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Abstract
Prenatal androgenization associates sex-dependently with behavior and mental health in adolescence and adulthood, including 
risk-taking, emotionality, substance use, and depression. However, still little is known on how it affects underlying neural 
correlates, like frontal brain control regions. Thus, we tested whether prenatal androgen load is sex-dependently related to 
frontal cortex volumes in a sex-balanced adolescent sample. In a cross-sectional magnetic resonance imaging study, we exam-
ined 61 adolescents (28 males, 33 females; aged 14 or 16 years) and analyzed associations of frontal brain region volumes 
with the second-to-fourth digit length ratio (2D:4D), an established marker for prenatal androgenization, using voxel-based 
morphometry in a region-of-interest approach. Lower 2D:4D (indicative of higher prenatal androgen load) correlated sig-
nificantly with smaller volumes of the right anterior cingulate cortex (r-ACC; β = 0.45) in male adolescents and with larger 
volumes of the left inferior frontal gyrus orbital part (l-IFGorb; β = – 0.38) in female adolescents. The regression slopes of 
2D:4D on the r-ACC also differed significantly between males and females. The study provides novel evidence that prenatal 
androgenization may influence the development of the frontal brain in a sex- and frontal brain region-specific manner. These 
effects might contribute to the well-known sex differences in risk-taking, emotionality, substance use, and depression. Future 
research is needed to elucidate the role of prenatal androgenization within the biopsychosocial model.
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Introduction

The prenatal window is a sensitive developmental period, 
during which the exposure to sex hormones organizes the 
brain with lasting neurobiological and behavioral effects. 
Animal experiments have established causal evidence that 
prenatal exposure to sex hormones influences sex-typical 
behavior, brain structures, and gene expression with effects 
that persist into adulthood [1–3]. In humans, androgeniza-
tion during the prenatal development is thought to sex-
specifically shape adult behaviors such as risk-taking, 
aggression [4–6], sociability [7], reduced impulse control 
[8], and emotional instability [9]. It was also suggested to 
influence regional brain morphology [10], enhanced reac-
tivity to positive relative to negatively valenced facial cues 
[11] in young males, and P2a response to motivational 
stimuli in a predominantly female cohort [12]. Moreover, 
prenatal exposure to androgens further interacts sex-spe-
cifically with the risk for and symptoms of mental illnesses 
in adolescence and adulthood [13], including addictive 
disorders [14–16], suicidal behaviors [17], depression [18, 
19], and eating disorders [20–22]. On the brain level, this 
could be particularly related to the structure and function 
of the prefrontal cortex, which plays a central role in cog-
nitive control, modulates these behaviors, and associates 
with mental illness symptoms [23–28]. These relationships 
are also subject to sex differences [29].

However, there is only little knowledge on how prena-
tal androgen load shapes human frontal brain structure 
during developmental sensitive periods like adolescence 
[30]. Here, frontal brain regions are important for top-
down cognitive control, and the temporal dissociation of 
the development of frontal and subcortical brain regions 
[31] promotes higher risk-taking behavior and stronger 
sensation seeking. These behaviors increase the risk for 
substance abuse [32], attention-deficit/hyperactivity disor-
der [33], suicidal behaviors [17], and depressive disorders 
[34]. Moreover, the incidence rates of these disorders typi-
cally peak during adolescence [35].

To investigate the effects of prenatal androgen exposure 
on behavioral phenotypes and brain structure, research 
has widely used the second-to-fourth digit length ratio 
(2D:4D) as an easily accessible proxy for prenatal andro-
gen exposure [36]. Lower 2D:4D indicates higher prenatal 
androgenization. Males have lower 2D:4D than females 
[37], the fetal amniotic testosterone / estradiol ratio cor-
relates negatively with the children’s 2D:4D at the age of 
two years [38], and higher maternal plasma testosterone 
collected at amniocentesis associates with lower 2D:4D 
in the newborn infants [39]. Moreover, it is assumed that 
2D:4D is established during the first trimester and changes 
only little afterwards [40, 41] (but see also [42–45]). 

