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Ordinal-scale items—say items that assess agreement with a proposition on an ordinal
rating scale from strongly disagree to strongly agree—are exceedingly popular in
psychological research. A common research question concerns the comparison of
response distributions on ordinal-scale items across conditions. In this context, there is
often a lingering question of whether metric-level descriptions of the results and
parametric tests are appropriate. We consider a different problem, perhaps one that
supersedes the parametric-vs-nonparametric issue: When is it appropriate to reduce the
comparison of two (ordinal) distributions to the comparison of simple summary statistics
(e.g., measures of location)? In this paper, we provide a Bayesian modeling approach to
help researchers perform meaningful comparisons of two response distributions and draw
appropriate inferences from ordinal-scale items. We develop four statistical models that
represent possible relationships between two distributions: an unconstrained model
representing a complex, non-ordinal relationship, a nonparametric stochastic-dominance
model, a parametric shift model, and a null model representing equivalence in
distribution. We show how these models can be compared in light of data with Bayes
factors and illustrate their usefulness with two real-world examples. We also provide a
freely available web applet for researchers who wish to adopt the approach.

It is hard to overstate the popularity of ordinal data in
social science research. Applications of ordinal variables
such as Likert items to assess respondents’ opinions, affec-
tive states, or unobservable behavior have become custom-
ary in political science, economics, educational research,
health sciences, and psychology. Likert items refer to state-
ments or questions with discrete, naturally ordered re-
sponse categories (Blirkner & Vuorre, 2019; Liddell & Kr-
uschke, 2018; see also Likert, 1932). A key question in many
applications is how responses on Likert items differ be-
tween two conditions (say, two groups of respondents). Al-
though there is near universal recognition that Likert items
are ordinal variables, these comparisons are commonly
characterized with means and ¢-tests. While some have de-
fended the use of parametric statistics in the context of Lik-
ert data (Norman, 2010), others have criticized it as a biased
and error-prone practice (Liddell & Kruschke, 2018; Win-
ship & Mare, 1984). The typical recommendation is to rely
on nonparametric statistics instead to ensure robust infer-
ences (e.g., Jamieson, 2004; Kuzon et al., 1996; Nanna &
Sawilowsky, 1998).

The ordinal-vs-metric issue is well known and there is
a large body of literature on it (e.g., Blirkner & Vuorre,
2019; Clason & Dormody, 1994; Jamieson, 2004; Kuzon et

al., 1996; Liddell & Kruschke, 2018; McKelvey & Zavoina,
1975; Nanna & Sawilowsky, 1998; Norman, 2010; Sullivan
& Artino, 2013; Winship & Mare, 1984). Following
Townsend (1990), however, we believe that there is a differ-
ent, far more fundamental issue that has received consid-
erably less attention (but see Clason & Dormody, 1994): In
the usual course of testing the effect of condition on some
outcome variable, researchers typically rely on the compar-
ison of summary statistics (e.g., measures of central ten-
dency). These comparisons may establish a certain order
relationship at the level of this summary statistic, for exam-
ple, “The mean value is larger in Condition A than in Con-
dition B”. They do not imply, however, that this relationship
holds in a more general sense, that is, at the level of dis-
tributions. In fact, if the relationship between distributions
as a whole is qualitatively different from that between the
considered summary statistics, a comparison of the latter
would not be meaningful and may even mislead the analyst.
This state holds across different levels of measurement, and
it is true for parametric and nonparametric tests alike.
Based on Townsend’s (1990) theory of hierarchical infer-
ence, we argue that when comparing responses on a Lik-
ert item between two conditions, researchers should first
test for order relationships at the level of distributions. If
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a certain ordering holds at this level, it is also implied at
a lower level, that is, for a summary statistic such as the
mean or median. The reverse, of course, is not true. An or-
dering may hold for some summary statistic but not for the
distribution as a whole, that is, consideration of a summary
statistic in this case does not represent the phenomena of
interest. Tests of summary statistics are meaningful in our
opinion only when the ordering of the summary statistic
indeed represents the ordering of distributions.

This condition where distributions order is called sto-
chastic dominance, and it is a well-known concept for ex-
ample in economics (Abadie, 2002; Levy, 1992). Stochastic
dominance describes an order relationship between distri-
butions such that one cumulative distribution function is
“greater” (or “less”) than the other cumulative function for
all possible values (Speckman et al., 2008). Heathcote et al.
(2010) developed methods to assess stochastic dominance
and compared their performance with that of existing pro-
cedures (e.g., Kolmogorov-Smirnov tests). These tests are
only suited for continuous data, however, which renders
them inappropriate for Likert items. In fact, the limited
availability of suitable test procedures may be one of the
reasons why stochastic dominance is rarely considered in
applications with Likert data (cf. Madden, 2009; Tubeuf &
Perronnin, 2008).

In this paper, we provide a Bayes-factor approach to help
researchers use data to assess stochastic dominance and
draw appropriate inferences from Likert items. In the fol-
lowing, we briefly outline conventional approaches to an-
alyzing Likert items, and highlight the role of stochastic
dominance. We then develop four statistical models that
represent possible order relationships between two re-
sponse distributions: An unconstrained model representing
a complex, non-ordinal relationship, a nonparametric sto-
chastic-dominance model, a parametric shift model, and
a null model representing equivalence in distribution. We
show how these models may be evaluated in light of data by
means of Bayes factors and present a user-friendly web ap-
plet for readers who wish to adopt the analysis in their own
research. Finally, we demonstrate the usefulness of the ap-
proach by applying it to two real-world examples, and as-
sess the sensitivity of Bayes factor model comparisons to
reasonable variations in prior settings.

