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Summary

In online grocery retailing, customers are usually offered a set of delivery time windows

to choose from, a last-mile delivery concept commonly referred to as attended home deliv-

ery. From a service perspective, customers tend to prefer short time windows. Retailers,

however, must fulfill orders efficiently despite the inherent complexity of planning time-

constrained deliveries, which rather favors longer time windows. The design of delivery

time windows therefore plays a crucial role in shaping both customer demand and oper-

ational efficiency. The growing body of literature on demand management in attended

home delivery addresses this trade-off by optimizing the offering and pricing of delivery

time windows. However, existing research has primarily focused on selecting an efficient

subset of time windows from a given set within medium- and short-term planning hori-

zons. The strategic design of these sets, referred to as time window assortments, remains

largely underexplored. This dissertation addresses a novel planning problem: how to de-

sign time window assortments that account for customer preferences while maintaining

delivery efficiency. Across three essays, we address this research gap, propose a mod-

eling approach to analyze the problem, derive tractable analytical results and obtain

numerical insights to examine key trade-offs, and discuss practical implications. The

first essay provides a structured literature review of demand management in attended

home delivery, covering strategic, tactical, and operational approaches such as pricing,

availability control, and feasibility assessment. We synthesize insights across fields of

application, highlight common modeling choices, and identify promising research gaps.

The second essay investigates profit implications of different time window assortments.

We develop an evaluation model based on continuous approximation to assess metrics

like delivery cost and capacity and examine how the number, length, and overlap of time

windows affect performance. The results offer guidance for aligning operations strategy

with relevant market conditions to make grocery delivery services economically viable.

The third essay incorporates stochasticity in customer choice behavior across the time

window assortment to further analyze the effects of overlapping time windows. We derive

ix



optimal demand allocations, identify ex-post conditions under which overlapping time

windows reduce delivery costs, and apply Monte Carlo estimation to test these condi-

tions at the decision-making level. Together, these essays provide a novel perspective

on time window assortment design as a strategic lever in attended home delivery. Our

findings offer theoretical insights and actionable guidance for online grocery retailers

seeking to align customer satisfaction with efficient last-mile operations.
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Chapter I

Introduction

Grocery home delivery, commonly referred to as e-grocery, is a business model in which

customers order groceries online and have them delivered directly to their homes. Al-

though e-grocery has become widespread and customers are increasingly adopting it as

a service, the sector continues to face several persistent challenges. First, the sector is

marked by intense competition, not only among e-grocery providers but also with es-

tablished brick-and-mortar supermarkets. Second, as a consequence of this competitive

pressure, product margins in the grocery sector are typically low, leaving little room for

inefficiencies. Third, e-grocery entails particularly complex last-mile logistics. Grocery

items often require careful handling and must therefore be handed over to the customer

in person, a requirement known as attended home delivery.

The challenge of balancing an attractive service offering with cost-efficient opera-

tions in e-grocery has a long history, beginning in the mid-1990s when early pioneers

attempted to digitize the grocery shopping experience. One of the first movers was

Peapod, founded in 1989, which initially partnered with traditional supermarkets and

fulfilled customer orders from in-store inventory. Another early entrant was NetGrocer,

launched in 1995, which adopted a mail-order model based on a central warehouse and

shipped non-perishable groceries to customers via standard parcel carriers such as FedEx.

The most ambitious early player was Webvan, founded in 1996. Webvan aimed to build

a fully vertically integrated operation with state-of-the-art automated warehouses and

its own fleet of delivery trucks, promising deliveries within narrow 30-minute time win-

dows, which is an impressive target even by today’s standards. The company raised

nearly $400 million in venture capital and went public in 1999 with a valuation of over

$4 billion. However, Webvan became one of the most prominent failures of the dot-com

era. Its rapid expansion into multiple cities, ahead of establishing a proven, profitable

1



Chapter I. Introduction

model, led to massive overhead and underutilized fulfillment centers. Demand failed to

meet expectations, and the company was burning through cash far faster than it was

generating revenue. In 2001, just two years after its initial public offering, Webvan filed

for bankruptcy.

From today’s perspective, Webvan can be seen as a business that was ahead of its

time, with a model that proved too ambitious given consumer behavior and techno-

logical infrastructure in the late 1990s. Its failure served as a cautionary tale, high-

lighting the risks of scaling too quickly without first establishing operational viability.

Two decades later, a similar pattern emerged with the rise of quick-commerce startups

such as Gorillas and Flink, which promised ultra-fast delivery within 10 to 15 min-

utes. Gorillas expanded rapidly across Europe while burning through investor capital

at unsustainable rates, eventually withdrawing from multiple markets before filing for

insolvency in 2023. In contrast, Flink remains operational and appears to be improv-

ing efficiency by focusing on better order consolidation and route planning, accepting

longer delivery time windows in exchange, suggesting a more sustainable path in the

competitive quick-commerce sector. Similarly, another segment of e-grocery providers

prioritizes operational robustness, route optimization, and higher customer densities to

achieve long-term profitability. Companies such as Instacart and Amazon Fresh have

partnered with existing retailers or leveraged freelance shoppers, enabling more sustain-

able scaling. Other successful models include Picnic and Albert Heijn, both of which

use optimized time window management and routing. Picnic is a pure-play e-grocer

operating through centralized fulfillment, while Albert Heijn leverages its existing retail

network by integrating physical stores with dedicated fulfillment centers to efficiently

fulfill online orders.

Effectively managing attended home deliveries requires service providers to make a

series of interdependent decisions, one of which concerns the timing of deliveries. To

ensure a successful handover, the service provider and the customer must agree on a

suitable delivery time. In many established business models, this agreement is facilitated

through a selection of delivery time windows offered to customers, with each time window

corresponding to an upcoming delivery shift. Once customers have made their choices

and the order cut-off time has passed, the provider plans the corresponding delivery shift.

This involves solving a Vehicle Routing Problem with Time Windows, a computationally

demanding yet well-established optimization task that schedules deliveries efficiently

while respecting the selected time windows. Customer preferences for delivery time

2



Chapter I. Introduction

windows and the provider’s efficiency considerations give rise to a fundamental cost-

service trade-off: Short windows enhance customer satisfaction, whereas longer windows

facilitate more efficient route planning.

Consequently, time window management has emerged as a key and extensively studied

lever in the literature on attended home delivery. Due to its ability to shape demand, it

is often considered a form of revenue management, while customers’ time window choices

also influence the provider’s ability to plan efficient delivery routes. The challenge lies in

balancing these competing objectives: maximizing customer appeal without compromis-

ing logistical efficiency, which is further complicated by uncertainty in customer behavior

and the structural complexity of delivery operations. Existing literature on time window

management focuses almost exclusively on operational and tactical approaches, such as

limiting the options available to customers or adjusting delivery fees, for a given set of

time windows. However, the impact of the strategic choice of this set, referred to as the

time window assortment, remains largely underexplored. This dissertation addresses this

strategic decision by posing the following research question: How do the characteristics

of a time window assortment, including its width, the length of its time windows, and

whether the time windows in the assortment overlap, affect the service provider’s profit

and operational efficiency?

In the first essay, presented in Chapter II, we provide a comprehensive classification

and review of research on time window management in attended home delivery. We

begin by categorizing existing business models based on their delivery strategy. Next,

we map the inherent trade-offs between satisfying customer preferences and maintain-

ing operational profitability across different planning levels and demand management

levers. Our review shows that operational demand management is the most extensively

studied area, with research primarily focusing on sophisticated solution methods for

selected parts of the real-time decision problem. In contrast, contributions on tactical

demand management are less frequent, yet they address a broader range of decisions,

from long-term customer agreements to short-term availability control. Contributions

to strategic demand management appear to be sparse and diverse. Among the identified

future research directions, strategic demand management offers a particularly promising

opportunity to provide decision support that maximizes demand potential and ensures

profitability, serving as the central motivation for the research question addressed in this

dissertation.

3
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In the second essay, presented in Chapter III, we introduce a novel time window as-

sortment evaluation model that captures demand-side responses while approximating

delivery costs through continuous approximation. Using this model, we assess how the

number, length, and potential overlap of time windows affect demand and delivery effi-

ciency under homogeneous conditions and stylized demand patterns, deriving tractable

expressions that rely on only a few key parameters. Our analytical results identify

which time window assortments can achieve profitability under different market condi-

tions, highlighting minimum time window lengths, break-even demand thresholds, and

scenarios in which maximum vehicle capacities or tour utilization become limiting fac-

tors. By endogenizing demand, we find that for customers who are insensitive to the

assortment, providers should offer the longest time windows that still allow efficient tour

utilization, and the choice of the number of consecutive time windows should balance

the trade-off between demand clustering and spreading, while introducing overlapping

time windows reduces profit. For assortment-sensitive customers, an optimal time win-

dow length balances demand attraction with the required tour frequency, and adding

additional time windows, whether consecutive or overlapping, can increase profit if the

incremental demand is sufficient.

In the third essay, presented in Chapter IV, we extend the analysis of time window

assortment design by examining overlapping time windows, a common but underex-

plored structure, under demand uncertainty. We focus on their potential to mitigate

variability in demand distribution across time windows. Demand is modeled as a ran-

dom variable capturing both variability and differences in time window popularity, and

we derive conditions under which overlaps reduce delivery costs compared to consecutive

designs. These results inform hypotheses that we test using a Monte Carlo simulation to

quantify the expected performance gap. Our findings show that overlaps can smooth op-

erational bottlenecks by reallocating workload across adjacent time windows, but their

effectiveness depends on operational parameters, demand characteristics, and customer

behavior. They are most beneficial when service time dominates routing time, total

demand is high, and demand variability is significant. Their success also hinges on the

interaction between demand transition rates and initial demand distributions, and in

some cases, overlaps may even create new bottlenecks. Overall, overlapping windows

should be treated as a strategic design choice whose value depends on expected demand

patterns and customer preferences.
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This research suggests several promising future directions. Incorporating more so-

phisticated models of customer behavior, including endogenous choice and transition

dynamics, would enable a nuanced assessment of time window assortments, capturing

both cost and revenue implications. Further research should explore the interaction

between strategic time window assortment decisions and tactical or operational levers

as a means to smooth demand over time and align offerings with customer preferences,

thereby improving operational efficiency and revenue potential. Another avenue is to

extend the evaluation of time window assortments beyond profitability by incorporat-

ing environmental and social sustainability metrics. Finally, empirical validation using

operational data is crucial to test model assumptions, quantify practical benefits, and

provide actionable managerial guidance for grocery home delivery.
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Chapter II

Demand Management for Attended

Home Delivery: A Literature

Review1

with Charlotte Köhler, Niels Agatz, and Moritz Fleischmann

Abstract

Given the continuing e-commerce boom, the design of efficient and effective home deliv-

ery services is increasingly relevant. From a logistics perspective, attended home delivery,

which requires the customer to be present when the purchased goods are delivered, is

particularly challenging. To facilitate the delivery, the service provider and the customer

typically agree on a specific time window for service. In designing the service offering,

service providers face complex trade-offs between customer preferences and profitable

service execution. In this paper, we map these trade-offs to different planning levels and

demand management levers, and structure and synthesize corresponding literature ac-

cording to different demand management decisions. Finally, we highlight research gaps

and future research directions and discuss the linkage of the different planning levels.

1The contents of this chapter have been published in Waßmuth et al. (2023).
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2.1. Introduction

The COVID-19 pandemic has boosted the demand for online shopping and home delivery

across the globe, and it is likely that some shifts in demand will also have long-lasting

effects (OECD, 2020). For example, the global online share of grocery annual sales

increased from 7% before the pandemic to 10% at its peak and remains at a high level

of 9%, even after the peak2. Fulfilling this growing demand requires effective and cost-

efficient last-mile delivery operations. While the last mile is generally recognized as the

most challenging part of the fulfillment process, this is especially true for attended home

delivery (AHD), where the customer must be present to receive the goods.

AHD is common for home services and products that require special handling, such as

groceries, large appliances, or furniture. To reduce missed deliveries and waiting times,

service providers typically let customers choose a delivery time from a menu of time

windows or deadlines (referred to as service options). This step involves the customer

directly in the service creation process, a characteristic that is typical of the field of

service operations management (see, e.g., Coltman & Devinney, 2013).

The concept of AHD is especially well established in the context of online grocery

retailing, which is a particularly challenging sector, as profit margins are low, and the

delivery of fresh or even frozen goods requires special care in planning and execution.

Consequently, many online supermarkets are struggling to create a profitable business3,4.

To manage profitability, service providers can manage both supply and demand. The

supply-side levers involve traditional supply chain planning tasks, such as network de-

sign, inventory management, and vehicle routing. In general, these levers seek the most

cost-efficient fulfillment of a given demand (see, e.g., Han et al., 2017).

Demand management focuses on managing customer demand to maximize profitabil-

ity of a given supply. Typical levers include the specific service options and prices offered

to customers. Through these levers, demand management can enhance profits in two

ways. First, by increasing revenues by prioritizing high-value customers or by serving

more customers due to better capacity utilization. Second, demand management may

reduce costs by facilitating more efficient order delivery. In addition to profit maxi-

mization, demand management can also contribute to other goals, such as prioritizing

2Statista, https://bit.ly/3h4kiXG. Accessed on February 14, 2022
3Tagesspiegel, https://bit.ly/3vpokhZ. Accessed on February 14, 2022
4Chicago Tribune, https://bit.ly/3t3ZXEM. Accessed on February 14, 2022
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specific customer groups when demand exceeds capacity (Schwamberger et al., 2023) or

steering customers toward more sustainable delivery times (N. Agatz et al., 2021).

While traditional supply-oriented approaches have been studied for decades, demand

management has only started to attract substantial attention in the research community

more recently. Technological advances have been driving this development by allowing

for a better understanding of customer behavior and by providing the flexibility to

change offered services and prices in real time. When considering current practice, we

observe that different e-grocers make different choices regarding their service offerings.

In the Netherlands, for example, Albert Heijn offers up to 15 different time windows per

day with various lengths (one to six hours) and different delivery fees, whereas Picnic

offers any customer a single, free, one-hour time window for each day of the week. We

also observe a dynamic development in terms of business models, including on-demand

grocery delivery, as offered by Gorillas and Flink. Given the recent progress in the field,

the time appears right for a review of demand management for AHD to synthesize the

current knowledge and identify relevant open questions.

Demand management generalizes the concept of revenue management, which aims to

maximize revenues (A. K. Strauss et al., 2018). Costs are generally sunk or propor-

tional to demand in traditional revenue management settings (R. Klein et al., 2020). In

contrast, delivery costs in AHD cannot simply be attributed to individual orders but

depend on the specific set of accepted orders (Snoeck et al., 2020). Demand management

in AHD involves deciding on the assortment of the delivery service options. This links

the topic to the field of assortment planning of physical products across different retail

channels (see, e.g., Bernstein et al., 2019).

This paper contributes to the existing literature in the following ways. First, we refine

and extend the framework by N. Agatz et al. (2013) and classify different demand man-

agement decisions along strategic, tactical, and operational planning levels. Thereby, our

work is the first to explicate the different interrelated planning levels in demand man-

agement for AHD. Second, we structure and synthesize the current literature according

to the different demand management decisions and planning levels. This provides an up-

to-date overview of the literature and identifies research gaps and directions for future

research. Third, we introduce a consistent terminology to help bring together different

strands of research within the fields of revenue management and vehicle routing. In this
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way, our work complements previous review papers on online order fulfillment and cus-

tomer behavior (Nguyen et al., 2018) and integrated demand and revenue management

in vehicle routing (Fleckenstein et al., 2023; Snoeck et al., 2020).

The remainder of this paper is organized as follows. In Section 2.2, we define and

structure the field of demand management and develop our classification framework to

structure the academic research field systematically. Based on this framework, in Sec-

tions 2.3 to 2.5, we review the demand management literature in detail and cluster them

into different research streams. In Section 2.6, we highlight our observations and iden-

tify gaps and future research opportunities for each planning level. We also discuss the

connection between planning levels in that section. Finally, we conclude this literature

review in Section 2.7 by summarizing our main findings and pointing out general avenues

for future research.

2.2. Demand Management Framework

In this section, we structure the field of demand management for AHD and embed it

into a planning framework. To this end, we first highlight important structural elements

of the fulfillment process (Section 2.2.1). Second, we characterize the different planning

levels and identify the related demand management levers (Section 2.2.2). We use the

resulting framework to structure our literature review in Sections 2.3 to 2.5.

2.2.1. Order Fulfillment Process

Demand management for AHD aims to generate customer demand and, at the same

time, shape it in a way that benefits the fulfillment process. To identify the potential

of demand management in this context, we thus need to understand the fulfillment

process. At a broad level, it involves activities in sourcing, warehousing, delivery, and

sales (N. A. H. Agatz et al., 2008). However, in our context, the most relevant part of

the fulfillment process is the one that follows the interaction with the customer, i.e., the

customer order decoupling point. This downstream part comprises three main steps,

namely, order capture, order assembly, and order delivery (Campbell & Savelsbergh,

2005). In what follows, we briefly discuss each of these steps and how to coordinate

them for multiple orders.
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Fulfillment Steps

During order capture, the customer and the service provider mutually agree on when and

where the order is to be delivered. To reach such an agreement, the service provider com-

monly presents an assortment of service options from which the customer can choose.

The offered service options may differ in their timing within and across days, their

lengths, and their associated delivery prices. Some providers offer the same set of op-

tions to all customers, while others tailor them to the customer’s shopping history, de-

livery location, or basket composition. To ensure a smooth booking process, the service

provider must decide on the offered service assortment very quickly, within, at most, a

few seconds. Customers choose from the offered options according to their preferences

– not placing an order if none of the options meets their expectations. Once the cus-

tomer chooses a service option, the service provider confirms the order, and the delivery

agreement is fixed. It is illustrative to position this process relative to adjacent research

fields: In the terminology of the production planning literature, the described process

is denoted as real-time single-order capture (Meyr, 2009), while service operations man-

agement classifies it as nonsequential offering (Liu et al., 2019).

Order assembly denotes all warehousing operations that are required to prepare an

order for delivery, including order picking, sorting, and packaging. Handling the items

may be demanding depending on the product category. For example, grocery orders may

contain dry, fresh, refrigerated, and even frozen food. This makes order picking quite

time consuming. Many service providers therefore seek economies of scale by consoli-

dating the order assembly in larger fulfillment centers that allow for (semi-)automated

picking processes. This, however, usually moves the order assembly location further

away from the delivery areas, thereby increasing the overall fulfillment lead time. Con-

straints on innercity space further exacerbate this effect. Service providers that compete

on short click-to-door times may therefore opt for a different approach, relying on smaller

fulfillment centers situated near customer locations. In particular, on-demand service

providers often use a dense network of small innercity depots or even assemble orders in

physical stores.

Order delivery refers to the physical delivery of purchased products to customers’

homes within a certain time frame. As this step typically involves assigning customer

orders to vehicles and determining the delivery sequence, it can be modeled as a vehicle

routing problem (VRP). Service providers often run a proprietary delivery fleet; only a
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few use external carriers. The fleet can be composed of trucks, vans, cars, or bicycles

that visit one or more customers along a specified route. The service includes delivery

to the customer’s doorstep, and thus, delivery includes a service time for handover,

parking, unloading and – for apartment buildings – carrying the order upstairs. For

online supermarkets, the service time is approximately 10 minutes (R. Klein et al.,

2019).

Fulfillment Process Design

For a single customer order, the three steps of the fulfillment process naturally follow

the sequence outlined above. However, the service provider has multiple options to

coordinate these steps across multiple orders. For example, the order assembly literature

discusses wave and waveless release times, where the former means that incoming orders

are held back to be later released in larger batches, whereas in the latter, arriving orders

are released immediately and individually (see, e.g., Çeven & Gue, 2017). Similar options

apply to order delivery, as discussed in the literature on dynamic consolidation by means

of dispatch waves (see, e.g., Klapp et al., 2018). For AHD, we distinguish between a

periodic and order-based design of the fulfillment process.

In a periodic fulfillment process, the service provider defines periodic cut-off times,

after which all captured orders are assembled and delivered. In other words, there is a

fixed period for assembly and delivery that does not overlap with the respective order

capture period. This approach exploits economies of scale by consolidating orders in

the assembly and delivery steps. The resulting efficiency benefit comes at the expense

of a longer click-to-door time since captured orders have to wait until the cut-off time

before being further processed. The service provider can choose the cut-off frequency to

manage the speed/efficiency trade-off. For online groceries, daily or semi-diurnal cut-offs

are common.

In an order-based fulfillment process, the service provider decides dynamically on

each customer request whether to initiate the assembly and delivery of orders captured

up to that time. In particular, this includes the option to assemble and deliver each

order individually immediately after capture. Intuitively, this process design is common

for businesses that compete aggressively on speed. It is worth pointing out that a

‘same-day delivery’ service does not necessarily imply an order-based fulfillment process.

In fact, under periodic fulfillment, a cut-off time early in the day may also allow for
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deliveries later on that same day. Thus, from a planning perspective, there is a greater

distinction between periodic and order-based processes than between ‘same-day’ and

‘next-day’ delivery. We illustrate this point with specific examples below and visualize

it in Figure 2.1.

Figure 2.1.: Illustration of fulfillment process design alternatives

The Dutch grocery retailer Albert Heijn follows a periodic fulfillment process with

cut-off times at noon for deliveries the next morning, and at midnight for deliveries

the next afternoon5. After each cut-off, delivery routes are planned, and order assembly

takes place in one of five online fulfillment centers6. Similar to Albert Heijn, the German

e-grocer REWE also operates a periodic fulfillment process. REWE uses a cut-off time

of 1 pm, which allows orders to be delivered in the late afternoon on the same day. To

enable fast delivery and handling of more than 20,000 products, the company invests in

semi-automated fulfillment centers close to delivery areas7.

In contrast, the German beverage delivery service Flaschenpost does not communicate

periodic cut-off times but guarantees delivery within 120 minutes for every incoming

order – a service proposition that requires a particularly fast fulfillment process. To meet

this requirement, Flaschenpost operates 23 fulfillment centers to distribute an assortment

of approximately 2,000 products to more than 150 German cities8. Each of these facilities

is equipped with approximately 70 vans that deliver up to ten orders per trip9. We denote

this fulfillment approach as order-based with dynamic order consolidation.

5Albert Heijn, https://bit.ly/3gsLv6x. Accessed on February 14, 2022
6Ahold Delhaize, https://bit.ly/3q49Jap. Accessed on February 14, 2022
7REWE, https://bit.ly/2SepFd2. Accessed on February 14, 2022
8Flaschenpost, https://bit.ly/3gx0B9U. Accessed on February 14, 2022
9Flaschenpost, https://bit.ly/3xbrira. Accessed on February 14, 2022
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Further speeding up the fulfillment process, German start-up Gorillas offers on-demand

grocery delivery within 10 minutes. To meet the extremely short delivery times, the com-

pany sets up micro fulfillment centers in each delivery area and limits the offered product

assortment to 2,500 products. In addition, they hand-pick each captured order imme-

diately and deliver it by bicycle10. Such a fulfillment process is order-based without

consolidation.

2.2.2. Demand Management Decisions

In the previous subsection, we highlighted the main steps of the fulfillment process in

AHD services. How efficiently a company can execute these steps depends on the prop-

erties of individual orders, such as their click-to-door time (e.g., M. Ulmer, 2017) and

delivery time specificity (e.g., Lin & Mahmassani, 2002), as well as on the temporal and

geographical distribution of the overall set of captured orders (e.g., Ehmke & Campbell,

2014). At the same time, these factors are intimately linked to customer preferences and

thus to the popularity of delivery service options. Demand management aims to manage

the resulting trade-offs between captured demand (revenue) and assembly and delivery

efficiency (costs). In this sense, Figure 2.2 illustrates the interdependence between de-

mand management and the steps of the fulfillment process and the implied impact on

revenue and costs.

Figure 2.2.: The role of demand management within the fulfillment process

Demand management encompasses a diverse set of different decisions. We propose

mapping these out along two dimensions, distinguishing three planning levels (strategic,

tactical, and operational) and two levers (offering and pricing). This approach gives rise

to six different sets of demand management decisions, as shown in Table 2.1. In what

follows, we briefly discuss both dimensions of this framework.

10Supermarktblog, https://bit.ly/3eNUBsb. Accessed on February 14, 2022
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Table 2.1.: Demand management framework
Offering Pricing

design & availability incentives
Strategic

Strategic offering Strategic pricing
demand potential

Tactical
Tactical offering Tactical pricing

demand forecast

Operational
Operational offering Operational pricing

actual demand

Planning Levels

As is common in many areas of supply chain planning and operations management

(Fleischmann et al., 2015), we distinguish between different hierarchically-linked plan-

ning levels, i.e., strategic, tactical, and operational. We define these levels based on their

aim, their time horizon, and their relation to the fulfillment process timeline. Strategic

decisions are design choices specified over a long horizon, while tactical and operational

decisions consider the management of service options over a shorter time span. Strate-

gic and tactical decisions take place before order capture while operational decisions are

based on real-time information on actual demand. In what follows we elaborate on each

of these levels in some more detail.

Strategic demand management defines the boundaries within which tactical and oper-

ational demand management are embedded. It constitutes a special case of the service

design stage in service operations management (see, e.g., Roth & Menor, 2003) and also

bears resemblance with structural decisions in revenue management (K. T. Talluri &

Van Ryzin, 2004). Strategic demand management reflects the overall business strategy

and, to gain a competitive advantage, must be carefully aligned with the competitive

environment, customer preferences and willingness to pay, and operational implications.

Respective decisions determine the target markets and design the general service assort-

ment, based on a market’s demand potential. This includes selecting the service region

and pricing model, designing the service options, and defining appropriate service seg-

ments for subsequent tactical planning. The term service segment refers to a customer

group that should receive the same service assortment (e.g., a geographical area).

The subsequent planning levels address the management of the designed service as-

sortment within the established boundaries. We classify any such decisions taken before
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order capture as tactical demand management. Tactical decision-making is based on

(aggregated) demand forecasts and exploits the heterogeneity of customers in the deliv-

ery market. Corresponding decisions include differentiation of service options and prices

for different service segments. Moreover, tactical planning can be applied to simplify

short-term operational planning, for which only limited computational time is available.

We denote any decisions made during order capture as operational demand manage-

ment, i.e., decisions that are made in real time, based on detailed information on actual

customer orders. Thus, operational decisions are highly time-critical and directly affect

the interaction with the customer. They include accepting customer orders and adjusting

the availability of service options and attached prices in the short term. For order-based

fulfillment processes, these decisions are additionally combined with simultaneous ful-

fillment planning, as the order capture step overlaps with order assembly and delivery.

This differs from periodic designs, where fulfillment planning can be postponed until

after the cut-off. Both tactical and operational demand management share analogies

with traditional revenue management (N. Agatz et al., 2013; Snoeck et al., 2020).

In this subsection, we introduced the planning levels top-down from strategic to oper-

ational, thereby reflecting the natural sequence of decision-making. However, we observe

that the corresponding literature is evolving in the opposite direction, with many de-

mand management approaches starting at the operational level and gradually providing

insights to the strategic level. We follow this development in Sections 2.3 to 2.5 and

review the demand management literature bottom-up, from operational to strategic

planning.

Levers

The demand management levers, offering and pricing, capture the main characteristics

of the delivery service. Offering refers to both the design of service options and the

management of their availability. The latter are binary decisions (an option is either

offered or not offered) that can (i) ensure feasibility and (ii) steer customer choice by

intentionally withholding some feasible options. Service providers can also manage de-

mand through pricing decisions. We use ‘pricing’ to denote a variety of monetary and

non-monetary incentives to steer customer choice and generate additional revenue by

exploiting differences in willingness to pay. The pricing lever allows a more fine-grained

demand management since prices can be chosen from a continuous interval, rather than
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from a binary set. Previous research in the context of e-grocery suggests that small

incentives may suffice to change customer behavior (Campbell & Savelsbergh, 2006).

Offering and pricing can be used as substitutes to steer demand. However, it should

be noted that customers might perceive them very differently, as the willingness to

pay is generally low (Goethals et al., 2012). Furthermore, the two levers also have

complementary features and constitute building blocks that can be combined into an

overarching demand management approach. For example, in the case of operational

demand management, pricing usually builds on the feasibility decision, i.e., the service

provider first determines which options could be offered, and then sets prices for the

feasible set of options. Therefore, and in line with the dichotomy of quantity- and price-

based revenue management (K. T. Talluri & Van Ryzin, 2004), we present and discuss

offering and pricing separately in what follows.

