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Abstract

This thesis introduces, explores, and evaluates algorithmic methods for auto-
mated game balancing with the goal of general applicability, independent of a
specific game environment. It contributes to the academic fields of deep rein-
forcement learning (RL) and search-based optimization, with specific focus on
the application for automated game balancing — a niche research area distinct
from the practice-driven domain of game balancing.

Games play a substantial role in contemporary society and culture, function-
ing not only as entertainment but also as tools for education, social interaction,
and cognitive development. To be engaging, competitive games must be bal-
anced so that all players have equal initial chances of winning. While achiev-
ing balance typically requires extensive manual work and human playtesting
during development, existing research proposes to support this process using
search-based optimization combined with game simulations to determine bal-
ance. These approaches, however, are tailored to specific environments and,
therefore, are difficult to transfer to other games. In addition, the simulation of
games is computationally intense. The goal of this thesis is to develop meth-
ods for automatically generating balanced content for games using procedural
content generation (PCG). We focus on two key facets that significantly impact
a game’s overall balance: game levels and game economies. To investigate au-
tomated balancing, we make the following six contributions (C 1-6):

(C 1) To enable automated balance estimation, we first define what balance
means in the context of two-player games. To express the balance quantita-
tively and domain-independently based on simulation data, we derive a met-
ric from the field of algorithmic fairness research. (C 2) Since estimating bal-
ance through multiple simulations is computationally expensive, we propose
a novel approach to accelerate the automated balancing of tile-based levels in
combination with agent-based simulations. To reduce the number of required
simulations, we frame level balancing as (1) a PCG problem and (2) a trajectory
optimization task modeled as a Markov decision process, enabling the use of
RL. To this end, we extend the PCG via RL (PCGRL) framework with a new
definition of the action space and demonstrate that our method generates bal-
anced levels more efficiently than PCGRL or model-free search-based baselines.
(C 3) While balance is evaluated using artificial agents, games are made for hu-
man players. To assess human perception of balance, we conduct an empirical
study with human playtesters. Statistically, we prove that players perceive lev-
els that were balanced using our method as more balanced in most cases than
those that had not undergone this process. In addition to game levels, we study



the generation and balancing of game economies, building on an existing graph-
based representation from related work. (C 4) We explore how graphs defined
by sets of constraints can be generated by manipulating their adjacency matrices
and introduce G-PCGRL (Graph-PCGRL), an adaptation of PCGRL that learns
to controllably generate graphs using RL. While we demonstrate the feasibility
of this approach and improved inference performance compared to baselines,
we observe limited scalability. (C 5) To address this shortcoming, we propose
GEEvo (Game Economy Evolution), a framework for generating and balancing
abstract graph-based game economies using evolutionary algorithms. GEEvo
offers greater flexibility and supports the generation of larger graphs, though at
the cost of slower computational performance compared to G-PCGRL. (C 6) In
addition, we contribute Feast & Forage, a flexible, easily adaptable, and extensi-
ble tile-based game environment to study automated game balance via PCG.

Finally, probabilistic elements are essential in games to promote replayability
and strategic decision-making under uncertainty. In both facets, levels and eco-
nomies, we observe that automated approaches tend to bypass randomness to
stabilize balance. As a general conclusion, we argue that maintaining meaning-
ful randomness requires incorporating mechanisms that prevent its elimination
by optimization.

vi



Kurzfassung

In dieser Dissertation werden algorithmische Methoden zur automatisierten Ba-
lancierung von Spielen vorgestellt, untersucht und evaluiert, mit dem Ziel ei-
ner allgemeinen Anwendbarkeit, unabhédngig von einer spezifischen Spielum-
gebung. Die Arbeit leistet damit einen Beitrag zu den wissenschaftlichen Fel-
dern des Deep Reinforcement Learning (RL) und der suchbasierten Optimie-
rung, mit dem besonderen Fokus auf automatisiertem Game Balancing — einer
Nische, die sich von der praxisorientierten Anwendung des Game Balancing
unterscheidet.

In der heutigen Gesellschaft und Kultur kommt Spielen eine wichtige Bedeu-
tung zu. Sie dienen nicht nur der Unterhaltung, sondern werden auch im Kon-
text von Bildung, sozialer Interaktion oder kognitiver Entwicklung eingesetzt.
Um ein unterhaltsames Erlebnis bieten zu konnen, miissen insbesondere kom-
petitive Spiele ausbalanciert sein, sodass alle Spieler*innen zu Beginn die glei-
chen Gewinnchancen haben. In der Praxis erfordert das Ausbalancieren eines
Spiels einen umfangreichen manuellen Aufwand, der unter anderem mit Spiel-
tests von menschlichen Spieler*innen wahrend der Entwicklung verbunden ist.
Die Forschung schldgt daher vor, diesen Prozess durch suchbasierte Optimie-
rung in Kombination mit Spielsimulationen zu unterstiitzen. Diese Ansitze
sind jedoch auf bestimmte Umgebungen zugeschnitten und daher nur schwer
auf andere Spiele tibertragbar. Auflerdem ist die Agenten-basierte Simulation
eines Spiels rechenintensiv. Spiele, die zusitzlich automatisiert Inhalte erstellen,
bieten ein abwechslungsreicheres Spielerlebnis und erhohen den Wiederspiel-
wert. Ziel dieser Arbeit ist es, Methoden der prozeduralen Inhaltsgenerierung
(PCG) zu entwickeln, um balancierte Inhalte fiir Spiele automatisiert erstellen zu
konnen. Der Fokus liegt dabei auf zwei Schliisselaspekten, die die Gesamtba-
lance eines Spiels mafigeblich beeinflussen: Levels und Spielokonomien. Zur
Untersuchung der automatisierten Ausbalancierung von Spielen leistet diese
Dissertation die folgenden sechs Beitrage (C 1-6):

(C1) Um eine automatisierte Schatzung der Balance eines Spiels zu ermogli-
chen, wird zunéchst definiert, was Balance im Kontext eines kompetitiven Spiels
fiir zwei Spieler*innen bedeutet. Um die Balance basierend auf Simulationsda-
ten quantitativ und doméanenunabhidngig auszudriicken, wird eine Metrik aus
dem Bereich der algorithmischen Fairnessforschung abgeleitet. (C 2) Da die
Schédtzung der Balance aus mehreren Simulationsdurchldufen rechenintensiv ist,
schldgt diese Dissertation einen neuartigen Ansatz zur automatischen Balancie-
rung von kachelbasierten Levels in Kombination mit agentenbasierten Simula-
tionen vor. Um die Anzahl der notwendigen Simulationen zu reduzieren, wird
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der Prozess der Ausbalancierung von Levels als (1) ein Problem der prozedu-
ralen Inhaltsgenerierung (PCG) und (2) der Trajektorienoptimierung betrachtet.
Letzteres wird als Markov-Entscheidungsprozess modelliert, was den Einsatz
von RL ermoglicht. Zu diesem Zweck wird das PCG via RL (PCGRL) Frame-
work um neue Definitionen des Aktionsraums erweitert und es wird gezeigt,
dass die vorgestellte Methode balancierte Levels effizienter erzeugt als PCGRL
oder modellfreie, suchbasierte Anséatze. (C 3) In dieser Dissertation evaluieren
wir die Balance mit kiinstlichen Agenten, Spiele werden jedoch fiir menschli-
che Spieler*innen entwickelt. Um die menschliche Wahrnehmung der simulier-
ten Balance zu bewerten, wird eine empirische Studie mit menschlichen Spie-
ler*innen durchgefiihrt. Statistisch gesehen werden die mit dieser Methode ba-
lancierten Levels von den Spieler*innen in den meisten Fillen als ausgewogener
empfunden als die Levels vor der Balancierung.

Zusétzlich zu den Spiellevels wird die Erzeugung und die Balancierung von
Spielokonomien untersucht. Zu diesem Zweck wird auf eine existierende graph-
basierte Modellierung aus verwandten Arbeiten aufgebaut. (C 4) Zunichst wird
untersucht, wie Graphen, die durch Sets aus Bedingungen definiert sind, durch
Manipulation ihrer Adjazenzmatrizen erzeugt werden konnen. Dazu wird G-
PCGRL (Graph-PCGRL) eingefiihrt, eine Erweiterung von PCGRL, die lernt,
Graphen durch RL kontrollierbar zu generieren. Wahrend die Machbarkeit die-
ses Ansatzes und die verbesserte Inferenzleistung im Vergleich zu suchbasierten
Ansitzen aufgezeigt wird, wird jedoch eine begrenzte Skalierbarkeit beobach-
tet. (C 5) Um dieses Manko zu beheben, stellt diese Dissertation GEEvo (Game
Economy Evolution) vor, ein Framework fiir die Generierung und die Balancie-
rung von abstrakten graphbasierten Spielokonomien unter Verwendung evolu-
tiondrer Algorithmen. GEEvo bietet eine grofsere Flexibilitat und unterstiitzt die
Generierung groflerer Graphen, allerdings auf Kosten einer hoheren erforder-
lichen Rechenleistung im Vergleich zu G-PCGRL. (C 6) AufSerdem stellt diese
Arbeit Feast & Forage vor, eine flexible, leicht anpassbare und erweiterbare ka-
chelbasierte Spielumgebung zur Untersuchung der automatischen Spielbalance
durch PCG.

Probabilistische Elemente in Spielen sind unerldsslich, um die Wiederspiel-
barkeit und die strategische Entscheidungsfindung der Spieler unter Unsicher-
heit zu motivieren. Fiir beide Aspekte, Levels und Okonomien, wird festgestellt,
dass automatisierte Ansidtze dazu neigen probabilistische Spielmechaniken zu
umgehen, um die Balance zu stabilisieren. Als allgemeine Schlussfolgerung
kommt diese Dissertation daher zu dem Schluss, dass die Aufrechterhaltung ei-
ner sinnvollen Zufélligkeit die Integration von Mechanismen erfordert, die ihre
Eliminierung durch Optimierung verhindern.
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Chapter 1

Introduction

Life is never fair. And perhaps it is a good thing for most of us that it is not.
Oscar Wilde, An Ideal Husband, Act 11, 1899

We all play games!. The history of games dates back to the ancient past of hu-
manity, as an integral part of many cultures and a form of social human in-
teraction [Crist, 2019]. Psychologists and behavior scientists agree on the im-
portance of play, starting in early childhood, to foster the development of so-
cial cognition [Piaget, 1951; Vygotsky, 1978]. Erikson [1977] shows that play al-
lows children to experiment with social experiences and simulate consequences.
Gottman [1986] shows how children use play for emotional mastery. Playing
games, however, is not limited to children; play theorist Brian Sutton-Smith
[1997] argues in his work The Ambiguity of Play that play serves the same pur-
poses for adults as it does for children. The survey by Granic et al. [2014] high-
lights the positive effects of playing video games on various aspects, such as
social, cognitive, motivational, and emotional skills. In addition, playing games
engages various cognitive abilities [Togelius, 2019, p. 19] as defined in psychol-
ogy by the Cattell-Horn-Caroll theory [Schneider and McGrew, 2012], which
models intelligence as a hierarchy of different abilities.

Games have also contributed to scientific progress throughout the past di-
rectly, i.e., through the use of games to crowdsource information on protein fold-
ing [Cooper et al., 2010], which played a role in the scientific developments rec-
ognized by the 2024 Nobel Prize in Chemistry?, or the breakthroughs in solving
chess (Deep Blue, [Campbell et al., 2002]) or Go (AlphaGo, [Silver et al., 2018])
that have been used as benchmarks for progress in artificial intelligence. More-
over, playing games lies at the heart of society: According to the recent Global
Games Market Report by Newzoo [2024], the number of video game players
worldwide is estimated at 3.42 billion, and the industry generates revenues of
USD 187.7 billion. Both figures have grown steadily over the past decades and
are expected to continue to grow in the future.

“Game designers are wizards of engagement” [Granic et al., 2014, p.70].
However, to ensure this engagement, a game must be designed to appear fair

IThe term game in this thesis refers to games for entertainment. We will define this term in
more detail in the subsequent Section 1.1.

ZNature Portfolio: Nobel Price in Chemistry 2024 — Protein Structure Prediction. https://ww
w.nature.com/collections/edjcfdihdi
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and balanced for all players. According to the theory of the psychologist Csik-
szentmihalyi [1990], humans only stay in the flow (here: engaged) while solving
a problem if the current challenge is appropriate. If the challenge is too low,
humans (in this context: players) feel bored, whereas the opposite results in
anxiety. This is important when designing multiplayer games, and particularly
when designing competitive multiplayer games. A game which does not appear
to be fair and balanced for all players will lead to frustration or boredom and
players will quit playing [Becker and Gorlich, 2020]. When creating new games,
ensuring balance is, however, a challenging and time-consuming task [Adams,
2014; Schreiber and Romero, 2021]. For these reasons, this thesis explores
methods to automate and support the process of game balancing.

Before defining our research questions and listing our contributions, we
first clarify the definition of games for entertainment and balance.

1.1 Games and Balance

This thesis explores methods to automate game balancing. To lay the ground
for our research, this section provides the definition of what constitutes a game
in the context of this thesis, along with an overview of what is understood as
balancing a game and which challenges it entails.

To illustrate theoretical concepts, we make use of the popular strategy board
game The Settlers of Catan (Catan) [1995] by Klaus Teuber as a running example.
In Catan, players collect and trade resources, such as wood and grain, to build
roads, settlements, and cities. This allows them to expand their territory and
earn victory points. It is a fitting example, as it is well-known and not simplis-
tic. Catan also encompasses multiple aspects that we aim to highlight, such as
balancing concepts in general up to Procedural Content Generation (PCG). In
addition, in literature it is also referenced to explain game-theoretic concepts,
for instance by Schreiber and Romero [2021].

We begin by defining what constitutes a game (Section 1.1.1) and clarifying
the notion of balancing in this context (Section 1.1.2).

1.1.1 Whatis a Game?

The term game originates from Germanic and Old English (5th to 11th century),
referring to ”an activity [...] or having the form of a contest or competition, gov-
erned by rules of play, according to which victory or success may be achieved
through skill, strength, or good luck” [Oxford English Dictionary, 2025].

From the perspective of game design, Salen and Zimmerman [2003] define
a game based on the definition of Avedon and Sutton-Smith [1971] as follows:
"A game is a system in which players engage in an artificial conflict, defined
by rules, that results in a quantifiable outcome" [Salen and Zimmerman, 2003,
p.11]. Based on their foundational book Rules of Play: Game Design Fundamentals
[Salen and Zimmerman, 2003] we describe this quote in more detail:

¢ A game is a system: All games can be understood as systems that encapsu-
late several components. All components such as rules, players, and goals



can interact in complex ways. A key challenge is to keep the overall system
balanced and fair to ensure an engaging player experience. In the example
of Catan, the game system comprises the interaction between the rules, the
economic model, the procedurally generated board, and the players.

¢ A game has players: One or more participants can actively participate and
interact with the game’s system. In Catan, three or four players are re-
quired for playing.

* A game embodies a conflict: All games involve a form of conflict that mo-
tivates the players to engage with the game in order to resolve it. This
can range from cooperation to competition, solo challenges against a game
system, or, for instance, multiplayer social conflicts. Catan is a competitive
multiplayer game with a conflict of territory and limited availability of re-
sources, forcing players to make strategic decisions on how to spend them.
Interdependence and competition is additionally increased as players typ-
ically cannot produce all resource types by themselves.

¢ A game has rules: Rules provide the framework for play by defining what
players can and cannot do. In Catan, the rules define how players interact
with the game environment and with each other. They also specify the
turn structure and the set of available actions.

* A game is artificial: Games exist intersubjectively in human minds, distinct
from real life. All components of a game such as its system, rules, or con-
flicts are human-created. The same is true for Catan, where the concept
of winning or generating resources has no meaning outside the context of

play.

¢ A game has a quantifiable outcome: The quantifiable outcome of games dis-
tinguishes them from less structured play activities. Through winning or
losing, a player receives an unambiguous evaluation based on their in-
teractions with the game system. Alternatively, a numerical score can be
assigned, allowing comparison between players. This is especially true in
Catan, where players receive victory points. The player who reaches ten
points first wins the game.

So when we use the term game in this thesis, we mean a game made for human
entertainment. This differs from the definition of games in other disciplines and
the term should therefore not be confused here, e.g., with game theory [von Neu-
mann and Morgenstern, 1944] in mathematics. Although both treat games as
rule-governed systems that define possible actions for multiple agents through
formal rule sets, the primary focus of games in game theory is on abstract mod-
els of strategic interaction. These models are sometimes illustrated with simple
narratives, such as the Prisoner’s Dilemma [Rapoport, 1989]. However, the nar-
rative is not an integral component of the game itself. Conversely, games for hu-
man entertainment directly integrate narratives, media elements such as visual
aesthetics or sound, and most importantly, the player experience as core parts
of the system. While both share a definition of outcomes, games for entertain-
ment employ a broader definition, encompassing win conditions or narrative



progress. In game theory, outcomes are formalized as numerical payoffs, util-
ities, or equilibrium states. Another point of comparison is economic systems,
which we will also address in Chapter 7. In entertainment games, their primary
objective is to engage, incentivize, and reward players. By contrast, in game
theory, they serve to model and predict rational behavior.

1.1.2 Game Balancing

Since games are systems composed of multiple components [Salen and Zimmer-
man, 2003], these must be coordinated to create a balanced experience, ensuring
all players have an equal initial chance of winning. It should be noted that game
balancing is primarily a practice rather than a formal academic field. The emerg-
ing niche field to which we contribute is automating game balance using various
optimization strategies, with a particular focus on approaches based on PCG.
We provide an overview of this field in the related work in Chapter 3. A foun-
dational approach on game balancing for practitioners is presented by Schreiber
and Romero [2021] in the book Game Balance, to which we refer to multiple times
in this thesis. While game balancing is defined through multiple definitions,
Becker and Gorlich [2020] conclude in their survey that "no two authors share
identical understandings” [Becker and Gorlich, 2020, p.1] on what game balanc-
ing actually is. They continue to explain that game balancing must be tailored to
the game’s genre, it’s competitive or cooperative system, as well as the specific
design and goals of the game itself. Ensuring balance is, however, most impor-
tant for competitive multiplayer games. But according to Becker and Gorlich
[2020], related works share a common denominator on the following points as
well: difficulty, symmetry, the definition of good balancing, and the balancing
process.

Difficulty refers to fine-tuning the level of challenge so that the game remains
engaging without becoming too easy or too hard to beat. Alongside a user study,
Klarkowski et al. [2016] show that the balance of challenge in a game, in com-
bination with a player’s skill level, has a further impact on their experience. In
competitive multiplayer games like Catan, difficulty is mainly influenced by the
other players’ skill level. Difficulty balance is supported through limited forms
of interaction, such as structured trading.

Symmetry refers to the design of the game’s system and can tackle various
facets, such as the design of the rules, players, or the game world (level). In
a symmetrical game setup, all players have access to the identical setup of the
same elements. This makes the game balanced in terms of providing equal op-
portunities for all players. Catan is designed to be entirely symmetrical. All
rules apply equally to all players, and each player can choose from the same
set of actions on their turn. Many modern games (e.g., Scythe [2016], League of
Legends [2009], Starcraft 2 [2010], only to name a few) also include asymmetric
elements in order to increase replayability and the overall entertainment. Due
to the increased number of possible game states, this is, however, much harder
to balance. In this thesis, we will address this challenge from the level, player
archetype, and game economy perspectives. While Catan features a symmetri-
cal design, players take turns placing their starting settlements which leads to
asymmetries in resource availability. From a single player’s perspective, this



may seem imbalanced; however, since most players lack one or more key re-
sources, the game remains balanced overall.

A well-balanced game provides players with meaningful decisions with which
they actively can influence their chances of winning or losing, so that that the
better player always wins. In addition, there must not be a single dominant
strategy to winning the game, but multiple strategies must be viable. Catan ad-
dresses this, by offering several ways to earn victory points. According to Becker
and Gorlich [2020] many authors agree that equal win rates in multiplayer
games indicate balance; however, additional factors may need consideration de-
pending on the context, such as how the players are matched according to their
skill. In this thesis, we stick to this definition of balance and combine it with
an existing metric in Section 4.2.2. Depending on the specific context, slight im-
balances may, however, be accepted. We will discuss this in the context of this
thesis in Section 4.1. The process of balancing a game is an iterative process involv-
ing several steps and tools. This includes, user data analysis, spread sheets, and
mathematical formulas, among others. Since games are designed for humans,
playtesting with the target player group is essential, followed by thorough anal-
ysis and iterative refinement.

Nevertheless, balancing a game remains a challenging, time-consuming, and
often tedious task that requires a lot of manual effort. This thesis sets out several
approaches to automating game balancing and addressing these issues. Never-
theless, some form of human evaluation is still necessary.

1.1.3 Game Economies

In Chapter 7 we will approach automated game balancing from the perspec-
tive of game economies. Here we provide a brief explanation of what a game
economy constitutes and why it is important to consider in the context of game
balance. This section is based on the definition of game economies in the foun-
dational book Game Balance by Schreiber and Romero [2021].

A game’s economy is a macro system that defines how virtual resources are
created and transitioned to other resources within a game. As such it is a pow-
erful tool that shapes player experience and progression speed, and, in turn, the
overall balance of the game. Virtual resources are not limited to virtual curren-
cies, as seen in games like Monopoly [1935], but extend much further — ranging
from a player’s time investment (e.g., a turn), to game-specific resources like
mana, or tangible materials such as ore in a crafting systems. From an economy-
balancing perspective, the narrative context of resources can be omitted to shift
the focus to when and how specific resource trade-offs impact the game. Modern
game economies are becoming increasingly complex and can be very sensitive to
even minor numerical adjustments, which may have an unexpected impact on
the overall gaming experience. Game economies are inspired by financial eco-
nomic systems, and commonly present players with strategic trade-off decisions
— for example, whether to invest resources for immediate early game power, or
to allocate them differently for greater, but delayed, advantages in the late game.

Continuing with our running example, Catan implements an economic sys-
tem in which players influence their access to virtual resources by building new
settlements or upgrading them to cities. The game rules determine construction



costs. Thus, the game’s economy incentivizes players to spend resources to in-
crease their chances of gaining more resources in the future. To some extent,
this simulates a financial economic systems. Game economic systems may im-
plement so called positive feedback loops, in which more resources will sooner or
later lead to more resources. This is a common and, from a game design per-
spective, highly motivating pattern that is frequently applied. While positive
feedback loops can be an effective instrument for creating engagement from a
game design perspective, they are difficult to balance from a game balancing
standpoint. Due to the snowballing effect caused by the exponential creation of
resources, even marginal changes can lead to drastic imbalances. To counter-
act snowballing, games can implement mechanisms to destroy virtual resources
without any equivalent value. In Catan this is implemented by a rule that forces
players to discard half of their resources if they hold more than seven when
a seven is rolled. In addition, it is crucial to set appropriate building costs in
Catan. If cities are too cheap to build, the game may snowball too quickly. If it is
too expensive, progression becomes sluggish. This progression can be balanced
through the game’s economy and plays a key role in shaping the overall feel of
the game [Schreiber and Romero, 2021]. In Catan, players begin with just two
settlements and little resources. As the game unfolds, they experience a sense
of growth by increasing their resource income and expanding their network of
buildings. Furthermore, Catan features a trading system where supply and de-
mand, combined with player negotiation, determine resource value. Additional
balance emerges as players often refuse to trade with whoever is in the lead.

In Chapter 7 we explore ways to model a game economy as a graph inspired
from previous work by Klint and van Rozen [2013] in combination with simula-
tions and automated balancing.

1.2 Research Questions

In the previous section we have seen that game balancing is multi-
faceted [Adams, 2014; Schreiber and Romero, 2021]. Based on related work and
related foundational books, we identify game level and economy design as two
crucial facets to target for automated game balancing. Therefore, we define four
research questions (RQs) for this thesis, which we will explore and investigate
in order to answer them thoroughly:

RQ1 Quantification of balance: What is a reliable, data-driven foundation that
enables automated, game-independent measurement and quantification of bal-
ance in competitive, two-player game levels?

In order to pursue automated game balancing methods, it is first neces-
sary to develop a foundational method for determining balance that can
express it in a form suitable for algorithmic processing. Since the bal-
ance of a game level depends on various aspects such as asymmetries in
the level or character design, probabilistic elements, or simply the skill
of the players, finding a robust and reliable metric to express the bal-
ance of a game level is crucial. Games inspire with their uniqueness,



RQ 2

RQ 3

RQ 4

therefore it is an additional challenge to develop this method indepen-
dently of a particular game. Related works (e.g., Lanzi et al. [2014] and
Lara-Cabrera et al. [2014]) incorporate domain-dependent information
for automated balance estimation, but this makes them difficult or im-
possible to transfer it to another game.

Accelerating automated level balancing: How can automated game level
balancing be accelerated while maintaining content quality, diversity, and
asymmetries?

Balancing game levels is a time-consuming task involving a lot of man-
ual work and playtesting [Schreiber and Romero, 2021; Becker and Gor-
lich, 2020]. Moreover, as we will discover when quantifying balance
(RQ 1), collecting information on the balancing state of a game auto-
mated is computationally intensive, but PCG methods should be fast
and reliable [Togelius et al., 2011a]. Therefore, we aim to develop an ap-
proach to automatically generate balanced two-player game levels, with
the overall goal of reducing the computational effort while still generat-
ing valid and diverse levels. In addition, we aim to explore other use
cases for level balancing, such as asymmetric player setups or an "im-
balancing" to favor a specific player.

Human perception of balance: What is the human perception and evalua-
tion of the artificially quantified balance of game levels through simulations?

We aim to find a method to automatically determine the balance of a
game level in a robust and quantified way (RQ 1), and to develop a
method to accelerate balanced level generation based on this metric
(RQ 2). Games are, however, made for human players, each of whom
perceives balance from their own subjective perspective. For this rea-
son, it is essential to investigate how human playtesters perceive the
automatically created balance. Due to the perception of a level’s balance
involves also subjectivity based on the player’s skill and experience for
instance, it is an additional challenge how to ask people to express their
opinions in an unbiased but accurate way.

Automated game economy generation and balancing: How can au-
tomation techniques be integrated into the generation and balancing of game
economies?

With RQ 1-3, we explore automated game balancing on the game level
facet. In addition to game levels, game economies are a powerful system
for shaping the player experience while maintaining overall balance on
a macro level. Moreover, they can be highly sensitive to small changes
in their configuration, requiring a lot of manual work in fine-tuning.
By transferring and adapting findings from RQ 1 and RQ 2, we aim to
develop methods for the automated generation and balancing in the do-
main of game economies.



1.3

Contributions

In order to answer the research questions presented, we make the following
contributions (C). The research question to which the contribution refers and
the chapter in which it is included are also indicated.

C1

C2

A data-driven foundation to express the initial balance state of a com-
petitive, two-player level.
Introduced in Chapter 4, applied in Chapters 5 and 6, RQ 1

To approach this question we first provide an in-depth discussion of what
balance in a game actually means and how this concept differs from fair-
ness. We conclude that, to isolate skill from randomness, a game should
be balanced for all players in terms of an equilibrium of win rates, but
must not be designed to be fair.

To quantify balance we transfer the Statistical Parity metric [Dwork et al.,
2012] from the fair machine learning community to express the balance of
a competitive two-player game. By only taking into account, how often
each player wins in multiple simulations, our metric is independent of the
game itself. While the Statistical Parity ensures equal probability between
two groups, our method extends this concept by mapping it onto a nu-
merical scale in the interval [0, 1], where 0.5 indicates perfect balance, and
0 and 1 indicate maximal imbalance. This representation makes it well-
suited for algorithmic processing. Since games often include probabilis-
tic elements, simulations with the same configuration may have different
outcomes. In order to ensure robust balance estimation, we propose a
method for determining the minimum number of simulations required
to obtain stable results.

An architecture that formulates level balancing as both a Markov deci-
sion process and a PCG problem. Chapters 5 and 6, RQ 2

Since game simulations to estimate the balance are computationally in-
tensive (C 1), we frame tile-based game level balancing as a Markov De-
cision Process (MDP) in order to apply Reinforcement Learning (RL) to
learn a trajectory of modifications that most influences the level balance.
Therefore, we use, adapt, and extend the PCGRL (PCG via RL) frame-
work by Khalifa et al. [2020] and propose new representations of the ac-
tion space, in which the agent swaps two tiles at each time step.

Results show that our method can balance levels in fewer steps and with a
better overall accuracy compared to other search-based approaches and
the original PCGRL. This reduces the computational effort by avoiding
unnecessary simulations and contributes to accelerating the generation.
Moreover, we examine difference applications of the proposed method
and show that it can also be used to generate balanced levels for asym-
metric player archetypes, levels with a particular imbalance for a specific
player, and its transferability to a different environment. We further op-



C3

C4

C5

Cé6

timize the action and observation space to improve the method’s general
accuracy.

The empirical evaluation of the artificially simulated and generated
balance with human playtesters. Chapter 5, RQ 3

In an empirical study with human playtesters, we show with descriptive
analysis and prove by hypothesis testing, that the balance determined in
C 1 and used for accelerated level generation in C 2, is also perceived by
humans in the indented way in most scenarios. Since game balance is
multi-faceted and its perception is also partly subjective, we use a com-
parative survey design letting participants play and compare level ver-
sions before and after our method (C 2) has been applied.

G-PCGRL: A Markov decision process to generate graph data via rein-
forcement learning. Chapter 7, RQ 4

With G-PCGRL (Graph PCG via RL), we adapt the MDP of the PCGRL
framework by Khalifa et al. [2020] in combination with our prior results
from accelerated level balancing (C 2) to generate graph data through ma-
nipulating a graph’s adjacency matrix according to a set of constraints. In
comparison to other search-based methods, our approach is fast at infer-
ence. Moreover, G-PCGRL is controllable in terms of graph size and node
types. We show the feasibility of our method with several different sets
of constraints, however, we report a limited scalability when the graph
size increases. We will address this limitation in our contribution with
the GEEvo (Game Economy Evolution) framework (C 5).

GEEvo: A framework for the generation and balancing of graph-based
game economies with evolutionary algorithms. Chapter 7, RQ 4

With GEEvo (Game Economy Evolution) we introduce a framework with
two evolutionary algorithms to controllably generate and balance graph-
based game economies. GEEvo comes with a lightweight game economy
simulation framework to, like in previous contributions, simulate results
in order to estimate the balance. To represent game economies as graph,
we follow the formulation by Klint and van Rozen [2013]. Our evalua-
tion shows that the method can balance arbitrarily configured economy
graphs in most cases. Furthermore, it is capable of balancing two eco-
nomies simultaneously, as demonstrated in our case study. In addition,
GEEvo addresses G-PCGRL’s limitation in scalability for increased graph
sizes, however, in exchange for an increased runtime.

Feast & Forage: An environment for research on automated game bal-
ancing. Introduced in Chapter 4, applied in Chapters 5 and 6, RQ 2 and 3

Along with this thesis, we identified a lack of research environments for
balancing games entirely through PCG. Therefore, we developed an en-



vironment inspired by the NMMO (Neural Massively Multiplayer On-
line) [Suarez et al., 2019] environment to apply, explore, test, and eval-
uate our method. While NMMO is designed for intelligent multi-agent
research with up to 100 agents, Feast & Forage is made for research on
generating small, asymmetric puzzle levels to be balanced for two play-
ers entirely through the spatial placement of tiles. Additionally, we define
the win conditions differently in order to fit the context. Furthermore, we
provide a playable prototype of the game for human playtesting, which
was used for the empirical evaluation in contribution C 3. With easily
adaptable and extensible rules as well as agent heuristics, it can serve as
a versatile testbed for future research.

1.4 Thesis Structure

In general, this thesis is structured around the four main Chapters 4-7, which
address the previously defined research questions from Section 1.2 and thor-
oughly describe our contributions, results, and findings (cf. Section 1.3). An
introduction to games and balancing has been given in Section 1.1.

First, we introduce the relevant theoretical background consisting of a def-
inition of PCG, agent-based simulations, search-based optimization, and RL in
Chapter 2. Second, we discuss the related work on PCG and automated game
balancing which is relevant for the entire thesis in Chapter 3. If a chapter re-
quires a more focused review of related work or addresses a scope not relevant
to the overall thesis, we include it directly within the respective chapter.

In Chapter 4, we introduce and define foundational concepts which are used
throughout the thesis, such as quantifying balance automatically (RQ 1) and
defining the environment Feast & Forage. Chapter 5 contributes methods and
findings in order to answer RQ 2 and RQ 3, focusing on automated game bal-
ancing on the level facet in combination with an empirical evaluation. Chapter 6
extends and adapts the findings of Chapter 5 by providing additional insights
and applications, such as asymmetries, imbalances, and transferability. These
insights further support and strengthen our conclusions in the context of RQ 1
and RQ 2. Chapter 7 targets automated balancing on a second facet by transfer-
ring findings from Chapters 5 and 6 to generate and balance graph-based game
economies in order to answer RQ 4. We discuss our contributions in a dedicated
section in each main chapter.

Finally, Chapter 8 presents our conclusion and the implications of this the-
sis (Section 8.2). We also discuss ethical considerations in automated game bal-
ancing (Section 8.4), outline limitations (Section 8.3) of this thesis, and suggest
directions for future work (Section 8.5).
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Chapter 2

Theoretical Background

This chapter provides the theoretical foundation for the thesis by introducing
key concepts used throughout. Section 2.1 introduces and defines Procedural
Content Generation (PCG) in games in general, whereas Section 3.1 in the fol-
lowing chapter presents related work on PCG for this thesis. We then intro-
duce agent-based modeling (ABM) in Section 2.2, which serves as the simulation
framework to estimate a game’s balance in Chapters 5 and 6. Finally, we describe
several search-based optimization methods used in this thesis in Section 2.3, as
well as Reinforcement Learning (RL) in Section 2.4. For better understanding
and readability, the definition of what a game constitutes and its balancing has
been given in the introduction in Section 1.1. Where applicable, we continue to
use the running example of the game Catan.

2.1 Procedural Content Generation for Games

PCG [Shaker et al., 2016] is an active area of research spanning several computer
science disciplines and is a subarea of game Artificial Intelligence (AI). This sec-
tion is based on the foundational book Artificial Intelligence and Games by Yan-
nakakis and Togelius [2025a], in particular the chapter on PCG [Yannakakis and
Togelius, 2025b], and follows the proposed taxonomy. Before reporting on spe-
cific related work, we give a brief definition of what PCG actually means in the
context of games and particularly this thesis, and why it is so relevant to games.
While our focus is on PCG for games, it is not limited to games and can also be
found in other domains, such as computer graphic [Merrell and Manocha, 2011],
chemistry [Gémez-Bombarelli et al., 2018], or music [Hoover et al., 2011].

What is PCG? In the context of games, Togelius et al. define it as: "PCG is the
algorithmical creation of game content with limited or indirect user input" [To-
gelius et al., 2011a, p.6]. According to the taxonomy by Yannakakis and Togelius
[2025b], PCG approaches can be structured around the terms content, methods,
and their role, each of which can be further divided into binary aspects. Content
refers to the generated outcome and can be distinguished by its type, function-
ality, and spatiality. The content type can be necessary or optional, depending on
whether it is required to complete the game. Its functionality distinguishes dec-
orative content which is purely aesthetic and does not require any interaction,
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from functional content. In terms of spatiality, methods either generate spatial
structures such as 2D or 3D levels, maps, or objects, or non-spatial elements such
as stories or narratives.

A PCG method can be further classified by its determinism, controllability,
testing, learning, and iterativity. Methods are either deterministic or stochas-
tic: the former can be seen as data compression, while the latter offers great
variation. Controllability refers to whether parameters can control the output,
a desirable property [Togelius et al., 2011b]. While respect to testing, construc-
tive methods generate content once, whereas generate-and-test methods test the
output and regenerate it, or parts of it, if constraints are violated. Methods can
be authored or trained, depending on whether they rely on handcrafted rules
or incorporate a model that can be learned via machine learning for instance.
Finally, methods generate content iteratively in multiple steps or single pass.

In terms of roles, PCG approaches can be classified by temporality, auton-
omy, and adaptivity. Temporality distinguishes between generated at runtime
and content created offline in advance. Autonomy refers to whether content
is generated fully autonomously or support designers in a mixed-initiative set-
ting. Adaptivity captures experience-driven methods that incorporate a player
(experience) model or interact with players to evaluate the generated content,
whereas experience-agnostic methods do not include players in any way. This
distinction is, however, often blurred in practice.

For this thesis, we formally define a deterministic procedural content gener-
ator PCG% as:

gen

PCG, =P x{C} — O. (2.1)

The generator outputs the content set O of all possible combinations of a set
of input parameters P and the entire set of constraints C. O in PCG refers to
the contents of a game, such as levels, textures, narratives, quests, sounds and
music, or even rules. In contrast, it does not include the game’s program code
itself or the engine [Yannakakis and Togelius, 2025b]. Conversely, stochastic
content generator include probabilistic in order to increase the content diversity.
In this work, we will introduce several of such generators and formally define
them as:

PCG™" := P x {C} — D(0), (2.2)

where D is a set of probability distributions. The content o is then sampled from
a selected probability distribution d € D:

0~ d. (2.3)

Catan also implements PCG by combining parameters and constraints with
stochasticity in the distribution of hex tiles during setup. This can be under-
stood as sampling from the distribution of all possible orders of tiles d, which
has been predefined by the game designer, for example by specifying the num-
ber and types of tiles (P) and the shape how the tiles are to be laid out (C). The
complexity of the content generation is further enhanced by additionally assign-
ing probability values to each tile through dice number tokens.

