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Ordinal-scale items—say items that assess agreement with a proposition on an ordinal 
rating scale from strongly disagree to strongly agree—are exceedingly popular in 
psychological research. A common research question concerns the comparison of 
response distributions on ordinal-scale items across conditions. In this context, there is 
often a lingering question of whether metric-level descriptions of the results and 
parametric tests are appropriate. We consider a different problem, perhaps one that 
supersedes the parametric-vs-nonparametric issue: When is it appropriate to reduce the 
comparison of two (ordinal) distributions to the comparison of simple summary statistics 
(e.g., measures of location)? In this paper, we provide a Bayesian modeling approach to 
help researchers perform meaningful comparisons of two response distributions and draw 
appropriate inferences from ordinal-scale items. We develop four statistical models that 
represent possible relationships between two distributions: an unconstrained model 
representing a complex, non-ordinal relationship, a nonparametric stochastic-dominance 
model, a parametric shift model, and a null model representing equivalence in 
distribution. We show how these models can be compared in light of data with Bayes 
factors and illustrate their usefulness with two real-world examples. We also provide a 
freely available web applet for researchers who wish to adopt the approach. 

It is hard to overstate the popularity of ordinal data in 
social science research. Applications of ordinal variables 
such as Likert items to assess respondents’ opinions, affec
tive states, or unobservable behavior have become custom
ary in political science, economics, educational research, 
health sciences, and psychology. Likert items refer to state
ments or questions with discrete, naturally ordered re
sponse categories (Bürkner & Vuorre, 2019; Liddell & Kr
uschke, 2018; see also Likert, 1932). A key question in many 
applications is how responses on Likert items differ be
tween two conditions (say, two groups of respondents). Al
though there is near universal recognition that Likert items 
are ordinal variables, these comparisons are commonly 
characterized with means and -tests. While some have de
fended the use of parametric statistics in the context of Lik
ert data (Norman, 2010), others have criticized it as a biased 
and error-prone practice (Liddell & Kruschke, 2018; Win
ship & Mare, 1984). The typical recommendation is to rely 
on nonparametric statistics instead to ensure robust infer
ences (e.g., Jamieson, 2004; Kuzon et al., 1996; Nanna & 
Sawilowsky, 1998). 

The ordinal-vs-metric issue is well known and there is 
a large body of literature on it (e.g., Bürkner & Vuorre, 
2019; Clason & Dormody, 1994; Jamieson, 2004; Kuzon et 

al., 1996; Liddell & Kruschke, 2018; McKelvey & Zavoina, 
1975; Nanna & Sawilowsky, 1998; Norman, 2010; Sullivan 
& Artino, 2013; Winship & Mare, 1984). Following 
Townsend (1990), however, we believe that there is a differ
ent, far more fundamental issue that has received consid
erably less attention (but see Clason & Dormody, 1994): In 
the usual course of testing the effect of condition on some 
outcome variable, researchers typically rely on the compar
ison of summary statistics (e.g., measures of central ten
dency). These comparisons may establish a certain order 
relationship at the level of this summary statistic, for exam
ple, “The mean value is larger in Condition A than in Con
dition B”. They do not imply, however, that this relationship 
holds in a more general sense, that is, at the level of dis
tributions. In fact, if the relationship between distributions 
as a whole is qualitatively different from that between the 
considered summary statistics, a comparison of the latter 
would not be meaningful and may even mislead the analyst. 
This state holds across different levels of measurement, and 
it is true for parametric and nonparametric tests alike. 

Based on Townsend’s (1990) theory of hierarchical infer
ence, we argue that when comparing responses on a Lik
ert item between two conditions, researchers should first 
test for order relationships at the level of distributions. If 
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a certain ordering holds at this level, it is also implied at 
a lower level, that is, for a summary statistic such as the 
mean or median. The reverse, of course, is not true. An or
dering may hold for some summary statistic but not for the 
distribution as a whole, that is, consideration of a summary 
statistic in this case does not represent the phenomena of 
interest. Tests of summary statistics are meaningful in our 
opinion only when the ordering of the summary statistic 
indeed represents the ordering of distributions. 

This condition where distributions order is called sto
chastic dominance, and it is a well-known concept for ex
ample in economics (Abadie, 2002; Levy, 1992). Stochastic 
dominance describes an order relationship between distri
butions such that one cumulative distribution function is 
“greater” (or “less”) than the other cumulative function for 
all possible values (Speckman et al., 2008). Heathcote et al. 
(2010) developed methods to assess stochastic dominance 
and compared their performance with that of existing pro
cedures (e.g., Kolmogorov-Smirnov tests). These tests are 
only suited for continuous data, however, which renders 
them inappropriate for Likert items. In fact, the limited 
availability of suitable test procedures may be one of the 
reasons why stochastic dominance is rarely considered in 
applications with Likert data (cf. Madden, 2009; Tubeuf & 
Perronnin, 2008). 