2.3. Operational Demand Management

In this section, we review the literature on operational demand management, distin-

guishing offering and pricing decisions. We provide an overview of the corresponding

literature in Table 2.2. We characterize published work with respect to the considered

problem setting, the decision-making process, and the computational study. We further

elaborate on these characteristics below. They then lead us to identifying clusters of

closely related papers that we discuss in Sections 2.3.1 and 2.3.2.

We distinguish different problem settings for operational demand management by the

design of the fulfillment process (periodic or order-based) and by the type of service

options offered to the customer, i.e., time window or deadline.

To characterize the decision-making process, we highlight the service provider’s as-

sortment decision approach, that is making decisions either independently for individual

service options or jointly for a set of options. Related to this aspect, some papers ex-

plicitly model customer choice behavior, either through exogenous substitution rates

(EXO) or based on random utility theory (RUT). The remaining papers do not model

customer choice but assume demand to be independent of the service offering. We

also consider two attributes concerning the assessment of an incoming order. First, the

service provider must verify the fulfillment feasibility of each service option, given the

available fulfillment capacity and the previously committed orders. The feasibility check
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can be based on either a functional approximation (APR) or a tentative route plan,

using simple insertion heuristics (INS) or more advanced routing methods (ADV). Note

that for each paper only one of possibly several methods applied is given in the table. In

addition to checking feasibility, the service provider may assess the present order value

according to different metrics, including cost, service, revenue, and profit. If no order

value is considered, they make decisions based on feasibility only. Papers also differ in

the components of the fulfillment process that they consider in the assessment of the

current order. These may include subsequent order assembly and order delivery. In

addition, papers may or may not consider the impact on the fulfillment of future orders,

reflected in opportunity costs.

For the computational study, we list the type of demand data (synthetic or empirical)

and the business sector of the motivating application.

2.3.1. Operational Offering

Operational offering decisions determine the service options to offer to a customer during

order capture. To structure our discussion, we cluster papers with similar characteristics

as shown in the upper part of Table 2.2. In particular, we identify three clusters based

on the design of the fulfillment process and the consideration of opportunity costs in the

order assessment.

Periodic Fulfillment with Focus on Order Delivery Assessment Most papers

that focus on operational offering decisions consider periodic fulfillment. We can further

classify these papers based on whether or not they take into account opportunity costs

and thus future orders. Table 2.2 shows that the papers that ignore the opportunity

costs consider single time windows independently and do not explicitly model customer

choice behavior. Most of these papers focus on assessing fulfillment feasibility.

One of the challenges of integrating routing aspects into operational demand man-

agement is to quickly obtain good solutions to allow for real-time feasibility checks.

Hungerländer et al. (2017) develop an adaptive neighborhood search heuristic (ANS) to

determine feasible time windows during order capture. The authors tailor their ANS to

the specific time window problem structure to find better solutions in less time. Truden

et al. (2022) study a number of different solution methods for the AHD setting. In line

with Hungerländer et al. (2017), they show that it is beneficial to adapt time window
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Chapter II. Demand Management for Attended Home Delivery

heuristics to the specific problem settings. Köhler and Haferkamp (2019) compare var-

ious vehicle routing methods to facilitate fast high-quality assessments of the available

fulfillment capacity. The authors also introduce an acceptance mechanism based on

C. F. Daganzo (1987) to approximate expected travel times. Using real-world booking

data of an online supermarket, they show that the delivery area and expected demand

impacts the performance of different approaches. Visser et al. (2024) study a setting in

which multiple customers interact with the booking system simultaneously. It is there-

fore not only important to do a fast initial feasibility check but also a second check when

the customer commits to a certain time window. Their detailed computational study

shows that combining a fast insertion heuristic with a sophisticated background proce-

dure ultimately leads to more accepted orders. van der Hagen et al. (2022) study the use

of machine learning (ML) methods to predict the fulfillment feasibility by framing the

problem as a binary classification problem. Their results suggest that ML methods can

generate accurate feasibility assessments in a fraction of the time needed for common

heuristic-based methods.

Another challenge of delivery-oriented order assessment is to account for uncertainty

at the time of decision-making. Ehmke and Campbell (2014) seek a reliable feasibility

assessment in a setting with uncertain travel times. They compare assessment meth-

ods, including a novel insertion-based heuristic that accounts for time-dependent and

stochastic travel times. Based on a computational study using real travel data, they

find that considering time-dependent travel times is especially valuable in suburban ar-

eas, whereas buffers against travel time uncertainty are effective in downtown areas. In

addition to feasibility checks, some papers also estimate the present order value using

cost and service metrics to maximize the number of orders accepted. In contrast to the

cost metric, the service metric explicitly measures customer satisfaction with respect to

the service options. Casazza et al. (2016) try to insert a new customer into the current

route plan. If this is infeasible, the service provider does not reject the order, but shifts

or enlarges the delivery time window. The authors use a dynamic programming algo-

rithm to assess feasibility in real-time and evaluate several decision policies based on

different service measures. The results highlight the trade-off between customer service

and increasing the number of accepted orders. Köhler et al. (2020) introduce flexibility

mechanisms that incorporate myopic information about routing efficiency and delivery

locations to dynamically decide whether to offer a long or short time window to a given

customer. Their results confirm that the more customers book long time windows, the
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Chapter II. Demand Management for Attended Home Delivery

more flexibility can be maintained for the fulfillment, which increases the availability of

time windows for later customers.

Periodic Fulfillment with Opportunity Cost Assessment Within the second

cluster, we find literature that considers opportunity costs in the assessment of a given

order so as to better steer customers to more profitable or cost-efficient options. Contrary

to the first cluster, most of the papers simultaneously consider multiple time windows

and explicitly model customer choice behavior. However, the techniques applied to test

fulfillment feasibility are simpler than in the previous cluster.

In contrast to other papers in this cluster, Campbell and Savelsbergh (2005) decide on

individual time window offers independently but are the first to provide a rough estimate

of future profits. In particular, for each new request, they solve a routing instance

including already accepted customers, the current customer under consideration, and a

number of expected future customers.

The remaining papers explicitly model customer choice behavior based on random

utility theory. Incorporating customer choice behavior is crucial for joint assortment

decisions. However, it is challenging to incorporate a detailed customer choice model

taking into account choices and substitution across multiple days, time windows, and

delivery prices. Therefore, these models try to balance modeling detail and computa-

tional effort. To this end, Mackert (2019b) apply a generalized attraction model (GAM)

which ranks each time window offer based on the customer’s perceived attractiveness.

The authors use the choice probabilities in combination with a mixed-integer program-

ming (MIP) based profit estimation to determine the subset of most profitable time

windows for a given customer. They conclude that applying the GAM can lead to a

more accurate estimation of customer choice than applying the most frequently used

multinomial logit (MNL) model (e.g., Avraham & Raviv, 2021; Lang et al., 2021, 2021).

Lang et al. (2021) propose several methods for anticipatory profit estimation using, inter

alia, extensive offline training based on samples of expected demand and value function

approximation (VFA; see, e.g., Powell, 2016). They highlight the modular composition

of the associated routing and revenue management techniques. Lang et al. (2021) ad-

ditionally account for multiple short- and long-term revenue metrics, including basket

value, the visibility of branded trucks, and popularity among influential customers. In

contrast, Avraham and Raviv (2021) focus on efficient multi-day assortment decisions.

Different from the previous work, the authors anticipate future demand to maximize
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the number of expected accepted customers. They use tentative route information both

for feasibility checks and as features of a VFA jointly predicting route efficiency over

multiple consecutive days. The presented results show that taking into account inter-

day dependencies create more efficient fulfillment routes that allows for more accepted

orders.

Order-based Fulfillment The third cluster addresses offering decisions in order-

based fulfillment systems. To date, only a few publications pertain to this stream of

demand management literature. The work in this cluster presents sophisticated order

delivery methods for order assessment and also takes rough proxies of order assembly

into account. We conjecture that the importance of considering all fulfillment steps in

the offering decision stems from the order-based fulfillment setting itself, and is due to

the high time pressure in this setting.

Azi et al. (2012) consider a setting in which new customer requests arrive during the

execution of the routes of previously accepted customers. There are no predetermined

cut-off times. However, new customers can only be inserted into time windows of routes

that have not yet started. To the best of our knowledge, this is the first paper to

integrate vehicle dispatching and order capture. By assuming a load-dependent setup

time, this paper also models the interaction between order capture and order assembly.

The authors formulate a dynamic decision model in which the acceptance of a customer

request depends on a scenario-based opportunity costs. The embedded routing problem

is solved with an ANS heuristic. Instead of time windows, Klapp et al. (2020) consider

the acceptance of requests that must be delivered no later than the end of the operating

day, which constitutes a common delivery deadline. The objective is to minimize the

sum of expected travel costs and penalties for rejecting a request. The authors approach

this problem as an extension to the dynamic dispatch waves problem (Klapp et al.,

2018), adding efficient request acceptance as a demand management decision. They

evaluate fulfillment feasibility based on dispatch plans that include a constant parameter

representing assembly time, and construct and upgrade the plans using neighborhood

search heuristics.
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2.3.2. Operational Pricing

Operational pricing involves dynamically adjusting the prices of the service options of-

fered during the order capture step. This means setting (customer-specific) delivery

prices or other incentives associated with the service options that are displayed when

customers arrive over time. Such incentives can stimulate efficient fulfillment operations

and maximize revenue in the short term.

We present the literature for operational pricing in three clusters, based on the at-

tributes displayed in the lower part of Table 2.2. Even across clusters, the available

operational pricing models have many aspects in common. Intuitively, each of them

accounts for joint assortment decisions and some form of customer choice behavior. We

especially highlight the work of Yang et al. (2016) who calibrate an MNL choice model

based on a large amount of real booking data from an e-grocer. Many subsequent pub-

lications refer to this model and its data to capture customer choice behavior. Other

common features among operational pricing approaches are the use of revenue-based

metrics (revenue or profit) for order value assessment and accounting for order delivery

as well as opportunity costs in the order assessment. These characteristics largely cor-

respond to those of the second operational offering cluster, which also focuses on the

anticipatory steering of customer choice. Within this overall picture, we identify three

clusters of publications that differ in terms of the fulfillment process design and the

method for the fulfillment feasibility assessment.

Periodic Fulfillment with Tentative Route Plans Similar to offering, the vast

majority of the operational pricing literature assumes a periodic fulfillment process.

Within this relatively homogeneous group, the approaches differ mainly in the way they

determine fulfillment feasibility. The papers in the first cluster perform a tentative

route planning, using insertion heuristics. The tentative route information is also used

to estimate profits for assessing the present order value – with or without considering

opportunity costs.

Campbell and Savelsbergh (2006) do not consider opportunity costs but estimate

the profit contribution of a given order as the sales margin minus the insertion cost,

taking into account already accepted customers. An incentive optimization model then

trades off price discounts against the increased likelihood that customers will choose time

windows with higher profit expectations. More recent approaches seek to also capture
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opportunity costs, i.e., the impact of demand management decisions on future demand

(management). To this end, they typically model the decision problem as a stochastic

dynamic program. Yang et al. (2016) are the first to present such a formulation, taking

into account the fulfillment costs incurred in the order delivery step. Since this problem is

computationally intractable, the authors propose an approximation to compute optimal

prices for feasible options in real time. Similar to Campbell and Savelsbergh (2006), the

approximation relies on insertion cost estimates, which are offset against the immediate

profit before fulfillment. However, the authors incorporate estimates of future demand

as they draw on pools of route plans that involve already existing orders and samples

of expected future order locations. Koch and Klein (2020) replace the anticipatory

insertion cost by a linear VFA that uses the information retrieved from tentative route

planning as features. While the former method can only account for cost-related effects

in the opportunity cost estimation, this one accounts for both cost- and revenue-related

displacement effects. Instead of applying statistical learning, R. Klein et al. (2018)

choose a model-based approach to capture these effects. Their MIP formulation combines

myopic insertion costs derived from tentative route plans with anticipatory seed-based

routing that draws its information from a choice-based demand prediction model.

A major challenge in using tentative route information is computational complexity:

The insertion cost calculation is a primary bottleneck (Yang et al., 2016), and it may be

necessary to periodically recalculate opportunity costs to decrease online computation

times (R. Klein et al., 2018).

Periodic Fulfillment with Capacity Approximation The second operational pric-

ing cluster relies on static capacity controls to assess feasibility instead of using tentative

route plans. Alternatively, they skip the feasibility checks altogether and incur penalty

costs on capacity shortage. The papers use different approaches to capture the routing

aspects of the order delivery step. In addition, they differ in how they link the approxi-

mation method used for feasibility assessment to the method used to assess the present

order value – in terms of profit or revenue.

Asdemir et al. (2009) and Lebedev et al. (2021) study the structure of an optimal

pricing policy under MNL customer choice, assuming static capacity controls. Asdemir et

al. (2009) assess the present order value using a revenue metric assuming sunk fulfillment

costs. They introduce a balanced capacity utilization constraint to implicitly model the

order delivery step. Lebedev et al. (2021) account for delivery costs in the terminal state
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of their dynamic programming formulation and refer to route approximation methods

(C. F. Daganzo, 1987) to determine the assumed capacity controls. The studies show

that optimal delivery prices increase dynamically as fulfillment capacities are depleted

during order capture (Asdemir et al., 2009), and are monotonic in the number of accepted

customers (Lebedev et al., 2021).

The other work in this cluster presents solution methods to the operational pricing

problem that involve capacity approximation. Yang and Strauss (2017) build their so-

lution method around C. F. Daganzo (1987). Specifically, they use this approximation

method not only to determine static capacity controls for feasibility assessment, but

also to train an affine VFA to anticipate profit based on the current number of accepted

customers and the time remaining for order capture. A. Strauss et al. (2021) incorporate

a similar feasibility assessment but tailor it to a setting with flexible time windows. In

particular, they consider a setting in which customers select multiple delivery time win-

dows that are acceptable to them. The customer receives a discount for providing the

service provider with more flexibility in order fulfillment. The authors estimate profit

through an anticipatory linear program that uses the capacity information from the ap-

proximate feasibility assessment. In contrast, Vinsensius et al. (2020) completely ignore

feasibility checks at the order capture phase. Instead, they account for infeasibilities in

order delivery by means of penalty costs. Yet, the authors incorporate routing properties

faced during order delivery: Similar to Yang and Strauss (2017), they estimate profits

using VFA. However, rather than relying on approximations, they train their VFA with

solutions to a VRP variant with service choice. In particular, they perform the training

on simulated historical data and solve the VRP instances using a minimum regret con-

struction heuristic. Thus, although the authors apply explicit route planning within the

offline training, they do not perform tentative route planning during the decision-making

process, as for example Koch and Klein (2020) do.

Order-based Fulfillment Analogous to operational offering, operational pricing lit-

erature addressing order-based fulfillment is scant. In contrast to periodic order fulfill-

ment, delivery decisions are dynamic and stochastic. In what follows, we point out how

papers in this cluster deal with this aspect. We also explain how they use tentative route

information for assessing opportunity costs. Interestingly, different from the cluster of

order-based operational offering literature, none of the considered papers takes order

assembly into account.
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M. W. Ulmer (2020) dynamically set prices for one-hour and four-hour delivery dead-

lines. Their model optimizes both the pricing strategy and dynamic route dispatch times,

where the former aims to maintain fleet flexibility while charging customers according to

their expected willingness to pay. The solution method uses tentative route information

obtained from an insertion heuristic that is based on already existing orders only. Besides

facilitating feasibility checks, the myopic route information is used to derive fleet flexibil-

ity measures as features for a linear VFA that assists profit anticipation. Prokhorchuk

et al. (2019) extend this work and aim to make pricing decisions for reliable service

assortments to reduce the number of missed deadlines and increase long-term customer

loyalty. To this end, they integrate penalties for late deliveries and account for stochastic

travel times that materialize while delivery routes are executed. Similar to the above

study, the authors build on myopic route information and apply a linear VFA using

flexibility- and reliability-based features for anticipatory profit estimation. In contrast,

V. Klein and Steinhardt (2023) apply a more advanced tentative routing procedure and

consider future orders in both profit estimation and route planning. Compared to pre-

viously applied insertion heuristics in combination with route-based VFA, the authors

perform a sample-scenario state value approximation that involves heuristically solving

a profitable multi-trip VRP with release and due times for every sampled scenario.

2.4. Tactical Demand Management

Table 2.3 lists the literature on tactical offering (upper part) and tactical pricing (lower

part). Similar to the previous section, we categorize the publications based on their

problem setting, the decision-making process, and the computational study. However, the

attributes considered within each of these categories differ from those used to structure

the operational literature. Again, the table entries allow us to identify clusters of closely

related publications, which we discuss in Sections 2.4.1 and 2.4.2.

First, we distinguish different problem settings underlying tactical demand manage-

ment in terms of the number of service options from which an individual customer can

choose (single or multiple) and the service segments for which different offering and

pricing decisions are made (individual customers or aggregated customer groups).

Second, we consider the forecast-based, tactical decision-making process. Correspond-

ing demand management methods apply different optimization approaches and demand
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forecasting methods. Optimization approaches differ in terms of the linkage between

planned shifts, i.e., they determine the decisions either independently for single shifts or

jointly for multiple shifts. Further, we distinguish different model decisions, including

assortment decisions, price decisions, and availability controls. While assortment deci-

sions assign sets of service options to the given service segments, availability controls

(e.g., booking limits) are set for given assortments with the aim of simplifying subse-

quent operational decisions. Finally, we list the model objective (cost, revenue, or profit)

and the type of service and capacity constraints, if any. In the case of a cost objective,

service constraints ensure an exogenously imposed service level with respect to the num-

ber of service options (frequency), the distribution of service times (balance), or subsets

of service options that can be either continuous (interval) or discrete (candidates). Ca-

pacity constraints capture the necessary fulfillment operations and are represented by

continuous approximation models (CA), simulation (SIM), or routing models that can

be either explicit (ROUTE) or seed-based (SEED). Note that for each paper only one

of the possibly several methods applied is given in the table. Concerning the demand

forecast, we distinguish between a deterministic and stochastic demand model and indi-

cate whether papers explicitly model customer choice behavior based on random utility

theory (RUT). Other papers do not model customer choice but assume demand to be

independent of the service offering.

Third, analogous to the operational planning models, information on the computa-

tional study includes the type of demand data (synthetic or empirical) and the business

sector of the motivating application.

2.4.1. Tactical Offering

Tactical offering decisions determine the availability of service options before the order

capture step. In other words, they allocate the corresponding fulfillment capacity to

different service segments, based on demand forecasts. In the upper part of Table 2.3,

we observe three clusters of publications that share similarities with respect to the con-

sidered service segments and model decisions. As discussed below, each of the clusters

represents a specific planning task within the domain of tactical offering – from the sim-

plification of short-term operational planning to service differentiation and long-term

customer agreements.
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Availability Controls The first cluster focuses on establishing availability controls

for a given assortment of service options, i.e., thresholds that guide the decision on the

availability of service options for different service segments. This simplifies operational

decision-making and resembles the concept of allocation planning in supply-constrained

production planning (Meyr, 2009).

In this vein, Cleophas and Ehmke (2014) propose an iterative algorithm to allocate

the fulfillment capacities of a geographically differentiated service assortment to value-

based customer groups. They first simulate the order capture phase based on historical

booking data and by applying customer acceptance rules from the literature (Ehmke &

Campbell, 2014). From the simulation results, they derive booking thresholds for each

time window and delivery area. The authors then refine the thresholds for discrete order

value buckets using the expected marginal seat revenue (EMSR) heuristic, a classical

revenue management tool (Belobaba, 1987). The computational results show that the

proposed method can generate significant revenue gains in the case of heterogeneous

order values. In contrast, Visser and Savelsbergh (2019) focus on foresighted delivery

routes to maximize the generated revenue. Inspired by Dutch e-grocer Picnic, which

offers a single time window per day for each delivery area, they present an approach to (i)

determine the specific time window to offer in each area and (ii) establish an operational

control mechanism to determine when time windows should be closed. Both decisions

are guided by a priori routes that are constructed over a set of delivery points with

known order volumes and revenues. Order placement and order sequence are uncertain.

The authors develop a two-stage stochastic program, where routes are determined in the

first stage and generated revenue is simulated in the second stage. To reduce complexity,

the study assumes a single vehicle, thereby turning the routing problem into a traveling

salesperson problem (TSP). The study presents insight into the structure of optimal a

priori routes.

Assortment Decisions for Aggregated Customer Groups Papers in the second

cluster determine an assortment of service options for each geographical area within the

service region. In particular, by differentiating the assortment over different areas, the

service provider can spatially cluster demand but also temporally sequence the clusters

to facilitate efficient delivery routes.

In this light, N. Agatz et al. (2011) determine the service assortment per shift across

days for different geographic areas. They assign a fixed number of service options out
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of a given pool of options to each service area with the objective of minimizing the ex-

pected fulfillment cost. To decompose the problem per shift, the authors assume weekly

demand to be evenly distributed over the service assortment. Additionally, expected

demand is known and independent of the service assortment. The paper proposes two

solution approaches, one based on continuous approximation (C. F. Daganzo, 1987) and

the other based on integer programming. The authors evaluate the resulting assortments

by simulation on the operational level and based on real demand data. The results show

a reduction in delivery costs compared to uniform assortments, which is most signifi-

cant if delivery capacity allows a vehicle tour to span several time windows. Mackert

(2019a) extend the integer programming-based method with a finite-mixture customer

choice model that accounts for heterogeneous revenues and preferences. Furthermore,

they eliminate the specification of exogenous service requirements by moving from cost

minimization to profit maximization. The authors linearize the choice-based MIP to

apply a standard solver and propose a decomposition heuristic for large instances. The

computational results confirm that incorporating customer choice behavior can increase

profits. The effect is amplified when preferences are more heterogeneous. The authors

also investigate the impact of predefined service requirements on profit and find that an

inadequate specification can reduce profits. Hernandez et al. (2017) consider independent

demand but account for interdependencies between service assortments over consecutive

days. Thus, the assortment decision does not decompose by shift, and the authors use

a periodic vehicle routing approach to assign weekly assortments to geographic areas.

Routes are modeled at the aggregated area level rather than at individual customer lo-

cations. The computational study focuses on the performances of two tabu search-based

solution methods, which are also compared to an exact solution method.

In another subset of papers, uncertainties in demand forecasts are explicitly consid-

ered. Bruck et al. (2018) discuss the business case of an Italian gas provider that cannot

apply operational demand management but must ensure service to all customers at

regulated prices. The authors make assortment decisions by assigning capacities (i.e.,

technicians) to a given pool of time windows and ensure service quality by balancing the

assortment over all the days of an operating week. The customers’ time window choice

is uncertain yet independent of the assortment offered. The authors incorporate the

stochastic choice in a simulation stage that is part of a two-stage stochastic program.

Combined with a multi-depot multiple TSP, this stage enables the evaluation of first-

stage assortment decisions. Using real-life booking instances of the industry partner, the
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authors demonstrate that their method reduces delivery and penalty costs compared to

the company’s manual process. Côté et al. (2019) extend the degree of uncertainty to

customer locations, basket sizes, and service times. They evaluate an assortment’s de-

livery and penalty costs in the second stage of a two-stage stochastic program using a

vehicle routing approach that accounts for multiple interrelated periods. The authors

perform a computational study on real instances of a Canadian retail company, the re-

sults of which show the effectiveness of their method, which outperforms the manual

solution obtained by the company.

Assortment Decisions for Individual Customers The third cluster is concerned

with the assignment of single service options to individual customers, which can be

interpreted as long-term customer agreements – a special case of service differentiation.

The set of customers is fixed and known in advance, and all customers have to be served.

Spliet and Desaulniers (2015) and Spliet and Gabor (2015) consider a business-to-

business (B2B) case inspired by a Dutch retailer. In this context, ‘customers’ refer to

retail stores that are replenished periodically. The supplier assigns to each store a time

window in which it will receive deliveries. This assignment decision is driven by stochas-

tic demand volumes. The authors present a two-stage stochastic linear program that

evaluates assignment decisions based on a vehicle routing model. The objective is to

minimize delivery costs subject to the stores’ preferred delivery time intervals (Spliet &

Gabor, 2015) or candidate options (Spliet & Desaulniers, 2015). Both formulations are

solved to optimality using a branch-and-price-and-cut algorithm with route relaxations.

In subsequent work, Spliet et al. (2018) add time-dependent travel times and seek ar-

rival time consistency. The authors propose an exact solution method and evaluate its

performance.

2.4.2. Tactical Pricing

We define tactical pricing as the planned differentiation of prices across both customer

groups (e.g., by geographic location or order value) and service options (e.g., premiums

for evening delivery). While tactical offering limits an assortment’s breadth, tactical

pricing steers customers to favorable options within a (potentially broader) assortment.

As seen in the lower part of Table 2.3, we are aware of one single publication focused on

tactical pricing.
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R. Klein et al. (2019) consider price differentiation between time windows offered

in given geographic areas, with the objective of maximizing total profit. Assortments

are fixed, but prices can be selected from a finite price list. Akin to the majority of

operational pricing studies, the authors explicitly model customer choice behavior based

on random utility theory. Specifically, they apply a non-parametric rank-based model

that captures a customer segment’s choice behavior through preference lists over all

possible service options, including non-purchase. The authors formulate the pricing

problem as an MIP that either features aggregate vehicle routes or cost approximations

with respect to the geographic areas. The computational results confirm the benefits

of differentiated pricing over uniform pricing. For industry-sized instances, the authors

recommend their approximation-based approach since it is able to find good solutions

in a limited amount of time.

2.5. Strategic Demand Management

The studies on operational and tactical demand management discussed in the preceding

sections make assumptions regarding the setting defined by strategic-level decisions.

These include decisions on the service region, appropriate service segments, the service

design, and the pricing model. Interestingly, publications that address these decisions

in their own right are few and far between. Therefore, rather than creating a literature

table similar to those in Sections 2.3 and 2.4, we present the problem- and methodology-

related focus of the current state-of-the-art literature on strategic demand management

at a glance in Table 2.4. We discuss the relevant aspects of key strategic planning tasks

and contextualize current perspectives in the literature. As in the preceding sections,

we distinguish between offering and pricing levers.

2.5.1. Strategic Offering

Strategic offering refers to identifying target markets and designing an appropriate ser-

vice proposition, which translates to three major planning tasks that guide our discus-

sion: The selection of the service region, service design, and the definition of service

segments (see Roth & Menor, 2003).

We start with the literature that sheds light on the choice of service region. Here, a

decision has to be made whether to offer service in a densely or sparsely populated area.
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Table 2.4.: Strategic demand management
Planning task Main methodology

Service region Service design Service segments Pricing model

O
ff
er
in
g

Lin and Mahmassani (2002) ✓ ✓ Simulation

Wilson-Jeanselme and Reynolds (2006) ✓ Empirical

Boyer et al. (2009) ✓ ✓ Simulation

M. Ulmer (2017) ✓ Simulation

Manerba et al. (2018) ✓ Scenario evaluation

Ramaekers et al. (2018) ✓ ✓ Scenario evaluation

Amorim et al. (2024) ✓ Empirical

Bruck et al. (2020) ✓ Prescriptive

Milioti et al. (2020) ✓ Empirical

Fikar et al. (2021) ✓ Simulation

Magalhães (2021) ✓ Empirical

Phillipson and Van Kempen (2021) ✓ Simulation

Rodŕıguez Garćıa et al. (2022) ✓ Case study

P
ri
ci
n
g

Gümüş et al. (2013) ✓ Game-theoretic

Belavina et al. (2017) ✓ ✓ Game-theoretic

N. Agatz et al. (2021) ✓ Simulation

Wagner et al. (2021) ✓ Prescriptive

The former includes mostly metropolitan areas and inner cities with dense road networks

and high demand potential but also more fierce competition. The latter is characterized

by sparser road networks and lower customer density but may allow the retailer to achieve

a monopoly. In this vein, several studies have examined the operational implications

of urban and rural service regions (Belavina et al., 2017; Boyer et al., 2009; Lin &

Mahmassani, 2002; Ramaekers et al., 2018) and conclude that customer density has

a significant positive effect on route efficiency. Beyond strategic demand management

literature, Jiang et al. (2019) discuss general challenges of last-mile delivery in rural, more

sparsely populated areas. In the operational demand management literature, Ehmke

and Campbell (2014) and Köhler and Haferkamp (2019) show that the characteristics

of the service region also influence which real-time order evaluation method is most

appropriate.