Likert-Item Distributions

To illustrate why the parametric-vs-nonparametric de-
bate does not address the heart of the problem, consider
the following hypothetical example: Suppose we wanted
to compare the frequency of being sad between first-year
Marines and first-year college students. From each group,
we let 100 individuals indicate on a 5-point Likert item
how often they felt sad, with response options ranging from
“never” to “always”. Table 1 shows hypothetical data for
two different scenarios labeled plainly Scenario I and Sce-
nario II. For each scenario, we may ask whether there is a
difference between Marines and college students.

A nonparametric alternative to t¢-tests for addressing
this question is the Wilcoxon rank-sum test. Unlike the
t-test, the Wilcoxon test does not consider the difference

between values but only the rank order. Nanna and Saw-
ilowsky (1998) compared the performance of both tests in
the context of Likert data and found that the nonparametric
test outperformed the parametric test in terms of Type I er-
ror control and statistical power. Despite these differences
in performance, both procedures have in common that they
compare distributions by comparing central tendencies. In
Scenario I, the response distributions of Marines and col-
lege students differ in their central tendencies. College stu-
dents seem to be more often sad than Marines, and both
a t-test and a Wilcoxon rank-sum test will detect that dif-
ference. Importantly, this relationship holds qualitatively
across the response scale: College students’ reported fre-
quency of being sad is unambiguously higher than that of
Marines.

A different picture emerges in Scenario II: Comparing
Marines’ and college students’ answers by means of central
tendencies implies the same ordering as in Scenario I, that
is, students seem to report being sad more often than
Marines. This ordering is not preserved at the level of dis-
tributions, however. While many Marines report never being
sad, many also report always being sad. Thus, tests of cen-
tral tendencies, parametric and nonparametric test alike,
do not allow for a meaningful comparison of conditions
(Clason & Dormody, 1994).

The crucial difference between the scenarios is that in
Scenario I, the distributions are stochastically dominant,
whereas in Scenario II, this dominance does not hold. Sto-
chastic dominance describes the relationship among cumu-
lative probabilities, and for observed data, may be visual-
ized using cumulative proportions. Table 2 presents these
cumulatives for Scenarios I and II. Each number denotes the
proportion of people whose response fell into the respec-
tive or a lower category. For example, the first two values
for Marines in Scenario I are .30 and .55, and these values
indicate that 30% of Marines report to be never sad and 55%
report to be either never sad or rarely sad. The key prop-
erty here is the comparison of these cumulatives to those
for college students. The values for college students indi-
cate that only 20% are never sad and 40% are either never
or rarely sad. The cumulative proportions for the Marines
are always at least as great as those for the college students,
and this property holds across all categories.

The pattern is more complex in Scenario II. 60% of
Marines report to be sometimes, rarely, or never sad, while
only 36% of college students do. Thus, for these three cat-
egories, Marines report a lower frequency of being sad than
college students. This relationship reverses at Often, how-
ever. While 80% of college students report to be sad often
or less, leaving 20% to be always sad, only 70% of Marines
chose Often or less, leaving 30% for the highest category.
There is no stochastic dominance in this case, Marines are
both more frequently never sad and more frequently always
sad.

Bayesian Models for Ordinal-Scale Data

So far, we focused on cumulative proportions, which are
sample-level data. As researchers, however, we are typically
interested in the underlying population-level probabilities,
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Table 1. Ratings Distributions for Hypothetical Sadness Example.

Never Rarely Sometimes Often Always
Scenario |
Marines 30 25 20 15 10
College Students 20 20 20 20 20
Scenario
Marines 40 15 5 10 30
College Students 5 12 19 44 20
Note. Question: How often do you feel sad?
Table 2. Cumulative Proportions for Hypothetical Sadness Example.
Observed Proportions
Never Rarely Sometimes Often Always N
Scenario |
Marines 0.30 0.55 0.75 0.90 1.00 100
College Students 0.20 0.40 0.60 0.80 1.00 100
Scenario ll
Marines 0.40 0.55 0.60 0.70 1.00 100
College Students 0.05 0.17 0.36 0.80 1.00 100

Note. Question: How often do you feel sad?

that is, the behavior of these proportions in the large-sam-
ple limit. To assess whether stochastic dominance holds in
population, we need a hypothesis test suitable for ordinal
data.

Tests of stochastic dominance that assume continuous
data (such as the Kolmogorov-Smirnov test) are not appro-
priate for Likert data. As an extension of one of these tests,
Yalonetzky (2013) developed a method for testing stochas-
tic dominance with ordinal data. The test is based on the
asymptotic approximation of the multinomial distribution
to a multivariate normal distribution. Klugkist et al. (2010)
developed a Bayesian hypothesis testing procedure for in-
equality/equality constrained hypotheses for contingency
tables. This nonparametric approach is very general and al-
lows the analyst to test certain expected orderings of cell
probabilities. Thus, the method could be used to test a cer-
tain ordering of response probabilities implied by stochas-
tic dominance in Likert data. Heck and Davis-Stober (2019)
discuss a similar approach for testing order constraints, in-
cluding stochastic dominance, in multinomial models (see
also Sarafoglou et al., 2021).