In this paper, we provide a Bayes-factor approach to help 
researchers use data to assess stochastic dominance and 
draw appropriate inferences from Likert items. In the fol
lowing, we briefly outline conventional approaches to an
alyzing Likert items, and highlight the role of stochastic 
dominance. We then develop four statistical models that 
represent possible order relationships between two re
sponse distributions: An unconstrained model representing 
a complex, non-ordinal relationship, a nonparametric sto
chastic-dominance model, a parametric shift model, and 
a null model representing equivalence in distribution. We 
show how these models may be evaluated in light of data by 
means of Bayes factors and present a user-friendly web ap
plet for readers who wish to adopt the analysis in their own 
research. Finally, we demonstrate the usefulness of the ap
proach by applying it to two real-world examples, and as
sess the sensitivity of Bayes factor model comparisons to 
reasonable variations in prior settings. 

Likert-Item Distributions   

To illustrate why the parametric-vs-nonparametric de
bate does not address the heart of the problem, consider 
the following hypothetical example: Suppose we wanted 
to compare the frequency of being sad between first-year 
Marines and first-year college students. From each group, 
we let 100 individuals indicate on a 5-point Likert item 
how often they felt sad, with response options ranging from 
“never” to “always”. Table 1 shows hypothetical data for 
two different scenarios labeled plainly Scenario I and Sce
nario II. For each scenario, we may ask whether there is a 
difference between Marines and college students. 

A nonparametric alternative to -tests for addressing 
this question is the Wilcoxon rank-sum test. Unlike the 

 the Wilcoxon test does not consider the difference 

between values but only the rank order. Nanna and Saw
ilowsky (1998) compared the performance of both tests in 
the context of Likert data and found that the nonparametric 
test outperformed the parametric test in terms of Type I er
ror control and statistical power. Despite these differences 
in performance, both procedures have in common that they 
compare distributions by comparing central tendencies. In 
Scenario I, the response distributions of Marines and col
lege students differ in their central tendencies. College stu
dents seem to be more often sad than Marines, and both 
a -test and a Wilcoxon rank-sum test will detect that dif
ference. Importantly, this relationship holds qualitatively 
across the response scale: College students’ reported fre
quency of being sad is unambiguously higher than that of 
Marines. 

A different picture emerges in Scenario II: Comparing 
Marines’ and college students’ answers by means of central 
tendencies implies the same ordering as in Scenario I, that 
is, students seem to report being sad more often than 
Marines. This ordering is not preserved at the level of dis
tributions, however. While many Marines report never being 
sad, many also report always being sad. Thus, tests of cen
tral tendencies, parametric and nonparametric test alike, 
do not allow for a meaningful comparison of conditions 
(Clason & Dormody, 1994). 

The crucial difference between the scenarios is that in 
Scenario I, the distributions are stochastically dominant, 
whereas in Scenario II, this dominance does not hold. Sto
chastic dominance describes the relationship among cumu
lative probabilities, and for observed data, may be visual
ized using cumulative proportions. Table 2 presents these 
cumulatives for Scenarios I and II. Each number denotes the 
proportion of people whose response fell into the respec
tive or a lower category. For example, the first two values 
for Marines in Scenario I are .30 and .55, and these values 
indicate that 30% of Marines report to be never sad and 55% 
report to be either never sad or rarely sad. The key prop
erty here is the comparison of these cumulatives to those 
for college students. The values for college students indi
cate that only 20% are never sad and 40% are either never 
or rarely sad. The cumulative proportions for the Marines 
are always at least as great as those for the college students, 
and this property holds across all categories. 

The pattern is more complex in Scenario II. 60% of 
Marines report to be sometimes, rarely, or never sad, while 
only 36% of college students do. Thus, for these three cat
egories, Marines report a lower frequency of being sad than 
college students. This relationship reverses at Often, how
ever. While 80% of college students report to be sad often 
or less, leaving 20% to be always sad, only 70% of Marines 
chose Often or less, leaving 30% for the highest category. 
There is no stochastic dominance in this case, Marines are 
both more frequently never sad and more frequently always 
sad. 

Bayesian Models for Ordinal-Scale Data      

So far, we focused on cumulative proportions, which are 
sample-level data. As researchers, however, we are typically 
interested in the underlying population-level probabilities, 
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Table 1. Ratings Distributions for Hypothetical Sadness Example.       

Never Rarely Sometimes Often Always 

Scenario I 

Marines 30 25 20 15 10 

College Students 20 20 20 20 20 

Scenario II 

Marines 40 15 5 10 30 

College Students 5 12 19 44 20 

Note. Question: How often do you feel sad? 

Table 2. Cumulative Proportions for Hypothetical Sadness Example.       

Observed Proportions 

Never Rarely Sometimes Often Always N 

Scenario I 

Marines 0.30 0.55 0.75 0.90 1.00 100 

College Students 0.20 0.40 0.60 0.80 1.00 100 

Scenario II 

Marines 0.40 0.55 0.60 0.70 1.00 100 

College Students 0.05 0.17 0.36 0.80 1.00 100 

Note. Question: How often do you feel sad? 

that is, the behavior of these proportions in the large-sam
ple limit. To assess whether stochastic dominance holds in 
population, we need a hypothesis test suitable for ordinal 
data. 

