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ABSTRACT

Battery electric vehicles generate a significant share of their greenhouse gas emissions during production and
later, when in use, through the energy used for charging. A shift in charging behavior could substantially reduce
emissions if aligned with the fluctuating availability of renewable energy. Financial incentives and environ-
mental appeals have been discussed as potential means to achieve this. We report evidence from a randomized
controlled trial in which cost-free and “green” charging was advertised via email notifications to customers of a
charging service provider. Emails invited to charge during midday hours (11:00 to 15:00) of days with high
predicted shares of renewable energy. Results show a significant increase in the number of charging processes in
the critical time, and in the amount of energy charged (kWh), despite only marginal monetary savings of 5€ on
average. A further increase in kWh charged was observed on weekends. Under the assumption that these
charging processes replaced regular overnight charging at home, this represents reduction in COy emissions of

over 50%.

1. Introduction

Large-scale adoption of battery electric vehicles (BEVs) is often
hailed as a way to reduce the climate impact of the transportation sector
(Abdul-Manan, 2015; Faria et al., 2012; Laberteaux and Hamza, 2018).
BEV-related greenhouse gas emissions occur during their manufacturing
mainly from the battery production (Abdul-Manan, 2015; Nealer and
Hendrickson, 2015), and from the generation of the required electricity
for operating the BEVs. The latter depends heavily on the proportion of
low-carbon renewable energy that is used to charge the vehicles
(Abdul-Manan, 2015; Buekers et al., 2014; Manjunath and Gross, 2017).
In Germany, a country marked by a relatively high capacity of renew-
able energy - 53% of total capacity for electricity production in 2019
according to the Bundesnetzagentur & Bundeskartellamt (2019) -, car-
bon intensity per kWh can fluctuate by an order of magnitude, with a
mean for 2019 of 0.15 kg of CO, equivalent per kWh (SD = 0.09 kg, min
= 0.03 kg, max = 0.54 kg) (Bundesnetzagentur, 2020), with a consumed
share of renewable energy of 35% at total electricity consumption
(BMWI, 2021). With increasing capacity for intermittent renewable
energy production around the world, and an increasing share of BEVs on
the roads (Irle, 2020), steering charging behavior has previously been
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suggested as an approach to increase consumed share from total ca-
pacity, and reduce emissions from BEV charging (Eider et al., 2017;
Kacperski and Kutzner, 2020; Robinson et al., 2013; SchmalfuB et al.,
2015; Tu et al., 2020; Zhang et al., 2018a).

The decision when and where to charge has reportedly been influ-
enced by state-of-charge, dwell time, and price; among those factors, an
inflexible and opportunity-driven pattern seems most pronounced, as
most charging operations occur either on semi-public charging points at
the workplace starting in the morning or, accounting for the largest
share, at home charging points starting in the late afternoon (Jabeen
et al., 2013; Lee et al., 2020; Morrissey et al., 2016; Robinson et al.,
2013). Home charging usually combines convenience and economic
benefits (Jabeen et al., 2013; Wen et al., 2016). In one large-scale study
in 18 metropolitan areas in the US, 82% of all charging events were
conducted at home (Smart and Schey, 2012).

EV drivers’ charging behaviour has been steered successfully with
directly BEV-related incentives such as optimization of charging station
placement (Schmidt et al., 2020; Xu et al., 2017), free parking allocation
(Robinson et al., 2013; Wolbertus et al., 2018), prioritization incentives
at charging stations (Zhang et al., 2018a) and installation of
fast-charging stations (Sun et al., 2016). Aligning charging with
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renewable production requires more flexible incentive systems, such as
semi-instant financial or symbolic incentives that can impact BEV
charging at a few hours’ notice.

