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A B S T R A C T   

Battery electric vehicles generate a significant share of their greenhouse gas emissions during production and 
later, when in use, through the energy used for charging. A shift in charging behavior could substantially reduce 
emissions if aligned with the fluctuating availability of renewable energy. Financial incentives and environ
mental appeals have been discussed as potential means to achieve this. We report evidence from a randomized 
controlled trial in which cost-free and “green” charging was advertised via email notifications to customers of a 
charging service provider. Emails invited to charge during midday hours (11:00 to 15:00) of days with high 
predicted shares of renewable energy. Results show a significant increase in the number of charging processes in 
the critical time, and in the amount of energy charged (kWh), despite only marginal monetary savings of 5€ on 
average. A further increase in kWh charged was observed on weekends. Under the assumption that these 
charging processes replaced regular overnight charging at home, this represents reduction in CO2 emissions of 
over 50%.   

1. Introduction 

Large-scale adoption of battery electric vehicles (BEVs) is often 
hailed as a way to reduce the climate impact of the transportation sector 
(Abdul-Manan, 2015; Faria et al., 2012; Laberteaux and Hamza, 2018). 
BEV-related greenhouse gas emissions occur during their manufacturing 
mainly from the battery production (Abdul-Manan, 2015; Nealer and 
Hendrickson, 2015), and from the generation of the required electricity 
for operating the BEVs. The latter depends heavily on the proportion of 
low-carbon renewable energy that is used to charge the vehicles 
(Abdul-Manan, 2015; Buekers et al., 2014; Manjunath and Gross, 2017). 
In Germany, a country marked by a relatively high capacity of renew
able energy - 53% of total capacity for electricity production in 2019 
according to the Bundesnetzagentur & Bundeskartellamt (2019) -, car
bon intensity per kWh can fluctuate by an order of magnitude, with a 
mean for 2019 of 0.15 kg of CO2 equivalent per kWh (SD = 0.09 kg, min 
= 0.03 kg, max = 0.54 kg) (Bundesnetzagentur, 2020), with a consumed 
share of renewable energy of 35% at total electricity consumption 
(BMWI, 2021). With increasing capacity for intermittent renewable 
energy production around the world, and an increasing share of BEVs on 
the roads (Irle, 2020), steering charging behavior has previously been 

suggested as an approach to increase consumed share from total ca
pacity, and reduce emissions from BEV charging (Eider et al., 2017; 
Kacperski and Kutzner, 2020; Robinson et al., 2013; Schmalfuß et al., 
2015; Tu et al., 2020; Zhang et al., 2018a). 

The decision when and where to charge has reportedly been influ
enced by state-of-charge, dwell time, and price; among those factors, an 
inflexible and opportunity-driven pattern seems most pronounced, as 
most charging operations occur either on semi-public charging points at 
the workplace starting in the morning or, accounting for the largest 
share, at home charging points starting in the late afternoon (Jabeen 
et al., 2013; Lee et al., 2020; Morrissey et al., 2016; Robinson et al., 
2013). Home charging usually combines convenience and economic 
benefits (Jabeen et al., 2013; Wen et al., 2016). In one large-scale study 
in 18 metropolitan areas in the US, 82% of all charging events were 
conducted at home (Smart and Schey, 2012). 

EV drivers’ charging behaviour has been steered successfully with 
directly BEV-related incentives such as optimization of charging station 
placement (Schmidt et al., 2020; Xu et al., 2017), free parking allocation 
(Robinson et al., 2013; Wolbertus et al., 2018), prioritization incentives 
at charging stations (Zhang et al., 2018a) and installation of 
fast-charging stations (Sun et al., 2016). Aligning charging with 
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renewable production requires more flexible incentive systems, such as 
semi-instant financial or symbolic incentives that can impact BEV 
charging at a few hours’ notice. 

