that the Riemann sums
∫ t
0 Xs ⊗ dγ,π

n
Xs :=

∑Nn−1
k=0 (Xtnk

+ γXtnk ,t
n
k+1

) ⊗
Xtnk∧t,t

n
k+1∧t converge uniformly as n → ∞ to a limit, which we denote by

∫ t
0 Xs ⊗ dπXs,

t ∈ [0, T ], and that there exists a control function c such that

sup
(s,t)∈∆T

|Xs,t|p

c(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ dγ,π

n
Xs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≲ 1. (5.3)

We say that a path X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to γ, p and π

if γ, p, π and X together satisfy Property γ-(RIE).

Under Property γ-(RIE), we now turn to rough path theory and rough integration to

derive the existence of a pathwise integral that is given as a limit of general Riemann sums.

To properly define the rough integral, we first fix the correct rough path lift. Note that

X0 corresponds to the Itô-rough path lift and X
1
2 corresponds to the Stratonovich-rough

path lift of a stochastic process, since the “iterated integral” X0 and X
1
2 is given as a limit of

left-point and mid-point Riemann sums, analogously to the stochastic Itô and Stratonovich

integral, respectively.

Proposition 5.1.5. Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to

some γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. Then X extends

canonically to a continuous p-rough path Xγ := (X,Xγ), where

Xγs,t :=

∫ t

0
Xr ⊗ dγ,πXr −

∫ s

0
Xr ⊗ dγ,πXr −Xs ⊗Xs,t, (s, t) ∈ ∆T . (5.4)

Proof. It is straightforward to check that (X,Xγ) satisfies Chen’s relation and that ∥X∥p<
∞. Therefore it remains to show that ∥Xγ∥ p

2
<∞. We define Xn: [0, T ] → Rd by

Xn
t = Xt1{T}(t) +

Nn−1∑
k=0

Xtnk
1[tnk ,t

n
k+1)

(t), t ∈ [0, T ].

By Property γ-(RIE), we know that

lim
n→∞

Xγ,π
n

s,t = Xγs,t,
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for Xγ,π
n

s,t :=
∫ t
0 Xr ⊗ dγ,π

n
Xr −

∫ s
0 Xr ⊗ dγ,π

n
Xr − Xn

s ⊗ Xs,t, (s, t) ∈ ∆T , where the

convergence is uniform in (s, t). We aim to show that supn∈N∥Xγ,π
n∥ p

2
< ∞, which then

implies by the lower semi-continuity of the p
2 -variation that

∥Xγ∥ p
2
≤ lim inf

n→∞
∥Xγ,πn∥ p

2
<∞.

Let (s, t) ∈ ∆T . If there exists k such that tnk ≤ s < t ≤ tnk+1, then we estimate

|Xγ,π
n

s,t |
p
2 = |(Xtnk

+ γXtnk ,t
n
k+1

) ⊗Xs,t −Xtnk
⊗Xs,t|

p
2≲ |Xs,t|p+|Xtnk ,t

n
k+1

|p≲ c(tnk , t
n
k+1). (5.5)

Otherwise, let k0 be the smallest k such that tnk ∈ (s, t), and let k1 be the largest such k.

We decompose

Xγ,π
n

s,t = Xγ,π
n

s,tnk0
+ Xγ,π

n

tnk0
,tnk1

+ Xγ,π
n

tnk1
,t +Xn

s,tnk0
⊗Xtnk0

,tnk1
+Xn

s,tnk1
⊗Xtnk1

,t.

By (5.3), we have |Xγ,π
n

tnk0
,tnk1

|
p
2≲ c(tnk0 , t

n
k1

), and we estimate

|Xn
s,tnk0

⊗Xtnk0
,tnk1

|
p
2 +|Xn

s,tnk1
⊗Xtnk1

,t|
p
2

≲ |Xn
s,tnk0

|p+|Xtnk0
,tnk1

|p+|Xn
s,tnk1

|p+|Xtnk1
,t|p

= |Xtnk0−1,t
n
k0
|p+|Xtnk0

,tnk1
|p+|Xtnk0−1,t

n
k1
|p+|Xtnk1

,t|p

≲ 2c(tnk0−1, t).

Combining this with (5.5), we deduce that ∥Xγ,πn∥ p
2
≲ c(0, T ), and the proof is complete.

We now proceed similarly to [143]. The following lemma links Property γ-(RIE) to the

existence of quadratic variation, which we rely on when calculating the rough integral.

Lemma 5.1.6. Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to some

γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. Let 1 ≤ i, j ≤ d, and define

for γ = 1
2 , [Xi, Xj ]γ,π := 0, and for γ ̸= 1

2 ,

[Xi, Xj ]γ,πt := Xi
tX

j
t −Xi

0X
j
0 −

∫ t

0
Xi
s dγ,πXj

s −
∫ t

0
Xj
s dγ,πXi

s, t ∈ [0, T ].

Then [Xi, Xj ]γ,π is a continuous function and

[Xi, Xj ]γ,πt = lim
n→∞

[Xi, Xj ]γ,π
n

t := lim
n→∞

(1 − 2γ)

Nn−1∑
k=0

Xi
tnk∧t,t

n
k+1∧t

Xj
tnk∧t,t

n
k+1∧t

. (5.6)

The sequence ([Xi, Xj ]γ,π
n
)n∈N has uniformly bounded 1-variation, and in particular,

[Xi, Xj ]γ,π has finite 1-variation. We write [X]γ,π = [X,X]γ,π = ([Xi, Xj ]γ,π)1≤i,j≤d.
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Proof. By definition, the function [Xi, Xj ]γ,π is continuous. We observe that

Xi
tX

j
t −Xi

0X
j
0 =

Nn−1∑
k=0

(Xi
tnk+1∧t

Xj
tnk+1∧t

−Xi
tnk∧t

Xj
tnk∧t

)

for every n ∈ N, and

Xi
tnk+1∧t

Xj
tnk+1∧t

−Xi
tnk∧t

Xj
tnk∧t

= (Xi
tnk∧t

+ γXi
tnk∧t,t

n
k+1∧t

)Xj
tnk∧t,t

n
k+1∧t

+ (Xj
tnk∧t

+ γXj
tnk∧t,t

n
k+1∧t

)Xi
tnk∧t,t

n
k+1∧t

+ (1 − 2γ)Xi
tnk∧t,t

n
k+1∧t

Xj
tnk∧t,t

n
k+1∧t

.

Since (
∫ ·
0Xs ⊗ dγ,π

n
Xs) converges uniformly to

∫ ·
0Xs ⊗ dγ,πXs, the convergence in (5.6)

then holds. We further see that

Xi
tnk∧t,t

n
k+1∧t

Xj
tnk∧t,t

n
k+1∧t

=
1

4
(((Xi +Xj)tnk∧t,t

n
k+1∧t)

2 − ((Xi −Xj)tnk∧t,t
n
k+1∧t)

2)

(i.e. [Xi, Xj ]γ,π = 1
4([Xi + Xj ]γ,π − [Xi − Xj ]γ,π)). That is, [Xi, Xj ]γ,π

n
is given as the

difference of two increasing functions, and its 1-variation is bounded from above by

(1 − 2γ)

Nn−1∑
k=0

(((Xi +Xj)tnk ,t
n
k+1

)2 + ((Xi −Xj)tnk ,t
n
k+1

)2)

≲ (1 − 2γ) sup
m∈N

Nm−1∑
k=0

((Xi
tmk ,t

m
k+1

)2 + (Xj
tmk ,t

m
k+1

)2).

Since the right-hand side is finite, we obtain that the limit [Xi, Xj ]γ,π has finite 1-variation.

With the quadratic variation at hand, we apply a piecewise linear interpolation to contin-

uously approximate the path and obtain a Stratonovich-type integral, that we then translate

back into a general pathwise integral.

Lemma 5.1.7. Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to some

γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. Define X̄n as the piecewise

linear interpolation of X along π = (πn)n∈N. Then

lim
n→∞

∫ t

s
X̄n
r ⊗dX̄n

r = lim
n→∞

Nn−1∑
k=0

(Xtnk
+

1

2
Xtnk ,t

n
k+1

)⊗Xtnk∧t,t
n
k+1∧t =

∫ t

s
Xr⊗dγ,πXr+

1

2
[X]γ,πs,t ,

(5.7)

where the convergence is uniform in (s, t) ∈ ∆T . Moreover, the sequence (X̄n)n∈N has

uniformly bounded p
2 -variation, where X̄ns,t :=

∫ t
s X̄

n
s,r ⊗ dX̄n

r , (s, t) ∈ ∆T .
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Proof. Let n ∈ N and 0 ≤ k ≤ Nn−1. By definition, for t ∈ [tnk , t
n
k+1], we have

X̄n
t = Xtnk

+
t− tnk

tnk+1 − tnk
Xtnk ,t

n
k+1

,

which gives that∫ tnk+1

tnk

X̄n
r ⊗ dX̄n

r = (Xtnk
+

1

2
Xtnk ,t

n
k+1

) ⊗Xtnk ,t
n
k+1

= (Xtnk
+ γXtnk ,t

n
k+1

) ⊗Xtnk ,t
n
k+1

+
1

2
(1 − 2γ)Xtnk ,t

n
k+1

⊗Xtnk ,t
n
k+1

.

(5.8)

Lemma 5.1.6 then implies the uniform convergence and (5.7).

We now show that (X̄n)n∈N has uniformly bounded p
2 -variation. Let (s, t) ∈ ∆T . If

tnk ≤ s < t ≤ tnk+1 for some k, then we estimate

|X̄ns,t|
p
2 =

∣∣∣ ∫ t

s
X̄n
s,r ⊗ dX̄n

r

∣∣∣ p2 ≤
∣∣∣ ∫ t

s
(r − s)

|Xtnk ,t
n
k+1

|2

|tnk+1 − tnk |2
dr
∣∣∣ p2

=
1

2
p
2

|t− s|p
|Xtnk ,t

n
k+1

|p

|tnk+1 − tnk |p
≤ |t− s|

|tnk+1 − tnk |
∥X∥pp,[tnk ,tnk+1]

.

(5.9)

Otherwise, let k0 be the smallest k such that tnk ∈ (s, t), and let k1 be the largest such k. It

is straightforward to see that (X̄n, X̄n) satisfies Chen’s relation:

X̄ns,t = X̄ns,u + X̄nu,t + X̄n
s,u ⊗ X̄n

u,t

for all s ≤ u ≤ t, from which it follows that

X̄ns,t = X̄ns,tnk0
+ X̄ntnk0 ,t

n
k1

+ X̄ntnk1 ,t
+ X̄n

s,tnk0
⊗ X̄n

tnk0
,tnk1

+ X̄n
s,tnk1

⊗ X̄n
tnk1

,t.

Recalling the calculation (5.8), we get that

|X̄ntnk0 ,tnk1 |
p
2≲
∣∣∣( ∫ ·

0
Xs ⊗ dγ,π

n
Xs

)
tnk0

,tnk1

−Xtnk0
⊗Xtnk0

,tnk1

∣∣∣ p2 + |[X]γ,π
n

tnk0
,tnk1

|
p
2 ,

where [X]γ,π
n

was defined in Lemma 5.1.6. Using the inequality in (5.3) and Lemma 5.1.6,

we see that there exists a control function c̄ such that the right-hand side is bounded from

above by c̄(tnk0 , t
n
k1

). If we combine this with the estimate (5.9) and a simple estimate for

the terms X̄n
s,tnk0

⊗X̄n
tnk0

,tnk1
and X̄n

s,tnk1
⊗X̄n

tnk1
,t, we can conclude that ∥X̄n∥ p

2
≲ c̄(0, T )+∥X∥2p,

which completes the proof.

We are now able to prove that the rough integral can be obtained as a limit of general

Riemann sums given that the driving path satisfies Property γ-(RIE).
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Theorem 5.1.8. Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to

some γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. Let q > 0 be such

that 2
p + 1

q > 1. Let (Y, Y ′) ∈ C p,q
X ([0, T ];L(Rd;Rk)) be a controlled path such that Y is

continuous. Then the rough integral
∫
Y dXγ satisfies

∫ t

0
Ys dXγ

s = lim
n→∞

Nn−1∑
k=0

(Ytnk + γYtnk+1
)Xtnk∧t,t

n
k+1∧t,

where the convergence is uniform in t ∈ [0, T ].

Proof. We denote by X̄n and Ȳ n the piecewise linear interpolation of X and Y , respectively,

along π = (πn)n∈N. Thus (Ȳ n, Y ′) is controlled by X̄n, with remainder RȲ
n

s,t = Ȳ n
s,t−Y ′

sX̄
n
s,t,

(s, t) ∈ ∆T .

As shown in the proof of [143, Theorem 4.19], if p′ > p and q′ > q such that 2
p′ + 1

q′ > 0,

then (Ȳ n, Y ′, RȲ
n
) converges in (q′, p′, r′)-variation to (Y, Y ′, RY ), where 1

r′ = 1
p′ + 1

q′ .

Since the sequence (X̄n)n∈N has uniformly bounded p-variation and X̄n converges uni-

formly to X as n→ ∞, it follows by interpolation that X̄n converges to X with respect to

the p′-variation norm, i.e. ∥X̄n−X∥p′→ 0 as n→ ∞. It follows similarly using Lemma 5.1.7

that ∥(X̄n − (Xγ + 1
2 [X]γ)∥ p′

2

→ 0 and hence, also that ∥(X̄n, X̄n) − (X,Xγ + 1
2 [X]γ)∥p′→ 0

as n→ ∞.

The continuity of the Itô–Lyons map, see e.g. [71, Theorem 4.17], now yields the uniform

convergence of the rough integrals
∫
Ȳ n d(X̄n, X̄n) to the rough integral

∫
Y d(X,Xγ +

1
2 [X]γ). But for every t ∈ [0, T ], it holds that

lim
n→∞

∫ t

0
Ȳ n
s d(X̄n, X̄n)s

= lim
n→∞

∫ t

0
Ȳ n
s dX̄n

s

= lim
n→∞

Nn−1∑
k=0

(Ytnk +
1

2
Ytnk ,t

n
k+1

)Xtnk∧t,t
n
k+1∧t

= lim
n→∞

(Nn−1∑
k=0

(Ytnk + γYtnk ,t
n
k+1

)Xtnk∧t,t
n
k+1∧t +

1

2
(1 − 2γ)

Nn−1∑
k=0

Ytnk ,t
n
k+1

Xtnk∧t,t
n
k+1∧t

)
.

Since (Y, Y ′) ∈ C p,q
X , it is immediate that the second term on the right-hand side converges
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uniformly to 1
2

∫ t
0 Y

′
s d[X]γ,πs , t ∈ [0, T ]. Thus,

lim
n→∞

Nn−1∑
k=0

(Ytnk + γYtnk ,t
n
k+1

)Xtnk∧t,t
n
k+1∧t

= lim
n→∞

∫ t

0
Y n
s d(X̄n, X̄n)s −

1

2

∫ t

0
Y ′
s d[X]γ,πs

=

∫ t

0
Ys d(X,Xγ,π +

1

2
[X]γ,π)s −

1

2

∫ t

0
Y ′
s d[X]γ,πs

= lim
|P|→0

∑
[u,v]∈P

YuXu,v + Y ′
u(Xγ +

1

2
[X]γ,π)u,v −

1

2
lim

|P|→0

∑
[u,v]∈P

Y ′
u[X]γ,πu,v

= lim
|P|→0

∑
[u,v]∈P

YuXu,v + Y ′
uXγu,v

=

∫ t

0
Ys dXγ

s ,

where the limit is taken over any sequence of partitions P of the interval [0, t] with mesh

size |P|→ 0.

5.2 On the assumption of general Riemann integrals

Theorem 5.1.8 is a generalization of [143, Theorem 4.19] which states that the rough integral

can be calculated as a limit of left-point Riemann sums given that the driving path satisfies

Property γ-(RIE) for γ = 0. This assumption is also known as Property (RIE) and states

as follows for a continuous path:

Property (RIE). Let X ∈ C([0, T ];Rd) and π = (πn)n∈N, with π
n = {0 = tn0 < tn1 < · · · <

tnNn = T}, n ∈ N, be a sequence of partitions of the interval [0, T ] such that sup{|Xtnk ,t
n
k+1

| :
k = 0, . . . , Nn − 1} converges to 0 as n→ ∞, and let p ∈ (2, 3).

We assume that the left-point Riemann sums
∫ t
0 Xs⊗dπ

n
Xs :=

∑Nn−1
k=0 Xtnk

⊗Xtnk∧t,t
n
k+1∧t

converge uniformly as n→ ∞ to a limit, which we denote by
∫ t
0 Xs ⊗ dπXs, t ∈ [0, T ], and

that there exists a control function c such that

sup
(s,t)∈∆T

|Xs,t|p

c(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ dπ

n
Xs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≲ 1.

We say that a path X ∈ C([0, T ];Rd) satisfies Property (RIE) relative to p and π if p,

π and X together satisfy Property (RIE).

In the following, we relate Property γ-(RIE) to Property (RIE), depending on the pa-

rameter γ, which determines the type of Riemann sum approximation one obtains.

Lemma 5.2.1. Let X ∈ C([0, T ];Rd), γ ∈ [0, 1], p ∈ (2, 3) and π = (πn)n∈N be a sequence

of partitions of [0, T ].
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(i) Suppose γ ̸= 1
2 . X satisfies Property (RIE) if and only if X satisfies Property γ-(RIE),

both relative to p and π.

(ii) Suppose γ = 1
2 . If X satisfies Property (RIE), then X satisfies Property γ-(RIE),

both relative to p and π.

Proof. First note that∫ t

0
Xs ⊗ dγ,π

n
Xs :=

Nn−1∑
k=0

(Xtnk
+ γXtnk ,t

n
k+1

) ⊗Xtnk∧t,t
n
k+1∧t

=

Nn−1∑
k=0

Xtnk
⊗Xtnk∧t,t

n
k+1∧t + γ

Nn−1∑
k=0

Xtnk∧t,t
n
k+1∧t ⊗Xtnk∧t,t

n
k+1∧t

+ γ

Nn−1∑
k=0

(Xtnk+1∧t,t
n
k+1

−Xtnk∧t,t
n
k
) ⊗Xtnk∧t,t

n
k+1∧t

=

∫ t

0
Xs ⊗ dπ

n
Xs + γ[X]π

n

t + γ

Nn−1∑
k=0

(Xtnk+1∧t,t
n
k+1

−Xtnk∧t,t
n
k
) ⊗Xtnk∧t,t

n
k+1,∧t,

(5.10)

for t ∈ [0, T ], where we write [X]π
n

=
∑Nn−1

k=1 Xtnk∧·,t
n
k+1∧· ⊗ Xtnk∧·,t

n
k+1∧·. Secondly, note

that, for any control function c, we have

sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ dγ,π

n
Xs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≤ 2
p
2 sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ dπ

n
Xs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

+ (2γ)
p
2 sup
0≤k<ℓ≤Nn

|[X]π
n

tnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

,

(5.11)

and, for γ ̸= 1
2 , we get

sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ dπ

n
Xs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≤ 2
p
2 sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ dγ,π

n
Xs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

+
(2γ)

p
2

|1 − 2γ|
p
2

sup
0≤k<ℓ≤Nn

|[X]γ,π
n

tnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

.

(5.12)

If X satisfies Property (RIE), (
∫ ·
0Xs ⊗ dπ

n
Xs)n∈N converges uniformly to (

∫ ·
0Xs ⊗ dπXs)

and, by [143, Lemma 4.17], ([X]π
n
)n∈N converges uniformly to [X]π as n → ∞. Moreover,

again due to [143, Lemma 4.17], ([X]π
n
)n∈N has uniformly bounded 1-variation. Hence, by

(5.10) and (5.11), Property (RIE) implies Property γ-(RIE) for every γ ∈ [0, 1].

