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Abstract

This paper investigates how algebraic structures can encode epistemic limitations, with a
focus on object properties and measurement. Drawing from philosophical concepts such as
underdetermination, we argue that the weakening of algebraic laws can reflect foundational
ambiguities in empirical access. Our approach supplies instruments that are necessary and
sufficient towards practical falsifiability. Besides introducing this new concept, we consider,
exemplarily and as a starting point, the following two fundamental algebraic laws in more
detail: the associative law and the commutative law. We explore and analyze weakened
forms of these laws. As a mathematical feature, we demonstrate that the existence of a
weak neutral element leads to the emergence of several transversal algebraic laws. Most
laws are individually weaker than the combination of associativity and commutativity, but
many pairs of two laws are equivalent to this combination. We also show that associativity
and commutativity can be combined to a simple, single law, which we call cyclicity. We
illustrate our approach with many tables and practical examples.

Keywords: magma; hemi-associativity; hemi-commutativity; epistemic limitation;
measurement

1. Introduction
Scientific practice is shaped not only by experimental techniques and data but also

by the profound philosophical questions concerning what can be known and how that
knowledge can be interpreted. The aim of this paper is to investigate how algebraic
structures, especially in a weakened form, can serve as a formal counterpart to epistemic
constraints encountered in the empirical sciences.

1.1. Mathematical Framework

Let x and y be two objects that can be combined via a dyadic operand, denoted by `.
There are two ways to apply this operand to x and y, namely

x ` y and y ` x.

The objects x and y are said to commute if x ` y “ y ` x.
We now shift from a mathematical to a more physical perspective. From this stand-

point, the expressions x ` y and y ` x are accessible only through measurements. Let M
denote such a (possibly multivariate) measurement. If x and y commute, then we have that

Mpx ` yq “ Mpy ` xq. (1)
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The converse holds only if the measurement function M is sufficiently expressive. Notable
contributions in the philosophy of science, such as Willard Van Orman Quine’s notion of
underdetermination [1] and the Copenhagen interpretation of quantum mechanics, suggest
that measurement functions are generally not expressive enough to establish the identity.
So, even if the best possible M is chosen, algebra may add auxiliary hypotheses [2], namely,
that x ` y is identical to y ` x, although we only observe this commutativity by all of the
measurements. In such cases, the algebraic representation becomes unfalsifiable from a
captious perspective and, according to Karl Popper [3], should be replaced by a testable
formulation like Equation (1). Equation (1) itself is algebraically too weak, as a law should
persist, at least to some extend, in more complicated calculations. Hence, we propose that

Mpa ` px ` yq ` bq “ Mpa ` py ` xq ` bq (2)

shall be satisfied for all relevant objects a and b. The objects a and b have a weak inter-
pretation as an “environment”. Clearly, commuting objects satisfy (2). Since M can be
chosen arbitrarily, a broad spectrum of philosophical interpretations and specifications
are possible.

In our approach, the mathematical implications heavily rely on the following addi-
tional assumption: the existence of a weak form of a neutral element. Since the theoretical
presence or absence of such an element is often non-critical, this assumption is considered
as reasonable for the mathematical statements. Some of the examples below demonstrate
that a weak neutral element may not exist.

1.2. Overview

Section 2 illustrates the philosophical aspects of our algebraic approach. Section 3 intro-
duces the new concept with various illustrative practical examples and tables that exemplify
the theoretical aspects. Several remarks and propositions depict mathematical examples
and properties. Theorem 4 in Section 4 demonstrates that under weakened assumptions,
associativity and commutativity can be expressed in many equivalent formulations. Fur-
thermore, we show that certain algebraic identities hold under weaker assumptions than
hitherto used. For instance, Theorem 1 shows that in case of hemi-associativity, parentheses
can always be removed. Proofs are deferred to Sections 5 and 6. Section 7 connects our
findings to the relevant literature in algebra, including a brief presentation of the origins of
the technical terms.

2. Philosophical Aspects
2.1. Underdetermination

The underdetermination thesis states that, for any finite set of empirical data, there may
exist multiple, logically distinct theories that are equally compatible with it. In addition,
objects that are different, but not really distinguishable, give rise to quotient structures in
mathematics. Our approach can be considered as an alternative if quotient spaces are not
productive. Particularly, our function M allows for a more flexible modeling of the coarse
granularity of empirical observations.

2.2. Falsifiability

A central concern in philosophy of science is the criterion of falsifiability, most fa-
mously articulated by Karl Popper. A theory is empirically meaningful only if it makes
predictions that can, in principle, be refuted by observation. Algebraically, falsifiability
requires a theory that differentiates precisely between possible outcomes (and not more).
In particular, a structure that in a hidden form introduces distinctions unsupported by
empirical measurements might be inadequate.
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2.3. Theses

We propose that the following algebraic features are necessary for empirical falsifiabil-
ity: (i) operations shall respect empirically accessible domains, (ii) operations shall produce
distinguishable results for distinguishable outputs; and (iii) failure of global identities that
are not supported by the empirical context. Since, in our framework, distinguishability is
allowed to be context dependent, we postulate this also from a philosophical point of view.

3. Notions
In the sequel we always understand x ` y ` z as px ` yq ` z. We use the prefix “hemi”

to indicate that we use a kind of weak form of a certain property.
For an overview and a better understanding, Table 1 gives a summary of the symbols

that are used hereafter and provides some interpretations.

Table 1. Important symbols and their meaning.

Symbol Mathematical Mean-
ing

Interpretation and Examples

` any dual operand “adding” also in the popular or broad sense, e.g.:
• adding a chemical substance to another
• union of two sets

G any ensemble of objects the ensemble of objects of the same type we deal
with:
• chemical substances
• harvest on different plantations

Gs a subset of G that con-
tains the hemi-right-
neutral elements

see Ge; the distinction between Gs and Ge is purely
mathematical

Ge subset of Gs: set of
hemi-neutral elements

typical hemi-neutral elements are “nothing” or
“zero”, but could be anything with “no effect” or
“no value” (in a very broad sense):
• in chemistry: sometimes water, air, waiting a

period of time
• a poor harvest

x, y, z elements of G important objects, e.g.,
• in chemistry: the substances that react primarily

a, b elements of G objects that model the “environment”, i.e., that can
be added to the “product”, e.g.,
• in chemistry: solvents, precipitating agents

ε element of Ge hemi-neutral element that is necessary to perform a
proof or to give a statement

δ element of Ge sole purpose is to increase the number of objects in
a mathematical term to meet the correct number of
elements to apply an equation or a definition

M a function from G into
any arbitrary image set

measurement or the relevant properties of an object

x () y Mpxq “ Mpyq objects do not differ in important properties or in
their measured values

Definition 1. Let G and S be non-empty sets. Let ` : G ˆ G Ñ G be a dyadic operand on G and
M : G Ñ S a map. Denote Mpxq “ Mpyq by x () y and let

Gs “ tε P G : x ` ε () x @x P Gu. (3)
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If Gs is not empty and closed with respect to `, i.e., ε, ε̃ P Gs implies ε ` ε̃ P Gs, then the tuple
pG, `, Mq is called a hemi-right-unital magma.

Definition 2. Let pG, `, Mq be a hemi-right-unital magma. An element ε P Gs is called a hemi-
neutral element if

ε ` x () x @x P G. (4)

We denote the set of all hemi-neutral elements by Ge .

