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1 Introduction

Measures to quantify similarity of neural network models have been widely applied in the lit-
erature, usually to understand and improve deep learning systems. Examples include research
on learning dynamics [98, 101], effects of width and depth [107], differences between super-
vised and unsupervised models [52], robustness [64, 104], effects of data and model updates
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Fig. 1. A conceptual overview of representational and functional similarity. We compare a pair of neural

network models f , f ′. Functional similarity measures mainly consider the outputs O,O ′ of the compared

models, whereas representational similarity measures consider their intermediate representations R,R′. All

models get the same inputs. Specifically in classification tasks, outputs have clear and universal semantics,

so that they can be compared in a straightforward manner. In contrast, the geometry of the representations

requires more care when measuring their similarity. In the illustration above, for instance, rotating R by 90◦

would yield an alignment of representations after which they would appear much more similar. Combined,

representational and functional measures cover all layers of the models.

[39, 69, 86, 99], evaluating knowledge distillation [134], designing ensembles [163], language rep-
resentation [53, 54, 75], and generalizability [79, 96, 110].

However, understanding and measuring similarity of neural networks is a complex problem, as
there are multiple perspectives on how such models can be similar. In this work, we specifically
focus on two key perspectives: representational and functional measures of similarity (see Figure 1).
Representational similarity measures assess how activations of intermediate layers differ, whereas
functional similarity measures compare the outputs of neural networks with respect to their task.
Both perspectives only provide a partial view on neural network similarity. Seemingly similar
representations can still yield different outputs, and, conversely, similar outputs can result from
different representations. In that sense, combining these two complementary perspectives provides
a more comprehensive approach to analyze similarity between neural networks at all layers.

Given the broad range of research on neural network similarity, numerous representational and
functional similarity measures have been proposed and applied, often with lines of research being
disconnected from each other. With this work, we provide a comprehensive overview of these two
groups of similarity measures that gives a unified perspective on the existing literature and can
inform and guide both researchers and practitioners interested in understanding and comparing
neural network models.

Measures for representational or functional similarity have been covered in prior work to some
extent. Regarding representational similarity, measures for matrix correlation have been reviewed
in References [117, 160]. Existing surveys, however, lack coverage of more recent measures or do
not consider the context of deep learning. A recent survey by Räuker et al. [120] reviews meth-
ods to interpret inner workings of neural networks but discusses representational similarity mea-
sures only briefly. Sucholutsky et al. [136] complement this survey by discussing representational
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similarity with a focus on bringing together the communities of machine learning, neuroscience,
and cognitive science, which have all been working independently on comparing representations.
Functional similarity measures have been surveyed in the context of ensemble learning [19, 76],
inter-rater agreement [6, 46, 143], model fingerprinting [138], and image and text generation sce-
narios [18, 22], which each focus on application scenarios with objectives different to our survey.
We specifically focus on multiclass classification contexts for functional similarity measures.

To the best of our knowledge, our survey represents the first comprehensive review of repre-
sentational and functional similarity measures for neural network models. This survey makes the
following contributions:

(1) Systematic and comprehensive overview: We formally define the problem of measuring rep-
resentational and functional similarity in neural networks—the latter in the context of
classification—and provide a systematic and comprehensive overview of existing measures.

(2) Unified terminology: We provide detailed definitions, explanations, and categorizations for
each measure in a unified manner, facilitating the understanding of commonalities and dif-
ferences between measures.

(3) Analysis of practical properties and applicability: We discuss the practical properties of exist-
ing measures, such as robustness to noise or confounding issues, and connections between
existing measures to guide researchers and practitioners in applying these measures.

(4) Open research challenges: We highlight unresolved issues of similarity measures and point
out research gaps that can be addressed in the future to improve our understanding of neural
networks in general.

While we focus on measures for representational and functional similarity due to their preva-
lence and general applicability, we acknowledge various other approaches to comparing neural
networks. In particular, the measures covered in our survey differ from methods typically used to
assess and optimize similarity during model training. We discuss these and other approaches in
Appendix E.

2 Similarity of Neural Network Models

We consider the problem of comparing neural networks, which we assume to have the form

f = f (L) ◦ f (L−1) ◦ · · · ◦ f (1), (1)

with each function f (l ) : RD (l−1) −→ R
D (l )

denoting a single layer of D := D(l ) neurons and a
total number of L ∈ N layers. These networks operate on a set of N given inputs {Xi }N

i=1, which
we typically assume to be vectors in Rp , p ∈ N, although these can also be higher-dimensional
structures as occurring in image or video data. We collect these inputs in a matrix X ∈ RN×p

so that the ith row Xi corresponds to the ith input. To further simplify notation, we also denote
individual inputs Xi as instances i ∈ {1, . . . ,N }. We generally do not make any assumption about
the number of features p, the depth of the network L, the width or activation function of any layer
f (l ), or the training objective.

Similarity of neural network models is then quantified by similarity measures m. For simplicity,
we also consider measures that quantify distance between models as similarity measures, since
these concepts are generally equivalent. In our survey, we specifically consider two kinds of simi-
larity, namely representational similarity and functional similarity. Representational similarity mea-
sures consider how the inner activations of neural network models differ, whereas functional sim-
ilarity measures compare the output behavior of neural networks with respect to a given (classi-
fication) task. Combined, these two notions allow for nuanced insights into similarity of neural
network models [52, 69, 137].
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In the following, we give more thorough definitions of representational and functional similarity.
For the rest of this article, we introduce notations for commonly used variables only once. In
Appendix A, we provide an overview of notation and several definitions of variables and functions
that are used in this article.

2.1 Representational Similarity

Representational similarity measures compare neural networks by measuring similarity between
activations of a fixed set of inputs at any pair of layers. Given such inputs X , we define the repre-
sentation of model f at layer l as a matrix

R := R(l ) =
(
f (l ) ◦ f (l−1) ◦ · · · ◦ f (1)

)
(X ) ∈ RN×D . (2)

The activations of instance i then correspond to the ith row Ri =
(
f (l ) ◦ · · · ◦ f (1)

)
(Xi ) ∈ RD ,

which we denote as instance representation. The activations of single neurons over all instances
correspond to the columns of R, and we denote the jth column of R as R−, j . Like the inputs, we also
consider the instance representationsRi to be vectors even though in practice, e.g., in convolutional
neural networks, these activations can also be matrices. In such a case, these representations can
be flattened (see Appendix B).

Representational similarity measures can be defined as mappingsm : RN×D ×RN×D′ −→ R that
assign a similarity scorem(R,R′) to a pair of representationsR,R′, which are derived from different
models f , f ′ but use the same inputs X . While we assume here that representations stem from
different models, representational similarity measures can also be used to compare representations
of different layers of the same model. Without loss of generality, we assume that D ≤ D ′, though
some measures require that D = D ′. In such cases, preprocessing techniques can be applied (see
Appendix B). We note that this definition is limited to comparisons of pairs of representations,
which is the standard setting in literature. In practice, one may also be interested in measuring
similarity of groups of representations. The most direct way to obtain such measures of similarity
for groups of representations from the standard pairwise measures is to aggregate the pairwise
similarity scores, e.g., by averaging the similarities of all pairs of representations.

Typical issues when measuring similarity of representations are that the measures have to iden-
tify when a pair of representations is equivalent and that some measures may require preprocess-
ing of the representations. In the following sections, we discuss these issues and related concepts
in more detail.

Equivalence of Representations. Even if two representation matrices R,R′ ∈ RN×D are not
identical on an element-per-element basis, one may still consider them to be equivalent, i.e., per-
fectly similar. An intuitive example for such a case would be when representations only differ in
their sign, i.e.,R = −R′, or when representations can be rotated onto another. Such notions of equiv-
alence can be formalized in terms of bijective mappings (transformations) φ : RN×D −→ R

N×D

that yield φ(R) = R′. What kind of transformations constitute equivalence between representa-
tions may vary depending on the context at hand. For instance, equivalence up to rotation does
not make sense if some feature dimensions are already aligned with fixed axes, as is the case
in interpretable word embeddings where axes may represent scales between polar opposites like
“bright” and “dark” [94]. Thus, we define equivalence of representations in terms of groups of trans-
formations T := T(N ,D) and call two representations R,R′ equivalent with respect to a group T ,
written as R ∼T R′, if there is a φ ∈ T such that φ(R) = R′.

In practice, it is crucial to determine under which groups of transformations representations
should be considered equivalent, as equivalent representations should be indistinguishable for
the chosen similarity measure. Conversely, representations that are not equivalent have to be
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distinguishable for a similarity measure. In formal terms, this means that a measure has to
be invariant to exactly those groups of transformations that the underlying representations
are equivalent under. We call a representational similarity measure m invariant to a group of
transformations T if, for all R ∈ RN×D , R′ ∈ RN×D′

and all φ ∈ T (N ,D), φ ′ ∈ T (N ,D ′), it holds
thatm(R,R′) =m(φ(R),φ ′(R′)). Thus, if a measurem is invariant to T , then it directly follows that
m(R,R) = m(R,R′) if R ∼T R′. This implies that a measure can only distinguish representations
that are not equivalent under the groups of transformations it is invariant to. Using this notion of
invariance, and assuming that representations have identical dimensionality, we can also analyze
whether measures satisfy the criteria of a distance metric—in the context of representational
similarity, these criteria are typically relaxed to only require m(R,R′) = 0 if and only if R ∼T R′

for a group of transformations T thatm is invariant to [155, Apx. A.2].
In the literature [73, 81, 114, 155], there are six main groups of transformations under which

representations are considered equivalent and that representational similarity measures are often
designed to be invariant to the following:

— Permutations (PT). A similarity measure m is invariant to permutations if swapping
columns of the representation matrices R, that is, reordering neurons, does not affect the
resulting similarity score. Letting SD denote the set of all permutations on {1, . . . ,D}, and
for π ∈ SD , Pπ = (pi, j ) ∈ RD×D denote the permutation matrix where pi, j = 1 if π (i) = j and
pi, j = 0 otherwise, the group of all permutation transformations is given by

TPT = {R �→ RPπ : π ∈ SD }. (3)

Permutations neither affect Euclidean distances nor angles between instance
representations.

— Orthogonal Transformations (OT). As noted in an earlier example, one might intuitively
consider two representations equivalent if they can be rotated onto each other. Next to ro-
tations, the group of orthogonal transformations also includes permutations and reflections.
Letting O(D) := {Q ∈ RD×D ,QTQ = ID } denote the orthogonal group, the set of these
transformations is given by

TOT = {R �→ RQ : Q ∈ O(D)}. (4)

These transformations preserve both Euclidean distances and angles between instance rep-
resentations.

— Isotropic Scaling (IS). Scaling all elements of a representation R identically (isotropic scal-
ing) does not change the angles between instance representations Ri . The set of all isotropic
scaling transformations is defined as

TIS = {R �→ a · R : a ∈ R+}. (5)

Isotropic scaling of representations will also rescale the Euclidean distance between instance
representations by the same scaling factor a.

— Invertible Linear Transformations (ILT). The group of invertible linear transformations,
which is defined as

TILT = {R �→ RA : A ∈ GL(D,R)}, (6)

with GL(D,R) denoting the general linear group of all invertible matrices A ∈ RD×D , forms
a broader group of transformations. It includes both orthogonal transformations and rescal-
ings. Both angles and Euclidean distances between instance representations are generally
not preserved.

— Translations (TR). If the angles between instance representations Ri are not of concern,
then one might argue that two representations are equivalent if they can be mapped onto
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Fig. 2. Illustration of representations considered equivalent under different invariances. The invariances form

a hierarchy: Arrows describe implication, with the left invariance being more general. For AT and ILT, the

same linear transformation is applied. AT further translates representations by the same vector that is used

in TR. In OT, the representations are rotated (120◦) and reflected over the 15◦ axis. In PT, axes are swapped.

IS applies a scaling factor of 2. See Appendix G for exact parameter values.

each other by adding a constant vector. In that regard, a measure m is invariant to transla-
tions if is invariant to the set of all mappings

TTR = {R �→ R + 1Nb
T : b ∈ RD }, (7)

where 1N is a vector of N ones. Translations preserve Euclidean distances between instance
representations.

— Affine Transformations (AT). The most general group of transformations that is typically
considered for representations is given by the set of affine transformations

TAT = {R �→ RA + 1Nb
T : A ∈ GL(D,R), b ∈ RD }. (8)

This group of transformations in particular also includes rescaling, translations, orthog-
onal transformations, and invertible linear transformations. Therefore, affine transforma-
tions in general do neither preserve angles nor Euclidean distances between instance
representations.

We depict the hierarchy of these groups in Figure 2. Table 1 also shows the invariances of all rep-
resentational similarity measures covered in this survey with respect to these groups. This list
of groups of transformations is, however, not exhaustive, and both for practical and theoretical
reasons, various other groups may be considered [47]. In practice, neurons are typically assumed
to be indexed arbitrarily, so most representational similarity measures are invariant to permuta-
tions [65, 73, 81]. Raghu et al. [114] further argued for invariance to invertible linear transforma-
tions, as any such transformation could be reverted by a directly following linear layer without
altering overall network behavior. However, Kornblith et al. [73] criticized that such invariance
leads to unintuitive similarity behavior when D > N , such as all representations with full rank be-
ing equivalent, and that training of neural networks is not invariant to linear transformations.
They argued that orthogonal transformations capture practical differences in representations
better.

Preprocessing of Representations. Many representational similarity measures assume cer-
tain properties of the representations R,R′ that, in practice, are not always given. For instance, it
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Table 1. Overview of Representational Similarity Measures

Invariances
Type Measure PT OT IS ILT TR AT Preprocessing D � D ′ Metric Similarity ↑

Mean Canonical Correlation [114] ✓ ✓ ✓ ✓ ✓ ✓ CC ✓ ✗ ✓
Mean Squared Canonical Correlation [73, 159] ✓ ✓ ✓ ✓ ✓ ✓ CC ✓ ✗ ✓
Singular Vector Canonical Correlation Analysis (SVCCA) [114] ✓ ✓ ✓ ✗ ✓ ✗ CC ✓ ✗ ✓

Canonical
Correlation

Analysis
Projection-Weighted Canonical Correlation Analysis (PWCCA) [101] ✗ ✗ ✓ ✗ ✓ ✗ CC ✓ ✗ ✓

Orthogonal Procrustes [34, 155] ✓ ✓∗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Angular Shape Metric [155] ✓ ✓∗ ✓ ✗ ✗ ✗ MN ✗ ✓ ✗

Partial Whitening Shape Metric [155] ✓ ✓ ✓† ✓† ✓ ✓† ✗ ✗ ✓ ✗
Soft Matching Distance [65] ✓ ✗ ✓ ✗ ✓ ✗ CC, MN ✓ ✓ ✗
Linear Regression [73, 81] ✓ ✓ ✓ ✗ ✓ ✗ CC ✓ ✗ ✗
Aligned Cosine Similarity [54] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Correlation Match [81] ✓ ✗ ✓ ✗ ✓ ✗ CC ✗ ✗ ✓
Maximum Matching Similarity [152] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Alignment

ContraSim [116] ✓† ✓† ✓† ✓† ✓† ✓† ✗ ✓ ✗ ✓

Norm of Representational Similarity Matrix Difference [125, 162] ✓‡ ✓‡ ✗‡ ✗ ✗‡ ✗ ✗ ✓ ✓‡ ✗

Representational Similarity Analysis (RSA) [74] ✓‡ ✗‡ ✓‡ ✗ ✓‡ ✗ ✗ ✓ ✗ ✓‡

Centered Kernel Alignment (CKA) [73] ✓ ✓ ✓ ✗ ✓ ✗ CC ✓ ✗ ✓
Distance Correlation (dCor) [139] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓
Normalized Bures Similarity (NBS) [141] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓
Eigenspace Overlap Score (EOS) [95] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓

Unified Linear Probing (GULP) [17] ✓ ✓ ✓ ✗† ✓ ✗† CC, RN ✓ ✓ ✗
Riemmanian Distance [125] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Represen-
tational

Similarity
Matrix

Relational Knowledge Loss [112] ✓ ✓ ✓† ✗ ✓ ✗ ✗ ✓ ✗ ✗

k-NN Jaccard Similarity [52, 61, 123, 149] ✓ ✓ ✓ ✗ ✗‡ ✗ ✗ ✓ ✗ ✓
Second-Order Cosine Similarity [53] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Rank Similarity [149] ✓ ✓ ✓ ✗ ✗‡ ✗ ✗ ✓ ✗ ✓
Neighbors

Joint Rank and Jaccard Similarity [149] ✓ ✓ ✓ ✗ ✗‡ ✗ ✗ ✓ ✗ ✓

Geometry Score [66] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗
Multi-Scale Intrinsic Distance (IMD) [144] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗Topology
Representation Topology Divergence (RTD) [8] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗

Intrinsic Dimension [21] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ §

Magnitude [149] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ §

Concentricity [149] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ §

Uniformity [153] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ §

Tolerance [150] ✓ ✓ ✓ ✗ ✗ ✗ RN ✓ ✗ §

Instance-Graph Modularity [87, 122] ✓ ✓ ✓† ✗ ✗ ✗ ✗ ✓ ✗ §

Statistic

Neuron-Graph Modularity [77] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ §

∗ : Subgroups possible. † : Varies based on hyperparameters. ‡ : Similarity function dependent. § : Depends on comparison.