Conversely, if γ ̸= 1
2 , using Lemma 5.1.6, (5.10) and (5.12) yields that Property γ-(RIE)

implies Property (RIE).
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To gain a better understanding of these assumptions, we make the following observation:

Remark 5.2.2. Let X ∈ C([0, T ];Rd), γ ∈ [0, 1] and π = (πn)n∈N be a sequence of parti-

tions of [0, T ].

Assuming the respective limits exist, we write (Xγ,πs,t )ij =
∫ t
0 X

i
r dγ,πXj

r −
∫ s
0 X

i
r dγ,πXj

r −
Xi
sX

j
s,t, (s, t) ∈ ∆T . We decompose the iterated integrals into the symmetric and antisym-

metric components as follows:

(Xγ,πs,t )ij =
1

2
((Xγ,πs,t )ij + (Xγ,πs,t )ij) +

1

2
((Xγ,πs,t )ij − (Xγ,πs,t )ij)

=
1

2
(Xi

s,tX
j
s,t − [Xi, Xj ]γ,πs,t ) +

1

2
(L(X,π, [0, ·])s,t − (Xi

s +Xi
t)X

j
s,t)

=:
1

2
(S(X)γ,πs,t )ij +

1

2
(A(X)γ,πs,t )ij ,

for every i, j = 1, . . . , d.

For γ = 1
2 , we notice that the symmetric part reduces to 1

2Xs,t ⊗Xs,t. We realize that

for the Stratonovich-type rough path lift (implying the Stratonovich-type integral) to be well-

posed in the rough path sense, it is only required that the antisymmetric Riemann sums

converge (which do not depend on γ, see Remark 5.1.4), and that the approximative Lévy

area has uniformly bounded p
2 -variation and the path has finite p-variation. For the more

general case, it is additionally required that the symmetric Riemann sums converge. This

suffices since the approximative quadratic variation term has uniformly bounded 1-, thus
p
2 -variation by definition.

It is therefore not surprising but rather reassuring that X satisfying Property (γ-)(RIE)

is equivalent to X possessing Lévy area together with, if γ ̸= 1
2 , X possessing quadratic

variation, in the sense of Assumption 5.1.2 and Assumption 5.1.3, respectively, which im-

pose these exact assumptions. This is the content of Lemma 5.2.3, Corollary 5.2.4 and

Lemma 5.2.5.

Also from a practical perspective, these assumptions are indeed reasonable since almost

all sample paths of Brownian motion, firstly, possess quadratic variation relative to π if

πn log(n) → 0 as n → ∞, see [60], and [122], while notably having infinite p-variation for

p ≤ 2. Secondly, it follows from e.g. [74, Theorem 14.16, Exercise 15.44] and the fact that

almost all sample paths of Brownian motion are 1
p -Hölder continuous for p ∈ (2, 3) that

almost all sample paths of Brownian motion possess Lévy area relative to p and, e.g., the

dyadic partitions, i.e., πn = {kT2−n}2nk=0, n ∈ N.

Lemma 5.2.3. Let X ∈ C([0, T ];Rd), p ∈ (2, 3) and π = (πn)n∈N be a sequence of partitions

of [0, T ].

X satisfies Property (RIE) if and only if X possesses quadratic variation and Lévy area,

both relative to p and π.
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Proof. First, note that

L(X,πn, [0, t]) =

Nn−1∑
k=0

(Xtnk∧t +Xtnk+1∧t) ⊗Xtnk∧t,t
n
k+1∧t

= 2

Nn−1∑
k=0

Xtnk∧t ⊗Xtnk∧t,t
n
k+1∧t +

Nn−1∑
k=0

Xtnk∧t,t
n
k+1∧t ⊗Xtnk∧t,t

n
k+1∧t

= 2

∫ t

0
Xs ⊗ dπ

n
Xs + 2

Nn−1∑
k=0

Xtnk ,t
n
k∧t ⊗Xtnk∧t,t

n
k+1∧t + [X]π

n

t ,

(5.13)

for t ∈ [0, T ], where we write [X]π
n

=
∑Nn−1

k=1 Xtnk∧·,t
n
k+1∧· ⊗ Xtnk∧·,t

n
k+1∧·. Secondly, note

that, for any control function c, we have

sup
0≤k<ℓ≤Nn

|L(X,πn, [tnk , t
n
ℓ ]) − (Xtnk

+Xtnℓ
) ⊗Xtnk ,t

n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≲ sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ dπ

n
Xs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

+ sup
0≤k<ℓ≤Nn

|Xtnk ,t
n
ℓ
⊗Xtnk ,t

n
ℓ
|
p
2

c(tnk , t
n
ℓ )

+ sup
0≤k<ℓ≤Nn

|[X]π
n

tnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

,

(5.14)

and

sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ dπ

n
Xs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≲ sup
0≤k<ℓ≤Nn

|L(X,πn, [tnk , t
n
ℓ ]) − (Xtnk

+Xtnℓ
) ⊗Xtnk ,t

n
ℓ
|
p
2

c(tnk , t
n
ℓ )

+ sup
0≤k<ℓ≤Nn

|Xtnk ,t
n
ℓ
⊗Xtnk ,t

n
ℓ
|
p
2

c(tnk , t
n
ℓ )

+ sup
0≤k<ℓ≤Nn

|[X]π
n

tnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

.

(5.15)

IfX satisfies Property (RIE), then (
∫ ·
0Xs⊗dπ

n
Xs)n∈N converges uniformly to (

∫ ·
0Xs⊗dπXs)

and, by [143, Lemma 4.17], X possesses quadratic variation, that is, ([X]π
n
)n∈N converges

uniformly to [X]π as n → ∞. And, again due to [143, Lemma 4.17], ([X]π
n
)n∈N has

uniformly bounded 1-variation. Hence, by (5.13) and (5.14), if X satisfies Property (RIE),

then it possesses quadratic variation and Lévy area.

Conversely, if X possesses quadratic variation, ([X]π
n
)n∈N converges uniformly to [X]π

as n → ∞, and as in the proof of [143, Lemma 4.17], one can show that ([X]π
n
)n∈N has

uniformly bounded 1-variation. If X possesses Lévy area, (L(X,πn, [0, ·]))n∈N converges

uniformly to L(X,π, [0, ·]) as n → ∞. By (5.13) and (5.15), if X possesses quadratic

variation and Lévy area, it satisfies Property (RIE).

Corollary 5.2.4. Let X ∈ C([0, T ];Rd), γ ∈ [0, 1], p ∈ (2, 3) and π = (πn)n∈N be a sequence

of partitions of [0, T ].
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X satisfies Property γ-(RIE) relative to γ ̸= 1
2 if and only if X possesses quadratic

variation and Lévy area, both relative to p and π.

Lemma 5.2.5. Let X ∈ C([0, T ];Rd), γ ∈ [0, 1], p ∈ (2, 3) and π = (πn)n∈N be a sequence

of partitions of [0, T ].

X satisfies Property γ-(RIE) relative to γ = 1
2 , p and π if and only if X possesses Lévy

area relative to p and π.

Proof. We note that

L(X,πn, [0, t]) :=

Nn−1∑
k=0

(Xtnk∧t +Xtnk+1∧t)Xtnk∧t,t
n
k+1∧t

= 2

∫ t

0
Xs ⊗ d

1
2
,πnXs +

Nn−1∑
k=0

(Xtnk ,t
n
k∧t +Xtnk+1,t

n
k+1∧t)Xtnk∧t,t

n
k+1∧t,

(5.16)

for t ∈ [0, T ]. And therefore, for any control function c, we have that

sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ d

1
2
,πnXs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≤ sup
0≤k<ℓ≤Nn

|L(X,πn, [tnk , t
n
ℓ ]) − (Xtnk

+Xtnℓ
) ⊗Xtnk ,t

n
ℓ
|
p
2

c(tnk , t
n
ℓ )

+ sup
0≤k<ℓ≤Nn

|Xtnk ,t
n
ℓ
⊗Xtnk ,t

n
ℓ
|
p
2

c(tnk , t
n
ℓ )

,

(5.17)

and

sup
0≤k<ℓ≤Nn

|L(X,πn, [tnk , t
n
ℓ ]) −Xtnk ,t

n
ℓ
⊗Xtnk ,t

n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≲ sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ d

1
2
,πnXs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

+ sup
0≤k<ℓ≤Nn

|Xtnk ,t
n
ℓ
⊗Xtnk ,t

n
ℓ
|
p
2

c(tnk , t
n
ℓ )

.

(5.18)

If X possesses Lévy area, then (L(X,πn, [0, ·]))n∈N converges uniformly to L(X,π, [0, ·]) as

n→ ∞, and if X satisfies Property γ-(RIE) for γ = 1
2 , then (

∫ ·
0Xs⊗d

1
2
,πnXs)n∈N converges

uniformly to (
∫ ·
0Xs ⊗ d

1
2
,πXs). Hence, by (5.16) and (5.17), if X possesses Lévy area, it

satisfies Property γ-(RIE) relative to γ = 1
2 , and, conversely, by (5.16) and (5.18), if X

satisfies Property γ-(RIE) relative to γ = 1
2 , it possesses Lévy area.

5.3 Application to stochastic integration

In this section, we apply the deterministic integration theory developed in Section 5.1 to

stochastic integration. For this purpose, let X be a d-dimensional continuous semimartin-

gale, defined on a probability space (Ω,F ,P) with a filtration (Ft)t∈[0,T ] satisfying the usual

conditions, i.e., completeness and right-continuity.
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It is well-known that the semimartingale X can be lifted to a random rough path via

Itô integration, see [41]. We have also proven that Property (RIE) ensures that the random

rough paths X = (X,X) with X defined pathwise via the canonical rough path lift and with

X defined by Itô integration coincide almost surely, see part (i) of Lemma 3.2.1, and that

the random rough integral of a semimartingale coincides almost surely with the associated

stochastic Itô integral, see Proposition 4.2.4.

With Property γ-(RIE) for γ = 1
2 at hand, we are now able to show this for Stratonovich

integration. It is well-known that the semimartingale X can be lifted to a random rough

path via Stratonovich integration, by defining X = (X,X) ∈ Cp([0, T ];Rd), P-a.s., for any

p ∈ (2, 3), where

Xs,t :=

∫ t

s
(Xr −Xs) ⊗ ◦dXr =

∫ t

s
Xr ⊗ ◦dXr −Xs ⊗Xs,t, (s, t) ∈ ∆T , (5.19)

see [41]. It turns out that, if the semimartingale X satisfies Property γ-(RIE) relative to

γ = 1
2 , p ∈ (2, 3) and a suitable sequence of partitions π, then the canonical random rough

path coincides almost surely with the Stratonovich rough path lift and the random rough

integral coincides almost surely with the associated stochastic Stratonovich integral.

Lemma 5.3.1. Let p ∈ (2, 3) and let πn = {τnk }, n ∈ N, be a sequence of adapted partitions

(so that each τnk is a stopping time), such that for almost every ω ∈ Ω, (πn(ω))n∈N is a

sequence of (finite) partitions of [0, T ] with vanishing mesh size.

Let X be a d-dimensional continuous semimartingale, and suppose that for almost every

ω ∈ Ω, sup{|Xτnk (ω),τ
n
k+1(ω)

(ω)| : k = 0, . . . , Nn − 1} converges to 0 as n → ∞, and that the

sample path X(ω) satisfies Property γ-(RIE) relative to γ = 1
2 , p and (πn(ω))n∈N.

(i) The random rough paths X = (X,X), with X defined pathwise via (5.4) for γ = 1
2 ,

and with X defined by stochastic integration as in (5.19), coincide P-almost surely.

(ii) Let (Y, Y ′) be a continuous semimartingale. Suppose that, for almost every ω ∈ Ω,

(Y (ω), Y ′(ω)) is a controlled path in C p
X(ω)([0, T ];L(Rd;Rk)). Then the rough and

Stratonovich integrals of Y against X coincide P-almost surely, that is,∫ t

0
Ys(ω) dX

1
2
s (ω) =

(∫ t

0
Ys ◦ dXs

)
(ω), t ∈ [0, T ],

holds for almost every ω ∈ Ω, where X
1
2 (ω) is the canonical rough path lift of X(ω)

as defined in Proposition 5.1.5, using Property γ-(RIE) for γ = 1
2 .

Proof. (i): By construction, the pathwise rough integral
∫ t
0 Xr(ω)⊗d

1
2
,πXr(ω) constructed

via Property γ-(RIE) for γ = 1
2 is given by the limit as n→ ∞ of mid-point Riemann sums:

Nn−1∑
k=0

1

2
(Xτnk (ω)

(ω) +Xτnk+1(ω)
(ω)) ⊗Xτnk (ω)∧t,τ

n
k+1(ω)∧t(ω).
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It is known that these Riemann sums also converge uniformly in probability to the Strato-

novich integral
∫ t
0 Xr⊗◦dXr (see e.g. [147, Chapter II, Theorem 21, Theorem 22]), and the

result thus follows from the (almost sure) uniqueness of limits.

(ii): By, e.g., [147, Chapter II, Theorem 21, Theorem 23], we have that

Nn−1∑
k=0

1

2
(Yτnk + Yτnk+1

)Xτnk ∧t,τ
n
k+1∧t −→

∫ t

0
Ys ◦ dXs as n→ ∞,

where the convergence holds uniformly (in t ∈ [0, T ]) in probability. By taking a subsequence

if necessary, we can then assume that the (uniform) convergence holds almost surely. On

the other hand, by Theorem 5.1.8, we know that for almost every ω ∈ Ω,

Nn−1∑
k=0

1

2
(Yτnk (ω)(ω) + Yτnk+1(ω)

(ω))Xτnk (ω)∧t,τ
n
k+1(ω)∧t(ω) −→

∫ t

0
Ys(ω) dX

1
2
s (ω) as n→ ∞

uniformly in t ∈ [0, T ]. The result thus follows by the uniqueness of limits.

We now heuristically remark that various semimartingales (and non-semimartingales)

satisfy Property γ-(RIE) (particularly for γ = 1
2) relative to suitable sequences of partitions,

making the developed theory applicable to a broad class of stochastic processes.

Due to Lemma 5.2.1, Property γ-(RIE) holds relative to any γ ∈ [0, 1], if Property (RIE)

holds. This in turn holds true for almost all sample paths of the following stochastic

processes relative to p ∈ (2, 3) and suitable sequences of partitions; for details see Section 3.2

and Section 3.3:

• Brownian motion, relative to sequences of equidistant partitions (πn)n∈N such that

|πn|2−
4
p log(n) → 0 as n→ ∞,

• Itô processes, relative to the sequence of dyadic partitions, i.e., πn = {k2−nT}2nk=0,

n ∈ N,

• continuous semimartingales, relative to the sequence of partitions πn = {τnk : k ∈
N∪{0}}, n ∈ N, where τn0 = 0, τnk = inf{t > τnk−1 : |t−τnk−1|+|Xt−Xτnk−1

|≥ 2−n}∧T ,

k ∈ N.

• the pair (W,WH), where W denotes the Brownian motion and WH the fractional

Brownian motion with Hurst parameter H > 1
2 , relative to sequences of equidistant

partitions (πn)n∈N such that (πn)
2− 4

p → 0 as n→ ∞,

• the pair (η,W ), where η denotes a deterministic 1
p -Hölder continuous path, relative

to the sequence of dyadic partitions.
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Interestingly, since Property γ-(RIE) relative to γ = 1
2 is equivalent to the property of pos-

sessing Lévy area, we can extend the class of stochastic processes by a non-semimartingale

example, namely the fractional Brownian motion for Hurst parameter H ∈ (13 ,
1
2). The sam-

ple paths of fractional Brownian motion do not possess quadratic variation, see e.g. [148, 61],

consequently they do not satisfy Property (RIE), see also Lemma 5.2.3, and therefore do

not fit in our Itô-type setting. For the Stratonovich-type integral, however, we are able to

resolve the issue since almost all sample paths of the fractional Brownian motion possess

Lévy area relative to the dyadic partitions, which follows from the fact that almost all sam-

ple paths of fractional Brownian motion are of finite 1
α -variation for α < H and e.g. [42,

Theorem 2], who construct a rough path lift over the fractional Brownian motion using

dyadic approximations.
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Chapter 6

Universal approximation with Itô-type signatures

The signature of a path plays a prominent role in the theory of rough paths, initiated by

Lyons in [129], which has emerged as an improved framework for dealing with interactions

in complex random evolving systems.

It can be formally defined as the enhancement of a path X: [0, T ] → Rd by all iterated

integrals of the path against itself∫
0<t1<...<tn<T

dXi1
t1
· · · dXin

tn ,

for i1, . . . , in ∈ {1, . . . , d}, n ∈ N; see the early works of Chen [28, 29]. This collection of all

iterated integrals (given a suitable notion of integration) summarizes the full evolution and

interactions of the components of the path effectively: the signature is known to provide an

intriguing nonlinear characterization of the path that is unique up to general reparametriza-

tions, see [87] for paths of finite 1-variation. Importantly, due to its rich algebraic structure,

linear functionals on the signature approximate continuous path functionals arbitrarily well

on compact sets; this is known as the universal approximation theorem.

Thus the signature can be used to faithfully and tractably represent the key features from

highly oscillatory streams of data, which is important in the context of machine learning.

Recently, a significant strand of research has been concerned with developing data-driven

methods based on the signature to exploit its desirable and rich mathematical properties

for applications in mathematical finance. These are manifold and include asset pricing [127,

11, 19], optimal execution [100], and calibration of financial models [12, 45, 44], to name

but a few.

In this context, the theory of signatures has been adopted to a probabilistic setting

using Stratonovich integration. This is the natural choice because the Stratonovich integral

satisfies the classical first order calculus, which yields the exact algebraic and geometric

properties of the associated signature implying its “universal nonlinearity”.
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However for financial applications, from a modeling perspective, Itô integration is typi-

cally more reasonable because the stochastic process so described is a martingale, and when

used as a capital process it guarantees the absence of arbitrage.

Moreover, the signature associated with Itô integration may offer statistical advantages;

see [83] for a comparison with Stratonovich integration with respect to statistical consistency

of the Lasso estimator using the signature.

This presents a gap between the theory of signatures and the use of Itô integration, we

aim to address in this chapter.

While [88] take the signature in this regard as a universal polynomial regression basis,

we show that the signature using Itô integration is able to serve as a linear regression basis

for continuous functionals.

For this purpose, we make use of rough path theory and assume a path property which

ensures that the rough integral exists as a limit of Riemann sums along a suitable sequence of

partitions. This is Property γ-(RIE), which has been introduced in Chapter 5 and provides

a unifying framework for general pathwise stochastic integration that can be applied to

continuous semimartingales.

This chapter is structured as follows. In Section 6.1 we introduce a notion of the

signature of the path based on Property γ-(RIE), recovering Stratonovich-type or Itô-type

integration, depending on the choice of the parameter γ. When extending the path by

suitable quadratic variation terms, we are able to prove a universal approximation theorem

for linear functionals on the so-called γ-signature, see Section 6.2. This is then translated

into the probabilistic setting in Section 6.3, where we derive a universal approximation

theorem using Itô-signatures of continuous semimartingales.

Since this approach is motivated by its use for mathematical finance, we intend to

promptly explore suitable applications thereof in future work.

6.1 The signature using general pathwise stochastic integration

We will first recall some essentials from the theory of signatures and rough paths, which we

divide into the algebraic and analytic concepts. For a more detailed introduction, we refer

to [130, 74].