Studies that model how to manage electric vehicle charging have
demonstrated that it is achievable to lower cost and/or minimize elec-
tricity consumption emissions (Kontou et al., 2017; Van Der Kam et al.,
2019; Weis et al., 2015; Yang, 2013). Multiple simulation studies have
proposed effects of monetary rewards on charging (Dallinger and
Wietschel, 2012; Flath et al., 2013; Li et al., 2014; Zhang et al., 2018b).
However, empirical research on incentive effects in the context of
electric vehicle charging is rare. Self-reports reveal some price sensi-
tivity regarding charging location, with preferences for home charging
even more pronounced in the presence of particularly cheap electricity
plans, and for workplace charging when it is provided for free (Chak-
raborty et al., 2019; Nicholas and Tal, 2015; Tal et al., 2014). In three
instances, researchers analyzed charging data in the context of financial
interventions as part of naturalistic studies of quasi-experimental design.
For example, charging data from the US showed that switching from free
charging to a $5 flat-rate fee increased the proportion of charge events
taking place at low state of charge (Motoaki and Shirk, 2017). Similarly,
using ChargePoint network billing data, free charging stations were
found to be frequented at a four times higher rate than paid ones (Sax-
ton, 2012). Most pertinent to smart charging, in the ECOtality project, a
comparison of the effect of flat-rate vs. time-of-use electricity pricing
between two cities was conducted, finding that demand peaks shifted
from 4pm to midnight, coinciding with the beginning of the cheap
off-peak electricity rate (Schey et al., 2012). While these studies support
similar hypotheses, due to their quasi-experimental nature (i.e., lack of
randomized allotment of participants to experimental and control
group), they do not allow for a direct assessment of the causal link be-
tween price changes and charging behaviour. And while the study of
consumer responses to incentives have been a prolific area of research in
the context of electric vehicles when it comes to the purchase and pro-
motion of BEVs (Jenn et al., 2018, 2020; Kwon et al., 2018; Zhang et al.,
2018c), modelling customer responses to charging incentives is a novel
contribution to the financial incentive literature.

A similar dearth of experimental evidence exists for environmentally
focussed incentives. Pro-environmental attitudes have been found to be
a positive predictor of BEV purchase (Li et al., 2017; Rezvani et al., 2015;
Schuitema et al., 2013), and BEV usage is cited as a way to engage in
pro-environmental behaviours (Graham-Rowe et al., 2012; Ingeborgrud
& Ryghaug, 2019). Yet, the role of environmental incentive strategies
has previously mostly been investigated in contexts of home energy
saving and energy efficient driving and yielded small to moderately
positive effects on intentions and behaviours (Asensio and Delmas,
2015; Dogan et al., 2014; Mgller et al., 2019; Schwartz et al., 2015;
Steinhorst and Klockner, 2018). To the best of our knowledge, only one
laboratory study has experimentally investigated individual
decision-making in the context of BEV charging: monetary and
symbolic-environmental incentives were both effective in changing
behaviour towards ‘greener’ charging choices, despite a time penalty for
doing so (Kacperski and Kutzner, 2020). The lack of field studies that
investigate effects of incentives on charging behaviour is untimely,
especially given the interest in rolling out charging programs by
research and commercial actors alike (BMW ChargeForward, 2020;
IRENA, 2019).

To address this gap, we carried out a field experiment in which
groups of randomly chosen BEV drivers were offered an incentive.
Specifically, we repeatedly carried out a lottery with customers of a
charging service provider and offered to the selected customers an op-
portunity of “greener” charging at zero costs between 11:00 and 15:00.

Concepts and results from our experiment can be leveraged to design
and implement more realistic incentives in order to encourage adoption
of and more sustainable usage of BEVs, currently a highly topical issue in
policy and regulatory contexts (Hardman et al., 2017; Liu and Xiao,
2018; Wu et al., 2021), particularly those that include both
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environmental and financial factors.

The combination of environmental and financial reward was chosen
for two reasons: previous research on such incentives claims the com-
bination of both to be the most effective, often with larger effects re-
ported compared to each incentive alone (Allcott and Sweeney, 2017;
Mizobuchi and Takeuchi, 2013; Mpgller et al., 2019; Petersen et al.,
2007). Additionally, it maximizes external validity: policy-driven
financial charging incentives will only BEVer be provided in combina-
tion with expected environmental benefits — our intervention was
therefore designed as a mixed financial-environmental incentive.

We chose to provide completely free charging as opposed to re-
ductions in charging costs for several reasons. A relatively larger impact
can be expected from a free offer versus a simple reduction of costs of a
similar amount (Shampanier et al., 2007) and variable or dynamic
pricing runs the risk of eliciting negative consumer reactions (Haws and
Bearden, 2006). Finally, the administrative effort of calculating and
distributing minor savings was deemed too large considering the already
minor expense of a single charging process (reported as around 5 Euros
by the charging provider).