The invariances are permutation (PT), orthogonal transformation (OT), isotropic scaling (IS), invertible linear
transformation (ILT), translation (TR), and affine transformation (AT). We report invariances based on default
hyperparameters and preprocessing as proposed by the authors. These may vary if different parameters or similarity
functions are applied. Three kinds of preprocessing are commonly used: centering columns (CC), normalizing the
matrix norm (MN), or normalizing row norms (RN). The column D � D′ indicates whether a measure requires the
compared representations to have identical dimensionality. Metric indicates whether a similarity measure satisfies the
criteria of a distance metric when representations have equal dimensionality. Similarity ↑ indicates whether increasing
scores imply increasing similarity of models.

is often assumed that representations are mean centered in the columns [73, 101, 155] or that they
have the same dimensionality. In these cases, the representations need to be preprocessed. There
are three kinds of preprocessing that may have to be applied, namely normalization, adjusting
dimensionality, and flattening of representations. We discuss these problems in Appendix B.

2.2 Functional Similarity Measures

Functional similarity measures compare neural networks by measuring similarity of their output
behavior [30]. Given a set of inputs X and a neural network f that is trained for a classification
task on C classes, we let

O := f (X ) ∈ RN×C (9)

denote the matrix of its outputs. Each row Oi = f (Xi ) ∈ RC corresponds to the output for input
Xi . In the context of this survey, we assume that this vector-based output corresponds to soft

predictions, where each element Oi,c denotes the probabilities or decision scores of class c for
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input Xi . From these soft predictions, we can compute the hard predictions for a given multiclass
classification task via ĉ = arg maxc Oi,c , where ĉ denotes the predicted class for input Xi .

Then, similarly to representational similarity measures, functional similarity measures are de-
fined as mappings m : RN×C × RN×C −→ R that assign a similarity score m(O,O ′) to a pair of
outputsO,O ′, which are derived from the same inputsX . For the compared outputsO,O ′ ∈ RN×C ,
it is assumed that they are aligned in the sense that the columns O−,c ,O ′

−,c correspond to proba-
bility/decision scores of the same class c .

Due to this alignment and the fixed semantics of outputs, analyzing functional similarity gener-
ally does not require consideration of preprocessing or invariances. For the same reason, represen-
tational similarity measures are unsuitable for comparison of outputs—the previous assumptions
do not hold for representations. Thus, for instance, all permutation invariant measures would con-
sider two outputs that assign 100% probability to different classes equivalent.

Moreover, many functional similarity measures require only black-box access to a model, rely-
ing solely on knowledge about inputs and outputs. However, functional similarity measures may
include additional information aside from the raw outputsOi . For instance, a set of ground-truth la-
belsy ∈ RN is often given, which is typically used by a quality function q that quantifies how well
the output matches the ground truth. Another kind of additional information are task-based gradi-
ents, which, however, require white-box access to the model. Finally, in the context of functional
similarity, it is more common that measures compare multiple models at once without relying on
pairwise comparisons.

2.3 Relationship between Representational and Functional Similarity

The notions of representational and functional similarity complement each other (see Figure 1),
and applying both representational and functional similarity measures allows for a more holistic
view of neural network similarity (e.g., References [52, 69, 137]). To properly interpret potentially
conflicting similarity scores stemming from these two perspectives, it is crucial to understand their
relationship.

When functional similarity measures indicate dissimilarity, representations must be dissimilar
at some layer, assuming that differences in the final classification layer cannot fully explain the
functional difference. The opposite is not true: Two functionally similar models may use dissimilar
representations. Even more, if a functional similarity measure indicates high similarity on a given
input set, then this does not imply that the compared models are functionally similar in general:
High similarity may be the due to easy-to-classify inputs, and out-of-distribution inputs, which
tend to amplify functional differences, could yield lower similarity in the corresponding outputs.
Similarly, a representational measure indicating high similarity might not generally indicate high
functional or representational similarity between models either, as the invariance of a measure
might not fit to the given representations.

In conclusion, one generally cannot expect functional and representational measures to corre-
late and their scores require contextualization. Only if there is significant functional dissimilarity
between two models should there also be a representational measure indicating significant dissim-
ilarity. Since functional outputs and their similarity measures have a clear and intuitive semantic,
this relation can also be used to validate representational similarity measures [34].

3 Representational Similarity Measures

We now review existing representational similarity measures, categorized by their underlying ap-
proach to measuring similarity. The categories are illustrated in Figure 3. An overview of all re-
viewed representational similarity measures can be found in Table 1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Types of representational similarity measures, illustrated with two-dimensional representations. (a)

Representations of N instances are projected onto the N -dimensional unit ball, and similarity is then quanti-

fied based on their angle (their correlation). The illustration of the unit ball is not to scale, and only the first

three dimensions are shown. (b) Representations are aligned with each other, and similarity is computed

after alignment. (c) Similarity is based on comparing matrices of pairwise similarities within representations.

(d) Representations are compared based on similarity of their k nearest neighbors, here k = 1. (e) Manifolds

of the representations are approximated and compared. (f) Statistics are computed individually for each

representation (here: spread of instance representations) and then compared.

3.1 Canonical Correlation Analysis-based Measures

Canonical Correlation Analysis (CCA) [60] is a classical method to compare two sets of values
of random variables. CCA finds weights wR ∈ RD ,wR′ ∈ RD′

for the columns in the representa-
tions, such that the linear combinations RwR and R′wR′ ∈ RN have maximal correlation. Geomet-
rically, the vectors wR ,wR′ are projected to the unit ball in RN via their representation matrices,
such that their angle is minimal. Assuming mean-centered representations, the first canonical cor-

relation ρ is defined as

ρ := ρ(R,R′) := max
wR ,wR′

〈RwR ,R
′wR′ 〉

‖RwR ‖ · ‖R′wR′ ‖ . (10)

One can find additional canonical correlations ρi , that are uncorrelated and thus orthogonally
projected to the previous ones. This yields a system of D canonical correlations ρi defined as

ρi := max
w (i )

R
,w (i )

R′

〈Rw (i )
R
,R′w (i )

R′ 〉

‖Rw (i )
R

‖ · ‖R′w (i )
R′ ‖

s.t. Rw (j)
R
⊥Rw (i)

R
, R′w (j)

R′⊥R′w (i)
R′ ∀j < i, (11)

where ⊥ means orthogonality. If the representations are (nearly) collinear, then regularized Ridge

CCA [147] can be used.
A single similarity scorem(R,R′) is then computed by aggregating the canonical correlations ρi .

Standard aggregation choices used to quantify neural network similarity are the mean canonical
correlation mCCA [57, 73, 114] and the mean squared canonical correlation mCCA2 [57, 73], also
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called Yanai’s generalized coefficient of determination [159],

mCCA(R,R′) = 1
D

∑D
i=1 ρi , mCCA2 (R,R′) = 1

D

∑D
i=1 ρ

2
i . (12)

CCA is invariant to affine transformations [101]. If the representations R,R′ are equivalent, then
it holds that ρi = 1 for all i ∈ {1, . . . ,D} and thusmCCA(R,R′) = 1 andmCCA2 (R,R′) = 1.

Other prominent aggregation schemes, though not applied for representational similarity, in-
clude the sum of the squared canonical correlations (also known as Pillai’s trace [113]), Wilk’s
lambda statistic [154], and the Lawley–Hotelling trace [59, 78]. Several more aggregation meth-
ods can be applied, and there are numerous variants of CCA measures, including non-linear and
multiview ones—overviews on such variants are provided in the recent survey by Yang et al. [160]
or the tutorial by Uurtio et al. [146]. In this work, however, we only consider those CCA-based
measures that have been used to measure representational similarity of neural networks.

Singular Value CCA. Raghu et al. [114] argued that representations are noisy and that this
noise should be removed before conducting CCA on the representationsR,R′. Thus, they proposed
the Singular Value CCA (SVCCA) approach, in which denoised representations are obtained by
performing principal component analysis (PCA) on the representations. The number k of principal
components that are kept is selected such that a fixed relative amount t of the variance in the data,
usually 99%, is explained. Afterward, they use standard CCA on the denoised representations. Thus,
letting R̃, R̃′ denote the denoised representations, the average canonical correlation is used as the
final similarity measure:

mSVCCA(R,R′) =mCCA(R̃, R̃′). (13)

Practically, the representations are also mean-centered before the PCA denoising. Unlike CCA,
SVCCA is only invariant to orthogonal transformations, isotropic scaling and translation. SVCCA
is bounded in the interval [0, 1], with a score of one indicating perfectly similar representations.

To compute SVCCA efficiently for convolutional neural networks (CNNs) with many features,
Raghu et al. [114] applied a Discrete Fourier Transform on each channel, yielding block-diagonal
matrices for CCA computation, which eliminates unneeded operations.

Projection Weighted CCA. Morcos et al. [101] proposed Projection Weighted CCA (PWCCA)

as an alternative to SVCCA. They argued that a representational similarity measure should weigh
the individual canonical correlations ρi by their importance, i.e., the similarity of the canonical

variables Rw (i)
R

with the raw representation R.
For that purpose, given mean-centered representations, they defined a weighting coefficient

α̃i =
∑D

j=1 |〈Rw
(i)
R
,R−, j 〉| for every canonical correlation ρi that models its importance. These coef-

ficients are then normalized to weights αi = α̃i/
∑

j α̃ j , yielding the final representational similarity
measure

mPWCCA(R,R′) =
∑D

i=1 αiρi . (14)

This measure is asymmetric, since the weights αi are only computed based on R. Further, it is
invariant to isotropic scaling and translation. PWCCA is bounded in the interval [0, 1], with a
value of one indicating equivalent representations.

3.2 Alignment-based Measures

The next group of measures stipulates that a pair of representations R,R′ can be compared directly
once the corresponding representation spaces have been aligned to each other. Alignment is usu-
ally realized by finding an optimal transformation φ ∈ T that minimizes a difference of the form
‖φ(R)−R′‖. The exact group of transformations T used for alignment also directly determines and
usually corresponds to the group of transformations that the corresponding measure will be in-
variant to. Such direct alignment is only possible if the number of neurons in both representations
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are equal. Thus, we assume throughout the next section that D = D ′, unless otherwise mentioned.
We now discuss existing measures from this category.

Orthogonal Procrustes. The orthogonal Procrustes problem is a classical problem of finding
the best orthogonal transformation to align two matrices in terms of minimizing the Frobenius
norm (Equation (A.2)) of the difference. Solving the problem leads to the similarity measure

mOrtho-Proc(R,R′) = min
Q ∈O(D)

‖RQ − R′‖F = (‖R‖2
F + ‖R′‖2

F − 2‖RTR′‖∗)
1
2 , (15)

where ‖ · ‖∗ denotes the nuclear norm (Equation (A.3)) of a matrix [124]. The second formulation
can also be used if D � D ′ [65]. Ding et al. [34] used the square of mOrtho-Proc as a similarity
score. By design, this measure is invariant to orthogonal transformations, and Williams et al. [155]
showed that this measure satisfies the properties of a distance metric. This also holds when one
optimizes Equation (15) over any subgroup G(D) ⊂ O(D). Notably, considering the subgroup of
permutation matrices yields the Permutation Procrustes measure [155], also known as one-to-one

matching distance [65].
A similar optimization was proposed by Godfrey et al. [47] in their GReLU-Procrustes measure,

which is designed to be invariant to GReLU transformations, a special set of linear transformations
(see Appendix A.4). Williams et al. [155] further proposed a variant that is invariant to spatial
shifts in convolutional layers.

Generalized Shape Metrics. Williams et al. [155] applied theory of statistical shape analysis
on the problem of measuring representational similarity. In that context, they also defined novel
similarity measures. For representations with unit Frobenius norm (Equation (A.2)) and any sub-
group G(D) ⊆ O(D), they introduced the Angular Shape Metric,

mθ (R,R′) = min
Q ∈G(D)

arccos〈RQ,R′〉F , (16)

which is invariant to transformations from G(D). To obtain a more general measure that is not
restricted to representations preprocessed to unit norm, they apply the partial whitening function
ϕα (R) = HNR(αID + (1 − α)(RTHNR)−1/2), where α ∈ [0, 1] and HN = IN − 1

N
1N 1T

N
denotes a

centering matrix. This yields the Partial Whitening Shape Metric,

mθ,α (R,R′) = min
Q ∈O(D)

arccos 〈ϕα (R)Q ,ϕα (R′)〉F

‖ϕα (R) ‖F ‖ϕα (R′) ‖F
. (17)

For all α > 0, this metric is invariant to orthogonal transformations and translations. For α = 1,
it is further invariant to isotropic scaling, for α = 0 it is even invariant to affine transformations.
Williams et al. [155] showed that this metric is also related to (regularized) canonical correlations.
Both shape metrics are bounded in the interval [0,π ] and satisfy the properties of a distance metric.

Duong et al. [37] generalized the metrics from Williams et al. [155] to stochastic neural networks
such as variational autoencoders [67], which map to distributions of representations instead of
deterministic representations. Ostrow et al. [109] further extended this metric to measure similarity
of dynamical systems, such as RNNs.

Soft Matching Distance. Khosla and Williams [65] generalized the Permutation Procrustes
measure to settings in which the number of neurons in the representations R,R′ differ, i.e., D � D ′.
This was done by interpreting the problem of matching neurons as a transportation problem with
possible solutions in the transportation polytope TP(D,D ′) [32]. Thus, assuming the representa-
tions are centered and scaled to unit norm, they defined the soft matching distance as

mSoftMatch(R,R′) =
√

minP ∈TP(D,D′)
∑

i j Pi j ‖R−,i − R′
−, j ‖2

2 . (18)
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This measure is a special case of the 2-Wasserstein distance and thus a metric [65]. Further, it
is invariant to permutations, translations, and scaling. Khosla and Williams [65] also proposed a
variant that is related to Correlation Match (Equation (21)).

Linear Regression. An approach similar to Procrustes, but not restricted to orthogonal trans-
formations, is based on predicting one representation from the other with a linear transformation
[73, 81]. Then, the R-squared score of the optimal fit can be used to measure similarity [73]. As-
suming mean-centered representations, this yields the measure

mR2 (R,R′) = 1 − minW ∈RD×D ‖R′−RW ‖2
F

‖R′ ‖2
F

=

		(R′(R′TR′)−1/2
)T

R
		2

F

‖R ‖2
F

. (19)

This asymmetric measure is invariant to orthogonal transformation and isotropic scaling. A value
of one indicates maximal similarity, lower values indicate lower similarity. This measure has no
lower bound.

Li et al. [81] added a L1 penalty to the optimization to encourage a sparse mapping between
neurons. Bau et al. [10] matched the full representation of one model to a single neuron of another
by linear regression.

Aligned Cosine Similarity. This measure was used to quantify similarity of instance repre-
sentations, such as embeddings of individual words over time [54]. Its idea is to first align the
representations by the orthogonal Procrustes transformation and then to use cosine similarity
(Equation (A.5)) to measure similarity between the aligned representations. Letting Q∗ denote the
solution to the Procrustes problem (Equation (15)), the similarity of two instance representations
is given by cos-sim

(
(RQ∗)i ,R′

i

)
. Overall similarity can then be analyzed by comparing the over-

all distribution of similarity scores or aggregating them by, for instance, taking their mean value
[123]. The latter option yields a similarity measure

mAligned-Cossim(R,R′) = 1
N

∑N
i=1 cos-sim

(
(RQ∗)i ,R′

i

)
, (20)

which is bounded in the interval [−1, 1], withmAligned-Cossim(R,R′) = 1 indicating perfect similarity.
It is invariant to orthogonal transformations and isotropic scaling.