Tests of stochastic dominance that assume continuous 
data (such as the Kolmogorov-Smirnov test) are not appro
priate for Likert data. As an extension of one of these tests, 
Yalonetzky (2013) developed a method for testing stochas
tic dominance with ordinal data. The test is based on the 
asymptotic approximation of the multinomial distribution 
to a multivariate normal distribution. Klugkist et al. (2010) 
developed a Bayesian hypothesis testing procedure for in
equality/equality constrained hypotheses for contingency 
tables. This nonparametric approach is very general and al
lows the analyst to test certain expected orderings of cell 
probabilities. Thus, the method could be used to test a cer
tain ordering of response probabilities implied by stochas
tic dominance in Likert data. Heck and Davis-Stober (2019) 
discuss a similar approach for testing order constraints, in
cluding stochastic dominance, in multinomial models (see 
also Sarafoglou et al., 2021). 

We suggest a related approach to assessing stochastic 
dominance with Likert data. Our main goal is to provide 
four models that encode a series of nested nonparametric 
and parametric constraints. While the aforementioned 
methods could also be used to encode and test nonpara
metric constraints, the approach that we propose makes it 
straightforward to specify and test both nonparametric and 
parametric constraints. 

Under the most constrained of the four models, distrib
utions across the two conditions are identical. At the next 
most constrained level, the distributions differ but this dif

ference is captured in a (semi-) parametric model that un
derlies ordinal-regression (also referred to as ordered-pro
bit or cumulative) model settings (Bürkner & Vuorre, 2019; 
Liddell & Kruschke, 2018; McKelvey & Zavoina, 1975; Win
ship & Mare, 1984). In the third model, the semi-paramet
ric form is further relaxed, leaving a model that has only 
a nonparametric stochastic dominance constraint. And fi
nally, even this constraint is relaxed, allowing for more 
complex, non-ordinal relationships. By comparing the 
strength of evidence from data for these four models, re
searchers can make insightful, meaningful comparisons 
across conditions. 

Ordinal-Regression Setup   

It is convenient to start with the well-known ordinal-re
gression approach (McKelvey & Zavoina, 1975; Winship & 
Mare, 1984). Here, the observed variable (i.e., the choice 
of a response category) results from the categorization of 
an underlying continuous variable. Consider a hypothetical 
survey study where respondents are asked to rate a state
ment on a 5-point scale ranging from “Strongly Disagree” 
to “Strongly Agree”. The model posits that agreement with 
this statement can be represented as a continuous, latent 
variable. This latent variable maps onto rating categories 
by partitioning the latent space into regions. These regions 
are defined by thresholds, and the probability of a response 
falling into a certain category is simply the area under 
the latent probability distribution between the respective 
thresholds (Winship & Mare, 1984). The model setup is il
lustrated in Figure 1. Note that this setup is conceptually 
equivalent to that underlying signal-detection theory. 
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Figure 1. Ordinal-Regression Model   

The latent variable is typically assumed to be normally 
distributed, although the model may be based on other 
probability distributions (e.g., a logistic function; Bürkner 
& Vuorre, 2019). The upper panel of Figure 1 shows a latent 
variable that is partitioned into five regions by four thresh
olds (represented by the vertical lines). Whenever the latent 
value exceeds a threshold, the observed response is the as
sociated category (lower panel). Thus, the probability of 
a latent value falling into a certain region corresponds to 
the probability of observing the associated response. For 
more details, we refer the reader to an accessible tutorial 
by Bürkner and Vuorre (2019), who provide an extensive 
overview of this and related models for the analysis of Lik
ert items. 

In the usual ordinal-regression approach, the thresholds 
are fixed across conditions and differences in distributions 
are captured by shifting the central tendency of the latent 
distribution. This usual approach may be considered semi-
parametric as there is no model on thresholds but a para
metric model on the effect of conditions. We are going to 
start with a fully nonparametric model that is an uncon
strained generalization of the ordinal-regression approach, 
and then add in increasing degrees of constraint. 

We start by setting the latent distribution for both con
ditions to a standard normal   The free pa
rameters in this setup are the category thresholds. Let 
denote the threshold between response category  and 

 in condition   For the setup to be 
valid, thresholds within each condition have to order, that 
is,  Although it may ap
pear that the choice of identical standard normals is as
sumptive, in this setup with free threshold parameters, it is 
not. The latent distribution serves merely as a technical de
vice that maps observed response frequencies onto regions 
on the real line. Importantly, all observed Likert distribu
tions across conditions may be accounted for by appropri
ate settings of the thresholds. Thus, at this point, the model 

is unconstrained, nonparametric, and vacuous; there are as 
many parameters as degrees of freedom in the data. 

To add constraint, it is useful to reparameterize the 
thresholds as follows: 

where  and  Here,  is 
the average for the th threshold, and  is the 
difference for the th threshold. The key feature of this pa
rameterization is that  denotes a comparison of distribu
tions for the th threshold. Thus, by placing constraints on 

 we can model different types of (ordinal) relationships 
between the two response distributions. 