We suggest a related approach to assessing stochastic
dominance with Likert data. Our main goal is to provide
four models that encode a series of nested nonparametric
and parametric constraints. While the aforementioned
methods could also be used to encode and test nonpara-
metric constraints, the approach that we propose makes it
straightforward to specify and test both nonparametric and
parametric constraints.

Under the most constrained of the four models, distrib-
utions across the two conditions are identical. At the next
most constrained level, the distributions differ but this dif-

ference is captured in a (semi-) parametric model that un-
derlies ordinal-regression (also referred to as ordered-pro-
bit or cumulative) model settings (Blirkner & Vuorre, 2019;
Liddell & Kruschke, 2018; McKelvey & Zavoina, 1975; Win-
ship & Mare, 1984). In the third model, the semi-paramet-
ric form is further relaxed, leaving a model that has only
a nonparametric stochastic dominance constraint. And fi-
nally, even this constraint is relaxed, allowing for more
complex, non-ordinal relationships. By comparing the
strength of evidence from data for these four models, re-
searchers can make insightful, meaningful comparisons
across conditions.

Ordinal-Regression Setup

It is convenient to start with the well-known ordinal-re-
gression approach (McKelvey & Zavoina, 1975; Winship &
Mare, 1984). Here, the observed variable (i.e., the choice
of a response category) results from the categorization of
an underlying continuous variable. Consider a hypothetical
survey study where respondents are asked to rate a state-
ment on a 5-point scale ranging from “Strongly Disagree”
to “Strongly Agree”. The model posits that agreement with
this statement can be represented as a continuous, latent
variable. This latent variable maps onto rating categories
by partitioning the latent space into regions. These regions
are defined by thresholds, and the probability of a response
falling into a certain category is simply the area under
the latent probability distribution between the respective
thresholds (Winship & Mare, 1984). The model setup is il-
lustrated in Figure 1. Note that this setup is conceptually
equivalent to that underlying signal-detection theory.
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Figure 1. Ordinal-Regression Model

The latent variable is typically assumed to be normally
distributed, although the model may be based on other
probability distributions (e.g., a logistic function; Biirkner
& Vuorre, 2019). The upper panel of Figure 1 shows a latent
variable that is partitioned into five regions by four thresh-
olds (represented by the vertical lines). Whenever the latent
value exceeds a threshold, the observed response is the as-
sociated category (lower panel). Thus, the probability of
a latent value falling into a certain region corresponds to
the probability of observing the associated response. For
more details, we refer the reader to an accessible tutorial
by Biirkner and Vuorre (2019), who provide an extensive
overview of this and related models for the analysis of Lik-
ert items.

In the usual ordinal-regression approach, the thresholds
are fixed across conditions and differences in distributions
are captured by shifting the central tendency of the latent
distribution. This usual approach may be considered semi-
parametric as there is no model on thresholds but a para-
metric model on the effect of conditions. We are going to
start with a fully nonparametric model that is an uncon-
strained generalization of the ordinal-regression approach,
and then add in increasing degrees of constraint.

We start by setting the latent distribution for both con-
ditions to a standard normal (1 = 0, 0 = 1). The free pa-
rameters in this setup are the category thresholds. Let +;;
denote the threshold between response category jand j + 1
(j=1,...,J) in condition i (¢ = 1,2). For the setup to be
valid, thresholds within each condition have to order, that
is, 7i0 = —00 < v < ... < ;7 = oo. Although it may ap-
pear that the choice of identical standard normals is as-
sumptive, in this setup with free threshold parameters, it is
not. The latent distribution serves merely as a technical de-
vice that maps observed response frequencies onto regions
on the real line. Importantly, all observed Likert distribu-
tions across conditions may be accounted for by appropri-
ate settings of the thresholds. Thus, at this point, the model

is unconstrained, nonparametric, and vacuous; there are as
many parameters as degrees of freedom in the data.

To add constraint, it is useful to reparameterize the
thresholds as follows:

")’ij = a]' -+ l’iej,

where z; = —1/2 and z = 1/2. Here, a; = (715 + 72;)/2 is
the average for the jth threshold, and 6; = «y,; — 71 is the
difference for the jth threshold. The key feature of this pa-
rameterization is that ; denotes a comparison of distribu-
tions for the jth threshold. Thus, by placing constraints on
0;, we can model different types of (ordinal) relationships
between the two response distributions.

Models

We specify four statistical models on 6;, each represent-
ing a different constraint on the relationship between con-
ditions. The models are shown in Figure 2, illustrating the
construction in the context of our hypothetical sadness ex-
ample (Table 1).

Unconstrained Model: The first row shows a model that
imposes no order constraints on the relationship between
conditions. So long as the thresholds order within a con-
dition (which is imposed by the likelihood function), there
is no restriction on the values and relative order of thresh-
olds across conditions. We denote this model as M,, with
M,: 0; € R. There are 2 x (J — 1) free parameters in this
model: J — 1 mean-threshold parameters (¢;) and equally
many difference parameters (6;). The unconstrained model
can account for any type of relationship between condi-
tions, including complex relationships where response dis-
tributions differ in a way that cannot be captured by an or-
der relationship.