Controllability refers to allowing the PCG method to be parameterizable via
an input parameter p € P. This can allow a configuration as an input to in-
fluence the content, for instance based on the player’s previous behavior or the
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game designer’s ideas. We define the controllable generation from a stochastic
generator as:

o ~d(-| p). 2.4

Why do we need PCG? A driving incentive to procedurally generate content
at runtime was the limited hardware resources for storing the game content in
the early days of video games in the 1980’s [Shaker et al., 2016; Yannakakis and
Togelius, 2025b]. A popular example is the dungeon crawler game Rogue [1980],
in which the levels are generated from scratch each time the game is started. The
game’s popularity led to the creation of the Rogue-like game genre, characterized
by a heavy reliance on procedurally generated content. Another example is the
game Elites [1984], which was really only about saving disk space by not allow-
ing any variations in the generated content, so only P and C had to be stored.
This is a deterministic PCG approach as defined in Equation 2.1.

PCG quickly caught the attention of the commercial gaming industry and is
now present in many popular games across a range of genres, such as Diablo III
[2012], Minecraft [2011] and Factorio [2020], to name but a few. Once motivated
by limited disk space, PCG is now motivated by other reasons. One reason, of
course, is the automation of human manual labor in order to reduce costs in the
development process. Another reason is that PCG adds content diversity to a
game which enhances the replay value. This is particularly true for Catan, where
PCG varies the probability and spatial arrangement of resource tiles, making re-
source rarity different in each game. In addition, with adaptive PCG, content
can be tailored to players’ needs, for instance, it can be created based on previ-
ously played games to dynamically adjust the difficulty to a player’s skill level.
This is also known as dynamic difficulty adjustment. Finally, PCG can help de-
signers to be not only more productive, but also to be more creative. PCG as
an assistive toolbox can therefore be a valuable support within the process of
design and development [Shaker et al., 2016; Yannakakis and Togelius, 2025b].

Moreover, when the problem of creating content is shifted to the metaprob-
lem of designing systems that generate content, we gain deeper insight into the
fundamental nature of the content [De Kegel and Haahr, 2020].

What are desirable characteristics of a PCG method? Which characteristics
in particular are desirable or required is highly dependent on the game and the
context in which a PCG method is used. Shaker et al. [2016] define the five
characteristics speed, reliability, controllability, diversity and believability. Gen-
eration speed is particularly important when content is generated online while
the player is playing, whereas it is only desirable in the game production pro-
cess. Additionally, a PCG method must be reliable in terms of the validity, ergo
playability, of the generated content. Controllability adds the ability to control
the generated content with parameters from a set P. This is particularly useful
when player adapted content or a level with a specific difficulty is to be gener-
ated. A PCG method that always generates the same or mostly the same content
is also not a desirable solution. For this reason, a PCG method should be able to
generate diverse content. Finally, the generated content must be believable in the
sense that players do not recognize it as artificially generated content. There-
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fore, the PCG method should avoid revealing obvious patterns in the generated
content, or otherwise players may lose interest in the game.

2.2 Agent-based Modeling and Simulations

Agent-based Modeling (ABM) is a computational approach to estimate the dy-
namic of a system by simulating agents that interact with an environment and
with each other. To estimate a level’s balance state we will use agent-based sim-
ulations in the Chapters 5 and 6. In this section we therefore give an overview of
the theoretical foundations and explain advantages of this modeling approach.
We base this section on the foundational books by Railsback and Grimm [2019],
tailored to a mathematical and computer science audience, and Gilbert [2008],
approaches ABMs from a computational social sciences perspective.

In contrast to expressing the whole system in terms of equations, simulating
the actions and interactions of agents is beneficial for studying complex phe-
nomena that arise from local interactions with the environment, such as in fi-
nancial markets, social- or ecosystems, but also in games. To better understand
the concepts of an ABM, we will break this down and describe and define the
terms agent, environment, and simulation.

Agent: From the pure theoretic view, agents are abstract entities which act au-
tonomously within an environment when simulating. Given a specific context
they can represent barely anything from stock traders, animals, or like in this
thesis, players. Each agent has a unique state, such as its position in the envi-
ronment or other defining attributes. These attributes can be static or can change
dynamically when the agent interacts with the environment or other agents. An
agent can interact with the environment or other agents based on its internal
heuristics or rules, but also learning algorithmic approaches such as RL are pos-
sible.

Agents can perceive the environment and other agents. A key distinction lies
in the type of observability: in fully observable settings, all information is always
available to the agent, while in partially observable settings, only a subset is
accessible. Partial observability may depend on the agent’s state, such as its
position, limiting its perception to nearby agents.

Interactions may not only be with the environment, but also with other
agents in order to communicate, cooperate, coordinate, or to compete. It must
be further distinguished between a direct interaction, such as fighting or trad-
ing, and indirect, such as modifications of a shared environment. In Chapter 5
and 6 for instance, agents compete indirectly in a fully observable shared envi-
ronment.

Environment The environment creates the space or context of the ABM’s sys-
tem in which the agents operate. It can be abstract or highly tailored to a specific
use case, described by rules or a concise grid or network-based format for in-
stance. Environments that model such a geographical space, as in our case game
levels, are called spatially explicit. Internal constraints of the environment influ-
ence the agent behavior via shared resources or locations, but also global con-
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straints can affect the dynamics of all agents simultaneously. The environment
can be passive, merely reacting to agent interactions and providing information,
or active, dynamically altering its state to influence agent behavior.

Simulation A simulation in the context of ABM is the process of executing
the computer-based model defined by the environment and its agent(s). The
execution is mostly done in discrete time steps, where the internal rules and
constraints of both the agent(s) and the environment are executed. In order to
observe how the system behaves as a whole, internal state representations of
both the environment and the agent(s) are tracked at each time step. In this way,
it is possible to analyze system behaviors that would be difficult or impossible
to analyze purely analytically or to observe the real world.

2.3 Search-based Optimization

Search-based optimization is an umbrella term for algorithmic problem solving
approaches that formulate optimization as an exploration of potential candidate
solutions in a search space S. The quality of a potential solution is evaluated by
a fitness or objective function to guide the search in order to explore § efficiently
to find near-optimal solutions. In the context of PCG, search-based optimization
is widely applied (cf. Section 3). Given the formal definition of PCG in Equa-
tion 2.1, the search space would be the set of all possible contents O. We will also
use search-based optimization approaches in this thesis, such as hill climbing
for level balancing (Chapter 6) and evolutionary algorithms for game economy
generation and balancing (Chapter 7) and thus explain both approaches in more
detail in the following.

2.3.1 Hill Climbing

Hill climbing [Eiben and Smith, 2015] is a family of trajectory-based local search
algorithms for finding a local optimum s* € S within a given §. As PCG can
be defined as a search problem to find content within the defined S, we use
hill climbing approaches as baselines for our RL implementation in this the-
sis (Chapter 6).

A hill climbing algorithm operates iteratively in discrete timesteps t. It
starts with an initial solution s;—g € § and then iteratively explores neigh-
bors of s;— using a neighborhood function N which yields a candidate solution
st—1 € N(s1=0) € S. Domain knowledge, the best known solution so far, ran-
domness, or their combinations can be used to initialize s;—g. The quality of a
candidate is evaluated with a function fitness(s;) € IR, often containing specific
information about the problem domain. If the fitness f;—; of s;—; is superior
then the one of s;—, s;—1 is accepted as the new local optimum s* and the search
continues until a termination criteria is met. Such a criteria may be the num-
ber of allowed iterations T or a threshold when the actual solution is considered
as good enough. A formal procedure of a hill climber is given in Algorithm 1.
When implementing a hill climbing agent for Catan for instance, neighbors of s;
may be prioritized to directly increase the agent’s total victory points.
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Algorithm 1 Formal procedure of a hill climbing algorithm.

1: procedure HILLCLIMBING(S¢—0)

2: init s* < s;—

3. init f* < evaluate fitness(s*) € R

4: initt <1

5: whilet < T do

6: init s; < select neighbor s; € N(s*) C S

7: init f; < evaluate fitness(s;)

8: if f; > threshold then

9: return s; > success
10: end if

11: if f; > f* then

12: $* < s;

13: f* < fi

14: end if

15: t+t+1

16: end while

17: return s* > failure: return best-so-far

18: end procedure

Hill climbers can find a good solution quickly and are easy to implement,
however, they tend to frequently find only local optima which may be signifi-
cantly worse than the global optimum. Furthermore, depending on the evalua-
tion function, there is often no information about how good the found solution
is in relation to the global optimum.

2.3.2 Evolutionary Algorithms

Evolutionary algorithms [Eiben and Smith, 2015] are biology-inspired meth-
ods which can be applied to various optimization problems. They are widely
used across domains such as chemical physics [Oganov and Glass, 2006], fi-
nance [Branke et al., 2009], and — relevant to this thesis — games [Togelius et al.,
2024] (see also related work, Chapter 3), among others. In addition, evolution-
ary algorithms can also be used for neuroevolution, which is the usage of such an
algorithm instead of the commonly used gradient descent for the optimization
of the parameters of a neural network [Stanley and Miikkulainen, 2002; Flore-
ano et al., 2008]. Risi and Togelius [2017] provide a survey on neuroevolution in
games. In this thesis, we will apply evolutionary algorithms for the generation
of valid graphs according to constraints and the balancing of game economies
in Chapter 7.

Due to their flexibility, they can be applied to a wide range of search or op-
timization problems, including both discrete and continuous problems. Evolu-
tionary algorithms typically employ crossover and mutation mechanisms which
enable an extensive exploration of the search space S. These mechanisms are of-
ten highly tailored to the target domain, allowing for strong adaptability — one
of the key reasons for the widespread popularity of this family of algorithms.
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Disadvantages include a strong reliance on randomness during search space ex-
ploration, which can lead to unpredictable behavior and make fine-tuning chal-
lenging. Additionally, similar to hill climbing methods, there is no guarantee of
finding the global optimum — or even a satisfactory solution — within a limited
number of iterations or computation time.

Functionality: Algorithm 2 describes the formal process of an evolutionary al-
gorithm. Since they are often customized to solve specific problems, there is
no single universal formal definition. This example provides a typical imple-
mentation that we will adopt in this thesis. The core concept of evolutionary
algorithms is inspired by natural evolution: in a given environment, a popu-
lation P of n individuals i € P C & competes for survival and reproduction.
In the algorithmic context, each individual represents a potential solution, and
the population maintains a diverse set of these solutions with varying quality
(fitness). The fitness f; of each individual is evaluated based on how well it per-
forms in achieving the desired goal, essentially measuring how well it solves
the given problem using a function Fitness(i) € R. The algorithm then sim-
ulates evolutionary cycles, known as generations, by selecting individuals for
reproduction through crossover and applying mutations to introduce variation.

In the crossover step, individuals are typically paired randomly, with each
pair serving as a parent unit. To create new individuals, crossover is applied.
In biology, crossover refers to the exchange of genetic material between indi-
viduals, and in evolutionary computing, it similarly involves the exchange of
“genomes” between parent solutions. These genomes must be modeled in a
way that aligns with the problem domain, but ultimately, the problem’s solu-
tion must be decomposable into individual genomes. The crossover process can
be performed in various ways, depending on the data type of the genomes. For
symbolic genomes, one common method is to randomly split the individuals at
a chosen point and swap parts between them. For numerical genomes, mathe-
matical operations can be applied to generate new solutions.

In the next step, mutations are applied to each i € P with a probability
. Similar to natural evolution, this involves randomly altering an individual’s
genome. Mutations are a crucial mechanism for introducing new genetic ma-
terial into the population, allowing for the possibility of creating entirely new
and potentially superior solutions. This mitigates the risk of the algorithm get-
ting stuck in a local optimum by fostering diversity and encouraging the explo-
ration of the search space. While mutations can thus be sufficient to create new
genomes in order to explore the search space, the crossover step is not strictly
mandatory in all evolutionary algorithm. The number of crossovers or muta-
tions performed depends on the specific domain and the overall convergence
of the algorithm. Therefore, the frequency and application of these operations
must be evaluated and adjusted for each case individually. The crossover step
then yields a new set of offsprings C which is then added to P.

After crossover and mutation, the fitness f; of all individuals is evaluated
via a fitness function f, and the population is ranked according to individuals’
finesses. For the next generation, only the n best individuals are selected to
continue, ensuring that the most promising solutions are retained and further
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evolved. This "survival of the fittest" selection ensures that the average fitness
of the population increases over multiple iterations. The algorithm stops when
a stopping criterion is met. As in hill climbing approaches, this can be a number
of generations allowed or a threshold at which the current solution is consid-
ered good enough. Finally, the individual i* with the best fitness is returned as
solution.

Algorithm 2 Formal Process of an Evolutionary Algorithm

1: Initialize population P C S with |P| = n individuals
2: repeat
Select parents Pparents € P, | Pparents| > 2
4: C = Crossover(Pparents), CC S
5: P+ PUC
6 foralli € P do
Mutate(i), with probability p

@

7

i otherwise
8: fi < Fitness(i)
9: end for

10: P < SurvivorSelection(P, n, f)
11: until termination condition is met
12: return i* = arg max;cp f (i)

2.4 Reinforcement Learning

RL [Sutton and Barto, 2018] is a machine learning method inspired by learning
from feedback of executed actions within an environment. Unlike supervised
learning, RL does not require training data, making it particularly advantageous
for applications in domains where usually no training data is available, such as
procedurally generating content for games [Khalifa et al., 2020; Yannakakis and
Togelius, 2025b], as in the context of this thesis. Since it learns to optimize a
policy to optimize a trajectory, RL is less reliant on randomness once it has been
trained, in comparison to other search-based methods (cf. Section 2.3). This
characteristic makes RL well-suited for our use case, as it can speed up infer-
ence and, consequently, reduce generation time in the context of PCG. When
implementing an RL agent for Catan, it may choose actions that temporarily
decrease its victory points but lead to greater gains in the long term—offering
an advantage over a hill climbing approach, which only considers immediate
improvements. However, RL has some disadvantages, including limited gener-
alization and scalability, as well as high computational costs during training.

Markov Decision Processes: In the basic framework of RL, two fundamental
entities exist: the agent and the environment with which the agent can inter-
act. This concept is similar to that of ABMs (Section 2.2). Environments can be
complex and can contain uncertainty; the same action taken in the same state s;
may lead to different next states s;,; due to stochastic transitions. A Markov De-
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Figure 2.1: The interaction between the agent and the environment in a Markov
decision process. A redrawn version by the author based on Sutton and Barto
[2018, p.48].

cision Process (MDP) is a formal, structured approach to model such decision-
making problems under uncertainty. By taking the consequences of different
actions into account, MDPs also enable reasoning about the long-term implica-
tions of decisions. This is particularly advantageous, as it supports evaluating
actions not just by their immediate outcomes, but by their expected cumulative
rewards — allowing for the selection of actions that may appear suboptimal in
the short-term but lead to better long-term performance. This is an advantage
over search-based approaches such as hill climbing (cf. Section 2.3). Interac-
tions with the environment occur in discrete time steps ¢ and are defined by the
quadruple (S, A, P, R):

e Sisasetcontaining all possible states {sy, ...,s, } € S. A state is the specific
description of the environment in a distinct time step.

e A is a set containing all possible actions {4y, ...,a,,} € A in each state. An
action is a specific interaction with the environment.

 P(st,St4+1,at) is the probability transition function describing the probabil-
ity to enter state s;;1 from s; by taking action a;.

® R(st,St41,a¢) is the reward function describing the agent’s expected re-
ward given the state transition from s; to s;;1 taken action ;.

Figure 2.1 gives an overview of the agent-environment interaction. In each time
step, the agent is in a specific state s; of the environment. The agent can select an
action a; to interact with the environment and to enter the next state s;; 1. Subse-
quently, the agent receives a feedback, called reward r;, from the environment.
A positive reward reinforces the action taken in the context of s;, a negative re-
ward is considered a punishment which weakens the action. The agent’s goal
is to find a policy 7t which maximizes the cumulative reward when interacting
with the environment. This sequence of actions is called a trajectory.

A challenge in RL is the trade-off between exploration and exploitation. Ex-
plorations refers to gaining new knowledge with potentially higher rewards by
mainly choosing actions randomly, while exploitation is the usage of known
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actions with high rewards. A simple example is the e-greedy strategy, which se-
lects the best known action with a certain probability €. This may be combined
with a decay mechanism. In the beginning of training where little knowledge is
present, € is high for choosing a random action to encourage exploration, while
as training proceeds, € decays to favor actions known to yield a high reward.
Other approaches include Upper Confidence Bounds, such as Auer et al. [2002],
which select actions based on both expected reward and and how often they
have been tried. Another is Entropy Regularization, as used by Haarnoja et al.
[2018], which encourages exploration by maintaining a more stochastic policy
to prevent it from converging too quickly.

Methods: In this thesis the RL method Proximal Policy Optimization (PPO)
[Schulman et al., 2017] is applied. This paragraph aims to categorizes it in the
context of other RL methods in the literature. A detailed explanation of PPO is
given in Section 2.4.1.

Multiple RL methods have been proposed which can be separated in dif-
ferent categories. Value-based methods aim to estimate a value function, the
policy then selects state-action pairs based on their estimated value. Examples
are Q-learning [Watkins and Dayan, 1992], where the agent learns an action-
value function (Q-value) or Deep Q-learning [Mnih et al., 2015] which extends
Q-learning with a deep neural network to approximate the Q-value function.

Instead of estimating value functions, pure policy-based methods directly
learn a policy that maps states to actions. Trust Region Policy Optimization
(TRPO) [Schulman et al., 2015] constrains policy updates using a so called trust
region to prevent it from too large updates. This trust region is defined by a
Kullback-Leibler divergence threshold between the old and the new policy, mea-
sured over the state distribution, to avoid overly large changes. PPO improves
TRPO by using a clipped surrogate objective function in order to constrain the
policy updates, achieving similar stability with a simpler implementation.

Actor critic methods are a combination of both, value-based and policy-based
methods. While the action is in charge of selecting good actions, the critic eval-
uates the actions by estimating a value function. Examples for actor critic meth-
ods are PPO or TRPO. Both use (deep) neural networks to represent the critic
and the actor.

Another distinction of RL methods can be made by separating them into
model-free and model-based methods. Model-free methods do not require a spe-
cific type of environment to learn an optimal policy, whereas model-based meth-
ods require a model of the environment. Examples for a model-free method are
PPO or Q-learning. An example for a model-based meth-od is AlphaZero [Sil-
ver et al., 2018], which uses a model of the environment for better planning of
the state-action pairs.

2.4.1 Proximal Policy Optimization

This thesis applies PPO [Schulman et al., 2017] as RL algorithm, as it is widely
used due to its balance of simplicity and robustness. Since then it has been ap-
plied in various domains, such as fine-tuning of large language models [Ouyang
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et al., 2022], robotics [Shahid et al., 2020], stock trading [Yang et al., 2020], and,
as the focus of this thesis, PCG for games [Khalifa et al., 2020], to name just a
few.

Functionality: PPO is model-free, policy-based, and actor-critic. In contrast to
other policy gradient methods, PPO updates the policy in mini batches more
frequently to ensure a more efficient training. It's main novelty lies in the intro-
duction of a clipping mechanism to avoid overly aggressive policy updates and
a better training stabilization. This is achieved by its Clipped Surrogate Objective
function (Equation 2.5). To avoid excessive updates of the policy, PPO adds a
constraint to penalize too big changes to the policy parameters 0.

LHP(9) = By [min(ri(0) Ay, clip(r:(0),1 — €,1 + €) Ay (2.5)

The probability ratio 7:(6) of choosing a; in s; under the actual policy 7y and the
old policy 7g,,, is defined as:

7T9(¢t|5t)
709,14 (ﬂt\St)

Before starting with any policy updates, r;(6) will be 1. While updating the
policy in mini batches, r¢(#) will move away from 1. To counteract too large
changes to 0, updates exceeding [1 — €,1 + €] are clipped, where € is a config-
urable parameter. The estimator of the advantage function A; in Equation 2.5
measures the relative benefit of taking action a; in state s; compared to the ex-
pected return from the state under the current policy. The average value of the
objective function [E; represents the sampled trajectories from interacting with
the environment.

r(0) = (2.6)
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Chapter 3

Related Work

Before providing a detailed overview of the related work, we categorize this the-
sis within its research domain. A schematic categorization is given in Figure 3.1.
This thesis is situated within the broad field of game research, specifically at
the intersection of two subdomains: Procedural Content Generation (PCG) and
automated game balancing. Game balancing itself is rather a practice which is
applied in industry than an academic field. However, there are emerging fields
focused on optimizing and automating this process. An example is the investi-
gation of interactions via PCG elements, a subject to which our work contributes.
Within this intersection, we further focus on methods that utilize machine learn-
ing.

This chapter is therefore structured as follows: we first provide related work
on PCG in games in Section 3.1, the definition and background of PCG has been
given before in Section 2.1. Section 3.2 covers related work on automated game
balancing. Within this section, we include a dedicated paragraph that presents
work that is directly at the intersection of PCG and automated game balancing.

Machine Learning

Automated
Balancing

Research on

Games

this thesis

Figure 3.1: A schematic categorization of this thesis within the academic litera-
ture.
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3.1 Procedural Content Generation in Games

The academic literature on PCG in games covers multiple different algorithmic
approaches and genres for which the content is to be created. In this thesis, we
are interested in the algorithmic approaches and thus structure this section ac-
cordingly. We will first give a broad overview of the methods in general, before
going into more detail by describing specific works. Since this thesis is at the
intersection of PCG, game balancing, and machine learning (cf. Figure 3.1), the
intention here is to give the reader an overview of existing techniques in the
literature, rather than a comprehensive enumeration of all existing works.

PCG methods proposed in literature are mostly search-based [Togelius et
al., 2011b], such as evolutionary algorithms [Togelius et al., 2024], constraint-
solving [Cooper, 2022], machine learning [Summerville et al., 2018] and deep
learning [Liu et al., 2021] approaches, which have recently been enhanced by
the use of Large Language Models (LLMs) [Gallotta et al., 2024]. Besides the
mentioned approaches, dedicated algorithms tailored to a particular game are
widely implemented in the industry, such as in games like Minecraft [2011] or
Factorio [2020]. However, since these approaches are neither academic nor pub-
licly available, we exclude this category from this section.

While many different works on PCG for games have been introduced with
different algorithmic approaches, the evaluation of a content generator is not
standardized. To fill this research gap, Khalifa et al. [2025] introduce the PCG
Benchmark, a testbed decoupled from a specific algorithm, to evaluate PCG ap-
proaches in terms of the quality and diversity of the generated content, as well
as the method’s controllability. We will evaluate our content generators on com-
parable aspects, but we have not included the proposed test benchmark as it
was published at the end of the writing of this thesis.

Although many different methods for PCG have been proposed in the litera-
ture, we find that the majority of works focus on single-player and tile-based or
voxel-based games. Popular games used as testbeds are for instance the puzzle
game Sokoban [1982], the platformer Super Mario Bros. [1985] or the sandbox
game Minecraft [2011]. In contrast, in this thesis we focus on competitive two-
player games in the context of balancing entirely through PCG and the genera-
tion of graph-based game economies.

3.1.1 Search-based Approaches

Search-based approaches (cf. Section 2.3) are particularly suitable to create game
content since they do not require existing game content to learn from as in con-
trast supervised machine learning methods do. Furthermore, they are very flex-
ible in terms of the design of their objective function. For these reasons they are
a popular and widely applied approach in research.

Togelius et al. [2011b] provide a taxonomy and survey on search-based PCG.
Yannakakis and Togelius [2011] introduce experience-driven PCG (EDPCG), a
framework to use PCG to enhance the user experience by exploring the search
space to find candidates which maximize the player experience. Therefore, a
player experience modeling is included into the objective function of a search-
based algorithm, using subjective and objective player or gameplay data. Ac-
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cording to the authors, gameplay data used within an objective function can
be considered a static simulation-based evaluation function. We will use this
concept in Chapters 5 and 6, however, applied in the reward function for Rein-
forcement Learning (RL).

Evolutionary algorithms are a popular algorithmic approach for PCG. An up
to date survey how evolutionary algorithms are used in the context of games,
particularly also for PCG, is given by Togelius et al. [2024]. Many related works
also combine evolutionary algorithms with an additional method: Hastings et
al. [2009] propose an algorithm in combination with an evolutionary algorithm
to generate both graphics and game content tailored to a player’s preference.
Cardamone et al. [2011] introduce an evolutionary algorithm for the genera-
tion of maps for a first-person shooter using simulations with artificial agents to
evaluate the generated content. Shaker et al. [2012] generate new levels for the
game Super Mario Bros. [1985] by combining an evolutionary algorithm with
a grammar for defining constraints. Holmgard et al. [2019] generate personas
using Monte Carlo Tree Search (MCTS) in combination with an evolutionary ap-
proach to generate personas for game testing. Liapis et al. [2013] present the
Sentient Sketchbook, a game level design tool to assist designers in the develop-
ment phase. The tool allows to create sketches of levels — based on which the
tool then automatically generates levels for proposal using a genetic algorithm,
and tests them for playability, among other things. Charity et al. [2020] generate
new levels for the game Baba Is You [2019] with a mixed-initiative approach of
human users and an evolutionary algorithm. Rogers et al. [2023] use an evolu-
tionary algorithm for the generation of graph-based game economies to target
different complexity levels. Along with a user study the authors show that par-
ticipants perceived the targeted complexities as intended. We will discuss this
work in more detail when we are dealing with game economy generation and
balancing in Chapter 7.

Besides evolutionary algorithms, other search-based approaches are also ap-
plied for PCG. Summerville et al. [2015] present the improvement of Markov
chain-based PCG level generators with MCTS. De Kegel and Haahr [2020] pro-
vide a survey of PCG for puzzles games, highlighting several works that use
search-based approaches such as MCTS, Breadth First Search, and evolutionary
algorithms.

Inspired by Rogers et al. [2023], we will apply evolutionary algorithms to
the largely under-explored field of game economies in the context of GEEvo
(Game Economy Evolution) in Section 7.4. We will investigate their use for both
generating and balancing graph-based game economies and employ them as a
baseline for G-PCGRL (Graph PCG via RL) in Section 7.3.

3.1.2 Constraint-solving Approaches

In the context of PCG for games constraint-based solving approaches generate
content by systematically satisfying predefined rules (constraints) that specify
limitations of the content. While this family of algorithm ensures content va-
lidity by design and offers fine-grained control through explicitly defined con-
straints, solving the constraint-based problem can quickly become computation-
ally expensive and often results in repetitive content which is generated.
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A popular representative for the generation of tile-based game content is
the algorithm Wave Function Collapse (WFC), inspired by quantum mechanics
and originally introduced by Maxim Gumin in 2016 in a non-academic context.?
WEFC generates content greedily and without backtracking, filling a grid by as-
signing tiles to each cell in order to satisfy local adjacency constraints. Each
cell starts in a superposition where all tiles are possible. In order to lower the
entropy of the grid, the algorithm iteratively reduces the uncertainty by elimi-
nating invalid options by propagating constraints from neighboring cells until
the whole grid is resolved or a contradiction occurs. Due to its versatility in cre-
ating content, WFC has been recognized by researchers, e.g., in the investigation
as a general constraint solving approach for PCG by Karth and Smith [2017] or
in the survey by Summerville et al. [2018]. Since its introduction, many works
extended WFC, such as through incorporating design-level constraints [Sandhu
et al., 2019], applying it hierarchically [Beukman et al., 2023], or including also
non-uniform tiles [Piepenbrink and Bidarra, 2025], to name just a few.

Other works use SMT (Satisfiability Modulo Theories) solvers, such as the
one described by Whitehead [2020], to generate dungeon layouts. Others em-
ploy Answer Set Programming (ASP), as demonstrated by Smith and Mateas
[2011], in various game domains. Sturgeon, an approach introduced by Cooper
[2022], is a system for generating tile-based levels using a constraint solving ap-
proach. The author evaluates his method by comparing the different solvers and
testing it with various game environments, such as Super Mario Bros.

While constraint-solving approaches can be a powerful tool for PCG, we
avoid them in this thesis since they require a manual encoding of human and
domain knowledge through constraints [Guzdial et al., 2025]. In particular,
the latter is what we explicitly do not want to do in this thesis to ensure that
our approaches are easily transferable to other games. In the context of au-
tomated balancing through PCG, capturing the nuances of balancing via a set
of constraints is especially prone to errors and cumbersome. In the context of
G-PCGRL (Graph PCG via RL) in Section 7.3 we deal with sets of constraints.
However, we approach this from a different perspective: learning these sets via
RL in order to speed up generation time.

3.1.3 Machine Learning and Deep Learning Approaches

Besides search-based and constraint solving approaches, machine learning and
deep learning methods can be applied to train models for content generation
on existing content. Summerville et al. [2018] present a survey on PCG meth-
ods using machine learning (PCGML) and Liu et al. [2021] for deep learning.
While search-based methods can use machine learning for evaluation, but gen-
erate the content still by exploring the search space, PCGML methods directly
use data to train a model which generates the content. PCG with deep learn-
ing enhances neural network based PCGML using advanced neural network
architectures, such as Generative Adversarial Networks (GANs), Convolutional
Neuronal Networks (CNNs) and LLMs. GANSs are applied for instance in the
work presented by Volz et al. [2018] and TOAD-GAN [Awiszus et al., 2020] to

3Github: https://github. com/mxgmn/WaveFunctionCollapse
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generate Super Mario levels. Minecraft [2011] worlds are generated in World-
GAN [Awiszus et al., 2021]. For the tile representation of the levels, techniques
known from natural language processing are used, for instance TF-IDF (TOAD-
GAN) or embedding representations (World-GAN).

Merino et al. [2023] introduce the 5-dollar model, a lightweight sentence trans-
former architecture to generate pixel art sprites for games. Bontrager and To-
gelius [2021] present Generative Playing Networks, a PCG architecture for level
generation consisting of two parts: a CNN-based generator and a RL agent
which learns to play generated levels. In contrast to other PCGML approaches,
this method does not require existing training data, as the agent guides the gen-
erator in terms of what content to generate.

Recently, LLMs gained a lot of attention and are also applied to various PCG
problems. LLMs enhance PCG to provide control and descriptions of the de-
sired content via natural language. Gallotta et al. [2024] present a comprehen-
sive survey on the use of LLMs in games, including PCG, while Maleki and Zhao
[2024] provide a focused survey specifically on LLMs for PCG in games. Sud-
hakaran et al. [2023] introduce MarioGPT, a fine-tuned LLM to generate Super
Mario levels and Todd et al. [2023] explore LLMs to generate levels for a puzzle
game. Whitehead et al. [2025] empirically evaluated the generation of tile-based
worlds via LLMs through conversational interaction. They concluded that large
parameter models could quite accurately reason about game world information
in the tested setting but performed poorly when reasoning about pure tilemap
representations or tile image data. We will describe LLM approaches explored
in combination with RL in the subsequent paragraph on PCG with RL.

Since our use cases involve problems for which no training data is available,
the approaches in this paragraph are not applicable, but we include them here
to provide a thorough overview of the research area.

3.1.4 Reinforcement Learning Approaches

RL lies at the intersection of machine learning and optimization (cf. Section 2.4).
In the context of games, RL is widely applied to play them (e.g., Silver et al. [2018]
and Vinyals et al. [2019]), whereas in this paragraph we focus on the use of RL
to generate game content. Khalifa et al. [2020] introduce the PCGRL (PCG via
RL) framework to frame level generation as a Markov Decision Process (MDP).
Since this thesis uses and extends PCGRL (Chapters 5, 6, 7), we give the reader
a thorough explanation on PCGRL in Section 4.4 and focus here on the related
work in terms of PCGRL.

Earle et al. [2021] extended PCGRL to be controllable. Controllability is pro-
vided by including additional information in the observation space and also
adjusting the reward function dynamically. For example for the game Sokoban,
the PCGRL generator can be controlled in terms of how many boxes should be
in the level. Jiang et al. [2022] further adapt PCGRL to generate 3D levels and
demonstrate this in an Minecraft environment.

However, RL suffers from limited scaling, in particular when the action
space or the observation space increase. When using RL as a procedural con-
tent generator this is a problem when larger levels or levels with many different
types of tiles should be generated. Earle et al. [2024] try to address this issue and
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experiment with different definitions of the observation space (representations)
like partial observability. Additionally, they propose using PCGRL on a GPU to
enhance computation speed. While this approach slightly improves PCGRL’s
scalability, scalability limitations still arise as the level size increases. In com-
parison to this work, Earle et al. use comparably simpler environments where
the rewards can be calculated directly from the environment state. For our use
case with a simulation-driven evaluation function within the reward function,
this is not an efficient solution, as this would require a reimplementation of the
whole game environment for a GPU, among other things. Additionally, heuris-
tic agents that use path-finding algorithms, such as A*, cannot be efficiently run
on a GPU. For example, the inherently sequential nature of A* affords limited
opportunities for parallelization [Hart et al., 1968].

Shu et al. [2021] introduce Experience-Driven Procedural Content Genera-
tion via Reinforcement Learning (EDRL) based on PCGRL and the experience-
driven PCG by Yannakakis and Togelius [2011] mentioned earlier. On the ex-
ample of Super Mario Bros. levels the authors show how to embed different
constraints in the reward function to generate levels varying in fun and diver-
sity based on the theory of fun in game design by Koster [2013]. The action space of
the MDP definition is to select level segments generated with a pretrained GAN.
EDRL has than been extended by Wang et al. [2022] to generate further facets of
game creativity.

PCGRL has been further investigated by incorporating natural language pro-
cessing methods. Baek et al. [2025b] introduce IPCGRL (Language-Instructed
PCGRL), a PCG method that incorporates a sentence embedding model to pro-
vide controllability via natural language-based instructions. With ChatPCG,
Baek et al. [2024] show that reward functions which are generated as program
code with an LLM enhance the content quality by better emphasizing certain
game design aspects. With PCGRLLM (PCG via RL and LLMs), Baek et al.
[2025a] enhance ChatPCG by employing a reward refinement approach and
multiple reasoning-based prompt engineering techniques. The authors demon-
strate their method on a previously GPU optimized tile-based 2D game environ-
ment. For instance, a reward function generated with PCGRLLM from natural
language can teach a RL agent to generate levels where the player must first
encounter a bat and then find a key to escape through a door.

Gisslén et al. [2021] propose ARLPCG (Adversarial RL for PCG) with two RL
agents. The adversarial design of these two RL agents lies in two separated RL
agents, one for the PCG part and one for the playtesting of the generated con-
tent. To generate challenging but not impossible content, the generator receives
a reward signal from the playtesting agent. For better generalization the au-
thors use an auxiliary input within the observation space to improve the model
in terms of generalization. We will use the idea of dividing the content gener-
ation process into distinct units, such as in the context of generating balanced
levels (Chapter 5) and game economies (Section 7.4).

With this thesis, we contribute to using RL for PCG in particular to generate
balanced game levels, where we use, adapt, and extend PCGRL (Chapter 5 and
6). In addition, we contribute on learning sets of constraints in order to generate
graph data via RL (Section 7.3).
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3.2 Automated Game Balancing

Several methods in the context of automated game balancing on the examples
of different board and video games and genres have been proposed. In Sec-
tion 1.1.2, we had previously given a definition of what game balancing is. Re-
lated works on automated game balancing are to be separated into two areas:
first, methods or processes which can be used to automatically generate insights
on a game’s balance (Section 3.2.1) and second, methods that use e.g., algorith-
mic approaches to balance games (Section 3.2.2). Both types aim to support the
design process of a game and to reduce manual effort, e.g., to reduce the re-
quired time for playtesting. The main takeaway for this work is the overview
and the way in which other works use simulations to empirically determine the
balance of a game.

3.2.1 Methods for Automated Game Balance Analysis

Jaffe et al. [2012] propose an “early warning” system for balance for game devel-
opers. Like in this work, the authors estimate the balance using artificial agents
for competitive two-player games, but for a card game in an educational context.
The distinction to this work is their focus on providing game-specific informa-
tion to the developer, for instance, which actions may be imbalanced in which
state of the game.

Pfau [2025] presents a method for balancing the progression in a game using
Baldur’s Gate 3 [2023] as an example. While other works on automated game
balancing focus on selected aspects at a specific state of the game, the author
highlights that this is not enough and that a game in order to be balanced must
”shine” in all its times and places [Pfau, 2025, p.10]. For this reason, Pfau pro-
poses using game simulations with game-playing Artificial Intelligence (Al) to
explore all possible game states across different configurations. This is similar
to our approach of using an Agent-based Modeling (ABM) to simulate balance,
however, our focus is on competitive games, while Pfau focuses on progression
balance in a (cooperative) Player versus Environment (PVE) context. In addi-
tion, Pfau analyzes the progression of game combats and compares how much
damage selected classes deal compared over multiple rounds of combat based
on data from simulations. We follow a similar process with GEEvo (Chapter 7),
however, we model the simulation as a graph-based game economy and use the
data to optimize the economy configuration and so the overall balance.

Istamar et al. [2023] propose to train a RL agent to play a game and analyze
its behavior to identify imbalances. In a case study, the agent discovers a domi-
nant strategy, providing insights that can be used to adjust the game’s balance.

The focus of this thesis is on game balance through PCG and does not de-
velop new methods for automated game balance analysis directly. However,
our simulation and modeling framework, introduced in the context of GEEvo,
enables the investigation and automation of game economy balance.
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3.2.2 Methods for Automated Game Balancing

Algorithmic methods for automated game balancing often use search-based ap-
proaches to optimize balance. An overview of search-based optimization has
been given in the background chapter in Section 2.3.