Correlation Match. Li et al. [81] measured representational similarity by creating a correla-
tion matrix between the neuron activations of two representations that are assumed to be mean-
centered. They then matched each neuron R−, j to the neuron R′

−,k that it correlated the strongest
with. Wu et al. [156] applied strict one-to-one matching, Li et al. [81] further used a relaxed ver-
sion, in which one neuron can correspond to multiple other ones. Letting M denote the matrix that
matches the neurons, which is a permutation matrix in strict one-to-one matching, the average
correlation between the matched neurons is given by

mCorr-Match(R,R′) = 1
D

∑D
j=1

〈R−, j ,(R′M )−, j 〉
‖R−, j ‖2 ‖(R′M )−, j ‖2

. (21)

This measure is invariant to permutations, isotropic scaling, and translations. A value of one indi-
cates equivalent representations, a value of zero uncorrelated ones.

Maximum Matching Similarity. In contrast to the previous measures, Maximum Matching

Similarity [152] aligns representations only implicitly and can compare representations of differ-
ent dimension by testing whether neuron activations of one representation, i.e., columns of the
representation matrix, (approximately) lie in a subspace spanned from neuron activations of the
other representation. Every neuron, of which the activation vector can be approximated by such a
subspace, is then considered part of a match between the representations. Following this intuition,
the main idea of the measure proposed by Wang et al. [152] is to find the maximal set of neurons
in each representation that can be matched with the other subspace. Formally, for an index subset
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J ⊆ {1, . . . ,D}, let R−,J = {R−, j , j ∈ J} denote the set of corresponding neuron activation vec-
tors. Then a pair (J ,J′) forms an ε-approximate match, ε ∈ (0, 1], on the representations R,R′ if
for all j ∈ J , j ′ ∈ J ′ it holds that

min
r ∈span(R−,J)

‖R′
−, j′ − r ‖ ≤ ε · ‖R′

−, j′ ‖ and min
r ′∈span(R′

−,J′ )
‖R−, j − r ′‖ ≤ ε · ‖R−, j ‖. (22)

A pair (Jmax,J′
max) is considered a maximum match, if for all ε-matches (J ,J′) it holds that J ⊆

Jmax and J′ ⊆ J ′
max. Wang et al. [152] showed that the maximum match is unique and provided

algorithms to determine it. Based on the maximum match, the maximum matching similarity is
defined as

mε
maximum-match(R,R

′) = |Jmax |+ |J′
max |

D+D′ . (23)

This measure is invariant to invertible linear transformation, since such transformations do not
alter the subspaces. It is bounded in the interval [0, 1], with a similarity score of 1 indicating max-
imum similarity.

ContraSim. Inspired by ideas from contrastive learning, Rahamim and Belinkov [116] proposed
a measure that implicitly aligns representations by applying a neural encoder to map them into
a joint embedding space. The encoder was trained using explicitly selected pairs of instances as
positive and negative samples, for which the resulting embeddings should and should not be sim-
ilar, respectively. In the joint embedding space, similarity is then modeled by the angle between
representations, and thus, letting enc denote the trained encoder network, ContraSim is defined as

mContraSim(R,R′) = 1
N

∑N
i=1 cos-sim

(
enc(Ri ), enc(R′

i )
)
. (24)

If R,R′ have different dimensionality, then two different encoders are trained together. The invari-
ances of the measure are determined via the training examples for the encoder. The measure is
bounded in the interval [−1, 1], with a similarity score of 1 indicating maximum similarity.

3.3 Representational Similarity Matrix-based Measures

A common approach to avoid alignment issues in direct comparisons of representations is to use
representational similarity matrices (RSMs). Intuitively, an RSM describes the similarity of the rep-
resentation of each instance i to all other instances in a given representation R. The RSMs of two
representations R,R′ can then be used to quantify representational similarity in terms of the differ-
ence between these RSMs. Formally, given an instancewise similarity function s : RD ×RD −→ R,
the RSM S ∈ RN×N of a representation R can be defined in terms of its elements via

Si, j := s(Ri ,R j ). (25)

Each row Si then corresponds to the similarity between the representations of instance i and the
representations of all other inputs, including itself. RSMs can be computed with a variety of sim-
ilarity functions s such as cosine similarity [24] or kernel functions [73]—like before, we do not
differentiate between the equivalent concepts of similarity and distance functions. Naturally, the
choice of the underlying similarity function s impacts the kind of transformations that the repre-
sentational similarity measuresm will be invariant to: If the RSM is unchanged by a transformation,
then the representational similarity will not change either. In Appendix A.3, we give an overview
of commonly used similarity functions, along with the invariances they induce on the RSMs. After
selecting a suitable similarity function s , two RSMs S, S ′ are compared. In the following, we review
existing measures that use this approach.

Norm of RSM Difference. A direct approach to compare RSMs is to apply some matrix norm
‖ · ‖ to the difference between RSMs to obtain a measure

mNorm(R,R′) = ‖S − S ′‖. (26)
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which assigns a score of zero to equivalent representations, and higher scores to dissimilar rep-
resentations. To compute the RSMs, Shahbazi et al. [125] and Yin and Shen [162] used the linear
kernel. In that case, this measure is invariant to orthogonal transformations and satisfies the prop-
erties of a distance metric for representations of equal dimensionality.

Representational Similarity Analysis. Kriegeskorte et al. [74] proposed Representational

Similarity Analysis (RSA) in neuroscience. RSA is a general framework that utilizes RSMs to com-
pare sets of measurements, such as neural representations. In the first step of this framework, RSMs
are computed with respect to an inner similarity function sin. Since the RSMs are symmetric, their
lower triangles can then be vectorized in a next step to vectors v(S) ∈ RN (N−1)/2. Finally, these
vectors are compared by an outer similarity function sout:

mRSA(R,R′) = sout(v(S), v(S ′)). (27)

This framework can be instantiated with various choices for the similarity functions sin and sout.
This choice, however, affects the kind of transformations that RSA is invariant to, and further
determines the range and interpretation of this measure. Kriegeskorte et al. [74] used Pearson
correlation (Equation (A.8)) as inner similarity function sin to compute the RSMs, and Spearman
correlation as outer similarity function sout, since these correlation measures induce invariance to
scaling and translations. Kriegeskorte et al. [74] further suggested functions such as Euclidean or
Mahalanobis distance.

Centered Kernel Alignment. Kornblith et al. [73] proposed Centered Kernel Alignment (CKA)

[28, 29] to measure representational similarity. CKA uses kernel functions on mean-centered rep-
resentations to compute the RSMs, which are then compared via the Hilbert–Schmidt Indepen-

dence Criterion (HSIC) [50]. Given two RSMs S, S ′, the HSIC can be computed via HSIC(S, S ′) =
1

(N−1)2 tr(SHN S ′HN ), where HN = IN − 1
N

1N 1T
N

denotes a centering matrix. Recent work [103]

highlights the importance of using the debiased HSIC estimator of Song et al. [132], especially
when N < D. Then, a normalization of the HSIC yields the CKA measure:

mCKA(R,R′) = HSIC(S,S ′)√
HSIC(S,S )HSIC(S ′,S ′)

. (28)

CKA is bounded in the interval [0, 1], withmCKA(R,R′) = 1 indicating equivalent representations.
Kornblith et al. [73] computed the RSMs from the linear kernel and tested the radial basis func-

tion (RBF) kernel without reporting large differences in results. Saini et al. [122] used so-called
affinity matrices, which result from sparse subspace clustering [38] of the representations, instead
of RSMs. The standard linear version is invariant to orthogonal transformations and isotropic
scaling.

CKA with linear kernel is equivalent to the RV coefficient, a statistical measure to compare data
matrices [73, 119]. It can also be seen as a variant of PWCCA (Equation (14)) with an alternative
weighting scheme, with the advantage that it does not require a matrix decomposition to be com-
puted [73]. Further, Godfrey et al. [47] proposed the GReLU-CKA variant that is specific to models
that use ReLU activations and invariant to GReLU transformations (Equation (A.10)).

Distance Correlation. Distance Correlation (dCor) [139] is a non-linear correlation measure
that tests dependence of two vector-valued random variablesX andY with finite mean. In the con-
text of our survey, we consider the instance representations as samples of such random variables.
To determine the distance correlation of two representation matrices R,R′, one first computes the
RSMs S, S ′ using Euclidean distance as similarity function s . Next, the RSMs are mean-centered in
both rows and columns, which yields S̃, S̃ ′. Then the squared sample distance covariance of the
RSMs S, S ′ can be computed via dCov2(S, S ′) = 1

N 2

∑N
i=1

∑N
j=1 S̃i, j S̃ ′i, j . Finally, the squared distance
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correlation is defined as

m2
dCor(R,R

′) = dCov2(S,S ′)√
dCov2(S,S ) dCov2(S ′,S ′)

. (29)

A distance correlation of zero indicates statistical independence between the representationsR and
R′. Due to the usage of Euclidean distance as similarity function s , dCor is invariant to orthogonal
transformations and translations.

Lin [83] considered a variant called Adaptive Geo-Topological Independence Criterion [84],
which rescales the values in the RSMs with respect to an upper and lower threshold to eliminate
noise.

Normalized Bures Similarity. This measure was inspired by the Bures distance, which has its
roots in quantum information theory [20] and satisfies the properties of a distance metric on the
space of positive semidefinite matrices [13]. As Tang et al. [141] used the linear kernel to compute
the RSMs S, S ′, these matrices are positive semidefinite. Hence, these matrices also have a unique
square root. Therefore, they could define the Normalized Bures Similarity (NBS) as

mNBS(R,R′) = tr(S 1/2S ′S 1/2)1/2√
tr(S ) tr(S ′)

. (30)

This measure is bounded in the interval [0, 1], with mNBS(R,R′) = 1 indicating perfect similarity.
Due to use of the linear kernel, it is invariant to orthogonal transformations and further invariant
to isotropic scaling due to the normalization.

One can show that NBS is equivalent—up to an arc cosine—to the angular shape metric
(Equation (16)), and that the unnormalized Bures distance is equal to the orthogonal Procrustes
measure [55].

Eigenspace Overlap Score. May et al. [95] proposed the Eigenspace Overlap Score (EOS) as a
criterion to select compressed word embeddings with best downstream performance. EOS com-
pares RSMs by comparing the spaces spanned from their eigenvectors. Assuming full-rank rep-
resentations R,R′, they compute the RSMs S , S ′ using the linear kernel (Equation (A.6)). Letting
U ∈ RN×D ,U ′ ∈ RN×D′

denote the matrices of eigenvectors that correspond to the non-zero
eigenvalues of S, S ′, respectively, the measure is defined as

mEOS(R,R′) = 1
max(D,D′) ‖U

TU ′‖2
F . (31)

EOS indicates minimal similarity with a value of zero when the spans ofU andU ′ are orthogonal,
and maximal similarity with a value of one when the spans are identical. This measure is invariant
to invertible linear transformations.

EOS is related to the expected difference in generalization error of two linear models that are
each trained on one of the representations [95], similar to the following measure.

Unified Linear Probing (GULP). GULP quantifies similarity by measuring how differently
linear regression models that use either the representation R or the representation R′ [17] can
generalize. This is done by considering all regression functions η on the original instances X that
are bounded so that ‖η‖L2 ≤ 1, and trying to replicate these relations via ridge regression on the
representations R and R′. The similarity measure is then defined as the supremum of the expected
discrepancy in the predictions of ridge regression models trained to approximate η with R or R′

as inputs, taken over all regression functions η.
Practically, Boix-Adsera et al. [17] proved that there is a closed form expression to estimate

this value in terms of the covariance matrices of the representations, where it is assumed that the
representations are mean-centered in the columns and that their rows have unit norm. Letting the
RSMs S = 1

N
RTR denote the matrix of covariance within a representation, SR,R′ = 1

N
RTR′ the

cross-covariance matrix, and S−λ = (S +λID )−1 the inverse of a regularized covariance matrix, the
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GULP measure can be computed as

mλ
GULP(R,R

′) =
(

tr(S−λSS−λS) + tr(S ′−λS ′S ′−λS ′) − 2 tr(S−λSR,R′S ′−λST
R,R′)

)1/2
. (32)

The hyperparameter λ ≥ 0 corresponds to the regularization weight of the ridge regression models
over the representations. For all λ ≥ 0, GULP is unbounded, satisfies the properties of a distance
metric, and is invariant to orthogonal transformations, scaling, and translations. For λ = 0, GULP
is invariant to affine transformations and can further be expressed as a linear transformation of
the mean-squared CCA measure (Equation (12)).

Transferred Discrepancy (TD) [41] used an approach similar to GULP by measuring the discrep-
ancy of linear classifiers, instead of linear regression models. TD is also related to the mean-squared
CCA measure (Equation (12)).

Riemannian Distance. This measure considers the special geometry of matrices, which lie on
a Riemannian manifold [12]. Every inner product defined on a Riemannian manifold induces a dis-
tance metric that considers the special curvature of these structures. On the manifold of symmetric
positive definite matrices,

mRiemann(R,R′) =
√∑N

i=1 log2(λi ), (33)

denotes such a metric, where λi is the ith eigenvalue of S−1S ′. Shahbazi et al. [125] proposed this
measure using RSMs defined as S = RRT/D. This matrix, however, can only be positive definite
if D > N , which limits applicability of this measure. This measure is invariant to orthogonal
transformations. Equivalence is indicated by a value of zero and larger values indicate dissimilarity.

Relational Knowledge Loss. A common approach to transfer knowledge in the context of
knowledge distillation is to train the student model to mimic the relations between the teacher’s
instance representations [49]. This is done by minimizing the total element-wise difference of
RSMs with respect to a loss function l : R × R −→ R+,

mRK(R,R′) =
∑N

i, j=1 l
(
Si, j , S ′i, j

)
. (34)

While we defined RSMs via pairwise similarities, this approach has notably been generalized
to higher-dimensional RSMs. For example, Park et al. [112] considered three-dimensional RSMs
S ∈ RN×N×N , where each entry Si, j,k corresponds to the cosine of the angle enclosed by the
vectors vi, j = Ri − R j and vk, j = Rk − R j , i.e., Si, j,k = cos-sim(vi, j ,vj,k ). Similarities are then
aggregated over all instance triples. This measure instantiation is invariant to orthogonal trans-
formations, translations, and scaling. Equivalence is indicated by a value of zero, larger values
indicate dissimilarity.

3.4 Neighborhood-based Measures

The measures in this section compare the nearest neighbors of instances in the representation
space. More precisely, each of these measures determine the k nearest neighbors of each instance
representation Ri in the full representation matrix R with respect to a given similarity function s .
In that context, the neighborhood size k is a parameter that has to be chosen for the application
at hand. Letting S denote the RSM of representation R, and w.l.o.g. assuming that higher values
indicate more similar representations, we formally define the set of the k nearest neighbors of
the instance representation Ri as the set Nk

R (i) ⊂ {j : 1 ≤ j ≤ N , j � i} with |Nk
R (i)| = k

for which it holds that Si, j > Si,l for all j ∈ Nk
R (i), l � Nk

R (i) ∪ {i}. Once the nearest neighbors
sets are determined, they are either compared directly, or one further considers distances of the
representation Ri to its nearest neighbors. For each of these measures, we then obtain a vector
of instancewise neighborhood similarities

(
vk

NN-sim(R,R
′)i
)
i ∈{1, ...,N } , which are averaged over all
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instances to obtain similarity measures for the full representations R,R′:

mk
NN-sim(R,R

′) = 1
N

∑N
i=1v

k
NN-sim(R,R

′)i . (35)

However, the instancewise similarities and their distribution could also be inspected more closely
to obtain additional insights [71]. For brevity, in all the measures that we introduce in the following,
we only give a description of how the instancewise similarities are computed. Similarly to RSM-
based measures, the choice of the similarity function s determines which transformations these
measures are invariant to. By default, and in line with the literature, we assume the use of cosine
similarity (Equation (A.5)), which leads to invariance to orthogonal transformations and isotropic
scaling.
k-NN Jaccard Similarity. This measure, also named Nearest Neighbor Graph Similarity [52]

and Nearest Neighbor Topological Similarity [61], considers how many of the k nearest neighbors
each instance has in common over a given pair of representations. The instancewise neighborhood
similarities are computed in terms of the Jaccard similarities of the neighborhood setsNk

R (i),N
k
R′(i):

(
vk

Jac

(
R,R′) )

i :=
|Nk

R
(i)∩Nk

R′ (i) |
|Nk

R
(i)∪Nk

R′ (i) |
. (36)

Jaccard similarity is bounded in the interval [0, 1], with a value of one indicating identical neigh-
borhoods. Aside from the commonly used cosine similarity [123, 149], Euclidean distance was also
used as similarity function [61].