Dominance Model: The second row shows the domi-
nance model, M. For this model, there are again a total of
2 x (J — 1) free parameters. To capture the notion of sto-
chastic dominance, however, we impose an order constraint
in this model: Mg: 6; > 0. This constraint implies that
thresholds are at least as large—and hence, so are cumula-
tive probabilities—in one condition as in the other one. For
the example in Figure 2, 7, is the threshold that separates
Rarely from Never for college students, and it has a value of
—0.67. Likewise, the value for Marines is denoted ~,; and
has a value of —0.04. Here, we see that 75; > y;;—Marines
have a higher probability of being never sad than college
students. Importantly, this inequality holds for all corre-
sponding thresholds, that is, because §; > 0 for all thresh-
olds it follows that «,; > ~y;; for all threshold pairs.

There are two possible dominance conditions: one in
which all 6; > 0 (i.e., v2; > ~1;) and one in which all §; < 0
(i.e., v2; < v1;). Whether one or the other or both should
be used is a specification decision that researchers should
make ahead of time depending on context. We will discuss
how these decisions may be made subsequently.

Constant Shift Model: The next row describes a very
simple effect where the thresholds in one condition all shift
by the same amount compared to the other condition. The
model is denoted by M, and imposes the parametric con-
straint M;: 0; = 6*. We include this model because it cor-
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Figure 2. Illustration of Statistical Models

Marines
Unconstrained
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Constant

Shift
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Note. The latent distribution is fixed as a standard normal and latent thresholds are free parameters. The four models, depicted across the rows, capture different types of relation-

ships between conditions (college students vs. Marines).

responds to the classical probit-regression model presented
above (see Figure 1). In the probit-regression model, the
shifts are in the mean of the normal, but this is mathe-
matically equivalent to fixing the mean and shifting all the
thresholds by a constant amount. Unlike the other mod-
els we propose in our framework that are nonparametric,
the constant shift model imposes a parametric constraint
on the latent threshold parameters, that is, constancy is
made with respect to the normal distribution. Thus, for
this model, the choice of identical latent distributions is
indeed a substantive statement about the data. Of note,
even though constancy reflects the choice of latent distri-
bution, dominance does not. If thresholds order between
conditions for one latent distribution, they must order for
all other latent distributions.

In Figure 2, the value of the threshold between Never and
Rarely for Marines is -0.54, and this value is 0.30 greater
than the bound between Never and Rarely for college stu-
dents. This difference is preserved across corresponding
thresholds. For example, the thresholds between Rarely and
Sometimes are 0.05 and -0.25 for Marines and college stu-
dents, respectively. The difference, 0.30, is the same as be-
tween Never and Rarely. The constant shift model explicitly
states that the effect of condition on the ratings can be cap-

tured by a single parameter #*. It is comprised of J free pa-
rameters (i.e., J — 1 mean thresholds «; and one difference
6*). In our view, the constant-shift model is useful for cases
where the effect of condition is relatively straightforward
and can be captured by a shift in central tendency.

Null Model: The last row depicts the null model which
posits that there is no effect of condition. This model is de-
noted My, and imposes the constraint M;: ; = 0. Thus,
the corresponding thresholds for college students and
Marines are identical in this model. For example, the value
of the threshold between Never and Rarely in Figure 2 for
college students is —0.84, and this value is the same for the
threshold between Never and Rarely for Marines. Because
all the corresponding thresholds are the same in value, the
distributions are the same as well. There is no difference
among the conditions; hence, there is no effect. The null
model has one free parameter for each threshold, that is,
J — 1 parameters in total.

Priors on Parameters

Our approach is Bayesian, and in Bayesian analysis pri-
ors are needed on parameters. All four models considered
here comprise J — 1 parameters for the mean thresholds
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o, so the priors for these parameters should be identical
across models. A typical choice for these priors are in-
dependent normal distributions (e.g., Blirkner & Vuorre,
2019; Liddell & Kruschke, 2018):

aj ~ Normal(0, b,),
where b, is a prior standard deviation setting that must be
chosen before analysis.

In contrast to the priors on «;j, the priors on the dif-
ference parameters 6, reflect the substantively motivated
constraints under the four models. As for the mean thresh-
olds, we propose a flexible normal distribution as a basis
for these priors. Under M,,, we specify independent normal
distributions for each 6; :

6; ~ Normal(0, by),
where by is again specified before analysis. Under M, trun-
cated normal distributions are placed on 6; to impose the
notion of stochastic dominance:

9]‘ ~ NormalT(O, bg),
where Normalr denotes a normal distribution with either
an upper or a lower bound at 0, respectively. Under My,
there is just one difference parameter #* and thus,

0" ~ Normal(0, bg).
Finally, no prior on 6, is needed under M,, as the differ-
ence in thresholds between conditions is constrained to be
0.

Before analysis, researchers can adjust the prior parame-
ters b, and by as needed. Thus, the normal prior setting of-
fers the flexibility to provide substantive context through
the choice—and range—of these prior parameters. Here is
some guidance for setting b, and by in practice: Since
thresholds are placed on a standard normal, reasonable val-
ues of b, should be around 1.0. Figure 3 shows the marginal
prior distribution on mean category probabilities across
conditions for 5 rating options and for select values of b,.
For b, = 1, middle panel, the marginal priors have the same
distribution, centered around .2, for each of the five rating
options. Small values of b, correspond to a belief that ex-
tremes are used excessively at the expense of the middle
category (left panel); a large value of b, corresponds to a
belief that extremes are used rarely (right panel). The set-
ting b, = 1 is a good, weakly informative default, and it is
hard to imagine reasonable settings smaller than 1/3 and
larger than 3.