In contrast to Gs, we do not assume that Ge is closed with respect to `.

Example 1 (Hemi-neutral elements: pearl oysters). A practical example that might show the
appearance of hemi-neutral elements are (unopened) pearl oysters. The value M of a set A of pearl
oysters is given by the number of pearls inside. Let ` be the union of two sets. Then, the empty
set H is the only truly neutral element for unions. Any set ε of empty oysters is a hemi-neutral
element with respect to M, i.e. ε P Ge. In case M measures the amount of work needed to open the
oysters, then Ge “ tHu.

Remark 1. In probability theory and mathematical statistics, the terms “deterministic” and “con-
stant almost surely” are usually considered undistinguishable neutral elements, since the theory
focuses on measurable functions f applied to a random variable X, i.e. f pXpωqq, where ω P Ω
and Ω denotes a probability space, i.e. Xpωq as a realization of X. Quantum computing deals
with functionals f of a random variable as it deals with rotations of unit vectors. Applying a
functional f to X is mathematically p f pXqqpωq, hence an almost surely constant random variable
can, in principle, be turned into a random variable with any arbitrary property. The distinction
between f pXpωqq and p f pXqqpωq (and the non-acceptance of the latter) might be considered, from a
simplistic mathematical point of view, as a key difference between the EPR approach [4] and modern
quantum mechanics, cf. quantum contextuality. Ref. [5] mentions that a refined approach to the set
Ge may lead to an abstract unified treatment of both situations.

Remark 2. Let two (real-valued) random variables, X and Y, have the same distribution. In
many cases, we may consider X and Y as indistinguishable, i.e., X () Y. However, they can be
distinguished, if they are both related to a third random variable Z and the correlation is different.
Then, X ` Z ({) Y ` Z, in general. This shows that the concept “()” includes a limited range of
validity as its definition suggests. This is an advantage of our approach, since otherwise the limited
validity is just not that explicit.

Remark 3. Of great importance in mathematics are magmas that consist of transformations, where
` models the concatenation. In the sprit of [6], Ref. [5] pleads for replacing the general definition of
a statistical model by a transformation magma, whose operands obey some kind of hemi-laws.

The smallest hemi-right-unital magma has one element and is trivial. Among the
magmas with two elements, only two magmas are non-trivial—the boolean semi-group of
the logical or-operator, and the addition within the binary Galois field, see Figure 1. Both
operands are associative and commutative. Hence, any unitary magma needs at least three
elements to show subtle properties. Subsequently, all magmas have minimal size with the
respective property, unless stated otherwise.
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` 0 1
0 0 1
1 1 0

` 0 1
0 0 1
1 1 1

Figure 1. The only 2 non-trivial Cayley tables for a two-element unitary magma pG, `, Mq. Here, the
operand ` is always associative and commutative. Weakening the algebraic notions in Section 3 does
not increase the number of available models in case of two elements.

3.1. Hemi-Associativity and Hemi-Commutativity

Definition 3. Let pG, `, Mq be a hemi-right-unital magma. The operand ` is called hemi-
associative, if

a ` ppx ` yq ` zq ` b () a ` px ` py ` zqq ` b, @a, b, x, y, z P G, (5)

and hemi-commutative, if

a ` py ` xq ` b () a ` px ` yq ` b @a, b, x, y P G. (6)

It is easily checked that genuine associativity implies Equation (5) and genuine com-
mutativity implies Equation (6). The reverse is not true, as Figure 2 shows.

` 0 1 2
0 0 0 2
1 0 0 2
2 2 2 1

` 0 1 2
0 0 0 2
1 1 1 2
2 2 2 2

` 0 1 2
0 0 0 2
1 1 0 2
2 2 2 1

Figure 2. Cayley tables of a hemi-associative and hemi-commutative magma pG, `, Mq with
Mp0q “ Mp1q “ 0 (black), Mp2q “ 1 (blue). In all three charts, some genuine property is absent: on

the left the associativity, in the middle the commutativity, and on the right both. While the failure of
the commutativity law in the two charts to the right is obvious from the asymmetry of the tables, the
failure of the associativity can be seen from p0 ` 2q ` 2 “ 1 ‰ 0 “ 0 ` p2 ` 2q.

Example 2 (Hemi-associativity and hemi-commutativity: pickles). In a production line for
pickles, the glasses are filled automatically with cucumbers, where half-filled glasses ought to be
removed and reworked manually. A toy model may include the merge of two production lines
(denoted by φ below), the sequential production (denoted by ˝), as well as the partial withdrawal of
some of the half-filled glasses (denoted by ψ). The measure of interest are the automatically produced
glasses of pickles. Mathematically, we might define the following model. Let G be the set of finite
sequences of the symbols l (filled glass) and ♢ (half-filled glass) including the empty set H (no
glass). For elements g “ g1g2 . . . gn, h “ h1h2 . . . hm P G, we define

Mpgq “ |ti P t1, . . . , nu | gi “ lu|,

g ˝ h “ g1 . . . gnh1 . . . hm,

φpg, hq “

$

&

%

g1h1g2h2 . . . gmhmgm`1 . . . gn, n ą m

g1h1g2h2 . . . gnhnhn`1 . . . hm, n ď m
.

We define

ψpgq “ ⃝n{2
i“1

$

&

%

♢, g2i´1g2i “ ♢♢

g2i´1g2i, else
, n even,

ψpgq “ ψpg1 . . . gn´1q ˝ gn, n odd,

ψpHq “ H.
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Finally, we establish g ` h “ ψpφpg, hqq. For instance,

l♢♢ ` ♢l♢l “ ψpl♢♢l♢♢lq “ l♢♢l♢l.

One can see that Ge “ t♢i | i P N0u, i.e., similar to Example 1, we have infinitely many hemi-
neutral elements, while only one genuine neutral element exists. Note that the operand ` is both
hemi-associative and hemi-commutative but neither associative nor commutative.

Example 3 (Associativity without commutativity: rotation). Non-commutative operations,
such as matrix multiplication, are frequent in mathematics and physics. Heisenberg’s indeterminacy
principle is mathematically a lower bound for the absolute value of a commutator, which is, by
definition, zero, if and only if the operation is commutative.

Example 4 (Hemi-commutativity without hemi-associativity: water treatment). Seventy
years ago, the disinfection treatment of water was carried out with chlorine following ozone [7], see
also [8]. Although many countries avoid chlorine nowadays, we consider here a model that consists
of slightly contaminated water, water enriched with ozone, and water enriched with chlorine. The
latter two will eventually reach drinking quality, as ozone and chlorine slowly dissipate. Since both
ozone and chlorine are strong oxidants, they can disinfect contaminated water. So in this theoretical
example, we assume that mixing the contaminated water with one of the dissolutions, we obtain
drinkable water. Here, and in contrast to Example 8 below, the mixing is insensitive to commutation.
As advised in the 1950s, we may apply them consecutively. However, first mixing the dissolutions
together yields the following two reactions,

OCl´ ` O3 Ñ Cl´ ` 2O2

2OCl´ ` 2O3 Ñ 2ClO´
3 ` O2

where the hypochlorite OCl´ stems from

Cl2 ` H2O Ñ OCl´ ` 2H` ` Cl´.