Studies that model how to manage electric vehicle charging have 
demonstrated that it is achievable to lower cost and/or minimize elec
tricity consumption emissions (Kontou et al., 2017; Van Der Kam et al., 
2019; Weis et al., 2015; Yang, 2013). Multiple simulation studies have 
proposed effects of monetary rewards on charging (Dallinger and 
Wietschel, 2012; Flath et al., 2013; Li et al., 2014; Zhang et al., 2018b). 
However, empirical research on incentive effects in the context of 
electric vehicle charging is rare. Self-reports reveal some price sensi
tivity regarding charging location, with preferences for home charging 
even more pronounced in the presence of particularly cheap electricity 
plans, and for workplace charging when it is provided for free (Chak
raborty et al., 2019; Nicholas and Tal, 2015; Tal et al., 2014). In three 
instances, researchers analyzed charging data in the context of financial 
interventions as part of naturalistic studies of quasi-experimental design. 
For example, charging data from the US showed that switching from free 
charging to a $5 flat-rate fee increased the proportion of charge events 
taking place at low state of charge (Motoaki and Shirk, 2017). Similarly, 
using ChargePoint network billing data, free charging stations were 
found to be frequented at a four times higher rate than paid ones (Sax
ton, 2012). Most pertinent to smart charging, in the ECOtality project, a 
comparison of the effect of flat-rate vs. time-of-use electricity pricing 
between two cities was conducted, finding that demand peaks shifted 
from 4pm to midnight, coinciding with the beginning of the cheap 
off-peak electricity rate (Schey et al., 2012). While these studies support 
similar hypotheses, due to their quasi-experimental nature (i.e., lack of 
randomized allotment of participants to experimental and control 
group), they do not allow for a direct assessment of the causal link be
tween price changes and charging behaviour. And while the study of 
consumer responses to incentives have been a prolific area of research in 
the context of electric vehicles when it comes to the purchase and pro
motion of BEVs (Jenn et al., 2018, 2020; Kwon et al., 2018; Zhang et al., 
2018c), modelling customer responses to charging incentives is a novel 
contribution to the financial incentive literature. 

A similar dearth of experimental evidence exists for environmentally 
focussed incentives. Pro-environmental attitudes have been found to be 
a positive predictor of BEV purchase (Li et al., 2017; Rezvani et al., 2015; 
Schuitema et al., 2013), and BEV usage is cited as a way to engage in 
pro-environmental behaviours (Graham-Rowe et al., 2012; Ingeborgrud 
& Ryghaug, 2019). Yet, the role of environmental incentive strategies 
has previously mostly been investigated in contexts of home energy 
saving and energy efficient driving and yielded small to moderately 
positive effects on intentions and behaviours (Asensio and Delmas, 
2015; Dogan et al., 2014; Møller et al., 2019; Schwartz et al., 2015; 
Steinhorst and Klöckner, 2018). To the best of our knowledge, only one 
laboratory study has experimentally investigated individual 
decision-making in the context of BEV charging: monetary and 
symbolic-environmental incentives were both effective in changing 
behaviour towards ‘greener’ charging choices, despite a time penalty for 
doing so (Kacperski and Kutzner, 2020). The lack of field studies that 
investigate effects of incentives on charging behaviour is untimely, 
especially given the interest in rolling out charging programs by 
research and commercial actors alike (BMW ChargeForward, 2020; 
IRENA, 2019). 

To address this gap, we carried out a field experiment in which 
groups of randomly chosen BEV drivers were offered an incentive. 
Specifically, we repeatedly carried out a lottery with customers of a 
charging service provider and offered to the selected customers an op
portunity of “greener” charging at zero costs between 11:00 and 15:00. 

Concepts and results from our experiment can be leveraged to design 
and implement more realistic incentives in order to encourage adoption 
of and more sustainable usage of BEVs, currently a highly topical issue in 
policy and regulatory contexts (Hardman et al., 2017; Liu and Xiao, 
2018; Wu et al., 2021), particularly those that include both 

environmental and financial factors. 
The combination of environmental and financial reward was chosen 

for two reasons: previous research on such incentives claims the com
bination of both to be the most effective, often with larger effects re
ported compared to each incentive alone (Allcott and Sweeney, 2017; 
Mizobuchi and Takeuchi, 2013; Møller et al., 2019; Petersen et al., 
2007). Additionally, it maximizes external validity: policy-driven 
financial charging incentives will only BEVer be provided in combina
tion with expected environmental benefits – our intervention was 
therefore designed as a mixed financial-environmental incentive. 