2D:4D does not significantly correlate with peripheral sex 
hormone levels in adulthood and should thus be independ-
ent from direct androgen effects [46]. Some evidence sug-
gests that right-hand 2D:4D (R2D:4D) might be a better 
marker for prenatal androgenization than left-hand 2D:4D 
(L2D:4D) [37] and that R2D:4D and L2D:4D are oppo-
sitely associated with handedness [47]. The validity of 
2D:4D as a marker of prenatal androgen effects is further 
underlined by experimental rodent studies [48, 49] (but 
see also [50]) and human data based on conditions with 
altered prenatal androgen exposure such as congenital 
adrenal hyperplasia [51], Klinefelter’s syndrome [52, 53], 
androgen insensitivity syndrome [54], and the twin tes-
tosterone transfer [55]. The 2D:4D therefore is thought to 
give specific insight into the prenatal sex steroid milieu.

It is also important to note that research has established 
sex-specific associations of 2D:4D with risk for, symptoms 
of, and severity of mental disorders [13]. For example, a 
recent meta-analysis supports lower 2D:4D in substance-
related and non-substance-related addictions with stronger 
effects in males than in females [14]. Supporting transla-
tional evidence established that in male mice the prenatal 
androgen receptor antagonism with flutamide decreases 
alcohol intake of the adult animals, whereas in female mice 
prenatal androgen treatment increases later alcohol intake. 
These prenatal androgen receptor modulations also cause 
differences in expression of genes relevant to addictive 
behaviors in the adult rodent brain [3]. Moreover, external-
izing symptoms [56], aggression [6], and suicide [57] have 
been related to lower 2D:4D in males, but not in females, 
and higher 2D:4D has been associated with risk for and 
symptom severity of depression in females (but not in males) 
[18, 19] and bulimia nervosa in females [20, 21].

In summary, there is growing evidence for a sex-specific 
impact of prenatal androgenization (assessed via 2D:4D) on 
human behavior and mental health. Thus, 2D:4D should also 
sex-specifically associate with brain function and structure. 
Previously, Kallai et al. [58] found that lower (i.e., prena-
tally androgenized) 2D:4D is related to smaller posterior 
and larger middle hippocampus volumes of the left side. 
However, the sample consisted of healthy adult females and 
frontal regions were not the targeted brain areas. We lack 
knowledge on how prenatal androgenization associates with 
frontal brain volumes, which are related to behavioral con-
trol in male and female adolescents.

Study aims

In this cross-sectional study, we tested whether the mean of 
right-hand and left-hand 2D:4D (M2D:4D) relates to brain 
volumes of frontal cortex regions in males and females aged 
14 or 16 years. Because of the previously demonstrated 
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sex-dependent effects, we conducted sex-separated analy-
ses in a first step. Then, we investigated whether R2D:4D is 
superior to L2D:4D in the statistical models and how 2D:4D 
and sex interact to influence the brain volumes. Problem-
atic alcohol use is one of the main previously reported risk 
factors related to 2D:4D. Thus, we were also interested in 
whether the observed relations between 2D:4D and frontal 
brain volumes might be a consequence of alcohol consump-
tion, and tested in sensitivity analyses whether alcohol use 
patterns affect the observed associations. Here, we did not 
expect and hence not analyze correlations between 2D:4D 
and alcohol use per se, as the participants in our sample were 
rather young and had low Alcohol Use Disorder Identifica-
tion Test (AUDIT) scores.

Methods

Sample

The participants were part of the IMAC-Mind subproject 2 
(for details see [59]) and recruited via advertising in regional 
schools and social networks as well as via the registration 
office of Mannheim, Germany. Inclusion criteria for par-
ticipation were fluency in speaking German, no psychologi-
cal or acute / chronic physical diseases, and no medication 
use. We excluded non-right-handed individuals because of 
evidence suggesting a relationship between handedness and 
2D:4D [47, 60]. For alcohol use no in- / exclusion criteria 
were applied. Overall, 75 participants aged 14 or 16 years 
were enrolled. We grouped the participants into females 
and males according to their biological sex. There was no 
transgender person in our sample.