Three quarters of the hypochlorite are transformed into chloride Cl´ and one quarter into chlorate
ClO´

3 [9]. The hydrochloric acid turns the water slightly acid and the chlorate is a weak oxidant.
This mixture will not safely disinfect contaminated water. So mixing the three liquids is not
associative with respect to water quality. Figure 3 presents the corresponding mathematical model.

` 0 1 2
0 0 1 1
1 1 1 1
2 1 2 0

` 0 1 2
0 0 1 1
1 1 1 1
2 1 1 0

` w o c d
w w w w d
o w w w w
c w w w w
d d w w d

Figure 3. Cayley tables of a magma pG, `, Mq, for which x ` y () y ` x holds for all x, y P G. Neither
of the three tables shows an operator, for which px ` yq ` z () x ` py ` zq holds for all x, y, z P G.
E.g., pd ` oq ` c “ w ({) d “ d ` po ` cq. In the left chart, the operand ` is not hemi-commutative,
if Mp0q “ 0 (black) and Mp1q “ Mp2q “ 1 (blue), since 2 ` p1 ` 2q ` 0 “ 1 ({) 0 “ 2 ` p2 ` 1q ` 0.
The two other tables designate hemi-commutative operators. The central table shows a magma with
minimal numbers of elements having this property, where Mp0q “ 0 (black) and Mp1q “ Mp2q “ 1
(blue). The right table is motivated by the water treatment in the 1950s. The operand ` signifies
“add two liquids and wait”, where w denotes drinkable water (blue), o water with dissolved O3, c
water with dissolved Cl2, and d contaminated water (red), see Example 4; the color black signifies an
oxidizing liquid.
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Theorem 1. Let pG, `, Mq be a hemi-right-unital magma and Ge ‰ H and ` be hemi-associative.
Then, all parentheses in a mathematical term can be removed.

Theorem 2. Let pG, `, Mq be a hemi-right-unital magma and Ge ‰ H and ` be hemi-associative
and hemi-commutative. Then, in any algebraic expression, the terms can be permuted arbitrarily. To
be more precise, let n P N and choose σ P Sn, where Sn is the permutation group of n symbols. We
have, for any choice of x1, . . . , xn P G,

x1 ` x2 ` . . . ` xn () xσp1q ` xσp2q ` . . . ` xσpnq.

As a consequence, if the operand ` is hemi-commutative and hemi-associative, then
the operand obeys any other law given below, in particular hemi-right-cyclicity, hemi-left-
cyclicity, hemi-right-modularity, hemi-left-modularity, and wide-left-modularity.

Remark 4. Hemi-associativity and hemi-commutativity obviously imply that, for all x, y, z P G,

px ` yq ` z () x ` py ` zq,

x ` y () y ` x,

respectively, if Ge ‰ H. The reverse is not true, as Figure 4 shows. Furthermore, some implications
in Theorem 4 below are lost, if the hemi-laws are replaced by their weaker versions above, see
Remark 6 for details.

` 0 1 2 3
0 0 0 2 3
1 1 1 2 3
2 2 2 2 2
3 2 0 2 2

` 0 1 2
0 0 1 1
1 1 1 1
2 1 2 0

Figure 4. Cayley tables of a magma pG, `, Mq, for which a weaker law than hemi-associativity
and hemi-commutativity holds: px ` yq ` z () x ` py ` zq for all x, y, z P G and Mp0q “ Mp1q “ 0
(black), Mp2q “ Mp3q “ 1 (blue), on the left, and x ` y () y ` x for all x, y P G and Mp0q “ 0
(black), Mp1q “ Mp2q “ 1 (blue) on the right, cf. left chart in Figure 3. In both charts, hemi-
neutral elements exist, i.e., Equations (3) and (4) hold. No other law considered in this paper
(Equations (5)–(13)) holds. For instance, 0 ` pp3 ` 1q ` 3q ` 1 “ 0 ({) 2 “ 0 ` p3 ` p1 ` 3qq ` 1 on the
left and 2 ` p1 ` 2q ` 0 “ 1 ({) 0 “ 2 ` p2 ` 1q ` 0 on the right.

3.2. Hemi-Cyclicity

This subsection shows the surprising fact that the property of an operand to be both
hemi-associative and hemi-commutative can be integrated into a single property, which we
call hemi-cyclicity.

Definition 4. Let pG, `, Mq be a hemi-right-unital magma. The operand ` is called hemi-right-
cyclic if

a ` ppx ` yq ` zq ` b () a ` ppy ` zq ` xq ` b, @a, b, x, y, z P G. (7)

The operand ` is called hemi-left-cyclic, if

a ` px ` py ` zqq ` b () a ` py ` pz ` xqq ` b, @a, b, x, y, z P G.

Theorem 3. Let pG, `, Mq be a hemi-right-unital magma and Ge ‰ H. Then, the following three
assertions are equivalent:

• ` is hemi-associative and hemi-commutative;
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• ` is hemi-right-cyclic;
• ` is hemi-left-cyclic.

3.3. Hemi-Modularity

Definition 5. Let pG, `, Mq be a hemi-right-unital magma. The operand ` is called hemi-right-
modular, if

a ` ppx ` yq ` zq ` b () a ` ppz ` yq ` xq ` b, @a, b, x, y, z P G, (8)

hemi-left-modular, if

a ` px ` py ` zqq ` b () a ` pz ` py ` xqq ` b, @a, b, x, y, z P G, (9)

and wide-left-modular, if, for all a, b, c, x, y, z P G, we have

x ` y ` z ` b ` c () y ` px ` z ` b ` cq, (10)

a ` px ` yq ` z ` b () a ` x ` pz ` yq ` b. (11)

The name “wide-left-modular” refers to the following proposition.

Proposition 1. Let pG, `, Mq be a hemi-right-unital magma. Then, wide-left-modularity implies
hemi-left-modularity.

Example 5 (Hemi-right-modularity: work cycle). Hemi-right-modularity states that

a ` px ` y ` zq ` b () a ` pz ` y ` xq ` b @x, y, z P G.

The work cycle in business consists of the following three parts: initiation x, execution y, and closure
z. In administrative jobs, the exchange of initiation and closure might be frequently unsound. In
industrial processes, the productivity cycle may start with a warm-up part and end with a cool-down
stage, so that a worker may, in the closure stage, prepare tools for the next worker, and the latter
tidies up in this initiation part the products of the previous worker. Hemi-right-modularity states
that initiation and closure can be exchanged. Hemi-neutral elements are included, for instance, when
the whole industrial process is stopped for inspection. One can check that hemi-right-modularity
also applies for such elements.

Example 6 (Hemi-left-modularity: wedeling). An example, for which Equations (3) and (9)
hold, is a skier performing wedeln downhill. The main interest is to arrive at a certain point at the
foot of the mountain. If we assume that the skier changes direction instantaneously and that the skier
keeps the absolute value of the angle to the horizon constant, then any next-but-one leg of the zigzag
course can be exchanged, independently of the length of the legs, see Figure 5. We may consider all
paths that can be obtained by means of such exchanges as hemi-equivalent. Mathematically, we may
model this situation by hemi-left-modularity,

a ` px ` py ` zqq ` b () a ` pz ` py ` xqq ` b @a, b, x, y, z P G.