6.1.1 Algebraic setting for signatures

The tensor algebra and the extended tensor algebra on Rd are defined by

T (Rd) :=
∞⊕
n=0

(Rd)⊗n and T ((Rd)) :=
∞∏
n=0

(Rd)⊗n,
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where (Rd)⊗n denotes the n-fold tensor product of Rd, with the convention (Rd)⊗0 := R.

We equip T ((Rd)) with the standard addition +, tensor multiplication ⊗ and scalar

multiplication, which is defined for a = (a(n))∞n=0,b = (b(n))∞n=0 ∈ T ((Rd)), λ ∈ R, by

setting

a + b := (a(n) + b(n))∞n=0,

a⊗ b := (
∑
i+j=n

a(i) ⊗ b(j))∞n=0,

λa := (λa(n))∞n=0.

We observe that (T ((Rd)),+, ·,⊗) is a real non-commutative algebra. The neutral element

is (1, 0, . . . , 0, . . . ).

Let (e1, . . . , ed) be the canonical basis of Rd. The Lie algebra that is generated from

{e1, . . . , ed}, where ei := (0, ei, 0, . . . ) ∈ T (Rd), and the commutator bracket

[a,b] = a⊗ b− b⊗ a, a,b ∈ T (Rd),

is called the free Lie algebra g(Rd) over Rd, see e.g. [74, Section 7.3]. It is a subalgebra of

T0((Rd)), where we define for c ∈ R, the tensor subalgebra Tc((Rd)) := {a = (a(n))∞n=0 ∈
T ((Rd)) : a(0) = c}.

The free Lie group G((Rd)) := exp(g(Rd)) is defined as the tensor exponential of g(Rd),
i.e., its image under the map

exp⊗:T0((Rd)) → T ((Rd)), a 7→ 1 +

∞∑
k=1

1

k!
a⊗k.

G((Rd)) is a subgroup of T1((Rd)). In fact, (G((Rd)),⊗) is a group with unit element

(1, 0, . . . , 0, . . . ), and for all g = exp⊗(a) ∈ G((Rd)), the inverse with respect to ⊗ is given

by g−1 = exp⊗(−a), for g = exp⊗(a) ∈ G((Rd)). We call elements in G((Rd)) group-like

elements. For N ∈ N, the truncated tensor algebra on Rd is defined by

TN (Rd) :=

N⊕
n=0

(Rd)⊗n.

For any a = (a(n))Nn=0 ∈ TN (Rd), we set

|a|TN (Rd):= max
n=0,...,N

|a(n)|(Rd)⊗n ,

where we write |·| for the Euclidean norm, on Rd or (Rd)⊗n for some n ∈ N. We consider

the maps Πn:T ((Rd)) → (Rd)⊗n and Π≤N :T ((Rd)) → TN (Rd), where Πn(a) = a(n) and

Π≤N (a) = (a(0), . . . , a(N)), for a = (a(n))∞n=0 ∈ T ((Rd)). We set for c ∈ R, TNc (Rd) :=
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{Π≤N (a) : a ∈ Tc((Rd))}. Then TN1 (Rd) is a Lie group under the tensor multiplication ⊗,

truncated beyond level N . We equip TN1 (Rd) with the metric

ρ(a,b) := |a− b|TN (Rd)= max
n=1,...,N

|(a− b)(n)|(Rd)⊗n ,

for a = (a(n))Nn=0,b = (b(n))Nn=0 ∈ TN1 (Rd), which arises from the norm on TN (Rd).
The free nilpotent Lie algebra and the free nilpotent Lie group of order N are defined

by gN (Rd) := Π≤N (g(Rd)) and GN (Rd) := Π≤N (G((Rd))), respectively. That is,

gN (Rd) = {0} ⊕ Rd ⊕ [Rd,Rd] ⊕ . . .⊕ [Rd, [Rd, . . . [Rd,Rd]]]︸ ︷︷ ︸
N − 1 brackets

⊆ TN0 (Rd).

Then GN (Rd) is a subgroup of TN1 (Rd) with respect to ⊗.

Defining the truncated tensor exponential via the corresponding (finite) power series in

the truncated tensor algebra, we have that GN (Rd) = expN⊗ (gN (Rd)).

Now, let I = (i1, . . . , i|I|) be a multi-index (with entries in {1, . . . , d}) of length |I|. We

recall the canonical basis (e1, . . . , ed) of Rd, and set eI := ei1 ⊗ . . . ⊗ ei|I| . If |I|= 1, set

I ′ = ∅, if |I|≥ 1, I ′ = (i1, . . . , i|I|−1). Moreover, we denote by e∅ the basis element of (Rd)⊗0

and set |∅|:= 0. This allows to write a ∈ T ((Rd)) as

a =
∑
|I|≥0

aIeI ,

for some aI ∈ R. Furthermore, for a ∈ T (Rd) and b ∈ T ((Rd)), we set

⟨a,b⟩ :=
∑
|I|≥0

⟨aI ,bI⟩.

Then (eI){I:|I|=n} is the canonical orthonormal basis of (Rd)⊗n with respect to this inner

product. In particular, bI = ⟨eI ,b⟩.
Associating ℓ ∈ T (Rd) with a linear functional ⟨ℓ, ·⟩:T ((Rd)) → R, we write

⟨ℓ,a⟩ :=
∑

0≤|I|≤N

ℓI⟨eI ,a⟩, a ∈ T ((Rd)),

for ℓ =
∑

0≤|I|≤N ℓIeI , where ℓI := ⟨eI , ℓ⟩ ∈ R and N ∈ N0.

For two multi-indices I = (i1, . . . , i|I|), J = (j1, . . . , j|J |) with entries in {1, . . . , d}, the

shuffle product is recursively defined by

eI � eJ := (eI′ � eJ)� ei|I| + (eI � eJ ′)� ej|J| ,

with eI � e∅ := e∅ � eI := eI . For a,b ∈ T (Rd), we then set

a� b =
∑

|I|,|J |≥0

aIbJ(eI � eJ)
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and for a,b ∈ T ((Rd)), we set

⟨eI ,a� b⟩ = ⟨eI ,Π|I|(a)Π|I|(b)⟩.

For all a ∈ G((Rd)), the shuffle product property holds, i.e., for two multi-indices I =

(i1, . . . , i|I|), J = (j1, . . . , j|J |), it holds that

⟨eI ,a⟩⟨eJ ,a⟩ = ⟨eI � eJ ,a⟩.

6.1.2 Essentials on rough path theory

Throughout, we let T > 0 be a fixed finite time horizon. We let ∆T := {(s, t) ∈ [0, T ]2 :

s ≤ t} denote the standard 2-simplex.

We shall write a ≲ b to mean that there exists a constant C > 0 such that a ≤ Cb.

The constant C may depend on the normed space, e.g. through its dimension or regularity

parameters.

For a normed space (E, |·|), we let C([0, T ];E) denote the set of continuous paths from

[0, T ] to E. For X ∈ C([0, T ];E), the supremum seminorm of the path X is given by

∥X∥∞:= sup
t∈[0,T ]

|Xt|,

and for p ≥ 1, the p-variation of the path X is given by

∥X∥p:= ∥X∥p,[0,T ] with ∥X∥p,[s,t]:=
(

sup
P⊂[s,t]

∑
[u,v]∈P

|Xv −Xu|p
) 1
p

, (s, t) ∈ ∆T ,

where the supremum is taken over all possible partitions P of the interval [s, t]. We recall

that, given a path X, we have that ∥X∥p<∞ if and only if there exists a control function

c such that 1

sup
(u,v)∈∆T

|Xv −Xu|p

c(u, v)
<∞.

We write Cp-var = Cp-var([0, T ];E) for the space of paths X ∈ C([0, T ];E) which satisfy

∥X∥p<∞. Moreover, for a path X ∈ C([0, T ];Rd), we will often use the shorthand notation:

Xs,t := Xt −Xs, for (s, t) ∈ ∆T .

For r ≥ 1 and a two-parameter function X: ∆T → E, we similarly define

∥X∥r:= ∥X∥r,[0,T ] with ∥X∥r,[s,t]:=
(

sup
P⊂[s,t]

∑
[u,v]∈P

|Xu,v|r
) 1
r

, (s, t) ∈ ∆T .

We write Cr-var2 = Cr-var2 (∆T ;E) for the space of continuous functions X: ∆T → E which

satisfy ∥X∥r<∞.

For p ∈ [2, 3), a pair X = (X,X) is called a (continuous) p-rough path over Rd if

1Here and throughout, we adopt the convention that 0
0
:= 0.
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(i) X ∈ Cp-var([0, T ];Rd) and X ∈ C
p
2
-var

2 (∆T ;Rd×d), and

(ii) Chen’s relation: Xs,t = Xs,u + Xu,t +Xs,u ⊗Xu,t holds for all 0 ≤ s ≤ u ≤ t ≤ T .

In component form, condition (ii) states that Xijs,t = Xijs,u + Xiju,t + Xi
s,uX

j
u,t for every i

and j. We will denote the space of p-rough paths by Cp = Cp([0, T ];Rd). On the space

Cp([0, T ];Rd), we use the natural seminorm

∥X∥p:= ∥X∥p,[0,T ] with ∥X∥p,[s,t]:= ∥X∥p,[s,t]+∥X∥ p
2
,[s,t]

for (s, t) ∈ ∆T .

Similarly, for p ≥ 1, and N ∈ N, the p-variation of X≤N : [0, T ] → T≤N (Rd) is given by

∥X≤N∥p,[s,t]:= max
1≤m≤N

sup
P⊂[s,t]

( ∑
[u,v]∈P

|Πm(X≤N
u,v )|

p
m

)m
p

, (s, t) ∈ ∆T ,

where now X≤N
s,t := (X≤N

s )−1 ⊗ X≤N
t , (s, t) ∈ ∆T , and we write ∥X≤N∥p:= ∥X≤N∥p,[0,T ].

For X≤N , X̃≤N : [0, T ] → T≤N (Rd), we define the p-variation distance

∥X≤N ; X̃≤N∥p,[s,t]:= ∥X≤N − X̃≤N∥p,[s,t], (s, t) ∈ ∆T ,

and we write ∥X≤N ; X̃≤N∥p= ∥X≤N ; X̃≤N∥p,[0,T ].
Here, we equip GN (Rd) with the (inhomogeneous) subspace topology of TN (Rd). In the

literature, the (homogeneous) p-variation of a GN (Rd)-valued path is often defined in terms

of the Carnot–Carathéodory metric, see e.g. [74, Chapter 8]. This is consistent because the

induced topology on GN (Rd) coincides with the one induced by the Carnot–Carathéodory

metric, see e.g. [74, Section 8.1.2 and 8.1.3].

A continuous path X≤⌊p⌋: [0, T ] → G⌊p⌋(Rd) is called a weakly geometric p-rough path, if

X≤⌊p⌋
0 = 1 and ∥1;X≤⌊p⌋∥p<∞, where 1 := (1, 0, . . . , 0) ∈ T ⌊p⌋(Rd).

We will denote the space of weakly geometric continuous p-rough paths by Cp-varo =

Cp-varo ([0, T ];G⌊p⌋(Rd)) and equip it with the distance ∥· ; ·∥p.

An algebraic condition for a p-rough path to be weakly geometric is that the symmetric

part of the rough path lift is determined by the increments of the path.

Lemma 6.1.1. Let p ∈ (2, 3). Let (X,X) ∈ Cp([0, T ];Rd) be a continuous p-rough path

such that S(X0,t) = 1
2X0,t ⊗ X0,t, t ∈ [0, T ], where we consider the decomposition into the

symmetric and the antisymmetric part given by

X0,t = S(X0,t) + A(X0,t) :=
1

2
(X0,t + X⊤

0,t) +
1

2
(X0,t − X⊤

0,t),

where (·)⊤ denotes matrix transposition. Then X≤2 is a weakly geometric p-rough path, i.e.,

X≤2 ∈ Cp-varo , where X≤2 is defined by

X≤2
t := (1, X0,t,X0,t), t ∈ [0, T ].
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Proof. Recall that G2(Rd) = exp2
⊗(g2(Rd)), where g2(Rd) = {0} ⊕ Rd ⊕ [Rd,Rd]. It holds

that [Rd,Rd] = span{ei ⊗ ej − ej ⊗ ei : 1 ≤ i, j ≤ d}. Therefore [Rd,Rd] equals the set of

antisymmetric d× d-matrices and it follows that, for any t ∈ [0, T ],

X≤2
t = (1, X0,t,

1

2
X0,t ⊗X0,t + A(X0,t)) = exp2

⊗(0, X0,t,A(X0,t)) ∈ G2(Rd).

Finally, since (X,X) ∈ Cp([0, T ];Rd), it particularly holds that ∥1;X≤2∥p<∞.

Remark 6.1.2. This condition is a consequence of “first order calculus” and therefore valid

in the context of stochastic Stratonovich integration.

6.1.3 On Property γ-(RIE)

We develop a notion of signatures using the path assumption Property γ-(RIE), which

allows to construct pathwise (iterated) integrals as limits of general Riemann sums. It is

an extension of Property (RIE), which we have established in detail in Chapter 5. We now

give the path properties and the statements required in this chapter. For the proofs and an

equivalent and more intuitive characterization of the path property, we refer to Chapter 5.

Property γ-(RIE). Let X ∈ C([0, T ];Rd) and π = (πn)n∈N, with πn = {0 = tn0 <

tn1 < · · · < tnNn = T}, n ∈ N, be a sequence of partitions of the interval [0, T ] such that

sup{|Xtnk ,t
n
k+1

| : k = 0, . . . , Nn − 1} converges to 0 as n→ ∞, and let γ ∈ [0, 1], p ∈ (2, 3).

We assume that the Riemann sums
∫ t
0 Xs ⊗ dγ,π

n
Xs :=

∑Nn−1
k=0 (Xtnk

+ γXtnk ,t
n
k+1

) ⊗
Xtnk∧t,t

n
k+1∧t converge uniformly as n → ∞ to a limit, which we denote by

∫ t
0 Xs ⊗ dπXs,

t ∈ [0, T ], and that there exists a control function c such that

sup
(s,t)∈∆T

|Xs,t|p

c(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ dγ,π

n
Xs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≲ 1.

We say that a path X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to γ, p and π

if γ, p, π and X together satisfy Property γ-(RIE).

Proposition 6.1.3 (Proposition 5.1.5). Suppose that X ∈ C([0, T ];Rd) satisfies Property

γ-(RIE) relative to some γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N.

Then X extends canonically to a continuous p-rough path Xγ := (X,Xγ), where

Xγs,t :=

∫ t

0
Xr ⊗ dγ,πXr −

∫ s

0
Xr ⊗ dγ,πXr −Xs ⊗Xs,t, (s, t) ∈ ∆T .

We note that X0 corresponds to the Itô-rough path lift and X
1
2 corresponds to the

Stratonovich-rough path lift of a stochastic process, since the “iterated integral” X0 and X
1
2

is given as a limit of left-point and mid-point Riemann sums, analogously to the stochastic

Itô and Stratonovich integral, respectively, see also Section 6.3.
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Lemma 6.1.4 (Lemma 5.1.6). Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE)

relative to some γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. Let

1 ≤ i, j ≤ d, and define for γ = 1
2 , [Xi, Xj ]γ,π := 0, and for γ ̸= 1

2 ,

[Xi, Xj ]γ,πt := Xi
tX

j
t −Xi

0X
j
0 −

∫ t

0
Xi
s dγ,πXj

s −
∫ t

0
Xj
s dγ,πXi

s, t ∈ [0, T ].

Then [Xi, Xj ]γ,π is a continuous function and

[Xi, Xj ]γ,πt = lim
n→∞

[Xi, Xj ]γ,π
n

t := lim
n→∞

(1 − 2γ)

Nn−1∑
k=0

Xi
tnk∧t,t

n
k+1∧t

Xj
tnk∧t,t

n
k+1∧t

.

The sequence ([Xi, Xj ]γ,π
n
)n∈N has uniformly bounded 1-variation, and in particular,

[Xi, Xj ]γ,π has finite 1-variation. We write [X]γ,π = [X,X]γ,π = ([Xi, Xj ]γ,π)1≤i,j≤d.

Lemma 6.1.5. Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to some

γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. Define X̄n as the piecewise

linear interpolation of X along π = (πn)n∈N. Then

lim
n→∞

∫ t

s
X̄n
r ⊗dX̄n

r = lim
n→∞

Nn−1∑
k=0

(Xtnk
+

1

2
Xtnk ,t

n
k+1

)⊗Xtnk∧t,t
n
k+1∧t =

∫ t

s
Xr⊗dγ,πXr+

1

2
[X]γ,πs,t ,

where the convergence is uniform in (s, t) ∈ ∆T . Moreover, the sequence (X̄n)n∈N has

uniformly bounded p
2 -variation, where X̄ns,t :=

∫ t
s X̄

n
s,r ⊗ dX̄n

r , (s, t) ∈ ∆T .

We will actually continue working under Property γ-(RIE), as it is more general, but

we briefly want to point out the theoretical relation to Property (RIE), which has been

introduced in [143] and [5], and utilized in Chapter 3 and Chapter 4.

Property (RIE). Let X ∈ C([0, T ];Rd) and π = (πn)n∈N, with π
n = {0 = tn0 < tn1 < · · · <

tnNn = T}, n ∈ N, be a sequence of partitions of the interval [0, T ] such that sup{|Xtnk ,t
n
k+1

| :
k = 0, . . . , Nn − 1} converges to 0, and let p ∈ (2, 3).

We assume that the left-point Riemann sums
∫ t
0 Xs⊗dπ

n
Xs :=

∑Nn−1
k=0 Xtnk

⊗Xtnk∧t,t
n
k+1∧t

converge uniformly as n→ ∞ to a limit, which we denote by
∫ t
0 Xs ⊗ dπXs, t ∈ [0, T ], and

that there exists a control function c such that

sup
(s,t)∈∆T

|Xs,t|p

c(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤Nn

|(
∫ ·
0Xs ⊗ dπ

n
Xs)tnk ,t

n
ℓ
−Xtnk

⊗Xtnk ,t
n
ℓ
|
p
2

c(tnk , t
n
ℓ )

≲ 1.

We say that a path X ∈ C([0, T ];Rd) satisfies Property (RIE) relative to p and π if p,

π and X together satisfy Property (RIE).

Lemma 6.1.6 (Lemma 5.2.1). Let X ∈ C([0, T ];Rd), γ ∈ [0, 1], p ∈ (2, 3) and π = (πn)n∈N

be a sequence of partitions of [0, T ].
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(i) Suppose γ ̸= 1
2 . X satisfies Property (RIE) if and only if X satisfies Property γ-(RIE),

both relative to p and π.

(ii) Suppose γ = 1
2 . If X satisfies Property (RIE), then X satisfies Property γ-(RIE),

both relative to p and π.

Analogously to Property (RIE), see Proposition 3.1.10, Property γ-(RIE) is stable under

perturbation by a path of finite q-variation for q ∈ (1, 2), which then falls into the regime

of Young integration. The proof of the following lemma can be found in Appendix A.5.

Lemma 6.1.7. Let X ∈ C([0, T ];Rd), γ ∈ [0, 1], p ∈ (2, 3) and π = (πn)n∈N, with π
n =

{0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a sequence of partitions. Suppose that X satisfies

Property γ-(RIE) relative to γ, p and π. Let φ ∈ Cq-var([0, T ];Rd) for some q ∈ [1, 2) such

that 1
p + 1

q > 1 and sup{|φtnk ,tnk+1
|: k = 0, . . . , Nn − 1} converges to 0 as n → ∞. Then the

path X̂ = X + φ satisfies Property γ-(RIE) relative to γ, p and π.