We chose to provide completely free charging as opposed to re
ductions in charging costs for several reasons. A relatively larger impact 
can be expected from a free offer versus a simple reduction of costs of a 
similar amount (Shampanier et al., 2007) and variable or dynamic 
pricing runs the risk of eliciting negative consumer reactions (Haws and 
Bearden, 2006). Finally, the administrative effort of calculating and 
distributing minor savings was deemed too large considering the already 
minor expense of a single charging process (reported as around 5 Euros 
by the charging provider). 

The feasibility of “all-charging-free” approach by subsidy has pre
viously been modelled (Maness and Lin, 2019), and judged efficient in 
terms of greenhouse gas emission reduction per dollar of subsidy spent. 
The here proposed “free-when-green” approach augments economic 
value, if subsidized by higher prices in high-emission time slots, 
fine-tuned carbon tax programs, and increased BEV sales (Schneider and 
Sanguinetti, 2021; Zhang et al., 2018a). For charging station providers, 
customer retention, a possibility to conjoinedly incentivize smart and 
controlled charging to balance supply and demand (García-Villalobos 
et al., 2014; Haupt et al., 2020; Rubino et al., 2017), and vehicle-to-grid 
charging involving prosumers in microgrids (Parag and Sovacool, 2016; 
Wolinetz et al., 2018) could be considered potential avenues to make the 
proposed incentive a viable market measure. 

2. Methods 

2.1. Field study 

The field experiment was conducted in collaboration with E-Wald, an 
electric mobility service provider originally founded as part of the 
research project “Modellregion Elektromobilität”. E-Wald operates 150 
publicly accessible charging stations with 500 charging points in an area 
of 7000 km2 in rural and semi-rural districts in southern Germany, with 
mostly transportation, institutional, commercial, and industrial land 
use. The charging infrastructure combines the following types of 
charging technology: CCS fast charging, CHAdeMO fast charging, Type2 
charging, Type1 charging and the F1 standard. This operator offers 
charging with a tariff system at flat 0.45 Euro/kWh for slow charging at 
a maximum charging power of 22 kW, or 0.55 Euro/kWh for fast 
charging above 22 kW. The study was carried out in line with ethics 
requirements of the German Ethics Board (DGPS) and the university 
ethics statute (Statut der Ethikkommission der Universität Mannheim, 
2016), as well as European data protection guidelines (DGPR). Consent 
was obtained by the service provider during sign-up procedures, where 
customers were informed that anonymized charging station data would 
be made available to researchers and that they might be contacted for 
research trials and incentive schemes via email and newsletter. 

318 customers had actively used this charging service within the 
previous year and were signed up to the E-Wald email newsletter. Based 
on information received from E-WALD regarding their customer base, 
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participants, who were required to hold E-WALD charging cards and are 
most commonly local residents, were driving for recreational, educa
tional, or work purposes, so were in most cases not long-distance trav
elers. These participants received an email that a campaign would be 
taking place. This email1 informed the customers that renewable energy 
would be a focus topic for the upcoming weeks, and that the operator 
would keep track of the energy mix in the power grid. Selected cus
tomers would be randomly gifted a free charge between 11:00 and 
15:002 if renewable shares were particularly high on that day. Using this 
infrastructure, we implemented a 6-week event-based free charging 
intervention running February to mid-March. 

On 13 days during the trial period when emissions were predicted to 
be particularly low, half of the sample (i.e., 159 customers, selected at 
random for each event day) received an email3 in the afternoon, stating 
that on the next day between 11:00 and 15:00, charging would be free 
for them due to a high ratio of renewables in the grid. The number of 
clients that charged during these hours, the energy charged in kWh, and 
the emissions generated by these charges, were measured as outcome 
variables. 