The prior standard deviation on the difference parame-
ters, in contrast, should typically be much smaller than on
the mean thresholds. As for any difference parameter, how-
ever, the exact choice depends on the analyst’s expectation
about how strongly the distributions may differ from each
other. Thus, this choice should be determined by substan-
tive, rather than statistical, arguments. For our purposes,
we choose a prior standard deviation of by = 0.33, that is,
1/3 of b,. We address the consequences of this choice and
how it affects model comparison results subsequently.

Data Visualization

The four models correspond to the following helpful data
visualizations. Much like in signal-detection analysis, the
running cumulative proportions become the target for plot-

ting. Table 2 shows the cumulatives for the two hypotheti-
cal sadness scenarios. The usual approach is to plot receiver
operating characteristic curves (ROCs), and an example for
Scenario I is shown in Figure 4A. The levels of constraint
are as follows: If the null model holds, the ROC curve traces
the diagonal. If the shift model holds, then the resulting
curve is the stereotypical one (Figure 4A) that is common
in memory and perception research. The dominance model
implies that the points all lie on one or the other side of
the diagonal. The unconstrained model implies only that
the points increase on the = and y axes, respectively (Figure
4Q). For analyzing real-world contrasts, it is advantageous
to plot the differences across the conditions as in Figures 4B
and D. The advantage here is that it is easier to spot trends
because the y axis may be scaled for differences rather than
the entire range from 0 to 1. The constraints now cen-
ter around the horizontal zero line. The null model corre-
sponds to this line; the shift and dominance model corre-
spond to curves strictly on one side of it; the unconstrained
model has no such constraint. Figures 4C and 4D show the
ROC and the difference plot for the data in Scenario II.

Bayes Factors

We can measure the strength of evidence from the data
for the four models using Bayes factors (Jeffreys, 1961),
which are a measure of how well each model predicted
the data before they are observed (Rouder & Morey, 2018).
Readers who are new to Bayes factors are invited to con-
sider one of the many tutorials on their use, and perhaps
one of the most helpful resources is the recent 2018 Psycho-
nomic Bulletin & Review special issue on Bayesian inference
(Vandekerckhove et al., 2018).

There are many approaches to computing Bayes factors.
For the models developed here, we use two different ap-
proaches as follows: Some models differ in dimensionality.
For example, for J =5 response options, there are
2 x (J — 1) = 8 parameters in the unconstrained model,
(J—1)+1=5 parameters in the shift model, and
J — 1 = 4 parameters in the null model. Where the models
differ by a relatively small number of parameters, we find
that the bridge sampling approach proposed by Meng and
Wong (1996) works well. Gronau et al. (2017) provide a de-
tailed and accessible tutorial on computing Bayes factors
with bridge sampling. The approach has been implemented
in an R package by Gronau et al. (2020), which we use in our
work as well.

We follow a different approach to compare models that
have the same number of parameters, namely, the uncon-
strained and dominance model. The dominance model is
more constrained by virtue of the inequalities. Thus, al-
though the models have the same dimensionality, the para-
meter space for the dominance model is smaller than that
for the unconstrained model. In fact, the unconstrained
model encompasses the dominance model (Heck & Davis-
Stober, 2019; Klugkist et al., 2010). When models are en-
compassed, the Bayes factor may be computed by consid-
ering the posterior and prior probabilities of the constraint
under the unconstrained model (Gelfand et al., 1992). The
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Figure 3. Marginal Prior Distributions on Average Category Probabilities

Note. b, = Prior standard deviation setting on «; ; J = 5 rating options.

resulting Bayes factor between the dominance and the un-
constrained model is

PT(Md|Y)

B, = B

r(Ma)

The first step is calculating the denominator, that is, the
prior probability that one distribution dominates another.
This calculation may be done by Monte-Carlo simulation
from the priors on the collections of a and 6 under the
unconstrained model. The next step is calculating the nu-
merator. In practice, the computation is surprisingly un-
complicated. We follow the approach discussed in Haaf and
Rouder (2017), which is based on the pioneering work of
Klugkist et al. (2005). One simply counts the relative fre-
quency of posterior samples under M, that satisfy the
dominance constraint (see Sarafoglou et al., 2021 for an al-
ternative, efficient routine to calculating Bayes factors for
order constraints using bridge sampling). Note that Bayes
factors calculated with the encompassing-prior approach
are bounded by the prior probability of the constraint under
the unconstrained model. Thus, if there is unequivocal ev-
idence that the dominance constraint holds, the Bayes fac-
tor may be no larger than 1/Pr(M,).

As outlined before, there are two dominance conditions
because either distribution could possibly dominate the
other. A test of stochastic dominance can be two-sided if
there is no prediction about which distribution dominates
the other. In this two-sided case, the prior probability of
stochastic dominance is twice that of a directed test, that
is, where a researcher a priori predicts that one distribution
dominates the other and not the reverse. The posterior
probability is estimated as the relative frequency of poste-
rior samples in the predicted direction only. If stochastic
dominance is observed in this predicted direction, the cor-
responding Bayes factor will yield stronger evidence than in
the two-sided case. Thus, if theoretical considerations indi-

cate a dominance relation in a specific direction, the Bayes
factor should be calculated accordingly.