Here, a letter specifies the length of a leg that is skied in the current direction. The operand ` is
“change direction and follow the subsequent (relative) plan”. Obviously, Equation (3) holds, but
not (4). For sake of completeness of the mathematical definition, the starting direction must be fixed
(and often is in practice). In applications, hemi-equivalent paths are not equivalent in the narrow
sense, since the time duration heavily depends on the chosen hemi-equivalent version.
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Figure 5. Zigzag course of a skier. Assuming that the angle to the horizon is the same for all legs, Then,
the same endpoint is reached if a leg is exchanged with the next-but-one leg, independently of the
individual length of the leg. This situation can be modeled by hemi-left-modularity, see Example, 6,
The figure has been produced using AI.

Example 7 (Wide-left-modularity: time and energy). The term “time” entails many physical
difficulties; it is not observable, only its effects in space are. Time is not revertible, and an absolute
time does not exist either. Energy shares some of the properties with time, in particular, an absolute
energy does not exist. Instead, differences are considered. Mathematically, we are interested in
the minus sign, without necessarily being interested in the addition itself. So, the question is,
whether there is a mathematical description of the minus sign alone. Further, mathematical norms
are ubiquitous in calculating distances. The definition of the wide-left-modularity combines the
symmetry of the norm with the main properties of the minus sign. The potential capacity of the
concept of wide-left-modularity is addressed in [10].

Remark 5. Ref. [11] provides that left-modularity and right-modularity together do not imply asso-
ciativity or commutativity. The following construction conforms to Theorem 3.1 (and Example 1.2)
in [11], additionally including the function M. Let p ě 2 and G be the residue ring Z{pZ with the
canonic addition ` and multiplication. We define the operand ` on the magma G as

x ` y “ pax ` byq mod p

with a, b P N, such that
pa2 ´ bq “ pb2 ´ aq “ 0 mod p.

Then,

x ` py ` zq “ pax ` aby ` b2zq “ pb2x ` aby ` azq “ z ` py ` xq mod p,

px ` yq ` z “ pa2x ` aby ` bzq “ pbx ` aby ` a2zq “ pz ` yq ` x mod p,

so that ` is genuinely left- and right-modular by the ring properties of the residue class. Let 0 be the
hemi-neutral element, so that the following consistency conditions on M,

Mpx mod pq “ Mpax mod pq “ Mpbx mod pq, x P G,

are necessary and sufficient. Numerical experiments suggest that p “ 7 is the smallest possible
number in this set-up, so that pG, `, Mq is not hemi-commutative, cf. the left chart in Figure 6 for
an example. A nicer example displaying symmetry properties is obtained for p “ 9, cf. the right
chart in Figure 6, where Mp1q “ Mp4q “ Mp7q and Mp2q “ Mp5q “ Mp8q.
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` 0 1 2 3 4 5 6
0 0 4 1 5 2 6 3
1 2 6 3 0 4 1 5
2 4 1 5 2 6 3 0
3 6 3 0 4 1 5 2
4 1 5 2 6 3 0 4
5 3 0 4 1 5 2 6
6 5 2 6 3 0 4 1

` 0 1 2 3 4 5 6 7 8
0 0 7 5 3 1 8 6 4 2
1 4 2 0 7 5 3 1 8 6
2 8 6 4 2 0 7 5 3 1
3 3 1 8 6 4 2 0 7 5
4 7 5 3 1 8 6 4 2 0
5 2 0 7 5 3 1 8 6 4
6 6 4 2 0 7 5 3 1 8
7 1 8 6 4 2 0 7 5 3
8 5 3 1 8 6 4 2 0 7

Figure 6. Cayley tables of a magma pG, `, Mq according to the construction in Remark 5, which is
hemi-left-modular and hemi-right-modular. The colors stand for the necessarily same measurement
value, so that it can easily be verified that pG, `, Mq is hemi-right-unital and 0 fulfills Equation (4). The
parameters for the left table are p “ 7, a “ 2 and b “ 4, for which the operand is hemi-commutative
iff M is constant; the colors signify necessarily identical values of M: Mp0q (black); Mp1q “ Mp2q

(blue); Mp3q “ Mp5q “ Mp6q (red). The parameters for the right table are p “ 9, a “ 4 and b “ 7,
where the colors signify necessarily identical values of M: Mp0q (black); Mp1q “ Mp4q “ Mp6q (blue);
Mp2q “ Mp5q “ Mp8q (green); Mp3q (red); Mp6q (brown). Here, the operand is hemi-commutative iff
Mp0q “ Mp3q “ Mp6q; this chart is exhibited solely for its mathematical beauty—there is no claim
that it is minimal.

3.4. Hemi-Permutability

Definition 6. Let pG, `, Mq be a hemi-right-unital magma. The binary operand ` is called
hemi-right-permutable, if

a ` ppx ` yq ` zq ` b () a ` ppx ` zq ` yq ` b, @a, b, x, y, z P G, (12)

and hemi-left-permutable, if

a ` px ` py ` zqq ` b () a ` py ` px ` zqq ` b @a, b, x, y, z P G. (13)

Example 8 (Hemi-right-permutability: do as you oughta). The saying “Do as you oughta:
add acid to water!” must be modeled by an operand that is neither hemi-associative nor hemi-
commutative as follows: let w be (a lot of) water and c a highly concentrated acid. If x ` y denotes
“y is poured into x”, then w ` w, w ` c and c ` c are safe, but not c ` w. Hence, pw ` cq ` w is
safe, but not w ` pc ` wq. It can be checked that ` obeys Equation (12), see Figure 7.

` w c 0
w w w 0
c 0 c 0
0 0 0 0

pw ` dq ` r w c 0
w w w 0
c w w 0
0 0 0 0

pc ` dq ` r w c 0
w 0 0 0
c 0 c 0
0 0 0 0

Figure 7. Cayley tables of a magma pG, `, Mq that models “Do as you oughta: add acid to water!”.
Here, w denotes (a lot of) water or depleted acid, c concentrated acid and 0 a noxious state of the
laboratory. In the second and third chart, d and r signify a value given downwards and to the right,
respectively, in the table. The operand x ` y means “y is poured into x”. Since the two tables to the
right are both symmetric, Equation (12) holds true.

Remark 6. Hemi-left-modularity and hemi-right-permutability are not sufficient for hemi-commu-
tativity (Figure 8). In fact, hemi-left-permutable and hemi-right-permutable are not enough for
hemi-commutativity either, cf. the middle chart of Figure 8. Furthermore, Figures 8 and 9 provide
smaller example for only hemi-right-permutable or hemi-left-permutable, respectively, in addition to
non-hemi-commutativity.
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` 0 1 2
0 0 1 1
1 1 2 2
2 2 0 0

` 0 1 2 3
0 0 1 0 2
1 1 2 1 0
2 2 0 2 1
3 2 0 2 1

` 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Figure 8. Cayley tables of a magma pG, `, Mq, with hemi-right-permutable operand that is not hemi-
commutative. The left and right chart display situations where Mp0q “ 0 (black), Mp1q “ Mp2q “ 1
(blue). In the left chart, aside from hemi-right-permutability, no other law holds. In the middle chart,
the operator is also hemi-left-permutable for Mp0q “ Mp2q “ Mp3q “ 0 (black) and Mp1q “ 1 (blue).
On the right, the operation is also wide-left-modular (and therefore hemi-left-modular); as the chart is
symmetric in color, we have x ` y () y ` x for all x, y P G; but 0 ` p0 ` 1q ` 1 “ 0 ({) 1 “ 0 ` p1 ` 0q ` 1
for Mp0q “ 0 (black), Mp1q “ Mp2q “ 1 (blue).