In an initial approach, Hom and Marks [2007] use an evolutionary algorithm
to balance board games by adapting their game rules. Volz et al. [2016] propose
multi-object evolutionary algorithms to balance the decks of a card game. The
algorithm optimizes card decks towards a pareto optimality of balance and ex-
citement. The objectives for the fitness functions are estimated with a simulation
of the game. The authors conclude that automated balancing is feasible, how-
ever, they note that the human perception of the actual balancing is the "only
acceptable way" to accurately achieve balance and to maximize the enjoyment
for human players [Volz et al., 2016, p. 276].

Beyer et al. [2016] introduce an integrated, iterative process for automated
game balancing using a notation for business process models. However, auto-
matically tested gameplay with artificial agents may be too different from hu-
man gameplay. Therefore, like Volz et al., the authors highlight the importance
of human playtesters and therefore the process provides for both, automated
testing and manual testing of the game’s balance. While the process itself is
game independent, the proposed application still requires the incorporation of
game dependent parameters in the objective function of the applied evolution-
ary algorithm.

Preuss et al. [2018] apply the balancing process from Beyer et al. in a case
study to an open source Real-Time Strategy (RTS) game with small modifica-
tions. Game parameters are tested with simulations of the game and are au-
tomatically optimized with an evolutionary optimization strategy. The authors
highlight the computational effort of the simulations, restricting them to eval-
uate each parameter configuration only three times. As we will explore in Sec-
tion 5.2.2, the minimum number of simulations to run the game is notoriously
important in order to determine the game’s true balance with acceptable vari-
ance. As an objective function, the authors use highly game specific parameters
such as how many units are killed. Using game specific information, also like
Beyer et al. do, makes the method cumbersome to transfer to other games, as
for each new game a new function must be created respectively, tested and eval-
uated. For this reason, we will not include any game specific information in any
of the proposed methods in this thesis (cf. Chapters 5, 6, and 7).

Politowski et al. [2023] introduced an approach with autonomous agents that
are trained via RL to target game balancing from a game testing perspective. The
study focuses on the two types of balance: challenge versus success and skill
versus chance. In this context, they systematically evaluate their method using
a feedback loop that includes different versions of a game and agents with dif-
ferent skill levels, among others. Hernandez et al. [2020] present a framework
for balancing the metagame of a multiplayer game. The desired metagame can
be expressed using a graph representation, and the balance is optimized using
a Bayesian optimization approach. As in this work, the authors use simulations
with artificial agents of the game. The framework is then tested using the simple
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Rock-Paper-Scissors environment, as well as a more complex combat environ-
ment.

Mahlmann et al. [2012] propose a method based on evolutionary algo-
rithms to compile card decks to balance the deck-building board game Domin-
ion [2008]. The authors experiment with different fitness functions and also eval-
uate the balance with artificial agents. In particular three different agents each
with different skill levels are used. The authors conclude, that there are cards in
the game which bring more balance into the game than others, independently
of player skill and behavior.

Beau and Bakkes [2016] target automated game balancing for asymmetric
games on the example of a tower defense game. Using Monte Carlo simulations,
the proposed method aims to find the actions or the trajectory of actions that
lead to imbalanced states, and then iteratively adjust the identified actions. The
overall balance is then expressed in terms of the proportion that a player wins
on average; imbalances exist when the proportion is skewed toward a single
player. In Chapter 5 we use a similar approach, but motivate it from a different
angle: a fairness metric to assess algorithmic fairness.

The method introduced by Pfau et al. [2020] addresses automated game bal-
ancing differently in comparison to the previously described works by intro-
ducing deep player behavior models (DPBM), neural network-based models
trained on user data to replicate human behavior for a MMO game. The ad-
vantage of this method is that it allows human play styles to be replicated in
a data-driven manner. Using data from simulations, balance is assessed us-
ing game-independent information, such as whether an agent wins, combined
with game-dependent data like fight durations and the remaining health of both
the agent and its opponent. The replicated agents are then tested in a PvE and
Player versus Player (PvP) setting. In their follow-up work [Pfau et al., 2023],
the authors provide additional insights by analyzing the distribution of opti-
mal value configurations for enemies based on the available player data, among
other things.

Dynamic Difficulty Adjustment (DDA) is also a researched field in that con-
text as it aims to automatically balance the game’s current level of difficulty for a
better and personalized player experience. Zelada and Gutierrez [2023] propose
an algorithm to use DDA based on players” heart rate for a platformer game.
While they increase the game’s difficulty, for example, by adding more obsta-
cles when the heart rate decreases, they find in an accompanying user study
that the player experience increases when the difficulty is adjusted to keep the
heart rate within a predefined range.

Automated game balancing through PCG: Whereas most works focus either
on automating game balancing or procedurally generating playable content, this
thesis combines both approaches to target the balance through the design of the
content (cf. also Figure 3.1). Lara-Cabrera et al. [2014] generate balanced and
dynamic maps for an RTS game using an multi objective evolutionary algorithm.
As in this work, balance is estimated based on data from simulations, however, a
fuzzy rule base to incorporate game-specific information and expert knowledge
is used. In addition, no description of how many simulations are conducted
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or how the agents in the simulation behave is given. Similar to our findings
for certain generated levels, which we will report in Chapter 6, Lara-Cabrera et
al. found, among other things, that their method generates perfectly balanced
levels at the expense player inaction.

Lanzi et al. [2014] generate balanced maps for a first-person shooter, also us-
ing an evolutionary algorithm along with a balance estimation based on statis-
tics from simulations with artificial agents. The authors are also experiment-
ing with balancing maps for asymmetric setups by pitting agents with different
weapons and skill levels against each other. Inspired by this approach, we will
also experiment with asymmetric setups of player agents in Chapter 6. Like pre-
viously discussed works on automated balancing, this work also incorporates
game-specific information into the fitness function of the algorithm to estimate
the balance of a map in a given state. Since the game environment is deter-
ministic, the simulation is run only once, although different skill levels of bots
are created by setting a value for the respective accuracy when shooting. Many
games include, however, probabilistic elements in order to increase replayabil-
ity and to encourage strategic thinking under uncertainty. For this reason, we
focus on level balancing with probabilistic elements in Chapter 5 and 6, but also
in the context of game economies in Section 7.4.

Besides levels or maps, other forms of balanced content can be generated
in the context of a game. Sorochan and Guzdial [2022] generate balanced units
for the RTS game environment Micro RTS* using a search-based approach. The
balance of a unit is evaluated using game simulations with MCTS agents. As
a result, the authors propose ten generated units with distinct value configura-
tions that remain balanced, for instance, being worth their cost relative to their
in-game functionality. This approach enables the generation of diverse and vi-
able strategies by increasing a game’s asynchrony.

We have observed that many works on automated game balancing rely on
simulations of the game to estimate balance. We adopt this approach, but ad-
dress two key limitations of existing works: (1) simulation setups and con-
figurations are often under-specified or not specified at all, and simulations
are typically run only a few times for each balance estimate. In addition, (2)
most methods rely on game-specific information. In contrast, we will propose
an approach to estimate the minimal number of simulations required to re-
duce randomness-induced fluctuations, regardless of game-specific knowledge.
This approach provides a foundation for reliably estimating a game’s balance
simulation-driven. Lastly, we will contribute to automated level balancing en-
tirely through PCG, thereby addressing the two mentioned limitations of exist-
ing works. In addition, while other works focus on the balancing of game maps,
classes, or units, we will explore the balancing of game economies.

4Github: https://github.com/Farama-Foundation/MicroRTS
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Chapter 4

Foundational Concepts

Partial results from the author’s publications are included in this chapter:

¢ Section 4.2 and 4.3: Florian Rupp, Manuel Eberhardinger, and Kai Eck-
ert. Balancing of competitive two-player Game Levels with Reinforcement
Learning. In 2023 IEEE Conference on Games (CoG), pp. 1-8, Boston, USA,
2023. doi: 10.1109/CoG57401.2023.10333248 .

* Section 4.1, 4.2, and 4.3: Florian Rupp, Manuel Eberhardinger, and Kai
Eckert. Simulation-Driven Balancing of Competitive Game Levels with
Reinforcement Learning. IEEE Transactions on Games (ToG), vol. 16, no. 4,
pPp- 903-913, 2024. doi: 10.1109/TG.2024.3399536 .

¢ Section 4.5 Florian Rupp and Kai Eckert. GEEvo: Game Economy Gen-
eration and Balancing with Evolutionary Algorithms. 2024 IEEE Congress
on Evolutionary Computation (CEC), Yokohama, Japan, 2024, pp. 1-8, doi:
10.1109/CEC60901.2024.10612054 .

This chapter presents the foundational concepts that are used throughout the
thesis, most of which are developed as part of this work. These concepts estab-
lish the basis for our contributions and help us address the research questions.

This thesis contributes to the automated balancing of games through algo-
rithmic approaches. First, we clarify and refine the concept of balance to ground
our work. Since games for entertainment are designed and intended to be
played by human players, it is important to distinguish balance from the re-
lated yet distinct concept of fairness. Thus, we discuss fairness and balance in
general, and subsequently in the context of games, to establish a more precise
foundation for our balancing methods (Section 4.1). Based on that foundation,
we introduce a metric in Section 4.2 to express the balance of a two-player game
numerically. We derive this metric from an existing fairness metric, which con-
stitutes our contribution C 1. We will use this metric throughout the Chapters 5
and 6.

Due to the lack of research environments for game balancing through Proce-
dural Content Generation (PCG), we introduce the Feast & Forage environment,
which we will mainly use in Chapters 5 and 6. It can be found in Section 4.3 and
is our contribution C 6. In Chapters 5 and 6, we formulate game balancing as
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a Markov Decision Process (MDP) and in Chapter 7, we formulate constraint-
based graph data generation as an MDP. For both, we use the PCGRL (PCG via
Reinforcement Learning (RL)) framework by Khalifa et al. [2020] as a founda-
tion, which we adapt, extend, and build on. We describe Procedural Content
Generation via Reinforcement Learning (PCGRL) in Section 4.4.

In Chapter 7, we address game balancing from the perspective of game eco-
nomies. To simulate graph-based game economies, we introduce a lightweight
game economy simulation framework inspired by the formal definition by Klint
and van Rozen [2013]. This framework is presented in Section 4.5.

4.1 Balance and Fairness — A Distinction Between the
Concepts

With this section, we define and discuss what balance in games means, as well
as how this concept differs from the term fairness. It is important to note
that the concept of fairness is a social and ethical concept, and not a statistical
one [Chouldechova, 2017]. Games are, however, designed to be played by hu-
mans. Therefore, when applying an automated balancing process, particularly
in a competitive environment with multiple players, social and ethical consider-
ations should be taken into account.

This section is structured as follows: First, we give an overview of how the
terms fairness and balance are used in other fields, and explain their meaning in
the context of games (Section 4.1.1). Next, we introduce our method for estimat-
ing the balance of a two-player game using a simulation-driven approach and
expressing it numerically (Section 4.2). Finally, we discuss the extent to which a
game can be considered balanced (Section 4.2.4).

4.1.1 Fairness and Balance in General

In this thesis, the terms fairness and balance are key concepts that are frequently
referenced, each however addressing different aspects with different conceptual
focuses. Before we discuss them in more detail in the context of games, it is
important to define them and distinguish between them.

Fairness has been defined across various disciplines, reflecting diverse per-
spectives of equity, justice and inclusion. The philosopher John Rawls [1971]
introduced the concept of justice as fairness by treating all individuals equally
and impartial. His thought experiment the Veil of Ignorance puts individuals
without knowledge of their own characteristics in a decision-making problem
where they can decide about the design of a future social order, but they don’t
know in which place of the order they will be. According to Rawls, this igno-
rance ensures that their decisions are not influenced by self-interest and people
would improve conditions for the most disadvantaged to mitigate their own
risk, ensuring fairness and impartiality.

In economics, fairness can be understood as the equality of opportunity,
which means that an outcome for an individual with e.g., disadvantageous cir-
cumstances only depends on factors for which the individual could be consid-
ered responsible for [Roemer and Trannoy, 2015]. To ensure fairness, policies can
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be applied to govern systematic biases in economic systems and the distribution
of resources. In healthcare, the allocation of limited medical resources, particu-
larly during the COVID-19 pandemic, became a critical challenge. Emanuel et
al. [2020] define six recommendations to ensure patients are treated fair across
multiple areas and to prevent that individual doctors are left with the decision
which patients to prioritize. In the context of fair machine learning, fairness is
expressed technically through constraints and metrics to ensure equal treatment
of individuals and groups by preventing biases in data, predictions and mod-
els [Barocas et al., 2023].

The described definitions, though emphasizing different aspects of fairness,
converge on a common principle: ensuring equitable treatment and addressing
inequalities of individuals or groups while also taking their contextual back-
ground into account. We therefore refer to the term fairness as ensuring equity
while also taking into account a person’s or group’s contextual background.

Balance in contrast refers to managing competing objectives by ensuring a
state of equilibrium. The philosopher Thomas Nagel [1995] explores balance
as managing ethical tensions in a way that acknowledges both universal and
moral considerations. He states as an example how individuals and societies
must find a balance between impartial treatment for all, and partiality, such as a
special treatment for friends or family members.

In economics balance refers to a trade-off when addressing competing princi-
ples, in particular in the context of resource distribution. Sen [1986] for instance
links this to the balance between efficiency (maximizing total benefits and wel-
fare) and equity (fairness for the disadvantaged), in other words the balance
between moral and pragmatism. Balance is also important in the context of
ecosystems. An example is the balance between carbon dioxide emissions and
its sequestration e.g., through photosynthesis. The human-caused imbalance
heavily impacts the entire ecosystem, resulting in global warming, permafrost
thawing, and even more carbon dioxide being emitted [Schuur et al., 2008]. In
machine learning, balance involves the trade-off between performance metrics
such as, in the context of a classification problem, recall and precision [Bishop
and Nasrabadi, 2006]. Imbalance is also present in data, where a class label is
underrepresented, which is a challenge for many algorithms [He and Garcia,
2009].

Based on these definitions, we use the term balance when ensuring an equi-
librium. This does not take the contextual background of individuals or groups
into account by design.

The difference between fairness and balance can be further illustrated with
the fence metaphor by Angus Maguire [2016] in Figure 4.1. Three people of
different heights and conditions stand behind a fence and try to look over it.
There are only a limited number of three boxes to help the people — how should
we distribute them? Figure 4.1a shows a balanced distribution of the resources:
all three people have been given the same help — one box to stand on. With the
aid of the box, however, person C in the wheelchair is still unable to see over the
fence, whereas persons A and B can. Although this distribution is balanced, it is
not fair, since not all parties are treated according to their contextual background
and thus cannot all see over the fence. In contrast, Figure 4.1b shows a fair
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(a) Balance: an equal treatment. (b) Fairness: an equitable treatment.

Figure 4.1: Balance and fairness in the fence metaphor. A redrawn version by
the author based of an original illustration by Angus Maguire [2016].

distribution of boxes, that allows everyone to see over the fence. In this case, the
distribution is not balanced, but the outcome is fair, assuming that the overall
goal is to design a process that allows all parties to look over the fence. With
that in mind, we now discuss both terms in the context of games.

4.1.2 Fairness and Balance in Games

Based on the survey by Becker and Gorlich [2020], we had discussed that there
is no clear consensus among researchers what balance in the context of games
accurately means (Section 1.1.2). Balancing a game in a competitive multiplayer
context, such as in this thesis, differs from balancing solo player games or co-
operative multiplayer games. Here, balance must ensure equal chances of win-
ning for all players, for example by providing equal initial conditions. A well-
balanced game should allow players to win based on their decisions — and there-
fore their skills — rather than relying on luck. If we refer to the metaphor in Fig-
ure 4.1a again, we assume in this context that all players are identical and thus
provide them with the same number of equally-sized boxes. By design, we do
not consider that the players, the people playing the game, are actually differ-
ent. Exactly this difference between players should determine the outcome of
winning or losing, not an imbalanced game setup nor pure luck.

This is what the term fairness in a game references to. In a fair game, players
feel that a win or lose is earned, because their own decisions and condition have
influenced the outcome, not because there is a bias or impartial treatment in
the game design. Fairness always includes the players” individual perceptions,
whereas balance is to ensure the mathematical equilibrium.

In the opening quote on page 1, Oscar Wilde [1899] states that “life is never
fair” and that “it is perhaps a good thing for most of us that it is not”. Wilde
points out to an inherent truth: life is unfair. Circumstances like birth, talent
or luck are not distributed in a way that each individual has equal chances to
succeed in life and human social systems can also not fully compensate this
(even if they try). In Wilde’s context, this is a cynical remark about the society of
the time, where the upper class — to which Wilde also belonged — owed their
wealth and status to inheritance. For them, life’s unfairness was beneficial, as
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they had received advantages they hadn’t earned. However, unfairness in life
can let people think outside the box, being creative, innovate and try out various
experiences. If life was perfectly fair, most things would be highly predictable
and there would be only little room for surprises.

And this is exactly what makes games interesting: Every human player of a
competitive game is different. They might be of different ages, come from vari-
ous backgrounds, have a different education, or be in a better physical condition
than others. All these circumstances may affect their problem-solving strategy
and ability to react to unforeseen challenges resulting in unique behaviors in or-
der to win the game. For example, as shown by Kallabis et al. [2025], simply
designing identical game elements differently can lead people to perceive the
intended strength in the game differently. If all humans were the same, a game’s
outcome would be almost always the same, merely dependent on the game’s
probabilistic elements. In order to estimate balance isolated from fairness, we
will therefore use heuristic player agents that always behave deterministically
and consistently, to measure the effect of the system design rather than players’
differences (Chapter 5 and 6). Since humans are different, also their perception
of fairness is different. The one player might think he lost because of bad luck,
while another may perceive it was because of a wrong strategy she chose.

For these reasons, we cannot and do not want to create a game for entertain-
ment that is fair in any way in this thesis. What we can do and actually should
do instead is to ensure that the game is balanced. As we have seen in the pre-
vious paragraphs, balance ensures an equilibrium, excludes human disparities
by design, and focuses on the system itself (also cf. Figure 4.1). Nevertheless,
we cannot completely exclude the human from this process. In the end, it is still
up to humans how they respond to the intended balance, perceiving fairness
from their individual point of view. For this reason, we will conduct an addi-
tional empirical evaluation of the automated balance with human playtesters in
Section 5.5.

4.2 A Balance Metric for a Competitive Two-Player Game

This section addresses research question RQ 1, which aims to find a foundation
for quantifying balance automatically with a data-driven approach. This is our
contribution C 1.

Still, a challenging question is how to actually measure whether a game is
properly balanced, or even better, how to numerically express how balanced a
game is in its initial state. Related works [Volz et al., 2016; Preuss et al., 2018; Mo-
rosan and Poli, 2017] suggest using simulations of the game to collect data that
can then be used for metrics. However, a limitation of these metrics is that they
are domain-specific and contain highly game-dependent information. These
metrics, often hand-crafted for a particular game, may also distort the measured
balance if certain aspects included are overestimated or misjudged. For these
reasons, it is difficult or even impossible to transfer them to other games. There-
fore, we aim to develop a method that does not contain any domain-dependent
information, allowing the metric to be transferable to other games and settings.
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The first step in automating game balance is to automate the balance esti-
mation of a game level with a metric in order to process it algorithmically. Re-
lated work proposes heuristic approaches [Lanzi et al., 2014; Lara-Cabrera et al.,
2014] where the balance is computed from game-specific information, such as
the states of the players or spatial distances of game entities within the level
(cf. Section 3.2.2). Since these approaches contain domain-specific information,
they are not transferable to other games and additionally rely on the quality of
hand-crafted rules within the metric. The latter can be in particular an issue, if
a designer under- or overestimates the impact of a game parameter, which can
lead to an imprecise assessment of the balance. In addition, it is important that
this metric is robust in terms of scatter in order to provide comparable and re-
producible results that are not too influenced by probabilistic elements within
the game.

To address this shortcoming, we propose the use of a more general, game-
domain-independent balance metric, which by design treats a game as a black
box, depending only on how often each player wins. In Section 1.1.1, we have
seen, that a quantifiable outcome is essential to making a game a game. There-
fore, we only require that the game has at least one winner at the end to fit for
our method. Since draws can also provide information about the balance, our
metric takes this into account as well. We will discuss the influence of draws on
our proposed metric in the context of results in Chapter 6.

In order to automate this process, human playtesters are not an option, and
thus we stick to deterministic heuristic agent-based simulations of the game. To
replicate human behavior, the artificial agents should behave in a comparable
way to humans. Their configuration, however, is independent of the approach
and can be seen as a configurable parameter of the method. Instead of heuris-
tics, the usage of other approaches, such as Monte Carlo Tree Search (MCTS) or
RL agents, would be an option, but we argue that using deterministic agents
that follow an interpretable heuristic is a better option for a robust and repro-
ducible balance estimation. Since these heuristics significantly influence the ar-
tificially estimated balance, they should be carefully evaluated. We will evaluate
the generated levels and their balance later with human playtesters in an empir-
ical study in Section 5.5.

Furthermore, the estimated balance will solely depend on the heuristic used
in the simulations. We will thus show that heuristics can easily by exchanged.
Additionally, agents controlled by different heuristics can be used at once in
order to balance asymmetric player archetypes for instance (Section 6.2.2).

421 Derivation from the Statistical Parity Metric

As we saw in Section 4.1, an equilibrium must be established between two enti-
ties in order to create a balance. An existing metric that aims to ensure this is the
Statistical Parity metric [Dwork et al., 2012], which is used, for example, in the
fair machine learning community. Part of this research community is the eval-
uation of fairness in automated decision-making [Barocas et al., 2023], such as
algorithmic fairness [Chouldechova, 2017]. Since it puts the human into the cen-
ter and asks, if the automated decision is the same for e.g., all genders, it is used
in the context of a collection of metrics known as fairness metrics. An overview
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of these metrics is given by Makhlouf et al. [2021]. In that context, the Statistical
Parity metric (Equation 4.1) can measure the fairness between two groups, e.g.,
the classification result of a binary classifier for two groups G = 1and G = 2:

P(Y|G=1)=P(Y|G=2) (4.1)

The decision for the two groups is considered fair if the conditional proba-
bility of the same result Y is the same for both groups. For example, if men and
women are treated equally by an automated credit scoring system, the condi-
tional probability of getting a loan must be the same for both groups. In other
words, the decision must not depend on a person’s gender to be creditworthy.

In terms of game balance, we want to make sure that the outcome (here the
chance of winning) is the same for both groups (the players) and is not depen-
dent on a particular player. In the context of a level, this can be influenced, for
example, by the spatial distribution of game elements. In contrast to other fair-
ness metrics, such as Equal Opportunity and Equalized Odds, the Statistical Par-
ity solely focuses on the overall accuracy per group (here: win rate per player)
and does not take the actual background or qualification of individuals into ac-
count [Makhlouf et al., 2021]. Since we aim to treat both players independently
of factors like their individual skill or player archetype (cf. Section 6.2.2), the
Statistical Parity metric is the most appropriate fairness metric for this problem.
As we use it to create an equilibrium between the win rates of heuristic player
agents, we can speak of a balance metric.

4.2.2 Metric Design

In this section, we transfer the idea expressed in the Statistical Parity fairness
metric to the domain of game balancing. However, the direct use of Equation 4.1
is not applicable for a search-based or RL-based approach, since a numerical rep-
resentation of the balance quality is required for each time step . We therefore
define the win rate w,,; per player p; € P, where P = {p1, p2}, as:

Wy = P(wy | p=1i), i=12. 4.2)

wp,t is then inferred from the results of the n-runs of the agent-based simulations
per step. This can be considered as a sampling from the true win rate distribu-
tion. Second, we additionally want to make the metric design configurable to a
certain balance state b and thus rewrite the balance calculation b; as:

by = |wp;—b|, 0<b<1. (4.3)

Due to the use of the absolute value, w,; of both players could be used in
Equation 4.3, since their values describe probabilities that sum up to 1. b; is
defined in [0,1] as well, where 0 indicates that b; is exactly equal to b; 1 indi-
cates the maximum deviation from b. In the example where an exact balance
between both players is desired (b = 0.5), by = 1 indicates that a particular
player wins every game. With b; in this range, the metric can be adjusted flexi-
bly, for example, to also favor or disadvantage a particular player. In addition,
since intermediate rewards that compare t to t — 1 have shown good results in
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PCGRL, we include this design here as well. We will apply this metric in the
context of our adaption of PCGRL (Chapter 5 and 6) and thus refer to it here as
a reward. Finally, the reward r; is:

re=Dbi_1 — b +ua. (4.4)

To reward the RL agent additionally, a reward « is given if b; is exactly b. Oth-
erwise, o is 0. If & > 0, the episode always ends since by = b. As a result, the
reward will be positive if the agent improves the balance state, negative other-
wise. For no impact on the balance state, the agent does not receive a reward
(value 0). Using this reward design, the RL agent is gradually incentivized to
reduce the absolute difference from the current balance state to the desired one.

4.2.3 Estimation of a Suitable Number of Simulations

Even when simulating with the same deterministic heuristics, the winners may
be different each pass if the game environment contains probabilistic mechanics.
Probabilities are important mechanics that make games interesting, such as dice
rolling or card drawing [Schreiber and Romero, 2021]. A player can win with
luck, but when playing many times, skill should make the difference, otherwise
it is a gambling game. Since two simulation runs of an identical level with the
same deterministic heuristics can produce different results, the question arises
as to what number # of simulations is a good number to minimize the noise in
the probability and thus produce robust results. Since the simulations are com-
putationally intensive, it is of additional interest to find the number of minimum
runs where the results vary at an acceptable level.

We approach this by investigating how much the average win rate w, of a
given number of simulations 7 differs from that of w,,,. Only even values of
n are applicable, since otherwise a balanced game is not possible (unless there
are draws). We increase n up to N = 30 and use the same set of levels S, with
|S| = 500 for all values of n. The average deviation u, of a particular n is
expressed as follows:

S
Uy = |‘1§‘ Y NWsn —Wsniz|, n€2Z, n>2. (4.5)
seS

We show the course of the number of simulations with two identical heuristics
for the environment Feast & Forage (Section 4.3) in Figure 4.2. We will use this
setup in Chapter 5 and 6. In addition, the standard deviation is given with ¢
and 2c. It is clear that the larger 1, the smaller y,,. To determine a reasonable
value for n, we set the threshold: p, + ¢ < 0.05. For this environment, this is
n > 14. Therefore, we use n = 14 in this thesis for level balancing with the
Feast & Forage environment. This method can be used to determine n for any
competitive game environment. We will also use it to determine an appropriate
number of simulations for a different environment in Section 6.3.

4.2.4 An Acceptable Range of Win Rates

So far, we have only considered the balancing process to be successful if the
metric exactly matches the predefined balancing goal (e.g., b = 0.5). In many
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Figure 4.2: How many times n should we run the simulation to approximate the
balance state? We figure that out by calculating the mean deviation y, of win
rates from n — 2 to n for the investigation of fluctuations in win rates. The Figure
shows the course for the Feast & Forage environment (Section 4.3) which we will
use in the Chapters 5 and 6.

cases, however, it is not possible to measure a certain value exactly by sampling.
Although we have examined how often we should sample to find a balance be-
tween the number of simulation runs to minimize the uncertainty in estimating
the actual game balance, there is still a residual uncertainty. This is also a prob-
lem that often arises when collecting data about the real world, such as surveys.
To address this issue, a solution is the introduction of a bias and define the opti-
mal value not as a single value, but as a range.

The Disparate Impact metric [Feldman et al., 2015; Saleiro et al., 2018] ex-
presses fairness with the ratio of a predicted outcome of two groups. The fairest
ratio here would be represented by a value of 1. A commonly used range for
this metric to consider an outcome as fair is > 0.8 as noted by Saleiro et al.
[2018]. That being said, applied to game balancing, values in a range to the de-
sired value can be considered as balanced. For this work for instance, we could
then define a balanced game state as: 1 — (w1 — wp;) > 0.8. Introducing this
bias would increase the range of levels considered balanced, resulting in an even
better proportion of balanced levels in our method. Since this bias has a strong
influence on this proportion, it should be adapted to the game domain in terms
of residual uncertainty when transferred to game balancing. For example, in the
context of Section 6.3 — where we aim to balance paths for asymmetrical player
setups in a city environment — a perfectly fair ratio of 1 is not feasibly.

4.3 Game Environment: Feast & Forage

Both Chapter 5 and 6 focus on balancing game levels through PCG in order to
create balance through the spatial distribution of tiles. Although many different
game research environments have been introduced in the scientific community
and literature, they focus on the research of game-playing agents [Hu et al., 2024;
Bamford, 2021]. To the best of our knowledge, there is currently no research
environment for game balancing through PCG. For our research, we require a
tile-based, competitive environment that contains probabilistic game elements,
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and where, most importantly, spatial tile placement has a significant effect on
the overall balance.

An existing research environment that comes as close as possible to the
listed requirements is the Neural Massively Multiplayer Online (NMMO) en-
vironment [Suarez et al., 2019]. The NMMO environment simulates a typical
setting in the MMO game genre, where multiple players of different charac-
ter classes can forage for resources, craft items, enhance their character, fight,
or trade items at a market. This provides a great environment to test and ex-
plore various aspects of balance, such as asymmetries or level design. NMMO
has been developed for the study of intelligent multi-agent systems, and there
have been several competitions using NMMO at the NeurIPS conference® for in-
stance. NMMO also employs a PCG method based on Perlin noise [Perlin, 1985]
to generate the game world for each round. However, its focus is not on balance,
but on providing a diverse environment to encourage agent generalization in a
multi-agent content.

Since our focus is on creating a method for generating levels that are bal-
anced entirely through the level design, the NMMO environment contains too
much content that adds unnecessary complexity. To better control the actual im-
pact on balance, we focus on the competitive race for resources and their spatial
accessibility as the key mechanic. Therefore, we are disabling parts of NMMO's
functionality, such as combat, crafting, and trading items on a global market,
and limiting the number of players to two. Along with this thesis, we thus in-
troduce the Feast & Forage, which is set up within the NMMO environment, in
order to test and evaluate the level balancing methods developed in this thesis.
While an environment with a similar idea called Foragers® exists on the Griddly
platform [Bamford, 2021], it is cooperative, whereas Feast & Forage is competi-
tive.

In the following paragraph we will describe the rules for Feast & Forage
which are used in this chapter and we consider to be the basic game. In Chap-
ter 6 this basic game will be adapted for additional studies, such as on asymmet-
ric balancing by changing the winning conditions, or which tile types block the
movement for a particular player. Table 4.1 provides an overview of all tiles in
the basic game, including their functionality and sprites’. Figure 4.3 shows an
example level of the game.

Environment: Tiles are limited to the seven types: grass, rock, water, food,
scrub, player one, and player two. Rock and water tiles impede movement.

5NeurIPS NMMO Competition 2023: https://neurips.cc/virtual/2023/competition/66

597
Griddly - Foragers: https://griddly.readthedocs.io/en/latest/games/Foragers/inde

Xx.html
"The grass, water, and stone sprites are taken from the RPG Nature Tileset — Seasons by

Stealthix, available at https://stealthix.itch.io/rpg-nature-tileset, licensed
under CC0 1.0. The food and scrub sprites are created from the Pipoya Free RPG Tileset
32x32 by Pipoya in combination with the grass tile from the previous one. It is available
at https://pipoya.itch.io/pipoya-rpg-tileset-32x32 and is free for commercial and
personal use; redistribution is not permitted. The player tiles have been created by Alessan-
dro Puddu in the context of our joint paper, also using the grass tile as background.
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Name Blocks Resource Sprite

Grass No No
Rock Yes No
Water Yes Yes
Food No Yes
Scrub No No
Player 1 No No
Player2  No No

Table 4.1: Overview of the tile types

Fi 43: E le level.
and their properties in the basic game. igure 4.3: Example leve

Players win by either collecting five food resources or by surviving longer than
their opponent.

NMMO randomly assigns start positions at the beginning of each game.
Since starting positions have, however, a significant impact on a level’s balance
by defining the player’s spatial distance to resources, we add additional corre-
sponding tiles. Moreover, this allows to directly influence the balance by placing
the players tiles in the level. The starting positions of both players are always
on grass tiles and are indicated by the red and yellow player tiles. Beginning
with this chapter, we use a single tile to represent both players. However, as we
will see in Chapter 6, we improve the method’s performance by assigning each
player its own tile.

Players take their turns simultaneously and can choose from five actions:
move one tile up, down, left, or right, or to do nothing. Like in NMMO, a
player’s state is defined by their spatial 2D position on the level, and their
health, water, and food levels. On each turn, players lose water and food, with
health depleting when both reach zero. We use the same values as in NMMO,
an overview of these values and their function is given in Table 4.2. If a player’s
health is zero, he has lost immediately. Players can replenish their food level
by consuming food tiles by moving onto them, which then become scrub tiles.
There’s a 2.5 % chance per turn that scrub tiles will respawn as food. Water can
be replenished by moving onto tiles adjacent to water tiles, which are never de-
pleted. Health is gradually restored when food and water levels exceed 50 %.

44 PCGRL: Procedural Content Generation via Rein-
forcement Learning

In this thesis, we use, adapt, and extend the PCGRL framework [Khalifa et al.,
2020] for generating and balancing levels (Chapters 5 and 6) and generating
graph data (Chapter 7).

In PCGRL, PCG is formulated as a sequential decision-making task to maxi-
mize a given reward function, where semantic constraints can be expressed and
thus, no training data is needed. In the context of games and context generation,
this is a huge advantage, because when new games are created, there is often no
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Table 4.2: Overview of the used configuration values in the basic version of the
game environment Feast & Forage.

Description Value Additional information

Maximal Health ~ 100 Health is initially at maximum.
Maximal Food 100 Food is initially at maximum.
Maximal Water 100 Water is initially at maximum.

Food Drop 10 The loss of food per turn.

Water Drop 10 The loss of water per turn.

Health 10 Per turn if water and food levels are
Regeneration > 50 %.

Water Maximal Water ~ Set water to maximal water value if a
Regeneration player is adjacent to water.

Food Maximal Food  Set food to maximal food value if a
Regeneration player moves on a food tile.

Victory points 5 The number of food resources re-
(Collected Food) quired to win.

Food Respawn 2.5% The probability of a scrub tile transi-
Probability tioning back to a food tile.

data from which to train a model. A level is represented as an integer matrix,
where each integer denotes a distinct tile type. PCGRL modifies the level by
changing tiles within this matrix.

To apply RL, the PCG problem is framed as an MDP. Therefore, PCGRL in-
troduces three different MDP representations for level generation which differ
in their definition of the action .A and observation space S. For each, A is a dis-
crete set and S is a matrix with a one-hot encoded representation of the integer
level matrix. Across this work, we will introduce new swap and graph repre-
sentations based on the existing representations, and show that they are better
tailored to the specific problem domain. The original representations in PCGRL
are:

* Narrow: This representation randomly selects a tile in the matrix and the
agent can only decide what type of tile to place on the selected position.
It has a small action space because it consists only of the different types of
tile. For an environment with 7 unique tiles the action space would results
in a size of |A| = n. The observation space is cropped around the ran-
domly selected tile position where an action is to be taken. The crop size
¢ is configurable which then results in the matrix S € {0,1}2c+1)x(2e+1)xn,
To yield a matrix in the correct shape when a border position is selected, a
tile type for padding must be specified.
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 Turtle: The turtle representation starts at a random position and then al-
lows the agent to move to an adjacent position on the map and then to
decide what type of tile to place on the current position. The advantage of
the turtle representation is that the agent is not restricted to the randomly
assigned position and can therefore learn where to move next. Its action
space is | A| = 4 - n. The observation space is the same as for the narrow
representation and cropped around the current position of the agent on
the map. Additionally, the warp mode can be enabled or disabled. When
enabled, if the agent selects an action that would move it outside the ma-
trix, its position is set to the maximum value along that dimension. When
disabled, the agent’s position remains unchanged.

* Wide: The wide representation gives the agent full control over the level
generation process, as the agent can decide which tile of the whole grid
should be changed. This greatly increases the action space, as each posi-
tion of the grid multiplied by the number of tiles represents an action. This
is the most human-like representation, as the agent can change everything
directly according to a plan it has constructed. The size of the action space
for a level with the dimensions k and [ is |.A| = (k- 1)? - n. The observation
space is the full level resulting in the matrix S € {0, 1}/,

An episode ends when the level is valid, or a specific number of changes or
steps are exceeded. Each modification to the level matrix is considered to be a
change. Restricting the agent to a certain number of possible changes is crucial to
stabilize the training for better convergence, and also to ensure content diversity
in order to prevent the agent from always ending up with the same level. This
parameter, called the change percentage, should depend on the level size, and
according to Khalifa et al. [2020], 20 % is a good value. For level balancing we
will deal with 6 x 6 levels, resulting in eight changes (rounded up).

There have been several works which adapt PCGRL such as for controllabil-
ity [Earle et al., 2021], 3D levels [Jiang et al., 2022], scalability [Earle et al., 2024],
and the tailored generation of reward functions using a Large Language Model
(LLM) [Baek et al., 2025a]. For more details on PCGRL'’s related work, see the
the related work chapter, Section 3.1, specifically the paragraph on PCG with
RL.