The cross-sectional study was approved by the ethical 
review committee II of the Medical Faculty Mannheim 
Heidelberg University. Participants were contacted by let-
ter and informed about the study. After telephone screening 
for inclusion criteria, given detailed study information, and 
written informed consent of primary caregivers and adoles-
cents, participants were invited to the Central Institute of 
Mental Health (CIMH) Mannheim, where MRI and 2D:4D 
measurements were done as part of a larger test battery. 
Additionally, questionnaires, including the AUDIT [61], 
were done at home via the online platform SoSci Survey 
[62]. The measurements and questionnaires for the present 
project took about 45 min.

Second‑to‑fourth digit length ratio (2D:4D)

We scanned the participants’ right and left hands using an 
Epson Perfection V370 Photo scanner in gray level with 300 
DPI resolution. The participants were instructed to remove 
all jewelry from their hands, slightly spread the fingers, 

and have contact to the scanner with every finger segment. 
We used the GNU Image Manipulation Program (GIMP; 
www. gimp. org) to quantify the length of the second (2D) 
and fourths (4D) digits, i.e. distance from the middle of 
the basal crease to the tip of the fingers. Three independ-
ent raters (RBJ, BA, AS) measured each finger three times 
(nine times in total) and were uninformed about sex, age, and 
brain volumes. We defined M2D:4D as our primary predic-
tor. R2D:4D and L2D:4D were also tested as further predic-
tors. The inter-rater reliabilities (two-way random inter-rater 
correlation coefficient; absolute agreement) were very high: 
M2D:4D: n = 61, 0.969; R2D:4D: n = 61, 0.956; L2D:4D: 
n = 61, 0.963.

Structural MRI

MRI image acquisition and preprocessing

T1-weighted anatomical images were acquired on a 3-T 
Siemens PRISMA Scanner at the CIMH Mannheim using 
a 64 channel head coil and an MPRAGE (Magnetization-
Prepared Rapid-Gradient Echo) Sequence with 208 slices, 
TR = 1800 ms, FOV = 250 mm, sagittal orientation, slice 
thickness = 0.85  mm, Flip angle = 8 degrees, GRAPPA 
acceleration factor = 3, matrix = 256 × 256  mm and 
0.9 × 0.9 × 0.9 mm isometric voxels. Images were preproc-
essed using the Computational Anatomy Toolbox (CAT12; 
http:// www. neuro. uni- jena. de/ cat/) in the Statistical Paramet-
ric Mapping software (SPM12; https:// www. fil. ion. ucl. ac. uk/ 
spm/) on MATLAB (R2020a; www. mathw orks. com). Pre-
processing steps included tissue segmentation, spatial regis-
tration, bias-correction, and smoothing using a FWHM (Full 
Width at Half Maximum) 8 mm gaussian kernel. Modulated 
normalized images were used to extract grey matter volumes 
in the following ten regions of interest (ROI) in frontal and 
orbital control areas. These regions are involved in behav-
ioral regulation and mental health, and they are particularly 
relevant during adolescence [30, 31, 63, 64]: Medial frontal 
cortex (MFC), medial (MOrG) and anterior (AOrG) orbital 
gyrus, orbital part of the inferior frontal gyrus (IFGorb), and 
anterior cingulate cortex (ACC). ROIs were obtained using 
the neuromorphometrics atlas in CAT12.

Statistical analyses

Voxel‑based morphometry ROI analyses

Mean grey matter volumes in each of the ten ROIs for each 
participant were analyzed in R (https:// www.r- proje ct. org/) 
in the framework of multiple linear regression models for 
each ROI. Each model included the scaled values of M2D:4D 
as regressor of interest and age and total intercranial vol-
ume (TIV) as nuisance variables. Models were calculated 

http://www.gimp.org
http://www.neuro.uni-jena.de/cat/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
http://www.mathworks.com
https://www.r-project.org/
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separately for male and female adolescents, as M2D:4D dif-
fered significantly between the sexes and to provide evidence 
separately for males and females. To test how alcohol use 
affects the observed associations between 2D:4D and fron-
tal brain volumes, we included AUDIT scores as a factor and 
computed the models again. As it is still debated whether 
R2D:4D or L2D:4D is superior, we defined M2D:4D as our 
primary predictor and offer Supplementary Materials show-
ing model outcomes using R2D:4D and L2D:4D. One female 
participant had to be excluded from these additional analyses 
due to missing values and two more, because they presented 
as significant mean-shift outliers based on their studentized 
residuals in the linear model (Bonferroni-adjusted p < 0.05). 
We also performed additional post hoc linear regression mod-
els in ROIs including sex as a factor, where male and female 
adolescents showed contrasting directions of association to 
test whether there was a significant dissociation between males 
and females in these ROIs relative to their individual M2D:4D 
ratio. That is, we tested whether the regression slopes differed 
significantly between male and female adolescents in a given 
ROI. We corrected for multiple comparisons across the num-
ber of tested ROIs using the false discovery rate (FDR, [65]). 
Assumptions for all analyses were tested and met.