` 0 1 2
0 0 1 2
1 1 2 0
2 1 2 0

` 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

Figure 9. Cayley tables of a magma pG, `, Mq, with a hemi-left-permutable operand that is not
hemi-commutative. The left chart displays a situation where Mp0q “ 0 (black), Mp1q “ Mp2q “ 1
(blue) and no other law holds. On the right, the operation is also hemi-right-modular; as the chart is
symmetric, we have x ` y () y ` x for all x, y P G; but 0 ` p0 ` 1q ` 1 “ 0 ({) 1 “ 0 ` p1 ` 0q ` 1 for
Mp0q “ 0, Mp1q “ Mp2q “ 1.

4. Implications
The following proposition shows the strong interlacing of the rather different

concepts above:

Theorem 4. Let pG, `, Mq be a hemi-right-unital magma and Ge ‰ H. Then, Table 2 signifies
the relationship of any two previously defined laws to the fact that ` is hemi-associative and
hemi-commutative.

Proof. This is obvious from Table 2. Often we can exclude implications between laws by
their colored tiles.

Table 2. The table is based on a hemi-right-unital magma with Ge ‰ H. Any two laws for `, where
the corresponding tile in the table is ’‘white”, are equivalent to the combination of hemi-associativity
and hemi-commutativity. Black tiles signify that the equivalence fails because the two chosen laws
themselves are equivalent. The yellow tile illustrates that wide-left-modularity implies hemi-left-
modularity, neither of which are sufficient. On red tiles the equivalence fails and neither one of the
two laws imply the other.

HC HA HRC HLC HRM HLM WLM HRP HLP
HC F 3 — T 3 T 3 P 5 P 3 P 1 and 3 P 6 P 7
HA — F 2 T 3 T 3 P 5 P 3 P 1 and 3 P 6 P 7
HRC T 3 T 3 T 3 T 3 T 3 T 3 T 3 T 3 T 3
HLC T 3 T 3 T 3 T 3 T 3 T 3 T 3 T 3 T 3
HRM P 5 P 5 T 3 T 3 R 5 R 5 P 4 P 6 F 9
HLM P 3 P 3 T 3 T 3 R 5 R 5 P 1 F 8 P 7
WLM P 1 and 3 P 1 and 3 T 3 T 3 P 4 P 1 F 8 F 8 P 1 and 7
HRP P 6 P 6 T 3 T 3 P 6 F 8 F 8 F 8 F 8
HLP P 7 P 7 T 3 T 3 F 9 P 7 P 1 and 7 F 8 F 8

Rows and columns signify: HC: hemi-commutative; HA: hemi-associative; HRC: hemi-right-cyclic;
HLC: hemi-left-cyclic; HRM: hemi-right-modular; HLM: hemi-left-modular; WLM: wide-left-modular;
HRP: hemi-right-permutable; HLP: hemi-left-permutable. The tokens in the boxes indicate where the specific
statement can be found: T: theorem; P: proposition; R: remark; F: figure.

Remark 7. Considering hemi-associativity and hemi-commutativity as standards, Theorem 4 also
states that these two properties together can be weakened by one of the above properties (except
hemi-cyclicity), but in many cases not by two of them, since this would fall back to the standard.
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Since the set S and the map M are not specified, we may choose S “ G and M as the identity, so
that Theorem 4 and its proof also imply general assertions on standard algebra.

5. Proofs for Section 3
We use the symbol ε for an element in Ge that is fixed or strongly involved in the

calculations, whereas δ stands for an element in Ge that appears only on the border and for
a short time. Some of the lemmas have a value of their own.

5.1. Proofs for Section 3.1

Lemma 1. Let pG, `, Mq be a hemi-right-unital magma and Ge ‰ H. The operand ` shall fulfill

a ` px ` yq ` z ` b () a ` x ` py ` zq ` b, @a, b, x, y, z P G. (14)

Then, all parentheses can be removed in an algebraic expression. In particular,

x0 ` px1 ` . . . ` xiq ` y1 ` . . . ` yj () x0 ` x1 ` . . . ` xi ` y1 ` . . . ` yj (15)

for all i, j P N0, x0, . . . , xi, y1, . . . , yj P G.

Proof. The proof is separated into two steps; in the first one, we see that for all x P G

x ` y1 ` . . . ` yj () x ` py1 ` p. . . ` pyj´2 ` pyj´1 ` yjqq . . . qq. (16)

In the second step, we show that for all y P G

x0 ` px1 ` . . . ` xiq ` y () x0 ` x1 ` . . . ` xi ` y. (17)

Equation (15) follows after applying step 1, step 2, and then step 1 again. Both steps are
shown by means of induction. If j “ 0, then we use Equation (3), and for the first step, the
cases j “ 0, 1 are trivial. By induction, we assume that Equation (17) holds for some j P N.

x ` y1 ` . . . ` yj`1 () ε1 ` ppx ` y1 ` . . . ` yjq ` yj`1q ` ε2 ` ε3

() pε1 ` px ` y1 ` . . . ` yj´1 ` yjqq ` pyj`1 ` ε2q ` ε3 ` δ1

() ε1 ` ppx ` y1 ` . . . ` yj´1q ` yjq ` yj`1 ` pε2 ` ε3q

() ε1 ` px ` y1 ` . . . ` yj´1q ` pyj ` yj`1q ` pε2 ` ε3q

() pε1 ` px ` y1 ` . . . ` yj´1qq ` pyj ` yj`1q ` pε2 ` ε3q ` δ2

() ε1 ` px ` y1 ` . . . ` yj´1q ` ppyj ` yj`1q ` ε2q ` ε3

() ε1 ` ppx ` y1 ` . . . ` yj´1q ` pyj ` yj`1qq ` ε2 ` ε3

() x ` y1 ` . . . ` yj´1 ` pyj ` yj`1q

This shows the first step. In the second step, the cases i “ 0, 1 are trivial. By induction, we
assume that (15) holds for some i P N. We use the induction hypothesis in the second step.

x0 ` px1 ` . . . ` xi`1q ` y () x0 ` px1 ` . . . ` xiq ` pxi`1 ` yq ` δ1

() x0 ` x1 ` . . . ` xi ` pxi`1 ` yq ` ε ` δ2

() px0 ` x1 ` . . . ` xiq ` xi`1 ` py ` εq ` δ2

() px0 ` x1 ` . . . ` xi ` xi`1q ` py ` εq ` δ2 ` δ3

() px0 ` x1 ` . . . ` xi ` xi`1q ` y ` pε ` δ2q

() x0 ` x1 ` . . . ` xi ` xi`1 ` y.
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Corollary 1. Let pG, `, Mq be a hemi-right-unital magma and Ge ‰ H. Then, Equations (14) and (5)
are equivalent.

Proof. We only have to show that Equation (5) implies (14):

a ` px ` yq ` z ` b () δ1 ` pppa ` px ` yqq ` zq ` bq ` δ2

() δ1 ` pa ` ppx ` yq ` pz ` bqqq ` δ2

() a ` px ` py ` pz ` bqqq ` δ3

() δ4 ` ppa ` xq ` py ` pz ` bqqqq ` δ5

() pa ` xq ` ppy ` zq ` bq ` δ6

() δ7 ` pppa ` xq ` py ` zqq ` bq ` δ8

() a ` x ` py ` zq ` b.