The feasibility of “all-charging-free” approach by subsidy has pre-
viously been modelled (Maness and Lin, 2019), and judged efficient in
terms of greenhouse gas emission reduction per dollar of subsidy spent.
The here proposed “free-when-green” approach augments economic
value, if subsidized by higher prices in high-emission time slots,
fine-tuned carbon tax programs, and increased BEV sales (Schneider and
Sanguinetti, 2021; Zhang et al., 2018a). For charging station providers,
customer retention, a possibility to conjoinedly incentivize smart and
controlled charging to balance supply and demand (Garcia-Villalobos
etal., 2014; Haupt et al., 2020; Rubino et al., 2017), and vehicle-to-grid
charging involving prosumers in microgrids (Parag and Sovacool, 2016;
Wolinetz et al., 2018) could be considered potential avenues to make the
proposed incentive a viable market measure.

2. Methods
2.1. Field study

The field experiment was conducted in collaboration with E-Wald, an
electric mobility service provider originally founded as part of the
research project “Modellregion Elektromobilitat”. E-Wald operates 150
publicly accessible charging stations with 500 charging points in an area
of 7000 km? in rural and semi-rural districts in southern Germany, with
mostly transportation, institutional, commercial, and industrial land
use. The charging infrastructure combines the following types of
charging technology: CCS fast charging, CHAdeMO fast charging, Type2
charging, Typel charging and the F1 standard. This operator offers
charging with a tariff system at flat 0.45 Euro/kWh for slow charging at
a maximum charging power of 22 kW, or 0.55 Euro/kWh for fast
charging above 22 kW. The study was carried out in line with ethics
requirements of the German Ethics Board (DGPS) and the university
ethics statute (Statut der Ethikkommission der Universitit Mannheim,
2016), as well as European data protection guidelines (DGPR). Consent
was obtained by the service provider during sign-up procedures, where
customers were informed that anonymized charging station data would
be made available to researchers and that they might be contacted for
research trials and incentive schemes via email and newsletter.

318 customers had actively used this charging service within the
previous year and were signed up to the E-Wald email newsletter. Based
on information received from E-WALD regarding their customer base,
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participants, who were required to hold E-WALD charging cards and are
most commonly local residents, were driving for recreational, educa-
tional, or work purposes, so were in most cases not long-distance trav-
elers. These participants received an email that a campaign would be
taking place. This email' informed the customers that renewable energy
would be a focus topic for the upcoming weeks, and that the operator
would keep track of the energy mix in the power grid. Selected cus-
tomers would be randomly gifted a free charge between 11:00 and
15:00° if renewable shares were particularly high on that day. Using this
infrastructure, we implemented a 6-week event-based free charging
intervention running February to mid-March.

On 13 days during the trial period when emissions were predicted to
be particularly low, half of the sample (i.e., 159 customers, selected at
random for each event day) received an email® in the afternoon, stating
that on the next day between 11:00 and 15:00, charging would be free
for them due to a high ratio of renewables in the grid. The number of
clients that charged during these hours, the energy charged in kWh, and
the emissions generated by these charges, were measured as outcome
variables.

2.2. Event day selection based on emission prediction

The algorithm that selected the event days was built on the following
procedure: every day at 16:00, we compared the predicted COseq
emissions of the current evening between 18:00 and 22:00 with the
CO9eq emissions of the following day between 11:00 and 15:00 (critical
time). If the average hourly emissions were predicted to be at least 20%
lower in the critical time, the charging service provider was notified
automatically, and between 16:00 and 17:00, the notification email was
sent to a randomly selected 50% sample of customers.” To forecast the
respective hourly CO»eq emissions, we used the algorithm provided by
electricitymap.org via their API (Electricity Map API, 2020).

2.3. Data sources

Data on customers were provided by the charging service provider.
These data contained the timestamp of when participants had plugged in
their vehicle, the charging duration, and the number of kWh charged. No
demographic data were available due to the provider’s data protection
regulations. Emission data were calculated using the TenneT system
operator open source dataset provided by SMARD.de, multiplying the
kWh generated from various energy sources (such as gas, solar, biomass
etc.) with kg/kWh values of COseq for Germany as suggested in the
literature, and used by electricitymap.org in their predictive algorithms
(Tranberg et al., 2019).