4.5 Game Economy Simulation Framework

Based on the existing formal definition by Klint and van Rozen [2013] a game
economy can be considered as a directed graph. It defines how resources of
different types are generated and transitioned to other resource types. A basic
introduction of game economies has been given in Section 1.1.3. We only deal
with fixed economic systems, where all resources come from the economy itself.
In this context, nodes in that graph represent different functional components
such as the creation of resources or conversion to different types. Weights on
the edges describe how many resources flow from one node to the adjacent one.
Depending on the node type, the weights are absolute values or probabilities.
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For this thesis, we will use a subset of five different node types in our frame-
work of all available nodes defined by Klint and van Rozen [2013]. To create
valid and executable economy graphs, we establish the set of constraints C sim-
ilar to as in the context of Graph Procedural Content Generation via Reinforce-
ment Learning (G-PCGRL) (cf. Section 7.3.2), specifying for each node type the
permissible connections to other node types (Table 4.3). The values for maxi-
mum (max) and minimum (min) output sizes are each chosen to keep the econo-
mies more manageable. However, these values could also be changed to allow
for more complex economies (e.g., increase max output). The different types of
nodes are:

* Sources: Sources are entry points creating resources and adding them to
the economy.

* Random gates: A random gate distributes incoming resources based on
the probabilistic weights of its outgoing edges. It must be ensured that the
sum of the weights of all outgoing edges equals one. This can be used to
model e.g., critical attacks or random drops.

¢ Pools and fixed Pools: Pool nodes have an intern memory to store incom-
ing resources. They serve as buffers for outputs from sources, random
gates, or converters or as end points of the economy. For the analysis of
the economy, we can monitor the fluctuations of the resources within pools
over time. Fixed pools, a subform of a pool buffer a maximum of the num-
ber of resources equal to the highest outgoing weight. This is particularly
useful when modeling ability cooldowns.

¢ Converters: A converter transitions one or multiple incoming resources to
one outgoing resource.

* Drains: Drains permanently remove resources from the economy. As with
pools, drains can be monitored. Their main distinction from pools is that
they do not allow outgoing connections, thereby creating a termination of
the economy.

An example of how to model an existing economy from the sandbox game
Minecraft [2011] is given in Figure 4.4a. It shows the torch crafting process in an
automation setting where specific amounts of resources are added to the econ-
omy via sources per time step. Using pool and converter nodes we can define
this economy for torches from wood and coal sources. While coal can be directly
used for crafting torches, the wood resource must first be converted into sticks.
According to the original implementation®, the conversion to sticks yields four
sticks per two wood entities. In this example, other resources such as the time
to collect resources or the need for a crafting table for resource conversion are
neglected.

8https://www.minecraft-crafting.net/
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Table 4.3: The set of constraints C for Game Economy Evolution (GEEvo) game
economies: An overview of the different node types, including their allowed
connection types and the permissible number of connections to other node

types.

Node types ' Maxin Maxout Minout Minin Color

Source 0 3 1 0 green
Random Gate 1 3 2 1 red

Pool 2 3 0 1 blue
Converter 3 1 1 1 yellow

Drain 2 0 0 1 orange

Node types ' Allowed inputs Allowed outputs
Source - Pool, Random Gate
Random Gate  Source, Converter Pool, Converter
Pool Source, Random Gate, Converter Converter, Drain
Converter Pool, Random Gate Pool, Random Gate
Drain Pool -

4.5.1 Execution of Game Economy Simulations

The directed graph G of a game economy can be denoted as G = (V, £), where
V is the set of vertices (nodes) and & is the set of the edges connecting vertices.
For each vertex v; € V a subset A% C & exists containing all outgoing edges.
The types of all allowed node types (such as source or pool) are described in the
set NV (cf. Table 4.3). The execution of the graph economy starts by iterating over
the subset of all source nodes S = {v € V | T(v) = source} and then recursively
executing all connected nodes. For each v; all edges ¢; € A” are executed by a
function h(v;, e]-), T € N, hy respectively to the type T of v;.

We plot two example courses of simulations of the previously used example
with different weights of the economy in Figure 4.4a in the Figures 4.4b and 4.4c.
For this example, we assume both resources, wood and coal, to create one of
each per time step. By changing the needed amount x for coal to converse coal
and sticks to torches, this example demonstrates how small changes to a single
weight can impact the whole economy. While e.g., for x = 1 the number of
torches grows linearly per time step; for x = 2 it is gradual. Also, the curve
progressions of available wood and coal is different.
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(a) Example economy from the game Minecraft for crafting
torches from basic wood and coal resources.
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(b) Simulation 1: x = 1 (original value).
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(c) Simulation 2: x = 2 (value for demonstration).

Figure 4.4: Small changes can have a huge impact: An example of a game econ-
omy using the proposed framework and two simulations of it, each with a dif-
ferent configuration. The graph (a) shows the economy from the game Minecraft
to craft torches from wood and coal in an automation setting. The Figures (b)
and (c) show the monitoring of the pool nodes simulating the economy in (a).
By only changing the amount of coal needed to craft torches, the entire economy
behaves differently.
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Chapter 5

Level Balancing via Procedural
Content Generation and
Reinforcement Learning

This chapter is based on and extends the author’s publications:

¢ Florian Rupp, Manuel Eberhardinger, and Kai Eckert. Balancing of
competitive two-player Game Levels with Reinforcement Learning. In
2023 IEEE Conference on Games (CoG), pp. 1-8, Boston, USA, 2023. doi:
10.1109/CoG57401.2023.10333248 .

* Florian Rupp, Alessandro Puddu, Christian Becker-Asano and Kai Eckert.
(2024). It might be balanced, but is it actually good? An Empirical Evalua-
tion of Game Level Balancing. 2024 IEEE Conference on Games (CoG), Milan,
Ttaly, pp. 1-4, 2024. doi: 10.1109/CoG60054 . 2024 . 10645642 .

Partial results in this chapter are included from:

¢ Florian Rupp, Manuel Eberhardinger, and Kai Eckert. Simulation-Driven
Balancing of Competitive Game Levels with Reinforcement Learning.
IEEE Transactions on Games (10G), vol. 16, no. 4, pp. 903-913, 2024. doi:
10.1109/TG.2024.3399536 .

This chapter is about the automated generation and balancing of competitive
two-player tile-based game levels. We address the research questions RQ 2 and
RQ 3. In particular, we accelerate automated level balancing (RQ 2), and eval-
uate the human perception of balance (RQ 3). In this context, we apply and
evaluate our approach to automatically estimating a game’s balance simulation-
driven (C 1).

We answer these research questions with our contributions C2 and C 3. C 2
presents an architecture that formulates level balancing as a Markov Decision
Process (MDP). With C 3, we provide an empirical evaluation of the automati-
cally balanced levels with human playtesters. However, we also report several
shortcomings and limitations, that motivate a deeper investigation of the pro-
posed method in Chapter 6. It will further contribute to answering RQ 1 and

49


10.1109/CoG57401.2023.10333248 
10.1109/CoG60054.2024.10645642 
10.1109/TG.2024.3399536 

RQ 2 with additional applications in the problem domain, presenting further
insights and results.

5.1 Overview and Motivation

Level design is a key concept when creating games. In order to keep players
engaged, a balance must be struck between a challenging and enjoyable experi-
ence. This is generally not an easy task because it depends on two factors: the
game environment itself and the skill and experience of the players [Schreiber
and Romero, 2021]. In addition, each game is unique by design. An integral part
of the entertainment potential of a game are its unique rules and its narrative set-
ting, or both in combination, and how this interacts with the environment e.g.,
the level design. Furthermore, game levels for competitive multiplayer games
must be designed to be balanced towards equal initial win chances for all play-
ers. Imbalanced levels will lead to boredom or frustration, and players will quit
playing [Andrade et al., 2006; Becker and Gorlich, 2020]. For these reasons, level
balancing remains a challenging and time-consuming part of the entire devel-
opment process requiring a lot of manual work and playtesting.

To ensure balance through level design, game designers often rely on nearly
(point) symmetric map architectures. This can be seen in popular competi-
tive e-sports titles such as League of Legends [2009] or Starcraft II [2010], but
also in other competitive tile-based games such as Advance Wars [2001] or
Bomberman [1983]. In addition to symmetrical levels, alternative approaches
are also possible. Non-symmetrical levels offer more variety and can create
new ways for playful creativity to be entertaining and challenging. Figure 5.1
contrasts a symmetrically designed level and an asymmetrical level which are
both balanced in order that both players (red and yellow) can win equally of-
ten. Whereas symmetrical levels can be easily designed by mirroring part of the
level for the second player in order to ensure balance, asymmetrical levels must
be thoroughly designed and tested.

A B C D E F
F

(a) A symmetrical level. (b) An asymmetrical level.

Figure 5.1: A symmetrical and an asymmetrical level: Unlike symmetric levels,
asymmetric levels require an increased deal of design and tweaking for balance,
but can offer more variety in the gameplay, since players’ turns cannot be the
same every round.
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Since in this chapter we are only affecting game balance through level de-
sign, we frame this problem as a Procedural Content Generation (PCG) task.
There are a lot of works on PCG for games (cf. related work on PCG in Sec-
tion 3.1), but creating balanced content is more complex than just creating a
playable level, since it requires a deeper understanding of the overall game, its
rules and mechanics, such as win conditions and so on. Among other things, a
PCG method should serve content validity, diversity, and should generate the
content fast [Togelius et al., 2011a]. Recently, the PCGRL (PCG via Reinforce-
ment Learning (RL)) framework [Khalifa et al., 2020] has been introduced to
generate tile-based game content, framing this problem as a MDP. Applying
RL to PCG has the advantage that once the model has been trained, content
generation is very fast. To estimate balance, we will use the simulation-based
method for balance estimation proposed earlier in Section 4.2. Since simulating
the game multiple times to measure the game’s balancing state is computation-
ally intensive, RL helps to reduce computational costs by avoiding unnecessary
inference steps since the search space does not need to be explored from scratch
each time.

In order to combine RL, PCG, and simulations to balance game levels, we
will introduce an architecture and a new definition of an MDP, where the model
optimizes an existing level by swapping tile positions. This introduction raises
new questions and concerns that will be systematically explored and answered:

¢ Which tile types have more or less influence on the balance? Therefore, we
analyze the model’s behavior in the balancing process.

¢ The heuristics for the agent-based simulations must be designed carefully.
Since games are made for humans, they need to be balanced for humans,
so the heuristics need to replicate human behavior as closely as possible.
How is this to be determined?

The latter will be answered by an empirical evaluation involving human game
testers who will be asked how they perceive the intended balance. Since a
game’s balance is multifaceted on multiple layers, human perception of balance
can depend on different aspects that are highly subjective and moreover, diffi-
cult for humans to express objectively and numerically. We will therefore break
down the overall balance into smaller and more tangible items. Furthermore, we
will use a comparative survey design, as it is much more easier for humans to
express differences between two states [Thurstone, 1927]. More specifically, par-
ticipants are asked how they perceive differences in a particular balance aspect
of a level version one and two. To prevent participants from being influenced
by prior knowledge, they do not know which version of the level they are play-
ing. In order to analyze the data, we propose an approach to convert the relative
values of the comparison into absolute values. Using descriptive statistics and
hypothesis testing, we show that for most of the levels tested, humans perceive
a significantly better or even balance for certain aspects after applying the pro-
posed balancing method to a previously imbalanced level.
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Figure 5.2: Overview of the balancing architecture. It is separated into three
units: A level generator, a level balancing agent, and a game playing simulation.
In the latter, the game is simulated by playing it n-times with heuristic player
agents. The reward r; for training the balancing agent is computed from the
balance states b; and b;_1 of the simulations. The reward has been defined in the
context of the foundational concepts in Section 4.2.2.

5.2 Balancing Architecture

This section and the following ones address RQ 2 in order to accelerate auto-
mated level balancing. This is our contribution (C 2). As we identify limitations
and areas for further exploration, we will continue to strengthen our response
to RQ 2 in Chapter 6.

To automate the process of balancing tile-based levels, we propose an archi-
tecture consisting of three separate parts: a level generator, a balancing agent,
and agent-based simulations (Figure 5.2). The core idea is to divide the level
generation and balancing process into separate units. We will show that this
approach yields better results than doing both in the same step. Moreover, this
gives, game designers for instance, the opportunity to design a level which can
be automatically balanced. With this architecture, level balancing is framed as a
PCG task and can be seen as a fine-tuning for balance of existing content.

The level generator constructs a playable level from random noise as input
which is then fed to the balancing agent. In this work, we use PCGRL for the
generator, but any other PCG method will serve comparable at this point. The
generator is trained separately before training the balancing agent.

The core idea of level balancing is not to generate a new level but to modify
the given input level to improve the overall balance. For more information on
balance estimation see Section 4.2 At each time step, the balancing agent can
decide to swap the positions of two selected tiles. We will introduce the swap-
based representation pattern in Section 5.3. If a swap has been made, the level is
played n times in a agent-based simulation by heuristic player agents to collect
data for the balance estimation. Subsequently, the balancing agent is rewarded
based on how this action affected the balance state in simulations (Section 4.2.2).
The simulations can therefore be understood as the basis for a static simulation-
based evaluation function as described by Yannakakis and Togelius [2011]. More
details are given in the implementation details (Section 5.2.1).

Classification within the PCG taxonomy: According to the PCG taxonomy by
Yannakakis and Togelius [2025b] (described in Section 2.1), our balanced level
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generation method can be classified as follows: In terms of content, it is nec-
essary, functional, and spatial. In terms of the method, it is stochastic, generate-
and-test, trained, and iterative. Although it is not designed for controllable RL,
it supports controllability to the extent that both generated and user-defined lev-
els can be passed to the balancing agent to control the output. In terms of its
role, our method can generate content both at runtime and offline and operates
autonomously. In practice, adaptivity is often blurred, as is also the case here.
Although it does not explicitly model player experience or use player data, it
incorporates player behavior via an Agent-based Modeling (ABM) in the simu-
lation step for balance estimation.

5.2.1 Implementation Details

In this subsection, we provide more detailed information on the three individual
components of the architecture.

Level Generator

The task of this unit is to generate playable levels for the subsequent balancing
using a model trained with the PCGRL framework. The generator takes in a
random integer matrix (the level) as candidate level p from the set of all possible
levels (parameters) p € Proise = T*<I. The set T is the set of all possible tile
types a level of the size k x I can be constructed from (cf. Table 4.1). The reward
for the training process is designed to ensure the validity (a playable level) of
the producible content Opjayapre- This can be understood as incentivicing the
agent to satisfy the constraints in the set Cg,. It requires having exactly two
players and a valid path between them. To ensure direct competition, the latter
constraint ensures that both players have access to the same area of the game
level. Additionally, it prevents single players from being locked behind stone
walls. In the context of RL, a policy 7 is trained to manipulate p in order to
satisfy all constraints in Cgey. The set of possible distributions (the models) of
playable content is then D,. This approach can formally be described as the
stochastic PCG method (cf. Section 2.1):

PCGRLy: Phroise X {Cgen} - Dn(oplayable)~ (5.1)

level *

If there is a valid path between both players, the agent receives a positive re-
ward, otherwise a negative one. Additionally, at each step the agent is rewarded
with the difference of the players that are and should be (similar to Khalifa et al.
[2020]). We get the best results using the wide representation. An episode ends
when both constraints are met, or when the agent exceeds a fixed number of
permitted steps or changes. After training, we get a policy 71y with the parame-
ters 0, yielding the distribution d, € Dr. A playable level o, is then generated
by rolling out 71y in the generator environment given a particular random initial
level p € Pyise- This is defined as sampling from d,:

Op ~ dﬂa(' | p)- (5.2)

The model can produce levels satisfying the given constraints in 98,7 % levels
out of an evaluation sample of 5000. The generated levels achieve a maximum
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diversity at 100 % in an automated comparison, so no two levels are completely
identical. An example of a generated level is shown in Figure 4.3. The function-
ality of the game and tiles has been given in Section 4.3.

Level generation in this step continues until the agent has produced a valid
level that satisfies the constraints to ensure that the balancing agent receives
playable levels only. If a valid level has been generated, it is immediately passed
on to the balancing agent.

Balancing Agent

The balancing agent is the core component of the architecture in Figure 5.2. We
model the agent as a PCGRL agent to fine-tune a previously generated playable
game level 0, € Opjayapie- To support this process, we use our swapping rep-
resentations as action space definition for the MDP which we will introduce in
Section 5.3. The reward is computed from the results of multiple simulations
of the level (Section 5.2.2), thereby implementing the balancing constraint b (cf.
Section 4.2.2). The observation is the current level one-hot encoded. In detail,
this depends on the chosen action space representation (cf. Section 4.4). For
all RL problems, we use Proximal Policy Optimization (PPO) [Schulman et al.,
2017] as algorithm in this thesis. We use PPO not only because PCGRL employs
it, but also because it is a robust and computationally efficient RL approach,
due to its mechanisms for training stabilization and to avoid overly aggressive
policy updates [Schulman et al., 2017] (also cf. Section 2.4.1). Additionally, its
integration with deep RL enables the learning of a feature extractor and a value
function using a (deep) neural network. Since we are dealing with computa-
tional intense simulations for reward calculation, its computational efficiency
is of particular interest. A description of RL in general (Section 2.4) as well as
a detailed one of PPO (Section 2.4.1) can be found in the Background Chapter.
Balancing as a fine-tuning process of Opjayapie With a policy 7t can formally be
described as a stochastic PCG method with:

PCGllfg%gnce : Opluyuble X {b} — D?T(Obalanced)~ (53)

An episode ends when the level is either balanced, or a fixed number of steps
or changes is exceeded. In PCGRL, the number of allowed changes is deter-
mined relative to the grid size (cf. change percentage, Section 4.4). As in the
original PCGRL we use a change percentage of 20 %. We set the value for the
number of allowed steps within an episode to 100. After training, the yielded
policy 7y with the parameters ¢ generates a balanced level 0, € Opy1aceq from a
previously generated playable one 0,. This can be formulated as sampling from
the distribution (model) d”w € Dr of balanced levels by rolling out 7y in the
balancing environment:

0p ~ ey (- | 0p). (5.4)

5.2.2 Player Simulation

To compute a levels balance b; in a time step t for the balancing reward (Sec-
tion 4.2.2), we run an agent-based simulation n-times of player agents playing
the game which can be understood as an ABM (cf. Section 2.2). Using an ABM
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here is beneficial to investigate the interactions between the player agents with
the game (the environment). As part of the reward function in RL, the necessary
data cannot be obtained from the real world, making game simulation essential.
The simulation of a game is executed in discrete time steps. Since the simulated
environment models the game level, where each agent is assigned a position in
all time steps, it is spatially explicit. The environment influences agent behavior
both passively by defining static win conditions, and dynamically, by allowing
elements like food resources to respawn, making the environment probabilistic
as well. In the context of introducing the method for balance estimation, we
have determined a suitable 1 for the Feast & Forage environment as n = 14 in
Section 4.2.3.

Heuristic Player Agents

The player agents can be any solution that can simulate the behavior of a player
with a desired quality. In this thesis, we simulate this behavior with determin-
istic heuristics. We prefer the interpretable behavior over black box modeled
agents, e.g., RL, and the determinism over approaches like e.g., Monte Carlo
Tree Search. See the discussion in Section 5.8 for more information. Both con-
tribute to a better control of the heuristic and offer a versatile way for further ex-
tension and adaptation, as we will explore in Section 6.2.2. So far in this chapter,
we will only use one type of heuristic controlling both players, which is inspired
by a baseline agent’ from a Neural Massively Multiplayer Online (NMMO) com-
petition, which we call archetype A.!? A description of the heuristic is given in
Algorithm 3.

Algorithm 3 Heuristic Agent Archetype A.

1: procedure STEP(gameState)

2: init action <~ DoNotMove

3 init foodReachable <~ FOODREACHABLE(gameState)
4 init waterReachable <~ WATERREACHABLE(gameState)
5: if foodReachable then

6: action < FINDSHORTESTPATHTO(food)

7 else if waterReachable then

8 action < FINDSHORTESTPATHTO(water)

9 end if

10: return action

11: end procedure

The task of the heuristic is to decide, given the current state of the game,
which of the available actions of the environment (see Section 4.3) to choose.
Agents are implemented by a STEP function, which is called once per turn for
each agent. The heuristic of archetype A is designed to always gather the near-
est available food resource using the path-finding algorithms A* [Hart et al.,
1968] and Dijkstra [1959] in the helper functions FOODREACHABLE and WATER-

9Github: https://github.com/NeuralMM0/baselines
10We will introduce and experiment with further archetypes in Section 6.2.2.
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REACHABLE. When the shortest path to a resource is found, food resources are
always favored over water as they have a greater impact on winning the game.
If no food resource is reachable or there is no valid path to a food resource, the
agent favors the nearest reachable tile that is adjacent to a water tile.

5.3 Swap-based Action Space Representation Pattern

To formulate level generation as MDP, PCGRL introduced three different MDP
representations. A detailed description of them is given in the foundational con-
cepts chapter in Section 4.4. In all of them, the agent can decide to replace a tile in
a particular position. Since we estimate the balance simulation-driven, PCGRL’s
approach can, however, lead to unplayable levels at a time step. Furthermore,
to move the position of e.g., a player tile somewhere else, the agent would first
have to remove the player tile before creating it at a different position. In this
time step, the level would not be playable for the player agents, and thus, no re-
ward could be computed in the simulation step. Additionally, the agent would
first receive a negative reward due to the number of players is now invalid. The
trajectory of a subsequent creation at a different position under the previously
given negative reward is more difficult to learn for RL agents.

To address this issue, we introduce a swap-based representation pattern. In
these representations, the agent can decide to swap the positions of two tiles
per time step. Not adding or removing tiles entirely is a more robust approach
to ensuring level playability. Like in PCGRL the action space is discrete and
the observation space is a one-hot encoded representation of the level’s integer
matrix.

However, there may be game domains where multiple tiles have a semantic
connection, such as multiple water tiles forming a river. Swapping these tiles
around can break playability. Therefore, in the balancing step, we suggest send-
ing unplayable levels back to the generator for repair. This repair is similar to
the level-fixing approach seen in [Siper et al., 2022], but would also involve an
additional increase in the computational effort. In this thesis, we demonstrate
the power of swapping with a simpler domain where there are no semantic rela-
tionships between multiple tiles. In addition to ensuring playability, swapping
tiles contributes to not simply regenerating a new level from scratch, since that
is the job of the level generator. Swapping two tiles of the same type has no
effect on balance. Thus, we prevent these swaps to reduce the computational
effort. In these cases, the agent is rewarded with 0.

To formulate our approach as MDP we directly adapt PCGRL’s narrow, tur-
tle and wide representations [Khalifa et al., 2020] with a swapping mechanism.
Like in PCGRL, observations are one-hot encoded in all representations. The
detailed description for each swap representation is provided in the following:

* Swap-Narrow: At each time step, two random tile positions are presented
to the agent, and it can decide to swap the tiles or not. The agent’s limited
positional control results in a very small action space .4 with the only ac-
tions: swap or do not swap. The size of A is therefore | A| = 2. Like in
PCGRL, the observation space S is cropped around the selected position
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with a configurable parameter c. The cropped observation around the sec-

ond position is concatenated to the matrix of the first position. S is then:
S ¢ {0,1}(2c+1)2x(20+1)xn.

¢ Swap-Turtle: Starting from two random positions, the agent can decide to
swap the tiles at the current positions in each time step. If no change is
made, it can decide to which adjacent tiles to move next. As in the original
PCGRL turtle representation, staying at a position and not changing a tile
is not an option. A is therefore | A| = 4 -4 -2 = 32. The observation space
is handled identically to the swap-narrow representation.

* Swap-Wide: In this representation, the agent sees the entire level and can
freely determine the tile positions and whether to swap them. It can be
interpreted as looking at the whole level and then deciding what to move
where. A drawback here is the large action space, since it scales twice with
the level width I and height k. The size of A is therefore |A| = (k-1)?- 2.
In the case of a square grid, as in this work with a size of 6, A has 2592
possible actions. The observation space remains the same as in the PCGRL
wide representation.

As we will see throughout this work, this representation yields the best
results, and we further refine it to reduce the size of the action space and
the definition of the observation space (Section 5.6). However, its strong
dependence on level size limits the method’s scalability for larger levels.

5.4 Experiments and Results on General Feasibility

The evaluation of our method is done in several steps: First, we sample a fixed
set of levels to use for direct comparison with the generator. Second, we eval-
uate the overall performance by comparing the proportion of balanced levels
of this set across the three swap representations introduced in Section 5.3 with
the original PCGRL method as a baseline (Section 5.4.1). To generate balanced
levels with the original PCGRL method, we use the same reward function as
introduced in Section 4.2.2.

Third, we investigate the levels the models created (Section 5.4.2) and exam-
ine which tiles the models swapped in the level-altering process (Section 5.4.3).
The latter provides insights into which tiles actually affect the balance. Finally,
we conduct a thorough empirical evaluation with human playtesters in the next
section (5.5).

Experimental setup: For all PPO models we use 3-layered multi-layer percep-
trons with layers of sizes 64, 128, and 64 for both the feature extractor and the
value function respectively. We use the PPO implementation of the Python li-
brary Stable Baselines 3.!! To train such a model, a number of total time steps T
must be defined, which, in conjunction with a step size 75 and the number of

parallelized environments #,,,s, determines how many updates l(l;)l ates Of the

Mhttps://stable-baselines3.readthedocs.io/en/master/modules/ppo.html

57


https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html

policy 7 are made with how much data from collected trajectories through inter-
actions with the environment. The number of policy updates can be calculated
with Equation 5.5.

T

Nenos * nsteps

N(”)

updates =

(5.5)

We use a step size of 512 and 60 parallelized environments, running on a
total of 60 CPU cores, so each environment gets a single core. Using multiple
environments in parallel to collect trajectories reduces the overall required com-
putation time only, but does not change the training behavior. For example a T
of 10 million steps of training with this configuration would result in 326 policy
updates'?, which are 30,720 trajectories for updating the policy via training the
neuronal networks per each single update. On the one hand, the number of col-
lected trajectories (1,05 - steps) used for policy updates should not be too small,
as too little data hinders learning. On the other hand, if it is too large, it leads to
an unnecessary computational overhead. In preliminary tests, we found a sweet
spot in using a value of 512 in combination with 60 parallel environments. The
latter was given by hardware limitations. For all other PPO hyperparameters,
such as the learning rate, we use the default configuration.

Since the swap-narrow and swap-turtle representations are derived from
their analogs in the original PCGRL, they require cropped observations centered
on the selected swap positions (cf. Section 4.4). For both we use a crop size c of
¢ = 5, allowing it to see most of the level around the selected position, and a
padding value of the tile type grass. We chose the grass tile because it has the
least semantic impact on gameplay: it is not a resource, not a player, and does
not block movement. Introducing a dedicated empty tile could also be an option,
however, this would expand the observation space by an additional dimension
and further increase the difference compared to the wide representation, where
such a tile is unnecessary. Finally, in the swap-turtle representation, we disallow
warping to prevent movements such as shifting from the far left to reappear on
the far right.

5.4.1 Performance and Feasibility of the Swapping Representations

We compare the performance of our swap representations against each other. In
this section we focus initially on the general feasibility of our approach; in Sec-
tion 5.7, we present an in-depth comparison with additional baselines, including
the original PCGRL and search-based methods.

For the evaluation, we create a dataset of 1000 levels with our PCGRL gen-
erator. This dataset is then used for all three models for evaluation. First, we
examine the distribution of the initial balance states of the levels in the dataset
(see Figure 5.3). Balanced levels are those in which both players win equally of-
ten (b = 0.5). It is important to note that the distribution is not uniform. Except
for the states 0 and 1, the levels seem to be normally distributed around the state
of 0.5. Initially, 13.6 % of the levels are balanced. However, peaks towards max-
imally imbalanced levels can be observed at the outer edges of the distribution.
Maximally imbalanced levels make up 26.6 % of the dataset.

12 Always rounded up to the next integer.

58



=
wu
o

Number

=
w o
o o

0.0 0.2 0.4 0.6 0.8 1.0
Balancing state

Figure 5.3: Distribution of the initial balance states based on the players” win
rates in the generated dataset of 1000 levels. We use this dataset to compare the
different representations.

Table 5.1: Performance overview of the swapping representations. Balanced
levels are those in which both players win equally often (b = 0.5). For each rep-
resentation, we provide the proportion of these levels in the evaluation dataset.
Initially balanced levels were not considered in order to present the true influ-
ence of the models.

Swap-narrow Swap-turtle Swap-wide

Balanced (%) 48.1 425 48.1
Improved (%) 63.3 56.8 64.1
Avg. changes 4.6+1.9 4.7+£1.9 49419
Avg. ep. length 11.34+6.1 25.4+17.7 14.1+7.9
Size action space 2 32 2592

To evaluate the performance of the balancing method we compare the bal-
ance state before and after balancing per representation. A general overview
is given in Table 5.1. Histograms of the balancing improvement are shown in
Figure 5.4. We train all models for the same total number of training steps of 12
million.

The performance of all three swap representations is of comparable quality.
Each representation managed to improve the proportion of balanced levels. The
swap-narrow and swap-wide representations perform slightly better than swap-
turtle in terms of balancing. However, imbalanced levels remain in all results.
The largest proportion remains for the balance states 0 and 1. For representa-
tions with a higher proportion of balanced levels, the average episode lengths
are shorter. This is caused by the remaining imbalanced levels maximizing the
episode length. Since the proportion of balanced levels is generally improved,
we conclude that our approach is feasible, albeit with limited performance. For
this reason, we will further explore our method and improve the results by refin-
ing the definition of the MDP (Section 5.6). A thorough comparison to baselines,
such as the original PCGRL and search-based approaches (hill climbing and ran-
dom search), is also provided in this context (Section 5.7).
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Figure 5.4: Comparison of the balance state distributions before and after the
balancing process for each representation using the evaluation dataset of 1000
levels (Figure 5.3).

5.4.2 Generated Levels

Figure 5.5 shows examples of the different types of generated levels taken from
the samples in Section 5.4.1. Sample 1 in Figure 5.5a is an example where the
balancing agent improved the given level to a balanced level by swapping only
one tile. By swapping the highlighted grass tile with the rock tile the path to the
resource (food) tiles is now blocked. This results in a more equal availability of
food resources for both players. In Figure 5.5b, the agent has balanced the level
from an initial balance state of 0.3 to 0.5. By swapping the marked water tile to
a more central position for both players, the balance is improved. However, in
Figure 5.5b the agent failed to balance the initial level with by = 0. The balancing
process terminated after reaching the maximum number of changes permitted.
In the end, b is still 0.

5.4.3 Evaluating the Impact of Different Tile Types on Balance

The analysis of the actual swaps made by a model gives insight into its behavior.
Thus, we have shown that the model could improve the balance state of the
given levels, we can further argue that the swaps made by the model have an
impact on the balancing. Conversely, we can infer from this behavior which tiles
in the game have the most impact on the balance.

For each pair of swapped tile types, t; and f, we calculate the difference
in frequency of randomly swapping them in the context of tile frequencies in
the entire dataset f[l “fzd, relative to the observed frequency when using a trained
model fflbfz To emphasize relative deviations from chance A f[f,ltz, this difference
is then weighted by the inverse of the expected random swap probability:
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Before (b = 0.0) After (b = 0.5)

(a) Sample 1: The agent balanced a maximum imbalanced level (left)
to a balanced level (right) by swapping the tiles D4 and E1.

A B C D E F A B C D E F

Before (b = 0.3) After (b = 0.5)

(b) Sample 2: The agent balanced an imbalanced level (left) to a bal-
anced level (right) by swapping the only water tile available in C1 to
a more central position for both agents in E4.

A B C D E F A B C D E F

Before (b = 0.0) After (b = 0.0)

(c) Sample 3: The agent could not change the initial imbalance of
0. The generation stopped after exceeding the allowed number of
changes.

Figure 5.5: Examples of levels modified by the balancing agent. The left image
of each subfigure shows the generated levels before balancing. The right subfig-
ures are the resulting levels after the balancing.
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Figure 5.6: Comparison of the swapped tiles by model per representation on the
generated 1000 levels. The comparison is made with respect to the inverse tile
type distribution of all levels. This shows the difference to random swapping.
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Due to swapping the same tile types is prohibited by the representations, ten
different combinations are possible. This result is shown in Figure 5.6. The
figure shows that the three representations have different behaviors, but they
agree on particular points. Swapping food for stone tiles has the most impact,
followed by swapping food for water tiles. This makes sense in the context of
the resource foraging win condition. Moving the resource tiles food or water is
likely to affect the balance as they are included in the win condition. A stone tile
can be used to block a player’s path. Therefore, swapping food tiles for stone
tiles has an additional powerful effect. Surprisingly, swapping a player’s spawn
position with other tiles is not a favored action in all cases.

5.5 Empirical Evaluation

This section addresses RQ 3 in order to evaluate the perception of the simulated
balance empirically with human playtesters. This is our contribution (C 3).

A level’s balancing state is evaluated based on data from multiple heuris-
tic agent-based simulations (cf. Section 5.2.2) and is considered balanced when
all agents win equally often (cf. Section 4.2). The simulated balance, however,
solely depends on the heuristic used to control the behavior of the agents (Al-
gorithm 3) in the simulations. In Section 5.4 we could present results indicating
that our approach can learn a trajectory to balance tile-based levels according to
the simulation metric. Games are, however, meant to be played by human play-
ers. Therefore, we ask the question: do humans actually perceive this simulated
balance as intended?
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Figure 5.7: The design of the survey. Each participant is randomly assigned a
scenario and which version of the level to play first.

To answer this question, we conduct a survey based on human playtests of
the generated content. Playing the game gives humans a more detailed insight
in the actual balance than just looking at the level. Each participant is asked to
play one out of four randomly assigned scenarios, each consisting of an imbal-
anced and a balanced version of a level. Random scenario assignment follows
a uniform distribution. After each playtest, participants are asked to answer
questions about their perceptions of the balancing. As evaluation of game bal-
ance on an absolute scale leads to very subjective results [Schreiber and Romero,
2021], we use a comparative rating [Thurstone, 1927] by asking participants how
they rate the balance of a level in comparison to a different version of the level.
We provide the question catalog for the survey in the Appendix B. All tested
levels along with the survey results are available on Github (see Table A.1 in
Appendix A).

5.5.1 Method

We present the empirical evaluation method in two parts: first, the design and
process of the user study (Section 5.5.1), and second, the foundation of the de-
scriptive and statistical analysis of the survey data (Section 5.5.2).

Comparative survey design

The survey’s design plays a crucial role in empirically assessing balancing from
the perspective of human players. Figure 5.7 outlines the survey process, which
involves defining four scenarios, each consisting of paired imbalanced and bal-
anced versions of the same level. Figure 5.8 gives and overview of all four sce-
narios with the imbalanced and the balanced level version. These levels are
taken from trained models from Section 5.4. In addition to two newly gener-
ated and balanced levels, we evaluate the previously generated levels and their
balanced version (Figure 5.5a and 5.5b).

Participants are randomly assigned a scenario at the onset and play versus
the heuristic (Algorithm 3) used to evaluate the balance. When designing the
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Imbalanced, 0.3 Balanced, 0.5 Imbalanced, 0.0 Balanced, 0.5
(a) Scenario 1 (cf. Figure 5.5b) (b) Scenario 2 (cf. Figure 5.5a)
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(c) Scenario 3 (d) Scenario 4

Figure 5.8: The four scenarios included for playtesting. Levels in scenarios 1-
3 were balanced (b = 0.5) from a previously imbalanced version (b # 0.5) by
swapping tiles using the method described in Section 5.2. Scenario 4 presents
the balanced version of scenario 2, which was subsequently imbalanced again
using our PCGRL model. The scenarios 1 and 2 were taken from the previous
results in Section 5.4, whereas Scenarios 3 was newly generated for this study.
Scenario 4 investigates the case where an already balanced level Figure (5.5a)
is imbalanced again. We will examine unbalancing in more detail in the next
Chapter in Section 6.1.

survey, we first randomly assign, once for all scenarios, which player is con-
trolled by a human and which is controlled by the heuristic agent. The red player
is controlled by the human, and the yellow player is controlled by the heuristic.
In Chapter 6 we will explore the method of directly dealing with two differently
labeled tile types for each player in order to improve the performance.

To ensure participants” impartiality, the survey allows participants to se-
quentially experience both versions of a level without knowing which they are
playing. This is reinforced by randomizing the order in which participants
encounter the versions, facilitating bi-directional evaluations. Following each
playtest, participants provide feedback on their perceptions of the balancing of
the level they just experienced.

Survey Questions

Participants are asked to answer six questions (items) for each level version,
breaking down the abstract concept of balance into more tangible, game-related
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aspects for easier comprehension. These questions assessed the proximity of the
number of resources (food and water) to the player’s spawn point and the diffi-
culty of moving around the level due to impassable rocks and water tiles. Ad-
ditionally, participants evaluated their perception of their opponent’s resource
access based on its spawn position, resulting in six questions in total. In the
second level, participants answered the same six questions, but always in com-
parison to the corresponding previous version, as comparative judgments are
more intuitive for humans than absolute scales [Thurstone, 1927].

We use a five-point Likert scale for all questions. Positioned in the middle of
the scale is the choice indicating optimal balancing. To express either a surplus
or a deficit, participants can choose between two levels respectively. For exam-
ple for the item Amount Food, the scale ranges from way too few/none (-2), too few
(-1), sufficient (0), too much (1), and way too much (2). The design is consistent
across all questions in the first level, with slight variations in formulation based
on the items. The mapping to numerical labels is not shown to participants.
The complete catalog of questions and possible choices is provided in the Ap-
pendix B. For instance, the corresponding question for the item Amount Food is:
How would you rate the amount of berry bush tiles (food) near your starting position?

5.5.2 Data Analysis

The data analysis is twofold: firstly, a descriptive comparison of median val-
ues per item before and after balancing, and secondly, Wilcoxon signed-rank
hypothesis tests to assess the statistical significance of items before and after
balancing.