In the following, whenever ` is hemi-associative, we are going to use Lemma 1
together with Corollary 1.

Proof of Theorem 1. Immediately from Lemma 1 and Corollary 1.

The proof of Theorem 2 is in parts close to the idea of the bubble sort algorithm in
computer science.

Proof of Theorem 2. We can always swap to the adjacent xi, xi`1, i P N, i ă n, by

x1 ` ¨ ¨ ¨ ` xi ` xi`1 ` ¨ ¨ ¨ ` xn () ε1 ` px1 ` ¨ ¨ ¨ ` xi ` xi`1 ` ¨ ¨ ¨ ` xnq ` ε2

() pε1 ` x1 ` ¨ ¨ ¨ ` xi´1q ` pxi ` xi`1q ` pxi`2 ` ¨ ¨ ¨ ` xn ` ε2q

() pε1 ` x1 ` ¨ ¨ ¨ ` xi´1q ` pxi`1 ` xiq ` pxi`2 ` ¨ ¨ ¨ ` xn ` ε2q

() x1 ` ¨ ¨ ¨ ` xi´1 ` xi`1 ` xi ` xi`2 ` ¨ ¨ ¨ ` xn.

By composition we can generate all transpositions from the adjacent transpositions. Let
1 ď a ă b ď n for a, b P N. We write as pa bq the transposition of a and b. We want to
show that we can decompose pa bq into adjacent transpositions. Intuitively, we first need to
’‘bring over” a to b, then swap a and b, and then walk b back to a’s former position. During
that, all elements in between a and b are first shifted one to the left, then one to the right,
and, hence, they stay in place.

pa bq “ pa a ` 1qpa ` 1 a ` 2q ¨ ¨ ¨ pb ´ 2 b ´ 1q
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

move a to pb ´ 1q

pb ´ 1 bq
loooomoooon

swap

pb ´ 2 b ´ 1qpb ´ 3 b ´ 2q ¨ ¨ ¨ pa a ` 1q
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

move b to a’s former position

.

From linear algebra we know that the set of all transpositions generates the permutation
group of n elements, Sn.

5.2. Proofs for Section 3.2

Lemma 2. Let pG, `, Mq be a hemi-right-unital magma and Ge ‰ H. If ` is hemi-left-cyclic or
hemi-right-cyclic, then

x ` y () y ` x @x, y P G.
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Proof. We begin with hemi-right-cyclicity. We have

x ` y () δ1 ` ppx ` yq ` pε1 ` ε2qq ` δ2

() δ1 ` pppε1 ` ε2q ` xq ` yq ` δ2

() pppε1 ` ε2q ` xq ` yq ` ε3

() ε3 ` ppε1 ` ε2q ` xq ` y

() δ3 ` pppε2 ` xq ` ε1q ` yq ` δ4

() pε1 ` yq ` pε2 ` xq (18)

() δ5 ` ppε1 ` yq ` pε2 ` xq ` pε4 ` ε5qq ` δ6

() pε4 ` ε5q ` pε1 ` yq ` pε2 ` xq

() δ7 ` ppppε4 ` ε5q ` pε1 ` yqq ` pε2 ` xqq ` ε6q ` δ8

() ppε2 ` xq ` ε6q ` ppε4 ` ε5q ` pε1 ` yqq

() δ9 ` pppε2 ` xq ` ε6q ` pppε1 ` yq ` ε4q ` ε5qq ` δ10

() ppppε1 ` yq ` ε4q ` ε5q ` pε2 ` xqq ` ε6

() δ9 ` ppppε1 ` yq ` ε4q ` ε5q ` pε2 ` xqq ` δ10

() pε5 ` pε2 ` xqq ` ppε1 ` yq ` ε4q

() δ13 ` ppε5 ` pε2 ` xqq ` ppε4 ` ε1q ` yqq ` δ14

() pε2 ` xq ` ppε4 ` ε1q ` yq.

Comparing with Equation (18) we see that we successfully transposed x and y. Performing
all steps upwards, starting in Equation (18), we obtain x ` y () y ` x. For the second step,
let ` be hemi-left-cyclic.

x ` y () ε1 ` px ` yq

() δ1 ` pε1 ` px ` yqq ` δ2

() δ3 ` pε2 ` py ` pε1 ` xqqq ` δ4

() pε1 ` xq ` pε2 ` yq

() δ5 ` pε3 ` ppε1 ` xq ` pε2 ` yqqq ` δ6

() pε2 ` yq ` pε3 ` pε1 ` xqq

() pε2 ` yq ` px ` pε3 ` ε1qqq

() δ7 ` pε4 ` ppε2 ` yq ` px ` pε3 ` ε1qqqq ` δ8

() px ` pε3 ` ε1qq ` pε4 ` pε2 ` yqq ` δ9

() δ10 ` ppx ` pε3 ` ε1qq ` py ` pε4 ` ε2qqq ` δ11

() y ` ppε4 ` ε2q ` px ` pε3 ` ε1qqq

() δ12 ` py ` px ` εqq ` δ13, ε “ pε3 ` ε1q ` pε4 ` ε2q

() ε ` py ` xq

() δ14 ` pε4 ` pε ` py ` xqqq ` δ15

() py ` xq ` pε4 ` εq

() y ` x.
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Lemma 3. If pG, `, Mq is a hemi-right-unital magma, Ge ‰ H and ` is hemi-left-cyclic or
hemi-right-cyclic. Then,

x ` py ` zq () y ` pz ` xq,

px ` yq ` z () py ` zq ` x

for all x, y, z P G.

Proof. The assertion follows from the definitions and Lemma 2.

Lemma 4. Let pG, `, Mq be a hemi-right-unital magma and Ge ‰ H. If ` is hemi-right-cyclic,
then

x ` y ` z ` b () y ` z ` x ` b

for all x, y, z, b P G. If ` is hemi-left-cyclic, then

x ` y ` z () z ` y ` x

for all x, y, z P G.

Proof. If ` is hemi-right-cyclic, then Lemma 3, Equation (7), and Lemma 3 again yield

px ` yq ` z ` b () ppx ` yq ` zq ` b ` δ1

() δ1 ` ppx ` yq ` zq ` b

() py ` zq ` x ` b.

If ` is hemi-left-cyclic, then Equation (4), Lemma 3, Equation (4) five times again, and
Lemma 2 deliver

x ` y ` z () ε1 ` ppx ` yq ` zq () δ1 ` pε1 ` ppx ` yq ` zqq ` δ2

() z ` pε1 ` px ` yqq () z ` pε1 ` px ` yqq ` δ3

() z ` py ` pε1 ` xqq () δ4 ` pz ` py ` pε1 ` xqqq ` δ5

() pε1 ` xq ` pz ` yq () ε2 ` ppε1 ` xq ` pz ` yqq

() pz ` yq ` pε2 ` pε1 ` xqq () pz ` yq ` pε2 ` pε1 ` xqq ` δ6

() pz ` yq ` px ` pε2 ` ε1qq () δ7 ` ppz ` yq ` px ` pε2 ` ε1qq ` δ8

() pε2 ` ε1q ` ppz ` yq ` xq

() ppz ` yq ` xq ` pε2 ` ε1q () pz ` yq ` x.