After the field trial was completed, a survey was sent to all customers
who had at least charged once during the field trial in response to an
intervention email: the trial participants were invited to answer a brief
survey about their charging behavior (time of charging process, location
of charging station, number of kWh), both for normal days and for the
trial’s event days. We also used the survey® to debrief participants on the

1 “Dear customers! In the coming weeks, our focus will be on renewable
energy. As part of a pilot project, we will watch the energy mix for you (see ele
ctricitymap.org). Whenever it’s particularly “green”, we will send you an email
and charging will be free for you between 11am and 3pm (charge start).” (see
Appendix B for German version).

2 This timeslot was selected based on minimum emission timeslots calculated
for 2015-2018, please see Appendix E for further information.

3 _,TOMORROW free charging between 1lam and 3pm! Dear customers!
Tomorrow there will be high quantities of renewables in the grid. Between
1lam and 3pm TOMORROW (charge start), charging with your E-Wald
customer card is free!”.

4 An illustration of the expected emission distribution can be found in Ap-
pendix C.

5 Exact item wordings can be found in Appendix D.
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research conducted and provided them with first results.
2.4. Hypotheses and experimental design

Conceptually, the experiment was a 2 (intervention: no email vs.
email) x 2 (time: 15:00 to 11:00 vs. 11:00 to 15:00) experimental ran-
domized controlled trial for the 13 event days, with 159 participants per
condition. We measured two main response variables: charging pro-
cesses conducted (dummy coded) and total energy charged in kWh. We
also analyzed these data on the 28 no-event days for a comparison with
no-event days charging behavior. We calculated emissions in kg of
CO9eq. In line with the predictive algorithm used, event days should
show lower emissions in the critical time (11:00-15:00) as compared to
the evening before. The difference should be particularly pronounced
when compared to no-event days.

For regression analyses we used R (R Development Core Team,
2008), with the Linear mixed model (Imer with gaussian family for
continuous dependent variables) and Generalized linear mixed-effects
models (glmer, binomial family for dummy coded dependent vari-
ables), measuring the effect of the intervention in interaction with time.

The main hypothesis consists of two parts: We hypothesized that
more charging processes would be logged during the critical time as a
result of participants receiving an email and that they would charge
more kWh in in this critical period, compared to the control group that
did not receive an email (H1). Two further explorative analyses were
conducted: We included workdays (7 days, 54%) versus weekends/
holidays (6 days, 46%) as a predictor in interaction, hypothesizing that
the intervention would have a stronger effect on non-workdays, based
on the idea that participants might be more flexible temporally on
weekends and holidays (H2). Finally, comparing charging behavior on
no-event days versus event days, we expected to see a reduction in
charging outside of critical hours on event days (compared to no-event
days), as an indication that we had also moved customers in time for
home-charging rather than in time and place, from home to the tracked
public charging (H3).

We modelled repeated measurements from individual drivers by
adding a random intercept per driver. We report Estimate betas, odds
ratios as additional effect sizes and 95% confidence intervals in brackets.
Appendix A.1. - A.3. hold the full model outputs, including standard
errors, Wald z statistics and odds ratio confidence intervals. Appendix
A.4. holds all means and standard deviations. We analyzed the survey
following the trial to learn more about charging habits of our partici-
pants; the results are presented as aggregate statistics.

Emission projections were calculated by generating charging distri-
butions in 15-min time series and multiplying them by the corre-
sponding 15-min intervals of emissions in kg CO2eq/kWh as reported by
historical emission data (Bundesnetzagentur, 2020). As comparison we
used the charging pattern on no-event days, and the charging behavior
as reported in the survey. We hypothesized that emissions generated as a
result of our intervention would be lower than if they had occurred at
the times when public charging happens regularly, i.e. on no-event days,
and lower than if they had occurred at the times survey participants
reported they would have charged usually (H4).

3. Results
3.1. Field study

During the 41 days of the trial, 270 charging processes were logged,
of which 23 were excluded due to the charging time lasting less than 1
min or charging less than 0.05 kWh. After the exclusion, we logged a
combined total of 247 charging events from 90 customers.