Second, we consider the literature addressing service design. This planning problem

refers to a broad spectrum of design elements that characterize a delivery service of-

fer and its service level. This includes decisions on delivery speed (e.g., click-to-door

time), precision (e.g., time window length), and service frequency. Further design deci-

sions concern possible interactions between service assortment and physical assortment,

customer flexibility in terms of changes in the time window and shopping basket, and

value-added services such as returns management. To gain a competitive advantage, it is

important to understand both the sales impact and operational implications of different

service designs (Amorim et al., 2024). Thus, on the one hand, many empirical studies
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have investigated customer preferences and expectations regarding particular delivery

service attributes (Amorim et al., 2024; Magalhães, 2021; Milioti et al., 2020; Wilson-

Jeanselme & Reynolds, 2006). Most recently, Rodŕıguez Garćıa et al. (2022) present a

framework on how to map value proposition to logistics strategy, thereby qualitatively

assessing operational implications of a service design. All of these studies shed light on

how service design attributes affect the generated demand volume.

On the other hand, there is a wide field of exploratory research that examines the

operational implications of a service design. Starting in the early 2000s, Lin and Mah-

massani (2002) show by simulation that increasing the time window length can reduce

vehicle idle time, lower total miles traveled, and allow for more customers to be served.

Boyer et al. (2009) support their results, and Ramaekers et al. (2018) report similar

effects for both delivery and assembly operations. M. Ulmer (2017) focus on the impact

of offering delivery deadlines, and Manerba et al. (2018) investigate both click-to-door

time and time window length from an environmental perspective. N. Agatz et al. (2011)

perform a sensitivity analysis on the choice of service frequencies, and Mackert (2019a)

show that an inadequate specification can reduce profits. Very recently, Phillipson and

Van Kempen (2021) have assessed the cost implications of allowing customers to change

their chosen time window before the delivery day, and Fikar et al. (2021) have exam-

ined the integration of product shelf-life options into demand management decisions.

Some of these findings have already been picked up in operational demand manage-

ment: Casazza et al. (2016) perform dynamic service design adjustments, and Campbell

and Savelsbergh (2006) and Köhler et al. (2020) offer and price time windows depending

on their length.

Lastly, we present literature that concerns defining appropriate service segments which

form the basis for tactical service differentiation. It should be noted that these segments

do not necessarily coincide with the customer segments used to capture different prefer-

ence structures within customer choice models. Tactical demand management commonly

assumes given service segments based on geographic characteristics such as a customer’s

zip code affiliation; only Cleophas and Ehmke (2014) additionally group customers based

on their basket value (see Table 2.3). We are aware of just a single contribution that de-

termines optimal service segments in this context. Bruck et al. (2020) extend the tactical

approach of Bruck et al. (2018) and integrate strategic offering. They determine optimal

service segments by solving a P-median facility location problem to group municipalities

within the considered service region. A service constraint handles potential imbalances
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among segments’ total expected demand. The authors evaluate their approach using

real industry data and emphasize its value for assessing entry into new service regions

and analyzing past service segment configurations.

2.5.2. Strategic Pricing

Strategic pricing refers to the overall pricing model and depends on the competitive

environment, customer preferences, and price sensitivities within the target market.

Determining a pricing model includes decisions about free or paid delivery, whether

to use a delivery charge per order or a subscription fee per service period, and other

incentive schemes. Tactical and operational demand management commonly assume a

per-order pricing model within a given price range to steer customer choice. However,

we are aware of several studies that shed light on the impact of specific pricing models.

Belavina et al. (2017) consider grocery delivery and build a stylized model to examine

per-order and subscription-based pricing models with respect to equilibrium customer

behavior and resulting profit and environmental performance. Their results show that

subscription-based models lead to more frequent delivery requests, which in turn im-

pact the provider’s revenue, route efficiency, and food waste. The authors conclude

that the subscription model tends to be more environmentally friendly because the re-

duction in food waste emissions outweighs the increase in delivery emissions, but they

still recommend the per-order model for high-margin providers that operate in sparsely

populated areas. Wagner et al. (2021) show that on average, the increased order fre-

quency entails a profit loss as the increase in assembly and delivery costs outweighs the

increase in revenue. The authors explain this effect as a result of higher expectations of

subscription customers; i.e., they choose narrower and more popular time windows. In

addition, the authors develop a data-driven algorithm that predicts the expected post-

subscription profitability to determine whether a particular customer should be offered

a subscription plan. The algorithm is trained and evaluated based on real order data

from a large omnichannel grocery retailer. The authors report that observed product

assortment size and basket value are the strongest predictors of post-subscription prof-

itability. In contrast, Gümüş et al. (2013) investigate the joint design of a pricing model

for product and delivery service. They analyze the competitive dynamics of price par-

titioning, where delivery and product prices are displayed separately in a partitioned

setting, and free shipping is advertised in a non-partitioned setting because the delivery
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cost is already included in the product price. The authors determine the equilibrium

market structure and validate their theoretical results through empirical analyses. In

addition to traditional pricing models, N. Agatz et al. (2021) focus on non-monetary

incentives and study the impact of displaying green labels for environmentally friendly

service options on customer behavior and operational performance. From their empirical

experiments and simulation study, the authors verify that green labels effectively steer

customer choice, also in combination with price incentives and for less attractive time

windows.

2.6. Discussion

In this section, we synthesize our findings from reviewing the literature, highlight key

challenges and potential future research for each planning level, and elaborate on the

connection between the planning levels.

There is a growing number of academic contributions on operational demand man-

agement, predominantly directed at e-grocery. The computational challenges make it

an active field of research in operations research. Most work in this area focuses on

sophisticated solution methods for specific parts of the real-time decision problem, e.g.,

feasibility assessment, value anticipation, or customer choice behavior. In general, ve-

hicle routing heuristics and dynamic programming can be identified as methodological

cornerstones.

Building on the current body of research, we see several avenues for future research.

First, given the modular structure of operational decision-making, there is a need for

comprehensive benchmarks that guide the selection of suitable building blocks of solution

methods. Lang and Cleophas (2020) and M. W. Ulmer (2019) offer valuable starting

points for this purpose. Second, in light of very limited computation time, there is

still a need for fast solution methods. One potential research avenue is the applica-

tion of machine and reinforcement learning in this context. Such methods have already

been adapted for feasibility assessment (van der Hagen et al., 2022) and value antici-

pation (e.g., Koch & Klein, 2020) but have not yet been applied to predict customer

choice. Alternatively, it may be beneficial to change the fulfillment process design to

simplify operational planning. We see valuable starting points in the recent literature:

Schwamberger et al. (2023) define an inverted order capture process in which the service
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provider proactively approaches customers with the opportunity to place an order, and

Yildiz and Savelsbergh (2020) explore the possibility of incentivizing accepted customers

to change their chosen time window after the order capture cut-off time.

We see fewer contributions to tactical demand management that, however, cover a va-

riety of planning problems from long-term customer agreements to short-term availability

control. From a methodological perspective, MIP, two-stage stochastic programming,

and simulation are prevalent and customer choice behavior is rarely modeled explicitly.

Besides, we observe that tactical approaches are mainly tailored to specific business sec-

tors and that the research is often conducted in collaboration with an industry partner,

which indicates the practical relevance of the topic.

We see a need for future research, especially for innovative AHD concepts. Service

providers that perform order-based fulfillment within a deadline benefit from tactical

offering and pricing decisions: Different delivery deadlines can be offered in different ge-

ographic areas at different prices (e.g., longer and/or more expensive deadlines in periph-

eral areas). Stroh et al. (2022)’s tactical vehicle dispatch policies may serve as a starting

point. Moreover, there is great potential for tactical offering under a subscription-based

pricing model. Spliet and Desaulniers (2015), Spliet and Gabor (2015), and Spliet et

al. (2018) provide relevant insights from the business-to-business context that can be

transferred to customers who are allowed to reserve a time window as part of their

subscription plan.

Contributions to strategic demand management provide insight into many different

aspects of strategic planning. The set of applied methodologies is much more diverse

which we explain by the strong interdependencies with other domains. For example,

selecting a service region interacts with location planning, determining service segments

is influenced by delivery districting (e.g., Banerjee et al., 2022; Haugland et al., 2007),

and service design and pricing models strongly depend on marketing and competitive

considerations. As a consequence, we see that comprehensive decision support is still

missing. Other reasons that might promote this gap are that (i) strategic demand man-

agement decisions are considered to have less leverage compared to strategic decisions

in other research fields (e.g., network design) since they are less long-term and more

easily reversible. (ii) Competitive constraints may leave only limited room for opti-

mization. (iii) From a practitioner’s perspective, decision-making responsibilities are

more dispersed and located at a higher managerial level than they are for tactical and

operational demand management.
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We see the opportunity for strategic demand management to provide comprehensive

decision support to capture the greatest possible demand potential and to do so prof-

itably. Thereby, important issues of competitive pressure and market share should also

be addressed. Looking to adjacent research fields confirms this potential. Metters and

Walton (2007) provide strategic decision support by proposing a service sector typology

for multi-channel e-tailing. They develop a matrix of competitive positions along the

dimensions of inventory pooling and shipping consolidation, and identify four types of

strategies that can be adopted by multi-channel e-tailers. The authors also emphasize

that e-tailers should align their supply chain configuration with their strategic objectives.

For the express delivery business sector, F. Li et al. (2021) propose a two-dimensional

decision matrix to select the most suitable delivery service mode among direct and in-

direct options. They measure the expected customer utility and calculate the expected

cost of delivery service to map different service modes to the decision matrix.

We conclude our discussion with a few observations concerning the interaction be-

tween the different planning levels reviewed separately in Sections 2.3–2.5. Conceptually,

longer-term decisions set the boundaries for decisions on the shorter term. One challenge

is that actual performance can only be observed once orders materialize. Appropriately

anticipating this performance impact is a core issue for long-term decisions. Given the

scarcity of strategic demand management research highlighted in Section 2.5, the impact

of corresponding long-term decisions on tactical and operational demand management

is largely an open issue to date. Most contributions to the tactical and operational

literature make assumptions on the strategic system design, based on choices observed

in practice. However, the appropriateness of these choices, including the service region,

service design, and service segments has received limited attention thus far.

As a potential starting point for future research in this direction, some studies consider

the sensitivity of tactical or operational decisions and their performance to changes

in selected strategic choices. Examples are strategic choices between suburban and

downtown service regions (e.g., Ehmke & Campbell, 2014) and between different time

window lengths (e.g., Campbell & Savelsbergh, 2005; Côté et al., 2019). Conceptually,

these studies follow a what-if approach to strategic-level decisions. A next step would

be to turn the analysis into a systematic optimization approach that selects strategic

options based on their impact on day-to-day operations and performance. For example,

N. Agatz et al. (2021) conducted operational-level simulations to assess the potential of

new ways for steering customer behavior. Their strategic concept of green labels can be
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incorporated in tactical and operational pricing, complementing the current monetary

incentives.

Interactions between the tactical and operational planning levels have received more

attention in the literature. This is primarily driven by the fact that operational demand

management decisions must be made in real time to facilitate a smooth order capture

process. This limits the available time for computations on the operational level. There

is, however, more time to support tactical decisions. We observe two approaches in the

literature that exploit this relation.

First, tactical decisions can pre-structure and thereby simplify operational decisions by

limiting the decision space on the operational level. In the reviewed literature, this holds

true for service and price differentiation. To be effective, such approaches must capture

the link with the operational level. The extent to which this is the case depends on the

decision-making flexibility assumed at this level. Long-term service agreements (e.g.,

Spliet & Gabor, 2015), legal regulations (Bruck et al., 2018), or business policies (Côté et

al., 2019) may severely limit operational levers. In these cases, we observe more accurate

routing formulations and the use of two-stage stochastic programs to hedge against

forecast errors. If, on the other hand, operational demand management opportunities are

more extensive, the demand model and operational impacts are more coarsely estimated

(N. Agatz et al., 2011; Hernandez et al., 2017; R. Klein et al., 2019; Mackert, 2019b).

However, operational performance may be tested outside of the decision model, through

simulation studies (e.g., N. Agatz et al., 2011).

Second, it may be beneficial, or even necessary, to shift some decisions from the

operational to the less time-constrained tactical planning level altogether. Essentially,

this implies a choice between an elaborate ex-ante planning model and a simpler heuristic

using real-time information. Given the discussed computational limits, it makes sense to

reserve real-time planning to those decisions for which the available real-time information

really makes a difference. One example of shifting decisions to the tactical level is the ex-

ante calculation of availability controls such as booking limits for specific time windows

(Cleophas & Ehmke, 2014). Corresponding literature uses simulation and two-stage

stochastic programming to capture the effects on the operational level (Cleophas &

Ehmke, 2014; Visser & Savelsbergh, 2019).
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2.7. Conclusion

This review paper introduced a framework for classifying demand management decisions

for AHD with respect to different planning levels and demand management levers. For

each planning level, we presented and classified prescriptive analytics methods in the

literature and identified research gaps. The following are our main observations. We have

seen a rich set of studies on operational demand management, aimed at extracting the

greatest potential from real-time decisions. Because manifold opportunities for real-time

decision-making differentiate AHD from traditional brick-and-mortar retail, the appeal

of this line of research is intuitive. The ensuing computational challenges have triggered

sophisticated algorithmic contributions. However, all decisions clearly do not benefit

equally from real-time information. In this light, we see yet unlocked opportunities for

tactical demand management to simplify and prestructure operational decisions. Finally,

there is a striking lack of research on underlying long-term, design-level decisions. Hence,

we see great potential for future contributions to strategic demand management for AHD.

Taking a more general perspective, we highlight four topical themes that we believe

hold opportunities for innovative and relevant future research on demand management

for AHD. These themes give rise to novel analytics issues at all planning levels.

First, a natural direction concerns innovative business models and services in AHD.

While research on standard ‘next-day’ grocery delivery is maturing, researchers have

only started to study new delivery trends. On the one hand, on-demand e-grocery star-

tups (e.g., Gorillas and Flink) promise ‘instant’ grocery delivery within a few minutes.

This fundamentally different service offering challenges many assumptions of the cur-

rent fulfillment strategies and corresponding demand management. On the other hand,

established businesses are exploring novel customer interaction processes that deviate

from the current standard process reflected in Section 2.2.1. Examples include long-term

subscription agreements and proactive customer contacting. These developments give

rise to novel decisions and call for corresponding analytics models and approaches.

Second, more research that addresses new objectives in demand management for AHD

is needed. To date, the majority of publications focus on profit maximization as the pri-

mary goal of service providers. Given the expansion race between emerging on-demand

e-grocery businesses, research should recognize market share as a relevant alternative

objective. Furthermore, considering environmental objectives has become a standard in

many research fields, and delivery services are subject to particular public scrutiny with
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regard to sustainability (Siragusa & Tumino, 2021). Belavina et al. (2017) and Manerba

et al. (2018) are the first to investigate the leverage of demand management in light of

environmental objectives. Future research should expand this development and explore

the impact of multiple conflicting objectives, for example, related to social responsibility

toward internal stakeholders (e.g., delivery workers) and external stakeholders (e.g., cus-

tomers, residents, and administrators). Recent literature has underlined the relevance

of this perspective: Belanche et al. (2021) show that customers’ purchase intentions

depend on their perception of the working conditions for delivery workers, Chen et al.

(2023) and Soeffker et al. (2017) investigate demand management regarding fairness to

customers, and Bjørgen et al. (2021) discuss the integration of e-grocery logistics into

urban spaces. The rapid expansion of micro depots to support instant grocery deliver-

ies, so-called ‘dark stores’, have already sparked public and political debate: The Dutch

cities of Amsterdam and Rotterdam recently restricted the opening of new facilities

because of noise and the blocking of pedestrian walkways11.

Third, we see potential for demand management addressing the interaction between

the delivery service and the product assortment. Fikar et al. (2021) and Gümüş et al.

(2013) provide initial work in this direction. Future research may strengthen the in-

tegration of product assortment-related aspects into demand management and extend

demand management levers accordingly. For example, while existing levers have been

shown to effectively reserve fulfillment capacity for more valuable customers, the inven-

tory rationing literature demonstrates a similar effect with respect to product availability

by reserving inventory for high-margin customers (e.g., Jimenez G et al., 2020). In addi-

tion, integrating the product assortment naturally draws attention to the order assembly

process. We have seen few contributions that explicitly account for order assembly in

demand management methods. Among those is research exploring the impact of time

windows on both assembly and delivery (Ramaekers et al., 2018) and research present-

ing operational offering for order-based fulfillment (Azi et al., 2012; Klapp et al., 2020).

Product-related demand management requires new analytical models and approaches

that enable integrated decision-making at all planning levels.

Fourth, we call for more empirical validation of demand management for AHD. On

the one hand, we recognize that results based on empirical instances alone are difficult

to generalize and should therefore be supported by carefully generated synthetic data.

11Reuters, https://reut.rs/3HRBLh9. Accessed on February 14, 2022
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The classification of demand data presented in Tables 2.2 and 2.3 is intended to shed

light on this crucial aspect, even though the observed situation is more nuanced than a

strict dichotomy. While research on supply-oriented levers can more easily base the com-

putational results on synthetic instances, empirical data are particularly important for

demand management because of the strong role of customer interaction in this context.

Many of the assumptions required for demand management relate to customer behavior,

which is difficult to model realistically without empirical data. In addition, customer

behavior changes over time, so empirical validation should be reviewed regularly.

To conclude, we expect demand management for AHD to continue to gain importance

and to witness significant innovations to emerge. We hope that this review contributes

to stimulating future research into this dynamic field.
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Chapter III

Evaluating Time Window

Assortments for Grocery Home

Delivery1

with Niels Agatz and Moritz Fleischmann

Abstract

Online grocery services require the customer to be present at the time of delivery. The

resulting time window constraints pose a major challenge to the profitability of the

online grocery business model. In practice, we see great variation in the time window

assortment, i.e., the set of time windows offered to customers, including long or short,

many or few, overlapping or non-overlapping options. For the success of an online

grocery business, it is essential to understand how these choices impact demand as well

as delivery efficiency. We develop a model to evaluate time window assortments in

terms of these performance metrics. The evaluation model can incorporate different

types of demand functions, and it approximates the components of the delivery system

through tractable functional expressions using continuous approximation. In our study,

we identify and analyze fundamental trade-offs underlying the time window assortment.

Our analytical results provide insights that are instructive for designing time window

assortments, thus helping practitioners to align their operations strategy with relevant

market conditions to become economically viable.

1The contents of this chapter build on the working paper Waßmuth et al. (2025).
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3.1. Introduction

Online grocery sales continue to grow globally, albeit at a slower pace than during the

COVID-19 pandemic (McKinsey, 2022). Because groceries are perishable and bulky, the

customer needs to be present at the time of delivery, a concept known as attended home

delivery. To minimize missed deliveries and customer waiting time, service providers

commonly use time windows to align delivery times with their customers. More specifi-

cally, the service provider offers a menu of time windows from which the customer selects

one. For the service provider, this raises the question of which time windows to offer

in the first place – an issue which requires decisions on the number of time windows,

their lengths, timing, and potential overlap. These decisions shape the company’s ser-

vice offering, analogous to assortment decisions for physical products. Emphasizing this

analogy, we refer to the above decisions as time window assortment decisions.

In developed economies, companies struggle to make online grocery delivery prof-

itable, due to logistically demanding products, low margins, and high labor costs. These

challenges require a careful cost-benefit trade-off between demand effects and supply ef-

ficiency. Time window management impacts both sides of this trade-off and is therefore

a crucial profit lever. While time window management is an active research field, most

of the available literature takes a given set of time windows as input and focuses on

whether or not to offer a particular window to a particular customer (Fleckenstein et al.,

2023; Waßmuth et al., 2023). How to compose the initial set of time windows, i.e., the

time window assortment, is not yet well understood.

The significance of this decision is evident in practice, where companies in various re-

gions with unique geographic and demographic features offer time window assortments

that vary noticeably in both the number and length of time windows (see Figure 3.1).

We aim to contribute to filling this gap by developing a model that allows us to cap-

ture and analytically investigate the fundamental trade-offs underlying the time window

assortment design.

Planning and execution of grocery delivery operations involves multiple decisions on

different hierarchical levels, with time window assortment design as the first step, fol-

lowed by capacity planning, order capture, and fulfillment planning, as illustrated in

Figure 3.2. We focus on periodic fulfillment processes, which means that order fulfill-

ment is organized in shifts, each having a certain cutoff time until which orders are

accepted. This setup is common for many full-assortment online grocers. In contrast,
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(a) Dutch e-grocer Albert Heijn (b) Swiss e-grocer Farmy

Figure 3.1.: Exemplary time window assortments in practice

quick-commerce providers tend to use order-based fulfillment, relying on an individual

delivery deadline for each order (Waßmuth et al., 2023).

In periodic fulfillment, the set of customer orders for a given shift is known, once the

cutoff time has passed. Thereupon, the delivery routes are planned, orders are picked

in the warehouse, and then delivered. These are the processes that drive the fulfillment

costs. In this paper, we focus on fulfillment cost effects that occur during the order

delivery phase. Revenues, on the other hand, materialize before the cutoff time, when

customers place their orders. During this order capture phase, the service provider

decides which time windows to offer to a newly arriving customer.

Figure 3.2.: Illustration of a typical planning process in online grocery delivery

Theoretically, the company could try and optimize all attributes of the time window

offering specifically for each arriving customer. However, two issues prohibit such a

highly individualized service offering. First, the offering decisions must be made almost
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instantaneously to ensure a smooth order process for the customer. This rules out a large

scale optimization over many possible sets of time windows (van der Hagen et al., 2022).

Secondly, an overly tailored time window offering may confuse customers, potentially

leading to a decline in repeat orders. The time window assortment planning simplifies

decisions and communication during order capture by limiting the available options to

a structured menu of time windows. In addition, the assortment plan can guide tactical

capacity planning, regarding the required fleet and workforce. In conclusion, designing

an appropriate time window assortment is a strategic planning task at the sales and

operations interface (see Rooderkerk et al., 2023).

We characterize a time window assortment by the length, number, and possible overlap

of the time windows (see Cordeau et al., 2023). Time windows can be sequential (9:00-

10:00 and 10:00-11:00) or partially overlapping (9:00-10:00 and 9:30-10:30). One can

also mix different time window lengths and overlaps, for example, 09:00-10:00, 10:00-

11:00 and 9:00-11:00. Empirical research shows that the length of the delivery window

(also referred to as ‘precision’) and the number and timing of the time windows affect

customer choices (Amorim et al., 2024). On the other hand, it has long been known

that time window length affects operational flexibility in order delivery, and therefore

efficiency and costs (Boyer et al., 2009; Lin & Mahmassani, 2002). Moreover, overlapping

time windows allow for more time window options or longer time windows within a

fixed delivery shift (N. Agatz et al., 2011; Campbell & Savelsbergh, 2005). However,

the operational implications remain to be fully understood. Only in terms of problem

complexity has it been observed that allowing overlapping time windows increases the

size of the corresponding optimization models (N. Agatz et al., 2011; Hungerländer &

Truden, 2018; Truden et al., 2022).

In this paper, we develop an analytical model to evaluate the impact of time window

assortment decisions on the performance of the delivery system. This model aims to

provide guidance in assessing different time window assortments in terms of profitability

(revenues and costs) and fleet requirements. Our contribution is threefold: (i) we develop

an evaluation model for time window assortments that captures both demand and supply

effects, (ii) we identify fundamental trade-offs in time window assortment design and

provide analytical expressions to capture them, and (iii) we derive managerial insights

to support time window assortment decisions and growth strategies. These insights help

practitioners align their operations strategy with market conditions, enhancing their

economic viability.
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The remainder of this paper is organized as follows. In Section 3.2, we review the

related literature. We present the time window assortment evaluation model in Sec-

tion 3.3, which includes the statement of key assumptions and notation. In Section 3.4,

we unveil what factors drive the profitability of a time window assortment as well as the

required vehicle capacity. We then use the obtained insights to analyze how assortment

decisions about the length of a given number of time windows (Section 3.5) and about the

number of time windows of a given length (Section 3.6) affect both demand and delivery

performance. We summarize our results and conclude with managerial implications in

Section 3.7. All proofs are provided in Appendix A.

3.2. Related Literature

Online grocery retailing is receiving increasing attention from operations management

scholars. Recent publications inspired by or applied to online grocery cover a wide range

of topics, from omnichannel retail strategy (Delasay et al., 2022) and order fulfillment

(Dayarian & Pazour, 2022) to inventory allocation (Feng, Li, et al., 2022) and delivery

pricing (N. Agatz et al., 2021; G. Li et al., 2023). Our contribution to this literature

builds on three streams of research: time window management, (service) assortment

planning, and continuous approximation models for last-mile delivery planning.

Managing the delivery service offering to the customer, commonly referred to as time

window or time slot management, is part of a broader area of research on demand

management for attended home delivery and has gained increasing interest (Cordeau et

al., 2023; Fleckenstein et al., 2023; Waßmuth et al., 2023). Most of this work is motivated

by examples in online grocery delivery, but it also applies to other attended home delivery

settings, for example as related to service engineers, furniture, and home appliances. The

existing literature on time window management is primarily concerned with operational

and tactical planning tasks, typically assuming a fixed set of potential time windows as

input. This body of work focuses on assigning time windows to customers or geographic

regions, either on the basis of actual demand (e.g., Campbell & Savelsbergh, 2005), or

on the basis of forecasts (e.g., N. Agatz et al., 2011). In contrast, our work addresses

the design of time window assortments as a strategic planning task.

A few contributions report simulation studies that assess the impact of various delivery

service configurations, some of which can be transferred to time window assortment
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decisions, on a range of operational performance metrics. Lin and Mahmassani (2002)

present a simulated scenario analysis to examine trade-offs across five key variables,

while Punakivi and Saranen (2001) and Boyer et al. (2009) provide simulated response

functions, albeit for fewer variables. None of these studies treat demand as endogenous

with respect to the delivery service offering. Furthermore, the computationally intensive

routing procedures in the simulations restrict the analyses to small sets of variables. In

contrast, our paper accounts for endogenous demand and provides analytical expressions

that capture the fundamental trade-offs across multiple variables of interest.

Time window assortment design in e-grocery resembles product assortment planning

in retail, where demand is endogenous. Assortment planning aims to identify the set

of products (or product categories) that maximizes expected revenue (or profit) while

adhering to operational constraints such as shelf space limitations. Kök et al. (2015) and

Heger and Klein (2024) provide excellent reviews of the existing literature. Work in this

area is characterized by a trade-off between accurately modeling customer choice behav-

ior and effectively solving the corresponding assortment optimization problem (Chung

et al., 2019). Accordingly, some works focus on modeling customer choice behavior (e.g.,

Chung et al., 2019; Le & Mai, 2024; Nip et al., 2021; Y. Wang & Shen, 2021) while oth-

ers focus on solving the assortment optimization problem under a variety of operational

constraints (e.g., Feldman & Paul, 2019; Feldman & Topaloglu, 2015; Hübner et al.,

2020). While the difficulties in solving assortment problems for physical products are

primarily related to the level of sophistication of the demand models, our service as-

sortment is intricately linked to the complex underlying routing processes through the

delivery time windows. This means that we have to make careful modeling trade-offs

about the level of detail with which we incorporate demand models and vehicle routing.

Service assortments have been previously addressed in academic literature, with airline

operations serving as a prominent example within the domain of transportation service

systems. Airline planning bears resemblance to time window management, primarily

due to two key factors. Firstly, the product in question is a service, namely commercial

passenger flights. Secondly, decisions concerning, for example, strategic route plans

(e.g., Birolini et al., 2021) or tactical flight schedules (e.g., Cadarso et al., 2017; Wei

et al., 2020) are significantly influenced by the interplay between passenger demand

and aircraft supply. Birolini et al. (2021) tackle a planning problem that shares some

similarities with the one addressed in this research. Their work introduces an innovative

approach to strategic airline planning, incorporating route selection, flight frequency,
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and fleet composition. This approach takes into account the interaction between demand

and supply, where the set of available flight options impacts passenger demand, which

subsequently influences the scheduling of aircraft operations. Compared to our work,

the authors employ a distinct methodology, estimating an empirical passenger demand

model and subsequently integrating it into an optimization model, which they solve

numerically in a case study.