6.1.4 The signature using Property γ-(RIE)

By Lyons’ extension theorem, see e.g. [74, Theorem 9.5], for p ∈ (2, 3), any weakly geometric

p-rough path admits a unique extension to a path of finite p-variation with values in GN (Rd)
with N > 2, called Lyons’ extension, which allows us to define the signature of X as follows:

Definition 6.1.8. Let p ∈ (2, 3) and Xo,≤2 ∈ Cp-varo ([0, T ];G2(Rd)). The signature of X is

defined as the unique path

Xo,∞: [0, T ] → G((Rd)),

such that for all N ≥ 3, Π≤N (Xo,∞) = Xo,≤N , where Xo,≤N denotes the extension of Xo,≤2

in GN (Rd). In particular, Xo,∞ is the unique path extension of Xo,≤2 specified by Lyons’

extension theorem.

We now show that the canonical rough path under Property γ-(RIE) can be corrected

to a weakly geometric rough path by adding the pathwise quadratic variation term, which

seems natural when comparing stochastic Itô and Stratonovich integration.

Lemma 6.1.9. Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to some

γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. Let (X,Xγ,o) ∈ Cp([0, T ];Rd)
be a continuous p-rough path, with Xγ,o: ∆T → Rd given by

Xγ,os,t := Xγs,t +
1

2
[X]γ,πs,t , (s, t) ∈ ∆T ,

where Xγ is the canonical rough path lift defined in Proposition 6.1.3 and [X]γ,π is defined

in Lemma 6.1.4. Then Xγ,o,≤2: [0, T ] → G2(Rd) is a weakly geometric p-rough path, where

we define

Xγ,o,≤2
t := (1, X0,t,Xγ,o0,t ), t ∈ [0, T ].
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Proof. Since Xγ has finite p
2 -variation and [Xi, Xj ]γ has finite 1-variation, Xγ,o has finite

p
2 -variation, see Proposition 6.1.3 and Lemma 6.1.4, and particularly, ∥1;Xγ,o,≤2∥p<∞.

We show that S(Xγ,o0,t ) = 1
2X0,t ⊗X0,t, for any t ∈ [0, T ]. Then applying Lemma 6.1.1,

the proof is complete.

By definition, it holds that, for any 1 ≤ i, j ≤ d and any t ∈ [0, T ],

(Xγ,o0,t )ij + (Xγ,o0,t )ji

=

∫ t

0
Xi
r dγ,πXj

r −Xi
0X

j
0,t +

1

2
[Xi, Xj ]γ,πt +

∫ t

0
Xj
r dγ,πXi

r −Xj
0X

i
0,t +

1

2
[Xj , Xi]γ,πt

= lim
n→∞

Nn−1∑
k=0

(Xi
tnk

+ γXi
tnk ,t

n
k+1

)Xj
tnk∧t,t

n
k+1∧t

+ (
1

2
− γ)Xi

tnk ,t
n
k+1

Xj
tnk∧t,t

n
k+1∧t

−Xi
0X

j
0,t

+ lim
n→∞

Nn−1∑
k=0

(Xj
tnk

+ γXj
tnk ,t

n
k+1

)Xi
tnk∧t,t

n
k+1∧t

+ (
1

2
− γ)Xj

tnk ,t
n
k+1

Xi
tnk∧t,t

n
k+1∧t

−Xj
0X

i
0,t

= lim
n→∞

Nn−1∑
k=0

1

2
(Xi

tnk
+Xi

tnk+1
)Xj

tnk ,t
n
k+1

−Xi
0X

j
0,t

+ lim
n→∞

Nn−1∑
k=0

1

2
(Xj

tnk
+Xj

tnk+1
)Xi

tnk ,t
n
k+1

−Xj
0X

i
0,t

= Xi
tX

j
t −Xi

0X
j
0 −Xi

0X
j
0,t −Xj

0X
i
0,t

= Xi
0,tX

j
0,t.

Remark 6.1.10. Suppose that γ = 1
2 . Since [X]

1
2
,π = 0, see Lemma 6.1.4, it holds

that X
1
2
,o

t = X
1
2
0,t, which implies that (1, X0,·,X

1
2
0,·) ∈ Cp-varo ([0, T ];G2(Rd)). That is, the

Stratonovich-type rough path is indeed a weakly geometric rough path, which is very reason-

able.

Remark 6.1.11. If X satisfies Property γ-(RIE), then the signature Xo,∞ of X defined in

Definition 6.1.8 is the unique path extension of Xγ,o,≤2 as defined in Lemma 6.1.9.

A more direct approach is to define the signature as the collection of all iterated integrals

over a fixed interval associated to a sufficiently regular path. Here, we utilize Property γ-

(RIE) and the corresponding iterated integral, which allows for a unifying framework for

Itô-type and Stratonovich-type signatures.

Definition 6.1.12. Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to

some γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N.
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We recursively set

⟨e∅,X
γ,∞
t ⟩ := 1, ⟨eI ,Xγ,∞t ⟩ := Xi1

0,t, I = (i1),

⟨eI ,Xγ,∞t ⟩ :=

∫ t

0
Xi1
s dγ,πXi2

s −Xi1
0 X

i2
0,t = (Xγ0,t)

i1i2 , I = (i1, i2),

⟨eI ,Xγ,∞t ⟩ :=

∫ t

0
⟨eI′ ,Xγ,∞s ⟩dγ,πX

i|I|
s , I = (i1, . . . , i|I|), |I|> 2,

for t ∈ [0, T ], where∫ t

0
⟨eI′ ,Xγ,∞s ⟩ dγ,πX

i|I|
s := lim

n→∞

Nn−1∑
k=0

⟨eI′ ,Xγ,∞tnk+γ(tnk+1−t
n
k )
⟩Xi|I|

tnk∧t,t
n
k+1∧t

exists as a Young integral. Then Xγ,∞: [0, T ] → T ((Rd)) is well-defined and is called the

γ-signature of X. Its projection Xγ,≤N on TN (Rd) is given by

Xγ,≤Nt = Π≤N (Xγ,∞t ) =
∑
|I|≤N

⟨eI ,Xγ,∞t ⟩eI ,

and called γ-signature of X truncated at level N , which takes values in TN (Rd) for all

t ∈ [0, T ]. The increments of the γ-signature Xγ,∞ are defined by

Xγ,∞s,t := (Xγ,∞s )−1 ⊗ Xγ,∞t , (s, t) ∈ ∆T .

Remark 6.1.13. By Property γ-(RIE), ⟨e(i1,i2),Xγ,∞⟩ has finite p
2 -variation, for any multi-

index I = (i1, i2, i3), that is, ⟨eI ,Xγ,∞t ⟩ is a well-defined Young integral for t ∈ [0, T ] since

2
p + 1

p > 1, and has itself finite p
2 -variation. Thus it holds that ⟨eI ,Xγ,∞t ⟩ is a well-defined

Young integral, for any multi-index of length |I|> 4.

We note that for any multi-index of length |I|> 2, by definition of a Young integral,∫ t

0
⟨eI′ ,Xγ,∞s ⟩dγ,πX

i|I|
s = lim

n→∞

Nn−1∑
k=0

⟨eI′ ,Xγ,∞tnk+γ̃(tnk+1−t
n
k )
⟩Xi|I|

tnk∧t,t
n
k+1∧t

, t ∈ [0, T ],

for any γ̃ ∈ [0, 1].

Remark 6.1.14. Suppose that γ = 1
2 . Then

Π≤2(Xo,∞t ) = Xγ,o,≤2
t = (1, X0,t,Xγ,o0,t ) = (1, X0,t,Xγ0,t) = Π≤2(Xγ,∞t ),

that is, the signature of X truncated at level 2 and the γ-signature of X truncated at level

2 for γ = 1
2 coincide.

It turns out that the signature defined via Lyons’ extension theorem and the γ-signature

defined via iterated integrals under Property γ-(RIE) for γ = 1
2 coincide. This is confirming

in the sense that weakly geometric rough paths do align with Stratonovich-type integration.
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Proposition 6.1.15. Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to

γ = 1
2 , some p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. Then the 1

2 -signature

coincides with the Lyons lift up to level N ∈ N, i.e., Xo,≤N = X
1
2
,≤N .

Proof. Let n ∈ N. We denote by

X̄n
t := Xtnk

+
t− tnk

tnk+1 − tnk
Xtnk ,t

n
k+1

, t ∈ [tnk , t
n
k+1], k = 0, . . . Nn − 1,

the piecewise linear interpolation of X along π = (πn)n∈N. We define its signature X̄n,∞ as

the tensor series of iterated (Riemann–Stieltjes) integrals. For N ∈ N then the signature of

X̄n truncated at level N is the path t 7→ X̄n,≤Nt defined by computing all iterated integrals

up to order N . Therefore X̄n,≤N is the canonical lift of X̄n to a path with values in

GN (Rd) (due to the integration by parts rule) and has finite 1-variation, that is, X̄n,≤N ∈
C1-var
o ([0, T ];GN (Rd)). Moreover, observe that by Property γ-(RIE) relative to γ = 1

2 we

have

sup
n∈N

∥1; X̄n,≤2∥p<∞, lim
n→∞

∥X̄n,≤2 − X
1
2
,≤2∥∞= 0,

where X
1
2
,≤2 = (1, X0,·,X

1
2
0,·) ∈ Cp-varo ([0, T ];G2(Rd)), see Lemma 6.1.5.

We aim to show that for all N ≥ 2, X̄n,≤N converges uniformly to X
1
2
,≤N , the γ-signature

of X truncated at level N for γ = 1
2 .

Since X
1
2
,o,≤2 = X

1
2
,≤2 ∈ Cp-varo ([0, T ];G2(Rd)), it then follows, as in the proof of [74,

Theorem 9.5], by the uniqueness of Lyons’ lift that Xo,≤N = X
1
2
,≤N , where Xo,≤N denotes

Lyons’ lift of X
1
2
,o,≤2 in GN (Rd).

We proceed with an inductive argument. Let N = 3. For any multi-index I of length

N , it holds by definition that ∥⟨eI′ ,X
1
2
,∞⟩∥ p

2
<∞, see Remark 6.1.13, so that the following

integrals can be taken as Young integrals:

⟨eI , X̄n,∞t ⟩ =

∫ t

0
⟨eI′ , X̄n,∞s ⟩ d(X̄n

s )i|I| , ⟨eI ,X
1
2
,∞

t ⟩ =

∫ t

0
⟨eI′ ,X

1
2
,∞

s ⟩ dX
i|I|
s , t ∈ [0, T ].

The sequence (X̄n)n∈N has uniformly bounded p-variation and X̄n converges uniformly to X

as n→ ∞. Similarly, by assumption, the sequence (⟨eI′ , X̄n,∞⟩)n∈N has uniformly bounded
p
2 -variation and ⟨eI′ , X̄n,∞⟩ converges uniformly to ⟨eI′ ,X

1
2
,∞⟩ as n→ ∞.

By [74, Proposition 6.12] then,

lim
n→∞

∥(X̄n,∞)(N) − (X
1
2
,∞)(N)∥∞= 0,

where (X̄n,∞)(N) denotes the Nth level of the signature of X̄n and (X
1
2
,∞)(N) denotes the

Nth level of the 1
2 -signature of X.
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Assume that the claim holds true for any order < N , for N > 3. Then it suffices to

show that (X̄n,∞)(N) converges uniformly to (X
1
2
,∞)(N) as n→ ∞.

For any multi-index I of length N , it holds by definition that ∥⟨eI′ ,X
1
2
,∞⟩∥q< ∞, for

q > p
3 , see Remark 6.1.13, so that the following can be taken as Young integrals:

⟨eI , X̄n,∞t ⟩ =

∫ t

0
⟨eI′ , X̄n,∞s ⟩d(X̄n

s )i|I| , ⟨eI ,X
1
2
,∞

t ⟩ =

∫ t

0
⟨eI′ ,X

1
2
,∞

s ⟩dX
i|I|
s , t ∈ [0, T ].

Let p′ ∈ (p, 3) and q′ ∈ (q, 2). By the standard estimate for Young integrals—see e.g. [74,

Theorem 6.8]—we have that for any t ∈ [0, T ],

|⟨eI , X̄n,∞t ⟩ − ⟨eI ,X
1
2
,∞

t ⟩|

=

∣∣∣∣ ∫ t

0
⟨eI′ , X̄n,∞s ⟩d(X̄n

s )i|I| −
∫ t

0
⟨eI′ ,X

1
2
,∞

s ⟩dX
i|I|
s

∣∣∣∣
≤
∣∣∣∣ ∫ t

0
(⟨eI′ , X̄n,∞s ⟩ − ⟨eI′ ,X

1
2
,∞

s ⟩) d(X̄n
s )i|I|

∣∣∣∣
+

∣∣∣∣ ∫ t

0
⟨eI′ ,X

1
2
,∞

s ⟩ d(X̄n
s )i|I| −

∫ t

0
⟨eI′ ,X

1
2
,∞

s ⟩ dX
i|I|
s

∣∣∣∣
≤ Cp,p′,q,q′(∥⟨eI′ , X̄n,∞⟩ − ⟨eI′ ,X

1
2
,∞⟩∥q′∥X̄n∥p+∥⟨eI′ ,X

1
2
,∞⟩∥q∥X̄n −X∥p′),

for some constant Cp,p′,q,q′ > 0 depending only on p, p′, q and q′. It follows by interpolation—

see e.g. [74, Proposition 5.5]—that

∥⟨eI′ , X̄n,∞⟩ − ⟨eI′ ,X
1
2
,∞⟩∥q′≤ ∥⟨eI′ , X̄n,∞⟩ − ⟨eI′ ,X

1
2
,∞⟩∥

1− q′
q

∞ ∥⟨eI′ , X̄n,∞⟩ − ⟨eI′ ,X
1
2
,∞⟩∥

q′
q
q .

The sequence (⟨eI′ , X̄n,∞⟩)n∈N has uniformly bounded p
N−1 -variation, see e.g. [74, Propo-

sition 9.3], (thus q-variation) and by assumption, ⟨eI′ , X̄n,∞⟩ → ⟨eI′ ,X
1
2
,∞⟩ uniformly on

[0, T ] as n→ ∞. Similarly,

∥X̄n −X∥p′≤ ∥X̄n −X∥
1− p

p′
∞ ∥X̄n −X∥

p
p′
p .

The sequence (X̄n)n∈N has uniformly bounded p-variation and X̄n converges uniformly to

X as n→ ∞.

Combining these estimates implies that

lim
n→∞

∥(X̄n,∞)(N) − (X
1
2
,∞)(N)∥∞= 0.

Altogether, we obtain that

lim
n→∞

∥X̄n,≤N − X
1
2
,≤N∥∞= 0.

In addition, the Lyons’ lift Xo,≤N of X
1
2
,o,≤2 = X

1
2
,≤2 is unique and as stated in [74, Exercise

9.7], it holds that X̄n,≤N → Xo,≤N uniformly on [0, T ] as n→ ∞. Therefore we obtain that

X
1
2
,≤N = Xo,≤N ,

which concludes the proof.
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Now, suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to some γ ∈
[0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. We set

X̂ := (·, X, [X]γ,π) ∈ C([0, T ];R1+d+d2), (6.1)

where

[X]γ,π := ([X1, X1]γ,π, . . . , [X1, Xd]γ,π, . . . , [Xd, X1]γ,π, . . . , [Xd, Xd]γ,π).

It follows by applying Lemma 6.1.4, and Lemma 6.1.7 to (·, 0, 0) + (0, X, 0) + (0, 0, [X]γ,π)

that X̂ satisfies Property γ-(RIE) relative to γ, p and π.

We write (e0, e1, . . . , ed, ε11, . . . , ε1d, . . . , εd1, . . . , εdd) for the canonical basis of R1+d+d2 ,

i.e., we use the index 0 to denote the time component, and εij for the component of X̂

referring to [Xi, Xj ]γ,π, so that ⟨εij , X̂γ,∞t ⟩ := [Xi, Xj ]γ,πt , i, j = 1, . . . , d, t ∈ [0, T ].

We note that t 7→ ⟨e0, X̂γ,∞t ⟩ is strictly monotonically increasing. This is necessary so

that X̂γ,∞T uniquely characterizes X̂γ,≤2, see e.g. [87, 25], which itself is uniquely determined

by X̂. See the proof of condition (iii) in Theorem 6.2.1 for a similar argument for general

signatures Xo,∞.

Extending the path X to X̂ by a time component and the quadratic variation terms

yields that the components of the γ-signature for γ = 1
2 can be represented as linear

functionals on the γ-signature, for any γ.

Proposition 6.1.16. Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative

to some γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. Then for any

multi-index I, there exists ℓγ,I ∈ T (R1+d+d2) such that

⟨eI , X̂
1
2
,∞

t ⟩ = ⟨ℓγ,I , X̂γ,∞t ⟩, t ∈ [0, T ],

where X̂
1
2
,∞ denotes the 1

2 -signature and X̂γ,∞ denotes the γ-signature of X̂, i.e., it holds

that

⟨eI , X̂
1
2
,∞

t ⟩ =
∑

0≤|J |≤Nγ,I

ℓγ,IJ ⟨eJ , X̂γ,∞t ⟩, t ∈ [0, T ],

for ℓγ,I =
∑

0≤|J |≤Nγ,I ℓ
γ,I
J eJ , where ℓ

γ,I
J := ⟨eJ , ℓγ,I⟩ ∈ R and Nγ,I ∈ N0.

Proof. Let I be a multi-index of length |I| and let t ∈ [0, T ].

For γ = 1
2 , we may consider ℓγ,I := eI ∈ T (R1+d+d2). Clearly, we have that ⟨eI , X̂

1
2
,∞

t ⟩ =

⟨ℓγ,I , X̂γ,∞t ⟩.
Therefore suppose that γ ̸= 1

2 . First, we note that since X satisfies Property γ-(RIE) rel-

ative to γ ̸= 1
2 , and so does X̂, it satisfies Property γ-RIE relative to γ = 1

2 , see Lemma 6.1.6,

that is, the γ-signature of X̂ for γ = 1
2 is well-defined.
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For |I|= 0 and |I|= 1, again, considering ℓγ,I := eI , we have that ⟨eI , X̂
1
2
,∞

t ⟩ =

⟨ℓγ,I , X̂γ,∞t ⟩ by definition of the γ-signature.

Now suppose that |I|= 2, that is, I = (i1, i2), i1, i2 ∈ {0, . . . , d, d+ 1, . . . , d+ d2}. Then

we obtain that

⟨eI , X̂
1
2
,∞

t ⟩ =

∫ t

0
X̂i1
s d

1
2
,πX̂i2

s − X̂i1
0 X̂

i2
0,t

=

∫ t

0
X̂i1
s dγ,πX̂i2

s − X̂i1
0 X̂

i2
0,t +

1

2
[X̂i1 , X̂i2 ]γ,πt

= ⟨eI , X̂γ,∞t ⟩ +
1

2
[X̂i1 , X̂i2 ]γ,πt .

Since by definition of X̂γ and X̂γ,∞,

[X̂i1 , X̂i2 ]γ,πt =

{
[Xi1 , Xi2 ]γ,πt , i1, i2 = 1, . . . , d,

0, else

=

{
⟨εi1i2 , X̂

γ,∞
t ⟩, i1, i2 = 1, . . . , d,

0, else,

we then have ⟨eI , X̂
1
2
,∞

t ⟩ = ⟨ℓγ,I , X̂γ,∞t ⟩, for ℓγ,I ∈ T (R1+d+d2) defined by

ℓγ,I :=

{
eI + 1

2εi1i2 , i1, i2 = 1, . . . , d,

eI , else.