2.2. Event day selection based on emission prediction 

The algorithm that selected the event days was built on the following 
procedure: every day at 16:00, we compared the predicted CO2eq 
emissions of the current evening between 18:00 and 22:00 with the 
CO2eq emissions of the following day between 11:00 and 15:00 (critical 
time). If the average hourly emissions were predicted to be at least 20% 
lower in the critical time, the charging service provider was notified 
automatically, and between 16:00 and 17:00, the notification email was 
sent to a randomly selected 50% sample of customers.4 To forecast the 
respective hourly CO2eq emissions, we used the algorithm provided by 
electricitymap.org via their API (Electricity Map API, 2020). 

2.3. Data sources 

Data on customers were provided by the charging service provider. 
These data contained the timestamp of when participants had plugged in 
their vehicle, the charging duration, and the number of kWh charged. No 
demographic data were available due to the provider’s data protection 
regulations. Emission data were calculated using the TenneT system 
operator open source dataset provided by SMARD.de, multiplying the 
kWh generated from various energy sources (such as gas, solar, biomass 
etc.) with kg/kWh values of CO2eq for Germany as suggested in the 
literature, and used by electricitymap.org in their predictive algorithms 
(Tranberg et al., 2019). 

After the field trial was completed, a survey was sent to all customers 
who had at least charged once during the field trial in response to an 
intervention email: the trial participants were invited to answer a brief 
survey about their charging behavior (time of charging process, location 
of charging station, number of kWh), both for normal days and for the 
trial’s event days. We also used the survey5 to debrief participants on the 

research conducted and provided them with first results. 

2.4. Hypotheses and experimental design 

Conceptually, the experiment was a 2 (intervention: no email vs. 
email) x 2 (time: 15:00 to 11:00 vs. 11:00 to 15:00) experimental ran
domized controlled trial for the 13 event days, with 159 participants per 
condition. We measured two main response variables: charging pro
cesses conducted (dummy coded) and total energy charged in kWh. We 
also analyzed these data on the 28 no-event days for a comparison with 
no-event days charging behavior. We calculated emissions in kg of 
CO2eq. In line with the predictive algorithm used, event days should 
show lower emissions in the critical time (11:00–15:00) as compared to 
the evening before. The difference should be particularly pronounced 
when compared to no-event days. 

For regression analyses we used R (R Development Core Team, 
2008), with the Linear mixed model (lmer with gaussian family for 
continuous dependent variables) and Generalized linear mixed-effects 
models (glmer, binomial family for dummy coded dependent vari
ables), measuring the effect of the intervention in interaction with time. 

The main hypothesis consists of two parts: We hypothesized that 
more charging processes would be logged during the critical time as a 
result of participants receiving an email and that they would charge 
more kWh in in this critical period, compared to the control group that 
did not receive an email (H1). Two further explorative analyses were 
conducted: We included workdays (7 days, 54%) versus weekends/ 
holidays (6 days, 46%) as a predictor in interaction, hypothesizing that 
the intervention would have a stronger effect on non-workdays, based 
on the idea that participants might be more flexible temporally on 
weekends and holidays (H2). Finally, comparing charging behavior on 
no-event days versus event days, we expected to see a reduction in 
charging outside of critical hours on event days (compared to no-event 
days), as an indication that we had also moved customers in time for 
home-charging rather than in time and place, from home to the tracked 
public charging (H3). 

We modelled repeated measurements from individual drivers by 
adding a random intercept per driver. We report Estimate betas, odds 
ratios as additional effect sizes and 95% confidence intervals in brackets. 
Appendix A.1. - A.3. hold the full model outputs, including standard 
errors, Wald z statistics and odds ratio confidence intervals. Appendix 
A.4. holds all means and standard deviations. We analyzed the survey 
following the trial to learn more about charging habits of our partici
pants; the results are presented as aggregate statistics. 