Data preparation

To accurately compare median values and conduct hypothesis tests based on the
previously mentioned relative data (cf. 5.5.1), it is imperative to convert it into
absolute representations.

Per item we create a proxy to obtain the absolute value for the second level
played L2 using the absolute value from the first level L1 and the relative one
from the second level AL2. This can be expressed as:

F(L1,AL2) = L1+ AL2. (5.7)

To revert the data for cases where the balanced version has been played first we
retrieve the absolute value using f(L2, AL1). For instance, if a participant rates
the available amount of food for the imbalanced version L1 as way too much (2)
and in the balanced version AL2 as fewer (-1) this results in a score of 1, being
still (oo much), but not way too much anymore. We fix the scale to the interval of
[—2,2] and round values exceeding this interval to the closest possible value.

Hypothesis tests

To evaluate changes in participants’ perceptions of items before and after bal-
ancing, we utilize the two-tailed Wilcoxon signed-rank test, suitable for paired,
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ordinal, and non-normally distributed data. A preliminary Shapiro-Wilk test re-
vealed that neither case exhibited a normal distribution for both distributions
respectively. The null hypothesis Hj states that the data distribution does not
significantly change after balancing the level. We choose a significance level of
0.05. If the test’s p-value falls below 0.05 and the test statistic W is less than the
critical value W determined by the sample size, we reject Hy and accept Hj, indi-
cating a change in the data distribution. Despite multiple tests, we don’t apply
any measure to correct the p-values, such as the Bonferroni correction, as this
would increase the risk of Type II errors due to the relatively small sample size
in each scenario.

5.5.3 Results

Participants were primarily recruited from two groups: students and academic
staff. We only included completed responses from participants for further anal-
ysis, for a total of 71 valid responses. The number of submissions per scenario
varies as some surveys were not fully completed. Table 5.2 presents the de-
scriptive results (median) per item in each scenario, along with the results of
Wilcoxon signed-ranked tests comparing the data before and after balancing.

The results indicate significant changes in the perception of particular items
across Scenarios 1, 2, and 3. Notable findings underscore variability in the per-
ception of items across different levels. For instance, in Scenario 1 (Figure 5.8a),
there is a significant increase in the player’s accessibility to the water resource
(Amount Water Player). Also in the descriptive results is a noticeable improve-
ment, as evidenced by the median shifting from -1.5 (too few /way to few) to 0
(adequate) in the balanced version. This suggests that participants perceived the
single water tile swap as affecting the level’s balance positively. Conversely, in
Scenario 3 (Figure 5.8¢c), perceptions of player movement difficulty varied, with
no discernible shift in perceptions of water accessibility.

In Scenario 2 (Figure 5.8b), numerous items exhibited significant percep-
tual changes after balancing. Particularly noteworthy are the shifts in the items
Movement Difficulty Player and Amount Food Player. Additionally, descriptive
results suggest changes in the distribution towards a better balancing. For in-
stance, the median value shifted for the item Movement Difficulty Player from
very inconvenient (-2) to adequate (0) indicating balance after the balancing pro-
cedure. Exemplary we provide the data for both level versions of this item of
Scenario 2 in the violin plot in Figure 5.9.

A comparable improvement can also be observed for the Amount Water Op-
ponent item, where the access to water resources has been reduced from slightly
more (1) to same amount (0). The perception of Amount Food Player also shows
significant variation; however, the descriptive results suggest that the player
now has slightly excessive food resources. Nevertheless, in sum this improve-
ment remains positively valued. In Scenario 4, we evaluated the capability of
RL to unbalance the initially balanced level from Scenario 2 in favor of the op-
ponent.'® Although players did not perceive statistically significant differences,

13We will examine unbalancing in more detail in the next Chapter in Section 6.1.
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Table 5.2: The descriptive and hypothesis testing results: For each item per sce-
nario, the medians of the imbalanced (U) and the balanced (B) version are com-
pared. The Wilcoxon signed-rank tests for each scenario compare the imbal-
anced with the balanced version per item. Significant values (p < 0.05) and me-
dian changes are highlighted. The terms Movement (Movt.) and Amount (Amt.)
in the item descriptions are abbreviated for visualization purposes.

Scenario 1 Scenario 2
Samples: 16 Samples: 20
Median  Wilcoxon  Median Wilcoxon
Item U B W P U B W P
Movt. Diff. Player 1 1 35 0225 -2 0 5.5 0.00002
Movt. Diff. Opponent 1 1 20 0740 2 2 0  0.007
Amt. Food Player 0 0 3 0180 -15 1 7.5 0.0007
Amt. Food Opponent 0 -1 4 0035 2 2 3 1.0
Amt. Water Player -1.5 0 105 0007 O O 0.0 0.006
Amt. Water Opponent 05 1 195 0083 1 0 11  0.019
Critical Value for W 29 52
Scenario 3 Scenario 4
Samples: 23 Samples: 12

Median Wilcoxon Median Wilcoxon

Item U B W P B U W P
Movt. Diff. Player 2 2 45 0.034 -0.5 -1 15 0.357
Movt. Diff. Opponent 1 2 0 0.005 1 2 6.5 0.190
Amt. Food Player 1 1 20 0740 -1 -1 7 0.206
Amt. Food Opponent 0 0 12 0.705 2 2 2  0.564
Amt. Water Player 0 0 225 10 0 0 9 01%
Amt. Water Opponent 1 1 105 1.0 0 0 2 0257
Critical Value for W 73 13

a descriptive contrast emerged: the player’s movement slightly worsened, while
the opponent’s movement slightly improved.

Not all balanced versions were universally perceived as improved towards
the center of the Likert scale. In Scenario 1 the perception of the Amount Food Op-
ponent is slightly worse in the balanced version. Especially in Scenario 3 regard-
ing the item Movement Difficulty Opponent, participants rated their opponent’s
freedom of movement even better than in the imbalanced version, as indicated
by the median and the significance of the hypothesis test. Despite this, both
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Figure 5.9: An exemplary data distribution of participants” normalized rating:
Comparing the imbalanced and balanced level version for the item Movement
Difficulty Player for Scenario 2. The sample size is 20. An overview of all the
descriptive and statistical results is provided in Table 5.2.

player and opponent are now rated similarly. This suggests that while move-
ment is still relatively easy, it is now comparably easy for both players.

5.6 Improvements in the Markov Decision Process Defi-
nition for Level Balancing

So far we have defined an MDP for balancing tile-based levels in this section, ex-
tending the PCGRL framework with a novel swap-based representation pattern.
While the initial results (cf. Table 5.1) indicated feasibility in comparison to the
original PCGRL, we now aim to further improve the performance by sharpening
the definition of the observation and the action space.

5.6.1 Observation Space

One takeaway from the evaluation of the different tile types on the balance (Sec-
tion 5.4.3) was that the spatial distribution of players’ starting positions plays a
substantial role. We also noticed this limitation in the context of the empirical
study (Section 5.5), where we had to initially assign the players to their positions.
Until now, both players’ starting positions were equally encoded in the model’s
observations space, making it impossible to distinguish between them. The size
of the one-hot encoded observation space S was S € {0,1}°%6*5, resulting in a
matrix of 180 elements.

We address this by assigning different tile representations to each spawn po-
sition. To differentiate between the two, we assign red to player 1 and yellow to
player 2 (cf. Table 4.1). The different encoding of the two positions adds more in-
formation and thus slightly increases the observation space, but the action space
remains the same. The observation space is now: S € {0, 1}6X6X6, resulting in
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a matrix with 216 elements. Moreover, having both players unambiguously de-
fined through the level makes it also easier when assigning human players like
in Section 5.5.

Result: When comparing the performance of this new definition of the obser-
vation space under the same conditions as in Section 5.4, the model using the
swap-wide representation can now balance 68.0 % of the given levels. This is an
improvement over the previous result of 48.1 % (cf. Table 5.1).

5.6.2 Action Space

The swap-wide representation’s action space allows the RL agent to swap the
tile of a predicted location (x1,y1) with the tile of a second predicted location
(x2,y2) of alevel. With another binary decision it can predict if the swap should
be done or not. This additional prediction was directly derived from the wide
representation introduced by Khalifa et al. [2020] and resulted in an action space
depending on the height k and width [ of the level. For a 6 x6 level this results
in 2592 actions. Compared to the swap-narrow and swap-turtle representations,
it has the largest action space by far.

Since the model already makes a prediction about the positions where to
swap, the additional prediction of whether to swap or not makes the action
space unnecessarily complex. Therefore, we reduce it to predict only the two
swap positions, resulting in the action space size of |A| = (k-I)2. For a 6x6
level this reduces the action space to the half of 1296 actions.

Result: When comparing the performance of this optimized definition of the
action space and the improved observation space under the same conditions as
in Section 5.4, the model using the swap-wide representation can now balance
91.5% of the given levels. This is a further improvement in comparison to the
first result of 48.1 % (cf. Table 5.1) and the improvement through the observation
space (68.0 %, Section 5.6.1).

5.7 Comparison to Baselines: PCGRL and Hill Climbing

In Section 5.4, we evaluated our definition of the MDP primarily in terms of fea-
sibility by comparing the three swap-based representations against each other.
This alone, however, does not sufficiently evaluate the method’s performance.
We therefore extend the comparison to include the original PCGRL representa-
tions. Yet, even this does not fully justify the applicability of RL to the prob-
lem: is learning a trajectory for balancing actually beneficial? For this reason, we
further compare the PCGRL-based approaches with further algorithmic, model-
free PCG methods (hill climbing) and a random method in order to demonstrate
the advantages of learning in advance.

In the related literature (cf. Section 3.1), search-based approaches are a com-
monly used method for game level generation. In order to accelerate level gen-
eration, evolutionary algorithms are, for instance, not a suitable baseline as they
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explore the search space across several individuals in parallel, requiring a mas-
sive number of fitness evaluations per generation. Given that our simulation-
based evaluation function is computationally expensive, our goal is to minimize
this effort. In contrast, hill climbing approaches are lightweight and can serve
as a suitable baseline, as they are trajectory-based like RL. This allows the action
spaces of the narrow and swap-narrow representations to be transferred easily,
ensuring a fair comparison. For this reason, we compare our method’s perfor-
mance in balancing games with a limited of allowed number of changes to two
hill climbing approaches.

Experimental setup: We run all these approaches on the dataset of 1000 gen-
erated levels (cf. Section 5.4) with the same model configurations and the im-
proved definitions of action and observation space from Section 5.6. The hill
climbing approaches can resemble the PCGRL narrow and turtle representations
(cf. Section 4.4), as well as the swap-narrow and swap-turtle representations in-
troduced earlier (cf. Section 5.3), but without the ability of learning trajectories
of actions. Since they incorporate no model to predict a position on the level
to change or swap, the representations based on the wide representation is not
applicable.

A formal definition of hill climbing has been given in Algorithm 1 in Section
2.3.1. Our swap-narrow hill climbing baseline implementation is given in Algo-
rithm 4 and operates as follows: During each iteration, the method randomly
selects two positions and swaps the tiles (SAMPLERANDOMSWAPACTION). This
can be interpreted as sampling from the action space of the swap-wide repre-
sentation, which resembles the swap-narrow representation. We use the same
reward function to evaluate the balancing (Equation 4.2.2) and simulation setup
(cf. Section 5.2.2), but with the enhancement for the labeling of the second player
through the newly introduced tile labeling (cf. Section 5.6.1). If the level balance
is not improved, ergo the reward in time step t is not positive, the level state
is reverted to the state in  — 1. As in the experiments in the previous chapter,
levels that are initially balanced are not considered to prevent the results from
being disproportionately amplified in the positive direction.

The execution terminates either when the desired balancing is achieved or
when the maximum of eight changes is reached. This is the same value used in
our previous experiments and in accordance with the proposed one by Khalifa
etal. [2020]. Since we consider the balancing phase as a fine-tuning stage for pre-
existing content, it’s crucial to restrict the number of changes. Excessive changes
can lead to a total overhaul, transforming the content into an entirely new level.
Moreover, adhering to the PCGRL’s constraint on the number of changes also
promotes content diversity, as the approach cannot consistently yield identical
outcomes [Khalifa et al., 2022].

The narrow and turtle hill climbing approaches resembling the narrow and
turtle representation from PCGRL operate similarly, however, due to their abil-
ity to freely exchange tiles from the pool of available tiles, it may happen that
levels remain unplayable after the execution has finished. When using these rep-
resentations from PCGRL, the behavior of the SAMPLERANDOMSWAPACTION
function is configured to resemble this behavior accordingly. In general, no sim-
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ulations can be run if a level is in an unplayable state. In these cases, we assign
a negative reward of -1, which can occur in all non-swap-based representations
(original PCGRL, hill climbing, and random)

Algorithm 4 Hill climbing baseline resembling the swap-narrow representation.

1: procedure HILLCLIMBING(/evel;—g)

2: init bestLevel <+ level;—

3 initt <1

4 while t < changePercentage do

5: init action; < SAMPLERANDOMSWAPACTION()

6: init level; + APPLYACTIONTOLEVEL(action;)

7: init balance; <~ SIMULATEBALANCE(/evel;)

8 init reward; < CALCULATEREWARD(balance;)

9: if balanced; is true then

10: return [evel; > Success

11: end if

12 if reward; > 0 then

13: bestLevel < level;

14: end if

15: t+—t+1

16: end while

17: return bestLevel > Failure

18: end procedure

Results: The results in Table 5.3 indicate that PCGRL using the swap-wide rep-
resentation significantly balances the largest portion of levels (91.5 %) within
the prescribed limit of changes compared to the other swap-based approaches,
the original PCGRL, as well as all other search-based approaches. The swap-
narrow hill climbing approach achieves a noteworthy balancing percentage
across (73.9 %), however, not being able to achieve a better performance than
our PCGRL approach. With this result, it ranks as the second-best performance,
outperforming both the original PCGRL and the swap-narrow and swap-turtle
representations.

When directly comparing our swap-based MDP definition with the original
PCGRL ones, ours show significantly better performances than PCGRL for the
turtle and wide, and slightly better than for narrow. Notably, the original PC-
GRL representations manage to achieve high proportion of playable levels.

Although the swap-based hill climbing approaches cannot outperform the
swap-wide PCGRL approach, they produce superior results compared to their
non-swap-based counterparts. This can also be observed when the actions are
executed randomly. Therefore, we conclude that swapping existing tiles is a
superior approach to exchanging tiles arbitrarily (original PCGRL). In addition,
using RL further improves the results, since the RL-based swapping approaches
each outperform their purely search-based counterparts.

For each experiment, the average number of changes made to the level C
and the average length of an episode L., are listed. The average episode length
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Table 5.3: Overview of baselines comparisons: We compare our PCGRL-swap
MDP definition with the original PCGRL, as well as with hill climbers and fully
random approaches. All methods use the improved versions as described in
Section 5.6. Each is evaluated using the same dataset of 1000 levels (cf. Sec-
tion 5.4.1). Since hill climbing and random methods do not use pretrained mod-
els, the wide and swap-wide representations are similar to their corresponding
narrow representations. We list the proportion of balanced levels (b = 0.5) as
the main metric for comparison. In addition, we provide the proportion of lev-
els that have improved towards b = 0.5 (Impr.), the average number of changes
made (C), and the length of the episode (fep), both along with their standard
deviations (p). Finally, we list the proportion of levels which are playable after
balancing (Play.).

b=05(%) Impr.(%) C=p Ly, £p  Play. (%)

PCGRL-swap
swap-narrow 62.0 71.5 53+27 171+113 100.0
swap-turtle 63.2 75.0 51£28 249+19.6 100.0
swap-wide 91.5 93.7 27+22 48+117 100.0

PCGRL [2020]
narrow 59.2 76.2 5427 79+46 98.5
turtle 29.4 50.2 69121 88+48 96.4
wide 37.2 55.0 6.7+21 71+£39 89.3

Hill Climbing
narrow 47.0 55.0 6.0£26 84+39 75.8
turtle 43.8 54.0 6.1+26 120+6.1 73.6
swap-narrow 739 85.3 49+26 73=*44 100.0
swap-turtle 53.4 66.8 56 £28 182+125 100.0

Random

Narrow 13.0 14.4 73+19 103+34 83.7
turtle 224 28.3 69+£22 139158 57.4
swap-narrow 59.8 72.9 554+27 82144 100.0
swap-turtle 46.8 64.1 6.0£27 189+123 100.0

is always higher because it includes the full length of the trajectory. For ex-
ample, it includes actions that are not executed as changes, such as when the
same tile types are chosen for swapping. The results show that as the propor-
tion of balanced levels increases, the number of average changes and episode
length decrease. In the context of RQ 2, our goal is to accelerate the automated
level balancing process. Therefore, it is important to perform well in general
level balancing but also to make as few changes as possible, since n simulations
must be run for each change to estimate the balance. With an average of only 2.7
changes, the swap-wide representation requires the fewest changes. This further
distinguishes it from the second-best result, the swap-narrow hill climbing ap-
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proach, which still requires an average of 4.9 changes. With an average of over
two additional changes required, this amounts to 28 extra simulation runs for
this environment (previously, 14 simulation runs were identified sufficient per
one change; cf. Section 4.2.3). The turtle-based representations have the largest
average episode lengths, in particular the swap-turtle ones. This is due to the
limitation of tiles that can be selected for exchange or swap, since the agent can
only move to an adjacent tile at each time step.

5.8 Discussion & Conclusion

In this chapter, we addressed RQ 2 by introducing a method that uses RL to
learn a policy for game balancing to accelerate the generation process of tile-
based levels (C 2). While we could demonstrate the feasibility of our method,
we identified limitations and cases that require further examination in order to
strengthen our response to RQ 2 (see the discussion below and the limitations in
Section 5.9). We will thus address further applications, such as exploring asym-
metric player archetype setups or the transferability of the method to another
environment in Chapter 6.

In order to quantify balance automatically, we applied the balancing metric
paired with multiple agent-based simulations, as previously introduced in the
chapter of foundational concepts in Section 4.2 (C 1). This allowed for a reliable,
game-independent measurement of balance in a competitive two-player game.
Since we used agent-based simulations and heuristics to automate level balance
evaluation, we further evaluated balanced levels through a user study with hu-
man playtesters, confirming their accuracy in most cases. This constitutes our
contribution 3 (C 3) in addressing RQ 3. To test the presented approach, we used
the Feast & Forage environment as introduced in Section 4.3. Our experiments
showed superior results within fewer training steps compared to the original
PCGRL, while also being more robust to ensure playability. In addition, our ap-
proach of using a swap-wide representation for the MDP showed significantly
better results than the search-based baselines and other swap-based representa-
tions. There are, however, several aspects that need to be discussed.

The reward of the balancing agent represents the balancing state of multiple
simulations on the current level state. By design, this is achieved with the use of
the information of which player actually won per simulation pass. Using game-
specific information, such as the health state of players inside the reward func-
tion, could potentially improve the results. This is, however, not desirable since
including domain specific information creates dependencies on the particular
game. In this case, a special reward function would need to be developed for
each game. Furthermore, including too much or the wrong information could
bias the reward, resulting in poor model performance or unwanted behavior. As
a consequence, the model would not learn what really influences balance, or it
might exploit unforeseen loopholes.

Splitting up the level generation and balancing process into separated units
yielded much better results than executing it in the same step, as in the original
PCGRL. Generating and balancing levels in the same step might achieve compa-
rable results if trained for a significantly longer time. However, the architecture
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proposed here converges fast with a high performance in the best configuration
(91.5%). This is because, in the second step, the agent can focus exclusively on
balancing, reducing its reward function to that single objective.

We compared our three PCGRL-adapted swap-based representations among
each other, to those from the original PCGRL, hill climbing, and a fully random
approach. Overall, the swap-wide representation showed the best results by far
with a proportion of 91.5 % of balanced levels (b = 0.5) out of an evaluation set of
1,000 levels. In general, the higher the proportion of levels a method can balance,
the fewer changes are required to balance each level. This accelerates the level-
balancing process by eliminating the need for unnecessary simulation runs after
each change to estimate the balance state. On average, the model using the
swap-wide representation balances levels within 2.7 changes. For these reasons,
we recommend using the swap-wide representation when balancing tile-based
levels.

Notably, all approaches using a swap-based representation outperform their
non-swap-based counterparts, regardless of the method. This highlights the
superiority of our proposed swap-based approach for level balancing as fine-
tuning. While not as effective as the PCGRL swap-wide model, the swap-narrow
hill climbing approach achieves the second-best result, with 73.9 % balanced
levels — approximately 25 percentage points better than hill climbing with the
narrow representation. The original PCGRL approach outperforms its respec-
tive analog hill climbing approach and the PCGRL swap-wide outperforms hill
climbing in general. Thus, we conclude that good performance generally arises
from two factors: (1) using the swap-based representation pattern in combina-
tion with (2) using RL.

Since we showed that our approach improves the levels” balance signifi-
cantly, it is possible to draw conclusions about which tile types have most im-
pact on balancing regarding their swap-frequencies. For this domain, swapping
resource tiles (e.g., food) for blocking elements (stone) had the greatest impact.
This is reasonable because swapping a resource for a tile to block movement,
such as stone, can greatly impact the balance of the level.

By simulating the game n-times with player agents the balance state is evalu-
ated. This metric is of course dependent on exactly these types of players. When
using players with e.g., different skills or types the balancing would be different.
That is a limitation, however, being also an advantage. By using different types
of player agents, the game level could be balanced to compensate for skill dif-
ferences of the players by solely adjusting the level not the players themselves.
This is of high interest when balancing levels for different player types such as
a mage and a fighter. It can be applied in e.g., role play games where gear lev-
els are an indicator of character strength. So, players can use their long-farmed
equipment in a competitive setting, and the game could be balanced through
the environment only. For this reason, we will explore the setup of two different
heuristic agents in the simulation in the next chapter in Section 6.2.2.

To answer RQ 3, we have additionally designed and conducted a survey
paired with human playtesting, to empirically evaluate automated game bal-
ancing based on heuristics and RL. Participants were presented with one of four
scenarios, each consisting of a pair of imbalanced and balanced level versions
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in random order. To make it easier for the participants, we implemented a com-
parative survey design in which the participants always rate the second level
version compared to the first level version played. In order to use the data in
a direct descriptive comparison and paired hypothesis testing, we therefore in-
troduced a way to normalize the data. Since game balance is multifaceted and
can depend on different game entities, we split the general question of game
balance into separate questions tailored to the spatial availability of resources or
freedom of movement. These questions always asked both how the participants
perceived their situation and that of their opponent.

Descriptive analysis coupled with hypothesis testing revealed significant dif-
ferences in the perceived balance distribution of levels pre- and post-automated
balancing. Notably, participants perceived balance differently across various
aspects such as resource availability and freedom of movement within each sce-
nario. So, is the balancing actually good? Our findings suggest that our balanc-
ing approach influences balance perception in most cases positively; however,
human perceptions may differ in certain aspects, depending on the level. We
conclude that while the investigated automated method can balance levels ac-
cordingly to reduce the need for manual human work, a final human evaluation
still remains essential.

For these reasons, we encourage authors to rely not only on the validity of
the generated content, but also to include human feedback in a method’s evalu-
ation process. Moreover, we the survey design presented here can be applied to
other empirical evaluations of content that has undergone procedural optimiza-
tion for a specific objective. Essentially, it is applicable to scenarios in which both
the original and optimized versions of the content are available for comparison.

5.9 Limitations

While we concluded that our method is generally feasible and superior in com-
parison to other baselines, we identified limitations in the proposed method.
We describe these limitations in this section and provide recommendations for
addressing them in subsequent research.

We have presented a method for using PCGRL to balance tile-based levels
in a fine-tuning process after level generation. Although we can accelerate au-
tomated level balancing using RL, the proposed method is still computationally
intensive in the model training, which lies in the simulation step for balance es-
timation and rewarding the agent. Multiple simulations must be performed for
each swap action the agent takes on the level. In this context, we determined
that this reward is mostly sparse during training. This indicates that only a
small sub sample of the action space are actually actions which influence the
balancing. Especially in the beginning of the training, this must be learned by
the model first. To fasten the training process, we think of methods to reduce
the computational cost which arise through simulations. That would be also of
high interest for the application in more complex environments. One solution
might be to reward the agent after several time steps only or even use targeted
sparse rewards. Despite the learning process would then be harder for the agent,
simulation steps for the reward are omitted. Thus, the training process is sped
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up and the agent can explore faster. Another approach could be the usage of
a reward model. Therefore, a model is trained to predict the balancing state
of a level. This would speed up training a lot, however, the model’s accuracy
must be high enough to give suitable rewards to ensure correct training. This
would, however, require a lot of manual engineering work and fine-tuning of
the model, adding a new layer of complexity and dependence. In line with our
goal of avoiding overengineering balance estimation and creating dependencies
on the game domain (RQ 1), we refrain from taking such an approach in this
thesis.

An extensive comparison to baselines revealed that the swap-wide represen-
tation yielded the best results. This representation’s action space is, however,
depends on the size of the level, which limits the applicability of the method to
larger levels. PCGRL's issues with scalability have also been reported by Earle
et al. [2024]. Although we explored options to reduce the size of the action space
and improved the observation space to enhance overall performance, we did
not increase the scalability for larger level sizes.

A motivation for this research is to generate asymmetric levels which are bal-
anced for both players. But we did not analyze their asymmetric structure, nor
did we prove that they are indeed asymmetric enough to be not trivially differ-
ent from just a symmetric layout. We will explore this thoroughly in Chapter 6.

Lastly, we have conducted an empirical study to evaluate the generated con-
tent with human playtesters. A limitation arises from the time-consuming na-
ture of playtests involving humans, restricting our ability to evaluate only a
small subset of levels, despite the potential to generate thousands using our PC-
GRL method. The balance across all levels was heuristically estimated through
multiple simulations involving scripted agents. These agents consistently be-
have identically, varying only due to the probabilistic nature of the game envi-
ronment. However, humans adapt their strategies as they play and learn from
each experience. Consequently, they adjust their strategy upon replaying a level.
This contrasts with the setup when balancing the levels, where two static deter-
ministic heuristic agents of always precisely equal skill face each other.
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Chapter 6

Applications of Automated Level
Balancing: Imbalances,
Asymmetries, and Transferability

This chapter is based on and extends the author’s publications:

¢ Florian Rupp, Manuel Eberhardinger, and Kai Eckert. Simulation-Driven
Balancing of Competitive Game Levels with Reinforcement Learning.
IEEE Transactions on Games (ToG), vol.16, no. 4, pp. 903-913, 2024. doi:
10.1109/TG.2024.3399536.

¢ Florian Rupp, and Kai Eckert. Level the Level: Balancing Game Levels for
Asymmetric Player Archetypes With Reinforcement Learning, Proceedings
of the 20th International Conference on the Foundations of Digital Games, pp.
1-4, Graz, Austria, 2025. doi: 10.1145/3723498. 3723747 .

We additionally contribute the following to the underlying publications:

¢ Section 6.3: A study on the transferability of our method (C 2) from Chap-
ter 5 to another environment.

This chapter investigates applications of the method proposed in Chapter 5, us-
ing them to both strengthen our contribution and address several shortcomings
and limitations. In Chapter 5, we introduced a method for generating tile-based
levels using Reinforcement Learning (RL) and estimating a game’s balance with
agent-based simulations, addressing research question RQ 2. In addition, we
evaluated the human perception of the generated content in an empirical study
to address RQ 3. There are, however, particularly concerning RQ 2 and the gen-
eral appliance of the results of RQ 1, several additional aspects which deserve a
further investigation and a deeper understanding and discussion. Therefore,
this chapter investigates additional applications of our automated level bal-
ancing approach, each exploring, improving, and enhancing a dedicated case.
These strengthen our contributions to automatically estimating balance (C 1)
and accelerating balanced level generation (C 2) with additional results in order
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to answer RQ 1 and RQ 2. This chapter is structured according to the three ap-
plications. An overview and motivation for each application is provided in the
following paragraphs.

Degrees of Imbalance: We have proposed a metric to numerically determine
how balanced a level is, using an existing fairness metric, and demonstrated it
on the case of balancing where all players win equally often. But can we use
it also to achieve the opposite, i.e., to train a model that intentionally produces
imbalanced levels? Therefore, we explore how configurable our method is in
terms of unbalancing levels to a certain value of imbalance in order to produce
levels, where one player wins seven out of ten games for instance. Results show
that our methods can generate imbalanced levels based on a given balance con-
figuration. We find that performance is highest for generating either balanced
levels or maximally imbalanced levels, whereas generating levels with a precise
degree of imbalance is more difficult. This can be found in Section 6.1.

Asymmetric levels and player archetypes: One motivation for the work in the
previous chapter is to generate levels which are not symmetric. Symmetric lev-
els could have easily been generated by mirroring the content and assigning a
player to each level region. We thus provide a detailed analysis of the asymme-
try of the generated levels. Results indicate, that our generated levels indeed
do not have symmetries. In addition, a Procedural Content Generation (PCG)
method should not only produce valid content, but also diverse content [To-
gelius et al., 2011a]. We will thus proof the diversity of generated levels in a
dedicated examination. This can be found in Section 6.2.1.

In Chapter 5, all agents in the simulation where controlled by the identi-
cal heuristic. While the focus was on creating asymmetric levels for symmetric
player archetypes, we now explore the next step: asymmetric levels for asym-
metric player archetypes. Modern games (e.g., Scythe [2016] or League of Leg-
ends [2009]) are increasingly focusing on asymmetric designs to increase diver-
sity and the replay value. For this reason, we extend the existing heuristic and
define additional player archetypes, which differ in abilities, having drawbacks
or advantages. Since we designed our method to be as flexible as possible and
not to use any game-dependent information, the heuristic can be easily adapted
while still using the same reward function, making the results directly compara-
ble. The results show that our RL-based method can learn a trajectory to create
balanced levels even for asymmetric player setups. However, we observe per-
formance variations corresponding to the disparity in archetype strengths, with
greater initial unfairness leading to larger declines in performance. This can be
found in Section 6.2.2.

Transferability to another environment: We have introduced a method for
balancing tile-based levels in Chapter 5 and will further improve and explore it
in this chapter. We highlighted limitations in related works (e.g., Lara-Cabrera
et al. [2014] and Lanzi et al. [2014]) that introduce approaches using domain-
specific information, so our goal was to develop a method that does not include
any domain-specific information in order to be transferable to other games. So
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Table 6.1: Degrees of imbalance — a performance overview of unbalancing levels:
Six swap-wide models trained to optimize different balance values b over the
interval [0.0,0.5] of the balance metric (cf. Section 4.2.2) using the action and
observation space definition as described in Section 5.6. For direct comparison,
the result for b = 0.5 is taken from the previous results in Table 5.3. All values
are given as a percentages.

b Balancedtob Improved towards?b Initial =b

0.0 83.2 92.6 9.4
0.1 39.6 64.0 5.0
0.2 51.0 62.0 10.4
0.3 42.8 56.8 7.8
0.4 45.6 56.6 7.6
0.5 91.5 93.7 16.6

far, however, we have not demonstrated this on an additional environment.
Moreover, as we have discussed in Section 5.8, the intent of our swap-based
action space for PCGRL (PCG via RL) is to reduce states where the game is not
playable and no simulations can be run in order to estimate balance. Using
our swap-based approach, the Feast & Forage environment is always playable.
However, there may be games where playability depends on the adjacencies
of the tiles. For this reason, we will additionally experiment with cases where
playability is not always guaranteed. This can be found in Section 6.3.

6.1 Degrees of Imbalance

So far we have demonstrated the feasibility of our approach to balance two-
player tile-based levels towards exactly equal wins for both players (Chapter 5).
In more detail, this means that we set the balancing value b to b = 0.5 (cf. Sec-
tion 4.2.2). From the perspective of game balancing, there can be, however, other
situations in which a non equal balance for both players can be required. As
explained earlier, this can involve special scenarios that are particularly more
difficult to solve or designed to favor a less skilled player. Moreover, this study
explores our method’s general capability of balancing levels to a configurable
value, such as to specific degrees of imbalance as well.

In order to explore this, we test our method to balance levels for different
configurations of b in the range from 0.0 to 0.4, with a step size of 0.1, creating
different degrees of imbalance. We run the experiments with both, the improved
action and observation space as defined in Section 5.6. We use the exact same
experimental setup as in Chapter 5, including the model configurations and the
test set for evaluation. In addition, we compare the unbalancing approach with
the hill climbing baselines from Section 5.7 in order to evaluate the RL approach
with a model-free search-based approach.

Results: The results for various configurations of b are given in Table 6.1 and
clearly indicate that the PCGRL approach using the swap-wide representation
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Table 6.2: Comparison with hill climbing baselines across multiple degrees of
imbalance: An overview of the performances of our PCGRL method optimiz-
ing different win rates for players (cf. Table 6.1). The different win rates are
expressed with the balancing constraint b and the results are compared to the
same hill climbing approach as introduced earlier. All values are expressed as
percentages.

PCGRL  Hill Climbing Hill Climbing

b Swap-wide Swap-narrow narrow
0.0 83.2 33.7 5.4
0.1 39.6 31.9 10.8
0.2 51.0 36.6 7.9
0.3 42.8 39.6 8.9
0.4 45.6 45.2 12.2
0.5 91.5 73.9 47.0

can improve the proportion of accordingly balanced levels of the evaluation
dataset across all different configurations of b. A larger proportion could at least
be improved towards the given b. The results for b in [0.1,0.4] are similar, in-
dicating only small improvements for these cases. The proportion of balanced
levels could, however, significantly improved for the unfairest case — the levels
where exactly the same player should always win. For this configuration, the
results are on a comparable level as balancing levels for equal win rates.

As shown in Table 6.2, the results of comparisons to the hill climbing base-
lines indicate that our PCGRL approach is superior across all configurations
of b, except for b = 0.4, where a comparable result is observed. For b = 0.0,
PCGRL using the swap-wide representation outperforms the hill climbing ap-
proaches the most. While PCGRL performs well for balanced and imbalanced
cases, we observe that the model-free approaches perform worse the more un-
fair the setup becomes. This will be examined in more detail in the Discussion
section (Section 6.4) of this chapter. As in Section 5.7, we also observe here that
the hill climbing approach with the swap representation outperforms the analog
PCGRL narrow representation, indicating the superiority of swapping tiles for
level balancing as a fine-tuning process.

6.2 Asymmetric Balance

A motivation behind this work is the creation of asymmetric game levels to en-
hance diversity for competitive play, which is also of general interest when im-
plementing PCG methods [Togelius et al., 2011b].

6.2.1 Level Asymmetry and Diversity

For all generated levels per model, we evaluate their asymmetry and diversity
with matrix comparisons. For each b, we determine a content diversity of 100 %
of the balanced levels, which means that no level is identical to another one.
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Table 6.3: Overview of symmetry scores for generated levels across the four
axes using Equation 6.1. Lower values indicate more symmetry along an axis, 0
indicates perfect symmetry.

diagonal counter-diagonal vertical horizontal

Mean 4.52 4.51 4.95 4.96
Std. 0.41 0.40 0.40 0.39
Min. 2.83 2.83 3.16 3.46
Max. 5.48 5.48 6.0 6.0

This result is also consistent with findings of Zakaria et al. [2022], which show
that PCGRL yields highly diverse content compared to other approaches.

We evaluate the asymmetries across all generated levels of all models out-
lined in Section 6.1 regarding their symmetric properties along the horizontal,
vertical, diagonal, and counter-diagonal axes. The diagonal symmetry of an n x
n matrix M can be evaluated using the Frobenius norm with ||M — MT||r which
computes the sum of the absolute differences of the matrix elements [Golub and
Van Loan, 2013]. As we are dealing with non-numerical tile representations, we
use a distance metric 1 which returns 1 for an element i, j if |[M;; — MZ j| > 0,
otherwise 0. To compute symmetries along all four axes, we rotate or transpose
M accordingly which yields a matrix M’. The symmetry between M and M’ can
then be computed using Equation 6.1. Lower values indicate greater symmetry,
a value of 0 indicates perfect symmetry.

sym(M,M’) = || (M — M) [ (6.1)

A counterclockwise rotation of M by d degrees is denoted with M, 4. The
transposed matrix of M is denoted with M?. To compute the symme-
try score for the diagonal axis we compute sym(M,MT), for the counter-
diagonal sym (M, (MT),o: 150), the vertical sym(M, (My,90)" ), and the horizontal
sym(M, (MT),o190). The mean, standard deviation, minimal, and maximum val-
ues are presented for the four symmetry axes in Table 6.3. The results show that
none of the generated levels for any model are symmetric.

6.2.2 Level Balancing for Asymmetric Player Types

Well-designed games ensure the viability of multiple strategies for players to
choose from, all of which, if played well, can lead to victory [Schreiber and
Romero, 2021]. As a result, many modern games make use of asymmetric bal-
ancing strategies, such as putting heroes of different abilities against each other.
This can be seen in dungeon crawlers like Decent: Journeys in the Dark [2012] or
MOBA (Multiplayer Online Battle Arena) games like League of Legends [2009].
The asymmetric balance is mainly achieved by balancing the numerical values
of the game units, such as health or attack values. We will also consider this
aspect of balancing in the context of game economies in the next chapter in Sec-
tion 7.4.
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Limited work [Beau and Bakkes, 2016; Lanzi et al., 2014], however, has been
published to automatically balance asymmetric games, i.e., players with differ-
ent abilities and stats. For this reason, this section focuses on balancing an asym-
metric game setup with our method on the example of players with different
abilities entirely through level design, e.g., where to place resources in relation
to the players’ spawn positions. Therefore, this problem is also formulated as a
PCG problem. This approach is further motivated to be used in settings where
players of different skill levels face each other, such as experts and beginners, or
adults playing against children. Another use case is to ensure balance in compet-
itive settings where players with different gear levels have different strengths.