We do not recommend that researchers compare both
stochastic dominance models with one in each direction.
This recommendation is a matter of judgment. The moti-
vation is that model comparison and testing should occur
when researchers have good reason to suspect an effect in a
theoretically meaningful direction. When researchers have
no such reasons, exploratory approaches may be more ap-
propriate than model comparison.

Software for Computing Bayes Factors

We created a user-friendly R web applet for analysis. The
user inputs the frequency counts in two conditions such as
in Table 1. The outputs are Bayes factors for the four mod-
els. Additional prior inputs, such as the standard deviations
b, and by may be provided as well. The web applet is avail-
able at https://martinschnuerch.shinyapps.io/likertBF/; the
underlying source code as well as a set of useful R functions
are available at https://github.com/mschnuerch/likertBF.

We illustrate this applet with the example data about
sadness in Marines and college students, Scenario I. A
screenshot of the applet while analyzing the data is shown
in Figure 5. Once the data are inputted, we may press “Plot
Data,” and under “Data Visualization,” we may see the di-
agnostic plots that are shown in Figure 4. Then, to compute
Bayes factors, we may press “Start Analysis,” and after
some time for sampling, the Bayes factors are returned. We
may even choose which dominance model we wish by se-
lecting the respective output option. Let’s say a priori we
may have thought college students would be more often
happy. Because we entered the Marines under Condition 1
and the scale ranges from “never sad” to “always sad”, we
specify the one-sided dominance model as “2 > 1”. The re-
sults, shown in the center panel, clearly indicate that the
constant shift model is preferred. Finally, by clicking “Plot
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Figure 4. ROC and Difference Plots for Hypothetical Sadness Example

Note. See Table 2. A, B = Scenario I; C, D = Scenario II.

MCMC?”, we can visually inspect MCMC samples from the
unconstrained model for «; and 6;.

Applications

In this section, we provide two real-world examples of
these fine-grained analyses. The first example comes from
Collingwood et al. (2018) who asked respondents their
opinions about controversial policies of the US adminis-
tration under former president Donald Trump, including
the ban on immigration from select Islamic nations and
the continuation of the Keystone pipeline project.1 Colling-
wood et al. (2018) conducted two survey waves: one when
the policy was proposed and the other during implementa-
tion. The observed proportions and sample sizes are shown
in Table 3.

The second example comes from the Pew Research Cen-
ter’s Election News Pathways Project (Pew Research Center,
2020). Over 11,000 respondents were surveyed about their
perception of the Covid-19 pandemic in late March, 2020.
We contrast two questions: In one, participants were asked
to rate how well US President Trump was responding to
the pandemic; in the other, they were asked to rate how
well their respective state leaders were responding to the
pandemic. The observed proportions and sample sizes are
shown in the panel labeled All in Table 4.

Collingwood et al. (2018) claimed that the Muslim immi-
gration ban became more popular after it was implemented.
We use the four models to assess whether there really was
an effect, and if so, whether it may be captured with an
order relationship as implied by the dominance and shift
models. Figure 6, top left, shows the difference in cumu-

1 The data set is publicly available from https://github.com/PerceptionAndCognitionLab/bf-likert
2 The data set is freely available upon registration from https://www.pewresearch.org/politics/dataset/american-trends-panel-wave-64/

Collabra: Psychology 8

d-ajo1e/eIqe||09/Npa ssaidon-auljuoy/:dny woly pepeojumoq

17872207 ®©lqe||05/0G80£8/¥6S8E/ LIS/

920z Aenigad ¢ uo Jasn wiayuueyy jo Ausieaun Aq jpd-y658¢


https://collabra.scholasticahq.com/article/38594-meaningful-comparisons-with-ordinal-scale-items/attachment/101755.png?auth_token=qavCoVfW8Qa0T9mzCEFa
https://github.com/PerceptionAndCognitionLab/bf-likert
https://www.pewresearch.org/politics/dataset/american-trends-panel-wave-64/

Meaningful Comparisons With Ordinal-Scale Items
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Figure 5. Screenshot of the Accompanying Web Applet

Note. The analyzed data shown in the screenshot correspond to the hypothetical Scenario I in Table 1.

Collabra: Psychology

Value

T T T T T T
0e+00 2e+04 4e+04 6e+04 B8e+04 1le+05

Posterior Samples

Data Visualization

Condition 1

Diff. in Cumulatives

1.04
0.84
0.6
0.4+
0.24

0.0-,

ROC Plot

0.0 0.2

Difference Plot

04 06
Condition 2

T
0.8

1.0

Category

d-sjo11B/e1qR||09/Npassaidon-auljuo//:d)y woly papeojumoq

178 220z Biqe||0o/0G80E8/¥6S8E/L/8/P

920z Aueniga4 g uo Jasn wiayuuely jo Ausianiun Aq jpd y658¢


https://collabra.scholasticahq.com/article/38594-meaningful-comparisons-with-ordinal-scale-items/attachment/101756.png?auth_token=qavCoVfW8Qa0T9mzCEFa

Meaningful Comparisons With Ordinal-Scale Items

Table 3. Ratings Distributions from Collingwood et al. (2018).