Emission projections were calculated by generating charging distri
butions in 15-min time series and multiplying them by the corre
sponding 15-min intervals of emissions in kg CO2eq/kWh as reported by 
historical emission data (Bundesnetzagentur, 2020). As comparison we 
used the charging pattern on no-event days, and the charging behavior 
as reported in the survey. We hypothesized that emissions generated as a 
result of our intervention would be lower than if they had occurred at 
the times when public charging happens regularly, i.e. on no-event days, 
and lower than if they had occurred at the times survey participants 
reported they would have charged usually (H4). 

3. Results 

3.1. Field study 

During the 41 days of the trial, 270 charging processes were logged, 
of which 23 were excluded due to the charging time lasting less than 1 
min or charging less than 0.05 kWh. After the exclusion, we logged a 
combined total of 247 charging events from 90 customers. 

Each afternoon at 16:00, the previously described algorithm pre
dicted the next midday’s emissions. Days with particularly low pre
dicted emissions were designated as event days, on which at 17:00 the 
charging service provider sent the event email to a randomly selected 

1 “Dear customers! In the coming weeks, our focus will be on renewable 
energy. As part of a pilot project, we will watch the energy mix for you (see ele 
ctricitymap.org). Whenever it’s particularly “green”, we will send you an email 
and charging will be free for you between 11am and 3pm (charge start).” (see 
Appendix B for German version).  

2 This timeslot was selected based on minimum emission timeslots calculated 
for 2015–2018, please see Appendix E for further information.  

3 „TOMORROW free charging between 11am and 3pm! Dear customers! 
Tomorrow there will be high quantities of renewables in the grid. Between 
11am and 3pm TOMORROW (charge start), charging with your E-Wald 
customer card is free!”. 

4 An illustration of the expected emission distribution can be found in Ap
pendix C.  

5 Exact item wordings can be found in Appendix D. 
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50% sample of customers. On these 13 event days, 66 customers initi
ated a total of 129 charging operations, charged 1304.97 kWh, with a 
mean consumption per charge of 9.67 kWh (Mdn = 7.25 kWh, SD = 7.58 
kWh, Max = 37.07 kWh). 

Emissions generated by the production of power in the trial 
geographical area (TenneT provider, southern Germany) during the 
entire 41-day trial period was on average 0.13 kg of CO2 equivalent 
(CO2eq) per kWh (Mdn = 0.09 kg, SD = 0.11 kg, Max = 0.49 kg). Fig. 1 
portrays the distinction between average emissions generated on event 
days (dashed line), and on no-event days (dotted line), starting at 17:00 
until the same time the next day in 15-min intervals. The dashed line 
shows that the predictive algorithm led to a correct identification of days 
in which emissions were particularly low at midday (11:00–15:00) (M =
0.07 kg of CO2eq per kWh) when compared to the evening before (M =
0.15 kg of CO2eq per kWh), a 41% decrease. 

Fig. 1 also shows the average number of charging processes under
taken per customer per trial day for each 15-min time interval, i.e., the 
probability density of a customer charging at an E-Wald charging station 
at this time during the trial. As the green curve illustrates, the critical 
timeframe between 11:00 and 15:00 was particularly attractive for 
participants that had received an email. The probability of charging 
processes on no-event days, and by customers that had not received an 
event notification are much more evenly distributed throughout the day. 

Fig. 2 shows the sum of charging events (A) and the sum of kWh (B) 
on event days. We found a significant interaction of intervention and 
time for drivers that received an email, showing an increase in number 
of charging operations in the critical time between 11:00 and 15:00, b =
2.46 [1.40, 3.52], p < .001, OR = 11.7, as well as an increase in kWh 
charged, b = 0.39 [0.27, 0.51], p < .001, OR = 1.47 (H1). Again, the data 
illustrates that the critical time frame was magnitudes more attractive 
for participants that received the email. 

We included weekdays in the previously reported regression analysis 
and found that our intervention increased the amount of kWh charged 
per person per day during the weekend as compared to weekdays, b =
− 0.30 [− 0.53, − 0.05], p = .016, OR = 0.74. There was no significant 
evidence that the intervention also increased the number of charging 
operations conducted on weekends as compared weekdays, b = − 0.88 
[− 2.99, 1.24], p = .415, OR = 0.42 (H2). This is in line with the 
expectation that participants might have more time to leave their cars 
parked at charging stations on weekends. 