Models  

We specify four statistical models on  each represent
ing a different constraint on the relationship between con
ditions. The models are shown in Figure 2, illustrating the 
construction in the context of our hypothetical sadness ex
ample (Table 1). 
Unconstrained Model : The first row shows a model that 

imposes no order constraints on the relationship between 
conditions. So long as the thresholds order within a con
dition (which is imposed by the likelihood function), there 
is no restriction on the values and relative order of thresh
olds across conditions. We denote this model as  with 

 There are  free parameters in this 
model:  mean-threshold parameters  and equally 
many difference parameters  The unconstrained model 
can account for any type of relationship between condi
tions, including complex relationships where response dis
tributions differ in a way that cannot be captured by an or
der relationship. 
Dominance Model:  The second row shows the domi

nance model,  For this model, there are again a total of 
 free parameters. To capture the notion of sto

chastic dominance, however, we impose an order constraint 
in this model:  This constraint implies that 
thresholds are at least as large—and hence, so are cumula
tive probabilities—in one condition as in the other one. For 
the example in Figure 2,  is the threshold that separates 
Rarely from Never for college students, and it has a value of 

 Likewise, the value for Marines is denoted  and 
has a value of  Here, we see that —Marines 
have a higher probability of being never sad than college 
students. Importantly, this inequality holds for all corre
sponding thresholds, that is, because  for all thresh
olds it follows that  for all threshold pairs. 

There are two possible dominance conditions: one in 
which all  (i.e.,  and one in which all 
(i.e.,  Whether one or the other or both should 
be used is a specification decision that researchers should 
make ahead of time depending on context. We will discuss 
how these decisions may be made subsequently. 
Constant Shift Model:   The next row describes a very 

simple effect where the thresholds in one condition all shift 
by the same amount compared to the other condition. The 
model is denoted by  and imposes the parametric con
straint  We include this model because it cor
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Figure 2. Illustration of Statistical Models     
Note. The latent distribution is fixed as a standard normal and latent thresholds are free parameters. The four models, depicted across the rows, capture different types of relation
ships between conditions (college students vs. Marines). 

responds to the classical probit-regression model presented 
above (see Figure 1). In the probit-regression model, the 
shifts are in the mean of the normal, but this is mathe
matically equivalent to fixing the mean and shifting all the 
thresholds by a constant amount. Unlike the other mod
els we propose in our framework that are nonparametric, 
the constant shift model imposes a parametric constraint 
on the latent threshold parameters, that is, constancy is 
made with respect to the normal distribution. Thus, for 
this model, the choice of identical latent distributions is 
indeed a substantive statement about the data. Of note, 
even though constancy reflects the choice of latent distri
bution, dominance does not. If thresholds order between 
conditions for one latent distribution, they must order for 
all other latent distributions. 

In Figure 2, the value of the threshold between Never and 
Rarely for Marines is -0.54, and this value is 0.30 greater 
than the bound between Never and Rarely for college stu
dents. This difference is preserved across corresponding 
thresholds. For example, the thresholds between Rarely and 
Sometimes are 0.05 and -0.25 for Marines and college stu
dents, respectively. The difference, 0.30, is the same as be
tween Never and Rarely. The constant shift model explicitly 
states that the effect of condition on the ratings can be cap

tured by a single parameter  It is comprised of  free pa
rameters (i.e.,  mean thresholds  and one difference 

 In our view, the constant-shift model is useful for cases 
where the effect of condition is relatively straightforward 
and can be captured by a shift in central tendency. 
Null Model:  The last row depicts the null model which 

posits that there is no effect of condition. This model is de
noted  and imposes the constraint  Thus, 
the corresponding thresholds for college students and 
Marines are identical in this model. For example, the value 
of the threshold between Never and Rarely in Figure 2 for 
college students is  and this value is the same for the 
threshold between Never and Rarely for Marines. Because 
all the corresponding thresholds are the same in value, the 
distributions are the same as well. There is no difference 
among the conditions; hence, there is no effect. The null 
model has one free parameter for each threshold, that is, 

 parameters in total. 

Priors on Parameters    

Our approach is Bayesian, and in Bayesian analysis pri
ors are needed on parameters. All four models considered 
here comprise  parameters for the mean thresholds 
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 so the priors for these parameters should be identical 
across models. A typical choice for these priors are in
dependent normal distributions (e.g., Bürkner & Vuorre, 
2019; Liddell & Kruschke, 2018): 

where  is a prior standard deviation setting that must be 
chosen before analysis. 

In contrast to the priors on  the priors on the dif
ference parameters  reflect the substantively motivated 
constraints under the four models. As for the mean thresh
olds, we propose a flexible normal distribution as a basis 
for these priors. Under  we specify independent normal 
distributions for each 

where  is again specified before analysis. Under  trun
cated normal distributions are placed on  to impose the 
notion of stochastic dominance: 

where  denotes a normal distribution with either 
an upper or a lower bound at 0, respectively. Under 
there is just one difference parameter  and thus, 

Finally, no prior on  is needed under  as the differ
ence in thresholds between conditions is constrained to be 
0. 