Second-order Cosine Similarity. This measure was proposed by Hamilton et al. [53] to an-
alyze changes in word embeddings over time. For each instance i , it first computes the union of
nearest neighbors as an ordered set {j1, . . . , jK (i)} := Nk

R (i) ∪Nk
R′(i) in R and R′ in terms of cosine

similarity (Equation (A.5)). Then the cosine similarities to these neighbors are compared between
the two representations. Utilizing the cosine similarity RSMs S, S ′ of the representations R,R′, the
instancewise second-order cosine similarities can then be defined as follows:(

vk
2nd-cos

(
R,R′) )

i := cos-sim
( (
Si, j1 , . . . , Si, jK (i )

)
,
(
S ′i, j1
, . . . , S ′i, jK (i )

) )
.

This measure is bounded in the interval [0, 1], withmk
2nd-cos(R,R

′) = 1 indicating equivalence of R
and R′.

Rather than considering the union of the neighborhood sets, Chen et al. [24] considered the in-
tersection of the top-k neighborhoods. Another similar approach was presented by Moschella et al.
[102], who used a random fixed set of reference instances instead of neighbors. Further, Pointwise
Normalized Kernel Alignment [71] can be seen as a variant of second-order cosine similarity with
k = N but different similarity function s for the RSM.

Rank Similarity. The k-NN Jaccard similarity captures the extent to which two neighborhood
sets overlap but not the order of the common neighbors within those sets. To increase the impor-
tance of close neighbors, Wang et al. [149] determined distance-based ranks rRi

(j) to all j ∈ Nk
R (i),

where rRi
(j) = n if R j is the nth closest neighbor of Ri with respect to a given similarity function

s . Based on these ranks, they defined the instance-based similarities as(
vk

ranksim(R,R
′)
)
i =

1
(vmax)i ·

∑
j ∈Nk

R
(i)∩Nk

R′ (i)
2

(1+ |rRi
(j)−rR′

i
(j) |)(rRi

(j)+rR′
i
(j)) , (37)

where (vmax)i =
∑K

k=1
1
k

, with K = |Nk
R (i) ∩ Nk

R′(i)|, is a normalization factor that limits the
maximum of the ranking similarity to one, which is achieved for completely identical rankings.
Intuitively, the first factor of the denominator in Equation (37) measures the similarity of the ranks
of an instance, whereas the second factor assigns rank-based weights to this similarity, with lower-
ranked instances gaining less influence.
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Joint Rank and k-NN Jaccard Similarity. Rank similarity has the issue that it is only calcu-
lated on the intersection of the k-nearest neighbor sets in different representations. That means
rank similarity might be high, even if the k-NN sets have almost no overlap. Similarly, Jaccard
similarity might be high, but the order of the nearest neighbors might be completely different.
Therefore, Wang et al. [149] combined these two approaches to calculate the Embedding Stability

by considering the product of Jaccard and rank similarity. Thus, using the instance vectors defined
in Equations (36) and (37), we can define the vector of instancewise similarities as(

vk
Jac-Rank(R,R

′)
)
i =

(
vk

Jac

(
R,R′) )

i ·
(
vk

ranksim(R,R
′)
)
i . (38)

Scores are bounded in the interval [0, 1], withmk
Jac-Rank(R,R

′) = 1 indicating perfect similarity.

3.5 Topology-based Measures

The measures in this category are motivated by the manifold hypothesis [48, Section 5.11.3], which
states that high-dimensional representations are expected to be concentrated in the vicinity of a
low-dimensional data manifold M. Following this assumption, these measures then aim to approx-
imate the manifolds in terms of discrete topological structures such as graphs, or, more generally,
(abstract) simplicial complexes [56], based on which the representations can then be compared.
A simplicial complex can be seen as a generalization of graphs, in which vertices may not only
be paired by edges but also can form higher-dimensional simplices. In both cases, each instance i
typically corresponds to a vertex vi ∈ V , and edges/simplices are formed from instances that are
close together in the representation space.

Geometry Score. The Geometry Score (GS) [66] characterizes representations by the number
of one-dimensional holes in their data manifolds. To obtain this number of holes, the manifold is
approximated in terms of simplicial complexesSα ,α > 0, in which verticesvi form a simplex, if the
α-neighborhoods of their representations Ri overlap with each other. On this simplicial complex,
the number of one-dimensional holes corresponds to the number of specific cycles in the complex
and can be efficiently computed as the rank of its first homology group H1.

Given that the number of holes may differ dependent on α , and that there is no ground-truth
regarding which value of α yields the most accurate approximation of the manifold, Khrulkov
and Oseledets [66] suggest varying the value α between 0 and αmax ∝ maxi, j ‖Ri − R j ‖2. For
each number of holes k , they collect the longest intervals (α1,α2), in which the number of holes
is constant at k , into sets Bk . Then, the relative living time of k holes, which is defined as
RLT(k,R) = 1

αmax

∑
(α1,α2)∈Bk

(α2 − α1) can be considered as the probability that k holes exist in
the manifold. Since building simplicial complexes from large data is computationally challenging,
Khrulkov and Oseledets [66] suggested sampling numerous subsets I of n < N instances to built
multiple so-called witness complexes with much lower number of simplices. Finally, one then con-
siders the mean relative living times (MRLT) resulting from these complexes:

mGS(R,R′) =
∑kmax−1

k=0 (MRLT(k,R) − MRLT(k,R′))2, (39)

where kmax denotes the maximum number of holes that is considered. The authors suggested using
kmax = 100, aggregating the RLTs from 10,000 complexes of n = 64 vertices each, and setting
αmax =

1
128/

N
5000 · maxi, j ∈I ‖Ri − R j ‖2 for each sample I. This measure is bounded in the interval

[0,kmax], with mGS(R,R′) = 0 indicating equivalent representations. Further, it is invariant to
orthogonal transformations, isotropic scaling, and translations.

Multi-Scale Intrinsic Distance. The Multi-Scale Intrinsic Distance (IMD) [144] applies k-NN
graphs G(R) as a proxy to characterize and compare the manifold of the representations. Specifi-
cally, Tsitsulin et al. [144] utilize the heat kernel trace on G(R) to compare representations, which
is defined as hktG(R)(t) =

∑
i e

−t λi , with λi as the eigenvalues of the normalized graph Laplacian
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of G(R). Similarity between the manifolds is then computed as a lower bound of the Gromov–
Wasserstein distance, which can be expressed in terms of the heat kernel trace:

mIMD(R,R′) = sup
t>0

e−2(t+t−1) | hktG(R)(t) − hktG(R′)(t)|. (40)

Practically, Tsitsulin et al. [144] approximate hktG(R)(t) using the Stochastic Lanczos Quadrature

[145] and obtain the supremum by sampling t from a parameter grid. They built the graph using
the k = 5 nearest neighbors with respect to Euclidean distance. The IMD has no upper bound; the
minimum, which indicates maximal similarity, is zero. It is invariant to orthogonal transformations,
isotropic scaling and translations.

Representation Topology Divergence. Similarly to the geometry score, Representation Topol-

ogy Divergence (RTD) [8] also considers persistence intervals of topological features of represen-
tations. However, in this approach graphs are applied for simplicial approximation of the repre-
sentations, and the number of their connected components are the topological feature of interest.
Specifically, Barannikov et al. [8] first compute RSMs with Euclidean distance and normalize these
by the 90th percentile of their values. Then, for a given distance threshold α > 0, they construct
a graph Gα (R) with its adjacency matrix A defined as Ai, j = Si, j · 1{Si, j < α }, and a union graph
Gα (R,R′) with its adjacency matrix A defined as Ai, j = min(Si, j , S ′i, j ) · 1{min(Si, j , S ′i, j ) < α }.
If Gα (R) and Gα (R,R′) differ in the number of their connected components, then this is consid-
ered a topological discrepancy. For each specific discrepancy that occurs for varying values of
α , the longest corresponding interval (α1,α2), for which this discrepancy persists, is collected in
a set B(R,R′). The total length of these intervals, denoted as b(R,R′) =

∑
(α1,α2)∈B(R,R′) α2 − α1,

then quantifies similarity between two representations. The final RTD measure is constructed
by subsampling K subsets I(k) of n < N instances each, and collecting the values
b
(
R(k),R′(k)) derived from the representations R(k) = (Ri )i ∈I(k ) ∈ Rn×D to form a measure

RTD(R,R′) = 1
K

∑K
i=1 b

(
R(k),R′(k)) . Because RTD is asymmetric, the authors proposed to use

mRTD(R,R′) = 1
2 (RTD(R,R

′) + RTD(R′,R)). (41)

For hyperparameters, they suggested using K = 10 subsets of n = 500 representations each as
default values. An RTD of zero indicates equivalent representations, with higher values indicat-
ing less similarity. By construction of the RSMs, RTD is invariant to orthogonal transformations,
isotropic scaling, and translations.

3.6 Descriptive Statistics

Measures of this category deviate from all previous measures in a way that they describe statistical
properties of either (i) individual representations R, or (ii) measures of variance in the instance
representations Ri over sets R of more than two representations. In case of (i), the statistics can
be directly compared over pairs or sets of representations. For case (ii), one could aggregate or
analyze the distribution of the instancewise variations. While there are numerous statistics that
could be used to compare representations, in the following we specifically outline statistics that
have already been used to characterize representations in existing literature.

Intrinsic Dimension. The intrinsic dimension of a representationR corresponds to the minimal
number of variables that are necessary to describe its data points. It can be defined as the lowest
value M ∈ N,M < N , for which the representation R lies in a M-dimensional manifold of RN [21].
This statistic has its roots in social sciences [127] and information theory [11] and has since been
applied in countless other fields, resulting in different variants and numerous methods to estimate
its exact values—for more details, we point the interested reader to the survey by Camastra and
Staiano [21]. In the context of neural network analysis, different variants of the intrinsic dimension
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have been used as a tool to analyze the amount of information that is contained and processed
within high-dimensional layers [2, 9, 88]. This statistic is invariant to affine transformations.

Magnitude. Wang et al. [149] characterized magnitude as the Euclidean length of instance rep-
resentations Ri . Consequently, they considered the length of the mean instance representation as
a statistic for a representation R,

mMag(R) := ‖ 1
N

∑N
i=1 Ri ‖2. (42)

Aside from aggregating magnitude over all instances, they further proposed a measure to quantify
the variance of the magnitude of instancewise representations over multiple models. More pre-
cisely, given a set of representations R, Wang et al. [149] measured the variance in the magnitudes
of individual instances i as

mVar-Mag(R, i) = 1
maxR∈R ‖Ri ‖2−minR∈R ‖Ri ‖2

·
√

1
|R |

∑
R ∈R(‖Ri ‖2 − di (R))2, (43)

where di (R) = 1
|R |

∑
R ∈R ‖Ri ‖2 is the average magnitude of the representations of instance i in R.

As magnitude is unaffected by transformations that preserve vector length, this statistic is invari-
ant to orthogonal transformations.

Concentricity. Wang et al. [149] proposed concentricity as a measure of the density of rep-
resentations. It is based on measuring the cosine similarities of each instance representation Ri

to the average representation, which we denote as αi (R) = cos-sim(Ri ,
1
N

∑N
j=1 R j ). Similarly to

magnitude, Wang et al. [149] then considered the mean concentricity

mmConc(R) := 1
N

∑N
i=1 αi (R) (44)

as a statistic for a single model and measured the instancewise variance of concentricity via

mVar-Conc(R, i) = 1
maxR∈R αi (R) −minR∈R αi (R) ·

√
1
|R |

∑
R ∈R(αi (R) − α i (R))2, (45)

where αi (R) = 1
|R |

∑
R ∈R αi (R) is the average concentricity of instance i in R. Concentricity inher-

its from cosine similarity the invariances to orthogonal transformations and isotropic scaling.
Uniformity. Uniformity [52, 153] quantifies density of representations by measuring how close

the distribution of instance representations is to a uniform distribution on the unit hypersphere.
This measure is defined as

muniformity(R) = log
(

1
N 2

∑N
i=1

∑N
j=1 e

−t ‖Ri−Rj ‖2
2

)
, (46)

where t is a hyperparameter that was set to t = 2 by Wang et al. [151] and Gwilliam and Shrivastava
[52]. The statistic is bounded in the interval [0, 1], with muniformity(R) = 1 indicating perfectly
uniform representations. Uniformity is invariant to orthogonal transformations and translation,
as these transformations preserve distances.

Tolerance. This statistic considers the proximity of representations of semantically similar in-
puts [150]. In contrast to the previous statistics, it requires a vector of ground-truth labelsy ∈ RN .
Further, it is assumed that all instance representations have unit norm. Tolerance is computed as
the mean similarity of inputs with the same class:

mtol(R) = 1
N 2

∑N
i=1

∑N
j=1(RT

i R j ) · 1{yi = yj }. (47)

Tolerance is bounded in the interval [−1, 1], with mtol(R) = 0 indicating that representations that
share the same label are always uncorrelated. This statistic is invariant to orthogonal transforma-
tions and isotropic scaling.

Instance-Graph Modularity. Similarly to the topology-based measures (see Section 3.5), Saini
et al. [122] and Lu et al. [87] proposed measures based on building a graph to model representations,
though this was not motivated from a topological perspective. Specifically, they used modularity
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[106] to identify whether semantically similar inputs are close together in the graph, and con-
sequently, the representation space. In both cases, a sparse graph was constructed. Saini et al.
[122] used the affinity matrix resulting from sparse subspace clustering [38] as the adjacency
matrix A ∈ RN×N , whereas Lu et al. [87] determined the adjacency matrix element-wise via
Ai, j = Si, j · 1{j ∈ Nk

R (i)}, considering a cosine similarity-based RSM S . The modularity of the
network, and in consequence the statistic for R, is then defined as

mMod(R) = 1
2W

∑
i, j

(
Ai, j −

di dj

W

)
· 1{yi = yj }, (48)

where di =
∑

j Ai, j denotes the effective degree of nodevi ,W =
∑

i, j Ai, j is a normalization factor,
and y is the vector of ground-truth labels. The maximum modularity is given by 1, and high mod-
ularity implies that nodes of the same label are highly connected with each other, with only few
connections to nodes of another label. Both variants are invariant to orthogonal transformations.
The variant by Lu et al. [87] is additionally invariant to isotropic scaling.

Neuron-Graph Modularity. Lange et al. [77] also considered modularity as a statistic to char-
acterize representations. However, in their approach, the nodesvj represented neuronsR−, j instead
of instance representations Ri . To model the similarity of neurons that is needed to construct the
graphs, they proposed four different variants of RSMs that either consider pure neuron activations
or also gradients with respect to neuron activations. In that latter case, one may consider the mod-
ularity based on such RSMs as a hybrid measure of representational and functional characteristics.

Once an RSM S ∈ RD×D has been computed, Lange et al. [77] constructed the adjacency matrix
A of G(R) via Ai, j = Si, j · (1 − 1{i = j}). Unlike Lu et al. [87], they did not allocate nodes to
clusters based on ground-truth labels but determined an optimal soft assignment of n clusters
that maximizes modularity. Specifically, they tried to find an optimal cluster assignment matrix
C ∈ RD×n , where each entry Cj,k ∈ [0, 1] determines the assignment of neuron j to cluster k . The
number of clusters n ≤ D of neuron activations is a parameter that is to be optimized as well.
Given a definition of clustering from Girvan and Newman [45], neuron modularity is then defined
as

mnMod(R) = max
C

tr(CTÃC) − tr(CT1T
D 1DÃC), (49)

where Ã = 1
1T

D
A1D

A is the normalized adjacency matrix. To determine the cluster assignment C ,

they provided an approximation method based on Newman’s modularity maximization algorithm
[105]. Generally,mnMod is invariant to permutations, since these effectively only relabel the nodes
in the resulting graph.