Since then our approach is, however, limited by the fact that it only uses ex-
actly the same archetype of agents playing against each other (cf. Section 5.2.2).
To address this shortcoming, we adds four new archetypes to investigate the
ability of the method to achieve balance for different agent archetypes playing
against each other, for instance, an agent playing against a handicapped agent.
We will evaluate and compare our results to a random search and also to the hill
climbing baseline (Algorithm 4).

Definition of archetypes

In this work, we introduce the four new agent archetypes B, C, D1, and D2,
which extend the existing archetype A (Section 5.2.2, Algorithm 3). An heuristic
archetype definition always returns a decision on one of the five actions per
game step, describing which of the four adjacent tiles to move to next, or to do
nothing (cf. Section 4.3).

We define the new archetypes each to address different specific aspects of
the balance, such as movement advantages or the required number of food re-
sources to win the game. The list below gives a brief description of the agents
used and how this affects their chance of victory compared to archetype A:

¢ Archetype A is the Base Agent, as has been described earlier in Algorithm 3
and applied as heuristic for all experiments so far. It cannot move over
rock and water tiles and wins with five victory points.

e Archetype B, the Rock Agent, has the additional ability to cross rock
tiles, being blocked only by water tiles. This gives it an advantage over
archetype A agents.

¢ Archetype C, the Handicap Agent, can only perform one action every sec-
ond turn. This agent is at a huge disadvantage when playing against
archetype A agents.

¢ Archetype D, the Food Agent, already wins the game with four (D1) or three
(D2) collected food resources instead of five. This gives it an advantage
over archetype A agents.

Experimental setup

For all experiments, we use the same dataset of generated levels (cf. 5.4) to
ensure a fair comparison. We compare our PCGRL method with two baselines:
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Figure 6.1: Required training steps for models to first exceed a reward of 9 com-
pared to the initial imbalance due to agent asymmetries per setup. A value of
0.5 (50 %) indicates equal wins, while 1.0 means one agent always wins.

a random agent and the hill climbing approach as used before in Section 5.7.
The hill climbing approach uses the same swapping mechanism as PCGRL, but
chooses the positions randomly. If the reward is not positive, it transitions back
to the previous state. A key metric for evaluation is the proportion of how many
levels a method can balance.

We train multiple models where archetype A faces the new ones in a one-
versus-one setting. For all Proximal Policy Optimization (PPO) models we use
the same setup and training conditions as described in Section 5.4, but with the
improved definitions of the action and observation space from Section 5.6.

Relationship between initial imbalance and model convergence time

We paired archetypes of different strengths against each other, but how can we
determine how different their strength is? In the previous chapter, Figure 5.3
indicated a balanced distribution of the randomly generated levels that are ini-
tially imbalanced and favor a particular player. Setups with asymmetric arche-
types skew the initial balance of levels toward the stronger agent, which wins
more often in simulations than its opponent. We can then estimate the abso-
lute proportion of levels which are initial favoring a specific player to express an
archetypes advantage over another numerically. In other words, if both arche-
types are of equal strength, both should win the same proportion of imbalanced
levels, so the ratio should be 0.5 (50 %).

Figure 6.1 shows the initial imbalance of archetype setups compared to type
A, in relation to the number of training steps required to surpass a reward
threshold. We measure the number of steps each model takes to first exceed
a reward of 9 — the lowest peak reward achieved across all models — to en-
sure a fair comparison. As expected when the archetypes setup is symmetric (A
vs. A), the proportions of levels that initially favor a single player are almost
equal (50.1%). In contrast, the asymmetric setups strongly favor one specific
player indicating that archetype C is in the largest disadvantage when paired
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up with type A. Comparing the initial imbalance with the number of training
steps required for model convergence shows that the greater the disparity in
strength between two archetypes of a setup, the more training steps are required.
This method is also useful for accurately measuring the disparity in asymmetry
caused by differing abilities.

Performance overall

Table 6.4 shows the performance of the various setups compared to the hill
climbing approach and a random search. Unlike the hill climbing approach, the
random search explores the search space fully randomly and does not reset the
state to t — 1 if the cumulative reward worsens. Initially balanced levels are not
taken into account. While the hill climbing approach achieves reasonable results
and can beat the random search approach in all cases, our PCGRL approach re-
mains the best in comparison for all setups. This is due to the advantage of RL
to learn during training which trajectories have the best impact on the balance.

We also see that the performance of the different archetypes varies by about
20 percentage points. In relation to Figure 6.1 we observe that the greater the
initial disparity between the two archetypes is, the more the performance of the
models decreases. We can therefore conclude that the greater the initial unfair-
ness of a setup, the harder it is for the model to learn how to compensate the
balance by modifying the level alone.

Table 6.4: Comparison of the proportions of balanced levels on a set of 500 gener-
ated levels with two baseline approaches. A level is balanced when both players
win equally. Since the swap-narrow representation resembles the swap-wide in
approaches without a learning model (cf. Section 5.7), we use swap-narrow for
the random and hill climbing baselines.

Agents  Random (%) Hill Climbing (%) PCGRL (%)

swap-narrow swap-narrow swap-wide
Avs.B 27.6 46.1 80.4
Avs. C 16.2 24.6 56.5
A vs. D1 28.8 46.6 72.3
A vs. D2 26.8 35.2 57.9
Avs. A
(Table 5.3) 59.8 739 91.5

Generated samples

Figure 6.2 shows generated samples from different models and archetype se-
tups. Sample 1 in Figure 6.2a shows the setup of the Rock Agent B (yellow)
against a normal archetype (red). The model achieved balance by swapping the
tiles D3 and C4. Since the yellow agent can move over rock tiles, it can reach the
area at the bottom right before the other player. If it could not move over rocks,
this level would not be balanced. Sample 2 shows the setup with the Handicap
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Figure 6.2: Generated samples from different models and archetype setups in
comparison with the initial imbalanced version. A player of archetype A (red)
is paired with different archetypes (yellow).

Agent C (yellow), which can only move every second turn (Figure 6.2b). The
model achieves balance by separating the two players from each other by swap-
ping B4 and E3 tiles. This prevents them from stealing food resources from each
other, mitigating the yellow player’s handicap. The setup of the Food Agent D2
(yellow), which already wins with three collected food resources instead of five,
is shown in Figure 6.2c. With several changes to the initial level, the model
achieved balance by placing more resources on the side of the weaker agent
(red). Also, the only water resource (tile A6) is now accessible to both players.

Sample 4 (Figure 6.2d) illustrates a limitation where the model achieves bal-
ance by excluding both players from access to food resources. This is a strategy
that we see the model exploiting in certain cases to achieve a balanced state
where both players technically win equally often — i.e., never — but this out-
come is not intended. This is possible due to the Statistical Parity metric on
which the reward function is based (cf. Section 4.2.2) assumes that draws are
always balanced, even if both players lose. We will discuss this issue further in
Section 6.2.3.

6.2.3 Levels without Winners: An Alignment Problem

We improved our method’s performance in terms of different aspects and tested
various applications in previous sections, but we observed cases where the RL
models exploited an unintended loophole in the reward function and generated
levels where none of the players can win (cf. Section 6.2.2). This is possible
due to the reward function which assumes balance based on the underlying
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Statistical Parity metric. According to that metric, also a game without winners
is considered as fair and therefore balanced.

A common challenge in RL in general is the definition of a reward function
which ensures that the agent learns a behavior with the actual intended goal(s).
While the RL algorithm optimizes the policy in order to increase the reward
by any means, the reward function itself is treated as a black box [Icarte et al.,
2022]. This is also what Christian [2021] refers to as the Alignment Problem — the
disconnection between the goals a human specifies for an Artificial Intelligence
(AI) system and the behaviors the system actually learns. This problem is not
limited to RL, but concerns all Al systems where a metric is optimized. A crucial
step is therefore the evaluation of the system, especially if the system’s behavior
and goals are achieved as intended by humans.

Although, in our case, the reward is technically maximized and according
to the Statistical Parity fairness is guaranteed — making the game theoretically
balanced — the outcome is still not a game which we would consider enjoyable,
since nobody can win. The Statistical Parity ensures balance, but it does not
capture all intended nuances of game design, such as the fact that games without
winners are also not fun to play.

6.3 Benchmarks on Transferability to another Environ-
ment: Balancing the City Game

We have introduced a method for balancing tile-based levels in Chapter 5 and
have further improved and explored it in the previous sections of this chapter.
In contrast to many related works (e.g., Lara-Cabrera et al. [2014] and Lanzi et
al. [2014]), our goal was to develop a method that does not include any game-
specific information in order to be transferable to other games. So far, however,
we have not demonstrated this on an additional environment. Moreover, as we
have discussed in Section 5.8, the intent of our swap-based action space for PC-
GRL is to avoid or at least to reduce states where the game is not playable and
thus no simulations can be run in order to estimate balance. Using our swap-
based approach, the Feast & Forage environment is always playable. However,
there may be games where playability depends on the adjacencies of the tiles
for instance. For this reason, we will experiment in this section with cases
where playability is not always guaranteed, even when using our swap-based
approach.

6.3.1 The City Game Environment

To evaluate the transferability of our method, we introduce the City Environ-
ment as an additional testbed. It is narratively inspired by urban planning and
mainly focuses on achieving balance through the spatial placement of tiles. The
environment meets the same requirements: it is for two players, competitive,
tile-based, and it also includes probabilistic elements. Like for Feast & Forage,
we set the size to a grid of 6x6. Since road users in inner cities differ, espe-
cially in means of transportation, we adopt an asymmetric setting with different
player archetypes as introduced in Section 6.2.2 by balancing the environment
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for a pedestrian and a car driver, each with distinct movement speeds and tile
accessibility. Each round, both players can choose from the same five actions:
to move up, down, left, right, or to do nothing. The key difference between
the both archetypes — and also from the ones in Feast & Forage — is that the car
driver can move up to two tiles each round, whereas the pedestrian can only
move one. The car driver, however, needs more turns to cross certain tiles, or
even cannot cross some tiles at all and is additionally hindered by traffic jams.
This setup is not to be equated with the Handicap Archetype C from Section 6.2.2,
as the number of possible moves here depends on the specific tile(s) the driver
agent traverses in a round, potentially resulting in one or two moves depend-
ing on the tile costs. The archetype C in contrast, just skips each second round.
In Section 6.3.2 we will experiment with different settings and will then give a
more detailed descriptions on the abilities of each archetype. Table 6.5 provides
an overview of the available tiles and their spri’ces14 ; their functionality within
the environment is explained in the following paragraph.

Players take their turns simultaneously. To win, a player must visit three
locations located in the city center, represented by flag tiles. In the context of
the narrative, this represents locations a citizen must visit in order to complete
everyday tasks, such as grocery shopping or attending a doctor’s appointment.
A location is considered visited when a player moves the first time onto the
respective flag tile. The player who has completed all three jobs first wins the
game. As a result of the discussion on fairness in Section 4.1, we allow a range
in which we consider the game as fair, allowing for a draw if the second player
finishes equally or just one step later. The order in which the flags are visited
is irrelevant. Depending on the setting, the car driver may be unable to cross
park tiles, which can lead to unplayable levels where a flag is inaccessible due
to being surrounded by parks.

A key aspect is the unpredictability of inner-city traffic, and thus each turn,
street tiles have a 25% chance of turning into traffic jam tiles. Starting from
the next turn, each traffic jam tile has a 50 % chance of clearing and transitioning
back to a street tile. Following the narrative of a pedestrian and a car driver in an
inner city, the car driver is typically faster — except when caught in a traffic jam,
where this advantage is repealed, or when there are shortcuts through parks for
pedestrians for instance.

A sample level is given in Figure 6.3. While the car driver (C3) has a higher
range per turn, it is hindered to reach the flag in D1, since it cannot cross the
park tile and thus has to take a detour through the traffic jam in E3 and E2.
The pedestrian (B4), in contrast, can reach the flag by just walking through the
park in D2. Balance can therefore spatially be influenced by strategically placing
different tile types throughout the environment.

6.3.2 Experimental Setup

To ensure comparability across various experiments and baselines, we create a
shared test set of 500 levels for evaluation for all experiments. Even though the

4The sprites are from the Tiny Battle tileset by Kenney, available at https://kenney.nl/asse
ts/tiny-battle (CCO 1.0).
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Name Resource Sprite

Street No
Park No
Building No
Target Yes
Traffic Jam No

Player 1: Pedestrian No

Player 2: Car Driver No

Table 6.5: Overview of the tile types in Figure 6.3: The city game: An
the city game environment. example level.

Table 6.6: Different tile cost setups of archetypes for experiments with the city
environment.

Setup Action Costs per Tile Unpl.
No. Player Arch. Street Park Building Target TrafficJam State
S1 Pedestrian 1 1 1 1 1 No
Car Driver 1 2 2 1 2
S2 Pedestrian 1 1 1 1 1 Yes
Car Driver 1 - 2 1 2
S3 Pedestrian 1 1 1 1 1 Yes
Car Driver 1 - - 1 2

win condition differs from Feast & Forage, we can use the same architecture
(Section 5.2), reward function (Equation 4.4), and experimental setup as we only
use the information which player has won the game or if it is a draw. To de-
termine the appropriate number of simulations for estimating the balance, we
follow the same approach presented in Section 5.2.2. This approach involves se-
lecting a sufficient number of simulations to minimize scattering of results while
keeping computational effort minimal. Figure C.1 in the appendix displays the
data from simulations with different values of n ranging from 2 to 40. With this
approach, we determine that 30 is a suitable number. We also use PPO as the RL
algorithm with the same configuration as before. Since it performed best in the
evaluation and comparison to baselines in Section 5.7, we use the swap-wide
representation for all PCGRL models. Accordingly, we use swap-narrow for the
hill climbing and random baselines.

We evaluate our method using asymmetric archetypes across three different
settings, referred to as S1, S2, and S3, for the game simulations. The settings dif-
fer in how action costs are configured for the car driver agent to traverse specific
tiles. An overview of the configuration is given in Table 6.6. The heuristic that
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Table 6.7: Results of the evaluation of asymmetric level balancing with our
swap-based PCGRL method in the city environment across three different se-
tups (cf. Table 6.6). For PCGRL we use the improved definition of the observa-
tion and action space of the swap-wide representation as defined in Section 5.6.
We further compare PCGRL with the same swap-narrow baselines as in Sec-
tion 5.7 and also report the proportion of levels each method could balance
(b = 0.5) out of an evaluation set. In addition, we list the levels which are in
a playable state in the end (Play.).

Setup Method Balanced Init. Balanced Play. Init. Play.

S1 Random 53.3 25.0 100 100
Hill Climbing 58.0 24.8 100 100
PCGRL 96.8 25.6 100 100

S2 Random 47.6 22.2 91.0 91.2
Hill Climbing 50.4 22.2 93.6 91.2
PCGRL 87.6 21.2 96.8 91.2

S3 Random 16.7 6.4 425 39.6
Hill Climbing 18.3 7.2 47.2 39.6
PCGRL 84.6 6.4 90.4 39.6

defines the behavior of the agents is described in Algorithm 5 in the appendix. It
is based on using the A* algorithm to find the shortest path to the nearest target
that has not yet been visited. Depending on the archetype, it can be configured
differently by providing the tile costs. Similarly to the heuristic used in the con-
text of Feast & Forage (Algorithm 3), it implements a function that returns the
next action for an agent based on the current game state when called. Depend-
ing on the archetype, however, this function may be called multiple times by the
environment. For example, the driver agent can perform two actions each turn.

In S1, both agents can traverse all tiles, but the car driver must spend two
actions to cross parks, buildings, or traffic jams, while the pedestrian requires
only one action for any tile. There can be no unplayable state in this configura-
tion. In contrast in S2, the car driver cannot cross any parks, and in S3, neither
parks nor building tiles. In these configurations, the driver agent may be unable
to reach flag tiles to finish the game, which can result in unplayable states in 52
and S3. We compare each setting to the same random and hill climbing baselines
as described in Section 5.7.

6.3.3 Results

The results of using our PCGRL method with the improved action and observa-
tion space introduced in Section 5.6, along with a random and the hill climbing
baseline is given in Table 6.7. We tested three different configurations, each with
a higher level of difficulty in balancing, because the car driver is more restricted
in which tiles he can access. The results reflect this as for instance the propor-
tion of initially balanced levels decreases from S1 with 24.0 % to only 6.4 % in S3.
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This is also related to the proportion of levels that are initially playable, where a
similar pattern can be observed.

For all three configurations of the asymmetric agent archetypes, our PCGRL
approach can balance significantly larger proportions of levels in comparison
to the baselines. While in S2 still most of levels are initially playable, they are
not for S3. For S3, PCGRL improved the proportion of playable levels after bal-
ancing more than the baseline methods, demonstrating its ability to also handle
environments where playability is not always guaranteed. We also notice that
the hill climbing approach is only slightly better than a completely random ap-
proach in this environment, indicating that learning a trajectory of actions is
beneficial. Exploring balancing in an additional, asymmetric environment pro-
vides further evidence that our method is effective and easily transferable.

6.4 Discussion

In this chapter, we explored additional applications of our method for level bal-
ancing from Chapter 5. Our contributions include new insights that enhance
the understanding of the previously introduced approach in order to strengthen
our answer to RQ 1 (quantification of balance) and RQ 2 (accelerating automated
level balancing). This involves investigating its applicability to imbalanced lev-
els and asymmetric player archetype setups, as well as demonstrating its easy
transferability to another environment.

In general, a PCG method should not also be fast at inference but also gen-
erate content that is diverse [Togelius et al., 2011a]. According to Zakaria et al.
[2022], the original PCGRL has been reported to yield better content diversities
than other PCG approaches for Sokoban levels. Based on matrix comparisons,
we evaluated the diversity of our best performing configuration, the swap-wide
PCGRL approach (cf. Section 5.7). We could also confirm that all generated
levels in a sample of 1000 levels were unique. It must be said, however, that
this was a quantitative evaluation. This does not include cases where individual
tiles are different but do actually have no effect on the gameplay, resulting in
an essentially equal experience for the players. A qualitative evaluation would
require comparing each level in the sample of 1000 with all 999 others, which
leads to an immense manual effort. Therefore, we also examined a randomly se-
lected subset of ten levels manually, already resulting in 55 direct comparisons.
We found no levels that were too similar. While this gives an additional qualita-
tive impression of level diversity, a sample size of ten is, however, far too small
to be considered a robust result. For the sake of the high manual effort in com-
bination with good results from a small-case qualitative study, we rely on the
quantitative evaluation, as also Zakaria et al. [2022] did in their evaluation of
content diversity.

In addition to evaluating the ability to learn a trajectory for balancing, we
also evaluated the ability of our method to generate levels with different de-
grees of imbalance based on a given configuration. We used both the improved
action and observation spaces from Section 5.6. The results (Table 6.1) showed
that our PCGRL approach based on the swap-wide representation improved the
proportion of levels for all degrees of imbalance. We were also able to demon-
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strate that it outperformed the hill climbing approaches that we had previously
used as baselines in Section 5.7. This indicates that training a model is more
efficient for inference than a model-free approach. While for b in [0.1,0.4] the re-
sults are similar or slightly better, for the most imbalanced configuration b = 0.0
PCGRL using the swap-wide representations reaches a comparable quality as
for b = 0.5. In both cases, PCGRL clearly outperformed the model-free base-
lines, suggesting that learning in advance indeed is beneficial. We thus draw
the overall conclusion that the model can learn best to create either balance or
maximal imbalance, and it is more difficult for the model to learn a particular
degree of imbalance. Indeed, creating maximal imbalance is much easier —e.g.,
by systematically excluding a distinct player from resources — than to achieve a
specific degree of imbalance. As much as we aim to reduce fluctuations caused
by probabilistic game elements through multiple simulations, some randomness
still remains. Especially in the case for b = 0.4 which is very close to balance, it
is hard to distribute the resources in such a way that one particular player wins
40 % and the other 60 % of the games. In this environment, that would mean
to create a resource distribution whose respawn probability slightly — and only
slightly — favors a selected player. Given the level and so the fixed available
tiles for balancing, this can be challenging and sometimes even impossible for
specific degrees of imbalance. Perhaps the degrees of imbalance chosen were
also too fine-grained.

In Chapter 5, we evaluated our method on balance for agents controlled
by the same heuristic. In Section 6.2.2, we extended our exploration to differ-
ent heuristics for both agents, representing asymmetric player archetypes with
varying abilities. These disparities create an unfair setup, leading to initial im-
balances, and as in previous experiments, the model’s task is to achieve bal-
ance entirely through level design. Our results showed that balancing also with
different heuristic setups with varying strengths is feasible and can balance a
larger proportion of levels compared to both random search and hill climbing
baselines. Furthermore, we observe that the difficulty of learning to balance in-
creases with larger initial disparities in strength between the player archetypes,
highlighting the challenge of dealing with highly imbalanced starting condi-
tions. This was evidenced by decreased performance and increased time to
reach a particular reward threshold.

A limitation of the RL approach is that it can exploit a strategy where neither
player can win. While this technically ensures balance (both players win equally
often), it is not the intended outcome.

In Section 6.3, we explored our method from Chapter 5 regarding two addi-
tional things: First, one of our goals is a domain-independent method combined
with a balance estimation that can be applied to other competitive two-player
tile-based games. While we demonstrated feasibility and superior performance
over baselines, we only tested it in one environment. In this chapter we therefore
investigated how well our method generalizes to another environment inspired
by urban planning, aiming to ensure equal accessibility to resources for a pedes-
trian and a driver. Like in Section 6.2.2, the player agent setup was asymmetric.

Second, the intent of our swapping-based action space definition for the
Markov Decision Process (MDP) for balancing is that it only changes the po-
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sition of tiles, not like the MDP definition of the original PCGRL, completely
exchanging tile types with others. Since we evaluate the balance of each level
state simulation-driven, exchanging a player’s starting position with a different
tile would result in an unplayable state. As a consequence, we cannot simulate
the game, and the balance cannot be estimated. In the previous Chapter 5 we
could successfully demonstrate that swapping-tiles to improve a level’s balance
as a fine-tuning task in the context of PCG is beneficial. However, unplayable
states can also occur when a game has other constraints, such as when certain
tiles must be adjacent to a certain other tile, not just a certain number of specific
tile types must be present. We further explored this in the city environment,
where unplayable states can occur when a player is blocked in such a way that
he can never access a flag. For a better comparison, we approached this by ex-
perimenting with the three different experimental setups S1, S2, and S3. While
in S1 all player archetypes could cross all tile types, in S3 the car driver cannot
cross parking and building tiles, leading to possibly unplayable game states in
this setup.

To estimate a suitable number of simulations, we followed the same ap-
proach as in Section 5.2.2. For the city environment, however, the number of
required simulations is much higher (30) than for Feast & Forage (14). This can
be explained by the fact that randomness has a greater impact in the city en-
vironment due to the 25 % chance of traffic jams occurring each round and the
50 % chance of traffic jams disappearing (cf. Table 6.5).

The results overall demonstrated that our PCGRL approach could balance a
significantly larger proportion of levels on a shared evaluation set than the same
baselines as used in Section 5.7. For S1, where all levels are always playable, PC-
GRL achieved a balanced proportion of 96.8 % in contrast to the hill climbing
baseline (58.0 %). The performance disparity is even larger for S3 where PC-
GRL achieved a proportion of balanced levels of 84.6 % in comparison to hill
climbing with only 18.3 %. In addition, PCGRL could also significantly increase
the proportion of levels which are playable after balancing to 90.4 %. In pre-
vious experiments, all levels were initially playable (e.g., Feast & Forage and
S1), but in S3, only 39.6 % were initially playable, and in comparison, the hill
climbing baseline could only improve it to 47.2 %. This also shows that learn-
ing a trajectory whose level changes affect the overall balance is advantageous
over search-based model-free approaches. Moreover, we have shown that our
method introduced in Chapter 5 is easily transferable to another game without
the need to adapt the MDP.

6.5 Conclusion

Applying the method introduced in Chapter 5, we explored and evaluated it
across three different aspects in this chapter. In doing so, we extend our con-
tribution C 2 to further strengthen our response to accelerating automated level
balancing (RQ 2). In addition, we demonstrated the applicability of our balance
estimation C 1 in another environment.

We demonstrated the applicability to extended use cases, such as unbalanc-
ing levels. The results indicate that the method can also be used to intentionally
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unbalance levels. However, it is easier to produce either balanced or maximally
imbalanced levels than to achieve a specific degree of imbalance. Moreover, we
demonstrated that our method for generating balanced levels can also produce
asymmetric levels for asymmetric player archetypes, not just for symmetric se-
tups. By evaluating the method in another environment, we demonstrated its
easy transferability. In this context, we also showed that the method can han-
dle environments where unplayable states may occur while performing signifi-
cantly better than the baselines.
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Chapter 7

Procedural Generation and
Balancing of Game Economies

This section is adapted from the author’s publications:

¢ Florian Rupp and Kai Eckert. G-PCGRL: Procedural Graph Data Gener-
ation via Reinforcement Learning. 2024 IEEE Conference on Games (CoG),
Milan, Ttaly, 2024, pp. 1-8, doi: 10.1109/CoG60054 . 2024 . 10645633 .

¢ Florian Rupp and Kai Eckert. GEEvo: Game Economy Generation and
Balancing with Evolutionary Algorithms. 2024 IEEE Congress on Evolution-
ary Computation (CEC), Yokohama, Japan, 2024, pp. 1-8, doi: 10.1109/CE
€60901.2024.10612054 .

This chapter is about the procedural generation and balancing of graph-based
game economies, addressing research question RQ 4. As explained earlier (cf.
Section 1.1), balancing a game consists of several layers that need to be coordi-
nated with each other. In Chapter 5, we proposed a method for balancing a game
through its level design, focusing on the spatial placement of e.g., resources in
relation to players” positions. Then, in Chapter 6, we highlighted different as-
pects of the automated balancing, such as unbalancing, but also a balancing for
asymmetric player archetypes.

Alongside levels, a game’s economy is a key factor in ensuring a balanced and
engaging experience on a macro level. In this context, we will deliver two con-
tributions: First, we present G-PCGRL (Graph Procedural Content Generation
(PCG) via Reinforcement Learning (RL)). We build directly upon results from
Chapter 5 and 6 and propose a Markov Decision Process (MDP) for graph data
generation based on a set of constraints. This is our contribution C 4. Second,
we propose Game Economy Evolution (GEEvo), a framework with two evolu-
tionary algorithms to generate and balance graph-based games economies. This
is our contribution C 5.

7.1 Overview and Motivation

A game’s balance is, among other things, heavily influenced by the design and
configuration of its internal economy which defines how virtual resources are
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created and can be transitioned to other resources (cf. Section 1.1.3). In other
words, it defines elements such as the action costs for moving a pawn, directly
influencing the player’s decision-making within the broader game context. To
enrich the game and to increase its replay value, many games involve probabilis-
tic elements, such as dice rolls or card drawings. Virtual resources are hereby
not limited to health points or currencies, but also include the players’ time, i.e.,
turns are a valuable resource that need to be balanced as well. In this way, the
design of such an economy has a tremendous impact on how players progress
through the game. Even if a game shines in all other aspects, if its economy is
not well designed, players won’t be engaged and will stop playing it. That being
said, a game’s economy determines the incentive and motivation for players to
engage in certain behaviors and why they choose a certain strategy [Schreiber
and Romero, 2021].

A game economy must therefore be understood as a system, where already
small changes can drastically impact or even break the whole experience. For
this reason, balancing a game’s economy requires a lot of manual fine-tuning,
as well as a deep understanding of the particular game, and experience in bal-
ancing games in general. Klint and van Rozen [2013] introduced a notation to
formulate a game economy as directed graph, where connected nodes define,
based on a node’s type, a relation configured through the weight of the connect-
ing edge. The nodes and edges are considered here only as particular functional
components, completely detached from the narrative elements they represent to
the players. The commercial tool Machinations'®> implements this idea and offers
users an interface to model and simulate such an economy.

There is, however, little research on game economies and graph data in
games at all, yet graph data in games is omnipresent. Only Rogers et al. [2023]
investigate the generation of game economies targeting different complexity lev-
els, but their work is limited to crafting systems and does not address other nar-
rative setting or a broader macro-level context.

To fill this gap, this chapter introduces graph data as a relevant data domain
for PCG in games, and introduces two methods for generating such data using
game economies as an example, as well as a method for balancing a game econ-
omy. As a first step, we build on the results from Chapter 5 and transfer the
PCGRL (PCG via RL) framework by Khalifa et al. [2020] from the game level
domain to the generation of graph data by introducing an adapted version of
the MDP, we name G-PCGRL (Section 7.3).  To the best of our knowledge, no
work has been published yet on generating graph data for games with RL. In
this context, we consider the integer matrix, which in PCGRL represents a game
level, as the adjacency matrix of a graph. While PCGRL evaluates the validity of
a level if it is playable, we evaluate the validity of a graph if it satisfies a set of
multiple constraints. These constraints are oriented on the definitions of game
economies by Klint and van Rozen [2013].

The results indicate that G-PCGRL is able to generate valid graphs within a
short computational window in comparison to baselines, but has limited scala-
bility for increasing graph sizes. To address this shortcoming, we introduce the
GEEvo (Game Economy Evolution) framework (Section 7.4) and use an evolu-

150nline available at: https://machinations.io/
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tionary algorithm to generate graph data. Other search-based approaches could
be applied here, such as hill climbing or simulated annealing. However, evo-
lutionary algorithms are more robust and less likely to get stuck in local op-
tima [Eiben and Smith, 2015]. This is also a reason, why evolutionary algo-
rithms are a widely used search-based approach for PCG for games [Togelius
et al., 2024]. For more information see Section 2.3 on search-based optimization
and Section 2.1 on PCG in the background chapter.

Using an evolutionary algorithm, we are able to generate larger valid graphs
with more complex constraints, however, it requires a much higher computa-
tional window to explore the search space in comparison to G-PCGRL using RL.
In addition, these algorithms are highly dependent on randomness.

With the GEEvo framework, we propose two evolutionary algorithms: (1)
to generate valid game economies, and (2) to balance a game economy within a
given constraint. A first question to be answered here is, what it actually takes to
balance an economy and how we can quantify this. To estimate and gather infor-
mation, we use, as in previous chapters, a simulation-based evaluation function
(cf. Yannakakis and Togelius [2011]). In Chapters 5 and 6, we used agent-based
simulations to sample from the game’s win-rate distribution, which is not ap-
plicable for game economies that define abstract systems. The simulations we
will conduct in the context of GEEvo can be understood as sampling from the
distribution of possible states of the game’s economic system.

7.2 Related Work: Graph Data Generation

This section provides an overview of related work on graph data generation,
particularly in the context of this chapter. We separate two parts: graph data
generation in the context of PCG for games and also in a more general context.
Several approaches have been proposed for graph data generation, differing in
both the methods used and the domains they target.

Graph rewriting systems, such as graph grammars, are widely used to gen-
erate graph-based structures. Graph grammars provide a flexible way to model
complex structures and are used in the context of games to generate levels, as in
platformers or dungeon layouts [Valls-Vargas et al., 2017; Hauck and Aranha,
2020; Gutierrez and Schrum, 2020], rules [Cook et al., 2013], or graphs as the
basis for narratives [Alvarez and Font, 2022]. Whereas graph grammars apply
rules iteratively, with G-PCGRL we focus on the learning of a set of constraints
in a general way from which a graph can be constructed.

Rogers et al. [2023] generate graph-based game economies using an evolu-
tionary algorithm. The authors thereby focus on the generation of economies
with different perceived complexity levels and proof their results alongside with
a user study. In their implementation, the economy exists solely within the nar-
rative context of a crafting system, where nodes form a tree structure and each
resource is always passed on to a subsequent conversion process. In contrast
to Rogers et al., we focus with GEEvo also on the balancing of the economy and
allow for generating more complex economies including probabilities or sup-
porting loops within the graph.
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The generation of graph data is not limited to game-related content. It is
also widely used in the field of chemistry, where a common problem domain is
the optimization of the properties of molecular graphs. Elton et al. [2019] pro-
vide a detailed survey on how to apply deep learning for graph-based molecular
design, Leguy et al. [2020] generate molecules with an evolutionary algorithm,
and Kwon et al. [2021] apply an evolutionary algorithm combined with recur-
rent neural networks. Similar like we will do in G-PCGRL, Zhou et al. [2019]
formulated the problem of graph data generation as an MDP to apply RL. The
molecule graph generation is a sequential task where the agent’s action space
is to add atoms and to create or remove bonds. For G-PCGRL, however, we
formulate the problem differently and manipulate the graph’s adjacency ma-
trix as opposed to a sequential task. You et al. [2018] combine a Graph Neu-
ronal Network (GNN) with RL to generate molecules with an optimized drug-
likeliness. The GNN is used to create node embeddings based on existing data,
the molecules are then generated with RL, where the agent’s action space is to
connect atoms (nodes) and subgraphs through link prediction. The key distinc-
tion for G-PCGRL and GEEvo from chemistry-related graph data generation is
that molecular graph generation uses real-world data. The constraints for gen-
erating new molecules are derived or learned from this data. In contrast, this
work addresses a scenario where no data exists, only abstract concepts which
can be formulated as a set of constraints.

7.3 G-PCGRL: Graph Procedural Content Generation via
Reinforcement Learning

With this section, we aim to automate the generation of game-related graph-
based structures. Therefore, we explore PCGRL also in the context of the previ-
ous Chapters 5 and 6 to transfer findings for procedural graph data generation
using RL. We contribute G-PCGRL (C 4), a novel method for PCG for graph
data with RL. Once trained, a RL model can generate content quickly and is less
dependent on randomness compared to evolutionary methods [Khalifa et al.,
2020]. The generation of graph data including RL is highly researched in others
fields like chemistry in the context of molecules [You et al., 2018; Leguy et al.,
2020; Elton et al., 2019]. To generate new realistic molecules, the work there in-
corporates existing data. When creating games, however, this is in most cases
not applicable since there is no data to learn from.

The PCGRL framework has been introduced for the generation of game lev-
els which we have used and extended in the previous Chapters 5 and 6. In
PCGRL, the RL agent learns a policy 7t to alter an integer-represented tile-based
level — for this section, we frame this as the adjacency matrix of a graph. By en-
tering parameters P into the initialization process, trained models can be further
controlled in terms of the size and number of different node types of the graph
to be generated (Figure 7.1). The validity of a graph is verified with a set of
constraints Cg,pp,. Training the generator is selecting a distribution from the set
of all possible distributions of graphs D. Following the previous notations on
content generation with PCGRL (cf. Equations 5.1 and 5.3), generating graphs

98



Configuration s

1

1

1

1

+ O 1
Set of constraints —)a - il :
1

1

1

1

1

+
Noise saies enes

Figure 7.1: Graph generation with G-PCGRL: A G-PCGRL model is controllable
through a given configuration to generate a valid graph from random noise ac-
cording to a set of constraints on which it has been trained.

G can be described formally as:

Pccgr%ph 1P x {Cgraph} — DTL’(G) . (7.1)
Likewise as when balancing levels, a graph G is generated by rolling out the
trained policy 7ty with parameters ¢ in the graph environment, which can be
understood as sampling from the distribution d,, € Dy defined by the learned
policy under a given input parameter p € P:

G ~dny(- | ). 72)

Classification within the PCG taxonomy: According to the PCG taxonomy
by Yannakakis and Togelius [2025b] (described in Section 2.1), G-PCGRL dif-
fers from the method for balanced level generation introduced in Chapter 5 and
can be classified as follows. In terms of content, it is functional, non-spatial, and
necessary, but it can also be used for optional content. In terms of its method,
it is stochastic, generate-and-test, trained, controllable, and iterative. In terms of its
role, G-PCGRL can generate content both at runtime and offline. It operates au-
tonomously, and is experience-agnostic, as no player or player experience is mod-
eled.

7.3.1 Graph Representations

We introduce the graph-narrow and the graph-wide representations, both inspired
by the corresponding ones in the PCGRL paper [Khalifa et al., 2020]. Like in Sec-
tion 5.3, we further extend PCGRL's representations in order to adapt the MDP
to fit our problem domain. In PCGRL the RL agent modifies an integer matrix
representing a tile-based game level. For G-PCGRL, this matrix is considered to
be the adjacency matrix of a graph (Figure 7.2). A simple example of such an
adjacency matrix M is given in Figure 7.2a. In this thesis, we extend the conven-
tional concept of an adjacency matrix to represent the node types on the matrix’s
diagonal. The different types of nodes are represented with the set N Different
nodes are encoded as U, V, and W for instance. The information as to whether
two nodes are connected by an edge is a binary information and is represented
by a 1 (connected) or 0 (no connection). To allow controllability in terms of also
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(a) An adjacency matrix M. (b) The graph visualization of M.

Figure 7.2: An extended adjacency matrix M (left) and its representation as a
graph (right). The nodes are represented on the matrix’s diagonal and encoded
depending on the node type. Edges between nodes are represented as 1, 0 for
no connection. M is the parameter p € P in Equation 7.1.

generating graphs smaller than the size of M, we pad M with additional sym-
bols of type £ (empty). Since we are dealing with undirected graphs and infer
the direction from the domain (cf. Section 7.3.2), no information is assigned to
the upper right area of the adjacency matrix, resulting in a triangular shape of
the action space.

To formulate the problem of graph data generation as an MDP, we need to
define the 4-tuple (S, A, P, R), where S represents the set of states and A the set
of actions. P is the state transition probability function and R is the reward func-
tion, defining the dynamics and rewards of the environment. In PCGRL, S (also
called the observation space) and A are modeled with different representations
(cf. Section 4.4).