Each afternoon at 16:00, the previously described algorithm pre-
dicted the next midday’s emissions. Days with particularly low pre-
dicted emissions were designated as event days, on which at 17:00 the
charging service provider sent the event email to a randomly selected
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50% sample of customers. On these 13 event days, 66 customers initi-
ated a total of 129 charging operations, charged 1304.97 kWh, with a
mean consumption per charge of 9.67 kWh (Mdn = 7.25 kWh, SD = 7.58
kWh, Max = 37.07 kWh).

Emissions generated by the production of power in the trial
geographical area (TenneT provider, southern Germany) during the
entire 41-day trial period was on average 0.13 kg of COy equivalent
(CO2eq) per kWh (Mdn = 0.09 kg, SD = 0.11 kg, Max = 0.49 kg). Fig. 1
portrays the distinction between average emissions generated on event
days (dashed line), and on no-event days (dotted line), starting at 17:00
until the same time the next day in 15-min intervals. The dashed line
shows that the predictive algorithm led to a correct identification of days
in which emissions were particularly low at midday (11:00-15:00) (M =
0.07 kg of CO2eq per kWh) when compared to the evening before (M =
0.15 kg of CO2eq per kWh), a 41% decrease.

Fig. 1 also shows the average number of charging processes under-
taken per customer per trial day for each 15-min time interval, i.e., the
probability density of a customer charging at an E-Wald charging station
at this time during the trial. As the green curve illustrates, the critical
timeframe between 11:00 and 15:00 was particularly attractive for
participants that had received an email. The probability of charging
processes on no-event days, and by customers that had not received an
event notification are much more evenly distributed throughout the day.

Fig. 2 shows the sum of charging events (A) and the sum of kWh (B)
on event days. We found a significant interaction of intervention and
time for drivers that received an email, showing an increase in number
of charging operations in the critical time between 11:00 and 15:00, b =
2.46 [1.40, 3.52], p < .001, OR = 11.7, as well as an increase in kWh
charged, b=0.39 [0.27,0.51], p < .001, OR = 1.47 (H1). Again, the data
illustrates that the critical time frame was magnitudes more attractive
for participants that received the email.

We included weekdays in the previously reported regression analysis
and found that our intervention increased the amount of kWh charged
per person per day during the weekend as compared to weekdays, b =
—0.30 [-0.53, —0.05], p = .016, OR = 0.74. There was no significant
evidence that the intervention also increased the number of charging
operations conducted on weekends as compared weekdays, b = —0.88
[-2.99, 1.24], p = .415, OR = 0.42 (H2). This is in line with the
expectation that participants might have more time to leave their cars
parked at charging stations on weekends.

Finally, we tested whether the intervention had reduced partici-
pants’ use of charging stations outside the critical times. To do so, we
compared the average number of charging processes per person and day
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outside of 11:00-15:00 on event days and on no-event days (c.f. Fig. 3,
green versus blue series of “Other times”). We did not find a significant
difference, b = —0.32 [—0.94, 0.30], p = .308, OR = 0.72 (H3); this
indicates that instead of moving public charging customers from non-
critical to critical times, charging operations between 11:00 and 15:00
were additional, and deducing from prior literature, most likely a
change from home charging to public charging.

With regards to monetary savings for our participants, we found that
the median incentive payout per charging event lay at 4.79 Euro (M =
5.51, SD = 3.38, Min = 0.84, Max = 16.68) with 75% of participants
gaining savings below 8.04 Euro. Fig. 4 shows a histogram of the number
of charging events with their respective savings.

3.2. Survey results

19 responses were recorded from participants. In line with previous
literature, participants reported that, had they not charged between
11:00 to 15:00 during the event day, the majority 79% (15) would have
charged at home; 84% (16) would have instead charged between 15:00
and 06:00. For participating respondents, the survey therefore further
confirmed the findings regarding H3 mentioned above, i.e. they trans-
ferred their overnight home charging processes to the critical time and
to a public charging station. Participants also reported that they usually
charged on average 17.92 kWh per charging process (Min = 9.00 kWh,
Max = 35.00 kWh), and conducted on average 4.53 charging processes
per week (Min = 1, Max = 10), charging their battery to an average 57%
SoC (Min = 20%, Max = 90%).