Finally, we tested whether the intervention had reduced partici
pants’ use of charging stations outside the critical times. To do so, we 
compared the average number of charging processes per person and day 

outside of 11:00–15:00 on event days and on no-event days (c.f. Fig. 3, 
green versus blue series of “Other times”). We did not find a significant 
difference, b = − 0.32 [− 0.94, 0.30], p = .308, OR = 0.72 (H3); this 
indicates that instead of moving public charging customers from non- 
critical to critical times, charging operations between 11:00 and 15:00 
were additional, and deducing from prior literature, most likely a 
change from home charging to public charging. 

With regards to monetary savings for our participants, we found that 
the median incentive payout per charging event lay at 4.79 Euro (M =
5.51, SD = 3.38, Min = 0.84, Max = 16.68) with 75% of participants 
gaining savings below 8.04 Euro. Fig. 4 shows a histogram of the number 
of charging events with their respective savings. 

3.2. Survey results 

19 responses were recorded from participants. In line with previous 
literature, participants reported that, had they not charged between 
11:00 to 15:00 during the event day, the majority 79% (15) would have 
charged at home; 84% (16) would have instead charged between 15:00 
and 06:00. For participating respondents, the survey therefore further 
confirmed the findings regarding H3 mentioned above, i.e. they trans
ferred their overnight home charging processes to the critical time and 
to a public charging station. Participants also reported that they usually 
charged on average 17.92 kWh per charging process (Min = 9.00 kWh, 
Max = 35.00 kWh), and conducted on average 4.53 charging processes 
per week (Min = 1, Max = 10), charging their battery to an average 57% 
SoC (Min = 20%, Max = 90%). 

3.3. Emission projections 

A total of 1136.43 kWh were charged by email recipients. Using the 
time series of the distribution of charging by these recipients, and the 
average emission intensity on event days, we calculated the average 
emissions in kg of CO2eq generated by our intervention (see Fig. 5, green 
bar). We then projected the average CO2eq emissions that would have 
been generated for the usual charging pattern at public E-Wald charging 
stations, i.e. charging behavior on no-event days (see Fig. 5, orange bar). 
We secondly considered the survey answers, i.e. the times participants 
indicated they would have charged if the trial had not taken place; based 
on this distribution, we also projected the amount of generated CO2eq 
emissions (see Fig. 5, blue bar). 

For additional comparisons, we added lines indicating three uniform 
charging distributions: a minimum line indicating the CO2eq emissions 

Fig. 1. Black lines: CO2eq emissions for the trial period for event days (dashed line) and no-event days (dotted line). Event day CO2eq emissions are higher in the 
evenings (17.00–22.00) and lower at midday (11:00–15:00) than the corresponding emissions on no-event days. Colored lines: Charging operations per customer per 
timeslot at an E-Wald charging station, for customers that received an email (green), customers on event days that did not receive an email (orange) and charging on 
no-event days (blue). In the critical time (11:00–15:00), a large spike of charging activity can be observed. Shaded areas indicate bootstrapped 95% confidence 
intervals (1000 iterations). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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generated if all charging processes had occurred at the time of least 
emissions (red line), the CO2eq emissions generated if all charging 
processes had occurred spread evenly across the day (black line), and 
CO2eq emissions generated if all charging processes had occurred at the 
time of highest emissions (blue line). 

We find that if charging processes had occurred either at a regular 
charging station pace, or at home at night as reported by the majority of 
participants in the survey, roughly twice the emissions would have been 
generated, an increase from 81.96 kg CO2eq to 163.56 kg CO2eq for the 
public station charging distribution (99.6% increase) and to 163.16 kg 
CO2eq for the survey-data based charging distribution (99.1% increase) 
(H4). 