Results

Sample characteristics and validation hypotheses

Of 75 recruited participants (48.0% female, mean age 
15.11 ± 1.00 years), 61 complete datasets (54.1% female, 
mean age 15.15 ± 1.00 years) were accessible for the pre-
sent project. Male adolescents differed from female ado-
lescents with significantly lower M2D:4D and R2D:4D, 
but not L2D:4D (Table 1). Unexpectedly, we also found 
lower M2D:4D, R2D:4D, and L2D:4D in the participants 
aged 16 years compared to those aged 14 years (M (SD) 
[16 years] vs. M (SD) [14 years], t (df), p; M2D:4D, 0.960 
(0.020) vs. 0.977 (0.024), – 3.072 (59), 0.003; R2D:4D, 
0.960 (0.024) vs. 0.974 (0.026), –  2.173 (59), 0.034; 
L2D:4D, 0.959 (0.023) vs. 0.980 (0.026), – 3.317 (59), 
0.002). Moreover, female adolescents had generally lower 
volumes in all ROIs than male adolescents, all ts > 2.14, all 
ps < 0.04, with an exception in right IFGorb, where the sexes 
showed comparable grey matter volumes,  meanmales = 1.55, 
 meanfemales = 1.48, t(55) = 1.12, p = 0.27.

Sex‑dependent association between 2D:4D 
and frontal brain volumes

Male adolescents

After correction for multiple hypothesis testing, higher 
M2D:4D was significantly associated with larger grey matter 

volumes in right ACC (r-ACC; Fig. 1A). The volumes in 
left and right mOrG were marginally related to M2D:4D. 
No further significant associations regarding the other ROIs 
emerged (Table 2; for covariate contribution to model fits 
see Supplementary Material 1). The association between 
M2D:4D and r-ACC volume remained significant after 
adjustment for AUDIT scores (F(4,23) = 3.19, R2

adj = 0.25, 
p < 0.05, β = 0.44, p < 0.05; see Supplementary Table S1). 
In separate analyses of R2D:4D and L2D:4D, the observed 
associations were also present for R2D:4D, but not for 
L2D:4D (see Supplementary Tables S2 and S3). 

Female adolescents

After correction for multiple hypothesis testing, higher 
M2D:4D was significantly related to smaller grey matter vol-
umes in left IFGorb (l-IFGorb; Fig. 1B). No other ROIs were 
significantly related to M2D:4D (Table 3; for covariate con-
tribution to model fits see Supplementary Material 2). The 
association between M2D:4D and l-IFGorb remained sig-
nificant after adjustment for AUDIT scores (F(4,25) = 21.39, 
R2

adj = 0.74, p < 0.001, β =  −0.50, p < 0.01, see Supple-
mentary Table S4) and was present for both R2D:4D and 
L2D:4D (see Supplementary Tables S5 and S6).

Sex‑divergent association between 2D:4D 
and frontal brain volumes

We computed post hoc linear regression models to com-
pare the association between M2D:4D and gray mat-
ter volumes in the relevant ROIs for male and female 
adolescents. There were significant differences between 
males and females in the relationship between M2D:4D 
and r-ACC (F(1,55) = 5.37, p < 0.05, males B = 16.46 vs. 
females B = – 4.14, estimate = 20.6, SE = 8.89, t(55) = 2.32, 
p < 0.05; Fig. 2). This effect persisted after adjustment for 
AUDIT scores (F(1,53) = 4.08, p < 0.05, estimate = 18.0, 
SE = 8.92, t(53) = 2.02, p < 0.05) and was present in a sepa-
rate analysis for R2D:4D, but not for L2D:4D (R2D:4D: 
F(1,55) = 12.17, p < 0.001, estimate = 27.00, SE = 7.74, 
t(55) = 3.49, p < 0.001; L2D:4D: F(1,55) = 0.85, p = 0.36, 
estimate = 7.76, SE = 8.40, t(55) = 0.92, p = 0.36). The sex 
difference in the association between M2D:4D and IFGorb 
volumes between male adolescents, B = -2.51, and female 
adolescents, B = – 17.72, did not reach statistical significance 
(F(1,55) = 2.94, p = 0.09).