4 Functional Similarity Measures

Next, we present functional similarity measures. As mentioned in Section 2.2, these measures com-
pare outputs O,O ′ ∈ RN×C , where each element Oi,c denotes the probabilities or scores of class c
for input Xi and arg maxc Oi,c = ĉ indicates that class ĉ is the prediction for input Xi . We mainly
categorize measures based on the granularity of the model outputs that they require, as illustrated
in Figure 4. An overview of all measures is given in Table 2.

4.1 Performance-based Measures

A popular view on functional similarity is that models are similar if they reach similar performance
on some downstream task (e.g., References [7, 30, 34, 80]). This approach is easy to implement, as
the comparison of models is reduced to comparing two scalar performance scores, such as accu-
racy. However, this simplification also obfuscates more nuanced differences in functional behavior,
which cannot directly be captured with a single number per model.
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(a)

(b)

(c)

(d)

(e)

Fig. 4. Types of functional similarity measures, illustrated in the context of classifying inputs with respect

to their shape (�,�,�). Performance-based (a), hard prediction-based (b), soft prediction-based (c), and gra-

dient and adversarial example-based measures (d) compare outputs of different granularity. Model stitching

(e) combines parts of two models and measures functional similarity between the resulting model and the

original models.

Most commonly, given some quality function q that evaluates the performance of a model
with respect to ground-truth labels, the (absolute) difference in performance is used for
similarity:

mPerf (O,O ′) = |q(O) − q(O ′)|. (50)

Although accuracy is an often used quality function in the literature [7, 30, 34, 80], other perfor-
mance metrics such as F1 score may be used [158]. However, choosing performance metrics that
capture relevant aspects of functional behavior requires careful consideration [118].

4.2 Hard Prediction-based Measures

The measures in this section quantify functional similarity by comparing hard predictions. Thus,
each measure of this category will report high similarity if the hard predictions agree for most in-
puts, regardless of correctness or confidence. These measures are related to literature on ensemble
diversity [76, 140] and inter-rater agreement [6, 143].

Disagreement. Disagreement, also known as churn [39], jitter [86], or Hamming prediction dif-

ferences [126], is the expected rate of conflicting hard predictions over inputs and models [90, 131].
Due to its simplicity and interpretability, it is a particularly popular measure for functional simi-
larity. Formally, disagreement between two models is defined as

mDis(O,O ′) = 1
N

∑N
i=1 1{arg maxj Oi, j � arg maxj O ′

i, j }. (51)

The measure is bounded in the interval [0, 1], with a score of zero indicating perfect agreement,
and a score of one indicating completely distinct functional behavior. Practically, this range is
bounded by model quality, with high disagreement being impossible if the compared models are
both very accurate. Further, there are bounds on disagreement that depend on the soft predictions
of the compared models [14].

Error-corrected Disagreement. As the range of possible disagreement values depends on the
accuracy of the compared models, Fort et al. [43] proposed to correct for this influence by dividing
the disagreement by the error rate qErr(O) := qErr(O,y) := 1

N

∑N
i=1 1{arg maxj Oi, j � yi } of one of
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Table 2. Overview of Functional Similarity Measures

Type Measure Groupwise Blackbox Access Labels Required Similarity ↑
Performance Performance Difference ✗ ✓ ✓ ✗

Disagreement [39, 86, 90, 126] ✗ ✓ ✗ ✗
Error-Corrected Disagreement [43] ✗ ✓ ✓ ✗
Min-Max-normalized Disagreement [69] ✗ ✓ ✓ ✗
Kappa Statistic [27] ✗∗ ✓ ✗ ✓
Ambiguity [93, 123] ✓ ✓ ✗ ✗
Discrepancy [93] ✓ ✓ ✗ ✗

Hard Prediction

Label Entropy [31] ✓ ✓ ✗ ✗

Norm of Soft Prediction Difference [4, 163] ✗ ✓ ✗ ✗
Surrogate Churn [14] ✗ ✓ ✗ ✗
Jensen-Shannon Divergence [85] ✗ ✓ ✗ ✗
Prediction Difference [126] ✓ ✓ ✗ ✗

Soft Prediction

Rashomon Capacity [62] ✓ ✓ ✗ ✗

ModelDiff [82] ✗ ✗‡ ✓ ✓

Adversarial Transferability [63] ✗ ✗‡ ✓ ✓
Gradient &

Adversarial Ex.
Saliency Map Similarity [64] ✗ ✗ ✗ ✓

Stitching Performance Difference [7, 30, 80] ✗ ✗ ✓ ✗†

∗: Groupwise variants available. †: Depends on comparison. ‡: Depends on adversarial example generation.
We indicate whether measure enable groupwise comparison of models, whether they can be applied with blackbox
access to the models, and if they require ground-truth labels. Similarity ↑ indicates whether increasing scores imply
increasing similarity of models.

the models:

mErrCorrDis(O,O ′) = mDis(O ,O ′)
qErr(O ) . (52)

By design, this measure is not symmetric, since the error rates of the outputs O,O ′ may vary. A
normalized disagreement of zero indicates perfect agreement, whereas the upper limit is dependent
on the error rate—exact limits are provided by Fort et al. [43], which help to contextualize the
similarity scores that are obtained.

A normalized and symmetric variant of this measure was used by Klabunde and Lemmerich [69].
Their Min-Max-normalized disagreement measure relates the observed disagreement mDis(O,O ′)
to the minimum and maximum possible disagreement, given error rates qErr(·) of the models. The

minimum is computed asm(min)
Dis (O,O ′) = |qErr(O)−qErr(O ′)|, and the maximum possible disagree-

ment asm(max)
Dis (O,O ′) = min(qErr(O) + qErr(O ′), 1), leading to the measure

mMinMaxNormDis(O,O ′) = mDis(O ,O ′)−m
(min)
Dis (O ,O ′)

m
(max)
Dis (O ,O ′)−m

(min)
Dis (O ,O ′)

. (53)

This measure is bounded in the interval [0, 1], with mMinMaxNormDis(O,O ′) = 0 indicating perfect
agreement.

Chance-corrected Disagreement. Rather than correcting for accuracy of models, one can
correct for the rate of agreement that two or more classification models are expected to have by
chance. The probably most prominent measure that follows this rationale is Cohen’s kappa [27],
which was proposed as a measure for inter-rater agreement, but has also been used in machine
learning [22, 44]. Assuming that the compared outputs O,O ′ are statistically independent, and
lettingkc denote the absolute amount of times that class c is predicted in the outputO , the expected
agreement rate of such models is given by pe =

1
N 2

∑C
c=1 kck

′
c . Based on these values, Cohen’s

Kappa is defined as

mCohen(O,O ′) = 1 − mDis(O ,O ′)
1−pe

=
po−pe

1−pe
, (54)
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where po = 1 −mDis(O,O ′) denotes the observed agreement. When mCohen(O,O ′) = 1, perfect
agreement of the models is indicated; a value mCohen(O,O ′) < 0 indicates less agreement than
expected by chance.

To measure similarity between bigger sets of outputs, Fleiss’s kappa [42] can be used as a more
general variant [36]. The literature on inter-rater agreement [40] lists related measures that are
more general or have weaker assumptions.

Groupwise Disagreement. Disagreement cannot identify commonalities across a whole set of
models, as pairwise similarity of models does not imply groupwise similarity. The two following
measures extend disagreement to identify functional similarity across sets of models.

First, ambiguity [93], also called linear prediction overlap [52], is the share of instances that
receive conflicting predictions by any pair of models out of a given set of models. Ambiguity is
defined as

mAmbiguity(O) = 1
N

∑N
i=1 max O ,O ′∈O

s .t . O�O ′
1{arg maxj Oi, j � arg maxj O ′

i, j }. (55)

The counterpart to ambiguity is the stable core measure proposed by Schumacher et al. [123], which
counts the share of instances with consistent predictions. They also considered a relaxation of
this consistency, in which an instance is only required to obtain the same prediction by a fixed
proportion of models (e.g., 90% of all models) to be considered stable.

Second, discrepancy [93] gives the maximum disagreement between two classifiers from a set
of multiple models:

mDiscrepancy(O) = max
O ,O ′∈O

s .t . O�O ′

1
N

∑N
i=1 1{arg maxj Oi, j � arg maxj O ′

i, j }. (56)

Both ambiguity and discrepancy are bounded in the interval [0, 1], with a value of zero indicating
perfect agreement.

Label Entropy. Datta et al. [31] measured the variance in individual predictions over a group

of outputs in terms of entropy. Letting k (i)c denote the number of times that instance i is predicted
as class c , Label Entropy (LE) is defined as

mLE(O, i) =
∑C

c=1 −
k
(i )
c

|O | log
(

k
(i )
c

|O |

)
. (57)

Label Entropy is bounded in the interval [0, log(C)], with mLE(O, i) = 0 indicating identical
predictions.

4.3 Soft Prediction-based Measures

This group of measures compares soft predictions, such as classwise probabilities or scores from
decision functions. Intuitively, this provides more nuance to the notion of similarity in outputs,
since we can consider differences in confidence of individual predictions. The impact of confidence
is specifically exemplified by cases where scores are close to the decision boundary. Even a minimal
change in scores may cause a different classification in one case, whereas scores would need to
change drastically for a different classification in another case.

Norm of Soft Prediction Difference. A direct way to generalize disagreement to soft predic-
tions is to apply a norm ‖ · ‖ on instancewise differences in soft predictions and average this over
all inputs, which yields a measure

mPredNormDiff(O,O ′) = 1
2N

∑N
i=1

		Oi −O ′
i

		 , (58)

that assigns a score of zero when outputs are equal. Ba and Caruana [4] and Zhang et al. [163]
applied this measure using the Euclidean norm to compare logits and probabilities, respectively.
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Surrogate Churn. Bhojanapalli et al. [14] proposed surrogate churn (SChurn) as a relaxed ver-
sion of disagreement, that takes into account the distribution of the soft predictions. For α > 0, it
is defined as

mα
SChurn(O,O

′) = 1
2N

∑N
i=1

			( Oi

maxc Oi,c

)α

−
(

O ′
i

maxc O ′
i,c

)α 			
1
. (59)

A valuemα
SChurn(O,O

′) = 0 indicates perfect agreement of outputs. The authors showed that when
α → ∞, this measure is equivalent to standard disagreement (cf. Section 4.2), and we use α = 1 as
the default value.

Divergence-based Measures. When soft predictions represent class probabilities, divergence
measures for probability distributions can be used to evaluate the similarity of instance-level pre-
dictions. For example, Kullback–Leibler (KL) divergence is commonly used when training similar
models in knowledge distillation [49]. When focusing on pure similarity assessment, a common
choice is to apply the symmetric Jensen–Shannon Divergence (JSD) by averaging over all instances
[36, 43, 156]. Letting KL(·‖·) denote the Kullback–Leibler divergence, this measure is defined as

mJSD(O,O ′) = 1
2N

∑N
i=1 KL(Oi ‖O i ) + KL(O ′

i ‖O i ), (60)

with O = O+O ′

2 denoting the average output. Equality of outputs is given when mJSD(O,O ′) = 0,
and higher values indicate dissimilarity. A similar approach to compare probabilistic outputs is
given as Graph Explanation Faithfulness [1]. An overview of divergence measures that could be
used has been given by Cha [23].

Prediction Difference. Shamir and Coviello [126] specifically considered differences in predic-
tions over more than two models. Their prediction difference (PD) intuitively quantifies the variance
in model predictions. Letting O = 1

|O |
∑

O ∈OO denote the average output matrix, their standard
prediction difference measure aggregates instancewise deviations from the average output in terms
of a p-norm,

m
p

PD(O) = 1
N

∑N
i=1

1
|O |

∑
O ∈O ‖Oi −O i ‖p . (61)

Shamir and Coviello [126] used p = 1 for interpretable differences of probability distributions.
m

p

PD(O) = 0 indicates identical outputs of all models. Higher PD indicates higher dissimilarity
between the compared models.

Next to norm-based prediction difference, Shamir and Coviello [126] further proposed a variant
of the PD that relates the variance in the outputs to their average magnitude and a variant that
considers class labels y if these are given.

Rashomon Capacity. Similarly to label entropy (Equation (57)), Rashomon Capacity (RC) [62]
also applies concepts from information theory to measure multiplicity in predictions on individ-
ual instances. Formally, letting PO denote a probability distribution over the set of outputs O,
and ΔC =

{
p ∈ [0, 1]C :

∑C
i=1 pi = 1

}
the probability simplex, it considers the output spread

infp ∈ΔC
EO∼PO KL(Oi ‖p), where p ∈ ΔC is a reference distribution that is optimized to minimize

distances to all outputs. The Rashomon Capacity is then defined via the channel capacity, which
maximizes the output spread over all probability distributions over the outputs:

mRC(O, i) = 2Capacity(O,i), with Capacity(O, i) = supPO
infp ∈ΔC

EO∼PO KL(Oi ‖p). (62)

To approximate the Rashomon Capacity of an instance, Hsu and Calmon [62] suggested using
the Blahut–Arimoto algorithm [3, 16]. A similarity measure over all instances can be obtained by
aggregation, e.g., via the mean value.

It holds that mRC(O, i) ∈ [1,C] with mRC(O, i) = 1 if and only if all outputs are identical and
mRC(O, i) = C if and only if every class is predicted once with perfect confidence. Further, the
measure is monotonous, i.e., it holds thatmRC(O′, i) ≤ mRC(O, i) for all O′ ⊆ O.
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4.4 Gradient and Adversarial Example-based Measures

The measures in this section use model gradients to characterize similarity either directly or indi-
rectly via adversarial examples. A core assumption of these measures is that similar models have
similar gradients. This assumption also leads to transferability of adversarial attacks, i.e., the be-
havior of the compared models changes similarly when given an adversarial example computed
for only one of the models.

ModelDiff. In their ModelDiff measure, Li et al. [82] used adversarial examples from pertur-
bation attacks to characterize decision regions, which can then be compared across two models.
Given a model f , they first created adversarial examples X̃i for every input Xi by adding noise to
these inputs that steer the model away from a correct prediction. Such examples can be determined
by methods such as projected gradient descent [91]. The difference between the instancewise origi-
nal soft predictionsOi = f (Xi ) and the predictions for the corresponding adversarial example Õi =

f (X̃i ) is then collected in a decision distance vector defined as
(
vDDV(O, Õ)

)
i = cos-sim(Oi , Õi ).

Finally, they quantified the difference between models via the difference in the DDVs, measured
with cosine similarity:

mModelDiff(O,O ′) = cos-sim(vDDV(O, Õ),vDDV(O ′, Õ ′)). (63)

The outputs Õ ′
i = f ′(X̃i ) are computed from the same adversarial examples X̃i . A similarity score

of one indicates equivalence of outputs. Since this measure uses adversarial examples of only one
of the models, it is not symmetric.

Adversarial Transferability. Similarly to ModelDiff, Hwang et al. [63] measured the similarity
of networks in terms of the transferability of adversarial attacks. Given two networks f , f ′, for
each input Xi that is predicted correctly by both networks, a pair of corresponding adversarial
examples X̃i , X̃ ′

i is generated with projected gradient descent [91]. These adversarial examples are

then fed into the opposite model, yielding outputs Õi = f (X̃ ′
i ) and Õ ′

i = f ′(X̃i ), for which it is
then determined how often both are incorrect. Thus, given the vector of ground-truth labelsy, and
letting Xtrue denote the set of instances that were predicted correctly by both models, Hwang et al.
[63] defined the measure

mAdvTrans(Õ, Õ ′) = log
[

max
{
ε, 100

2 |Xtrue |
∑

i ∈Xtrue

(
1(arg maxj Õi, j � yi ) + 1(arg maxj Õ ′

i, j � yi )
)}]
,

(64)
where ε > 0 is introduced to avoid log(0). A value ofmAdvTrans(Õ, Õ ′) = log(100) indicates perfect
model similarity, whereasmAdvTrans(Õ, Õ ′) = log(ε) indicates complete disagreement.