Observed Proportions

Strongly Disagree Disagree Neutral Agree Strongly Agree N
Immigration Ban?
First Wave 0.30 0.14 0.14 0.14 0.29 411
Second Wave 0.40 0.11 0.09 0.16 0.23 311
Keystone Pipeline2
First Wave 0.42 0.08 0.18 0.13 0.18 409
Second Wave 0.39 0.14 0.12 0.14 0.2 311

Note. 1. Agreement with President Trump’s executive order restricting immigration from Syria, Iran, Iraq, Libya, Yemen, Somalia, and Sudan. 2. Agreement with President Trump’s

executive order allowing for the Keystone and Dakota Access Pipelines.

Table 4. Ratings Distributions from the Election News Pathway Project.

Observed Proportions

Excellent Good Fair Poor N

All

Trump 0.24 0.25 0.19 0.32 11491

State Officials 021 0.49 0.22 0.08 11432
Democrats

Trump 0.04 0.14 0.26 0.56 5937

State Officials 0.21 0.48 0.23 0.07 5914
Republicans

Trump 0.47 0.36 0.11 0.06 5101

State Officials 021 0.52 0.2 0.08 5076

Note. How would you rate the job each of the following is doing responding to the coronavirus outbreak? A. Donald Trump. B. Your elected state officials.

latives. As can be seen, the curve does not cross the zero-
line, indicating the plausibility of stochastic dominance.
The Bayes factors for the four models are shown in Table
5. As expected, the winning model is the one-sided domi-
nance model, followed by the shift model. Hence, we con-
clude that there is evidence for an effect. The effect is sim-
ple and can be reduced to an order relationship. The same
analysis may be applied to the question about the Keystone
pipeline. For these data, the null has a Bayes factor of at
least 2.5-to-1 against any competitor indicating anecdotal
evidence for a lack of an effect of wave on the ratings dis-
tribution.

Perhaps the most interesting data are those about lead-
ership in the Covid-19 pandemic. Here, we have strong ev-
idence for an indominant effect. The unconstrained model
is preferred by several hundred orders of magnitude to any
competitor. Donald Trump seems to be a polarizing figure
compared to state leaders. People were more likely to give
Donald Trump extreme ratings than state leaders. This po-
larization may be seen in the difference plot in Figure 6
(bottom right panel). Here, the curve crosses zero, and
though the deflection may appear slight, it is highly evi-
dential because the sample sizes are so large. Accordingly,
it makes little sense to discuss whether Donald Trump is
viewed as having responded better or worse than local lead-
ers.

The complexity of the effect is easily resolved in this
case by conditioning the data on political-party preference.
Among those that are Republican, Donald Trump is judged
quite well in responding to the crisis; among those that are
Democratic, he is judged quite poorly. This partisan divide
is not present among state leaders. Thus, when we con-
dition responses on political-party preference, the domi-
nance model in the expected direction wins.

Sensitivity To Prior Settings

The Bayesian analysis presented here requires the ana-
lyst to set the prior standard deviations on mean bounds
and effects (b,, bg). Such requirements have given some
researchers pause in adopting Bayesian methods. It seems
reasonable as a starting point to require that if two re-
searchers run the same experiment and obtain the same
data, they should reach similar, if not the same, conclu-
sions. To harmonize Bayesian inference with this starting
point, some analysts actively seek to minimize these effects
by choosing likelihoods, prior parametric forms, and
heuristic methods of inference so that variation in prior
settings have minimal influence (Aitkin, 1991; Gelman et
al., 2004; Kruschke, 2012; Spiegelhalter et al., 2002).

We reject the starting point above including the view
that minimization of prior effects is necessary. The choice
of prior settings is important because it affects the models’
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Figure 6. Difference Plots for the Real-World Data in Tables 3 and 4.

Note. There is anecdotal evidence for a constant shift in the top-left panel and for a lack of an effect in the top-right panel. In the middle-left panel, there is strong evidence for an in-
dominant effect, while there is strong evidence for stochastic dominance in the remaining figures.

Table 5. Bayes Factors for Empirical Examples.

Null Shift Dominance Unconstrained
Immigration Ban 0.21 0.76 1.00 0.13
Keystone Pipeline 1.00 0.29 0.29 0.40
Covid, All 0.00 0.00 0.00 1.00
Covid, Democrats 0.00 0.00 1.00 0.15
Covid, Republicans 0.00 0.00 1.00 0.14

Note. The winning model is assigned a value of 1.00. Bayes factors for all other models are relative to this winning model.

predictions about data. Therefore, these settings necessar-
ily affect model comparison. Whatever this effect, it is the
degree resulting from the usage of Bayes rule, which in turn
mandates that evidence for competing models is the degree
to which they improve predictive accuracy.

When different researchers use different priors, they
may arrive at different opinions about the data. This vari-
ation is not problematic, however, so long as various prior
settings are justifiable: The variation in results reflects the
legitimate diversity of opinion (Rouder et al., 2016). When
different reasonable prior settings suggest conflicting con-

clusions, the data simply do not afford the precision to ar-
rive at a clear verdict between the positions.