Before analysis, researchers can adjust the prior parame
ters  and  as needed. Thus, the normal prior setting of
fers the flexibility to provide substantive context through 
the choice—and range—of these prior parameters. Here is 
some guidance for setting  and  in practice: Since 
thresholds are placed on a standard normal, reasonable val
ues of  should be around 1.0. Figure 3 shows the marginal 
prior distribution on mean category probabilities across 
conditions for 5 rating options and for select values of 
For  middle panel, the marginal priors have the same 
distribution, centered around .2, for each of the five rating 
options. Small values of  correspond to a belief that ex
tremes are used excessively at the expense of the middle 
category (left panel); a large value of  corresponds to a 
belief that extremes are used rarely (right panel). The set
ting  is a good, weakly informative default, and it is 
hard to imagine reasonable settings smaller than  and 
larger than 3. 

The prior standard deviation on the difference parame
ters, in contrast, should typically be much smaller than on 
the mean thresholds. As for any difference parameter, how
ever, the exact choice depends on the analyst’s expectation 
about how strongly the distributions may differ from each 
other. Thus, this choice should be determined by substan
tive, rather than statistical, arguments. For our purposes, 
we choose a prior standard deviation of  that is, 

 of  We address the consequences of this choice and 
how it affects model comparison results subsequently. 

Data Visualization   

The four models correspond to the following helpful data 
visualizations. Much like in signal-detection analysis, the 
running cumulative proportions become the target for plot

ting. Table 2 shows the cumulatives for the two hypotheti
cal sadness scenarios. The usual approach is to plot receiver 
operating characteristic curves (ROCs), and an example for 
Scenario I is shown in Figure 4A. The levels of constraint 
are as follows: If the null model holds, the ROC curve traces 
the diagonal. If the shift model holds, then the resulting 
curve is the stereotypical one (Figure 4A) that is common 
in memory and perception research. The dominance model 
implies that the points all lie on one or the other side of 
the diagonal. The unconstrained model implies only that 
the points increase on the  and  axes, respectively (Figure 
4C). For analyzing real-world contrasts, it is advantageous 
to plot the differences across the conditions as in Figures 4B 
and D. The advantage here is that it is easier to spot trends 
because the  axis may be scaled for differences rather than 
the entire range from 0 to 1. The constraints now cen
ter around the horizontal zero line. The null model corre
sponds to this line; the shift and dominance model corre
spond to curves strictly on one side of it; the unconstrained 
model has no such constraint. Figures 4C and 4D show the 
ROC and the difference plot for the data in Scenario II. 

Bayes Factors   

We can measure the strength of evidence from the data 
for the four models using Bayes factors (Jeffreys, 1961), 
which are a measure of how well each model predicted 
the data before they are observed (Rouder & Morey, 2018). 
Readers who are new to Bayes factors are invited to con
sider one of the many tutorials on their use, and perhaps 
one of the most helpful resources is the recent 2018 Psycho
nomic Bulletin & Review special issue on Bayesian inference 
(Vandekerckhove et al., 2018). 

There are many approaches to computing Bayes factors. 
For the models developed here, we use two different ap
proaches as follows: Some models differ in dimensionality. 
For example, for  response options, there are 

 parameters in the unconstrained model, 
 parameters in the shift model, and 

 parameters in the null model. Where the models 
differ by a relatively small number of parameters, we find 
that the bridge sampling approach proposed by Meng and 
Wong (1996) works well. Gronau et al. (2017) provide a de
tailed and accessible tutorial on computing Bayes factors 
with bridge sampling. The approach has been implemented 
in an R package by Gronau et al. (2020), which we use in our 
work as well. 

We follow a different approach to compare models that 
have the same number of parameters, namely, the uncon
strained and dominance model. The dominance model is 
more constrained by virtue of the inequalities. Thus, al
though the models have the same dimensionality, the para
meter space for the dominance model is smaller than that 
for the unconstrained model. In fact, the unconstrained 
model encompasses the dominance model (Heck & Davis-
Stober, 2019; Klugkist et al., 2010). When models are en
compassed, the Bayes factor may be computed by consid
ering the posterior and prior probabilities of the constraint 
under the unconstrained model (Gelfand et al., 1992). The 
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Figure 3. Marginal Prior Distributions on Average Category Probabilities        
Note.  = Prior standard deviation setting on  ;  rating options. 

resulting Bayes factor between the dominance and the un
constrained model is 

The first step is calculating the denominator, that is, the 
prior probability that one distribution dominates another. 
This calculation may be done by Monte-Carlo simulation 
from the priors on the collections of  and  under the 
unconstrained model. The next step is calculating the nu
merator. In practice, the computation is surprisingly un
complicated. We follow the approach discussed in Haaf and 
Rouder (2017), which is based on the pioneering work of 
Klugkist et al. (2005). One simply counts the relative fre
quency of posterior samples under  that satisfy the 
dominance constraint (see Sarafoglou et al., 2021 for an al
ternative, efficient routine to calculating Bayes factors for 
order constraints using bridge sampling). Note that Bayes 
factors calculated with the encompassing-prior approach 
are bounded by the prior probability of the constraint under 
the unconstrained model. Thus, if there is unequivocal ev
idence that the dominance constraint holds, the Bayes fac
tor may be no larger than 