Cosine Similarity of Saliency Maps. Jones et al. [64] used a direct approach to compare mod-
els in terms of their gradients. They computed the cosine similarity between (vectorized) saliency
maps [130], which model the impact of input features on individual predictions. Practically, this
impact is quantified using instancewise gradients ∇Xi

Oi,c , and the instancewise similarities then
aggregated to yield the following measure:

mSaliencyMap(O,O ′) = 1
nC

∑N
i=1

∑C
c=1 cos-sim

(��∇Xi
Oi,c

��, ��∇Xi
O ′

i,c

��), (65)

where the absolute value | · | is applied element-wise (for inputs with a single channel). A value
mSaliencyMap(O,O ′) = 1 indicates perfect similarity, with lower values indicating stronger differ-
ences between models.

4.5 Stitching-based Measures

The intuition behind stitching is that similar models should be similar in their internal pro-
cesses and, thus, swapping layers between such models should not result in big differences in
the outputs if a layer that converts representations is introduced [7, 30, 80]. Given two models
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f , f ′, stitching consists of training a stitching layer (or network) д to convert representations
from f at layer l into representations of f ′ at layer l ′. One then considers the composed model
f̃ := f ′(L

′) ◦ · · · ◦ f ′(l
′+1) ◦ f ′(l

′) ◦ д ◦ f (l ) ◦ f (l−1) ◦ · · · ◦ f (1), which uses the bottom-most layers
of f and the top-most layers of f ′, and compares its output with the original models. Most com-
monly they are compared in terms of a quality function q such as accuracy [7, 30]. This yields a
measure

mstitch(Õ,O ′) = q(Õ) − q(O ′), (66)

where Õ = f̃ (X ) is the output of the stitched model. However, other functional similarity measures
can also be used.

Both design and placement of stitching layers affects assessments of model similarity, and sev-
eral types of stitching layers were studied [30, 47]. Bansal et al. [7] chose stitching layers such that
the architecture of the stitched model is consistent with the original models. For instance, they
use a tokenwise linear function to stitch transformer blocks. For CNNs, 1 × 1 convolutions are
generally used in stitching layers [7, 30, 80].

Compared to other measures, model stitching requires training an additional layer and thus
might be more costly to implement. Further, (non-deterministic) training of the stitching layer
presents a source of instability of the final results. To train the stitching layers, one typically freezes
parameters of the original models and only optimizes the weights of the stitching layer via gra-
dient descent, using ground-truth labels or the output of f ′ as soft labels [7, 30, 80]. Additional
tweaks such as normalization or regularization may be beneficial in certain contexts [7, 30]. For
simple linear stitching layersT , the weights can be computed by solving the least squares problem
‖R(l )T − R′(l ′) ‖F .

5 Properties and Application of Similarity Measures

In this section, we discuss practical aspects regarding the application of similarity measures. We
begin by outlining the current state of research that analyzes properties of existing measures and
their relationship. Afterwards, we summarize applications in existing literature and then discuss
the choice of measures in more detail, before providing additional considerations for comparing
neural networks.

Properties and Evaluation of Similarity Measures. Most research on properties of similarity
measures in the deep learning literature focuses on representational similarity. We give a detailed
review of existing analyses of representational similarity measures in Appendix C. We further
provide an overview of existing comparative tests of these measures in Table 3, which highlights
that except for the recent ReSi benchmark [70], most analyses only considered very limited sets
of measures. By contrast, functional similarity measures have been broadly analyzed in various
contexts, including inter-rater agreement [89, 129, 135], model fingerprinting [138], and ensemble
learning [76].

Resources. There are only few resources that enable easy use of similarity measures. Most no-
tably, the recent ReSi benchmark1 [70] provides implementations of 24 representational similarity
measures, and also allows for testing of new measures on representations from a broad range of
neural network models and datasets, spanning the graph, language, and vision domains. Similarly,
Ding et al. [34] provide code2 to replicate their experiments and test new measures, albeit being
smaller in scope. Finally, Cloos et al. [26] have collected implementations of similarity measures

1https://github.com/mklabunde/resi
2https://github.com/js-d/sim_metric
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Table 3. Ranked Performance of Representational Similarity Measures in Existing Tests
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[1
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]
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]

[7
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[7
0]

[7
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[7
0]

Mean Canonical Correlation 4 4 5 3 5
Mean Canonical Correlation2 2 3
Singular Vector Canonical Correlation Analysis (SVCCA) 19 16 14 2 6 4 21 23 10 5
Projection-Weighted Canoncial Correlation Analysis (PWCCA) 4 3 3 22 14 17 4 1 2 3 4 17 20 20 1

Orthogonal Procrustes [CC] 5 9 8 8 8 9 5
Orthogonal Procrustes [CC, MN] 2 1 1 3 5 3 2 3 4 10 6 5
Permutation Procrustes 8 11 15 19 24 16 5
Angular Shape Metric 3 4 2 3 10 7 5
Linear Regression 14 12 11 6 12 9 22 5
Aligned Cosine Similarity 12 7 6 6 6 11 5
Correlation Match [Relaxed] 1 10 13 13 18 19 5
Correlation Match [Strict] 2 14 16 15 21 18 5
ContraSim 1 1 1

Norm of Representational Similarity Matrix Difference 11 21 21 3 18 13 1 5
Representational Similarity Analysis (RSA) 9 2 10 4 10 12 17 5
Centered Kernel Alignment (CKA) [Linear] 3 2 7 2 6 5 2 2 4 2 2 2 3 2 2 2 9 7 4 5
Centered Kernel Alignment (CKA) [RBF 0.8] 1

Distance Correlation (dCor) 6 1 3 3 7 2 3 5
Eigenspace Overlap Score (EOS) 15 20 18 15 15 24 5
Unified Linear Probing (GULP) [λ = 0] 6 23 18 12 6 14 14 21 3
Unified Linear Probing (GULP) [tuned λ] 1 1 1

Riemannian Distance 1 1

Jaccard 21 3 1 2 1 15 5
Second-Order Cosine Similarity 20 8 9 1 1 3 5 5
Rank Similarity 10 13 7 5 4 12 5
Multi-Scale Intrinsic Distance (IMD) 17 19 20 2 20 16 8 3
Representation Topology Divergence (RTD) 13 1 17 19 1 11 5 2 2
Magnitude Difference 17 24 23 24 19 13 5
Concentricity Difference 16 23 22 23 17 14 5
Uniformity Difference 24 22 23 22 22 23 24

Rank 1 indicates best performance. Empty cells indicate that a measure was not considered in the corresponding test.
For the orthogonal Procrustes measure, different normalization strategies were used—either centering (CC) or both
centering and normalization to unit norm (MN). Measures are ranked by their average performance across all
variations of a single test; variance and quantitative differences in performance are not shown. More details on the
tests and rank aggregation are given in Appendix D. Overall, it can be seen that most tests considered only a few
measures, indicating a gap in existing research. Further, no measure generally stands out.

in an online repository,3 aiming to provide a standardized interface for application of existing
measures.

Applications in the Literature. Similarity measures have been used in a wide array of contexts
with two main objectives: to understand aspects of deep learning and to improve deep learning sys-
tems. In this section, we give an overview and examples of such applications; for a wider overview
we refer to Sucholutsky et al. [136, Section 4].

Focal points of work aiming at understanding deep learning include the effects of model architec-
ture and objective function on what neural networks learn, as well as studies on model universality,
i.e., the extent models converge to similar behavior under different training setups. For example,
Raghu et al. [115] and Park and Kim [111] studied the differences between vision transformers and
CNNs by comparing their representations and analyzing changes in classification performance af-
ter modifying the architectures. Similarly, the effect of width and depth [107] and the importance of
specific layers [133] has been investigated. The impact of differences in the objective functions has,
for instance, been studied by Kornblith et al. [72], who analyzed layerwise differences in represen-
tations between models that vary only in their loss function and further evaluated transferability

3https://github.com/nacloos/similarity-repository
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of these models via functional similarity measures. Grigg et al. [51] took a similar approach when
comparing supervised to self-supervised models. Some studies have also investigated the impact
of training adversarially robust models, by considering how intra- [25] and inter-architecture [64]
similarities of representations from robust and non-robust models differ, or how stitching these
kinds of models affects performance [5]. Finally, studies on model universality have found that
neural networks trained under different training setups are often at least partially similar in their
representations [97–99, 137, 156], even if stemming from different modalities [92]. This is, how-
ever, contrasted by substantial differences in functional similarity that result from varying training
seeds [14, 39, 69, 86, 137] or the training data by a single instance [15].

Yet, there are other directions, including analyses on the impact of input features [58] and fine-
tuning [100] or studies comparing representations of visual information from CNNs to those from
mice [128] and human brains [157].

Work that used similarity measures to improve systems is comparatively rarer but includes stud-
ies on optimizing ensembles and knowledge distillation, i.e., the problem of transferring knowl-
edge of a typically large teacher model into a smaller student model. Works on improving en-
sembles have applied similarity measures when encouraging representational diversity of models
[35, 148, 161] or penalizing similarity of soft predictions of ensemble parts [163]. Similarly, in
knowledge distillation, the student models have been trained by maximizing similarity with the
teacher model in its representations [112, 121, 164] as well as in functional outputs [49, 165].

Similarity Measure Selection. Using both representational and functional similarity measures
allows for assessing similarity of neural networks in a holistic manner. While deciding suitability
of a measure requires a case-by-case evaluation, we can make some high-level recommendations.

For functional similarity measures, there are generally no measures that are fundamentally in-
correct for a given application. Table 2 provides all information necessary to narrow down the
most suitable measures. Using multiple measures can give nuanced insights. Most prediction- and
performance-based measures, except Rashomon capacity, can be computed in linear time, keeping
computational costs low when using several measures from these categories. For a robust analysis,
we recommend using measures that control for confounding factors such as random agreement
and error rate. If white-box access to the models is available and computational constraints allow
for it, then one could further consider more granular gradient-based measures or stitching.

In contrast, selecting appropriate measures for representational similarity is challenging due to
the opacity of neural representations. It is often unclear which representations can be considered
equivalent and what kinds of differences in models or representations measures are sensitive to.
Despite the big number of existing measures, research evaluating their applicability with respect to
these aspects is surprisingly limited. Therefore, we can only give a few general recommendations.
First, if it is known which groups of transformations the given representations are equivalent under,
then measures should be filtered accordingly (see Table 1). Second, one can check if some of the
existing analyses referenced in Table 3 are relevant for the given scenario to narrow down the
number of measures. Third, some insights may come from the objective functions of the models to
be compared. For instance, if similarity of instance representations is modeled in terms of angles,
then similarity measures based on Euclidean distance may not be suitable.

Further, one can consider advantages and disadvantages of different categories of measures.
For instance, alignment-based measures are less flexible in their invariances than RSM- and
neighborhood-based measures, which can easily be adapted in their inner similarity functions.
Topology-based measures, which also compute pairwise distance matrices in addition to estimate
persistence intervals of topological features, face similar computational challenges, likely making
them unsuitable for a large number of comparisons. Hence, if the number of inputs is large, then
other categories of measures may be preferred—though for individual measures, faster variants
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such as a batched computation of CKA were proposed [108]. Another key difference between rep-
resentational similarity measures is their flexibility in weighting local versus global similarity of
representations. Neighborhood-based measures are easiest to adjust based on the number of near-
est neighbors considered. RSM-based measures can generally also address this issue by creating
RSMs based on similarity functions that take distance between instances into account, e.g., the RBF
kernel. However, measures from other categories generally lack this flexibility. Finally, the simple
and interpretable nature of many descriptive statistics and neighborhood-based measures may be
of interest in some applications.

Additional Practical Considerations. Apart from measure selection, a few other aspects need
to be considered when comparing neural networks. First, as discussed in Appendix C.3, the input
data influences the similarity estimates. When generalizability of results is desired, input data
needs to be diverse [136]. A larger number of inputs will, however, increase computational costs.
When focussing on representational similarity, the choice of layers for comparison yields a sim-
ilar tradeoff. While pairwise comparisons of all layers provide the most detailed results, limiting
comparisons to selected layers, such as the penultimate layer [64, 68, 104], may balance cost and
detail effectively.

Finally, as discussed in Section 2.1, preprocessing of representations might be necessary to meet
the requirements of some measures. Understanding of the given representation space can, how-
ever, inform additional prepocessing. For example, language model representations like those from
BERT [33] often have a few dimensions with high mean and variance compared to the remaining di-
mensions [142], skewing measures like cosine similarity. Timkey and van Schijndel [142] addressed
this by standardizing the representations to zero mean and unit variance, thereby improving the
alignment of cosine similarity between words with human similarity judgements. Therefore, this
normalization may be advisable when comparing such language representations via similarity
measures that use cosine similarity, e.g., for RSMs or nearest neighbors. This example also illus-
trates how normalization can extend the invariances of a given measure, which, in this case, would
otherwise not be invariant to translation and anisotropic scaling. However, normalizing represen-
tations without such insights can be counterproductive. As can be seen in Table 3, the performance
of orthogonal Procrustes is strongly affected by differences in normalization.

6 Discussion and Open Research Challenges

In this survey, we describe more than 50 similarity measures. This yields a stark contrast to the
rather small amount of research dedicated to systematically analyzing and comparing the existing
measures that is highlighted in Appendix C. In particular, representational similarity measures
pose many open questions of high practical relevance. We argue that this constitutes a signifi-
cant gap in research, as deeper understanding of the properties of measures is crucial to properly
measure similarity and correctly interpret their scores.

In this section, we discuss challenges in the application of similarity measures, and connect
these to open research questions that we argue require more attention in the future. A discussion
of notions of similarity and corresponding measures beyond the scope of this survey is provided
in Appendix E.

Applicability of Representational Similarity Measures. Applying different representa-
tional similarity measures to the same pair of models can yield materially different results [68].
Given this potential for disagreement, it is crucial to have an understanding which measures are
able to capture those differences in representations that are relevant for a given application sce-
nario. As discussed in Section 5, there is, however, only very limited research that has investigated
the applicability of representational similarity measures in a broad manner. Further, there is also
only limited research aimed at understanding the geometry of neural representations, which could
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additionally inform about the compatibility of similarity measures with specific representations,
or preprocessing approaches that could be utilized to create such compatibility. The recent ReSi
benchmark [70], which builds on this survey, can be seen as a first effort toward enabling such sys-
tematic analyses, and we believe additional research in this direction is required to enable more
informed decisions when choosing representational similarity measures.

Interpretability. Unless a similarity score indicates perfect (dis-)similarity through a bounded
minimum or maximum value, one typically cannot directly infer an intuitively interpretable degree
of similarity from the score itself. One reason for this is that, due to non-linearities in a measure, the
resulting scores may be misleading. For example, the widely used cosine similarity (Equation (A.5))
changes non-linearly with the angle between two compared vectors, to the degree that a seemingly
high similarity of 0.95 still corresponds to an 18◦ angle. Another issue is that the similarity scores
that one can obtain may strongly depend on the context. For instance, a prediction disagreement
(Equation (51)) of 0.05 can be considered low in a difficult classification problem with many classes
and high in an easy binary classification problem where one expects near-perfect accuracy. Such
contextualization may be easy to establish for measures as intuitive as disagreement, however, for
more opaque measures, interpretation is typically much more difficult. Generally, properties of the
inputs can influence the obtained similarity scores (see Appendix C.3), and further, factors such as
dimensionality of representations might also affect the range that a similarity measure can produce.
The latter issue is exemplified in Appendix F, where we show that the orthogonal Procrustes scores
of two random representations increase with increasing dimension, which proves how dissimilar
representations may receive different scores based on such underlying factors. Therefore, we argue
that more research is required to improve the interpretability of measures, e.g., via expected values
or boundaries of similarity scores in terms of input similarity or dimensionality.

Robustness of Representational Similarity Measures. Specifically for the CKA
(Equation (28)), it has been shown that perturbations of single instance representations can
strongly affect the resulting similarity scores (see Appendix C.1). Such sensitivities can be
particularly harmful in applications where reliability of similarity measures is a prerequisite.
For instance, similarity measures could be used to identify model reuse in the legal context of
intellectual property protection [138]. Therefore, we argue that more research on the robustness
of similarity measures is required to understand and improve their reliability.