Discussion

The prenatal exposure to sex hormones influences the 
development of the brain with effects that last into adult-
hood. However, there is a lack of knowledge on how 
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prenatal androgenization shapes brain volumes in devel-
opmental sensitive periods. Especially during adolescence, 
frontal brain regions are important within the context of 
risky behavior and mental illness. The field is also subject 
to important sex differences. Hence, we aimed to provide 
novel evidence for a sex-specific role of prenatal andro-
genization in frontal brain control regions in an adolescent 
sample.

In sex-separated analyses, we found that higher prena-
tal androgen load (indicated by lower 2D:4D) is related to 
smaller r-ACC in male adolescents and larger l-IFGorb in 
female adolescents. In post hoc analysis, the ACC associa-
tions remained significant for R2D:4D, but not for L2D:4D. 
This finding is consistent with previous results suggesting 
that 2D:4D on the right hand might be superior than 2D:4D 
on the left hand to indicate prenatal androgen exposure [37].

The functioning of the ACC is associated with impulse 
control, and behavioral inhibition has been associated with 
right-lateralized prefrontal networks [64]. Thus, the observed 
association between lower 2D:4D and smaller r-ACC in male 
adolescents per se and vs. female adolescents might indicate 
that prenatal hyperandrogenization reduces the capacity of 
behavioral control in males, but not in females. However, it 
is important to note that the investigated sample consisted 
of healthy adolescents without known deficits in behavioral 
control. We also did not directly assess behavioral control in 
this study, which should be a focus of future research. The 
ACC and related behavioral control are relevant for addic-
tive behaviors, attention-deficit/hyperactivity disorder, and 
suicide. Adolescents with less top-down regulation capacity 
may be more vulnerable to develop substance use disorders 
[31]. In young alcohol-naive adolescents, those with a high 

Table 1  Sample characteristics

AUDIT Alcohol Use Disorder Identification Test; 2D:4D, second-to-fourth digit length ratio; R2D:4D, right-hand 2D:4D; L2D:4D, left-hand 
2D:4D; M2D:4D, mean of R2D:4D and L2D:4D. * p < 0.05
1 Corresponds to “Realschule“ in German educational system
2 Corresponds to “Gesamtschule“ in German educational system
3 Corresponds to “Gymnasium“ in German educational system
4 Corresponds to “Hauptschulabschluss“ in German educational system
5 Corresponds to “Abitur/Fachabitur“ in German educational system

Male adolescents Female adolescents Sex differences

N (%) M (SD) N (%) M (SD) t or χ2 (df)

Age 14 years/16 years 12 (42.9)/16 (57.1) 14 (42.4)/19 (57.6) 0.001 (1)
AUDIT score 3.25 (4.6) 3.69 (4.5) – 0.371 (58)
2D:4D M2D:4D 0.960 (0.023) 0.973 (0.022) – 2.267 (59)*

R2D:4D 0.958 (0.023) 0.972 (0.026) – 2.140 (59)*
L2D:4D 0.961 (0.029) 0.974 (0.022) – 1.914 (59)

Cigarette smoking (at least 
once during the previous 
month)

14 years/16 years 0/5 0/3 1.022 (1)

Current activity/job Student/other 27/1 32/0 1.162 (1)
School type Middle  school1 3 (10.7) 2 (6.1) 4.138 (3)

Comprehensive  school2 1 (3.6) 4 (12.1)
Academic high  school3 21 (75.0) 26 (78.8)
Other 2 (7.1) 0

Highest graduation of the 
father

Certificate of secondary 
 education4

3 (10.7) 5 (15.2) 4.427 (4)