3.3. Emission projections

A total of 1136.43 kWh were charged by email recipients. Using the
time series of the distribution of charging by these recipients, and the
average emission intensity on event days, we calculated the average
emissions in kg of COzeq generated by our intervention (see Fig. 5, green
bar). We then projected the average COzeq emissions that would have
been generated for the usual charging pattern at public E-Wald charging
stations, i.e. charging behavior on no-event days (see Fig. 5, orange bar).
We secondly considered the survey answers, i.e. the times participants
indicated they would have charged if the trial had not taken place; based
on this distribution, we also projected the amount of generated COzeq
emissions (see Fig. 5, blue bar).

For additional comparisons, we added lines indicating three uniform
charging distributions: a minimum line indicating the COzeq emissions
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We find that if charging processes had occurred either at a regular
charging station pace, or at home at night as reported by the majority of
participants in the survey, roughly twice the emissions would have been
generated, an increase from 81.96 kg COzeq to 163.56 kg COseq for the
public station charging distribution (99.6% increase) and to 163.16 kg
COzeq for the survey-data based charging distribution (99.1% increase)
(H4).
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to the Web version of this article.)

Other (15:00-11:00)

4. Conclusion and policy implications

We investigated whether offering a mixed financial-environmental
incentive to BEV drivers, free charging advertised as “green”, would
steer charging behavior towards times that would lead to emission re-
ductions. Due to the incentive, eight times more charging processes were
conducted during pre-specified event periods with low carbon intensity
of the electricity charged. Twice the emissions would have been
generated if BEV drivers had instead charged throughout the evening
and night, using a distribution reported common for home charging in
our follow-up survey and based on prior literature (Franke and Krems,
2013; Jabeen et al., 2013).

The study provides first evidence from a field experiment that a
combination of financial and environmental incentives has the potential
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to reduce emissions from BEVs. As the climate impact of BEVs depends
partially on low-carbon renewable energy that is used to charge the
vehicles, studying the effects of such incentives is of utmost importance
for policy makers and the general population (Abdul-Manan, 2015;
Buekers et al., 2014). Utility companies and providers might, in reaction
to policy instruments, demand pro-environmental changes and better
renewables integration from charging infrastructure providers and
managers. They, in turn, can take the incentive intervention designed
here as a starting point to develop better market instruments to take
advantage of lost time-of-use electricity prices. The implementation of a
“free-when-green” approach in terms of market viability remains a topic
for further investigation, though potential avenues such as carbon taxes,
carbon trading, and ties with BEV sale profits have previously been
proposed (W. Li et al., 2019; Maness and Lin, 2019; Schneider and
Sanguinetti, 2021). In general, as pricing strategies are often discussed
to counteract uncoordinated charging (Dallinger and Wietschel, 2012),
this type of incentive design might be an important component for better
grid and parking regulation as well (Garcia-Villalobos et al., 2014; Parag
and Sovacool, 2016). In this sense, the approach presented here should
be interpreted as a proof of concept for the optimization of

Fig. 5. COzeq emissions generated by email re-
cipients (green bar), projected using the charging
distribution on no-event days (orange bar) and pro-
jected using the charging distribution as suggested by
the survey data (blue bar). Lines indicate projected
CO.eq emissions calculated for uniform minimum
(red line), mean (black line) and maximum (blue line)
distributions for the trial period. (For interpretation
of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Projection using charging

distribution based

on survey-data

emission-related savings, showcasing that the incentive works to change
behavior. It could potentially be adopted for solving problems in various
situation, e.g., to balance an optimization of renewables, grid stability
and parking availability at the same time. Relevant factors for a suitable
application of our approach in certain scenarios are the current grid
capacity utilization, grid stability (e.g., power quality) and renewable
generation, as well as charging demand in the region of interest and
within the respective time frame. With our approach, EV drivers could
be motivated to adapt their charging behavior, tackling a variety of
different grid- and energy-related challenges. It is also up to the grid
operator to account for the uncertainty of the impact of behavior
changes with additional measures such as curtailment.

Simulation studies could help to more effectively showcase how
much flexibility would be required in different scenarios, and whether
features such as charging station availability feedback, charging station
reservations, and short notice push notifications, as well as a smarter
communication between charging stations might be required.