7 Conclusion

Representational similarity and functional similarity represent two complementing perspectives
on analyzing and comparing neural networks. In this work, we provide a comprehensive overview
of existing measures for both representational and functional similarity. We provide formal defi-
nitions for 53 similarity measures, along with a systematic categorization into different types of
measures and pedagogical illustrations.

In addition, we survey the literature to shed light on some of their salient properties and pro-
vide guidance for the practical application of similarity measures. We specifically identify a lack
of research that analyzes properties and applicability of representational similarity measures for
specific contexts in a unified manner. This gap in the literature also affects the quality of the
recommendations that one can make about their practical applicability. We argue that additional
research is necessary to enable the informed application of similarity measures and better under-
stand similarity of neural network models. Moreover, assessing similarity of neural networks is
an important aspect in several deep learning-related problems, including knowledge distillation,
pruning, model updating, continual learning, model merging, and contrastive learning. Despite
this importance, only limited consideration has been put into the choice of measures within such
applications, which may also be due to a lack of awareness about the available measures and their
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properties. In that sense, we hope that our work lays a foundation for more systematic research
on the properties of similarity measures and their applicability across deep learning. Further, with
our categorization and analysis, we believe that our work can assist researchers and practitioners
in choosing appropriate similarity measures.
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Appendices

A Overview of Notations and Basic Definitions

A.1 Notations

Within the notations in this survey, we use a few conventions. Sets are usually denoted with up-
percase calligraphic letters, such as N ,O,P. Matrices M ∈ Rn1×n2 , n1,n2 ∈ N are always denoted
with bold uppercase letters, whereas vectors v ∈ Rn ,n ∈ N are denoted with bold lowercase let-
ters. General scalar variables a ∈ R are usually denoted with regular lowercase letters, whereas
specific constants, such as the number of classes C in a classification task, or the dimension of
representations D, are denoted with uppercase letters. Specific lowercase variables are reserved,
such as m for model similarity measures or f for layer functions of neural networks. All of these
fixed variables are given in Table 4, all other variables are excluded there.

A.2 Norms and Inner Products for Matrices

Here, we briefly describe the Frobenius and nuclear norm that are used in some representational
similarity measures.

Frobenius Norm. On the vector space of all matrices in Rn×d , n,d ∈ N, the Frobenius inner

product is defined as

〈A,B〉F =
∑n

i=1
∑d

j=1 Ai, jBi, j = tr(ATB). (A.1)

This inner product induces the Frobenius norm, which for A ∈ Rn×d is defined as

‖A‖F =
√
〈A,A〉F =

√∑n
i=1

∑d
j=1 |Ai, j |2 =

√
tr(ATA) =

√∑min(n,d )
i=1 σ 2

i , (A.2)

with σi denoting the ith singular value of A. The Frobenius norm is invariant to orthogonal trans-
formations.
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Table 4. Overview of Notations

f , f ′ Neural networks
f (l ), f ′(l

′) Layer l/l ′ of neural networks f , f ′

L,L′ Total number of layers in f , f ′

D,D ′ Number of neurons of a layer
N Number of inputs
C Number of classes in a classification task
m Similarity measure
q Quality function
y Vector of ground-truth labels
X N × p matrix of N inputs

R,R′ N × D/N × D ′ representation matrices
O,O ′ N ×C output matrices
S, S ′ Representational Similarity Matrices
R,O Sets of representation/output matrices
T Group of linear transformations
∼T Equivalence up to transformations from T

O(D) Group of orthogonal transformations
GL(D,R) Group of invertible matrices in RD×D

Nk
R (i) Set of k nearest neighbors of i in R
T Transpose of a matrix/vector
1n Vector of n ones
In Identity matrix of size n × n
Hn Centering matrix of size n × n
1 Indicator function

Nuclear Norm. Similarly to the Frobenius norm, one can define the nuclear norm in terms of
the singular values of a matrix

‖A‖∗ =
∑min(n,d )

i=1 σi . (A.3)

A.3 Similarity Functions for RSMs

When analyzing representational similarity, instancewise similarity functions s : Rn × Rn −→ R,
n ∈ N are often needed, in particular for RSM-based measures (heren = D). As noted in Section 3.3,
they further strongly impact which groups of transformations these measures are invariant to. In
the following, we provide a brief overview of common similarity functions, where we always
assume two input vectors v,v ′ ∈ Rn to be given. We also provide an overview of the invariances
that they induce on RSM-based measures in Table 5.

— Euclidean Distance. This well-known distance function is defined as

‖v −v ′‖2 =

√∑n
i=1(vi −v ′

i )2. (A.4)

This function satisfies the properties of a distance metric.
— Cosine Similarity. The cosine similarity between two vectors is defined as

cos-sim(v,v ′) = vTv ′

‖v ‖2 ‖v ′ ‖2
. (A.5)

It is bounded in the interval [−1, 1], with cos-sim(v,v ′) = 1 indicating that both vectors
point in the exact same direction, and cos-sim(v,v ′) = 0 indicating orthogonality.
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Table 5. Overview of Instancewise Similarity Functions

Induced Invariances

Function PT OT IS ILT TR AT Metric
Euclidean distance ✓ ✓ ✗ ✗ ✓ ✗ ✓
Cosine similarity ✓ ✓ ✓ ✗ ✗ ✗ ✗
Linear kernel ✓ ✓ ✗ ✗ ✗ ✗ ✗
RBF kernel ✓ ✓ ✗ ✗ ✓ ✗ ✗
Pearson correlation ✓ ✓ ✓ ✗ ✓ ✗ ✗

— Linear Kernel. This kernel is defined as

K(v,v ′) = vTv ′. (A.6)

When v,v have unit norm, this measure is equivalent to cosine similarity. K(v,v ′) = 0
indicates that vectors are orthogonal to each other. The linear kernel is not bounded.

— Radial Basis Function Kernel. The RBF kernel is defined as

Kσ (v,v ′) = exp
(
− ‖v−v ′ ‖2

2
2σ 2

)
, (A.7)

where σ ∈ R is a free parameter. With a range of [0, 1], Kσ (v,v ′) = 1 indicates maximum
similarity, a value of zero indicates minimal similarity.

— Pearson Correlation. Letting v = 1
n

∑n
i=1vi denote the average value of the vector v , the

Pearson correlation coefficient is defined as

r (v,v ′) =
∑n

i=1(vi−v i )(v ′
i−v ′

i )√∑n
i=1(vi−v i )2

√∑n
i=1(v ′

i−v ′
i )2
. (A.8)

This function is bounded in the interval [−1, 1], with r (v,v ′) = 1 indicating perfect correla-
tion, and r (v,v ′) = 0 no correlation at all. When v,v ′ are mean-centered, i.e., v = v ′ = 0,
this function is equivalent to cosine similarity.

A.4 Intertwiner Groups

Godfrey et al. [47] introduced the concept of intertwiner groups, which they applied to analyze
symmetries in neural network models. Formally, given an invertible activation function σ : R −→
R, its corresponding intertwiner group is defined as

Gσ := Gσ ,D = {A ∈ GL(D,R) : ∃B ∈ GL(D,R) s.t. σ ◦A = B ◦ σ }, (A.9)

where GL(D,R) denotes the general linear group of invertible matrices in RD×D . The correspond-
ing group of transformations of neural representations is then defined as

Tσ = {R �→ RM : M ∈ Gσ }. (A.10)

We highlight the case where σ = ReLU, which yields the group TReLU, because Godfrey et al. [47]
detail similarity measures that are invariant to transformations from TReLU.GReLU consists of matri-
ces of the form PD, where P ∈ P is a permutation matrix and D is a diagonal matrix with positive
elements. Thus, invariance to TReLU implies invariance to permutations, and when assuming rep-
resentations with normalized columns, one can, for instance, constrain the orthogonal Procrustes
measure to be invariant to this group [47].
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B Preprocessing of Representations

Next, we discuss techniques for normalization, adjusting dimensionality, and flattening of repre-
sentations.

Normalization. Some similarity measures assume that the representations are normalized.
For instance, it is commonly assumed that representations are mean-centered in the columns
[73, 101, 155]. Mean-centering effectively constitutes a translation of the representations, which
imposes the assumption that representations are equivalent under translations. In consequence,
the corresponding measures are invariant toward translations. For such reasons, normalization
methods should be used with caution, as they require the compared representations to be compat-
ible with such assumptions.

In the following, we briefly discuss some commonly used normalization methods for representa-
tions or RSMs. To keep the broader scope, we consider normalization of matrices M ∈ Rn×d ,n,d ∈
N. Then, a normalization can be considered as a mappingψ : Rn×d −→ Rn×d . To simplify notation,
in this context we apply the centering matrix Hn , n ∈ N, which is defined as Hn = In − 1

n
1n1T

n ,

— Rescaling of Instances to Unit Norm. LettingD = diag(‖M1‖2, . . . , ‖Mn ‖2) denote the diagonal
matrix of row lengths, this rescaling can be written as a transformation,

M �→ D−1M . (B.11)

This transformation preserves angles but alters Euclidean distances between vectors.
— Rescaling of Columns to Unit Norm. Letting D = diag(‖M−,1‖2, . . . , ‖M−,d ‖2) denote the di-

agonal matrix of column lengths, this rescaling can be written as a transformation

M �→ MD−1. (B.12)

This transformation preserves neither angles nor distances.
— Rescaling of Matrix to Unit Norm. This preprocessing rescales the whole matrix to unit norm:

M �→ M
‖M ‖F

. (B.13)

Like the previous rescaling, angles are preserved, but Euclidean distances are not.
— Mean-Centering of Columns. This normalization sets the column means to zero, while pre-

serving their variance. It can be written as a transformation

M �→ HnM, (B.14)

which effectively constitutes a translation of the representations. Thus, it alters angles but
preserves Euclidean distance between representations.

— Double Mean-Centering. This approach translates both rows and columns such that both row
and column means equal zero. For any matrix M ∈ Rn×d ,n,d ∈ N, double mean-centering
in rows and columns can be defined as a transformation

M �→ HnMHd . (B.15)

This normalization is typically not applied directly to representations, as it would translate
individual rows differently, and alter both Euclidean distance and angles between the row
vectors.

Adjusting Dimensionality. Many of the representational similarity measures presented in
Section 3 implicitly assume that the representations R,R′ have the same dimensionality, i.e.,
D = D ′. Thus, if D < D ′, then some preprocessing technique must be applied to match the di-
mensionality. Two techniques have been recommended for preprocessing: zero-padding and di-
mensionality reduction, such as PCA [155, 183]. When zero-padding, the dimension D of repre-
sentation R is inflated by appending D ′ − D columns of zeros to R. PCA conversely reduces the

ACM Comput. Surv., Vol. 57, No. 9, Article 242. Publication date: May 2025.



242:44 M. Klabunde et al.

dimension of the representation R′ by removing the D ′ −D lowest-information components from
the representation.

Flattening. Representational similarity measures assume matrices R ∈ RN×D as input. How-
ever, some models such as CNNs produce representations of more than two dimensions, making
them incompatible with these measures. In such a case, representations have to be flattened, tak-
ing into account model-specific properties of representations. For example, representations from
CNNs usually have the form R ∈ RN×h×w×c , where h and w denote height and width of the fea-
ture maps and c the number of channels. Directly flattening these representations into matrices
R ∈ RN×hwc would yield a format in which permuting the features would disregard the spatial
information in the original feature map, which may be undesirable. To avoid this issue, flatten-
ing CNN representations into matrices R ∈ RN hw×c yields representations where permutations
only affect the channels [155]. However, when comparing two models f , f ′, their flattened repre-
sentations are only compatible if the height and width of both models match or a feature map is
upsampled, as the number of rows in the resulting matrices must match. Further, computational
cost of a similarity measure may be affected by the new effective numbers of features and inputs
in the flattened representation.

C Analyses of Similarity Measures

This section gives an overview of analyses of similarity measures that study the relation between
representational and functional similarity, what kind of representations similarity measures can
distinguish, and how the scores are influenced by the given inputs. A summary of the comparative
evaluations is shown in Table 3.

C.1 Correlation between Functional and Representational Measures

There has only been little work that investigates the relationship between representational and
functional similarity. Most prominently, Ding et al. [34] studied on BERT [33] and ResNet [187]
models whether diverging functional behavior correlates with diverging representational similar-
ity. To that end, they induced functional changes on the given models, such as varying training
seeds, removing principal components of representations at certain layers, or applying out-of-
distribution inputs, and investigated whether observed changes in accuracy on classification tasks
correlate with changes in representational similarity as measured by CKA (Equation (28)), PWCCA
(Equation (14)), and orthogonal Procrustes (Equation (15)). They observed that orthogonal Pro-
crustes generally correlates with changes in functional behavior to a higher degree than CKA and
PWCCA. Further, CKA appeared much less sensitive to removal of principal components of rep-
resentations than orthogonal Procrustes and PWCCA—it still indicated high similarity between
the original and the modified representation when the accuracy of the model has already dropped
by over 15%. GULP (Equation (32)) was later benchmarked using the same protocol and found to
perform similarly to CKA and Procrustes, although it relied on good selection of regularization
strength [17].

A similar analysis was conducted by Hayne et al. [57], who induced functional changes by delet-
ing neurons in the linear layers of CNNs that were trained on ImageNet [179]. They reported that
orthogonal Procrustes and CKA correlate more with functional similarity than CCA measures.
Barannikov et al. [8] further compared disagreement (Equation (51)) of models with CKA and
RTD (Equation (41)) scores. CKA correlated to a lower degree than RTD. Boix-Adsera et al. [17]
correlated representational similarity with mean squared difference between outputs of regression
models that were trained on the representations with random labels. They found that GULP corre-
lated better than CCA-based measures and CKA. The recent ReSi benchmark [70] correlated over
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20 representational similarity measures with accuracy, disagreement, and JSD. They used repre-
sentations from vision, text, and graph models across multiple datasets. No measure consistently
outperformed others across these tests.

Davari et al. [178] pointed out how CKA is sensitive to manipulations of representations that
would not affect the functional similarity of the underlying models. For instance, they showed
that one can alter the CKA of two identical representations to almost zero by translating the rep-
resentation of a single instance in one of the copies, without affecting the separability of the rep-
resentations with respect to their class. Further, they could modify representations of multiple
layers to obtain prespecified CKA scores between them, while leaving functional similarity almost
unaffected. Similar results were also reported by Csiszárik et al. [30].

C.2 Discriminative Abilities of Representational Similarity Measures

Invariances of representational similarity measures indicate which representations are considered
equivalent. However, measures have practical differences in distinguishing representations, which
have been assessed in numerous works.

Morcos et al. [101] tested the robustness of CCA-based measures (see Section 3.1) to noise in
representations. They argued that measures should identify two representations as similar if they
share an identical subset of columns, next to a number of random noise dimensions. In their ex-
periments, they found that PWCCA is most robust in indicating high similarity, even if half of the
dimensions are noise. By comparison, mean CCA was the least robust.

A number of works [24, 73, 116, 125] have explored the ability of representational similarity
measures to match corresponding layers in pairs of models that only differ in their training seed:
For instance, given two model instantiations and comparing layer five in one instantiation with
all layers from the other model, the similarity with layer five from the other instantiation should
be the highest. No measure clearly outperformed other measures consistently.

Shahbazi et al. [125] tested whether representations obtained by sampling a low number of
dimensions from a baseline representation yield high similarity with the baseline or other low-
dimensional samples. They compared CKA (Equation (28)), Riemannian distance (Equation (33)),
RSA (Equation (27)), and RSM norm difference (Equation (26)) on a neuroscience dataset, with
sampled dimensions varying between 10 and 50. For higher dimensions, all measures assigned high
similarity between the samples and the baseline. For low dimensions, only Riemannian distance
consistently assigned high similarity between the sample and its original representation. Other
measures yielded lower similarities, yet CKA gave better results than RSA and the norm-based
measure.

Barannikov et al. [8] used synthetic data patterns to test the ability of RTD (Equation (41)) to
discriminate between topologically different data. They generated data consisting of increasing
amounts of clusters, which were arranged circularly in two-dimensional space, and argued that
the similarity between the dataset of one cluster and datasets with more clusters should decrease
with increasing number of clusters. The rank correlation between similarity score of a measure and
number of clusters in the data was perfect for RTD, whereas CKA, SVCCA, and IMD (Equation (40))
had relatively low correlations.