4. Conclusion and policy implications 

We investigated whether offering a mixed financial-environmental 
incentive to BEV drivers, free charging advertised as “green”, would 
steer charging behavior towards times that would lead to emission re
ductions. Due to the incentive, eight times more charging processes were 
conducted during pre-specified event periods with low carbon intensity 
of the electricity charged. Twice the emissions would have been 
generated if BEV drivers had instead charged throughout the evening 
and night, using a distribution reported common for home charging in 
our follow-up survey and based on prior literature (Franke and Krems, 
2013; Jabeen et al., 2013). 

The study provides first evidence from a field experiment that a 
combination of financial and environmental incentives has the potential 

Fig. 2. Charges during critical times and other times on event days for customers who received an email about the incentive, and those who did not. The number of 
customers that charged (A) and the total kWh charged (B) show a noted increase in critical time (11:00–15:00) when an email was received, as compared to other 
times (15:00–11:00), and as compared to customers who did not receive the email. 

Fig. 3. Probability density of a customer charging 
during critical and other, i.e. non-critical, times; on 
average, a customer was more likely to charge in the 
event day critical timeslot. A customer that received 
an email was not less likely to charge outside of 
critical times (green bar, Other) than they were on 
baseline no-event days (blue bar, Other). Error bars 
indicate bootstrapped 95% confidence intervals 
(1000 iterations). (For interpretation of the references 
to colour in this figure legend, the reader is referred 
to the Web version of this article.)   
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to reduce emissions from BEVs. As the climate impact of BEVs depends 
partially on low-carbon renewable energy that is used to charge the 
vehicles, studying the effects of such incentives is of utmost importance 
for policy makers and the general population (Abdul-Manan, 2015; 
Buekers et al., 2014). Utility companies and providers might, in reaction 
to policy instruments, demand pro-environmental changes and better 
renewables integration from charging infrastructure providers and 
managers. They, in turn, can take the incentive intervention designed 
here as a starting point to develop better market instruments to take 
advantage of lost time-of-use electricity prices. The implementation of a 
“free-when-green” approach in terms of market viability remains a topic 
for further investigation, though potential avenues such as carbon taxes, 
carbon trading, and ties with BEV sale profits have previously been 
proposed (W. Li et al., 2019; Maness and Lin, 2019; Schneider and 
Sanguinetti, 2021). In general, as pricing strategies are often discussed 
to counteract uncoordinated charging (Dallinger and Wietschel, 2012), 
this type of incentive design might be an important component for better 
grid and parking regulation as well (García-Villalobos et al., 2014; Parag 
and Sovacool, 2016). In this sense, the approach presented here should 
be interpreted as a proof of concept for the optimization of 

emission-related savings, showcasing that the incentive works to change 
behavior. It could potentially be adopted for solving problems in various 
situation, e.g., to balance an optimization of renewables, grid stability 
and parking availability at the same time. Relevant factors for a suitable 
application of our approach in certain scenarios are the current grid 
capacity utilization, grid stability (e.g., power quality) and renewable 
generation, as well as charging demand in the region of interest and 
within the respective time frame. With our approach, EV drivers could 
be motivated to adapt their charging behavior, tackling a variety of 
different grid- and energy-related challenges. It is also up to the grid 
operator to account for the uncertainty of the impact of behavior 
changes with additional measures such as curtailment. 

Simulation studies could help to more effectively showcase how 
much flexibility would be required in different scenarios, and whether 
features such as charging station availability feedback, charging station 
reservations, and short notice push notifications, as well as a smarter 
communication between charging stations might be required. 

Regarding the financial aspect of the selected incentive, while 
charging was offered for free, participants saved on average around 5 
Euros (for an average charge of around 10 kWh in the critical 11:00 to 

Fig. 4. Histogram of savings in Euro and corresponding numbers of charging events.  