For all representations, the action space is the prediction of whether two
nodes are connected or not, in other words the area below the adjacency ma-
trix’s diagonal. The diagonal cannot be modified by the agent, it is randomly
created or can be predefined to allow controllability. Since all values in the ma-
trix represent labels, we apply a one-hot-encoding in all representations as the
final transformation for the observations as in PCGRL.

Graph-narrow representation

Like in the PCGRL narrow representation, we implement the position selection
through the environment. Since it is important that the agent is given the op-
portunity to potentially modify any position of the adjacency matrix, we use the
narrow sequential mode. The episode terminates when either a complete itera-
tion over the action space has been performed, a maximum number of changes
(cf. change percentage, [Khalifa et al., 2020]) or iterations have been exceeded,
or the graph is valid (cf. Section 7.3.3).

In the context of a graph, a position represents the state of an edge between
two nodes. Using this representation, the action space A is minimal and contains
only two actions: toggling the state of an edge or leave it unchanged. A is then
A = 2. To encode the information about which edge between which nodes has
been selected for modification, an appropriate observation is required. There-
fore, we model this as two vectors, each representing a selected node and its
connections. This is comparable to the cropping approach in the PCGRL narrow
representation. The resulting matrix S € S in a configuration with |N| differ-
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(a) The adjacency matrix in the graph- (b) The adjacency matrix in the graph-
narrow representation: A position, i.e., wide representation: the agent is free
an edge (black frame), is selected by  to select any position in the matrix
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their connections (red frames). (red frame).

Figure 7.3: Visualization of the action and observation spaces for the graph-
narrow (left) and graph-wide (right) representation. The action space is high-
lighted with a green area, the observation space with red frames. The diagonal
(blue) is static for both representations and can be configured at initialization
or is generated randomly. Since we are only dealing with undirected graphs so
far, the gray area is not used, but is important for defining the shape of a square
matrix.

ent node types is then: § € ({0,1} UN)2*"*IV| An example matrix is shown
in Figure 7.3a. In this example, the position marked with a black frame (0,2)
is selected by the environment; the resulting observation space is marked with
red frames. Here it is the two vectors representing the nodes ¢/ and W with
all their edges. The advantage of the graph-narrow representation is its small
action space, however, its cropped observation space and the limited selection
mechanism can be a disadvantage, as there is less information available to the
agent.

Graph-wide representation

As in the PCGRL wide representation, the agent is given full control in the
graph-wide representation. For each time step, the agent predicts a position
on the adjacency matrix, i.e.,, an edge, and whether this edge state should be
toggled or not. Full observation of the adjacency matrix provides the agent with
maximum information, but significantly increases the action and observation
space. The size of the action space |.A| for a graph with n nodes can be calcu-
lated using the triangular formula (Equation 7.3) with n — 1, since the diagonal
is not part of A. |A| is then |A| = Tri(n — 1).

x-(x+1)

2
The RL agent in G-PCGRL predicts an action a as a discrete value. To map
this action to a 2D position in the matrix, we use the discriminant of the square
polynomial (cf. triangular root, Equation 7.4) and round it up.

Tri(x) = (7.3)
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The y-position is then calculated with Tri~!(a):

y= Trifl(g) = — |7_1+21+8a—‘ . (7.4)
The x-position is calculated from the resulting y-position with:
x=a—Tri(y—1)—1. (7.5)

The observation space is like in the original wide or the swap-wide representa-
tion the full matrix one-hot encoded. The resulting matrix for S in a configura-
tion with || different node types is then: S € ({0,1} UN)™"*IV|, The episode
ends when the graph is either valid (see Section 7.3.3), or a maximum number
of changes or iterations is exceeded.

7.3.2 Declaration of Sets of Constraints

With a set of constraints C = {¢1, ..., ¢, }, we define multiple constraints ¢ as
abstract concepts to define when a graph is valid. It thereby defines the search
space for the RL agent consisting of the set of all possible graphs G (cf. Equa-
tion 7.1). These constraints determine which node types must be connected and,
conversely, which must not be connected. Only if all constraints are satisfied, a
graph G is valid:

Guaiia € {G € G | Y9 €C,9(G)}. (7.6)

To keep the syntax simple, human-readable, easily editable, and extendable, we
choose a JSON-like syntax, as described in the example in Figure 7.4. For each
node type, we declare the set of node types, each of which must be connected
to a node of that type with a direct edge. The number of connected valid node
types must be > 1. By default, direct connections to node types that are not
included in the set of allowed edges of a node type are not allowed. Although
only this type of constraints is supported, it can also be considered as a simple
and lightweight ontology.

Depending on the node size of a graph and the number of nodes of the same
type, a set of constraints can allow for multiple different graphs. Figure 7.2b
shows an example of a valid graph of the set of constraints in Figure 7.4a. In a
literal sense, these constraints require that a node of the symbolic type & must
be connected to at least one node of type V, V must be connected to at least
one U/ and W, and VW must be connected to at least one V. A more concrete
use case in the specific narrative context of a game economy setting is given
in Figure 7.4b, where we substitute the symbolic node types with entities of a
typical game economy setting. We stick to the node naming for game economies
established by Klint and van Rozen [2013] and we will also use it along with a set
of constraints in the context of our GEEvo framework which we will introduce
in Section 7.4. Since our primary focus here is on learning to generate valid
graphs and the narrative remains yet secondary, we use a subset of the node
types intended for later use in the GEEvo context.
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U represents a node of type Source, which is an entity where resources are
added to the economy, such as a mine or a tree that can be farmed. V is a
Converter where one or more resources from Source nodes are converted into
a new resource (e.g., an item). This abstract design logic is thereby enforced by
the set of constraints. The newly transitioned resources are held then in a Pool
node. In this narrative setting, we can infer the directions from the domain:
Source always is directed to Converter and Converter to Pool. In the game
Minecraft [2011], for instance, the process of crafting (Converter) torches (Pool)
from wood (Source) and coal (Source) can be illustrated this way. We will dis-
cuss this in more detail in the context of GEEvo in the next Section 4.5 (also cf.
Figure 4.4). This concept is not unique to Minecraft and can be found in many
other games [Schreiber and Romero, 2021].

Uu: [V] Source: [Converter]
V: (U, W] Converter: [Source, Pool]
W:. [V] Pool: [Converter ]

(a) Notation with generalized sym-  (b) Notation for a game economy setting
bols. (cf. Klint and van Rozen [2013]).

Figure 7.4: The set of constraints C; for graph data generation as an example,
consisting of four rules and three different node types. The same constraints are
written with generalized symbols (left) and in the narrative context of a game
economy use case (right). G-PCGRL can be trained with an arbitrary set of con-
straints, we will experiment with several ones that are listed in the appendix
(Figure C.2).

7.3.3 Reward Design and Graph Validation

An appropriate reward design is crucial for the successful use of RL. s in PCGRL,
we use an intermediate reward to reward the agent at each time step t according
to the change it has made from t — 1 to the validity of the graph G; in the context
of the given set of constraints with a validity function:

Valid(Gt) = Z 1{¢(G,‘):false} . (77)
peC

It returns the sum of the number of all constraints that are not satisfied. If all
given constraints C are satisfied for every node v € V,, the graph is assigned a
score of 0 and considered valid. If an agent’s action removed an incorrect edge
or created a missing one, the reward for G; in the context of G;_1) is positive,
otherwise it is negative. There is no reward (value 0) if the agent’s action did
not affect the validity. Since in both representations only the creation or removal
of edges between nodes can be performed, there are exactly these five possible
reward states. If G; is valid, we add an additional a to reward the agent. If the
graph is invalid, « is zero. The reward at ¢ is defined as:

r = valid(G;_1) — valid(G;) + « . (7.8)
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Table 7.1: Overview of parameters for experimental setup.

Parameter Values

Representations graph-narrow, graph-wide, PCGRL-wide
Graph sizes up to 4,5,6,7,8,9,10

Number of node types 2,3

Sets of constraints C: (Figure 7.4), Cy, C3, C4, Cs

The sets of constraints 2-5 are listed in the appendix in Figure C.2.

7.3.4 Experimental Setup

To evaluate our method, we train multiple controllable models with different
configurations for the graph-narrow and graph-wide representations and com-
pare the performance with the original PCGRL wide representation and search-
based approaches. The evaluation is done in several steps: First, we describe
the experimental setup. Second, we evaluate the overall performance in Sec-
tion 7.3.5. Finally, we demonstrate the ability of G-PCGRL to generate appropri-
ate graphs for two different game use cases: the generation of economy struc-
tures and skill trees (Section 7.3.7).

We test different sets of constraint configurations (e.g., the number of con-
tained constraints), the number of node types, and the graph size (the number
of nodes) for all representations. The latter refers to a graph size up to a maxi-
mum size, as all models are trained to be controllable to also generate arbitrarily
smaller graphs. An overview of the different parameters and their values is
given in Table 7.1. This results in 105 trained models, which will be compared
and evaluated in this section. All models are trained on a specific set of con-
straints but are controllable in terms of the size of the graph and the exact num-
ber of node types. To train the models in a controllable manner, we ensure that
all possible configurations are sampled uniformly during training. To compute
metrics for comparison, we generate a sample of 500 graphs from each model.

Like in previous experiments with PCGRL in Chapters 5 and 6, we use Prox-
imal Policy Optimization (PPO) [Schulman et al., 2017] with a multi-layer per-
ceptron architecture for the feature extractor and the value function. We con-
figure both with three fully connected layers of sizes 128, 256, and 128. We use
a step size of 125 and 10 parallelized environments. The graph-narrow repre-
sentation models are all trained for 500k steps, resulting in 400 policy updates.
For more information on the setup of PPO see Section 5.4 and Equation 5.5. All
graph-wide and PCGRL wide models are trained for 1.5 million steps (1200 pol-
icy updates) due to preliminary investigations have shown that the larger action
space requires more training steps to converge.

7.3.5 Performance Overall

We measure the overall performance of a G-PCGRL model by estimating the av-
erage proportion of validly generated graphs from the sample of 500 per model.
The average validity for all models per representation and per maximum graph
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Figure 7.5: The overall performance of the controllable G-PCGRL models com-
pared to the different representations based on the maximum controllable graph
size from a sample of 500 each. Performance is measured as the percentage of
valid graphs generated (left). The average iterations per maximum graph size
are shown in the right subplot. We compare both newly introduced representa-
tions to the original PCGRL-wide as a baseline (gray).

size is shown in Figure 7.5 (left). Both graph representations show a similar per-
formance, but the PCGRL wide as a baseline is significantly worse. For smaller
graph sizes, the mean validities for both graph representations are at their max-
imum, however, as the graph size increases, the performance gets worse. Fig-
ure 7.5 (right) compares the average iterations of all models per representation
and per maximum graph size. Iterations are the number of actions taken by an
agent within an episode before termination. An episode is over when the graph
is valid, or when a maximum number of changes or total iterations is exceeded.
The larger the graph size, the more iterations were required by the agents in both
representations. The graph-wide representation, however, requires fewer itera-
tions than the graph-narrow representation. The PCGRL wide baseline requires
comparatively many more iterations than the graph representations.

7.3.6 Execution Time and Comparison to Baselines

A major advantage of using RL for PCG is its remarkably fast inference speed.
We evaluate this by contrasting it with a random search and an evolutionary
algorithm. The experimental setup is as follows: each method is given the same
graph configuration and a set of constraints to generate a graph. Execution
time!® is measured as the time required for each method to produce a valid
graph from the given combination of configuration and set of constraints. For
each method, set of constraints, and graph size, 100 graphs are generated.

The random search method operates by randomly selecting edges within the
permissible search space between nodes until the specified constraints are satis-
fied. This approach doesn’t involve learning from previous runs or using prior
knowledge. Our implementation of the evolutionary algorithm is based on that
described by Rogers et al. [2023] to generate game economy graphs of varying
complexity. We also randomly select nodes for crossover, replacing them with
their connections between individuals, while mutations occur at a rate of 5%,
randomly replacing a node’s connections. An individual’s fitness is also deter-
mined by the cumulative sum of constraints that are not met (cf. Equation 7.7).
The algorithm terminates when a valid graph is found.

16We use a 2.6 GHz AMD EPYC family 23 model 1 processor for all experiments.
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Setup Runtime
Constraints Size ‘ G-PCGRL Evol. algorithm Random search

C 5 6.6 422 96.6
6 9.4 59.7 378.1
7 5.6 109.1 2509.7
Cy 5 7.6 49.7 457.3
6 10.8 107.6 6811.9
7 5.4 143.1 16112.2
Cs 5 6.3 26.1 37.7
6 6.3 454 147.1
7 3.5 67.3 750.8
Cy 5 5.6 30.6 2.8
6 7.0 479 11.2
7 7.5 92.7 100.7
Cs 5 5.8 0.6 1.8
6 7.2 0.8 8.6
7 9.6 3.1 24.1

Table 7.2: Comparison of median runtimes across various setups and baselines
(in ms). For all G-PCGRL runs, we used models with the graph-wide represen-
tations. The set of constraints are defined in Figure 7.4 (C;) and C.2 (C,_5) in the
Appendix.

The results (Table 7.2) indicate that G-PCGRL exhibits notably superior
speed in producing valid graphs with the specified combination of configura-
tion and constraints for sets 1, 2, and 3 across various graph sizes. For set 4,
G-PCGRL only performs better at sizes 6 and 7. For set 5, G-PCGRL is slower
than the evolutionary algorithm and the random search for the size 5, and slower
than the evolutionary algorithm for sizes of 6 and 7.

7.3.7 Generated Samples

This section provides insights into generated samples in a game economy and
skill tree setting. We show how to control a graph-wide model to output differ-
ent graphs with varying sizes and different numbers of node types. The model
is trained with the set of constraints 1 (Figure 7.4) and is controllable for graphs
with a maximum size of six with three different node types. A description of the
game economy setting is given in Section 7.3.2.

Figure 7.6 shows two samples generated from the model with different con-
figurations. Figure 7.6a shows a graph configured to have a size of five: two
source nodes, two converter nodes, and one pool node. In this economy, an item
(pool) can be crafted from two source resources, with two conversion processes
each requiring both resources. Sample 7.6b adds another source node, resulting
in a graph of size six. The model now designs the conversion process so that one
source is required for both, but the other two sources are required for one each.
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Figure 7.6: Generated samples in a game economy setting from one model con-
trolled by different configurations. The configuration controls the graph size
and the number of each node type. The model was trained with the set of con-
straints C; given in Figure 7.4, including three rules and three different node

types.
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Figure 7.7: The generation of larger graphs by iteratively concatenating the out-
puts of the same model, each controlled with different configurations. We show
this for two domains: game economies (a) and skill trees (b). First, we generate
an initial graph (blue). Second, we generate multiple graphs (green, orange, red,
and gray), each with different configurations, and concatenate them to the initial

graph.
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Expanding graphs through concatenation

In this section, we explore the possibilities of generating large graphs of arbi-
trary size by concatenating multiple generated subgraphs. Thus, outputs from
the same model, but each controlled with a different configuration, increase the
diversity of content. The resulting concatenated graph is not a multipartite
graph, since there are edges between nodes within the same subgraphs. For
better visualization, we color each subgraph and name the nodes in the schema
subgraphIndex-nodeIndex. Figure 7.7 shows generated samples of two differ-
ent domains: an economy graph and a skill tree. For both we use the set of
constraints from Figure 7.4. First, we generate an initial graph (blue) and ex-
pand it with subgraphs. In the context of a game economy (Figure 7.7a), items
may not be the final product, they may also be the input for another conversion
process. Therefore, we connect a randomly selected Converter node to a Pool
node from the initial graph. This results in a more complex crafting path fore.g.,
Pool 3-2, which now also requires Pool 1-5 and Source 1-2.

In Figure 7.7b, we use G-PCGRL to generate a skill tree from subgraphs. In
the context of a skill tree node type U/ stands for Skill, V for Lv.up (level up),
and W for Ev.skill (evolved skill). This implements the abstract concept of
having basic skills that can be enhanced by leveling up, leading to the develop-
ment of more advanced abilities that can be further improved. The leveling path
of skills can vary depending on the player’s preferences and choices. For exam-
ple, a player could start with the basic skill 5-3 and level it up to skill 1-5 or the
evolved skill 5-1. The latter could also be achieved by choosing a different path
and leveling up skill 5-2 first.

7.3.8 Discussion & Limitations

The results of the experiments with G-PCGRL showed promising results regard-
ing the feasibility of procedurally generating graph-based data from a set of
constraints by manipulating the adjacency matrix with RL. There are, however,
several things that need to be discussed.

We presented two different representations, graph-narrow and graph-wide,
inspired by the respective PCGRL representations. Apart from minor differ-
ences, both appear to perform equally well in terms of the proportion of valid
graphs generated in a sample of 500. We trained multiple controllable models
with different sets of constraints, node types, and graph sizes. As graph sizes in-
crease, the validity metrics for both representations become worse. This is due to
the fact that increasing the maximum graph size nonlinearly increases the com-
plexity and thus the search space for the RL. Furthermore, the models are trained
to be controllable up to the given size. This also increases the search space and
requires more training iterations to learn the controllable configurations. Both
are the reasons for the observed results. Training the models to be uncontrol-
lable would improve these results due to the less complex search space. In our
opinion, however, it is more beneficial to be able to generate graphs with differ-
ent configurations using the same model. Therefore, to address the performance
loss with increasing graph size, we proposed to concatenate subgraphs gener-
ated from the same model but with different configurations. In comparison, the
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PCGRL wide baseline performs significantly worse. After all, PCGRL was not
designed to generate graph data, but it shows that the graph representations
bring improvements to solving this problem.

We compared the execution times of G-PCGRL with an evolutionary algo-
rithm and a random search approach across various sets of constraints and
graph sizes. Notably, G-PCGRL outperforms both alternative methods in terms
of fast content generation, which is particularly evident for the example sets 1, 2,
and 3. Unlike the evolutionary algorithm and the random search, the execution
time of our method is solely dependent on the changes made (cf. Figure 7.5,
right), showcasing superior robustness compared to the other approaches being
strongly dependent on randomness. Additionally, we examined the execution
speed for constraint sets 4 and 5. In particular, set 5 allows for a large number of
valid graphs within its search space. Consequently, random-based approaches
demonstrate faster execution times for comparably simple constraints compared
to our method, primarily due to the wide range of solutions within the search
space.

On average, the graph-wide representation requires significantly fewer it-
erations to generate valid graphs than the graph-narrow (Figure 7.5). This is
due to its ability to see the full adjacency matrix and then predict where to add
or remove an edge. With this capability, it is possible to create a valid graph
more accurately and therefore faster. On the other hand, the complexity of the
model and the number of training steps required are increased. However, the
faster generation combined with the controllability adds the greatest value and
we thus recommend using the graph-wide representation.

Creating a valid graph according to a set of constraint can also be approached
with a constraint satisfaction problem (CSP) solver. Such methods, however,
assume explicit constraints and typically operate by searching for feasible as-
signments, which can be described as deterministic PCG (cf. Equation 2.1). In
contrast, RL leverages the constraints in the reward and learns a policy that pro-
duces a distribution over valid solutions (cf. Equation 7.1). This increases diver-
sity and enables the possibility for optimizing for additional objectives beyond
validity. Moreover, since the focus here is on learning the constraints from feed-
back rather than searching for valid solutions, G-PCGRL would also be appli-
cable when constraints are not (fully) known or fixed, as only feedback on the
quality of a current candidate is required.

We have shown how the model can learn to generate graphs based on a set
of constraints, and we have experimented with different sets and rule combina-
tions. A limitation is that currently only one type of constraint is supported: if
specified in a set of a node type, at least one node of a type must be connected.
Future work will extend this to implement additional types of constraints, such
as the ability to explicitly exclude node types or require a certain number of
edges for a particular node type. Finally, the reward function motivates the
agent to create missing edges and remove incorrect ones. This tempts the agent
to create graphs with as many edges as possible to increase the reward, poten-
tially reducing the diversity of content created.

In summary, we see this work as a foundational examination, where we
apply PCGRL to the generation of graph data in games in general. We see a
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high potential for further research in the procedural generation of graph data
for games.

7.4 GEEvo: Game Economy Evolution

In the previous section, we explored G-PCGRL, a RL-based approach for gener-
ating graph data based on a set of constraints. While G-PCGRL handles a range
of graph sizes and outperforms baselines in computational speed, it shares scala-
bility limitations similar to those discussed in Chapter 5 and 6, as well as by Earle
et al. [2024].

In this section, we address these limitations by using an evolutionary al-
gorithm as the PCG method. Whereas G-PCGRL focused primarily on graph
structure generation, we now shift our focus to the generation and balancing of
game economies. With GEEvo, we introduce a framework to generate and bal-
ance graph-based game economies simulation-driven. Based on our findings in
Chapter 5, we split up the generation and balancing into distinct units to address
the PCG and balancing problem separately. An overview of the GEEvo process
is given in Figure 7.8.
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Figure 7.8: The process of GEEvo is two-step: First, a game designer models
an existing game economy using our simulation framework or creates one with
the generator. Second, the designer sets an objective based on which the bal-
ancer then optimizes the economy graph’s weights. In an iterative process the
designer evaluates the weights found and, if needed, may reconfigure the bal-
ancer. This may involve specifying static weights for e.g., a particular narrative
context or enhancing the influence of probabilistic elements within the economy.

GEEvo consists of two evolutionary algorithms: the generator — a control-
lable evolutionary algorithm designed to generate random but valid economies,
and the balancer for optimizing the resource flow by adjusting edge weights in
the economy graph. Simulations are conducted using a lightweight framework
inspired by Machinations!”, which leverages the domain-specific language in-
troduced in Klint and van Rozen [2013]. With this approach, an economy can
be flexibly modeled as a graph with nodes representing functional components.
The simulation framework and the process of its execution is defined and de-
scribed in the foundational concepts chapter in Section 4.5. With GEEvo, a de-
signer e.g., has the capability to model, simulate, and balance the pace at which

1”Machinations: https://machinations.io/
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players progress towards a particular achievement, like crafting the mighty
sword. To assess our method, we evaluate the general performance on a set of
generated economies (Section 7.4.3) and conduct a case study in balancing the
damage output of fictitious economies of a mage and an archer (Section 7.4.4).

7.4.1 The Generator: Evolutionary Generation of Game Economies

The generator creates valid game economy graphs within the framework out-
lined in Section 4.5. A valid economy graph must be weakly connected and
adhere to the constraints Ceconomy in Table 4.3. The generator’s task thereby is
to connect nodes with edges, meeting all constraints. It operates by defining a
population of individuals and iteratively optimizing them through mutations
over multiple generations. The generator is designed for controllability, allow-
ing users to specify the number and types of vertices in the generated graph via
parameters from the set P. For instance, it can generate an economy with three
sources, two random gates, one converter, and four pools. The execution of the
algorithm stops if a valid graph has been found or a maximum of allowed steps
is exceeded. The configuration space P and Ceconomy form the set of distributions
D over the set of content (economy graphs) G. It is defined as:

PCGEfomy * P % {Ceconomy} = D(G) . (7.9)

The evolutionary algorithm’s internal configuration ®, such as the crossover
and mutation, creates a selected distribution dg € D to generate a graph G from
a given configuration p € P. This is defined as:

G ~do(- | p). (7.10)

Classification within the PCG taxonomy: According to the PCG taxonomy by
Yannakakis and Togelius [2025b] (described in Section 2.1), GEEvo’s generator
can be classified as follows: In terms of content, it is functional, non-spatial, and
necessary, but it can also be used for optional content. In terms of its method, it is
stochastic, generate-and-test, authored, controllable, and iterative. In terms of its role,
it is designed to generate content offline to operate in a mixed-initiative setting
to support designers. Lastly, it is experience-agnostic, since no player or player
experience is modeled in any way.

Initialization and Population: During initialization, all vertices defined in the
external configuration are initialized depending on their type. The population
consists of a configurable number of individuals, with a single individual rep-
resenting the edge list of the graph. After initialization, the edge lists of all
individuals are empty and will be filled iteratively in the execution.

Mutations

Mutations are the driving force to evolve the graph. Since the performance is
sufficient, we do not implement a crossover to explore the search space more
efficiently. In each generation, for each individual, two vertices are randomly
selected to add an edge. If this edge is allowed according to the constraints, it
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Figure 7.9: The structure of the balancer in detail: The balancer iteratively op-
timizes an economy’s weights toward a balancing objective x. Therefore, it ad-
justs the weights based on the fitness f; per time step t in relation to x through
crossovers and mutations. f; is calculated based on the result s; of multiple sim-
ulation runs of the economy.

is added to the individual, otherwise it is not. This simple and greedy approach
may get stuck, since at some point the graph is still not valid and no valid edges
are allowed anymore. To address this shortcoming, a second mutation, may in
each generation, remove a previously created edge from a random individual
with a certain probability.

Fitness function

The fitness function embeds the constraints to ensure the validity of the graph G
with its vertices V. It creates the graph based on the created edges and sums up
the number of dissatisfied constraints for each vertex v € V. Therefore, we use
the same Equation 7.7 as for validating graphs in the previous Section 7.3.3 in
the context of G-PCGRL. The function is defined in the interval [0, | C | ], where
0 represents the maximum fitness of an individual. To achieve best fitness the
function must therefore be minimized.

7.4.2 The Balancer: Evolutionary Balancing of Game Economies

The balancer optimizes the weights of one or multiple economies towards a bal-
ancing objective which is expressed by parameterizing its fitness function. An
overview of the balancer’s internal structure is given in Figure 7.9. Utilizing
crossovers and mutations, the balancer optimizes its population, consisting of
multiple individuals. Following crossover and mutations, the population un-
dergoes sorting based on fitness, retaining only individuals up to the population
size for the subsequent generation. The algorithm terminates either when the fit-
ness is at its best for a single individual, or the maximum number of generations
is exceeded. In some narrative settings, a designer wants to keep specific values.
Therefore, the balancer can be set up with static weights that remain unalterable
throughout the balancing process. An example on the application is given in the
case in Section 7.4.4.

Individuals and population: A population consists of n individuals where
each represents all weights of an economy. It can be thought of as a list where
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each weight’s index is mapped to the same index of the graph’s edge list. In
case of balancing two economies at once, an individual consists of the two
weights lists of the respective economies. At the initialization of an individual,
its weights are set randomly where all values must be greater than 0.

Crossover: In each generation all individuals of the current population are
paired randomly for crossover. For each pair, we iterate over both individuals’ k
and [ weights wy;, w;; simultaneously and apply one of four randomly selected
operations, each with equal probability. The four operations for the new weight
at index i are choose wy; or wj; directly, wy; + wy; or, wy; — wy;. After crossover,
two individuals each produce a new child individual.

Mutations For each mutation a random individual is selected from the popu-
lation and a random weight is chosen. This weight is then modified by either
adding or subtracting the random number by 0.5 each. If subtracting would
yield a value < 0 it is set to 1.

Fitness functions

With the fitness function we define the goal towards which an economy should
be balanced. All fitness is computed by observing the state sf ’ (the amount of
contained resources) of one or multiple pool nodes p; € P, P C V at a selected
time step t,t < n within the [1, n] steps of a simulated economy. Like in the
previous chapters in the context of estimating the balance of game levels (cf.
Section 5.2.2), we will run each simulation with the same weights m-times (see
Section 7.4.3) in order to mitigate randomness.

Balancing a resource to an absolute value: This function (Equation 7.11) is
motivated by adapting the weights of an economy so that a selected p; equals
a given value x after a fixed number of time steps 1. One possible use case is
to balance the economy to be capable of producing a distinct amount x of a re-
source (p;) within a given time period 7. In a particular narrative context, such

a resource can e.g., be coal, damage points, or time units. Since sf " is based on
stochastic simulations, we add an additional parameter a as a threshold value to
the average so that the algorithm can also terminate at values close to the max-
imum fitness. Preliminary tests have shown that in practice it is in most cases
impossible to achieve the specified value identically, but it is possible to get very
close to it. In addition, as we have discussed earlier in the context of game level
balancing, balance can already be assumed when a value close to the desired
value is reached (cf. 4.1). Moreover, as we will later explore in our case study in
Section 7.4.4, the configuration of this parameter is further important to control
the influence of randomness in an economy when balancing. Equation 7.11 is
defined in the interval [0, 1 + a], where 1 + a represents the maximum fitness of
an individual. The auxiliary function prop (Equation 7.12) computes the propor-
tion between x and sf / i.e., how far the two values deviate from each other.
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To balance two nodes sf " and s}* within the same economy instead of a single
absolute value we can use Equation 7.11, but with a different parametrization of
f1 by passing s!” and s/* directly as parameters: fi(s}’,s/"), pj, Pk € P.

Balancing two nodes of different economies to the same value: Function f,
(Equation 7.13) parametrizes Equation 7.11 to balance two nodes of two different
economies 6 and ¢. We will apply this function in the case study in Section 7.4.4
to balance the dealt damage of a mage and an archer class within the same time
period.

fo(st',sf*) = fi(st', ), pj € Po, pr € Py (7.13)

7.4.3 Evaluation of the Generator and Balancer

The evaluation is twofold: First, we investigate on the general performance of
the generator and second, on the balancer. Evaluating the economy balancer is
also twofold: We first evaluate its general capability of balancing economies for
arbitrary configurations and then test it in a case study. We use for all experi-
ments an AMD EPYC family 23 model 1 processor with 2.6 GHz. One core is
assigned per execution of a single graph.

Evaluation of Game Economy Generation

To evaluate the generator, we create a set of 200 economy graphs with a num-
ber of nodes in the range of 5 to 20. Also, the distribution of different node
types is randomly varied. Within 50k iterations, the algorithm could generate
valid graphs according to the constraints and the external configuration in 97 %
of cases. The generated dataset therefore consists of 194 graphs. The median
number of iterations required to complete is 641 (90 % quantile: 9354), the me-
dian running time is 25 ms (90 % quantile: 296 ms). We use this set of economy
graphs for the evaluation of the balancer with different balancing objectives.

Evaluation of Game Economy Balancing

The evaluation of economy balancing consists of two parts: We first evaluate
the balancer’s general capability of balancing economies for arbitrary configu-
rations and then test it in a case study.
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Table 7.3: Results for balancing the generated dataset of economy graphs using
fitness function 1 (Equation 7.11) towards different values of .

«a=005 a=001 «a=0.0

Balanced (%) 93.3 83 58.8
Improved (%) 77.3 88.7 94.8
Initial balanced (%) 27.3 8.8 25
Median generations 1 7 196
Median execution time (s) 18.4 66 703.2

General performance with different balancing objectives To assess the bal-
ancer’s overall performance, we apply it to the previously generated dataset,
focusing on balancing a randomly selected pool of an economy to a specific
value after a defined number of simulation steps. To test the algorithm’s adapt-
ability to varied values, both the number of simulation steps and the specific
target value are randomly chosen within the intervals [10,30] and [20, 100], re-
spectively. An example would be balancing the pool for torches in Figure 4.4a
to a value of 28 after 16 simulation steps. Therefore, we employ the fitness func-
tion (Equation 7.11) introduced earlier. Given the probabilistic nature of random
gates, achieving maximum fitness is often impossible; hence, we compare the re-
sults for different values of a. The timeout for the algorithm to stop is set to 500
iterations. The size of the population is set to 20 and we run ten simulations with
the same weights each generation for each individual. This results in 300 simu-
lation runs per generation alone. The computational effort involved in carrying
out the simulation is acceptable. Conducting ten simulations per economy and
generation consistently results in a computing time of less than 284 ms.

Table 7.3 presents the results, indicating a significant variation in the propor-
tion of balanced economies based on «. As the threshold « increases, so does the
proportion of balanced economies, including those that were initially balanced.
Additionally, the median execution times and generations are dependent on «,
with higher values of a leading to solutions being found in fewer generations,
thereby reducing overall computation time.

7.4.4 Case Study

Many game genres, such as MOBA (Multiplayer Online Battle Arena), offer
players the option of choosing from different characters, each of which is as-
signed to a specific class. While each character has a unique game design, char-
acters of the same class have a similar play style. The different character designs
offer players various strategies to win the game. However, in order for a game
to be balanced, it is necessary to ensure that different strategies, if played well,
are viable to win the game [Schreiber and Romero, 2021].

In this case study, we examine GEEvo for its ability to balance two different
economies, using two popular classes as an example: a mage and an archer. For
each class, our goal is to achieve a comparable maximum damage output within
a specified time frame. Therefore, we use Equation 7.13. Both economy graphs
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are shown in Figure 7.10. The mage’s game design is based on casting two differ-
ent abilities (Figure 7.10a). Each ability has a specific mana'® cost, a cooldown!?,
and a value for the damage it deals. In our setting mana is generated at each
time step via a pool node. So, there are seven values which need to be balanced
accordingly: the cooldowns, mana costs, and damage values for both abilities;
as well as the overall amount of mana regenerated per time step. In contrast,
the archer is designed to perform attacks that have a cooldown based on its at-
tack speed (Figure 7.10b). Each attack has a chance to deal additional damage
(cf. critical damage). In this economy five values can be adjusted for balancing:
the probabilities for a normal attack and critical damage, the damage values for
both, and the attack speed. Given the narrative context for modeling cooldown
of abilities for both economies, we configure these weights to be static, allowing
us to manually set the value to one (cf. Section 7.4.2).

We experiment with two different values for the fitness threshold &, each
time with the same seed. To mitigate randomness, we run ten simulations with
a length of 30 time steps per generation and a population size of ten. The al-
gorithm terminates after two generations with a total computation time of 1.4
seconds for & = 0.05. For « = 0.01 the algorithm terminates after six generations
in 16.6 seconds.

Results of the found attributes (weights) are displayed in Table 7.4. For both
runs, the balancer finds a solution and terminates within the permitted number
of generations. The weights found for the mage are both comparable, whereas
those for the archer differ mainly for the probabilistic values for a critical hit.
With & = 0.05, a critical hit (A2) with a change of 12 % would cause three dam-
age, a normal attack only one damage. For « = 0.01, the probabilities for a crit-
ical hit are irrelevant, as the balancer has equalized the damage for both cases.
The detailed discussion, also in the context of the influence of the parameter «,
will follow in Section 7.4.5.

7.4.5 Discussion & Limitations

The results of our experiments showed that the generation and value optimiza-
tion for balancing graph-based game economies with the proposed framework
is feasible. There are, however, several points that need to be discussed.

The GEEvo generator is controllable in terms of the number and types of
nodes and generated valid graphs in terms of the given constraints, showing
an average validity of 97 %. A median execution time of 25 ms indicates fast
performance. In comparison to Rogers et al. [2023], our implementation is also
able to construct game economy graphs that do not only represent tree structures
and therefore allow loops or contain probabilistics, for instance. This allows for
greater precision and flexibility in modeling economies [Schreiber and Romero,
2021; Klint and van Rozen, 2013]. So far we only focused on the validity of
generated graphs in relation to the node types. One approach for future work is
therefore to focus on creating interesting or differently complex economies.

18Mana is a fictional resource commonly used in video games as a cost to cast abilities.
9Serving as a balancing mechanism in video games, cooldowns define the time interval during
which an ability is disabled after use. Here the unit is simulation steps.
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(a) The mage’s economy graph. Seven values can be balanced accordingly: the
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(b) The archer’s economy graph. Five values can be balanced accordingly: the over-
all attack speed, the probabilities (Prob.) to perform a normal or critical attack and
the the damage values for each.

Figure 7.10: Two economy graphs for the case study to balance the damage deal-
ing of a mage (a) and an archer (b). The values to be balanced are the weights
on the edges. Fixed values are represented by absolute values.

We investigated the general performance of the balancer by applying it to
each economy in the generated dataset to a randomly chosen target value with
a randomly chosen simulation length. The results (Table 7.3) vary greatly de-
pendent on the value of a. The best-balanced proportion yields & = 0.05 with a
proportion of 93.3 %. The configuration @« = 0.0 allows no margin for the sim-
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Table 7.4: Results after balancing attributes for the mage and archer economy
compared for two different values of a with the goal to deal the same damage
within a given period of time. For a description of the abbreviations used for the
particular economy attributes see the description of Figure 7.10.

Result =0.05 Result x=0.01
Mage w Archer w Mage w Archer w

M.Reg. 3 A-Speed 2 M.Reg. 2 A-Speed 1
A1CD 1 AlProb. 0.88 A1CD 1 AlProb. 0.76
AlM. 3 AlDmg. 1 A1M. 3 AlDmg. 2
AlDmg. 3 A2Prob. 012 AlDmg. 3 A2Prob. 0.24
A2CD 3 A2Dmg. 3 A2CD 2 A2Dmg. 2
A2M. 2 A2M. 2

A2 Dmg. 3 A2 Dmg. 3

Y. Dmg. 55 53.8+4.8 60 60+0
Fitness 0.95+ua 1.0 +a

ulated target values, thus the proportion is smaller. Also, the execution time
and needed number of generations differ per «. Since the permissible margin of
a = 0.05 allows for greater scatter, the target balance can be achieved faster and
therefore its median generation and execution time are much faster compared
to smaller . However, there is no setting where all economy graphs could be
balanced. In cases where the balancer improved overall, but could not achieve
the expected quality, the algorithm may have gotten stuck in local optima.

Another problem is the challenge of balancing randomly selected combina-
tions of pools and values in combination with the distribution and networking
of different node types. For instance, there are cases in which a certain target
value cannot be mathematically achieved within the randomly chosen simula-
tion length. This could be addressed by interpreting the balancing constraint as
a value range. In particular this is beneficial for use cases where the actual value
is not important, but the perfect balance is.