In contrast, we build a continuous approximation model to capture the interactions of

demand and downstream vehicle routing. The core concept of the continuous approxi-

mation paradigm is to approximate complicated combinatorial quantities using simpler

mathematical expressions, based on densities (see C. Daganzo, 2005). Continuous ap-

proximation models have been widely applied to various last-mile delivery problems. We

refer to Ansari et al. (2018) for a comprehensive review. Our paper aims to evaluate the

performance and model the key trade-offs associated with different time window assort-

ment decisions. It does not seek to provide detailed operational plans, but rather focuses

on deriving insights from closed-form solutions of stylized mathematical expressions. In

this sense, it resembles the works of Belavina et al. (2017), Stroh et al. (2022), and

Smilowitz and Daganzo (2007), all of which provide valuable insights for the design and

performance evaluation of last-mile delivery systems using simple density functions.

3.3. Assortment Evaluation Model

We consider an e-grocery retailer that lets customers select a delivery time window from

a menu of options, which we refer to as the time window assortment T = (l, n, o). This

assortment is characterized by the time window length l, the number of time windows

n, and a categorical indicator o specifying whether the time windows are consecutive or

overlapping.

Figure 3.3.: Conceptual representation of the time window assortment evaluation model

49



Chapter III. Evaluating Time Window Assortments for E-Grocery

In this section, we develop a modeling framework to evaluate the impact of the time

window assortment on both customer demand and delivery operations. Figure 3.3 de-

picts our framework, which consists of a demand model and a delivery model. The

demand model specifies choice behavior, customer demand, and revenue in the order

capture phase. Given that demand, the delivery model approximates the relevant op-

erational and cost metrics of the order delivery phase. We outline our key assumptions

in Section 3.3.1 and then present our demand model in Section 3.3.2 and our delivery

model in Section 3.3.3. Table 3.1 summarizes the main notation.

3.3.1. Assumptions

Each time window assortment is associated with a particular delivery shift. Moreover,

the retailer operates from a single delivery hub (see Boyer et al., 2009; Punakivi &

Saranen, 2001) for a certain circular delivery region. Deliveries are affected by the time

window constraints imposed by the time window assortment and the demand for that

assortment. Our model aims to capture the major strategic trade-offs in time window

assortment design and builds on the following key assumptions.

Assumption 3.1. Delivery shifts are independent.

We treat delivery shifts as independent, which implies that there are no interactions

between shifts, neither in terms of demand nor delivery operations. This is a common

demand-side assumption in the literature on time window management for attended

home delivery (Waßmuth et al., 2023) that is empirically supported (Amorim et al.,

2024; Yang et al., 2016). The independence of delivery operations between shifts is

inherent to periodic fulfillment, since all operations take place within a given shift.

Assumption 3.2. Time window assortments, customer locations, demand, orders, and

vehicle tours are homogeneous.

This assumption encompasses several parts of the fulfillment process and ensures

smooth, uniform conditions, as is typical in the application of the continuous approxi-

mation method (C. F. Daganzo, 1987). First, we consider a homogeneous time window

assortment, meaning that (i) each time window has the same length, and overlapping

time windows overlap symmetrically with adjacent windows – for example, 8:00-10:00,

9:00-11:00, and 10:00-12:00; and (ii) the set of time windows in the assortment is con-

nected, i.e., there are no gaps between consecutive windows. Second, we assume that
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customer locations are homogeneous, meaning they are uniformly distributed across the

delivery region, and that all customers are offered the same time window assortment.

Third, homogeneous demand implies that demand is evenly distributed across all time

windows in the assortment. Fourth, we assume homogeneous orders, meaning that all

customer orders have identical gross sales margins (including product margins from the

shopping basket and delivery fees) and require the same vehicle capacity in terms of

weight and volume. Lastly, homogeneous vehicle tours imply that each tour extends to

the entire delivery shift and serves an identical number of customers.

3.3.2. Demand Model

In our framework, the demand model N(T ) offers a projection of the number of orders

per time window for time window assortment T . From the demand model, we obtain

the total gross margin as S(T ) = rnN(T ), with r denoting the unit gross margin per

order.

Our modeling framework is flexible and can incorporate any demand model to capture

the customer choice behavior for a given time window assortment. In our analytical

study, we examine two stylized demand models to gain insights into the key trade-offs

associated with substitution behavior. In Section 3.4, we study the impact of demand as

an exogenous parameter, N . In Sections 3.5 and 3.6, we model demand endogenously,

either as a function of time window length, N(l), or the number of time windows, N(n),

in assortment T . This approach allows us to analyze both relationships separately and

independently.

3.3.3. Delivery Model

Based on the demand per time window N(T ) and assortment T , the delivery model

evaluates the ensuing delivery costs and the required vehicle capacity. We first model the

case of consecutive time windows, and then expand the model to deal with overlapping

time windows.

Consecutive Time Windows

We consider time window assortments T ∈ T = {(l, n, o) | l ∈ R+, n ∈ N+, o = con.},
representing n consecutive time windows of length l, and resulting in a delivery shift
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of length L(T ) := nl. Following the continuous approximation approach, we distin-

guish two components of a vehicle tour – the stem distance to and from the delivery

area and the circular distance, i.e., the total distance between customers (see C. F. Da-

ganzo, 1984). In our case, the circular distance stretches across several consecutive time

windows. Figure 3.4a illustrates the different elements of a tour.

(a) Tour components (b) Customer densities

Figure 3.4.: Graphical representation of vehicle tours over consecutive time windows

To assess the total travel costs, we first approximate the travel time between cus-

tomers within a time window. We express the average distance between customers as

a function of customer density, k√
δ
. For a time window demand N(T ) and a delivery

region of size R, the customer density in a time window is δ(T ) := N(T )
R

(Figure 3.4b).

The inter-customer distance then becomes k
√

R
N(T )

which follows a Beardwood-Halton-

Hammersley routing distance that captures marginal efficiency gains for an increasing

customer density (Beardwood et al., 1959). Second, we express the stem distance as twice

the average distance between the center of the delivery region and any point within the

region. Under the Euclidean metric, this results in a stem distance of 4
3

√
R
π
per tour.

The time window length limits the number of deliveries a single vehicle can make

in that time window. To model this effect, we introduce the concept of workload per

time window, which denotes the total time required to satisfy the demand in each time

window. This total time combines the service time needed to perform a delivery, e.g.,

parking, unloading etc., and the travel time between customers. Note that the stem

distance can be traversed outside of the delivery shift and is therefore not affected by the

time windows. Assuming a constant vehicle speed α and a constant service time per order

τ , the workload per time window becomes w(T ) := N(T ) ·
[
τ + αk

√
R

N(T )

]
= τN(T ) +

αk
√
RN(T ), which corresponds to a workload per customer of wc(T ) := τ + αk

√
R

N(T )
.
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Operationally, the required fleet size depends on both time window length and vehicle

capacity, as these factors limit the number of customers a vehicle can serve on a single

tour. Because we focus on strategic time window assortment design, assortment decisions

precede fleet and capacity planning. Consequently, we consider time constraints, rather

than vehicle capacity, as the primary driver of fleet size when evaluating a time window

assortment. Given a workload per time window w(T ), the number of vehicle tours

required to satisfy the time window demand is v(T ) := w(T )
l

.

The vehicle capacity is treated as an endogenous outcome of our model, determining

the vehicle size required to operate the number of tours dictated by the time window

constraints. Consequently, the time window assortment drives the required vehicle ca-

pacity. Formally, given time window assortment T ∈ T , the number of orders that a

delivery vehicle needs to carry is

Q(T ) :=
nN(T )

v(T )
=

L(T )

wc(T )
. (3.1)

We now have all the elements to approximate the total delivery costs. The fixed cost

of operating a vehicle tour includes the vehicle-related cost f and the stem cost per tour.

With a cost per minute of c, the fixed cost per tour becomes F := f + cα 4
3

√
R
π
. For the

variable cost, we use the same time-based cost factor c to estimate the cost per tour. This

cost accounts for both travel and service activities during the shift and depends on the

delivery shift length L. Consequently, the delivery cost per tour is Ct(T ) := cL(T ) +F ,

and the total delivery costs are given by C(T ) := Ct(T )v(T ). In summary, our delivery

model leads to the following expression for total profit given assortment T ∈ T :

P (T ) := S(T )− C(T ) =

(
r − cwc(T )

)
nN(T )− Fv(T ). (3.2)

Overlapping Time Windows

The route approximation outlined above evaluates consecutive time windows. We now

introduce a demand allocation procedure that allows our route approximation also to

handle assortments with overlapping time windows. In line with previous research (N.

Agatz et al., 2011; C. F. Daganzo, 1987), we optimally allocate the total demand for

the overlapping assortment to a corresponding set of consecutive intervals such that

the total delivery costs are minimized. Figure 3.5 provides a graphical representation
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of the overlapping time window assortment and the corresponding consecutive delivery

intervals.

Figure 3.5.: Consecutive delivery intervals for an assortment of n = 7 overlapping time
windows

Formally, we consider overlapping time window assortments denoted by T ∈ T̃ =

{(l, n, o) | l ∈ R+, n = 2a+ 1, a ∈ N+, o = ovl.} that consist of n overlapping time win-

dows of length l. These time windows are divided into (n + 1) consecutive delivery

intervals of length l
2
, which results in a delivery shift length of L̃(T ) := n+1

2
l.

Lemma 3.1. An even distribution of demand across consecutive delivery intervals min-

imizes the total delivery costs.

Following Lemma 3.1, a demand of n
n+1

N(T ) is allocated to each consecutive delivery

interval, leading to a workload per customer of w̃c(T ) := τ + αk
√

n+1
n

R
N(T )

, a workload

per interval of w̃(T ) := τ n
n+1

N(T ) + αk
√

R n
n+1

N(T ), and ṽ(T ) := 2w̃(T )
l

vehicle tours.

Given assortment T ∈ T̃ , the number of orders that a delivery vehicle needs to carry is

Q̃(T ) :=
nN(T )

ṽ(T )
=

L̃(T )

w̃c(T )
. (3.3)

Furthermore, given a delivery cost per tour of C̃t(T ) := cL̃(T ) + F for assortment

T ∈ T̃ , the total delivery cost is given by C̃(T ) := C̃t(T )ṽ(T ), leading to a total profit

of

P̃ (T ) := S(T )− C̃(T ) =

(
r − cw̃c(T )

)
nN(T )− F ṽ(T ). (3.4)

3.4. Profitability Drivers and Operational

Constraints

In this section, we assess the financial and operational performance of different con-

secutive time window assortments under varying demand levels, which we treat as an
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Table 3.1.: Summary of notation used in Chapter III

General Model Input
α Driving speed [min/km]
c Variable cost per time unit [EUR/min]
f Vehicle-related fixed cost per tour [EUR]
F Fixed cost per tour [EUR]
k Road network factor
r Gross margin per order [EUR]
R Surface of the delivery region [km2]
τ Delivery service time per order [min]

Time Window Assortment Input
l Time window length [min]
n Number of time windows
o Consecutive/ overlapping flag

T ∈ T ∪ T̃ Time window assortment

Performance Output
Ct Delivery cost per tour [EUR]
δ Demand density per time window [orders/km2]
L Delivery shift length [min]
N Demand per time window [orders]
v Number of vehicle tours
w Workload per time window [min]
wc Workload per customer [min]

exogenous parameter. Formally, we consider assortments T ∈ T with a demand of

N ∈ R+ orders per time window. Additionally, we introduce a maximum capacity

threshold Q̄ ∈ R+, which represents a practical upper bound on vehicle size, reflecting

real-world constraints such as vehicle availability or regulatory limits. This threshold

ensures that only time window assortments resulting in feasible vehicle capacities are

considered, i.e., those for which Q(T,N) ≤ Q̄.

First, we analyze the parameter regions where the required vehicle capacity approaches

the practical feasibility limits defined by Q̄. In low-density areas, where travel times

between stops are relatively long, vehicle capacity constraints often become negligible,

as time window restrictions tend to dominate route feasibility. This explains why early

research in grocery delivery primarily focused on time window constraints. However,

as demand densities increase, vehicle capacity becomes increasingly binding. Online
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(a) τ = 8 (b) τ = 3

Figure 3.6.: Parameter regions in the (L, δ)-space where capacity Q̄ ∈ {15, 30} becomes
binding for varying time window lengths l ∈ (0, 180] with n = 3 time windows and
varying demand levels N ∈ (0, 100] within a region of size R = 100 (α = 2.0, k = 0.57)

grocers must then either deploy larger vehicles (van Brouwershaven, 2020) or shorten

delivery shifts to accommodate the growing demand.

To anticipate this effect, we derive analytical conditions that ensure that the required

vehicle capacity Q(T,N) for a time window assortment T , facing demand density δ =
N
R
, remains feasible within the practical upper bound on vehicle capacity, Q̄. These

conditions help align the time window assortment with practical fleet constraints for

varying demand densities, thereby helping service providers anticipate fleet requirements

effectively.

Lemma 3.2. Consider Equation (3.1) for a given demand density δ = N
R

> 0 and a

maximum vehicle capacity Q̄ > 0. For time window assortments T ∈ T , the maximum

vehicle capacity is binding if and only if

Q̄

n
< min

{
δR,

l

τ + αk√
δ

}

There are three factors that limit the number of orders served on a tour: the demand

level, the physical vehicle capacity, and the available time. The condition above states

that, intuitively, the vehicle capacity is binding if it is more constraining than the other

two factors. For example, in low-density settings, i.e., when δR ≤ Q̄
n
, vehicle capacity is

not a restriction. However, once the density exceeds this threshold, i.e., δR > Q̄
n
, vehicle

capacity may become a limiting factor, particularly when time windows are long.

Figure 3.6 shows regions in the (L, δ)-space where vehicle capacity is binding, based

on varying time window lengths l ∈ (0, 180] (expressed as shift length L(T ) = nl, with
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n = 3), varying demand N ∈ (0, 100] (expressed as density δ = N
R
, with R = 100), and

two values of the capacity bound Q̄. The graphs illustrate how anticipating physical

capacity constraints limits the range of feasible time window lengths.

For all subsequent analyses, we further introduce the notion of an efficient time win-

dow assortment. Specifically, a time window assortment T is considered efficient under

demand N if it fills at least one complete vehicle tour, i.e., if v(T,N) ≥ 1.

Corollary 3.1. For any assortment T ∈ T that is efficient under demand density

δ = N
R
> 0, it holds that:

δR ≥ l

τ + αk√
δ

Having discussed the limits of feasibility, we now consider the profitability of time

window assortments. We derive analytical expressions that allow us to identify key

drivers of profitability, defined by the condition P (T,N) ≥ 0.

Theorem 3.1. Consider Equations (3.1) and (3.2) and a maximum vehicle capacity

Q̄ > 0, and let the net margin per order be positive, r > cτ . Furthermore, let N∗(n) =

2(r−cτ)F+n(cαk)2R
2n(r−cτ)2

+

√(
2(r−cτ)F+n(cαk)2R

2n(r−cτ)2

)2
−
(

F
n(r−cτ)

)2
. Then, the delivery shift length

L(T ) defines three performance ranges of time window assortments T ∈ T :

a) [Unprofitable region] L(T ) ≤ Fτ
r−cτ

: It is impossible to achieve profitability regard-

less of demand density.

b) [Multi-tour profit region] L(T ) ∈
(

Fτ
r−cτ

, Fwc(N∗(n))
r−cwc(N∗(n))

)
: The minimum demand den-

sity δP (T ) := NP (T )
R

for which assortment T is profitable is
(

Ct(T )αk
rL(T )−Ct(T )τ

)2
. For

any density δ ≥ δP (T ) and any shift length L(T ) within the specified range, the

required vehicle capacity satisfies Q(T, δ) ≥ L(T )

τ+ αk√
δP (T )

.

c) [Single-tour profit region] L(T ) ≥ Fwc(N∗(n))
r−cwc(N∗(n))

: The minimum demand density

δv(l) := Nv(l)
R

to profitably operate assortment T with a single vehicle tour is
2lτ+(αk)2R−

√
(2lτ+(αk)2R)2−(2lτ)2

2Rτ2
. For any density δ ≥ δv(l) and any shift length L(T )

within the specified range, the required vehicle capacity satisfies Q(T, δ) ≥ nδv(l)R.

Theorem 3.1 shows that the shift length is an important factor affecting the profitabil-

ity of the delivery system. More specifically, it is the shift length in relation to the ratio
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of fixed costs to variable contribution margins that determines whether profitability can

be achieved or not. Theorem 3.1a) states a lower bound on the shift length for any pos-

itive profit. This lower bound equals the service time needed for the minimum number

of orders required for covering the fixed costs per tour. For shifts longer than this lower

bound, demand is another relevant constraint. Theorem 3.1b) shows that there exists a

break-even demand density above which profit is positive and increasing in demand.

If the shift length is increased further, it will eventually equal the total time required

to serve the corresponding break-even demand, expressed as nN∗(n)wc (N∗(n)), where

N∗(n) denotes the break-even demand for a single vehicle tour. At this point, the

following relationship holds: nN∗(n) = F
r−cwc(N∗(n))

. Thus, for shift lengths beyond the

upper bound stated in Theorem 3.1c), we need to ensure a minimum demand density to

run a single vehicle tour and not create unnecessary slack time during the delivery shift.

As this minimum density exceeds the density level that would be needed to break even,

an efficient shift length falls within the boundaries specified in Theorem 3.1b).

In addition, to determine whether assortment T leads to a feasible vehicle capac-

ity requirement under demand N , i.e., whether Q(T,N) ≤ Q̄, we apply the following

equivalent transformation:

Corollary 3.2. Consider Equation (3.1) and a maximum vehicle capacity Q̄ > 0. For

any assortment T ∈ T and any demand density δ = N
R

> 0, the following equivalence

holds:

Q(T,N) ≤ Q̄ ⇔ δ ≤


(

Q̄αk
√
R

L(T )−Q̄τ

)2
, L(T ) > Q̄τ

∞, L(T ) ≤ Q̄τ

Figure 3.7 shows regions in the (L, δ)-space where we highlight the target performance

region which we distinguish from unprofitable delivery, P (T,N) < 0, inefficient delivery,

v(T,N) < 1, and deliveries that are infeasible with respect to the maximum vehicle

capacity threshold, Q(T,N) > Q̄. The plots are based on varying time window lengths

l ∈ (0, 180] (expressed as shift length L(T ) = nl, with n = 3), varying demand N ∈
(0, 100] (expressed as density δ = N

R
, with R = 100), and two values of the capacity

bound Q̄ ∈ {15, 30}.
The graphs illustrate that the break-even density decreases as the shift length in-

creases. That is, at higher densities, we can become profitable even with shorter shifts

and shorter time windows. We also observe that once we break even, extending the shift
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(a) Q̄ = 30 (b) Q̄ = 15

Figure 3.7.: Performance regions distinguishing target performance from unprofitable
(P (T,N) < 0), inefficient (v(T,N) < 1), and infeasible (Q(T,N) > Q̄) outcomes for
varying time window lengths l ∈ (0, 180] with n = 3 time windows and varying demand
levels N ∈ (0, 100] within a region of size R = 100 (r = 9.0, c = 0.5, f = 50.0, τ = 8.0,
α = 2.0, k = 0.57)

length further will eventually result in either reaching the maximum physical vehicle ca-

pacity in high-density scenarios or facing inefficiencies in tour utilization in low-density

scenarios. Figure 3.7b shows how a more constrained vehicle size results in a more

narrow target performance region.

3.5. Adjusting the Time Window Length

Having identified the key factors that drive time window assortment profitability under

the operational constraints discussed, we now turn to incremental assortment design

decisions. To this end, we treat demand as endogenous to the time window assortment.

Throughout all subsequent analyses, we ensure that the time window length in assort-

ment T allows for at least one complete vehicle tour, l ≤ w(T ) for T ∈ T and l
2
≤ w̃(T )

for T ∈ T̃ , and that the required vehicle capacities remain within the feasible limits,

Q(T ) ≤ Q̄ for T ∈ T and Q̃(T ) ≤ Q̄ for T ∈ T̃ .

In this section, we consider how to select the time window length for a fixed number

of consecutive time windows, based on total profit. To do so, we introduce endogenous

demand N(l), where the demand per time window depends on the time window length

l offered in assortment T ∈ T . We focus on two extremes in terms of customer choice

behavior: perfect demand substitution (Section 3.5.1) and no demand substitution (Sec-

tion 3.5.2).
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3.5.1. Perfect Demand Substitution

In this section, we analyze time window length decisions when customers are insensitive

to time window length – that is, they perceive time windows of different lengths as

perfect substitutes. Therefore, we express demand per time window independent of the

time window length as N(l) = N̂ .

We begin our analysis by identifying the main trade-offs underlying time window

length decisions. The following result illustrates how the time window length impacts

the various individual (cost) components of a delivery system.

Lemma 3.3. Consider Equations (3.1) and (3.2) for a given number of n ≥ 1 consec-

utive time windows and demand per time window N(l) that is independent of the time

window length, ∂N
∂l
(l) = 0. For time window lengths l > 0 and demand N(l) > 0, we get:

a) Workload w(l) and workload per customer wc(l) are constant in the time window

length l.

b) Number of tours and associated costs decrease in the time window length l: ∂v
∂l
(l) <

0.

c) Profit increases in the time window length l: ∂P
∂l
(l) > 0.

d) Required vehicle capacity increases in the time window length l: ∂Q
∂l
(l) > 0.

Enlarging time windows increases profits by reducing fleet size and fixed costs, but

this requires larger vehicles to meet the increased demand per tour. The system requires

fewer vehicle tours, but larger vehicles for each tour. Conversely, decreasing the time

window length leads to the opposite effects: more vehicle tours are required, but the

required vehicle capacity decreases as a result of smaller demand per tour.

It follows that, under perfect substitution, wider time windows consistently lead to

higher profits, while narrower time windows reduce profits. This result is formally stated

in Proposition 3.1.

Proposition 3.1. Consider Equations (3.1) and (3.2) for a given number of n ≥ 1

consecutive time windows and demand per time window N(l) = N̂ > 0. For time

windows of length l < w(l) and sufficiently large maximum vehicle capacity Q(l) ≤ Q̄,

profit and the required vehicle capacity both increase in the time window length.
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(a) Profit and required capacity with f =
50

(b) Profit and required capacity with f =
10

Figure 3.8.: Profitability of length adjustments for varying time window lengths l ∈
(0, 180] with n = 3 consecutive time windows (r = 9.0, c = 0.5, τ = 8.0, α = 2.0,
k = 0.57, R = 100, N̂ = 10)

Figure 3.8 provides two numerical examples showing the total profit P (l) and required

vehicle capacityQ(l) for a given demand density of N̂
R
= 0.1 per time window in a delivery

region of size R = 100, and n = 3 consecutive time windows of varying length l ∈ (0, 180]

(expressed as shift length L(l) = nl). Additionally, we mark the parameter region where

the time window length exceeds the workload, l > w(l), indicating inefficiencies due

to underutilized time. We conclude that under perfect substitution, service providers

should offer the longest time window that still ensures efficient tours, i.e., l = w(l).

3.5.2. No Demand Substitution

Complementing the previous section, we now analyze time window length decisions in

a setting where customers are sensitive to time window length. These customers have a

maximum acceptable time window length and reject longer alternatives. Specifically, we

capture time window length on a continuous scale and approximate equal-sized discrete

customer segments using a continuous spectrum. This approach allows us to model

the time window demand as a linear function of the time window length, expressed as

N(l) = N̄ − γl, where N̄ represents the demand potential that can be captured per

time window when the service provider offers the shortest, most attractive time window

length (i.e., an exact delivery time, l = 0). The parameter γ is a time sensitivity factor

that quantifies how rapidly demand declines as the length of the time window increases.

To ensure positive demand for each time window, the time window length must not

exceed the maximum acceptable length across all customer segments, i.e., l < N̄
γ
.
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We begin our analysis again by identifying the main trade-offs underlying time window

length decisions. The following results illustrate how the time window length impacts

the various individual (cost) components of a delivery system.

Lemma 3.4. Consider Equations (3.1) and (3.2) for a given number of n ≥ 1 consec-

utive time windows and demand per time window N(l) that is decreasing in the time

window length, ∂N
∂l
(l) < 0. For time window lengths l > 0 and demand N(l) > 0, we get:

a) Unit service time is constant but inter-customer travel time increases in the time

window length l. Thus, the workload per customer increases: ∂wc

∂l
(l) > 0. As a

result, the contribution margin per customer, r− cwc(l), decreases for longer time

windows.

b) Both service time and travel time between customers decrease in the time window

length l. Thus, the workload decreases: ∂w
∂l
(l) < 0. As a result, the associated

variable costs decrease for longer time windows.

c) Number of tours decreases in the time window length l: ∂v
∂l
(l) < 0. As a result, the

required fleet size and the associated fixed costs decrease for longer time windows.

d) Profit is not monotonic in the time window length l:
∂P
∂l
(l) =

(
n(r − cτ)− 1

2
ncαk

√
R

N(l)

)
∂N
∂l
(l)− F ∂v

∂l
(l).

e) Required vehicle capacity is not monotonic in the time window length l:
∂Q
∂l
(l) = n

wc(l)

(
1− l

wc(l)
∂wc

∂l
(l)
)
.

From Lemma 3.4, we conclude that the appropriate time window length results from

trading off benefits of additional demand against the cost of additional vehicle tours.

Smaller time windows attract more demand, resulting in higher sales and more efficient

travel between customers, but they also correspond to a higher total workload and less

time available for delivery and, therefore, more vehicle tours. Formally, shortening time

windows increases profits if and only if the gain from additional demand exceeds the cost

of making additional vehicle tours. Furthermore, shortening time windows decreases the

required vehicle size if and only if the decrease in workload per customer is small enough.

Conversely, increasing the time window length has the opposite effect.

Building on these insights, we derive analytical expressions to identify the conditions

for adjusting the time window length to increase the total profit.

62



Chapter III. Evaluating Time Window Assortments for E-Grocery

Proposition 3.2. Consider Equations (3.1) and (3.2) for a given number of n ≥ 1

consecutive time windows and demand N(l) = N̄ −γl with a demand potential of N̄ > 0

per time window and a time sensitivity factor γ > 0. Let the net margin per order be

positive, r > cτ . For time windows of length l < w(l) and sufficiently large maximum

vehicle capacity Q(l) ≤ Q̄, increasing the time window length l increases profit if and

only if

l ≤
√
D(l) +W(l)−

√
D(l)

4n(r − cτ)
or δ(l) <

(
γncαk

2V(l)

)2

,

with demand density δ(l) = N(l)
R

as well as D(l) := (Fαk)2

δ(l)
, W(l) := 16n(r − cτ)F

γ
N̄wc(l),

and V(l) := γn(r − cτ) + F ∂v
∂l
(l). For l ≤ 2

3
N̄
γ
, the required vehicle capacity is increasing,

∂Q
∂l
(l) > 0.

Proposition 3.2 reveals that two factors determine whether increasing the window

length of a time window assortment is beneficial from a profit perspective or not, namely

(i) the current time window length and (ii) demand density. If either of these factors

is sufficiently low profit increases by increasing l, otherwise it does not. The result

follows from the trade-off identified in Lemma 3.4d). The relevance of l is intuitive.

The role of δ(l), however, is less straightforward. Lower customer densities are asso-

ciated with higher workloads and lower contribution margins per customer, as shown

in Lemma 3.4a). We therefore hypothesize that, in this case, the operational benefits

of additional delivery time outweigh the comparatively modest financial losses resulting

from reduced demand due to longer time windows – two opposing effects that are also

reflected in Lemma 3.4d). Additionally, we identify a sufficient condition for the required

vehicle capacity to increase in the length of the time windows. This insight helps de-

termine whether the vehicles required to accommodate the additional demand resulting

from extended time windows remain within the capacity limit Q̄. For shortening the

time windows, the reverse applies.