Proposition 2. Let pG, `, Mq be a hemi-right-unital magma and Ge ‰ H. If ` is hemi-left-cyclic
or hemi-right-cyclic, then ` is hemi-commutative.
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Proof. Assume ` is hemi-right-cyclic. We use Lemma 3 twice, Lemma 4, Lemma 3 twice,
Lemma 4, and Lemma 3 three times, respectively, to attain

a ` px ` yq ` b () b ` a ` px ` yq

() pb ` aq ` px ` yq ` ε1

() ppx ` yq ` ε1q ` pb ` aq

() py ` ε1q ` x ` pb ` aq

() px ` pb ` aqq ` py ` ε1q ` ε2

() ppy ` ε1q ` ε2q ` px ` pb ` aqq

() ppε1 ` ε2q ` yq ` px ` pb ` aqq

() y ` px ` pb ` aqq

() pb ` aq ` py ` xq

() a ` py ` xq ` b.

Next, assume that ` is hemi-left-cyclic.
We obtain, by Lemmas 3, 2, 4, 3, 2, and 3, respectively, that

a ` px ` yq ` b () pb ` aq ` px ` yq

() px ` yq ` pb ` aq

() ppb ` aq ` yq ` x

() py ` xq ` pb ` aq

() pb ` aq ` py ` xq

() a ` py ` xq ` b.

Proof of Theorem 3. The assertion follows immediately from Theorem 2 and Proposition 2,
since

a ` ppx ` yq ` zq ` b () a ` ppy ` zq ` xq ` b () a ` px ` py ` zqq ` b

in case of hemi-right-cyclicity, and

a ` ppx ` yq ` zq ` b () a ` pz ` px ` yqq ` b () a ` px ` py ` zqq ` b

in the case of hemi-left-cyclicity.

5.3. Proofs for Section 3.3

We first show some properties that facilitate later proofs.

Lemma 5. Let pG, `, Mq be hemi-right-unital magma. If ` is wide-left-modular, then

a ` px ` yq ` z () a ` x ` pz ` yq (19)

px ` yq ` z ` b () y ` px ` zq ` pε ` bq, (20)
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px ` yq ` z () y ` px ` zq, (21)

x ` y () y ` x, (22)

ε ` x () x, (23)

pε ` ε̃q ` x () x, (24)

a ` pε ` pε̃ ` xqq ` b () a ` x ` b (25)

for all a, b, x, y, z P G and ε, ε̃ P Ge.

Proof. Equation (11) immediately yields Equation (19), since

a ` px ` yq ` z () a ` px ` yq ` z ` δ1 () a ` x ` pz ` yq ` δ1 () a ` x ` pz ` yq.

Equation (20) follows from

px ` yq ` z ` b () px ` yq ` z ` b ` ε1

() y ` px ` z ` b ` ε1q

() y ` px ` z ` b ` ε1q ` δ1

() y ` ppx ` zq ` bq ` pδ1 ` ε1q

() y ` ppx ` zq ` bq

() y ` ppx ` zq ` bq ` ε2

() y ` px ` zq ` pε2 ` bq

by means of Equations (3), (10), (3), (19), (3) twice, and (19) , respectively. Equation (21) is
immediately derived from Equation (20). Equations (3), (21) and (19) yield

x ` y () px ` yq ` ε

() y ` px ` εq ` δ1

() y ` x ` pδ1 ` εq () y ` x.

Equation (23) follows from (3) with (22). Equation (24) follows from Equations (21) and (23):

pε ` ε̃q ` x () ε̃ ` pε ` xq () ε ` x () x.

By Equations (21), (19), (24), (21), and (22), we attain

pa ` pε ` pε̃ ` xqqq ` b () ε ` pε̃ ` xq ` pa ` bq

() pε ` ε̃q ` ppa ` bq ` xq

() pa ` bq ` x

() b ` pa ` xq

() a ` x ` b.
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Proof of Proposition 1. Equations (21), (25), (20), (19), and Equation (21) twice again yield

a ` px ` py ` zqq ` b () px ` py ` zqq ` pa ` bq

() px ` py ` zqq ` pε2 ` pε1 ` ppa ` bqqq

() py ` xq ` z ` pε1 ` pa ` bqq

() py ` xq ` pz ` pa ` bqq

() pz ` py ` xqq ` pa ` bq

() a ` pz ` py ` xqq ` b.

6. Proofs for Section 4
As indicated in the proof of Theorem 4, we slowly accumulate all the remaining

implications for Theorem 4 over the course of this chapter.

6.1. Equivalences

Proposition 3. Let pG, `, Mq be a hemi-right-unital magma and Ge ‰ H. Then, any
two properties of

• ` is hemi-associative;
• ` is hemi-commutative;
• ` is hemi-left-modular

are equivalent.

Proof. Hemi-left-modularity and hemi-associativity imply hemi-commutativity, since, by
Theorem 1,

a ` px ` yq ` b () pa ` px ` yqq ` pb ` pε1 ` ε2qq ` δ1

() pa ` px ` yqq ` pε1 ` pε2 ` bqq ` δ1

() a ` px ` py ` pε1 ` ε2qqq ` b

() a ` ppε1 ` ε2q ` py ` xqq ` b

() a ` pε1 ` pε2 ` py ` xqqq ` b

() a ` py ` xq ` ε1 ` ε2 ` b

() a ` py ` xq ` b.

Hemi-left-modularity and hemi-commutativity imply hemi-associativity, as

a ` ppx ` yq ` zq ` b () a ` pz ` px ` yqq ` b () δ1 ` pa ` pz ` px ` yqq ` bq ` δ2

() δ1 ` pb ` pa ` pz ` px ` yqqqq ` δ2

() δ1 ` ppz ` px ` yqq ` pa ` bqq ` δ2 () z ` px ` yq ` pa ` bq

() z ` py ` xq ` pa ` bq

by applying Equation (6) twice, then Equation (9), and again (6). By permuting x and y in
this way, we obtain

a ` ppx ` yq ` zq ` b () a ` pz ` px ` yqq ` b

() a ` pz ` py ` xqq ` b

() a ` px ` py ` zqq ` b.
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The remaining implication follows from Theorem 2.

6.2. Assertions Assuming Modularity

Proposition 4. Let pG, `, Mq be a hemi-right-unital magma. If ` is wide-left-modular and
hemi-right-modular, then ` is hemi-commutative.

Proof. Equations (8), (19), and (22) yield

a ` px ` yq ` b () a ` x ` pb ` yq ` δ1

() δ1 ` pa ` x ` pb ` yqq

() δ1 ` pa ` x ` pb ` yqq ` δ2 () pb ` yq ` x ` a.

Applying Equations (20), (21), (11), and (25) delivers

pb ` yq ` x ` a () y ` pb ` xq ` pε1 ` aq

() pb ` xq ` py ` pε1 ` aqq () pb ` xq ` py ` pε1 ` aqq ` ε2

() pb ` xq ` y ` pε2 ` pε1 ` aqqq

() pb ` xq ` y ` a,

so that, by Equations (8), (22), and (19),

pb ` xq ` y ` a () ppb ` xq ` y ` aq ` δ3

() δ3 ` ppb ` xq ` y ` aq ` δ4

() a ` y ` pb ` xq () a ` py ` xq ` b.