As outlined before, there are two dominance conditions 
because either distribution could possibly dominate the 
other. A test of stochastic dominance can be two-sided if 
there is no prediction about which distribution dominates 
the other. In this two-sided case, the prior probability of 
stochastic dominance is twice that of a directed test, that 
is, where a researcher a priori predicts that one distribution 
dominates the other and not the reverse. The posterior 
probability is estimated as the relative frequency of poste
rior samples in the predicted direction only. If stochastic 
dominance is observed in this predicted direction, the cor
responding Bayes factor will yield stronger evidence than in 
the two-sided case. Thus, if theoretical considerations indi

cate a dominance relation in a specific direction, the Bayes 
factor should be calculated accordingly. 

We do not recommend that researchers compare both 
stochastic dominance models with one in each direction. 
This recommendation is a matter of judgment. The moti
vation is that model comparison and testing should occur 
when researchers have good reason to suspect an effect in a 
theoretically meaningful direction. When researchers have 
no such reasons, exploratory approaches may be more ap
propriate than model comparison. 

Software for Computing Bayes Factors      

We created a user-friendly R web applet for analysis. The 
user inputs the frequency counts in two conditions such as 
in Table 1. The outputs are Bayes factors for the four mod
els. Additional prior inputs, such as the standard deviations 

 and  may be provided as well. The web applet is avail
able at https://martinschnuerch.shinyapps.io/likertBF/; the 
underlying source code as well as a set of useful R functions 
are available at https://github.com/mschnuerch/likertBF. 

We illustrate this applet with the example data about 
sadness in Marines and college students, Scenario I. A 
screenshot of the applet while analyzing the data is shown 
in Figure 5. Once the data are inputted, we may press “Plot 
Data,” and under “Data Visualization,” we may see the di
agnostic plots that are shown in Figure 4. Then, to compute 
Bayes factors, we may press “Start Analysis,” and after 
some time for sampling, the Bayes factors are returned. We 
may even choose which dominance model we wish by se
lecting the respective output option. Let’s say a priori we 
may have thought college students would be more often 
happy. Because we entered the Marines under Condition 1 
and the scale ranges from “never sad” to “always sad”, we 
specify the one-sided dominance model as “2 > 1”. The re
sults, shown in the center panel, clearly indicate that the 
constant shift model is preferred. Finally, by clicking “Plot 
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Figure 4. ROC and Difference Plots for Hypothetical Sadness Example         
Note. See Table 2. A, B = Scenario I; C, D = Scenario II. 

MCMC”, we can visually inspect MCMC samples from the 
unconstrained model for  and 

Applications  

In this section, we provide two real-world examples of 
these fine-grained analyses. The first example comes from 
Collingwood et al. (2018) who asked respondents their 
opinions about controversial policies of the US adminis
tration under former president Donald Trump, including 
the ban on immigration from select Islamic nations and 
the continuation of the Keystone pipeline project.1 Colling
wood et al. (2018) conducted two survey waves: one when 
the policy was proposed and the other during implementa
tion. The observed proportions and sample sizes are shown 
in Table 3. 

The second example comes from the Pew Research Cen
ter’s Election News Pathways Project (Pew Research Center, 
2020). Over  respondents were surveyed about their 
perception of the Covid-19 pandemic in late March, 2020.2 

We contrast two questions: In one, participants were asked 
to rate how well US President Trump was responding to 
the pandemic; in the other, they were asked to rate how 
well their respective state leaders were responding to the 
pandemic. The observed proportions and sample sizes are 
shown in the panel labeled All in Table 4. 

Collingwood et al. (2018) claimed that the Muslim immi
gration ban became more popular after it was implemented. 
We use the four models to assess whether there really was 
an effect, and if so, whether it may be captured with an 
order relationship as implied by the dominance and shift 
models. Figure 6, top left, shows the difference in cumu

The data set is publicly available from https://github.com/PerceptionAndCognitionLab/bf-likert 

The data set is freely available upon registration from https://www.pewresearch.org/politics/dataset/american-trends-panel-wave-64/ 

1 

2 
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Figure 5. Screenshot of the Accompanying Web Applet       
Note. The analyzed data shown in the screenshot correspond to the hypothetical Scenario I in Table 1. 
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Table 3. Ratings Distributions from    Collingwood et al. (2018)   .  

Observed Proportions 

Strongly Disagree Disagree Neutral Agree Strongly Agree N 

Immigration Ban1 

First Wave 0.30 0.14 0.14 0.14 0.29 411 

Second Wave 0.40 0.11 0.09 0.16 0.23 311 

Keystone Pipeline2 

First Wave 0.42 0.08 0.18 0.13 0.18 409 

Second Wave 0.39 0.14 0.12 0.14 0.2 311 

Note. 1. Agreement with President Trump’s executive order restricting immigration from Syria, Iran, Iraq, Libya, Yemen, Somalia, and Sudan. 2. Agreement with President Trump’s 
executive order allowing for the Keystone and Dakota Access Pipelines. 