With the case study of two fictional economies (mage and archer class), we
delve into how the balancer optimizes both to ensure equal damage output in
the same time frame, addressing the objective in game balancing for diverse
strategies and preventing a single dominant strategy from consistently prevail-
ing. We compare the results of two runs with two different values of «, repre-
senting the threshold for values to consider as balanced. For both configura-
tions, the balancer could find a solution within a short number of generations.
A key finding here is that for a low value of a (0.01), the algorithm tries to min-
imize the fluctuation of values caused through the stochastic simulation. While
the probabilities for normal and critical hits still differ, it equalizes the damage
for both hits and thereby mitigates the randomness. At the one hand, it fits the
balancing criteria, at the other it might not be a desirable solution since now the
intention of the economy design is obsolete. To address this shortcoming, we

118



recommend using low values of alpha only if randomness should have no or
little impact. In other words, a can be used not only to configure the precision
to a specific value but also to modulate the stochastic impact.

Another solution for a game designer is to use static weights for e.g., one
of the damage values to prevent the balancer from adjusting it. For this case
study we used the parametrization of the fitness function in Equation 7.13 to
balance two economies at once to the same value. In many cases, however, new
game entities are to be integrated into an existing game ecosystem. Therefore,
to not adjust the whole existing system, Equation 7.11 can be used directly to
balance the newly introduced content to a value which fits into the ecosystem.
Another point to mention is that, due to the recursive execution of the econ-
omy framework, the mage’s economy implements the play style of a so-called
spammer, using an ability whenever its cooldown is ready and enough mana
available. Human players would also use other strategies, such as waiting for
an ability that deals more damage even though another one is available. A fu-
ture approach is thus the implementation of lightweight bots, each with different
strategies for the same economy.

It was shown that the economy simulation framework is able to implement
basic concepts of game economics on examples from the game Minecraft and
two fictitious character classes. However, it lacks components to e.g., influence
edge weights based on values of pools as implemented in Micromachinations
for instance. This would open further opportunities to study more complex
economies and other balancing objectives such as the counteracting of positive
feedback loops.

Another limitation is that this research is based on simulations on an abstract
game. Since by design no real game is implemented and no humans for test-
ing are involved, playtests are still required. It still depends on human players
whether the generated economies with the computed weights are actually fun
to play within the narrative setting chosen by the designer. Therefore, this re-
search is intended to support the early stages of game design to find an interest-
ing economy through generation and balancing initial values for the first player
tests. Lastly, evolutionary computing relies heavily on randomness, particularly
when combined with probabilistic simulation behavior. Hence, we attempt to
mitigate this by evaluating GEEvo on a large sample of economies with a wide
range of configuration values.

7.5 Conclusion

In this chapter, we targeted automated game balancing via PCG and simula-
tions from the perspective of game economies. This adds another dimension be-
yond the accelerated automated level balancing examined in previous chapters
in order to answer RQ 4. We identified a research gap in generating graph data
for games and addressed it by introducing two PCG methods tailored to graph-
based structures. As a common thread throughout this thesis, we avoided incor-
porating domain-specific information into our methods by design, also making
the approaches presented in this chapter transferable to other domains or game
settings.
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In order to build upon and extend our previous results with PCGRL (Chap-
ter 5 and 6), we introduced G-PCGRL, a controllable PCG method for learning to
generate graph data from a given set of constraints with RL. Although G-PCGRL
demonstrates faster graph generation compared to baselines in experiments, it
lacks scalability for larger graphs. We addressed this shortcoming with a second
approach and introduced GEEvo, a framework using evolutionary algorithms to
generate and balance graph-based game economies.

In the early stages of game design, there are usually only abstract concepts.
G-PCGRL embeds these concepts as a set of constraints and learns to generate
graph-based content accordingly to support designers in this process. To frame
the problem as an MDP, we introduced two new representations for graph data
generation for the PCGRL framework. In addition, our method is controllable
in terms of the output to be generated and performs better than the plain PC-
GRL on this task. Moreover, we demonstrated a superior generation speed for
more complex sets of constraints when compared to both an evolutionary al-
gorithm and a random search. Through experiments with different represen-
tations, graph sizes, and sets of constraints, we further demonstrated the feasi-
bility of our method. However, since the action space does not grow linearly
with the maximum controllable graph size, we observed a decrease in perfor-
mance in terms of the proportion of valid graphs generated at larger sizes. To
address this shortcoming in generating larger graphs, we proposed a recursive
concatenation of generated graphs from the same model controlled with differ-
ent configurations and introduced our second approach GEEvo.

GEEvo is a framework for generating and balancing graph-based game eco-
nomies in a two-step process using evolutionary algorithms and simulations.
By considering game economies from an abstract perspective, GEEvo is inde-
pendent of a specific game or genre and is intended to support designers in the
early stages of development. Building on our insights from Chapter 5, we sep-
arated the generation and balancing processes into separated components. This
separation allows for greater flexibility — for example, enabling the generation
of a new economy or the balancing of an existing one independently. In ad-
dition to a lightweight framework for simulating the economies for balancing
inspired by the definition of game economies by Klint and van Rozen [2013], we
presented a fitness function that can be parameterized differently to balance eco-
nomies towards various objectives. For instance, this enables balancing selected
elements within an economy to reach a specified target value after a defined
simulation window, as well as simultaneously balancing selected elements of
two independent economies at once. The results of benchmarking experiments
show that the balancer can optimize the weights of the economies to arbitrary
values and simulation lengths in most cases. We further evaluated GEEvo in a
case study using fictional economies of two popular game character classes.

We conclude that representing game economies as graphs is suitable for
generating such structures in the context of PCG. Although we have demon-
strated feasibility in terms of both generation and balancing, further evaluation
is needed to assess how humans perceive these economies.
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Chapter 8

Conclusion, Implications, and
Outlook

This thesis explores algorithmic approaches to automating the game balancing
process in terms of two facets: game levels and economies. In doing so, we con-
tribute to the academic fields of search-based optimization and deep Reinforce-
ment Learning (RL), particularly in applications to Procedural Content Genera-
tion (PCG) and automated game balancing. Games stand out for their unique-
ness, and related work therefore proposes highly tailored solutions for specific
games. In contrast, we propose methods that can be used independently of a
specific game. We thus introduce a data-driven method to reliably quantify the
balance of a competitive two-player game using simulations (RQ 1). To acceler-
ate level balancing and its generation, this work is the first to frame game bal-
ancing as both, a Markov Decision Process (MDP) and a PCG problem (RQ 2). In
a study with human playtesters, we evaluated the artificially estimated balance
and proved that it was perceived as intended in most scenarios (RQ 3). Beyond
levels, we introduce two approaches for generating game economies and one
for balancing them, governing game balance on an abstract, macro level (RQ 4).

In Section 8.1, we conclude by summarizing our findings in response to the
research questions posed in Section 1.2 and outlining the implications of this
thesis in Section 8.2. Section 8.3 discusses limitations, Section 8.4 ethical consid-
erations, and Section 8.5 directions for future work.

8.1 Summary

RQ1 Quantification of balance: What is a reliable, data-driven foundation that
enables automated, game-independent measurement and quantification of bal-
ance in competitive, two-player game levels?

To establish a data-driven foundation for expressing the balance of a competitive
two-player game level numerically, we combine two components: (1) the con-
cept of an existing fairness metric, Statistical Parity [Dwork et al., 2012], which is
commonly applied in fair machine learning research, and (2) data collected from
multiple runs of an agent-based game simulation. Using the Statistical Parity as
a basis, we express the balance of a two-player game within the fixed interval
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[0,1], where 0.5 indicates balance, whereas 0 and 1 indicate maximum imbal-
ance against a particular player. In contrast to related works, our approach is
by design completely independent of the game itself. We only take into account
how often each player wins, without using game-specific information, such as
health or victory points. A game-independent solution is superior, since it can
be easily applied to other competitive, two-player settings. In the context of
RQ 2, we show that this approach can be seamlessly transferred to a different
environment and used with distinct heuristics for each player in the simulations
as well.

Information about which agent(s) win(s) is collected using multiple heuris-
tic, agent-based simulations of the game. Since games often contain probabilistic
elements, the simulations must be run multiple times with an identical setup
in order to isolate the balance from randomness. This can be considered as
sampling from the win rate distribution of a game. Although this approach is
flexible in terms of agent and appliance configuration, executing the simulations
is computationally intensive. To reduce this effort, we propose an approach to
determine the appropriate number of simulations, minimizing their number
while maximizing the robustness of the estimation. This number is, however,
game-dependent and should therefore be evaluated for each environment
accordingly, since the probabilistic elements of a game, in combination with
the heuristics used to control agents in simulations, influence the number of
simulations required. This is our contribution C 1.

RQ 2 Accelerating automated level balancing: How can automated game level
balancing be accelerated while maintaining content quality, diversity, and
asymmetries?

To accelerate automated level balancing at inference time, we formulate level
balancing as both, a PCG problem and an MDP to apply RL. Our method bal-
ances levels entirely through tile placement, such as by balancing the spatial
availability of resources. Once the model is trained, inference requires less steps
in comparison to baselines. This reduces the computational costs caused by
game simulations (cf. RQ 1). To learn a policy for level balancing, we adapt
and extend the PCGRL (PCG via RL) framework by Khalifa et al. [2020] with
swapping-based action space representations.

Overall, our method can balance given imbalanced but playable levels in
91.5 % of cases in our evaluation environment. To simplify the process for RL, we
introduce an architecture with separated units, enabling balancing to be treated
as a fine-tuning step after level generation. This allows generation and balancing
to be addressed independently. Moreover, this approach allows for the balanc-
ing of human-created levels. This is our contribution C 2.

To thoroughly address this research question, we explore our method
through an additional series of application-driven investigations. Collectively,
these investigations strengthen our contribution C 2. We improved the method
iteratively, such as in terms of tile representation and the size of the action space.
We also experimented with different types of representations based on the action
space of PCGRL. We report that our swap-wide representation gives the best
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results in comparison to those introduced with PCGRL. However, swap-wide
has limited scaling capabilities due to its non-linear dependence of its action
space on the level size. In comparison to local, greedy, search-based approaches
that do not learn from experience, such as random search and hill climbing, we
show that RL requires fewer steps to optimize the balance of a given level. Thus,
the generation requires less computational time by avoiding unnecessary sim-
ulations in production. In general, the original PCGRL approaches outperform
their hill climbing analogues, and PCGRL swap-wide outperforms hill climbing
in general. Thus, we conclude that good performance arises from two factors: (1)
using the swap-based action space representation pattern in combination with
(2) using RL.

In addition, we examine our method of balancing levels at various degrees
of imbalance. While the results indicate that this is generally possible, the ap-
proach performs best when the goal is either perfect balance or maximal imbal-
ance. Moreover, we demonstrate that our method can be applied to asymmetric
agent archetype setups where multiple strategies must be maintained balanced
entirely through level adaptation. This demonstrates that both our architecture
and the balance estimation framework from RQ 1 are flexible and robust, sup-
porting the use of different heuristics, including distinct ones for each player
simultaneously. Since the agents then have different strengths, the initial se-
tups are more imbalanced than when both are the same. We find that learning
to balance game levels becomes more difficult to learn as the initial inequity of
the archetypes increases. Furthermore, we demonstrate the transferability and
the application of our method to another environment and show that it can also
handle environments where playability is not always guaranteed.

Finally, we observe an alignment problem with using the Statistical Parity
metric to express balance. Some levels generated by the models happen to be
balanced, but no player can win. While this is permitted according to the metric,
it is not intended. The metric also exploits scenarios in which both agents follow
the exact same path, resulting always in a draw. These cases indicate limitations
of the Statistical Parity metric.

RQ 3 Human perception of balance: What is the human perception and evalua-
tion of the artificially quantified balance of game levels through simulations?

An empirical evaluation with human playtesters, supported by hypothesis test-
ing, shows that our level balancing approach improved human balance percep-
tion in most cases, compared to the initial imbalanced version. This provides
evidence that the heuristics used in the agent-based simulations appropriately
replicate human behavior for balance simulation. For humans it is difficult to
evaluate and express the balance of a game, also partly due to the subjective na-
ture of perception. To address this shortcoming, we used a comparative survey
design under blind conditions, in which participants were asked to compare a
balanced and an imbalanced version of a level after playing them.

Moreover, the balance of a game level is multifaceted, consisting of various
functional components. Thus, we asked participants about their perceptions of
different aspects of the game. Our findings show that the perceived differences
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in balance depend on the level but correspond to the particular changes made
by the RL model for balancing. This is our contribution C 3.

RQ4 Automated game economy generation and balancing: How can automa-
tion techniques be integrated into the generation and balancing of game econo-
mies?

Game economies are powerful, abstract concepts that greatly influence a game’s
overall balance. Following the existing formal representation of game econo-
mies as graphs by Klint and van Rozen [2013], we identify graph data as an
underrepresented area of game content in PCG research in general.

Building on previous results from accelerating automated level balancing
(RQ 2), we propose an MDP for controllable graph data generation (G-PCGRL,
Graph PCG via RL). G-PCGRL extends the PCGRL framework in combination
with results from RQ 2 to generate graph data by learning a policy to manipulate
the adjacency matrix of a graph to fulfill a given set of constraints. Therefore, we
introduce new graph representations for the narrow and wide action space rep-
resentation and demonstrate that they are better suited to this problem domain
than the existing representations. In addition, we show that G-PCGRL can learn
to generate valid and diverse graphs for different sets of constraints and graph
sizes. Moreover, G-PCGRL is controllable in terms of the graph size and the
node types. In comparison to random search and an existing evolutionary ap-
proach for game economy generation [Rogers et al., 2023], G-PCGRL is superior
in computational speed, in particular when increasing the graph size. However,
due to the dependence of the RL’s action and observation spaces on the graph
size, scaling up to generate larger graphs is limited. With G-PCGRL, we propose
a fast, controllable, and reliable method for graph data PCG. Scalability may be
slightly improved by omitting controllability, but controllability is a better deal
in the context of PCG. G-PCGRL forms our contribution C 4.

To address G-PCGRL’s shortcoming in generating larger graphs and to ex-
plore the automated balancing of graph-based game economies, we adapt the
approach to a purely search-based approach: the GEEvo, (Game Economy Evo-
lution) framework. In addition, GEEvo incorporates insights from level bal-
ancing, and also separates content generation and balancing into different units
using two evolutionary algorithms. Likewise when balancing levels, we sim-
ulate the generated content by executing the economy over several time steps
to evaluate the balancing state. We demonstrate that GEEvo is able to gener-
ate game economies of different sizes and can balance economies of arbitrary
configurations in most cases (93.3 %).

While examining the balancing in a case study, we find that it is important to
configure the algorithm for balancing to not produce a “perfect” balance, but to
produce a balance that is within an acceptable range (cf. padding in balancing in
Chapter 6). This is particularly important in order to avoid weakening or even
mitigating any probabilistic mechanics that a designer may have intended. This
is consistent with a finding in level balancing, where the RL model, in some
cases, also attempts to eliminate all probabilistic elements by keeping players
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away from food tiles to reduce any potential risk in ensuring a reliable bal-
ance. While GEEvo can generate larger graphs with more complex constraints,
it requires more computational effort compared to G-PCGRL. Since G-PCGRL
models are trained in advance, GEEvo’s evolutionary algorithm must start from
scratch each time it explores the search space. GEEvo is our contribution C 5.

In summary, we conclude that automation techniques can be integrated into
game economy generation and balancing by: (1) modeling economies as graph
structures, (2) simulating the economies, (3) applying search-based optimization
approaches, but also (4) allowing space for randomness in the balancing process.

The Feast & Forage environment: Although several environments for PCG
or balancing have been introduced by related work, we have identified a lack
of environments for level balancing directly via PCG. To bridge this gap, we
introduce the Feast & Forage game environment, which can be used to apply,
explore, test, and evaluate automated balancing of competitive, tile-based,
two-player game levels via PCG. Based on the existing NMMO (Neural Mas-
sively Multiplayer Online) environment [Suarez et al., 2019], Feast & Forage is
lightweight enough to run experiments with billions of simulated game rounds,
and complex enough that it is not easy to be balanced asymmetrically. In
addition, it contains a probabilistic mechanic that can cause different outcomes,
even when the agents are deterministic. The heuristics and rules can easily be
adapted and extended to e.g., investigate asymmetries in player archetypes or
to add other functional components, making the environment a well-suited
playground for automated game balance research. Therefore, it can serve as a
versatile testbed for future research. Along with this thesis, we have developed
a human-playable prototype of the game in the context of our contributions to
accelerating balanced level generation (C 2) and its empirical evaluation (C 3).
The environment is published as open source (see Table A.1). Feast & Forage
forms our contribution C 6.

Finally, we expect that recent advances in automated content creation, such as
images [Rombach et al., 2022], audio [Oord et al., 2016], and text [Chang et al.,
2024], to impact game creation processes, including PCG. These advances will
accelerate asset generation and can therefore contribute to a potential new era
of interactive content, which is generated on demand and is tailored to play-
ers’ progress, or even to their personalities (see also the considerations in Sec-
tion 8.4). However, prompt-controlled foundational models cannot contribute
directly to game balancing automation at the current state of the art in 2025.
This is due to their limited reasoning ability, which is necessary for actually un-
derstanding the rules and mechanics of a game. Moreover, it is up to humans to
decide whether they perceive the game as balanced and therefore as fair — and
everyone is different.
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8.2 Implications

We will now summarize and discuss the implications of this thesis for re-
searchers studying automated game balancing and fairness, as well as the PC-
GRL framework.

8.2.1 Automated Game Balancing

Randomness is optimized out We proposed two methods for automating
game balance that are independent of a specific game. Based on our adapta-
tions of the PCGRL framework, we introduced an architecture that frames level
balancing as a PCG problem. We demonstrated its applicability in two tile-based
game environments. With GEEvo, we proposed a framework for generating and
balancing graph-based game economies. This framework can be used to balance
games on an abstract, macro level and can be easily transferred to various types
of games.

A major finding of this thesis is that we observed automated approaches by-
passing probabilistic game mechanics to stabilize the balance, for both balancing
facets (Chapters 6 and 7). While probabilistics play an important role in game
design in order to create an entertaining and replayable experience, they intro-
duce uncertainty by counteracting deterministic results. Wether the approach is
purely search-based or involves a model for learning to balance, randomness is
attempted to be “optimized out”. While this is reasonable from an optimization
perspective, it is not the result that a game designer would want. For this rea-
son, we included configurable parameters to introduce a small bias, in order to
leave room for randomness. This implies that the goal is not to automatically
optimize balance by ensuring exactly equal win rates for all players, but rather
to ensure that win rates are very close to equal.

8.2.2 PCGRL

Content generation beyond “just” levels This thesis has used, adapted, and
extended the PCGRL framework by Khalifa et al. [2020] and goes far beyond
PCGRL'’s original goal of generating tile-based game levels (Chapters 5, 6, and
7). Our findings highlight that manipulating an integer matrix using RL in or-
der to generate content can also be employed as a fine-tuning process for level
balancing or generating graph data. For both of these applications, we have in-
troduced new representations of the MDP that are tailored to the respective use
case and problem domain. In addition, we have shown that these representa-
tions outperform the original PCGRL ones. Our swap-based action space repre-
sentation pattern addresses problems requiring fine-tuning of existing content,
while our graph representations manipulate a graph’s adjacency matrix. The
latter approach is controllable by design.

Moreover, in the context of level balancing, we have demonstrated that PC-
GRL can learn from a simulation-driven reward function, as well as constraint-
checking reward functions.
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8.2.3 Balance and Fairness in Games

Games must be balanced, not fair Based on existing definitions of the terms
balance and fairness from various disciplines, we emphasize that balance refers to
a state of equilibrium, whereas fairness is also an ethical and social concept that
inherently involves the human perspective (Section 4.1). According to Schreiber
and Romero [2021], winning a game should feel earned, and thus, players” de-
cisions must directly impact the game’s outcome. If all players were identical
clones, winning or losing would solely depend on the game’s probabilistic el-
ements. To ensure this, the game must be balanced first to provide the same
conditions for all players across all facets of its system. But human players are
never identical. From a design perspective, a game should thus not strive to be
fair, as it is exactly the differences between human players that should influence
the game’s outcome.

Therefore, we emphasize that: (1) balance must be carefully maintained to
provide a stable foundation that isolates skill from randomness, and (2) it is
the interplay between humans and the balanced system that makes games truly
interesting and engaging by incorporating the social and ethical dimensions that
give games their depth and meaning. Returning to the opening quote by Oscar
Wilde on page 1, it is therefore a good thing that also games are, by design, never
fair.

8.3 Limitations

Human evaluation remains necessary: Throughout this thesis, we have intro-
duced various PCG methods for automating balanced game level and economy
generation. These methods can reduce the need for human manual work, such
as playtesting. However, the balance is artificially estimated. Therefore, we
agree with Volz et al. [2018], that considering human perception of balance is
essential and thus a (final) human evaluation will always remain necessary to
evaluate how humans perceive the intended balance.

To address this to some extent, we conducted an empirical study with human
playtesters to evaluate our level balancing approach. Human testing is costly
and time-consuming, letting us test a subset of levels only, whereas our method
could generate thousands. We did not evaluate the human perception of game
economy balance Within our GEEvo framework, we did not evaluate human
perception of game economy balance, as it is intentionally held abstract and
does not support the direct creation of a playable prototype for user testing. For
this reason, our testing is limited to evaluating the performance of the proposed
algorithms using metrics based on simulated balance.

Lastly, we proposed methods to optimize balance through creating a math-
ematical equilibrium of even win rates for all players. By design, we did not
aim to generate games which are fair, since fairness includes players’ subjective
backgrounds, which create the differences that isolate skill from randomness (cf.
Section 8.2.3).
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Scalability: We have introduced RL-based content generators for level balanc-
ing and graph data generation. One limitation of these approaches is their lim-
ited scalability for the level and graph sizes that can be generated, mainly caused
by the exponentially growing action space dependent on the size.

For game levels, we addressed this issue by further optimizing e.g., the ac-
tion space of the MDP to improve performance. We achieved good results for
generating levels up to a size of 6x6 and limit the method to that size. Larger
levels may be possible with significantly more computing resources in combi-
nation with different configurations of the RL algorithm. As this work focuses
on using PCG to generate balanced levels simulation-driven, the challenge of
improving scaling lies more in solving a foundational RL problem than in solv-
ing a PCG problem directly. Therefore, we exclude it from the scope of this
work. Since graph data generation with G-PCGRL does not require simulations
to evaluate the content, computational reduction is not an argument. Thus, we
introduced a second method (GEEvo) which has improved scalability at the ex-
pense of computational complexity.

Complexity: We evaluated our RL architecture for balancing tile-based lev-
els through level design in two environments. These environments are both
research environments with a limited complexity and are thus, of course, not
intended for commercial sale or serious entertainment. The contributions of this
thesis are focused on the design, implementation, and study of the algorith-
mic approaches for generation and balancing rather than game design. Since
our method was developed independently of a specific game, it can easily be
transferred to other, more complex, competitive, two-player tile-based games.
However, the computational cost increases depending on the complexity of the
game and the heuristics used to estimation balance through the simulations.

We adapted PCGRL to learn to generate graph data based on a given set of
constraints (G-PCGRL). However, the types of constraints that can be used are
limited. Similarly to our level balancing approach, G-PCGRL is not dependent
on specific types of constraints. This makes it easy to extend to include other,
more complex constraints.

We followed the existing formal definition of game economies established
by Klint and van Rozen [2013] and also kept our framework for generating and
balancing game economies (GEEvo) abstract. This enables the design and study
of the flow of a game’s virtual resources at a macro level while ensuring our
framework is easily applicable to various types of games. We showed how
our evolutionary algorithm can create balance in abstract economic simulations.
However, we did not test it in a real game setting. This would help to evaluate
whether the simulated balance appears balanced to human players.

Our simulation framework is limited to a list of functional components. For
instance, it is currently not possible to create economies with positive feedback
loops, which are a popular engagement mechanic in game design [Schreiber
and Romero, 2021]. In addition, functional components, such as the converter,
behave in a simple, rule-based manner, without any deeper logic or intelligent
behavior. Therefore, executing economies to simulate specific cases or more
complex behavior is, as implemented in this thesis, not possible. We focused on
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the algorithmic implementation, so we intentionally kept the simulation frame-
work lightweight. Like the other approaches introduced in this thesis, the sim-
ulation framework is independent of the algorithms and can therefore easily be
extended to address the aforementioned limitations without affecting the design
of the introduced algorithmic approaches. We see potential in further develop-
ing this in future work (cf. Section 8.5).

8.4 Ethical Considerations: Critical Thoughts on Au-
tomating Game Balance for other Purposes

This thesis contributed to the study of game balancing by exploring methods to
automate and improve this process. However, game balancing can be exploited
for monetization purposes, which can further encourage addictive behavior in
certain players. Automating this process can help to achieve this goal. Many
publishers already use data-driven insights from thousands of players [Seif El-
Nasr et al., 2013], and this practice will only increase in the future. In their po-
sition paper, Seif El-Nasr and Kleinman [2020] discussed ethical considerations
of data-driven game development in general. In this final section, we will focus
on these concerns in the context of game balancing, particularly its misuse for
monetization strategies and the associated risk of gaming disorders.

Monetization: The digital gaming industry, especially the mobile gaming sec-
tor, knows how to best balance a game to maximize not only entertainment, but
also income. As we have mentioned several times throughout this thesis, bal-
ancing is important for incentivizing players to engage in certain behaviors and
with the game itself. Publishers know that this can also be used to nudge play-
ers to spend money on the game, whether for purely cosmetic content, to speed
up in-game advancement (pay-to-progress) or for upgrades that enhance the
player’s virtual power in the game (pay-to-win). While computer games used
to be sold as a finished software, modern games are continuously developed af-
ter release to keep players on board — and to generate more revenue [Nieborg,
2016].

Many games offer microtransactions — small real-money purchases — or gam-
bling elements, such as loot boxes and Gacha mechanics, that allow players to
spend real money inside the game. A small percentage of players is particularly
susceptible to this and generates most of the revenue, essentially paying for all
the other players. This practice is known as whaling. Game designers can iden-
tify psychological weaknesses and balance the game to encourage this group
of players to spend even more, a concept known as a “dark pattern”. Close
et al. [2021] showed that game publishers disproportionately profit from mod-
erate and high-risk gamblers. While all players are affected by these elements,
children and adolescents are particularly vulnerable and must be protected.

Legislators are trying to address this issue. For example, in a resolution from
2022, the European Parliament emphasized the need for greater transparency re-
garding loot boxes and their effect on winning the game, e.g., how monetization
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is tied to the game’s balance.’’ The German legislation tries to protect young
players via the Youth Protection Act (Jugendschutzgesetz), which requires la-
bels for games with (random) in-game purchases and to take this into considera-
tion when assigning age ratings to games.?! Furthermore, parental controls and
spending limits must be implemented.?? In our opinion, however, legislators
are not doing enough to restrict manipulative strategies implemented through
clever game balancing. In our view, the situation is likely to become even more
challenging in the future.

Internet Gaming Disorder: Addiction to video games is officially known as
Internet Gaming Disorder (IGD) [Darvesh et al., 2020] and is listed in the Interna-
tional Classification of Diseases of the WHO.? While designed for engagement,
well-balanced game play can be too effective for certain players, resulting in ad-
dictive behaviors up to a gaming disorder. For an IGD diagnosis five out of nine
criterias must be met such as the use of gaming as escape or relief from a neg-
ative mood, or the loss of interest in other activities, among others [Petry et al.,
2014].

The reward-driven mechanics of video games, which are primarily balanced
by the game’s economy, can contribute considerably to triggering addiction.
These mechanics are what make progress or achieving victory possible and,
most important, that it feels earned. This is also related to the previously
mentioned psychological incentives to encourage spending real money on
gambling-like mechanics with intentional game balancing.

With that in mind, why not use automated game balancing strategies to im-
prove game systems that enhance how players perceive rewards and their effect
on their psyche? What if we combined such a system with a data-driven system
of millions of players to better target specific groups? Or, we could use available
personal data to fully customize the entire game for each player, targeting indi-
vidual vulnerabilities with personalized PCG to gradually paying out rewards
to create a psychological addiction.

While this is, of course, a dystopian scenario, the technological foundation
for such systems is close at hand. On the one hand, further customizing game
content through PCG and automated balancing can provide unprecedented
ways of entertainment. On the other hand, as we saw in the previous two para-
graphs, there are also drawbacks, in particularly for especially vulnerable player
groups. Therefore, it is up to society in combination with legislators to decide
how to address this issue in the future.

2European Parliament, resolution of 10 November 2022 on esports and video games
(2022/2027(INI)), Official Journal of the European Union, C 161, 5 May 2023, pp.2-9.

21§ 10b (3) JuSchG — Jugendschutzgesetz of 23 July 2002 (BGBL. I, S. 2730), as last amended by
Art. 12 of the Act of 6 May 2024 (BGBI. 2024 I No. 149).

22Gesetz zum Staatsvertrag {iber den Schutz der Menschenwiirde und den Jugendschutz in
Rundfunk und Telemedien (Jugendmedienschutz-Staatsvertrag — JMStV — of 10 to 27 September
2002), as enacted in Baden-Wiirttemberg by the Act of 4 February 2003 (GBlL. 2003 S. 93), last
amended by the Act of 25 July 2024 (GBI. 2024 No. 67).

ZInternational Classification of Diseases of the WHO: https://www.who.int/standards/cl
assifications/frequently-asked-questions/gaming-disorder
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8.5 Future Work

While this thesis contributed several methods exploring various use cases for
automated game balancing, this is certainly not the end. Thus, we outline sev-
eral areas for future research.

Incorporating narratives: Our focus was on maintaining a mathematical equi-
librium of win rates to ensure balance. However, in the context of an entire
game, this must also be connected to the game’s narrative. Due to recent ad-
vances of Large Language Models (LLMs), future work may thus combine bal-
ancing methods such like ours in combination with an LLM. PCGRLLM [Baek
et al., 2025a], a very recent work that combines PCGRL with an LLM to create
more tailored and fine-grained reward functions, could be a promising approach
to extending our level balancing method with PCG. For instance, while still en-
suring equal win rates, specific categories of levels could be generated, such as
where players always have few or many resources to collect. This becomes par-
ticularly interesting when using asymmetric player archetype setups.

In the context of game economies and our GEEvo framework, LLMs can
also be beneficial. While we focused solely on the abstract modeling of func-
tional components, LLMs could provide a global economic narrative based on
a GEEvo-generated and balanced economy by assigning labels and descriptions
to the nodes. One possible approach could be to embed GEEvo in a system
called like “Narrative to Economy”. Incorporating narratives further motivates
players to engage in specific behaviors, adding depth to the game.

Transfer learning: We have proposed two RL methods: one for level balanc-
ing and one for generating graph data. We observed a high computational effort
for the training of the Proximal Policy Optimization (PPO) models for level bal-
ancing due to simulation-driven rewards and limited scalability due to a large,
growing action space.

In our opinion, the use of transfer learning, also in the context of the en-
tire PCGRL, can be a promising future research direction to reduce scalability
and computational effort problems. For example, scalability to larger level sizes
might be improved by initially training on smaller levels and gradually increas-
ing the level size. This curriculum-based approach could also prove beneficial
in the context of G-PCGRL. In addition, we could train models with fewer sim-
ulations in the early training phase and gradually increase the number of simu-
lations as training progresses.

Smarter economy simulations: In the context of GEEvo, we developed a light-
weight game economy simulation framework. However, the different functional
components always trigger based on a limited set of static rules. Future work
may address this by extending this functionality to investigate how game eco-
nomies behave when executing more complex actions. Using scripts or smaller
trained models could help control this behavior more precisely.
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Appendix A

Resources

Table A.1 provides an overview of all created resources in the context of this
thesis which are publicly available on Github. Column one contains the number
of the belonging chapter and column two a short description. The third column
describes the type of the resource such as code, data, or a question catalog. A
link where the resource(s) are available is given in column four.

Table A.1: Compilation of all created resources in the context of this thesis.

Chapter Description Type Location
5 Simulation-driven level  Code, https://github.com/Flo
balancing, PCGRL Data, rianRupp/pcgrl-simulat
Models  ion-driven-balancing
5.5 Empirical evaluation Question https://github.com/Flo
Catalog, rianRupp/pcgrl-balanci
Data ng-empirical-evaluation
7.3 G-PCGRL Code, https://github.com/Flo
Data, rianRupp/g-pcgrl
Models
74 GEEvo Code https://github.com/Flo
rianRupp/GEEvo-game-eco
nomies
56 Feast & Forage Code, https://github.com/Flo
Environment Models rianRupp/feast-and-for

age-env
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Appendix B

Empirical Evaluation: Question
Catalog

This appendix lists the questions for the empirical evaluation in Section 5.5. The
catalog is divided into two parts: Questions which were asked of participants
when playing level version 1 (Table B.1) and the questions which were asked of
after playing level version 2 (Table B.2).

For each question, the following are listed: the number (column 1); the name
of the item (column 2); the question text, as it was presented to the participants
(column 3); and the available response options (column 4). The response options
use a 5-point Likert scale, with the ordinal values given in brackets.
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Table B.1: Questions catalog: Level version 1.

No. Name Question (Value) Choices
Q1.1 Movement How easy was it for you, (-2) Very inconvenient/
Difficulty  in your opinion, to access Impossible
Player berry bush (food) or water (-1) Slightly inconvenient
tiles? (0) Adequate
(1) Easy
(2) Very easy
Q12 Amount How would you rate the (-2) Way too few / None
Food amount of berry bush tiles (-1) Too few
Player (food) near your starting (0) Sufficient
position? (1) Too much
(2) Way too much
Q1.3 Amount How would you rate the (-2) Way too few / None
Water amount of water tiles near (-1) Too few
Player your starting point? (0) Sufficient
(1) Too much
(2) Way too much
Q14 Movement How easy was it for your (-2) Very inconvenient/
Difficulty opponent, in your opinion, Impossible
Opponent  to access berry bush (food) (-1) Slightly inconvenient
or water tiles? (0) Adequate
(1) Easy
(2) Very easy
Q15 Amount Compared to your own (-2) Way too few / None
Food starting position, how (-1) Too few
Opponent  would you rate the avail- (0) Sufficient
ability of berry bush tiles (1) Too much
(food) near your opponent’s  (2) Way too much
starting position?
Q1.6 Amount Compared to your own (-2) Way too few / None
Water starting position, how (-1) Too few
Opponent  would you rate the avail- (0) Sufficient
ability of water tiles near (1) Too much
your opponent’s starting (2) Way too much

position?
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Table B.2: Questions catalog: Level version 2.

No. Name Question (Value) Choices
Q21 Movement Compared to the previous (-2) Way more difficult
Difficulty =~ version, would you say, that (-1) More difficult
Player you were able to access re-  (0) Unchanged
source tiles more or less eas- (1) Easier
ily than before? (2) Much easier
Q22 Amount Compared to the previous (-2) Way fewer
Food version, would you say that (-1) Fewer
Player you had more or less berry  (0) Same amount
bush tiles (food) near your (1) More
starting position? (2) Way more
Q23 Amount Compared to the previous (-2) Way fewer
Water version, would you say that (-1) Fewer
Player you had more or less water  (0) Same amount
tiles near your starting posi- (1) More
tion? (2) Way more
Q24 Movement Compared to the previous (-2) Way more difficult
Difficulty = version, would you say, that (-1) More difficult
Opponent  your opponent was able to  (0) Unchanged
access resource tiles more or (1) Easier
less easily than before? (2) Much easier
Q25 Amount Compared to the previous (-2) Way fewer
Food version, would you say that (-1) Fewer
Opponent  your opponent had more or  (0) Same amount
less berry bush tiles (food) (1) More
near its starting position? (2) Way more
Q26 Amount Compared to the previous (-2) Way fewer
Water version, would you say that (-1) Fewer
Opponent  your opponent had more or  (0) Same amount

less water tiles near its start-
ing position?

(1) More
(2) Way more
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Appendix C

Supplementary Materials

C.1 City Game Environment
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Figure C.1: Determination of a suitable number of simulations for the city envi-
ronment in Section 6.3. We follow the same approach as described in the context
for Feast & Forage in Section 5.2.2. The suitable number of simulations is there-
fore 30.

Algorithm 5 Heuristic Agent for the City Environment.

1: procedure STEP(gameState, tileCosts, targets)

2: init selectedTarget <~ CLOSESTREACHABLETARGET(targets, tileCosts,
gameState)

3 action <— FINDSHORTESTPATHTO(selected Target, tileCosts, gameState)

4 if NEXTPOSITION(action, tileCosts, gameState) € targets then

5: targets < targets \ {gameState.agent.position}

6 end if

7 return action, targets

8: end procedure
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C.2 Additional Sets of Constraints

An overview of the additional sets of constraints used for the experiments in
Section 7.3.4 in the context of G-PCGRL is given in Figure C.2. The sets differ
in the rules themselves, the number of node types used, and the number of
constraints. In total, five sets of constraints were used for the experiments for
G-PCGRL in this thesis; set C; is included in Figure 7 4.

Uu: [V] Uu: [V]
(a) Set of constraints C,: two rules (b) Set of constraints Cs: three rules
with two node types. with two node types.

U: [U] u. [V, Wi

V: [U, vV, W] V: [U, W]

W: [V] w: [Uu, Vi
(c) Set of constraints Cy4: five rules (d) Set of constraints Cs: six rules
with three node types. with three node types.

Figure C.2: Additional sets of constraints for experiments in the context of G-
PCGRL.
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