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Abstract
The rapid growth of machine learning (ML) research has produced a
vast and expanding collection of algorithms, datasets, and pipelines
available on the Web. However, fragmented and dispersed docu-
mentation of these resources hampers accessibility, transparency,
and effective use, posing challenges for users seeking to understand,
adapt, and create ML pipelines. To address these challenges, we
leverage Knowledge Graphs (KGs) and ontologies to represent ML
pipelines as executable KGs (ExeKGs). This approach fosters an
intuitive understanding of pipeline components and their relation-
ships while defined constraints streamline the creation of valid
and efficient pipelines. Furthermore, the structure of our KGs en-
ables intelligent exploration and discovery of relevant ML artifacts,
including pipelines and datasets. By incorporating KG-based ML
techniques, we enhance the discovery and reuse of these artifacts.
To consolidate these functionalities and provide users with an intu-
itive interface, we are developing ExeKGLab, a GUI-based platform
for interacting with ExeKGs. This thesis explores the potential of
KGs to democratize the ML landscape. We present our ongoing
efforts to build a KG for ML, emphasizing its role in simplifying
pipeline design, enhancing comprehension, and enabling smart ex-
ploration. By creating a structured and interconnected framework,
our approach seeks to bridge gaps in accessibility and foster a more
collaborative ML ecosystem. We invite discussion and feedback to
advance this promising direction for future ML research.
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1 Introduction
Machine learning (ML) is indispensable in various domains, driving
advancements in healthcare, manufacturing, and finance. A vast
and growing collection of ML algorithms forms the foundation for
a multitude of pipelines designed to address diverse tasks.

However, descriptions and implementations of these pipelines
are often scattered across the Web, residing mainly in research
papers and code repositories. This fragmentation, coupled with
the increasing popularity and complexity of ML, poses significant
challenges to accessibility and transparency. Researchers and prac-
titioners alike struggle to efficiently locate, understand, and adapt
existing pipelines to their specific needs. This challenge extends to
domain experts, a trend we also observe amongst those at Bosch.

We leverage Knowledge Graphs (KGs) to address these chal-
lenges. We utilize KGs to represent ML pipelines in a standardized
format, facilitating sharing and interoperability. This structured
representation, coupled with the inherent visualizability of KGs,
enhances the understandability of complex pipelines and empowers
users with varying levels of expertise to create and modify them.
Also, applying KG-based ML techniques on top of our executable
KGs (ExeKGs) enables intelligent exploration of ML artifacts.

The PhD thesis and this paper explore the use of Semantic Web
technologies, particularly KGs and ontologies, to democratize ac-
cess to and creation of ML pipelines. We present our ongoing work
on ExeKGLib, a Python library for representing, creating, and ex-
ploring ML pipelines represented as ExeKGs; ExeKGLab, a user-
friendly GUI-based application that utilizes ExeKGLib to enable
users from diverse backgrounds to engage with ML; and ML artifact
recommendation by learning from a KG consisting of ExeKGs.

2 Problem Statement
In this thesis, we examine the democratization of ML by invistigat-
ing the following research questions:
• RQ1: How can KGs and Semantic Web technologies be leveraged
to create a standardized representation of ML pipelines?

• RQ2: How can ontologies and KGs aid the creation and configu-
ration of ML pipelines for users with varying levels of expertise?

• RQ3: How can KG-based ML techniques enhance the exploration
and discovery of ML datasets and pipelines?