Figure 3.9 illustrates numerical examples of the profit conditions stated in Propo-

sition 3.2 (Figures 3.9a and 3.9b), as well as the trajectories of total profit P (l) and

required vehicle capacity Q(l) (Figures 3.9c and 3.9d) for a given demand density po-

tential of N̄
R

= 0.45 in a delivery region of size R = 100, a time sensitivity of γ = 0.25,

and n = 3 consecutive time windows of varying length l ∈ (0, N̄
γ
). We consider l < N̄

γ
to

ensure positive demand, and we highlight the parameter region where the time window

length exceeds the workload, l > w(l), indicating inefficiencies due to underutilized time.
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(a) Trade-off with f = 50 (b) Trade-off with f = 10

(c) Profit and required capacity with f =
50

(d) Profit and required capacity with f =
10

Figure 3.9.: Profitability of length adjustments for varying time window lengths l ∈
(0, N̄

γ
) with n = 3 consecutive time windows (r = 9.0, c = 0.5, τ = 8.0, α = 2.0, k = 0.57,

R = 100, N̄ = 45, γ = 0.25)

The graphs show that the optimal time window length increases with higher fixed costs

f , where the additional time needed to reduce the number of vehicle tours becomes

more valuable than the revenue loss when capacity is tight. Moreover, Figures 3.9a

and 3.9b suggest that the implicit condition on the time window length l, stated in

Proposition 3.2, serves as a good indicator for when to increase or decrease the time

window length, as the optimum occurs approximately at l =

√
D(l)+W(l)−

√
D(l)

4n(r−cτ)
.

3.6. Adjusting the Number of Time Windows

In this section, we address the decision of selecting the number of consecutive and

overlapping time windows of a fixed length l to offer in a time window assortment.

We construct consecutive assortments by sequencing n̂ consecutive time windows of

equal length, and analyze how incremental changes in n̂ impact profit. In the case

of overlapping assortments, we evaluate the decision to add n̂ − 1 overlapping time
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windows to consecutive assortments (l, n̂, con.) ∈ T . This results in new assortments

(l, 2n̂− 1, ovl.) ∈ T̃ with equal shift length of L(n̂) = L̃(2n̂− 1) = n̂l.

Furthermore, we introduce endogenous demand N(n), where the demand per time

window depends on the number of time windows n offered within any assortment T . As

in the previous section, we focus on two extremes in terms of choice behavior: perfect

demand substitution (Section 3.6.1) and no demand substitution (Section 3.6.2).

3.6.1. Perfect Demand Substitution

We analyze the impact of adjusting the number of time windows in assortment T , as-

suming that all time windows are perfect substitutes. This means that while customers

may have individual preferences, they are willing to substitute among the available time

windows. Consequently, the total demand volume, denoted by N̄ , remains constant,

regardless of the number of time windows offered. Under the homogeneity assumption

(Assumption 3.2), customers are evenly distributed across the n time windows. As a

result, the demand per time window is N(n) = N̄
n
.

In the following, we derive analytical expressions to identify the conditions under

which incrementally adjusting the number of time windows increases total profit.

Proposition 3.3. Consider Equations (3.1) to (3.4) for a given time window length

l > 0 and demand N(n) = N̄
n
with a total demand volume N̄ ≥ 2N v(l).

1. For 1 ≤ n̂ ≤ N̄
Nv(l)

− 1 consecutive time windows and sufficiently large maximum

vehicle capacity Q(n̂) ≤ Q̄, adding a consecutive time window increases profits if

and only if

δ̄ >

(
αk
√

(n̂+ 1)n̂

τ(
√
n̂+ 1 +

√
n̂)

)2(
lc
√

(n̂+ 1)n̂

F
− 1

)2

,

with total demand density δ̄ = N̂
R
. Furthermore, Q(n + 1) = v(n)

v(n+1)
Q(n), which

implies that the required vehicle capacity increases.

2. For 2 ≤ n̂ ≤ N̄
Nv(l)

consecutive time windows and sufficiently large maximum vehicle

capacity Q(n̂) ≤ Q̄, adding n̂−1 overlapping time windows always decreases profits.

However, the required vehicle capacity also decreases.
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(a) Trade-off with f = 50 (b) Trade-off with f = 10

(c) Profit and required capacity with f =
50

(d) Profit and required capacity with f =
10

Figure 3.10.: Profitability of adjusting the number of time windows for varying number
of consecutive time windows n̂ ∈ {1, . . . , 9} each of length l = 60 (r = 9.0, c = 0.5,
τ = 8.0, α = 2.0, k = 0.57, R = 100, N̄ = 35)

Interestingly, Proposition 3.3.1 shows that even when total demand remains unaffected

by the number of time window options, adding consecutive time windows can be benefi-

cial when demand density is sufficiently high. In this case, the savings in fixed delivery

costs from reducing the number of delivery tours outweighs the increase in variable travel

costs. This makes it beneficial to spread demand across fewer but longer vehicle tours.

Conversely, at lower densities, reducing the number of consecutive time windows may be

preferable. The key trade-off is between spreading demand to minimize required vehicle

tours and clustering demand to reduce average travel distance per delivery. Balancing

these opposing effects is crucial for determining the appropriate number of consecutive

time windows.

However, this is not the case for overlapping time windows. Proposition 3.3.2 shows

that when demand is unaffected by the number of time windows, adding overlapping

time windows does not increase profits. This is intuitive, since overlapping time windows

do not help to spread demand but rather add more time constraints within the same time

frame. This suggests that overlapping time windows may actually hurt profitability.
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Figure 3.10 illustrates numerical examples of the profit condition stated in Proposi-

tion 3.3.1 (Figures 3.10a and 3.10b), as well as the trajectories of total profit and required

vehicle capacity (Figures 3.10c and 3.10d) for a given total demand density of N̄
R
= 0.35

in a delivery region of size R = 100, and a varying number of consecutive time windows

n̂ ∈ {1, . . . , 9} each of length l = 60 minutes. Both Figures 3.10c and 3.10d confirm that

profit and required vehicle capacity decrease as overlapping time windows are added.

For consecutive time windows, Figure 3.10c shows that when fixed costs f are relatively

high, the total demand density remains sufficiently large for profit to continue increasing

as demand is spread, up until the workload per time window falls below the time window

length.

Conversely, for relatively low fixed costs, Figure 3.10d highlights a trade-off between

different cost elements: the profit function initially increases before declining, given

a constant gross margin of rN̄ . This trade-off is further illustrated in Figure 3.10b,

where at n̂ = 3 consecutive time windows, adding another time window reduces profits

because the total demand density is too low for the marginal decrease in fixed costs to

outweigh the marginal increase in variable costs. In summary, the optimal number of

time windows is the smallest value at which the condition in Proposition 3.3.1 does no

longer hold.

3.6.2. No Demand Substitution

Next, we analyze adjusting the number of time windows in assortment T , assuming

customers do not substitute. This means that distinct customer segments of equal size

have a preferred time window and will not accept any alternative. As a result, the

total demand nN(n) increases linearly with the number of time windows. Formally,

we express the time window demand as N(n) = N̂ , where N̂ represents the size of the

customer segments.

In the following, we derive analytical expressions to identify the conditions under

which incrementally adjusting the number of time windows increases total profit.

Proposition 3.4. Consider Equations (3.1) to (3.4) for a given time window length

l > 0 and demand N(n) = N̂ ≥ N v(l). Let the net margin per order be positive, r > cτ .
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1. For n̂ ≥ 1 consecutive time windows and sufficiently large maximum vehicle ca-

pacity Q(n̂) ≤ Q̄, adding a consecutive time window increases profits for any n̂ if

and only if

δ̂ >

(
cαk

r − cτ

)2

⇔ r − cτ >
cαk√

δ̂
,

with demand density per time window δ̂ = N̂
R
. Furthermore, Q(n + 1) = Q(n) +

Q(1), which implies that the required vehicle capacity increases.

2. For n̂ ≥ 2 consecutive time windows, shift length L(n̂) > Fτ
r−cτ

, and sufficiently

large maximum vehicle capacity Q(n̂) ≤ Q̄, adding n̂−1 overlapping time windows

increases profits if and only if

δ̂ >

(√
2n̂(2n̂− 1)− n̂

n̂− 1

)2

δP (n̂),

with demand density per time window δ̂ = N̂
R
. It holds that

(√
2n̂(2n̂−1)−n̂

n̂−1

)2

δP (n̂) >(
cαk
r−cτ

)2
. The required vehicle capacity decreases.

When customers do not substitute between time windows, the demand density per

time window remains constant, and each time window contributes the same profit mar-

gin. Proposition 3.4.1 characterizes the demand density for this margin to be positive.

Naturally, this density decreases in unit revenues r and increases in the unit service

time τ . Also note that it is independent of n̂. Thus, for any demand density above

the indicated threshold, increasing the number of time windows is always profitable. It

is then the vehicle capacity, rather than the underlying economics that limits the total

shift length. Conversely, if the demand density is too low to yield a positive contribution

margin for a single time window, expanding the assortment does not benefit profitability.

In this case, the focus should instead be on increasing the contribution margin – either

by raising the demand density or by improving the net margin per order, r − cτ .

Interestingly, Proposition 3.4.2 reveals that overlapping time windows increase profits

only if the additional demand can offset the additional time constraints introduced within

the same time frame, which require more tours with fewer orders. Thus, the trade-off lies

between higher demand and increased operational complexity due to stricter constraints,

an effect also observed in Proposition 3.3.2.
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(a) Trade-off with f = 50 (b) Trade-off with f = 10

(c) Profit and required capacity with f =
50

(d) Profit and required capacity with f =
10

Figure 3.11.: Profitability of adjusting the number of time windows for varying number
of consecutive time windows n̂ ∈ {1, . . . , 9} each of length l = 60 (r = 9.0, c = 0.5,
τ = 8.0, α = 2.0, k = 0.57, R = 100, N̂ = 10)

Figure 3.11 illustrates numerical examples of the profit conditions stated in Proposi-

tion 3.4 (Figures 3.11a and 3.11b), as well as the trajectories of total profit and required

vehicle capacity (Figures 3.11c and 3.11d) for a given demand density of N̂
R

= 0.1 per

time window in a delivery region of size R = 100, and a varying number of consecutive

time windows n̂ ∈ {1, . . . , 9} each of length l = 60 minutes. Figures 3.11c and 3.11d

show that for consecutive time windows, the demand density is sufficiently large to en-

sure a positive contribution margin, leading to an increase in profit as additional time

windows are added. In contrast, the addition of overlapping time windows becomes prof-

itable only after reaching a certain shift length. Specifically, when comparing P (n̂ + 1)

and P̃ (2n̂− 1) in Figure 3.11c, we observe that only with a shift length of at least 360

minutes does adding overlapping options yield higher profit than extending the shift by

one additional time window. However, extending the delivery shift requires more vehicle

capacity, whereas the vehicle capacity requirement decreases slightly when overlaps are

added within the same delivery shift.
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Figures 3.11a and 3.11b depict that overlapping time windows require a larger con-

tribution per time window, which decreases as the number of consecutive time windows

increases. This explains why we see that the addition of overlapping time windows only

becomes profitable after reaching a certain shift length. With fewer time windows, the

attracted demand is insufficient to offset the additional fixed costs.

3.7. Conclusion

In grocery home delivery, designing an effective set of delivery time windows for cus-

tomers to choose from is critical. The design task involves determining the number,

length, and overlap of time windows, so as to balance customer preferences and op-

erational efficiency. The strategic importance of this decision is evident in its impact

on revenues, fulfillment costs, and vehicle capacity planning. However, it remains an

under-researched area in the academic literature. Our work aims to address this gap

by developing an analytical model that captures the trade-offs inherent in time window

assortment design. By analyzing key factors influencing profitability and operational

efficiency, the study seeks to provide managerial insights for aligning time window as-

sortments with market conditions, enhancing the economic viability of online grocery

delivery.

We provide accessible analytical expressions that identify which time window assort-

ments can achieve profitability under varying market conditions. This includes minimum

time window lengths, break-even demand thresholds, and conditions under which maxi-

mum vehicle sizes and vehicle tour utilization become constraining factors. Endogenizing

demand, we show that for assortment-insensitive customers, service providers should of-

fer the longest time window that still ensures efficient tour utilization, and there exists

an optimal number of consecutive time windows that balances the key trade-off between

clustering and spreading demand. For assortment-sensitive customers, there exists an

optimal time window length that balances demand attraction and required tour fre-

quency, and adding time windows (whether consecutive or overlapping) increases profit,

provided the demand contribution is sufficiently large.

As we are the first to present a strategic model to support time window assortment

design for attended home delivery, we see several directions for future research. First,
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it is interesting to study the interaction between strategic assortment decisions and tac-

tical and operational offering and pricing decisions to smoothen demand over time and

exploit customers’ willingness to pay. Second, our analysis prioritizes profitability as

a key performance measure, emphasizing economic viability. Future studies can ex-

tend the assortment evaluation model to include additional performance metrics, such

as environmental sustainability (e.g., resource consumption and pollution) and social

sustainability (e.g., working conditions and hours).
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Chapter IV

Time Window Assortment Design

with Stochastic Demand: The Value

of Overlapping Time Windows

Abstract

Online grocery services require customers to be present at the time of delivery, making

the design of time window assortments, including choices between many or few, long or

short, overlapping or non-overlapping options, a relevant task. Despite growing inter-

est in time window assortment design, the specific value of overlapping time windows

remains not fully understood. Building on an established evaluation model that as-

sesses the impact of time window assortments on both demand and delivery efficiency,

we extend the framework to account for demand variability across time windows. This

enhancement enables a detailed analysis of time window assortments under realistic cus-

tomer choice behavior. In particular, we evaluate how overlapping time windows can

help mitigate inefficiencies caused by demand peaks. We analytically derive necessary

and sufficient conditions, based on realized demand, for overlapping time windows to

reduce expected delivery costs compared to their consecutive counterparts. We then test

these conditions and examine interaction effects of key parameters using Monte Carlo

estimates. Our insights contribute significantly to a better understanding of how over-

lapping time windows affect delivery efficiency and under what operational conditions

and demand patterns it is advisable for service providers to offer them.
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4.1. Introduction

The rapid expansion of online grocery delivery has transformed how consumers shop for

essentials, offering convenience while introducing logistical challenges for retailers. Un-

like many e-commerce products, groceries are perishable, often require refrigeration, and

must be delivered when customers are available to receive them. To coordinate deliver-

ies efficiently, service providers commonly rely on structured time window assortments,

allowing customers to select a preferred time window.

However, designing these time window assortments is far from straightforward. Providers

must determine not only the number and length of available options but also if they

should overlap. Overlapping time windows can boost demand and improve delivery ca-

pacity utilization, but they may also introduce inefficiencies in vehicle routing (Waßmuth

et al., 2025). Moreover, demand uncertainty further complicates planning, as customer

time window choices are subject to structural heterogeneity and statistical fluctuations.

This paper examines the impact of overlapping time windows in the context of demand

uncertainty.

Overlapping time windows are a common feature in demand management for attended

home delivery, both in practice and research. Several studies have incorporated overlap-

ping time windows to evaluate their demand management approaches (e.g., N. Agatz et

al., 2011; Koch & Klein, 2020; Lang et al., 2021; Truden et al., 2022). Yet, the impact of

overlapping time windows on demand and fulfillment has remained largely unexplored.

Waßmuth et al. (2025) were the first to analyze this relationship, showing that over-

laps increase profit when they attract sufficient additional demand, but reduce profit

when customers merely substitute between the offered options. That analysis, though,

assumes demand to be balanced across time windows, which may not fully capture the

strategic potential of overlapping assortments. In practice, demand across time windows

is often uneven (Amorim et al., 2024), leading to inefficiencies such as lost demand or

underutilized vehicle tours. While tactical and operational demand management can

help mitigate these imbalances, they often incur additional costs, such as offering dis-

counts (e.g., Campbell & Savelsbergh, 2006) or restricting time window availability (e.g.,

N. Agatz et al., 2011). Rather than addressing imbalances reactively for a given time

window assortment, we propose a proactive approach: incorporating demand variability

already during time window assortment design. Specifically, we argue that overlaps can

serve as a hedge against intra-assortment demand variability.
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This paper investigates the strategic value of offering overlapping time windows in

attended home delivery, focusing on their cost performance under demand uncertainty.

Building on the analysis of Waßmuth et al. (2025), we extend the scope to account for

statistical fluctuations and structural differences in time window popularity. We com-

pare overlapping and consecutive time window assortments in terms of their impact on

delivery costs, isolating operational effects from revenue considerations. By examining

how key problem parameters shape performance, we address the central research ques-

tion: under what conditions do overlapping time windows offer advantages in delivery

efficiency over their consecutive counterparts?

To achieve this, we extend the assortment evaluation model of Waßmuth et al. (2025)

by representing demand across time windows as a joint random vector with a fixed total

demand volume. We analytically characterize best- and worst-case cost performance and

derive necessary and sufficient conditions under which overlapping time windows outper-

form their consecutive counterparts at the level of individual demand realizations. These

insights are then translated into hypothesized performance criteria at the stochastic de-

cision level. To validate and refine these criteria, we conduct a Monte Carlo simulation

study that estimates expected performance across a comprehensive range of practically

relevant parameter settings. Our contribution lies in assessing the operational value of

overlapping time windows under assortment-dependent demand uncertainty and in offer-

ing actionable guidance on when overlaps improve delivery efficiency, thereby providing

decision-makers with insights to inform strategic time window design.

The remainder of this paper is organized as follows. In Section 4.2, we review the re-

lated literature. We present the time window assortment evaluation model with stochas-

tic demand in Section 4.3, which includes the statement of key assumptions and notation.

In Section 4.4, we analytically assess cost performance on the level of individual demand

realizations and in Section 4.5, we present our computational Monte Carlo study. We

summarize our results and conclude with managerial implications in Section 4.6. All

proofs are provided in Appendix B.

4.2. Related Literature

The management of delivery time windows is a central element of demand management

in attended home delivery and has received growing attention in the literature (e.g.,
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Cordeau et al., 2023; Fleckenstein et al., 2023; Waßmuth et al., 2023). Waßmuth et al.

(2025) were the first to frame time window assortment design as a strategic planning

problem, employing a continuous approximation model to derive analytical results under

homogeneous conditions. However, that paper does not capture the potential of over-

lapping time windows to hedge against demand uncertainty. Earlier simulation-based

studies explore relevant delivery configurations, but treat demand as exogenous (Boyer

et al., 2009; Lin & Mahmassani, 2002; Punakivi & Saranen, 2001). We extend the model

introduced by Waßmuth et al. (2025) by incorporating endogenous, stochastic demand

and evaluating the value of overlapping time windows under assortment-dependent de-

mand uncertainty.

Other literature on demand management primarily focuses on operational and tactical

decisions, such as time window offering and pricing (e.g., Campbell & Savelsbergh, 2006;

Campbell & Savelsbergh, 2005), as well as service differentiation and capacity control

(e.g., Cleophas & Ehmke, 2014; Hernandez et al., 2017). A central challenge in this con-

text is demand uncertainty: at the operational level, decisions must be made without

knowing which customers will arrive next, creating opportunity costs (Fleckenstein et

al., 2025), while at the tactical level, service providers must forecast aggregate demand

with limited information. Most existing work either assumes deterministic forecasts

(e.g., N. Agatz et al., 2011), formulates the problem as a scenario-based stochastic op-

timization model (e.g., Spliet & Gabor, 2015), or applies sampling-based and predictive

solution approaches, as summarized in the recent methodological review by Fleckenstein

et al. (2023). Our approach applies Monte Carlo sampling to estimate the expected

performance of different time window assortments under stochastic demand.

The design of time window assortments is closely related to the field of assortment

planning, which focuses on selecting a set of products or services to maximize revenue

or service quality subject to operational constraints (Heger & Klein, 2024; Kök et al.,

2015). A central element of this field is customer choice modeling, which captures

how customers respond to the available options. Feng, Shanthikumar, and Xue (2022)

provide a comprehensive review of commonly used choice models and their estimation

methods. In attended home delivery, the offered time window assortment directly in-

fluences customer preferences, as customers may shift their demand from unavailable or

less attractive options to other time windows within the assortment. Modeling these

transitions is essential to capture substitution effects between different time window
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assortments. We simulate demand for consecutive assortments using a multinomial dis-

tribution and apply exogenous transition rates to overlapping options, enabling us to

analyze how customer transitions influence the operational performance of overlapping

versus consecutive time window assortments.

4.3. Assortment Evaluation Model with Stochastic

Demand

We consider an e-grocery retailer that lets customers select a delivery time window from

a menu of options, which we refer to as the time window assortment T = (l, n, o). This

assortment is characterized by the time window length l, the number of time windows

n, and a categorical indicator o specifying whether the time windows are consecutive or

overlapping.

In the following, we outline the key assumptions (Section 4.3.1) and present our de-

mand (Section 4.3.2) and delivery model (Section 4.3.3) within the framework for time

window assortment evaluation introduced in Waßmuth et al. (2025). Table 4.1 provides

a summary of the main notation.

4.3.1. Assumptions

The retailer uses operational delivery shifts, and each time window assortment is asso-

ciated with a particular shift. Moreover, they operate from a single delivery hub for a

certain circular delivery region. Deliveries are affected by the time window constraints

imposed by the time window assortment and the projected demand for that assortment.

Our model builds on the following key assumptions.

Assumption 4.1. Delivery shifts are independent.

We treat delivery shifts as independent. This implies that there are no interactions

between shifts neither in terms of demand nor delivery operations (Waßmuth et al.,

2025).

Assumption 4.2. Time window assortments, customer locations, orders, and vehicle

tours are homogeneous.
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As in Waßmuth et al. (2025), this assumption implies identical gross margins across

time windows and uniform operational conditions, which are characteristic of the con-

tinuous approximation method. However, while Waßmuth et al. (2025) additionally

assume homogeneous demand, meaning that total demand is evenly distributed across

the assortment’s time windows, our model relaxes this assumption by allowing demand

to vary between time windows. This variation captures both statistical fluctuations and

structural differences in customer preferences. As a result, we are able to analyze the

implications of overlapping time windows under demand variability.

Assumption 4.3. The number of vehicle tours is set to cover the maximum demand

across all time windows, thereby preventing any lost demand.

The service provider determines the number of tours (i.e., vehicles used) after demand

is realized, assuming a sufficiently large fleet to ensure that all demand is served. This

assumption removes the need to model lost sales or unserved customers. However, since

demand can vary across the time windows within a delivery shift, meeting peak demand

may lead to idle driver time during periods of lower demand.

Assumption 4.4. The total demand is independent of the time window assortment.

This assumption implies that total demand is independent of both the number and

length of time windows. For example, when overlapping time windows are introduced

to a given consecutive assortment, the total number of orders remains unchanged. Cus-

tomers reallocate their choices across the expanded set of options based on their prefer-

ences, altering only the distribution of demand across time windows while holding the

overall demand volume constant. This modeling choice allows us to isolate the cost

implications of the assortment design, especially those arising from the introduction of

overlaps. The impact of time window length and number on demand volume and overall

profit has already been demonstrated by Waßmuth et al. (2023) and is therefore not the

focus of this study.

Taken together, these assumptions allow us to abstract away from revenue consid-

erations and focus solely on delivery costs. They enable a clean analysis of how the

introduction of overlapping windows affects delivery costs under variable demand distri-

butions.
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4.3.2. Demand Model

The assortment evaluation model presented in Waßmuth et al. (2025) includes a demand

model that assumes demand to be homogeneous, i.e., orders are evenly distributed across

the offered time windows. In this paper, we consider both statistical fluctuations in

demand and structural differences in time window popularity.

We model the demand across all time windows in assortment T as a joint random

vector N T = (N T
1 ,N T

2 , . . . ,N T
n ) that follows a probability distribution PD constrained

such that the total demand equals a fixed value D. A realization of the random vector

is denoted by NT = (NT
1 , N

T
2 , . . . , N

T
n ), and by construction, the sum of the individual

components equals the total demand:
∑n

i=1 N
T
i = D.

4.3.3. Delivery Model

Consider the delivery model introduced in Waßmuth et al. (2025). Removing the homo-

geneous demand assumption alters the model in two key ways. First, the workload must

be determined separately for each time window to capture demand variation. Second, a

decision rule is required to determine the number of tours to deploy from a sufficiently

large delivery fleet once demand is realized. As specified in Assumption 4.3, we set the

number of tours to match the workload of the peak time window, hereafter referred

to as the bottleneck workload. As a result, vehicles may experience idle time during

lower-demand time windows.

In the following, we define our performance metric, the expected total delivery costs,

for consecutive time windows and overlapping time windows, respectively.

Consecutive Time Windows

We consider time window assortments T ∈ T = {(l, n, o) | l ∈ R+, n ∈ N+, o = con.},
representing n consecutive time windows of length l, resulting in a total delivery shift of

length L(T ) := nl.

Following Assumption 4.3, we prevent any lost demand by ensuring that the number

of vehicle tours is sufficient to serve all demand distributed according to N T within the
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given time windows. Consequently, the number of required tours is determined by the

bottleneck workload, i.e., the maximum workload across the time windows:

v(T,N T ) :=
1

l
max

i=1,...,n
wi(N T ), (4.1)

where wi(N T ) := τN T
i +αk

√
RN T

i denotes the workload associated with time window

i.

Both the individual workloads and the resulting number of tours are stochastic, as

they depend on the random demand vector N T , whose realization is only known after

the order cut-off preceding the delivery shift. Thus, we define the expected bottleneck

workload for assortment T ∈ T as

W (T ) := ENT

[
max

i=1,...,n
wi(N T )

]
. (4.2)

The bottleneck workload is convex in the demand vector, as it is defined as the point-

wise maximum of concave workload functions. With constant total demand, increasingly

imbalanced demand distributions lead to higher bottleneck workloads. Figure 4.1 illus-

trates this effect. Interestingly, the concave shape of the individual workload functions

appears almost linear. When one time window dominates the others, the associated de-

mand becomes large enough that the linear service time term outweighs the square-root

routing term, making the workload behave approximately linearly.

By the linearity of expectation, the expected total delivery cost, defined as the product

of the cost per tour and the number of tours, is

C(T ) := ENT

[
Ct(T ) · v(T,N T )

]
=

Ct(T )

l
·W (T ), (4.3)

where Ct(T ) = cL(T )+F represents the cost per tour, with fixed costs F = f+cα 4
3

√
R
π
.

Corollary 4.1. Consider the expected total delivery cost C(T ) of an assortment T ∈ T ,

as defined in Equation (4.3), and let the demand vector N T follow a distribution PD

with fixed total demand volume D. Then, for any realization NT , a higher demand in a

single time window increases the total delivery cost.

This result forms the basis for all subsequent analyses. It follows directly from the

time-based cost function defined in Equation (4.3) and the properties of the bottleneck
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(a) n = 2 consecutive time windows (b) n = 3 consecutive time windows

Figure 4.1.: Illustration of the bottleneck workload for every potential demand distri-
bution when the total demand is fixed at D = 60 (τ = 8, α = 2, k = 0.57, R = 100)

workload. Delivery costs depend on the number of vehicle tours covering the entire

delivery shift, regardless of whether vehicles are driving or waiting. The bottleneck

workload results from the no lost sales assumption (Assumption 4.3), which ensures

that all demand must be served, regardless of how it is distributed across time windows.

When demand is uneven, the number of required tours is determined by the peak load in

the most heavily demanded window. As a result, assortments that lead to more balanced

demand distributions reduce delivery costs and are therefore more cost-efficient.

Overlapping Time Windows

Consider assortments T ∈ T̃ = {(l, n, o) | l ∈ R+, n = 2a+ 1, a ∈ N+, o = ovl.} that con-
sist of n overlapping time windows of length l. We divide these time windows into

n + 1 consecutive delivery intervals of length l
2
, which results in a delivery shift length

of L̃(T ) := n+1
2
l.

Since the above route approximation applies to consecutive periods, we use the same

demand allocation mechanism as in Waßmuth et al. (2025) to convert realized demand

across overlapping time windows into demand over consecutive intervals. Figure 4.2

illustrates this allocation process using an example time window assortment.

Formally, for a given demand realization NT = (NT
1 , N

T
2 , . . . , N

T
n ), we model demand

allocation using weights η ∈ [0, 1]n representing the fraction of the time window demand
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Figure 4.2.: Graphical representation of allocation decisions for an assortment of n = 5
overlapping time windows

that is allocated to the first half of the corresponding time window. We define allocation

functions θ =
(
θi(η,N

T )
)
i=1,...,n+1

that determine the demand in the corresponding

consecutive delivery intervals, where

θi(η,N
T ) :=


ηiN

T
i , i = 1,

(1− ηi−1)N
T
i−1 + ηiN

T
i , i = 2, . . . , n,

(1− ηi−1)N
T
i−1, i = n+ 1.