Boix-Adsera et al. [17] assumed that models of similar architecture have similar representations.
Hence, they clustered ImageNet-trained models based on pairwise representational similarity and
measured the quality of the resulting clusters. CKA, orthogonal Procrustes (Equation (15)), and
GULP (Equation (32)) all allowed for good clustering in general; CCA-based measures tended to
perform worse in comparison. With optimized regularization strength λ, GULP overall yielded the
best clustering among these measures. Further, GULP clustered well even for inputs from other
datasets.
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Tang et al. [141] argued that models trained from two similar datasets, such as CIFAR-10 and
CIFAR-100 [197], should be more similar compared to models trained on dissimilar datasets, that
for instance do not contain natural images. In their experiments, they compared CKA and NBS
with respect to this desideratum, but results were inconclusive.

Rahamim and Belinkov [116] tested whether representations of text in different languages for a
fixed model are more similar than representations of two random texts. Similarly, they evaluated
whether the representation of an image is most similar to the representation of the true caption
compared to captions of other images. In both cases, ContraSim (Equation (24)), which was specif-
ically trained for the respective task, outperformed CKA.

Finally, the ReSi benchmark [70] proposed four tests that evaluate the discriminative abilities of
measures. In three of these tests final-layer representations of models with different behavior need
to be distinguished. These behavior differences stem from training with varying amount of random
labels, shortcut features, or augmentation. The fourth test correlated similarity in layer depth with
representational similarity. All tests are implemented over models from the vision, language, and
graph domains across multiple datasets. Initial results from the benchmark indicate that there is
no similarity measure that performs well over all tests and domains.

C.3 Influence of Inputs

Another issue studied in literature is the impact of the inputs X on similarity scores. For popular
functional similarity measures, it is well known that similarity of outputs is confounded by the
accuracy of the models, the number of classes and the class distribution [14, 43, 69, 167, 173].
Similar confounding effects also exist with respect to representational similarity measures. In the
following, we discuss corresponding results.

First, Cui et al. [177] argued that similarity between input instances leads to similarity of their
representations in early layers, as the extracted low-level features—even if they are different
overall—cannot clearly distinguish between instances. Thus, RSMs mirror the pairwise similari-
ties of the inputs, which leads to high similarity estimates between models that may actually be
dissimilar. This was demonstrated by showing that two random neural networks can obtain higher
RSA (Equation (27)) and CKA (Equation (28)) scores than a pair of networks trained for the same
task. To alleviate this problem, they proposed a regression-based approach to de-confound the
RSMs.

Second, it was shown that representational similarity measures can be confounded by specific
input features. Dujmović et al. [181] compared a model trained on standard image data to models
trained on modified images. The modified images contained a class-leaking pixel to allow models
to learn a shortcut for classification. The locations of the leaking pixels affected representational
similarity between the models, measured by RSA. Similarly, Jones et al. [64] found that feature
co-occurrence in inputs may lead to overestimation of model similarity by CKA. Different input
features may co-occur in the data used to compute representations, but models may use these
features to different extents. For example, on a high level, the features “hair” and “eyes” co-occur
in images of human faces, but one model may only use the hair to compute its representations,
whereas the other model may only use the eyes feature. They showed that CKA scores ignore the
difference in feature use with an image inversion approach: Using data synthetically generated to
produce the same representations in one model, similarity to the other model dropped drastically
as feature co-occurrences were eliminated.

Third, the number of input instances N may influence similarity scores. Williams et al. [155]
compared two CNNs trained on CIFAR-10. The representations were computed from the test data
with varying sample size N . The similarity between the two CNNs in terms of the Angular Shape
Metric (Equation (16)) generally decreased with increased ratio N /D, before a stable score was
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reached that did not change with more inputs. When constraining the measure to permutation
invariance, a lower ratio N /D was sufficient to achieve a stable similarity score.

Finally, the effect of the choice of inputs was studied by Brown et al. [172]. Using inputs from dif-
ferent data distributions significantly affected similarity scores of CKA and orthogonal Procrustes.
However, similarity between models when giving in-distribution data was significantly correlated
with similarity when given out-of-distribution data. The extent of correlation heavily depends on
the specific dataset.

D Details on Evaluation of Representational Similarity Measures

In Table 3, we show the rankings of representational similarity measures from different tests in
literature, which we describe in Appendix C. Most of the tests, however, considered multiple vari-
ants where, for instance, datasets and models have been varied. To obtain the single rank that is
presented in Table 3, we first created rankings for each test variant. We then averaged these ranks
for each measure and finally assigned the ranks as depicted in Table 3 based on these averages.
We note that these aggregated results do not highlight the considerable variance in performance
that often occurred across test variants. For example, k-NN Jaccard similarity is the best measure
on average for the JSD correlation test in the ReSi benchmark, but across all model and data vari-
ants its rank varies between 1 and 18. Further, these ranks do not indicate statistically significant
differences. The ranks should only be interpreted as a general direction of performance. Thus, we
generally recommend looking into the study that a test originated from to obtain more nuanced
insights regarding the applicability of a measure for specific application scenarios.

In the following, we provide more detailed descriptions regarding how we determined and (if
necessary) aggregated ranks for each of the listed tests. To provide some further orientation, we
give an overview of the models and datasets that were considered in each test in Table 6.

Accuracy Correlation. From the experiments conducted by Boix-Adsera et al. [17], we aggre-
gated the results depicted in Figures 22–24 in their appendix, where we computed individual
rankings based on the correlation measured by Spearman’s rho. As for the rank of GULP with
optimized λ, we always chose the best result across all values of λ in each individual test. For
the analysis by Ding et al. [34], we aggregated ranks over all tests with respect to Spearman
correlation, as they depicted in Table 1. Since PWCCA was not applicable in the vision tests,
we ranked it last in the tests from these domains. From the experiments by Hayne et al. [57],
we used the data published in their code repository. We first averaged the correlation values
over all layers and then created separate rankings per model. Regarding the ReSi benchmark
[70], we considered and aggregated all results for test 1 (correlation to accuracy difference)
as presented in Appendix B, where we ranked based on the reported Spearman correlation.

Disagreement Correlation. From the experiments by Barannikov et al. [8], we considered
the results reported in Tables 1, 2 and 4, where RTD always outperformed CKA. Regarding
ReSi [70], we considered and aggregated all results for test 2 (correlation to output differ-
ence) as presented in Appendix B, where we ranked based on the reported Spearman corre-
lation of representational similarity measures with disagreement.

JSD Correlation. Again, we considered and aggregated all results for test 2 (correlation to
output difference) of ReSi [70] as presented in Appendix B, where we ranked based on the
reported Spearman correlation of representational similarity measures with JSD.

Squared Error Correlation. We allocated ranks based on the Spearman correlations reported
in Reference [17, Figure 4] that was averaged over the two given regularization strengths of
the given linear predictors. Regarding the rank of GULP with optimized λ, we chose the best
result across all values of λ at each regularization strength.
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Noise Addition. To construct the ranks for the experiments by Morcos et al. [101], we consid-
ered the areas under the curves as presented in Figure 2. They only considered one model
and dataset, so we did not aggregate ranks.

Layer Matching. Chen et al. [24] present the effect of hyperparameters on matching accu-
racy in Figure 3. We rank the measures based on the accuracy with respect to the optimal
hyperparameters mentioned in the text (degree 5 and graph size 50) for the three used ar-
chitectures. For Kornblith et al. [73], we rank measures based on the matching accuracies
with respect to both CNNs (Table 2) and Transformers (Table F.1). From the experiments
by Rahamim and Belinkov [116], we consider the results depicted in Table 1, where we rank
each combination of encoder training set with representation dataset as a variant (separately
for each domain). For Shahbazi et al. [125], we rank measures based on the mean matching
accuracy as reported in their Figure 13.

Dimension Subsampling. We considered and aggregated the results from Shahbazi et al.
[125] as depicted in Figures 5 and 6. For these individual experiments, ranks were, again,
determined by the depicted areas under the curves. For RSA, we used the Spearman curve,
and RSM Norm Difference corresponds to the Euclidean curve.

Cluster Count. We considered and aggregated results from both experiments with synthetic
clusters and rings, where we ranked measures according to the Kendall’s τ rank correla-
tion with the number of clusters and rings, respectively, as reported by Barannikov et al. [8,
Section 3.1].

Architecture Clustering. From the experiments by Boix-Adsera et al. [17], we consider the
results depicted in Figure 16, where we consider the pretrained and untrained models as
different variants and rank measures by their average standard deviation ratio.

Multilingual. From the multilingual benchmark by Rahamim and Belinkov [116], we consid-
ered the results depicted in Tables 2, 4, and 5, where, in every test variant and for each
probing layer, ContraSim had higher accuracy than CKA.

Image Caption. From the image caption benchmark by Rahamim and Belinkov [116], we con-
sidered the results depicted in Figure 5 and Table 3 and 6, where, again, ContraSim had higher
accuracy than CKA in all test variants.

Shortcut Affinity. We considered and aggregated all results for test 4 (shortcut affinity) of
ReSi [70] as presented in Appendix B, where we ranked all measures based on the reported
AUPRC scores.

Augmentation. We considered and aggregated all results for test 5 (augmentation) of the
ReSi benchmark [70] as presented in Appendix B, where we ranked all measures based on
the reported AUPRC scores.

Label Randomization. We considered and aggregated all results for test 3 (label randomiza-
tion) of the ReSi benchmark [70] as presented in Appendix B, where we ranked all measures
based on the reported AUPRC scores.

Layer Monotonicity. We considered and aggregated all results for test 6 (layer monotonicity)
of the ReSi benchmark [70] as presented in Appendix B, where we ranked all measures based
on the reported Spearman correlation.

E Neural Network Similarity beyond This Survey

In this survey, we reviewed representational similarity measures that can compare representa-
tions from two different models that use the same inputs, and functional similarity measures
that compare models in (multiclass) classification contexts. Beyond the scope of this survey, there
are other views on neural network similarity and application contexts, which we briefly discuss
here.
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Functional Similarity for Non-Classification Tasks. Although we focus on functional sim-
ilarity with respect to classification, many of the functional similarity measures can be used for
or directly transferred to other downstream tasks. In particular, if a suitable performance measure
is given, performance-based measures can be used in any other context. This is also the case for
gradient-based and stitching measures if white-box access to the models is given, and, in case of
gradient-based measures, adversarial examples can be constructed for the given context. Soft and
hard prediction-based measures, conversely, are limited to tasks where outputs are assigned dis-
crete labels. For regression, one could consider binning outputs to obtain discrete labels. Further,
there are specialized measures of agreement of continuous outputs [46, 143]. Finally, if output
is structured, e.g., text or image generation, functional similarity becomes more difficult as out-
puts do not share universally identical semantics as in classification tasks. For example, generated
images may have differences that are not perceivable to the human eye and thus could be consid-
ered equivalent. This equivalence could lead to considering the invariances of functional similarity
measures. The evaluation of these kinds of models, including comparison of outputs to a human
reference, was studied in prior surveys [18, 22].

Alternative Notions of Neural Network Similarity. Aside from representational and func-
tional similarity measures, there are several other notions of similarity that have been used to
compare neural networks. Some of these approaches are applicable for specific types of neural
networks. For instance, visualizations have emerged as a popular tool to analyze CNN similar-
ity, although not limited to them. Approaches include the visualization of decision regions [220],
neuron activations [169], or reconstructed images [203]. Chen et al. [174] proposed a method to
compare weights of convolutional layers. For language models, probing [170] has become a popular
approach. The idea behind probing is to compare the extent to which representations of models
trained for a specific task such as sentiment analysis can also be used to predict related concepts
such as part of speech.

There are also more universal approaches. For instance, Wang et al. [151] and Guth and Mé-
nard [184] proposed methods to compare the weight matrices of neural networks. Further, one
could also consider the impact of inputs, as done by Shah et al. [215]. They utilize the concept
of datamodels [190], which aim to explain predictions in terms of which data samples were used
in training. Using that approach, they measure similarity in neural networks by comparing the
influence that data points have on individual predictions. Salle et al. [214] considered the extent to
which differences in meta-features, such as part of speech or tense for text models, predict differ-
ences in instance representations, and compared different models based on the importance of such
features for the prediction. Finally, measures that compare representations that are derived from
different sets of inputs but mapped into the same vector space, e.g., by coming from the same model,
were proposed in the context of evaluating generative adversarial networks [168, 200] and metric
learning [192, 199].

Representational Similarity for Training Neural Networks. Optimizing representations
for high or low similarity during model training is a reoccurring theme across deep learning, e.g.,
in knowledge distillation [49] or fields that use contrastive representation learning [182, 191, 204,
225, 230].

The approaches to assessing similarity in this context are different from the similarity measures
in this survey. First, differentiability and computational efficiency become important properties
to enable gradient descent-based optimization. Second, and more importantly, in these processes
it is often assumed that representations lie in the same representation space [192, 193, 199], and
similarity is often evaluated on the instance level rather than on full representation matrices [194,
213, 229]. Alternatively, if the representations come from different models such as in multimodal
representation learning, their mapping into the joint space can be trained together with the rest
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of the system [229]. Hence, unless invariances of the similarity measure should be used to make
optimization more flexible, invariances are not important. While these approaches are useful for
training and aggregating representations at fixed layers of models, they do not generalize to post-
training analysis of neural networks.

Distinction to Functional Representations. This survey covers representational and func-
tional similarity measures. The terms representational and functional should not be confused with
functional representations. In contrast to our work, which is about comparing neural networks,
work on functional representations is about training neural networks to represent continuous
functions that are only known via samples at discrete points [196, 207, 218].

F Orthogonal Procrustes and Dimensionality

To demonstrate how the similarity scores of a measure may be influenced by external factors such
as dimensionality, we plot values of the orthogonal Procrustes measure over varying dimension
in Figure 5.

Fig. 5. Mean orthogonal Procrustes scores between two matrices over increasing dimensionality with vary-

ing noise level. The matrices have N = 1, 000 rows. Shuffled Baseline refers to the score between two ef-

fectively unrelated matrices, a row-wise shuffled copy of the representation matrix and the original, similar

to Kriegeskorte et al. [74]. The baseline is unrelated to the noise level. Scores increase until the number of

dimensions matches the number of inputs (N = D) and then stays flat. While N > D, the relation between

the similarity score and the dimensionality follows a power law, as shown by the linear relation in the log-log

plot. The standard deviation is too small to be visible. The same trend can be observed with other N (not

shown).

We compare two synthetic representation matrices: the first matrix is a random matrix with
entries drawn from a standard normal distribution, and the second matrix is generated by
multiplying the first matrix with an orthogonal matrix that was randomly drawn from the
Haar distribution as implemented by scipy4 [209], with added noise, that is again drawn from
a normal distribution. These matrices have N = 1, 000 rows and varying dimension D ∈
{10, 50, 100, 200, 300, 1, 000, 2, 000, 3, 000}. This matrix generation process is repeated 10 times for
each value D, and we report the mean orthogonal Procrustes distance resulting from these matrix
pairs. In addition, we create a baseline similarity score by permuting the rows of a copy of the
original representation matrix and compare it to the original representation matrix, similarly to
the technique proposed by Kriegeskorte et al. [74]. We compute the baseline scores by shuffling
the rows 10 times for each representation pair, again reporting the mean.

The code to this experiment is available on GitHub.5

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ortho_group.html
5https://github.com/mklabunde/survey_measures

ACM Comput. Surv., Vol. 57, No. 9, Article 242. Publication date: May 2025.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ortho_group.html
https://github.com/mklabunde/survey_measures


242:52 M. Klabunde et al.

G Transformations for Figure 2

In Figure 2, the AT, ILT, and TR invariances use

A =

[
0.68 0.05
0.22 0.18

]
b =

[
1.2 −1.6

]
.

The illustrations of the OT, PT, and IS invariances use the following parameter values in their
respective transformations:

Q =

[
−0.87 0.5

0.5 0.87

]
P =

[
0 1
1 0

]
a = 2.

The transformationQ corresponds to rotating the representation by 120◦ and reflecting across the
15◦ axis. The permutation P effectively swaps the axes in the coordinate system.
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