With this argument as context, we may assess whether
reasonable variation in prior settings affect Bayes factor
conclusions among the models. In Figure 3, we show that
b, =1 is a good default choice for the prior on «;, and
this choice may be made without undue influence on model
comparison results. The prior choice on the difference pa-
rameters 6; is more consequential. For the previous analy-
sis, we specified by = 1/3. For this setting, we consider a
range from 1/6 (1/2 the original setting) to 2/3 (2 times
the original setting) to be reasonable. Values of by < 0.17
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Table 6. Bayes Factors for Modified Election News Pathways Project Data.

Null Shift Dominance Unconstrained
Covid, All 0.00 0.00 0.13 1.00
Covid, Republicans 0.00 0.00 1.00 0.23

Note. The winning model is assigned a value of 1.00. Bayes factors for all other models are relative to this winning model.

place excessive weight on extremely small differences be-
tween conditions, while values of by > 0.67 place excessive
weight on overwhelmingly large differences.

To see how variation in this prior setting affects the
Bayes factors, we use a modified version of the Election
News Pathways Project data. Unfortunately, with 11,000
observations, the sample size is quite large to be typical of
psychological data. A more typical set would have fewer ob-
servations, and so for the purposes here we took the fre-
quencies in Table 4 and divided them by 10. We used the
complete data set with both Republicans and Democrats
because here we found strong evidence for an indominant
effect. Along with these data, we used the subset of Re-
publicans as these showed evidence for a simpler structure,
namely, stochastic dominance.

The Bayes factors for the modified data set with the
same prior setting as in the previous analysis (b, = 1.0 and
byp = 1/3) are shown in Table 6. Without considering po-
litical-party preference, the unconstrained model is still
preferred over the others. The closest competitor is the
dominance model, and the corresponding Bayes factor is
approximately 8-to-1. The reason this value is more mod-
erate than that in Table 5 reflects the reduced sample size.
Among Republicans, the dominance model is again pre-
ferred over the unconstrained model by a factor of approx-
imately 4-to-1. The question is whether these two values
depend heavily on the range of prior settings.

The dependence is shown in Figure 7. Here, Bayes factors
of all models against the preferred model within three or-
ders of magnitude (10~®) are displayed. Although the exact
figures vary slightly, there is no consequential dependence
of Bayes factors across the reasonable range of prior set-
tings. Both for the complete set (left panel) and the subset
(right panel), the winning model is preferred over its near-
est competitor by a relatively constant amount. Hence, the
Bayes factor method provides for evidence that is fairly ro-
bust to reasonable variation in prior expectations about
data.

Conclusion

Although the use of Likert items is exceedingly popular,
we argue here that researchers have overlooked a defining
primitive in analysis (Townsend, 1990). Instead of debating
the use of parametric vs. nonparametric statistics, we
should assess whether or not two response distributions
can be meaningfully compared by means of their central
tendencies. If there is no order relationship at the level
of distributions (i.e., no stochastic dominance), common
parametric and even nonparametric tests of differences

miss the underlying structure and may mislead the analyst
(Clason & Dormody, 1994).

The statistical models developed herein allow for a more
fine-grained analysis of Likert and other ordinal-scale
items. The null, constant shift, dominance, and uncon-
strained models provide for a rich description of possible
structure in the relationship between two distributions, and
strength of evidence from data for them may be stated
via Bayes factors. The models as well as the Bayes factor
comparisons are straightforward and computationally con-
venient. We demonstrated their usefulness with two real-
world examples and created an easily accessible, user-
friendly web applet for researchers.

Although we think that researchers will benefit from the
development presented herein, there are also limitations:
1. The concept of the threshold here is not psychologi-
cal and should not be interpreted as such. In this frame-
work, thresholds describe the proportion of people that
endorse particular responses. They do not describe the in-
ternal process by which people respond to Likert items.
Likewise, the models do not address whether people use
the same processes or the same response styles. In this re-
gard, the model is a statistical account for addressing con-
straints at the population level. 2. Although the uncon-
strained, dominance, and null models are nonparametric,
the constant shift model, which we suspect will be a simple,
parsimonious account of condition effects, is parametric.
Whether shifts are constant or not depends on the distribu-
tional form, and, here, the choice of identical normal distri-
butions for all respondents is a substantive assumption. 3.
So far, the development only applies to the comparison of
two independent distributions. Of course, psychologists are
often interested in more complicated designs. For example,
the data from Collingwood et al. (2018) are panel data in
which the same people answered in both waves. We do not
take into account any shared variation from the panel de-
sign. 4. Finally, analysis is not always run for a single item
across just two levels of a covariate. It is more typical to use
multiple items to construct latent Likert scales. And in this
case, questions about a shift or stochastic dominance in the
data should be addressed at the scale level.

It is one of the strengths of the proposed analysis frame-
work that it affords the flexibility to incorporate other types
of constraints and data structures. In this paper, we focused
on the common case of comparing two independent re-
sponse distributions on a single Likert item. However, fu-
ture efforts may be devoted to extending our approach to
formulate and test other types of constraints across more
than two conditions and with multiple items (i.e., Likert
scales). At this point, our development constitutes only
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Figure 7. Dependence of Bayes Factors on Prior Settings (by)

Note. Sensitivity analyses were performed on 1/10th of the Election News Pathways Project data. Only models with Bayes factors within three orders of magnitude (10~3) against the

preferred model are shown.

a useful first step toward a more complete framework of
meaningful analysis of ordinal-scale items.
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