(4.4)

The total demand volume remains unchanged at
∑n

i=1N
T
i =

∑n+1
i=1 θi(η,N

T ) = D,

and the realized workload in delivery interval i becomes w̃i(η,N
T ) = τθi(η,N

T ) +

αk
√

Rθi(η,NT ).

Given this allocation mechanism, we conclude that demand can be optimally allocated

to minimize the bottleneck workload across the n + 1 delivery intervals of length l
2
.

This, in turn, reduces the required number of tours and lowers overall delivery costs,

emphasizing the added flexibility that overlapping time windows provide in delivery

planning.

As a result, estimating the operational performance of overlapping time windows

corresponds to solving a two-stage stochastic optimization problem where the first stage

evaluates operational performance for a fixed assortment T ∈ T̃ , while the second stage

optimizes the demand allocation based on observed demand realizations NT .

Formally, the expected number of vehicle tours is expressed as

ṽ(T ) :=
2

l
ENT

[
R(T,N T )

]
, (4.5)
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Table 4.1.: Summary of notation used in Chapter IV

General Model Input
α Driving speed [min/km]
c Variable cost per time unit [EUR/min]
D Total demand volume [orders]
f Vehicle-related fixed cost per tour [EUR]
F Fixed cost per tour [EUR]
k Road network factor
R Surface of the delivery region [km2]
τ Delivery service time per order [min]

Assortment Input
l Time window length [min]
n Number of time windows
o Consecutive/overlapping flag

T ∈ T ∪ T̃ Time window assortment

Demand Uncertainty

N T = (N T
1 ,N T

2 , . . . ,N T
n ) Random demand vector [orders]

NT = (NT
1 , N

T
2 , . . . , N

T
n ) Demand realization [orders]

Performance Output
Ct Delivery cost per tour [EUR]
η Allocation weights
L Delivery shift length [min]
v Number of vehicle tours
wi Workload in time window i = 1, . . . , n [min]
W Bottleneck workload [min]

where the expectation of the recourse functionR(T, ·) is taken with respect to the random

demand vector N T . For any realization NT , the recourse function

R(T,NT ) := min
η∈[0,1]n

(
max

i=1,...,n+1
w̃i(η,N

T )

)
(4.6)

represents the optimal bottleneck workload, where w̃i(η,N
T ) denotes the workload al-

located to delivery interval i, given allocation η and demand realization NT .
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To compare consecutive and overlapping assortments effectively, we define the relevant

expected bottleneck workload for an overlapping assortment T ∈ T̃ as

W̃ (T ) := 2 · ENT

[
R(T,N T )

]
. (4.7)

Consistent with the linear cost structure in Equation (4.3), the expected total delivery

cost is then given by

C̃(T ) :=
C̃t(T )

l
· W̃ (T ), (4.8)

with a cost per tour of C̃t(T ) = cL̃(T ) + F .

In the following, we establish an understanding of the structure of optimal second-stage

solutions. Since we consider all parameter values to be positive, the optimal solution of

Equation (4.6) is equivalent to the optimal solution of a linear optimization problem that

minimizes the maximum demand, or bottleneck demand, across the consecutive delivery

intervals, represented by

min
(Z,η)

Z

s.t. Z ≥ θi(η,N
T ) i = 1, . . . , n+ 1,

ηi ∈ [0, 1] i = 1, . . . , n

(4.9)

For general n-dimensional demand, Equation (4.9) can be efficiently solved numeri-

cally, but obtaining a closed-form solution is analytically intractable. To gain structural

insights into the problem, however, we derive a closed-form solution for the special case

of n = 3 overlapping time windows.

Lemma 4.1. Consider a time window assortment T ∈ T̃ consisting of n = 3 overlapping

time windows. Let N = (Ni ≥ 0)i=1,...,3 be a non-negative demand realization with total

demand volume D =
∑3

i=1 Ni > 0. The optimal allocation of demand η∗ yields the

following expressions for the optimal bottleneck demand Z∗:
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Case N1 N3 Z∗

1 0 ≤ N1

D ≤ 1
3 (1−

N3

D ) 0 ≤ N3

D ≤ 1
3 (1−

N1

D ) 1
2N2

2.1 1
3 (1−

N3

D ) ≤ N1

D ≤ 2
3 (1−

N3

D ) 0 ≤ N3

D ≤ 1
4

1
3 (N2 +N1)

2.2 0 ≤ N1

D ≤ 1
4

1
3 (1−

N1

D ) ≤ N3

D ≤ 2
3 (1−

N1

D ) 1
3 (N2 +N3)

3 1
4 ≤ N1

D ≤ 1
2

1
4 ≤ N3

D ≤ 1
2

1
4D

4.1 max
(
2
3 (1−

N3

D ), 1
2

)
≤ N1

D ≤ 1− N3

D 0 ≤ N3

D ≤ 1
2

1
2N1

4.2 0 ≤ N1

D ≤ 1
2 max

(
2
3 (1−

N1

D ), 1
2

)
≤ N3

D ≤ 1− N1

D
1
2N3

Lemma 4.1 partitions the parameter space of the a demand vector N = (Ni ≥ 0)i=1,...,3

into distinct regions within the 2-simplex, each reflecting a specific degree of balance in

demand allocation. For example, Case 3 represents the range of time window demands

that corresponds to a fully balanced demand allocation. The remaining cases each result

in the best possible balance, i.e., the lowest possible bottleneck demand.

(a) Valid parameter range and maximum
demand per time window for optimal allo-
cation decisions

(b) Bottleneck workload resulting from
optimal allocation decisions (D = 60, τ =
8, α = 2, k = 0.57, R = 100)

Figure 4.3.: Illustration of the optimal allocation decisions introduced in Lemma 4.1

Figure 4.3 visualizes this result. Figure 4.3a presents the strategy plot, which parti-

tions the parameter space of possible demand realizations N into regions corresponding

to the optimal allocation strategies. It also visualizes the corresponding bottleneck de-

mand Z∗ across the consecutive delivery intervals. Figure 4.3b presents a numerical
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example of the bottleneck workload resulting from the optimal allocation strategy ap-

plied to all possible demand realizations NT for a given total demand volume and a

given set of delivery region characteristics. In accordance with the property stated in

Corollary 4.1, it generally holds that the more evenly time window demand can be re-

distributed, the lower the relevant bottleneck workload, thereby reducing the number of

tours and total delivery costs.

In conclusion, the analytical solution presented in Lemma 4.1, together with Corol-

lary 4.1, provides strong evidence that the allocation flexibility enabled by overlapping

time windows can lead to substantial efficiency gains compared to consecutive assort-

ments. These findings offer valuable intuition that extends beyond the simplified setting

and remains relevant for more complex problems with n-dimensional demand.

4.4. Theoretical Performance Assessment

The following analyses focus on comparing overlapping time window assortments with

their corresponding consecutive assortment, based on the expected total delivery costs

defined in Equations (4.3) and (4.8). Theoretically assessing the decision to introduce

overlapping time windows is challenging because demand realizations are unknown at

the time of assortment selection, and the inherent uncertainty is difficult to analyze

analytically. Therefore, this section conducts an ex-post analytical assessment of the

performance of consecutive and overlapping time window assortments for given demand

realizations.

Understanding the conditions under which overlapping assortments lead to delivery

cost reductions relative to consecutive assortments offers valuable insights for decision-

making under uncertainty. To this end, we derive performance bounds based on best- and

worst-case demand realizations and identify necessary and sufficient conditions under

which overlapping assortments outperform their consecutive counterparts.

4.4.1. Best- and Worst-case Outcomes

To gain insight into the best- and worst-case outcomes under uncertain demand N T , we

derive upper and lower bounds on the stochastic bottleneck workloads that underlie the

expectations defined in Equations (4.2) and (4.7). We focus on bottleneck workloads,

as they capture the impact of demand uncertainty on total delivery costs.
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For consecutive assortments T ∈ T , the best-case demand realization occurs when

demand is evenly distributed across all time windows, yielding a bottleneck demand of
D
n
. In contrast, the worst-case realization arises when the entire demand is concentrated

in a single time window, resulting in a bottleneck demand of D. Consequently, the

worst-case realization leads to a bottleneck demand that is n times higher than in the

balanced case. This observation forms the basis of the following lemma.

Lemma 4.2. Consider Equations (4.2) and (4.7), let the corresponding demand vectors

N T follow a distribution with fixed total demand volume D, and define wD := τD +

αk
√
RD. We establish bounds on the relevant bottleneck workloads for consecutive and

overlapping time windows, respectively.

a) For an assortment T ∈ T consisting of n consecutive time windows, the bottleneck

workload is bound by

1√
n
wD −

(
1√
n
− 1

n

)
τD ≤ max

i=1,...,n
wi(N T ) ≤ wD

b) For an assortment T ∈ T̃ consisting of n overlapping time windows, the bottleneck

workload is bound by

2√
n+ 1

wD −
(

2√
n+ 1

− 2

n+ 1

)
τD ≤ 2 ·R(T,N T ) ≤

√
2wD −

(√
2− 1

)
τD

Naturally, for consecutive time windows, best-case and worst-case scenarios yield iden-

tical performance when only a single time window is offered (n = 1). As the number of

time windows increases (n → ∞), the performance gap between the best-case and worst-

case scenarios widens, driven by lower bottleneck workloads in the best-case, albeit at

a decreasing rate. This is intuitive: a broader assortment increases demand variability

across options (see also Zhang et al., 2022), which, under favorable conditions, can be

exploited to improve cost efficiency. In the case of overlapping time windows, even small

assortments (n = 3) exhibit a performance gap between the best-case and worst-case

scenarios. This is because near-balanced demand can be effectively smoothed, whereas

inefficiencies caused by concentrated demand can only be partially mitigated.

In Figure 4.4, we compare examples of the best- and worst-case performance of consec-

utive assortments (solid line) and corresponding overlapping assortments (dashed line)
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(a) D = 25 (b) D = 2000

Figure 4.4.: Illustration of performance bounds for consecutive and overlapping time
windows (τ = 8, α = 2, k = 0.57, R = 100)

depending on the assortment size. The consecutive assortment is denoted by Tn̂ ∈ T ,

while the overlapping assortment is represented by T2n̂−1 ∈ T̃ , with each consisting of

n̂ ∈ {1, . . . , 8} consecutive time windows and capturing a total demand volume of D.

Under the best-case demand realization, the figures show that consecutive time win-

dows yield a lower bottleneck workload, and thus lower costs, than overlapping ones,

consistent with the findings of Waßmuth et al. (2025).

Interestingly, even under the worst-case scenario, consecutive time windows consis-

tently outperform their overlapping counterparts. This indicates that the potential for

demand redistribution through overlapping assortments is inherently limited: in certain

instances, the added flexibility does not sufficiently compensate for the increased com-

plexity caused by denser constraints within a fixed delivery shift, as reflected in our

model.

Moreover, the best-case performance of overlapping time windows converges to that

of consecutive ones as the assortment size n increases. In addition, when comparing a

low total demand density of 0.25 customers per km2 (Figure 4.4a) with a high density

of 20 customers per km2 (Figure 4.4b), we observe that both the best- and worst-case

performances of overlapping assortments approach those of consecutive time windows

as total demand increases. The following section examines these observations in greater

detail.

88



Chapter IV. Time Window Assortment Design with Stochastic Demand

4.4.2. When Overlapping Time Windows Are Cost-Efficient

We have seen that overlapping time windows underperform their consecutive counter-

parts in terms of best-case and worst-case delivery costs. Nonetheless, we argue that the

flexibility offered by overlapping windows can reduce costs in scenarios with sufficient

demand imbalances. To identify such cases, we derive necessary and sufficient conditions

under which overlapping assortments outperform consecutive ones.

Consider a consecutive time window assortment Tn̂ = (l, n̂, con.) ∈ T with demand

realizationNTn̂ , and a corresponding overlapping assortment T2n̂−1 = (l, 2n̂−1, ovl.) ∈ T̃
with demand realization NT2n̂−1 . Both assortments contain n̂ consecutive time windows

of length l, such that they yield the same delivery shift length: L(Tn̂) = L̃(T2n̂−1). As a

result, the delivery cost per tour is identical for both assortments: Ct(Tn̂) = C̃t(T2n̂−1).

Therefore, the overlapping assortment T2n̂−1 yields a lower total delivery cost than

the consecutive assortment Tn̂, i.e., C̃(T2n̂−1,N
T2n̂−1) < C(Tn̂,N

Tn̂), if and only if it

results in a lower bottleneck workload: W̃ (T2n̂−1,N
T2n̂−1) < W (Tn̂,N

Tn̂). Accordingly,

the following theorem characterizes the extent of demand redistribution required for

overlapping time windows to be cost-efficient.

Theorem 4.1. Consider Equations (4.3) and (4.8) for any assortments Tn̂ ∈ T and

T2n̂−1 ∈ T̃ , each comprising n̂ consecutive time windows of length l. Let NTn̂ and

NT2n̂−1 denote any respective demand realizations. Define the bottleneck demand N̄ :=

maxi=1,...,n̂ N
Tn̂
i and the allocated bottleneck demand θ̄ := maxi=1,...,2n̂ θi(η

∗,NT2n̂−1) un-

der the optimal allocation η∗. The overlapping assortment outperforms the consecutive

assortment, i.e., C̃(T2n̂−1,N
T2n̂−1) < C(Tn̂,N

Tn̂), if and only if

θ̄

N̄
<

1

2
− d(N̄)

2τ 2

(√
wc(N̄)2 + τ 2 − wc(N̄)

)
<

1

2
,

with d(N̄) = αk
√

R
N̄

and wc(N̄) = τ + d(N̄).

Theorem 4.1 establishes a threshold for the normalized allocation θ̄
N̄
, which determines

whether the introduction of overlapping time windows leads to a reduction in total

delivery costs. It also explains the weaker worst-case performance of such assortments,

stated in Lemma 4.2: in this case, the allocated bottleneck demand θ̄ equals exactly

half of the bottleneck demand N̄ realized under consecutive time windows, whereas it

would need to be strictly lower, by an amount specified in the lemma, to improve cost
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Figure 4.5.: Illustration of the required redistribution level for N̄ ∈ (0, . . . , 200) with
τ = zαk

√
R (α = 2, k = 0.57, R = 100)

efficiency. Notably, the derived threshold enables the evaluation of overlapping time

windows for any potential demand realization resulting from assortment expansion, and

it depends only on four delivery region characteristics: the service time τ , the region

size R, the driving speed α, the road network factor k.

Figure 4.5 visualizes this threshold for varying values of N̄ and different proportions

between service time τ and routing effort αk
√
R, denoted by z := τ

αk
√
R
. The figure

illustrates a key insight: the smaller the bottleneck demand N̄ under consecutive time

windows, the lower the normalized allocation θ̄
N̄

must be for the overlapping assortment

to yield lower costs. When service time dominates routing time (e.g., z > 1), the bound

quickly approaches 1
2
, and stricter conditions on θ̄

N̄
arise only for small values of N̄ . In

contrast, when routing time becomes more significant, lower normalized allocations are

required even for larger values of N̄ .

In conclusion, Theorem 4.1 establishes a tractable necessary and sufficient condition

under which overlapping time windows reduce total delivery costs, given a pair of cor-

responding demand realizations. Moreover, even at the time of the assortment decision,

when exact demand information is unavailable, the condition provides valuable insight

into when cost savings from overlapping time windows are more attainable. That is,

when the derived threshold assumes a higher value, thereby relaxing the constraint on

the normalized allocation θ̄
N̄
. Accordingly, the following conjecture summarizes three

scenarios that are expected to promote cost savings through overlapping time windows.

Conjecture 4.1. The following three scenarios are hypothesized to support the condition

in Theorem 4.1, under which overlapping assortments yield cost savings compared to their

consecutive counterpart: (i) a pronounced imbalance in demand across the consecutive
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assortment, (ii) a high overall demand volume, and (iii) service time dominating routing

time.

These scenarios all relate to the right-hand side of the condition in Theorem 4.1. We

now focus on the left-hand side, the normalized demand θ̄
N̄
. Specifically, we quantify

the maximum demand reallocation under the allocation mechanism defined in Equa-

tion (4.4).

Lemma 4.3. Let T ∈ T̃ be any overlapping assortment, NT any corresponding demand

realization, and consider the allocation mechanism defined in Equation (4.4). Let N̂ :=

maxi=1,...,n N
T
i denote the bottleneck demand, and let θ̄ := maxi=1,...,n+1 θi(η

∗,NT ) be the

allocated bottleneck demand under optimal allocation η∗. Then, the allocation procedure

cannot reduce the bottleneck demand by more than half:

θ̄

N̂
≥ 1

2
.

Corollary 4.2. Overlapping time windows can lead to a reduction in delivery costs only

if customer choice across time windows results in a decrease of the bottleneck demand

relative to the consecutive case, i.e., if N̂ < N̄ .

The corollary follows directly from Theorem 4.1 and Lemma 4.3, establishing a neces-

sary condition for the cost-efficiency of overlapping time windows that relates to customer

behavior. In other words, even when the favorable scenarios stated in Conjecture 4.1

are present, cost savings from overlapping time windows occur only if customers self-

select across time windows in a way that reduces the bottleneck demand relative to the

consecutive case.

Figures 4.6a to 4.6c illustrate this condition across three extreme cases. In both

Figure 4.6a and Figure 4.6b, the bottleneck demand remains at the same level, N̂ = N̄ ,

implying that the condition in Theorem 4.1 cannot be satisfied. Among the illustrated

cases, only the demand pattern in Figure 4.6c allows for potential cost reduction through

the introduction of an overlapping time window, although it does not guarantee it.

Building on this, Figures 4.6d and 4.6e illustrate the complete set of customer substi-

tutions between the consecutive and overlapping assortments, given an initial demand

realization that matches the special case outlined in Figure 4.6c. We indicate scenar-

ios for which adding overlapping time windows does or does not reduce costs, using
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(a) Some low demand is
drawn to the overlapping
time window

(b) All bottleneck demand
is drawn to the overlapping
time window

(c) Some bottleneck de-
mand is drawn to the over-
lapping time window

(d) Cost-efficiency map given an initial
imbalance with a bottleneck demand of
N̄ = 0.55D

(e) Cost-efficiency map given an initial
imbalance with a bottleneck demand of
N̄ = 0.95D

Figure 4.6.: Examples of cost-efficiency results when transitioning from n̂ = 2 consec-
utive to 2n̂− 1 = 3 overlapping time windows for varying customer behavior and a fixed
service-to-routing time ratio of z = 0.7 (α = 2, k = 0.57, R = 100)

two example demand realizations across varying levels of total demand D and a fixed

service-to-routing time ratio z = 0.7: one relatively balanced, with a bottleneck demand

of N̄ = 0.55D (Figure 4.6d), and the other highly imbalanced, with a bottleneck demand

of N̄ = 0.95D (Figure 4.6e).

As expected, the relatively balanced case leaves less room for the overlapping time

windows to be cost-efficient, only for higher total demand and substitution patterns

that favorably support the allocation mechanism in sufficiently relieving bottleneck de-

mand. In contrast, the overlapping assortment outperforms the consecutive counterpart

in nearly all substitution scenarios in the imbalanced case, particularly at higher total

demand levels.

Concluding this section, we have established necessary and sufficient conditions at the

demand realization level that determine when adding overlapping time windows reduces

delivery costs compared to the corresponding consecutive assortment. At the assortment

decision level, these results suggest that overlaps can create value when they are expected
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to facilitate effective demand redistribution. However, since our analysis focuses solely

on cost effects, we do not account for the potential of overlapping time windows to

attract additional demand – a dimension addressed in Waßmuth et al. (2025).

4.5. Monte Carlo Simulation

Given the conditions for cost-efficient overlapping assortments outlined above, we now

assess how likely these conditions are to hold under stochastic demand. To this end,

we employ Monte Carlo simulation to estimate and compare the expected total deliv-

ery costs of overlapping time window assortments and their corresponding consecutive

alternatives. The comparison spans various combinations of key parameters related to

customer behavior, total demand volume, and the ratio of service time to routing time.

In Section 4.5.1, we outline the experimental design of our Monte Carlo simulation.

Section 4.5.2 presents and discusses the corresponding numerical results.

4.5.1. Experimental Design

Consider a time window assortment Tn̂ = (l, n̂, con.) ∈ T , consisting of n̂ consecutive

time windows, each of length l. Let T2n̂−1 = (l, 2n̂ − 1, ovl.) ∈ T̃ be a corresponding

overlapping assortment that covers the same time span using 2n̂ − 1 overlapping time

windows of length l. These assortments yield the same total demandD, the same delivery

shift length, L(Tn̂) = L̃(T2n̂−1), and the same delivery cost per tour, Ct(Tn̂) = C̃t(T2n̂−1).

Consequently, comparing the expected total delivery costs, C(Tn̂) and C̃(T2n̂−1), reduces

to comparing the expected bottleneck workloads, W (Tn̂) and W̃ (T2n̂−1). Ultimately,

our objective is to estimate the expected relative difference between these bottleneck

workloads.

To do so, we draw m samples from a consecutive demand distribution N Tn̂ ∼ PD that

satisfies a fixed-sum property, with each realization denoted by NTn̂,j for j = 1, . . . ,m.

We first introduce the specific probability distribution used in our analysis. Further,

we introduce the specific customer behavior based on which each demand realization

for the consecutive assortment is transformed into a corresponding realization for the

overlapping assortment, denoted by NT2n̂−1,j. For each sample and scenario that we

introduce afterwards, we compute the corresponding bottleneck workloads, denoted by

W (Tn̂,N
Tn̂,j) and W̃ (T2n̂−1,N

T2n̂−1,j), respectively.
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We obtain the Monte Carlo estimator for the expected relative difference of bottleneck

workloads as

∆̂W (n̂) =
1

m

m∑
j=1

100×

(
W̃ (T2n̂−1,N

T2n̂−1,j)−W (Tn̂,N
Tn̂,j)

W (Tn̂,NTn̂,j)

)
. (4.10)

By the law of large numbers, the estimator ∆̂W (·) converges to the true expectation as

m → ∞. Note that evaluating each instance of W̃ (T2n̂−1,N
T2n̂−1,j) requires solving the

linear optimization problem defined in Equation (4.9).

Probability Distribution

Consider any assortment T = (l, n, o) consisting of n time windows. We model the

corresponding demand vector N T using a multinomial distribution with total demand

D and probability vector p = (p1, p2, . . . , pn), where pi ≥ 0 and
∑n

i=1 pi = 1:

(N T
1 ,N T

2 , . . . ,N T
n ) ∼ Multinomial(D,p). (4.11)

The multinomial distribution forms the basis of the Multinomial Logit (MNL) model,

a widely used model for representing customer choice over discrete assortments, partic-

ularly in operations and revenue management contexts (Feng, Shanthikumar, & Xue,

2022). Due to its tractability and closed-form expressions for choice probabilities, the

MNL model is frequently employed in assortment and price optimization (see e.g., K. Tal-

luri & Van Ryzin, 2004; R. Wang, 2012). Despite its simplifying assumptions, it provides

a practical foundation for modeling customer preferences in large-scale decision-making

systems.

In our setting, the multinomial distribution captures the allocation of total demand

D across the time windows in assortment T , under the assumption that each unit of

demand independently selects time window i with probability pi. Importantly, we do

not consider an outside option, as we abstract from any revenue effects. That is, all

customers are assumed to make a selection from within the offered time windows.

Formally, the probability mass function of the multinomial distribution is given by

P (N T
1 = x1, . . . ,N T

n = xn) = D!
x1!x2!···xn!

∏n
i=1 p

xi
i , where xi ∈ Z≥0 and

∑n
i=1 xi = D.

Figure 4.7 depicts this function for different demand volumes D and several probability

vectors p, using the example of n = 2 time windows. As the demand volume increases,
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(a) D = 25 and p =
(0.5, 0.5)

(b) D = 25 and p =
(0.75, 0.25)

(c) D = 25 and p =
(0.9, 0.1)

(d) D = 500 and p =
(0.5, 0.5)

(e) D = 500 and p =
(0.75, 0.25)

(f) D = 500 and p =
(0.9, 0.1)

Figure 4.7.: Probability mass function of the Multinomial distribution for n = 2 time
windows

the distribution becomes increasingly concentrated around its mean. In contrast, for

small demand volumes, the observed allocations exhibit substantial variability due to

the discrete nature of the multinomial distribution and the relatively high variance when

the number of trials is low.

In our numerical study, we sample demand realizations NTn̂,j of consecutive assort-

ments Tn̂ = (l, n̂, con.) ∈ T from the multinomial distribution Multinomial(D,p) with

total demand D and probability vector p = (p1, . . . , pn̂).

Customer Behavior

Comparing consecutive and overlapping assortments Tn̂ and T2n̂−1 requires accounting

for customer substitution behavior when overlapping time windows are introduced. In
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Figure 4.8.: Illustration of customer transitions for n̂ = 2 consecutive time windows

other words, we must capture how customer demand redistributes as the assortment

expands from consecutive to overlapping windows. To ensure this, a sample for the

overlapping assortment NT2n̂−1,j must be drawn conditional on a sample for the con-

secutive assortment NTn̂,j, reflecting consistent customer choice behavior across both

assortments.

Accordingly, we sample demand for the overlapping assortment using a two-step pro-

cedure. First, we draw a realization NTn̂,j of demand for the consecutive assortment, as

described above. In the second step, we derive the corresponding realization for the over-

lapping assortment by applying a transformation function, NT2n̂−1,j := subst(NTn̂,j, q),

based on a transition parameter q ∈ [0, 1]. This parameter specifies the proportion of

customers in each consecutive time window who are expected to shift to one of the

adjacent overlapping time windows. Figure 4.8 illustrates the underlying logic of these

customer transitions.

Scenario Definition

We carefully define the set of scenarios to test our hypotheses in Conjecture 4.1, to deepen

our understanding of the impact of different demand distributions and transition rates,

and to assess the impact of the time window assortment size. Throughout all subsequent

analyses, we fix the delivery region size to R = 100 km2, the driving speed to 30 km/h,

(α = 2 min/km), and the road network factor to k = 0.57.

First, we consider consecutive assortments T2 ∈ T consisting of n̂ = 2 time windows,

and corresponding overlapping assortments T3 ∈ T̃ comprising 2n̂ − 1 = 3 time win-

dows. We evaluate three levels of the service-to-routing time ratio, z ∈ {0.1, 0.7, 1.5},
corresponding to service times τ of approximately 1, 8, and 17 minutes. We further con-

sider three levels of the transition rate, q ∈ {0.1, 0.5, 0.9}, and three levels of the total

demand volume, D ∈ {25, 500, 2000}. Assuming a market share of 3%, these demand

volumes translate into realistic customer densities representative of small-sized (0.25
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customers/km2), medium-sized (5 customers/km2), and large-sized (20 customers/km2)

cities. Finally, we consider three probability vectors representing different degrees of

demand imbalance across the consecutive assortment:

p ∈
{(

1

2
,
1

2

)
,

(
3

4
,
1

4

)
,

(
9

10
,
1

10

)}
.

We employ a full factorial design, resulting in 3× 3 = 9 parameterizations of the multi-

nomial distribution and a total of 3× 3× 9 = 81 distinct scenarios.

We extend the analysis to consecutive assortments T3 ∈ T consisting of n̂ = 3 time

windows, and their corresponding overlapping assortments T5 ∈ T̃ comprising 2n̂−1 = 5

time windows. We evaluate analogous scenarios to gain insights into how the assortment

size influences the cost-efficiency of overlapping time windows. Specifically, we retain

the same values for the parameters D, z, and q, and consider five probability vectors:

p ∈
{(

1

3
,
1

3
,
1

3

)
,

(
1

4
,
2

4
,
1

4

)
,

(
2

5
,
1

5
,
2

5

)
,

(
2

4
,
1

4
,
1

4

)
,

(
1

5
,
2

5
,
2

5

)}
,

resulting in 3× 5 = 15 parameterizations of the multinomial distribution and a total of

3× 3× 15 = 135 distinct scenarios.

4.5.2. Numerical Results

We carry out the computational experiments on a Fujitsu Lifebook running Windows

10, equipped with an Intel(R) Core(TM) i5-10310U CPU @ 1.70GHz and four cores.

We implement the Monte Carlo simulation in Python 3.13.5 and we solve instances of

the linear optimization problem defined in Equation (4.9) using the commercial solver

Gurobi Optimizer 12.0.3. All optimization problems are solved to optimality.