Table 4. Ratings Distributions from the Election News Pathway Project.         

Observed Proportions 

Excellent Good Fair Poor N 

All 

Trump 0.24 0.25 0.19 0.32 11491 

State Officials 0.21 0.49 0.22 0.08 11432 

Democrats 

Trump 0.04 0.14 0.26 0.56 5937 

State Officials 0.21 0.48 0.23 0.07 5914 

Republicans 

Trump 0.47 0.36 0.11 0.06 5101 

State Officials 0.21 0.52 0.2 0.08 5076 

Note. How would you rate the job each of the following is doing responding to the coronavirus outbreak? A. Donald Trump. B. Your elected state officials. 

latives. As can be seen, the curve does not cross the zero-
line, indicating the plausibility of stochastic dominance. 
The Bayes factors for the four models are shown in Table 
5. As expected, the winning model is the one-sided domi
nance model, followed by the shift model. Hence, we con
clude that there is evidence for an effect. The effect is sim
ple and can be reduced to an order relationship. The same 
analysis may be applied to the question about the Keystone 
pipeline. For these data, the null has a Bayes factor of at 
least 2.5-to-1 against any competitor indicating anecdotal 
evidence for a lack of an effect of wave on the ratings dis
tribution. 

Perhaps the most interesting data are those about lead
ership in the Covid-19 pandemic. Here, we have strong ev
idence for an indominant effect. The unconstrained model 
is preferred by several hundred orders of magnitude to any 
competitor. Donald Trump seems to be a polarizing figure 
compared to state leaders. People were more likely to give 
Donald Trump extreme ratings than state leaders. This po
larization may be seen in the difference plot in Figure 6 
(bottom right panel). Here, the curve crosses zero, and 
though the deflection may appear slight, it is highly evi
dential because the sample sizes are so large. Accordingly, 
it makes little sense to discuss whether Donald Trump is 
viewed as having responded better or worse than local lead
ers. 

The complexity of the effect is easily resolved in this 
case by conditioning the data on political-party preference. 
Among those that are Republican, Donald Trump is judged 
quite well in responding to the crisis; among those that are 
Democratic, he is judged quite poorly. This partisan divide 
is not present among state leaders. Thus, when we con
dition responses on political-party preference, the domi
nance model in the expected direction wins. 

Sensitivity To Prior Settings     

The Bayesian analysis presented here requires the ana
lyst to set the prior standard deviations on mean bounds 
and effects   Such requirements have given some 
researchers pause in adopting Bayesian methods. It seems 
reasonable as a starting point to require that if two re
searchers run the same experiment and obtain the same 
data, they should reach similar, if not the same, conclu
sions. To harmonize Bayesian inference with this starting 
point, some analysts actively seek to minimize these effects 
by choosing likelihoods, prior parametric forms, and 
heuristic methods of inference so that variation in prior 
settings have minimal influence (Aitkin, 1991; Gelman et 
al., 2004; Kruschke, 2012; Spiegelhalter et al., 2002). 

We reject the starting point above including the view 
that minimization of prior effects is necessary. The choice 
of prior settings is important because it affects the models’ 
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Figure 6. Difference Plots for the Real-World Data in Tables         3  and  4.  
Note. There is anecdotal evidence for a constant shift in the top-left panel and for a lack of an effect in the top-right panel. In the middle-left panel, there is strong evidence for an in
dominant effect, while there is strong evidence for stochastic dominance in the remaining figures. 

Table 5. Bayes Factors for Empirical Examples.      

Null Shift Dominance Unconstrained 

Immigration Ban 0.21 0.76 1.00 0.13 

Keystone Pipeline 1.00 0.29 0.29 0.40 

Covid, All 0.00 0.00 0.00 1.00 

Covid, Democrats 0.00 0.00 1.00 0.15 

Covid, Republicans 0.00 0.00 1.00 0.14 

Note. The winning model is assigned a value of 1.00. Bayes factors for all other models are relative to this winning model. 

predictions about data. Therefore, these settings necessar
ily affect model comparison. Whatever this effect, it is the 
degree resulting from the usage of Bayes rule, which in turn 
mandates that evidence for competing models is the degree 
to which they improve predictive accuracy. 

When different researchers use different priors, they 
may arrive at different opinions about the data. This vari
ation is not problematic, however, so long as various prior 
settings are justifiable: The variation in results reflects the 
legitimate diversity of opinion (Rouder et al., 2016). When 
different reasonable prior settings suggest conflicting con

clusions, the data simply do not afford the precision to ar
rive at a clear verdict between the positions. 

With this argument as context, we may assess whether 
reasonable variation in prior settings affect Bayes factor 
conclusions among the models. In Figure 3, we show that 

 is a good default choice for the prior on  and 
this choice may be made without undue influence on model 
comparison results. The prior choice on the difference pa
rameters  is more consequential. For the previous analy
sis, we specified  For this setting, we consider a 
range from  (1/2 the original setting) to  (2 times 
the original setting) to be reasonable. Values of 
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Table 6. Bayes Factors for Modified Election News Pathways Project Data.          