Middle  School1 5 (17.9) 1 (3.0)
Qualification for access to 

higher  education5
13 (46.4) 14 (42.4)

University degree 6 (21.4) 11 (33.3)
Other 1 (3.6) 1 (3.0)

Highest graduation of the 
mother

Certificate of secondary 
 education4

2 (7.1) 1 (3.0) 2.913 (3)

Middle  School1 9 (32.1) 6 (18.2)
Qualification for access to 

higher  education5
13 (46.4) 16 (48.5)

University degree 4 (14.3) 9 (27.3)
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Fig. 1  The figures show associations between the mean of right-hand 
and left-hand second-to-fourth digit length ratio (M2D:4D) and grey 
matter volumes (GMV) of the right anterior cingulate cortex (r-ACC) 

in male adolescents (A) and the orbital part of the left inferior fron-
tal gyrus (l-IFGorb) in female adolescents (B). *p < 0.05. 95% confi-
dence intervals

Table 2  Results from multiple 
regression models of M2D:4D 
and male adolescents’ frontal 
brain region volumes, including 
age and total intracranial 
volume as confounding 
variables

Degrees of freedom in parentheses. *p < 0.05; **p < 0.01, t p = 0.051, FDR corrected; M2D:4D, mean of 
right-hand and left-hand second-to-fourth digit length ratio; L left; R right; FDR false discovery rate

β Std. Error t p F (3,24) Adjusted R2

L Medial frontal cortex 0.00 0.16 0.03 0.98 7.28** 0.41
L Medial orbital gyrus 0.21 0.12 1.84 0.08 22.44** 0.70
L Anterior orbital gyrus 0.08 0.15 0.53 0.60 9.31** 0.48
L Inferior frontal gyrus, orbital part – 0.01 0.21 – 0.06 0.95 1.25 0.03
L Anterior cingulate cortex 0.23 0.15 1.47 0.15 8.94** 0.47
R Medial frontal cortex – 0.18 0.15 – 1.21 0.24 9.65** 0.49
R Medial orbital gyrus 0.26 0.13 2.04 0.05t 16.53** 0.63
R Anterior orbital gyrus 0.24 0.17 1.39 0.18 5.78** 0.35
R Inferior frontal gyrus, orbital part 0.08 0.17 0.53 0.59 6.72** 0.39
R Anterior cingulate cortex 0.45 0.18 2.49 0.02 4.30* 0.27

Table 3  Results from multiple 
regression models of M2D:4D 
and female adolescents’ frontal 
brain region volumes, including 
age and total intracranial 
volume as confounding 
variables

Degrees of freedom in parentheses. *p < 0.05; **p < 0.01, FDR corrected; M2D:4D, mean of right-hand 
and left-hand second-to-fourth digit length ratio; L left; R right; FDR false discovery rate

β Std. Error t p F (3,29) Adjusted R2

L Medial frontal cortex – 0.19 0.15 – 1.26 0.22 11.30** 0.49
L Medial orbital gyrus – 0.08 0.14 – 0.67 0.51 21.20** 0.65
L Anterior orbital gyrus 0.01 0.18 0.47 0.64 4.78* 0.26
L Inferior frontal gyrus, orbital part – 0.38 0.14 – 2.75 0.01 13.97** 0.55
L Anterior cingulate cortex 0.06 0.13 0.52 0.61 17.01** 0.60
R Medial frontal cortex – 0.02 0.15 0.18 0.85 12.24** 0.51
R Medial orbital gyrus – 0.00 0.13 0.06 0.96 16.79** 0.60
R Anterior orbital gyrus 0.18 0.14 1.28 0.21 13.19** 0.53
R Inferior frontal gyrus, orbital part 0.00 0.16 0.06 0.95 9.58** 0.45
R Anterior cingulate cortex – 0.09 0.16 – 0.60 0.55 8.51** 0.41



1249European Archives of Psychiatry and Clinical Neuroscience (2023) 273:1243–1254 