3 Related Work
Semantic Web for ML. Ontologies have been developed to de-
scribe datasets (e.g., DCAT [11]), ML models (e.g., ML-Schema [13]),
and ML experiments (e.g., EXO). However, these efforts often focus
on specific aspects of the ML lifecycle and lack a holistic represen-
tation of pipelines, including data flow and high-level data science
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concepts. Some works have utilized Semantic Web technologies to
represent or annotate ML workflows. RapidMiner [9], for instance,
uses semantic annotations for pipeline validation. However, these
approaches often fall short of capturing the full complexity and
expressiveness of ML pipelines.
ML Pipeline Representation and Management. AutoML plat-
forms like Auto-sklearn and TPOT focus on pipeline optimization
but often lack explicit knowledge representation for explainabil-
ity and reusability. Some AutoML works, such as KGpip [8] and
DORIAN [14], utilize graphs to represent pipelines, but these rep-
resentations are often custom-designed and lack adherence to com-
mon standards. ML democratization applications like KNIME [2]
and RapidMiner [12] frequently rely on formats like YAML and
JSON for ML pipeline representation. These formats lack the rich
semantic descriptions offered by KGs, limiting interoperability and
hindering advanced reasoning capabilities over ML pipelines.
GUI-based Tools forML.GUI-basedML applications have evolved
to democratize machine learning. Early IML tools like Crayons
and ReGroup focused on interactive data labeling and model cor-
rection [6]. Platforms like Alpine Meadow streamlined pipeline
creation for domain experts [16]. Research also highlighted the
need for novice-friendly programming tools with integrated debug-
ging [5]. This led to domain-specific applications like ilastik for
bio-image analysis [1], Wekinator for music performance [7], and
Apolo for network data exploration [4]. General-purpose platforms
like KNIME, Google AutoML, Azure ML Studio, and RapidMiner
offer simplified workflow creation through drag-and-drop inter-
faces and automation, broadening access to ML. However, these
tools often lack representations of pipeline semantics, limiting their
ability to automatically validate pipelines and generate tailored UIs.
KG Embeddings. KG embeddings play a crucial role in enabling
effective reasoning and search over large KGs. By representing
entities and relationships within our ML pipeline KG as dense, low-
dimensional vectors, we can leverage semantic similarity measures
to identify related pipelines and datasets. While various KG em-
bedding techniques exist, including complex deep learning models
like graph neural networks (GNNs) and triple-based methods like
TransE [3], these can struggle with the scale and heterogeneity
of our ML pipeline KG. Therefore, we anticipate exploring more
scalable and efficient approaches like walk-based methods such as
RDF2Vec [15], which are better suited for handling the complexity
and potential sparsity of our graph data. These embeddings will be
instrumental in enabling intelligent exploration and recommenda-
tion of ML pipelines within ExeKGLab.
Gaps and Opportunities.While Semantic Web technologies have
been employed for representing and validating ML pipelines, their
use for creating, executing, and learning from them is limited. Ex-
isting AI democratization platforms often do not comply with Se-
mantic Web principles, hindering interoperability and knowledge
sharing. There is a need for a more comprehensive framework that
combines the strengths of Semantic Web technologies and KGs to
democratize ML pipelines, making them more accessible, under-
standable, and reusable. This framework should provide a holistic
view of ML pipelines, including their constituent components, data
flow, and relationships with datasets.
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4 Proposed Approach
To address the challenges of accessibility and fragmentation in the
ML landscape, we propose a novel approach that leverages KGs,
ontologies, and KG-based ML techniques and presented below.

4.1 Ontologies
We propose a publicly available ontology structure 1, extending the
work presented in [17]. This structure consists of a top-level Data
Science ontology and three specialized bottom-level ontologies for
Machine Learning, Visualization (Fig. 2), and Statistics. The top-level
ontology, referred to as the Data Science (DS) Ontology (Fig. 1),
defines general concepts such as Data, Method, and Task.

The bottom-level ontologies, such as the ML ontology, are spe-
cialized extensions of the DS ontology. They contain subclasses of
AtomicTask and AtomicMethod, each representing a specific task
type solvable by a group of methods. For instance, Classification
tasks can be solved using methods implementing algorithms like
k-NN. The Statistics and Visualization ontologies follow the same
structure but with content tailored to their respective domains.

We use a semi-automatic process to generate parts of our on-
tologies by leveraging popular data science Python libraries like
scikit-learn, matplotlib, and numpy. Our conversion tool ex-
tracts information from these libraries and converts it into KG
components, ensuring the ontologies are up-to-date and consistent.
This tool also generates SHACL constraints to maintain the validity
of the generated ExeKGs.