Fig. 5. CO2eq emissions generated by email re
cipients (green bar), projected using the charging 
distribution on no-event days (orange bar) and pro
jected using the charging distribution as suggested by 
the survey data (blue bar). Lines indicate projected 
CO2eq emissions calculated for uniform minimum 
(red line), mean (black line) and maximum (blue line) 
distributions for the trial period. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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15:00 time slot). It is noteworthy that such a relatively small amount of 
savings was able to move persons into the desired direction when 
considering the time and effort of undertaking an extra charging process; 
especially in light of the typical socio-demographic profile of BEV 
owners (predominantly high-income, multi-car households, see Kumar 
and Alok, 2020; Priessner et al., 2018). This could be attributed to the 
previously mentioned findings that a free offer has a much stronger 
impact than a mere reduction of cost (Shampanier et al., 2007). As an 
alternative interpretation, it also supports the idea that the conversa
tional nature of the incentive might play a role more than the value it
self, in the sense that the free offer transmits a priority and urgency for 
the desired action (Grice, 1975; Kacperski and Kutzner, 2020). If it is 
indeed the financial value of such incentives that drives the effect, this 
might be expected to be stronger for financially more vulnerable pop
ulations. However, even relatively large financial savings might fail to 
change charging patterns for families with children, if previous research 
on household energy consumptions is any indication (Mizobuchi and 
Takeuchi, 2013; Møller et al., 2019; Nilsson et al., 2018) 

Further, more kWh were charged during weekends as compared to 
weekdays following the incentive, probably due to the increased flexi
bility to leave the vehicle at the charging station for multiple hours. This 
is in line with the hypothesis that a higher flexibility of customers allows 
for more effective introduction of incentives and is noteworthy for re
searchers as well as policy makers deciding on effective charging in
terventions in the future. As the present study’s critical time slot 
occurred during working hours in 53% of cases, many participants could 
be assumed to have been between work appointments, retired, working 
in a mobile service industry, and/or having flexible work hours or shift 
work. With higher expected work flexibility in the future (Smit et al., 
2020), implementation of incentive programs that are based on 
renewable supply might become more feasible. 

Finally, results seem to indicate that the incentive mainly moved 
charging from private to public charging stations and into critical times. 
Yet, in the presented study, data from home charging are missing to 
verify this claim. A possible future avenue of research could be to 
investigate how home charging patterns are affected by similar incen
tive strategies. While public charging incentives might lead to more 
investments into public charging infrastructure in the future, policy 
makers should ensure that it does not increase road traffic, and lead to 
potential grid issues as a consequence. A free-when-green charging 
model for home use could circumvent these issues, as smart chargers at 
home could optimize for renewable production – and potentially also 
take into account grid stability. A smarter charging infrastructure could 
include charging reservation systems in which positions in the queue are 
scheduled on demand, for example through an app that logs habitual car 
usage cycles. 

Some limitations are noted. Firstly, at 318 initial customers, the 
number of participants is relatively low for an experimental field trial, 
though 99% power was achieved for the main model, as per a post-hoc 
power analysis (Judd et al., 2017). Secondly, the individual contribu
tions of environmental and financial incentives cannot be teased apart 
with the current design. The decision to provide a mixed incentive, 
based on previous evidence of its effectiveness, and compare results 
between one intervention and control group, yielded here the 
high-powered experimental design we had targeted; however, future 
experiments using a 2 (environmental vs control) x 2 (financial vs 
control) design with a bigger sample would achieve more explanatory 
insights and could also attempt to collect demographic and mobility 
patterns among participants to further increase generalizability. The 
trial and incentive design provided in this study could be used by other 
researchers as a starting point. Finally, the here proposed charging 
station usage optimization scenario is ambitious; it requires a much 
smarter grid and user interaction and involvement, including possibly 
prioritization and automatic vehicle detection. However, the future grid, 
dominated by volatile renewable energy sources and increased demand 
through electric mobility can only be operated safely if many types or 

demand flexibilities are orchestrated. It is an objective worth targeting 
to approach maximum usage of renewable energy at peak generation. 

In summary, in this first of its kind field experiment, BEV drivers 
were successfully steered towards greener charging with a financial- 
environmental incentive, while being directly confronted with the 
trade-offs that can be realistically expected in such scenarios. We 
highlight the need for further investigations into BEV drivers’ decision- 
making and the measuring actual behavior in the field. Such studies are 
crucial to design better policies surrounding BEV adoption and usage. 
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