1 3

risk for alcohol use disorder due to a positive family history 
show less inhibitory frontal activation than those with a neg-
ative family history [66]. Mashhoon et al. [67] found lower 
cortical thickness in the right middle ACC of alcohol binge 
drinkers vs. light drinkers. Moreover, the ACC is involved 
in processing of negative emotions [68], and coping with 
depressive symptoms is a frequent goal for alcohol use in 
individuals with alcohol use disorder [69]. Reduced volumes 
of the ACC are also involved in deficits of impulse control 
and cognition of patients with attention-deficit/hyperactiv-
ity disorder [70]. Furthermore, lower 2D:4D (with the here 
identified link to frontal brain volumes) has been related to 
addictions [14, 45, 71, 72], attention-deficit/hyperactivity 
disorder [13], overactive [8] and externalizing symptoms 
[56], aggression [4–6], and suicide [17, 57, 73] in males, but 
not in females. Altogether, these different pieces of evidence 
might indicate that in males prenatal androgenization organ-
izes frontal brain control regions with lasting reduced behav-
ioral control capacity. Consequently, this might increase the 
risk to develop mental illnesses, which are more prevalent in 
males than females particularly regarding addictive disorders 
(for a review highlighting the complexity of sex differences 
in substance use disorder see [74]) and attention-deficit/
hyperactivity disorder. However, this model certainly needs 
validation in future studies. In particular, evidence on under-
lying causality from for example animal models and experi-
mental modulations is needed. It will also be important to 
investigate whether the here observed associations between 
2D:4D and frontal brain volumes are relevant to mental 
health in later life. Moreover, 2D:4D is related to sociabil-
ity [7]. Hence, future studies should consider interactions 
with social and sociocultural aspects. It will be interesting to 

determine how prenatal androgenization interacts with other 
biopsychosocial factors (e.g., peer group pressure or self-
efficacy expectancy) to associate with behavioral outcomes. 
In addition, future research should investigate mechanisms 
that transfer the prenatal influences into adolescence. Epige-
netics might be of special interest, as its patterns have been 
associated with sex hormone activities [75, 76].

Previous research identified alcohol use and misuse as 
one of the main risk behaviors in relation to 2D:4D [14, 
16] and even light-to-moderate alcohol consumption associ-
ates negatively with brain volume [77]. Thus, we analyzed 
whether AUDIT scores affect the here observed associations 
between 2D:4D and frontal brain structure. The findings 
remained significant after adjusting the statistical models 
for the AUDIT scores. Thus, it is unlikely that the observed 
smaller r-ACC volumes in male adolescents with higher 
prenatal androgenization is a consequence of alcohol use, 
but rather might represent a risk factor. The low AUDIT 
scores in our cohort of underage participants show that most 
participants did not use alcohol in a hazardous or harmful 
manner [78], which further supports this assumption.

This study also established in female adolescents an asso-
ciation between higher 2D:4D (indicative of lower prenatal 
androgenization) and smaller l-IFGorb volumes, a frontal 
brain region involved in emotion processing [79]. Smaller 
IFGorb volumes have been found in predominantly female 
samples of depression [80, 81] and bulimia nervosa [82], 
and higher 2D:4D has been associated with a higher risk 
and more severe symptoms of depression [18, 19] (but see 
also [83]) and bulimia [20, 21] in females. Together with the 
results observed here, this might indicate that lower prenatal 
androgen load entails lower l-IFGorb volumes in females 

Fig. 2  The figure shows sex-
separated associations between 
the mean of right-hand and 
left-hand second-to-fourth digit 
length ratio (M2D:4D) and 
grey matter volumes (GMV) 
of the right anterior cingulate 
cortex (r-ACC) (F(1,55) = 5.37, 
p < 0.05, male adolescents 
B = 16.46 vs. female adolescents 
B = – 4.14, estimate = 20.6, 
SE = 8.89, t(55) = 2.32, 
p < 0.05). 95% confidence 
intervals
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with an increased risk for later depressive and eating disor-
ders. However, this assumption needs again further valida-
tion in future studies.