We apply an inductive argument: assuming that the claim holds true for any multi-index of

length |I|< n, for n ≥ 2, we observe that for any multi-index I of length n, using Remark

6.1.13 in the second step and the induction hypothesis in the third step, it holds that for

i|I| ∈ {0, . . . , d, d+ 1, . . . , d+ d2},

⟨eI , X̂
1
2
,∞

t ⟩

=

∫ t

0
⟨eI′ , X̂

1
2
,∞

s ⟩d
1
2
,πX̂

i|I|
s =

∫ t

0
⟨eI′ , X̂

1
2
,∞

s ⟩dγ,πX̂
i|I|
s

=

∫ t

0
⟨ℓγ,I′ , X̂γ,∞s ⟩ dγ,πX̂

i|I|
s

=

∫ t

0

∑
0≤|J |≤Nγ,I′

ℓγ,I
′

J ⟨eJ , X̂γ,∞s ⟩dγ,πX̂
i|I|
s

= ℓγ,I
′

∅ X̂
i|I|
0,t +

d∑
j=0

ℓγ,I
′

j

∫ t

0
⟨ej , X̂γ,∞s ⟩ dγ,πX̂

i|I|
s +

∑
1<|J |≤Nγ,I′

ℓγ,I
′

J

∫ t

0
⟨eJ , X̂γ,∞s ⟩ dγ,πX̂

i|I|
s

= ℓγ,I
′

∅ X̂
i|I|
0,t +

d∑
j=0

ℓγ,I
′

j (X̂γ0,t)
ji|I| +

∑
1<|J |≤Nγ,I′

ℓγ,I
′

J

∫ t

0
⟨eJ , X̂γ,∞s ⟩ dγ,πX̂

i|I|
s

=
∑

0≤|J |≤Nγ,I′

ℓγ,I
′

J ⟨eJ ⊗ ei|I| , X̂
γ,∞
t ⟩.
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We then can set

ℓγ,I :=
∑

0≤|J |≤Nγ,I′

ℓγ,I
′

J eJ ⊗ ei|I| ∈ T (R1+d+d2),

which concludes the proof.

Consequently, any linear functional on the γ-signature can be written as a linear func-

tional on the signature (defined via Lyons’ extension theorem). We will use this and further

comment on this in Section 6.2, when deriving a pathwise universal approximation theorem.

Corollary 6.1.17. Suppose that X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative to

some γ ∈ [0, 1], p ∈ (2, 3) and a sequence of partitions π = (πn)n∈N. For any ℓo ∈
T (R1+d+d2), there exists ℓγ ∈ T (R1+d+d2) such that ⟨ℓo, X̂o,∞t ⟩ = ⟨ℓγ , X̂γ,∞t ⟩, for t ∈ [0, T ].

Proof. Let ℓo ∈ T (R1+d+d2), that is,

⟨ℓo,a⟩ :=
∑

0≤|I|≤No

ℓoI⟨eI ,a⟩, a ∈ T ((R1+d+d2)),

for ℓo =
∑

0≤|I|≤No ℓ
o
IeI , where ℓoI := ⟨eI , ℓo⟩ ∈ R and No ∈ N0.

By Proposition 6.1.15 and Proposition 6.1.16, this gives for any t ∈ [0, T ], using the

notation of Proposition 6.1.16, that

⟨ℓo, X̂o,∞t ⟩ =
∑

0≤|I|≤No

ℓoI⟨eI , X̂
o,∞
t ⟩

=
∑

0≤|I|≤No

ℓoI⟨eI , X̂
1
2
,∞

t ⟩

=
∑

0≤|I|≤No

ℓoI⟨ℓγ,I , X̂
γ,∞
t ⟩

=
∑

0≤|I|≤No

ℓoI

( ∑
0≤|J |≤Nγ,I

ℓγ,IJ ⟨eJ , X̂γ,∞t ⟩
)

=
∑

0≤|I|≤No

∑
0≤|J |≤Nγ,I

ℓoI ℓ
γ,I
J ⟨eJ , X̂γ,∞t ⟩.

Setting ℓγ :=
∑

0≤|I|≤No
∑

0≤|J |≤Nγ,I ℓ
o
Iℓ
γ,I
J eJ ∈ T (R1+d+d2), we conclude the proof.

6.2 A pathwise universal approximation theorem for signatures

The success of signature-based methods is due to a powerful property that allows for,

heuristically speaking, approximating continuous functionals on the path on compact sets

by linear functionals on its signature, analogously to polynomials approximating continuous

real-valued functions. The corresponding result follows by an application of the Stone–

Weierstrass theorem, which requires that the linear span of the signature form an algebra.
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This particularly holds true for the signature defined via Lyons’ lift, see Definition 6.1.8;

we refer to, e.g., [121, 47]. We will therefore first recall the proof of this classical version

of the universal approximation theorem before deriving the pathwise universal approxima-

tion theorem for the γ-signature for γ ∈ [0, 1], as an extension to a more general class of

signatures.

To that end, we consider the subspace of time-extended weakly geometric p-rough paths,

defined by

Ĉp-varo ([0, T ];G2(Rd+1)) := {X̂o,≤2 ∈ Cp-varo ([0, T ];G2(Rd+1)) : ⟨e0, X̂o,≤2
t ⟩ = t, t ∈ [0, T ]}.

Theorem 6.2.1. Let p ∈ (2, 3). Let K ⊂ Ĉp-varo ([0, T ];G2(Rd+1)) be a compact subset,

bounded with respect to the p-variation norm and consider a continuous function f :K → R.
Then for every ε > 0, there exists a linear functional ℓ ∈ T (Rd+1) such that

sup
X̂o,≤2∈K

|f(X̂o,≤2) − ⟨ℓ, X̂o,∞T ⟩|< ε,

where X̂o,∞ denotes the signature of X̂ := Π1(X̂o,≤2).

Proof. The result follows by an application of the Stone–Weierstrass theorem to the set

A := span{K ∋ X̂o,≤2 7→ ⟨eI , X̂o,∞T ⟩ ∈ R : I ∈ {1, . . . , d}N , N ∈ N0}.

Therefore we have to show that A

(i) is a vector subspace of C(K;R),

(ii) is a subalgebra and contains a non-zero constant function, and

(iii) separates points.

(i): By [74, Corollary 9.11], the map X̂o,≤2 7→ ⟨eI , X̂o,∞T ⟩ is continuous on bounded sets for

every multi-index I with respect to dp-var := ∥· ; ·∥p. More precisely, the map

(K, dp-var) ∋ X̂o,≤2 7→ X̂o,≤N ∈ (Cp-varo ([0, T ];GN (Rd+1)), dp-var),

is continuous on K with respect to dp-var, for every N ≥ 3. Moreover, the evaluation map

(Cp-varo ([0, T ];GN (Rd+1)), dp-var) ∋ X̂o,≤N 7→ X̂o,≤NT ∈ (GN (Rd+1), ρ)

is continuous, where ρ denotes the metric induced by the norm on TN1 (Rd+1). Here, we

used that we can equip GN (Rd+1) with the metric ρ, see e.g. [74, Remark 7.31]. This yields

that the map

(K, dp-var) ∋ X̂o,≤2 7→ X̂o,≤NT ∈ (GN (Rd+1), ρ)
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is continuous. Since X̂o,≤NT 7→ ⟨eI , X̂o,≤NT ⟩ is continuous for any multi-index I, we can thus

conclude that the map

(K, dp-var) ∋ X̂o,≤2 7→ ⟨eI , X̂o,∞T ⟩ ∈ R

is continuous with respect to dp-var.

(ii): Since X̂o,∞T is a group-like element, i.e., X̂o,∞T ∈ G((Rd+1)), the shuffle property

holds, and thus A is a subalgebra. Moreover, since ⟨e∅, X̂
o,∞
T ⟩ = 1, it contains a non-zero

constant function.

(iii): For the point separation, let us consider X̂o,≤2, Ŷo,≤2 ∈ K, with X̂o,≤2 ̸= Ŷo,≤2.

We show that there exists a k ∈ N, I ∈ {0, . . . , d}N , N ∈ {0, 1, 2} such that

⟨(eI � e⊗k0 ) ⊗ e0, X̂o,≤2
T ⟩ ≠ ⟨(eI � e⊗k0 ) ⊗ e0, Ŷo,≤2

T ⟩.

We proceed with a proof by contradiction. Assume that for all k ∈ N, I ∈ {0, . . . , d}N ,

N ∈ {0, 1, 2}, we have

⟨(eI � e⊗k0 ) ⊗ e0, X̂o,≤2
T ⟩ = ⟨(eI � e⊗k0 ) ⊗ e0, Ŷo,≤2

T ⟩.

We first note that

⟨e⊗k0 , X̂o,≤2
t ⟩ =

tk

k!
.

Moreover, using the shuffle property, we have

⟨(eI � e⊗k0 ) ⊗ e0, X̂o,≤2
T ⟩ =

∫ T

0
⟨eI , X̂o,≤2

t ⟩⟨e⊗k0 , X̂o,≤2
t ⟩ dt =

∫ T

0
⟨eI , X̂o,≤2

t ⟩ t
k

k!
dt.

Similarly, we have

⟨(eI � e⊗k0 ) ⊗ e0, Ŷo,≤2
T ⟩ =

∫ T

0
⟨eI , Ŷo,≤2

t ⟩ t
k

k!
dt.

Using the Hahn–Banach theorem, which tells us that continuous, linear functionals separate

points, and since t 7→ t is strictly monotone, we obtain that

⟨eI , X̂o,≤2
t ⟩ = ⟨eI , Ŷo,≤2

t ⟩,

for all t ∈ [0, T ] and all I ∈ {0, . . . , d}N , N ∈ {0, 1, 2}. However, this contradicts the

assumption that X̂o,≤2, Ŷo,≤2 are distinct. Thus we can conclude that A is point separating.

The proof or, more precisely, the Stone–Weierstrass theorem, makes use of the shuffle

product property of the signature, which holds for the signature defined via Lyons’ lift

since it is a group-like valued path. We aim to avoid this restriction when considering the

γ-signature for a general γ ∈ [0, 1]. However, this is just a path with values in the extended
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tensor algebra so that the linear functionals on the γ-signature do not form an algebra of

functionals on the path space (for γ ̸= 1
2).

We circumvent this by extending the path by the correct correction term, which is the

corresponding quadratic variation term. While admittedly increasing the dimension of the

path, this suffices so that any linear functional on the γ-signature can be written as a linear

functional on the signature defined via Lyons’ extension theorem, see Corollary 6.1.17.

As a consequence, we are able to deduce the universal approximation property of linear

functionals on the γ-signature from Theorem 6.2.1.

Theorem 6.2.2. Let γ ∈ [0, 1], p ∈ (2, 3) and π = (πn)n∈N be a sequence of partitions

of the interval [0, T ]. Let K ⊂ Cp-var([0, T ];R1+d+d2) be a compact subset, bounded with

respect to the p-variation norm and consider a continuous function f :K → R. Further, for

some M > 0, let KM ⊂ K be the subset defined by

KM := {X̂ = (·, X, [X]γ,π) ∈ K :X satisfies Property γ-(RIE) relative to γ, p and π,

∥(X̂, X̂γ)∥p+∥[X̂]γ,π∥1≤M}.

Then for every ε > 0, there exists a linear functional ℓγ ∈ T (R1+d+d2) such that

sup
X̂∈KM

|f(X̂) − ⟨ℓγ , X̂γ,∞T ⟩|< ε,

where X̂γ,∞ denotes the γ-signature of X̂.

Proof. First, we recall that if a path X ∈ C([0, T ];Rd) satisfies Property γ-(RIE) relative

to γ, p and π, then so does X̂ = (·, X, [X]γ) ∈ C([0, T ];R1+d+d2), see Lemma 6.1.7.

We note that if a path X̂ ∈ C([0, T ];R1+d+d2) satisfies Property γ-(RIE) relative to γ,

p and π = (πn)n∈N, then X̂ extends canonically to a weakly geometric rough path via

ι: X̂ 7→ X̂γ,o,≤2 := (1, X̂0,·, X̂γ,o0,· ) := (1, X̂0,·, X̂γ0,· + [X̂]γ),

see Lemma 6.1.9, that is, ι(X̂) ∈ Cp-varo ([0, T ];G2(R1+d+d2)). Further, we observe that for

any X̂ ∈ KM , it holds that

∥X̂γ,o∥ p
2
≤ ∥X̂γ∥ p

2
+∥[X̂]γ∥1≤M,

thus we can embed KM into ι(KM ) := {ι(X̂) : X̂ ∈ KM}, which is a subset of the compact

subset K≤2
M := {X̂o,≤2 : ∥1; X̂o,≤2∥p≤ M} of Cp-varo ([0, T ];G2(R1+d+d2)). We now consider

the continuous function

f≤2 : K≤2
M → R, X̂o,≤2 7→ f(Π1(X̂o,≤2)).
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Let ε > 0. By Theorem 6.2.1 then there exists some ℓ ∈ T (R1+d+d2) such that

sup
X̂o,≤2∈K≤2

M

|f≤2(X̂o,≤2) − ⟨ℓ, X̂o,∞T ⟩|< ε,

where X̂o,∞ denotes the signature of X̂, see Definition 6.1.8.

By Lemma 6.1.17, there exists some ℓγ ∈ T (R1+d+d2) such that ⟨ℓ, X̂o,∞T ⟩ = ⟨ℓγ , X̂γ,∞T ⟩.
Thus we obtain that

sup
X̂∈KM

|f(X̂) − ⟨ℓγ , X̂γ,∞T ⟩|

= sup
X̂∈KM

|f(X̂) − ⟨ℓ, X̂o,∞T ⟩|

= sup
X̂∈KM

|f≤2(ι(X̂)) − ⟨ℓ, X̂o,∞T ⟩|

= sup
ι(X̂)∈ι(KM )

|f≤2(ι(X̂)) − ⟨ℓ, X̂o,∞T ⟩|

≤ sup
X̂o,≤2∈K≤2

M

|f≤2(X̂o,≤2) − ⟨ℓ, X̂o,∞T ⟩|

< ε.

6.3 Application to continuous semimartingales

In this section, we apply the deterministic theory developed in Section 6.1 and Section 6.2

to continuous semimartingales.

In fact, continuous semimartingales fit well into the theory of signatures when adopting

the notion of stochastic integration. That is, the signature can be defined as the collection

of iterated integrals via stochastic integration. Because it is obeying first order calculus,

one usually considers Stratonovich integration, which almost surely coincides with Lyons’

lift, thus implying a universal approximation theorem for continuous path functionals.

Throughout, let X be a d-dimensional continuous semimartingale, defined on a proba-

bility space (Ω,F ,P) with a filtration (Ft)t∈[0,T ] satisfying the usual conditions, i.e., com-

pleteness and right-continuity.

Definition 6.3.1. Let X be a d-dimensional continuous semimartingale. Its Stratonovich-

signature is the stochastic process X◦,∞ = (X◦,∞
t )t∈[0,T ] with values in T1((Rd)), whose

components are recursively defined by

⟨e∅,X
◦,∞
t ⟩ := 1, ⟨eI ,X◦,∞

t ⟩ :=

∫ t

0
⟨eI′ ,X◦,∞

s ⟩ ◦ dXs
i|I| ,
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for each I = (i1, . . . , i|I|) and t ∈ [0, T ], where ◦ denotes the Stratonovich integral. Its

projection X◦,≤N on TN (Rd) is given by

X◦,≤N
t = Π≤N (X◦,∞

t ) =
∑
|I|≤N

⟨eI ,X◦,∞
t ⟩eI ,

and called Stratonovich-signature of X truncated at level N , which takes values in GN (Rd)
for all t ∈ [0, T ]. The increments of the Stratonovich-signature X◦,∞ are defined by

X◦,∞
s,t := (X◦,∞

s )−1 ⊗ X◦,∞
t , (s, t) ∈ ∆T .

It turns out that, if the semimartingale X satisfies Property γ-(RIE) relative to γ ∈ [0, 1],

p ∈ (2, 3) and a suitable sequence of partitions, we obtain a canonical signature which

corresponds P-almost surely with the signature defined via Lyons’ lift and the Stratonovich-

signature.

Lemma 6.3.2. Let γ ∈ [0, 1], let p ∈ (2, 3) and let πn = {τnk }, n ∈ N, be a sequence of

adapted partitions (so that each τnk is a stopping time), such that for almost every ω ∈ Ω,

(πn(ω))n∈N is a sequence of (finite) partitions of [0, T ] with vanishing mesh size.

Let X be a continuous d-dimensional semimartingale, and suppose that for almost every

ω ∈ Ω, sup{|Xτnk (ω),τ
n
k+1(ω)

(ω)| : k = 0, . . . , Nn − 1} converges to 0 as n → ∞, and that the

sample path X(ω) satisfies Property γ-(RIE) relative to γ, p and (πn(ω))n∈N.

(i) The random weakly geometric rough path pathwise defined via Proposition 6.1.3 for

γ = 1
2 and the random weakly geometric rough path pathwise defined via Lemma 6.1.9

for γ ∈ [0, 1] coincide P-almost surely.

(ii) The random weakly geometric rough path pathwise defined via Lemma 6.1.9 and the

Stratonovich-signature of X truncated at level 2 coincide P-almost surely.

(iii) The random signature Xo,∞ pathwise defined via Definition 6.1.8, more precisely,

Remark 6.1.11, the random signature X
1
2
,∞ pathwise defined via Definition 6.1.12

and the Stratonovich-signature X◦,∞ of X coincide P-almost surely.

Proof. (i): By Lemma 6.1.6, we know that if a path satisfies Property γ-(RIE) relative to

some γ ∈ [0, 1], then it particularly satisfies Property γ-(RIE) relative to γ = 1
2 . Then the

claim holds true because of Lemma 6.1.1 and X
1
2
0,t = X

1
2
,o

0,t , t ∈ [0, T ].

(ii): By construction, the pathwise rough integral
∫ t
0 Xr(ω)⊗dγ,πXr(ω) constructed via

Property γ-(RIE) is given by the limit as n→ ∞ of Riemann sums:

Nn−1∑
k=0

(Xτnk (ω)
(ω) + γXτnk (ω),τ

n
k+1(ω)

) ⊗Xτnk (ω)∧t,τ
n
k+1(ω)∧t(ω).
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Suppose that γ = 1
2 . Then it is known that these Riemann sums converge uniformly in

probability to the Stratonovich integral
∫ t
0 Xr⊗◦dXr, see e.g. [147, Chapter II, Theorem 21,

Theorem 22]. And the result follows from the (almost sure) uniqueness of limits; see also

part (i) of Lemma 5.3.1.

Suppose that γ ̸= 1
2 . Then adding [X(ω)]γ,π

n

0,t ,

Nn−1∑
k=0

(Xτnk (ω)
(ω) + γXτnk (ω),τ

n
k+1(ω)

) ⊗Xτnk (ω)∧t,τ
n
k+1(ω)∧t(ω)

+
1

2
(1 − 2γ)Xτnk (ω)∧t,τ

n
k+1(ω)∧t(ω) ⊗Xτnk (ω)∧t,τ

n
k+1(ω)∧t(ω)

=

Nn−1∑
k=0

(Xτnk (ω)
(ω) +

1

2
Xτnk (ω)∧t,τ

n
k+1(ω)∧t) ⊗Xτnk (ω)∧t,τ

n
k+1(ω)∧t(ω)

+ γ(Xτnk (ω),τ
n
k+1(ω)

) −Xτnk (ω)∧t,τ
n
k+1(ω)∧t(ω)) ⊗Xτnk (ω)∧t,τ

n
k+1(ω)∧t(ω),

which again converges uniformly in probability to the Stratonovich integral
∫ t
0 Xr ⊗ ◦dXr.