For all experiments, we choose the Monte Carlo sample size m such that differences of

±1 in the estimated expected relative difference ∆̂W (n̂) are statistically significant at the

95% confidence level. To reduce simulation variability, we use the same set of random

samples, drawn from Multinomial(D,p), across all combinations of z and q.
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Impact of Demand Distribution, Volume, and Service-to-Routing Ratio on

Overlap Performance

In this section, we test the claims stated in Conjecture 4.1, focusing on the scenario where

an overlapping time window is added to n̂ = 2 consecutive time windows. We consider

the aggregated average outcomes by parameter setting, summarized in Table 4.2, and

the individual interaction effects presented in Figure 4.9, which shows the results of the

full factorial analysis. This twofold analysis helps isolate and better understand the

individual influence of the three key factors discussed in Conjecture 4.1: (i) the degree

of demand imbalance in the consecutive assortment, characterized by the distribution

vector p, (ii) the total demand volume D, and (iii) the service-to-routing time ratio z.

Table 4.2.: Aggregated summary of parameters p, D, and z for n̂ = 2 consecutive time
windows

Parameter Success Rate1 Avg. ∆̂W (2)

p = (0.5, 0.5) 18.52 27.71
p = (0.75, 0.25) 51.85 4.46
p = (0.9, 0.1) 51.85 -4.77

D = 25 29.62 13.64
D = 500 44.44 7.82
D = 2000 48.15 5.92

z = 0.1 22.22 17.88
z = 0.7 37.04 5.90
z = 1.5 62.96 3.61

1 Percentage of scenarios where the overlapping assort-
ment led to a statistically significant cost reduction
compared to the consecutive assortment.

The success rates reported in Table 4.2 show that overlapping assortments outperform

consecutive ones more frequently when demand is unevenly distributed across the con-

secutive time windows. For the imbalanced settings p = (0.75, 0.25) and p = (0.9, 0.1),

cost savings are achieved in over 50% of the evaluated scenarios, whereas for the balanced

case p = (0.5, 0.5), the success rate drops significantly to 18.52%. A similar pattern

emerges for the other parameters: the success rate increases monotonically with both the

total demand volume D and the service-to-routing time ratio z. These findings support

the claims made in Conjecture 4.1, which posit that pronounced demand imbalances,
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Figure 4.9.: Monte Carlo simulation results for n̂ = 2 consecutive time windows

high total demand, and a service time that dominates routing time all contribute to

potential cost-savings when adopting overlapping time windows.

The aggregated results in Table 4.2 reveal a clear monotonic relationship between each

of the three assessed parameters and both the success rate and the estimated expected

relative difference of bottleneck workloads ∆̂W (2), indicating a positive correlation in

all cases. For the probability vector p and the service-to-routing time ratio z, this
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relationship also holds consistently at the level of individual scenarios, as shown in

Figure 4.9. In these cases, every instance exhibits a performance improvement as the

corresponding parameter value increases.

The consistent positive impact of demand imbalance on the relative cost efficiency

of overlapping time windows is intuitive: overlapping windows introduce flexibility that

allows for reassigning customers to adjacent time windows. This flexibility helps to

smoothen out peaks in demand, leading to better-balanced delivery tours and fewer

tours required to meet all demand. As a result, the more imbalanced the initial demand

across time windows, the greater the potential benefit from overlap-induced reallocation.

Interestingly, the success rate in Table 4.2 for balanced demand p = (0.5, 0.5) shows that

overlaps can improve cost performance in 18.52% of the evaluated cases. This suggests

that overlaps are not only useful for mitigating structural imbalances (e.g., in expected

demand), but also for buffering statistical fluctuations around the expectation.

The effect of the service-to-routing time ratio z is less straightforward. One expla-

nation might be the differing marginal behaviors of service and routing times. Service

time grows linearly with the number of customers, whereas routing time exhibits de-

creasing marginal costs. When routing time dominates, the negative impact of demand

peaks is softened by dense customer clustering, which reduces routing effort per stop.

Conversely, when service time dominates, concentrated demand peaks increase overall

workload without much relief from routing efficiencies. In these cases, smoothing de-

mand via overlapping time windows becomes especially beneficial, as it helps evenly

distribute service effort and reduce total costs.

In contrast, Figure 4.9 shows that the impact of the total demand volume D is not

consistent across all parameter settings. While a higher D tends to enhance cost savings

in scenarios with initial demand imbalances, this pattern does not hold under balanced

demand when the expected number of transitions to overlapping options is high. In such

cases, increasing D can actually worsen the performance of overlapping time windows.

A possible explanation is that increasing D raises the absolute number of customer

transitions to overlapping time windows. This can create new, more pronounced bottle-

necks, thereby worsening the performance of overlapping assortments. In contrast, the

performance of consecutive assortments may continue to improve with higher customer

density. As a result, the relative cost difference between the two assortment types in-

creases with growing demand volume. Thus, while higher demand volumes can enhance

100



Chapter IV. Time Window Assortment Design with Stochastic Demand

the cost-efficiency of overlapping assortments, this effect is sensitive to the structure of

the underlying demand distribution and customer behavior.

Impact of Demand Transitions on Overlap Performance

This section assesses the impact of the transition rate q, which determines the proportion

of customers who shift from a time window in the original consecutive assortment to

an added overlapping time window. Together with the initial demand distribution, the

transition rate shapes how demand spreads across the overlapping assortment. Specif-

ically, the transition rate determines how the bottleneck demand N̂ in the overlapping

assortment compares to the bottleneck demand N̄ in the consecutive assortment, a re-

lationship that is central to Corollary 4.2, and ultimately influences the cost-efficiency

of the overlapping design relative to its consecutive counterpart.

Table 4.3.: Aggregated summary of parameter q for n̂ = 2 consecutive time windows

Parameter Success Rate1 Avg. ∆̂W (2)

q = 0.1 55.56 0.67
q = 0.5 66.67 -9.31
q = 0.9 0.00 36.03

1 Percentage of scenarios where the overlapping as-
sortment led to a statistically significant cost re-
duction compared to the consecutive assortment.

The aggregated results in Table 4.3 reveal a non-monotonic relationship between the

transition rate q and both the success rate and the estimated expected relative difference

of bottleneck workloads ∆̂W (2). At low transition rates, expected delivery costs show

little difference between the assortments. However, when customers transition more

evenly, the overlapping assortment performs significantly better. In contrast, when the

additional overlapping option attracts most of the demand, performance deteriorates

sharply: there is not a single scenario where overlaps improve cost efficiency in that

case.

The success rates can be explained analytically based on how we model customer

transitions. For a consecutive assortment T2 and an overlapping assortment T3, the

bottleneck demand of the overlapping assortment is given by N̂ = qD. According to

Corollary 4.2, a necessary condition for the overlapping assortment to reduce costs is
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that N̂ < N̄ . However, across all our settings, the expected bottleneck demand in the

consecutive assortment satisfies N̄ ≤ 0.9. Therefore, when the transition rate is q = 0.9,

the overlapping time window becomes the new bottleneck with N̂ = 0.9D, meaning the

necessary condition N̂ < N̄ is not satisfied in expectation. This explains the observed

success rate of 0%.

In contrast, when the transition rate is low at q = 0.1, the overlapping time window

receives only 0.1D of demand, so the bottleneck remains in one of the consecutive time

windows at N̂ = 0.9N̄ . This satisfies the necessary condition N̂ < N̄ . Whether the

necessary and sufficient condition in Theorem 4.1 is also met then depends on the values

of the remaining parameters. For a balanced transition rate of q = 0.5, the overlapping

time window becomes the new bottleneck with N̂ = 0.5D. This still satisfies the neces-

sary condition in almost all cases, except when demand over the consecutive assortment

is perfectly balanced, that is, when N̄ = 0.5D.

Furthermore, Figure 4.9 suggests that a bottleneck at N̂ = 0.5D (as in the case of

q = 0.5) is more likely to satisfy the condition in Theorem 4.1 than a bottleneck at

N̂ = 0.9N̄ (as in the case of q = 0.1). This implies that more balanced transitions tend

to facilitate better smoothing of demand imbalances. Only in cases of initially balanced

demand does a transition rate of q = 0.5 perform similarly or slightly worse than q = 0.1,

likely because the demand is already evenly distributed and small fluctuations can be

effectively absorbed by minor demand transitions.

Impact of Assortment Size on Overlap Performance

While neither of the conditions in Theorem 4.1 and Corollary 4.2 directly depends on

the number of time windows, Lemma 4.2 reveals an explicit dependency in the best-

and worst-case performance bounds. Specifically, the gap between performance bounds

widens as the best-case performance improves with increasing n, albeit at a decreasing

rate, indicating that increased demand variability in larger assortments can positively

impact expected delivery costs. To further explore this observation, we examine the

impact of assortment size, defined as the number of offered time windows, by comparing

earlier results for T2 ∈ T and T3 ∈ T̃ , which consist of n̂ = 2 consecutive time windows,

with new results for T3 ∈ T and T5 ∈ T̃ , which consist of n̂ = 3 consecutive time

windows.
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Table 4.4.: Comparative aggregated summary of parameters

Parameter Success Rate1 Avg. ∆̂W (n̂)

n̂ = 2 n̂ = 3 n̂ = 2 n̂ = 3 n̂ = 2 n̂ = 3

p = (0.5, 0.5) p = (0.33, 0.33, 0.33) 18.52 44.44 27.71 13.05
p = (0.75, 0.25) — 51.85 — 4.46 —
p = (0.9, 0.1) — 51.85 — -4.77 —
— p = (0.25, 0.5, 0.25) — 77.78 — -19.20
— p = (0.4, 0.2, 0.4) — 40.74 — 6.57
— p = (0.5, 0.25, 0.25) — 48.15 — 2.29
— p = (0.2, 0.4, 0.4) — 48.15 — 7.41

D = 25 29.62 42.22 13.64 6.67
D = 500 44.44 55.56 7.82 0.62
D = 2000 48.15 57.78 5.92 -1.20

z = 0.1 22.22 17.78 17.88 12.21
z = 0.7 37.04 66.67 5.90 -1.64
z = 1.5 62.96 71.11 3.61 -4.50

q = 0.1 55.56 68.89 0.67 -7.66
q = 0.5 66.67 77.78 -9.31 -9.98
q = 0.9 0.00 8.89 36.03 23.71

1 Percentage of scenarios where the overlapping assortment led to a statistically signif-
icant cost reduction compared to the consecutive assortment.

Table 4.4 compares the impact of adding overlapping time windows to assortments

with n̂ = 2 and n̂ = 3 consecutive time windows, based on the parameter settings

introduced in Section 4.5.1. Note that the probability vector p = (p1, p2, . . . , pn̂) is not

directly comparable across assortment sizes, as it depends on n̂. This dependency is

carefully accounted for in all interpretations and explicitly indicated in Table 4.4: each

row represents a pair of comparable parameter settings for the assortment sizes n̂ = 2

and n̂ = 3. A dash denotes the absence of a comparable setting, while blank cells indicate

identical settings. Despite these differences, the selected scenarios ensure comparable

coverage of the parameter space across both assortment sizes.

First, we observe that the aggregate-level relationships involving the parameters D, z,

and q remain consistent across both the smaller and larger assortments. Moreover, the

larger assortment consistently outperforms the smaller one at the aggregated parameter

level across all configurations, except in the case where z = 0.1. For this configuration,
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Figure 4.10.: Monte Carlo simulation results for n̂ = 3 consecutive time windows and
D = 25

the success rate is 22.22% for the small assortment but only 17.78% for the large assort-

ment. However, since the number of scenarios differs between the two assortments, it is

also helpful to consider absolute counts: the large assortment achieves a cost reduction

in 8 out of 45 scenarios, while the small assortment does so in only 6 out of 27 (see

Appendix C for the full table of results).

The average relative difference ∆̂W (·) further supports this interpretation, decreasing

from a 17.88% higher bottleneck workload when overlaps are added to the small assort-

ment to only 12.21% in the case of the larger assortment. These results suggest that the

observed deviation for z = 0.1 does not indicate a structural effect associated with low

service-to-routing time ratios, but is more likely attributable to the specific composition

of the distribution vector p. Setting aside this point, we conclude that assortment size

generally exerts a positive effect on the cost-efficiency of overlapping time windows.

Lastly, we assess the results based on the distribution vector p. The only vector setting

comparable between the small and large assortments is the case of expected balanced
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demand. In this case, Table 4.4 shows that the larger assortment again outperforms

the smaller one: the success rate increases from 18.52% to 44.44%, indicating a cost

improvement in nearly half of the cases, while the average relative performance difference

decreases from a 27.71% higher bottleneck workload to only 13.05%.

When assessing the performance of the large assortments across all considered con-

figurations of p, one might expect overlapping time windows to perform worst under

the balanced vector p = (0.33, 0.33, 0.33), as hypothesized in Conjecture 4.1. Interest-

ingly, however, the imbalanced probability vector p = (0.4, 0.2, 0.4) has a slightly lower

success rate (11 out of 27) compared to the balanced vector (12 out of 27). However,

it outperforms the balanced case in terms of average relative difference in bottleneck

workloads: 6.57% versus 13.05%, respectively.

To explain this deviation, we analyze individual interaction effects presented in Fig-

ure 4.10, an excerpt from the Monte Carlo results for a small demand volume of D = 25.

We find that the imbalanced vector underperforms the balanced one when the transition

rate is low (q = 0.1), accounting for the deviation noted above. One explanation for

this observation is that the imbalanced vector leads to demand distributions in which

fewer customers choose the middle time window, creating peaks at the beginning and

end of the delivery shift. When overlaps are introduced but only a few customers tran-

sition, these peaks are amplified, resulting in worse performance than in the balanced

case, where overlaps help smoothen statistical demand fluctuations. This finding under-

scores the importance of jointly considering the initial demand distribution and expected

customer transitions when assessing the value of overlapping time windows.

4.6. Conclusion

This paper advances the understanding of time window assortment design for attended

home delivery by focusing on the role of overlapping time windows under demand un-

certainty. Building on previous work that introduced time window assortment design

as a planning problem, the specific value of time window overlaps in mitigating oper-

ational inefficiencies caused by demand fluctuations remained unclear. To address this

gap, we extend an established assortment evaluation model to incorporate demand vari-

ability and develop analytical and simulation-based results that shed light on the cost

implications of offering overlapping time windows.
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We derive necessary and sufficient conditions under which demand realizations for

overlapping time windows lead to lower total delivery costs compared to consecutive

designs. Since demand is still uncertain at the time of the assortment decision, we use

the theoretical results to form hypotheses about when overlaps are likely to reduce costs.

To test these hypotheses and explore the interaction effects between key parameters, we

conduct a Monte Carlo simulation that quantifies the expected performance gap between

overlapping and consecutive assortments.

Our results show that overlapping time windows offer the flexibility to effectively

smooth operational bottlenecks by reallocating workload across adjacent time windows,

but only under certain conditions. Their effectiveness depends on the interplay between

operational parameters, demand characteristics, and customer behavior. Overlaps are

particularly beneficial when service time dominates routing time and total demand is

high. However, their success hinges on the relationship between transition rates and the

initial demand distribution: in some cases, the added flexibility is underutilized and fails

to sufficiently smooth operational bottlenecks, falling short of offsetting the increased

constraint density introduced by the overlaps; in others, new bottlenecks arise, unavoid-

ably driving up overall delivery costs. Furthermore, while initial demand imbalances

can amplify the benefits of overlaps, this effect is not universal and can be offset by

unfavorable transition dynamics. Lastly, larger assortments tend to benefit more from

overlaps due to greater demand variability, provided demand remains sufficiently dis-

persed. Overall, overlaps should be viewed not as a default feature but as a strategic

design choice, whose value strongly depends on expected demand patterns and customer

choice behavior.

Our analysis relies on several simplifying assumptions that frame the interpretation

of the results. Specifically, we focus exclusively on the cost perspective, assessing the

operational efficiency of overlapping time windows without considering their potential to

attract additional demand (Waßmuth et al., 2025). Additionally, customer transitions

between time windows are modeled deterministically through an exogenous parameter q,

which limits the behavioral complexity captured by the model. Consequently, while our

findings provide valuable insights into the structural factors affecting the cost efficiency

of overlapping time windows, they may not fully capture all possible interaction effects

simultaneously.
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Future research could jointly assess the cost and revenue implications of overlapping

time windows and endogenize customer choice behavior when transitioning to overlap-

ping time window, allowing for a richer analysis of interaction effects. Another promising

avenue lies in the joint optimization of time window assortment design and capacity plan-

ning. Finally, empirical validation using operational data could help test the model’s

assumptions and assess the practical relevance of the findings in real-world delivery

environments.
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Appendix A

Proofs of Chapter III

Proof of Lemma 3.1. First, we introduce the index i = 1, . . . , n to distinguish time win-

dows in a given overlapping time window assortment T ∈ T̃ . Consider allocating a

given demand N = (Ni)i=1,...,n from n overlapping time windows of length l to (n + 1)

consecutive delivery intervals of length l
2
. We model demand allocation using weights

η = (ηi ∈ [0, 1])i=1,...,n which represent the fraction of demand allocated to the first

half of the corresponding time window. Accordingly, we define allocation functions

θ = (θi(η,N))i=1,...,n+1 that determine the demand in the consecutive delivery intervals.

Second, the delivery costs C̃(T,θ) = C̃t(T )·ṽ(T,θ) depend on the allocated demand only

for the number of tours. Given that vehicle tours are homogeneous (Assumption 3.2),

the number of vehicle tours becomes

ṽ(θ) =
2

l
max

i=1,...,n+1

(
τθi(η,N) + αk

√
Rθi(η,N)

)
Consequently, to minimize the delivery costs after demand allocation, we seek the

weights (i.e., the demand allocation) that minimize the largest workload per delivery

interval, resulting in the following nonlinear optimization model:

min
η

max
i=1,...,n+1

(
τθi(η,N) + αk

√
Rθi(η,N)

)
s.t. θi(η,N) = ηiNi i = 1,

θi(η,N) = (1− ηi−1)Ni−1 + ηiNi i = 2, . . . , n,

θi(η,N) = (1− ηi−1)Ni−1 i = n+ 1,

ηi ∈ [0, 1] i = 1, . . . , n
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Obviously, the demand allocation that minimizes the largest workload per delivery in-

terval is θ∗ = 1n+1 ·
(

1
n+1

∑n
i=1Ni

)
, meaning that an even distribution of demand across

consecutive delivery intervals is an optimal solution to the above problem. Given ho-

mogeneous demand (Assumption 3.2), the initial demand is evenly distributed over the

assortment, so there exist optimal weights η∗ such that this solution is feasible.

Proof of Lemma 3.2. Consider Equation (3.1) for a given demand density δ = N
R

> 0

and a maximum vehicle capacity Q̄ > 0. For time window assortments T ∈ T , we get:

Case 1: The maximum vehicle capacity is more constraining than the (time window-

driven) required vehicle capacity. Formally, this means:

Q̄ < Q(T,N) =
L(T )

wc(N)
=

nl

τ + αk√
δ

⇔ Q̄

n
<

l

τ + αk√
δ

Case 2: The maximum vehicle capacity is more constraining than the total demand.

Formally, this means:

Q̄ < nN = nδR

↔ Q̄

n
< δR

Proof of Theorem 3.1. Consider Equations (3.1) and (3.2) and a maximum vehicle ca-

pacity Q̄ > 0, and let the net margin per order be positive, r > cτ . For time window

assortments T ∈ T , we get:

110



Appendix A. Proofs of Chapter III

We first show that the profit function is convex in the time window demand N > 0:

P (T,N) = rnN − Ct(T )

l
(τN + αk

√
RN)

∂P

∂N
(T,N) = nr − Ct(T )

l

(
τ +

1

2
αk

√
R

N

)
∂2P

∂N2
(T,N) =

Ct(T )

4l
αk

√
R

N3
> 0

We then derive the conditions on the delivery shift length L(T ) that lead to the

performance regions of a) unprofitable, b) multi-tour profit, and c) single-tour profit.

First, we show that for small L(T ), the profit function is convex decreasing ∀N > 0:

∂P

∂N
(T,N)

!

≤ 0, ∀N > 0

⇔ rn− Ct(T )

l

(
τ +

1

2
αk

√
R

N

)
≤ 0, ∀N > 0

⇔ rL(T ) ≤ Ct(T )

(
τ +

1

2
αk

√
R

N

)
, ∀N > 0

⇔ rL(T )− Ct(T )τ ≤ Ct(T )

(
1

2
αk

√
R

N

)
, ∀N > 0

⇔ rL(T )− Ct(T )τ ≤ 0

⇔ rL(T )− (cL+ F )τ ≤ 0

⇔ L(T ) ≤ Fτ

r − cτ

Conversely, we know that for L(T ) > Fτ
r−cτ

, the exists a global minimum at a N > 0

after which P (T,N) is increasing. Next, we need to ensure that v(T,N) ≥ 1. We break

even for exactly one complete vehicle tour, given a demand N∗, if and only if the profit

contribution of N∗ equals the fixed cost per tour:
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(r − cwc (N∗))nN∗ !
= F

⇔ (r − cτ)nN∗ − cnαk
√
RN∗ = F

⇔ (N∗)2 − 2(r − cτ)F + n(cαk)2R

n(r − cτ)2
N∗ +

(
F

n(r − cτ)

)2

= 0

⇔ N∗(n) :=
2(r − cτ)F + n(cαk)2R

2n(r − cτ)2
+

√(
2(r − cτ)F + n(cαk)2R

2n(r − cτ)2

)2

−
(

F

n(r − cτ)

)2

The break-even shift length LP (N) for any demand N > 0 is

P (T,N)
!
= 0

⇔ (r − cwc(N))nN − F
w(N)

l
= 0

⇔ l =
Fw(N)

(r − cwc(N))nN

⇔ nl =
Fw(N)

(r − cwc(N))N

⇔ LP (N) :=
Fwc(N)

r − cwc(N)

Consequently, for L(T ) ≥ Fwc(N∗(n))
r−cwc(N∗(n))

, the delivery system needs to prioritize utilizing

one complete vehicle tour. It holds that nN∗(n)w (N∗n)) = Fwc(N∗(n))
r−cwc(N∗(n))

.

Having identified the performance regions defined by L(T ), we proceed to characterize

the profit behavior within each region:

a) Consider L(T ) ≤ Fτ
r−cτ

: Since P (T,N) is convex decreasing in N and P (T, 0) = 0,

there exists no demand N > 0 such that P (T,N) ≥ 0.

b) Consider L(T ) ∈
(

Fτ
r−cτ

, Fwc(N∗(n))
r−cwc(N∗(n))

)
: Since there exists a global minimum at

a N > 0 after which P (T,N) is increasing and since P (T, 0) = 0, there exists

a break-even demand NP with P (T,NP ) = 0 after which the profit function is

positive and increasing. We solve for NP :
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P (T,NP )
!
= 0

⇔ rnNP − Ct(T )

l
(τNP + αk

√
RNP ) = 0

⇔ rL(T )NP − Ct(T )τNP − Ct(T )αk
√
RNP = 0

⇔ NP (rL(T )− Ct(T )τ) = Ct(T )αk
√
RNP

⇔
√
NP =

Ct(T )αk
√
R

rL(T )− Ct(T )τ

⇔ NP (T ) =

(
Ct(T )αk

√
R

rL(T )− Ct(T )τ

)2

> 0

⇔ δP (T ) :=
NP (T )

R
=

(
Ct(T )αk

rL(T )− Ct(T )τ

)2

with rL(T )− Ct(T )τ > 0 since L(T ) > Fτ
r−cτ

.

Second, we assess the behavior of the required vehicle capacity inN > 0 to estimate

the required capacity if we were to increase demand beyond the break-even point:

Q(T,N) =
L(T )

wc(N)

∂Q

∂N
(T,N) =

L(T )αk
√

R
N

2w(N)
> 0

Thus, the required vehicle capacity is strictly increasing in N > 0. The vehicle

capacity required to serve demand density δP (T ) is Q(T, δP ) = L(T )

τ+ αk

δP (T )

. Therefore,

for any density δ ≥ δP (T ) and any shift length L(T ) within the specified range,

the required vehicle capacity satisfies Q(T, δ) ≥ L(T )

τ+ αk√
δP (T )

.

c) Consider L ≥ Fwc(N∗(n))
r−cwc(N∗(n))

: We determine the minimum demand that ensures at

least one complete vehicle tour. So we look for a demand N v with a workload

equal to the time window length implied by the shift length L(T ) = nl:
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l
!
= τN v + αk

√
RN v

⇔ N v(l) =
2lτ + (αk)2R− αk

√
R
√

4lτ + (αk)2R

2τ 2

⇔ δv(l) :=
N v(l)

R
=

2lτ + (αk)2R−
√

(2lτ + (αk)2R)2 − (2lτ)2

2Rτ 2

Since the break-even demand decreases in L(T ), we have N v(l) ≥ NP (T ) > 0.

As profits increase in N ≥ NP (T ), this property implies non-negative profits,

P (T,N v(l)) ≥ 0.

Second, we estimate the required capacity if we were to increase demand beyond

the tour-utilization point. The vehicle capacity required to serve demand density

δv(l) isQ(T, δv) = nδv(l)R. Since the required vehicle capacity is strictly increasing

in N > 0, it holds that for any density δ ≥ δv(l) and any shift length L(T ) within

the specified range, the required vehicle capacity satisfies Q(T, δ) ≥ nδv(l)R.

Proof of Lemma 3.3. Consider Equations (3.1) and (3.2) for a given number of n ≥ 1

consecutive time windows and demand per time window N(l) that is independent of the

time window length, ∂N
∂l
(l) = 0. For time window lengths l > 0 and demand N(l) > 0

we get:

a) ∂wc

∂l
(l) = 0 and ∂w

∂l
(l) = 0

b) ∂v
∂l
(l) = −w(l)

l2
< 0

c) ∂P
∂l
(l) = Fw(l)

l2
> 0

d) ∂Q
∂l
(l) = n

wc(l)
> 0
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Proof of Proposition 3.1. Consider Equations (3.1) and (3.2) for a given number of n ≥ 1

consecutive time windows and demand per time window N(l) = N̂ > 0. For time

windows of length l < w(l) and sufficiently large maximum vehicle capacity Q(l) ≤ Q̄,

we get: From Lemma 3.3 we know that profit and the required vehicle capacity increase

in l.