Regarding the financial aspect of the selected incentive, while
charging was offered for free, participants saved on average around 5
Euros (for an average charge of around 10 kWh in the critical 11:00 to
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15:00 time slot). It is noteworthy that such a relatively small amount of
savings was able to move persons into the desired direction when
considering the time and effort of undertaking an extra charging process;
especially in light of the typical socio-demographic profile of BEV
owners (predominantly high-income, multi-car households, see Kumar
and Alok, 2020; Priessner et al., 2018). This could be attributed to the
previously mentioned findings that a free offer has a much stronger
impact than a mere reduction of cost (Shampanier et al., 2007). As an
alternative interpretation, it also supports the idea that the conversa-
tional nature of the incentive might play a role more than the value it-
self, in the sense that the free offer transmits a priority and urgency for
the desired action (Grice, 1975; Kacperski and Kutzner, 2020). If it is
indeed the financial value of such incentives that drives the effect, this
might be expected to be stronger for financially more vulnerable pop-
ulations. However, even relatively large financial savings might fail to
change charging patterns for families with children, if previous research
on household energy consumptions is any indication (Mizobuchi and
Takeuchi, 2013; Mgller et al., 2019; Nilsson et al., 2018)

Further, more kWh were charged during weekends as compared to
weekdays following the incentive, probably due to the increased flexi-
bility to leave the vehicle at the charging station for multiple hours. This
is in line with the hypothesis that a higher flexibility of customers allows
for more effective introduction of incentives and is noteworthy for re-
searchers as well as policy makers deciding on effective charging in-
terventions in the future. As the present study’s critical time slot
occurred during working hours in 53% of cases, many participants could
be assumed to have been between work appointments, retired, working
in a mobile service industry, and/or having flexible work hours or shift
work. With higher expected work flexibility in the future (Smit et al.,
2020), implementation of incentive programs that are based on
renewable supply might become more feasible.

Finally, results seem to indicate that the incentive mainly moved
charging from private to public charging stations and into critical times.
Yet, in the presented study, data from home charging are missing to
verify this claim. A possible future avenue of research could be to
investigate how home charging patterns are affected by similar incen-
tive strategies. While public charging incentives might lead to more
investments into public charging infrastructure in the future, policy
makers should ensure that it does not increase road traffic, and lead to
potential grid issues as a consequence. A free-when-green charging
model for home use could circumvent these issues, as smart chargers at
home could optimize for renewable production — and potentially also
take into account grid stability. A smarter charging infrastructure could
include charging reservation systems in which positions in the queue are
scheduled on demand, for example through an app that logs habitual car
usage cycles.

Some limitations are noted. Firstly, at 318 initial customers, the
number of participants is relatively low for an experimental field trial,
though 99% power was achieved for the main model, as per a post-hoc
power analysis (Judd et al., 2017). Secondly, the individual contribu-
tions of environmental and financial incentives cannot be teased apart
with the current design. The decision to provide a mixed incentive,
based on previous evidence of its effectiveness, and compare results
between one intervention and control group, yielded here the
high-powered experimental design we had targeted; however, future
experiments using a 2 (environmental vs control) x 2 (financial vs
control) design with a bigger sample would achieve more explanatory
insights and could also attempt to collect demographic and mobility
patterns among participants to further increase generalizability. The
trial and incentive design provided in this study could be used by other
researchers as a starting point. Finally, the here proposed charging
station usage optimization scenario is ambitious; it requires a much
smarter grid and user interaction and involvement, including possibly
prioritization and automatic vehicle detection. However, the future grid,
dominated by volatile renewable energy sources and increased demand
through electric mobility can only be operated safely if many types or
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demand flexibilities are orchestrated. It is an objective worth targeting
to approach maximum usage of renewable energy at peak generation.
In summary, in this first of its kind field experiment, BEV drivers
were successfully steered towards greener charging with a financial-
environmental incentive, while being directly confronted with the
trade-offs that can be realistically expected in such scenarios. We
highlight the need for further investigations into BEV drivers’ decision-
making and the measuring actual behavior in the field. Such studies are
crucial to design better policies surrounding BEV adoption and usage.
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