(iii): We first note that by Proposition 6.1.15, the random signatures pathwise defined

via Definition 6.1.8 (Lyons’ lift of the weakly geometric rough path) and via Definition 6.1.12

(γ-signature for γ = 1
2) coincide P-almost surely.

By (ii), the random weakly geometric rough path and the Stratonovich-signature of

X truncated at level 2 coincide P-almost surely, and take values in G2(Rd). Since Lyons’

lift is unique, see [74, Theorem 9.5], and the Stratonovich-signature of X truncated at

any level N ≥ 3 takes values in GN (Rd), and so does the random signature truncated at

level N pathwise defined via Lyons’ lift of the weakly geometric rough path, the proof is

complete.

Corollary 6.3.3. Let X be a d-dimensional continuous semimartingale, X̂ := (·, X), and

let S(2) := {X̂◦,≤2(ω) : ω ∈ Ω}. Further, let p ∈ (2, 3) and K ⊂ Ĉp-varo ([0, T ];G2(Rd+1))

be a compact subset of the subspace of time-extended weakly geometric p-rough paths, see

Theorem 6.2.1, bounded with respect to the p-variation norm and consider a continuous

function f :K → R. Then for every ε > 0, there exists a linear functional ℓ ∈ T (Rd+1) such

that for almost every ω ∈ Ω,

|f(X̂◦,≤2(ω)) − ⟨ℓ, X̂◦,∞
T (ω)⟩|< ε for all X̂◦,≤2(ω) ∈ K ∩ S(2),

where X̂◦,∞ denotes the Stratonovich-signature of X̂.

Analogously to the Stratonovich-signature, we now define the Itô-signature of a contin-

uous semimartingale via iterated stochastic Itô integration, which is the preferred choice

from a modeling perspective when having, for example, a financial application in mind.
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Definition 6.3.4. Let X be a d-dimensional continuous semimartingale. Its Itô-signature

is the stochastic process X∞ = (X∞
t )t∈[0,T ] with values in T1((Rd)), whose components are

recursively defined by

⟨e∅,X∞
t ⟩ := 1, ⟨eI ,X∞

t ⟩ :=

∫ t

0
⟨eI′ ,X∞

s ⟩dX
i|I|
s ,

for each I = (i1, . . . , i|I|) and t ∈ [0, T ], where the integral is given as an Itô integral. Its

projection X≤N on TN (Rd) is given by

X≤N
t = Π≤N (X∞

t ) =
∑
|I|≤N

⟨eI ,X∞
t ⟩eI ,

and called Itô-signature of X truncated at level N . The increments of the signature X∞

are defined by

X∞
s,t := (X∞

s )−1 ⊗ X∞
t , (s, t) ∈ ∆T .

It turns out that, if the semimartingale X satisfies Property γ-(RIE) relative to γ = 0,

which is equivalent to Property (RIE), see Lemma 6.1.6, then the γ-signature for γ = 0 and

the Itô-signature coincide almost surely.

Lemma 6.3.5. Let p ∈ (2, 3) and let πn = {τnk }, n ∈ N, be a sequence of adapted partitions

(so that each τnk is a stopping time), such that for almost every ω ∈ Ω, (πn(ω))n∈N is a

sequence of (finite) partitions of [0, T ] with vanishing mesh size.

Let X be a d-dimensional continuous semimartingale, and suppose that for almost every

ω ∈ Ω, sup{|Xτnk (ω),τ
n
k+1(ω)

(ω)| : k = 0, . . . , Nn − 1} converges to 0 as n → ∞, and that the

sample path X(ω) satisfies Property γ-(RIE) relative to γ = 0, p and (πn(ω))n∈N.

(i) The random rough path pathwise defined via Proposition 6.1.3 for γ = 0 and the

Itô-signature of X truncated at level 2 coincide P-almost surely.

(ii) The random γ-signature X0,∞ pathwise defined via Definition 6.1.12 for γ = 0 and

the Itô-signature X∞ of X coincide P-almost surely.

Proof. (i): Since Property γ-(RIE) for γ = 0 and Property (RIE) are equivalent, see also

Lemma 6.1.6, this is the statement of part (i) of Lemma 3.2.1.

(ii): By (ii), it is left to show the statement for any multi-index I of length |I|> 2. By

definition, the pathwise integral
∫ t
0 ⟨eI′ ,X

0,∞
r (ω)⟩d0,πX

i|I|
r (ω) may be taken as the limit as

n→ ∞ of left-point Riemann sums:

Nn−1∑
k=0

⟨eI′ ,X0,∞
τnk (ω)

(ω)⟩Xi|I|
τnk (ω)∧t,τ

n
k+1(ω)∧t

(ω),
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see Remark 6.1.11. It is known that these Riemann sums converge uniformly in probability

to the Itô integral
∫ t
0 ⟨eI′ ,X

∞
r ⟩ dX

i|I|
r (see e.g. [147, Chapter II, Theorem 21]), and the result

thus follows from the (almost sure) uniqueness of limits.

Moreover, if the semimartingale X satisfies Property γ-(RIE), the pathwise quadratic

variation and the stochastic quadratic variation coincide almost surely.

Lemma 6.3.6. Let γ ∈ [0, 1], p ∈ (2, 3) and let πn = {τnk }, n ∈ N, be a sequence of

adapted partitions (so that each τnk is a stopping time), such that for almost every ω ∈ Ω,

(πn(ω))n∈N is a sequence of (finite) partitions of [0, T ] with vanishing mesh size.

Let X be a d-dimensional continuous semimartingale, and suppose that for almost every

ω ∈ Ω, sup{|Xτnk (ω),τ
n
k+1(ω)

(ω)| : k = 0, . . . , Nn − 1} converges to 0 as n → ∞, and that the

sample path X(ω) satisfies Property γ-(RIE) relative to γ, p and (πn(ω))n∈N. We define

the random variable

X̂ := (·, X, (1 − 2γ)[X])

:= (·, X, (1 − 2γ)[X,X]11, . . . , (1 − 2γ)[X]1d, . . . , (1 − 2γ)[X]d1, . . . , (1 − 2γ)[X]dd),

where [X] = ([X]ij)1≤i,j≤d denotes the quadratic variation of X. Then X̂ and the random

variable that is pathwise defined via (6.1) coincide P-almost surely.

Proof. This clearly holds true for γ = 1
2 . Therefore suppose that γ ̸= 1

2 . By definition, the

pathwise quadratic variation [Xi(ω), Xj(ω)]γ,π is given by the limit as n→ ∞ of:

(1 − 2γ)

Nn−1∑
k=0

Xi
τnk (ω)∧t,τ

n
k+1(ω)∧t

(ω)Xj
τnk (ω)∧t,τ

n
k+1(ω)∧t

(ω).

We know that these sums converge uniformly (in t ∈ [0, T ]) in probability to the quadratic

variation (1− 2γ)[X]ij , see e.g. [147, Chapter II, Theorem 22]. By taking a subsequence, if

necessary, it follows the (almost sure) uniqueness of limits.

As a consequence of Theorem 6.2.2 and Lemma 6.3.5 and Lemma 6.3.6, we formulate

universality of the Itô-signature of a continuous semimartingale whose sample paths almost

surely satisfy Property γ-(RIE) for γ = 0 or, equivalently, Property (RIE). This holds

true for various semimartingales relative to suitable sequences of partitions. We refer to

Section 3.2.

Theorem 6.3.7 (Universal approximation theorem for the Itô-signature). Let p ∈ (2, 3)

and let πn = {τnk }, n ∈ N, be a sequence of adapted partitions (so that each τnk is a stopping

time), such that for almost every ω ∈ Ω, (πn(ω))n∈N is a sequence of (finite) partitions of

[0, T ] with vanishing mesh size.
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Let X be a d-dimensional continuous semimartingale, and suppose that for almost every

ω ∈ Ω, sup{|Xτnk (ω),τ
n
k+1(ω)

(ω)| : k = 0, . . . , Nn − 1} converges to 0 as n → ∞, and that the

sample path X(ω) satisfies Property γ-(RIE) relative to γ = 0, p and (πn(ω))n∈N.

Let X̂ := (·, X, [X]), and S(1) := {X̂(ω) : ω ∈ Ω}. Further, let K ⊂ Cp-var([0, T ];R1+d+d2)

be a compact subset, bounded with respect to the p-variation norm and consider a continuous

function f :K → R. For some M > 0, let KM ⊂ K be the subset defined by

KM := {X̂ = (·, X, [X]0,π) ∈ K :X satisfies Property γ-(RIE) relative to γ = 0, p and π,

∥(X̂, X̂0)∥p+∥[X̂]0,π∥1≤M}.

Then for every ε > 0, there exists a linear functional ℓ ∈ T (R1+d+d2) such that for almost

every ω ∈ Ω,

|f(X̂(ω)) − ⟨ℓ, X̂∞
T (ω)⟩|< ε for all X̂(ω) ∈ KM ∩ S(1),

where X̂∞ denotes the Itô-signature of X̂.

Proof. We use that for almost every ω ∈ Ω, the random γ-signature of X̂(ω) for γ = 0 and

the Itô-signature X̂∞(ω) coincide, see Lemma 6.3.6 and part (ii) of Lemma 6.3.5.

The claim then immediately follows from the pathwise universal approximation theorem

for linear functionals on the γ-signature, which is Theorem 6.2.2.

Remark 6.3.8. An analogous result also holds true when considering the Stratonovich-

signature of X instead of the Itô-signature of X (also if almost all sample paths only satisfy

Property γ-(RIE) relative to γ = 1
2). This can be shown using the results of the previous

sections. This is, however, weaker than the classical universal approximation theorem stated

in Corollary 6.3.3 since we impose an assumption on the sample paths of the semimartingale

to allow for a statement about the Itô-signature.
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Appendix

A.1 Local estimates for rough integration

The following local estimates are needed to prove the existence and uniqueness result in

Theorem 2.1.3, and the continuity result in Theorem 2.1.5.

Lemma A.1.1. Let X ∈ Dp([0, T ];Rd) for p ∈ (2, 3) and (Y, Y ′) ∈ VpX([0, T ];Rk). Suppose

that the non-anticipative functional (F, F ′):VpX([0, T ];Rk) → VpX([0, T ];L(Rd;Rk)) satisfies

Assumption 2.1.1 (i) with some constant CF . Then, we have the local estimate

∥R
∫ ·
0 F (Y )dX∥ p

2
,[s,t]≲ CF (1 + ∥Y, Y ′∥X,p,[s,t])2(1 + ∥X∥p,[s,t])2∥X∥p,[s,t],

for all (s, t) ∈ ∆T , where the implicit multiplicative constant depends only on p.

Proof. Let (V, V ′) ∈ VpX([0, T ];L(Rd;Rk)), and set Ξu,v := VuXu,v + V ′
uXu,v and δΞu,r,v :=

Ξu,v − Ξu,r − Ξr,v for s ≤ u < r < v ≤ t. Here, strictly speaking, in writing V ′
uXu,v, we use

the canonical identification of L(Rd;L(Rd;Rk)) with L(Rd ⊗ Rd;Rk). We note that∣∣∣R∫ ·
0 V dX
u,v

∣∣∣ ≤ ∣∣∣ ∫ v

u
Vr dXr − Ξu,v

∣∣∣+ |V ′
u||Xu,v|

≤
∣∣∣ ∫ v

u
Vr dXr − Ξu,v

∣∣∣+ (|V ′
s |+∥V ′∥p,[s,t])|Xu,v|.

Using Chen’s relation, one can show that

−δΞu,r,v = RVu,rXr,v + V ′
u,rXr,v,

which gives that

|δΞu,r,v|

≤ ∥RV ∥ p
2
,[u,r]∥X∥p,[r,v]+∥V ′∥p,[u,r]∥X∥ p

2
,[r,v]

= w1,1(u, r)
2
pw2,1(r, v)

1
p + w1,2(u, r)

1
pw2,2(r, v)

2
p ,

where w1,1(s, t) := ∥RV ∥
p
2
p
2
,[s,t]

, w2,1(s, t) := ∥X∥pp,[s,t], w1,2(s, t) := ∥V ′∥pp,[s,t], w2,2(s, t) :=

∥X∥
p
2
p
2
,[s,t]

, (s, t) ∈ ∆T , are control functions and 1
p + 2

p > 1. It then follows from the
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generalized sewing lemma, see [75, Theorem 2.5], that

∥R
∫ ·
0 V dX∥ p

2
,[s,t]

≲ (∥RV ∥ p
2
,[s,t]∥X∥p,[s,t]+∥V ′∥p,[s,t]∥X∥ p

2
,[s,t]+(|V ′

s |+∥V ′∥p,[s,t])∥X∥ p
2
,[s,t])

≲ ∥V, V ′∥X,p,[s,t]∥X∥p,[s,t],

where the implicit multiplicative constant depends only on p.

For (V, V ′) = (F (Y ), F ′(Y, Y ′)), using Assumption 2.1.1 (i), we therefore obtain the

estimate.

Lemma A.1.2. For p ∈ (2, 3), suppose X, X̃ ∈ Dp([0, T ];Rd), (Y, Y ′) ∈ VpX([0, T ];Rk),
(Ỹ , Ỹ ′) ∈ Vp

X̃
([0, T ];Rk), and that the non-anticipative functional (F, F ′):VpX([0, T ];Rk) →

VpX([0, T ];L(Rd;Rk)) satisfies Assumption 2.1.4 (i) and (ii) given X, X̃. Then, we have the

local estimate

∥R
∫ ·
0 F (Y )dX −R

∫ ·
0 F (Ỹ )dX̃∥ p

2
,[s,t]

≲ C
F,K,X,X̃

(|Ys − Ỹs|+∥Y, Y ′; Ỹ , Ỹ ′∥
X,X̃,p,[s,t]

+∥X − X̃∥p,[s,t])(∥X∥p,[s,t]∨∥X̃∥p,[s,t])

+ CF (1 +K)2(1 + ∥X∥p,[s,t]∨∥X̃∥p,[s,t])2∥X; X̃∥p,[s,t]

for all (s, t) ∈ ∆T , if ∥Y, Y ′∥X,p,[s,t], ∥Ỹ , Ỹ ′∥
X̃,p,[s,t]

≤ K, for some K > 0, where the implicit

multiplicative constant depends on p, ∥X∥p and ∥X̃∥p.

Proof. It follows from [75, Lemma 3.4] that for any (V, V ′) ∈ VpX , (Ṽ , Ṽ ′) ∈ Vp
X̃

,

∥R
∫ ·
0 V dX −R

∫ ·
0 Ṽ dX̃∥ p

2
,[s,t]

≲p (1 + ∥X∥p,[s,t]+∥X̃∥p,[s,t])(∥V, V ′; Ṽ , Ṽ ′∥
X,X̃,p,[s,t]

∥X∥p,[s,t]

+ ∥Ṽ , Ṽ ′∥
X̃,p,[s,t]

∥X; X̃∥p,[s,t])

≲ ∥V, V ′; Ṽ , Ṽ ′∥
X,X̃,p,[s,t]

∥X∥p,[s,t]+∥Ṽ , Ṽ ′∥
X̃,p,[s,t]

∥X; X̃∥p,[s,t],

where the implicit multiplicative constant depends on p, ∥X∥p and ∥X̃∥p. For (V, V ′) =

(F (Y ), F ′(Y, Y ′)), (Ṽ , Ṽ ′) = (F (Ỹ ), F ′(Ỹ , Ỹ ′)), using Assumption 2.1.4 (ii), we therefore

obtain the estimate.
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A.2 Proof of Theorem 3.1.1

Proof of Theorem 3.1.1. Step 1. Let L > 0 such that ∥A∥r, ∥H∥r, ∥X∥p≤ L, and let

w: ∆T → [0,∞) be the right-continuous control function given by

w(s, t) = ∥A∥rr,[s,t]+∥H∥rr,[s,t]+∥X∥pp,[s,t]+∥X∥
p
2
p
2
,[s,t]

, for (s, t) ∈ ∆T .

For t ∈ (0, T ], we define the map Mt:Vq,rX ([0, t];Rk) → Vq,rX ([0, t];Rk) by

Mt(Y, Y
′) =

(
y0 +

∫ ·

0
b(Hs, Ys) dAs +

∫ ·

0
σ(Hs, Ys) dXs, σ(H,Y )

)
,

and, for δ ≥ 1, introduce the subset of controlled paths

B(δ)
t =

{
(Y, Y ′) ∈ Vq,rX ([0, t];Rk) : (Y0, Y

′
0) = (y0, σ(H0, y0)), ∥Y, Y ′∥(δ)X,q,r≤ 1

}
,

where

∥Y, Y ′∥(δ)X,q,r:= ∥Y ′∥q,[0,t]+δ∥RY ∥r,[0,t].

Applying standard estimates for Young and rough integrals (e.g. [75, Proposition 2.4 and

Lemma 3.6]), for any (Y, Y ′) ∈ B(δ)
t , we deduce that

∥Mt(Y, Y
′)∥(δ)X,q,r≤ C1

(
1

δ
+ δ(∥A∥r,[0,t]+∥H∥r,[0,t]+∥X∥p,[0,t])

)
,

for a constant C1 ≥ 1
2 which depends only on p, q, r, ∥b∥C2

b
, ∥σ∥C3

b
, and L. Let δ = δ1 := 2C1,

so that

∥Mt(Y, Y
′)∥(δ1)X,q,r≤

1

2
+ 2C2

1 (2w(0, t)
1
r + w(0, t)

1
p + w(0, t)

2
p ).

By the right-continuity of w, we can then take t = t1 sufficiently small such that

∥Mt1(Y, Y ′)∥(δ1)X,q,r≤ 1,

and we have that B(δ1)
t1

is invariant under Mt1 .

Step 2. Let (Y, Y ′), (Ỹ , Ỹ ′) ∈ B(δ)
t , for some (new) δ ≥ 1 and t ∈ (0, t1]. Applying

standard estimates for Young and rough integrals (e.g. [75, Proposition 2.4, Lemma 3.1 and

Lemma 3.7]), we deduce that

∥Mt(Y, Y
′) −Mt(Ỹ , Ỹ

′)∥(δ)X,q,r
≤ C2

(
∥RY −RỸ ∥r,[0,t]+δ(∥Y ′ − Ỹ ′∥q,[0,t]+∥RY −RỸ ∥r,[0,t])(∥A∥r,[0,t]+∥X∥p,[0,t])

)
,

where C2 >
1
2 depends only on p, q, r, ∥b∥C2

b
, ∥σ∥C3

b
and L. Let δ = δ2 := 2C2 > 1, so that

∥Mt(Y, Y
′) −Mt(Ỹ , Ỹ

′)∥(δ2)X,q,r

≤ δ2
2
∥RY −RỸ ∥r,[0,t]

+ 2C2
2 (∥Y ′ − Ỹ ′∥q,[0,t]+∥RY −RỸ ∥r,[0,t])(w(0, t)

1
r + w(0, t)

1
p + w(0, t)

2
p ).
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Again by the right-continuity of w, we then take t = t2 ≤ t1 sufficiently small such that

∥Mt2(Y, Y ′) −Mt2(Ỹ , Ỹ ′)∥(δ2)X,q,r ≤
1

2
∥Y ′ − Ỹ ′∥q,[0,t2]+

δ2 + 1

2
∥RY −RỸ ∥r,[0,t2]

≤ δ2 + 1

2δ2
∥(Y, Y ′) − (Ỹ , Ỹ ′)∥(δ2)X,q,r,

from which it follows that Mt2 is a contraction on the Banach space (B(δ1)
t2

, ∥·∥(δ2)X,q,r). The

fixed point of this map is the unique solution of the RDE (3.4) over the time interval [0, t2].