The results may have important preventive implications. 
In combination with additional markers, 2D:4D might evolve 
as an illness predictor (e.g., the difference between alcohol-
dependent patients and controls is of moderate effect size 
[14]) and thus help to identify individuals who are in particu-
lar need for targeted prevention programs. Moreover, human 
and animal research demonstrated that maternal smoking 
behavior, alcohol use, and higher stress during pregnancy are 
related to lower 2D:4D in the offspring [84–86]. Also, early 
life stress appears to affect neurochemistry within frontal 
brain areas in a sex-dependent manner [87]. A prospective, 
controlled, and investigator-blinded study is currently being 
conducted to test whether the reductions of cigarette smok-
ing, consumption of alcohol, and stress in pregnant women 
influence 2D:4D in the offspring [88]. Based on the results 
of our work here, it will be interesting to test whether the 
aforementioned behavioral intervention during pregnancy 
is also able to modulate volumes of frontal brain control 
regions in adolescents with preventive effects. Again, it will 
be important to study how prenatal androgenization interacts 
with environmental factors to influence brain structure and 
function as well as behavior and mental illnesses.

The focus on adolescence as an important devel-
opmental period of the frontal brain control areas, the 
sex-balanced cohort, and the sex-separated analytical 
approach are important strengths of our study. Moreo-
ver, all included participants were right-handed, which 
is important as some data indicate associations between 
2D:4D and hand preference [47, 60]. The limitations of 
this study include criticism regarding the validity and 
reliability of 2D:4D [89–91]. Most studies assume that 
2D:4D is a marker for the prenatal androgen milieu [90]. 
However, there is evidence suggesting that estrogens 
are also involved in the development of 2D:4D. 2D:4D 
increased after prenatal estradiol treatment in male mice, 
and it decreased after prenatal estrogen receptor antago-
nism (fulvestrant) in female mice [49]. Here, we were able 
to replicate the expected sex differences [37] with lower 
2D:4D in male than in female adolescents. Future research 
should also consider ethnicity/population [41, 92], sexual 
orientation [93], gender identity [94], and hand prefer-
ence [47, 60] as potential confounders in 2D:4D research. 
As expected from the literature [37], we further observed 
stronger effects on the right hand than on the left hand. In 
line with previous work using the same method [94–97], 
the inter-rater agreement for 2D:4D can be interpreted as 
excellent with inter-rater correlation coefficients greater 
than 0.950. The here analyzed 2D:4D values are based 
on hand scans, a method which is more time consum-
ing, but also more precise than using a caliper [98]. We 

found lower 2D:4D in participants aged 16 years than in 
those aged 14 years, which was rather unexpected. Previ-
ous work established increases in 2D:4D between 20 and 
40 months of age (based on hand scans) [44] and from age 
1 to age 17 (radiographically determined) [42]. However, 
serial 2D:4D analysis in the latter study found high reli-
ability for 2D:4D as a trait marker [42]. In rodent experi-
ments, the increase of prenatal testosterone entailed a 
delayed onset of puberty [99]. Thus, future studies should 
investigate whether pubertal status influences the observed 
lower 2D:4D in adolescents aged 16 years than in those 
aged 14 years. Moreover, we dichotomized the sample into 
females and males according to the biological sex. Future 
studies are requested to consider here neglected aspects 
of the gender concept such as self-defined gender identity 
and gender expression concerning for example appear-
ance and behavior associated with social norms [100]. 
The most important limitation is that this study used a 
cross-sectional design, which does not allow for draw-
ing causal conclusions. Our results suggest that AUDIT 
scores do not significantly influence the sex-specific asso-
ciations between 2D:4D and frontal brain volumes. How-
ever, future studies should also investigate the effects of 
other drugs such as cannabis. It is very tempting to infer 
behavioral consequences from the observed associations 
between 2D:4D and brain structure. However, brain struc-
ture cannot simply be transferred into brain function. To 
better understand the direct effects of prenatal androgeni-
zation on ongoing brain development and behavioral con-
sequences, a longitudinal design and animal experiments 
will be needed.

Conclusion

As far as we know, this is the first study to identify that 
smaller 2D:4D (indicative of higher prenatal androgen 
load) associates with lower r-ACC volumes in male adoles-
cents and larger l-IFGorb volumes in female adolescents. 
The results may indicate that the prenatal androgen load 
affects the development of the frontal brain in a sex- and 
region-specific and also sex-diverging manner. These brain 
areas are known to influence behavioral control and they 
are involved in risk-taking, emotionality, substance use, and 
depression.
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