1https://github.com/nsai-uio/ExeKGOntology
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4.2 Tools
Building upon the foundation established in [10], we are developing
two tools that utilize these ontologies.
ExeKGLib: A Python Library for Creating and Managing
ExeKGs. ExeKGLib is our publicly available Python library 2 that
enables the creation and manipulation of ML pipelines as ExeKGs
(Fig. 3). It provides a programmatic interface for defining pipeline
components (e.g., a "Task" that is fulfilled by a "Method") and their
interconnections, representing them as nodes and edges within
the KG. ExeKGLib uses predefined ontologies to ensure semantic
consistency and enables validation of pipeline structures against
these ontologies. Furthermore, it offers functionality for serializing
and deserializing ExeKGs in standard formats like RDF, facilitating
storage, sharing, and interoperability with other Semantic Web
tools. ExeKGLib’s core purpose is to bridge the gap between high-
level pipeline descriptions and executable code, enabling automated
reasoning, validation, and generation of user interfaces tailored to
the semantics of ML pipelines.
ExeKGLab: A GUI-based Platform for Interacting with Ex-
eKGs. ExeKGLab is a user-friendly GUI-based platform (Fig. 4)
built on top of ExeKGLib. It provides an intuitive visual interface for
interacting with ExeKGs, making it easier for users to understand,
create, and modify ML pipelines. ExeKGLab incorporates an LLM-
assisted interface for no-code ML, facilitating pipeline creation and
enhancing pipeline understandability for users with varying lev-
els of expertise. Its functionalities include visualizing, editing, and
executing ExeKGs, as well as exploring relevant ML artifacts. For
example, users can visually construct pipelines by dragging and
dropping components from a palette, connecting them to define the
data flow, and setting hyperparameters through interactive widgets.

4.3 Dataset and Pipeline Recommendation
We leverage our tools and ontologies to support two key tasks.
Dataset Recommendation. Given a chosen dataset, we recom-
mend similar datasets based on a multifaceted similarity measure.
This measure considers inherent dataset properties (e.g., number
of features, data types) and the pipelines previously applied to the
dataset. We consider the structure of pipelines used with the dataset,
coupled with the pipelines’ performance ranking on that dataset.
Datasets exhibiting similar pipeline structures and comparable per-
formance rankings on those pipelines are deemed more similar.
This approach helps users find datasets with similar characteristics
and performance profiles when used with related pipelines.
2https://github.com/boschresearch/ExeKGLib

Figure 4: The ExeKGLab GUI. Users can construct ML
pipelines by dragging elements (right-hand side) and drop-
ping and configuring them on the canvas (left-hand side).

Pipeline Recommendation. Given a new dataset, we identify
promising pipelines regarding expected performance. This task
leverages the knowledge embedded in our ExeKGs to recommend
pipelines based on the new dataset’s characteristics and the perfor-
mance of the pipelines on similar datasets.
Methodology.We first convert OpenML’s datasets and pipelines
into ExeKGs. This involves extracting the relevant information from
OpenML, such as the dataset metadata, the pipeline structure, and
the algorithm hyperparameters, and representing it as ExeKGs us-
ing our ontologies and ExeKGLib. We then employ KG embedding
techniques to learn vector representations of datasets and pipelines,
enabling the calculation of KGE-based similarity measures, such as
cosine similarity. These embeddings capture the semantic relation-
ships between datasets and pipelines, allowing us to compare them
based on their underlying characteristics and relationships.

4.4 Proposed Evaluation
We evaluate our approach via automated and user-centric methods.

For dataset recommendation, we evaluate our KGE-based sim-
ilarity measures by comparing them to existing dataset similarity
measures. This involves analyzing the correlations between our
measures and baselines when applied to a large set of dataset pairs.
Strong correlations with existing measures will indicate that our
approach captures relevant notions of similarity. To further validate
our approach, we conduct user studies to verify that our similarity
measures capture nuanced similarities beyond simple text matching.
In these studies, users are presented with dataset pairs exhibiting
varying degrees of similarity (high, medium, low) and asked to
provide binary judgments (similar or not similar). This user feed-
back will help us assess the alignment between our computational
measures and human perception of dataset similarity.