Step 3. Now let Ã ∈ Dq1 , H̃ ∈ Dq2 , X̃ = (X̃, X̃) ∈ Dp and ỹ0 ∈ Rn, such that

∥Ã∥r, ∥H̃∥r, ∥X̃∥p≤ L. By considering instead the control function w given by

w(s, t) = ∥A∥rr,[s,t]+∥H∥rr,[s,t]+∥X∥pp,[s,t]+∥X∥
p
2
p
2
,[s,t]

+ ∥Ã∥rr,[s,t]+∥H̃∥rr,[s,t]+∥X̃∥pp,[s,t]+∥X̃∥
p
2
p
2
,[s,t]

, for (s, t) ∈ ∆T ,

it follows from the above that there exist unique solutions (Y, Y ′) ∈ Vq,rX ([0, t2];Rk) and

(Ỹ , Ỹ ′) ∈ Vq,r
X̃

([0, t2];Rk) of the RDE (3.4), with data (A,H,X, y0) and (Ã, H̃, X̃, ỹ0) re-

spectively, over a sufficiently small time interval [0, t2]. Standard estimates for Young and

rough integrals (e.g. [75, Proposition 2.4, Lemma 3.1 and Lemma 3.7]) imply, after some

calculation, that for any δ ≥ 1 and t ∈ (0, t2],

∥Y ′ − Ỹ ′∥q,[0,t]+δ∥RY −RỸ ∥r,[0,t]

≤ C3

(
|y0 − ỹ0|+|H0 − H̃0|+∥H − H̃∥r,[0,t]+∥RY −RỸ ∥r,[0,t]

+ δ(∥A− Ã∥r,[0,t]+∥X; X̃∥p,[0,t])

+ δ(|y0 − ỹ0|+|H0 − H̃0|+∥H − H̃∥r,[0,t]+∥Y ′ − Ỹ ′∥q,[0,t]+∥RY −RỸ ∥r,[0,t])

× (∥A∥r,[0,t]+∥X∥p,[0,t])
)
,

where C3 > 0 depends only on p, q, r, ∥b∥C2
b
, ∥σ∥C3

b
and L. Let δ = δ3 := C3 + 1, so that

∥Y ′ − Ỹ ′∥q,[0,t]+∥RY −RỸ ∥r,[0,t]

≤ C3

(
|y0 − ỹ0|+|H0 − H̃0|+∥H − H̃∥r,[0,t]+δ3(∥A− Ã∥r,[0,t]+∥X; X̃∥p,[0,t])

+ δ3(|y0 − ỹ0|+|H0 − H̃0|+∥H − H̃∥r,[0,t]+∥Y ′ − Ỹ ′∥q,[0,t]+∥RY −RỸ ∥r,[0,t])

× (w(0, t)
1
r + w(0, t)

1
p + w(0, t)

2
p )
)
.

By taking t = t3 ≤ t2 sufficiently small, we deduce that

∥Y − Ỹ ∥p,[0,t3]+∥Y ′ − Ỹ ′∥q,[0,t3]+∥RY −RỸ ∥r,[0,t3]

≤ C4

(
|y0 − ỹ0|+|H0 − H̃0|+∥H − H̃∥r,[0,t3]+∥A− Ã∥r,[0,t3]+∥X; X̃∥p,[0,t3]

)
,

(A.2)

for a new constant C4, still depending only on p, q, r, ∥b∥C2
b
, ∥σ∥C3

b
and L.
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Step 4. We infer from the above that there exists a constant ε > 0, which depends only

on p, q, r, ∥b∥C2
b
, ∥σ∥C3

b
and L, such that, given initial values Ys, Ỹs ∈ Rk, the local solutions

(Y, Y ′) and (Ỹ , Ỹ ′) established above exist on any interval [s, t] such that w(s, t) ≤ ε.

Moreover, these local solutions satisfy an estimate on this interval of the form in (A.2).

By [75, Lemma 1.5], there exists a partition P = {0 = t0 < t1 < · · · < tN = T}, such

that w(ti, ti+1−) < ε for every i = 0, 1, . . . , N − 1. We can then define the solutions (Y, Y ′)

and (Ỹ , Ỹ ′) on each of the half-open intervals [ti, ti+1). Given the solutions on [ti, ti+1),

the values Yti+1 and Ỹti+1 at the right end-point of the interval are uniquely determined by

the jumps of A, Ã,X and X̃ at time ti+1. We thus deduce the existence of unique solutions

(Y, Y ′) and (Ỹ , Ỹ ′) of the RDE on the entire interval [0, T ].

Since w is superadditive, we have that

w(t0, t1−) + w(t1−, t1) + w(t1, t2−) + · · · + w(tN−1, tN−) + w(tN−, tN ) ≤ w(0, T ).

It is then straightforward to see that the partition P may be chosen such that the number

of partition points in P may be bounded by a constant depending only on ε and w(0, T ).

Thus, we may combine the local estimates in (A.2) on each of the subintervals, together

with simple estimates on the jumps at the end-points of these subintervals, to obtain the

global estimate in (3.5).

A.3 The convergence of piecewise constant approximations

In the following, we adopt the notation

lim inf
n→∞

Pn :=
⋃
m∈N

⋂
n≥m

Pn

for the times t ∈ [0, T ] which, as n→ ∞, eventually belong to all subsequent partitions in the

sequence (Pn)n∈N. The following proposition generalizes the result of [7, Proposition 2.14]

so that the sequence of partitions is no longer assumed to be nested.

Proposition A.3.1. Let Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a sequence of

partitions with vanishing mesh size, so that |Pn|→ 0 as n → ∞. Let F : [0, T ] → Rd be a

càdlàg path, and let

Fnt = FT1{T}(t) +

Nn−1∑
k=0

Ftnk1[tnk ,t
n
k+1)

(t), t ∈ [0, T ],

be the piecewise constant approximation of F along Pn. Let

JF := {t ∈ (0, T ] : Ft− ̸= Ft}

be the set of jump times of F . The following are equivalent:
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(i) JF ⊆ lim infn→∞ Pn,

(ii) the sequence (Fn)n∈N converges pointwise to F ,

(iii) the sequence (Fn)n∈N converges uniformly to F .

Proof. We first show that conditions (i) and (ii) are equivalent. To this end, suppose that

JF ⊆ lim infn→∞ Pn and let t ∈ (0, T ]. If t ∈ JF , then there exists m ≥ 1 such that t ∈ Pn

for all n ≥ m. In this case we then have that Fnt = Ft for all n ≥ m. If t /∈ JF , then F is

continuous at time t, and, since the mesh size |Pn|→ 0, it follows that Fnt → Ft as n→ ∞.

Now suppose instead that there exists a t ∈ JF such that t /∈ lim infn→∞ Pn. Then there

exists a subsequence (nj)j∈N such that F
nj
t → Ft− as j → ∞. Since Ft− ̸= Ft, it follows

that Fnt ↛ Ft. This establishes the equivalence of (i) and (ii).

Since (iii) clearly implies (ii), it only remains to show that (ii) implies (iii). By [69,

Theorem 3.3], it is enough to show that the family of paths {Fn : n ∈ N} is equiregulated

in the sense of [69, Definition 3.1].

Step 1. Let t ∈ (0, T ] and ε > 0. Since the left limit Ft− exists, there exists δ > 0 with

t− δ > 0, such that

|Fs − Ft−|<
ε

2
for all s ∈ (t− δ, t).

Since |Pn|→ 0 as n→ ∞, there exists an m ∈ N such that, for every n ≥ m, there exists

a partition point tnk ∈ Pn such that t− δ < tnk < t− δ
2 .

Let

u := max

((
t− δ

2
, t
)
∩
⋃
n<m

Pn

)
,

where here we define max(∅) := t− δ
2 .

Take any s ∈ (u, t) and any n ∈ N. Let i = max{k : tnk ≤ s} and j = max{k : tnk < t},

so that Fns = Ftni and Fnt− = Ftnj .

If n ≥ m, then there exists a point tnk ∈ Pn such that t − δ < tnk < t − δ
2 ≤ u < s,

and it follows that tni , t
n
j ∈ (t− δ, t). If instead n < m, and if there exists a partition point

tnk ∈ (t− δ
2 , t), then t− δ

2 < tnk ≤ u < s, and it again follows that tni , t
n
j ∈ (t− δ, t). In either

case, we then have that

|Fns − Fnt−|= |Ftni − Ftnj |≤ |Ftni − Ft−|+|Ftnj − Ft−|<
ε

2
+
ε

2
= ε.

The remaining case is when n < m but (t − δ
2 , t) ∩ Pn = ∅. In this case the path Fn is

constant on the interval [t− δ
2 , t) and, since s ∈ (t− δ

2 , t), we have that Fns = Fnt−.

In each case, we have that |Fns − Fnt−|< ε for all s ∈ (u, t) and all n ∈ N.
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Step 2. Let t ∈ (JF ∪ {0}) \ {T} and ε > 0. Since F is right-continuous, there exists a

δ > 0 with t+ δ < T , such that

|Fs − Ft|< ε for all s ∈ [t, t+ δ).

Since condition (ii) implies condition (i), we know that t ∈ lim infn→∞ Pn, so that there

exists an m ∈ N such that t ∈ ∩n≥mPn. Let

u := min

(
(t, t+ δ) ∩

⋃
n<m

Pn

)
,

where here we define min(∅) := t+ δ.

Take any s ∈ (t, u), and any n ∈ N. Let i = max{k : tnk ≤ s}, so that Fns = Ftni .

If n ≥ m, then t ∈ Pn, so Fnt = Ft and, moreover, t ≤ tni ≤ s < u ≤ t + δ, so that in

particular tni ∈ [t, t+ δ), and hence

|Fns − Fnt |= |Ftni − Ft|< ε.

If n < m, then there does not exist any partition point tnk ∈ (t, u) ∩ Pn. It follows that the

path Fn is constant on the interval [t, u), so that in particular Fns = Fnt .

In each case, we have that |Fns − Fnt |< ε for all s ∈ (t, v) and all n ∈ N.

Step 3. Let t ∈ (0, T ) \ JF and ε > 0. Since F is continuous at time t, there exists a

δ > 0 with 0 < t− δ and t+ δ < T , such that

|Fs − Ft|<
ε

2
for all s ∈ (t− δ, t+ δ).

Since |Pn|→ 0 as n→ ∞, there exists an m ∈ N such that, for every n ≥ m, there exists a

partition point tnk ∈ Pn such that t− δ < tnk < t. Let

u := min

(
(t, t+ δ) ∩

⋃
n<m

Pn

)
,

where here we define min(∅) := t+ δ.

Take any s ∈ (t, u) and any n ∈ N. Let i = max{k : tnk ≤ s} and j = max{k : tnk ≤ t},

so that Fns = Ftni and Fnt = Ftnj .

If n ≥ m, then there exists a point tnk ∈ Pn such that tnk ∈ (t− δ, t), and it follows that

tni , t
n
j ∈ (t− δ, t+ δ), so that

|Fns − Fnt |= |Ftni − Ftnj |≤ |Ftni − Ft|+|Ftnj − Ft|<
ε

2
+
ε

2
= ε.

If n < m, then there does not exist any partition point tnk ∈ (t, u) ∩ Pn. It follows that the

path Fn is constant on the interval [t, u), so that in particular Fns = Fnt .

In each case, we have that |Fns − Fnt |< ε for all s ∈ (t, u) and all n ∈ N. It follows that

the family of paths {Fn : n ∈ N} is indeed equiregulated.
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Theorem A.3.2. Let p ∈ (2, 3), q ∈ [p,∞) and r ∈ [p2 , 2) such that 1
p + 1

r > 1 and

1
p + 1

q = 1
r , and let Pn = {0 = tn0 < tn1 < · · · < tnNn = T}, n ∈ N, be a sequence of

partitions with vanishing mesh size. Suppose that X satisfies Property (RIE) relative to p

and (Pn)n∈N, and let X be the canonical rough path lift of X, as constructed in (3.9). Let

(F, F ′) ∈ Vq,rX be a controlled path with respect to X, and suppose that JF ⊆ lim infn→∞ Pn,

where JF is the set of jump times of F . Then the rough integral of (F, F ′) against X is

given by ∫ t

0
Fu dXu = lim

n→∞

Nn−1∑
k=0

FtnkXtnk∧t,t
n
k+1∧t,

where the convergence is uniform in t ∈ [0, T ].

The previous theorem generalizes the result of [7, Theorem 2.15] so that the sequence

of partitions is no longer assumed to be nested. The proof of Theorem A.3.2 follows the

proof of [7, Theorem 2.15] almost verbatim. The only difference is that, rather than using

[7, Proposition 2.14] to establish the uniform convergence of Fn to F , we can instead use

Proposition A.3.1 (which does not require the sequence of partitions to be nested).
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A.4 Some essential results in rough path theory

In this appendix, we collect some fundamental results in the theory of càdlàg rough paths.

While the analogous results are standard for stochastic Itô integration, they are less well-

known and in some cases novel in the context of rough integration.

Throughout this section, we fix the following assumption.

Assumption. Let p ∈ [2, 3), q ∈ [p,∞) and r ∈ [p2 , 2) such that 1
p + 1

r > 1 and 1
p + 1

q = 1
r .

In the following, we consider a general càdlàg rough path X = (X,X) ∈ Dp([0, T ];Rd)
as introduced in Section 4.2.1, and do not impose Property (RIE) on X.

A.4.1 Rough integration with respect to controlled paths

This subsection contains slight modifications of results in [7] on rough integration with

respect to controlled paths in Vq,rX ([0, T ];Rm).

Lemma A.4.1 (Proposition 2.4 in [7]). Let X = (X,X) ∈ Dp be a càdlàg rough path and let

(F, F ′), (G,G′) ∈ Vq,rX be controlled paths with remainders RF and RG, respectively. Then

the limit2 ∫ T

0
Fu dGu := lim

|P|→0

∑
[s,t]∈P

Fs ⊗Gs,t + (F ′
s ⊗G′

s)Xs,t (A.3)

exists along every sequence of partitions P of [0, T ] with mesh size |P|→ 0, and comes with

the estimate∣∣∣∣ ∫ t

s
Fu dGu − Fs ⊗Gs,t − (F ′

s ⊗G′
s)Xs,t

∣∣∣∣
≤ C

(
∥F ′∥∞(∥G′∥qq,[s,t)+∥X∥pp,[s,t))

1
r ∥X∥p,[s,t]+∥F∥p,[s,t)∥RG∥r,[s,t]

+ ∥RF ∥r,[s,t)∥G′∥∞∥X∥p,[s,t]+∥F ′G′∥q,[s,t)∥X∥ p
2
,[s,t]

)
,

for every (s, t) ∈ ∆T , where the constant C depends only on p, q and r.

Lemma A.4.2 (Proposition 2.7 (ii) in [7]). Let X = (X,X), X̃ = (X̃, X̃) be càdlàg rough

paths, and let (F, F ′), (G,G′) ∈ Vq,rX and (F̃ , F̃ ′), (G̃, G̃′) ∈ Vq,r
X̃

be controlled paths. Let

M > 0 be an upper bound for ∥F, F ′∥Vq,rX , ∥G,G′∥Vq,rX , ∥F̃ , F̃ ′∥Vq,r
X̃

, ∥G̃, G̃′∥Vq,r
X̃

, ∥X∥p and

∥X̃∥p. Then, there exists a constant C, depending only on p, q, r and M , such that∥∥∥∥∫ ·

0
Fu dGu −

∫ ·

0
F̃u dG̃u

∥∥∥∥
q

≤ C
(
∥F, F ′; F̃ , F̃ ′∥Vq,rX ,Vq,r

X̃
+∥G,G′; G̃, G̃′∥Vq,rX ,Vq,r

X̃
+∥X; X̃∥p

)
,

where
∫ ·
0 Fu dGu and

∫ ·
0 F̃u dG̃u are rough integrals, as defined in (A.3).

2In writing F ′
s ⊗G′

s, we technically mean the 4-tensor whose ijkℓ component is given by [F ′
s ⊗G′

s]
ijkℓ =

(F ′
s)
ij(G′

s)
kℓ, and we interpret the “multiplication” (F ′

s⊗G′
s)Xs,t as the matrix whose ik component is given

by [(F ′
s ⊗G′

s)Xs,t]ik =
∑
j

∑
ℓ(F

′
s)
ij(G′

s)
kℓXjℓs,t.
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A.4.2 The product of controlled paths

Lemma A.4.3. Let X = (X,X) be a càdlàg rough path. The product operator, given by

Vq,rX ([0, T ];Rk) × Vq,rX ([0, T ];Rk) → Vq,rX ([0, T ];Rk),

((F, F ′), (G,G′)) 7→ (FG, (FG)′),

where

(FG)i := F iGi and ((FG)′)ij := (F ′)ijGi + F i(G′)ij

for each i, j = 1, . . . , k, is a continuous bilinear map, and comes with the estimate

∥FG, (FG)′∥Vq,rX ≤ C(1 + ∥X∥p)2∥F, F ′∥Vq,rX ∥G,G′∥Vq,rX ,

where the constant C depends only on p, q, r and the dimension k. We call (FG, (FG)′) the

product of (F, F ′) and (G,G′), which we sometimes simply denote by FG.

The proof of Lemma A.4.3 is identical to the proof of the corresponding statement for

continuous paths, which can be found in [5, Lemma A.1].

Lemma A.4.4. Let X = (X,X), X̃ = (X̃, X̃) be càdlàg rough paths and let (F, F ′),

(G,G′) ∈ Vq,rX and (F̃ , F̃ ′), (G̃, G̃′) ∈ Vq,r
X̃

be controlled paths. Let M > 0 be an upper

bound for ∥F, F ′∥Vq,rX , ∥G,G′∥Vq,rX , ∥F̃ , F̃ ′∥Vq,r
X̃

, ∥G̃, G̃′∥Vq,r
X̃

, ∥X∥p and ∥X̃∥p. Then, there

exists a constant C, which depends only on p, q, r and M , such that

∥FG, (FG)′; F̃ G̃, (F̃ G̃)′∥Vq,rX ,Vq,r
X̃

≤ C
(
∥F, F ′; F̃ , F̃ ′∥Vq,rX ,Vq,r

X̃
+∥G,G′; G̃, G̃′∥Vq,rX ,Vq,r

X̃
+∥X − X̃∥p

)
.

Proof. For each i, j = 1, . . . , d, we have that

|(FG)i0 − (F̃ G̃)i0| = |(F i0 − F̃ i0)Gi0 + F̃ i0(Gi0 − G̃i0)|

≤ ∥G,G′∥Vq,rX ∥F, F ′; F̃ , F̃ ′∥Vq,rX ,Vq,r
X̃

+∥F̃ , F̃ ′∥Vq,r
X̃

∥G,G′; G̃, G̃′∥Vq,rX ,Vq,r
X̃

and

|((FG)′)ij0 − ((F̃ G̃)′)ij0 |≤ |(F ′)ij0 G
i
0 − (F̃ ′)ij0 G̃

i
0|+|F i0(G′)ij0 − F̃ i0(G̃′)ij0 |

≤ |(F ′)ij0 − (F̃ ′)ij0 ||G
i
0|+|(F̃ ′)ij0 ||G

i
0 − G̃i0|+|F i0 − F̃ i0||(G′)ij0 |+|F̃ i0||(G′)ij0 − (G̃′)ij0 |

≤ ∥G,G′∥Vq,rX ∥F, F ′; F̃ , F̃ ′∥Vq,rX ,Vq,r
X̃

+∥F̃ , F̃ ′∥Vq,r
X̃

∥G,G′; G̃, G̃′∥Vq,rX ,Vq,r
X̃
.