Proposition 5. Let pG, `, Mq be a hemi-right-modular, hemi-untial magma with Ge ‰ H. Then,
the two properties

• ` is hemi-associative;
• ` is hemi-commutative

are equivalent. In particular, any of these two properties imply that ` is hemi-left-modular.

Proof. The proof is similar to that of Proposition 3. Let ` be hemi-associative. Then, ` is
hemi-commutative. By Theorem 1, we have

a ` px ` yq ` b () pa ` px ` yqq ` ppb ` ε1q ` ε2q ` δ1

() pa ` px ` yqq ` ε2 ` ε1 ` b

() a ` ppx ` yq ` pε2 ` ε2qq ` b

() a ` pppε2 ` ε1q ` yq ` xq ` b

() a ` ppε2 ` ε1q ` yq ` px ` bq

() pa ` yq ` ppε1 ` ε2q ` xq ` b

() pa ` y ` xq ` ppε2 ` ε1q ` bq ` δ2

() a ` py ` xq ` b.
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Let ` be hemi-commutative. We have

a ` ppx ` yq ` zq ` b () a ` ppz ` yq ` xq ` b

() δ1 ` ppa ` ppz ` yq ` xq ` bq ` εq ` δ2

() pε ` bq ` pa ` ppz ` yq ` xqq

() pε ` bq ` pppz ` yq ` xq ` aq

() pε ` bq ` ppa ` xq ` pz ` yqq

() δ3 ` ppε ` bq ` ppa ` xq ` pz ` yqqq ` δ4

() pa ` xq ` pz ` yq ` pε ` bq

() pa ` xq ` py ` zq ` pε ` bq.

From here, we walk the equations backwards and obtain

a ` ppx ` yq ` zq ` b () a ` ppy ` zq ` xq () a ` px ` py ` zqq ` b.

Hemi-left-modularity follows directly from Theorem 2.

6.3. Assertions Assuming Permutability

Proposition 6. Let pG, `, Mq be a hemi-right-unital magma, Ge ‰ H and let ` be hemi-right-
permutable. Then, the following are equivalent:

• ` is hemi-commutative;
• ` is hemi-associative;
• ` is hemi-right-modular.

Proof. Assume ` is hemi-commutative. Then, ` is hemi-left-modular, since

a ` px ` py ` zqq ` b () a ` ppy ` zq ` xq ` b

() a ` ppy ` xq ` zq ` b () a ` pz ` py ` xqq ` b.

As a result, ` is both hemi-associative by Proposition 3 and hemi-right-modular by
Theorem 2. Now, suppose ` is hemi-associative. With the help of Theorem 1, we have

a ` px ` yq ` b () δ1 ` pa ` px ` yq ` bq

() δ1 ` ppa ` xq ` yq ` b

() δ1 ` ppa ` yq ` xq ` b

() a ` py ` xq ` b.

If ` is hemi-right-modular, then ` is hemi-right-cyclic, since

a ` ppx ` yq ` zq ` b () a ` ppx ` zq ` yq ` b () a ` ppy ` zq ` xq ` b,

and the assertion follows from Proposition 2.

Proposition 7. Let pG, `, Mq be a hemi-right-unital magma, Ge ‰ H and let ` be hemi-left-
permutable. Then, the following are equivalent:

• ` is hemi-commutative;
• ` is hemi-associative;
• ` is hemi-left-modular.
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Proof. The proof is structurally similar to that of Proposition 6, but several details differ
significantly. Assume ` is hemi-commutative. Then, we have

a ` ppx ` yq ` zq ` b () a ` pz ` px ` yqq ` b

() a ` px ` pz ` yqq ` b

() a ` ppz ` yq ` xq ` b.

Hence, ` is hemi-right-modular and we use Proposition 5 to deduce that ` is hemi-
associative and hemi-left-modular. Now, suppose ` is hemi-associative. With the help of
Theorem 1, we have

a ` px ` yq ` b () a ` px ` py ` bqq ` δ1

() a ` py ` px ` bqq

() a ` py ` xq ` b.

If ` is hemi-left-modular, then it is hemi-left-cyclic, as

a ` px ` py ` zqq ` b () a ` py ` px ` zqq ` b

() a ` px ` pz ` yqq ` b

() a ` pz ` px ` yqq ` b,

and we conclude with Proposition 2.

7. Discussion
7.1. The Eponymous Concepts

Many of the terms starting with “hemi” have a genuine counterpart. A set G together
with operand ` is called a magma or groupoid. A unital magma [12] possesses an element
ε such that

x “ ε ` x “ x ` ε @x P G.

An operand is called left-modular [13], if

x ` py ` zq “ z ` py ` xq @x, y, z P G.

Finally, in theoretical computer science, cyclically-invariant functions f : Gd Ñ G are
of interest, i.e., functions with the property that f px1, . . . , xdq “ f px2, . . . , xd, x1q for all
x1, . . . , xd P G [14].

7.2. Related Mathematical Approaches

Weakening fundamental laws in algebra are not new. The main difference to all
approaches we have seen in the literature is that generalizations in standard algebra restrict
the applicability of a law to certain situations and keep the assumption that the resulting
objects are identical. For instance, a magma is called alternative, if for all elements x and y,
we have px ` xq ` y “ x ` px ` yq and y ` px ` xq “ py ` xq ` x; a magma is called flexible,
if for all elements x and y we have x ` py ` xq “ px ` yq ` x. In this paper, we suggest to
keep the general applicability of a law, but to release the assumption of identical objects
on both sides of the equation. Among the papers we have found, Ref. [15] is the closest to
ours, showing that entropicity and the existence of a neutral element implies in the binary
case associativity and commutativity.
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7.3. Categorical Aspects

Category theory searches for the main property of a mathematical construct. For
instance, the triangular inequality and not the norm is considered as the main feature
of a Banach space. This paper puts the predominant role of the associative law and the
commutative law into question, since, firstly, the hemi-cyclic law summarizes the two laws
into a single law and, secondly, several concurrent laws exist on approximately the same
level as the associative law and the commutative law. The attention is here on a hemi-
neutral element, whose existence is presumed to show most mathematical statements. The
spectrum, to which extend some hemi-neutral elements exist, might create interesting
categories. The monoidal category is already one of them. From a practical point of view,
the set of hemi-neutral elements tells which objects are of limited importance in the current
set-up, hence indirectly telling more precisely what is important. Topological data analysis,
an application of algebraic topology, is used for a massive reduction of the dimensionality
of data while trying to keep the most important structures. A simplistic interpretation from
the point of view of this paper is that the allowed transformations are the hemi-neutral
elements in the set of all data transformations.

7.4. Open Questions

Obvious follow-up questions include the definition of a weak inverse, and weak
distributive laws in the case of two operands, to explore richer algebraic structures. Further-
more, a non-simplistic interpretation of the topological data analysis could be of interest.

8. Conclusions
This paper offers a framework that links philosophical approaches with algebraic

structures by interpreting the weaking of an algebraic law as a response to epistemic
limitations, such as underdetermination, theory-ladenness, and non-observability. Since
the driving function M can be chosen arbitrarily, the algebraic conclusions given here are
valid independently of the philosophically founded perception. Offering a novel direction
of algebra, this paper may also trigger some further, theoretical investigations.
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