Null Shift Dominance Unconstrained 

Covid, All 0.00 0.00 0.13 1.00 

Covid, Republicans 0.00 0.00 1.00 0.23 

Note. The winning model is assigned a value of 1.00. Bayes factors for all other models are relative to this winning model. 

place excessive weight on extremely small differences be
tween conditions, while values of  place excessive 
weight on overwhelmingly large differences. 

To see how variation in this prior setting affects the 
Bayes factors, we use a modified version of the Election 
News Pathways Project data. Unfortunately, with 
observations, the sample size is quite large to be typical of 
psychological data. A more typical set would have fewer ob
servations, and so for the purposes here we took the fre
quencies in Table 4 and divided them by 10. We used the 
complete data set with both Republicans and Democrats 
because here we found strong evidence for an indominant 
effect. Along with these data, we used the subset of Re
publicans as these showed evidence for a simpler structure, 
namely, stochastic dominance. 

The Bayes factors for the modified data set with the 
same prior setting as in the previous analysis  and 

 are shown in Table 6. Without considering po
litical-party preference, the unconstrained model is still 
preferred over the others. The closest competitor is the 
dominance model, and the corresponding Bayes factor is 
approximately 8-to-1. The reason this value is more mod
erate than that in Table 5 reflects the reduced sample size. 
Among Republicans, the dominance model is again pre
ferred over the unconstrained model by a factor of approx
imately 4-to-1. The question is whether these two values 
depend heavily on the range of prior settings. 

The dependence is shown in Figure 7. Here, Bayes factors 
of all models against the preferred model within three or
ders of magnitude  are displayed. Although the exact 
figures vary slightly, there is no consequential dependence 
of Bayes factors across the reasonable range of prior set
tings. Both for the complete set (left panel) and the subset 
(right panel), the winning model is preferred over its near
est competitor by a relatively constant amount. Hence, the 
Bayes factor method provides for evidence that is fairly ro
bust to reasonable variation in prior expectations about 
data. 

Conclusion  

Although the use of Likert items is exceedingly popular, 
we argue here that researchers have overlooked a defining 
primitive in analysis (Townsend, 1990). Instead of debating 
the use of parametric vs. nonparametric statistics, we 
should assess whether or not two response distributions 
can be meaningfully compared by means of their central 
tendencies. If there is no order relationship at the level 
of distributions (i.e., no stochastic dominance), common 
parametric and even nonparametric tests of differences 

miss the underlying structure and may mislead the analyst 
(Clason & Dormody, 1994). 

The statistical models developed herein allow for a more 
fine-grained analysis of Likert and other ordinal-scale 
items. The null, constant shift, dominance, and uncon
strained models provide for a rich description of possible 
structure in the relationship between two distributions, and 
strength of evidence from data for them may be stated 
via Bayes factors. The models as well as the Bayes factor 
comparisons are straightforward and computationally con
venient. We demonstrated their usefulness with two real-
world examples and created an easily accessible, user-
friendly web applet for researchers. 

Although we think that researchers will benefit from the 
development presented herein, there are also limitations: 
1. The concept of the threshold here is not psychologi
cal and should not be interpreted as such. In this frame
work, thresholds describe the proportion of people that 
endorse particular responses. They do not describe the in
ternal process by which people respond to Likert items. 
Likewise, the models do not address whether people use 
the same processes or the same response styles. In this re
gard, the model is a statistical account for addressing con
straints at the population level. 2. Although the uncon
strained, dominance, and null models are nonparametric, 
the constant shift model, which we suspect will be a simple, 
parsimonious account of condition effects, is parametric. 
Whether shifts are constant or not depends on the distribu
tional form, and, here, the choice of identical normal distri
butions for all respondents is a substantive assumption. 3. 
So far, the development only applies to the comparison of 
two independent distributions. Of course, psychologists are 
often interested in more complicated designs. For example, 
the data from Collingwood et al. (2018) are panel data in 
which the same people answered in both waves. We do not 
take into account any shared variation from the panel de
sign. 4. Finally, analysis is not always run for a single item 
across just two levels of a covariate. It is more typical to use 
multiple items to construct latent Likert scales. And in this 
case, questions about a shift or stochastic dominance in the 
data should be addressed at the scale level. 

It is one of the strengths of the proposed analysis frame
work that it affords the flexibility to incorporate other types 
of constraints and data structures. In this paper, we focused 
on the common case of comparing two independent re
sponse distributions on a single Likert item. However, fu
ture efforts may be devoted to extending our approach to 
formulate and test other types of constraints across more 
than two conditions and with multiple items (i.e., Likert 
scales). At this point, our development constitutes only 
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Figure 7. Dependence of Bayes Factors on Prior Settings (       )  
Note. Sensitivity analyses were performed on 1/10th of the Election News Pathways Project data. Only models with Bayes factors within three orders of magnitude (10−3) against the 
preferred model are shown. 

a useful first step toward a more complete framework of 
meaningful analysis of ordinal-scale items. 
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