216



Further, we have that

∥(FG)′ − (F̃ G̃)′∥q

≤ ∥F ′ − F̃ ′∥q∥G∥∞+∥F̃ ′∥q∥G− G̃∥∞+∥F ′ − F̃ ′∥∞∥G∥q+∥F̃ ′∥∞∥G− G̃∥q

+ ∥F − F̃∥q∥G′∥∞+∥F̃∥q∥G′ − G̃′∥∞+∥F − F̃∥∞∥G′∥q+∥F̃∥∞∥G′ − G̃′∥q

≤ (∥F − F̃∥∞+∥F − F̃∥q+∥F ′ − F̃ ′∥∞+∥F ′ − F̃ ′∥q)(∥G∥∞+∥G∥q+∥G′∥∞+∥G′∥q)

+ (∥F̃∥∞+∥F̃∥q+∥F̃ ′∥∞+∥F̃ ′∥q)(∥G− G̃∥∞+∥G− G̃∥q+∥G′ − G̃′∥∞+∥G′ − G̃′∥q)

≲ (1 + ∥X∥p)(1 + ∥X̃∥p)(1 + ∥F, F ′∥Vq,rX )∥G,G′∥Vq,rX (∥F, F ′; F̃ , F̃ ′∥Vq,rX ,Vq,r
X̃

+∥X − X̃∥p)

+ (1 + ∥X∥p)(1 + ∥X̃∥p)∥F̃ , F̃ ′∥Vq,r
X̃

(1 + ∥G̃, G̃′∥Vq,r
X̃

)(∥G,G′; G̃, G̃′∥Vq,rX ,Vq,r
X̃

+∥X − X̃∥p).

The remainder is given by (RFG)is,t = (RF )is,tG
i
s+F

i
s(R

G)is,t+F
i
s,tG

i
s,t for each (s, t) ∈ ∆T

(see the proof of [5, Lemma A.1]). Using the fact that 2r ≥ p, we have

∥RFG∥r

≤ ∥RF −RF̃ ∥r∥G∥∞+∥RF̃ ∥r∥G− G̃∥∞+∥F − F̃∥∞∥RG∥r+∥F̃∥∞∥RG −RG̃∥r

+ ∥F − F̃∥2r∥G∥2r+∥F̃∥2r∥G− G̃∥2r

≲ (1 + ∥X∥p)∥F, F ′; F̃ , F̃ ′∥Vq,rX ,Vq,r
X̃

∥G,G′∥Vq,rX
+ (1 + ∥X∥p)∥F̃ , F̃ ′∥Vq,r

X̃
(1 + ∥G̃, G̃′∥Vq,r

X̃
)(∥G,G′; G̃, G̃′∥Vq,rX ,Vq,r

X̃
+∥X − X̃∥p)

+ (1 + ∥X̃∥p)(1 + ∥F, F ′∥Vq,rX )∥G,G′∥Vq,rX (∥F, F ′; F̃ , F̃ ′∥Vq,rX ,Vq,r
X̃

+∥X − X̃∥p)

+ (1 + ∥X̃∥p)∥F̃ , F̃ ′∥Vq,rX ∥G,G′; G̃, G̃′∥Vq,rX ,Vq,r
X̃

+ (1 + ∥X∥p)(1 + ∥X̃∥p)(1 + ∥F, F ′∥Vq,rX )∥G,G′∥Vq,rX (∥F, F ′; F̃ , F̃ ′∥Vq,rX ,Vq,r
X̃

+∥X − X̃∥p)

+ (1 + ∥X∥p)(1 + ∥X̃∥p)∥F̃ , F̃ ′∥Vq,r
X̃

(1 + ∥G̃, G̃′∥Vq,r
X̃

)(∥G,G′; G̃, G̃′∥Vq,rX ,Vq,r
X̃

+∥X − X̃∥p)

≲ (1 + ∥X∥p)(1 + ∥X̃∥p)(1 + ∥F, F ′∥Vq,rX )(1 + ∥G,G′∥Vq,rX )(1 + ∥F̃ , F̃ ′∥Vq,r
X̃

)

× (1 + ∥G̃, G̃′∥Vq,r
X̃

)(∥F, F ′; F̃ , F̃ ′∥Vq,rX ,Vq,r
X̃

+∥G,G′; G̃, G̃′∥Vq,rX ,Vq,r
X̃

+∥X − X̃∥p).

Combining the inequalities above, we deduce the desired estimate.

A.4.3 Associativity of rough integration

The following proposition establishes the associativity of rough integration with respect to

càdlàg controlled paths.

Proposition A.4.5. Let X = (X,X) be a càdlàg rough path and let (Y, Y ′), (F, F ′), (G,G′)

∈ Vq,rX be controlled paths. Then (Z,Z ′) := (
∫ ·
0 Fu dGu, FG

′) ∈ Vq,rX , and we have that∫ ·

0
Yu dZu =

∫ ·

0
YuFu dGu,
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where on the left-hand side we have the integral of (Y, Y ′) against (Z,Z ′), and on the right-

hand side we have the integral of (Y F, (Y F )′) against (G,G′), each defined in the sense

of (A.3).

The proof of Proposition A.4.5 is identical to the proof of the corresponding statement

for continuous paths, which can be found in [5, Proposition A.2].

A.4.4 The canonical rough path lift of a controlled path

The next lemma provides the canonical construction of a càdlàg rough path above a con-

trolled path.

Lemma A.4.6. Let X = (X,X) be a càdlàg rough path and (Z,Z ′) ∈ Vq,rX be a controlled

path. Then, Z = (Z,Z) is a càdlàg rough path, where

Zs,t :=

∫ t

s
Zu dZu − Zs ⊗ Zs,t, (s, t) ∈ ∆T ,

with the integral defined as in (A.3). We call Z = (Z,Z) the canonical rough path lift of

(Z,Z ′). Moreover, if (Y, Y ′) ∈ Vq,rZ , then (Y, Y ′Z ′) ∈ Vq,rX , and∫ T

0
Yu dZu =

∫ T

0
Yu dZu,

where on the left-hand side we have the rough integral of (Y, Y ′) against Z, and on the

right-hand side we have the integral of (Y, Y ′Z ′) against (Z,Z ′) in the sense of (A.3).

The proof of Lemma A.4.6 follows the proof of the corresponding statement for contin-

uous paths verbatim; see [5, Lemma A.3].

A.4.5 The exponential of a rough path

Recall that, given a càdlàg rough path X = (X,X), one can define the so-called reduced

rough path Xr = (X, [X]), where [X]t := X0,t⊗X0,t−2Sym(X0,t) is the rough path bracket

of X; see, e.g., [75, Section 2.4]. If X satisfies Property (RIE) relative to p and a sequence of

partitions (Pn)n∈N, then, by [7, Proposition 2.18], one can see that the rough path bracket

[X] coincides with the pathwise quadratic variation [X] of X, in the sense of Föllmer;

see [67]. Using this notion, one can introduce the rough exponential analogously to the

stochastic exponential of Itô calculus.

In the following, given a path X, we will write ∆Xt := Xt−,t for the jump of X at time

t.
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Lemma A.4.7. Given a one-dimensional càdlàg rough path X = (X,X) (so that in par-

ticular X is real-valued), such that X0 = 0, ∆[X]t = (∆Xt)
2 for every t ∈ [0, T ], and∑

t∈[0,T ](∆Xt)
2 <∞, the rough exponential V = E(X) is defined by

Vt := exp
(
Xt −

1

2
Γt

) ∏
0<s≤t

(1 + ∆Xs) exp(−∆Xs), t ∈ [0, T ],

where Γt := [X]t−
∑

s≤t(∆Xs)
2 for t ∈ [0, T ]. We then have that V is the unique controlled

path in Vq,rX satisfying the linear rough differential equation

Vt = 1 +

∫ t

0
Vs dXs, t ∈ [0, T ], (A.4)

with Gubinelli derivative V ′ = V .

Proof. Since we assume that
∑

t∈[0,T ](∆Xt)
2 < ∞, and ∆[X]t = (∆Xt)

2 for all t ∈ [0, T ],

the path Γ = [X]−
∑

s≤·(∆Xs)
2 is continuous and has finite p

2 -variation. Let Y := X − 1
2Γ

and A :=
∏
s≤·(1+∆Xs) exp(−∆Xs). One can verify that A is of finite 1-variation; see, e.g.,

the proof of [147, Chapter II, Theorem 37]. Hence, the two-dimensional path Z := (Y,A)

admits a rough path lift Z = (Z,Z), such that

Z1,1
s,t = Xs,t −

1

2

∫ t

s
Xs,u dΓu −

1

2

∫ t

s
Γs,u dXu +

1

4

∫ t

s
Γs,u dΓu,

Z1,2
s,t =

∫ t

s
Ys,u dAu, Z2,1

s,t =

∫ t

s
As,u dYu, Z2,2

s,t =

∫ t

s
As,u dAu,

for (s, t) ∈ ∆T , where all the integrals above are interpreted as Young integrals (as in, e.g.,

[75, Proposition 2.4]).

We now consider the reduced rough path (Z, [Z]) associated with Z. By definition, we

have that

[Y,A]t := [Z]1,2t = [Z]2,1t = Y0,tA0,t −
(∫ t

0
Y0,u dAu +

∫ t

0
A0,u dYu

)
.

Since
∫ t
0 Y0,u dAu and

∫ t
0 A0,u dYu are Young integrals, for any sequence of partitions (Pn)n∈N

of [0, T ] with vanishing mesh size, we have that∫ t

0
Y0,u dAu = lim

n→∞

∑
[u,v]∈Pn

Y0,uAu∧t,v∧t,

∫ t

0
A0,u dYu = lim

n→∞

∑
[u,v]∈Pn

A0,uYu∧t,v∧t.

Noting that

Y0,v∧tA0,v∧t − Y0,u∧tA0,u∧t = Y0,u∧tAu∧t,v∧t +A0,u∧tYu∧t,v∧t + Yu∧t,v∧tAu∧t,v∧t

and taking limn→∞
∑

[u,v]∈Pn on each side, we obtain

[Y,A]t = lim
n→∞

∑
[u,v]∈Pn

Yu∧t,v∧tAu∧t,v∧t =
∑
s≤t

∆Ys∆As =
∑
s≤t

∆Xs∆As,
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and one can similarly show that [A]t := [Z]2,2t =
∑

s≤t(∆As)
2.

Since Γ is continuous and of finite p
2 -variation, one can show, using the integration

by parts formula for Young integrals, that [Y ]t := [Z]1,1t = [X]t, so that [Y ]t = Γt +∑
s≤t(∆Xs)

2.

Applying the Itô formula for rough paths ([75, Theorem 2.12]) to Vt = f(Zt), where

f(y, a) := a exp(y), and using the expressions derived above for the rough path bracket [Z],

a straightforward calculation (similar to the proof of [147, Chapter II, Theorem 37] in the

semimartingale setting) establishes that Vt = 1 +
∫ t
0 Vs dXs. In particular, this involves

noting that
∫ t
0 Vs dYs =

∫ t
0 Vs dXs− 1

2

∫ t
0 Vs dΓs, where in the first integral on the right-hand

side we identify (V, V ) as a controlled path with respect to X.

Finally, the uniqueness of solutions to (A.4) follows from straightforward estimates using

the stability of rough integration ([75, Lemma 3.4]).
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A.5 Proof of Lemma 6.1.7

Proof of Lemma 6.1.7. For γ ̸= 1
2 , the statement follows from Lemma 6.1.6 and Proposi-

tion 3.1.10.

Suppose that γ = 1
2 . We need to verify that the integral∫ t

0
X̂r⊗dγ,π

n
X̂r =

∫ t

0
Xr⊗dγ,π

n
Xr+

∫ t

0
Xr⊗dγ,π

n
φr+

∫ t

0
φr⊗dγ,π

n
Xr+

∫ t

0
φr⊗dγ,π

n
φr,

converges as n→ ∞ to the limit∫ t

0
X̂r ⊗ dγ,πXr =

∫ t

0
Xr ⊗ dγ,πXr +

∫ t

0
Xr ⊗ dγ,πφr +

∫ t

0
φr ⊗ dγ,πXr +

∫ t

0
φr ⊗ dγ,πφr,

uniformly in t ∈ [0, T ], where the latter three integrals are defined as Young integrals.

Since X satisfies Property γ-(RIE), we have that∥∥∥∥∫ ·

0
Xr ⊗ dγ,π

n
Xr −

∫ ·

0
Xr ⊗ dγ,πXr

∥∥∥∥
∞

−→ 0 as n→ ∞.

Define X̄n and φ̄n as the piecewise linear interpolation of X and φ, respectively, along

π = (πn)n∈N. Then it holds for any t ∈ [0, T ] that∫ t

0
Xr ⊗ dγ,πnφr =

Nn−1∑
k=0

(Xtnk
+

1

2
Xtnk ,t

n
k+1

) ⊗ φtnk∧t,t
n
k+1∧t =

∫ t

0
X̄n
r ⊗ dφr.

Let p′ > p such that 1
p′ + 1

q > 1. By the standard estimate for Young integrals – see e.g. [75,

Proposition 2.4] – we have for all t ∈ [0, T ], that∣∣∣∣ ∫ t

0
Xr ⊗ dγ,π

n
φr −

∫ t

0
Xr ⊗ dγ,πφr

∣∣∣∣ ≲ ∥X̄n −X∥p′∥φ∥q.

It follows by interpolation—see e.g. [74, Proposition 5.5]—that

∥X̄n −X∥p′≤ ∥X̄n −X∥
1− p

p′
∞ ∥X̄n −X∥

p
p′
p .

Since X̄n converges uniformly to X as n→ ∞, and supn∈N∥X̄n∥p<∞, we deduce that∥∥∥∥∫ ·

0
Xu ⊗ dγ,π

n
φu −

∫ ·

0
Xu ⊗ dγ,πφu

∥∥∥∥
∞

−→ 0 as n −→ ∞.

Similarly, for each t ∈ [0, T ], it holds that∣∣∣∣ ∫ t

0
φr ⊗ dγ,π

n
Xr −

∫ t

0
φr ⊗ dγ,πXr

∣∣∣∣ ≲ ∥φ̄n − φ∥q∥X∥p,

and ∣∣∣∣ ∫ t

0
φr ⊗ dγ,π

n
φr −

∫ t

0
φr ⊗ dγ,πφr

∣∣∣∣ ≲ ∥φ̄n − φ∥q∥φ∥q,
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and, since ∥φ̄n − φ∥q→ 0 as n→ ∞, we infer the required convergence.

We further aim to find a control function c such that

sup
(s,t)∈∆T

|X̂s,t|p

c(s, t)
+ sup
n∈N

sup
0≤k<ℓ≤Nn

|
∫ tnℓ
tnk
X̂u ⊗ dγ,π

n
X̂u − X̂tnk

⊗ X̂tnk ,t
n
k+1

|
p
2

c(tnk , t
n
ℓ )

≲ 1, (A.5)

where ∫ tnℓ

tnk

X̂u ⊗ dγ,π
n
X̂u − X̂tnk

⊗ X̂tnk ,t
n
k+1

=

∫ tnℓ

tnk

X̂tnk ,u
⊗ dγ,π

n
X̂u

=

∫ tnℓ

tnk

Xtnk ,u
⊗ dγ,π

n
Xu +

∫ tnℓ

tnk

Xtnk ,u
⊗ dγ,π

n
φu

+

∫ tnℓ

tnk

φtnk ,u ⊗ dγ,π
n
Xu +

∫ tnℓ

tnk

φtnk ,u ⊗ dγ,π
n
φu.

Let cX be the control function with respect to which X satisfies Property γ-(RIE), and

define moreover the control function cφ, given by cφ(s, t) = ∥φ∥qq,[s,t] for (s, t) ∈ ∆T .

We have from Property γ-(RIE) that

sup
(s,t)∈∆T

|X̂s,t|p

cX(s, t) + cφ(s, t)
≲ sup

(s,t)∈∆T

|Xs,t|p

cX(s, t)
+ sup

(s,t)∈∆T

|φs,t|p

cφ(s, t)
≲ 1,

and that

sup
n∈N

sup
0≤k<ℓ≤Nn

|
∫ tnℓ
tnk
Xu ⊗ dγ,π

n
Xu −Xtnk

⊗Xtnk ,t
n
k+1

|
p
2

cX(tnk , t
n
ℓ )

≲ 1.

By the standard estimate for Young integrals (see e.g. [75, Proposition 2.4]), for every n ∈ N
and 0 ≤ k < ℓ ≤ Nn, we have∣∣∣∣ ∫ tnℓ

tnk

X̄n
tnk ,u

⊗ dφu

∣∣∣∣ p2 ≲ ∥X̄n∥
p
2

p,[tnk ,t
n
ℓ ]
∥φ∥

p
2

q,[tnk ,t
n
ℓ ]

≤ ∥X∥
p
2

p,[tnk ,t
n
ℓ ]
∥φ∥

p
2

q,[tnk ,t
n
ℓ ]
≤ cX(tnk , t

n
ℓ )

1
2 cφ(tnk , t

n
ℓ )

p
2q ,

and we can similarly obtain∣∣∣∣ ∫ tnℓ

tnk

φ̄ntnk ,u
⊗ dXu

∣∣∣∣ p2 ≲ cX(tnk , t
n
ℓ )

1
2 cφ(tnk , t

n
ℓ )

p
2q

and ∣∣∣∣ ∫ tnℓ

tnk

φ̄ntnk ,u
⊗ dφu

∣∣∣∣ p2 ≲ cφ(tnk , t
n
ℓ )

p
q .

Since p ∈ (2, 3) and q ∈ [1, 2), we have that 1
2 + p

2q > 1 and p
q > 1, and it follows that the

maps (s, t) 7→ cX(s, t)
1
2 cφ(s, t)

p
2q and (s, t) 7→ cφ(s, t)

p
q are superadditive and thus control

functions. We deduce that (A.5) holds with a control function c of the form

c(s, t) = C
(
cX(s, t) + cφ(s, t) + cX(s, t)

1
2 cφ(s, t)

p
2q + cφ(s, t)

p
q

)
, (s, t) ∈ ∆T ,

where C > 0 is a suitable constant which depends only on p and q.
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[22] Sara Biagini and Mustafa Ç. Pınar. The robust Merton problem of an ambiguity

averse investor. Math. Financ. Econ., 11(1):1–24, 2017.

224



[23] Klaus Bichteler. Stochastic integration and Lp-theory of semimartingales. Ann.

Probab., 9(1):49–89, 1981.

[24] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. J.

Polit. Econ., 81(3):637–654, 1973.

[25] Horatio Boedihardjo, Xi Geng, Terry Lyons, and Danyu Yang. The signature of a

rough path: uniqueness. Adv. Math., 293:720–737, 2016.

[26] Jean Bretagnolle. p-variation de fonctions aléatoires. II. Processus à accroissements
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C Anal. Non Linéaire, 28(1):27–46, 2011.

[28] Kuo-Tsai Chen. Integration of paths, geometric invariants and a generalized Baker-

Hausdorff formula. Ann. of Math. (2), 65:163–178, 1957.

[29] Kuo Tsai Chen. Iterated path integrals. Bull. Amer. Math. Soc., 83(5):831–879, 1977.

[30] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural

ordinary differential equations. In Proceedings of the 32nd International Conference

on Neural Information Processing Systems, pages 6572–6583, 2018.
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