Proof of Lemma 3.4. Consider Equations (3.1) and (3.2) for a given number of n ≥ 1

consecutive time windows and demand per time window N(l) that is decreasing in the

time window length, ∂N
∂l
(l) < 0. For time window lengths l > 0 and demand N(l) > 0

we get:

a) ∂wc

∂l
(l) = −1

2
αk
√

R
N(l)3

∂N
∂l
(l) > 0

b) ∂w
∂l
(l) =

(
τ + 1

2
αk
√

R
N(l)

)
∂N
∂l
(l) < 0

c) ∂v
∂l
(l) = 1

l
∂w
∂l
(l)− 1

l2
w(l) < 0

d) P (l) = rnN(l)− cnw(l)− Fv(l)

∂P

∂l
(l) = rn

∂N

∂l
(l)− cn

∂w

∂l
(l)− F

∂v

∂l
(l)

= rn
∂N

∂l
(l)− cn

(
τ +

1

2
αk

√
R

N(l)

)
∂N

∂l
(l)− F

∂v

∂l
(l)

=

(
n(r − cτ)− 1

2
ncαk

√
R

N(l)

)
∂N

∂l
(l)− F

∂v

∂l
(l)

e) Q(l) = nN(l)
v(l)

= nl
wc(l)

∂Q

∂l
(l) =

n

v(l)

(
∂N

∂l
(l)− N(l)

v(l)

∂v

∂l
(l)

)
=

n

wc(l)

(
1− l

wc(l)

∂wc

∂l
(l)

)
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Proof of Proposition 3.2. Consider Equations (3.1) and (3.2) for a given number of

n ≥ 1 consecutive time windows and demand N(l) = N̄ − γl with a demand poten-

tial of N̄ > 0 per time window and a time sensitivity factor γ > 0. Let the net

margin per order be positive, r > cτ . For time windows of length l < w(l), meaning

l <
τN̄+γτ2N̄− γ

2
(αk)2R+ 1

2
αk

√
R
√

(4γτN̄+4N̄+(γαk)2R)

γ2τ2+2γτ+1
, and sufficiently large maximum vehicle

capacity Q(l) ≤ Q̄, we get: Increasing the time window length l increases profit if and

only if

∂P

∂l
(l)

!
> 0

⇔ − γn(r − cτ) + γn

(
cαk

√
R

2
√

N(l)

)
− F

∂v

∂l
(l) > 0

⇔

(
γncαk

√
R

2
√

N(l)

)
> γn(r − cτ) + F

∂v

∂l
(l)

⇔ γncαk

√
R

N(l)
> 2

(
γn(r − cτ) + F

∂v

∂l
(l)

)
⇔ γncαk > 2

(
γn(r − cτ) + F

∂v

∂l
(l)

)√
N(l)

R

Case 1: γn(r − cτ) + F ∂v
∂l
(l) ≤ 0 ⇒ ∂P

∂l
(l) > 0. The condition can be reformulated as

γn(r − cτ) + F
∂v

∂l
(l) ≤ 0

⇔ γn(r − cτ) +
Fγαk

√
R

2l
√

N(l)
− FτN̄

l2
− FN̄αk

√
R

l2
√

N(l)
≤ 0

⇔ l ≤
√

(Fαk)2γR + 16nN̄(r − cτ)Fw(l)− Fαk
√
γR

4n(r − cτ)
√
γN(l)

⇔ l ≤

√
(Fαk)2 R

N(l)
+ 16n(r − cτ)F

γ
N̄wc(l)− Fαk

√
R

N(l)

4n(r − cτ)

⇔ l ≤
√

D(l) +W(l)−
√

D(l)

4n(r − cτ)

with D(l) := (Fαk)2

δ(l)
and W(l) := 16n(r − cτ)F

γ
N̄wc(l).
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Case 2: γn(r − cτ) + F ∂v
∂l
(l) > 0 ⇔ l >

√
D(l)+W(l)−

√
D(l)

2M . For ∂P
∂l
(l) > 0 to hold, we

need

⇔
√

N(l)

R
<

γncαk

2
(
γn(r − cτ) + F ∂v

∂l
(l)
)

⇔ N(l)

R
<

(
γncαk

2
(
γn(r − cτ) + F ∂v

∂l
(l)
))2

⇔ δ(l) <

(
γncαk

2V(l)

)2

with demand density δ(l) = N(l)
R

and V(l) := γn(r − cτ) + F ∂v
∂l
(l) > 0.

Next, we show that the capacity requirements function increases up to a certain time

window length and then decreases. We derive a threshold for the time window length

that is a sufficient condition for the vehicle capacity requirements to increase in l.

∂Q

∂l
(l)

!
> 0

⇔
n
(
γl
(
2τ(N̄ − γl) + αk

√
R(N̄ − γl)

)
+ 2(N̄ − 2γl)

(
τ(N̄ − γl) + αk

√
R(N̄ − γl)

))
2
(
τ(N̄ − γl) + αk

√
R(N̄ − γl)

)2 > 0

⇔ γl

(
2τ(N̄ − γl) + αk

√
R(N̄ − γl)

)
+ 2(N̄ − 2γl)

(
τ(N̄ − γl) + αk

√
R(N̄ − γl)

)
> 0

⇔ 2N̄τ(N̄ − γl)− 2γlτ(N̄ − γl) + 2N̄αk
√
R(N̄ − γl)− 3γlαk

√
R(N̄ − γl) > 0

⇔ (N̄ − γl)2τ(N̄ − γl) + (2N̄ − 3γl)αk
√
R(N̄ − γl) > 0

⇔ 2τ(N̄ − γl)2 + (2N̄ − 3γl)αk
√
R(N̄ − γl) > 0

⇐ 2N̄ − 3γl ≥ 0

⇔ l ≤ 2

3

N̄

γ

Proof of Proposition 3.3. Consider Equations (3.1) to (3.4) for a given time window

length l > 0 and demand N(n) = N̄
n
with a total demand volume N̄ ≥ 2N v(l).
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1. We first show that the workload and the number of tours decrease in n:

v(n+ 1) =
w(n+ 1)

l
=

τ N̄
n+1

+ αk
√

R N̄
n+1

l

=
τN̄ + αk

√
R(n+ 1)N̄

(n+ 1)l
=

τN̄

(n+ 1)l
+

αk
√
RN̄√

n+ 1l

<
τN̄

nl
+

αk
√
RN̄√
nl

=
τN̄ + αk

√
RnN̄

nl
=

τ N̄
n
+ αk

√
R N̄

n

l
=

w(n)

l

= v(n)

Next, we show that the required vehicle capacity is a strictly increasing function

in n:

Q(n+ 1) =
N̄

v(n+ 1)
=

v(n)

v(n+ 1)

N̄

v(n)
=

v(n)

v(n+ 1)
Q(n) > Q(n)

Now, consider 1 ≤ n̂ ≤ N̄
Nv(l)

− 1 consecutive time windows and sufficiently large

maximum vehicle capacity Q(n̂) ≤ Q̄. We show the necessary and sufficient con-

dition that ensures increasing profits:

P (n̂+ 1)− P (n̂)
!
> 0

⇔
(√

n̂−
√
n̂+ 1

)
cαk

√
RN̄ +

(
w(n̂)− w(n̂+ 1)

)F
l
> 0

⇔
(
w(n̂)− w(n̂+ 1)

)F
l
−
(√

n̂+ 1−
√
n̂
)
cαk

√
RN̄ > 0

⇔
(
w(n̂)− w(n̂+ 1)

)F
l
>
(√

n̂+ 1−
√
n̂
)
cαk

√
RN̄

⇔
√
N̄ >

αk
√
R

τ
(n̂+ 1)n̂

(√
n̂+ 1−

√
n̂
)( lc

F
− 1

√
n̂+ 1

√
n̂

)
⇔

√
N̄

R
>
(√

n̂+ 1−
√
n̂
) (n̂+ 1)n̂αk

τ

(
lc

F
− 1

√
n̂+ 1

√
n̂

)
⇔ N̄

R
>

(
lcαk(n̂+ 1)n̂

F τ(
√
n̂+ 1 +

√
n̂)

−
αk
√

(n̂+ 1)n̂

τ(
√
n̂+ 1 +

√
n̂)

)2

⇔ δ̄ >

(
αk
√

(n̂+ 1)n̂

τ(
√
n̂+ 1 +

√
n̂)

)2(
lc
√

(n̂+ 1)n̂

F
− 1

)2
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with total demand density δ̄ = N̄
R
.

2. Consider 2 ≤ n̂ ≤ N̄
Nv(l)

consecutive time windows and sufficiently large maximum

vehicle capacity Q(n̂) ≤ Q̄. For the workload, we first show that w̃(2n̂ − 1) =

w(2n̂):

w̃(2n̂− 1) = τ
2n̂− 1

2n̂

N̄

2n̂− 1
+ αk

√
R
2n̂− 1

2n̂

N̄

2n̂− 1
= τ

N̄

2n̂
+ αk

√
R
N̄

2n̂
= w(2n̂)

It follows that 2w(2n̂) > w(n̂):

2w(2n̂) = 2

(
τ
N̄

2n̂
+ αk

√
R
N̄

2n̂

)
= τ

N̄

n̂
+
√
2αk

√
R
N̄

n̂
> τ

N̄

n̂
+ αk

√
R
N̄

n̂
= w(n̂)

For the number of tours, we show that

ṽ(2n̂− 1) =
2w̃(2n̂− 1)

l
=

2w(2n̂)

l
>

w(n̂)

l
= v(n̂),

For the required vehicle capacity, it follows that

Q̃(2n̂− 1) < Q(n̂)

Now, we assess the change in expected profit when we move from n̂ consecutive to

2n̂− 1 overlapping time windows:

P̃ (2n̂− 1)− P (n̂) = r(2n̂− 1)N(2n̂− 1)− c2n̂w̃(2n̂− 1)− F

l
2w̃(2n̂− 1)− P (n̂)

= rN̄ − c2n̂w(2n̂)− F

l
2w(2n̂)− rN̄ + cn̂w(n̂) +

F

l
w(n̂)

=

(
cn̂+

F

l

)(
w(n̂)− 2w(2n̂)

)
< 0
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Proof of Proposition 3.4. Consider Equations (3.1) to (3.4) for a given time window

length l > 0 and demand N(n) = N̂ ≥ N v(l). Let the net margin per order be positive,

r > cτ .

1. We first show that the capacity requirements are increasing in n:

Q(n) =
nN̂

v
= nQ(1) and Q(n+ 1) = (n+ 1)Q(1) = Q(n) +Q(1)

Now, consider n̂ ≥ 1 consecutive time windows and sufficiently large maximum

vehicle capacity Q(n̂) ≤ Q̄. We first show the necessary and sufficient condition

that ensures increasing profits:

P (n̂+ 1)− P (n̂)
!
> 0

⇔ r − cwc(N̂) > 0

⇔

√
N̂

R
>

cαk

r − cτ

⇔ δ̂ >

(
cαk

r − cτ

)2

⇔ r − cτ >
cαk√

δ̂

with demand density δ̂ = N̂
R
.

2. Consider n̂ ≥ 2 consecutive time windows, shift length L(n̂) > Fτ
r−cτ

, and suffi-

ciently large maximum vehicle capacity Q(n̂) ≤ Q̄. We first show that the capacity

requirements are decreasing:

Q̃(2n̂− 1) =
L(n̂)N̂

τN̂ +
√

2n̂
2n̂−1

αk
√

RN̂

Since
√

2n̂
2n̂−1

> 1 it follows that

Q̃(2n̂− 1) =
L(n̂)N̂

τN̂ +
√

2n̂
2n̂−1

αk
√
RN̂

<
L(n̂)N̂

τN̂ + αk
√

RN̂
= Q(n̂)
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Next, we find the condition for N̂ such that P̃ (2n̂− 1) > P (n̂). First, we reformu-

late the profit function for consecutive time windows:

P (n̂) = rn̂N(n̂)− cn̂w(n̂)− F

l
w(n̂)

= rn̂N(n̂)− cn̂w(n̂)− F

L(n̂)
n̂w(n̂)

= n̂rN̂ − n̂

(
c+

F

L(n̂)

)(
τN̂ + αk

√
RN̂

)
= n̂rN̂ − Ct(n̂)

L(n̂)
n̂τN̂ − Ct(n̂)

L(n̂)
n̂αk

√
RN̂

=
rL(n̂)− Ct(n̂)τ

L(n̂)
n̂N̂ − Ct(n̂)αk

√
R

L(n̂)
n̂
√

N̂

We then reformulate the profit function for overlapping time windows:

P̃ (2n̂− 1) = r(2n̂− 1)N(2n̂− 1)− c2n̂w̃(2n̂− 1)− F

l
2w̃(2n̂− 1)

= r(2n̂− 1)N̂ − 2n̂cw̃(2n̂− 1)− F

L(n̂)
2n̂w̃(2n̂− 1)

= r(2n̂− 1)N̂ − 2n̂

(
c+

F

L(n̂)

)(
τ
2n̂− 1

2n̂
N̂ + αk

√
R
2n̂− 1

2n̂
N̂

)

= r(2n̂− 1)N̂ − Ct(n̂)τ

L(n̂)
(2n̂− 1)N̂ − Ct(n̂)αk

√
R

L(n̂)

√
2n̂(2n̂− 1)

√
N̂

=
rL(n̂)− Ct(n̂)τ

L(n̂)
(2n̂− 1)N̂ − Ct(n̂)αk

√
R

L(n̂)

√
2n̂(2n̂− 1)

√
N̂

The profitability condition becomes

P̃ (2n̂− 1)
!
> P (n̂)

⇔ (n̂− 1)
rL(n̂)− Ct(n̂)τ

L(n̂)
N̂ −

(√
2n̂(2n̂− 1)− n̂

) Ct(n̂)αk
√
R

L(n̂)

√
N̂ > 0

⇔ (n̂− 1)(rL(n̂)− Ct(n̂)τ)N̂ >
(√

2n̂(2n̂− 1)− n̂
)
Ct(n̂)αk

√
RN̂

⇔

√
N̂

R
>

(√
2n̂(2n̂− 1)− n̂

)
Ct(n̂)αk

(n̂− 1)(rL(n̂)− Ct(n̂)τ)
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We want the right-hand side to be positive. Since n̂ ≥ 2, we only need rL(n̂) −
Ct(n̂)τ to be positive. This is achieved for L(n̂) > Fτ

r−cτ
which is a prerequisite of

Proposition 3.4.2. Thus, we get

⇔ δ̂ >

(√
2n̂(2n̂− 1)− n̂

n̂− 1

Ct(n̂)αk

rL(n̂)− Ct(n̂)τ

)2

=

(√
2n̂(2n̂− 1)− n̂

n̂− 1

)2

δP (n̂)

with demand density δ̂ = N̂
R
.

We compare this threshold with the threshold derived in Proposition 3.4.1. We see

that for n̂ ≥ 2, the term

√
2n̂(2n̂−1)−n̂

n̂−1
is decreasing in n̂ and limn̂→∞

√
2n̂(2n̂−1)−n̂

n̂−1
=

1. For δP (n̂), we get

√
δP (n̂) =

Ct(n̂)αk

rL(n̂)− Ct(n̂)τ
=

(L(n̂) + F
c
)cαk

rL(n̂)− (L(n̂) + F
c
)cτ

=
cαk

r L(n̂)

L(n̂)+F
c

− cτ

Since L(n̂)

L(n̂)+F
c

< 1, it follows that r L(n̂)

L(n̂)+F
c

− cτ < r − cτ . We get

δP (n̂) >

(
cαk

r − cτ

)2

which concludes (√
2n̂(2n̂− 1)− n̂

n̂− 1

)2

δP (n̂) >

(
cαk

r − cτ

)2

122



Appendix B

Proofs of Chapter IV

Proof of Lemma 4.1. Consider a time window assortment T ∈ T̃ consisting of n = 3

overlapping time windows. Let N = (Ni ≥ 0)i=1,...,3 be a non-negative demand realiza-

tion with total demand volume D =
∑3

i=1Ni > 0. We get:

For n = 3 the linear program (LP) corresponding to Equation (4.9) is

min
(Z,η)

Z

s.t. Z ≥ η1N1(T ),

Z ≥ (1− η1)N1(T ) + η2N2(T ),

Z ≥ (1− η2)N2(T ) + η3N3(T ),

Z ≥ (1− η3)N3(T ),

η1, η2, η3 ∈ [0, 1]

First, we bring the LP in standard form of

min
x

cTx

s.t. Ax ≥ b,

x ≥ 0
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We get

x =


Z

η1

η2

η3

 , c =


1

0

0

0

 , A =



1 −N1 0 0

1 N1 −N2 0

1 0 N2 −N3

1 0 0 N3

0 −1 0 0

0 0 −1 0

0 0 0 −1


and b =



0

N1

N2

N3

−1

−1

−1


For an LP, the conditions of feasibility, stationarity, and complementary slackness are

both necessary and sufficient for optimality. Consider the Lagrange multipliers

λ =



λ1

λ2

λ3

λ4

λ5

λ6

λ7


and ν =


ν1

ν2

ν3

ν4



We get the optimality conditions

(i) Primal feasibility:

Ax ≥ b

x ≥ 0

(ii) Dual feasibility:

λ ≥ 0

ν ≥ 0

124



Appendix B. Proofs of Chapter IV

(iii) Stationarity:

c− ATλ− ν = 0

(iv) Complementary slackness:

λi(Ax− b)i = 0 ∀i = 1, . . . , 7

νjxj = 0 ∀j = 1, . . . , 4

125



Appendix B. Proofs of Chapter IV

resulting in the following system of (in-)equalities

Z −N1η1 ≥ 0 (B.1)

Z +N1η1 −N2η2 ≥ N1 (B.2)

Z +N2η2 −N3η3 ≥ N2 (B.3)

Z +N3η3 ≥ N3 (B.4)

−η1 ≥ −1 (B.5)

−η2 ≥ −1 (B.6)

−η3 ≥ −1 (B.7)

x ≥ 0 (B.8)

λ ≥ 0 (B.9)

ν ≥ 0 (B.10)

1− λ1 − λ2 − λ3 − λ4 − ν1 = 0 (B.11)

N1λ1 −N1λ2 + λ5 − ν2 = 0 (B.12)

N2λ2 −N2λ3 + λ6 − ν3 = 0 (B.13)

N3λ3 −N3λ4 + λ7 − ν4 = 0 (B.14)

λ1(Z −N1η1) = 0 (B.15)

λ2(Z +N1η1 −N2η2 −N1) = 0 (B.16)

λ3(Z +N2η2 −N3η3 −N2) = 0 (B.17)

λ4(Z +N3η3 −N3) = 0 (B.18)

λ5(1− η1) = 0 (B.19)

λ6(1− η2) = 0 (B.20)

λ7(1− η3) = 0 (B.21)

ν1Z = 0 (B.22)

ν2η1 = 0 (B.23)

ν3η2 = 0 (B.24)

ν4η3 = 0 (B.25)
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with Equations (1) – (8) primal feasibility, Equations (9) and (10) dual feasibility, Equa-

tions (11) – (14) stationarity, and Equations (15) – (25) complementary slackness.

Parameter space: The parameter space in this problem contains the initial demands

N1, N2, N3 ≥ 0 with total demand of D =
∑3

i=1Ni > 0. Thus, the combination of N1

D

and N3

D
fully defines the parameter space.

Case 1: We first consider the case where the demands of both consecutive time windows,

N1 and N3, are relatively small, so the overlapping time window holds most of the

demand. We show that the solution

x =


Z

η1

η2

η3

 =


1
2
N2

1
1
2

0


with N2 > 0 satisfies the optimality conditions and we provide the parameter bounds

for the solution to be feasible.

From the variable values, we get ν1 = ν2 = ν3 = 0 and the inactive constraints result

in λ1 = λ4 = λ6 = λ7 = 0. Stationarity equations (11) and (13) require λ2 = λ3 = 1
2
.

Stationarity equation (12) requires λ5 = 1
2
N1, and equation (14) implies ν4 = 1

2
N3.

Thus, the solution fulfills stationarity, complementary slackness, and is dual feasible.

We look at the remaining constraints of primal feasibility to determine the feasible

region within the parameter space. Constraint (1) leads to the condition on N1

0 ≤ N1

D
≤ 1

3

(
1− N3

D

)
and constraint (3) provides an upper bound on N3

0 ≤ N3

D
≤ 1

3

(
1− N1

D

)
.

The conditions together ensure N2 > 0.
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Case 2.1: In this case, N1 and N2 share most of the demand, leaving N3 relatively small.

We show that the solution

x =


Z

η1

η2

η3

 =


1
3
(N2 +N1)

1
3

(
1 + N2

N1

)
1
3

(
2− N1

N2

)
0


with N1, N2 > 0 satisfies the optimality conditions and we provide the parameter bounds

for the solution to be feasible.

From the variable values, we get ν1 = ν2 = 0 and the inactive constraints result in

λ4 = λ6 = λ7 = 0. Further, a choice of λ1 = λ2 = λ3 =
1
3
, λ5 = 0, ν3 = 0, and ν4 =

1
3
N3

satisfies the stationarity equations (11) – (14). Thus, the solution fulfills stationarity,

complementary slackness, and is dual feasible.

We look at the remaining constraints of primal feasibility to determine the feasible

region within the parameter space. Constraint (4) leads to the condition on N3

0 ≤ N3

D
≤ 1

4

and constraint (5) and non-negativity of η2 in constraint (8) provide the bounds on N1

1

3

(
1− N3

D

)
≤ N1

D
≤ 2

3

(
1− N3

D

)
.

The conditions together ensure N1, N2 > 0.

Case 2.2: This case follows from the symmetry of the problem. We get the solution

x =


Z

η1

η2

η3

 =


1
3
(N2 +N3)

1
1
3

(
1 + N3

N2

)
1
3

(
2− N2

N3

)


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with bounds that ensure N2, N3 > 0:

0 ≤ N1

D
≤ 1

4
and

1

3

(
1− N1

D

)
≤ N3

D
≤ 2

3

(
1− N1

D

)
.

Case 3: In this case, all demands are sufficiently balanced such that the optimal allocation

results in homogeneous demand. We show that the solution

x =


Z

η1

η2

η3

 =


1
4
D

1
4

(
1 + N2

N1
+ N3

N1

)
1
2

(
1− N1

N2
+ N3

N2

)
1
4

(
3− N1

N3
− N2

N3

)


with N1, N2, N3 > 0 satisfies the optimality conditions and we provide the parameter

bounds for the solution to be feasible.

From the variable values, we get ν1 = ν2 = 0 and the inactive constraints result in

λ7 = 0. Further, a choice of λ1 = λ2 = λ3 = λ4 = 1
4
, λ5 = λ6 = 0, ν3 = ν4 = 0

satisfies the stationarity equations (11) – (14). Thus, the solution fulfills stationarity,

complementary slackness, and is dual feasible.

We look at the remaining constraints of primal feasibility to determine the feasible

region within the parameter space. Constraint (5) and non-negativity of η2 in constraint

(8) leads to the bounds on N1

1

4
≤ N1

D
≤ 1

2
.

Constraint (6) and non-negativity of η3 in constraint (8) provide the bounds on N3

1

4
≤ N3

D
≤ 1

2
.

The conditions together ensure N1, N2, N3 > 0.

Cases 4.1 and 4.2: There are only two possible symmetric cases left, where either N1

or N3, respectively, make at least 50% of the total demand volume alone. N2 is small

enough such that cases 2.1 and 2.2 do not apply. The maximum time window demands

take the values 1
2
N1 and

1
2
N3, respectively and the parameter bounds cover the remaining

parts of the parameter space.

129



Appendix B. Proofs of Chapter IV

Proof of Lemma 4.2. Consider Equations (4.2) and (4.7), let the corresponding demand

vectors N T follow a distribution with fixed total demand volume D, and define wD :=

τD+αk
√
RD. We establish bounds on the relevant bottleneck workloads for consecutive

and overlapping time windows, respectively.

a) Consider an assortment T ∈ T consisting of n consecutive time windows. It

follows directly from Corollary 4.1 that the best-case demand realization NT+ ful-

fills NT+
i = D

n
, ∀i = 1, . . . n. Then maxi=1,...,n wi(N

T+) = w
(
D
n

)
. The worst-

case demand realization NT− fulfills NT−
k = D for a k ∈ {1, . . . , n}. Then

maxi=1,...,n wi(N
T−) = w(D).

The upper bound results from the worst-case demand realization and is

w(D) =: wD

and the lower bound results from the best-case demand realization and is

w

(
D

n

)
= τ

D

n
+ αk

√
R
D

n

=
1√
n

[
τD + αk

√
RD

]
−
(

1√
n
− 1

n

)
τD

=
1√
n
wD −

(
1√
n
− 1

n

)
τD

b) Consider an assortment T ∈ T̃ consisting of n overlapping time windows. A best-

case demand realization NT+ needs to enable that the allocated demand is evenly

distributed, i.e., θi(η
∗,NT+) = D

n+1
, ∀i = 1, . . . , n + 1 under optimal allocation

weights η∗. This follows directly from Corollary 4.1. Then, 2 · R(T,NT+) =

2·w
(
nN∗

n+1

)
. For a worst-case demand realization NT−, according to Equation (4.4),

the total demand can only be distributed over two delivery intervals, resulting in

θk(η
∗,NT−) = D

2
for some k = 1, . . . , n+ 1. Then 2 ·R(T,NT−) = 2 · w

(
D
2

)
.

130



Appendix B. Proofs of Chapter IV

Consequently, the upper bound, resulting from the worst-case demand realization,

becomes

2 · w
(
D

2

)
= τD + αk

√
2RD

=
√
2
[
τD + αk

√
RD

]
−
(√

2− 1
)
τD

=
√
2wD −

(√
2− 1

)
τD

and the lower bound, resulting form the best-case demand realization, becomes

2 · w
(

D

n+ 1

)
= 2τ

D

n+ 1
+ 2αk

√
R

D

n+ 1

=
2√
n+ 1

[
τD + αk

√
RD

]
−
(

2√
n+ 1

− 2

n+ 1

)
τD

=
2√
n+ 1

wD −
(

2√
n+ 1

− 2

n+ 1

)
τD

Proof of Theorem 4.1. Consider Equations (4.3) and (4.8) for any assortments Tn̂ ∈ T
and T2n̂−1 ∈ T̃ , each comprising n̂ consecutive time windows of length l. Let NTn̂ and

NT2n̂−1 denote any respective demand realizations. Define the bottleneck demand N̄ :=

maxi=1,...,n̂ N
Tn̂
i and the allocated bottleneck demand θ̄ := maxi=1,...,2n̂ θi(η

∗,NT2n̂−1) un-

der the optimal allocation η∗.

The allocated bottleneck demand, which can be expressed by θ̄ = ϕN̄ , for which the

overlapping assortment yields lower total delivery costs than the consecutive assortment,

satisfies

2w(ϕN̄) < w(N̄)

⇔ 2τϕN̄ + 2αk
√

RϕN̄ < τN̄ + αk
√

RN̄

⇔ τ
(
2ϕN̄ − N̄

)
+ αk

√
R
(√

4ϕN̄ −
√

N̄
)
< 0.
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Solving for ϕ, we get

ϕ <
ταk

√
RN̄ + τ 2N̄ + (αk)2R− αk

√
R

√
2ταk

√
RN̄ + 2τ 2N̄ + (αk)2R

2τ 2N̄

⇔ ϕ <
τ
(
τ + αk

√
R
N̄

)
+
(
αk
√

R
N̄

)2
− αk

√
R
N̄

√
2τ
(
τ + αk

√
R
N̄

)
+
(
αk
√

R
N̄

)2
2τ 2

.

Defining d(N̄) = αk
√

R
N̄
, we get

ϕ <
τ
(
τ + d(N̄)

)
+ d(N̄)2 − d(N̄)

√
2τ
(
τ + d(N̄)

)
+ d(N̄)2

2τ 2

⇔ ϕ <
τ 2 + τd(N̄) + d(N̄)2 − d(N̄)

√
2τ
(
τ + d(N̄)

)
+ d(N̄)2

2τ 2

⇔ ϕ <
1

2
+

d(N̄)

2τ 2

(
(τ + d(N̄))−

√
2τ
(
τ + d(N̄)

)
+ d(N̄)2

)
⇔ ϕ <

1

2
− d(N̄)

2τ 2

(√
2τ 2 + 2τd(N̄) + d(N̄)2 − (τ + d(N̄))

)
⇔ ϕ <

1

2
− d(N̄)

2τ 2

(√
(τ + d(N̄))2 + τ 2)− (τ + d(N̄))

)
.

Defining wc(N̄) = τ + d(N̄), we get

ϕ <
1

2
− d(N̄)

2τ 2

(√
wc(N̄)2 + τ 2)− wc(N̄)

)
⇔ θ̄

N̄
<

1

2
− d(N̄)

2τ 2

(√
wc(N̄)2 + τ 2)− wc(N̄)

)

Proof of Lemma 4.3. Let T ∈ T̃ be any overlapping assortment, NT a corresponding de-

mand realization, and consider the allocation mechanism defined in Equation (4.4). Let

N̂ := maxi=1,...,n N
T
i denote the bottleneck demand, and let θ̄ := maxi=1,...,n+1 θi(η

∗,NT )

be the allocated bottleneck demand under optimal allocation η∗.
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We aim to show that under any feasible allocation vector η ∈ [0, 1]n, the maximum

allocated demand satisfies

θ̄ := max
i=1,...,n+1

θi(η,N
T ) ≥ 1

2
N̂ , where N̂ := max

i=1,...,n
NT

i .

Each demand NT
i contributes to two adjacent intervals:

- ηiN
T
i is allocated to θi,

- (1− ηi)N
T
i is allocated to θi+1.

Thus, the total contribution of NT
i to allocations is

θi + θi+1 ≥ ηiN
T
i + (1− ηi)N

T
i = NT

i .

Assume for contradiction that all allocations are strictly below half the bottleneck de-

mand:

θj <
1

2
N̂ for all j = 1, . . . , n+ 1.

Let k ∈ {1, . . . , n} be such that NT
k = N̂ . Then:

θk + θk+1 ≥ NT
k = N̂ ,

but also, by assumption,

θk + θk+1 <
1

2
N̂ +

1

2
N̂ = N̂ ,

a contradiction. Therefore, there exists at least one j such that

θj ≥
1

2
N̂ .

Hence,

θ̄ = max
j

θj ≥
1

2
N̂ .
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