For pipeline recommendation, we perform automated evalua-
tion by comparing our approach to existing AutoML solutions. This
involves comparing our recommended pipelines’ performance to
those generated by state-of-the-art AutoML systems on benchmark
datasets. By comparing the performance of our recommendations

699

https://github.com/boschresearch/ExeKGLib


WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Antonis Klironomos

Table 1: KG Statistics

# ExeKGs # Entities # Relations # Triples

3,165 2,660,337 187 7,916,692

against established AutoML techniques, we can assess the effective-
ness of our approach in identifying high-performing pipelines.

4.5 Use Case: KNIMEWorkflow Suggestion
KNIME [2] is an open-source platform for creating visual data
science workflows with a drag-and-drop GUI. It supports a variety
of data mining tasks. Its wide use within Bosch motivated our
choice. To demonstrate the practical applicability of our approach,
we present a use case focused on recommending KNIME workflows.

We first convert a collection of KNIME workflows into ExeKGs,
capturing their structure and components in a semantically rich
representation. Then, we train a KGE model on these ExeKGs to
learn vector embeddings for each workflow. These embeddings
capture the semantic relationships between different workflows,
enabling us to calculate their similarity. By leveraging these simi-
larity measures, we can provide recommendations to users, helping
them explore relevant KNIME workflows for their specific needs.

To evaluate the effectiveness of our workflow recommendations,
we can conduct a user study with KNIME users. In this study, users
would be presented with a selection of workflows, each accompa-
nied by a set of recommended workflows generated by our system.
Users would then be asked to provide feedback on the relevance
and usefulness of these recommendations. To simplify the feedback
process, users could provide binary judgments (e.g., "useful" or "not
useful") on each recommended workflow, indicating whether they
perceive the recommendation as helpful for their needs and tasks.

5 Preliminary Experiments
To conduct our preliminary evaluation, we constructed a KG from
OpenML pipelines and datasets.

Data Source.We focused on sklearn-based pipelines fromOpenML,
selecting the best-performing pipeline based on F1-score (classifi-
cation) or RMSE (regression) for each dataset. Each pipeline was
then transformed into an ExeKG.

ExeKGs Construction. We construct ExeKGs by extracting infor-
mation from OpenML pipelines and leveraging ExeKGLib [10] for
the conversion process. This involves representing each dataset’s
features as DataEntity nodes and analyzing the pipeline’s se-
quence of operations. For each operation, we create corresponding
Task and Method nodes, linking each Method node to its parameters.
These operations span various stages of the ML pipeline, including
data preprocessing, feature engineering, and learning algorithms.

KG Statistics. The resulting KG comprises 3,165 ExeKGs across
312 datasets, with 2,660,337 entities, 187 relations, and 7,916,692
triples. Table 1 provides a summary of the KG statistics.

Dataset Pairs. From the 312 datasets, we generated 48,516 possi-
ble dataset pairs. Due to computational constraints, we randomly
sampled 10,000 pairs for our analysis, encompassing binary and
multiclass classification and regression tasks. We are currently eval-
uating the performance of our dataset and pipeline recommendation

approaches on this dataset, comparing our KGE-based similarity
measures to existing baselines and conducting user studies to assess
the quality and relevance of our recommendations.

6 Conclusion and Future Work
By leveraging KGs, our research aims to empower users of all back-
grounds to effectively locate, understand, and adapt ML pipelines
to their specific needs. This approach promotes accessibility, col-
laboration, and ultimately wider adoption of ML techniques.

Future work includes expanding ExeKGLab’s support for ML
algorithms and preprocessing, requiring ontology enrichment and
robust metadata integration. We will investigate advanced reason-
ing techniques, including semantic similarity, for sophisticated
pipeline discovery, moving beyond keyword search. User studies
will evaluate ExeKGLab’s usability and effectiveness in supporting
pipeline design and collaboration. Finally, we will explore ExeKGs
for AutoML via graph-based optimization.
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